Sample records for fusion peptide mutant

  1. La Crosse virus (LACV) Gc fusion peptide mutants have impaired growth and fusion phenotypes, but remain neurotoxic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soldan, Samantha S., E-mail: sssoldan@mail.med.upenn.ed; Hollidge, Bradley S.; Department of Neuroscience Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4283

    La Crosse virus is a leading cause of pediatric encephalitis in the Midwestern United States and an emerging pathogen in the American South. The LACV glycoprotein Gc plays a critical role in entry as the virus attachment protein. A 22 amino acid hydrophobic region within Gc (1066-1087) was recently identified as the LACV fusion peptide. To further define the role of Gc (1066-1087) in virus entry, fusion, and neuropathogenesis, a panel of recombinant LACV (rLACV) fusion peptide mutant viruses was generated. Replication of mutant rLACVs was significantly reduced. In addition, the fusion peptide mutants demonstrated decreased fusion phenotypes relative tomore » LACV-WT. Interestingly, these viruses maintained their ability to cause neuronal loss in culture, suggesting that the fusion peptide of LACV Gc is a determinant of properties associated with neuroinvasion (growth to high titer in muscle cells and a robust fusion phenotype), but not necessarily of neurovirulence.« less

  2. The dengue virus type 2 envelope protein fusion peptide is essential for membrane fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Claire Y.-H., E-mail: CHuang1@cdc.go; Butrapet, Siritorn; Moss, Kelly J.

    The flaviviral envelope (E) protein directs virus-mediated membrane fusion. To investigate membrane fusion as a requirement for virus growth, we introduced 27 unique mutations into the fusion peptide of an infectious cDNA clone of dengue 2 virus and recovered seven stable mutant viruses. The fusion efficiency of the mutants was impaired, demonstrating for the first time the requirement for specific FP AAs in optimal fusion. Mutant viruses exhibited different growth kinetics and/or genetic stabilities in different cell types and adult mosquitoes. Virus particles could be recovered following RNA transfection of cells with four lethal mutants; however, recovered viruses could notmore » re-infect cells. These viruses could enter cells, but internalized virus appeared to be retained in endosomal compartments of infected cells, thus suggesting a fusion blockade. Mutations of the FP also resulted in reduced virus reactivity with flavivirus group-reactive antibodies, confirming earlier reports using virus-like particles.« less

  3. Constancy and diversity in the flavivirus fusion peptide.

    PubMed

    Seligman, Stephen J

    2008-02-14

    accompanying sequence diversity (quasispecies) involving the fusion peptide. Limited clinical data with yellow fever virus suggest that the presence of fusion peptide mutants is not associated with a decreased case fatality rate. The cell-fusing related agents may have substantial differences from other flaviviruses in their mechanism of viral entry into the host cell.

  4. Fusion peptide of influenza hemagglutinin requires a fixed angle boomerang structure for activity.

    PubMed

    Lai, Alex L; Park, Heather; White, Judith M; Tamm, Lukas K

    2006-03-03

    The fusion peptide of influenza hemagglutinin is crucial for cell entry of this virus. Previous studies showed that this peptide adopts a boomerang-shaped structure in lipid model membranes at the pH of membrane fusion. To examine the role of the boomerang in fusion, we changed several residues proposed to stabilize the kink in this structure and measured fusion. Among these, mutants E11A and W14A expressed hemagglutinins with hemifusion and no fusion activities, and F9A and N12A had no effect on fusion, respectively. Binding enthalpies and free energies of mutant peptides to model membranes and their ability to perturb lipid bilayer structures correlated well with the fusion activities of the parent full-length molecules. The structure of W14A determined by NMR and site-directed spin labeling features a flexible kink that points out of the membrane, in sharp contrast to the more ordered boomerang of the wild-type, which points into the membrane. A specific fixed angle boomerang structure is thus required to support membrane fusion.

  5. Neutron diffraction studies of viral fusion peptides

    NASA Astrophysics Data System (ADS)

    Bradshaw, Jeremy P.; J. M. Darkes, Malcolm; Katsaras, John; Epand, Richard M.

    2000-03-01

    Membrane fusion plays a vital role in a large and diverse number of essential biological processes. Despite this fact, the precise molecular events that occur during fusion are still not known. We are currently engaged on a study of membrane fusion as mediated by viral fusion peptides. These peptides are the N-terminal regions of certain viral envelope proteins that mediate the process of fusion between the viral envelope and the membranes of the host cell during the infection process. As part of this study, we have carried out neutron diffraction measurements at the ILL, BeNSC and Chalk River, on a range of viral fusion peptides. The peptides, from simian immunodeficiency virus (SIV), influenza A and feline leukaemia virus (FeLV), were incorporated into stacked phospholipid bilayers. Some of the peptides had been specifically deuterated at key amino acids. Lamellar diffraction data were collected and analysed to yield information on the peptide conformation, location and orientation relative to the bilayer.

  6. Fusing simulation and experiment: The effect of mutations on the structure and activity of the influenza fusion peptide.

    PubMed

    Lousa, Diana; Pinto, Antónia R T; Victor, Bruno L; Laio, Alessandro; Veiga, Ana S; Castanho, Miguel A R B; Soares, Cláudio M

    2016-06-15

    During the infection process, the influenza fusion peptide (FP) inserts into the host membrane, playing a crucial role in the fusion process between the viral and host membranes. In this work we used a combination of simulation and experimental techniques to analyse the molecular details of this process, which are largely unknown. Although the FP structure has been obtained by NMR in detergent micelles, there is no atomic structure information in membranes. To answer this question, we performed bias-exchange metadynamics (BE-META) simulations, which showed that the lowest energy states of the membrane-inserted FP correspond to helical-hairpin conformations similar to that observed in micelles. BE-META simulations of the G1V, W14A, G12A/G13A and G4A/G8A/G16A/G20A mutants revealed that all the mutations affect the peptide's free energy landscape. A FRET-based analysis showed that all the mutants had a reduced fusogenic activity relative to the WT, in particular the mutants G12A/G13A and G4A/G8A/G16A/G20A. According to our results, one of the major causes of the lower activity of these mutants is their lower membrane affinity, which results in a lower concentration of peptide in the bilayer. These findings contribute to a better understanding of the influenza fusion process and open new routes for future studies.

  7. Characterizing the Conformational Landscape of Flavivirus Fusion Peptides via Simulation and Experiment

    PubMed Central

    Marzinek, Jan K.; Lakshminarayanan, Rajamani; Goh, Eunice; Huber, Roland G.; Panzade, Sadhana; Verma, Chandra; Bond, Peter J.

    2016-01-01

    Conformational changes in the envelope proteins of flaviviruses help to expose the highly conserved fusion peptide (FP), a region which is critical to membrane fusion and host cell infection, and which represents a significant target for antiviral drugs and antibodies. In principle, extended timescale atomic-resolution simulations may be used to characterize the dynamics of such peptides. However, the resultant accuracy is critically dependent upon both the underlying force field and sufficient conformational sampling. In the present study, we report a comprehensive comparison of three simulation methods and four force fields comprising a total of more than 40 μs of sampling. Additionally, we describe the conformational landscape of the FP fold across all flavivirus family members. All investigated methods sampled conformations close to available X-ray structures, but exhibited differently populated ensembles. The best force field / sampling combination was sufficiently accurate to predict that the solvated peptide fold is less ordered than in the crystallographic state, which was subsequently confirmed via circular dichroism and spectrofluorometric measurements. Finally, the conformational landscape of a mutant incapable of membrane fusion was significantly shallower than wild-type variants, suggesting that dynamics should be considered when therapeutically targeting FP epitopes. PMID:26785994

  8. Paramyxovirus F1 protein has two fusion peptides: implications for the mechanism of membrane fusion.

    PubMed

    Peisajovich, S G; Samuel, O; Shai, Y

    2000-03-10

    Viral fusion proteins contain a highly hydrophobic segment, named the fusion peptide, which is thought to be responsible for the merging of the cellular and viral membranes. Paramyxoviruses are believed to contain a single fusion peptide at the N terminus of the F1 protein. However, here we identified an additional internal segment in the Sendai virus F1 protein (amino acids 214-226) highly homologous to the fusion peptides of HIV-1 and RSV. A synthetic peptide, which includes this region, was found to induce membrane fusion of large unilamellar vesicles, at concentrations where the known N-terminal fusion peptide is not effective. A scrambled peptide as well as several peptides from other regions of the F1 protein, which strongly bind to membranes, are not fusogenic. The functional and structural characterization of this active segment suggest that the F1 protein has an additional internal fusion peptide that could participate in the actual fusion event. The presence of homologous regions in other members of the same family suggests that the concerted action of two fusion peptides, one N-terminal and the other internal, is a general feature of paramyxoviruses. Copyright 2000 Academic Press.

  9. Line-Tension Controlled Mechanism for Influenza Fusion

    PubMed Central

    Risselada, Herre Jelger; Smirnova, Yuliya G.; Grubmüller, Helmut; Marrink, Siewert Jan; Müller, Marcus

    2012-01-01

    Our molecular simulations reveal that wild-type influenza fusion peptides are able to stabilize a highly fusogenic pre-fusion structure, i.e. a peptide bundle formed by four or more trans-membrane arranged fusion peptides. We rationalize that the lipid rim around such bundle has a non-vanishing rim energy (line-tension), which is essential to (i) stabilize the initial contact point between the fusing bilayers, i.e. the stalk, and (ii) drive its subsequent evolution. Such line-tension controlled fusion event does not proceed along the hypothesized standard stalk-hemifusion pathway. In modeled influenza fusion, single point mutations in the influenza fusion peptide either completely inhibit fusion (mutants G1V and W14A) or, intriguingly, specifically arrest fusion at a hemifusion state (mutant G1S). Our simulations demonstrate that, within a line-tension controlled fusion mechanism, these known point mutations either completely inhibit fusion by impairing the peptide’s ability to stabilize the required peptide bundle (G1V and W14A) or stabilize a persistent bundle that leads to a kinetically trapped hemifusion state (G1S). In addition, our results further suggest that the recently discovered leaky fusion mutant G13A, which is known to facilitate a pronounced leakage of the target membrane prior to lipid mixing, reduces the membrane integrity by forming a ‘super’ bundle. Our simulations offer a new interpretation for a number of experimentally observed features of the fusion reaction mediated by the prototypical fusion protein, influenza hemagglutinin, and might bring new insights into mechanisms of other viral fusion reactions. PMID:22761674

  10. Fusing simulation and experiment: The effect of mutations on the structure and activity of the influenza fusion peptide

    PubMed Central

    Lousa, Diana; Pinto, Antónia R. T.; Victor, Bruno L.; Laio, Alessandro; Veiga, Ana S.; Castanho, Miguel A. R. B.; Soares, Cláudio M.

    2016-01-01

    During the infection process, the influenza fusion peptide (FP) inserts into the host membrane, playing a crucial role in the fusion process between the viral and host membranes. In this work we used a combination of simulation and experimental techniques to analyse the molecular details of this process, which are largely unknown. Although the FP structure has been obtained by NMR in detergent micelles, there is no atomic structure information in membranes. To answer this question, we performed bias-exchange metadynamics (BE-META) simulations, which showed that the lowest energy states of the membrane-inserted FP correspond to helical-hairpin conformations similar to that observed in micelles. BE-META simulations of the G1V, W14A, G12A/G13A and G4A/G8A/G16A/G20A mutants revealed that all the mutations affect the peptide’s free energy landscape. A FRET-based analysis showed that all the mutants had a reduced fusogenic activity relative to the WT, in particular the mutants G12A/G13A and G4A/G8A/G16A/G20A. According to our results, one of the major causes of the lower activity of these mutants is their lower membrane affinity, which results in a lower concentration of peptide in the bilayer. These findings contribute to a better understanding of the influenza fusion process and open new routes for future studies. PMID:27302370

  11. Conserved Glycine Residues in the Fusion Peptide of the Paramyxovirus Fusion Protein Regulate Activation of the Native State

    PubMed Central

    Russell, Charles J.; Jardetzky, Theodore S.; Lamb, Robert A.

    2004-01-01

    Hydrophobic fusion peptides (FPs) are the most highly conserved regions of class I viral fusion-mediating glycoproteins (vFGPs). FPs often contain conserved glycine residues thought to be critical for forming structures that destabilize target membranes. Unexpectedly, a mutation of glycine residues in the FP of the fusion (F) protein from the paramyxovirus simian parainfluenza virus 5 (SV5) resulted in mutant F proteins with hyperactive fusion phenotypes (C. M. Horvath and R. A. Lamb, J. Virol. 66:2443-2455, 1992). Here, we constructed G3A and G7A mutations into the F proteins of SV5 (W3A and WR isolates), Newcastle disease virus (NDV), and human parainfluenza virus type 3 (HPIV3). All of the mutant F proteins, except NDV G7A, caused increased cell-cell fusion despite having slight to moderate reductions in cell surface expression compared to those of wild-type F proteins. The G3A and G7A mutations cause SV5 WR F, but not NDV F or HPIV3 F, to be triggered to cause fusion in the absence of coexpression of its homotypic receptor-binding protein hemagglutinin-neuraminidase (HN), suggesting that NDV and HPIV3 F have stricter requirements for homotypic HN for fusion activation. Dye transfer assays show that the G3A and G7A mutations decrease the energy required to activate F at a step in the fusion cascade preceding prehairpin intermediate formation and hemifusion. Conserved glycine residues in the FP of paramyxovirus F appear to have a primary role in regulating the activation of the metastable native form of F. Glycine residues in the FPs of other class I vFGPs may also regulate fusion activation. PMID:15564482

  12. Multimerized CHR-derived peptides as HIV-1 fusion inhibitors.

    PubMed

    Nomura, Wataru; Hashimoto, Chie; Suzuki, Takaharu; Ohashi, Nami; Fujino, Masayuki; Murakami, Tsutomu; Yamamoto, Naoki; Tamamura, Hirokazu

    2013-08-01

    To date, several HIV-1 fusion inhibitors based on the carboxy-terminal leucine/isoleucine heptad repeat (CHR) region of an HIV-1 envelope protein gp41 have been discovered. We have shown that a synthetic peptide mimetic of a trimer form of the CHR-derived peptide C34 has potent inhibitory activity against the HIV-1 fusion mechanism, compared to a monomer C34 peptide. The present study revealed that a dimeric form of C34 is evidently structurally critical for fusion inhibitors, and that the activity of multimerized CHR-derived peptides in fusion inhibition is affected by the properties of the unit peptides C34, SC34EK, and T20. The fluorescence-based study suggested that the N36-interactive sites of the C34 trimer, including hydrophobic residues, are exposed outside the trimer and that trimerization of C34 caused a remarkable increase in fusion inhibitory activity. The present results could be useful in the design of fusion inhibitors against viral infections which proceed via membrane fusion with host cells. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. HIV gp41 fusion peptide increases membrane ordering in a cholesterol-dependent fashion.

    PubMed

    Lai, Alex L; Freed, Jack H

    2014-01-07

    Fusion between viral envelopes and host cell membranes, which is mediated by special glycoproteins anchored on the viral membrane, is required for HIV viral entry and infection. The HIV gp41 fusion peptide (FP), which initiates membrane fusion, adopts either an α-helical or β-sheeted structure depending on the cholesterol concentration. We used phosphocholine spin labels on the lipid headgroup and different positions on the acyl chain to detect its perturbation on lipid bilayers containing different cholesterol concentrations by electron-spin resonance. Our findings were as follows. 1), gp41 FP affects the lipid order in the same manner as previously shown for influenza hemagglutinin FP, i.e., it has a cooperative effect versus the peptide/lipid ratio, supporting our hypothesis that membrane ordering is a common prerequisite for viral membrane fusion. 2), gp41 FP induces membrane ordering in all lipid compositions studied, whereas a nonfusion mutant FP perturbs lipid order to a significantly smaller extent. 3), In high-cholesterol-containing lipid bilayers, where gp41 FP is in the β-aggregation conformation, its effect on the lipid ordering reaches deeper into the bilayer. The different extent to which the two conformers perturb is correlated with their fusogenicity. The possible role of the two conformers in membrane fusion is discussed. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Measuring the strength of interaction between the Ebola fusion peptide and lipid rafts: implications for membrane fusion and virus infection.

    PubMed

    Freitas, Mônica S; Follmer, Cristian; Costa, Lilian T; Vilani, Cecília; Bianconi, M Lucia; Achete, Carlos Alberto; Silva, Jerson L

    2011-01-13

    The Ebola fusion peptide (EBO₁₆) is a hydrophobic domain that belongs to the GP2 membrane fusion protein of the Ebola virus. It adopts a helical structure in the presence of mimetic membranes that is stabilized by the presence of an aromatic-aromatic interaction established by Trp8 and Phe12. In spite of its infectious cycle becoming better understood recently, several steps still remain unclear, a lacuna that makes it difficult to develop strategies to block infection. In order to gain insight into the mechanism of membrane fusion, we probed the structure, function and energetics of EBO₁₆ and its mutant W8A, in the absence or presence of different lipid membranes, including isolated domain-resistant membranes (DRM), a good experimental model for lipid rafts. The depletion of cholesterol from living mammalian cells reduced the ability of EBO₁₆ to induce lipid mixing. On the other hand, EBO₁₆ was structurally sensitive to interaction with lipid rafts (DRMs), but the same was not observed for W8A mutant. In agreement with these data, W8A showed a poor ability to promote membrane aggregation in comparison to EBO₁₆. Single molecule AFM experiments showed a high affinity force pattern for the interaction of EBO₁₆ and DRM, which seems to be a complex energetic event as observed by the calorimetric profile. Our study is the first to show a strong correlation between the initial step of Ebola virus infection and cholesterol, thus providing a rationale for Ebola virus proteins being co-localized with lipid-raft domains. In all, the results show how small fusion peptide sequences have evolved to adopt highly specific and strong interactions with membrane domains. Such features suggest these processes are excellent targets for therapeutic and vaccine approaches to viral diseases.

  15. Fusion peptides from oncogenic chimeric proteins as putative specific biomarkers of cancer.

    PubMed

    Conlon, Kevin P; Basrur, Venkatesha; Rolland, Delphine; Wolfe, Thomas; Nesvizhskii, Alexey I; MacCoss, Michael J; Lim, Megan S; Elenitoba-Johnson, Kojo S J

    2013-10-01

    Chromosomal translocations encoding chimeric fusion proteins constitute one of the most common mechanisms underlying oncogenic transformation in human cancer. Fusion peptides resulting from such oncogenic chimeric fusions, though unique to specific cancer subtypes, are unexplored as cancer biomarkers. Here we show, using an approach termed fusion peptide multiple reaction monitoring mass spectrometry, the direct identification of different cancer-specific fusion peptides arising from protein chimeras that are generated from the juxtaposition of heterologous genes fused by recurrent chromosomal translocations. Using fusion peptide multiple reaction monitoring mass spectrometry in a clinically relevant scenario, we demonstrate the specific, sensitive, and unambiguous detection of a specific diagnostic fusion peptide in clinical samples of anaplastic large cell lymphoma, but not in a diverse array of benign lymph nodes or other forms of primary malignant lymphomas and cancer-derived cell lines. Our studies highlight the utility of fusion peptides as cancer biomarkers and carry broad implications for the use of protein biomarkers in cancer detection and monitoring.

  16. Shallow boomerang-shaped influenza hemagglutinin G13A mutant structure promotes leaky membrane fusion.

    PubMed

    Lai, Alex L; Tamm, Lukas K

    2010-11-26

    Our previous studies showed that an angled boomerang-shaped structure of the influenza hemagglutinin (HA) fusion domain is critical for virus entry into host cells by membrane fusion. Because the acute angle of ∼105° of the wild-type fusion domain promotes efficient non-leaky membrane fusion, we asked whether different angles would still support fusion and thus facilitate virus entry. Here, we show that the G13A fusion domain mutant produces a new leaky fusion phenotype. The mutant fusion domain structure was solved by NMR spectroscopy in a lipid environment at fusion pH. The mutant adopted a boomerang structure similar to that of wild type but with a shallower kink angle of ∼150°. G13A perturbed the structure of model membranes to a lesser degree than wild type but to a greater degree than non-fusogenic fusion domain mutants. The strength of G13A binding to lipid bilayers was also intermediate between that of wild type and non-fusogenic mutants. These membrane interactions provide a clear link between structure and function of influenza fusion domains: an acute angle is required to promote clean non-leaky fusion suitable for virus entry presumably by interaction of the fusion domain with the transmembrane domain deep in the lipid bilayer. A shallower angle perturbs the bilayer of the target membrane so that it becomes leaky and unable to form a clean fusion pore. Mutants with no fixed boomerang angle interacted with bilayers weakly and did not promote any fusion or membrane perturbation.

  17. Shallow Boomerang-shaped Influenza Hemagglutinin G13A Mutant Structure Promotes Leaky Membrane Fusion*

    PubMed Central

    Lai, Alex L.; Tamm, Lukas K.

    2010-01-01

    Our previous studies showed that an angled boomerang-shaped structure of the influenza hemagglutinin (HA) fusion domain is critical for virus entry into host cells by membrane fusion. Because the acute angle of ∼105° of the wild-type fusion domain promotes efficient non-leaky membrane fusion, we asked whether different angles would still support fusion and thus facilitate virus entry. Here, we show that the G13A fusion domain mutant produces a new leaky fusion phenotype. The mutant fusion domain structure was solved by NMR spectroscopy in a lipid environment at fusion pH. The mutant adopted a boomerang structure similar to that of wild type but with a shallower kink angle of ∼150°. G13A perturbed the structure of model membranes to a lesser degree than wild type but to a greater degree than non-fusogenic fusion domain mutants. The strength of G13A binding to lipid bilayers was also intermediate between that of wild type and non-fusogenic mutants. These membrane interactions provide a clear link between structure and function of influenza fusion domains: an acute angle is required to promote clean non-leaky fusion suitable for virus entry presumably by interaction of the fusion domain with the transmembrane domain deep in the lipid bilayer. A shallower angle perturbs the bilayer of the target membrane so that it becomes leaky and unable to form a clean fusion pore. Mutants with no fixed boomerang angle interacted with bilayers weakly and did not promote any fusion or membrane perturbation. PMID:20826788

  18. Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Rui; Xu, Kai; Zhou, Tongqing

    The HIV-1 fusion peptide, comprising 15 to 20 hydrophobic residues at the N terminus of the Env-gp41 subunit, is a critical component of the virus-cell entry machinery. In this paper, we report the identification of a neutralizing antibody, N123-VRC34.01, which targets the fusion peptide and blocks viral entry by inhibiting conformational changes in gp120 and gp41 subunits of Env required for entry. Crystal structures of N123-VRC34.01 liganded to the fusion peptide, and to the full Env trimer, revealed an epitope consisting of the N-terminal eight residues of the gp41 fusion peptide and glycan N88 of gp120, and molecular dynamics showedmore » that the N-terminal portion of the fusion peptide can be solvent-exposed. Finally, these results reveal the fusion peptide to be a neutralizing antibody epitope and thus a target for vaccine design.« less

  19. Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody

    DOE PAGES

    Kong, Rui; Xu, Kai; Zhou, Tongqing; ...

    2016-05-13

    The HIV-1 fusion peptide, comprising 15 to 20 hydrophobic residues at the N terminus of the Env-gp41 subunit, is a critical component of the virus-cell entry machinery. In this paper, we report the identification of a neutralizing antibody, N123-VRC34.01, which targets the fusion peptide and blocks viral entry by inhibiting conformational changes in gp120 and gp41 subunits of Env required for entry. Crystal structures of N123-VRC34.01 liganded to the fusion peptide, and to the full Env trimer, revealed an epitope consisting of the N-terminal eight residues of the gp41 fusion peptide and glycan N88 of gp120, and molecular dynamics showedmore » that the N-terminal portion of the fusion peptide can be solvent-exposed. Finally, these results reveal the fusion peptide to be a neutralizing antibody epitope and thus a target for vaccine design.« less

  20. Inhibition of Henipavirus fusion and infection by heptad-derived peptides of the Nipah virus fusion glycoprotein

    PubMed Central

    Bossart, Katharine N; Mungall, Bruce A; Crameri, Gary; Wang, Lin-Fa; Eaton, Bryan T; Broder, Christopher C

    2005-01-01

    Background The recent emergence of four new members of the paramyxovirus family has heightened the awareness of and re-energized research on new and emerging diseases. In particular, the high mortality and person to person transmission associated with the most recent Nipah virus outbreaks, as well as the very recent re-emergence of Hendra virus, has confirmed the importance of developing effective therapeutic interventions. We have previously shown that peptides corresponding to the C-terminal heptad repeat (HR-2) of the fusion envelope glycoprotein of Hendra virus and Nipah virus were potent inhibitors of both Hendra virus and Nipah virus-mediated membrane fusion using recombinant expression systems. In the current study, we have developed shorter, second generation HR-2 peptides which include a capped peptide via amidation and acetylation and two poly(ethylene glycol)-linked (PEGylated) peptides, one with the PEG moity at the C-terminus and the other at the N-terminus. Here, we have evaluated these peptides as well as the corresponding scrambled peptide controls in Nipah virus and Hendra virus-mediated membrane fusion and against infection by live virus in vitro. Results Unlike their predecessors, the second generation HR-2 peptides exhibited high solubility and improved synthesis yields. Importantly, both Nipah virus and Hendra virus-mediated fusion as well as live virus infection were potently inhibited by both capped and PEGylated peptides with IC50 concentrations similar to the original HR-2 peptides, whereas the scrambled modified peptides had no inhibitory effect. These data also indicate that these chemical modifications did not alter the functional properties of the peptides as inhibitors. Conclusion Nipah virus and Hendra virus infection in vitro can be potently blocked by specific HR-2 peptides. The improved synthesis and solubility characteristics of the second generation HR-2 peptides will facilitate peptide synthesis for pre-clinical trial

  1. Analysis of the thermodynamics of binding of an SH3 domain to proline-rich peptides using a chimeric fusion protein.

    PubMed

    Candel, Adela M; van Nuland, Nico A J; Martin-Sierra, Francisco M; Martinez, Jose C; Conejero-Lara, Francisco

    2008-03-14

    A complete understanding of the thermodynamic determinants of binding between SH3 domains and proline-rich peptides is crucial to the development of rational strategies for designing ligands for these important domains. Recently we engineered a single-chain chimeric protein by fusing the alpha-spectrin Src homology region 3 (SH3) domain to the decapeptide APSYSPPPPP (p41). This chimera mimics the structural and energetic features of the interaction between SH3 domains and proline-rich peptides. Here we show that analysing the unfolding thermodynamics of single-point mutants of this chimeric fusion protein constitutes a very useful approach to deciphering the thermodynamics of SH3-ligand interactions. To this end, we investigated the contribution of each proline residue of the ligand sequence to the SH3-peptide interaction by producing six single Pro-Ala mutants of the chimeric protein and analysing their unfolding thermodynamics by differential scanning calorimetry (DSC). Structural analyses of the mutant chimeras by circular dichroism, fluorescence and NMR together with NMR-relaxation measurements indicate conformational flexibility at the binding interface, which is strongly affected by the different Pro-Ala mutations. An analysis of the DSC thermograms on the basis of a three-state unfolding model has allowed us to distinguish and separate the thermodynamic magnitudes of the interaction at the binding interface. The model assumes equilibrium between the "unbound" and "bound" states at the SH3-peptide binding interface. The resulting thermodynamic magnitudes classify the different proline residues according to their importance in the interaction as P2 approximately P7 approximately P10>P9 approximately P6>P8, which agrees well with Lim's model for the interaction between SH3 domains and proline-rich peptides. In addition, the thermodynamic signature of the interaction is the same as that usually found for this type of binding, with a strong enthalpy

  2. Insulin chains as efficient fusion tags for prokaryotic expression of short peptides.

    PubMed

    Deng, Ligang; Xue, Xiaoying; Shen, Cangjie; Song, Xiaohan; Wang, Chunyang; Wang, Nan

    2017-10-01

    Insulin chains are usually expressed in Escherichia coli as fusion proteins with different tags, including various low molecular weight peptide tags. The objective of this study was to determine if insulin chains could facilitate the recombinant expression of other target proteins, with an emphasis on low molecular weight peptides. A series of short peptides were fused to mini-proinsulin, chain B or chain A, and induced for expression in Escherichia coli. All the tested peptides including glucagon-like peptide 1 (GLP-1), a C-terminal extended GLP-1, oxyntomodulin, enfuvirtide, linaclotide, and an unstructured artificial peptide were expressed with reasonable yields, identified by Tricine-SDS-PAGE and immunoblotting. All recombinant products were expressed in inclusion bodies. The effective accumulation of products was largely attributed to the insoluble expression induced by fusion with insulin chains, and was confirmed by the fusion expression of transthyretin. Insulin chains thus show promise as efficient fusion tags for mass production of heterologous peptides in prokaryotes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. SARS-CoV fusion peptides induce membrane surface ordering and curvature

    PubMed Central

    Basso, Luis G. M.; Vicente, Eduardo F.; Crusca Jr., Edson; Cilli, Eduardo M.; Costa-Filho, Antonio J.

    2016-01-01

    Viral membrane fusion is an orchestrated process triggered by membrane-anchored viral fusion glycoproteins. The S2 subunit of the spike glycoprotein from severe acute respiratory syndrome (SARS) coronavirus (CoV) contains internal domains called fusion peptides (FP) that play essential roles in virus entry. Although membrane fusion has been broadly studied, there are still major gaps in the molecular details of lipid rearrangements in the bilayer during fusion peptide-membrane interactions. Here we employed differential scanning calorimetry (DSC) and electron spin resonance (ESR) to gather information on the membrane fusion mechanism promoted by two putative SARS FPs. DSC data showed the peptides strongly perturb the structural integrity of anionic vesicles and support the hypothesis that the peptides generate opposing curvature stresses on phosphatidylethanolamine membranes. ESR showed that both FPs increase lipid packing and head group ordering as well as reduce the intramembrane water content for anionic membranes. Therefore, bending moment in the bilayer could be generated, promoting negative curvature. The significance of the ordering effect, membrane dehydration, changes in the curvature properties and the possible role of negatively charged phospholipids in helping to overcome the high kinetic barrier involved in the different stages of the SARS-CoV-mediated membrane fusion are discussed. PMID:27892522

  4. SARS-CoV fusion peptides induce membrane surface ordering and curvature.

    PubMed

    Basso, Luis G M; Vicente, Eduardo F; Crusca, Edson; Cilli, Eduardo M; Costa-Filho, Antonio J

    2016-11-28

    Viral membrane fusion is an orchestrated process triggered by membrane-anchored viral fusion glycoproteins. The S2 subunit of the spike glycoprotein from severe acute respiratory syndrome (SARS) coronavirus (CoV) contains internal domains called fusion peptides (FP) that play essential roles in virus entry. Although membrane fusion has been broadly studied, there are still major gaps in the molecular details of lipid rearrangements in the bilayer during fusion peptide-membrane interactions. Here we employed differential scanning calorimetry (DSC) and electron spin resonance (ESR) to gather information on the membrane fusion mechanism promoted by two putative SARS FPs. DSC data showed the peptides strongly perturb the structural integrity of anionic vesicles and support the hypothesis that the peptides generate opposing curvature stresses on phosphatidylethanolamine membranes. ESR showed that both FPs increase lipid packing and head group ordering as well as reduce the intramembrane water content for anionic membranes. Therefore, bending moment in the bilayer could be generated, promoting negative curvature. The significance of the ordering effect, membrane dehydration, changes in the curvature properties and the possible role of negatively charged phospholipids in helping to overcome the high kinetic barrier involved in the different stages of the SARS-CoV-mediated membrane fusion are discussed.

  5. A Fusion-Inhibiting Peptide against Rift Valley Fever Virus Inhibits Multiple, Diverse Viruses

    PubMed Central

    Koehler, Jeffrey W.; Smith, Jeffrey M.; Ripoll, Daniel R.; Spik, Kristin W.; Taylor, Shannon L.; Badger, Catherine V.; Grant, Rebecca J.; Ogg, Monica M.; Wallqvist, Anders; Guttieri, Mary C.; Garry, Robert F.; Schmaljohn, Connie S.

    2013-01-01

    For enveloped viruses, fusion of the viral envelope with a cellular membrane is critical for a productive infection to occur. This fusion process is mediated by at least three classes of fusion proteins (Class I, II, and III) based on the protein sequence and structure. For Rift Valley fever virus (RVFV), the glycoprotein Gc (Class II fusion protein) mediates this fusion event following entry into the endocytic pathway, allowing the viral genome access to the cell cytoplasm. Here, we show that peptides analogous to the RVFV Gc stem region inhibited RVFV infectivity in cell culture by inhibiting the fusion process. Further, we show that infectivity can be inhibited for diverse, unrelated RNA viruses that have Class I (Ebola virus), Class II (Andes virus), or Class III (vesicular stomatitis virus) fusion proteins using this single peptide. Our findings are consistent with an inhibition mechanism similar to that proposed for stem peptide fusion inhibitors of dengue virus in which the RVFV inhibitory peptide first binds to both the virion and cell membranes, allowing it to traffic with the virus into the endocytic pathway. Upon acidification and rearrangement of Gc, the peptide is then able to specifically bind to Gc and prevent fusion of the viral and endocytic membranes, thus inhibiting viral infection. These results could provide novel insights into conserved features among the three classes of viral fusion proteins and offer direction for the future development of broadly active fusion inhibitors. PMID:24069485

  6. A Helical Short-Peptide Fusion Inhibitor with Highly Potent Activity against Human Immunodeficiency Virus Type 1 (HIV-1), HIV-2, and Simian Immunodeficiency Virus

    PubMed Central

    Xiong, Shengwen; Borrego, Pedro; Ding, Xiaohui; Zhu, Yuanmei; Martins, Andreia; Chong, Huihui

    2016-01-01

    ABSTRACT Human immunodeficiency virus type 2 (HIV-2) has already spread to different regions worldwide, and currently about 1 to 2 million people have been infected, calling for new antiviral agents that are effective on both HIV-1 and HIV-2 isolates. T20 (enfuvirtide), a 36-mer peptide derived from the C-terminal heptad repeat region (CHR) of gp41, is the only clinically approved HIV-1 fusion inhibitor, but it easily induces drug resistance and is not active on HIV-2. In this study, we first demonstrated that the M-T hook structure was also vital to enhancing the binding stability and inhibitory activity of diverse CHR-based peptide inhibitors. We then designed a novel short peptide (23-mer), termed 2P23, by introducing the M-T hook structure, HIV-2 sequences, and salt bridge-forming residues. Promisingly, 2P23 was a highly stable helical peptide with high binding to the surrogate targets derived from HIV-1, HIV-2, and simian immunodeficiency virus (SIV). Consistent with this, 2P23 exhibited potent activity in inhibiting diverse subtypes of HIV-1 isolates, T20-resistant HIV-1 mutants, and a panel of primary HIV-2 isolates, HIV-2 mutants, and SIV isolates. Therefore, we conclude that 2P23 has high potential to be further developed for clinical use, and it is also an ideal tool for exploring the mechanisms of HIV-1/2- and SIV-mediated membrane fusion. IMPORTANCE The peptide drug T20 is the only approved HIV-1 fusion inhibitor, but it is not active on HIV-2 isolates, which have currently infected 1 to 2 million people and continue to spread worldwide. Recent studies have demonstrated that the M-T hook structure can greatly enhance the binding and antiviral activities of gp41 CHR-derived inhibitors, especially for short peptides that are otherwise inactive. By combining the hook structure, HIV-2 sequence, and salt bridge-based strategies, the short peptide 2P23 has been successfully designed. 2P23 exhibits prominent advantages over many other peptide fusion inhibitors

  7. Early and late HIV-1 membrane fusion events are impaired by sphinganine lipidated peptides that target the fusion site.

    PubMed

    Klug, Yoel A; Ashkenazi, Avraham; Viard, Mathias; Porat, Ziv; Blumenthal, Robert; Shai, Yechiel

    2014-07-15

    Lipid-conjugated peptides have advanced the understanding of membrane protein functions and the roles of lipids in the membrane milieu. These lipopeptides modulate various biological systems such as viral fusion. A single function has been suggested for the lipid, binding to the membrane and thus elevating the local concentration of the peptide at the target site. In the present paper, we challenged this argument by exploring in-depth the antiviral mechanism of lipopeptides, which comprise sphinganine, the lipid backbone of DHSM (dihydrosphingomyelin), and an HIV-1 envelope-derived peptide. Surprisingly, we discovered a partnership between the lipid and the peptide that impaired early membrane fusion events by reducing CD4 receptor lateral diffusion and HIV-1 fusion peptide-mediated lipid mixing. Moreover, only the joint function of sphinganine and its conjugate peptide disrupted HIV-1 fusion protein assembly and folding at the later fusion steps. Via imaging techniques we revealed for the first time the direct localization of these lipopeptides to the virus-cell and cell-cell contact sites. Overall, the findings of the present study may suggest lipid-protein interactions in various biological systems and may help uncover a role for elevated DHSM in HIV-1 and its target cell membranes.

  8. The three lives of viral fusion peptides

    PubMed Central

    Apellániz, Beatriz; Huarte, Nerea; Largo, Eneko; Nieva, José L.

    2014-01-01

    Fusion peptides comprise conserved hydrophobic domains absolutely required for the fusogenic activity of glycoproteins from divergent virus families. After 30 years of intensive research efforts, the structures and functions underlying their high degree of sequence conservation are not fully elucidated. The long-hydrophobic viral fusion peptide (VFP) sequences are structurally constrained to access three successive states after biogenesis. Firstly, the VFP sequence must fulfill the set of native interactions required for (meta) stable folding within the globular ectodomains of glycoprotein complexes. Secondly, at the onset of the fusion process, they get transferred into the target cell membrane and adopt specific conformations therein. According to commonly accepted mechanistic models, membrane-bound states of the VFP might promote the lipid bilayer remodeling required for virus-cell membrane merger. Finally, at least in some instances, several VFPs co-assemble with transmembrane anchors into membrane integral helical bundles, following a locking movement hypothetically coupled to fusion-pore expansion. Here we review different aspects of the three major states of the VFPs, including the functional assistance by other membrane-transferring glycoprotein regions, and discuss briefly their potential as targets for clinical intervention. PMID:24704587

  9. The conserved glycine residues in the transmembrane domain of the Semliki Forest virus fusion protein are not required for assembly and fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao Maofu; Kielian, Margaret

    2005-02-05

    The alphavirus Semliki Forest virus (SFV) infects cells via a low pH-triggered fusion reaction mediated by the viral E1 protein. Both the E1 fusion peptide and transmembrane (TM) domain are essential for membrane fusion, but the functional requirements for the TM domain are poorly understood. Here we explored the role of the five TM domain glycine residues, including the highly conserved glycine pair at E1 residues 415/416. SFV mutants with alanine substitutions for individual or all five glycine residues (5G/A) showed growth kinetics and fusion pH dependence similar to those of wild-type SFV. Mutants with increasing substitution of glycine residuesmore » showed an increasingly more stringent requirement for cholesterol during fusion. The 5G/A mutant showed decreased fusion kinetics and extent in fluorescent lipid mixing assays. TM domain glycine residues thus are not required for efficient SFV fusion or assembly but can cause subtle effects on the properties of membrane fusion.« less

  10. Potent peptidic fusion inhibitors of influenza virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadam, Rameshwar U.; Juraszek, Jarek; Brandenburg, Boerries

    Influenza therapeutics with new targets and mechanisms of action are urgently needed to combat potential pandemics, emerging viruses, and constantly mutating strains in circulation. We report here on the design and structural characterization of potent peptidic inhibitors of influenza hemagglutinin. The peptide design was based on complementarity-determining region loops of human broadly neutralizing antibodies against the hemagglutinin (FI6v3 and CR9114). The optimized peptides exhibit nanomolar affinity and neutralization against influenza A group 1 viruses, including the 2009 H1N1 pandemic and avian H5N1 strains. The peptide inhibitors bind to the highly conserved stem epitope and block the low pH–induced conformational rearrangementsmore » associated with membrane fusion. These peptidic compounds and their advantageous biological properties should accelerate the development of new small molecule– and peptide-based therapeutics against influenza virus.« less

  11. [Research progress in fusion expression of antimicrobial peptides].

    PubMed

    Ma, Qingshan; Yu, Zhanqiao; Han, Bing; Zhang, Rijun

    2011-10-01

    Antimicrobial peptides (AMPs) are of great significance in the field of food, feed and medicine due to their wide spectrum of antimicrobial activity and new mechanism of action different from conventional antibiotics. AMPs production from natural sources is usually limited, and chemical synthesis is not economically practical, especially for the production of long peptides. Therefore, heterologous expression of AMPs has been widely studied as an alternative, and fusion expression plays an important role in increasing production. The present review mainly focuses on the types and bioactivities of AMPs. In addition, the recent strategies to the most commonly used carrier proteins for fusion expression of AMPs and prospects for future research were also discussed.

  12. Construction of hybrid peptide synthetases by module and domain fusions

    PubMed Central

    Mootz, Henning D.; Schwarzer, Dirk; Marahiel, Mohamed A.

    2000-01-01

    Nonribosomal peptide synthetases are modular enzymes that assemble peptides of diverse structures and important biological activities. Their modular organization provides a great potential for the rational design of novel compounds by recombination of the biosynthetic genes. Here we describe the extension of a dimodular system to trimodular ones based on whole-module fusion. The recombinant hybrid enzymes were purified to monitor product assembly in vitro. We started from the first two modules of tyrocidine synthetase, which catalyze the formation of the dipeptide dPhe-Pro, to construct such hybrid systems. Fusion of the second, proline-specific module with the ninth and tenth modules of the tyrocidine synthetases, specific for ornithine and leucine, respectively, resulted in dimodular hybrid enzymes exhibiting the combined substrate specificities. The thioesterase domain was fused to the terminal module. Upon incubation of these dimodular enzymes with the first tyrocidine module, TycA, incorporating dPhe, the predicted tripeptides dPhe-Pro-Orn and dPhe-Pro-Leu were obtained at rates of 0.15 min-1 and 2.1 min-1. The internal thioesterase domain was necessary and sufficient to release the products from the hybrid enzymes and thereby facilitate a catalytic turnover. Our approach of whole-module fusion is based on an improved definition of the fusion sites and overcomes the recently discovered editing function of the intrinsic condensation domains. The stepwise construction of hybrid peptide synthetases from catalytic subunits reinforces the inherent potential for the synthesis of novel, designed peptides. PMID:10811885

  13. Construction of hybrid peptide synthetases by module and domain fusions.

    PubMed

    Mootz, H D; Schwarzer, D; Marahiel, M A

    2000-05-23

    Nonribosomal peptide synthetases are modular enzymes that assemble peptides of diverse structures and important biological activities. Their modular organization provides a great potential for the rational design of novel compounds by recombination of the biosynthetic genes. Here we describe the extension of a dimodular system to trimodular ones based on whole-module fusion. The recombinant hybrid enzymes were purified to monitor product assembly in vitro. We started from the first two modules of tyrocidine synthetase, which catalyze the formation of the dipeptide dPhe-Pro, to construct such hybrid systems. Fusion of the second, proline-specific module with the ninth and tenth modules of the tyrocidine synthetases, specific for ornithine and leucine, respectively, resulted in dimodular hybrid enzymes exhibiting the combined substrate specificities. The thioesterase domain was fused to the terminal module. Upon incubation of these dimodular enzymes with the first tyrocidine module, TycA, incorporating dPhe, the predicted tripeptides dPhe-Pro-Orn and dPhe-Pro-Leu were obtained at rates of 0.15 min(-1) and 2.1 min(-1). The internal thioesterase domain was necessary and sufficient to release the products from the hybrid enzymes and thereby facilitate a catalytic turnover. Our approach of whole-module fusion is based on an improved definition of the fusion sites and overcomes the recently discovered editing function of the intrinsic condensation domains. The stepwise construction of hybrid peptide synthetases from catalytic subunits reinforces the inherent potential for the synthesis of novel, designed peptides.

  14. Myristoylation of the Arenavirus Envelope Glycoprotein Stable Signal Peptide Is Critical for Membrane Fusion but Dispensable for Virion Morphogenesis.

    PubMed

    York, Joanne; Nunberg, Jack H

    2016-09-15

    Arenaviruses are responsible for severe and often fatal hemorrhagic disease. In the absence of effective antiviral therapies and vaccines, these viruses pose serious threats to public health and biodefense. Arenaviruses enter the host cell by fusion of the viral and endosomal membranes, a process mediated by the virus envelope glycoprotein GPC. Unlike other class I viral fusion proteins, GPC retains its stable signal peptide (SSP) as an essential third subunit in the mature complex. SSP spans the membrane twice and is myristoylated at its cytoplasmic N terminus. Mutations that abolish SSP myristoylation have been shown to reduce pH-induced cell-cell fusion activity of ectopically expressed GPC to ∼20% of wild-type levels. In order to examine the role of SSP myristoylation in the context of the intact virus, we used reverse genetics to generate Junín viruses (Candid #1 isolate) in which the critical glycine-2 residue in SSP was either replaced by alanine (G2A) or deleted (ΔG2). These mutant viruses produced smaller foci of infection in Vero cells and showed an ∼5-fold reduction in specific infectivity, commensurate with the defect in cell-cell fusion. However, virus assembly and GPC incorporation into budded virions were unaffected. Our findings suggest that the myristate moiety is cryptically disposed in the prefusion GPC complex and may function late in the fusion process to promote merging of the viral and cellular membranes. Hemorrhagic fever arenaviruses pose significant threats to public health and biodefense. Arenavirus entry into the host cell is promoted by the virus envelope glycoprotein GPC. Unlike other viral envelope glycoproteins, GPC contains a myristoylated stable signal peptide (SSP) as an essential third subunit. Myristoylation has been shown to be important for the membrane fusion activity of recombinantly expressed GPC. Here, we use reverse genetics to study the role of SSP myristoylation in the context of the intact virion. We find that

  15. Stability of Iowa mutant and wild type Aβ-peptide aggregates

    NASA Astrophysics Data System (ADS)

    Alred, Erik J.; Scheele, Emily G.; Berhanu, Workalemahu M.; Hansmann, Ulrich H. E.

    2014-11-01

    Recent experiments indicate a connection between the structure of amyloid aggregates and their cytotoxicity as related to neurodegenerative diseases. Of particular interest is the Iowa Mutant, which causes early-onset of Alzheimer's disease. While wild-type Amyloid β-peptides form only parallel beta-sheet aggregates, the mutant also forms meta-stable antiparallel beta sheets. Since these structural variations may cause the difference in the pathological effects of the two Aβ-peptides, we have studied in silico the relative stability of the wild type and Iowa mutant in both parallel and antiparallel forms. We compare regular molecular dynamics simulations with such where the viscosity of the samples is reduced, which, we show, leads to higher sampling efficiency. By analyzing and comparing these four sets of all-atom molecular dynamics simulations, we probe the role of the various factors that could lead to the structural differences. Our analysis indicates that the parallel forms of both wild type and Iowa mutant aggregates are stable, while the antiparallel aggregates are meta-stable for the Iowa mutant and not stable for the wild type. The differences result from the direct alignment of hydrophobic interactions in the in-register parallel oligomers, making them more stable than the antiparallel aggregates. The slightly higher thermodynamic stability of the Iowa mutant fibril-like oligomers in its parallel organization over that in antiparallel form is supported by previous experimental measurements showing slow inter-conversion of antiparallel aggregates into parallel ones. Knowledge of the mechanism that selects between parallel and antiparallel conformations and determines their relative stability may open new avenues for the development of therapies targeting familial forms of early-onset Alzheimer's disease.

  16. Inhibition of p53 Mutant Peptide Aggregation In Vitro by Cationic Osmolyte Acetylcholine Chloride.

    PubMed

    Chen, Zhaolin; Kanapathipillai, Mathumai

    2017-01-01

    Mutations of tumor suppressor protein p53 are present in almost about 50% of all cancers. It has been reported that the p53 mutations cause aggregation and subsequent loss of p53 function, leading to cancer progression. Here in this study we focus on the inhibitory effects of cationic osmolyte molecules acetylcholine chloride, and choline on an aggregation prone 10 amino acid p53 mutant peptide WRPILTIITL, and the corresponding wildtype peptide RRPILTIITL in vitro. The characterization tools used for this study include Thioflavin- T (ThT) induced fluorescence, transmission electron microscopy (TEM), congo red binding, turbidity, dynamic light scattering (DLS), and cell viability assays. The results show that acetylcholine chloride in micromolar concentrations significantly inhibit p53 mutant peptide aggregation in vitro, and could be promising candidate for p53 mutant/ misfolded protein aggregation inhibition. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. A trimeric structural fusion of an antagonistic tumor necrosis factor-α mutant enhances molecular stability and enables facile modification.

    PubMed

    Inoue, Masaki; Ando, Daisuke; Kamada, Haruhiko; Taki, Shintaro; Niiyama, Mayumi; Mukai, Yohei; Tadokoro, Takashi; Maenaka, Katsumi; Nakayama, Taisuke; Kado, Yuji; Inoue, Tsuyoshi; Tsutsumi, Yasuo; Tsunoda, Shin-Ichi

    2017-04-21

    Tumor necrosis factor-α (TNF) exerts its biological effect through two types of receptors, p55 TNF receptor (TNFR1) and p75 TNF receptor (TNFR2). An inflammatory response is known to be induced mainly by TNFR1, whereas an anti-inflammatory reaction is thought to be mediated by TNFR2 in some autoimmune diseases. We have been investigating the use of an antagonistic TNF mutant (TNFR1-selective antagonistic TNF mutant (R1antTNF)) to reveal the pharmacological effect of TNFR1-selective inhibition as a new therapeutic modality. Here, we aimed to further improve and optimize the activity and behavior of this mutant protein both in vitro and in vivo Specifically, we examined a trimeric structural fusion of R1antTNF, formed via the introduction of short peptide linkers, as a strategy to enhance bioactivity and molecular stability. By comparative analysis with R1antTNF, the trimeric fusion, referred to as single-chain R1antTNF (scR1antTNF), was found to retain in vitro molecular properties of receptor selectivity and antagonistic activity but displayed a marked increase in thermal stability. The residence time of scR1antTNF in vivo was also significantly prolonged. Furthermore, molecular modification using polyethylene glycol (PEG) was easily controlled by limiting the number of reactive sites. Taken together, our findings show that scR1antTNF displays enhanced molecular stability while maintaining biological activity compared with R1antTNF. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Line tension at lipid phase boundaries as driving force for HIV fusion peptide-mediated fusion

    NASA Astrophysics Data System (ADS)

    Yang, Sung-Tae; Kiessling, Volker; Tamm, Lukas K.

    2016-04-01

    Lipids and proteins are organized in cellular membranes in clusters, often called `lipid rafts'. Although raft-constituent ordered lipid domains are thought to be energetically unfavourable for membrane fusion, rafts have long been implicated in many biological fusion processes. For the case of HIV gp41-mediated membrane fusion, this apparent contradiction can be resolved by recognizing that the interfaces between ordered and disordered lipid domains are the predominant sites of fusion. Here we show that line tension at lipid domain boundaries contributes significant energy to drive gp41-fusion peptide-mediated fusion. This energy, which depends on the hydrophobic mismatch between ordered and disordered lipid domains, may contribute tens of kBT to fusion, that is, it is comparable to the energy required to form a lipid stalk intermediate. Line-active compounds such as vitamin E lower line tension in inhomogeneous membranes, thereby inhibit membrane fusion, and thus may be useful natural viral entry inhibitors.

  19. Study of the Interaction of the HIV-1 Fusion Peptide with Lipid Bilayer Membranes

    NASA Astrophysics Data System (ADS)

    Heller, William; Rai, Durgesh

    HIV-1 undergoes fusion with the cell membrane through interactions between its coat proteins and the target cell. Visualization of fusion with sufficient detail to determine the molecular mechanism remains elusive. Here, the interaction between a synthetic variant of the HIV-1 gp41 fusion peptide with vesicles composed of dimyristoyl phosphatidylcholine (DMPC) and dimyristoyl phosphatidylserine (DMPS) was studied. The peptide was observed to undergo a concentration-dependent conformational transition between an α-helix and an antiparallel β-sheet that is accompanied by a transition in the structure of the lipid bilayer vesicle. The peptide changes the distribution of lipids between the vesicle leaflets. Further, it creates two regions having different thicknesses. The results shed new light on how the peptide modifies the membrane structure to favor fusion. A portion of this research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy. Research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy.

  20. Universal antibodies against the highly conserved influenza fusion peptide cross-neutralize several subtypes of influenza A virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashem, Anwar M.; Department of Microbiology, Faculty of Medicine, King Abdulaziz University, Jeddah; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON

    Research highlights: {yields} The fusion peptide is the only universally conserved epitope in all influenza viral hemagglutinins. {yields} Anti-fusion peptide antibodies are universal antibodies that cross-react with all influenza HA subtypes. {yields} The universal antibodies cross-neutralize different influenza A subtypes. {yields} The universal antibodies inhibit the fusion process between the viruses and the target cells. -- Abstract: The fusion peptide of influenza viral hemagglutinin plays a critical role in virus entry by facilitating membrane fusion between the virus and target cells. As the fusion peptide is the only universally conserved epitope in all influenza A and B viruses, it couldmore » be an attractive target for vaccine-induced immune responses. We previously reported that antibodies targeting the first 14 amino acids of the N-terminus of the fusion peptide could bind to virtually all influenza virus strains and quantify hemagglutinins in vaccines produced in embryonated eggs. Here we demonstrate that these universal antibodies bind to the viral hemagglutinins in native conformation presented in infected mammalian cell cultures and neutralize multiple subtypes of virus by inhibiting the pH-dependant fusion of viral and cellular membranes. These results suggest that this unique, highly-conserved linear sequence in viral hemagglutinin is exposed sufficiently to be attacked by the antibodies during the course of infection and merits further investigation because of potential importance in the protection against diverse strains of influenza viruses.« less

  1. A cGMP kinase mutant with increased sensitivity to the protein kinase inhibitor peptide PKI(5-24).

    PubMed

    Ruth, P; Kamm, S; Nau, U; Pfeifer, A; Hofmann, F

    1996-01-01

    Synthetic peptides corresponding to the active domain of the heat-stable inhibitor protein PKI are very potent inhibitors of cAMP-dependent protein kinase, but are extremely weak inhibitors of cGMP-dependent protein kinase. In this study, we tried to confer PKI sensitivity to cGMP kinase by site-directed mutagenesis. The molecular requirements for high affinity inhibition by PKI were deduced from the crystal structure of the cAMP kinase/PKI complex. A prominent site of interaction are residues Tyr235 and Phe239 in the catalytic subunit, which from a sandwich-like structure with Phe10 of the PKI(5-24) peptide. To increase the sensitivity for PKI, the cGMP kinase codons at the corresponding sites, Ser555 and Ser559, were changed to Tyr and Phe. The mutant cGMP kinase was stimulated half maximally by cGMP at 3-fold higher concentrations (240 nM) than the wild type (77 nM). Wild type and mutant cGMP kinase did not differ significantly in their Km and Vmax for three different substrate peptides. The PKI(5-24) peptide inhibited phosphotransferase activity of the mutant cGMP kinase with higher potency than that of wild type, with Ki values of 42 +/- .3 microM and 160 +/- .7 microM, respectively. The increased affinity of the mutant cGMP kinase was specific for the PKI(5-24) peptide. Mutation of the essential Phe10 in the PKI(5-24) sequence to an Ala yielded a peptide that inhibited mutant and wild type cGMP kinase with similar potency, with Ki values of 160 +/- 11 and 169 +/- 27 microM, respectively. These results suggest that the mutations Ser555Tyr and Ser559Phe are required, but not sufficient, for high affinity inhibition of cGMP kinase by PKI.

  2. Escherichia coli twin arginine (Tat) mutant translocases possessing relaxed signal peptide recognition specificities.

    PubMed

    Kreutzenbeck, Peter; Kröger, Carsten; Lausberg, Frank; Blaudeck, Natascha; Sprenger, Georg A; Freudl, Roland

    2007-03-16

    The twin arginine (Tat) secretion pathway allows the translocation of folded proteins across the cytoplasmic membrane of bacteria. Tat-specific signal peptides contain a characteristic amino acid motif ((S/T)RRXFLK) including two highly conserved consecutive arginine residues that are thought to be involved in the recognition of the signal peptides by the Tat translocase. Here, we have analyzed the specificity of Tat signal peptide recognition by using a genetic approach. Replacement of the two arginine residues in a Tat-specific precursor protein by lysine-glutamine resulted in an export-defective mutant precursor that was no longer accepted by the wild-type translocase. Selection for restored export allowed for the isolation of Tat translocases possessing single mutations in either the amino-terminal domain of TatB or the first cytosolic domain of TatC. The mutant Tat translocases still efficiently accepted the unaltered precursor protein, indicating that the substrate specificity of the translocases was not strictly changed; rather, the translocases showed an increased tolerance toward variations of the amino acids occupying the positions of the twin arginine residues in the consensus motif of a Tat signal peptide.

  3. Escape from R-peptide deletion in a {gamma}-retrovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Irene C.; Eckhardt, Manon; Brynza, Julia

    2011-09-30

    The R peptide in the cytoplasmic tail (C-tail) of {gamma}-retroviral envelope proteins (Env) prevents membrane fusion before budding. To analyse its role in the formation of replication competent, infectious particles, we developed chimeric murine leukaemia viruses (MLV) with unmodified or R-peptide deleted Env proteins of the gibbon ape leukaemia virus (GaLV). While titres of these viruses were unaffected, R-peptide deficiency led to strongly impaired spreading. Most remarkably, we isolated an escape mutant which had restored an open reading frame for a C-terminal extension of the truncated C-tail. A reconstituted virus encoding this escape C-tail replicated in cell culture. In contrastmore » to R-peptide deficient Env, particle incorporation of the escape Env was effective due to an enhanced protein expression and restored intracellular co-localisation with Gag proteins. Our data demonstrate that the R peptide not only regulates membrane fusion but also mediates efficient Env protein particle incorporation in {gamma}-retrovirus infected cells.« less

  4. Inhibition of Sendai virus fusion with phospholipid vesicles and human erythrocyte membranes by hydrophobic peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelsey, D.R.; Flanagan, T.D.; Young, J.E.

    1991-06-01

    Hydrophobic di- and tripeptides which are capable of inhibiting enveloped virus infection of cells are also capable of inhibiting at least three different types of membrane fusion events. Large unilamellar vesicles (LUV) of N-methyl dioleoylphosphatidylethanolamine (N-methyl DOPE), containing encapsulated 1-aminonaphthalene-3,6,8-trisulfonic acid (ANTS) and/or p-xylene bis(pyridinium bromide) (DPX), were formed by extrusion. Vesicle fusion and leakage were then monitored with the ANTS/DPX fluorescence assay. Sendai virus fusion with lipid vesicles and Sendai virus fusion with human erythrocyte membranes were measured by following the relief of fluorescence quenching of virus labeled with octadecylrhodamine B chloride (R18). This study found that the effectivenessmore » of the peptides carbobenzoxy-L-Phe-L-Phe (Z-L-Phe-L-Phe), Z-L-Phe, Z-D-Phe, and Z-Gly-L-Phe-L-Phe in inhibiting N-methyl DOPE LUV fusion or fusion of virus with N-methyl DOPE LUV also paralleled their reported ability to block viral infectivity. Furthermore, Z-D-Phe-L-PheGly and Z-Gly-L-Phe inhibited Sendai virus fusion with human erythrocyte membranes with the same relative potency with which they inhibited vesicle-vesicle and virus-vesicle fusion. The evidence suggests a mechanism by which these peptides exert their inhibition of plaque formation by enveloped viruses. This class of inhibitors apparently acts by inhibiting fusion of the viral envelope with the target cell membrane, thereby preventing viral infection. The physical pathway by which these peptides inhibit membrane fusion was investigated. {sup 31}P nuclear magnetic resonance (NMR) of proposed intermediates in the pathway for membrane fusion in LUV revealed that the potent fusion inhibitor Z-D-Phe-L-PheGly selectively altered the structure (or dynamics) of the hypothesized fusion intermediates and that the poor inhibitor Z-Gly-L-Phe did not.« less

  5. Identification of Proteus mirabilis Mutants with Increased Sensitivity to Antimicrobial Peptides

    PubMed Central

    McCoy, Andrea J.; Liu, Hongjian; Falla, Timothy J.; Gunn, John S.

    2001-01-01

    Antimicrobial peptides (APs) are important components of the innate defenses of animals, plants, and microorganisms. However, some bacterial pathogens are resistant to the action of APs. For example, Proteus mirabilis is highly resistant to the action of APs, such as polymyxin B (PM), protegrin, and the synthetic protegrin analog IB-367. To better understand this resistance, a transposon mutagenesis approach was used to generate P. mirabilis mutants sensitive to APs. Four unique PM-sensitive mutants of P. mirabilis were identified (these mutants were >2 to >128 times more sensitive than the wild type). Two of these mutants were also sensitive to IB-367 (16 and 128 times more sensitive than the wild type). Lipopolysaccharide (LPS) profiles of the PM- and protegrin-sensitive mutants demonstrated marked differences in both the lipid A and O-antigen regions, while the PM-sensitive mutants appeared to have alterations of either lipid A or O antigen. Matrix-assisted laser desorption ionization–time of flight mass spectrometry analysis of the wild-type and PM-sensitive mutant lipid A showed species with one or two aminoarabinose groups, while lipid A from the PM- and protegrin-sensitive mutants was devoid of aminoarabinose. When the mutants were streaked on an agar-containing medium, the swarming motility of the PM- and protegrin-sensitive mutants was completely inhibited and the swarming motility of the mutants sensitive to only PM was markedly decreased. DNA sequence analysis of the mutagenized loci revealed similarities to an O-acetyltransferase (PM and protegrin sensitive) and ATP synthase and sap loci (PM sensitive). These data further support the role of LPS modifications as an elaborate mechanism in the resistance of certain bacterial species to APs and suggest that LPS surface charge alterations may play a role in P. mirabilis swarming motility. PMID:11408219

  6. A Conserved Region in the F2 Subunit of Paramyxovirus Fusion Proteins Is Involved In Fusion Regulation▿

    PubMed Central

    Gardner, Amanda E.; Dutch, Rebecca E.

    2007-01-01

    Paramyxoviruses utilize both an attachment protein and a fusion (F) protein to drive virus-cell and cell-cell fusion. F exists functionally as a trimer of two disulfide-linked subunits: F1 and F2. Alignment and analysis of a set of paramyxovirus F protein sequences identified three conserved blocks (CB): one in the fusion peptide/heptad repeat A domain, known to play important roles in fusion promotion, one in the region between the heptad repeats of F1 (CBF1) (A. E. Gardner, K. L. Martin, and R. E. Dutch, Biochemistry 46:5094-5105, 2007), and one in the F2 subunit (CBF2). To analyze the functions of CBF2, alanine substitutions at conserved positions were created in both the simian virus 5 (SV5) and Hendra virus F proteins. A number of the CBF2 mutations resulted in folding and expression defects. However, the CBF2 mutants that were properly expressed and trafficked had altered fusion promotion activity. The Hendra virus CBF2 Y79A and P89A mutants showed significantly decreased levels of fusion, whereas the SV5 CBF2 I49A mutant exhibited greatly increased cell-cell fusion relative to that for wild-type F. Additional substitutions at SV5 F I49 suggest that both side chain volume and hydrophobicity at this position are important in the folding of the metastable, prefusion state and the subsequent triggering of membrane fusion. The recently published prefusogenic structure of parainfluenza virus 5/SV5 F (H. S. Yin et al., Nature 439:38-44, 2006) places CBF2 in direct contact with heptad repeat A. Our data therefore indicate that this conserved region plays a critical role in stabilizing the prefusion state, likely through interactions with heptad repeat A, and in triggering membrane fusion. PMID:17507474

  7. Molecular Dynamics Simulations of Folding and Insertion of the Ebola Virus Fusion Peptide into a Membrane Bilayer

    DTIC Science & Technology

    2008-07-01

    Molecular Dynamics Simulations of Folding and Insertion of the Ebola Virus Fusion Peptide into a Membrane Bilayer Mark A. Olson1, In...presents replica-exchange molecular dynamics simulations of the folding and insertion of a 16- residue Ebola virus fusion peptide into a membrane...separate calculated structures into conformational basins. 2.1 Simulation models Molecular dynamics simulations were performed using the all-atom

  8. Role of the Simian Virus 5 Fusion Protein N-Terminal Coiled-Coil Domain in Folding and Promotion of Membrane Fusion

    PubMed Central

    West, Dava S.; Sheehan, Michael S.; Segeleon, Patrick K.; Dutch, Rebecca Ellis

    2005-01-01

    Formation of a six-helix bundle comprised of three C-terminal heptad repeat regions in antiparallel orientation in the grooves of an N-terminal coiled-coil is critical for promotion of membrane fusion by paramyxovirus fusion (F) proteins. We have examined the effect of mutations in four residues of the N-terminal heptad repeat in the simian virus 5 (SV5) F protein on protein folding, transport, and fusogenic activity. The residues chosen have previously been shown from study of isolated peptides to have differing effects on stability of the N-terminal coiled-coil and six-helix bundle (R. E. Dutch, G. P. Leser, and R. A. Lamb, Virology 254:147-159, 1999). The mutant V154M showed reduced proteolytic cleavage and surface expression, indicating a defect in intracellular transport, though this mutation had no effect when studied in isolated peptides. The mutation I137M, previously shown to lower thermostability of the six-helix bundle, resulted in an F protein which was properly processed and transported to the cell surface but which had reduced fusogenic activity. Finally, mutations at L140M and L161M, previously shown to disrupt α-helix formation of isolated N-1 peptides but not to affect six-helix bundle formation, resulted in F proteins that were properly processed. Interestingly, the L161M mutant showed increased syncytium formation and promoted fusion at lower temperatures than the wild-type F protein. These results indicate that interactions separate from formation of an N-terminal coiled-coil or six-helix bundle are important in the initial folding and transport of the SV5 F protein and that mutations that destabilize the N-terminal coiled-coil can result in stimulation of membrane fusion. PMID:15650180

  9. Expression and purification of chimeric peptide comprising EGFR B-cell epitope and measles virus fusion protein T-cell epitope in Escherichia coli.

    PubMed

    Wu, Meizhi; Zhao, Lin; Zhu, Lei; Chen, Zhange; Li, Huangjin

    2013-03-01

    Chimeric peptide MVF-EGFR(237-267), comprising a B-cell epitope from the dimerization interface of human epidermal growth factor receptor (EGFR) and a promiscuous T-cell epitope from measles virus fusion protein (MVF), is a promising candidate antigen peptide for therapeutic vaccine. To establish a high-efficiency preparation process of this small peptide, the coding sequence was cloned into pET-21b and pET-32a respectively, to be expressed alone or in the form of fusion protein with thioredoxin (Trx) and His(6)-tag in Escherichia coli BL21 (DE3). The chimeric peptide failed to be expressed alone, but over-expressed in the fusion form, which presented as soluble protein and took up more than 30% of total proteins of host cells. The fusion protein was seriously degraded during the cell disruption, in which endogenous metalloproteinase played a key role. Degradation of target peptide was inhibited by combined application of EDTA in the cell disruption buffer and a step of Source 30Q anion exchange chromatography (AEC) before metal-chelating chromatography (MCAC) for purifying His(6)-tagged fusion protein. The chimeric peptide was recovered from the purified fusion protein by enterokinase digestion at a yield of 3.0 mg/L bacteria culture with a purity of more than 95%. Immunogenicity analysis showed that the recombinant chimeric peptide was able to arouse more than 1×10(4) titers of specific antibody in BALB/c mice. Present work laid a solid foundation for the development of therapeutic peptide vaccine targeting EGFR dimerization and provided a convenient and low-cost preparation method for small peptides. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Dual-mode enhancement of metallothionein protein with cell transduction and retention peptide fusion.

    PubMed

    Lim, Kwang Suk; Lim, Myoung-Hwa; Won, Young-Wook; Kim, Jang Kyoung; Kang, Young Cheol; Park, Eun Jeong; Chae, Ji-Won; Kim, So-Mi; Ryu, Seong-Eon; Pak, Youngmi Kim; Kim, Yong-Hee

    2013-10-28

    Protein transduction domains (PTDs), also known as cell-penetrating peptides (CPPs), have been developed as effective systems for delivering bio-active cargos such as proteins, genes and particles. Further improvements on cell-specific targeting, intracellular organelle targeting and intracellular retention are still necessary to enhance the therapeutic effect of PTD fusion proteins. In order to enhance the cell transduction and retention of anti-oxidative metallothionein protein (MT), MT was recombinantly fused with transcriptional activator (Tat) with or without a short peptide (sMTS) derived from mitochondria malate dehydrogenase (mMDH). Cellular uptake and retention time of fusion protein were significantly increased in the H9c2 cell by sMTS. The Tat-sMTS-MT (TMM) fusion protein protected H9c2 cells more effectively against hypoxia, hyperglycemia and combination compared with Tat-MT (TM) by reducing intracellular ROS level. It maintained the normal blood glucose level over an extended period of time in a streptozotocin-induced diabetic mouse model. PTD-sMTS-MT fusion protein has a potential to be used as a therapeutic protein for the treatment or prevention of diabetes and diabetic complications. © 2013.

  11. Factors that drive peptide assembly and fibril formation: experimental and theoretical analysis of Sup35 NNQQNY mutants.

    PubMed

    Do, Thanh D; Economou, Nicholas J; LaPointe, Nichole E; Kincannon, William M; Bleiholder, Christian; Feinstein, Stuart C; Teplow, David B; Buratto, Steven K; Bowers, Michael T

    2013-07-18

    Residue mutations have substantial effects on aggregation kinetics and propensities of amyloid peptides and their aggregate morphologies. Such effects are attributed to conformational transitions accessed by various types of oligomers such as steric zipper or single β-sheet. We have studied the aggregation propensities of six NNQQNY mutants: NVVVVY, NNVVNV, NNVVNY, VIQVVY, NVVQIY, and NVQVVY in water using a combination of ion-mobility mass spectrometry, transmission electron microscopy, atomic force microscopy, and all-atom molecular dynamics simulations. Our data show a strong correlation between the tendency to form early β-sheet oligomers and the subsequent aggregation propensity. Our molecular dynamics simulations indicate that the stability of a steric zipper structure can enhance the propensity for fibril formation. Such stability can be attained by either hydrophobic interactions in the mutant peptide or polar side-chain interdigitations in the wild-type peptide. The overall results display only modest agreement with the aggregation propensity prediction methods such as PASTA, Zyggregator, and RosettaProfile, suggesting the need for better parametrization and model peptides for these algorithms.

  12. A Conserved Region between the Heptad Repeats of Paramyxovirus Fusion Proteins is Critical for Proper F Protein Folding†

    PubMed Central

    Gardner, Amanda E.; Martin, Kimberly L.; Dutch, Rebecca E.

    2008-01-01

    Paramyxoviruses are a diverse family which utilizes a fusion (F) protein to enter cells via fusion of the viral lipid bilayer with a target cell membrane. Although certain regions of F are known to play critical roles in membrane fusion, the function of much of the protein remains unclear. Sequence alignment of a set of paramyxovirus F proteins and analysis utilizing Block Maker identified a region of conserved amino acid sequence in a large domain between the heptad repeats of F1, designated CBF1. We employed site-directed mutagenesis to analyze the function of completely conserved residues of CBF1 in both the simian virus 5 (SV5) and Hendra virus F proteins. The majority of CBF1 point mutants were deficient in homotrimer formation, proteolytic processing, and transport to the cell surface. For some SV5 F mutants, proteolytic cleavage and surface expression could be restored by expression at 30°C, and varying levels of fusion promotion were observed at this temperature. In addition, the mutant SV5 F V402A displayed a hyperfusogenic phenotype at both 30°C and 37°C, indicating this mutation allows for efficient fusion with only an extremely small amount of cleaved, active protein. The recently published prefusogenic structure of PIV5/SV5 F [Yin, H.S., et al. (2006) Nature 439, 38–44] indicates that residues within and flanking CBF1 interact with the fusion peptide domain. Together, these data suggest that CBF1-fusion peptide interactions are critical for the initial folding of paramyxovirus F proteins from across this important viral family, and can also modulate subsequent membrane fusion promotion. PMID:17417875

  13. In Vivo Efficacy of Measles Virus Fusion Protein-Derived Peptides Is Modulated by the Properties of Self-Assembly and Membrane Residence

    PubMed Central

    Figueira, T. N.; Palermo, L. M.; Veiga, A. S.; Huey, D.; Alabi, C. A.; Santos, N. C.; Welsch, J. C.; Mathieu, C.; Niewiesk, S.; Moscona, A.

    2016-01-01

    ABSTRACT Measles virus (MV) infection is undergoing resurgence and remains one of the leading causes of death among young children worldwide despite the availability of an effective measles vaccine. MV infects its target cells by coordinated action of the MV hemagglutinin (H) and fusion (F) envelope glycoproteins; upon receptor engagement by H, the prefusion F undergoes a structural transition, extending and inserting into the target cell membrane and then refolding into a postfusion structure that fuses the viral and cell membranes. By interfering with this structural transition of F, peptides derived from the heptad repeat (HR) regions of F can inhibit MV infection at the entry stage. In previous work, we have generated potent MV fusion inhibitors by dimerizing the F-derived peptides and conjugating them to cholesterol. We have shown that prophylactic intranasal administration of our lead fusion inhibitor efficiently protects from MV infection in vivo. We show here that peptides tagged with lipophilic moieties self-assemble into nanoparticles until they reach the target cells, where they are integrated into cell membranes. The self-assembly feature enhances biodistribution and the half-life of the peptides, while integration into the target cell membrane increases fusion inhibitor potency. These factors together modulate in vivo efficacy. The results suggest a new framework for developing effective fusion inhibitory peptides. IMPORTANCE Measles virus (MV) infection causes an acute illness that may be associated with infection of the central nervous system (CNS) and severe neurological disease. No specific treatment is available. We have shown that fusion-inhibitory peptides delivered intranasally provide effective prophylaxis against MV infection. We show here that specific biophysical properties regulate the in vivo efficacy of MV F-derived peptides. PMID:27733647

  14. In Vivo Efficacy of Measles Virus Fusion Protein-Derived Peptides Is Modulated by the Properties of Self-Assembly and Membrane Residence.

    PubMed

    Figueira, T N; Palermo, L M; Veiga, A S; Huey, D; Alabi, C A; Santos, N C; Welsch, J C; Mathieu, C; Horvat, B; Niewiesk, S; Moscona, A; Castanho, M A R B; Porotto, M

    2017-01-01

    Measles virus (MV) infection is undergoing resurgence and remains one of the leading causes of death among young children worldwide despite the availability of an effective measles vaccine. MV infects its target cells by coordinated action of the MV hemagglutinin (H) and fusion (F) envelope glycoproteins; upon receptor engagement by H, the prefusion F undergoes a structural transition, extending and inserting into the target cell membrane and then refolding into a postfusion structure that fuses the viral and cell membranes. By interfering with this structural transition of F, peptides derived from the heptad repeat (HR) regions of F can inhibit MV infection at the entry stage. In previous work, we have generated potent MV fusion inhibitors by dimerizing the F-derived peptides and conjugating them to cholesterol. We have shown that prophylactic intranasal administration of our lead fusion inhibitor efficiently protects from MV infection in vivo We show here that peptides tagged with lipophilic moieties self-assemble into nanoparticles until they reach the target cells, where they are integrated into cell membranes. The self-assembly feature enhances biodistribution and the half-life of the peptides, while integration into the target cell membrane increases fusion inhibitor potency. These factors together modulate in vivo efficacy. The results suggest a new framework for developing effective fusion inhibitory peptides. Measles virus (MV) infection causes an acute illness that may be associated with infection of the central nervous system (CNS) and severe neurological disease. No specific treatment is available. We have shown that fusion-inhibitory peptides delivered intranasally provide effective prophylaxis against MV infection. We show here that specific biophysical properties regulate the in vivo efficacy of MV F-derived peptides. Copyright © 2016 American Society for Microbiology.

  15. Inhibition of the Hantavirus Fusion Process by Predicted Domain III and Stem Peptides from Glycoprotein Gc.

    PubMed

    Barriga, Gonzalo P; Villalón-Letelier, Fernando; Márquez, Chantal L; Bignon, Eduardo A; Acuña, Rodrigo; Ross, Breyan H; Monasterio, Octavio; Mardones, Gonzalo A; Vidal, Simon E; Tischler, Nicole D

    2016-07-01

    Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses.

  16. Membrane insertion of fusion peptides from Ebola and Marburg viruses studied by replica-exchange molecular dynamics simulations.

    PubMed

    Olson, Mark A; Lee, Michael S; Yeh, In-Chul

    2017-06-15

    This work presents replica-exchange molecular dynamics simulations of inserting a 16-residue Ebola virus fusion peptide into a membrane bilayer. A computational approach is applied for modeling the peptide at the explicit all-atom level and the membrane-aqueous bilayer by a generalized Born continuum model with a smoothed switching function (GBSW). We provide an assessment of the model calculations in terms of three metrics: (1) the ability to reproduce the NMR structure of the peptide determined in the presence of SDS micelles and comparable structural data on other fusion peptides; (2) determination of the effects of the mutation Trp-8 to Ala and sequence discrimination of the homologous Marburg virus; and (3) calculation of potentials of mean force for estimating the partitioning free energy and their comparison to predictions from the Wimley-White interfacial hydrophobicity scale. We found the GBSW implicit membrane model to produce results of limited accuracy in conformational properties of the peptide when compared to the NMR structure, yet the model resolution is sufficient to determine the effect of sequence differentiation on peptide-membrane integration. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Structure-activity relationships in the fusion of small unilamellar phosphatidylcholine vesicles induced by a model peptide.

    PubMed

    da Costa, M H; Chaimovich, H

    1997-09-01

    Limited proteolysis of fatty acid-free bovine serum albumin by pepsin yields several well characterized peptides, one of which (P9, M(r) 9,000), induces fusion of small unilamellar vesicles (SUV) of phosphatidylcholine at pH 3.6. Circular dichroism (CD) of P9 solutions confirmed that the peptide undergoes a reversible transition between pH 7 and pH 3.6. The spectral changes observed with CD suggest that in the low pH conformation there is a decrease in the alpha-helical contents and an exposure of hydrophobic residues. CD and differential ultraviolet spectroscopy demonstrated that P9 binds to micelles of hexadecylphosphorylcholine and the binding produces changes in the tertiary structure of the peptide. Reduction and carboxymethylation of the two disulfide bridges of P9 produced loss of the ability to induce fusion of SUV, although the reduced peptide binds to vesicles, induces loss of entrapped marker and produces vesicle disruption. In the active form P9 exposes hydrophobic groups, one amphiphilic alpha-helix and requires the integrity of the disulfide bridge-stabilized tertiary structure.

  18. Mutagenesis of the La Crosse Virus glycoprotein supports a role for Gc (1066-1087) as the fusion peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plassmeyer, Matthew L.; Graduate Group Molecular and Cell Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058; Soldan, Samantha S.

    The La Crosse Virus (LACV) M segment encodes two glycoproteins (Gn and Gc), and plays a critical role in the neuropathogenesis of LACV infection as the primary determinant of neuroinvasion. A recent study from our group demonstrated that the region comprising the membrane proximal two-thirds of Gc, amino acids 860-1442, is critical in mediating LACV fusion and entry. Furthermore, computational analysis identified structural similarities between a portion of this region, amino acids 970-1350, and the E1 fusion protein of two alphaviruses: Sindbis virus and Semliki Forrest virus (SFV). Within the region 970-1350, a 22-amino-acid hydrophobic segment (1066-1087) is predicted tomore » correlate structurally with the fusion peptides of class II fusion proteins. We performed site-directed mutagenesis of key amino acids in this 22-amino acid segment and determined the functional consequences of these mutations on fusion and entry. Several mutations within this hydrophobic domain affected glycoprotein expression to some extent, but all mutations either shifted the pH threshold of fusion below that of the wild-type protein, reduced fusion efficiency, or abrogated cell-to-cell fusion and pseudotype entry altogether. These results, coupled with the aforementioned computational modeling, suggest that the LACV Gc functions as a class II fusion protein and support a role for the region Gc 1066-1087 as a fusion peptide.« less

  19. Enhanced cellulase producing mutants developed from heterokaryotic Aspergillus strain.

    PubMed

    Kaur, Baljit; Oberoi, H S; Chadha, B S

    2014-03-01

    A heterokaryon 28, derived through protoplast fusion between Aspergillus nidulans and Aspergillus tubingensis (Dal8), was subjected cyclic mutagenesis followed by selection on increasing levels of 2-deoxy glucose (2-DG) as selection marker. The derived deregulated cellulase hyper producing mutant '64', when compared to fusant 28, produced 9.83, 7.8, 3.2, 4.2 and 19.74 folds higher endoglucanase, β-glucosidase, cellobiohydrolase, FPase and xylanase, respectively, under shake cultures. The sequence analysis of PCR amplified β-glucosidase gene from wild and mutant showed nucleotide deletion/substitution. The mutants showed highly catalytic efficient β-glucosidase as evident from low Km and high Vmax values. The expression profiling through zymogram analysis also indicated towards over-expression of cellulases. The up/down regulated expressed proteins observed through SDS-PAGE were identified by Peptide mass fingerprinting The cellulase produced by mutants in conjunction with cellulase free xylanase derived from Thermomyces lanuginosus was used for efficient utilization of alkali treated rice straw for obtaining xylo-oligosaccharides and ethanol. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Selection of High-Affinity Peptidic Serine Protease Inhibitors with Increased Binding Entropy from a Back-Flip Library of Peptide-Protease Fusions.

    PubMed

    Sørensen, Hans Peter; Xu, Peng; Jiang, Longguang; Kromann-Hansen, Tobias; Jensen, Knud J; Huang, Mingdong; Andreasen, Peter A

    2015-09-25

    We have developed a new concept for designing peptidic protein modulators, by recombinantly fusing the peptidic modulator, with randomized residues, directly to the target protein via a linker and screening for internal modulation of the activity of the protein. We tested the feasibility of the concept by fusing a 10-residue-long, disulfide-bond-constrained inhibitory peptide, randomized in selected positions, to the catalytic domain of the serine protease murine urokinase-type plasminogen activator. High-affinity inhibitory peptide variants were identified as those that conferred to the fusion protease the lowest activity for substrate hydrolysis. The usefulness of the strategy was demonstrated by the selection of peptidic inhibitors of murine urokinase-type plasminogen activator with a low nanomolar affinity. The high affinity could not have been predicted by rational considerations, as the high affinity was associated with a loss of polar interactions and an increased binding entropy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Expression of the cationic antimicrobial peptide lactoferricin fused with the anionic peptide in Escherichia coli.

    PubMed

    Kim, Ha-Kun; Chun, Dae-Sik; Kim, Joon-Sik; Yun, Cheol-Ho; Lee, Ju-Hoon; Hong, Soon-Kwang; Kang, Dae-Kyung

    2006-09-01

    Direct expression of lactoferricin, an antimicrobial peptide, is lethal to Escherichia coli. For the efficient production of lactoferricin in E. coli, we developed an expression system in which the gene for the lysine- and arginine-rich cationic lactoferricin was fused to an anionic peptide gene to neutralize the basic property of lactoferricin, and successfully overexpressed the concatemeric fusion gene in E. coli. The lactoferricin gene was linked to a modified magainin intervening sequence gene by a recombinational polymerase chain reaction, thus producing an acidic peptide-lactoferricin fusion gene. The monomeric acidic peptide-lactoferricin fusion gene was multimerized and expressed in E. coli BL21(DE3) upon induction with isopropyl-beta-D-thiogalactopyranoside. The expression levels of the fusion peptide reached the maximum at the tetramer, while further increases in the copy number of the fusion gene substantially reduced the peptide expression level. The fusion peptides were isolated and cleaved to generate the separate lactoferricin and acidic peptide. About 60 mg of pure recombinant lactoferricin was obtained from 1 L of E. coli culture. The purified recombinant lactoferricin was found to have a molecular weight similar to that of chemically synthesized lactoferricin. The recombinant lactoferricin showed antimicrobial activity and disrupted bacterial membrane permeability, as the native lactoferricin peptide does.

  2. Solid-State Nuclear Magnetic Resonance Investigation of the Structural Topology and Lipid Interactions of a Viral Fusion Protein Chimera Containing the Fusion Peptide and Transmembrane Domain.

    PubMed

    Yao, Hongwei; Lee, Myungwoon; Liao, Shu-Yu; Hong, Mei

    2016-12-13

    The fusion peptide (FP) and transmembrane domain (TMD) of viral fusion proteins play important roles during virus-cell membrane fusion, by inducing membrane curvature and transient dehydration. The structure of the water-soluble ectodomain of viral fusion proteins has been extensively studied crystallographically, but the structures of the FP and TMD bound to phospholipid membranes are not well understood. We recently investigated the conformations and lipid interactions of the separate FP and TMD peptides of parainfluenza virus 5 (PIV5) fusion protein F using solid-state nuclear magnetic resonance. These studies provide structural information about the two domains when they are spatially well separated in the fusion process. To investigate how these two domains are structured relative to each other in the postfusion state, when the ectodomain forms a six-helix bundle that is thought to force the FP and TMD together in the membrane, we have now expressed and purified a chimera of the FP and TMD, connected by a Gly-Lys linker, and measured the chemical shifts and interdomain contacts of the protein in several lipid membranes. The FP-TMD chimera exhibits α-helical chemical shifts in all the membranes examined and does not cause strong curvature of lamellar membranes or membranes with negative spontaneous curvature. These properties differ qualitatively from those of the separate peptides, indicating that the FP and TMD interact with each other in the lipid membrane. However, no 13 C- 13 C cross peaks are observed in two-dimensional correlation spectra, suggesting that the two helices are not tightly associated. These results suggest that the ectodomain six-helix bundle does not propagate into the membrane to the two hydrophobic termini. However, the loosely associated FP and TMD helices are found to generate significant negative Gaussian curvature to membranes that possess spontaneous positive curvature, consistent with the notion that the FP-TMD assembly may

  3. Full-Length Trimeric Influenza Virus Hemagglutinin II Membrane Fusion Protein and Shorter Constructs Lacking the Fusion Peptide or Transmembrane Domain: Hyperthermostability of the Full-Length Protein and the Soluble Ectodomain and Fusion Peptide Make Significant Contributions to Fusion of Membrane Vesicles†

    PubMed Central

    Ratnayake, Punsisi U.; Ekanayaka, E. A. Prabodha; Komanduru, Sweta S.; Weliky, David P.

    2015-01-01

    Influenza virus is a Class I enveloped virus which is initially endocytosed into a host respiratory epithelial cell. Subsequent reduction of the pH to the 5–6 range triggers a structural change of the viral hemagglutinin II (HA2) protein, fusion of the viral and endosomal membranes, and release of the viral nucleocapsid into the cytoplasm. HA2 contains fusion peptide (FP), soluble ectodomain (SE), transmembrane (TM), and intraviral domains with respective lengths of ~25, ~160, ~25, and ~10 residues. The present work provides a straightforward protocol for producing and purifying mg quantities of full-length HA2 from expression in bacteria. Biophysical and structural comparisons are made between full-length HA2 and shorter constructs including SHA2 ≡ SE, FHA2 ≡ FP + SE, and SHA2-TM ≡ SE + TM constructs. The constructs are helical in detergent at pH 7.4 and the dominant trimer species. The proteins are highly thermostable in decylmaltoside detergent with Tm > 90 °C for HA2 with stabilization provided by the SE, FP, and TM domains. The proteins are likely in a trimer-of-hairpins structure, the final protein state during fusion. All constructs induce fusion of negatively-charged vesicles at pH 5.0 with much less fusion at pH 7.4. Attractive protein/vesicle electrostatics play a role in fusion, as the proteins are positively-charged at pH 5.0 and negatively-charged at pH 7.4 and the pH-dependence of fusion is reversed for positively-charged vesicles. Comparison of fusion between constructs supports significant contributions to fusion from the SE and the FP with little effect from the TM. PMID:26297995

  4. Full-length trimeric influenza virus hemagglutinin II membrane fusion protein and shorter constructs lacking the fusion peptide or transmembrane domain: Hyperthermostability of the full-length protein and the soluble ectodomain and fusion peptide make significant contributions to fusion of membrane vesicles.

    PubMed

    Ratnayake, Punsisi U; Prabodha Ekanayaka, E A; Komanduru, Sweta S; Weliky, David P

    2016-01-01

    Influenza virus is a class I enveloped virus which is initially endocytosed into a host respiratory epithelial cell. Subsequent reduction of the pH to the 5-6 range triggers a structural change of the viral hemagglutinin II (HA2) protein, fusion of the viral and endosomal membranes, and release of the viral nucleocapsid into the cytoplasm. HA2 contains fusion peptide (FP), soluble ectodomain (SE), transmembrane (TM), and intraviral domains with respective lengths of ∼ 25, ∼ 160, ∼ 25, and ∼ 10 residues. The present work provides a straightforward protocol for producing and purifying mg quantities of full-length HA2 from expression in bacteria. Biophysical and structural comparisons are made between full-length HA2 and shorter constructs including SHA2 ≡ SE, FHA2 ≡ FP+SE, and SHA2-TM ≡ SE+TM constructs. The constructs are helical in detergent at pH 7.4 and the dominant trimer species. The proteins are highly thermostable in decylmaltoside detergent with Tm>90 °C for HA2 with stabilization provided by the SE, FP, and TM domains. The proteins are likely in a trimer-of-hairpins structure, the final protein state during fusion. All constructs induce fusion of negatively-charged vesicles at pH 5.0 with much less fusion at pH 7.4. Attractive protein/vesicle electrostatics play a role in fusion, as the proteins are positively-charged at pH 5.0 and negatively-charged at pH 7.4 and the pH-dependence of fusion is reversed for positively-charged vesicles. Comparison of fusion between constructs supports significant contributions to fusion from the SE and the FP with little effect from the TM. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Synthesis of a Bifunctional Peptide Inhibitor-IgG1 Fc Fusion That Suppresses Experimental Autoimmune Encephalomyelitis.

    PubMed

    White, Derek R; Khedri, Zahra; Kiptoo, Paul; Siahaan, Teruna J; Tolbert, Thomas J

    2017-07-19

    Multiple sclerosis (MS) is a neurodegenerative disease that is estimated to affect over 2.3 million people worldwide. The exact cause for this disease is unknown but involves immune system attack and destruction of the myelin protein surrounding the neurons in the central nervous system. One promising class of compounds that selectively prevent the activation of immune cells involved in the pathway leading to myelin destruction are bifunctional peptide inhibitors (BPIs). Treatment with BPIs reduces neurodegenerative symptoms in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. In this work, as an effort to further improve the bioactivity of BPIs, BPI peptides were conjugated to the N- and C-termini of the fragment crystallizable (Fc) region of the human IgG1 antibody. Initially, the two peptides were conjugated to IgG1 Fc using recombinant DNA technology. However, expression in yeast resulted in low yields and one of the peptides being heavily proteolyzed. To circumvent this problem, the poorly expressed peptide was instead produced by solid phase peptide synthesis and conjugated enzymatically using a sortase-mediated ligation. The sortase-mediated method showed near-complete conjugation yield as observed by SDS-PAGE and mass spectrometry in small-scale reactions. This method was scaled up to obtain sufficient quantities for testing the BPI-Fc fusion in mice induced with EAE. Compared to the PBS-treated control, mice treated with the BPI-Fc fusion showed significantly reduced disease symptoms, did not experience weight loss, and showed reduced de-myelination. These results demonstrate that the BPI peptides were highly active at suppressing EAE when conjugated to the large Fc scaffold in this manner.

  6. Characterization of Heat-Stable (STa) Toxoids of Enterotoxigenic Escherichia coli Fused to Double Mutant Heat-Labile Toxin Peptide in Inducing Neutralizing Anti-STa Antibodies

    PubMed Central

    Ruan, Xiaosai; Robertson, Donald C.; Nataro, James P.; Clements, John D.

    2014-01-01

    A long-standing challenge in developing vaccines against enterotoxigenic Escherichia coli (ETEC), the most common bacteria causing diarrhea in children of developing countries and travelers to these countries, is to protect against heat-stable toxin type Ib (STa or hSTa). STa and heat-labile toxin (LT) are virulence determinants in ETEC diarrhea. LT antigens are often used in vaccine development, but STa has not been included because of its poor immunogenicity and potent toxicity. Toxic STa is not safe for vaccines, but only STa possessing toxicity is believed to be able to induce neutralizing antibodies. However, recent studies demonstrated that nontoxic STa derivatives (toxoids), after being fused to an LT protein, induced neutralizing antibodies and suggested that different STa toxoids fused to an LT protein might exhibit different STa antigenic propensity. In this study, we selected 14 STa toxoids from a mini-STa toxoid library based on toxicity reduction and reactivity to anti-native STa antibodies, and genetically fused each toxoid to a monomeric double mutant LT (dmLT) peptide for 14 STa-toxoid-dmLT toxoid fusions. These toxoid fusions were used to immunize mice and were characterized for induction of anti-STa antibody response. The results showed that different STa toxoids (in fusions) varied greatly in anti-STa antigenicity. Among them, STaN12S, STaN12T, and STaA14H were the top toxoids in inducing anti-STa antibodies. In vitro neutralization assays indicated that antibodies induced by the 3×STaN12S-dmLT fusion antigen exhibited the greatest neutralizing activity against STa toxin. These results suggested 3×STaN12S-dmLT is a preferred fusion antigen to induce an anti-STa antibody response and provided long-awaited information for effective ETEC vaccine development. PMID:24549325

  7. Kinetics of Cell Fusion Induced by a Syncytia-Producing Mutant of Herpes Simplex Virus Type I

    PubMed Central

    Person, Stanley; Knowles, Robert W.; Read, G. Sullivan; Warner, Susan C.; Bond, Vincent C.

    1976-01-01

    We have isolated a number of plaque-morphology mutants from a strain of herpes simplex virus type I which, unlike the wild type, cause extensive cell fusion during a productive viral infection. After the onset of fusion, there is an exponential decrease in the number of single cells as a function of time after infection. At a multiplicity of infection (MOI) of 3.8 plaque-forming units per cell, fusion begins 5.3 h after infection with the number of single cells decreasing to 10% of the original number 10.2 h after infection. As the MOI is gradually increased from 0.4 to 8, the onset of fusion occurs earlier during infection. However, when the MOI is increased from 8 to 86, the onset of fusion does not occur any earlier. The rate of fusion is independent of the MOI for an MOI greater than 1. The rate of fusion varies linearly with initial cell density up to 3.5 × 104 cells/cm2 and is independent of initial cell density at higher cell concentrations. To assay cell fusion we have developed a simple quantitative assay using a Coulter counter to measure the number of single cells as a function of time after infection. Data obtained using a Coulter counter are similar to those obtained with a microscope assay. PMID:173881

  8. A Membrane-Destabilizing Peptide in Capsid Protein L2 Is Required for Egress of Papillomavirus Genomes from Endosomes

    PubMed Central

    Kämper, Nadine; Day, Patricia M.; Nowak, Thorsten; Selinka, Hans-Christoph; Florin, Luise; Bolscher, Jan; Hilbig, Lydia; Schiller, John T.; Sapp, Martin

    2006-01-01

    Papillomaviruses are internalized via clathrin-dependent endocytosis. However, the mechanism by which viral genomes pass endosomal membranes has not been elucidated. In this report we show that the minor capsid protein L2 is required for egress of viral genomes from endosomes but not for initial uptake and uncoating and that a 23-amino-acid peptide at the C terminus of L2 is necessary for this function. Pseudogenomes encapsidated by L1 and L2 lacking this peptide accumulated in vesicular compartments similar to that observed with L1-only viral particles, and these mutant pseudoviruses were noninfectious. This L2 peptide displayed strong membrane-disrupting activity, induced cytolysis of bacteria and eukaryotic cells in a pH-dependent manner, and permeabilized cells after exogenous addition. Fusions between green fluorescent protein and the L2 peptide integrated into cellular membranes like the wild type but not like C-terminal mutants of L2. Our data indicate that the L2 C terminus facilitates escape of viral genomes from the endocytic compartment and that this feature is conserved among papillomaviruses. Furthermore, the characteristic of this peptide differs from the classical virus-encoded membrane-penetrating peptides. PMID:16378978

  9. Impairment of autophagosome-lysosome fusion in the buff mutant mice with the VPS33AD251E mutation

    PubMed Central

    Zhen, Yuanli; Li, Wei

    2015-01-01

    The HOPS (homotypic fusion and protein sorting) complex functions in endocytic and autophagic pathways in both lower eukaryotes and mammalian cells through its involvement in fusion events between endosomes and lysosomes or autophagosomes and lysosomes. However, the differential molecular mechanisms underlying these fusion processes are largely unknown. Buff (bf) is a mouse mutant that carries an Asp251-to-Glu point mutation (D251E) in the VPS33A protein, a tethering protein and a core subunit of the HOPS complex. Bf mice showed impaired spontaneous locomotor activity, motor learning, and autophagic activity. Although the gross anatomy of the brain was apparently normal, the number of Purkinje cells was significantly reduced. Furthermore, we found that fusion between autophagosomes and lysosomes was defective in bf cells without compromising the endocytic pathway. The direct association of mutant VPS33AD251E with the autophagic SNARE complex, STX17 (syntaxin 17)-VAMP8-SNAP29, was enhanced. In addition, the VPS33AD251E mutation enhanced interactions with other HOPS subunits, namely VPS41, VPS39, VPS18, and VPS11, except for VPS16. Reduction of the interactions between VPS33AY440D and several other HOPS subunits led to decreased association with STX17. These results suggest that the VPS33AD251E mutation plays dual roles by increasing the HOPS complex assembly and its association with the autophagic SNARE complex, which selectively affects the autophagosome-lysosome fusion that impairs basal autophagic activity and induces Purkinje cell loss. PMID:26259518

  10. Improved Pharmacological and Structural Properties of HIV Fusion Inhibitor AP 3 over Enfuvirtide: Highlighting Advantages of Artificial Peptide Strategy

    DOE PAGES

    Zhu, Xiaojie; Zhu, Yun; Ye, Sheng; ...

    2015-08-19

    Enfuvirtide (T20), is the first HIV fusion inhibitor approved for treatment of HIV/AIDS patients who fail to respond to the current antiretroviral drugs. However, its clinical application is limited because of short half-life, drug resistance and cross-reactivity with the preexisting antibodies in HIV-infected patients. Using an artificial peptide strategy, we designed a peptide with non-native protein sequence, AP 3, which exhibited potent antiviral activity against a broad spectrum of HIV-1 strains, including those resistant to T20, and had remarkably longer in vivo half-life than T20. While the preexisting antibodies in HIV-infected patients significantly suppressed T20’s antiviral activity, these antibodies neithermore » recognized AP 3, nor attenuated its anti-HIV-1 activity. Structurally different from T20, AP 3 could fold into single-helix and interact with gp41 NHR. The two residues, Met and Thr, at the N-terminus of AP 3 form a hook-like structure to stabilize interaction between AP 3 and NHR helices. Therefore, AP 3 has potential for further development as a new HIV fusion inhibitor with improved antiviral efficacy, resistance profile and pharmacological properties over enfuvirtide. Meanwhile, this study highlighted the advantages of artificially designed peptides, and confirmed that this strategy could be used in developing artificial peptide-based viral fusion inhibitors against HIV and other enveloped viruses.« less

  11. Improved Pharmacological and Structural Properties of HIV Fusion Inhibitor AP 3 over Enfuvirtide: Highlighting Advantages of Artificial Peptide Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiaojie; Zhu, Yun; Ye, Sheng

    Enfuvirtide (T20), is the first HIV fusion inhibitor approved for treatment of HIV/AIDS patients who fail to respond to the current antiretroviral drugs. However, its clinical application is limited because of short half-life, drug resistance and cross-reactivity with the preexisting antibodies in HIV-infected patients. Using an artificial peptide strategy, we designed a peptide with non-native protein sequence, AP 3, which exhibited potent antiviral activity against a broad spectrum of HIV-1 strains, including those resistant to T20, and had remarkably longer in vivo half-life than T20. While the preexisting antibodies in HIV-infected patients significantly suppressed T20’s antiviral activity, these antibodies neithermore » recognized AP 3, nor attenuated its anti-HIV-1 activity. Structurally different from T20, AP 3 could fold into single-helix and interact with gp41 NHR. The two residues, Met and Thr, at the N-terminus of AP 3 form a hook-like structure to stabilize interaction between AP 3 and NHR helices. Therefore, AP 3 has potential for further development as a new HIV fusion inhibitor with improved antiviral efficacy, resistance profile and pharmacological properties over enfuvirtide. Meanwhile, this study highlighted the advantages of artificially designed peptides, and confirmed that this strategy could be used in developing artificial peptide-based viral fusion inhibitors against HIV and other enveloped viruses.« less

  12. Orientation and Interaction of Oblique Cylindrical Inclusions Embedded in a Lipid Monolayer: A Theoretical Model for Viral Fusion Peptides

    PubMed Central

    Kozlovsky, Yonathan; Zimmerberg, Joshua; Kozlov, Michael M.

    2004-01-01

    We consider the elastic behavior of flat lipid monolayer embedding cylindrical inclusions oriented obliquely with respect to the monolayer plane. An oblique inclusion models a fusion peptide, a part of a specialized protein capable of inducing merger of biological membranes in the course of fundamental cellular processes. Although the crucial importance of the fusion peptides for membrane merger is well established, the molecular mechanism of their action remains unknown. This analysis is aimed at revealing mechanical deformations and stresses of lipid monolayers induced by the fusion peptides, which, potentially, can destabilize the monolayer structure and enhance membrane fusion. We calculate the deformation of a monolayer embedding a single oblique inclusion and subject to a lateral tension. We analyze the membrane-mediated interactions between two inclusions, taking into account bending of the monolayer and tilt of the hydrocarbon chains with respect to the surface normal. In contrast to a straightforward prediction that the oblique inclusions should induce tilt of the lipid chains, our analysis shows that the monolayer accommodates the oblique inclusion solely by bending. We find that the interaction between two inclusions varies nonmonotonically with the interinclusion distance and decays at large separations as square of the distance, similar to the electrostatic interaction between two electric dipoles in two dimensions. This long-range interaction is predicted to dominate the other interactions previously considered in the literature. PMID:15298906

  13. Trimeric, Coiled-coil Extension on Peptide Fusion Inhibitor of HIV-1 Influences Selection of Resistance Pathways*

    PubMed Central

    Zhuang, Min; Wang, Wei; De Feo, Christopher J.; Vassell, Russell; Weiss, Carol D.

    2012-01-01

    Peptides corresponding to N- and C-terminal heptad repeat regions (HR1 and HR2, respectively) of viral fusion proteins can block infection of viruses in a dominant negative manner by interfering with refolding of the viral HR1 and HR2 to form a six-helix bundle (6HB) that drives fusion between viral and host cell membranes. The 6HB of the HIV gp41 (endogenous bundle) consists of an HR1 coiled-coil trimer with grooves lined by antiparallel HR2 helices. HR1 peptides form coiled-coil oligomers that may bind to gp41 HR2 as trimers to form a heterologous 6HB (inhibitor bundle) or to gp41 HR1 as monomers or dimers to form a heterologous coiled coil. To gain insights into mechanisms of Env entry and inhibition by HR1 peptides, we compared resistance to a peptide corresponding to 36 residues in gp41 HR1 (N36) and the same peptide with a coiled-coil trimerization domain fused to its N terminus (IZN36) that stabilizes the trimer and increases inhibitor potency (Eckert, D. M., and Kim, P. S. (2001) Proc. Nat. Acad. Sci. U.S.A. 98, 11187–11192). Whereas N36 selected two genetic pathways with equal probability, each defined by an early mutation in either HR1 or HR2, IZN36 preferentially selected the HR1 pathway. Both pathways conferred cross-resistance to both peptides. Each HR mutation enhanced the thermostability of the endogenous 6HB, potentially allowing the virus to simultaneously escape inhibitors targeting either gp41 HR1 or HR2. These findings inform inhibitor design and identify regions of plasticity in the highly conserved gp41 that modulate virus entry and escape from HR1 peptide inhibitors. PMID:22235115

  14. Production of human antimicrobial peptide LL-37 in Escherichia coli using a thioredoxin-SUMO dual fusion system.

    PubMed

    Li, Yifeng

    2013-02-01

    LL-37 is a human antimicrobial peptide that has been shown to possess multiple functions in host defense. In this report, the peptide was expressed as a fusion with a thioredoxin-SUMO dual-tag. Upon SUMO protease mediated cleavage at the SUMO/peptide junction, LL-37 with its native N-terminus was generated. The released peptide was separated from the dual-tag and cleavage enzyme by size-exclusion chromatography. Mass spectrometry analysis proves that the recombinant peptide has a molecular weight as theoretically expected for its native form. The produced peptide displayed antimicrobial activity against Escherichia coli K-12. On average, 2.4 mg peptide was obtained from one liter of bacterial culture. Thus, the described approach provides an effective alternative for producing active recombinant LL-37 with its natural amino acid sequence in E. coli. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Structural and functional characterization of EIAV gp45 fusion peptide proximal region and asparagine-rich layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Liangwei; Du, Jiansen; Wang, Xuefeng

    Equine infectious anaemia virus (EIAV) and human immunodeficiency virus (HIV) are members of the lentiviral genus. Similar to HIV gp41, EIAV gp45 is a fusogenic protein that mediates fusion between the viral particle and the host cell membrane. The crystal structure of gp45 reported reveals a different conformation in the here that includes the fusion peptide proximal region (FPPR) and neighboring asparagine-rich layer compared with previous HIV-1 gp41 structures. A complicated hydrogen-bond network containing a cluster of solvent molecules appears to be critical for the stability of the gp45 helical bundle. Interestingly, viral replication was relatively unaffected by site-directed mutagenesismore » of EIAV, in striking contrast to that of HIV-1. Based on these observations, we speculate that EIAV is more adaptable to emergent mutations, which might be important for the evolution of EIAV as a quasi-species, and could potentially contribute to the success of the EIAV vaccine. - Highlights: • The crystal structure of EIAV gp45 was determined. • The fusion peptide proximal region adopts a novel conformation different to HIV-1. • The asparagine-rich layer includes an extensive hydrogen-bond network. • These regions of EIAV are highly tolerant to mutations. • The results provide insight into the mechanism of gp41/gp45-mediated membrane fusion.« less

  16. Chemical Genomic Screening of a Saccharomyces cerevisiae Genomewide Mutant Collection Reveals Genes Required for Defense against Four Antimicrobial Peptides Derived from Proteins Found in Human Saliva

    PubMed Central

    Bhatt, Sanjay; Schoenly, Nathan E.; Lee, Anna Y.; Nislow, Corey; Bobek, Libuse A.

    2013-01-01

    To compare the effects of four antimicrobial peptides (MUC7 12-mer, histatin 12-mer, cathelicidin KR20, and a peptide containing lactoferricin amino acids 1 to 11) on the yeast Saccharomyces cerevisiae, we employed a genomewide fitness screen of combined collections of mutants with homozygous deletions of nonessential genes and heterozygous deletions of essential genes. When an arbitrary fitness score cutoffs of 1 (indicating a fitness defect, or hypersensitivity) and −1 (indicating a fitness gain, or resistance) was used, 425 of the 5,902 mutants tested exhibited altered fitness when treated with at least one peptide. Functional analysis of the 425 strains revealed enrichment among the identified deletions in gene groups associated with the Gene Ontology (GO) terms “ribosomal subunit,” “ribosome biogenesis,” “protein glycosylation,” “vacuolar transport,” “Golgi vesicle transport,” “negative regulation of transcription,” and others. Fitness profiles of all four tested peptides were highly similar, particularly among mutant strains exhibiting the greatest fitness defects. The latter group included deletions in several genes involved in induction of the RIM101 signaling pathway, including several components of the ESCRT sorting machinery. The RIM101 signaling regulates response of yeasts to alkaline and neutral pH and high salts, and our data indicate that this pathway also plays a prominent role in regulating protective measures against all four tested peptides. In summary, the results of the chemical genomic screens of S. cerevisiae mutant collection suggest that the four antimicrobial peptides, despite their differences in structure and physical properties, share many interactions with S. cerevisiae cells and consequently a high degree of similarity between their modes of action. PMID:23208710

  17. Flunarizine Prevents Hepatitis C Virus Membrane Fusion in a Genotype-dependent Manner by Targeting the Potential Fusion Peptide within E1

    PubMed Central

    Perin, Paula M.; Haid, Sibylle; Brown, Richard J. P.; Doerrbecker, Juliane; Schulze, Kai; Zeilinger, Carsten; von Schaewen, Markus; Heller, Brigitte; Vercauteren, Koen; Luxenburger, Eva; Baktash, Yasmine M.; Vondran, Florian W. R.; Speerstra, Sietkse; Awadh, Abdullah; Mukhtarov, Furkat; Schang, Luis M; Kirschning, Andreas; Müller, Rolf; Guzman, Carlos A.; Kaderali, Lars; Randall, Glenn; Meuleman, Philip; Ploss, Alexander; Pietschmann, Thomas

    2015-01-01

    To explore mechanisms of hepatitis C virus (HCV) replication we screened a compound library including licensed drugs. Flunarizine, a diphenylmethylpiperazine used to treat migraine, inhibited HCV cell entry in vitro and in vivo in a genotype-dependent fashion. Analysis of mosaic viruses between susceptible and resistant strains revealed that E1 and E2 glycoproteins confer susceptibility to flunarizine. Time of addition experiments and single particle tracking of HCV demonstrated that flunarizine specifically prevents membrane fusion. Related phenothiazines and pimozide also inhibited HCV infection and preferentially targeted HCV genotype 2 viruses. However, phenothiazines and pimozide exhibited improved genotype coverage including the difficult to treat genotype 3. Flunarizine-resistant HCV carried mutations within the alleged fusion peptide and displayed cross-resistance to these compounds, indicating that these drugs have a common mode of action. Conclusion: These observations reveal novel details about HCV membrane fusion. Moreover, flunarizine and related compounds represent first-in-class HCV fusion inhibitors that merit consideration for repurposing as cost-effective component of HCV combination therapies. PMID:26248546

  18. A Novel Peptide Derived from the Fusion Protein Heptad Repeat Inhibits Replication of Subacute Sclerosing Panencephalitis Virus In Vitro and In Vivo.

    PubMed

    Watanabe, Masahiro; Hashimoto, Koichi; Abe, Yusaku; Kodama, Eiichi N; Nabika, Ryota; Oishi, Shinya; Ohara, Shinichiro; Sato, Masatoki; Kawasaki, Yukihiko; Fujii, Nobutaka; Hosoya, Mitsuaki

    2016-01-01

    Subacute sclerosing panencephalitis (SSPE) is a persistent, progressive, and fatal degenerative disease resulting from persistent measles virus (MV) infection of the central nervous system. Most drugs used to treat SSPE have been reported to have limited effects. Therefore, novel therapeutic strategies are urgently required. The SSPE virus, a variant MV strain, differs virologically from wild-type MV strain. One characteristic of the SSPE virus is its defective production of cell-free virus, which leaves cell-to-cell infection as the major mechanism of viral dissemination. The fusion protein plays an essential role in this cell-to-cell spread. It contains two critical heptad repeat regions that form a six-helix bundle in the trimer similar to most viral fusion proteins. In the case of human immunodeficiency virus type-1 (HIV-1), a synthetic peptide derived from the heptad repeat region of the fusion protein enfuvirtide inhibits viral replication and is clinically approved as an anti-HIV-1 agent. The heptad repeat regions of HIV-1 are structurally and functionally similar to those of the MV fusion protein. We therefore designed novel peptides derived from the fusion protein heptad repeat region of the MV and examined their effects on the measles and SSPE virus replication in vitro and in vivo. Some of these synthetic novel peptides demonstrated high antiviral activity against both the measles (Edmonston strain) and SSPE (Yamagata-1 strain) viruses at nanomolar concentrations with no cytotoxicity in vitro. In particular, intracranial administration of one of the synthetic peptides increased the survival rate from 0% to 67% in an SSPE virus-infected nude mouse model.

  19. A Novel Peptide Derived from the Fusion Protein Heptad Repeat Inhibits Replication of Subacute Sclerosing Panencephalitis Virus In Vitro and In Vivo

    PubMed Central

    Watanabe, Masahiro; Hashimoto, Koichi; Abe, Yusaku; Kodama, Eiichi N.; Nabika, Ryota; Oishi, Shinya; Ohara, Shinichiro; Sato, Masatoki; Kawasaki, Yukihiko; Fujii, Nobutaka; Hosoya, Mitsuaki

    2016-01-01

    Subacute sclerosing panencephalitis (SSPE) is a persistent, progressive, and fatal degenerative disease resulting from persistent measles virus (MV) infection of the central nervous system. Most drugs used to treat SSPE have been reported to have limited effects. Therefore, novel therapeutic strategies are urgently required. The SSPE virus, a variant MV strain, differs virologically from wild-type MV strain. One characteristic of the SSPE virus is its defective production of cell-free virus, which leaves cell-to-cell infection as the major mechanism of viral dissemination. The fusion protein plays an essential role in this cell-to-cell spread. It contains two critical heptad repeat regions that form a six-helix bundle in the trimer similar to most viral fusion proteins. In the case of human immunodeficiency virus type-1 (HIV-1), a synthetic peptide derived from the heptad repeat region of the fusion protein enfuvirtide inhibits viral replication and is clinically approved as an anti-HIV-1 agent. The heptad repeat regions of HIV-1 are structurally and functionally similar to those of the MV fusion protein. We therefore designed novel peptides derived from the fusion protein heptad repeat region of the MV and examined their effects on the measles and SSPE virus replication in vitro and in vivo. Some of these synthetic novel peptides demonstrated high antiviral activity against both the measles (Edmonston strain) and SSPE (Yamagata-1 strain) viruses at nanomolar concentrations with no cytotoxicity in vitro. In particular, intracranial administration of one of the synthetic peptides increased the survival rate from 0% to 67% in an SSPE virus-infected nude mouse model. PMID:27612283

  20. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández-Sainz, I.J.; Largo, E.; Gladue, D.P.

    E2, along with E{sup rns} and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions: cell attachment, host range susceptibility and virulence in natural hosts. Here we evaluate the role of a specific E2 region, {sup 818}CPIGWTGVIEC{sup 828}, containing a putative fusion peptide (FP) sequence. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how individual amino acid substitutions within this region of E2 may affect replication of BICv. A synthetic peptide representing the complete E2 FP amino acid sequence adoptedmore » a β-type extended conformation in membrane mimetics, penetrated into model membranes, and perturbed lipid bilayer integrity in vitro. Similar peptides harboring amino acid substitutions adopted comparable conformations but exhibited different membrane activities. Therefore, a preliminary characterization of the putative FP {sup 818}CPIGWTGVIEC{sup 828} indicates a membrane fusion activity and a critical role in virus replication. - Highlights: • A putative fusion peptide (FP) region in CSFV E2 protein was shown to be critical for virus growth. • Synthetic FPs were shown to efficiently penetrate into lipid membranes using an in vitro model. • Individual residues in the FP affecting virus replication were identified by reverse genetics. • The same FP residues are also responsible for mediating membrane fusion.« less

  1. Identification and characterization of mutant clones with enhanced propagation rates from phage-displayed peptide libraries.

    PubMed

    Nguyen, Kieu T H; Adamkiewicz, Marta A; Hebert, Lauren E; Zygiel, Emily M; Boyle, Holly R; Martone, Christina M; Meléndez-Ríos, Carola B; Noren, Karen A; Noren, Christopher J; Hall, Marilena Fitzsimons

    2014-10-01

    A target-unrelated peptide (TUP) can arise in phage display selection experiments as a result of a propagation advantage exhibited by the phage clone displaying the peptide. We previously characterized HAIYPRH, from the M13-based Ph.D.-7 phage display library, as a propagation-related TUP resulting from a G→A mutation in the Shine-Dalgarno sequence of gene II. This mutant was shown to propagate in Escherichia coli at a dramatically faster rate than phage bearing the wild-type Shine-Dalgarno sequence. We now report 27 additional fast-propagating clones displaying 24 different peptides and carrying 14 unique mutations. Most of these mutations are found either in or upstream of the gene II Shine-Dalgarno sequence, but still within the mRNA transcript of gene II. All 27 clones propagate at significantly higher rates than normal library phage, most within experimental error of wild-type M13 propagation, suggesting that mutations arise to compensate for the reduced virulence caused by the insertion of a lacZα cassette proximal to the replication origin of the phage used to construct the library. We also describe an efficient and convenient assay to diagnose propagation-related TUPS among peptide sequences selected by phage display. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant.

    PubMed

    Horváth, Beatrix; Domonkos, Ágota; Kereszt, Attila; Szűcs, Attila; Ábrahám, Edit; Ayaydin, Ferhan; Bóka, Károly; Chen, Yuhui; Chen, Rujin; Murray, Jeremy D; Udvardi, Michael K; Kondorosi, Éva; Kaló, Péter

    2015-12-08

    Host compatible rhizobia induce the formation of legume root nodules, symbiotic organs within which intracellular bacteria are present in plant-derived membrane compartments termed symbiosomes. In Medicago truncatula nodules, the Sinorhizobium microsymbionts undergo an irreversible differentiation process leading to the development of elongated polyploid noncultivable nitrogen fixing bacteroids that convert atmospheric dinitrogen into ammonia. This terminal differentiation is directed by the host plant and involves hundreds of nodule specific cysteine-rich peptides (NCRs). Except for certain in vitro activities of cationic peptides, the functional roles of individual NCR peptides in planta are not known. In this study, we demonstrate that the inability of M. truncatula dnf7 mutants to fix nitrogen is due to inactivation of a single NCR peptide, NCR169. In the absence of NCR169, bacterial differentiation was impaired and was associated with early senescence of the symbiotic cells. Introduction of the NCR169 gene into the dnf7-2/NCR169 deletion mutant restored symbiotic nitrogen fixation. Replacement of any of the cysteine residues in the NCR169 peptide with serine rendered it incapable of complementation, demonstrating an absolute requirement for all cysteines in planta. NCR169 was induced in the cell layers in which bacteroid elongation was most pronounced, and high expression persisted throughout the nitrogen-fixing nodule zone. Our results provide evidence for an essential role of NCR169 in the differentiation and persistence of nitrogen fixing bacteroids in M. truncatula.

  3. Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant

    PubMed Central

    Horváth, Beatrix; Domonkos, Ágota; Szűcs, Attila; Ábrahám, Edit; Ayaydin, Ferhan; Bóka, Károly; Chen, Yuhui; Chen, Rujin; Murray, Jeremy D.; Udvardi, Michael K.; Kondorosi, Éva; Kaló, Péter

    2015-01-01

    Host compatible rhizobia induce the formation of legume root nodules, symbiotic organs within which intracellular bacteria are present in plant-derived membrane compartments termed symbiosomes. In Medicago truncatula nodules, the Sinorhizobium microsymbionts undergo an irreversible differentiation process leading to the development of elongated polyploid noncultivable nitrogen fixing bacteroids that convert atmospheric dinitrogen into ammonia. This terminal differentiation is directed by the host plant and involves hundreds of nodule specific cysteine-rich peptides (NCRs). Except for certain in vitro activities of cationic peptides, the functional roles of individual NCR peptides in planta are not known. In this study, we demonstrate that the inability of M. truncatula dnf7 mutants to fix nitrogen is due to inactivation of a single NCR peptide, NCR169. In the absence of NCR169, bacterial differentiation was impaired and was associated with early senescence of the symbiotic cells. Introduction of the NCR169 gene into the dnf7-2/NCR169 deletion mutant restored symbiotic nitrogen fixation. Replacement of any of the cysteine residues in the NCR169 peptide with serine rendered it incapable of complementation, demonstrating an absolute requirement for all cysteines in planta. NCR169 was induced in the cell layers in which bacteroid elongation was most pronounced, and high expression persisted throughout the nitrogen-fixing nodule zone. Our results provide evidence for an essential role of NCR169 in the differentiation and persistence of nitrogen fixing bacteroids in M. truncatula. PMID:26401023

  4. Computational design and experimental study of tighter binding peptides to an inactivated mutant of HIV-1 protease

    PubMed Central

    Altman, Michael D.; Nalivaika, Ellen A.; Prabu-Jeyabalan, Moses; Schiffer, Celia A.; Tidor, Bruce

    2009-01-01

    Drug resistance in HIV-1 protease, a barrier to effective treatment, is generally caused by mutations in the enzyme that disrupt inhibitor binding but still allow for substrate processing. Structural studies with mutant, inactive enzyme, have provided detailed information regarding how the substrates bind to the protease yet avoid resistance mutations; insights obtained inform the development of next generation therapeutics. Although structures have been obtained of complexes between substrate peptide and inactivated (D25N) protease, thermodynamic studies of peptide binding have been challenging due to low affinity. Peptides that bind tighter to the inactivated protease than the natural substrates would be valuable for thermodynamic studies as well as to explore whether the structural envelope observed for substrate peptides is a function of weak binding. Here, two computational methods — namely, charge optimization and protein design — were applied to identify peptide sequences predicted to have higher binding affinity to the inactivated protease, starting from an RT–RH derived substrate peptide. Of the candidate designed peptides, three were tested for binding with isothermal titration calorimetry, with one, containing a single threonine to valine substitution, measured to have more than a ten-fold improvement over the tightest binding natural substrate. Crystal structures were also obtained for the same three designed peptide complexes; they show good agreement with computational prediction. Thermodynamic studies show that binding is entropically driven, more so for designed affinity enhanced variants than for the starting substrate. Structural studies show strong similarities between natural and tighter-binding designed peptide complexes, which may have implications in understanding the molecular mechanisms of drug resistance in HIV-1 protease. PMID:17729291

  5. Expression of chimeric ras protein with OmpF signal peptide in Escherichia coli: localization of OmpF fusion protein in the inner membrane.

    PubMed

    Yamamoto, T; Okawa, N; Endo, T; Kaji, A

    1991-08-01

    The ras gene was fused with the DNA sequence of OmpF signal peptide or with the DNA sequence of OmpF signal peptide plus the amino terminal portion of the OmpF gene. They were placed in plasmids together with the bacteriophage lambda PL promoter. These plasmids were introduced into Escherichia coli strain K-12 and the OmpF signal peptide fusion proteins were expressed. These fusion proteins were identified as 29.0 and 30.0 kDa proteins. However, processed products of these proteins were not found in the extract. The fusion proteins were localized mostly in the cytoplasm and the inner membrane, but none of them was secreted into the periplasmic space. On the other hand, the ras protein alone was found in the cytoplasm and not in the inner membrane. Viable counts of E. coli harbouring these plasmids decreased when these fused proteins were induced. Induction of the ras protein alone did not harm cells. These observations suggest that insertion of the heterologous proteins into the inner membrane may cause the bactericidal effect.

  6. Changes in lipid bilayer structure caused by the helix-to-sheet transition of an HIV-1 gp41 fusion peptide derivative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heller, William T.; Rai, Durgesh K.

    HIV-1, like other enveloped viruses, undergoes fusion with the cell membrane to infect it. Viral coat proteins are thought to bind the virus to the membrane and actively fuse the viral and cellular membranes together. The actual molecular mechanism of fusion is challenging to visualize, resulting in the use of model systems. In this paper, the bilayer curvature modifying properties of a synthetic variant of the HIV-1 gp41 fusion peptide with lipid bilayer vesicles composed of a mixture of dimyristoyl phosphatidylcholine (DMPC) and dimyristoyl phosphatidylserine (DMPS) were studied. In 7:3 DMPC:DMPS vesicles made with deuterium-labeled DMPC, the peptide was observedmore » to undergo a concentration-dependent conformational transition between an α-helix and an antiparallel β-sheet. Through the use of small-angle neutron scattering (SANS) and selective deuterium labeling, it was revealed that conformational transition of the peptide is also accompanied by a transition in the structure of the lipid bilayer. In addition to changes in the distribution of the lipid between the leaflets of the vesicle, the SANS data are consistent with two regions having different thicknesses. Finally, of the two different bilayer structures, the one corresponding to the smaller area fraction, being ~8% of the vesicle area, is much thicker than the remainder of the vesicle, which suggests that there are regions of localized negative curvature similar to what takes place at the point of contact between two membranes immediately preceding fusion.« less

  7. Changes in lipid bilayer structure caused by the helix-to-sheet transition of an HIV-1 gp41 fusion peptide derivative

    DOE PAGES

    Heller, William T.; Rai, Durgesh K.

    2017-01-16

    HIV-1, like other enveloped viruses, undergoes fusion with the cell membrane to infect it. Viral coat proteins are thought to bind the virus to the membrane and actively fuse the viral and cellular membranes together. The actual molecular mechanism of fusion is challenging to visualize, resulting in the use of model systems. In this paper, the bilayer curvature modifying properties of a synthetic variant of the HIV-1 gp41 fusion peptide with lipid bilayer vesicles composed of a mixture of dimyristoyl phosphatidylcholine (DMPC) and dimyristoyl phosphatidylserine (DMPS) were studied. In 7:3 DMPC:DMPS vesicles made with deuterium-labeled DMPC, the peptide was observedmore » to undergo a concentration-dependent conformational transition between an α-helix and an antiparallel β-sheet. Through the use of small-angle neutron scattering (SANS) and selective deuterium labeling, it was revealed that conformational transition of the peptide is also accompanied by a transition in the structure of the lipid bilayer. In addition to changes in the distribution of the lipid between the leaflets of the vesicle, the SANS data are consistent with two regions having different thicknesses. Finally, of the two different bilayer structures, the one corresponding to the smaller area fraction, being ~8% of the vesicle area, is much thicker than the remainder of the vesicle, which suggests that there are regions of localized negative curvature similar to what takes place at the point of contact between two membranes immediately preceding fusion.« less

  8. New insights from an old mutant: SPADIX4 governs fruiting body development but not hyphal fusion in Sordaria macrospora.

    PubMed

    Teichert, Ines; Lutomski, Miriam; Märker, Ramona; Nowrousian, Minou; Kück, Ulrich

    2017-02-01

    During the sexual life cycle of filamentous fungi, multicellular fruiting bodies are generated for the dispersal of spores. The filamentous ascomycete Sordaria macrospora has a long history as a model system for studying fruiting body formation, and two collections of sterile mutants have been generated. However, for most of these mutants, the underlying genetic defect remains unknown. Here, we investigated the mutant spadix (spd) that was generated by X-ray mutagenesis in the 1950s and terminates sexual development after the formation of pre-fruiting bodies (protoperithecia). We sequenced the spd genome and found a 22 kb deletion affecting four genes, which we termed spd1-4. Generation of deletion strains revealed that only spd4 is required for fruiting body formation. Although sterility in S. macrospora is often coupled with a vegetative hyphal fusion defect, Δspd4 was still capable of fusion. This feature distinguishes SPD4 from many other regulators of sexual development. Remarkably, GFP-tagged SPD4 accumulated in the nuclei of vegetative hyphae and fruiting body initials, the ascogonial coils, but not in sterile tissue from the developing protoperithecium. Our results point to SPD4 as a specific determinant of fruiting body formation. Research on SPD4 will, therefore, contribute to understanding cellular reprogramming during initiation of sexual development in fungi.

  9. NisT, the transporter of the lantibiotic nisin, can transport fully modified, dehydrated, and unmodified prenisin and fusions of the leader peptide with non-lantibiotic peptides.

    PubMed

    Kuipers, Anneke; de Boef, Esther; Rink, Rick; Fekken, Susan; Kluskens, Leon D; Driessen, Arnold J M; Leenhouts, Kees; Kuipers, Oscar P; Moll, Gert N

    2004-05-21

    Lantibiotics are lanthionine-containing peptide antibiotics. Nisin, encoded by nisA, is a pentacyclic lantibiotic produced by some Lactococcus lactis strains. Its thioether rings are posttranslationally introduced by a membrane-bound enzyme complex. This complex is composed of three enzymes: NisB, which dehydrates serines and threonines; NisC, which couples these dehydrated residues to cysteines, thus forming thioether rings; and the transporter NisT. We followed the activity of various combinations of the nisin enzymes by measuring export of secreted peptides using antibodies against the leader peptide and mass spectroscopy for detection. L. lactis expressing the nisABTC genes efficiently produced fully posttranslationally modified prenisin. Strikingly, L. lactis expressing the nisBT genes could produce dehydrated prenisin without thioether rings and a dehydrated form of a non-lantibiotic peptide. In the absence of the biosynthetic NisBC enzymes, the NisT transporter was capable of excreting unmodified prenisin and fusions of the leader peptide with non-lantibiotic peptides. Our data show that NisT specifies a broad spectrum (poly)peptide transporter that can function either in conjunction with or independently from the biosynthetic genes. NisT secretes both unmodified and partially or fully posttranslationally modified forms of prenisin and non-lantibiotic peptides. These results open the way for efficient production of a wide range of peptides with increased stability or novel bioactivities.

  10. SARS Coronavirus Fusion Peptide-Derived Sequence Suppresses Collagen-Induced Arthritis in DBA/1J Mice.

    PubMed

    Shen, Zu T; Sigalov, Alexander B

    2016-06-28

    During the co-evolution of viruses and their hosts, the viruses have evolved numerous strategies to counter and evade host antiviral immune responses in order to establish a successful infection, replicate and persist in the host. Recently, based on our model of immune signaling, the Signaling Chain HOmoOLigomerization (SCHOOL) model, we suggested specific molecular mechanisms used by different viruses such as severe acute respiratory syndrome coronavirus (SARS-CoV) to modulate the host immune response mediated by members of the family of multichain immune recognition receptors (MIRRs). This family includes T cell receptor (TCR) that is critically involved in immune diseases such as autoimmune arthritis. In the present study, we provide compelling experimental in vivo evidence in support of our hypothesis. Using the SCHOOL approach and the SARS-CoV fusion peptide sequence, we rationally designed a novel immunomodulatory peptide that targets TCR. We showed that this peptide ameliorates collagen-induced arthritis in DBA/1J mice and protects against bone and cartilage damage. Incorporation of the peptide into self-assembling lipopeptide nanoparticles that mimic native human high density lipoproteins significantly increases peptide dosage efficacy. Together, our data further confirm that viral immune evasion strategies that target MIRRs can be transferred to therapeutic strategies that require similar functionalities.

  11. Genetic studies of cell fusion induced by herpes simplex virus type 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Read, G.S.; Person, S.; Keller, P.M.

    1980-07-01

    Eight cell fusion-causing syn mutants were isolated from the KOS strain of herpes simplex virus type 1. Unlike the wild-type virus, the mutants produced plaques containing multinucleated cells, or syncytia. Fusion kinetics curves were established with a Coulter Counter assay for the mutants and wild-type virus in single infections of human embryonic lung (HEL) cells, for the mutants and wild-type virus in mixed infections (dominance test), and for pairs of mutants in mixed infection and proceeded with an exponential decrease in the number of small single cells. At some later time that was characteristic of the mutant, there was amore » significant reduction in the rate of fusion for all but possibly one of the mutants. Although the wild-type virus did not produce syncytial plaques, it did induce a small amount of fusion that stopped abruptly about 2 h after it started. These data are consistent with the hypothesis that both mutants and wild type induce an active fusion inducer and that the activity of this inducer is subsequently inhibited. The extent of fusion is apparently determined by the length of the interval during which the fusion inducer is active. That fusion is actively inhibited in wild-type infections is indicated by the observation that syn mutant-infected cells fused more readily with uninfected cells than with wild type-infected cells.« less

  12. Mutations in the Parainfluenza Virus 5 Fusion Protein Reveal Domains Important for Fusion Triggering and Metastability

    PubMed Central

    Bose, Sayantan; Heath, Carissa M.; Shah, Priya A.; Alayyoubi, Maher; Jardetzky, Theodore S.

    2013-01-01

    Paramyxovirus membrane glycoproteins F (fusion protein) and HN, H, or G (attachment protein) are critical for virus entry, which occurs through fusion of viral and cellular envelopes. The F protein folds into a homotrimeric, metastable prefusion form that can be triggered by the attachment protein to undergo a series of structural rearrangements, ultimately folding into a stable postfusion form. In paramyxovirus-infected cells, the F protein is activated in the Golgi apparatus by cleavage adjacent to a hydrophobic fusion peptide that inserts into the target membrane, eventually bringing the membranes together by F refolding. However, it is not clear how the attachment protein, known as HN in parainfluenza virus 5 (PIV5), interacts with F and triggers F to initiate fusion. To understand the roles of various F protein domains in fusion triggering and metastability, single point mutations were introduced into the PIV5 F protein. By extensive study of F protein cleavage activation, surface expression, and energetics of fusion triggering, we found a role for an immunoglobulin-like (Ig-like) domain, where multiple hydrophobic residues on the PIV5 F protein may mediate F-HN interactions. Additionally, destabilizing mutations of PIV5 F that resulted in HN trigger-independent mutant F proteins were identified in a region along the border of F trimer subunits. The positions of the potential HN-interacting region and the region important for F stability in the lower part of the PIV5 F prefusion structure provide clues to the receptor-binding initiated, HN-mediated F trigger. PMID:24089572

  13. Membrane Fusion Induced by Small Molecules and Ions

    PubMed Central

    Mondal Roy, Sutapa; Sarkar, Munna

    2011-01-01

    Membrane fusion is a key event in many biological processes. These processes are controlled by various fusogenic agents of which proteins and peptides from the principal group. The fusion process is characterized by three major steps, namely, inter membrane contact, lipid mixing forming the intermediate step, pore opening and finally mixing of inner contents of the cells/vesicles. These steps are governed by energy barriers, which need to be overcome to complete fusion. Structural reorganization of big molecules like proteins/peptides, supplies the required driving force to overcome the energy barrier of the different intermediate steps. Small molecules/ions do not share this advantage. Hence fusion induced by small molecules/ions is expected to be different from that induced by proteins/peptides. Although several reviews exist on membrane fusion, no recent review is devoted solely to small moleculs/ions induced membrane fusion. Here we intend to present, how a variety of small molecules/ions act as independent fusogens. The detailed mechanism of some are well understood but for many it is still an unanswered question. Clearer understanding of how a particular small molecule can control fusion will open up a vista to use these moleucles instead of proteins/peptides to induce fusion both in vivo and in vitro fusion processes. PMID:21660306

  14. Characterisation and evaluation of antiviral recombinant peptides based on the heptad repeat regions of NDV and IBV fusion glycoproteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xiaojia, E-mail: wangxj@cau.edu.cn; Li Chuangen; Chi Xiaojing

    Mixed virus infections can cause livestock losses that are more devastating than those caused by single virus infections. Newcastle disease virus (NDV) and infectious bronchitis virus (IBV), serious threats to the poultry industry, can give rise to complex mixed infections that hinder diagnosis and prevention. In this study, we show that newly designed peptides, which are based on the heptad repeat (HR) region of the fusion glycoproteins from NDV and IBV, have more potent antiviral activity than the mother HR peptides. Plaque formation and chicken embryo infectivity assays confirmed these results. The novel peptides completely inhibited single virus infections andmore » mixed infections caused by NDV and IBV. Furthermore, we assessed cell toxicity and possible targets for the peptides, thereby strengthening the notion that HR2 is an attractive site for therapeutic intervention. These results suggest the possibility of designing a relatively broad-spectrum class of antiviral peptides that can reduce the effects of mixed-infections.« less

  15. Enhanced transport of plant-produced rabies single-chain antibody-RVG peptide fusion protein across an in cellulo blood-brain barrier device.

    PubMed

    Phoolcharoen, Waranyoo; Prehaud, Christophe; van Dolleweerd, Craig J; Both, Leonard; da Costa, Anaelle; Lafon, Monique; Ma, Julian K-C

    2017-10-01

    The biomedical applications of antibody engineering are developing rapidly and have been expanded to plant expression platforms. In this study, we have generated a novel antibody molecule in planta for targeted delivery across the blood-brain barrier (BBB). Rabies virus (RABV) is a neurotropic virus for which there is no effective treatment after entry into the central nervous system. This study investigated the use of a RABV glycoprotein peptide sequence to assist delivery of a rabies neutralizing single-chain antibody (ScFv) across an in cellulo model of human BBB. The 29 amino acid rabies virus peptide (RVG) recognizes the nicotinic acetylcholine receptor (nAchR) at neuromuscular junctions and the BBB. ScFv and ScFv-RVG fusion proteins were produced in Nicotiana benthamiana by transient expression. Both molecules were successfully expressed and purified, but the ScFv expression level was significantly higher than that of ScFv-RVG fusion. Both ScFv and ScFv-RVG fusion molecules had potent neutralization activity against RABVin cellulo. The ScFv-RVG fusion demonstrated increased binding to nAchR and entry into neuronal cells, compared to ScFv alone. Additionally, a human brain endothelial cell line BBB model was used to demonstrate that plant-produced ScFv-RVG P fusion could translocate across the cells. This study indicates that the plant-produced ScFv-RVG P fusion protein was able to cross the in celluloBBB and neutralize RABV. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Fusion protein of CDR mimetic peptide with Fc inhibit TNF-alpha induced cytotoxicity.

    PubMed

    Qin, Weisong; Feng, Jiannan; Li, Yan; Lin, Zhou; Shen, Beifen

    2006-02-01

    The variable regions of antibodies play central roles in the binding with antigens. Based on the model of a tumour necrosis factor-alpha (TNF-alpha) neutralizing monoclonal antibody (named as Z12) with TNF-alpha, heavy chain CDR2 (HCDR2) and light chain CDR3 (LCDR3) of Z12 were found to be the most responsible to bind with TNF-alpha. A mimetic peptide (PT) was designed based on the sequence derived from HCDR2 and LCDR3. Fusion protein PT-Fc was constructed by linking PT with Fc of human IgG1 through a flexible linker (GGGGGS). The primary structural characteristics of Fc and PT-Fc were analyzed, including the flexibility, hydrophilicity and epitopes. It was demonstrated that PT and Fc in the fusion protein possessed bio-function properly and non-interfering with each other. Furthermore, PT-Fc was expressed in Escherichia coli by fusion with thioredoxin (Trx). After trx-PT-Fc was cleaved with recombinant enterokinase, PT-Fc was obtained. The results of in vitro cytotoxic assays showed that both PT and PT-Fc could efficiently inhibit TNF-alpha induced apoptosis on L929 cells. At the same micromole concentration, the inhibition activity of PT-Fc was significantly higher than PT.

  17. Polyclonal and monoclonal antibodies specific for the six-helix bundle of the human respiratory syncytial virus fusion glycoprotein as probes of the protein post-fusion conformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palomo, Concepción; Mas, Vicente; Vázquez, Mónica

    Human respiratory syncytial virus (hRSV) has two major surface glycoproteins (G and F) anchored in the lipid envelope. Membrane fusion promoted by hRSV{sub F} occurs via refolding from a pre-fusion form to a highly stable post-fusion state involving large conformational changes of the F trimer. One of these changes results in assembly of two heptad repeat sequences (HRA and HRB) into a six-helix bundle (6HB) motif. To assist in distinguishing pre- and post-fusion conformations of hRSV{sub F}, we have prepared polyclonal (α-6HB) and monoclonal (R145) rabbit antibodies specific for the 6HB. Among other applications, these antibodies were used to exploremore » the requirements of 6HB formation by isolated protein segments or peptides and by truncated mutants of the F protein. Site-directed mutagenesis and electron microscopy located the R145 epitope in the post-fusion hRSV{sub F} at a site distantly located from previously mapped epitopes, extending the repertoire of antibodies that can decorate the F molecule. - Highlights: • Antibodies specific for post-fusion respiratory syncytial virus fusion protein are described. • Polyclonal antibodies were obtained in rabbit inoculated with chimeric heptad repeats. • Antibody binding required assembly of a six-helix bundle in the post-fusion protein. • A monoclonal antibody with similar structural requirements is also described. • Binding of this antibody to the post-fusion protein was visualized by electron microscopy.« less

  18. [Transformation of antimicrobial peptide fusion gene of cecropin B and rabbit NP-1 to Houttuynia cordata].

    PubMed

    Dong, Yan; Zhang, Ying; Yi, Lang; Lai, Huili; Zhang, Yaming; Zhou, Lian; Wang, Peixun

    2010-07-01

    To transform the antimicrobial peptide fusion gene of cecropin B and rabbit NP-1(CN) into Houttuynia cordata to improve its antimicrobic capability. The fusion gene of CN designed and synthesized artificially was recombined with expression vector pBI121. The recombined vector was transformed to Agrobacterium tumefaciens LBA4404, by which CN gene was transformed to the explants of H. cordata. The transgenic regeneration plantlets were selected by kanamycin and rapid screening PCR. The transgenic plants were identified by PCR-Southern of genomic DNA and RT-PCR. The disease resistances were detected by antibacterial zone trail of leaf extracts to E. coli K12 and infection by Rhizoctonia solani. Gene of interesting CN was inserted into genomic DNA and expressed in transformed H, cordata, whose resistance to E. coli K12 and Rh. solani was stronger than that of the non-transformed control. The fusion gene CN can improve antimicrobic capability of transformed H. cordata.

  19. Solid-state nuclear magnetic resonance measurements of HIV fusion peptide 13CO to lipid 31P proximities support similar partially inserted membrane locations of the α helical and β sheet peptide structures.

    PubMed

    Gabrys, Charles M; Qiang, Wei; Sun, Yan; Xie, Li; Schmick, Scott D; Weliky, David P

    2013-10-03

    Fusion of the human immunodeficiency virus (HIV) membrane and the host cell membrane is an initial step of infection of the host cell. Fusion is catalyzed by gp41, which is an integral membrane protein of HIV. The fusion peptide (FP) is the ∼25 N-terminal residues of gp41 and is a domain of gp41 that plays a key role in fusion catalysis likely through interaction with the host cell membrane. Much of our understanding of the FP domain has been accomplished with studies of "HFP", i.e., a ∼25-residue peptide composed of the FP sequence but lacking the rest of gp41. HFP catalyzes fusion between membrane vesicles and serves as a model system to understand fusion catalysis. HFP binds to membranes and the membrane location of HFP is likely a significant determinant of fusion catalysis perhaps because the consequent membrane perturbation reduces the fusion activation energy. In the present study, many HFPs were synthesized and differed in the residue position that was (13)CO backbone labeled. Samples were then prepared that each contained a singly (13)CO labeled HFP incorporated into membranes that lacked cholesterol. HFP had distinct molecular populations with either α helical or oligomeric β sheet structure. Proximity between the HFP (13)CO nuclei and (31)P nuclei in the membrane headgroups was probed by solid-state NMR (SSNMR) rotational-echo double-resonance (REDOR) measurements. For many samples, there were distinct (13)CO shifts for the α helical and β sheet structures so that the proximities to (31)P nuclei could be determined for each structure. Data from several differently labeled HFPs were then incorporated into a membrane location model for the particular structure. In addition to the (13)CO labeled residue position, the HFPs also differed in sequence and/or chemical structure. "HFPmn" was a linear peptide that contained the 23 N-terminal residues of gp41. "HFPmn_V2E" contained the V2E mutation that for HIV leads to greatly reduced extent of fusion and

  20. Virus-cell fusion inhibitory activity of novel analogue peptides based on the HP (2-20) derived from N-terminus of Helicobacter pylori Ribosomal Protein L1.

    PubMed

    Woo, Eun-Rhan; Lee, Dong Gun; Chang, Young-Su; Park, Yoonkyung; Hahm, Kyung-Soo

    2002-12-01

    HP (2-20) (AKKVFKRLEKLFSKIQNDK) is the antibacterial sequence derived from N-terminus of Helicobacter pylori Ribosomal Protein L1 (RPL1). It has a broad-spectrum microbicidal activity in vitro that is thought to be related to the membrane-disruptive properties of the peptide. Based on the putative membrane-targeted mode of action, we postulated that HP (2-20) might be possessed virus-cell fusion inhibitory activity. To develop the novel virus-cell fusion inhibitory peptides, several analogues with amino acid substitution were designed to increase or decrease only net hydrophobic region. In particular, substitution of Gln and Asp for hydrophobic amino acid, Trp at position 17 and 19 of HP (2-20) (Anal 3) caused a dramatic increase in virus-cell fusion inhibitory activity without hemolytic effect.

  1. Genetic Pathway of HIV-1 Resistance to Novel Fusion Inhibitors Targeting the Gp41 Pocket

    PubMed Central

    Su, Yang; Chong, Huihiui; Xiong, Shengwen; Qiao, Yuanyuan; Qiu, Zonglin

    2015-01-01

    ABSTRACT The peptide drug enfuvirtide (T20) is the only HIV-1 fusion inhibitor in clinical use, but it easily induces drug resistance, calling for new strategies for developing effective drugs. On the basis of the M-T hook structure, we recently developed highly potent short-peptide HIV-1 fusion inhibitors (MTSC22 and HP23), which mainly target the conserved gp41 pocket and possess high genetic barriers to resistance. Here, we focused on the selection and characterization of HIV-1 escape mutants of MTSC22, which revealed new resistance pathways and mechanisms. Two mutations (E49K and L57R) located at the inhibitor-binding site and two mutations (N126K and E136G) located at the C-terminal heptad repeat region of gp41 were identified as conferring high resistance either singly or in combination. While E49K reduced the C-terminal binding of inhibitors via an electrostatic repulsion, L57R dramatically disrupted the N-terminal binding of M-T hook structure and pocket-binding domain. Unlike E49K and N126K, which enhanced the stability of the endogenous viral six-helical bundle core (6-HB), L57R and E136G conversely destabilized the 6-HB structure. We also demonstrated that both primary and secondary mutations caused the structural changes in 6-HB and severely impaired the capability for HIV-1 entry. Collectively, our data provide novel insights into the mechanisms of short-peptide fusion inhibitors targeting the gp41 pocket site and help increase our understanding of the structure and function of gp41 and HIV-1 evolution. IMPORTANCE The deep pocket on the N-trimer of HIV-1 gp41 has been considered an ideal drug target because of its high degree of conservation and essential role in viral entry. Short-peptide fusion inhibitors, which contain an M-T hook structure and mainly target the pocket site, show extremely high binding and inhibitory activities as well as high genetic barriers to resistance. In this study, the HIV-1 mutants resistant to MTSC22 were selected and

  2. Expression and purification of isotopically labeled peptide inhibitors and substrates of cAMP-dependant protein kinase A for NMR analysis.

    PubMed

    Masterson, Larry R; Bortone, Nadia; Yu, Tao; Ha, Kim N; Gaffarogullari, Ece C; Nguyen, Oanh; Veglia, Gianluigi

    2009-04-01

    Extensive X-ray crystallographic studies carried out on the catalytic-subunit of protein kinase A (PKA-C) enabled the atomic characterization of inhibitor and/or substrate peptide analogues trapped at its active site. Yet, the structural and dynamic transitions of these peptides from the free to the bound state are missing. These conformational transitions are central to understanding molecular recognition and the enzymatic cycle. NMR spectroscopy allows one to study these phenomena under functionally relevant conditions. However, the amounts of isotopically labeled peptides required for this technique present prohibitive costs for solid-phase peptide synthesis. To enable NMR studies, we have optimized both expression and purification of isotopically enriched substrate/inhibitor peptides using a recombinant fusion protein system. Three of these peptides correspond to the cytoplasmic regions of the wild-type and lethal mutants of the membrane protein phospholamban, while the fourth peptide correspond to the binding epitope of the heat-stable protein kinase inhibitor (PKI(5-24)). The target peptides were fused to the maltose binding protein (MBP), which is further purified using a His(6) tag approach. This convenient protocol allows for the purification of milligram amounts of peptides necessary for NMR analysis.

  3. Dissection of the Role of the Stable Signal Peptide of the Arenavirus Envelope Glycoprotein in Membrane Fusion

    PubMed Central

    Messina, Emily L.; York, Joanne

    2012-01-01

    The arenavirus envelope glycoprotein (GPC) retains a stable signal peptide (SSP) as an essential subunit in the mature complex. The 58-amino-acid residue SSP comprises two membrane-spanning hydrophobic regions separated by a short ectodomain loop that interacts with the G2 fusion subunit to promote pH-dependent membrane fusion. Small-molecule compounds that target this unique SSP-G2 interaction prevent arenavirus entry and infection. The interaction between SSP and G2 is sensitive to the phylogenetic distance between New World (Junín) and Old World (Lassa) arenaviruses. For example, heterotypic GPC complexes are unable to support virion entry. In this report, we demonstrate that the hybrid GPC complexes are properly assembled, proteolytically cleaved, and transported to the cell surface but are specifically defective in their membrane fusion activity. Chimeric SSP constructs reveal that this incompatibility is localized to the first transmembrane segment of SSP (TM1). Genetic changes in TM1 also affect sensitivity to small-molecule fusion inhibitors, generating resistance in some cases and inhibitor dependence in others. Our studies suggest that interactions of SSP TM1 with the transmembrane domain of G2 may be important for GPC-mediated membrane fusion and its inhibition. PMID:22438561

  4. Dual Split Protein-Based Fusion Assay Reveals that Mutations to Herpes Simplex Virus (HSV) Glycoprotein gB Alter the Kinetics of Cell-Cell Fusion Induced by HSV Entry Glycoproteins

    PubMed Central

    Atanasiu, Doina; Saw, Wan Ting; Gallagher, John R.; Hannah, Brian P.; Matsuda, Zene; Whitbeck, J. Charles; Cohen, Gary H.

    2013-01-01

    Herpes simplex virus (HSV) entry and cell-cell fusion require glycoproteins gD, gH/gL, and gB. We propose that receptor-activated changes to gD cause it to activate gH/gL, which then triggers gB into an active form. We employed a dual split-protein (DSP) assay to monitor the kinetics of HSV glycoprotein-induced cell-cell fusion. This assay measures content mixing between two cells, i.e., fusion, within the same cell population in real time (minutes to hours). Titration experiments suggest that both gD and gH/gL act in a catalytic fashion to trigger gB. In fact, fusion rates are governed by the amount of gB on the cell surface. We then used the DSP assay to focus on mutants in two functional regions (FRs) of gB, FR1 and FR3. FR1 contains the fusion loops (FL1 and FL2), and FR3 encompasses the crown at the trimer top. All FL mutants initiated fusion very slowly, if at all. However, the fusion rates caused by some FL2 mutants increased over time, so that total fusion by 8 h looked much like that of the WT. Two distinct kinetic patterns, “slow and fast,” emerged for mutants in the crown of gB (FR3), again showing differences in initiation and ongoing fusion. Of note are the fusion kinetics of the gB syn mutant (LL871/872AA). Although this mutant was originally included as an ongoing high-rate-of-fusion control, its initiation of fusion is so rapid that it appears to be on a “hair trigger.” Thus, the DSP assay affords a unique way to examine the dynamics of HSV glycoprotein-induced cell fusion. PMID:23946457

  5. Immunological Properties of Hepatitis B Core Antigen Fusion Proteins

    NASA Astrophysics Data System (ADS)

    Francis, Michael J.; Hastings, Gillian Z.; Brown, Alan L.; Grace, Ken G.; Rowlands, David J.; Brown, Fred; Clarke, Berwyn E.

    1990-04-01

    The immunogenicity of a 19 amino acid peptide from foot-and-mouth disease virus has previously been shown to approach that of the inactivated virus from which it was derived after multimeric particulate presentation as an N-terminal fusion with hepatitis B core antigen. In this report we demonstrate that rhinovirus peptide-hepatitis B core antigen fusion proteins are 10-fold more immunogenic than peptide coupled to keyhole limpet hemocyanin and 100-fold more immunogenic than uncoupled peptide with an added helper T-cell epitope. The fusion proteins can be readily administered without adjuvant or with adjuvants acceptable for human and veterinary application and can elicit a response after nasal or oral dosing. The fusion proteins can also act as T-cell-independent antigens. These properties provide further support for their suitability as presentation systems for "foreign" epitopes in the development of vaccines.

  6. AAV-Mediated Administration of Myostatin Pro-Peptide Mutant in Adult Ldlr Null Mice Reduces Diet-Induced Hepatosteatosis and Arteriosclerosis

    PubMed Central

    Guo, Wen; Wong, Siu; Bhasin, Shalender

    2013-01-01

    Genetic disruption of myostatin or its related signaling is known to cause strong protection against diet-induced metabolic disorders. The translational value of these prior findings, however, is dependent on whether such metabolically favorable phenotype can be reproduced when myostatin blockade begins at an adult age. Here, we reported that AAV-mediated delivery of a myostatin pro-peptide D76A mutant in adult mice attenuates the development of hepatic steatosis and arteriosclerosis, two common diet-induced metabolic diseases. A single dose of AAV-D76A in adult Ldlr null mice resulted in sustained expression of myostatin pro-peptide in the liver. Compared to vehicle-treated mice, D76A-treated mice gained similar amount of lean and fat mass when fed a high fat diet. However, D76A-treated mice displayed significantly reduced aortic lesions and liver fat, in association with a reduction in hepatic expression of lipogenic genes and improvement in liver insulin sensitivity. This suggests that muscle and fat may not be the primary targets of treatment under our experimental condition. In support to this argument, we show that myostatin directly up-regulated lipogenic genes and increased fat accumulation in cultured liver cells. We also show that both myostatin and its receptor were abundantly expressed in mouse aorta. Cultured aortic endothelial cells responded to myostatin with a reduction in eNOS phosphorylation and an increase in ICAM-1 and VCAM-1 expression. Conclusions: AAV-mediated expression of myostatin pro-peptide D76A mutant in adult Ldlr null mice sustained metabolic protection without remarkable impacts on body lean and fat mass. Further investigations are needed to determine whether direct impact of myostatin on liver and aortic endothelium may contribute to the related metabolic phenotypes. PMID:23936482

  7. Streptavidin-binding peptides and uses thereof

    NASA Technical Reports Server (NTRS)

    Wilson, David S. (Inventor); Szostak, Jack W. (Inventor); Keefe, Anthony D. (Inventor)

    2005-01-01

    The invention provides peptides with high affinity for streptavidin. These peptides may be expressed as part of fusion proteins to facilitate the detection, quantitation, and purification of proteins of interest.

  8. Streptavidin-binding peptides and uses thereof

    NASA Technical Reports Server (NTRS)

    Szostak, Jack W. (Inventor); Keefe, Anthony D. (Inventor); Wilson, David S. (Inventor)

    2006-01-01

    The invention provides peptides with high affinity for streptavidin. These peptides may be expressed as part of fusion proteins to facilitate the detection, quantitation, and purification of proteins of interest.

  9. Expression and Purification of Neurotrophin-Elastin-Like Peptide Fusion Proteins for Neural Regeneration.

    PubMed

    Johnson, Tamina; Koria, Piyush

    2016-04-01

    Neural injuries such as spinal cord injuries, traumatic brain injuries, or nerve transection injuries pose a major health problem. Neurotrophins such as nerve growth factor (NGF) or brain-derived neurotrophic factor (BDNF) have been shown to improve the outcome of neural injuries in several pre-clinical models, but their use in clinics is limited by the lack of a robust delivery system that enhances their bioavailability and half-life. We describe two fusion proteins comprising NGF or BDNF fused with elastin-like peptides (ELPs). The aim of this study was to investigate the biological activity of neurotrophin-ELP (N-ELP) fusion proteins via in vitro culture models. NGF and BDNF were cloned in front of an elastin-like polypeptide sequence V40C2. These proteins were expressed in bacteria as inclusion bodies. These fusion proteins underwent solubilization via 8 M urea and purification via inverse transition cycling (ITC). We measured the particle size and the effect of temperature on precipitated particles using dynamic light scattering (DLS). We used western blot analysis to confirm the specificity of NGF-ELP to tropomyosin receptor kinase A (TrkA) antibody and to confirm the specificity of BDNF-ELP to TrkB antibody. PC12 cells were used to perform a neurite outgrowth assay to determine the biological activity of NGF-ELP. Bioactivity of BDNF-ELP was ascertained via transfecting human epithelial kidney (HEK 293-T) cells to express the TrkB receptor. The proteins were successfully purified to high homogeneity by exploiting the phase transition property of ELPs and urea, which solubilize inclusion bodies. Using PC12 neurite outgrowth assay, we further demonstrated that the biological activity of NGF was retained in the fusion. Similarly, BDNF-ELP phosphorylated the TrkB receptor, suggesting the biological activity of BDNF was also retained in the fusion. We further show that owing to the phase transition property of ELPs in the fusion, these proteins self-assembled into

  10. Prediction of antiviral peptides derived from viral fusion proteins potentially active against herpes simplex and influenza A viruses

    PubMed Central

    Jesús, Torres; Rogelio, López; Abraham, Cetina; Uriel, López; J- Daniel, García; Alfonso, Méndez-Tenorio; Lilia, Barrón Blanca

    2012-01-01

    There are very few antiviral drugs available to fight viral infections and the appearance of viral strains resistant to these antivirals is not a rare event. Hence, the design of new antiviral drugs is important. We describe the prediction of peptides with antiviral activity (AVP) derived from the viral glycoproteins involved in the entrance of herpes simplex (HSV) and influenza A viruses into their host cells. It is known, that during this event viral glycoproteins suffer several conformational changes due to protein-protein interactions, which lead to membrane fusion between the viral envelope and the cellular membrane. Our hypothesis is that AVPs can be derived from these viral glycoproteins, specifically from regions highly conserved in amino acid sequences, which at the same time have the physicochemical properties of being highly exposed (antigenic), hydrophilic, flexible, and charged, since these properties are important for protein-protein interactions. For that, we separately analyzed the HSV glycoprotein H and B, and influenza A viruses hemagglutinin (HA), using several bioinformatics tools. A set of multiple alignments was carried out, to find the most conserved regions in the amino acid sequences. Then, the physicochemical properties indicated above were analyzed. We predicted several peptides 12-20 amino acid length which by docking analysis were able to interact with the fusion viral glycoproteins and thus may prevent conformational changes in them, blocking the viral infection. Our strategy to design AVPs seems to be very promising since the peptides were synthetized and their antiviral activities have produced very encouraging results. PMID:23144542

  11. Calcitonin and Amylin Receptor Peptide Interaction Mechanisms

    PubMed Central

    Lee, Sang-Min; Hay, Debbie L.; Pioszak, Augen A.

    2016-01-01

    Receptor activity-modifying proteins (RAMP1–3) determine the selectivity of the class B G protein-coupled calcitonin receptor (CTR) and the CTR-like receptor (CLR) for calcitonin (CT), amylin (Amy), calcitonin gene-related peptide (CGRP), and adrenomedullin (AM) peptides. RAMP1/2 alter CLR selectivity for CGRP/AM in part by RAMP1 Trp-84 or RAMP2 Glu-101 contacting the distinct CGRP/AM C-terminal residues. It is unclear whether RAMPs use a similar mechanism to modulate CTR affinity for CT and Amy, analogs of which are therapeutics for bone disorders and diabetes, respectively. Here, we reproduced the peptide selectivity of intact CTR, AMY1 (CTR·RAMP1), and AMY2 (CTR·RAMP2) receptors using purified CTR extracellular domain (ECD) and tethered RAMP1- and RAMP2-CTR ECD fusion proteins and antagonist peptides. All three proteins bound salmon calcitonin (sCT). Tethering RAMPs to CTR enhanced binding of rAmy, CGRP, and the AMY antagonist AC413. Peptide alanine-scanning mutagenesis and modeling of receptor-bound sCT and AC413 supported a shared non-helical CGRP-like conformation for their TN(T/V)G motif prior to the C terminus. After this motif, the peptides diverged; the sCT C-terminal Pro was crucial for receptor binding, whereas the AC413/rAmy C-terminal Tyr had little or no influence on binding. Accordingly, mutant RAMP1 W84A- and RAMP2 E101A-CTR ECD retained AC413/rAmy binding. ECD binding and cell-based signaling assays with antagonist sCT/AC413/rAmy variants with C-terminal residue swaps indicated that the C-terminal sCT/rAmy residue identity affects affinity more than selectivity. rAmy(8–37) Y37P exhibited enhanced antagonism of AMY1 while retaining selectivity. These results reveal unexpected differences in how RAMPs determine CTR and CLR peptide selectivity and support the hypothesis that RAMPs allosterically modulate CTR peptide affinity. PMID:26895962

  12. An integrated vector system for cellular studies of phage display-derived peptides.

    PubMed

    Voss, Stephan D; DeGrand, Alec M; Romeo, Giulio R; Cantley, Lewis C; Frangioni, John V

    2002-09-15

    Peptide phage display is a method by which large numbers of diverse peptides can be screened for binding to a target of interest. Even when successful, the rate-limiting step is usually validation of peptide bioactivity using living cells. In this paper, we describe an integrated system of vectors that expedites both the screening and the characterization processes. Library construction and screening is performed using an optimized type 3 phage display vector, mJ(1), which is shown to accept peptide libraries of at least 23 amino acids in length. Peptide coding sequences are shuttled from mJ(1) into one of three families of mammalian expression vectors for cell physiological studies. The vector pAL(1) expresses phage display-derived peptides as Gal4 DNA binding domain fusion proteins for transcriptional activation studies. The vectors pG(1), pG(1)N, and pG(1)C express phage display-derived peptides as green fluorescent protein fusions targeted to the entire cell, nucleus, or cytoplasm, respectively. The vector pAP(1) expresses phage display-derived peptides as fusions to secreted placental alkaline phosphatase. Such enzyme fusions can be used as highly sensitive affinity reagents for high-throughput assays and for cloning of peptide-binding cell surface receptors. Taken together, this system of vectors should facilitate the development of phage display-derived peptides into useful biomolecules.

  13. Structures of the prefusion form of measles virus fusion protein in complex with inhibitors.

    PubMed

    Hashiguchi, Takao; Fukuda, Yoshinari; Matsuoka, Rei; Kuroda, Daisuke; Kubota, Marie; Shirogane, Yuta; Watanabe, Shumpei; Tsumoto, Kouhei; Kohda, Daisuke; Plemper, Richard Karl; Yanagi, Yusuke

    2018-03-06

    Measles virus (MeV), a major cause of childhood morbidity and mortality, is highly immunotropic and one of the most contagious pathogens. MeV may establish, albeit rarely, persistent infection in the central nervous system, causing fatal and intractable neurodegenerative diseases such as subacute sclerosing panencephalitis and measles inclusion body encephalitis. Recent studies have suggested that particular substitutions in the MeV fusion (F) protein are involved in the pathogenesis by destabilizing the F protein and endowing it with hyperfusogenicity. Here we show the crystal structures of the prefusion MeV-F alone and in complex with the small compound AS-48 or a fusion inhibitor peptide. Notably, these independently developed inhibitors bind the same hydrophobic pocket located at the region connecting the head and stalk of MeV-F, where a number of substitutions in MeV isolates from neurodegenerative diseases are also localized. Since these inhibitors could suppress membrane fusion mediated by most of the hyperfusogenic MeV-F mutants, the development of more effective inhibitors based on the structures may be warranted to treat MeV-induced neurodegenerative diseases.

  14. The SARS-CoV Fusion Peptide Forms an Extended Bipartite Fusion Platform that Perturbs Membrane Order in a Calcium-Dependent Manner.

    PubMed

    Lai, Alex L; Millet, Jean K; Daniel, Susan; Freed, Jack H; Whittaker, Gary R

    2017-12-08

    Coronaviruses (CoVs) are a major infectious disease threat and include the pathogenic human pathogens of zoonotic origin: severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV). Entry of CoVs into host cells is mediated by the viral spike (S) protein, which is structurally categorized as a class I viral fusion protein, within the same group as influenza virus and HIV. However, S proteins have two distinct cleavage sites that can be activated by a much wider range of proteases. The exact location of the CoV fusion peptide (FP) has been disputed. However, most evidence suggests that the domain immediately downstream of the S2' cleavage site is the FP (amino acids 798-818 SFIEDLLFNKVTLADAGFMKQY for SARS-CoV, FP1). In our previous electron spin resonance spectroscopic studies, the membrane-ordering effect of influenza virus, HIV, and Dengue virus FPs has been consistently observed. In this study, we used this effect as a criterion to identify and characterize the bona fide SARS-CoV FP. Our results indicate that both FP1 and the region immediately downstream (amino acids 816-835 KQYGECLGDINARDLICAQKF, FP2) induce significant membrane ordering. Furthermore, their effects are calcium dependent, which is consistent with in vivo data showing that calcium is required for SARS-CoV S-mediated fusion. Isothermal titration calorimetry showed a direct interaction between calcium cations and both FPs. This Ca 2+ -dependency membrane ordering was not observed with influenza FP, indicating that the CoV FP exhibits a mechanistically different behavior. Membrane-ordering effects are greater and penetrate deeper into membranes when FP1 and FP2 act in a concerted manner, suggesting that they form an extended fusion "platform." Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Distinct requirements for signal peptidase processing and function in the stable signal peptide subunit of the Junin virus envelope glycoprotein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    York, Joanne; Nunberg, Jack H.

    2007-03-01

    The arenavirus envelope glycoprotein (GP-C) retains a cleaved and stable signal peptide (SSP) as an essential subunit of the mature complex. This 58-amino-acid residue peptide serves as a signal sequence and is additionally required to enable transit of the assembled GP-C complex to the Golgi, and for pH-dependent membrane fusion activity. We have investigated the C-terminal region of the Junin virus SSP to study the role of the cellular signal peptidase (SPase) in generating SSP. Site-directed mutagenesis at the cleavage site (positions - 1 and - 3) reveals a pattern of side-chain preferences consistent with those of SPase. Although positionmore » - 2 is degenerate for SPase cleavage, this residue in the arenavirus SSP is invariably a cysteine. In the Junin virus, this cysteine is not involved in disulfide bonding. We show that replacement with alanine or serine is tolerated for SPase cleavage but prevents the mutant SSP from associating with GP-C and enabling transport to the cell surface. Conversely, an arginine mutation at position - 1 that prevents SPase cleavage is fully compatible with GP-C-mediated membrane fusion activity when the mutant SSP is provided in trans. These results point to distinct roles of SSP sequences in SPase cleavage and GP-C biogenesis. Further studies of the unique structural organization of the GP-C complex will be important in identifying novel opportunities for antiviral intervention against arenaviral hemorrhagic disease.« less

  16. Distinct roles for key karyogamy proteins during yeast nuclear fusion.

    PubMed

    Melloy, Patricia; Shen, Shu; White, Erin; Rose, Mark D

    2009-09-01

    During yeast mating, cell fusion is followed by the congression and fusion of the two nuclei. Proteins required for nuclear fusion are found at the surface (Prm3p) and within the lumen (Kar2p, Kar5p, and Kar8p) of the nuclear envelope (NE). Electron tomography (ET) of zygotes revealed that mutations in these proteins block nuclear fusion with different morphologies, suggesting that they act in different steps of fusion. Specifically, prm3 zygotes were blocked before formation of membrane bridges, whereas kar2, kar5, and kar8 zygotes frequently contained them. Membrane bridges were significantly larger and occurred more frequently in kar2 and kar8, than in kar5 mutant zygotes. The kinetics of NE fusion in prm3, kar5, and kar8 mutants, measured by live-cell fluorescence microscopy, were well correlated with the size and frequency of bridges observed by ET. However the kar2 mutant was defective for transfer of NE lumenal GFP, but not diffusion within the lumen, suggesting that transfer was blocked at the NE fusion junction. These observations suggest that Prm3p acts before initiation of outer NE fusion, Kar5p may help dilation of the initial fusion pore, and Kar2p and Kar8p act after outer NE fusion, during inner NE fusion.

  17. The MARVEL domain protein, Singles Bar, is required for progression past the pre-fusion complex stage of myoblast fusion.

    PubMed

    Estrada, Beatriz; Maeland, Anne D; Gisselbrecht, Stephen S; Bloor, James W; Brown, Nicholas H; Michelson, Alan M

    2007-07-15

    Multinucleated myotubes develop by the sequential fusion of individual myoblasts. Using a convergence of genomic and classical genetic approaches, we have discovered a novel gene, singles bar (sing), that is essential for myoblast fusion. sing encodes a small multipass transmembrane protein containing a MARVEL domain, which is found in vertebrate proteins involved in processes such as tight junction formation and vesicle trafficking where--as in myoblast fusion--membrane apposition occurs. sing is expressed in both founder cells and fusion competent myoblasts preceding and during myoblast fusion. Examination of embryos injected with double-stranded sing RNA or embryos homozygous for ethane methyl sulfonate-induced sing alleles revealed an identical phenotype: replacement of multinucleated myofibers by groups of single, myosin-expressing myoblasts at a stage when formation of the mature muscle pattern is complete in wild-type embryos. Unfused sing mutant myoblasts form clusters, suggesting that early recognition and adhesion of these cells are unimpaired. To further investigate this phenotype, we undertook electron microscopic ultrastructural studies of fusing myoblasts in both sing and wild-type embryos. These experiments revealed that more sing mutant myoblasts than wild-type contain pre-fusion complexes, which are characterized by electron-dense vesicles paired on either side of the fusing plasma membranes. In contrast, embryos mutant for another muscle fusion gene, blown fuse (blow), have a normal number of such complexes. Together, these results lead to the hypothesis that sing acts at a step distinct from that of blow, and that sing is required on both founder cell and fusion-competent myoblast membranes to allow progression past the pre-fusion complex stage of myoblast fusion, possibly by mediating fusion of the electron-dense vesicles to the plasma membrane.

  18. Soluble expression and purification of the recombinant bioactive peptide precursor BPP-1 in Escherichia coli using a cELP-SUMO dual fusion system.

    PubMed

    Rao, Shengqi; Zang, Xiangyu; Yang, Zhenquan; Gao, Lu; Yin, Yongqi; Fang, Weiming

    2016-02-01

    A bioactive peptide precursor (BPP-1, 14.3 kDa/115AA), a newly designed polypeptide that may exert a potential antihypertensive effect in vivo, is composed of many different ACE inhibitory peptides and antioxidant peptides tandemly linked according to the restriction sites of gastrointestinal proteases. In this report, we present a novel method to obtain soluble BPP-1 in Escherichia coli using cationic elastin-like polypeptide and SUMO (cELP-SUMO) tags. The cELP-SUMO-tagged fusion protein was expressed in soluble form at 20 °C for 20 h. After purification based on the inverse transition cycling (ITC) method, the purified cELP-SUMO-CFPP fusion protein was subsequently cleaved by a SUMO protease to release the mature BPP-1. After a subsequent simple salt precipitation process, approximately 167.2 mg of recombinant BPP-1 was obtained from 1 l of bacterial culture with at least 92% purity. The molecular mass (Mr) of the recombinant BPP-1 was confirmed by MALDI-TOF MS to equal 14,347. The purified BPP-1 was subjected to simulated gastrointestinal digestion, and the resulting hydrolysates exhibited notable ACE inhibitory and antioxidant activities in vitro. This report provides the first description of the soluble production of a bioactive peptide multimer with potential ACE inhibitory and antioxidant activities in E. coli using a cELP-SUMO tag. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Cell-to-Cell Measles Virus Spread between Human Neurons Is Dependent on Hemagglutinin and Hyperfusogenic Fusion Protein.

    PubMed

    Sato, Yuma; Watanabe, Shumpei; Fukuda, Yoshinari; Hashiguchi, Takao; Yanagi, Yusuke; Ohno, Shinji

    2018-03-15

    Measles virus (MV) usually causes acute infection but in rare cases persists in the brain, resulting in subacute sclerosing panencephalitis (SSPE). Since human neurons, an important target affected in the disease, do not express the known MV receptors (signaling lymphocyte activation molecule [SLAM] and nectin 4), how MV infects neurons and spreads between them is unknown. Recent studies have shown that many virus strains isolated from SSPE patients possess substitutions in the extracellular domain of the fusion (F) protein which confer enhanced fusion activity. Hyperfusogenic viruses with such mutations, unlike the wild-type MV, can induce cell-cell fusion even in SLAM- and nectin 4-negative cells and spread efficiently in human primary neurons and the brains of animal models. We show here that a hyperfusogenic mutant MV, IC323-F(T461I)-EGFP (IC323 with a fusion-enhancing T461I substitution in the F protein and expressing enhanced green fluorescent protein), but not the wild-type MV, spreads in differentiated NT2 cells, a widely used human neuron model. Confocal time-lapse imaging revealed the cell-to-cell spread of IC323-F(T461I)-EGFP between NT2 neurons without syncytium formation. The production of virus particles was strongly suppressed in NT2 neurons, also supporting cell-to-cell viral transmission. The spread of IC323-F(T461I)-EGFP was inhibited by a fusion inhibitor peptide as well as by some but not all of the anti-hemagglutinin antibodies which neutralize SLAM- or nectin-4-dependent MV infection, suggesting the presence of a distinct neuronal receptor. Our results indicate that MV spreads in a cell-to-cell manner between human neurons without causing syncytium formation and that the spread is dependent on the hyperfusogenic F protein, the hemagglutinin, and the putative neuronal receptor for MV. IMPORTANCE Measles virus (MV), in rare cases, persists in the human central nervous system (CNS) and causes subacute sclerosing panencephalitis (SSPE) several

  20. Rational site-directed mutations of the LLP-1 and LLP-2 lentivirus lytic peptide domains in the intracytoplasmic tail of human immunodeficiency virus type 1 gp41 indicate common functions in cell-cell fusion but distinct roles in virion envelope incorporation.

    PubMed

    Kalia, Vandana; Sarkar, Surojit; Gupta, Phalguni; Montelaro, Ronald C

    2003-03-01

    Two highly conserved cationic amphipathic alpha-helical motifs, designated lentivirus lytic peptides 1 and 2 (LLP-1 and LLP-2), have been characterized in the carboxyl terminus of the transmembrane (TM) envelope glycoprotein (Env) of lentiviruses. Although various properties have been attributed to these domains, their structural and functional significance is not clearly understood. To determine the specific contributions of the Env LLP domains to Env expression, processing, and incorporation and to viral replication and syncytium induction, site-directed LLP mutants of a primary dualtropic infectious human immunodeficiency virus type 1 (HIV-1) isolate (ME46) were examined. Substitutions were made for highly conserved arginine residues in either the LLP-1 or LLP-2 domain (MX1 or MX2, respectively) or in both domains (MX4). The HIV-1 mutants with altered LLP domains demonstrated distinct phenotypes. The LLP-1 mutants (MX1 and MX4) were replication defective and showed an average of 85% decrease in infectivity, which was associated with an evident decrease in gp41 incorporation into virions without a significant decrease in Env expression or processing in transfected 293T cells. In contrast, MX2 virus was replication competent and incorporated a full complement of Env into its virions, indicating a differential role for the LLP-1 domain in Env incorporation. Interestingly, the replication-competent MX2 virus was impaired in its ability to induce syncytia in T-cell lines. This defect in cell-cell fusion did not correlate with apparent defects in the levels of cell surface Env expression, oligomerization, or conformation. The lack of syncytium formation, however, correlated with a decrease of about 90% in MX2 Env fusogenicity compared to that of wild-type Env in quantitative luciferase-based cell-cell fusion assays. The LLP-1 mutant MX1 and MX4 Envs also exhibited an average of 80% decrease in fusogenicity. Altogether, these results demonstrate for the first time that

  1. Alteration of a Second Putative Fusion Peptide of Structural Glycoprotein E2 of Classical Swine Fever Virus Alters Virus Replication and Virulence in Swine

    PubMed Central

    Holinka, L. G.; Largo, E.; Gladue, D. P.; O'Donnell, V.; Risatti, G. R.; Nieva, J. L.

    2016-01-01

    ABSTRACT E2, the major envelope glycoprotein of classical swine fever virus (CSFV), is involved in several critical virus functions, including cell attachment, host range susceptibility, and virulence in natural hosts. Functional structural analysis of E2 based on a Wimley-White interfacial hydrophobicity distribution predicted the involvement of a loop (residues 864 to 881) stabilized by a disulfide bond (869CKWGGNWTCV878, named FPII) in establishing interactions with the host cell membrane. This loop further contains an 872GG873 dipeptide, as well as two aromatic residues (871W and 875W) accessible to solvent. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how amino acid substitutions within FPII may affect replication of BICv in vitro and virus virulence in swine. Recombinant CSFVs containing mutations in different residues of FPII were constructed. A particular construct, harboring amino acid substitutions W871T, W875D, and V878T (FPII.2), demonstrated a significantly decreased ability to replicate in a swine cell line (SK6) and swine macrophage primary cell cultures. Interestingly, mutated virus FPII.2 was completely attenuated in pigs. Also, animals infected with FPII.2 virus were protected against virulent challenge with Brescia virus at 21 days postvaccination. Supporting a role for the E2 the loop from residues 864 to 881 in membrane fusion, only synthetic peptides that were based on the native E2 functional sequence were competent for insertion into model membranes and perturbation of their integrity, and this functionality was lost in synthetic peptides harboring amino acid substitutions W871T, W875D, and V878T in FPII.2. IMPORTANCE This report describes the identification and characterization of a putative fusion peptide (FP) in the major structural protein E2 of classical swine fever virus (CSFV). The FP identification was performed by functional structural analysis of E2

  2. Peptides that influence membrane topology

    NASA Astrophysics Data System (ADS)

    Wong, Gerard C. L.

    2014-03-01

    We examine the mechanism of a range of polypeptides that influence membrane topology, including antimicrobial peptides, cell penetrating peptides, viral fusion peptides, and apoptosis proteins, and show how a combination of geometry, coordination chemistry, and soft matter physics can be used to approach a unified understanding. We will also show how such peptides can impact biomedical problems such as auto-immune diseases (psoriasis, lupus), infectious diseases (viral and bacterial infections), and mitochondrial pathologies (under-regulated apoptosis leads to neurodegenerative diseases whereas over-regulated apoptosis leads to cancer.)

  3. Discovery of a polystyrene binding peptide isolated from phage display library and its application in peptide immobilization.

    PubMed

    Qiang, Xu; Sun, Keyong; Xing, Lijun; Xu, Yifeng; Wang, Hong; Zhou, Zhengpin; Zhang, Juan; Zhang, Fang; Caliskan, Bilgen; Wang, Min; Qiu, Zheng

    2017-06-01

    Phage peptide display is a powerful technique for discovery of various target-specific ligands. However, target-unrelated peptides can often be obtained and cause ambiguous results. Peptide PB-TUP has been isolated repeatedly in our laboratory on different targets and we conducted a research on PB-TUP phage to investigate their binding properties and rate of propagation. ELISA and phage recovery assay demonstrated that PB-TUP phage had a significant superior affinity to polystyrene solid surface compared with control phage clones. In this study, some incidental bindings are excluded like blocking agents and non-specific binding of secondary antibodies. Propagation rate assays of the selected phage clones showed that the growth rate of PB-TUP phage was not superior to the control phages. Furthermore, the binding of PB-TUB to polystyrene was concentration dependent and varied with solution pH. Molecular modeling revealed that stable structures of α-helix and β-turn may contribute to the binding of PB-TUP to polystyrene plate. The PB-TUP sequence was fused to the N-terminus of peptide P2 and the fusion peptide significantly increased the binding affinity to polystyrene. The fusion peptide also enhanced the cell adhesion ability of peptide P2 with human umbilical vein endothelial cell (HUVEC). The addition of the polystyrene binding peptide provided a convenient method for peptide immobilization.

  4. An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis.

    PubMed

    Kim, Minsoo; Chen, Yuhui; Xi, Jiejun; Waters, Christopher; Chen, Rujin; Wang, Dong

    2015-12-08

    In the nitrogen-fixing symbiosis between legume hosts and rhizobia, the bacteria are engulfed by a plant cell membrane to become intracellular organelles. In the model legume Medicago truncatula, internalization and differentiation of Sinorhizobium (also known as Ensifer) meliloti is a prerequisite for nitrogen fixation. The host mechanisms that ensure the long-term survival of differentiating intracellular bacteria (bacteroids) in this unusual association are unclear. The M. truncatula defective nitrogen fixation4 (dnf4) mutant is unable to form a productive symbiosis, even though late symbiotic marker genes are expressed in mutant nodules. We discovered that in the dnf4 mutant, bacteroids can apparently differentiate, but they fail to persist within host cells in the process. We found that the DNF4 gene encodes NCR211, a member of the family of nodule-specific cysteine-rich (NCR) peptides. The phenotype of dnf4 suggests that NCR211 acts to promote the intracellular survival of differentiating bacteroids. The greatest expression of DNF4 was observed in the nodule interzone II-III, where bacteroids undergo differentiation. A translational fusion of DNF4 with GFP localizes to the peribacteroid space, and synthetic NCR211 prevents free-living S. meliloti from forming colonies, in contrast to mock controls, suggesting that DNF4 may interact with bacteroids directly or indirectly for its function. Our findings indicate that a successful symbiosis requires host effectors that not only induce bacterial differentiation, but also that maintain intracellular bacteroids during the host-symbiont interaction. The discovery of NCR211 peptides that maintain bacterial survival inside host cells has important implications for improving legume crops.

  5. Biochemistry and biophysics of HIV-1 gp41 - membrane interactions and implications for HIV-1 envelope protein mediated viral-cell fusion and fusion inhibitor design.

    PubMed

    Cai, Lifeng; Gochin, Miriam; Liu, Keliang

    2011-12-01

    Human immunodeficiency virus type 1 (HIV-1), the pathogen of acquired immunodeficiency syndrome (AIDS), causes ~2 millions death every year and still defies an effective vaccine. HIV-1 infects host cells through envelope protein - mediated virus-cell fusion. The transmembrane subunit of envelope protein, gp41, is the molecular machinery which facilitates fusion. Its ectodomain contains several distinguishing functional domains, fusion peptide (FP), Nterminal heptad repeat (NHR), C-terminal heptad repeat (CHR) and membrane proximal extracellular region (MPER). During the fusion process, FP inserts into the host cell membrane, and an extended gp41 prehairpin conformation bridges the viral and cell membranes through MPER and FP respectively. Subsequent conformational change of the unstable prehairpin results in a coiled-coil 6-helix bundle (6HB) structure formed between NHR and CHR. The energetics of 6HB formation drives membrane apposition and fusion. Drugs targeting gp41 functional domains to prevent 6HB formation inhibit HIV-1 infection. T20 (enfuvirtide, Fuzeon) was approved by the US FDA in 2003 as the first fusion inhibitor. It is a 36-residue peptide from the gp41 CHR, and it inhibits 6HB formation by targeting NHR and lipids. Development of new fusion inhibitors, especially small molecule drugs, is encouraged to overcome the shortcomings of T20 as a peptide drug. Hydrophobic characteristics and membrane association are critical for gp41 function and mechanism of action. Research in gp41-membrane interactions, using peptides corresponding to specific functional domains, or constructs including several interactive domains, are reviewed here to get a better understanding of gp41 mediated virus-cell fusion that can inform or guide the design of new HIV-1 fusion inhibitors.

  6. Interrelationships between mitochondrial fusion, energy metabolism and oxidative stress during development in Caenorhabditis elegans.

    PubMed

    Yasuda, Kayo; Hartman, Philip S; Ishii, Takamasa; Suda, Hitoshi; Akatsuka, Akira; Shoyama, Tetsuji; Miyazawa, Masaki; Ishii, Naoaki

    2011-01-21

    Mitochondria are known to be dynamic structures with the energetically and enzymatically mediated processes of fusion and fission responsible for maintaining a constant flux. Mitochondria also play a role of reactive oxygen species production as a byproduct of energy metabolism. In the current study, interrelationships between mitochondrial fusion, energy metabolism and oxidative stress on development were explored using a fzo-1 mutant defective in the fusion process and a mev-1 mutant overproducing superoxide from mitochondrial electron transport complex II of Caenorhabditis elegans. While growth and development of both single mutants was slightly delayed relative to the wild type, the fzo-1;mev-1 double mutant experienced considerable delay. Oxygen sensitivity during larval development, superoxide production and carbonyl protein accumulation of the fzo-1 mutant were similar to wild type. fzo-1 animals had significantly lower metabolism than did N2 and mev-1. These data indicate that mitochondrial fusion can profoundly affect energy metabolism and development. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Structural characterization of Mumps virus fusion protein core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Yueyong; Xu Yanhui; Lou Zhiyong

    2006-09-29

    The fusion proteins of enveloped viruses mediating the fusion between the viral and cellular membranes comprise two discontinuous heptad repeat (HR) domains located at the ectodomain of the enveloped glycoproteins. The crystal structure of the fusion protein core of Mumps virus (MuV) was determined at 2.2 A resolution. The complex is a six-helix bundle in which three HR1 peptides form a central highly hydrophobic coiled-coil and three HR2 peptides pack against the hydrophobic grooves on the surface of central coiled-coil in an oblique antiparallel manner. Fusion core of MuV, like those of simian virus 5 and human respiratory syncytium virus,more » forms typical 3-4-4-4-3 spacing. The similar charecterization in HR1 regions, as well as the existence of O-X-O motif in extended regions of HR2 helix, suggests a basic rule for the formation of the fusion core of viral fusion proteins.« less

  8. Amyloid precursor protein-induced axonopathies are independent of amyloid-beta peptides.

    PubMed

    Stokin, Gorazd B; Almenar-Queralt, Angels; Gunawardena, Shermali; Rodrigues, Elizabeth M; Falzone, Tomás; Kim, Jungsu; Lillo, Concepción; Mount, Stephanie L; Roberts, Elizabeth A; McGowan, Eileen; Williams, David S; Goldstein, Lawrence S B

    2008-11-15

    Overexpression of amyloid precursor protein (APP), as well as mutations in the APP and presenilin genes, causes rare forms of Alzheimer's disease (AD). These genetic changes have been proposed to cause AD by elevating levels of amyloid-beta peptides (Abeta), which are thought to be neurotoxic. Since overexpression of APP also causes defects in axonal transport, we tested whether defects in axonal transport were the result of Abeta poisoning of the axonal transport machinery. Because directly varying APP levels also alters APP domains in addition to Abeta, we perturbed Abeta generation selectively by combining APP transgenes in Drosophila and mice with presenilin-1 (PS1) transgenes harboring mutations that cause familial AD (FAD). We found that combining FAD mutant PS1 with FAD mutant APP increased Abeta42/Abeta40 ratios and enhanced amyloid deposition as previously reported. Surprisingly, however, this combination suppressed rather than increased APP-induced axonal transport defects in both Drosophila and mice. In addition, neuronal apoptosis induced by expression of FAD mutant human APP in Drosophila was suppressed by co-expressing FAD mutant PS1. We also observed that directly elevating Abeta with fusions to the Familial British and Danish Dementia-related BRI protein did not enhance axonal transport phenotypes in APP transgenic mice. Finally, we observed that perturbing Abeta ratios in the mouse by combining FAD mutant PS1 with FAD mutant APP did not enhance APP-induced behavioral defects. A potential mechanism to explain these findings was suggested by direct analysis of axonal transport in the mouse, which revealed that axonal transport or entry of APP into axons is reduced by FAD mutant PS1. Thus, we suggest that APP-induced axonal defects are not caused by Abeta.

  9. The Lipopolysaccharide of Brucella abortus BvrS/BvrR Mutants Contains Lipid A Modifications and Has Higher Affinity for Bactericidal Cationic Peptides

    PubMed Central

    Manterola, Lorea; Moriyón, Ignacio; Moreno, Edgardo; Sola-Landa, Alberto; Weiss, David S.; Koch, Michel H. J.; Howe, Jörg; Brandenburg, Klaus; López-Goñi, Ignacio

    2005-01-01

    The two-component BvrS/BvrR system is essential for Brucella abortus virulence. It was shown previously that its dysfunction abrogates expression of some major outer membrane proteins and increases bactericidal peptide sensitivity. Here, we report that BvrS/BvrR mutants have increased surface hydrophobicity and susceptibility to killing by nonimmune serum. The bvrS and bvrR mutant lipopolysaccharides (LPSs) bound more polymyxin B, chimeras constructed with bvrS mutant cells and parental LPS showed augmented polymyxin B resistance, and, conversely, parental cells and bvrS mutant LPS chimeras were more sensitive and displayed polymyxin B-characteristic outer membrane lesions, implicating LPS as being responsible for the phenotype of the BvrS/BvrR mutants. No qualitative or quantitative changes were detected in other envelope and outer membrane components examined: periplasmic β(1-2) glucans, native hapten polysaccharide, and phospholipids. The LPS of the mutants was similar to parental LPS in O-polysaccharide polymerization and fine structure but showed both increased underacylated lipid A species and higher acyl-chain fluidity that correlated with polymyxin B binding. These lipid A changes did not alter LPS cytokine induction, showing that in contrast to other gram-negative pathogens, recognition by innate immune receptors is not decreased by these changes in LPS structure. Transcription of Brucella genes required for incorporating long acyl chains into lipid A (acpXL and lpxXL) or implicated in lipid A acylation control (bacA) was not affected. We propose that in Brucella the outer membrane homeostasis depends on the functioning of BvrS/BvrR. Accordingly, disruption of BvrS/BvrR damages the outer membrane, thus contributing to the severe attenuation manifested by bvrS and bvrR mutants. PMID:16077108

  10. Fusion proteins as alternate crystallization paths to difficult structure problems

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Rueker, Florian; Ho, Joseph X.; Lim, Kap; Keeling, Kim; Gilliland, Gary; Ji, Xinhua

    1994-01-01

    The three-dimensional structure of a peptide fusion product with glutathione transferase from Schistosoma japonicum (SjGST) has been solved by crystallographic methods to 2.5 A resolution. Peptides or proteins can be fused to SjGST and expressed in a plasmid for rapid synthesis in Escherichia coli. Fusion proteins created by this commercial method can be purified rapidly by chromatography on immobilized glutathione. The potential utility of using SjGST fusion proteins as alternate paths to the crystallization and structure determination of proteins is demonstrated.

  11. Lateral Membrane Heterogeneity Regulates Viral-Induced Membrane Fusion during HIV Entry

    PubMed Central

    Molotkovsky, Rodion J.; Alexandrova, Veronika V.; Galimzyanov, Timur R.; Jiménez-Munguía, Irene; Pavlov, Konstantin V.; Akimov, Sergey A.

    2018-01-01

    Sphingomyelin- and cholesterol- enriched membrane domains, commonly referred to as “rafts” play a crucial role in a large number of intra- and intercellular processes. Recent experiments suggest that not only the volumetric inhomogeneity of lipid distribution in rafts, but also the arrangement of the 1D boundary between the raft and the surrounding membrane is important for the membrane-associated processes. The reason is that the boundary preferentially recruits different peptides, such as HIV (human immunodeficiency virus) fusion peptide. In the present work, we report a theoretical investigation of mechanisms of influence of the raft boundary arrangement upon virus-induced membrane fusion. We theoretically predict that the raft boundary can act as an attractor for viral fusion peptides, which preferentially distribute into the vicinity of the boundary, playing the role of ‘line active components’ of the membrane (‘linactants’). We have calculated the height of the fusion energy barrier and demonstrated that, in the case of fusion between HIV membrane and the target cell, presence of the raft boundary in the vicinity of the fusion site facilitates fusion. The results we obtained can be further generalized to be applicable to other enveloped viruses. PMID:29772704

  12. Lateral Membrane Heterogeneity Regulates Viral-Induced Membrane Fusion during HIV Entry.

    PubMed

    Molotkovsky, Rodion J; Alexandrova, Veronika V; Galimzyanov, Timur R; Jiménez-Munguía, Irene; Pavlov, Konstantin V; Batishchev, Oleg V; Akimov, Sergey A

    2018-05-16

    Sphingomyelin- and cholesterol- enriched membrane domains, commonly referred to as "rafts" play a crucial role in a large number of intra- and intercellular processes. Recent experiments suggest that not only the volumetric inhomogeneity of lipid distribution in rafts, but also the arrangement of the 1D boundary between the raft and the surrounding membrane is important for the membrane-associated processes. The reason is that the boundary preferentially recruits different peptides, such as HIV (human immunodeficiency virus) fusion peptide. In the present work, we report a theoretical investigation of mechanisms of influence of the raft boundary arrangement upon virus-induced membrane fusion. We theoretically predict that the raft boundary can act as an attractor for viral fusion peptides, which preferentially distribute into the vicinity of the boundary, playing the role of 'line active components' of the membrane ('linactants'). We have calculated the height of the fusion energy barrier and demonstrated that, in the case of fusion between HIV membrane and the target cell, presence of the raft boundary in the vicinity of the fusion site facilitates fusion. The results we obtained can be further generalized to be applicable to other enveloped viruses.

  13. Nuclear congression and membrane fusion: two distinct events in the yeast karyogamy pathway

    PubMed Central

    1994-01-01

    Karyogamy is the process where haploid nuclei fuse to form a diploid nucleus during yeast mating. We devised a novel genetic screen that identified five new karyogamy (KAR) genes and three new cell fusion (FUS) genes. The kar mutants fell into two classes that represent distinct events in the yeast karyogamy pathway. Class I mutations blocked congression of the nuclei due to cytoplasmic microtubule defects. In Class II mutants, nuclear congression proceeded and the membranes of apposed nuclei were closely aligned but unfused. In vitro, Class II mutant membranes were defective in a homotypic ER/nuclear membrane fusion assay. We propose that Class II mutants define components of a novel membrane fusion complex which functions during vegetative growth and is recruited for karyogamy. PMID:8051211

  14. Structural Analysis on the Pathologic Mutant Glucocorticoid Receptor Ligand-Binding Domains.

    PubMed

    Hurt, Darrell E; Suzuki, Shigeru; Mayama, Takafumi; Charmandari, Evangelia; Kino, Tomoshige

    2016-02-01

    Glucocorticoid receptor (GR) gene mutations may cause familial or sporadic generalized glucocorticoid resistance syndrome. Most of the missense forms distribute in the ligand-binding domain and impair its ligand-binding activity and formation of the activation function (AF)-2 that binds LXXLL motif-containing coactivators. We performed molecular dynamics simulations to ligand-binding domain of pathologic GR mutants to reveal their structural defects. Several calculated parameters including interaction energy for dexamethasone or the LXXLL peptide indicate that destruction of ligand-binding pocket (LBP) is a primary character. Their LBP defects are driven primarily by loss/reduction of the electrostatic interaction formed by R611 and T739 of the receptor to dexamethasone and a subsequent conformational mismatch, which deacylcortivazol resolves with its large phenylpyrazole moiety and efficiently stimulates transcriptional activity of the mutant receptors with LBP defect. Reduced affinity of the LXXLL peptide to AF-2 is caused mainly by disruption of the electrostatic bonds to the noncore leucine residues of this peptide that determine the peptide's specificity to GR, as well as by reduced noncovalent interaction against core leucines and subsequent exposure of the AF-2 surface to solvent. The results reveal molecular defects of pathologic mutant receptors and provide important insights to the actions of wild-type GR.

  15. Inhibition of Nipah virus infection in vivo: targeting an early stage of paramyxovirus fusion activation during viral entry.

    PubMed

    Porotto, Matteo; Rockx, Barry; Yokoyama, Christine C; Talekar, Aparna; Devito, Ilaria; Palermo, Laura M; Liu, Jie; Cortese, Riccardo; Lu, Min; Feldmann, Heinz; Pessi, Antonello; Moscona, Anne

    2010-10-28

    In the paramyxovirus cell entry process, receptor binding triggers conformational changes in the fusion protein (F) leading to viral and cellular membrane fusion. Peptides derived from C-terminal heptad repeat (HRC) regions in F have been shown to inhibit fusion by preventing formation of the fusogenic six-helix bundle. We recently showed that the addition of a cholesterol group to HRC peptides active against Nipah virus targets these peptides to the membrane where fusion occurs, dramatically increasing their antiviral effect. In this work, we report that unlike the untagged HRC peptides, which bind to the postulated extended intermediate state bridging the viral and cell membranes, the cholesterol tagged HRC-derived peptides interact with F before the fusion peptide inserts into the target cell membrane, thus capturing an earlier stage in the F-activation process. Furthermore, we show that cholesterol tagging renders these peptides active in vivo: the cholesterol-tagged peptides cross the blood brain barrier, and effectively prevent and treat in an established animal model what would otherwise be fatal Nipah virus encephalitis. The in vivo efficacy of cholesterol-tagged peptides, and in particular their ability to penetrate the CNS, suggests that they are promising candidates for the prevention or therapy of infection by Nipah and other lethal paramyxoviruses.

  16. Inhibition of Nipah Virus Infectin In Vivo: Targeting an Early Stage of Paramyxovirus Fusion Activation during Viral Entry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Porotto; B Rockx; C Yokoyama

    2011-12-31

    In the paramyxovirus cell entry process, receptor binding triggers conformational changes in the fusion protein (F) leading to viral and cellular membrane fusion. Peptides derived from C-terminal heptad repeat (HRC) regions in F have been shown to inhibit fusion by preventing formation of the fusogenic six-helix bundle. We recently showed that the addition of a cholesterol group to HRC peptides active against Nipah virus targets these peptides to the membrane where fusion occurs, dramatically increasing their antiviral effect. In this work, we report that unlike the untagged HRC peptides, which bind to the postulated extended intermediate state bridging the viralmore » and cell membranes, the cholesterol tagged HRC-derived peptides interact with F before the fusion peptide inserts into the target cell membrane, thus capturing an earlier stage in the F-activation process. Furthermore, we show that cholesterol tagging renders these peptides active in vivo: the cholesterol-tagged peptides cross the blood brain barrier, and effectively prevent and treat in an established animal model what would otherwise be fatal Nipah virus encephalitis. The in vivo efficacy of cholesterol-tagged peptides, and in particular their ability to penetrate the CNS, suggests that they are promising candidates for the prevention or therapy of infection by Nipah and other lethal paramyxoviruses.« less

  17. Recombinant production of antimicrobial peptides in Escherichia coli: a review.

    PubMed

    Li, Yifeng

    2011-12-01

    Antimicrobial peptides are of great interest due to their potential application as novel antibiotics. Large quantities of highly purified peptides are required to meet the needs of basic research and clinical trials. Compared with isolation from natural sources and chemical synthesis, recombinant approach offers the most cost-effective means for large-scale peptide manufacture. Among the systems available for heterologous protein production, Escherichia coli has been the most widely used host. Antimicrobial peptides produced in E. coli are often expressed as fusion proteins, a strategy necessary to mask these peptides' lethal effect towards the host and protect them from proteolytic degradation. The present article reviews commonly used fusion partners (e.g., solubility-enhancing, aggregation-promoting and self-cleavable carriers, etc.), cleavage methods and optimization options for antimicrobial peptides production in E. coli. In addition, the various approaches developed to generate recombinant human antimicrobial peptide LL-37, which offer excellent examples demonstrating effective production strategies, were briefly discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Calcitonin and Amylin Receptor Peptide Interaction Mechanisms: INSIGHTS INTO PEPTIDE-BINDING MODES AND ALLOSTERIC MODULATION OF THE CALCITONIN RECEPTOR BY RECEPTOR ACTIVITY-MODIFYING PROTEINS.

    PubMed

    Lee, Sang-Min; Hay, Debbie L; Pioszak, Augen A

    2016-04-15

    Receptor activity-modifying proteins (RAMP1-3) determine the selectivity of the class B G protein-coupled calcitonin receptor (CTR) and the CTR-like receptor (CLR) for calcitonin (CT), amylin (Amy), calcitonin gene-related peptide (CGRP), and adrenomedullin (AM) peptides. RAMP1/2 alter CLR selectivity for CGRP/AM in part by RAMP1 Trp-84 or RAMP2 Glu-101 contacting the distinct CGRP/AM C-terminal residues. It is unclear whether RAMPs use a similar mechanism to modulate CTR affinity for CT and Amy, analogs of which are therapeutics for bone disorders and diabetes, respectively. Here, we reproduced the peptide selectivity of intact CTR, AMY1 (CTR·RAMP1), and AMY2 (CTR·RAMP2) receptors using purified CTR extracellular domain (ECD) and tethered RAMP1- and RAMP2-CTR ECD fusion proteins and antagonist peptides. All three proteins bound salmon calcitonin (sCT). Tethering RAMPs to CTR enhanced binding of rAmy, CGRP, and the AMY antagonist AC413. Peptide alanine-scanning mutagenesis and modeling of receptor-bound sCT and AC413 supported a shared non-helical CGRP-like conformation for their TN(T/V)G motif prior to the C terminus. After this motif, the peptides diverged; the sCT C-terminal Pro was crucial for receptor binding, whereas the AC413/rAmy C-terminal Tyr had little or no influence on binding. Accordingly, mutant RAMP1 W84A- and RAMP2 E101A-CTR ECD retained AC413/rAmy binding. ECD binding and cell-based signaling assays with antagonist sCT/AC413/rAmy variants with C-terminal residue swaps indicated that the C-terminal sCT/rAmy residue identity affects affinity more than selectivity. rAmy(8-37) Y37P exhibited enhanced antagonism of AMY1 while retaining selectivity. These results reveal unexpected differences in how RAMPs determine CTR and CLR peptide selectivity and support the hypothesis that RAMPs allosterically modulate CTR peptide affinity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Dictyostelium LvsB has a regulatory role in endosomal vesicle fusion

    PubMed Central

    Falkenstein, Kristin; De Lozanne, Arturo

    2014-01-01

    ABSTRACT Defects in human lysosomal-trafficking regulator (Lyst) are associated with the lysosomal disorder Chediak–Higashi syndrome. The absence of Lyst results in the formation of enlarged lysosome-related compartments, but the mechanism for how these compartments arise is not well established. Two opposing models have been proposed to explain Lyst function. The fission model describes Lyst as a positive regulator of fission from lysosomal compartments, whereas the fusion model identifies Lyst as a negative regulator of fusion between lysosomal vesicles. Here, we used assays that can distinguish between defects in vesicle fusion versus fission. We compared the phenotype of Dictyostelium discoideum cells defective in LvsB, the ortholog of Lyst, with that of two known fission defect mutants (μ3- and WASH-null mutants). We found that the temporal localization characteristics of the post-lysosomal marker vacuolin, as well as vesicular acidity and the fusion dynamics of LvsB-null cells are distinct from those of both μ3- and WASH-null fission defect mutants. These distinctions are predicted by the fusion defect model and implicate LvsB as a negative regulator of vesicle fusion. PMID:25086066

  20. The role of conformational selection in the molecular recognition of the wild type and mutants XPA67-80 peptides by ERCC1.

    PubMed

    Fadda, Elisa

    2015-07-01

    Molecular recognition is a fundamental step in the coordination of biomolecular pathways. Understanding how recognition and binding occur between highly flexible protein domains is a complex task. The conformational selection theory provides an elegant rationalization of the recognition mechanism, especially valid in cases when unstructured protein regions are involved. The recognition of a poorly structured peptide, namely XPA67-80 , by its target receptor ERCC1, falls in this challenging study category. The microsecond molecular dynamics (MD) simulations, discussed in this work, show that the conformational propensity of the wild type XPA67-80 peptide in solution supports conformational selection as the key mechanism driving its molecular recognition by ERCC1. Moreover, all the mutations of the XPA67-80 peptide studied here cause a significant increase of its conformational disorder, relative to the wild type. Comparison to experimental data suggests that the loss of the recognized structural motifs at the microscopic time scale can contribute to the critical decrease in binding observed for one of the mutants, further substantiating the key role of conformational selection in recognition. Ultimately, because of the high sequence identity and analogy in binding, it is conceivable that the conclusions of this study on the XPA67-80 peptide also apply to the ERCC1-binding domain of the XPA protein. © 2015 Wiley Periodicals, Inc.

  1. High-Efficiency Synthesis of Human α-Endorphin and Magainin in the Erythrocytes of Transgenic Mice: A Production System for Therapeutic Peptides

    NASA Astrophysics Data System (ADS)

    Sharma, Ajay; Khoury-Christianson, Anastasia M.; White, Steven P.; Dhanjal, Nirpal K.; Huang, Wen; Paulhiac, Clara; Friedman, Eric J.; Manjula, Belur N.; Kumar, Ramesh

    1994-09-01

    Chemical synthesis of peptides, though feasible, is hindered by considerations of cost, purity, and efficiency of synthesizing longer chains. Here we describe a transgenic system for producing peptides of therapeutic interest as fusion proteins at low cost and high purity. Transgenic hemoglobin expression technology using the locus control region was employed to produce fusion hemoglobins in the erythrocytes of mice. The fusion hemoglobin contains the desired peptide as an extension at the C end of human α-globin. A protein cleavage site is inserted between the C end of the α-globin chain and the N-terminal residue of the desired peptide. The peptide is recovered after cleavage of the fusion protein with enzymes that recognize this cleavage signal as their substrate. Due to the selective compartmentalization of hemoglobin in the erythrocytes, purification of the fusion hemoglobin is easy and efficient. Because of its compact and highly ordered structure, the internal sites of hemoglobin are resistant to protease digestion and the desired peptide is efficiently released and recovered. The applicability of this approach was established by producing a 16-mer α-endorphin peptide and a 26-mer magainin peptide in transgenic mice. Transgenic animals and their progeny expressing these fusion proteins remain healthy, even when the fusion protein is expressed at >25% of the total hemoglobin in the erythrocytes. Additional applications and potential improvements of this methodology are discussed.

  2. Active inhibition of herpes simplex virus type 1-induced cell fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bzik, D.J.; Person, S.; Read, G.S.

    1982-01-01

    Previous studies have demonstrated that syn mutant-infected cells fuse less well with nonsyncytial virus-infected cells than with uninfected cells, a phenomenon defined as function inhibition. The present study characterizes the kinetics as well as the requirements for expression of fusion inhibition. Initially, the capacity of sparse syn mutant-infected cells to fuse with uninfected surrounding cells was determined throughout infection. Of seven syn mutants examined, including representatives with alterations in two different viral genes that affect cell fusion, all showed an increase in fusion capacity up to 12 hr after infection and a decrease at later times. Fusion inhibition was examinedmore » in experiments employing sparse syn20-infected cells which had been incubated to a maximum fusion capacity; it was shown that surrounding cells infected with KOS, the parent of syn20, began to inhibit fusion by the syn20-infected cells at about 4 hr after infection, and that the maximum ability to inhibit fusion was attained at about 6 hr after infection. The metabolic blocking agents actinomycin D (RNA), cycloheximide (protein), 2-deoxyglucose, and tunicamycin (glycoslyation of glycoproteins) all showed the ability to inhibit the expression of fusion inhibition by KOS-infected cells if added shortly after infection. It is concluded that fusion inhibition is an active process that requires the synthesis of RNA, proteins, and glycoproteins. 17 references, 3 figures, 2 tables.« less

  3. Recombinant production, isotope labeling and purification of ENOD40B: a plant peptide hormone.

    PubMed

    Chae, Young Kee; Tonneli, Marco; Markley, John L

    2012-08-01

    The plant peptide hormone ENOD40B was produced in a protein production strain of Escherichia coli harboring an induction controller plasmid (Rosetta(DE3)pLysS) as a His6-tagged ubiquitin fusion protein. The fusion protein product was denatured and refolded as part of the isolation procedure and purified by immobilized metal ion chromatography. The peptide hormone was released from its fusion partner by adding yeast ubiquitin hydrolase (YUH) and subsequently purified by reversed phase chromatography. The purity of the resulting peptide fragment was assayed by MALDITOF mass spectrometry and NMR spectroscopy. The final yields of the target peptide were 7.0 mg per liter of LB medium and 3.4 mg per liter of minimal medium.

  4. Site-directed mutagenesis of the hinge peptide from the hemagglutinin protein: enhancement of the pH-responsive conformational change.

    PubMed

    Casali, Monica; Banta, Scott; Zambonelli, Carlo; Megeed, Zaki; Yarmush, Martin L

    2008-06-01

    Environmentally responsive proteins and peptides are increasingly finding utility in various engineered systems due to their ability to respond to the presentation of external stimuli. A classic example of this behavior is the influenza hemagglutinin (HA) fusion protein. At neutral pH, HA exists in a non-fusogenic state, but upon exposure to low pH, the conformation of the structure changes to expose a fusogenic peptide. During this structural change, massive rearrangements occur in a subunit of HA (HA2). Crystallography data has shown that a loop of 28 amino acids (residues 54-81) undergoes a dramatic transition from a random coil to an alpha-helix. This segment connects to two flanking helical regions (short and long) to form a long, continuous helix. Here, we report the results of site-directed mutagenesis study on LOOP-36 to further understand the mechanism of this important stimulus-responsive peptide. The conformational transition of a bacterially expressed LOOP-36 was found to be less dramatic than has been previously reported. The systematic mutation of glutamate and histidine residues in the peptide to glutamines (glutamine scanning) did not impact the conformational behavior of the peptide, but the substitution of the glycine residue at position 22 with alanine resulted in significant pH-responsive behavior. Therefore this mutant stimulus-responsive peptide may be more valuable for future protein engineering and bionanotechnology efforts.

  5. Nuclear inner membrane fusion facilitated by yeast Jem1p is required for spindle pole body fusion but not for the first mitotic nuclear division during yeast mating.

    PubMed

    Nishikawa, Shuh-ichi; Hirata, Aiko; Endo, Toshiya

    2008-11-01

    During mating of budding yeast, Saccharomyces cerevisiae, two haploid nuclei fuse to produce a diploid nucleus. The process of nuclear fusion requires two J proteins, Jem1p in the endoplasmic reticulum (ER) lumen and Sec63p, which forms a complex with Sec71p and Sec72p, in the ER membrane. Zygotes of mutants defective in the functions of Jem1p or Sec63p contain two haploid nuclei that were closely apposed but failed to fuse. Here we analyzed the ultrastructure of nuclei in jem1 Delta and sec71 Delta mutant zygotes using electron microscope with the freeze-substituted fixation method. Three-dimensional reconstitution of nuclear structures from electron microscope serial sections revealed that Jem1p facilitates nuclear inner-membrane fusion and spindle pole body (SPB) fusion while Sec71p facilitates nuclear outer-membrane fusion. Two haploid SPBs that failed to fuse could duplicate, and mitotic nuclear division of the unfused haploid nuclei started in jem1 Delta and sec71 Delta mutant zygotes. This observation suggests that nuclear inner-membrane fusion is required for SPB fusion, but not for SPB duplication in the first mitotic cell division.

  6. Anti-RSV Peptide-Loaded Liposomes for the Inhibition of Respiratory Syncytial Virus.

    PubMed

    Joshi, Sameer; Chaudhari, Atul A; Dennis, Vida; Kirby, Daniel J; Perrie, Yvonne; Singh, Shree Ram

    2018-05-09

    Although respiratory syncytial virus (RSV) is one of the leading causes of acute respiratory tract infection in infants and adults, effective treatment options remain limited. To circumvent this issue, there is a novel approach, namely, the development of multifunctional liposomes for the delivery of anti RSV-peptides. While most of the peptides that are used for loading with the particulate delivery systems are the penetrating peptides, an alternative approach is the development of liposome-peptide systems, which are loaded with an RSV fusion peptide (RF-482), which has been designed to inhibit the RSV fusion and block infection. The results of this work have revealed that the liposomes themselves can serve as potential RSV inhibitors, whilst the anti-RSV-peptide with liposomes can significantly increase the RSV inhibition when compared with the anti-RSV peptide alone.

  7. Expression and purification of the antimicrobial peptide GSL1 in bacteria for raising antibodies.

    PubMed

    Meiyalaghan, Sathiyamoorthy; Latimer, Julie M; Kralicek, Andrew V; Shaw, Martin L; Lewis, John G; Conner, Anthony J; Barrell, Philippa J

    2014-11-04

    The Gibberellin Stimulated-Like (GSL) or Snakin peptides from higher plants are cysteine-rich, with broad spectrum activity against a range of bacterial and fungal pathogens. To detect GSL peptides in applications such as western blot analysis and enzyme-linked immunosorbent assays (ELISA), specific antibodies that recognise GSL peptides are required. However, the intrinsic antimicrobial activity of these peptides is likely to prevent their expression alone in bacterial or yeast expression systems for subsequent antibody production in animal hosts. To overcome this issue we developed an Escherichia coli expression strategy based on the expression of the GSL1 peptide as a His-tagged thioredoxin fusion protein. The DNA sequence for the mature GSL1 peptide from potato (Solanum tuberosum L.) was cloned into the pET-32a expression vector to produce a construct encoding N-terminally tagged his6-thioredoxin-GSL1. The fusion protein was overexpressed in E. coli to produce soluble non-toxic protein. The GSL1 fusion protein could be easily purified by using affinity chromatography to yield ~1.3 mg of his6-thioredoxin-GSL1 per L of culture. The fusion protein was then injected into rabbits for antibody production. Western blot analysis showed that the antibodies obtained from rabbit sera specifically recognised the GSL1 peptide that had been expressed in a wheat germ cell-free expression system. We present here the first report of a GSL1 peptide expressed as a fusion protein with thioredoxin that has resulted in milligram quantities of soluble protein to be produced. We have also demonstrated that a wheat germ system can be used to successfully express small quantities of GSL1 peptide useful as positive control in western blot analysis. To our knowledge this is the first report of antibodies being produced against GSL1 peptide. The antibodies will be useful for analysis of GSL1peptides in western blot, localization by immunohistochemistry (IHC) and quantitation by ELISA.

  8. Fusion of Protegrin-1 and Plectasin to MAP30 Shows Significant Inhibition Activity against Dengue Virus Replication

    PubMed Central

    Rothan, Hussin A.; Bahrani, Hirbod; Mohamed, Zulqarnain; Abd Rahman, Noorsaadah; Yusof, Rohana

    2014-01-01

    Dengue virus (DENV) broadly disseminates in tropical and sub-tropical countries and there are no vaccine or anti-dengue drugs available. DENV outbreaks cause serious economic burden due to infection complications that requires special medical care and hospitalization. This study presents a new strategy for inexpensive production of anti-DENV peptide-fusion protein to prevent and/or treat DENV infection. Antiviral cationic peptides protegrin-1 (PG1) and plectasin (PLSN) were fused with MAP30 protein to produce recombinant antiviral peptide-fusion protein (PG1-MAP30-PLSN) as inclusion bodies in E. coli. High yield production of PG1-MAP30-PLSN protein was achieved by solubilization of inclusion bodies in alkaline buffer followed by the application of appropriate refolding techniques. Antiviral PG1-MAP30-PLSN protein considerably inhibited DENV protease (NS2B-NS3pro) with half-maximal inhibitory concentration (IC50) 0.5±0.1 μM. The real-time proliferation assay (RTCA) and the end-point proliferation assay (MTT assay) showed that the maximal-nontoxic dose of the peptide-fusion protein against Vero cells is approximately 0.67±0.2 μM. The cell-based assays showed considerable inhibition of the peptide-fusion protein against binding and proliferating stages of DENV2 into the target cells. The peptide-fusion protein protected DENV2-challeged mice with 100% of survival at the dose of 50 mg/kg. In conclusion, producing recombinant antiviral peptide-fusion protein by combining short antiviral peptide with a central protein owning similar activity could be useful to minimize the overall cost of short peptide production and take advantage of its synergistic antiviral activities. PMID:24722532

  9. Facilitating protein solubility by use of peptide extensions

    DOEpatents

    Freimuth, Paul I; Zhang, Yian-Biao; Howitt, Jason

    2013-09-17

    Expression vectors for expression of a protein or polypeptide of interest as a fusion product composed of the protein or polypeptide of interest fused at one terminus to a solubility enhancing peptide extension are provided. Sequences encoding the peptide extensions are provided. The invention further comprises antibodies which bind specifically to one or more of the solubility enhancing peptide extensions.

  10. Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic

    PubMed Central

    Bird, Gregory H.; Madani, Navid; Perry, Alisa F.; Princiotto, Amy M.; Supko, Jeffrey G.; He, Xiaoying; Gavathiotis, Evripidis; Sodroski, Joseph G.; Walensky, Loren D.

    2010-01-01

    The pharmacologic utility of lengthy peptides can be hindered by loss of bioactive structure and rapid proteolysis, which limits bioavailability. For example, enfuvirtide (Fuzeon, T20, DP178), a 36-amino acid peptide that inhibits human immunodeficiency virus type 1 (HIV-1) infection by effectively targeting the viral fusion apparatus, has been relegated to a salvage treatment option mostly due to poor in vivo stability and lack of oral bioavailability. To overcome the proteolytic shortcomings of long peptides as therapeutics, we examined the biophysical, biological, and pharmacologic impact of inserting all-hydrocarbon staples into an HIV-1 fusion inhibitor. We find that peptide double-stapling confers striking protease resistance that translates into markedly improved pharmacokinetic properties, including oral absorption. We determined that the hydrocarbon staples create a proteolytic shield by combining reinforcement of overall α-helical structure, which slows the kinetics of proteolysis, with complete blockade of peptide cleavage at constrained sites in the immediate vicinity of the staple. Importantly, double-stapling also optimizes the antiviral activity of HIV-1 fusion peptides and the antiproteolytic feature extends to other therapeutic peptide templates, such as the diabetes drug exenatide (Byetta). Thus, hydrocarbon double-stapling may unlock the therapeutic potential of natural bioactive polypeptides by transforming them into structurally fortified agents with enhanced bioavailability. PMID:20660316

  11. The actin cytoskeleton inhibits pore expansion during PIV5 fusion protein-promoted cell-cell fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wurth, Mark A.; Schowalter, Rachel M.; Smith, Everett Clinton

    2010-08-15

    Paramyxovirus fusion (F) proteins promote both virus-cell fusion, required for viral entry, and cell-cell fusion, resulting in syncytia formation. We used the F-actin stabilizing drug, jasplakinolide, and the G-actin sequestrant, latrunculin A, to examine the role of actin dynamics in cell-cell fusion mediated by the parainfluenza virus 5 (PIV5) F protein. Jasplakinolide treatment caused a dose-dependent increase in cell-cell fusion as measured by both syncytia and reporter gene assays, and latrunculin A treatment also resulted in fusion stimulation. Treatment with jasplakinolide or latrunculin A partially rescued a fusion pore opening defect caused by deletion of the PIV5 F protein cytoplasmicmore » tail, but these drugs had no effect on fusion inhibited at earlier stages by either temperature arrest or by a PIV5 heptad repeat peptide. These data suggest that the cortical actin cytoskeleton is an important regulator of fusion pore enlargement, an energetically costly stage of viral fusion protein-mediated membrane merger.« less

  12. The actin cytoskeleton inhibits pore expansion during PIV5 fusion protein-promoted cell-cell fusion

    PubMed Central

    Wurth, Mark A.; Schowalter, Rachel M.; Smith, Everett Clinton; Moncman, Carole L.; Dutch, Rebecca Ellis; McCann, Richard O.

    2010-01-01

    Paramyxovirus fusion (F) proteins promote both virus-cell fusion, required for viral entry, and cell-cell fusion, resulting in syncytia formation. We used the F-actin stabilizing drug, jasplakinolide, and the G-actin sequestrant, latrunculin A, to examine the role of actin dynamics in cell-cell fusion mediated by the parainfluenza virus 5 (PIV5) F protein. Jasplakinolide treatment caused a dose-dependent increase in cell-cell fusion as measured by both syncytia and reporter gene assays, and latrunculin A treatment also resulted in fusion stimulation. Treatment with jasplakinolide or latrunculin A partially rescued a fusion pore opening defect caused by deletion of the PIV5 F protein cytoplasmic tail, but these drugs had no effect on fusion inhibited at earlier stages by either temperature arrest or by a PIV5 heptad repeat peptide. These data suggest that the cortical actin cytoskeleton is an important regulator of fusion pore enlargement, an energetically costly stage of viral fusion protein-mediated membrane merger. PMID:20537366

  13. HIV-1 Fusion Is Blocked through Binding of GB Virus C E2D Peptides to the HIV-1 gp41 Disulfide Loop

    PubMed Central

    Eissmann, Kristin; Mueller, Sebastian; Sticht, Heinrich; Jung, Susan; Zou, Peng; Jiang, Shibo; Gross, Andrea; Eichler, Jutta; Fleckenstein, Bernhard; Reil, Heide

    2013-01-01

    A strategy for antiviral drug discovery is the elucidation and imitation of viral interference mechanisms. HIV-1 patients benefit from a coinfection with GB Virus C (GBV-C), since HIV-positive individuals with long-term GBV-C viraemia show better survival rates than HIV-1 patients without persisting GBV-C. A direct influence of GBV-C on HIV-1 replication has been shown in coinfection experiments. GBV-C is a human non-pathogenic member of the flaviviridae family that can replicate in T and B cells. Therefore, GBV-C shares partly the same ecological niche with HIV-1. In earlier work we have demonstrated that recombinant glycoprotein E2 of GBV-C and peptides derived from the E2 N-terminus interfere with HIV entry. In this study we investigated the underlying mechanism. Performing a virus-cell fusion assay and temperature-arrested HIV-infection kinetics, we provide evidence that the HIV-inhibitory E2 peptides interfere with late HIV-1 entry steps after the engagement of gp120 with CD4 receptor and coreceptor. Binding and competition experiments revealed that the N-terminal E2 peptides bind to the disulfide loop region of HIV-1 transmembrane protein gp41. In conjunction with computational analyses, we identified sequence similarities between the N-termini of GBV-C E2 and the HIV-1 glycoprotein gp120. This similarity appears to enable the GBV-C E2 N-terminus to interact with the HIV-1 gp41 disulfide loop, a crucial domain involved in the gp120-gp41 interface. Furthermore, the results of the present study provide initial proof of concept that peptides targeted to the gp41 disulfide loop are able to inhibit HIV fusion and should inspire the development of this new class of HIV-1 entry inhibitors. PMID:23349893

  14. Mutations in the Fusion Protein of Measles Virus That Confer Resistance to the Membrane Fusion Inhibitors Carbobenzoxy-d-Phe-l-Phe-Gly and 4-Nitro-2-Phenylacetyl Amino-Benzamide

    PubMed Central

    Ha, Michael N.; Delpeut, Sébastien; Noyce, Ryan S.; Sisson, Gary; Black, Karen M.; Lin, Liang-Tzung; Bilimoria, Darius; Plemper, Richard K.; Privé, Gilbert G.

    2017-01-01

    ABSTRACT The inhibitors carbobenzoxy (Z)-d-Phe-l-Phe-Gly (fusion inhibitor peptide [FIP]) and 4-nitro-2-phenylacetyl amino-benzamide (AS-48) have similar efficacies in blocking membrane fusion and syncytium formation mediated by measles virus (MeV). Other homologues, such as Z-d-Phe, are less effective but may act through the same mechanism. In an attempt to map the site of action of these inhibitors, we generated mutant viruses that were resistant to the inhibitory effects of Z-d-Phe-l-Phe-Gly. These 10 mutations were localized to the heptad repeat B (HRB) region of the fusion protein, and no changes were observed in the viral hemagglutinin, which is the receptor attachment protein. Mutations were validated in a luciferase-based membrane fusion assay, using transfected fusion and hemagglutinin expression plasmids or with syncytium-based assays in Vero, Vero-SLAM, and Vero-Nectin 4 cell lines. The changes I452T, D458N, D458G/V459A, N462K, N462H, G464E, and I483R conferred resistance to both FIP and AS-48 without compromising membrane fusion. The inhibitors did not block hemagglutinin protein-mediated binding to the target cell. Edmonston vaccine/laboratory and IC323 wild-type strains were equally affected by the inhibitors. Escape mutations were mapped upon a three-dimensional (3D) structure modeled from the published crystal structure of parainfluenzavirus 5 fusion protein. The most effective mutations were situated in a region located near the base of the globular head and its junction with the alpha-helical stalk of the prefusion protein. We hypothesize that the fusion inhibitors could interfere with the structural changes that occur between the prefusion and postfusion conformations of the fusion protein. IMPORTANCE Due to lapses in vaccination worldwide that have caused localized outbreaks, measles virus (MeV) has regained importance as a pathogen. Antiviral agents against measles virus are not commercially available but could be useful in conjunction with Me

  15. Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient.

    PubMed Central

    Howden, R; Goldsbrough, P B; Andersen, C R; Cobbett, C S

    1995-01-01

    An allelic series of cad1, cadmium-sensitive mutants of Arabidopsis thaliana, was isolated. These mutants were sensitive to cadmium to different extents and were deficient in their ability to form cadmium-peptide complexes as detected by gel-filtration chromatography. Each mutant was deficient in its ability to accumulate phytochelatins (PCs) as detected by high-performance liquid chromatography and the amount of PCs accumulated by each mutant correlated with its degree of sensitivity to cadmium. The mutants had wild-type levels of glutathione, the substrate for PC biosynthesis, and in vitro assays demonstrated that each of the mutants was deficient in PC synthase activity. These results demonstrate conclusively the importance of PCs for cadmium tolerance in plants. PMID:7770517

  16. Engineering peptide ligase specificity by proteomic identification of ligation sites.

    PubMed

    Weeks, Amy M; Wells, James A

    2018-01-01

    Enzyme-catalyzed peptide ligation is a powerful tool for site-specific protein bioconjugation, but stringent enzyme-substrate specificity limits its utility. We developed an approach for comprehensively characterizing peptide ligase specificity for N termini using proteome-derived peptide libraries. We used this strategy to characterize the ligation efficiency for >25,000 enzyme-substrate pairs in the context of the engineered peptide ligase subtiligase and identified a family of 72 mutant subtiligases with activity toward N-terminal sequences that were previously recalcitrant to modification. We applied these mutants individually for site-specific bioconjugation of purified proteins, including antibodies, and in algorithmically selected combinations for sequencing of the cellular N terminome with reduced sequence bias. We also developed a web application to enable algorithmic selection of the most efficient subtiligase variant(s) for bioconjugation to user-defined sequences. Our methods provide a new toolbox of enzymes for site-specific protein modification and a general approach for rapidly defining and engineering peptide ligase specificity.

  17. Ligand-regulated peptides: a general approach for modulating protein-peptide interactions with small molecules.

    PubMed

    Binkowski, Brock F; Miller, Russell A; Belshaw, Peter J

    2005-07-01

    We engineered a novel ligand-regulated peptide (LiRP) system where the binding activity of intracellular peptides is controlled by a cell-permeable small molecule. In the absence of ligand, peptides expressed as fusions in an FKBP-peptide-FRB-GST LiRP scaffold protein are free to interact with target proteins. In the presence of the ligand rapamycin, or the nonimmunosuppressive rapamycin derivative AP23102, the scaffold protein undergoes a conformational change that prevents the interaction of the peptide with the target protein. The modular design of the scaffold enables the creation of LiRPs through rational design or selection from combinatorial peptide libraries. Using these methods, we identified LiRPs that interact with three independent targets: retinoblastoma protein, c-Src, and the AMP-activated protein kinase. The LiRP system should provide a general method to temporally and spatially regulate protein function in cells and organisms.

  18. Stabilization of exosome-targeting peptides via engineered glycosylation.

    PubMed

    Hung, Michelle E; Leonard, Joshua N

    2015-03-27

    Exosomes are secreted extracellular vesicles that mediate intercellular transfer of cellular contents and are attractive vehicles for therapeutic delivery of bimolecular cargo such as nucleic acids, proteins, and even drugs. Efficient exosome-mediated delivery in vivo requires targeting vesicles for uptake by specific recipient cells. Although exosomes have been successfully targeted to several cellular receptors by displaying peptides on the surface of the exosomes, identifying effective exosome-targeting peptides for other receptors has proven challenging. Furthermore, the biophysical rules governing targeting peptide success remain poorly understood. To evaluate one factor potentially limiting exosome delivery, we investigated whether peptides displayed on the exosome surface are degraded during exosome biogenesis, for example by endosomal proteases. Indeed, peptides fused to the N terminus of exosome-associated transmembrane protein Lamp2b were cleaved in samples derived from both cells and exosomes. To suppress peptide loss, we engineered targeting peptide-Lamp2b fusion proteins to include a glycosylation motif at various positions. Introduction of this glycosylation motif both protected the peptide from degradation and led to an increase in overall Lamp2b fusion protein expression in both cells and exosomes. Moreover, glycosylation-stabilized peptides enhanced targeted delivery of exosomes to neuroblastoma cells, demonstrating that such glycosylation does not ablate peptide-target interactions. Thus, we have identified a strategy for achieving robust display of targeting peptides on the surface of exosomes, which should facilitate the evaluation and development of new exosome-based therapeutics. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. A fluorescence assay for peptide translocation into mitochondria.

    PubMed

    Martinez-Caballero, Sonia; Peixoto, Pablo M V; Kinnally, Kathleen W; Campo, María Luisa

    2007-03-01

    Translocation of the presequence is an early event in import of preproteins across the mitochondrial inner membrane by the TIM23 complex. Import of signal peptides, whose sequences mimic mitochondrial import presequences, was measured using a novel, qualitative, fluorescence assay in about 1h. This peptide assay was used in conjunction with classical protein import analyses and electrophysiological approaches to examine the mechanisms underlying the functional effects of depleting two TIM23 complex components. Tim23p forms, at least in part, the pore of this complex while Tim44p forms part of the translocation motor. Depletion of Tim23p eliminates TIM23 channel activity, which interferes with both peptide and preprotein translocation. In contrast, depletion of Tim44p disrupts preprotein but not peptide translocation, which has no effect on TIM23 channel activity. Two conclusions were made. First, this fluorescence peptide assay was validated as two different mutants were accurately identified. Hence, this assay could provide a rapid means of screening mutants to identify those that fail an initial step in import, i.e., translocation of the presequence. Second, translocation of signal peptides required normal channel activity and disruption of the presequence translocase-associated motor complex did not modify TIM23 channel activity nor prevent presequence translocation.

  20. Antibody-independent Targeted Quantification of TMPRSS2-ERG Fusion Protein Products in Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Jintang; Sun, Xuefei; Shi, Tujin

    2014-10-01

    Fusions between the transmembrane protease serine 2 (TMPRSS2) and ETS related gene (ERG) represent one of the most specific biomarkers that define a distinct molecular subtype of prostate cancer. The studies on TMPRSS2-ERG gene fusions have seldom been performed at the protein level, primarily due to the lack of high-quality antibodies or an antibody-independent method that is sufficiently sensitive for detecting the truncated ERG protein products resulting from TMPRSS2-ERG gene fusions and alternative splicing. Herein, we applied a recently developed PRISM (high-pressure high-resolution separations with intelligent selection and multiplexing)-SRM (selected reaction monitoring) strategy for quantifying ERG protein in prostate cancermore » cell lines and tumors. The highly sensitive PRISM-SRM assays led to confident detection of 6 unique ERG peptides in either the TMPRSS2-ERG positive cell lines or tissues but not in the negative controls, indicating that ERG protein expression is highly correlated with TMPRSS2-ERG gene rearrangements. Significantly, our results demonstrated for the first time that at least two groups of ERG protein isoforms were simultaneously expressed at variable levels in TMPRSS2-ERG positive samples as evidenced by concomitant detection of two mutually exclusive peptides. Three peptides shared across almost all fusion protein products were determined to be the most abundant peptides, and hence can be used as “signature” peptides for detecting ERG overexpression resulting from TMPRSS2-ERG gene fusion. These PRISM-SRM assays provide valuable tools for studying TMPRSS2-ERG gene fusion protein products, thus improving our understanding of the role of TMPRSS2-ERG gene fusion in the biology of prostate cancer.« less

  1. Expression of recombinant CD59 with an N-terminal peptide epitope facilitates analysis of residues contributing to its complement-inhibitory function.

    PubMed

    Zhou, Q; Zhao, J; Hüsler, T; Sims, P J

    1996-10-01

    CD59 is a plasma membrane-anchored glycoprotein that serves to protect human cells from lysis by the C5b-9 complex of complement. The immunodominant epitopes of CD59 are known to be sensitive to disruption of native tertiary structure, complicating immunological measurement of expressed mutant constructs for structure function analysis. In order to quantify cell-surface expression of wild-type and mutant forms of this complement inhibitor, independent of CD59 antigen, an 11-residue peptide (TAG) recognized by monoclonal antibody (mAb) 9E10 was inserted before the N-terminal codon (L1) of mature CD59, in a pcDNA3 expression plasmid. SV-T2 cells were transfected with this plasmid, yielding cell lines expressing 0 to > 10(5) CD59/cell. The TAG-CD59 fusion protein was confirmed to be GPI-anchored, N-glycosylated and showed identical complement-inhibitory function to wild-type CD59, lacking the TAG peptide sequence. Using this construct, the contribution of each of four surface-localized aromatic residues (4Y, 47F, 61Y, and 62Y) to CD59's complement-inhibitory function was examined. These assays revealed normal surface expression with complete loss of complement-inhibitory function in the 4Y --> S, 47F --> G and 61Y --> S mutants. By contrast, 62Y --> S mutants retained approximately 40% of function of wild-type CD59. These studies confirmed the utility of the TAG-CD59 construct for quantifying CD59 surface expression and activity, and implicate surface aromatic residues 4Y, 47F, 61Y and 62Y as essential to maintenance of CD59's normal complement-regulatory function.

  2. Enhanced antitumor immunity of nanoliposome-encapsulated heat shock protein 70 peptide complex derived from dendritic tumor fusion cells.

    PubMed

    Zhang, Yunfei; Luo, Wen; Wang, Yucai; Chen, Jun; Liu, Yunyan; Zhang, Yong

    2015-06-01

    Tumor-derived heat shock proteins peptide complex (HSP.PC-Tu) has been regarded as a promising antitumor agent. However, inadequate immunogenicity and low bioavailability limit the clinical uses of this agent. In a previous study, we first produced an improved HSP70.PC-based vaccine purified from dendritic cell (DC)-tumor fusion cells (HSP70.PC-Fc) which had increased immunogenicity due to enhanced antigenic tumor peptides compared to HSP70.PC-Tu. In order to increase the bioavailability of HSP70.PC-Fc, the peptide complex was encapsulated with nanoliposomes (NL-HSP70.PC-Fc) in this study. After encapsulation, the tumor immunogenicity was observed using various assays. It was demonstrated that the NL-HSP70.PC-Fc has acceptable stability. The in vivo antitumor immune response was increased with regard to T-cell activation, CTL response and tumor therapy efficiency compared to that of HSP70.PC-Fc. In addition, it was shown that DC maturation was improved by NL-HSP70.PC-Fc, which added to the antitumor immunity. The results obtained for NL-HSP70.PC-Fc, which improved immunogenicity and increases the bioavailability of HSP70.PC, may represent superior heat shock proteins (HSPs)-based tumor vaccines. Such vaccines deserve further investigation and may provide a preclinical rationale to translate findings into early phase trials for patients with breast tumors.

  3. Altered murein composition in a DD-carboxypeptidase mutant of Streptococcus pneumoniae.

    PubMed Central

    Severin, A; Schuster, C; Hakenbeck, R; Tomasz, A

    1992-01-01

    The muropeptide composition of a Streptococcus pneumoniae mutant in which the DD-carboxypeptidase (penicillin-binding protein 3) gene was interrupted by plasmid insertion close to the 3' end of the gene was examined. Extensive compositional changes were observed: the linear pentapeptide, a minor component of the parental cells, became the most abundant monomeric peptide in the mutant wall, while the proportion of tripeptides that represent the main monomers in the parental cells was greatly reduced. The amount of the major dimer of parental cells, the directly cross-linked tri-tetrapeptide, was also reduced by a factor of 4. It was partially replaced by a novel dimer: the cross-linked product of a linear pentapeptide and a pentapeptide carrying a serylalanine dipeptide substituent on the epsilon-NH2 group of its lysine residue. This dimer together with two other dimeric peptides, each containing the serylalanine cross bridge, became the quantitatively major components of the mutant peptidoglycan. PMID:1629174

  4. Fusion peptide P15-CSP shows antibiofilm activity and pro-osteogenic activity when deposited as a coating on hydrophilic but not hydrophobic surfaces.

    PubMed

    Li, Xian; Contreras-Garcia, Angel; LoVetri, Karen; Yakandawala, Nandadeva; Wertheimer, Michael R; De Crescenzo, Gregory; Hoemann, Caroline D

    2015-12-01

    In the context of porous bone void filler for oral bone reconstruction, peptides that suppress microbial growth and promote osteoblast function could be used to enhance the performance of a porous bone void filler. We tested the hypothesis that P15-CSP, a novel fusion peptide containing collagen-mimetic osteogenic peptide P15, and competence-stimulating peptide (CSP), a cationic antimicrobial peptide, has emerging properties not shared by P15 or CSP alone. Peptide-coated surfaces were tested for antimicrobial activity toward Streptoccocus mutans, and their ability to promote human mesenchymal stem cell (MSC) attachment, spreading, metabolism, and osteogenesis. In the osteogenesis assay, peptides were coated on tissue culture plastic and on thin films generated by plasma-enhanced chemical vapor deposition to have hydrophilic or hydrophobic character (water contact angles 63°, 42°, and 92°, respectively). S. mutans planktonic growth was specifically inhibited by CSP, whereas biofilm formation was inhibited by P15-CSP. MSC adhesion and actin stress fiber formation was strongly enhanced by CSP, P15-CSP, and fibronectin coatings and modestly enhanced by P15 versus uncoated surfaces. Metabolic assays revealed that CSP was slightly cytotoxic to MSCs. MSCs developed alkaline phosphatase activity on all surfaces, with or without peptide coatings, and consistently deposited the most biomineralized matrix on hydrophilic surfaces coated with P15-CSP. Hydrophobic thin films completely suppressed MSC biomineralization, consistent with previous findings of suppressed osteogenesis on hydrophobic bioplastics. Collective data in this study provide new evidence that P15-CSP has unique dual capacity to suppress biofilm formation, and to enhance osteogenic activity as a coating on hydrophilic surfaces. © 2015 Wiley Periodicals, Inc.

  5. Improved strategy for recombinant production and purification of antimicrobial peptide tachyplesin I and its analogs with high cell selectivity.

    PubMed

    Panteleev, Pavel V; Ovchinnikova, Tatiana V

    2017-01-01

    Here, we report an efficient procedure for recombinant production and purification of tachyplesin I (THI) with a final yield of 17 mg/L of the culture medium. The peptide was expressed in Escherichia coli as a part of the thioredoxin fusion protein. With the use of soluble expression followed by immobilized metal-ion affinity chromatography, the recombinant protein cleavage and reversed-phase high-performance liquid chromatography, a yield of THI did not exceed 6.5 mg/L of the culture medium. Further optimization studies were carried out to improve the protein expression level and simplify purification procedure of the target peptide. To achieve better yield of the peptide, we used high-cell-density bacterial expression. The formed inclusion bodies were highly enriched with the fusion protein, which allowed us to perform direct chemical cleavage of the inclusion bodies solubilized in 6 M guanidine-HCl with subsequent selective precipitation of proteins with trifluoroacetic acid. This enabled us to avoid an extra step of purification by immobilized metal-ion affinity chromatography. The developed procedure has made it possible to obtain biologically active THI and was used for screening a number of its mutant analogs. As a result, several selective and nonhemolytic analogs were developed. Significant reduction in hemolytic activity without losing antimicrobial activity was achieved by substitution of tyrosine or isoleucine residue in the β-turn region of the molecule with hydrophilic serine. The present study affords further insight into molecular mechanism of antimicrobial action of tachyplesin and gains a better understanding of structure-activity relationships in its analogs. This is aimed at searching for novel antibiotics on the basis of antimicrobial peptides with reduced cytotoxicity. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  6. Two-dimensional replica exchange approach for peptide-peptide interactions

    NASA Astrophysics Data System (ADS)

    Gee, Jason; Shell, M. Scott

    2011-02-01

    The replica exchange molecular dynamics (REMD) method has emerged as a standard approach for simulating proteins and peptides with rugged underlying free energy landscapes. We describe an extension to the original methodology—here termed umbrella-sampling REMD (UREMD)—that offers specific advantages in simulating peptide-peptide interactions. This method is based on the use of two dimensions in the replica cascade, one in temperature as in conventional REMD, and one in an umbrella sampling coordinate between the center of mass of the two peptides that aids explicit exploration of the complete association-dissociation reaction coordinate. To mitigate the increased number of replicas required, we pursue an approach in which the temperature and umbrella dimensions are linked at only fully associated and dissociated states. Coupled with the reweighting equations, the UREMD method aids accurate calculations of normalized free energy profiles and structural or energetic measures as a function of interpeptide separation distance. We test the approach on two families of peptides: a series of designed tetrapeptides that serve as minimal models for amyloid fibril formation, and a fragment of a classic leucine zipper peptide and its mutant. The results for these systems are compared to those from conventional REMD simulations, and demonstrate good convergence properties, low statistical errors, and, for the leucine zippers, an ability to sample near-native structures.

  7. Different sets of ER-resident J-proteins regulate distinct polar nuclear-membrane fusion events in Arabidopsis thaliana.

    PubMed

    Maruyama, Daisuke; Yamamoto, Masaya; Endo, Toshiya; Nishikawa, Shuh-ichi

    2014-11-01

    Angiosperm female gametophytes contain a central cell with two polar nuclei. In many species, including Arabidopsis thaliana, the polar nuclei fuse during female gametogenesis. We previously showed that BiP, an Hsp70 in the endoplasmic reticulum (ER), was essential for membrane fusion during female gametogenesis. Hsp70 function requires partner proteins for full activity. J-domain containing proteins (J-proteins) are the major Hsp70 functional partners. A. thaliana ER contains three soluble J-proteins, AtERdj3A, AtERdj3B, and AtP58(IPK). Here, we analyzed mutants of these proteins and determined that double-mutant ovules lacking AtP58(IPK) and AtERdj3A or AtERdj3B were defective in polar nuclear fusion. Electron microscopy analysis identified that polar nuclei were in close contact, but no membrane fusion occurred in mutant ovules lacking AtP58(IPK) and AtERdj3A. The polar nuclear outer membrane appeared to be connected via the ER remaining at the inner unfused membrane in mutant ovules lacking AtP58(IPK) and AtERdj3B. These results indicate that ER-resident J-proteins, AtP58(IPK)/AtERdj3A and AtP58(IPK)/AtERdj3B, function at distinct steps of polar nuclear-membrane fusion. Similar to the bip1 bip2 double mutant female gametophytes, the aterdj3a atp58(ipk) double mutant female gametophytes defective in fusion of the outer polar nuclear membrane displayed aberrant endosperm proliferation after fertilization with wild-type pollen. However, endosperm proliferated normally after fertilization of the aterdj3b atp58(ipk) double mutant female gametophytes defective in fusion of the inner membrane. Our results indicate that the polar nuclear fusion defect itself does not cause an endosperm proliferation defect. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. NMR structure and localization of a large fragment of the SARS-CoV fusion protein: Implications in viral cell fusion.

    PubMed

    Mahajan, Mukesh; Chatterjee, Deepak; Bhuvaneswari, Kannaian; Pillay, Shubhadra; Bhattacharjya, Surajit

    2018-02-01

    The lethal Coronaviruses (CoVs), Severe Acute Respiratory Syndrome-associated Coronavirus (SARS-CoV) and most recently Middle East Respiratory Syndrome Coronavirus, (MERS-CoV) are serious human health hazard. A successful viral infection requires fusion between virus and host cells carried out by the surface spike glycoprotein or S protein of CoV. Current models propose that the S2 subunit of S protein assembled into a hexameric helical bundle exposing hydrophobic fusogenic peptides or fusion peptides (FPs) for membrane insertion. The N-terminus of S2 subunit of SARS-CoV reported to be active in cell fusion whereby FPs have been identified. Atomic-resolution structure of FPs derived either in model membranes or in membrane mimic environment would glean insights toward viral cell fusion mechanism. Here, we have solved 3D structure, dynamics and micelle localization of a 64-residue long fusion peptide or LFP in DPC detergent micelles by NMR methods. Micelle bound structure of LFP is elucidated by the presence of discretely folded helical and intervening loops. The C-terminus region, residues F42-Y62, displays a long hydrophobic helix, whereas the N-terminus is defined by a short amphipathic helix, residues R4-Q12. The intervening residues of LFP assume stretches of loops and helical turns. The N-terminal helix is sustained by close aromatic and aliphatic sidechain packing interactions at the non-polar face. 15 N{ 1 H}NOE studies indicated dynamical motion, at ps-ns timescale, of the helices of LFP in DPC micelles. PRE NMR showed that insertion of several regions of LFP into DPC micelle core. Together, the current study provides insights toward fusion mechanism of SARS-CoV. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Soluble N-Ethylmaleimide-Sensitive Factor Attachment Protein Receptor-Derived Peptides for Regulation of Mast Cell Degranulation.

    PubMed

    Yang, Yoosoo; Kong, Byoungjae; Jung, Younghoon; Park, Joon-Bum; Oh, Jung-Mi; Hwang, Jaesung; Cho, Jae Youl; Kweon, Dae-Hyuk

    2018-01-01

    Vesicle-associated V-soluble N -ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and target membrane-associated T-SNAREs (syntaxin 4 and SNAP-23) assemble into a core trans -SNARE complex that mediates membrane fusion during mast cell degranulation. This complex plays pivotal roles at various stages of exocytosis from the initial priming step to fusion pore opening and expansion, finally resulting in the release of the vesicle contents. In this study, peptides with the sequences of various SNARE motifs were investigated for their potential inhibitory effects against SNARE complex formation and mast cell degranulation. The peptides with the sequences of the N-terminal regions of vesicle-associated membrane protein 2 (VAMP2) and VAMP8 were found to reduce mast cell degranulation by inhibiting SNARE complex formation. The fusion of protein transduction domains to the N-terminal of each peptide enabled the internalization of the fusion peptides into the cells equally as efficiently as cell permeabilization by streptolysin-O without any loss of their inhibitory activities. Distinct subsets of mast cell granules could be selectively regulated by the N-terminal-mimicking peptides derived from VAMP2 and VAMP8, and they effectively decreased the symptoms of atopic dermatitis in mouse models. These results suggest that the cell membrane fusion machinery may represent a therapeutic target for atopic dermatitis.

  10. A Genetic Screen for Mutants with Supersized Lipid Droplets in Caenorhabditis elegans

    PubMed Central

    Li, Shiwei; Xu, Shibin; Ma, Yanli; Wu, Shuang; Feng, Yu; Cui, Qingpo; Chen, Lifeng; Zhou, Shuang; Kong, Yuanyuan; Zhang, Xiaoyu; Yu, Jialei; Wu, Mengdi; Zhang, Shaobing O.

    2016-01-01

    To identify genes that regulate the dynamics of lipid droplet (LD) size, we have used the genetically tractable model organism Caenorhabditis elegans, whose wild-type LD population displays a steady state of size with an upper limit of 3 μm in diameter. From a saturated forward genetic screen of 6.7 × 105 mutagenized haploid genomes, we isolated 118 mutants with supersized intestinal LDs often reaching 10 μm. These mutants define nine novel complementation groups, in addition to four known genes (maoc-1, dhs-28, daf-22, and prx-10). The nine groups are named drop (lipid droplet abnormal) and categorized into four classes. Class I mutants drop-5 and drop-9, similar to prx-10, are up-regulated in ACS-22-DGAT-2-dependent LD growth, resistant to LD hydrolysis, and defective in peroxisome import. Class II mutants drop-2, drop-3, drop-6, and drop-7 are up-regulated in LD growth, are resistant to LD hydrolysis, but are not defective in peroxisome import. Class III mutants drop-1 and drop-8 are neither up-regulated in LD growth nor resistant to LD hydrolysis, but seemingly up-regulated in LD fusion. Class IV mutant drop-4 is cloned as sams-1 and, different to the other three classes, is ACS-22-independent and hydrolysis-resistant. These four classes of supersized LD mutants should be valuable for mechanistic studies of LD cellular processes including growth, hydrolysis, and fusion. PMID:27261001

  11. Drosophila Kette coordinates myoblast junction dissolution and the ratio of Scar-to-WASp during myoblast fusion

    PubMed Central

    Hamp, Julia; Löwer, Andreas; Dottermusch-Heidel, Christine; Beck, Lothar; Moussian, Bernard; Flötenmeyer, Matthias

    2016-01-01

    ABSTRACT The fusion of founder cells and fusion-competent myoblasts (FCMs) is crucial for muscle formation in Drosophila. Characteristic events of myoblast fusion include the recognition and adhesion of myoblasts, and the formation of branched F-actin by the Arp2/3 complex at the site of cell–cell contact. At the ultrastructural level, these events are reflected by the appearance of finger-like protrusions and electron-dense plaques that appear prior to fusion. Severe defects in myoblast fusion are caused by the loss of Kette (a homolog of Nap1 and Hem-2, also known as NCKAP1 and NCKAP1L, respectively), a member of the regulatory complex formed by Scar or WAVE proteins (represented by the single protein, Scar, in flies). kette mutants form finger-like protrusions, but the electron-dense plaques are extended. Here, we show that the electron-dense plaques in wild-type and kette mutant myoblasts resemble other electron-dense structures that are known to function as cellular junctions. Furthermore, analysis of double mutants and attempts to rescue the kette mutant phenotype with N-cadherin, wasp and genes of members of the regulatory Scar complex revealed that Kette has two functions during myoblast fusion. First, Kette controls the dissolution of electron-dense plaques. Second, Kette controls the ratio of the Arp2/3 activators Scar and WASp in FCMs. PMID:27521427

  12. Mutagenesis of NosM Leader Peptide Reveals Important Elements in Nosiheptide Biosynthesis

    PubMed Central

    Jin, Liang; Wu, Xuri; Xue, Yanjiu; Jin, Yue; Wang, Shuzhen

    2016-01-01

    ABSTRACT Nosiheptide, a typical member of the ribosomally synthesized and posttranslationally modified peptides (RiPPs), exhibits potent activity against multidrug-resistant Gram-positive bacterial pathogens. The precursor peptide of nosiheptide (NosM) is comprised of a leader peptide with 37 amino acids and a core peptide containing 13 amino acids. To pinpoint elements in the leader peptide that are essential for nosiheptide biosynthesis, a collection of mutants with unique sequence features, including N- and C-terminal motifs, peptide length, and specific sites in the leader peptide, was generated by mutagenesis in vivo. The effects of various mutants on nosiheptide biosynthesis were evaluated. In addition to the necessity of a conserved motif LEIS box, native length and the N-terminal 12 amino acid residues were indispensable, and single-site substitutions of these 12 amino acid residues resulted in changes ranging from a greater-than-5-fold decrease to a 2-fold increase of nosiheptide production, depending on the sites and substituted residues. Moreover, although the C-terminal motif is not conservative, significant effects of this portion on nosiheptide production were also evident. Taken together, the present results further highlight the importance of the leader peptide in nosiheptide biosynthesis, and provide new insights into the diversity and specificity of leader peptides in the biosynthesis of various RiPPs. IMPORTANCE As a representative thiopeptide, nosiheptide exhibits excellent antibacterial activity. Although the biosynthetic gene cluster and several modification steps have been revealed, the presence and roles of the leader peptide within the precursor peptide of the nosiheptide gene cluster remain elusive. Thus, identification of specific elements in the leader peptide can significantly facilitate the genetic manipulation of the gene cluster for increasing nosiheptide production or generating diverse analogues. Given the complexity of the

  13. A mechanism of protein-mediated fusion: coupling between refolding of the influenza hemagglutinin and lipid rearrangements.

    PubMed Central

    Kozlov, M M; Chernomordik, L V

    1998-01-01

    Although membrane fusion mediated by influenza virus hemagglutinin (HA) is the best characterized example of ubiquitous protein-mediated fusion, it is still not known how the low-pH-induced refolding of HA trimers causes fusion. This refolding involves 1) repositioning of the hydrophobic N-terminal sequence of the HA2 subunit of HA ("fusion peptide"), and 2) the recruitment of additional residues to the alpha-helical coiled coil of a rigid central rod of the trimer. We propose here a mechanism by which these conformational changes can cause local bending of the viral membrane, priming it for fusion. In this model fusion is triggered by incorporation of fusion peptides into viral membrane. Refolding of a central rod exerts forces that pull the fusion peptides, tending to bend the membrane around HA trimer into a saddle-like shape. Elastic energy drives self-assembly of these HA-containing membrane elements in the plane of the membrane into a ring-like cluster. Bulging of the viral membrane within such cluster yields a dimple growing toward the bound target membrane. Bending stresses in the lipidic top of the dimple facilitate membrane fusion. We analyze the energetics of this proposed sequence of membrane rearrangements, and demonstrate that this simple mechanism may explain some of the known phenomenological features of fusion. PMID:9726939

  14. Genetic analysis of Bacillus stearothermophilus by protoplast fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.; Wojcik, S.F.; Welker, N.E.

    1986-03-01

    Efficient and reliable protoplasting, regeneration, and fusion techniques were established for the prototrophic strain Bacillus stearothermophilus NUB36. Auxotrophic mutants were isolated, and protoplast fusion was used to construct isogenic mutant strains and for chromosomal mapping. Markers were mapped using two-, three-, and four-factor crosses. The order of the markers was hom-1-thr-1-his-1-(gly-1 or gly-2)-pur-1-pur-2. These markers may be analogous to hom, thrA, hisA, glyC, and purA markers on the Bacillus subtilis chromosome. No analogous pur-1 marker has been reported in B. subtilis. The relative order of three of the markers (hom-1-thr-1-gly-1) was independently confirmed by transduction.

  15. Role of Electrostatic Interactions in Binding of Peptides and Intrinsically Disordered Proteins to Their Folded Targets: 2. The Model of Encounter Complex Involving the Double Mutant of the c-Crk N-SH3 Domain and Peptide Sos.

    PubMed

    Yuwen, Tairan; Xue, Yi; Skrynnikov, Nikolai R

    2016-03-29

    In the first part of this work (paper 1, Xue, Y. et al. Biochemistry 2014 , 53 , 6473 ), we have studied the complex between the 10-residue peptide Sos and N-terminal SH3 domain from adaptor protein c-Crk. In the second part (this paper), we designed the double mutant of the c-Crk N-SH3 domain, W169F/Y186L, with the intention to eliminate the interactions responsible for tight peptide-protein binding, while retaining the interactions that create the initial electrostatic encounter complex. The resulting system was characterized experimentally by measuring the backbone and side-chain (15)N relaxation rates, as well as binding shifts and (1)H(N) temperature coefficients. In addition, it was also modeled via a series of ∼5 μs molecular dynamics (MD) simulations recorded in a large water box under an Amber ff99SB*-ILDN force field. Similar to paper 1, we have found that the strength of arginine-aspartate and arginine-glutamate salt bridges is overestimated in the original force field. To address this problem we have applied the empirical force-field correction described in paper 1. Specifically, the Lennard-Jones equilibrium distance for the nitrogen-oxygen pair across Arg-to-Asp/Glu salt bridges has been increased by 3%. This modification led to MD models in good agreement with the experimental data. The emerging picture is that of a fuzzy complex, where the peptide "dances" over the surface of the protein, making transient contacts via salt-bridge interactions. Every once in a while the peptide assumes a certain more stable binding pose, assisted by a number of adventitious polar and nonpolar contacts. On the other hand, occasionally Sos flies off the protein surface; it is then guided by electrostatic steering to quickly reconnect with the protein. The dynamic interaction between Sos and the double mutant of c-Crk N-SH3 gives rise to only small binding shifts. The peptide retains a high degree of conformational mobility, although it is appreciably slowed down due

  16. Discovery of GPX4 inhibitory peptides from random peptide T7 phage display and subsequent structural analysis.

    PubMed

    Sakamoto, Kotaro; Sogabe, Satoshi; Kamada, Yusuke; Matsumoto, Shin-Ichi; Kadotani, Akito; Sakamoto, Jun-Ichi; Tani, Akiyoshi

    2017-01-08

    The phospholipid hydroperoxidase glutathione peroxidase (GPX4) is an enzyme that reduces lipid hydroperoxides in lipid membranes. Recently, GPX4 has been investigated as a target molecule that induces iron-dependent cell death (ferroptosis) selectively in cancer cells that express mutant Ras. GPX4 inhibitors have the potential to become novel anti-cancer drugs. However, there are no druggable pockets for conventional small molecules on the molecular surface of GPX4. To generate GPX4 inhibitors, we examined the use of peptides as an alternative to small molecules. By screening peptide libraries displayed on T7 phages, and analyzing the X-ray crystal structures of the peptides, we successfully identified one peptide that binds to near Sec73 of catalytic site and two peptides that bind to another site on GPX4. To our knowledge, this is the first study reporting GPX4 inhibitory peptides and their structural information. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Synaptobrevin Transmembrane Domain Dimerization Studied by Multiscale Molecular Dynamics Simulations

    PubMed Central

    Han, Jing; Pluhackova, Kristyna; Wassenaar, Tsjerk A.; Böckmann, Rainer A.

    2015-01-01

    Synaptic vesicle fusion requires assembly of the SNARE complex composed of SNAP-25, syntaxin-1, and synaptobrevin-2 (sybII) proteins. The SNARE proteins found in vesicle membranes have previously been shown to dimerize via transmembrane (TM) domain interactions. While syntaxin homodimerization is supposed to promote the transition from hemifusion to complete fusion, the role of synaptobrevin’s TM domain association in the fusion process remains poorly understood. Here, we combined coarse-grained and atomistic simulations to model the homodimerization of the sybII transmembrane domain and of selected TM mutants. The wild-type helix is shown to form a stable, right-handed dimer with the most populated helix-helix interface, including key residues predicted in a previous mutagenesis study. In addition, two alternative binding interfaces were discovered, which are essential to explain the experimentally observed higher-order oligomerization of sybII. In contrast, only one dimerization interface was found for a fusion-inactive poly-Leu mutant. Moreover, the association kinetics found for this mutant is lower as compared to the wild-type. These differences in dimerization between the wild-type and the poly-Leu mutant are suggested to be responsible for the reported differences in fusogenic activity between these peptides. This study provides molecular insight into the role of TM sequence specificity for peptide aggregation in membranes. PMID:26287628

  18. A novel protocol for the production of recombinant LL-37 expressed as a thioredoxin fusion protein.

    PubMed

    Li, Yifeng

    2012-02-01

    LL-37 is the only cathelicidin-derived antimicrobial peptide found in humans and it has a multifunctional role in host defense. The peptide has been shown to possess immunomodulatory functions in addition to antimicrobial activity. To provide sufficient material for biological and structural characterization of this important peptide, various systems were developed to produce recombinant LL-37 in Escherichia coli. In one previous approach, LL-37 coding sequence was cloned into vector pET-32a, allowing the peptide to be expressed as a thioredoxin fusion. The fusion protein contains two thrombin cleavage sites: a vector-encoded one that is 30-residue upstream of the insert and an engineered one that is immediately adjacent to LL-37. Cleavage at these two sites shall generate three fragments, one of which is the target peptide. However, when the fusion protein was treated with thrombin, cleavage only occurred at the remote upstream site. A plausible explanation is that the thrombin site adjacent to LL-37 is less accessible due to the peptide's aggregation tendency and cleavage at the remote site generates a fragment, which forms a large aggregate that buries the intended site. In this study, I deleted the vector-encoded thrombin site and S tag in pET-32a, and then inserted the coding sequence for LL-37 plus a thrombin site into the modified vector. Although removing the S tag did not change the oligomeric state of the fusion protein, deletion of the vector-encoded thrombin site allowed the fusion to be cleaved at the engineered site to release LL-37. The released peptide was separated from the carrier and cleavage enzyme by size-exclusion chromatography. This new approach enables a quick production of high quality active LL-37 with a decent amount. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Screening cleavage of Factor XIII V34X Activation Peptides by thrombin mutants: A strategy for controlling fibrin architecture.

    PubMed

    Jadhav, Madhavi A; Goldsberry, Whitney N; Zink, Sara E; Lamb, Kelsey N; Simmons, Katelyn E; Riposo, Carmela M; Anokhin, Boris A; Maurer, Muriel C

    2017-10-01

    In blood coagulation, thrombin converts fibrinogen into fibrin monomers that polymerize into a clot network. Thrombin also activates Factor XIII by cleaving the R37-G38 peptide bond of the Activation Peptide (AP) segment. The resultant transglutaminase introduces covalent crosslinks into the fibrin clot. A strategy to modify clot architecture would be to design FXIII AP sequences that are easier or more difficult to be thrombin-cleaved thus controlling initiation of crosslinking. To aid in this design process, FXIII V34X (28-41) Activation Peptides were kinetically ranked for cleavage by wild-type thrombin and several anticoagulant mutants. Thrombin-catalyzed hydrolysis of aromatic FXIII F34, W34, and Y34 APs was compared with V34 and L34. Cardioprotective FXIII L34 remained the variant most readily cleaved by wild-type thrombin. The potent anticoagulant thrombins W215A and W215A/E217A (missing a key substrate platform for binding fibrinogen) were best able to hydrolyze FXIII F34 and W34 APs. Thrombin I174A and L99A could effectively accommodate FXIII W34 and Y34 APs yielding kinetic parameters comparable to FXIII AP L34 with wild-type thrombin. None of the aromatic FXIII V34X APs could be hydrolyzed by thrombin Y60aA. FXIII F34 and W34 are promising candidates for FXIII - anticoagulant thrombin systems that could permit FXIII-catalyzed crosslinking in the presence of reduced fibrin formation. By contrast, FXIII Y34 with thrombin (Y60aA or W215A/E217A) could help assure that both fibrin clot formation and protein crosslinking are hindered. Regulating the activation of FXIII is predicted to be a strategy for helping to control fibrin clot architecture and its neighboring environments. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Herpes Simplex Virus Glycoprotein B Associates with Target Membranes via Its Fusion Loops▿

    PubMed Central

    Hannah, Brian P.; Cairns, Tina M.; Bender, Florent C.; Whitbeck, J. Charles; Lou, Huan; Eisenberg, Roselyn J.; Cohen, Gary H.

    2009-01-01

    Herpes simplex virus (HSV) glycoproteins gB, gD, and gH/gL are necessary and sufficient for virus entry into cells. Structural features of gB are similar to those of vesicular stomatitis virus G and baculovirus gp64, and together they define the new class III group of fusion proteins. Previously, we used mutagenesis to show that three hydrophobic residues (W174, Y179, and A261) within the putative gB fusion loops are integral to gB function. Here we expanded our analysis, using site-directed mutagenesis of each residue in both gB fusion loops. Mutation of most of the nonpolar or hydrophobic amino acids (W174, F175, G176, Y179, and A261) had severe effects on gB function in cell-cell fusion and null virus complementation assays. Of the six charged amino acids, mutation of H263 or R264 also negatively affected gB function. To further analyze the mutants, we cloned the ectodomains of the W174R, Y179S, H263A, and R264A mutants into a baculovirus expression system and compared them with the wild-type (WT) form, gB730t. As shown previously, gB730t blocks virus entry into cells, suggesting that gB730t competes with virion gB for a cell receptor. All four mutant proteins retained this function, implying that fusion loop activity is separate from gB-receptor binding. However, unlike WT gB730t, the mutant proteins displayed reduced binding to cells and were either impaired or unable to bind naked, cholesterol-enriched liposomes, suggesting that it may be gB-lipid binding that is disrupted by the mutations. Furthermore, monoclonal antibodies with epitopes proximal to the fusion loops abrogated gB-liposome binding. Taken together, our data suggest that gB associates with lipid membranes via a fusion domain of key hydrophobic and hydrophilic residues and that this domain associates with lipid membranes during fusion. PMID:19369321

  1. An Unusual Mutation Results in the Replacement of Diaminopimelate with Lanthionine in the Peptidoglycan of a Mutant Strain of Mycobacterium smegmatis†

    PubMed Central

    Consaul, Sandra A.; Wright, Lori F.; Mahapatra, Sebabrata; Crick, Dean C.; Pavelka, Martin S.

    2005-01-01

    Mycobacterial peptidoglycan contains l-alanyl-d-iso-glutaminyl-meso-diaminopimelyl-d-alanyl-d-alanine peptides, with the exception of the peptidoglycan of Mycobacterium leprae, in which glycine replaces the l-alanyl residue. The third-position amino acid of the peptides is where peptidoglycan cross-linking occurs, either between the meso-diaminopimelate (DAP) moiety of one peptide and the penultimate d-alanine of another peptide or between two DAP residues. We previously described a collection of spontaneous mutants of DAP-auxotrophic strains of Mycobacterium smegmatis that can grow in the absence of DAP. The mutants are grouped into seven classes, depending on how well they grow without DAP and whether they are sensitive to DAP, temperature, or detergent. Furthermore, the mutants are hypersusceptible to β-lactam antibiotics when grown in the absence of DAP, suggesting that these mutants assemble an abnormal peptidoglycan. In this study, we show that one of these mutants, M. smegmatis strain PM440, utilizes lanthionine, an unusual bacterial metabolite, in place of DAP. We also demonstrate that the abilities of PM440 to grow without DAP and use lanthionine for peptidoglycan biosynthesis result from an unusual mutation in the putative ribosome binding site of the cbs gene, encoding cystathionine β-synthase, an enzyme that is a part of the cysteine biosynthetic pathway. PMID:15716431

  2. Folding molecular dynamics simulations accurately predict the effect of mutations on the stability and structure of a vammin-derived peptide.

    PubMed

    Koukos, Panagiotis I; Glykos, Nicholas M

    2014-08-28

    Folding molecular dynamics simulations amounting to a grand total of 4 μs of simulation time were performed on two peptides (with native and mutated sequences) derived from loop 3 of the vammin protein and the results compared with the experimentally known peptide stabilities and structures. The simulations faithfully and accurately reproduce the major experimental findings and show that (a) the native peptide is mostly disordered in solution, (b) the mutant peptide has a well-defined and stable structure, and (c) the structure of the mutant is an irregular β-hairpin with a non-glycine β-bulge, in excellent agreement with the peptide's known NMR structure. Additionally, the simulations also predict the presence of a very small β-hairpin-like population for the native peptide but surprisingly indicate that this population is structurally more similar to the structure of the native peptide as observed in the vammin protein than to the NMR structure of the isolated mutant peptide. We conclude that, at least for the given system, force field, and simulation protocol, folding molecular dynamics simulations appear to be successful in reproducing the experimentally accessible physical reality to a satisfactory level of detail and accuracy.

  3. Kar5p is required for multiple functions in both inner and outer nuclear envelope fusion in Saccharomyces cerevisiae.

    PubMed

    Rogers, Jason V; Rose, Mark D

    2014-12-02

    During mating in the budding yeast Saccharomyces cerevisiae, two haploid nuclei fuse via two sequential membrane fusion steps. SNAREs (i.e., soluble N-ethylmaleimide-sensitive factor attachment protein receptors) and Prm3p mediate outer nuclear membrane fusion, but the inner membrane fusogen remains unknown. Kar5p is a highly conserved transmembrane protein that localizes adjacent to the spindle pole body (SPB), mediates nuclear envelope fusion, and recruits Prm3p adjacent to the SPB. To separate Kar5p's functions, we tested localization, Prm3p recruitment, and nuclear fusion efficiency in various kar5 mutants. All domains and the conserved cysteine residues were essential for nuclear fusion. Several kar5 mutant proteins localized properly but did not mediate Prm3p recruitment; other kar5 mutant proteins localized and recruited Prm3p but were nevertheless defective for nuclear fusion, demonstrating additional functions beyond Prm3p recruitment. We identified one Kar5p domain required for SPB localization, which is dependent on the half-bridge protein Mps3p. Electron microscopy revealed a kar5 mutant that arrests with expanded nuclear envelope bridges, suggesting that Kar5p is required after outer nuclear envelope fusion. Finally, a split-GFP assay demonstrated that Kar5p localizes to both the inner and outer nuclear envelope. These insights suggest a mechanism by which Kar5p mediates inner nuclear membrane fusion. Copyright © 2015 Rogers and Rose.

  4. Kar5p Is Required for Multiple Functions in Both Inner and Outer Nuclear Envelope Fusion in Saccharomyces cerevisiae

    PubMed Central

    Rogers, Jason V.; Rose, Mark D.

    2014-01-01

    During mating in the budding yeast Saccharomyces cerevisiae, two haploid nuclei fuse via two sequential membrane fusion steps. SNAREs (i.e., soluble N-ethylmaleimide–sensitive factor attachment protein receptors) and Prm3p mediate outer nuclear membrane fusion, but the inner membrane fusogen remains unknown. Kar5p is a highly conserved transmembrane protein that localizes adjacent to the spindle pole body (SPB), mediates nuclear envelope fusion, and recruits Prm3p adjacent to the SPB. To separate Kar5p’s functions, we tested localization, Prm3p recruitment, and nuclear fusion efficiency in various kar5 mutants. All domains and the conserved cysteine residues were essential for nuclear fusion. Several kar5 mutant proteins localized properly but did not mediate Prm3p recruitment; other kar5 mutant proteins localized and recruited Prm3p but were nevertheless defective for nuclear fusion, demonstrating additional functions beyond Prm3p recruitment. We identified one Kar5p domain required for SPB localization, which is dependent on the half-bridge protein Mps3p. Electron microscopy revealed a kar5 mutant that arrests with expanded nuclear envelope bridges, suggesting that Kar5p is required after outer nuclear envelope fusion. Finally, a split-GFP assay demonstrated that Kar5p localizes to both the inner and outer nuclear envelope. These insights suggest a mechanism by which Kar5p mediates inner nuclear membrane fusion. PMID:25467943

  5. Peptide library synthesis on spectrally encoded beads for multiplexed protein/peptide bioassays

    NASA Astrophysics Data System (ADS)

    Nguyen, Huy Q.; Brower, Kara; Harink, Björn; Baxter, Brian; Thorn, Kurt S.; Fordyce, Polly M.

    2017-02-01

    Protein-peptide interactions are essential for cellular responses. Despite their importance, these interactions remain largely uncharacterized due to experimental challenges associated with their measurement. Current techniques (e.g. surface plasmon resonance, fluorescence polarization, and isothermal calorimetry) either require large amounts of purified material or direct fluorescent labeling, making high-throughput measurements laborious and expensive. In this report, we present a new technology for measuring antibody-peptide interactions in vitro that leverages spectrally encoded beads for biological multiplexing. Specific peptide sequences are synthesized directly on encoded beads with a 1:1 relationship between peptide sequence and embedded code, thereby making it possible to track many peptide sequences throughout the course of an experiment within a single small volume. We demonstrate the potential of these bead-bound peptide libraries by: (1) creating a set of 46 peptides composed of 3 commonly used epitope tags (myc, FLAG, and HA) and single amino-acid scanning mutants; (2) incubating with a mixture of fluorescently-labeled antimyc, anti-FLAG, and anti-HA antibodies; and (3) imaging these bead-bound libraries to simultaneously identify the embedded spectral code (and thus the sequence of the associated peptide) and quantify the amount of each antibody bound. To our knowledge, these data demonstrate the first customized peptide library synthesized directly on spectrally encoded beads. While the implementation of the technology provided here is a high-affinity antibody/protein interaction with a small code space, we believe this platform can be broadly applicable to any range of peptide screening applications, with the capability to multiplex into libraries of hundreds to thousands of peptides in a single assay.

  6. Rational improvement of gp41-targeting HIV-1 fusion inhibitors: an innovatively designed Ile-Asp-Leu tail with alternative conformations.

    PubMed

    Zhu, Yun; Su, Shan; Qin, Lili; Wang, Qian; Shi, Lei; Ma, Zhenxuan; Tang, Jianchao; Jiang, Shibo; Lu, Lu; Ye, Sheng; Zhang, Rongguang

    2016-09-26

    Peptides derived from the C-terminal heptad repeat (CHR) of HIV gp41 have been developed as effective fusion inhibitors against HIV-1, but facing the challenges of enhancing potency and stability. Here, we report a rationally designed novel HIV-1 fusion inhibitor derived from CHR-derived peptide (Trp628~Gln653, named CP), but with an innovative Ile-Asp-Leu tail (IDL) that dramatically increased the inhibitory activity by up to 100 folds. We also determined the crystal structures of artificial fusion peptides N36- and N43-L6-CP-IDL. Although the overall structures of both fusion peptides share the canonical six-helix bundle (6-HB) configuration, their IDL tails adopt two different conformations: a one-turn helix with the N36, and a hook-like structure with the longer N43. Structural comparison showed that the hook-like IDL tail possesses a larger interaction interface with NHR than the helical one. Further molecular dynamics simulations of the two 6-HBs and isolated CP-IDL peptides suggested that hook-like form of IDL tail can be stabilized by its binding to NHR trimer. Therefore, CP-IDL has potential for further development as a new HIV fusion inhibitor, and this strategy could be widely used in developing artificial fusion inhibitors against HIV and other enveloped viruses.

  7. Low-Cost Peptide Microarrays for Mapping Continuous Antibody Epitopes.

    PubMed

    McBride, Ryan; Head, Steven R; Ordoukhanian, Phillip; Law, Mansun

    2016-01-01

    With the increasing need for understanding antibody specificity in antibody and vaccine research, pepscan assays provide a rapid method for mapping and profiling antibody responses to continuous epitopes. We have developed a relatively low-cost method to generate peptide microarray slides for studying antibody binding. Using a setup of an IntavisAG MultiPep RS peptide synthesizer, a Digilab MicroGrid II 600 microarray printer robot, and an InnoScan 1100 AL scanner, the method allows the interrogation of up to 1536 overlapping, alanine-scanning, and mutant peptides derived from the target antigens. Each peptide is tagged with a polyethylene glycol aminooxy terminus to improve peptide solubility, orientation, and conjugation efficiency to the slide surface.

  8. Peptide-Lipid Interactions: Experiments and Applications

    PubMed Central

    Galdiero, Stefania; Falanga, Annarita; Cantisani, Marco; Vitiello, Mariateresa; Morelli, Giancarlo; Galdiero, Massimiliano

    2013-01-01

    The interactions between peptides and lipids are of fundamental importance in the functioning of numerous membrane-mediated cellular processes including antimicrobial peptide action, hormone-receptor interactions, drug bioavailability across the blood-brain barrier and viral fusion processes. Moreover, a major goal of modern biotechnology is obtaining new potent pharmaceutical agents whose biological action is dependent on the binding of peptides to lipid-bilayers. Several issues need to be addressed such as secondary structure, orientation, oligomerization and localization inside the membrane. At the same time, the structural effects which the peptides cause on the lipid bilayer are important for the interactions and need to be elucidated. The structural characterization of membrane active peptides in membranes is a harsh experimental challenge. It is in fact accepted that no single experimental technique can give a complete structural picture of the interaction, but rather a combination of different techniques is necessary. PMID:24036440

  9. QuantFusion: Novel Unified Methodology for Enhanced Coverage and Precision in Quantifying Global Proteomic Changes in Whole Tissues.

    PubMed

    Gunawardena, Harsha P; O'Brien, Jonathon; Wrobel, John A; Xie, Ling; Davies, Sherri R; Li, Shunqiang; Ellis, Matthew J; Qaqish, Bahjat F; Chen, Xian

    2016-02-01

    Single quantitative platforms such as label-based or label-free quantitation (LFQ) present compromises in accuracy, precision, protein sequence coverage, and speed of quantifiable proteomic measurements. To maximize the quantitative precision and the number of quantifiable proteins or the quantifiable coverage of tissue proteomes, we have developed a unified approach, termed QuantFusion, that combines the quantitative ratios of all peptides measured by both LFQ and label-based methodologies. Here, we demonstrate the use of QuantFusion in determining the proteins differentially expressed in a pair of patient-derived tumor xenografts (PDXs) representing two major breast cancer (BC) subtypes, basal and luminal. Label-based in-spectra quantitative peptides derived from amino acid-coded tagging (AACT, also known as SILAC) of a non-malignant mammary cell line were uniformly added to each xenograft with a constant predefined ratio, from which Ratio-of-Ratio estimates were obtained for the label-free peptides paired with AACT peptides in each PDX tumor. A mixed model statistical analysis was used to determine global differential protein expression by combining complementary quantifiable peptide ratios measured by LFQ and Ratio-of-Ratios, respectively. With minimum number of replicates required for obtaining the statistically significant ratios, QuantFusion uses the distinct mechanisms to "rescue" the missing data inherent to both LFQ and label-based quantitation. Combined quantifiable peptide data from both quantitative schemes increased the overall number of peptide level measurements and protein level estimates. In our analysis of the PDX tumor proteomes, QuantFusion increased the number of distinct peptide ratios by 65%, representing differentially expressed proteins between the BC subtypes. This quantifiable coverage improvement, in turn, not only increased the number of measurable protein fold-changes by 8% but also increased the average precision of quantitative

  10. Influence of acylation sites of influenza B virus hemagglutinin on fusion pore formation and dilation.

    PubMed

    Ujike, Makoto; Nakajima, Katsuhisa; Nobusawa, Eri

    2004-11-01

    The cytoplasmic tail (CT) of hemagglutinin (HA) of influenza B virus (BHA) contains at positions 578 and 581 two highly conserved cysteine residues (Cys578 and Cys581) that are modified with palmitic acid (PA) through a thioester linkage. To investigate the role of PA in the fusion activity of BHA, site-specific mutagenesis was performed with influenza B virus B/Kanagawa/73 HA cDNA. All of the HA mutants were expressed on Cos cells by an expression vector. The membrane fusion ability of the HA mutants at a low pH was quantitatively examined with lipid (octadecyl rhodamine B chloride) and aqueous (calcein) dye transfer assays and with the syncytium formation assay. Two deacylation mutants lacking a CT or carrying serine residues substituting for Cys578 and Cys581 promoted full fusion. However, one of the single-acylation-site mutants, C6, in which Cys581 is replaced with serine, promoted hemifusion but not pore formation. In contrast, four other single-acylation-site mutants that have a sole cysteine residue in the CT at position 575, 577, 579, or 581 promoted full fusion. The impaired pore-forming ability of C6 was improved by amino acid substitution between residues 578 and 582 or by deletion of the carboxy-terminal leucine at position 582. Syncytium-forming ability, however, was not adequately restored by these mutations. These facts indicated that the acylation was not significant in membrane fusion by BHA but that pore formation and pore dilation were appreciably affected by the particular amino acid sequence of the CT and the existence of a single acylation site in CT residue 578.

  11. [Construction of Plasmodium falciparum signal peptide peptidase-GFP mutant and its expression analysis in the malaria parasite].

    PubMed

    Li, Xue-rong; Wu, Yin-juan; Shang, Mei; Li, Ye; Xu, Jin; Yu, Xin-bing; Athar, Chishti

    2014-08-01

    To construct recombinant plasmid pSPPcGT which contains signal peptide peptidase gene of Plasmodium falciparum (PJSPP) and GFP, and transfect into P. falciparum (3D7 strain) to obtain mutant parasites which can express PJSPP-GFP. Plasmodium falciparum(3D7 strain) genomic DNA was extracted from cultured malaria parasites. The C-terminal region of PJSPP, an 883 bp gene fragment was amplified by PCR, and then cloned into pPM2GT vector to get recombinant vector pSPPcGT. The recombinant vectors were identified by PCR, double restriction enzyme digestion and DNA sequencing. pSPPcGT vector was transfected into malaria parasites. The positive clones were selected by adding inhibitor of Plasmodium falciparum dihydrofolate reductase WR99210 to the culture medium. The pSPP-GFP-transfected parasites were fixed with methanol, stained with DAPI, and observed under immunofluorescence microscope. The PJSPP-GFP expression in P. falciparum was identified by SDS-PAGE and Western blotting. The C-terminal region of PJSPP was amplified from P.falciparum (3D7 strain) genomic DNA by PCR with the length of 883 bp. The constructed recombinant vectors were identified by PCR screening, double restriction enzyme digestion and DNA sequencing. The pSPPcGT vector was transfected into P. falciparum and the positive clones were selected by WR99210. GFP fluorescence was observed in transfected parasites by immunofluorescence microscopy, and mainly located in the cytoplasm. The PJSPP-GFP expression in malaria parasites was confirmed by Western blotting with a relative molecular mass of Mr 64,000. Recombinant vector PJSPP-GFP is constructed and transfected into P. falciparum to obtain P. falciparum mutant clone which can express PfSPP-GFP.

  12. Deletion of fusion peptide or destabilization of fusion core of HIV gp41 enhances antigenicity and immunogenicity of 4E10 epitope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Jing; Beijing Key Laboratory for Protein Therapeutics, Beijing 100084; Chen Xi

    2008-11-07

    The human monoclonal antibody 4E10 against the membrane-proximal external region (MPER) of HIV-1 gp41 demonstrates broad neutralizing activity across various strains, and makes its epitope an attractive target for HIV-1 vaccine development. Although the contiguous epitope of 4E10 has been identified, attempts to re-elicit 4E10-like antibodies have failed, possibly due to the lack of proper conformation of the 4E10 epitope. Here we used pIg-tail expression system to construct a panel of eukaryotic cell-surface expression plasmids encoding the extracellular domain of gp41 with deletion of fusion peptide and/or introduction of L568P mutation that may disrupt the gp41 six-helix bundle core conformationmore » as DNA vaccines for immunization of mice. We found that these changes resulted in significant increase of the antigenicity and immunogenicity of 4E10 epitope. This information is thus useful for rational design of vaccines targeting the HIV-1 gp41 MPER.« less

  13. GeLC-MRM quantitation of mutant KRAS oncoprotein in complex biological samples.

    PubMed

    Halvey, Patrick J; Ferrone, Cristina R; Liebler, Daniel C

    2012-07-06

    Tumor-derived mutant KRAS (v-Ki-ras-2 Kirsten rat sarcoma viral oncogene) oncoprotein is a critical driver of cancer phenotypes and a potential biomarker for many epithelial cancers. Targeted mass spectrometry analysis by multiple reaction monitoring (MRM) enables selective detection and quantitation of wild-type and mutant KRAS proteins in complex biological samples. A recently described immunoprecipitation approach (Proc. Nat. Acad. Sci.2011, 108, 2444-2449) can be used to enrich KRAS for MRM analysis, but requires large protein inputs (2-4 mg). Here, we describe sodium dodecyl sulfate-polyacrylamide gel electrophoresis-based enrichment of KRAS in a low molecular weight (20-25 kDa) protein fraction prior to MRM analysis (GeLC-MRM). This approach reduces background proteome complexity, thus, allowing mutant KRAS to be reliably quantified in low protein inputs (5-50 μg). GeLC-MRM detected KRAS mutant variants (G12D, G13D, G12V, G12S) in a panel of cancer cell lines. GeLC-MRM analysis of wild-type and mutant was linear with respect to protein input and showed low variability across process replicates (CV = 14%). Concomitant analysis of a peptide from the highly similar HRAS and NRAS proteins enabled correction of KRAS-targeted measurements for contributions from these other proteins. KRAS peptides were also quantified in fluid from benign pancreatic cysts and pancreatic cancers at concentrations from 0.08 to 1.1 fmol/μg protein. GeLC-MRM provides a robust, sensitive approach to quantitation of mutant proteins in complex biological samples.

  14. Substrate specificity of platypus venom L-to-D-peptide isomerase.

    PubMed

    Bansal, Paramjit S; Torres, Allan M; Crossett, Ben; Wong, Karen K Y; Koh, Jennifer M S; Geraghty, Dominic P; Vandenberg, Jamie I; Kuchel, Philip W

    2008-04-04

    The L-to-D-peptide isomerase from the venom of the platypus (Ornithorhyncus anatinus) is the first such enzyme to be reported for a mammal. In delineating its catalytic mechanism and broader roles in the animal, its substrate specificity was explored. We used N-terminal segments of defensin-like peptides DLP-2 and DLP-4 and natriuretic peptide OvCNP from the venom as substrates. The DLP analogues IMFsrs and ImFsrs (srs is a solubilizing chain; lowercase letters denote D-amino acid) were effective substrates for the isomerase; it appears to recognize the N-terminal tripeptide sequence Ile-Xaa-Phe-. A suite of 26 mutants of these hexapeptides was synthesized by replacing the second residue (Met) with another amino acid, viz. Ala, alpha-aminobutyric acid, Ile, Leu, Lys, norleucine, Phe, Tyr, and Val. It was shown that mutant peptides incorporating norleucine and Phe are substrates and exhibit L- or D-amino acid isomerization, but mutant peptides that contain residues with shorter, beta-branched or long side chains with polar terminal groups, viz. Ala, alpha-aminobutyric acid, Ile, Val, Leu, Lys, and Tyr, respectively, are not substrates. It was demonstrated that at least three N-terminal amino acid residues are absolutely essential for L-to-D-isomerization; furthermore, the third amino acid must be a Phe residue. None of the hexapeptides based on LLH, the first three residues of OvCNP, were substrates. A consistent 2-base mechanism is proposed for the isomerization; abstraction of a proton by 1 base is concomitant with delivery of a proton by the conjugate acid of a second base.

  15. Lipid raft-like liposomes used for targeted delivery of a chimeric entry-inhibitor peptide with anti-HIV-1 activity.

    PubMed

    Gómara, María José; Pérez-Pomeda, Ignacio; Gatell, José María; Sánchez-Merino, Victor; Yuste, Eloisa; Haro, Isabel

    2017-02-01

    The work reports the design and synthesis of a chimeric peptide that is composed of the peptide sequences of two entry inhibitors which target different sites of HIV-1 gp41. The chimeric peptide offers the advantage of targeting two gp41 regions simultaneously: the fusion peptide and the loop both of which are membrane active and participate in the membrane fusion process. We therefore use lipid raft-like liposomes as a tool to specifically direct the chimeric inhibitor peptide to the membrane domains where the HIV-1 envelope protein is located. Moreover, the liposomes that mimic the viral membrane composition protect the chimeric peptide against proteolytic digestion thereby increasing the stability of the peptide. The described liposome preparations are suitable nanosystems for managing hydrophobic entry-inhibitor peptides as putative therapeutics. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Peptide ligands specific to the oxidized form of escherichia coli thioredoxin.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholle, M. D.; Banach, B. S.; Hamdan, S. M.

    Thioredoxin (Trx) is a highly conserved redox protein involved in several essential cellular processes. In this study, our goal was to isolate peptide ligands to Escherichia coli Trx that mimic protein-protein interactions, specifically the T7 polymerase-Trx interaction. To do this, we subjected Trx to affinity selection against a panel of linear and cysteine-constrained peptides using M13 phage display. A novel cyclized conserved peptide sequence, with a motif of C(D/N/S/T/G)D(S/T)-hydrophobic-C-X-hydrophobic-P, was isolated to Trx. These peptides bound specifically to the E. coli Trx when compared to the human and spirulina homologs. An alanine substitution of the active site cysteines (CGPC) resultedmore » in a significant loss of peptide binding affinity to the Cys-32 mutant. The peptides were also characterized in the context of Trx's role as a processivity factor of the T7 DNA polymerase (gp5). As the interaction between gp5 and Trx normally takes place under reducing conditions, which might interfere with the conformation of the disulfide-bridged peptides, we made use of a 22 residue deletion mutant of gp5 in the thioredoxin binding domain (gp5{Delta}22) that bypassed the requirements of reducing conditions to interact with Trx. A competition study revealed that the peptide selectively inhibits the interaction of gp5{Delta}22 with Trx, under oxidizing conditions, with an IC50 of {approx} 10 {micro}M.« less

  17. Construction of a filamentous phage display peptide library.

    PubMed

    Fagerlund, Annette; Myrset, Astrid Hilde; Kulseth, Mari Ann

    2014-01-01

    The concept of phage display is based on insertion of random oligonucleotides at an appropriate location within a structural gene of a bacteriophage. The resulting phage will constitute a library of random peptides displayed on the surface of the bacteriophages, with the encoding genotype packaged within each phage particle. Using a phagemid/helper phage system, the random peptides are interspersed between wild-type coat proteins. Libraries of phage-expressed peptides may be used to search for novel peptide ligands to target proteins. The success of finding a peptide with a desired property in a given library is highly dependent on the diversity and quality of the library. The protocols in this chapter describe the construction of a high-diversity library of phagemid vector encoding fusions of the phage coat protein pVIII with random peptides, from which a phage library displaying random peptides can be prepared.

  18. BCR-ABL fusion regions as a source of multiple leukemia-specific CD8+ T-cell epitopes.

    PubMed

    Kessler, J H; Bres-Vloemans, S A; van Veelen, P A; de Ru, A; Huijbers, I J G; Camps, M; Mulder, A; Offringa, R; Drijfhout, J W; Leeksma, O C; Ossendorp, F; Melief, C J M

    2006-10-01

    For immunotherapy of residual disease in patients with Philadelphia-positive leukemias, the BCR-ABL fusion regions are attractive disease-specific T-cell targets. We analyzed these regions for the prevalence of cytotoxic T lymphocyte (CTL) epitopes by an advanced reverse immunology procedure. Seventeen novel BCR-ABL fusion peptides were identified to bind efficiently to the human lymphocyte antigen (HLA)-A68, HLA-B51, HLA-B61 or HLA-Cw4 HLA class I molecules. Comprehensive enzymatic digestion analysis showed that 10 out of the 28 HLA class I binding fusion peptides were efficiently excised after their C-terminus by the proteasome, which is an essential requirement for efficient cell surface expression. Therefore, these peptides are prime vaccine candidates. The other peptides either completely lacked C-terminal liberation or were only inefficiently excised by the proteasome, rendering them inappropriate or less suitable for inclusion in a vaccine. CTL raised against the properly processed HLA-B61 epitope AEALQRPVA from the BCR-ABL e1a2 fusion region, expressed in acute lymphoblastic leukemia (ALL), specifically recognized ALL tumor cells, proving cell surface presentation of this epitope, its applicability for immunotherapy and underlining the accuracy of our epitope identification strategy. Our study provides a reliable basis for the selection of optimal peptides to be included in immunotherapeutic BCR-ABL vaccines against leukemia.

  19. Direct observations of conformational distributions of intrinsically disordered p53 peptides using UV Raman and explicit solvent simulations

    PubMed Central

    Xiong, Kan; Zwier, Matthew C.; Myshakina, Nataliya S.; Burger, Virginia M.; Asher, Sanford A.; Chong, Lillian T.

    2011-01-01

    We report the first experimental measurements of Ramachandran Ψ-angle distributions for intrinsically disordered peptides: the N-terminal peptide fragment of tumor suppressor p53 and its P27 mutant form. To provide atomically detailed views of the conformational distributions, we performed classical, explicit-solvent molecular dynamics simulations on the microsecond timescale. Upon binding its partner protein, MDM2, wild-type p53 peptide adopts an α-helical conformation. Mutation of Pro27 to serine results in the highest affinity yet observed for MDM2-binding of the p53 peptide. Both UV resonance Raman spectroscopy (UVRR) and simulations reveal that the P27S mutation decreases the extent of PPII helical content and increases the probability for conformations that are similar to the α-helical MDM2-bound conformation. In addition, UVRR measurements were performed on peptides that were isotopically labeled at the Leu26 residue preceding the Pro27 in order to determine the conformational distributions of Leu26 in the wild-type and mutant peptides. The UVRR and simulation results are in quantitative agreement in terms of the change in the population of non-PPII conformations involving Leu26 upon mutation of Pro27 to serine. Finally, our simulations reveal that the MDM2-bound conformation of the peptide is significantly populated in both the wild-type and mutant isolated peptide ensembles in their unbound states, suggesting that MDM2 binding of the p53 peptides may involve conformational selection. PMID:21528875

  20. Activated mitofusin 2 signals mitochondrial fusion, interferes with Bax activation, and reduces susceptibility to radical induced depolarization.

    PubMed

    Neuspiel, Margaret; Zunino, Rodolfo; Gangaraju, Sandhya; Rippstein, Peter; McBride, Heidi

    2005-07-01

    Mitochondrial fusion in higher eukaryotes requires at least two essential GTPases, Mitofusin 1 and Mitofusin 2 (Mfn2). We have created an activated mutant of Mfn2, which shows increased rates of nucleotide exchange and decreased rates of hydrolysis relative to wild type Mfn2. Mitochondrial fusion is stimulated dramatically within heterokaryons expressing this mutant, demonstrating that hydrolysis is not requisite for the fusion event, and supporting a role for Mfn2 as a signaling GTPase. Although steady-state mitochondrial fusion required the conserved intermembrane space tryptophan residue, this requirement was overcome within the context of the hydrolysis-deficient mutant. Furthermore, the punctate localization of Mfn2 is lost in the dominant active mutants, indicating that these sites are functionally controlled by changes in the nucleotide state of Mfn2. Upon staurosporine-stimulated cell death, activated Bax is recruited to the Mfn2-containing puncta; however, Bax activation and cytochrome c release are inhibited in the presence of the dominant active mutants of Mfn2. The dominant active form of Mfn2 also protected the mitochondria against free radical-induced permeability transition. In contrast to staurosporine-induced outer membrane permeability transition, pore opening induced through the introduction of free radicals was dependent upon the conserved intermembrane space residue. This is the first evidence that Mfn2 is a signaling GTPase regulating mitochondrial fusion and that the nucleotide-dependent activation of Mfn2 concomitantly protects the organelle from permeability transition. The data provide new insights into the critical relationship between mitochondrial membrane dynamics and programmed cell death.

  1. Staphylococcus aureus small colony variants are resistant to the antimicrobial peptide lactoferricin B.

    PubMed

    Samuelsen, Orjan; Haukland, Hanne Husom; Kahl, Barbara C; von Eiff, Christof; Proctor, Richard A; Ulvatne, Hilde; Sandvik, Kjersti; Vorland, Lars H

    2005-12-01

    To determine whether Staphylococcus aureus small colony variants (SCVs) are resistant to the antimicrobial peptide lactoferricin B. To assess if deficiency in transmembrane potential, a common characteristic of SCVs that are haemin- or menadione-auxotrophs, affects the uptake of the peptide into the bacterial cytoplasm. A broth microdilution technique was used for susceptibility testing to determine the MIC of lactoferricin B for SCVs with three different auxotrophisms (haemin, menadione or thymidine) and their isogenic parent strains. Both clinical isolates and genetically defined mutants were used. The internalization of lactoferricin B in a hemB mutant and the respective parent strain was studied using transmission electron microscopy and immunogold labelling. All SCVs showed reduced susceptibility to lactoferricin B irrespective of their auxotrophy compared with their isogenic parent strains. The MIC for all SCVs was >256 mg/L, whereas the MICs for the parent strains ranged from 16-256 mg/L. Surprisingly, the hemB mutant contained significantly more lactoferricin B intracellularly than the respective parent strain. The resistance mechanism of SCVs towards the antimicrobial peptide lactoferricin B is presumably caused by the metabolic changes present in SCVs rather than by a changed transmembrane potential of SCVs or reduced uptake of the peptide.

  2. Simulation of Peptides at Aqueous Interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, M.; Chipot, C.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Behavior of peptides at water-membrane interfaces is of great interest in studies on cellular transport and signaling, membrane fusion, and the action of toxins and antibiotics. Many peptides, which exist in water only as random coils, can form sequence-dependent, ordered structures at aqueous interfaces, incorporate into membranes and self-assembly into functional units, such as simple ion channels. Multi -nanosecond molecular dynamics simulations have been carried out to study the mechanism and energetics of interfacial folding of both non-polar and amphiphilic peptides, their insertion into membranes and association into higher-order structures. The simulations indicate that peptides fold non-sequentially, often through a series of amphiphilic intermediates. They further incorporate into the membrane in a preferred direction as folded monomers, and only then aggregate into dimers and, possibly, further into "dimers of dimers".

  3. Piracetam inhibits the lipid-destabilising effect of the amyloid peptide Abeta C-terminal fragment.

    PubMed

    Mingeot-Leclercq, Marie-Paule; Lins, Laurence; Bensliman, Mariam; Thomas, Annick; Van Bambeke, Françoise; Peuvot, Jacques; Schanck, André; Brasseur, Robert

    2003-01-10

    Amyloid peptide (Abeta) is a 40/42-residue proteolytic fragment of a precursor protein (APP), implicated in the pathogenesis of Alzheimer's disease. The hypothesis that interactions between Abeta aggregates and neuronal membranes play an important role in toxicity has gained some acceptance. Previously, we showed that the C-terminal domain (e.g. amino acids 29-42) of Abeta induces membrane permeabilisation and fusion, an effect which is related to the appearance of non-bilayer structures. Conformational studies showed that this peptide has properties similar to those of the fusion peptide of viral proteins i.e. a tilted penetration into membranes. Since piracetam interacts with lipids and has beneficial effects on several symptoms of Alzheimer's disease, we investigated in model membranes the ability of piracetam to hinder the destabilising effect of the Abeta 29-42 peptide. Using fluorescence studies and 31P and 2H NMR spectroscopy, we have shown that piracetam was able to significantly decrease the fusogenic and destabilising effect of Abeta 29-42, in a concentration-dependent manner. While the peptide induced lipid disorganisation and subsequent negative curvature at the membrane-water interface, the conformational analysis showed that piracetam, when preincubated with lipids, coats the phospholipid headgroups. Calculations suggest that this prevents appearance of the peptide-induced curvature. In addition, insertion of molecules with an inverted cone shape, like piracetam, into the outer membrane leaflet should make the formation of such structures energetically less favourable and therefore decrease the likelihood of membrane fusion.

  4. Non-canonical role of the SNARE protein Ykt6 in autophagosome-lysosome fusion

    PubMed Central

    Takáts, Szabolcs; Glatz, Gábor; Szenci, Győző; Boda, Attila; Horváth, Gábor V.; Hegedűs, Krisztina; Kovács, Attila L.

    2018-01-01

    The autophagosomal SNARE Syntaxin17 (Syx17) forms a complex with Snap29 and Vamp7/8 to promote autophagosome-lysosome fusion via multiple interactions with the tethering complex HOPS. Here we demonstrate that, unexpectedly, one more SNARE (Ykt6) is also required for autophagosome clearance in Drosophila. We find that loss of Ykt6 leads to large-scale accumulation of autophagosomes that are unable to fuse with lysosomes to form autolysosomes. Of note, loss of Syx5, the partner of Ykt6 in ER-Golgi trafficking does not prevent autolysosome formation, pointing to a more direct role of Ykt6 in fusion. Indeed, Ykt6 localizes to lysosomes and autolysosomes, and forms a SNARE complex with Syx17 and Snap29. Interestingly, Ykt6 can be outcompeted from this SNARE complex by Vamp7, and we demonstrate that overexpression of Vamp7 rescues the fusion defect of ykt6 loss of function cells. Finally, a point mutant form with an RQ amino acid change in the zero ionic layer of Ykt6 protein that is thought to be important for fusion-competent SNARE complex assembly retains normal autophagic activity and restores full viability in mutant animals, unlike palmitoylation or farnesylation site mutant Ykt6 forms. As Ykt6 and Vamp7 are both required for autophagosome-lysosome fusion and are mutually exclusive subunits in a Syx17-Snap29 complex, these data suggest that Vamp7 is directly involved in membrane fusion and Ykt6 acts as a non-conventional, regulatory SNARE in this process. PMID:29694367

  5. Cutting Edge: Processing of Oxidized Peptides in Macrophages Regulates T Cell Activation and Development of Autoimmune Arthritis.

    PubMed

    Yang, Min; Haase, Claus; Viljanen, Johan; Xu, Bingze; Ge, Changrong; Kihlberg, Jan; Holmdahl, Rikard

    2017-12-15

    APCs are known to produce NADPH oxidase (NOX) 2 - derived reactive oxygen species; however, whether and how NOX2-mediated oxidation affects redox-sensitive immunogenic peptides remains elusive. In this study, we investigated a major immunogenic peptide in glucose-6-phosphate isomerase (G6PI), a potential autoantigen in rheumatoid arthritis, which can form internal disulfide bonds. Ag presentation assays showed that presentation of this G6PI peptide was more efficient in NOX2-deficient ( Ncf1 m1J/m1J mutant) mice, compared with wild-type controls. IFN-γ - inducible lysosomal thiol reductase (GILT), which facilitates disulfide bond-containing Ag processing, was found to be upregulated in macrophages from Ncf1 mutant mice. Ncf1 mutant mice exhibited more severe G6PI peptide-induced arthritis, which was accompanied by the increased GILT expression in macrophages and enhanced Ag-specific T cell responses. Our results show that NOX2-dependent processing of the redox-sensitive autoantigens by APCs modify T cell activity and development of autoimmune arthritis. Copyright © 2017 by The American Association of Immunologists, Inc.

  6. Antimicrobial peptides at work: interaction of myxinidin and its mutant WMR with lipid bilayers mimicking the P. aeruginosa and E. coli membranes

    NASA Astrophysics Data System (ADS)

    Lombardi, Lucia; Stellato, Marco Ignazio; Oliva, Rosario; Falanga, Annarita; Galdiero, Massimiliano; Petraccone, Luigi; D'Errico, Geradino; de Santis, Augusta; Galdiero, Stefania; Del Vecchio, Pompea

    2017-03-01

    Antimicrobial peptides are promising candidates as future therapeutics in order to face the problem of antibiotic resistance caused by pathogenic bacteria. Myxinidin is a peptide derived from the hagfish mucus displaying activity against a broad range of bacteria. We have focused our studies on the physico-chemical characterization of the interaction of myxinidin and its mutant WMR, which contains a tryptophan residue at the N-terminus and four additional positive charges, with two model biological membranes (DOPE/DOPG 80/20 and DOPE/DOPG/CL 65/23/12), mimicking respectively Escherichia coli and Pseudomonas aeruginosa membrane bilayers. All our results have coherently shown that, although both myxinidin and WMR interact with the two membranes, their effect on membrane microstructure and stability are different. We further have shown that the presence of cardiolipin plays a key role in the WMR-membrane interaction. Particularly, WMR drastically perturbs the DOPE/DOPG/CL membrane stability inducing a segregation of anionic lipids. On the contrary, myxinidin is not able to significantly perturb the DOPE/DOPG/CL bilayer whereas interacts better with the DOPE/DOPG bilayer causing a significant perturbing effect of the lipid acyl chains. These findings are fully consistent with the reported greater antimicrobial activity of WMR against P. aeruginosa compared with myxinidin.

  7. Structural and biological mimicry of protein surface recognition by [alpha/beta]-peptide foldamers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horne, W. Seth; Johnson, Lisa M.; Ketas, Thomas J.

    Unnatural oligomers that can mimic protein surfaces offer a potentially useful strategy for blocking biomedically important protein-protein interactions. Here we evaluate an approach based on combining {alpha}- and {beta}-amino acid residues in the context of a polypeptide sequence from the HIV protein gp41, which represents an excellent testbed because of the wealth of available structural and biological information. We show that {alpha}/{beta}-peptides can mimic structural and functional properties of a critical gp41 subunit. Physical studies in solution, crystallographic data, and results from cell-fusion and virus-infectivity assays collectively indicate that the gp41-mimetic {alpha}/{beta}-peptides effectively block HIV-cell fusion via a mechanism comparablemore » to that of gp41-derived {alpha}-peptides. An optimized {alpha}/{beta}-peptide is far less susceptible to proteolytic degradation than is an analogous {alpha}-peptide. Our findings show how a two-stage design approach, in which sequence-based {alpha} {yields} {beta} replacements are followed by site-specific backbone rigidification, can lead to physical and biological mimicry of a natural biorecognition process.« less

  8. Membrane fusion and exocytosis.

    PubMed

    Jahn, R; Südhof, T C

    1999-01-01

    Membrane fusion involves the merger of two phospholipid bilayers in an aqueous environment. In artificial lipid bilayers, fusion proceeds by means of defined transition states, including hourglass-shaped intermediates in which the proximal leaflets of the fusing membranes are merged whereas the distal leaflets are separate (fusion stalk), followed by the reversible opening of small aqueous fusion pores. Fusion of biological membranes requires the action of specific fusion proteins. Best understood are the viral fusion proteins that are responsible for merging the viral with the host cell membrane during infection. These proteins undergo spontaneous and dramatic conformational changes upon activation. In the case of the paradigmatic fusion proteins of the influenza virus and of the human immunodeficiency virus, an amphiphilic fusion peptide is inserted into the target membrane. The protein then reorients itself, thus forcing the fusing membranes together and inducing lipid mixing. Fusion of intracellular membranes in eukaryotic cells involves several protein families including SNAREs, Rab proteins, and Sec1/Munc-18 related proteins (SM-proteins). SNAREs form a novel superfamily of small and mostly membrane-anchored proteins that share a common motif of about 60 amino acids (SNARE motif). SNAREs reversibly assemble into tightly packed helical bundles, the core complexes. Assembly is thought to pull the fusing membranes closely together, thus inducing fusion. SM-proteins comprise a family of soluble proteins that bind to certain types of SNAREs and prevent the formation of core complexes. Rab proteins are GTPases that undergo highly regulated GTP-GDP cycles. In their GTP form, they interact with specific proteins, the effector proteins. Recent evidence suggests that Rab proteins function in the initial membrane contact connecting the fusing membranes but are not involved in the fusion reaction itself.

  9. Selection of antitumor displayed peptides for the specific delivery of the anticancer drug lactaptin

    PubMed Central

    Nemudraya, Anna Andreevna; Kuligina, Elena Vladimirovna; Ilyichev, Alexandr Alexeevich; Fomin, Alexandr Sergeevich; Stepanov, Grigory Alexandrovich; Savelyeva, Anna Valentinovna; Koval, Olga Alexandrovna; Richter, Vladimir Alexandrovich

    2016-01-01

    It has been previously demonstrated that lactaptin, the proteolytic fragment of human milk protein κ-casein, induces the death of various cultured cancer cells. The recombinant analog of lactaptin, RL2, effectively induces the apoptosis of mouse hepatocarcinoma-1 (HA-1) tumor cells in vitro and suppress the growth of HA-1 tumors and metastases in vivo. The antitumor drug Lactaptin developed on the basis of RL2 has been successful in preclinical trials. Lactaptin shows its efficiency in relation to mouse and human cancer cells and tumors. However, Lactaptin, as with the majority of protein-based therapeutic drugs, is distributed evenly throughout the organism, which reduces its antitumor efficacy. To develop the targeted delivery of lactaptin, the present study selected tumor-specific peptides by screening a phage display peptide library in vivo on A/Sn strain mice with subcutaneously transplanted HA-1 cells. Two genetic constructs were made for the production of recombinant fusion proteins composed of RL2 and the selected tumor-targeting peptide. In vitro experiments involving HA-1, MDA-MB-231 and MCF-7 cells cultures demonstrated that the fusion proteins induce apoptotic death in mouse and human tumor cells, as with RL2. The in vivo experiments involving the mouse HA-1 tumor model demonstrated that the tumor fluorescence intensity of the Cy5-fusion protein conjugates is higher than that of RL2-Cy5. As conjugation of the tumor-specific peptides to RL2 provided retention of RL2 in the tumor tissues, fusion proteins composed of lactaptin and peptides specific for human tumors are deemed promising to improve the antitumor efficiency of lactaptin. PMID:28105163

  10. A nonribosomal peptide synthetase (Pes1) confers protection against oxidative stress in Aspergillus fumigatus.

    PubMed

    Reeves, Emer P; Reiber, Kathrin; Neville, Claire; Scheibner, Olaf; Kavanagh, Kevin; Doyle, Sean

    2006-07-01

    Aspergillus fumigatus is an important human fungal pathogen. The Aspergillus fumigatus genome contains 14 nonribosomal peptide synthetase genes, potentially responsible for generating metabolites that contribute to organismal virulence. Differential expression of the nonribosomal peptide synthetase gene, pes1, in four strains of Aspergillus fumigatus was observed. The pattern of pes1 expression differed from that of a putative siderophore synthetase gene, sidD, and so is unlikely to be involved in iron acquisition. The Pes1 protein (expected molecular mass 698 kDa) was partially purified and identified by immunoreactivity, peptide mass fingerprinting (36% sequence coverage) and MALDI LIFT-TOF/TOF MS (four internal peptides sequenced). A pes1 disruption mutant (delta pes1) of Aspergillus fumigatus strain 293.1 was generated and confirmed by Southern and western analysis, in addition to RT-PCR. The delta pes1 mutant also showed significantly reduced virulence in the Galleria mellonella model system (P < 0.001) and increased sensitivity to oxidative stress (P = 0.002) in culture and during neutrophil-mediated phagocytosis. In addition, the mutant exhibited altered conidial surface morphology and hydrophilicity, compared to Aspergillus fumigatus 293.1. It is concluded that pes1 contributes to improved fungal tolerance against oxidative stress, mediated by the conidial phenotype, during the infection process.

  11. A detailed study of gerJ mutants of Bacillus subtilis.

    PubMed

    Warburg, R J; Buchanan, C E; Parent, K; Halvorson, H O

    1986-08-01

    A total of nine gerJ mutants have now been isolated in Bacillus subtilis. All are defective in their spore germination properties, being blocked at an intermediate (phase grey) stage. The dormant spores are sensitive to heating at 90 degrees C and two of the mutants (generated by transposon insertion) produce spores sensitive at 80 degrees C. The spores of these two more extreme mutants had a visibly defective cortex when studied by electron microscopy, as did some of the other mutants. During sporulation, the acquisition of spore resistance properties and the appearance of the sporulation-specific penicillin-binding protein PBP5* were delayed. A strain probably carrying a lacZ fusion to the gerJ promoter demonstrated increased expression between t2 and t4. We propose that the gerJ locus is involved in the control of one or more sporulation-specific genes.

  12. Acquired Substrate Preference for GAB1 Protein Bestows Transforming Activity to ERBB2 Kinase Lung Cancer Mutants

    PubMed Central

    Fan, Ying-Xin; Wong, Lily; Marino, Michael P.; Ou, Wu; Shen, Yi; Wu, Wen Jin; Wong, Kwok-Kin; Reiser, Jakob; Johnson, Gibbes R.

    2013-01-01

    Activating mutations in the αC-β4 loop of the ERBB2 kinase domain, such as ERBB2YVMA and ERBB2G776VC, have been identified in human lung cancers and found to drive tumor formation. Here we observe that the docking protein GAB1 is hyper-phosphorylated in carcinomas from transgenic mice and in cell lines expressing these ERBB2 cancer mutants. Using dominant negative GAB1 mutants lacking canonical tyrosine residues for SHP2 and PI3K interactions or lentiviral shRNA that targets GAB1, we demonstrate that GAB1 phosphorylation is required for ERBB2 mutant-induced cell signaling, cell transformation, and tumorigenesis. An enzyme kinetic analysis comparing ERBB2YVMA to wild type using physiologically relevant peptide substrates reveals that ERBB2YVMA kinase adopts a striking preference for GAB1 phosphorylation sites as evidenced by ∼150-fold increases in the specificity constants (kcat/Km) for several GAB1 peptides, and this change in substrate selectivity was predominantly attributed to the peptide binding affinities as reflected by the apparent Km values. Furthermore, we demonstrate that ERBB2YVMA phosphorylates GAB1 protein ∼70-fold faster than wild type ERBB2 in vitro. Notably, the mutation does not significantly alter the Km for ATP or sensitivity to lapatinib, suggesting that, unlike EGFR lung cancer mutants, the ATP binding cleft of the kinase is not significantly changed. Taken together, our results indicate that the acquired substrate preference for GAB1 is critical for the ERBB2 mutant-induced oncogenesis. PMID:23612964

  13. A simple and low-cost platform technology for producing pexiganan antimicrobial peptide in E. coli.

    PubMed

    Zhao, Chun-Xia; Dwyer, Mirjana Dimitrijev; Yu, Alice Lei; Wu, Yang; Fang, Sheng; Middelberg, Anton P J

    2015-05-01

    Antimicrobial peptides, as a new class of antibiotics, have generated tremendous interest as potential alternatives to classical antibiotics. However, the large-scale production of antimicrobial peptides remains a significant challenge. This paper reports a simple and low-cost chromatography-free platform technology for producing antimicrobial peptides in Escherichia coli (E. coli). A fusion protein comprising a variant of the helical biosurfactant protein DAMP4 and the known antimicrobial peptide pexiganan is designed by joining the two polypeptides, at the DNA level, via an acid-sensitive cleavage site. The resulting DAMP4(var)-pexiganan fusion protein expresses at high level and solubility in recombinant E. coli, and a simple heat-purification method was applied to disrupt cells and deliver high-purity DAMP4(var)-pexiganan protein. Simple acid cleavage successfully separated the DAMP4 variant protein and the antimicrobial peptide. Antimicrobial activity tests confirmed that the bio-produced antimicrobial peptide has the same antimicrobial activity as the equivalent product made by conventional chemical peptide synthesis. This simple and low-cost platform technology can be easily adapted to produce other valuable peptide products, and opens a new manufacturing approach for producing antimicrobial peptides at large scale using the tools and approaches of biochemical engineering. © 2014 Wiley Periodicals, Inc.

  14. Genetic analysis of heptad-repeat regions in the G2 fusion subunit of the Junin arenavirus envelope glycoprotein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    York, Joanne; Agnihothram, Sudhakar S.; Romanowski, Victor

    2005-12-20

    The G2 fusion subunit of the Junin virus envelope glycoprotein GP-C contains two hydrophobic heptad-repeat regions that are postulated to form a six-helix bundle structure required for the membrane fusion activity of Class I viral fusion proteins. We have investigated the role of these heptad-repeat regions and, specifically, the importance of the putative interhelical a and d position sidechains by using alanine-scanning mutagenesis. All the mutant glycoproteins were expressed and transported to the cell surface. Proteolytic maturation at the subtilisin kexin isozyme-1/site-1-protease (SKI-1/S1P) cleavage site was observed in all but two of the mutants. Among the adequately cleaved mutant glycoproteins,more » four positions in the N-terminal region (I333, L336, L347 and L350) and two positions in the C-terminal region (R392 and W395) were shown to be important determinants of cell-cell fusion. Taken together, our results indicate that {alpha}-helical coiled-coil structures are likely critical in promoting arenavirus membrane fusion. These findings support the inclusion of the arenavirus GP-C among the Class I viral fusion proteins and suggest pharmacologic and immunologic strategies for targeting arenavirus infection and hemorrhagic fever.« less

  15. Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies

    PubMed Central

    Izquierdo, Esther; Campo, Sonia; Badosa, Esther; Rossignol, Michel; Montesinos, Emilio; San Segundo, Blanca; Coca, María

    2016-01-01

    Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice seeds driving the expression of the chimeric gene by the strong embryo-specific oleosin 18 own promoter, and targeting the peptide to the oil body organelle as an oleosin 18-cecropin A fusion protein. The accumulation of cecropin A in oil bodies had no deleterious effects on seed viability and seedling growth, as well as on seed yield. We also show that biologically active cecropin A can be easily purified from the transgenic rice seeds by homogenization and simple flotation centrifugation methods. Our results demonstrate that the oleosin fusion technology is suitable for the production of cecropin A in rice seeds, which can potentially be extended to other antimicrobial peptides to assist their exploitation. PMID:26760761

  16. Acetohydroxy acid synthase is a target for leucine containing peptide toxicity in Escherichia coli.

    PubMed Central

    Gollop, N; Tavori, H; Barak, Z

    1982-01-01

    Acetohydroxy acid synthase from a mutant resistant to leucine-containing peptides was insensitive to leucine inhibition. It is concluded that acetohydroxy acid synthase is a target for the toxicity of the high concentrations of leucine brought into Escherichia coli K-12 by leucine-containing peptides. PMID:7033214

  17. Molecular Dynamics of Peptide Folding at Aqueous Interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Chipot, Christophe; Chang, Sherwood (Technical Monitor)

    1997-01-01

    Even though most monomeric peptides are disordered in water they can adopt sequence-dependent, ordered structures, such as a-helices, at aqueous interfaces. This property is relevant to cellular signaling, membrane fusion, and the action of toxins and antibiotics. The mechanism of folding nonpolar peptides at the water-hexane interface was studied in the example of an 11-mer, of poly-L-leucine. Initially placed as a random coil on the water side of the interface, the peptide folded into an a-helix in 36 ns. Simultaneously, the peptide translocated into the hexane side of the interface. Folding was not sequential and involved a 3/10-helix as an intermediate. The folded peptide was either parallel to the interface or had its C-terminus exposed to water. An 11-mer, LQQLLQQLLQL, composed of leucine (L) and glutamine (G), was taken as a model amphiphilic peptide. It rapidly adopted an amphiphilic, disordered structure at the interface. Further folding proceeded through a series of amphiphilic intermediates.

  18. Fusion loop peptide of the West Nile virus envelope protein is essential for pathogenesis and is recognized by a therapeutic cross-reactive human monoclonal antibody.

    PubMed

    Sultana, Hameeda; Foellmer, Harald G; Neelakanta, Girish; Oliphant, Theodore; Engle, Michael; Ledizet, Michel; Krishnan, Manoj N; Bonafé, Nathalie; Anthony, Karen G; Marasco, Wayne A; Kaplan, Paul; Montgomery, Ruth R; Diamond, Michael S; Koski, Raymond A; Fikrig, Erol

    2009-07-01

    West Nile virus is an emerging pathogen that can cause fatal neurological disease. A recombinant human mAb, mAb11, has been described as a candidate for the prevention and treatment of West Nile disease. Using a yeast surface display epitope mapping assay and neutralization escape mutant, we show that mAb11 recognizes the fusion loop, at the distal end of domain II of the West Nile virus envelope protein. Ab mAb11 cross-reacts with all four dengue viruses and provides protection against dengue (serotypes 2 and 4) viruses. In contrast to the parental West Nile virus, a neutralization escape variant failed to cause lethal encephalitis (at higher infectious doses) or induce the inflammatory responses associated with blood-brain barrier permeability in mice, suggesting an important role for the fusion loop in viral pathogenesis. Our data demonstrate that an intact West Nile virus fusion loop is critical for virulence, and that human mAb11 targeting this region is efficacious against West Nile virus infection. These experiments define the molecular determinant on the envelope protein recognized by mAb11 and demonstrate the importance of this region in causing West Nile encephalitis.

  19. ER-associated SNAREs and Sey1p mediate nuclear fusion at two distinct steps during yeast mating.

    PubMed

    Rogers, Jason V; Arlow, Tim; Inkellis, Elizabeth R; Koo, Timothy S; Rose, Mark D

    2013-12-01

    During yeast mating, two haploid nuclei fuse membranes to form a single diploid nucleus. However, the known proteins required for nuclear fusion are unlikely to function as direct fusogens (i.e., they are unlikely to directly catalyze lipid bilayer fusion) based on their predicted structure and localization. Therefore we screened known fusogens from vesicle trafficking (soluble N-ethylmaleimide-sensitive factor attachment protein receptors [SNAREs]) and homotypic endoplasmic reticulum (ER) fusion (Sey1p) for additional roles in nuclear fusion. Here we demonstrate that the ER-localized SNAREs Sec20p, Ufe1p, Use1p, and Bos1p are required for efficient nuclear fusion. In contrast, Sey1p is required indirectly for nuclear fusion; sey1Δ zygotes accumulate ER at the zone of cell fusion, causing a block in nuclear congression. However, double mutants of Sey1p and Sec20p, Ufe1p, or Use1p, but not Bos1p, display extreme ER morphology defects, worse than either single mutant, suggesting that retrograde SNAREs fuse ER in the absence of Sey1p. Together these data demonstrate that SNAREs mediate nuclear fusion, ER fusion after cell fusion is necessary to complete nuclear congression, and there exists a SNARE-mediated, Sey1p-independent ER fusion pathway.

  20. Five Residues in the Apical Loop of the Respiratory Syncytial Virus Fusion Protein F2 Subunit are Critical for its Fusion Activity.

    PubMed

    Hicks, Stephanie N; Chaiwatpongsakorn, Supranee; Costello, Heather M; McLellan, Jason S; Ray, William; Peeples, Mark E

    2018-05-09

    The respiratory syncytial virus (RSV) fusion (F) protein is a trimeric, membrane-anchored glycoprotein capable of mediating both viral-target cell membrane fusion to initiate infection and cell-cell fusion, even in the absence of the attachment glycoprotein. The F protein is initially expressed in a precursor form, whose functional capabilities are activated by proteolysis at two sites between the F 1 and F 2 subunits. This cleavage results in expression of the metastable and high-energy prefusion conformation. To mediate fusion, the F protein is triggered by an unknown stimulus, causing the F 1 subunit to refold dramatically while F 2 changes minimally. Hypothesizing that the most likely site for interaction with a target-cell component would be the top, or apex, of the protein, we determined the importance of the residues in the apical loop of F 2 by scanning mutagenesis. Five residues were not important, two were of intermediate importance, and all four lysines and one isoleucine were essential. Alanine replacement did not result in the loss of pre-F conformation for any of these mutants. Each of the four lysines required its specific charge for fusion function. Alanine replacement of the three essential lysines on the ascent to the apex hindered fusion following a forced fusion event, suggesting they are involved in refolding. Alanine mutation at Ile64, also on the ascent to the apex, and Lys75, did not prevent fusion following forced triggering, suggesting they are not involved in refolding and may instead be involved in the natural triggering of the F protein. IMPORTANCE RSV infects virtually every child by the age of 3, causing nearly 33 million acute lower respiratory infections (ALRI) worldwide each year in children younger than 5 (Nair H, et al. 2010. Lancet 375:1545-55). RSV is also the second leading cause of respiratory related death in the elderly (Falsey AR, Walsh EE. 2005. Drugs Aging 22:577-87; Falsey AR, Hennessey PA, Formica MA, Cox C, Walsh EE

  1. Epidermal growth factor impairs palatal shelf adhesion and fusion in the Tgf-β 3 null mutant.

    PubMed

    Barrio, M Carmen; Del Río, Aurora; Murillo, Jorge; Maldonado, Estela; López-Gordillo, Yamila; Paradas-Lara, Irene; Hernandes, Luzmarina; Catón, Javier; Martínez-Álvarez, Concepción

    2014-01-01

    The cleft palate presented by transforming growth factor-β3 (Tgf-β3) null mutant mice is caused by altered palatal shelf adhesion, cell proliferation, epithelial-to-mesenchymal transformation and cell death. The expression of epidermal growth factor (EGF), transforming growth factor-β1 (Tgf-β1) and muscle segment homeobox-1 (Msx-1) is modified in the palates of these knockout mice, and the cell proliferation defect is caused by the change in EGF expression. In this study, we aimed to determine whether this change in EGF expression has any effect on the other mechanisms altered in Tgf-β3 knockout mouse palates. We tested the effect of inhibiting EGF activity in vitro in the knockout palates via the addition of Tyrphostin AG 1478. We also investigated possible interactions between EGF, Tgf-β1 and Msx-1 in Tgf-β3 null mouse palate cultures. The results show that the inhibition of EGF activity in Tgf-β3 null mouse palate cultures improves palatal shelf adhesion and fusion, with a particular effect on cell death, and restores the normal distribution pattern of Msx-1 in the palatal mesenchyme. Inhibition of TGF-β1 does not affect either EGF or Msx-1 expression. © 2014 S. Karger AG, Basel.

  2. Peptide-independent Recognition by Alloreactive Cytotoxic T Lymphocytes (CTL)

    PubMed Central

    Smith, Pamela A.; Brunmark, Anders; Jackson, Michael R.; Potter, Terry A.

    1997-01-01

    We have isolated several H-2Kb–alloreactive cytotoxic T cell clones and analyzed their reactivity for several forms of H-2Kb. These cytotoxic T lymphocytes (CTL) were elicited by priming with a skin graft followed by in vitro stimulation using stimulator cells that express an H-2Kb molecule unable to bind CD8. In contrast to most alloreactive T cells, these CTL were able to recognize H-2Kb on the surface of the antigen processing defective cell lines RMA-S and T2. Furthermore, this reactivity was not increased by the addition of an extract containing peptides from C57BL/6 (H-2b) spleen cells, nor was the reactivity decreased by treating the target cells with acid to remove peptides bound to MHC molecules. The CTL were also capable of recognizing targets expressing the mutant H-2Kbm8 molecule. These findings suggested that the clones recognized determinants on H-2Kb that were independent of peptide. Further evidence for this hypothesis was provided by experiments in which H-2Kb produced in Drosophila melanogaster cells and immobilized on the surface of a tissue culture plate was able to stimulate hybridomas derived from these alloreactive T cells. Precursor frequency analysis demonstrated that skin graft priming, whether with skin expressing the wild-type or the mutant H-2Kb molecule, is a strong stimulus to elicit peptide-independent CTL. Moreover, reconstitution experiments demonstrated that the peptide-independent CTL clones were capable of mediating rapid and complete rejection of H-2–incompatible skin grafts. These findings provide evidence that not all allorecognition is peptide dependent. PMID:9091576

  3. NMR structure of the Arctic mutation of the Alzheimer's Aβ(1-40) peptide docked to SDS micelles

    NASA Astrophysics Data System (ADS)

    Usachev, K. S.; Filippov, A. V.; Khairutdinov, B. I.; Antzutkin, O. N.; Klochkov, V. V.

    2014-11-01

    The “Arctic” point mutation of the Alzheimer's amyloid β-peptide is a rare mutation leading to an early onset of Alzheimer's disease. The peptide may interact with neuronal membranes, where it can provide its toxic effects. We used 2D NMR spectroscopy to investigate the conformation of the “Arctic” mutant of Aβ1-40 Alzheimer's amyloid peptide in sodium dodecyl sulfate micelle solutions, which are the type of amphiphilic structures mimicking some properties of biomembranes. The study showed that the Arctic mutant of Aβ1-40 interacts with the surface of SDS micelles mainly through the Leu17-Asn27 310-helical region, while the Ile31-Val40 region is buried in the hydrophobic interior of the micelle. In contrast, wild-type Aβ1-40 interacts with SDS micelles through the Lys16-Asp23 α-helical region and Gly29-Met35. Both the Arctic mutant and the wild-type Aβ1-40 peptides interactions with SDS micelles are hydrophobic in nature. Aβ peptides are thought to be capable of forming pores in biomembranes that can cause changes in neuronal and endothelial cell membrane permeability. It has also been shown that Aβ peptides containing the “Arctic” mutation are more neurotoxic and aggregate more readily than the wild-type Aβ peptides at physiological conditions. Here, we propose that the extension of the helical structure of Leu17-Asn27 and a high aliphaticity (neutrality) of the C-terminal region in the Arctic Aβ peptides are consistent with the idea that formation of ion-permeable pores by Aβ oligomers may be one of prevailing mechanisms of a larger neuronal toxicity of the Arctic Aβ compared to the wild-type Aβ peptides, independent of oxidative damage and lipid peroxidation.

  4. A specific transition state for S-peptide combining with folded S-protein and then refolding

    PubMed Central

    Goldberg, Jonathan M.; Baldwin, Robert L.

    1999-01-01

    We measured the folding and unfolding kinetics of mutants for a simple protein folding reaction to characterize the structure of the transition state. Fluorescently labeled S-peptide analogues combine with S-protein to form ribonuclease S analogues: initially, S-peptide is disordered whereas S-protein is folded. The fluorescent probe provides a convenient spectroscopic probe for the reaction. The association rate constant, kon, and the dissociation rate constant, koff, were both determined for two sets of mutants. The dissociation rate constant is measured by adding an excess of unlabeled S-peptide analogue to a labeled complex (RNaseS*). This strategy allows kon and koff to be measured under identical conditions so that microscopic reversibility applies and the transition state is the same for unfolding and refolding. The first set of mutants tests the role of the α-helix in the transition state. Solvent-exposed residues Ala-6 and Gln-11 in the α-helix of native RNaseS were replaced by the helix destabilizing residues glycine or proline. A plot of log kon vs. log Kd for this series of mutants is linear over a very wide range, with a slope of −0.3, indicating that almost all of the molecules fold via a transition state involving the helix. A second set of mutants tests the role of side chains in the transition state. Three side chains were investigated: Phe-8, His-12, and Met-13, which are known to be important for binding S-peptide to S-protein and which also contribute strongly to the stability of RNaseS*. Only the side chain of Phe-8 contributes significantly, however, to the stability of the transition state. The results provide a remarkably clear description of a folding transition state. PMID:10051587

  5. A new pH-responsive peptide tag for protein purification.

    PubMed

    Nonaka, Takahiro; Tsurui, Noriko; Mannen, Teruhisa; Kikuchi, Yoshimi; Shiraki, Kentaro

    2018-06-01

    This paper describes a new pH-responsive peptide tag that adds a protein reversible precipitation and redissolution character. This peptide tag is a part of a cell surface protein B (CspB) derived from Corynebacterium glutamicum. Proinsulin that genetically fused with a peptide of N-terminal 6, 17, 50, or 250 amino acid residues of CspB showed that the reversible precipitation and redissolution depended on the pH. The transition occurred within a physiological and narrow pH range. A CspB50 tag comprising 50 amino acid residues of N-terminal CspB was further evaluated as a representative using other pharmaceutical proteins. Below pH 6.8, almost all CspB50-Teriparatide fusion formed an aggregated state. Subsequent addition of alkali turned the cloudy protein solution transparent above pH 7.3, in which almost all the CspB50-Teriparatide fusion redissolved. The CspB50-Bivalirudin fusion showed a similar behavior with slightly different pH range. This tag is offering a new protein purification method based on liquid-solid separation which does not require an affinity ligand. This sharp response around neutral pH is useful as a pH-responsive tag for the purification of unstable proteins at a non-physiological pH. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Enterocin A Mutants Identified by Saturation Mutagenesis Enhance Potency Towards Vancomycin-Resistant Enterococci

    PubMed Central

    McClintock, Maria K.; Kaznessis, Yiannis N.; Hackel, Benjamin J.

    2016-01-01

    Vancomycin-resistant Enterococci infections are a significant clinical problem. One proposed solution is to use probiotics, such as lactic acid bacteria, to produce antimicrobial peptides at the site of infection. Enterocin A, a class 2a bacteriocin, exhibits inhibitory activity against E. faecium and E. faecalis, which account for 86% of vancomycin-resistant Enterococci infections. In this study, we aimed to engineer enterocin A mutants with enhanced potency within a lactic acid bacterial production system. Peptide mutants resulting from saturation mutagenesis at sites A24 and T27 were efficiently screened in a 96-well plate assay for inhibition of pathogen growth. Several mutants exhibit increased potency relative to wild-type enterocin A in both liquid- and solid-medium growth assays. In particular, A24P and T27G exhibit enhanced inhibition of multiple strains of E. faecium and E. faecalis, including clinically isolated vancomycin-resistant strains. A24P and T27G enhance killing of E. faecium 8 by 13±3- and 18±4-fold, respectively. The engineered enterocin A/lactic acid bacteria systems offer significant potential to combat antibiotic-resistant infections. PMID:26191783

  7. Enterocin A mutants identified by saturation mutagenesis enhance potency towards vancomycin-resistant Enterococci.

    PubMed

    McClintock, Maria K; Kaznessis, Yiannis N; Hackel, Benjamin J

    2016-02-01

    Vancomycin-resistant Enterococci infections are a significant clinical problem. One proposed solution is to use probiotics, such as lactic acid bacteria, to produce antimicrobial peptides at the site of infection. Enterocin A, a class 2a bacteriocin, exhibits inhibitory activity against E. faecium and E. faecalis, which account for 86% of vancomycin-resistant Enterococci infections. In this study, we aimed to engineer enterocin A mutants with enhanced potency within a lactic acid bacterial production system. Peptide mutants resulting from saturation mutagenesis at sites A24 and T27 were efficiently screened in a 96-well plate assay for inhibition of pathogen growth. Several mutants exhibit increased potency relative to wild-type enterocin A in both liquid- and solid-medium growth assays. In particular, A24P and T27G exhibit enhanced inhibition of multiple strains of E. faecium and E. faecalis, including clinically isolated vancomycin-resistant strains. A24P and T27G enhance killing of E. faecium 8 by 13 ± 3- and 18 ± 4-fold, respectively. The engineered enterocin A/lactic acid bacteria systems offer significant potential to combat antibiotic-resistant infections. © 2015 Wiley Periodicals, Inc.

  8. A systematic screen for morphological abnormalities during fission yeast sexual reproduction identifies a mechanism of actin aster formation for cell fusion

    PubMed Central

    Groux, Raphaël; Vincenzetti, Vincent

    2017-01-01

    In non-motile fungi, sexual reproduction relies on strong morphogenetic changes in response to pheromone signaling. We report here on a systematic screen for morphological abnormalities of the mating process in fission yeast Schizosaccharomyces pombe. We derived a homothallic (self-fertile) collection of viable deletions, which, upon visual screening, revealed a plethora of phenotypes affecting all stages of the mating process, including cell polarization, cell fusion and sporulation. Cell fusion relies on the formation of the fusion focus, an aster-like F-actin structure that is marked by strong local accumulation of the myosin V Myo52, which concentrates secretion at the fusion site. A secondary screen for fusion-defective mutants identified the myosin V Myo51-associated coiled-coil proteins Rng8 and Rng9 as critical for the coalescence of the fusion focus. Indeed, rng8Δ and rng9Δ mutant cells exhibit multiple stable dots at the cell-cell contact site, instead of the single focus observed in wildtype. Rng8 and Rng9 accumulate on the fusion focus, dependent on Myo51 and tropomyosin Cdc8. A tropomyosin mutant allele, which compromises Rng8/9 localization but not actin binding, similarly leads to multiple stable dots instead of a single focus. By contrast, myo51 deletion does not strongly affect fusion focus coalescence. We propose that focusing of the actin filaments in the fusion aster primarily relies on Rng8/9-dependent cross-linking of tropomyosin-actin filaments. PMID:28410370

  9. Autophagy contributes to regulation of nuclear dynamics during vegetative growth and hyphal fusion in Fusarium oxysporum.

    PubMed

    Corral-Ramos, Cristina; Roca, M Gabriela; Di Pietro, Antonio; Roncero, M Isabel G; Ruiz-Roldán, Carmen

    2015-01-01

    In the fungal pathogen Fusarium oxysporum, vegetative hyphal fusion triggers nuclear mitotic division in the invading hypha followed by migration of a nucleus into the receptor hypha and degradation of the resident nucleus. Here we examined the role of autophagy in fusion-induced nuclear degradation. A search of the F. oxysporum genome database for autophagy pathway components identified putative orthologs of 16 core autophagy-related (ATG) genes in yeast, including the ubiquitin-like protein Atg8, which is required for the formation of autophagosomal membranes. F. oxysporum Foatg8Δ mutants were generated in a strain harboring H1-cherry fluorescent protein (ChFP)-labeled nuclei to facilitate analysis of nuclear dynamics. The Foatg8Δ mutants did not show MDC-positive staining in contrast to the wild type and the FoATG8-complemented (cFoATG8) strain, suggesting that FoAtg8 is required for autophagy in F. oxysporum. The Foatg8Δ strains displayed reduced rates of hyphal growth, conidiation, and fusion, and were significantly attenuated in virulence on tomato plants and in the nonvertebrate animal host Galleria mellonella. In contrast to wild-type hyphae, which are almost exclusively composed of uninucleated hyphal compartments, the hyphae of the Foatg8Δ mutants contained a significant fraction of hyphal compartments with 2 or more nuclei. The increase in the number of nuclei per hyphal compartment was particularly evident after hyphal fusion events. Time-lapse microscopy analyses revealed abnormal mitotic patterns during vegetative growth in the Foatg8Δ mutants. Our results suggest that autophagy mediates nuclear degradation after hyphal fusion and has a general function in the control of nuclear distribution in F. oxysporum.

  10. Autophagy contributes to regulation of nuclear dynamics during vegetative growth and hyphal fusion in Fusarium oxysporum

    PubMed Central

    Corral-Ramos, Cristina; Roca, M Gabriela; Di Pietro, Antonio; Roncero, M Isabel G; Ruiz-Roldán, Carmen

    2015-01-01

    In the fungal pathogen Fusarium oxysporum, vegetative hyphal fusion triggers nuclear mitotic division in the invading hypha followed by migration of a nucleus into the receptor hypha and degradation of the resident nucleus. Here we examined the role of autophagy in fusion-induced nuclear degradation. A search of the F. oxysporum genome database for autophagy pathway components identified putative orthologs of 16 core autophagy-related (ATG) genes in yeast, including the ubiquitin-like protein Atg8, which is required for the formation of autophagosomal membranes. F. oxysporum Foatg8Δ mutants were generated in a strain harboring H1-cherry fluorescent protein (ChFP)-labeled nuclei to facilitate analysis of nuclear dynamics. The Foatg8Δ mutants did not show MDC-positive staining in contrast to the wild type and the FoATG8-complemented (cFoATG8) strain, suggesting that FoAtg8 is required for autophagy in F. oxysporum. The Foatg8Δ strains displayed reduced rates of hyphal growth, conidiation, and fusion, and were significantly attenuated in virulence on tomato plants and in the nonvertebrate animal host Galleria mellonella. In contrast to wild-type hyphae, which are almost exclusively composed of uninucleated hyphal compartments, the hyphae of the Foatg8Δ mutants contained a significant fraction of hyphal compartments with 2 or more nuclei. The increase in the number of nuclei per hyphal compartment was particularly evident after hyphal fusion events. Time-lapse microscopy analyses revealed abnormal mitotic patterns during vegetative growth in the Foatg8Δ mutants. Our results suggest that autophagy mediates nuclear degradation after hyphal fusion and has a general function in the control of nuclear distribution in F. oxysporum. PMID:25560310

  11. Membrane Fusion Proteins as Nanomachines

    NASA Astrophysics Data System (ADS)

    Tamm, Lukas

    2009-03-01

    Membrane fusion is key to fertilization, virus infection, and neurotransmission. Specific proteins work like nanomachines to stitch together fluid, yet highly ordered lipid bilayers. The energy gained from large exothermic conformational changes of these proteins is utilized to fuse lipid bilayers that do not fuse spontaneously. Structural studies using x-ray crystallography and NMR spectroscopy have yielded detailed information about architecture and inner workings of these molecular machines. The question now is: how is mechanical energy gained from such protein transformations harnessed to transform membrane topology? To answer this question, we have determined that a boomerang-shaped structure of the influenza fusion peptide is critical to generate a high-energy binding intermediate in the target membrane and to return the ``boomerang'' to its place of release near the viral membrane for completion of the fusion cycle. In presynaptic exocytosis, receptor and acceptor SNAREs are zippered to form a helical bundle that is arrested shortly before the membrane. Ca binding to interlocked synaptotagmin releases the fusion block. Structural NMR and single molecule fluorescence data are combined to arrive at and further refine this picture.

  12. Expression in Escherichia coli and purification of bioactive antibacterial peptide ABP-CM4 from the Chinese silk worm, Bombyx mori.

    PubMed

    Li, Bao-Cun; Zhang, Shuang-Quan; Dan, Wen-Bing; Chen, Yu-Qing; Cao, Peng

    2007-07-01

    The antibacterial peptide CM4 (ABP-CM4), isolated from Chinese Bombys mori, is a 35-residue cationic, amphipathic alpha-helical peptide that exhibits a broad range of antimicrobial activity. To explore a new approach for the expression of ABP-CM4 in E. coli, the gene ABP-CM4, obtained by recursive PCR (rPCR), was cloned into the vector pET32a to construct a fusion expression plasmid. The fusion protein Trx-CM4 was expressed in soluble form, purified by Ni(2+)-chelating chromatography, and cleaved by formic acid to release recombinant CM4. Purification of rCM4 was achieved by affinity chromatography and reverse-phase HPLC. The purified of recombinant peptide showed antimicrobial activities against E. coli K(12)D(31), Penicillium chrysogenum, Aspergillus niger and Gibberella saubinetii. According to the antimicrobial peptide database (http://aps.unmc.edu/AP/main.html), 116 peptides contain a Met residue, but only 5 peptides contain the AspPro site, indicating a broader application of formic acid than CNBr in cleaving fusion protein. The successful application to the expression of the ABP-CM4 indicates that the system is a low-cost, efficient way of producting milligram quantities of ABP-CM4 that is biologically active.

  13. Mitochondrial fusion increases the mitochondrial DNA copy number in budding yeast.

    PubMed

    Hori, Akiko; Yoshida, Minoru; Ling, Feng

    2011-05-01

    Mitochondrial fusion plays an important role in mitochondrial DNA (mtDNA) maintenance, although the underlying mechanisms are unclear. In budding yeast, certain levels of reactive oxygen species (ROS) can promote recombination-mediated mtDNA replication, and mtDNA maintenance depends on the homologous DNA pairing protein Mhr1. Here, we show that the fusion of isolated yeast mitochondria, which can be monitored by the bimolecular fluorescence complementation-derived green fluorescent protein (GFP) fluorescence, increases the mtDNA copy number in a manner dependent on Mhr1. The fusion event, accompanied by the degradation of dissociated electron transport chain complex IV and transient reductions in the complex IV subunits by the inner membrane AAA proteases such as Yme1, increases ROS levels. Analysis of the initial stage of mitochondrial fusion in early log-phase cells produced similar results. Moreover, higher ROS levels in mitochondrial fusion-deficient mutant cells increased the amount of newly synthesized mtDNA, resulting in increases in the mtDNA copy number. In contrast, reducing ROS levels in yme1 null mutant cells significantly decreased the mtDNA copy number, leading to an increase in cells lacking mtDNA. Our results indicate that mitochondrial fusion induces mtDNA synthesis by facilitating ROS-triggered, recombination-mediated replication and thereby prevents the generation of mitochondria lacking DNA. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  14. ER-associated SNAREs and Sey1p mediate nuclear fusion at two distinct steps during yeast mating

    PubMed Central

    Rogers, Jason V.; Arlow, Tim; Inkellis, Elizabeth R.; Koo, Timothy S.; Rose, Mark D.

    2013-01-01

    During yeast mating, two haploid nuclei fuse membranes to form a single diploid nucleus. However, the known proteins required for nuclear fusion are unlikely to function as direct fusogens (i.e., they are unlikely to directly catalyze lipid bilayer fusion) based on their predicted structure and localization. Therefore we screened known fusogens from vesicle trafficking (soluble N-ethylmaleimide–sensitive factor attachment protein receptors [SNAREs]) and homotypic endoplasmic reticulum (ER) fusion (Sey1p) for additional roles in nuclear fusion. Here we demonstrate that the ER-localized SNAREs Sec20p, Ufe1p, Use1p, and Bos1p are required for efficient nuclear fusion. In contrast, Sey1p is required indirectly for nuclear fusion; sey1Δ zygotes accumulate ER at the zone of cell fusion, causing a block in nuclear congression. However, double mutants of Sey1p and Sec20p, Ufe1p, or Use1p, but not Bos1p, display extreme ER morphology defects, worse than either single mutant, suggesting that retrograde SNAREs fuse ER in the absence of Sey1p. Together these data demonstrate that SNAREs mediate nuclear fusion, ER fusion after cell fusion is necessary to complete nuclear congression, and there exists a SNARE-mediated, Sey1p-independent ER fusion pathway. PMID:24152736

  15. Antimicrobial Peptides Derived from Fusion Peptides of Influenza A Viruses, a Promising Approach to Designing Potent Antimicrobial Agents.

    PubMed

    Wang, Jingyu; Zhong, Wenjing; Lin, Dongguo; Xia, Fan; Wu, Wenjiao; Zhang, Heyuan; Lv, Lin; Liu, Shuwen; He, Jian

    2015-10-01

    The emergence and dissemination of antibiotic-resistant bacterial pathogens have spurred the urgent need to develop novel antimicrobial agents with different mode of action. In this respect, we turned several fusogenic peptides (FPs) derived from the hemagglutinin glycoproteins (HAs) of IAV into potent antibacterials by replacing the negatively or neutrally charged residues of FPs with positively charged lysines. Their antibacterial activities were evaluated by testing the MICs against a panel of bacterial strains including S. aureus, S. mutans, P. aeruginosa, and E. coli. The results showed that peptides HA-FP-1, HA-FP-2-1, and HA-FP-3-1 were effective against both Gram-positive and Gram-negative bacteria with MICs ranging from 1.9 to 16.0 μm, while the toxicities toward mammalian cells were low. In addition, the mode of action and the secondary structure of these peptides were also discussed. These data not only provide several potent peptides displaying promising potential in development as broad antimicrobial agents, but also present a useful strategy in designing new antimicrobial agents. © 2015 John Wiley & Sons A/S.

  16. A Novel Heat Shock Protein 70-based Vaccine Prepared from DC-Tumor Fusion Cells.

    PubMed

    Weng, Desheng; Calderwood, Stuart K; Gong, Jianlin

    2018-01-01

    We have developed an enhanced molecular chaperone-based vaccine through rapid isolation of Hsp70 peptide complexes after the fusion of tumor and dendritic cells (Hsp70.PC-F). In this approach, the tumor antigens are introduced into the antigen processing machinery of dendritic cells through the cell fusion process and thus we can obtain antigenic tumor peptides or their intermediates that have been processed by dendritic cells. Our results show that Hsp70.PC-F has increased immunogenicity compared to preparations from tumor cells alone and therefore constitutes an improved formulation of chaperone protein-based tumor vaccine.

  17. Cytoplasmic peptide:N-glycanase cleaves N-glycans on a carboxypeptidase Y mutant during ERAD in Saccharomyces cerevisiae.

    PubMed

    Hosomi, Akira; Suzuki, Tadashi

    2015-04-01

    Endoplasmic reticulum (ER)-associated degradation (ERAD) is a pathway by which misfolded or improperly assembled proteins in the ER are directed to degradation. The cytoplasmic peptide:N-glycanase (PNGase) is a deglycosylating enzyme that cleaves N-glycans from misfolded glycoproteins during the ERAD process. The mutant form of yeast carboxypeptidase Y (CPY*) is an ERAD model substrate that has been extensively studied in yeast. While a delay in the degradation of CPY* in yeast cells lacking the cytoplasmic PNGase (Png1 in yeast) was evident, the in vivo action of PNGase on CPY* has not been detected. We constructed new ERAD substrates derived from CPY*, bearing epitope tags at both N- and C-termini and examined the degradation intermediates observed in yeast cells with compromised proteasome activity. The occurrence of the PNGase-mediated deglycosylation of intact CPY* and its degradation intermediates was evident. A major endoproteolytic reaction on CPY* appears to occur between amino acid 400 and 404. The findings reported herein clearly indicate that PNGase indeed releases N-glycans from CPY* during the ERAD process in vivo. This report implies that the PNGase-mediated deglycosylation during the ERAD process may occur more abundantly than currently envisaged. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Mutant Fusion Proteins with Enhanced Fusion Activity Promote Measles Virus Spread in Human Neuronal Cells and Brains of Suckling Hamsters

    PubMed Central

    Shirogane, Yuta; Suzuki, Satoshi O.; Ikegame, Satoshi; Koga, Ritsuko

    2013-01-01

    Subacute sclerosing panencephalitis (SSPE) is a fatal degenerative disease caused by persistent measles virus (MV) infection in the central nervous system (CNS). From the genetic study of MV isolates obtained from SSPE patients, it is thought that defects of the matrix (M) protein play a crucial role in MV pathogenicity in the CNS. In this study, we report several notable mutations in the extracellular domain of the MV fusion (F) protein, including those found in multiple SSPE strains. The F proteins with these mutations induced syncytium formation in cells lacking SLAM and nectin 4 (receptors used by wild-type MV), including human neuronal cell lines, when expressed together with the attachment protein hemagglutinin. Moreover, recombinant viruses with these mutations exhibited neurovirulence in suckling hamsters, unlike the parental wild-type MV, and the mortality correlated with their fusion activity. In contrast, the recombinant MV lacking the M protein did not induce syncytia in cells lacking SLAM and nectin 4, although it formed larger syncytia in cells with either of the receptors. Since human neuronal cells are mainly SLAM and nectin 4 negative, fusion-enhancing mutations in the extracellular domain of the F protein may greatly contribute to MV spread via cell-to-cell fusion in the CNS, regardless of defects of the M protein. PMID:23255801

  19. Chemical Cleavage of an Asp-Cys Sequence Allows Efficient Production of Recombinant Peptides with an N-Terminal Cysteine Residue.

    PubMed

    Pane, Katia; Verrillo, Mariavittoria; Avitabile, Angela; Pizzo, Elio; Varcamonti, Mario; Zanfardino, Anna; Di Maro, Antimo; Rega, Camilla; Amoresano, Angela; Izzo, Viviana; Di Donato, Alberto; Cafaro, Valeria; Notomista, Eugenio

    2018-04-18

    Peptides with an N-terminal cysteine residue allow site-specific modification of proteins and peptides and chemical synthesis of proteins. They have been widely used to develop new strategies for imaging, drug discovery, diagnostics, and chip technologies. Here we present a method to produce recombinant peptides with an N-terminal cysteine residue as a convenient alternative to chemical synthesis. The method is based on the release of the desired peptide from a recombinant fusion protein by mild acid hydrolysis of an Asp-Cys sequence. To test the general validity of the method we prepared four fusion proteins bearing three different peptides (20-37 amino acid long) at the C-terminus of a ketosteroid isomerase-derived and two Onconase-derived carriers for the production of toxic peptides in E. coli. The chosen peptides were (C)GKY20, an antimicrobial peptide from the C-terminus of human thrombin, (C)ApoB L , an antimicrobial peptide from an inner region of human Apolipoprotein B, and (C)p53pAnt, an anticancer peptide containing the C-terminal region of the p53 protein fused to the cell penetrating peptide Penetratin. Cleavage efficiency of Asp-Cys bonds in the four fusion proteins was studied as a function of pH, temperature, and incubation time. In spite of the differences in the amino acid sequence (GTGDCGKY, GTGDCHVA, GSGTDCGSR, SQGSDCGSR) we obtained for all the proteins a cleavage efficiency of about 70-80% after 24 h incubation at 60 °C and pH 2. All the peptides were produced with very good yield (5-16 mg/L of LB cultures), high purity (>96%), and the expected content of free thiol groups (1 mol per mole of peptide). Furthermore, (C)GKY20 was modified with PyMPO-maleimide, a commercially available fluorophore bearing a thiol reactive group, and with 6-hydroxy-2-cyanobenzothiazole, a reagent specific for N-terminal cysteines, with yields of 100% thus demonstrating that our method is very well suited for the production of fully reactive peptides with an N

  20. Screening and identification of linear B-cell epitopes and entry-blocking peptide of severe acute respiratory syndrome (SARS)-associated coronavirus using synthetic overlapping peptide library.

    PubMed

    Hu, Hongbo; Li, Li; Kao, Richard Y; Kou, Binbin; Wang, Zhanguo; Zhang, Liang; Zhang, Huiyuan; Hao, Zhiyong; Tsui, Wayne H; Ni, Anping; Cui, Lianxian; Fan, Baoxing; Guo, Feng; Rao, Shuan; Jiang, Chengyu; Li, Qian; Sun, Manji; He, Wei; Liu, Gang

    2005-01-01

    A 10-mer overlapping peptide library has been synthesized for screening and identification of linear B-cell epitopes of severe acute respiratory syndrome associated coronavirus (SARS-CoV), which spanned the major structural proteins of SARS-CoV. One hundred and eleven candidate peptides were positive according to the result of PEPscan, which were assembled into 22 longer peptides. Five of these peptides showed high cross-immunoreactivities (approximately 66.7 to 90.5%) to SARS convalescent patients' sera from the severest epidemic regions of the China mainland. Most interestingly, S(471-503), a peptide located at the receptor binding domain (RBD) of SARS-CoV, could specifically block the binding between the RBD and angiotensin-converting enzyme 2, resulting in the inhibition of SARS-CoV entrance into host cells in vitro. The study demonstrated that S(471-503) peptide was a potential immunoantigen for the development of peptide-based vaccine or a candidate for further drug evaluation against the SARS-CoV virus-cell fusion.

  1. Human antibody recognition of antigenic site IV on Pneumovirus fusion proteins.

    PubMed

    Mousa, Jarrod J; Binshtein, Elad; Human, Stacey; Fong, Rachel H; Alvarado, Gabriela; Doranz, Benjamin J; Moore, Martin L; Ohi, Melanie D; Crowe, James E

    2018-02-01

    Respiratory syncytial virus (RSV) is a major human pathogen that infects the majority of children by two years of age. The RSV fusion (F) protein is a primary target of human antibodies, and it has several antigenic regions capable of inducing neutralizing antibodies. Antigenic site IV is preserved in both the pre-fusion and post-fusion conformations of RSV F. Antibodies to antigenic site IV have been described that bind and neutralize both RSV and human metapneumovirus (hMPV). To explore the diversity of binding modes at antigenic site IV, we generated a panel of four new human monoclonal antibodies (mAbs) and competition-binding suggested the mAbs bind at antigenic site IV. Mutagenesis experiments revealed that binding and neutralization of two mAbs (3M3 and 6F18) depended on arginine (R) residue R429. We discovered two R429-independent mAbs (17E10 and 2N6) at this site that neutralized an RSV R429A mutant strain, and one of these mAbs (17E10) neutralized both RSV and hMPV. To determine the mechanism of cross-reactivity, we performed competition-binding, recombinant protein mutagenesis, peptide binding, and electron microscopy experiments. It was determined that the human cross-reactive mAb 17E10 binds to RSV F with a binding pose similar to 101F, which may be indicative of cross-reactivity with hMPV F. The data presented provide new concepts in RSV immune recognition and vaccine design, as we describe the novel idea that binding pose may influence mAb cross-reactivity between RSV and hMPV. Characterization of the site IV epitope bound by human antibodies may inform the design of a pan-Pneumovirus vaccine.

  2. Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells.

    PubMed

    Millet, Jean Kaoru; Whittaker, Gary R

    2018-04-01

    During viral entry, enveloped viruses require the fusion of their lipid envelope with host cell membranes. For coronaviruses, this critical step is governed by the virally-encoded spike (S) protein, a class I viral fusion protein that has several unique features. Coronavirus entry is unusual in that it is often biphasic in nature, and can occur at or near the cell surface or in late endosomes. Recent advances in structural, biochemical and molecular biology of the coronavirus S protein has shed light on the intricacies of coronavirus entry, in particular the molecular triggers of coronavirus S-mediated membrane fusion. Furthermore, characterization of the coronavirus fusion peptide (FP), the segment of the fusion protein that inserts to a target lipid bilayer during membrane fusion, has revealed its particular attributes which imparts some of the unusual properties of the S protein, such as Ca 2+ -dependency. These unusual characteristics can explain at least in part the biphasic nature of coronavirus entry. In this review, using severe acute respiratory syndrome coronavirus (SARS-CoV) as model virus, we give an overview of advances in research on the coronavirus fusion peptide with an emphasis on its role and properties within the biological context of host cell entry. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The chromatography-free release, isolation and purification of recombinant peptide for fibril self-assembly.

    PubMed

    Hartmann, B M; Kaar, W; Yoo, I K; Lua, L H L; Falconer, R J; Middelberg, A P J

    2009-12-01

    One of the major expenses associated with recombinant peptide production is the use of chromatography in the isolation and purification stages of a bioprocess. Here we report a chromatography-free isolation and purification process for recombinant peptide expressed in Escherichia coli (E. coli). Initial peptide release is by homogenization and then by enzymatic cleavage of the peptide-containing fusion protein, directly in the E. coli homogenate. Release is followed by selective solvent precipitation (SSP) to isolate and purify the peptide away from larger cell contaminants. Specifically, we expressed in E. coli the self-assembling beta-sheet forming peptide P(11)-2 in fusion to thioredoxin. Homogenate was heat treated (55 degrees C, 15 min) and then incubated with tobacco etch virus protease (TEVp) to release P(11)-2 having a native N-terminus. SSP with ethanol at room temperature then removed contaminating proteins in an integrated isolation-purification step; it proved necessary to add 250 mM NaCl to homogenate to prevent P(11)-2 from partitioning to the precipitate. This process structure gave recombinant P(11)-2 peptide at 97% polypeptide purity and 40% overall yield, without a single chromatography step. Following buffer-exchange of the 97% pure product by bind-elute chromatography into defined chemical conditions, the resulting peptide was shown to be functionally active and able to form self-assembled fibrils. To the best of our knowledge, this manuscript reports the first published process for chromatography-free recombinant peptide release, isolation and purification. The process proved able to deliver functional recombinant peptide at high purity and potentially low cost, opening cost-sensitive materials applications for peptide-based materials.

  4. [Construction and expression of the targeting super-antigen EGF-SEA fusion gene].

    PubMed

    Xie, Yang; Peng, Shaoping; Liao, Zhiying; Liu, Jiafeng; Liu, Xuemei; Chen, Weifeng

    2014-05-01

    To construct expression vector for the SEA-EGF fusion gene. Clone the SEA gene and the EGF gene segment with PCR and RT-PCR independently, and connect this two genes by the bridge PCR. Insert the fusion gene EGF-SEA into the expression vector PET-44. Induced the secretion of the fusion protein SEA-EGF by the antileptic. The gene fragment encoding EGF and SEA mature peptide was successfully cloned. The fusion gene EGF-SEA was successfully constructed and was inserted into expression vector. The new recombinant expression vector for fusion gene EGF-SEA is specific for head and neck cancer, laid the foundation for the further study of fusion protein SEA-EGF targeting immune therapy in head and neck tumors.

  5. Studies on lactoferricin-derived Escherichia coli membrane-active peptides reveal differences in the mechanism of N-acylated versus nonacylated peptides.

    PubMed

    Zweytick, Dagmar; Deutsch, Günter; Andrä, Jörg; Blondelle, Sylvie E; Vollmer, Ekkehard; Jerala, Roman; Lohner, Karl

    2011-06-17

    To improve the low antimicrobial activity of LF11, an 11-mer peptide derived from human lactoferricin, mutant sequences were designed based on the defined structure of LF11 in the lipidic environment. Thus, deletion of noncharged polar residues and strengthening of the hydrophobic N-terminal part upon adding a bulky hydrophobic amino acid or N-acylation resulted in enhanced antimicrobial activity against Escherichia coli, which correlated with the peptides' degree of perturbation of bacterial membrane mimics. Nonacylated and N-acylated peptides exhibited different effects at a molecular level. Nonacylated peptides induced segregation of peptide-enriched and peptide-poor lipid domains in negatively charged bilayers, although N-acylated peptides formed small heterogeneous domains resulting in a higher degree of packing defects. Additionally, only N-acylated peptides perturbed the lateral packing of neutral lipids and exhibited increased permeability of E. coli lipid vesicles. The latter did not correlate with the extent of improvement of the antimicrobial activity, which could be explained by the fact that elevated binding of N-acylated peptides to lipopolysaccharides of the outer membrane of gram-negative bacteria seems to counteract the elevated membrane permeabilization, reflected in the respective minimal inhibitory concentration for E. coli. The antimicrobial activity of the peptides correlated with an increase of membrane curvature stress and hence bilayer instability. Transmission electron microscopy revealed that only the N-acylated peptides induced tubular protrusions from the outer membrane, whereas all peptides caused detachment of the outer and inner membrane of E. coli bacteria. Viability tests demonstrated that these bacteria were dead before onset of visible cell lysis.

  6. Studies on Lactoferricin-derived Escherichia coli Membrane-active Peptides Reveal Differences in the Mechanism of N-Acylated Versus Nonacylated Peptides*

    PubMed Central

    Zweytick, Dagmar; Deutsch, Günter; Andrä, Jörg; Blondelle, Sylvie E.; Vollmer, Ekkehard; Jerala, Roman; Lohner, Karl

    2011-01-01

    To improve the low antimicrobial activity of LF11, an 11-mer peptide derived from human lactoferricin, mutant sequences were designed based on the defined structure of LF11 in the lipidic environment. Thus, deletion of noncharged polar residues and strengthening of the hydrophobic N-terminal part upon adding a bulky hydrophobic amino acid or N-acylation resulted in enhanced antimicrobial activity against Escherichia coli, which correlated with the peptides' degree of perturbation of bacterial membrane mimics. Nonacylated and N-acylated peptides exhibited different effects at a molecular level. Nonacylated peptides induced segregation of peptide-enriched and peptide-poor lipid domains in negatively charged bilayers, although N-acylated peptides formed small heterogeneous domains resulting in a higher degree of packing defects. Additionally, only N-acylated peptides perturbed the lateral packing of neutral lipids and exhibited increased permeability of E. coli lipid vesicles. The latter did not correlate with the extent of improvement of the antimicrobial activity, which could be explained by the fact that elevated binding of N-acylated peptides to lipopolysaccharides of the outer membrane of Gram-negative bacteria seems to counteract the elevated membrane permeabilization, reflected in the respective minimal inhibitory concentration for E. coli. The antimicrobial activity of the peptides correlated with an increase of membrane curvature stress and hence bilayer instability. Transmission electron microscopy revealed that only the N-acylated peptides induced tubular protrusions from the outer membrane, whereas all peptides caused detachment of the outer and inner membrane of E. coli bacteria. Viability tests demonstrated that these bacteria were dead before onset of visible cell lysis. PMID:21515687

  7. Characterization of antimicrobial activity against Listeria and cytotoxicity of native melittin and its mutant variants.

    PubMed

    Wu, Xi; Singh, Atul K; Wu, Xiaoyu; Lyu, Yuan; Bhunia, Arun K; Narsimhan, Ganesan

    2016-07-01

    Antimicrobial peptides (AMPs) are relatively short peptides that have the ability to penetrate the cell membrane, form pores leading to cell death. This study compares both antimicrobial activity and cytotoxicity of native melittin and its two mutants, namely, melittin I17K (GIGAVLKVLTTGLPALKSWIKRKRQQ) with a higher charge and lower hydrophobicity and mutant G1I (IIGAVLKVLTTGLPALISWIKRKRQQ) of higher hydrophobicity. The antimicrobial activity against different strains of Listeria was investigated by bioassay, viability studies, fluorescence and transmission electron microscopy. Cytotoxicity was examined by lactate dehydrogenase (LDH) assay on mammalian Caco-2 cells. The minimum inhibitory concentration of native, mutant I17K, mutant G1I against Listeria monocytogenes F4244 was 0.315±0.008, 0.814±0.006 and 0.494±0.037μg/ml respectively, whereas the minimum bactericidal concentration values were 3.263±0.0034, 7.412±0.017 and 5.366±0.019μg/ml respectively. Lag time for inactivation of L. monocytogenes F4244 was observed at concentrations below 0.20 and 0.78μg/ml for native and mutant melittin I17K respectively. The antimicrobial activity against L. monocytogenes F4244 was in the order native>G1I>I17K. Native melittin was cytotoxic to mammalian Caco-2 cells above concentration of 2μg/ml, whereas the two mutants exhibited negligible cytotoxicity up to a concentration of 8μg/ml. Pore formation in cell wall/membrane was observed by transmission electron microscopy. Molecular dynamics (MD) simulation of native and its mutants indicated that (i) surface native melittin and G1I exhibited higher tendency to penetrate a mimic of bacterial cell membrane and (ii) transmembrane native and I17K formed water channel in mimics of bacterial and mammalian cell membranes. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Targeted Delivery of an Antigenic Peptide to the Endoplasmic Reticulum: Application for Development of a Peptide Therapy for Ankylosing Spondylitis

    PubMed Central

    Yu, Hui-Chun; Lu, Ming-Chi; Li, Chin; Huang, Hsien-Lu; Huang, Kuang-Yung; Liu, Su-Qin; Lai, Ning-Sheng; Huang, Hsien-Bin

    2013-01-01

    The development of suitable methods to deliver peptides specifically to the endoplasmic reticulum (ER) can provide some potential therapeutic applications of such peptides. Ankylosing spondylitis (AS) is strongly associated with the expression of human leukocytic antigen-B27 (HLA-B27). HLA-B27 heavy chain (HC) has a propensity to fold slowly resulting in the accumulation of misfolded HLA-B27 HC in the ER, triggering the unfolded protein response, and forming a homodimer, (B27-HC)2. Natural killer cells and T-helper 17 cells are then activated, contributing to the major pathogenic potentials of AS. The HLA-B27 HC is thus an important target, and delivery of an HLA-B27-binding peptide to the ER capable of promoting HLA-B27 HC folding is a potential mechanism for AS therapy. Here, we demonstrate that a His6-ubiquitin-tagged Tat-derived peptide (THU) can deliver an HLA-B27-binding peptide to the ER promoting HLA-B27 HC folding. The THU-HLA-B27-binding peptide fusion protein crossed the cell membrane to the cytosol through the Tat-derived peptide. The HLA-B27-binding peptide was specifically cleaved from THU by cytosolic ubiquitin C-terminal hydrolases and subsequently transported into the ER by the transporter associated with antigen processing. This approach has potential application in the development of peptide therapy for AS. PMID:24155957

  9. Fusion between perinuclear virions and the outer nuclear membrane requires the fusogenic activity of herpes simplex virus gB.

    PubMed

    Wright, Catherine C; Wisner, Todd W; Hannah, Brian P; Eisenberg, Roselyn J; Cohen, Gary H; Johnson, David C

    2009-11-01

    Herpesviruses cross nuclear membranes (NMs) in two steps, as follows: (i) capsids assemble and bud through the inner NM into the perinuclear space, producing enveloped virus particles, and (ii) the envelopes of these virus particles fuse with the outer NM. Two herpes simplex virus (HSV) glycoproteins, gB and gH (the latter, likely complexed as a heterodimer with gL), are necessary for the second step of this process. Mutants lacking both gB and gH accumulate in the perinuclear space or in herniations (membrane vesicles derived from the inner NM). Both gB and gH/gL are also known to act directly in fusing the virion envelope with host cell membranes during HSV entry into cells, i.e., both glycoproteins appear to function directly in different aspects of the membrane fusion process. We hypothesized that HSV gB and gH/gL also act directly in the membrane fusion that occurs during virus egress from the nucleus. Previous studies of the role of gB and gH/gL in nuclear egress involved HSV gB and gH null mutants that could potentially also possess gross defects in the virion envelope. Here, we produced recombinant HSV-expressing mutant forms of gB with single amino acid substitutions in the hydrophobic "fusion loops." These fusion loops are thought to play a direct role in membrane fusion by insertion into cellular membranes. HSV recombinants expressing gB with any one of four fusion loop mutations (W174R, W174Y, Y179K, and A261D) were unable to enter cells. Moreover, two of the mutants, W174Y and Y179K, displayed reduced abilities to mediate HSV cell-to-cell spread, and W174R and A261D exhibited no spread. All mutant viruses exhibited defects in nuclear egress, enveloped virions accumulated in herniations and in the perinuclear space, and fewer enveloped virions were detected on cell surfaces. These results support the hypothesis that gB functions directly to mediate the fusion between perinuclear virus particles and the outer NM.

  10. Anti-infective activity of apolipoprotein domain derived peptides in vitro: identification of novel antimicrobial peptides related to apolipoprotein B with anti-HIV activity

    PubMed Central

    2010-01-01

    activity comparable with that for the previously reported apolipoprotein AI derived peptide 18A, suggests that full-length apolipoprotein J may also have such activity, as has been reported for full-length apolipoprotein AI. Although the strength of the anti-infective activity of the sequences identified was limited, this could be increased substantially by developing related mutant peptides. Indeed the apolipoprotein B-derived peptide mutants uncovered by the present study may have utility as HIV therapeutics or microbicides. PMID:20298574

  11. Targeted expression, purification, and cleavage of fusion proteins from inclusion bodies in Escherichia coli.

    PubMed

    Hwang, Peter M; Pan, Jonathan S; Sykes, Brian D

    2014-01-21

    Today, proteins are typically overexpressed using solubility-enhancing fusion tags that allow for affinity chromatographic purification and subsequent removal by site-specific protease cleavage. In this review, we present an alternative approach to protein production using fusion partners specifically designed to accumulate in insoluble inclusion bodies. The strategy is appropriate for the mass production of short peptides, intrinsically disordered proteins, and proteins that can be efficiently refolded in vitro. There are many fusion protein systems now available for insoluble expression: TrpLE, ketosteroid isomerase, PurF, and PagP, for example. The ideal fusion partner is effective at directing a wide variety of target proteins into inclusion bodies, accumulates in large quantities in a highly pure form, and is readily solubilized and purified in commonly used denaturants. Fusion partner removal under denaturing conditions is biochemically challenging, requiring harsh conditions (e.g., cyanogen bromide in 70% formic acid) that can result in unwanted protein modifications. Recent advances in metal ion-catalyzed peptide bond cleavage allow for more mild conditions, and some methods involving nickel or palladium will likely soon appear in more biological applications. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Fusion mutants of Newcastle disease virus selected with monoclonal antibodies to the hemagglutinin-neuraminidase.

    PubMed Central

    Iorio, R M; Glickman, R L

    1992-01-01

    The Australia-Victoria (AV) isolate of Newcastle disease virus (NDV) induces fusion from within but not fusion from without. L1, a neuraminidase (NA)-deficient virus derived from AV, has the opposite fusion phenotype from the wild-type virus. It fails to induce the former mode of fusion, but has gained a limited ability to promote the latter. Monoclonal antibodies to antigenic site 23 on the hemagglutinin-neuraminidase (HN) glycoprotein have previously been shown to select variants of the AV isolate that have altered NA activity or receptor-binding affinity. By using an antibody to this site, variants of L1 have been selected. Three of the variants have gained an increased affinity for sialic acid-containing receptors, as evidenced by the resistance of their hemagglutinating activity to the presence of reduced amounts of sialic acid on the surface of chicken erythrocytes. All four variants still have very low levels of NA activity, comparable to that of the parent virus, L1. The alteration in receptor-binding affinity results in a decreased potential for elution from cellular receptors and correlates with an increased ability to promote both modes of fusion. A single amino acid substitution in the HN protein of each variant, responsible for its escape from neutralization, has been identified. These studies identify two HN residues, 193 and 203, at which monoclonal antibody-selected substitution influences the receptor recognition properties of NDV and may influence its ability to promote syncytium formation. Images PMID:1404607

  13. Inhibition of Vaccinia virus entry by a broad spectrum antiviral peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altmann, S.E.; Jones, J.C.; Schultz-Cherry, S.

    2009-06-05

    Concerns about the possible use of Variola virus, the causative agent of smallpox, as a weapon for bioterrorism have led to renewed efforts to identify new antivirals against orthopoxviruses. We identified a peptide, EB, which inhibited infection by Vaccinia virus with an EC{sub 50} of 15 muM. A control peptide, EBX, identical in composition to EB but differing in sequence, was inactive (EC{sub 50} > 200 muM), indicating sequence specificity. The inhibition was reversed upon removal of the peptide, and EB treatment had no effect on the physical integrity of virus particles as determined by electron microscopy. Viral adsorption wasmore » unaffected by the presence of EB, and the addition of EB post-entry had no effect on viral titers or on early gene expression. The addition of EB post-adsorption resulted in the inhibition of beta-galactosidase expression from an early viral promoter with an EC{sub 50} of 45 muM. A significant reduction in virus entry was detected in the presence of the peptide when the number of viral cores released into the cytoplasm was quantified. Electron microscopy indicated that 88% of the virions remained on the surface of cells in the presence of EB, compared to 37% in the control (p < 0.001). EB also blocked fusion-from-within, suggesting that virus infection is inhibited at the fusion step. Analysis of EB derivatives suggested that peptide length may be important for the activity of EB. The EB peptide is, to our knowledge, the first known small molecule inhibitor of Vaccinia virus entry.« less

  14. Regulation of Herpes Simplex Virus Glycoprotein-Induced Cascade of Events Governing Cell-Cell Fusion

    PubMed Central

    Saw, Wan Ting; Eisenberg, Roselyn J.; Cohen, Gary H.

    2016-01-01

    ABSTRACT Receptor-dependent herpes simplex virus (HSV)-induced cell-cell fusion requires glycoproteins gD, gH/gL, and gB. Our current model posits that during fusion, receptor-activated conformational changes in gD activate gH/gL, which subsequently triggers the transformation of the prefusion form of gB into a fusogenic state. To examine the role of each glycoprotein in receptor-dependent cell-cell fusion, we took advantage of our discovery that fusion by wild-type herpes simplex virus 2 (HSV-2) glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we established that fusion speed was governed by gH/gL, with gH being the main contributor. While the mutant forms of gB fuse at distinct rates that are dictated by their molecular structure, these restrictions can be overcome by gH/gL of HSV-2 (gH2/gL2), thereby enhancing their activity. We also found that deregulated forms of gD of HSV-1 (gD1) and gH2/gL2 can alter the fusogenic potential of gB, promoting cell fusion in the absence of a cellular receptor, and that deregulated forms of gB can drive the fusion machinery to even higher levels. Low pH enhanced fusion by affecting the structure of both gB and gH/gL mutants. Together, our data highlight the complexity of the fusion machinery, the impact of the activation state of each glycoprotein on the fusion process, and the critical role of gH/gL in regulating HSV-induced fusion. IMPORTANCE Cell-cell fusion mediated by HSV glycoproteins requires gD, gH/gL, gB, and a gD receptor. Here, we show that fusion by wild-type HSV-2 glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we found that the fusion process was controlled by gH/gL. Restrictions imposed on the gB structure by mutations could be overcome by gH2/gL2, enhancing the activity of the mutants. Under low-pH conditions or when

  15. The ubiquitin–proteasome system regulates membrane fusion of yeast vacuoles

    PubMed Central

    Kleijnen, Maurits F; Kirkpatrick, Donald S; Gygi, Steven P

    2007-01-01

    Ubiquitination is known to regulate early stages of intracellular vesicular transport, without proteasomal involvement. We now show that, in yeast, ubiquitination regulates a late-stage, membrane fusion, with proteasomal involvement. A known proteasome mutant had a vacuolar fragmentation phenotype in vivo often associated with vacuolar membrane fusion defects, suggesting a proteasomal role in fusion. Inhibiting vacuolar proteasomes interfered with membrane fusion in vitro, showing that fusion cannot occur without proteasomal degradation. If so, one would expect to find ubiquitinated proteins on vacuolar membranes. We found a small number of these, identified the most prevalent one as Ypt7 and mapped its two major ubiquitination sites. Ubiquitinated Ypt7 was linked to the degradation event that is necessary for fusion: vacuolar Ypt7 and vacuolar proteasomes were interdependent, ubiquitinated Ypt7 became a proteasomal substrate during fusion, and proteasome inhibitors reduced fusion to greater degree when we decreased Ypt7 ubiquitination. The strongest model holds that fusion cannot proceed without proteasomal degradation of ubiquitinated Ypt7. As Ypt7 is one of many Rab GTPases, ubiquitin–proteasome regulation may be involved in membrane fusion elsewhere. PMID:17183369

  16. A phorbol ester-binding protein is required downstream of Rab5 in endosome fusion.

    PubMed

    Aballay, A; Barbieri, M A; Colombo, M I; Arenas, G N; Stahl, P D; Mayorga, L S

    1998-12-28

    Previous observations indicate that a zinc and phorbol ester binding factor is necessary for endosome fusion. To further characterize the role of this factor in the process, we used an in vitro endosome fusion assay supplemented with recombinant Rab5 proteins. Both zinc depletion and addition of calphostin C, an inhibitor of protein kinase C, inhibited endosome fusion in the presence of active Rab5. Addition of the phorbol ester PMA (phorbol 12-myristate 13-acetate) reversed the inhibition of endosome fusion caused by a Rab5 negative mutant. Moreover, PMA stimulated fusion in the presence of Rab5 immunodepleted cytosol. These results suggest that the phorbol ester binding protein is acting downstream of Rab5 in endosome fusion.

  17. Mitochondrial dynamics and bioenergetic dysfunction is associated with synaptic alterations in mutant SOD1 motor neurons

    PubMed Central

    Magrané, Jordi; Sahawneh, Mary Anne; Przedborski, Serge; Estévez, Álvaro G.; Manfredi, Giovanni

    2012-01-01

    Mutations in Cu,Zn superoxide dismutase (SOD1) cause familial amyotrophic lateral sclerosis (FALS), a rapidly fatal motor neuron disease. Mutant SOD1 has pleiotropic toxic effects on motor neurons, among which mitochondrial dysfunction has been proposed as one of the contributing factors in motor neuron demise. Mitochondria are highly dynamic in neurons; they are constantly reshaped by fusion and move along neurites to localize at sites of high-energy utilization, such as synapses. The finding of abnormal mitochondria accumulation in neuromuscular junctions, where the SOD1-FALS degenerative process is though to initiate, suggests that impaired mitochondrial dynamics in motor neurons may be involved in pathogenesis. We addressed this hypothesis by live imaging microscopy of photo-switchable fluorescent mitoDendra in transgenic rat motor neurons expressing mutant or wild type human SOD1. We demonstrate that mutant SOD1 motor neurons have impaired mitochondrial fusion in axons and cell bodies. Mitochondria also display selective impairment of retrograde axonal transport, with reduced frequency and velocity of movements. Fusion and transport defects are associated with smaller mitochondrial size, decreased mitochondrial density, and defective mitochondrial membrane potential. Furthermore, mislocalization of mitochondria at synapses among motor neurons, in vitro, correlates with abnormal synaptic number, structure, and function. Dynamics abnormalities are specific to mutant SOD1 motor neuron mitochondria, since they are absent in wild type SOD1 motor neurons, they do not involve other organelles, and they are not found in cortical neurons. Taken together, these results suggest that impaired mitochondrial dynamics may contribute to the selective degeneration of motor neurons in SOD1-FALS. PMID:22219285

  18. Auto-fusion and the shaping of neurons and tubes.

    PubMed

    Soulavie, Fabien; Sundaram, Meera V

    2016-12-01

    Cells adopt specific shapes that are necessary for specific functions. For example, some neurons extend elaborate arborized dendrites that can contact multiple targets. Epithelial and endothelial cells can form tiny seamless unicellular tubes with an intracellular lumen. Recent advances showed that cells can auto-fuse to acquire those specific shapes. During auto-fusion, a cell merges two parts of its own plasma membrane. In contrast to cell-cell fusion or macropinocytic fission, which result in the merging or formation of two separate membrane bound compartments, auto-fusion preserves one compartment, but changes its shape. The discovery of auto-fusion in C. elegans was enabled by identification of specific protein fusogens, EFF-1 and AFF-1, that mediate cell-cell fusion. Phenotypic characterization of eff-1 and aff-1 mutants revealed that fusogen-mediated fusion of two parts of the same cell can be used to sculpt dendritic arbors, reconnect two parts of an axon after injury, or form a hollow unicellular tube. Similar auto-fusion events recently were detected in vertebrate cells, suggesting that auto-fusion could be a widely used mechanism for shaping neurons and tubes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Auto-fusion and the shaping of neurons and tubes

    PubMed Central

    Soulavie, Fabien; Sundaram, Meera V.

    2016-01-01

    Cells adopt specific shapes that are necessary for specific functions. For example, some neurons extend elaborate arborized dendrites that can contact multiple targets. Epithelial and endothelial cells can form tiny seamless unicellular tubes with an intracellular lumen. Recent advances showed that cells can auto-fuse to acquire those specific shapes. During auto-fusion, a cell merges two parts of its own plasma membrane. In contrast to cell-cell fusion or macropinocytic fission, which result in the merging or formation of two separate membrane bound compartments, auto-fusion preserves one compartment, but changes its shape. The discovery of auto-fusion in C. elegans was enabled by identification of specific protein fusogens, EFF-1 and AFF-1, that mediate cell-cell fusion. Phenotypic characterization of eff-1 and aff-1 mutants revealed that fusogen-mediated fusion of two parts of the same cell can be used to sculpt dendritic arbors, reconnect two parts of an axon after injury, or form a hollow unicellular tube. Similar auto-fusion events recently were detected in vertebrate cells, suggesting that auto-fusion could be a widely used mechanism for shaping neurons and tubes. PMID:27436685

  20. Amphipathic helical peptides hamper protein-protein interactions of the intrinsically disordered chromatin nuclear protein 1 (NUPR1).

    PubMed

    Santofimia-Castaño, Patricia; Rizzuti, Bruno; Abián, Olga; Velázquez-Campoy, Adrián; Iovanna, Juan L; Neira, José L

    2018-06-01

    NUPR1 is a multifunctional intrinsically disordered protein (IDP) involved, among other functions, in chromatin remodelling, and development of pancreatic ductal adenocarcinoma (PDAC). It interacts with several biomolecules through hydrophobic patches around residues Ala33 and Thr68. The drug trifluoperazine (TFP), which hampers PDAC development in xenografted mice, also binds to those regions. Because of the large size of the hot-spot interface of NUPR1, small molecules could not be adequate to modulate its functions. We explored how amphipathic helical-designed peptides were capable of interacting with wild-type NUPR1 and the Thr68Gln mutant, inhibiting the interaction with NUPR1 protein partners. We used in vitro biophysical techniques (fluorescence, circular dichroism (CD), nuclear magnetic resonance (NMR) and isothermal titration calorimetry (ITC)), in silico studies (docking and molecular dynamics (MD)), and in cellulo protein ligation assays (PLAs) to study the interaction. Peptide dissociation constants towards wild-type NUPR1 were ~ 3 μM, whereas no interaction was observed with the Thr68Gln mutant. Peptides interacted with wild-type NUPR1 residues around Ala33 and residues at the C terminus, as shown by NMR. The computational results clarified the main determinants of the interactions, providing a mechanism for the ligand-capture that explains why peptide binding was not observed for Thr68Gln mutant. Finally, the in cellulo assays indicated that two out of four peptides inhibited the interaction of NUPR1 with the C-terminal region of the Polycomb RING protein 1 (C-RING1B). Designed peptides can be used as lead compounds to inhibit NUPR1 interactions. Peptides may be exploited as drugs to target IDPs. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Screening for Selective Protein Inhibitors by Using the IANUS Peptide Array.

    PubMed

    Erdmann, Frank; Prell, Erik; Jahreis, Günther; Fischer, Gunter; Malešević, Miroslav

    2018-04-16

    Finding new road blacks: A peptidic inhibitor of calcineurin (CaN)-mediated nuclear factor of activated T cells (NFAT) dephosphorylation, which is developed through a template-assisted IANUS (Induced orgANisation of strUcture by matrix-assisted togethernesS) peptide array, is cell permeable and able to block the translocation of green fluorescent protein-NFAT fusion protein (GFP-NFAT) into the nucleus after stimulation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Bacterial expression of self-assembling peptide hydrogelators

    NASA Astrophysics Data System (ADS)

    Sonmez, Cem

    For tissue regeneration and drug delivery applications, various architectures are explored to serve as biomaterial tools. Via de novo design, functional peptide hydrogel materials have been developed as scaffolds for biomedical applications. The objective of this study is to investigate bacterial expression as an alternative method to chemical synthesis for the recombinant production of self-assembling peptides that can form rigid hydrogels under physiological conditions. The Schneider and Pochan Labs have designed and characterized a 20 amino acid beta-hairpin forming amphiphilic peptide containing a D-residue in its turn region (MAX1). As a result, this peptide must be prepared chemically. Peptide engineering, using the sequence of MAX1 as a template, afforded a small family of peptides for expression (EX peptides) that have different turn sequences consisting of natural amino acids and amenable to bacterial expression. Each sequence was initially chemically synthesized to quickly assess the material properties of its corresponding gel. One model peptide EX1, was chosen to start the bacterial expression studies. DNA constructs facilitating the expression of EX1 were designed in such that the peptide could be expressed with different fusion partners and subsequently cleaved by enzymatic or chemical means to afford the free peptide. Optimization studies were performed to increase the yield of pure peptide that ultimately allowed 50 mg of pure peptide to be harvested from one liter of culture, providing an alternate means to produce this hydrogel-forming peptide. Recombinant production of other self-assembling hairpins with different turn sequences was also successful using this optimized protocol. The studies demonstrate that new beta-hairpin self-assembling peptides that are amenable to bacterial production and form rigid hydrogels at physiological conditions can be designed and produced by fermentation in good yield at significantly reduced cost when compared to

  3. Designing of peptides with desired half-life in intestine-like environment.

    PubMed

    Sharma, Arun; Singla, Deepak; Rashid, Mamoon; Raghava, Gajendra Pal Singh

    2014-08-20

    In past, a number of peptides have been reported to possess highly diverse properties ranging from cell penetrating, tumor homing, anticancer, anti-hypertensive, antiviral to antimicrobials. Owing to their excellent specificity, low-toxicity, rich chemical diversity and availability from natural sources, FDA has successfully approved a number of peptide-based drugs and several are in various stages of drug development. Though peptides are proven good drug candidates, their usage is still hindered mainly because of their high susceptibility towards proteases degradation. We have developed an in silico method to predict the half-life of peptides in intestine-like environment and to design better peptides having optimized physicochemical properties and half-life. In this study, we have used 10mer (HL10) and 16mer (HL16) peptides dataset to develop prediction models for peptide half-life in intestine-like environment. First, SVM based models were developed on HL10 dataset which achieved maximum correlation R/R2 of 0.57/0.32, 0.68/0.46, and 0.69/0.47 using amino acid, dipeptide and tripeptide composition, respectively. Secondly, models developed on HL16 dataset showed maximum R/R2 of 0.91/0.82, 0.90/0.39, and 0.90/0.31 using amino acid, dipeptide and tripeptide composition, respectively. Furthermore, models that were developed on selected features, achieved a correlation (R) of 0.70 and 0.98 on HL10 and HL16 dataset, respectively. Preliminary analysis suggests the role of charged residue and amino acid size in peptide half-life/stability. Based on above models, we have developed a web server named HLP (Half Life Prediction), for predicting and designing peptides with desired half-life. The web server provides three facilities; i) half-life prediction, ii) physicochemical properties calculation and iii) designing mutant peptides. In summary, this study describes a web server 'HLP' that has been developed for assisting scientific community for predicting intestinal half

  4. Integrative proteomics, genomics, and translational immunology approaches reveal mutated forms of Proteolipid Protein 1 (PLP1) and mutant-specific immune response in multiple sclerosis.

    PubMed

    Qendro, Veneta; Bugos, Grace A; Lundgren, Debbie H; Glynn, John; Han, May H; Han, David K

    2017-03-01

    In order to gain mechanistic insights into multiple sclerosis (MS) pathogenesis, we utilized a multi-dimensional approach to test the hypothesis that mutations in myelin proteins lead to immune activation and central nervous system autoimmunity in MS. Mass spectrometry-based proteomic analysis of human MS brain lesions revealed seven unique mutations of PLP1; a key myelin protein that is known to be destroyed in MS. Surprisingly, in-depth genomic analysis of two MS patients at the genomic DNA and mRNA confirmed mutated PLP1 in RNA, but not in the genomic DNA. Quantification of wild type and mutant PLP RNA levels by qPCR further validated the presence of mutant PLP RNA in the MS patients. To seek evidence linking mutations in abundant myelin proteins and immune-mediated destruction of myelin, specific immune response against mutant PLP1 in MS patients was examined. Thus, we have designed paired, wild type and mutant peptide microarrays, and examined antibody response to multiple mutated PLP1 in sera from MS patients. Consistent with the idea of different patients exhibiting unique mutation profiles, we found that 13 out of 20 MS patients showed antibody responses against specific but not against all the mutant-PLP1 peptides. Interestingly, we found mutant PLP-directed antibody response against specific mutant peptides in the sera of pre-MS controls. The results from integrative proteomic, genomic, and immune analyses reveal a possible mechanism of mutation-driven pathogenesis in human MS. The study also highlights the need for integrative genomic and proteomic analyses for uncovering pathogenic mechanisms of human diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Energy Homeostasis Control in Drosophila Adipokinetic Hormone Mutants

    PubMed Central

    Gáliková, Martina; Diesner, Max; Klepsatel, Peter; Hehlert, Philip; Xu, Yanjun; Bickmeyer, Iris; Predel, Reinhard; Kühnlein, Ronald P.

    2015-01-01

    Maintenance of biological functions under negative energy balance depends on mobilization of storage lipids and carbohydrates in animals. In mammals, glucagon and glucocorticoid signaling mobilizes energy reserves, whereas adipokinetic hormones (AKHs) play a homologous role in insects. Numerous studies based on AKH injections and correlative studies in a broad range of insect species established the view that AKH acts as master regulator of energy mobilization during development, reproduction, and stress. In contrast to AKH, the second peptide, which is processed from the Akh encoded prohormone [termed “adipokinetic hormone precursor-related peptide” (APRP)] is functionally orphan. APRP is discussed as ecdysiotropic hormone or as scaffold peptide during AKH prohormone processing. However, as in the case of AKH, final evidence for APRP functions requires genetic mutant analysis. Here we employed CRISPR/Cas9-mediated genome engineering to create AKH and AKH plus APRP-specific mutants in the model insect Drosophila melanogaster. Lack of APRP did not affect any of the tested steroid-dependent processes. Similarly, Drosophila AKH signaling is dispensable for ontogenesis, locomotion, oogenesis, and homeostasis of lipid or carbohydrate storage until up to the end of metamorphosis. During adulthood, however, AKH regulates body fat content and the hemolymph sugar level as well as nutritional and oxidative stress responses. Finally, we provide evidence for a negative autoregulatory loop in Akh gene regulation. PMID:26275422

  6. In vitro inhibition of feline leukaemia virus infection by synthetic peptides derived from the transmembrane domain.

    PubMed

    Boenzli, Eva; Robert-Tissot, Céline; Sabatino, Giuseppina; Cattori, Valentino; Meli, Marina Luisa; Gutte, Bernd; Rovero, Paolo; Flynn, Norman; Hofmann-Lehmann, Regina; Lutz, Hans

    2011-01-01

    The feline leukaemia virus (FeLV) is a gammaretrovirus commonly affecting cats. Infection with this virus often leads to fatal outcomes and, so far, no cure is available for this disease. Synthetic peptides with structures mimicking the transmembrane protein of the viral surface proteins hold the potential to effectively interfere with viral entry by hampering the fusion of viral and host cell membranes and constitute a novel approach for the treatment of infections with retroviruses. We identified and synthetically produced 11 FeLV peptides and evaluated their potential to block FeLV infection in vitro. Cell cultures were exposed to FeLV subgroup A prior to the addition of the peptides. The inhibitory effect of the peptides was assessed by measuring FeLV gag protein in the supernatant of peptide versus mock-treated cell cultures using an ELISA. A peptide (EPK364) of 37 amino acids in length, with sequence homology to the HIV fusion inhibitor T-20, significantly suppressed viral replication by 88%, whereas no effects were found for shorter peptides. Two structurally modified variants of EPK364 also inhibited viral replication by up to 58% (EPK397) and 27% (EPK398). Our data support the identification of synthetic FeLV peptides that have the potential for a curative short-term therapy of viraemic cats. In addition, these peptides might become an important tool in xenotransplantation, where endogenous gammaretroviruses of the donor species might be able to infect the host. © 2011 International Medical Press

  7. Multiple Locations of Peptides in the Hydrocarbon Core of Gel-Phase Membranes Revealed by Peptide 13C to Lipid 2H Rotational-Echo Double-Resonance Solid-State Nuclear Magnetic Resonance

    PubMed Central

    2015-01-01

    Membrane locations of peptides and proteins are often critical to their functions. Solid-state rotational-echo double-resonance (REDOR) nuclear magnetic resonance is applied to probe the locations of two peptides via peptide 13CO to lipid 2H distance measurements. The peptides are KALP, an α-helical membrane-spanning peptide, and HFP, the β-sheet N-terminal fusion peptide of the HIV gp41 fusion protein that plays an important role in HIV–host cell membrane fusion. Both peptides are shown to have at least two distinct locations within the hydrocarbon core of gel-phase membranes. The multiple locations are attributed to snorkeling of lysine side chains for KALP and to the distribution of antiparallel β-sheet registries for HFP. The relative population of each location is also quantitated. To the best of our knowledge, this is the first clear experimental support of multiple peptide locations within the membrane hydrocarbon core. These data are for gel-phase membranes, but the approach should work for liquid-ordered membranes containing cholesterol and may be applicable to liquid-disordered membranes with appropriate additional analysis to take into account protein and lipid motion. This paper also describes the methodological development of 13CO–2H REDOR using the lyophilized I4 peptide that is α-helical and 13CO-labeled at A9 and 2Hα-labeled at A8. The I4 spins are well-approximated as an ensemble of isolated 13CO–2H spin pairs each separated by 5.0 Å with a 37 Hz dipolar coupling. A pulse sequence with rectangular 100 kHz 2H π pulses results in rapid and extensive buildup of REDOR (ΔS/S0) with a dephasing time (τ). The buildup is well-fit by a simple exponential function with a rate of 24 Hz and an extent close to 1. These parameter values reflect nonradiative transitions between the 2H spin states during the dephasing period. Each spin pair spends approximately two-thirds of its time in the 13CO–2H (m = ±1) states and approximately one-third of

  8. Perspective of Use of Antiviral Peptides against Influenza Virus

    PubMed Central

    Skalickova, Sylvie; Heger, Zbynek; Krejcova, Ludmila; Pekarik, Vladimir; Bastl, Karel; Janda, Jozef; Kostolansky, Frantisek; Vareckova, Eva; Zitka, Ondrej; Adam, Vojtech; Kizek, Rene

    2015-01-01

    The threat of a worldwide influenza pandemic has greatly increased over the past decade with the emergence of highly virulent avian influenza strains. The increased frequency of drug-resistant influenza strains against currently available antiviral drugs requires urgent development of new strategies for antiviral therapy, too. The research in the field of therapeutic peptides began to develop extensively in the second half of the 20th century. Since then, the mechanisms of action for several peptides and their antiviral prospect received large attention due to the global threat posed by viruses. Here, we discussed the therapeutic properties of peptides used in influenza treatment. Peptides with antiviral activity against influenza can be divided into three main groups. First, entry blocker peptides such as a Flupep that interact with influenza hemagglutinin, block its binding to host cells and prevent viral fusion. Second, several peptides display virucidal activity, disrupting viral envelopes, e.g., Melittin. Finally, a third set of peptides interacts with the viral polymerase complex and act as viral replication inhibitors such as PB1 derived peptides. Here, we present a review of the current literature describing the antiviral activity, mechanism and future therapeutic potential of these influenza antiviral peptides. PMID:26492266

  9. The recombinant expression and activity detection of MAF-1 fusion protein.

    PubMed

    Fu, Ping; Wu, Jianwei; Gao, Song; Guo, Guo; Zhang, Yong; Liu, Jian

    2015-10-01

    This study establishes the recombinant expression system of MAF-1 (Musca domestica antifungal peptide-1) and demonstrates the antifungal activity of the expression product and shows the relationship between biological activity and structure. The gene segments on mature peptide part of MAF-1 were cloned, based on the primers designed according to the cDNA sequence of MAF-1. We constructed the recombinant prokaryotic expression plasmid using prokaryotic expression vector (pET-28a(+)) and converted it to the competent cell of BL21(DE3) to gain recombinant MAF-1 fusion protein with His tag sequence through purifying affinity chromatographic column of Ni-NTA. To conduct the Western Blotting test, recombinant MAF-1 fusion protein was used to produce the polyclonal antibody of rat. The antifungal activity of the expression product was detected using Candida albicans (ATCC10231) as the indicator. The MAF-1 recombinant fusion protein was purified to exhibit obvious antifungal activity, which lays the foundation for the further study of MAF-1 biological activity, the relationship between structure and function, as well as control of gene expression.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Yanning; Beijing Center for Diseases Prevention and Control, 16 Hepingli Middle Street, Dongcheng District, Beijing 100013; Neo, T.L.

    SARS-CoV entry is mediated by spike glycoprotein. During the viral and host cellular membrane fusion, HR1 and HR2 form 6-helix bundle, positioning the fusion peptide closely to the C-terminal region of ectodomain to drive apposition and subsequent membrane fusion. Connecting to the HR2 region is a Trp-rich region which is absolutely conserved in members of coronaviruses. To investigate the importance of Trp-rich region in SARS-CoV entry, we produced different mutated S proteins using Alanine scan strategy. SARS-CoV pseudotyped with mutated S protein was used to measure viral infectivity. To restore the aromaticity of Ala-mutants, we performed rescue experiments using phenylalaninemore » substitutions. Our results show that individually substituted Ala-mutants substantially decrease infectivity by >90%, global Ala-mutants totally abrogated infectivity. In contrast, Phe-substituted mutants are able to restore 10-25% infectivity comparing to the wild-type. The results suggest that the Trp-rich region of S protein is essential for SARS-CoV infectivity.« less

  11. Structure-Related Roles for the Conservation of the HIV-1 Fusion Peptide Sequence Revealed by Nuclear Magnetic Resonance.

    PubMed

    Serrano, Soraya; Huarte, Nerea; Rujas, Edurne; Andreu, David; Nieva, José L; Jiménez, María Angeles

    2017-10-17

    Despite extensive characterization of the human immunodeficiency virus type 1 (HIV-1) hydrophobic fusion peptide (FP), the structure-function relationships underlying its extraordinary degree of conservation remain poorly understood. Specifically, the fact that the tandem repeat of the FLGFLG tripeptide is absolutely conserved suggests that high hydrophobicity may not suffice to unleash FP function. Here, we have compared the nuclear magnetic resonance (NMR) structures adopted in nonpolar media by two FP surrogates, wtFP-tag and scrFP-tag, which had equal hydrophobicity but contained wild-type and scrambled core sequences LFLGFLG and FGLLGFL, respectively. In addition, these peptides were tagged at their C-termini with an epitope sequence that folded independently, thereby allowing Western blot detection without interfering with FP structure. We observed similar α-helical FP conformations for both specimens dissolved in the low-polarity medium 25% (v/v) 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), but important differences in contact with micelles of the membrane mimetic dodecylphosphocholine (DPC). Thus, whereas wtFP-tag preserved a helix displaying a Gly-rich ridge, the scrambled sequence lost in great part the helical structure upon being solubilized in DPC. Western blot analyses further revealed the capacity of wtFP-tag to assemble trimers in membranes, whereas membrane oligomers were not observed in the case of the scrFP-tag sequence. We conclude that, beyond hydrophobicity, preserving sequence order is an important feature for defining the secondary structures and oligomeric states adopted by the HIV FP in membranes.

  12. Overexpression of the Arabidopsis thaliana signalling peptide TAXIMIN1 affects lateral organ development.

    PubMed

    Colling, Janine; Tohge, Takayuki; De Clercq, Rebecca; Brunoud, Geraldine; Vernoux, Teva; Fernie, Alisdair R; Makunga, Nokwanda P; Goossens, Alain; Pauwels, Laurens

    2015-08-01

    Lateral organ boundary formation is highly regulated by transcription factors and hormones such as auxins and brassinosteroids. However, in contrast to many other developmental processes in plants, no role for signalling peptides in the regulation of this process has been reported yet. The first characterization of the secreted cysteine-rich TAXIMIN (TAX) signalling peptides in Arabidopsis is presented here. TAX1 overexpression resulted in minor alterations in the primary shoot and root metabolome, abnormal fruit morphology, and fusion of the base of cauline leaves to stems forming a decurrent leaf attachment. The phenotypes at the paraclade junction match TAX1 promoter activity in this region and are similar to loss of LATERAL ORGAN FUSION (LOF) transcription factor function. Nevertheless, TAX1 expression was unchanged in lof1lof2 paraclade junctions and, conversely, LOF gene expression was unchanged in TAX1 overexpressing plants, suggesting TAX1 may act independently. This study identifies TAX1 as the first plant signalling peptide influencing lateral organ separation and implicates the existence of a peptide signal cascade regulating this process in Arabidopsis. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. The use of a proteinaceous "cushion" with a polystyrene-binding peptide tag to control the orientation and function of a target peptide adsorbed to a hydrophilic polystyrene surface.

    PubMed

    Imanaka, Hiroyuki; Yamadzumi, Daisuke; Yanagita, Keisuke; Ishida, Naoyuki; Nakanishi, Kazuhiro; Imamura, Koreyoshi

    2016-03-01

    In immobilizing target biomolecules on a solid surface, it is essential (i) to orient the target moiety in a preferred direction and (ii) to avoid unwanted interactions of the target moiety including with the solid surface. The preferred orientation of the target moiety can be achieved by genetic conjugation of an affinity peptide tag specific to the immobilization surface. Herein, we report on a strategy for reducing the extent of direct interaction between the target moiety and surface in the immobilization of hexahistidine peptide (6His) and green fluorescent protein (GFP) on a hydrophilic polystyrene (PS) surface: Ribonuclease HII from Thermococcus kodakaraensis (cHII) was genetically inserted as a "cushion" between the PS-affinity peptide tag and target moiety. The insertion of a cushion protein resulted in a considerably stronger immobilization of target biomolecules compared to conjugation with only a PS affinity peptide tag, resulting in a substantially enhanced accessibility of the detection antibody to the target 6His peptide. The fluorescent intensity of the GFP moiety was decreased by approximately 30% as the result of fusion with cHII and the PS-affinity peptide tag but was fully retained in the immobilization on the PS surface irrespective of the increased binding force. Furthermore, the fusion of cHII did not impair the stability of the target GFP moiety. Accordingly, the use of a proteinaceous cushion appears to be promising for the immobilization of functional biomolecules on a solid surface. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:527-534, 2016. © 2016 American Institute of Chemical Engineers.

  14. Cloning of a methanol-inducible moxF promoter and its analysis in moxB mutants of Methylobacterium extorquens AM1rif.

    PubMed Central

    Morris, C J; Lidstrom, M E

    1992-01-01

    In Methylobacterium extorquens AM1, gene encoding methanol dehydrogenase polypeptides are transcriptionally regulated in response to C1 compounds, including methanol (M. E. Lidstrom and D. I. Stirling, Annu. Rev. Microbiol. 44:27-57, 1990). In order to study this regulation, a transcriptional fusion has been constructed between a beta-galactosidase reporter gene and a 1.55-kb XhoI-SalI fragment of M. extorquens AM1rif DNA encoding the N terminus of the methanol dehydrogenase large subunit (moxF) and 1,289 bp of upstream DNA. The fusion exhibited orientation-specific promoter activity in M. extorquens AM1rif but was expressed constitutively when the transcriptional fusion was located on the plasmid. However, correct regulation was restored when the construction was inserted in the M. extorquens AM1rif chromosome. This DNA fragment was shown to contain both the moxFJGI promoter and the sequences necessary in cis for its transcriptional regulation by methanol. Transcription from this promoter was studied in the M. extorquens AM1rif moxB mutant strains UV4rif and UV25rif, which have a pleiotropic phenotype with regard to the components of methanol oxidation. In these mutants, beta-galactosidase activity from the fusion was reduced to a level equal to that of the vector background when the fusion was present in both plasmid and chromosomal locations. Since both constitutive and methanol-inducible promoter activities were lost in the mutants, moxB appears to be required for transcription of the genes encoding the methanol dehydrogenase polypeptides. Images PMID:1624436

  15. Pharmacological disruption of the MID1/α4 interaction reduces mutant Huntingtin levels in primary neuronal cultures.

    PubMed

    Monteiro, Olivia; Chen, Changwei; Bingham, Ryan; Argyrou, Argyrides; Buxton, Rachel; Pancevac Jönsson, Christina; Jones, Emma; Bridges, Angela; Gatfield, Kelly; Krauß, Sybille; Lambert, Jeremy; Langston, Rosamund; Schweiger, Susann; Uings, Iain

    2018-04-23

    Expression of mutant Huntingtin (HTT) protein is central to the pathophysiology of Huntington's Disease (HD). The E3 ubiquitin ligase MID1 appears to have a key role in facilitating translation of the mutant HTT mRNA suggesting that interference with the function of this complex could be an attractive therapeutic approach. Here we describe a peptide that is able to disrupt the interaction between MID1 and the α4 protein, a regulatory subunit of protein phosphatase 2A (PP2A). By fusing this peptide to a sequence from the HIV-TAT protein we demonstrate that the peptide can disrupt the interaction within cells and show that this results in a decrease in levels of ribosomal S6 phosphorylation and HTT expression in cultures of cerebellar granule neurones derived from Hdh Q111/Q7 mice. This data serves to validate this pathway and paves the way for the discovery of small molecule inhibitors of this interaction as potential therapies for HD. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. In vitro production and antifungal activity of peptide ABP-dHC-cecropin A.

    PubMed

    Zhang, Jiaxin; Movahedi, Ali; Xu, Junjie; Wang, Mengyang; Wu, Xiaolong; Xu, Chen; Yin, Tongming; Zhuge, Qiang

    2015-04-10

    The antimicrobial peptide ABP-dHC-cecropin A is a small cationic peptide with potent activity against a wide range of bacterial species. Evidence of antifungal activity has also been suggested; however, testing of this peptide has been limited due to the low expression of cecropin proteins in Escherichia coli. To improve expression of this peptide in E. coli, ABP-dHC-cecropin A was cloned into a pSUMO vector and transformed into E. coli, resulting in the production of a pSUMO-ABP-dHC-cecropin A fusion protein. The soluble form of this protein was then purified by Ni-IDA chromatography, yielding a total of 496-mg protein per liter of fermentation culture. The SUMO-ABP-dHC-cecropin A fusion protein was then cleaved using a SUMO protease and re-purified by Ni-IDA chromatography, yielding a total of 158-mg recombinant ABP-dHC-cecropin A per liter of fermentation culture at a purity of ≥94%, the highest yield reported to date. Antifungal activity assays performed using this purified recombinant peptide revealed strong antifungal activity against both Candida albicans and Neurospora crassa, as well as Rhizopus, Fusarium, Alternaria, and Mucor species. Combined with previous analyses demonstrating strong antibacterial activity against a number of important bacterial pathogens, these results confirm the use of ABP-dHC-cecropin A as a broad-spectrum antimicrobial peptide, with significant therapeutic potential. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Engineering filamentous phage carriers to improve focusing of antibody responses against peptides.

    PubMed

    van Houten, Nienke E; Henry, Kevin A; Smith, George P; Scott, Jamie K

    2010-03-02

    The filamentous bacteriophage are highly immunogenic particles that can be used as carrier proteins for peptides and presumably other haptens and antigens. Our previous work demonstrated that the antibody response was better focused against a synthetic peptide if it was conjugated to phage as compared to the classical carrier, ovalbumin. We speculated that this was due, in part, to the relatively low surface complexity of the phage. Here, we further investigate the phage as an immunogenic carrier, and the effect reducing its surface complexity has on the antibody response against peptides that are either displayed as recombinant fusions to the phage coat or are chemically conjugated to it. Immunodominant regions of the minor coat protein, pIII, were removed from the phage surface by excising its N1 and N2 domains (Delta3 phage variant), whereas immunodominant epitopes of the major coat protein, pVIII, were altered by reducing the charge of its surface-exposed N-terminal residues (Delta8 phage variant). Immunization of mice revealed that the Delta3 variant was less immunogenic than wild-type (WT) phage, whereas the Delta8 variant was more immunogenic. The immunogenicity of two different peptides was tested in the context of the WT and Delta3 phage in two different forms: (i) as recombinant peptides fused to pVIII, and (ii) as synthetic peptides conjugated to the phage surface. One peptide (MD10) in its recombinant form produced a stronger anti-peptide antibody response fused to the WT carrier compared to the Delta3 phage carrier, and did not elicit a detectable anti-peptide response in its synthetic form conjugated to either phage carrier. This trend was reversed for a different peptide (4E10(L)), which did not produce a detectable anti-peptide antibody response as a recombinant fusion; yet, as a chemical conjugate to Delta3 phage, but not WT phage, it elicited a highly focused anti-peptide antibody response that exceeded the anti-carrier response by approximately

  18. Immunogenicity of peptides of measles virus origin and influence of adjuvants.

    PubMed

    Halassy, Beata; Mateljak, Sanja; Bouche, Fabienne B; Pütz, Mike M; Muller, Claude P; Frkanec, Ruza; Habjanec, Lidija; Tomasić, Jelka

    2006-01-12

    Epitope-based peptide antigens have been under development for protection against measles virus. The immunogenicity of five peptides composed of the same B cell epitope (BCE) (H236-250 of the measles virus hemagglutinin), and different T cell epitopes of measles virus fusion protein (F421-435, F256-270, F288-302) and nucleoprotein (NP335-345) was studied in mice (subcutaneous immunisation). The adjuvant effects of peptidoglycan monomer (PGM), Montanide ISA 720 and 206 were also investigated. Results showed basic differences in peptide immunogenicity that were consistent with already described structural differences. PGM elevated peptide-specific IgG when applied together with four of five tested peptides. A strong synergistic effect was observed after co-immunisation of mice with a mixture containing all five chimeric peptides in small and equal amounts. Results revealed for the first time that immunisation with several peptides having the common BCE generated significantly higher levels of both anti-peptide and anti-BCE IgG in comparison to those obtained after immunisation with a single peptide in much higher quantity. Further improvement of immune response was obtained after incorporation of such a peptide mixture into oil-based adjuvants.

  19. Analysis of the V2 Vasopressin Receptor (V2R) Mutations Causing Partial Nephrogenic Diabetes Insipidus Highlights a Sustainable Signaling by a Non-peptide V2R Agonist*

    PubMed Central

    Makita, Noriko; Sato, Tomohiko; Yajima-Shoji, Yuki; Sato, Junichiro; Manaka, Katsunori; Eda-Hashimoto, Makiko; Ootaki, Masanori; Matsumoto, Naoki; Nangaku, Masaomi; Iiri, Taroh

    2016-01-01

    Disease-causing mutations in G protein-coupled receptor (GPCR) genes, including the V2 vasopressin receptor (V2R) gene, often cause misfolded receptors, leading to a defect in plasma membrane trafficking. A novel V2R mutation, T273M, identified in a boy with partial nephrogenic diabetes insipidus (NDI), shows intracellular localization and partial defects similar to the two mutants we described previously (10). Although non-peptide V2R antagonists have been shown to rescue the membrane localization of V2R mutants, their level of functional rescue is weak. Interestingly, it has been reported that a non-peptide agonist, OPC51803, activates misfolded V2R mutants intracellularly without degradation, thus potentially serving as a therapeutic agent against NDI (14). In our current experiments, however, a peptide antagonist blocked arginine vasopressin (AVP)- or OPC51803-stimulated cAMP accumulation both in COS-7 and MDCK cells, suggesting that OPC51803 mainly stimulates cell surface V2R mutants. In addition, our analyses revealed that OPC51803 works not only as a non-peptide agonist that causes activation/β-arrestin-dependent desensitization of V2R mutants expressed at the plasma membrane but also as a pharmacochaperone that promotes the endoplasmic reticulum-retained mutant maturation and trafficking to the plasma membrane. The ratio of the pharmacochaperone effect to the desensitization effect likely correlates negatively with the residual function of the tested mutants, suggesting that OPC5 has a more favorable effect on the V2R mutants with a less residual function. We speculated that the canceling of the desensitization effect of OPC51803 by the pharmacochaperone effect after long-term treatment may produce sustainable signaling, and thus pharmacochaperone agonists such as OPC51803 may serve as promising therapeutics for NDI caused by misfolded V2R mutants. PMID:27601473

  20. HIPdb: a database of experimentally validated HIV inhibiting peptides.

    PubMed

    Qureshi, Abid; Thakur, Nishant; Kumar, Manoj

    2013-01-01

    Besides antiretroviral drugs, peptides have also demonstrated potential to inhibit the Human immunodeficiency virus (HIV). For example, T20 has been discovered to effectively block the HIV entry and was approved by the FDA as a novel anti-HIV peptide (AHP). We have collated all experimental information on AHPs at a single platform. HIPdb is a manually curated database of experimentally verified HIV inhibiting peptides targeting various steps or proteins involved in the life cycle of HIV e.g. fusion, integration, reverse transcription etc. This database provides experimental information of 981 peptides. These are of varying length obtained from natural as well as synthetic sources and tested on different cell lines. Important fields included are peptide sequence, length, source, target, cell line, inhibition/IC(50), assay and reference. The database provides user friendly browse, search, sort and filter options. It also contains useful services like BLAST and 'Map' for alignment with user provided sequences. In addition, predicted structure and physicochemical properties of the peptides are also included. HIPdb database is freely available at http://crdd.osdd.net/servers/hipdb. Comprehensive information of this database will be helpful in selecting/designing effective anti-HIV peptides. Thus it may prove a useful resource to researchers for peptide based therapeutics development.

  1. Dynamic Assembly of Brambleberry Mediates Nuclear Envelope Fusion during Early Development

    PubMed Central

    Abrams, Elliott W.; Zhang, Hong; Marlow, Florence L.; Kapp, Lee; Lu, Sumei; Mullins, Mary C.

    2012-01-01

    Summary To accommodate the large cells following zygote formation, early blastomeres employ modified cell divisions. Karyomeres are one such modification, a mitotic intermediate wherein individual chromatin masses are surrounded by nuclear envelope, which then fuse to form a single mononucleus. We identified brambleberry, a maternal-effect zebrafish mutant that disrupts karyomere fusion resulting in formation of multiple micronuclei. brambleberry is a previously unannotated gene homologous to Kar5p, which participates in nuclear fusion in yeast. We demonstrate that Brambleberry is required for pronuclear fusion following fertilization in zebrafish. As karyomeres form, Brambleberry localizes to the nuclear envelope with prominent puncta evident near karyomere-karyomere interfaces corresponding to membrane fusion sites. Our studies identify the first factor acting in karyomere fusion and suggest that specialized proteins are necessary for proper nuclear division in large dividing blastomeres. PMID:22863006

  2. Expression of CLAVATA3 fusions indicates rapid intracellular processing and a role of ERAD.

    PubMed

    De Marchis, Francesca; Colanero, Sara; Klein, Eva M; Mainieri, Davide; Prota, Viviana M; Bellucci, Michele; Pagliuca, Giampiero; Zironi, Elisa; Gazzotti, Teresa; Vitale, Alessandro; Pompa, Andrea

    2018-06-01

    The 12 amino acid peptide derived from the Arabidopsis soluble secretory protein CLAVATA3 (CLV3) acts at the cell surface in a signalling system that regulates the size of apical meristems. The subcellular pathway involved in releasing the peptide from its precursor is unknown. We show that a CLV3-GFP fusion expressed in transfected tobacco protoplasts or transgenic tobacco plants has very short intracellular half-life that cannot be extended by the secretory traffic inhibitors brefeldin A and wortmannin. The fusion is biologically active, since the incubation medium of protoplasts from CLV3-GFP-expressing tobacco contains the CLV3 peptide and inhibits root growth. The rapid disappearance of intact CLV3-GFP requires the signal peptide and is inhibited by the proteasome inhibitor MG132 or coexpression with a mutated CDC48 that inhibits endoplasmic reticulum-associated protein degradation (ERAD). The synthesis of CLV3-GFP is specifically supported by the endoplasmic reticulum chaperone endoplasmin in an in vivo assay. Our results indicate that processing of CLV3 starts intracellularly in an early compartment of the secretory pathway and that ERAD could play a regulatory or direct role in the active peptide synthesis. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Evidence for novel beta-sheet structures in Iowa mutant beta-amyloid fibrils.

    PubMed

    Tycko, Robert; Sciarretta, Kimberly L; Orgel, Joseph P R O; Meredith, Stephen C

    2009-07-07

    Asp23-to-Asn mutation within the coding sequence of beta-amyloid, called the Iowa mutation, is associated with early onset, familial Alzheimer's disease and cerebral amyloid angiopathy, in which patients develop neuritic plaques and massive vascular deposition predominantly of the mutant peptide. We examined the mutant peptide, D23N-Abeta40, by electron microscopy, X-ray diffraction, and solid-state NMR spectroscopy. D23N-Abeta40 forms fibrils considerably faster than the wild-type peptide (k = 3.77 x 10(-3) min(-1) and 1.07 x 10(-4) min(-1) for D23N-Abeta40 and the wild-type peptide WT-Abeta40, respectively) and without a lag phase. Electron microscopy shows that D23N-Abeta40 forms fibrils with multiple morphologies. X-ray fiber diffraction shows a cross-beta pattern, with a sharp reflection at 4.7 A and a broad reflection at 9.4 A, which is notably smaller than the value for WT-Abeta40 fibrils (10.4 A). Solid-state NMR measurements indicate molecular level polymorphism of the fibrils, with only a minority of D23N-Abeta40 fibrils containing the in-register, parallel beta-sheet structure commonly found in WT-Abeta40 fibrils and most other amyloid fibrils. Antiparallel beta-sheet structures in the majority of fibrils are indicated by measurements of intermolecular distances through (13)C-(13)C and (15)N-(13)C dipole-dipole couplings. An intriguing possibility exists that there is a relationship between the aberrant structure of D23N-Abeta40 fibrils and the unusual vasculotropic clinical picture in these patients.

  4. Evidence for Novel β-Sheet Structures in Iowa Mutant β-Amyloid Fibrils†

    PubMed Central

    Tycko, Robert; Sciarretta, Kimberly L.; Orgel, Joseph P. R. O.; Meredith, Stephen C.

    2009-01-01

    Asp23-to-Asn mutation within the coding sequence of β-amyloid, called the Iowa mutation, is associated with early onset, familial Alzheimer’s disease and cerebral amyloid angiopathy, in which patients develop neuritic plaques and massive vascular deposition predominantly of the mutant peptide. We examined the mutant peptide, D23N-Aβ40, by electron microscopy, X-ray diffraction, and solid-state NMR spectroscopy. D23N-Aβ40 forms fibrils considerably faster than the wild-type peptide (k = 3.77 × 10-3 min-1 and 1.07 × 10-4 min-1 for D23N-Aβ40 and the wild-type peptide WT-Aβ40, respectively) and without a lag phase. Electron microscopy shows that D23N-Aβ40 forms fibrils with multiple morphologies. X-ray fiber diffraction shows a cross-β pattern, with a sharp reflection at 4.7 Å and a broad reflection at 9.4 Å, which is notably smaller than the value for WT-Aβ40 fibrils (10.4 Å). Solid-state NMR measurements indicate molecular level polymorphism of the fibrils, with only a minority of D23N-Aβ40 fibrils containing the in-register, parallel β-sheet structure commonly found in WT-Aβ40 fibrils and most other amyloid fibrils. Antiparallel β-sheet structures in the majority of fibrils are indicated by measurements of intermolecular distances through 13C-13C and 15N-13C dipole-dipole couplings. An intriguing possibility exists that there is a relationship between the aberrant structure of D23N-Aβ40 fibrils and the unusual vasculotropic clinical picture in these patients. PMID:19358576

  5. Fluorometric assay for phenotypic differentiation of drug-resistant HIV mutants

    PubMed Central

    Zhu, Qinchang; Yu, Zhiqiang; Kabashima, Tsutomu; Yin, Sheng; Dragusha, Shpend; El-Mahdy, Ahmed F. M.; Ejupi, Valon; Shibata, Takayuki; Kai, Masaaki

    2015-01-01

    Convenient drug-resistance testing of viral mutants is indispensable to effective treatment of viral infection. We developed a novel fluorometric assay for phenotypic differentiation of drug-resistant mutants of human immunodeficiency virus-I protease (HIV-PR) which uses enzymatic and peptide-specific fluorescence (FL) reactions and high-performance liquid chromatography (HPLC) of three HIV-PR substrates. This assay protocol enables use of non-purified enzyme sources and multiple substrates for the enzymatic reaction. In this study, susceptibility of HIV mutations to drugs was evaluated by selective formation of three FL products after the enzymatic HIV-PR reaction. This proof-of-concept study indicates that the present HPLC-FL method could be an alternative to current phenotypic assays for the evaluation of HIV drug resistance. PMID:25988960

  6. Computational modeling and functional analysis of Herpes simplex virus type-1 thymidine kinase and Escherichia coli cytosine deaminase fusion protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jufeng; Wang, Zhanli; Wei, Fang

    2007-08-17

    Herpes simplex virus type-1 thymidine kinase (HSV-1TK) and Escherichia coli cytosine deaminase (CD) fusion protein was designed using InsightII software. The structural rationality of the fusion proteins incorporating a series of flexible linker peptide was analyzed, and a suitable linker peptide was chosen for further investigated. The recombinant plasmid containing the coding regions of HSV-1TK and CD cDNA connected by this linker peptide coding sequence was generated and subsequently transfected into the human embryonic kidney 293 cells (HEK293). The Western blotting indicated that the recombinant fusion protein existed as a dimer with a molecular weight of approximately 90 kDa. Themore » toxicity of the prodrug on the recombinant plasmid-transfected human lung cancer cell line NCIH460 was evaluated, which showed that TKglyCD-expressing cells conferred upon cells prodrug sensitivities equivalent to that observed for each enzyme independently. Most noteworthy, cytotoxicity could be enhanced by concurrently treating TKglyCD-expressing cells with prodrugs GCV and 5-FC. The results indicate that we have successfully constructed a HSV-1TKglyCD fusion gene which might have a potential application for cancer gene therapy.« less

  7. Development and characterization of a recombinant, hypoallergenic, peptide-based vaccine for grass pollen allergy.

    PubMed

    Focke-Tejkl, Margarete; Weber, Milena; Niespodziana, Katarzyna; Neubauer, Angela; Huber, Hans; Henning, Rainer; Stegfellner, Gottfried; Maderegger, Bernhard; Hauer, Martina; Stolz, Frank; Niederberger, Verena; Marth, Katharina; Eckl-Dorna, Julia; Weiss, Richard; Thalhamer, Josef; Blatt, Katharina; Valent, Peter; Valenta, Rudolf

    2015-05-01

    Grass pollen is one of the most important sources of respiratory allergies worldwide. This study describes the development of a grass pollen allergy vaccine based on recombinant hypoallergenic derivatives of the major timothy grass pollen allergens Phl p 1, Phl p 2, Phl p 5, and Phl p 6 by using a peptide-carrier approach. Fusion proteins consisting of nonallergenic peptides from the 4 major timothy grass pollen allergens and the PreS protein from hepatitis B virus as a carrier were expressed in Escherichia coli and purified by means of chromatography. Recombinant PreS fusion proteins were tested for allergenic activity and T-cell activation by means of IgE serology, basophil activation testing, T-cell proliferation assays, and xMAP Luminex technology in patients with grass pollen allergy. Rabbits were immunized with PreS fusion proteins to characterize their immunogenicity. Ten hypoallergenic PreS fusion proteins were constructed, expressed, and purified. According to immunogenicity and induction of allergen-specific blocking IgG antibodies, 4 hypoallergenic fusion proteins (BM321, BM322, BM325, and BM326) representing Phl p 1, Phl p 2, Phl p 5, and Phl p 6 were included as components in the vaccine termed BM32. BM321, BM322, BM325, and BM326 showed almost completely abolished allergenic activity and induced significantly reduced T-cell proliferation and release of proinflammatory cytokines in patients' PBMCs compared with grass pollen allergens. On immunization, they induced allergen-specific IgG antibodies, which inhibited patients' IgE binding to all 4 major allergens of grass pollen, as well as allergen-induced basophil activation. A recombinant hypoallergenic grass pollen allergy vaccine (BM32) consisting of 4 recombinant PreS-fused grass pollen allergen peptides was developed for safe immunotherapy of grass pollen allergy. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.

    PubMed

    Gao, Qingsong; Liang, Wen-Wei; Foltz, Steven M; Mutharasu, Gnanavel; Jayasinghe, Reyka G; Cao, Song; Liao, Wen-Wei; Reynolds, Sheila M; Wyczalkowski, Matthew A; Yao, Lijun; Yu, Lihua; Sun, Sam Q; Chen, Ken; Lazar, Alexander J; Fields, Ryan C; Wendl, Michael C; Van Tine, Brian A; Vij, Ravi; Chen, Feng; Nykter, Matti; Shmulevich, Ilya; Ding, Li

    2018-04-03

    Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. A soluble form of Epstein-Barr virus gH/gL inhibits EBV-induced membrane fusion and does not function in fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, Cynthia L.; Connolly, Sarah A.; Chen, Jia

    We investigated whether soluble EBV gH/gL (sgH/gL) functions in fusion and made a series of truncations of gH/gL domains based on the gH/gL crystal structure. We found sgH/gL failed to mediate cell-cell fusion both when co-expressed with the other entry glycoproteins and when added exogenously to fusion assays. Interestingly, sgH/gL inhibited cell-cell fusion in a dose dependent manner when co-expressed. sgH/gL from HSV was unable to inhibit EBV fusion, suggesting the inhibition was specific to EBV gH/gL. sgH/gL stably binds gp42, but not gB nor gH/gL. The domain mutants, DI/gL, DI-II/gL and DI-II-III/gL were unable to bind gp42. Instead, DI-II/gL,more » DI-II-III/gL and sgH/gL but not DI/gL decreased the expression of gp42, resulting in decreased overall fusion. Overall, our results suggest that domain IV may be required for proper folding and the transmembrane domain and cytoplasmic tail of EBV gH/gL are required for the most efficient fusion.« less

  10. Spring-Loaded Model Revisited: Paramyxovirus Fusion Requires Engagement of a Receptor Binding Protein beyond Initial Triggering of the Fusion Protein▿

    PubMed Central

    Porotto, Matteo; DeVito, Ilaria; Palmer, Samantha G.; Jurgens, Eric M.; Yee, Jia L.; Yokoyama, Christine C.; Pessi, Antonello; Moscona, Anne

    2011-01-01

    During paramyxovirus entry into a host cell, receptor engagement by a specialized binding protein triggers conformational changes in the adjacent fusion protein (F), leading to fusion between the viral and cell membranes. According to the existing paradigm of paramyxovirus membrane fusion, the initial activation of F by the receptor binding protein sets off a spring-loaded mechanism whereby the F protein progresses independently through the subsequent steps in the fusion process, ending in membrane merger. For human parainfluenza virus type 3 (HPIV3), the receptor binding protein (hemagglutinin-neuraminidase [HN]) has three functions: receptor binding, receptor cleaving, and activating F. We report that continuous receptor engagement by HN activates F to advance through the series of structural rearrangements required for fusion. In contrast to the prevailing model, the role of HN-receptor engagement in the fusion process is required beyond an initiating step, i.e., it is still required even after the insertion of the fusion peptide into the target cell membrane, enabling F to mediate membrane merger. We also report that for Nipah virus, whose receptor binding protein has no receptor-cleaving activity, the continuous stimulation of the F protein by a receptor-engaged binding protein is key for fusion. We suggest a general model for paramyxovirus fusion activation in which receptor engagement plays an active role in F activation, and the continued engagement of the receptor binding protein is essential to F protein function until the onset of membrane merger. This model has broad implications for the mechanism of paramyxovirus fusion and for strategies to prevent viral entry. PMID:21976650

  11. Spring-loaded model revisited: paramyxovirus fusion requires engagement of a receptor binding protein beyond initial triggering of the fusion protein.

    PubMed

    Porotto, Matteo; Devito, Ilaria; Palmer, Samantha G; Jurgens, Eric M; Yee, Jia L; Yokoyama, Christine C; Pessi, Antonello; Moscona, Anne

    2011-12-01

    During paramyxovirus entry into a host cell, receptor engagement by a specialized binding protein triggers conformational changes in the adjacent fusion protein (F), leading to fusion between the viral and cell membranes. According to the existing paradigm of paramyxovirus membrane fusion, the initial activation of F by the receptor binding protein sets off a spring-loaded mechanism whereby the F protein progresses independently through the subsequent steps in the fusion process, ending in membrane merger. For human parainfluenza virus type 3 (HPIV3), the receptor binding protein (hemagglutinin-neuraminidase [HN]) has three functions: receptor binding, receptor cleaving, and activating F. We report that continuous receptor engagement by HN activates F to advance through the series of structural rearrangements required for fusion. In contrast to the prevailing model, the role of HN-receptor engagement in the fusion process is required beyond an initiating step, i.e., it is still required even after the insertion of the fusion peptide into the target cell membrane, enabling F to mediate membrane merger. We also report that for Nipah virus, whose receptor binding protein has no receptor-cleaving activity, the continuous stimulation of the F protein by a receptor-engaged binding protein is key for fusion. We suggest a general model for paramyxovirus fusion activation in which receptor engagement plays an active role in F activation, and the continued engagement of the receptor binding protein is essential to F protein function until the onset of membrane merger. This model has broad implications for the mechanism of paramyxovirus fusion and for strategies to prevent viral entry.

  12. In vitro and in vivo delivery of therapeutic proteins using cell penetrating peptides.

    PubMed

    Bolhassani, Azam; Jafarzade, Behnaz Sadat; Mardani, Golnaz

    2017-01-01

    The failure of proteins to penetrate mammalian cells or target tumor cells restricts their value as therapeutic tools in a variety of diseases such as cancers. Recently, protein transduction domains (PTDs) or cell penetrating peptides (CPPs) have been shown to promote the delivery of therapeutic proteins or peptides into live cells. The successful delivery of proteins mainly depends on their physicochemical properties. Although, linear cell penetrating peptides are one of the most effective delivery vehicles; but currently, cyclic CPPs has been developed to potently transport bioactive full-length proteins into cells. Up to now, several small protein transduction domains from viral proteins including Tat or VP22 could be fused to other peptides or proteins to entry them in various cell types at a dose-dependent approach. A major disadvantage of PTD-fusion proteins is primary uptake into endosomal vesicles leading to inefficient release of the fusion proteins into the cytosol. Recently, non-covalent complex formation (Chariot) between proteins and CPPs has attracted a special interest to overcome some delivery limitations (e.g., toxicity). Many preclinical and clinical trials of CPP-based delivery are currently under evaluation. Generally, development of more efficient protein transduction domains would significantly increase the potency of protein therapeutics. Moreover, the synergistic or combined effects of CPPs with other delivery systems for protein/peptide drug delivery would promote their therapeutic effects in cancer and other diseases. In this review, we will describe the functions and implications of CPPs for delivering the therapeutic proteins or peptides in preclinical and clinical studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The role of antimicrobial peptides in animal defenses

    NASA Astrophysics Data System (ADS)

    Hancock, Robert E. W.; Scott, Monisha G.

    2000-08-01

    It is becoming clear that the cationic antimicrobial peptides are an important component of the innate defenses of all species of life. Such peptides can be constitutively expressed or induced by bacteria or their products. The best peptides have good activities vs. a broad range of bacterial strains, including antibiotic-resistant isolates. They kill very rapidly, do not easily select resistant mutants, are synergistic with conventional antibiotics, other peptides, and lysozyme, and are able to kill bacteria in animal models. It is known that bacterial infections, especially when treated with antibiotics, can lead to the release of bacterial products such as lipopolysaccharide (LPS) and lipoteichoic acid, resulting in potentially lethal sepsis. In contrast to antibiotics, the peptides actually prevent cytokine induction by bacterial products in tissue culture and human blood, and they block the onset of sepsis in mouse models of endotoxemia. Consistent with this, transcriptional gene array experiments using a macrophage cell line demonstrated that a model peptide, CEMA, blocks the expression of many genes whose transcription was induced by LPS. The peptides do this in part by blocking LPS interaction with the serum protein LBP. In addition, CEMA itself has a direct effect on macrophage gene expression. Because cationic antimicrobial peptides are induced by LPS and are able to dampen the septic response of animal cells to LPS, we propose that, in addition to their role in direct and lysozyme-assisted killing of microbes, they have a role in feedback regulation of cytokine responses. We are currently developing variant peptides as therapeutics against antibiotic-resistant infections.

  14. REDOR solid-state NMR as a probe of the membrane locations of membrane-associated peptides and proteins

    NASA Astrophysics Data System (ADS)

    Jia, Lihui; Liang, Shuang; Sackett, Kelly; Xie, Li; Ghosh, Ujjayini; Weliky, David P.

    2015-04-01

    Rotational-echo double-resonance (REDOR) solid-state NMR is applied to probe the membrane locations of specific residues of membrane proteins. Couplings are measured between protein 13CO nuclei and membrane lipid or cholesterol 2H and 31P nuclei. Specific 13CO labeling is used to enable unambiguous assignment and 2H labeling covers a small region of the lipid or cholesterol molecule. The 13CO-31P and 13CO-2H REDOR respectively probe proximity to the membrane headgroup region and proximity to specific insertion depths within the membrane hydrocarbon core. One strength of the REDOR approach is use of chemically-native proteins and membrane components. The conventional REDOR pulse sequence with 100 kHz 2H π pulses is robust with respect to the 2H quadrupolar anisotropy. The 2H T1's are comparable to the longer dephasing times (τ's) and this leads to exponential rather than sigmoidal REDOR buildups. The 13CO-2H buildups are well-fitted to A × (1 - e-γτ) where A and γ are fitting parameters that are correlated as the fraction of molecules (A) with effective 13CO-2H coupling d = 3γ/2. The REDOR approach is applied to probe the membrane locations of the "fusion peptide" regions of the HIV gp41 and influenza virus hemagglutinin proteins which both catalyze joining of the viral and host cell membranes during initial infection of the cell. The HIV fusion peptide forms an intermolecular antiparallel β sheet and the REDOR data support major deeply-inserted and minor shallowly-inserted molecular populations. A significant fraction of the influenza fusion peptide molecules form a tight hairpin with antiparallel N- and C-α helices and the REDOR data support a single peptide population with a deeply-inserted N-helix. The shared feature of deep insertion of the β and α fusion peptide structures may be relevant for fusion catalysis via the resultant local perturbation of the membrane bilayer. Future applications of the REDOR approach may include samples that contain cell

  15. Dynamic assembly of brambleberry mediates nuclear envelope fusion during early development.

    PubMed

    Abrams, Elliott W; Zhang, Hong; Marlow, Florence L; Kapp, Lee; Lu, Sumei; Mullins, Mary C

    2012-08-03

    To accommodate the large cells following zygote formation, early blastomeres employ modified cell divisions. Karyomeres are one such modification, mitotic intermediates wherein individual chromatin masses are surrounded by nuclear envelope; the karyomeres then fuse to form a single mononucleus. We identified brambleberry, a maternal-effect zebrafish mutant that disrupts karyomere fusion, resulting in formation of multiple micronuclei. As karyomeres form, Brambleberry protein localizes to the nuclear envelope, with prominent puncta evident near karyomere-karyomere interfaces corresponding to membrane fusion sites. brambleberry corresponds to an unannotated gene with similarity to Kar5p, a protein that participates in nuclear fusion in yeast. We also demonstrate that Brambleberry is required for pronuclear fusion following fertilization in zebrafish. Our studies provide insight into the machinery required for karyomere fusion and suggest that specialized proteins are necessary for proper nuclear division in large dividing blastomeres. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Salmonella DNA Adenine Methylase Mutants Confer Cross-Protective Immunity

    PubMed Central

    Heithoff, Douglas M.; Enioutina, Elena Y.; Daynes, Raymond A.; Sinsheimer, Robert L.; Low, David A.; Mahan, Michael J.

    2001-01-01

    Salmonella isolates that lack or overproduce DNA adenine methylase (Dam) elicited a cross-protective immune response to different Salmonella serovars. The protection afforded by the Salmonella enterica serovar Typhimurium Dam vaccine was greater than that elicited in mice that survived a virulent infection. S. enterica serovar Typhimurium Dam mutant strains exhibited enhanced sensitivity to mediators of innate immunity such as antimicrobial peptides, bile salts, and hydrogen peroxide. Also, S. enterica serovar Typhimurium Dam− vaccines were not immunosuppressive; unlike wild-type vaccines, they failed to induce increased nitric oxide levels and permitted a subsequent robust humoral response to diptheria toxoid antigen in infected mice. Dam mutant strains exhibited a low-grade persistence which, coupled with the nonimmunosuppression and the ectopic protein expression caused by altered levels of Dam, may provide an expanded source of potential antigens in vaccinated hosts. PMID:11598044

  17. Differences in signal peptide processing between GP3 glycoproteins of Arteriviridae.

    PubMed

    Zhang, Minze; Veit, Michael

    2018-04-01

    We reported previously that carbohydrate attachment to an overlapping glycosylation site adjacent to the signal peptide of GP3 from equine arteritis virus (EAV) prevents cleavage. Here we investigated whether this unusual processing scheme is a feature of GP3s of other Arteriviridae, which all contain a glycosylation site at a similar position. Expression of GP3 from type-1 and type-2 porcine reproductive and respiratory syndrome virus (PRRSV) and from lactate dehydrogenase-elevating virus (LDV) revealed that the first glycosylation site is used, but has no effect on signal peptide cleavage. Comparison of the SDS-PAGE mobility of deglycosylated GP3 from PRRSV and LDV with mutants having or not having a signal peptide showed that GP3´s signal peptide is cleaved. Swapping the signal peptides between GP3 of EAV and PRRSV revealed that the information for co-translational processing is not encoded in the signal peptide, but in the remaining part of GP3. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Direct Peptide Interaction with Surface Glycosaminoglycans Contributes to the Cell Penetration of Maurocalcine*

    PubMed Central

    Ram, Narendra; Aroui, Sonia; Jaumain, Emilie; Bichraoui, Hicham; Mabrouk, Kamel; Ronjat, Michel; Lortat-Jacob, Hugues; De Waard, Michel

    2008-01-01

    Maurocalcine (MCa), initially identified from a tunisian scorpion venom, defines a new member of the family of cell penetrating peptides by its ability to efficiently cross the plasma membrane. The initiating mechanistic step required for the cell translocation of a cell penetrating peptide implicates its binding onto cell surface components such as membrane lipids and/or heparan sulfate proteoglycans. Here we characterized the interaction of wild-type MCa and MCa K20A, a mutant analogue with reduced cell-penetration efficiency, with heparin (HP) and heparan sulfates (HS) through surface plasma resonance. HP and HS bind both to MCa, indicating that heparan sulfate proteoglycans may represent an important entry route of the peptide. This is confirmed by the fact that (i) both compounds bind with reduced affinity to MCa K20A and (ii) the cell penetration of wild-type or mutant MCa coupled to fluorescent streptavidin is reduced by about 50% in mutant Chinese hamster ovary cell lines lacking either all glycosaminoglycans (GAGs) or just HS. Incubating MCa with soluble HS, HP, or chondroitin sulfates also inhibits the cell penetration of MCa-streptavidin complexes. Analyses of the cell distributions of MCa/streptavidin in several Chinese hamster ovary cell lines show that the distribution of the complex coincides with the endosomal marker Lyso-Tracker red and is not affected by the absence of GAGs. The distribution of MCa/streptavidin is not coincident with that of transferrin receptors nor affected by a dominant-negative dynamin 2 K44A mutant, an inhibitor of clathrin-mediated endocytosis. However, entry of the complex is greatly diminished by amiloride, indicating the importance of macropinocytosis in MCa/streptavidin entry. It is concluded that (i) interaction of MCa with GAGs quantitatively improves the cell penetration of MCa, and (ii) GAG-dependent and -independent MCa penetration rely similarly on the macropinocytosis pathway. PMID:18603532

  19. The Flocculating Cationic Polypetide from Moringa oleifera Seeds Damages Bacterial Cell Membranes by Causing Membrane Fusion.

    PubMed

    Shebek, Kevin; Schantz, Allen B; Sines, Ian; Lauser, Kathleen; Velegol, Stephanie; Kumar, Manish

    2015-04-21

    A cationic protein isolated from the seeds of the Moringa oleifera tree has been extensively studied for use in water treatment in developing countries and has been proposed for use in antimicrobial and therapeutic applications. However, the molecular basis for the antimicrobial action of this peptide, Moringa oleifera cationic protein (MOCP), has not been previously elucidated. We demonstrate here that a dominant mechanism of MOCP antimicrobial activity is membrane fusion. We used a combination of cryogenic electron microscopy (cryo-EM) and fluorescence assays to observe and study the kinetics of fusion of membranes in liposomes representing model microbial cells. We also conducted cryo-EM experiments on E. coli cells where MOCP was seen to fuse the inner and outer membranes. Coarse-grained molecular dynamics simulations of membrane vesicles with MOCP molecules were used to elucidate steps in peptide adsorption, stalk formation, and fusion between membranes.

  20. Live imaging of mouse secondary palate fusion

    PubMed Central

    Kim, Seungil; Prochazka, Jan; Bush, Jeffrey O.

    2017-01-01

    LONG ABSTRACT The fusion of the secondary palatal shelves to form the intact secondary palate is a key process in mammalian development and its disruption can lead to cleft secondary palate, a common congenital anomaly in humans. Secondary palate fusion has been extensively studied leading to several proposed cellular mechanisms that may mediate this process. However, these studies have been mostly performed on fixed embryonic tissues at progressive timepoints during development or in fixed explant cultures analyzed at static timepoints. Static analysis is limited for the analysis of dynamic morphogenetic processes such a palate fusion and what types of dynamic cellular behaviors mediate palatal fusion is incompletely understood. Here we describe a protocol for live imaging of ex vivo secondary palate fusion in mouse embryos. To examine cellular behaviors of palate fusion, epithelial-specific Keratin14-cre was used to label palate epithelial cells in ROSA26-mTmGflox reporter embryos. To visualize filamentous actin, Lifeact-mRFPruby reporter mice were used. Live imaging of secondary palate fusion was performed by dissecting recently-adhered secondary palatal shelves of embryonic day (E) 14.5 stage embryos and culturing in agarose-containing media on a glass bottom dish to enable imaging with an inverted confocal microscope. Using this method, we have detected a variety of novel cellular behaviors during secondary palate fusion. An appreciation of how distinct cell behaviors are coordinated in space and time greatly contributes to our understanding of this dynamic morphogenetic process. This protocol can be applied to mutant mouse lines, or cultures treated with pharmacological inhibitors to further advance understanding of how secondary palate fusion is controlled. PMID:28784960

  1. Orally active-targeted drug delivery systems for proteins and peptides.

    PubMed

    Li, Xiuying; Yu, Miaorong; Fan, Weiwei; Gan, Yong; Hovgaard, Lars; Yang, Mingshi

    2014-09-01

    In the past decade, extensive efforts have been devoted to designing 'active targeted' drug delivery systems (ATDDS) to improve oral absorption of proteins and peptides. Such ATDDS enhance cellular internalization and permeability of proteins and peptides via molecular recognition processes such as ligand-receptor or antigen-antibody interaction, and thus enhance drug absorption. This review focuses on recent advances with orally ATDDS, including ligand-protein conjugates, recombinant ligand-protein fusion proteins and ligand-modified carriers. In addition to traditional intestinal active transport systems of substrates and their corresponding receptors, transporters and carriers, new targets such as intercellular adhesion molecule-1 and β-integrin are also discussed. ATDDS can improve oral absorption of proteins and peptides. However, currently, no clinical studies on ATDDS for proteins and peptides are underway, perhaps due to the complexity and limited knowledge of transport mechanisms. Therefore, more research is warranted to optimize ATDDS efficiency.

  2. Spontaneous adsorption of coiled-coil model peptides K and E to a mixed lipid bilayer.

    PubMed

    Pluhackova, Kristyna; Wassenaar, Tsjerk A; Kirsch, Sonja; Böckmann, Rainer A

    2015-03-26

    A molecular description of the lipid-protein interactions underlying the adsorption of proteins to membranes is crucial for understanding, for example, the specificity of adsorption or the binding strength of a protein to a bilayer, or for characterizing protein-induced changes of membrane properties. In this paper, we extend an automated in silico assay (DAFT) for binding studies and apply it to characterize the adsorption of the model fusion peptides E and K to a mixed phospholipid/cholesterol membrane using coarse-grained molecular dynamics simulations. In addition, we couple the coarse-grained protocol to reverse transformation to atomistic resolution, thereby allowing to study molecular interactions with high detail. The experimentally observed differential binding of the peptides E and K to membranes, as well as the increased binding affinity of helical over unstructered peptides, could be well reproduced using the polarizable Martini coarse-grained (CG) force field. Binding to neutral membranes is shown to be dominated by initial binding of the positively charged N-terminus to the phospholipid headgroup region, followed by membrane surface-aligned insertion of the peptide at the interface between the hydrophobic core of the membrane and its polar headgroup region. Both coarse-grained and atomistic simulations confirm a before hypothesized snorkeling of lysine side chains for the membrane-bound state of the peptide K. Cholesterol was found to be enriched in peptide vicinity, which is probably of importance for the mechanism of membrane fusion. The applied sequential multiscale method, using coarse-grained simulations for the slow adsorption process of peptides to membranes followed by backward transformation to atomistic detail and subsequent atomistic simulations of the preformed peptide-lipid complexes, is shown to be a versatile approach to study the interactions of peptides or proteins with biomembranes.

  3. Regulation of Sleep by Insulin-like Peptide System in Drosophila melanogaster

    PubMed Central

    Cong, Xiaona; Wang, Haili; Liu, Zhenxing; He, Chunxia; An, Chunju; Zhao, Zhangwu

    2015-01-01

    Study Objectives: Most organisms have behavioral and physiological circadian rhythms, which are controlled by an endogenous clock. Although genetic analysis has revealed the intracellular mechanism of the circadian clock, the manner in which this clock communicates its temporal information to produce systemic regulation is still largely unknown. Design: Sleep behavior was measured using the Drosophila Activity Monitoring System (DAMS) monitor under a 12 h light:12 h dark cycle and constant darkness (DD), and 5 min without recorded activity were defined as a bout of sleep. Results: Here we show that Drosophila insulin-like peptides (DILPs) and their receptor (DInR) regulate sleep behavior. All mutants of the seven dilps and the mutant of their receptor exhibit decreases of total sleep except dilp4 mutants, whereas upregulation of DILP and DInR in the nervous system led to increased sleep. Histological analysis identified four previously unidentified neurons expressing DILP: D1, P1, L1, and L2, of which L1 and L2 belong to the LNd and LNv clock neurons that separately regulate different times of sleep. In addition, dilp2 levels significantly decrease when flies were fasted, which is consistent with a previous report that starvation inhibits sleep, further indicating that the dilp system is involved in sleep regulation. Conclusion: Taken together, the results indicate that the Drosophila insulin-like peptide system is a crucial regulator of sleep. Citation: Cong X, Wang H, Liu Z, He C, An C, Zhao Z. Regulation of sleep by insulin-like peptide system in Drosophila melanogaster. SLEEP 2015;38(7):1075–1083. PMID:25581915

  4. The Multifaceted Role of SNARE Proteins in Membrane Fusion

    PubMed Central

    Han, Jing; Pluhackova, Kristyna; Böckmann, Rainer A.

    2017-01-01

    Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined. PMID:28163686

  5. The Multifaceted Role of SNARE Proteins in Membrane Fusion.

    PubMed

    Han, Jing; Pluhackova, Kristyna; Böckmann, Rainer A

    2017-01-01

    Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined.

  6. Free energy landscapes of a highly structured β-hairpin peptide and its single mutant

    NASA Astrophysics Data System (ADS)

    Kim, Eunae; Yang, Changwon; Jang, Soonmin; Pak, Youngshang

    2008-10-01

    We investigated the free energy landscapes of a highly structured β-hairpin peptide (MBH12) and a less structured peptide with a single mutation of Tyr6 to Asp6 (MBH10). For the free energy mapping, starting from an extended conformation, the replica exchange molecular dynamic simulations for two β-hairpins were performed using a modified version of an all-atom force field employing an implicit solvation (param99MOD5/GBSA). With the present simulation approach, we demonstrated that detailed stability changes associated with the sequence modification from MBH12 to MBH10 are quantitatively well predicted at the all-atom level.

  7. Ensemble characterization of an intrinsically disordered FG-Nup peptide and its F>A mutant in DMSO-d6.

    PubMed

    Reid, Korey M; Sunanda, Punnepalli; Raghothama, S; Krishnan, V V

    2017-11-01

    Intrinsically disordered proteins (IDP) lack a well-defined 3D-structure under physiological conditions, yet, the inherent disorder represented by an ensemble of conformation plays a critical role in many cellular and regulatory processes. Nucleoporins, or Nups, are the proteins found in the nuclear pore complex (NPC). The central pore of the NPC is occupied by Nups, which have phenylalanine-glycine domain repeats and are intrinsically disordered, and therefore are termed FG-Nups. These FG-domain repeats exhibit differing cohesiveness character and differ from least (FG) to most (GLFG) cohesive. The designed FG-Nup is a 25 AA model peptide containing a noncohesive FG-motif flanked by two cohesive GLFG-motifs (WT peptide). Complete NMR-based ensemble characterization of this peptide along with a control peptide with an F>A substitution (MU peptide) are discussed. Ensemble characterization of the NMR-determined models suggests that both the peptides do not have consistent secondary structures and continue to be disordered. Nonetheless, the role of cohesive elements mediated by the GLFG motifs is evident in the WT ensemble of structures that are more compact than the MU peptide. The approach presented here allows an alternate way to investigate the specific roles of distinct amino acid motifs that translate into the long-range organization of the ensemble of structures and in general on the nature of IDPs. © 2017 Wiley Periodicals, Inc.

  8. Phage display for generating peptide reagents.

    PubMed

    Brigati, Jennifer R; Samoylova, Tatiana I; Jayanna, Prashanth K; Petrenko, Valery A

    2008-02-01

    This unit presents detailed protocols for selection and propagation of landscape phages, which are fusions of filamentous phage fd (or its close relatives M13 and f1) and foreign DNA that result in chimeric phage virions with foreign peptides (8 to 9 amino acids long) covering the entire surface of the phage particles. These landscape phages bind specifically to mammalian and bacterial cells, spores, or discrete molecular targets. (c) 2008 by John Wiley & Sons, Inc.

  9. Rubella virus: first calcium-requiring viral fusion protein.

    PubMed

    Dubé, Mathieu; Rey, Felix A; Kielian, Margaret

    2014-12-01

    Rubella virus (RuV) infection of pregnant women can cause fetal death, miscarriage, or severe fetal malformations, and remains a significant health problem in much of the underdeveloped world. RuV is a small enveloped RNA virus that infects target cells by receptor-mediated endocytosis and low pH-dependent membrane fusion. The structure of the RuV E1 fusion protein was recently solved in its postfusion conformation. RuV E1 is a member of the class II fusion proteins and is structurally related to the alphavirus and flavivirus fusion proteins. Unlike the other known class II fusion proteins, however, RuV E1 contains two fusion loops, with a metal ion complexed between them by the polar residues N88 and D136. Here we demonstrated that RuV infection specifically requires Ca(2+) during virus entry. Other tested cations did not substitute. Ca(2+) was not required for virus binding to cell surface receptors, endocytic uptake, or formation of the low pH-dependent E1 homotrimer. However, Ca(2+) was required for low pH-triggered E1 liposome insertion, virus fusion and infection. Alanine substitution of N88 or D136 was lethal. While the mutant viruses were efficiently assembled and endocytosed by host cells, E1-membrane insertion and fusion were specifically blocked. Together our data indicate that RuV E1 is the first example of a Ca(2+)-dependent viral fusion protein and has a unique membrane interaction mechanism.

  10. Synaptotagmin-mediated bending of the target membrane is a critical step in Ca2+-regulated fusion

    PubMed Central

    Hui, Enfu; Johnson, Colin P.; Yao, Jun; Dunning, F. Mark; Chapman, Edwin R.

    2009-01-01

    Summary Decades ago it was proposed that exocytosis involves invagination of the target membrane, resulting in a highly localized site of contact between the bilayers destined to fuse. The vesicle protein synaptotagmin-I (syt) bends membranes in response to Ca2+, but whether this drives localized invagination of the target membrane to accelerate fusion has not been determined; previous studies relied on reconstituted vesicles that were already highly curved and used mutations in syt that were not selective for membrane-bending activity. Here, we directly address this question by utilizing vesicles with different degrees of curvature. A tubulation-defective syt mutant was able to promote fusion between highly curved SNARE-bearing liposomes, but exhibited a marked loss of activity when the membranes were relatively flat. Moreover, bending of flat membranes by adding an N-BAR domain rescued the function of the tubulation-deficient syt mutant. Hence, syt-mediated membrane bending is a critical step in membrane fusion. PMID:19703397

  11. Analysis of the V2 Vasopressin Receptor (V2R) Mutations Causing Partial Nephrogenic Diabetes Insipidus Highlights a Sustainable Signaling by a Non-peptide V2R Agonist.

    PubMed

    Makita, Noriko; Sato, Tomohiko; Yajima-Shoji, Yuki; Sato, Junichiro; Manaka, Katsunori; Eda-Hashimoto, Makiko; Ootaki, Masanori; Matsumoto, Naoki; Nangaku, Masaomi; Iiri, Taroh

    2016-10-21

    Disease-causing mutations in G protein-coupled receptor (GPCR) genes, including the V2 vasopressin receptor (V2R) gene, often cause misfolded receptors, leading to a defect in plasma membrane trafficking. A novel V2R mutation, T273M, identified in a boy with partial nephrogenic diabetes insipidus (NDI), shows intracellular localization and partial defects similar to the two mutants we described previously (10). Although non-peptide V2R antagonists have been shown to rescue the membrane localization of V2R mutants, their level of functional rescue is weak. Interestingly, it has been reported that a non-peptide agonist, OPC51803, activates misfolded V2R mutants intracellularly without degradation, thus potentially serving as a therapeutic agent against NDI (14). In our current experiments, however, a peptide antagonist blocked arginine vasopressin (AVP)- or OPC51803-stimulated cAMP accumulation both in COS-7 and MDCK cells, suggesting that OPC51803 mainly stimulates cell surface V2R mutants. In addition, our analyses revealed that OPC51803 works not only as a non-peptide agonist that causes activation/β-arrestin-dependent desensitization of V2R mutants expressed at the plasma membrane but also as a pharmacochaperone that promotes the endoplasmic reticulum-retained mutant maturation and trafficking to the plasma membrane. The ratio of the pharmacochaperone effect to the desensitization effect likely correlates negatively with the residual function of the tested mutants, suggesting that OPC5 has a more favorable effect on the V2R mutants with a less residual function. We speculated that the canceling of the desensitization effect of OPC51803 by the pharmacochaperone effect after long-term treatment may produce sustainable signaling, and thus pharmacochaperone agonists such as OPC51803 may serve as promising therapeutics for NDI caused by misfolded V2R mutants. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Intraspecific protoplast fusion of Brettanomyces anomalus for improved production of an extracellular β-glucosidase.

    PubMed

    Wu, Peng; Zhao, Xihong; Pan, Siyi

    2014-09-03

    Improvement of production of an extracellular β-glucosidase with high activity by Brettanomyces anomalus PSY-001 was performed by using recursive protoplast fusion in a genome-shuffling format. The initial population was generated by ultraviolet irradiation, ultrasonic mutagenesis and, then, subjected to recursive protoplast fusion. Mutant strains exhibiting significantly higher β-glucosidase activities in liquid media were isolated. The best mutant strain showed increased cell growth in a flask culture, as well as increased β-glucosidase production. A recombinant strain, F3-25, was obtained after three rounds of genome shuffling and its production of β-glucosidase activity reached 4790 U L -1 , which was a nearly eightfold increase compared to the original strain B. anomalus PSY-001. The subculture experiments indicated that F3-25 was genetically stable.

  13. Intraspecific protoplast fusion of Brettanomyces anomalus for improved production of an extracellular β-glucosidase

    PubMed Central

    Wu, Peng; Zhao, Xihong; Pan, Siyi

    2014-01-01

    Improvement of production of an extracellular β-glucosidase with high activity by Brettanomyces anomalus PSY-001 was performed by using recursive protoplast fusion in a genome-shuffling format. The initial population was generated by ultraviolet irradiation, ultrasonic mutagenesis and, then, subjected to recursive protoplast fusion. Mutant strains exhibiting significantly higher β-glucosidase activities in liquid media were isolated. The best mutant strain showed increased cell growth in a flask culture, as well as increased β-glucosidase production. A recombinant strain, F3-25, was obtained after three rounds of genome shuffling and its production of β-glucosidase activity reached 4790 U L−1, which was a nearly eightfold increase compared to the original strain B. anomalus PSY-001. The subculture experiments indicated that F3-25 was genetically stable. PMID:26019572

  14. The role of blood cell membrane lipids on the mode of action of HIV-1 fusion inhibitor sifuvirtide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matos, Pedro M.; Freitas, Teresa; Castanho, Miguel A.R.B.

    2010-12-17

    Research highlights: {yields} Sifuvirtide interacts with erythrocyte and lymphocyte membrane in a concentration dependent manner by decreasing its dipole potential. {yields} Dipole potential variations in lipid vesicles show sifuvirtide's lipid selectivity towards saturated phosphatidylcholines. {yields} This peptide-membrane interaction may direct the drug towards raft-like membrane domains where the receptors used by HIV are located, facilitating its inhibitory action. -- Abstract: Sifuvirtide is a gp41 based peptide that inhibits HIV-1 fusion with the host cells and is currently under clinical trials. Previous studies showed that sifuvirtide partitions preferably to saturated phosphatidylcholine lipid membranes, instead of fluid-phase lipid vesicles. We extended themore » study to the interaction of the peptide with circulating blood cells, by using the dipole potential sensitive probe di-8-ANEPPS. Sifuvirtide decreased the dipole potential of erythrocyte and lymphocyte membranes in a concentration dependent manner, demonstrating its interaction. Also, the lipid selectivity of the peptide towards more rigid phosphatidylcholines was confirmed based on the dipole potential variations. Overall, the interaction of the peptide with the cell membranes is a contribution of different lipid preferences that presumably directs the peptide towards raft-like domains where the receptors are located, facilitating the reach of the peptide to its molecular target, the gp41 in its pre-fusion conformation.« less

  15. Design of Recombinant Stem Cell Factor macrophage Colony Stimulating Factor Fusion Proteins and their Biological Activity In Vitro

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Yang, Jie; Wang, Yuelang; Zhan, Chenyang; Zang, Yuhui; Qin, Junchuan

    2005-05-01

    Stem cell factor (SCF) and macrophage colony stimulating factor (M-CSF) can act in synergistic way to promote the growth of mononuclear phagocytes. SCF-M-CSF fusion proteins were designed on the computer using the Homology and Biopolymer modules of the software packages InsightII. Several existing crystal structures were used as templates to generate models of the complexes of receptor with fusion protein. The structure rationality of the fusion protein incorporated a series of flexible linker peptide was analyzed on InsightII system. Then, a suitable peptide GGGGSGGGGSGG was chosen for the fusion protein. Two recombinant SCF-M-CSF fusion proteins were generated by construction of a plasmid in which the coding regions of human SCF (1-165aa) and M-CSF (1-149aa) cDNA were connected by this linker peptide coding sequence followed by subsequent expression in insect cell. The results of Western blot and activity analysis showed that these two recombinant fusion proteins existed as a dimer with a molecular weight of 84 KD under non-reducing conditions and a monomer of 42 KD at reducing condition. The results of cell proliferation assays showed that each fusion protein induced a dose-dependent proliferative response. At equimolar concentration, SCF/M-CSF was about 20 times more potent than the standard monomeric SCF in stimulating TF-1 cell line growth, while M-CSF/SCF was 10 times of monomeric SCF. No activity difference of M-CSF/SCF or SCF/M-CSF to M-CSF (at same molar) was found in stimulating the HL-60 cell linear growth. The synergistic effect of SCF and M-CSF moieties in the fusion proteins was demonstrated by the result of clonogenic assay performed with human bone mononuclear, in which both SCF/M-CSF and M-CSF/SCF induced much higher number of CFU-M than equimolar amount of SCF or M-CSF or that of two cytokines mixture.

  16. Design, Synthesis, and Actions of a Novel Chimeric Natriuretic Peptide: CD-NP

    PubMed Central

    Lisy, Ondrej; Huntley, Brenda K.; McCormick, Daniel J.; Kurlansky, Paul A.; Burnett, John C.

    2008-01-01

    Objectives Our aim was to design, synthesize and test in vivo and in vitro a new chimeric peptide that would combine the beneficial properties of 2 distinct natriuretic peptides with a biological profile that goes beyond native peptides. Background Studies have established the beneficial vascular and antiproliferative properties of C-type natriuretic peptide (CNP). While lacking renal actions, CNP is less hypotensive than the cardiac peptides atrial natriuretic peptide and B-type natriuretic peptide but unloads the heart due to venodilation. Dendroaspis natriuretic peptide is a potent natriuretic and diuretic peptide that is markedly hypotensive and functions via a separate guanylyl cyclase receptor compared with CNP. Methods Here we engineered a novel chimeric peptide CD-NP that represents the fusion of the 22-amino acid peptide CNP together with the 15-amino acid linear C-terminus of Dendroaspis natriuretic peptide. We also determined in vitro in cardiac fibroblasts cyclic guanosine monophosphate-activating and antiproliferative properties of CD-NP. Results Our studies demonstrate in vivo that CD-NP is natriuretic and diuretic, glomerular filtration rate enhancing, cardiac unloading, and renin inhibiting. CD-NP also demonstrates less hypotensive properties when compared with B-type natriuretic peptide. In addition, CD-NP in vitro activates cyclic guanosine monophosphate and inhibits cardiac fibroblast proliferation. Conclusions The current findings advance an innovative design strategy in natriuretic peptide drug discovery and development to create therapeutic peptides with favorable properties that may be preferable to those associated with native natriuretic peptides. PMID:18582636

  17. Design, synthesis, and actions of a novel chimeric natriuretic peptide: CD-NP.

    PubMed

    Lisy, Ondrej; Huntley, Brenda K; McCormick, Daniel J; Kurlansky, Paul A; Burnett, John C

    2008-07-01

    Our aim was to design, synthesize and test in vivo and in vitro a new chimeric peptide that would combine the beneficial properties of 2 distinct natriuretic peptides with a biological profile that goes beyond native peptides. Studies have established the beneficial vascular and antiproliferative properties of C-type natriuretic peptide (CNP). While lacking renal actions, CNP is less hypotensive than the cardiac peptides atrial natriuretic peptide and B-type natriuretic peptide but unloads the heart due to venodilation. Dendroaspis natriuretic peptide is a potent natriuretic and diuretic peptide that is markedly hypotensive and functions via a separate guanylyl cyclase receptor compared with CNP. Here we engineered a novel chimeric peptide CD-NP that represents the fusion of the 22-amino acid peptide CNP together with the 15-amino acid linear C-terminus of Dendroaspis natriuretic peptide. We also determined in vitro in cardiac fibroblasts cyclic guanosine monophosphate-activating and antiproliferative properties of CD-NP. Our studies demonstrate in vivo that CD-NP is natriuretic and diuretic, glomerular filtration rate enhancing, cardiac unloading, and renin inhibiting. CD-NP also demonstrates less hypotensive properties when compared with B-type natriuretic peptide. In addition, CD-NP in vitro activates cyclic guanosine monophosphate and inhibits cardiac fibroblast proliferation. The current findings advance an innovative design strategy in natriuretic peptide drug discovery and development to create therapeutic peptides with favorable properties that may be preferable to those associated with native natriuretic peptides.

  18. MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria.

    PubMed

    Lee, Joo-Yong; Kapur, Meghan; Li, Ming; Choi, Moon-Chang; Choi, Sujin; Kim, Hak-June; Kim, Inhye; Lee, Eunji; Taylor, J Paul; Yao, Tso-Pang

    2014-11-15

    Fasting and glucose shortage activate a metabolic switch that shifts more energy production to mitochondria. This metabolic adaptation ensures energy supply, but also elevates the risk of mitochondrial oxidative damage. Here, we present evidence that metabolically challenged mitochondria undergo active fusion to suppress oxidative stress. In response to glucose starvation, mitofusin 1 (MFN1) becomes associated with the protein deacetylase HDAC6. This interaction leads to MFN1 deacetylation and activation, promoting mitochondrial fusion. Deficiency in HDAC6 or MFN1 prevents mitochondrial fusion induced by glucose deprivation. Unexpectedly, failure to undergo fusion does not acutely affect mitochondrial adaptive energy production; instead, it causes excessive production of mitochondrial reactive oxygen species and oxidative damage, a defect suppressed by an acetylation-resistant MFN1 mutant. In mice subjected to fasting, skeletal muscle mitochondria undergo dramatic fusion. Remarkably, fasting-induced mitochondrial fusion is abrogated in HDAC6-knockout mice, resulting in extensive mitochondrial degeneration. These findings show that adaptive mitochondrial fusion protects metabolically challenged mitochondria. © 2014. Published by The Company of Biologists Ltd.

  19. Hypertonicity-induced transmitter release at Drosophila neuromuscular junctions is partly mediated by integrins and cAMP/protein kinase A

    NASA Technical Reports Server (NTRS)

    Suzuki, Kazuhiro; Grinnell, Alan D.; Kidokoro, Yoshiaki

    2002-01-01

    The frequency of quantal transmitter release increases upon application of hypertonic solutions. This effect bypasses the Ca(2+) triggering step, but requires the presence of key molecules involved in vesicle fusion, and hence could be a useful tool for dissecting the molecular process of vesicle fusion. We have examined the hypertonicity response at neuromuscular junctions of Drosophila embryos in Ca(2+)-free saline. Relative to wild-type, the response induced by puff application of hypertonic solution was enhanced in a mutant, dunce, in which the cAMP level is elevated, or in wild-type embryos treated with forskolin, an activator of adenylyl cyclase, while protein kinase A (PKA) inhibitors decreased it. The response was also smaller in a mutant, DC0, which lacks the major subunit of PKA. Thus the cAMP/PKA cascade is involved in the hypertonicity response. Peptides containing the sequence Arg-Gly-Asp (RGD), which inhibit binding of integrins to natural ligands, reduced the response, whereas a peptide containing the non-binding sequence Arg-Gly-Glu (RGE) did not. A reduced response persisted in a mutant, myospheroid, which expresses no integrins, and the response in DC0 was unaffected by RGD peptides. These data indicate that there are at lease two components in the hypertonicity response: one that is integrin mediated and involves the cAMP/PKA cascade, and another that is not integrin mediated and does not involve the cAMP/PKA cascade.

  20. The tyrosine-sulfated peptide receptors PSKR1 and PSY1R modify the immunity of Arabidopsis to biotrophic and necrotrophic pathogens in an antagonistic manner.

    PubMed

    Mosher, Stephen; Seybold, Heike; Rodriguez, Patricia; Stahl, Mark; Davies, Kelli A; Dayaratne, Sajeewani; Morillo, Santiago A; Wierzba, Michael; Favery, Bruno; Keller, Harald; Tax, Frans E; Kemmerling, Birgit

    2013-02-01

    The tyrosine-sulfated peptides PSKα and PSY1 bind to specific leucine-rich repeat surface receptor kinases and control cell proliferation in plants. In a reverse genetic screen, we identified the phytosulfokine (PSK) receptor PSKR1 as an important component of plant defense. Multiple independent loss-of-function mutants in PSKR1 are more resistant to biotrophic bacteria, show enhanced pathogen-associated molecular pattern responses and less lesion formation after infection with the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. By contrast, pskr1 mutants are more susceptible to necrotrophic fungal infection with Alternaria brassicicola, show more lesion formation and fungal growth which is not observed on wild-type plants. The antagonistic effect on biotrophic and necrotrophic pathogen resistance is reflected by enhanced salicylate and reduced jasmonate responses in the mutants, suggesting that PSKR1 suppresses salicylate-dependent defense responses. Detailed analysis of single and multiple mutations in the three paralogous genes PSKR1, -2 and PSY1-receptor (PSY1R) determined that PSKR1 and PSY1R, but not PSKR2, have a partially redundant effect on plant immunity. In animals and plants, peptide sulfation is catalyzed by a tyrosylprotein sulfotransferase (TPST). Mutants lacking TPST show increased resistance to bacterial infection and increased susceptibility to fungal infection, mimicking the triple receptor mutant phenotypes. Feeding experiments with PSKα in tpst-1 mutants partially restore the defense-related phenotypes, indicating that perception of the PSKα peptide has a direct effect on plant defense. These results suggest that the PSKR subfamily integrates growth-promoting and defense signals mediated by sulfated peptides and modulates cellular plasticity to allow flexible adjustment to environmental changes. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  1. ERp57 interacts with conserved cysteine residues in the MHC class I peptide-binding groove.

    PubMed

    Antoniou, Antony N; Santos, Susana G; Campbell, Elaine C; Lynch, Sarah; Arosa, Fernando A; Powis, Simon J

    2007-05-15

    The oxidoreductase ERp57 is a component of the major histocompatibility complex (MHC) class I peptide-loading complex. ERp57 can interact directly with MHC class I molecules, however, little is known about which of the cysteine residues within the MHC class I molecule are relevant to this interaction. MHC class I molecules possess conserved disulfide bonds between cysteines 101-164, and 203-259 in the peptide-binding and alpha3 domain, respectively. By studying a series of mutants of these conserved residues, we demonstrate that ERp57 predominantly associates with cysteine residues in the peptide-binding domain, thus indicating ERp57 has direct access to the peptide-binding groove of MHC class I molecules during assembly.

  2. Gene-targeted Random Mutagenesis to Select Heterochromatin-destabilizing Proteasome Mutants in Fission Yeast.

    PubMed

    Seo, Hogyu David; Lee, Daeyoup

    2018-05-15

    Random mutagenesis of a target gene is commonly used to identify mutations that yield the desired phenotype. Of the methods that may be used to achieve random mutagenesis, error-prone PCR is a convenient and efficient strategy for generating a diverse pool of mutants (i.e., a mutant library). Error-prone PCR is the method of choice when a researcher seeks to mutate a pre-defined region, such as the coding region of a gene while leaving other genomic regions unaffected. After the mutant library is amplified by error-prone PCR, it must be cloned into a suitable plasmid. The size of the library generated by error-prone PCR is constrained by the efficiency of the cloning step. However, in the fission yeast, Schizosaccharomyces pombe, the cloning step can be replaced by the use of a highly efficient one-step fusion PCR to generate constructs for transformation. Mutants of desired phenotypes may then be selected using appropriate reporters. Here, we describe this strategy in detail, taking as an example, a reporter inserted at centromeric heterochromatin.

  3. A phage display selected 7-mer peptide inhibitor of the Tannerella forsythia metalloprotease-like enzyme Karilysin can be truncated to Ser-Trp-Phe-Pro.

    PubMed

    Skottrup, Peter Durand; Sørensen, Grete; Ksiazek, Miroslaw; Potempa, Jan; Riise, Erik

    2012-01-01

    Tannerella forsythia is a gram-negative bacteria, which is strongly associated with the development of periodontal disease. Karilysin is a newly identified metalloprotease-like enzyme, that is secreted from T. forsythia. Karilysin modulates the host immune response and is therefore considered a likely drug target. In this study peptides were selected towards the catalytic domain from Karilysin (Kly18) by phage display. The peptides were linear with low micromolar binding affinities. The two best binders (peptide14 and peptide15), shared the consensus sequence XWFPXXXGGG. A peptide15 fusion with Maltose Binding protein (MBP) was produced with peptide15 fused to the N-terminus of MBP. The peptide15-MBP was expressed in E. coli and the purified fusion-protein was used to verify Kly18 specific binding. Chemically synthesised peptide15 (SWFPLRSGGG) could inhibit the enzymatic activity of both Kly18 and intact Karilysin (Kly48). Furthermore, peptide15 could slow down the autoprocessing of intact Kly48 to Kly18. The WFP motif was important for inhibition and a truncation study further demonstrated that the N-terminal serine was also essential for Kly18 inhibition. The SWFP peptide had a Ki value in the low micromolar range, which was similar to the intact peptide15. In conclusion SWFP is the first reported inhibitor of Karilysin and can be used as a valuable tool in structure-function studies of Karilysin.

  4. Structure-function analysis of myomaker domains required for myoblast fusion.

    PubMed

    Millay, Douglas P; Gamage, Dilani G; Quinn, Malgorzata E; Min, Yi-Li; Mitani, Yasuyuki; Bassel-Duby, Rhonda; Olson, Eric N

    2016-02-23

    During skeletal muscle development, myoblasts fuse to form multinucleated myofibers. Myomaker [Transmembrane protein 8c (TMEM8c)] is a muscle-specific protein that is essential for myoblast fusion and sufficient to promote fusion of fibroblasts with muscle cells; however, the structure and biochemical properties of this membrane protein have not been explored. Here, we used CRISPR/Cas9 mutagenesis to disrupt myomaker expression in the C2C12 muscle cell line, which resulted in complete blockade to fusion. To define the functional domains of myomaker required to direct fusion, we established a heterologous cell-cell fusion system, in which fibroblasts expressing mutant versions of myomaker were mixed with WT myoblasts. Our data indicate that the majority of myomaker is embedded in the plasma membrane with seven membrane-spanning regions and a required intracellular C-terminal tail. We show that myomaker function is conserved in other mammalian orthologs; however, related family members (TMEM8a and TMEM8b) do not exhibit fusogenic activity. These findings represent an important step toward deciphering the cellular components and mechanisms that control myoblast fusion and muscle formation.

  5. Functional characterization of the modified melanocortin peptides responsible for ligand selectivity at the human melanocortin receptors.

    PubMed

    Chen, Min; Georgeson, Keith E; Harmon, Carroll M; Haskell-Luevano, Carrie; Yang, Yingkui

    2006-11-01

    The melanocortin system plays an important role in energy homeostasis as well as skin pigmentation, steroidogenesis and exocrine gland function. In this study, we examined eight Ac-His-Phe-Arg-Trp-NH(2) tetrapeptides that were modified at the Phe position and pharmacologically characterized their activities at the human MCR wild-types and their mutants. Our results indicate that at the hMC1R, all D stereochemical modified residues at the Phe position of peptides increase cAMP production in a dose-dependent manner. At the hMC3R, the DPhe peptide dose dependently increases cAMP production but all other three tetrapeptides were not. At the hMC4R, both the DPhe and DNal(1') peptides induce cAMP production. However, both DTyr and DNal(2') were not able to induce cAMP production. Further studies indicated that at the hMC1R M128L mutant receptor, the all D-configured tetrapeptides reduce their potencies as compared to that of hMC1R wild-type. However, at the hMC3R and hMC4R L165M and L133M mutant receptors, the DNal(2') and DTyr tetrapeptides possess agonist activity. These findings indicate that DPhe in tetrapeptide plays an important role in ligand selectivity and specific residue TM3 of the melanocortin receptors is crucial for ligand selectivity.

  6. Peptide mediated intracellular delivery of semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Kapur, Anshika; Safi, Malak; Domitrovic, Tatiana; Medina, Scott; Palui, Goutam; Johnson, John E.; Schneider, Joel; Mattoussi, Hedi

    2017-02-01

    As control over the growth, stabilization and functionalization of inorganic nanoparticles continue to advance, interest in integrating these materials with biological systems has steadily grown in the past decade. Much attention has been directed towards identifying effective approaches to promote cytosolic internalization of the nanoparticles while avoiding endocytosis. We describe the use of NωV virus derived gamma peptide and a chemically synthesized anticancer peptide, SVS-1 peptide, as vehicles to promote the non-endocytic uptake of luminescent quantum dots (QDs) inside live cells. The gamma peptide is expressed in E. coli as a fusion protein with poly-his tagged MBP (His-MBP-γ) to allow self-assembly onto QDs via metal-histidine conjugation. Conversely, the N-terminal cysteine residue of the SVS-1 peptide is attached to the functionalized QDs via covalent coupling chemistry. Epi-fluorescence microscopy images show that the QD-conjugate staining is distributed throughout the cytoplasm of cell cultures. Additionally, the QD staining does not show co-localization with transferrin-dye-labelled endosomes or DAPI stained nuclei. The QD uptake observed in the presence of physical and pharmacological endocytosis inhibitors further suggest that a physical translocation of QDs through the cell membrane is the driving mechanism for the uptake.

  7. Sequence motifs and prokaryotic expression of the reptilian paramyxovirus fusion protein

    USGS Publications Warehouse

    Franke, J.; Batts, W.N.; Ahne, W.; Kurath, G.; Winton, J.R.

    2006-01-01

    Fourteen reptilian paramyxovirus isolates were chosen to represent the known extent of genetic diversity among this novel group of viruses. Selected regions of the fusion (F) gene were sequenced, analyzed and compared. The F gene of all isolates contained conserved motifs homologous to those described for other members of the family Paramyxoviridae including: signal peptide, transmembrane domain, furin cleavage site, fusion peptide, N-linked glycosylation sites, and two heptad repeats, the second of which (HRB-LZ) had the characteristics of a leucine zipper. Selected regions of the fusion gene of isolate Gono-GER85 were inserted into a prokaryotic expression system to generate three recombinant protein fragments of various sizes. The longest recombinant protein was cleaved by furin into two fragments of predicted length. Western blot analysis with virus-neutralizing rabbit-antiserum against this isolate demonstrated that only the longest construct reacted with the antiserum. This construct was unique in containing 30 additional C-terminal amino acids that included most of the HRB-LZ. These results indicate that the F genes of reptilian paramyxoviruses contain highly conserved motifs typical of other members of the family and suggest that the HRB-LZ domain of the reptilian paramyxovirus F protein contains a linear antigenic epitope. ?? Springer-Verlag 2005.

  8. Targeted Mutants of Cochliobolus carbonum Lacking the Two Major Extracellular Polygalacturonases

    PubMed Central

    Scott-Craig, John S.; Cheng, Yi-Qiang; Cervone, Felice; De Lorenzo, Giulia; Pitkin, John W.; Walton, Jonathan D.

    1998-01-01

    The filamentous fungus Cochliobolus carbonum produces endo-α1,4-polygalacturonase (endoPG), exo-α1,4-polygalacturonase (exoPG), and pectin methylesterase when grown in culture on pectin. Residual activity in a pgn1 mutant (lacking endoPG) was due to exoPG activity, and the responsible protein has now been purified. After chemical deglycosylation, the molecular mass of the purified protein decreased from greater than 60 to 45 kDa. The gene that encodes exoPG, PGX1, was isolated with PCR primers based on peptide sequences from the protein. The product of PGX1, Pgx1p, has a predicted molecular mass of 48 kDa, 12 potential N-glycosylation sites, and 61% amino acid identity to an exoPG from the saprophytic fungus Aspergillus tubingensis. Strains of C. carbonum mutated in PGX1 were constructed by targeted gene disruption and by gene replacement. Growth of pgx1 mutant strains on pectin was reduced by ca. 20%, and they were still pathogenic on maize. A double pgn1/pgx1 mutant strain was constructed by crossing. The double mutant grew as well as the pgx1 single mutant on pectin and was still pathogenic despite having less than 1% of total wild-type PG activity. Double mutants retained a small amount of PG activity with the same cation-exchange retention time as Pgn1p and also pectin methylesterase and a PG activity associated with the mycelium. Continued growth of the pgn1/pgx1 mutant on pectin could be due to one or more of these residual activities. PMID:9546185

  9. [Research progress in hirudin fusion protein--review].

    PubMed

    Zhang, Chuan-Ling; Yu, Ai-Ping; Jin, Ji-De; Wu, Chu-Tse

    2007-02-01

    Natural hirudin extracted from the secretion of medical leech salivary gland is a single-chain peptide containing 65 aminoacid residues with molecular weight of 7000 D, and exists in three isomers of HV1, HV2 and HV3. Hirudin possesses three disulfide bridges forming the structure of core cyclic peptides, which binds to the catalytic site of thrombin so as to inhibit the catalysis of thrombin. Its c-terminus rich in acidic aminoacid residues possesses hydrophilicity, and is free on the molecular surface, and can bind with fibrin recognition site of hirudin. The minimal segment of 12 - 16 C-terminal acidic residues keeps the minimal activity of anti-thrombosis. Thus, hirudin, as a potent and specific inhibitor of thrombin, can be used to protect from and to treat clinically thrombosis. As it has some disadvantages such as short half-life, bleeding side-effect and mono-function, and so on, hirudin has been fused with some other functional proteins in recent years. The obtained fusion proteins can prolong the half life of hirudin, or relieve it bleeding side effect, or bring new functions, such as thrombolysis, inhibiting the platelet aggregation, targeting specifically. The research progress in hirudin fusion protein was summarized in this review.

  10. Design and Synthesis of Bis-Biotin-Containing Reagents for Applications Utilizing Monoclonal Antibody-Based Pretargeting Systems with Streptavidin Mutants

    PubMed Central

    Wilbur, D. Scott; Park, Steven I.; Chyan, Ming-Kuan; Wan, Feng; Hamlin, Donald K.; Shenoi, Jaideep; Lin, Yukang; Wilbur, Shani M.; Buchegger, Franz; Pantelias, Anastasia; Pagel, John M.; Press, Oliver W.

    2010-01-01

    Previous studies have shown that pretargeting protocols, using cancer-targeting fusion proteins, composed of 4 anti-CD20 single chain Fv (scFv) fragments and streptavidin (scFv4-SAv), followed by a biotinylated dendrimeric N-acetyl-galactosamine blood clearing agent (CA), 1, then a radiolabeled DOTA-biotin derivative (a mono-biotin), 3a, can provide effective therapy for lymphoma xenografts in mouse models. A shortcoming in this pretargeting system is that endogenous biotin may affect its efficacy in patients. To circumvent this potential problem, we investigated a pretargeting system that employs anti-CD20 scFv4-SAv mutant fusion proteins with radioiodinated bis-biotin derivatives. With that combination of reagents good localization of the radiolabel to lymphoma tumor xenografts was obtained in the presence of endogenous biotin. However, the blood clearance reagents employed in the studies were ineffective, resulting in abnormally high levels of radioactivity in other tissues. Thus, in the present investigation a bis-biotin-tri-galactose blood clearance reagent, 2, was designed, synthesized and evaluated in vivo. Additionally, another DOTA-biotin derivative (a bis-biotin), 4a, was designed and synthesized, such that radiometals (e.g. 111In, 90Y, 177Lu) could be used in the pretargeting protocols employing scFv4-SAv mutant fusion proteins. Studies in mice demonstrated that the CA 2 was more effective than CA 1 at removing [125I]scFv4-SAv-S45A mutant fusion proteins from blood. Another in vivo study compared tumor targeting and normal tissue concentrations of the new reagents (2 & [111In]4b) with standard reagents (1 and [111In]3b) used in pretargeting protocols. The study showed that lymphoma xenografts could be targeted in the presence of endogenous biotin when anti-CD20 fusion proteins containing SAv mutants (scFv4-SAv-S45A or scFv4-SAv-Y43A) were employed in combination with CA 2 and [111In]4b. Importantly, normal tissue concentrations of [111In]4b were similar

  11. Design and synthesis of bis-biotin-containing reagents for applications utilizing monoclonal antibody-based pretargeting systems with streptavidin mutants.

    PubMed

    Wilbur, D Scott; Park, Steven I; Chyan, Ming-Kuan; Wan, Feng; Hamlin, Donald K; Shenoi, Jaideep; Lin, Yukang; Wilbur, Shani M; Buchegger, Franz; Pantelias, Anastasia; Pagel, John M; Press, Oliver W

    2010-07-21

    Previous studies have shown that pretargeting protocols, using cancer-targeting fusion proteins, composed of 4 anti-CD20 single chain Fv (scFv) fragments and streptavidin (scFv(4)-SAv), followed by a biotinylated dendrimeric N-acetyl-galactosamine blood clearing agent (CA), 1, then a radiolabeled DOTA-biotin derivative (a monobiotin), 3a, can provide effective therapy for lymphoma xenografts in mouse models. A shortcoming in this pretargeting system is that endogenous biotin may affect its efficacy in patients. To circumvent this potential problem, we investigated a pretargeting system that employs anti-CD20 scFv(4)-SAv mutant fusion proteins with radioiodinated bis-biotin derivatives. With that combination of reagents, good localization of the radiolabel to lymphoma tumor xenografts was obtained in the presence of endogenous biotin. However, the blood clearance reagents employed in the studies were ineffective, resulting in abnormally high levels of radioactivity in other tissues. Thus, in the present investigation a bis-biotin-trigalactose blood clearance reagent, 2, was designed, synthesized, and evaluated in vivo. Additionally, another DOTA-biotin derivative (a bis-biotin), 4a, was designed and synthesized, such that radiometals (e.g., (111)In, (90)Y, (177)Lu) could be used in the pretargeting protocols employing scFv(4)-SAv mutant fusion proteins. Studies in mice demonstrated that the CA 2 was more effective than CA 1 at removing [(125)I]scFv(4)-SAv-S45A mutant fusion proteins from blood. Another in vivo study compared tumor targeting and normal tissue concentrations of the new reagents (2 and [(111)In]4b) with standard reagents (1 and [(111)In]3b) used in pretargeting protocols. The study showed that lymphoma xenografts could be targeted in the presence of endogenous biotin when anti-CD20 fusion proteins containing SAv mutants (scFv(4)-SAv-S45A or scFv(4)-SAv-Y43A) were employed in combination with CA 2 and [(111)In]4b. Importantly, normal tissue

  12. SymB and SymC, two membrane associated proteins, are required for Epichloë festucae hyphal cell-cell fusion and maintenance of a mutualistic interaction with Lolium perenne.

    PubMed

    Green, Kimberly A; Becker, Yvonne; Tanaka, Aiko; Takemoto, Daigo; Fitzsimons, Helen L; Seiler, Stephan; Lalucque, Hervé; Silar, Philippe; Scott, Barry

    2017-02-01

    Cell-cell fusion in fungi is required for colony formation, nutrient transfer and signal transduction. Disruption of genes required for hyphal fusion in Epichloë festucae, a mutualistic symbiont of Lolium grasses, severely disrupts the host interaction phenotype. They examined whether symB and symC, the E. festucae homologs of Podospora anserina self-signaling genes IDC2 and IDC3, are required for E. festucae hyphal fusion and host symbiosis. Deletion mutants of these genes were defective in hyphal cell fusion, formed intra-hyphal hyphae, and had enhanced conidiation. SymB-GFP and SymC-mRFP1 localize to plasma membrane, septa and points of hyphal cell fusion. Plants infected with ΔsymB and ΔsymC strains were severely stunted. Hyphae of the mutants colonized vascular bundles, were more abundant than wild type in the intercellular spaces and formed intra-hyphal hyphae. Although these phenotypes are identical to those previously observed for cell wall integrity MAP kinase mutants no difference was observed in the basal level of MpkA phosphorylation or its cellular localization in the mutant backgrounds. Both genes contain binding sites for the transcription factor ProA. Collectively these results show that SymB and SymC are key components of a conserved signaling network for E. festucae to maintain a mutualistic symbiotic interaction within L. perenne. © 2016 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  13. Characterization of a spontaneous avirulent mutant of Legionella pneumophila Serogroup 6: evidence of DotA and flagellin involvement in the loss of virulence.

    PubMed

    Scaturro, Maria; Meschini, Stefania; Arancia, Giuseppe; Stefano, Fontana; Ricci, Maria Luisa

    2009-12-01

    The pathogenesis of Legionella pneumophila mainly resides in its ability to inhibit the phagosome-lysosome fusion, which normally prevents the killing of the host cells. In order to characterize the molecular alterations that occurred in a spontaneous avirulent mutant of Legionella pneumophila serogroup 6, named Vir-, we investigated the ability of the mutant to adhere to and multiply in the WI26VA4 alveolar epithelial cell line and in human macrophages, when compared to its parental strain, Vir+. We also determined the colocalization of bacteria with LAMP-1 to gain an insight into the phagosome-lysosome fusion process. Additionally, we determined the flagellin expression and dotA nucleotide sequencing. We observed a lack of expression of flagellin and an in-frame mutation in the dotA. gene. The data obtained strongly suggest the loss of virulence of the mutant could probably be due to the absence of flagellin and the dysfunctional type IV secretion System, resulting from the DotA protein being severely compromised.

  14. Base of the Measles Virus Fusion Trimer Head Receives the Signal That Triggers Membrane Fusion*

    PubMed Central

    Apte-Sengupta, Swapna; Negi, Surendra; Leonard, Vincent H. J.; Oezguen, Numan; Navaratnarajah, Chanakha K.; Braun, Werner; Cattaneo, Roberto

    2012-01-01

    The measles virus (MV) fusion (F) protein trimer executes membrane fusion after receiving a signal elicited by receptor binding to the hemagglutinin (H) tetramer. Where and how this signal is received is understood neither for MV nor for other paramyxoviruses. Because only the prefusion structure of the parainfluenza virus 5 (PIV5) F-trimer is available, to study signal receipt by the MV F-trimer, we generated and energy-refined a homology model. We used two approaches to predict surface residues of the model interacting with other proteins. Both approaches measured interface propensity values for patches of residues. The second approach identified, in addition, individual residues based on the conservation of physical chemical properties among F-proteins. Altogether, about 50 candidate interactive residues were identified. Through iterative cycles of mutagenesis and functional analysis, we characterized six residues that are required specifically for signal transmission; their mutation interferes with fusion, although still allowing efficient F-protein processing and cell surface transport. One residue is located adjacent to the fusion peptide, four line a cavity in the base of the F-trimer head, while the sixth residue is located near this cavity. Hydrophobic interactions in the cavity sustain the fusion process and contacts with H. The cavity is flanked by two different subunits of the F-trimer. Tetrameric H-stalks may be lodged in apposed cavities of two F-trimers. Because these insights are based on a PIV5 homology model, the signal receipt mechanism may be conserved among paramyxoviruses. PMID:22859308

  15. Fusion of small unilamellar vesicles induced by a serum albumin fragment of molecular weight 9000.

    PubMed

    Garcia, L A; Araújo, P S; Chaimovich, H

    1984-05-16

    A peptide (P-9) comprising amino acids 307 to 385 of bovine serum albumin induced the fusion of small unilamellar vesicles of phosphatidylcholine at low pH. Upon acidification P-9 exhibited a ultraviolet differential spectrum characteristic of hydrophilic exposure of chromophores. This conformational change, and the structure of P-9 composed of three amphiphilic helixes , suggested a general working hypothesis for the description of protein-induced membrane fusion.

  16. Detection of an unknown fusion protein in confiscated black market products.

    PubMed

    Walpurgis, Katja; Krug, Oliver; Thomas, Andreas; Laussmann, Tim; Schänzer, Wilhelm; Thevis, Mario

    2014-01-01

    Even without clinical approval, many performance-enhancing drugs are available on the black market and can therefore be easily obtained by cheating athletes. The misuse of these preparations can be associated with unforeseeable health risks - either due to a poor quality of the drugs or as a result of an insufficient clinical assessment. Moreover, confiscated black market products have frequently been shown to contain ingredients other than those declared on the label as well as additional by-products or compounds with a modified molecular structure. This communication describes the identification of an unknown fusion protein observed in several unlabelled black market products obtained from independent sources. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of the confiscated preparations indicated the presence of an 18-kDa fusion protein consisting of the bacterial redox protein thioredoxin-1 (Trx, 12 kDa) and a 6-kDa peptide of unassigned composition. Trx has no relevance as performance enhancing agent but is routinely used as solubility tag for recombinant protein production. Further evaluation of the acquired MS/MS data revealed both an additional His tag and a thrombin cleavage site between the tags and the presumed bioactive peptide. However, thrombin cleavage of the fusion protein and LC-MS/MS analysis of the resulting peptide fragment finally suggested that the unknown protein is only the product of an empty expression vector without the DNA insert of interest. These findings are a further alarming example for the high level of risk that athletes take when misusing drugs obtained from the black market. Copyright © 2014 John Wiley & Sons, Ltd.

  17. The Design and Delivery of a Thermally Responsive Peptide to Inhibit S100B Mediated Neurodegeneration

    PubMed Central

    Hearst, Scoty M; Walker, Leslie R; Shao, Qingmei; Lopez, Mariper; Raucher, Drazen; Vig, Parminder J S

    2011-01-01

    S100B, a glial secreted protein is believed to play a major role in neurodegeneration in Alzheimer's disease, Down syndrome, traumatic brain injury and spinocerebellar ataxia type 1 (SCA1). SCA1 is a trinucleotide repeat disorder in which the expanded polyglutamine mutation in the protein ataxin-1 primarily targets Purkinje cells (PCs) of the cerebellum. Currently, the exact mechanism of S100B mediated PC damage in SCA1 is not clear. However, here we show that S100B may act via the activation of the RAGE signaling pathway resulting in oxidative stress mediated injury to mutant ataxin-1 expressing neurons. To combat S100B mediated neurodegeneration, we have designed a selective thermally responsive S100B inhibitory peptide, Synb1-ELP-TRTK. Our therapeutic polypeptide was developed using three key elements: (1) the elastin-like polypeptide (ELP), a thermally responsive polypeptide, (2) the TRTK12 peptide, a known S100B inhibitory peptide and (3) a cell penetrating peptide, Synb1, to enhance intracellular delivery. Binding studies revealed that our peptide, Synb1-ELP-TRTK, interacts with its molecular target S100B and maintains a high S100B binding affinity as comparable with the TRTK12 peptide alone. In addition, in vitro studies revealed that Synb1-ELP-TRTK treatment reduces S100B uptake in SHSY5Y cells. Furthermore, the Synb1-ELP-TRTK peptide decreased S100B induced oxidative damage to mutant ataxin-1 expressing neurons. To test the delivery capabilities of ELP based therapeutic peptides to the cerebellum; we treated mice with fluorescently labeled Synb1-ELP and observed that thermal targeting enhanced peptide delivery to the cerebellum. Here, we have laid the framework for thermal based therapeutic targeting to regions of the brain, particularly the cerebellum. Overall, our data suggests that thermal targeting of ELP based therapeutic peptides to the cerebellum is a novel treatment strategy for cerebellar neurodegenerative disorders. PMID:21958864

  18. A phage display-selected peptide inhibitor of Agrobacterium vitis polygalacturonase.

    PubMed

    Warren, Jeremy G; Kasun, George W; Leonard, Takara; Kirkpatrick, Bruce C

    2016-05-01

    Agrobacterium vitis, the causal agent of crown gall of grapevine, is a threat to viticulture worldwide. A major virulence factor of this pathogen is polygalacturonase, an enzyme that degrades pectin components of the xylem cell wall. A single gene encodes for the polygalacturonase gene. Disruption of the polygalacturonase gene results in a mutant that is less pathogenic and produces significantly fewer root lesions on grapevines. Thus, the identification of peptides or proteins that could inhibit the activity of polygalacturonase could be part of a strategy for the protection of plants against this pathogen. A phage-displayed combinatorial peptide library was used to isolate peptides with a high binding affinity to A. vitis polygalacturonase. These peptides showed sequence similarity to regions of Oryza sativa (EMS66324, Japonica) and Triticum urartu (NP_001054402, wild wheat) polygalacturonase-inhibiting proteins (PGIPs). Furthermore, these panning experiments identified a peptide, SVTIHHLGGGS, which was able to reduce A. vitis polygalacturonase activity by 35% in vitro. Truncation studies showed that the IHHL motif alone is sufficient to inhibit A. vitis polygalacturonase activity. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  19. Determinants of Human Immunodeficiency Virus Type 1 Baseline Susceptibility to the Fusion Inhibitors Enfuvirtide and T-649 Reside outside the Peptide Interaction Site

    PubMed Central

    Heil, Marintha L.; Decker, Julie M.; Sfakianos, Jeffrey N.; Shaw, George M.; Hunter, Eric; Derdeyn, Cynthia A.

    2004-01-01

    The peptide fusion inhibitor (PFI) enfuvirtide is the first of a new class of entry inhibitors to receive FDA approval. We previously determined the susceptibility of 55 PFI-naïve-patient isolates to enfuvirtide and a second peptide inhibitor, T-649. Seven of the 55 viral isolates were insusceptible to enfuvirtide, T-649, or both inhibitors in the absence of prior exposure. To determine the molecular basis of the insusceptible phenotypes, we PCR amplified and cloned five PFI-insusceptible and one PFI-susceptible, full-length, biologically functional env genes and characterized viruses pseudotyped with the Env proteins in a single-round drug sensitivity assay. Overall, the mean 50% inhibitory concentrations of enfuvirtide and T-649 for the PFI-insusceptible Env pseudotypes were 1.4 to 1.7 log10 and 1.2 to 1.8 log10 greater, respectively, than those for a PFI-susceptible lab strain, NLHX; however, all of the PFI-insusceptible Env proteins conserved the sequence of a critical enfuvirtide interaction site (residues 36 to 38 of gp41, GIV) in HR-1. In contrast, multiple amino acid changes were observed C-terminal to HR-1, many of which were located in regions of HR-2 corresponding to the PFI. Nevertheless, peptides based on patient-derived HR-2 sequences were not more potent inhibitors than enfuvirtide or T-649, arguing that the basis of PFI susceptibility is not a higher-affinity, competitive HR-1/HR-2 interaction. These results demonstrate that regions of Env outside the enfuvirtide interaction site can significantly impact the PFI susceptibility of patient-derived Env, even prior to drug exposure. We hypothesize that both gp120 gene- and gp41 gene-encoded determinants that minimize the window of opportunity for PFI to bind provide a growth advantage and possibly a predisposition to resistance to this new class of drugs in vivo. PMID:15220433

  20. Characterization of three Agrobacterium tumefaciens avirulent mutants with chromosomal mutations that affect induction of vir genes.

    PubMed

    Metts, J; West, J; Doares, S H; Matthysse, A G

    1991-02-01

    Three Agrobacterium tumefaciens mutants with chromosomal mutations that affect bacterial virulence were isolated by transposon mutagenesis. Two of the mutants were avirulent on all hosts tested. The third mutant, Ivr-211, was a host range mutant which was avirulent on Bryophyllum diagremontiana, Nicotiana tabacum, N. debneyi, N. glauca, and Daucus carota but was virulent on Zinnia elegans and Lycopersicon esculentum (tomato). That the mutant phenotype was due to the transposon insertion was determined by cloning the DNA containing the transposon insertion and using the cloned DNA to replace the wild-type DNA in the parent bacterial strain by marker exchange. The transposon insertions in the three mutants mapped at three widely separated locations on the bacterial chromosome. The effects of the mutations on various steps in tumor formation were examined. All three mutants showed no alteration in binding to carrot cells. However, none of the mutants showed any induction of vir genes by acetosyringone under conditions in which the parent strain showed vir gene induction. When the mutant bacteria were examined for changes in surface components, it was found that all three of the mutants showed a similar alteration in lipopolysaccharide (LPS). LPS from the mutants was larger in size and more heavily saccharide substituted than LPS from the parent strain. Two of the mutants showed no detectable alteration in outer membrane and periplasmic space proteins. The third mutant, Ivr-225, was missing a 79-kDa surface peptide. The reason(s) for the failure of vir gene induction in these mutants and its relationship, if any, to the observed alteration in LPS are unknown.

  1. Peptidoglycan Branched Stem Peptides Contribute to Streptococcus pneumoniae Virulence by Inhibiting Pneumolysin Release

    PubMed Central

    Greene, Neil G.; Narciso, Ana R.; Filipe, Sergio R.; Camilli, Andrew

    2015-01-01

    Streptococcus pneumoniae (the pneumococcus) colonizes the human nasopharynx and is a significant pathogen worldwide. Pneumolysin (Ply) is a multi-functional, extracellular virulence factor produced by this organism that is critical for pathogenesis. Despite the absence of any apparent secretion or cell surface attachment motifs, Ply localizes to the cell envelope of actively growing cells. We sought to characterize the consequences of this surface localization. Through functional assays with whole cells and subcellular fractions, we determined that Ply activity and its release into the extracellular environment are inhibited by peptidoglycan (PG) structure. The ability of PG to inhibit Ply release was dependent on the stem peptide composition of this macromolecule, which was manipulated by mutation of the murMN operon that encodes proteins responsible for branched stem peptide synthesis. Additionally, removal of choline-binding proteins from the cell surface significantly reduced Ply release to levels observed in a mutant with a high proportion of branched stem peptides suggesting a link between this structural feature and surface-associated choline-binding proteins involved in PG metabolism. Of clinical relevance, we also demonstrate that a hyperactive, mosaic murMN allele associated with penicillin resistance causes decreased Ply release with concomitant increases in the amount of branched stem peptides. Finally, using a murMN deletion mutant, we observed that increased Ply release is detrimental to virulence during a murine model of pneumonia. Taken together, our results reveal a novel role for branched stem peptides in pneumococcal pathogenesis and demonstrate the importance of controlled Ply release during infection. These results highlight the importance of PG composition in pathogenesis and may have broad implications for the diverse PG structures observed in other bacterial pathogens. PMID:26114646

  2. Peptidoglycan Branched Stem Peptides Contribute to Streptococcus pneumoniae Virulence by Inhibiting Pneumolysin Release.

    PubMed

    Greene, Neil G; Narciso, Ana R; Filipe, Sergio R; Camilli, Andrew

    2015-06-01

    Streptococcus pneumoniae (the pneumococcus) colonizes the human nasopharynx and is a significant pathogen worldwide. Pneumolysin (Ply) is a multi-functional, extracellular virulence factor produced by this organism that is critical for pathogenesis. Despite the absence of any apparent secretion or cell surface attachment motifs, Ply localizes to the cell envelope of actively growing cells. We sought to characterize the consequences of this surface localization. Through functional assays with whole cells and subcellular fractions, we determined that Ply activity and its release into the extracellular environment are inhibited by peptidoglycan (PG) structure. The ability of PG to inhibit Ply release was dependent on the stem peptide composition of this macromolecule, which was manipulated by mutation of the murMN operon that encodes proteins responsible for branched stem peptide synthesis. Additionally, removal of choline-binding proteins from the cell surface significantly reduced Ply release to levels observed in a mutant with a high proportion of branched stem peptides suggesting a link between this structural feature and surface-associated choline-binding proteins involved in PG metabolism. Of clinical relevance, we also demonstrate that a hyperactive, mosaic murMN allele associated with penicillin resistance causes decreased Ply release with concomitant increases in the amount of branched stem peptides. Finally, using a murMN deletion mutant, we observed that increased Ply release is detrimental to virulence during a murine model of pneumonia. Taken together, our results reveal a novel role for branched stem peptides in pneumococcal pathogenesis and demonstrate the importance of controlled Ply release during infection. These results highlight the importance of PG composition in pathogenesis and may have broad implications for the diverse PG structures observed in other bacterial pathogens.

  3. Discovery and application of peptides that bind to proteins and solid state inorganic materials

    NASA Astrophysics Data System (ADS)

    Stearns, Linda A.

    A series of three projects was undertaken on the theme of peptide-based molecular recognition. In the first project, a messenger RNA (mRNA) display selection was carried out against the II-VI semiconductors zinc sulfide (ZnS), zinc selenide (ZnSe), and cadmium sulfide (CdS). Sequence analysis of 18-mer semiconductor-binding peptides (SBPs) following four rounds of selection indicated that the amino acid sequences were enriched in polar residues compared to the naive library, suggesting that hydrogen-bonding interactions are a dominant mode of interaction between the SBPs and their cognate inorganic surfaces. Select peptides were expressed as fusions of the green fluorescent protein (GFP) to visualize their recognition of semiconductor crystals. Interpretation of the results was complicated by a high fluorescence background that was observed with certain control GFP fusions. Additional experiments, including cross-specificity binding assays, are needed to characterize the peptides that were isolated in this selection. A second project described the practical application of a known inorganic-binding and nucleating peptide. Peptide A3, which was previously isolated by phage display, was chemically conjugated to a short DNA strand using the heterobifunctional linker succinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate (SMCC). The resulting peptide-DNA conjugate was hybridized to ten complementary single-stranded capture probes extending outward from the surface of an origami DNA nanotube. A gold precursor solution was added to initiate nucleation and growth of gold nanoparticles at the site of the peptide. Transmission electron microscopy (TEM) was used to visualize the gold nanoparticle-decorated nanostructures. This approach holds immense promise for organizing compositionally-diverse materials at the nanoscale. In a third project, a novel non-iterative approach to mRNA display called covalent capture was demonstrated. Using human transferrin as a target

  4. Control of silicification by genetically engineered fusion proteins: silk-silica binding peptides.

    PubMed

    Zhou, Shun; Huang, Wenwen; Belton, David J; Simmons, Leo O; Perry, Carole C; Wang, Xiaoqin; Kaplan, David L

    2015-03-01

    In the present study, an artificial spider silk gene, 6mer, derived from the consensus sequence of Nephila clavipes dragline silk gene, was fused with different silica-binding peptides (SiBPs), A1, A3 and R5, to study the impact of the fusion protein sequence chemistry on silica formation and the ability to generate a silk-silica composite in two different bioinspired silicification systems: solution-solution and solution-solid. Condensed silica nanoscale particles (600-800 nm) were formed in the presence of the recombinant silk and chimeras, which were smaller than those formed by 15mer-SiBP chimeras, revealing that the molecular weight of the silk domain correlated to the sizes of the condensed silica particles in the solution system. In addition, the chimeras (6mer-A1/A3/R5) produced smaller condensed silica particles than the control (6mer), revealing that the silica particle size formed in the solution system is controlled by the size of protein assemblies in solution. In the solution-solid interface system, silicification reactions were performed on the surface of films fabricated from the recombinant silk proteins and chimeras and then treated to induce β-sheet formation. A higher density of condensed silica formed on the films containing the lowest β-sheet content while the films with the highest β-sheet content precipitated the lowest density of silica, revealing an inverse correlation between the β-sheet secondary structure and the silica content formed on the films. Intriguingly, the 6mer-A3 showed the highest rate of silica condensation but the lowest density of silica deposition on the films, compared with 6mer-A1 and -R5, revealing antagonistic crosstalk between the silk and the SiBP domains in terms of protein assembly. These findings offer a path forward in the tailoring of biopolymer-silica composites for biomaterial related needs. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Control of silicification by genetically engineered fusion proteins: Silk–silica binding peptides

    PubMed Central

    Zhou, Shun; Huang, Wenwen; Belton, David J.; Simmons, Leo O.; Perry, Carole C.; Wang, Xiaoqin; Kaplan, David L.

    2014-01-01

    In the present study, an artificial spider silk gene, 6mer, derived from the consensus sequence of Nephila clavipes dragline silk gene, was fused with different silica-binding peptides (SiBPs), A1, A3 and R5, to study the impact of the fusion protein sequence chemistry on silica formation and the ability to generate a silk–silica composite in two different bioinspired silicification systems: solution–solution and solution– solid. Condensed silica nanoscale particles (600–800 nm) were formed in the presence of the recombinant silk and chimeras, which were smaller than those formed by 15mer-SiBP chimeras [1], revealing that the molecular weight of the silk domain correlated to the sizes of the condensed silica particles in the solution system. In addition, the chimeras (6mer-A1/A3/R5) produced smaller condensed silica particles than the control (6mer), revealing that the silica particle size formed in the solution system is controlled by the size of protein assemblies in solution. In the solution–solid interface system, silicification reactions were performed on the surface of films fabricated from the recombinant silk proteins and chimeras and then treated to induce β-sheet formation. A higher density of condensed silica formed on the films containing the lowest β-sheet content while the films with the highest β-sheet content precipitated the lowest density of silica, revealing an inverse correlation between the β-sheet secondary structure and the silica content formed on the films. Intriguingly, the 6mer-A3 showed the highest rate of silica condensation but the lowest density of silica deposition on the films, compared with 6mer-A1 and -R5, revealing antagonistic crosstalk between the silk and the SiBP domains in terms of protein assembly. These findings offer a path forward in the tailoring of biopolymer–silica composites for biomaterial related needs. PMID:25462851

  6. SCAR/WAVE and Arp2/3 are critical for cytoskeletal remodeling at the site of myoblast fusion

    PubMed Central

    Richardson, Brian E.; Beckett, Karen; Nowak, Scott J.; Baylies, Mary K.

    2010-01-01

    Summary Myoblast fusion is critical for formation and repair of skeletal muscle. Here we show that active remodeling of the actin cytoskeleton is essential for fusion in Drosophila. Using live imaging, we have identified a dynamic F-actin accumulation (actin focus) at the site of fusion. Dissolution of the actin focus directly precedes a fusion event. Whereas several known fusion components regulate these actin foci, others target additional behaviors required for fusion. Mutations in kette/Nap1, an actin polymerization regulator, lead to enlarged foci that do not dissolve, consistent with the observed block in fusion. Kette is required to positively regulate SCAR/WAVE, which in turn activates the Arp2/3 complex. Mutants in SCAR and Arp2/3 have a fusion block and foci phenotype, suggesting that Kette-SCAR-Arp2/3 participate in an actin polymerization event required for focus dissolution. Our data identify a new paradigm for understanding the mechanisms underlying fusion in myoblasts and other tissues. PMID:18003739

  7. The M-T Hook Structure Is Critical for Design of HIV-1 Fusion Inhibitors*

    PubMed Central

    Chong, Huihui; Yao, Xue; Sun, Jianping; Qiu, Zonglin; Zhang, Meng; Waltersperger, Sandro; Wang, Meitian; Cui, Sheng; He, Yuxian

    2012-01-01

    CP621-652 is a potent HIV-1 fusion inhibitor peptide derived from the C-terminal heptad repeat of gp41. We recently identified that its N-terminal residues Met-626 and Thr-627 adopt a unique hook-like structure (termed M-T hook) thus stabilizing the interaction of the inhibitor with the deep pocket on the N-terminal heptad repeat. In this study, we further demonstrated that the M-T hook structure is a key determinant of CP621-652 in terms of its thermostability and anti-HIV activity. To directly define the structure and function of the M-T hook, we generated the peptide MT-C34 by incorporating Met-626 and Thr-627 into the N terminus of the C-terminal heptad repeat-derived peptide C34. The high resolution crystal structure (1.9 Å) of MT-C34 complexed by an N-terminal heptad repeat-derived peptide reveals that the M-T hook conformation is well preserved at the N-terminal extreme of the inhibitor. Strikingly, addition of two hook residues could dramatically enhance the binding affinity and thermostability of 6-helix bundle core. Compared with C34, MT-C34 exhibited significantly increased activity to inhibit HIV-1 envelope-mediated cell fusion (6.6-fold), virus entry (4.5-fold), and replication (6-fold). Mechanistically, MT-C34 had a 10.5-fold higher increase than C34 in blocking 6-helix bundle formation. We further showed that MT-C34 possessed higher potency against T20 (Enfuvirtide, Fuzeon)-resistant HIV-1 variants. Therefore, this study provides convincing data for our proposed concept that the M-T hook structure is critical for designing HIV-1 fusion inhibitors. PMID:22879603

  8. A Yersinia pestis tat mutant is attenuated in bubonic and small-aerosol pneumonic challenge models of infection but not as attenuated by intranasal challenge.

    PubMed

    Bozue, Joel; Cote, Christopher K; Chance, Taylor; Kugelman, Jeffrey; Kern, Steven J; Kijek, Todd K; Jenkins, Amy; Mou, Sherry; Moody, Krishna; Fritz, David; Robinson, Camenzind G; Bell, Todd; Worsham, Patricia

    2014-01-01

    Bacterial proteins destined for the Tat pathway are folded before crossing the inner membrane and are typically identified by an N-terminal signal peptide containing a twin arginine motif. Translocation by the Tat pathway is dependent on the products of genes which encode proteins possessing the binding site of the signal peptide and mediating the actual translocation event. In the fully virulent CO92 strain of Yersinia pestis, the tatA gene was deleted. The mutant was assayed for loss of virulence through various in vitro and in vivo assays. Deletion of the tatA gene resulted in several consequences for the mutant as compared to wild-type. Cell morphology of the mutant bacteria was altered and demonstrated a more elongated form. In addition, while cultures of the mutant strain were able to produce a biofilm, we observed a loss of adhesion of the mutant biofilm structure compared to the biofilm produced by the wild-type strain. Immuno-electron microscopy revealed a partial disruption of the F1 antigen on the surface of the mutant. The virulence of the ΔtatA mutant was assessed in various murine models of plague. The mutant was severely attenuated in the bubonic model with full virulence restored by complementation with the native gene. After small-particle aerosol challenge in a pneumonic model of infection, the mutant was also shown to be attenuated. In contrast, when mice were challenged intranasally with the mutant, very little difference in the LD50 was observed between wild-type and mutant strains. However, an increased time-to-death and delay in bacterial dissemination was observed in mice infected with the ΔtatA mutant as compared to the parent strain. Collectively, these findings demonstrate an essential role for the Tat pathway in the virulence of Y. pestis in bubonic and small-aerosol pneumonic infection but less important role for intranasal challenge.

  9. A Yersinia pestis tat Mutant Is Attenuated in Bubonic and Small-Aerosol Pneumonic Challenge Models of Infection but Not As Attenuated by Intranasal Challenge

    PubMed Central

    Bozue, Joel; Cote, Christopher K.; Chance, Taylor; Kugelman, Jeffrey; Kern, Steven J.; Kijek, Todd K.; Jenkins, Amy; Mou, Sherry; Moody, Krishna; Fritz, David; Robinson, Camenzind G.; Bell, Todd; Worsham, Patricia

    2014-01-01

    Bacterial proteins destined for the Tat pathway are folded before crossing the inner membrane and are typically identified by an N-terminal signal peptide containing a twin arginine motif. Translocation by the Tat pathway is dependent on the products of genes which encode proteins possessing the binding site of the signal peptide and mediating the actual translocation event. In the fully virulent CO92 strain of Yersinia pestis, the tatA gene was deleted. The mutant was assayed for loss of virulence through various in vitro and in vivo assays. Deletion of the tatA gene resulted in several consequences for the mutant as compared to wild-type. Cell morphology of the mutant bacteria was altered and demonstrated a more elongated form. In addition, while cultures of the mutant strain were able to produce a biofilm, we observed a loss of adhesion of the mutant biofilm structure compared to the biofilm produced by the wild-type strain. Immuno-electron microscopy revealed a partial disruption of the F1 antigen on the surface of the mutant. The virulence of the ΔtatA mutant was assessed in various murine models of plague. The mutant was severely attenuated in the bubonic model with full virulence restored by complementation with the native gene. After small-particle aerosol challenge in a pneumonic model of infection, the mutant was also shown to be attenuated. In contrast, when mice were challenged intranasally with the mutant, very little difference in the LD50 was observed between wild-type and mutant strains. However, an increased time-to-death and delay in bacterial dissemination was observed in mice infected with the ΔtatA mutant as compared to the parent strain. Collectively, these findings demonstrate an essential role for the Tat pathway in the virulence of Y. pestis in bubonic and small-aerosol pneumonic infection but less important role for intranasal challenge. PMID:25101850

  10. Search for methylation-sensitive amplification polymorphisms in mutant figs.

    PubMed

    Rodrigues, M G F; Martins, A B G; Bertoni, B W; Figueira, A; Giuliatti, S

    2013-07-08

    Fig (Ficus carica) breeding programs that use conventional approaches to develop new cultivars are rare, owing to limited genetic variability and the difficulty in obtaining plants via gamete fusion. Cytosine methylation in plants leads to gene repression, thereby affecting transcription without changing the DNA sequence. Previous studies using random amplification of polymorphic DNA and amplified fragment length polymorphism markers revealed no polymorphisms among select fig mutants that originated from gamma-irradiated buds. Therefore, we conducted methylation-sensitive amplified polymorphism analysis to verify the existence of variability due to epigenetic DNA methylation among these mutant selections compared to the main cultivar 'Roxo-de-Valinhos'. Samples of genomic DNA were double-digested with either HpaII (methylation sensitive) or MspI (methylation insensitive) and with EcoRI. Fourteen primer combinations were tested, and on an average, non-methylated CCGG, symmetrically methylated CmCGG, and hemimethylated hmCCGG sites accounted for 87.9, 10.1, and 2.0%, respectively. MSAP analysis was effective in detecting differentially methylated sites in the genomic DNA of fig mutants, and methylation may be responsible for the phenotypic variation between treatments. Further analyses such as polymorphic DNA sequencing are necessary to validate these differences, standardize the regions of methylation, and analyze reads using bioinformatic tools.

  11. Mutant N143P Reveals How Na[superscript +] Activates Thrombin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Weiling; Chen, Zhiwei; Bush-Pelc, Leslie A.

    2010-01-12

    The molecular mechanism of thrombin activation by Na{sup +} remains elusive. Its kinetic formulation requires extension of the classical Botts-Morales theory for the action of a modifier on an enzyme to correctly account for the contribution of the E*, E, and E:Na{sup +} forms. The extended scheme establishes that analysis of k{sub cat} unequivocally identifies allosteric transduction of Na{sup +} binding into enhanced catalytic activity. The thrombin mutant N143P features no Na{sup +}-dependent enhancement of k{sub cat} yet binds Na{sup +} with an affinity comparable to that of wild type. Crystal structures of the mutant in the presence and absencemore » of Na{sup +} confirm that Pro{sup 143} abrogates the important H-bond between the backbone N atom of residue 143 and the carbonyl O atom of Glu{sup 192}, which in turn controls the orientation of the Glu{sup 192}-Gly{sup 193} peptide bond and the correct architecture of the oxyanion hole. We conclude that Na{sup +} activates thrombin by securing the correct orientation of the Glu{sup 192}-Gly{sup 193} peptide bond, which is likely flipped in the absence of cation. Absolute conservation of the 143-192 H-bond in trypsin-like proteases and the importance of the oxyanion hole in protease function suggest that this mechanism of Na{sup +} activation is present in all Na{sup +}-activated trypsin-like proteases.« less

  12. Sharing mutants and experimental information prepublication using FgMutantDb (https://scabusa.org/FgMutantDb).

    PubMed

    Baldwin, Thomas T; Basenko, Evelina; Harb, Omar; Brown, Neil A; Urban, Martin; Hammond-Kosack, Kim E; Bregitzer, Phil P

    2018-06-01

    There is no comprehensive storage for generated mutants of Fusarium graminearum or data associated with these mutants. Instead, researchers relied on several independent and non-integrated databases. FgMutantDb was designed as a simple spreadsheet that is accessible globally on the web that will function as a centralized source of information on F. graminearum mutants. FgMutantDb aids in the maintenance and sharing of mutants within a research community. It will serve also as a platform for disseminating prepublication results as well as negative results that often go unreported. Additionally, the highly curated information on mutants in FgMutantDb will be shared with other databases (FungiDB, Ensembl, PhytoPath, and PHI-base) through updating reports. Here we describe the creation and potential usefulness of FgMutantDb to the F. graminearum research community, and provide a tutorial on its use. This type of database could be easily emulated for other fungal species. Published by Elsevier Inc.

  13. Identification of Mutant Genes and Introgressed Tiger Salamander DNA in the Laboratory Axolotl, Ambystoma mexicanum.

    PubMed

    Woodcock, M Ryan; Vaughn-Wolfe, Jennifer; Elias, Alexandra; Kump, D Kevin; Kendall, Katharina Denise; Timoshevskaya, Nataliya; Timoshevskiy, Vladimir; Perry, Dustin W; Smith, Jeramiah J; Spiewak, Jessica E; Parichy, David M; Voss, S Randal

    2017-01-31

    The molecular genetic toolkit of the Mexican axolotl, a classic model organism, has matured to the point where it is now possible to identify genes for mutant phenotypes. We used a positional cloning-candidate gene approach to identify molecular bases for two historic axolotl pigment phenotypes: white and albino. White (d/d) mutants have defects in pigment cell morphogenesis and differentiation, whereas albino (a/a) mutants lack melanin. We identified in white mutants a transcriptional defect in endothelin 3 (edn3), encoding a peptide factor that promotes pigment cell migration and differentiation in other vertebrates. Transgenic restoration of Edn3 expression rescued the homozygous white mutant phenotype. We mapped the albino locus to tyrosinase (tyr) and identified polymorphisms shared between the albino allele (tyr a ) and tyr alleles in a Minnesota population of tiger salamanders from which the albino trait was introgressed. tyr a has a 142 bp deletion and similar engineered alleles recapitulated the albino phenotype. Finally, we show that historical introgression of tyr a significantly altered genomic composition of the laboratory axolotl, yielding a distinct, hybrid strain of ambystomatid salamander. Our results demonstrate the feasibility of identifying genes for traits in the laboratory Mexican axolotl.

  14. De novo design of peptide immunogens that mimic the coiled coil region of human T-cell leukemia virus type-1 glycoprotein 21 transmembrane subunit for induction of native protein reactive neutralizing antibodies.

    PubMed

    Sundaram, Roshni; Lynch, Marcus P; Rawale, Sharad V; Sun, Yiping; Kazanji, Mirdad; Kaumaya, Pravin T P

    2004-06-04

    Peptide vaccines able to induce high affinity and protective neutralizing antibodies must rely in part on the design of antigenic epitopes that mimic the three-dimensional structure of the corresponding region in the native protein. We describe the design, structural characterization, immunogenicity, and neutralizing potential of antibodies elicited by conformational peptides derived from the human T-cell leukemia virus type 1 (HTLV-1) gp21 envelope glycoprotein spanning residues 347-374. We used a novel template design and a unique synthetic approach to construct two peptides (WCCR2T and CCR2T) that would each assemble into a triple helical coiled coil conformation mimicking the gp21 crystal structure. The peptide B-cell epitopes were grafted onto the epsilon side chains of three lysyl residues on a template backbone construct consisting of the sequence acetyl-XGKGKGKGCONH2 (where X represents the tetanus toxoid promiscuous T cell epitope (TT) sequence 580-599). Leucine substitutions were introduced at the a and d positions of the CCR2T sequence to maximize helical character and stability as shown by circular dichroism and guanidinium hydrochloride studies. Serum from an HTLV-1-infected patient was able to recognize the selected epitopes by enzyme-linked immunosorbent assay (ELISA). Mice immunized with the wild-type sequence (WCCR2T) and the mutant sequence (CCR2T) elicited high antibody titers that were capable of recognizing the native protein as shown by flow cytometry and whole virus ELISA. Sera and purified antibodies from immunized mice were able to reduce the formation of syncytia induced by the envelope glycoprotein of HTLV-1, suggesting that antibodies directed against the coiled coil region of gp21 are capable of disrupting cell-cell fusion. Our results indicate that these peptides represent potential candidates for use in a peptide vaccine against HTLV-1.

  15. Bacterial Expression and Purification of the Amyloidogenic Peptide PAPf39 for Multidimensional NMR Spectroscopy

    PubMed Central

    Shanmuganathan, Aranganathan; Bishop, Anthony C.; French, Kinsley C.; McCallum, Scott A.; Makhatadze, George I.

    2013-01-01

    PAPf39 is a 39 residue peptide fragment from human prostatic acidic phosphatase that forms amyloid fibrils in semen. These fibrils have been implicated in facilitating HIV transmission. To enable structural studies of PAPf39 by NMR spectroscopy, efficient methods allowing the production of milligram quantities of isotopically labeled peptide are essential. Here, we report the high-yield expression, as a fusion to ubiquitin at the N-terminus and an intein at the C-terminus, and purification of uniformly labeled 13C- and 15N-labeled PAPf39 peptide. This allows the study of the PAPf39 monomer conformational ensemble by NMR spectroscopy. To this end, we performed the NMR chemical shift assignment of the PAPf39 peptide in the monomeric state at low pH. PMID:23314347

  16. Mutants with Enhanced Nitrogenase Activity in Hydroponic Azospirillum brasilense-Wheat Associations

    PubMed Central

    Pereg Gerk, Lily; Gilchrist, Kate; Kennedy, Ivan R.

    2000-01-01

    The effect of a mutation affecting flocculation, differentiation into cyst-like forms, and root colonization on nitrogenase expression by Azospirillum brasilense is described. The gene flcA of strain Sp7 restored these phenotypes in spontaneous mutants of both strains Sp7 and Sp245. Employing both constitutive pLA-lacZ and nifH-lacZ reporter fusions expressed in situ, the colony morphology, colonization pattern, and potential for nitrogenase activity of spontaneous mutants and flcA Tn5-induced mutants were established. The results of this study show that the ability of Sp7 and Sp245 mutant strains to remain in a vegetative form improved their ability to express nitrogenase activity in association with wheat in a hydroponic system. Restoring the cyst formation and colonization pattern to the spontaneous mutant Sp7-S reduced nitrogenase activity rates in association with plants to that of the wild-type Sp7. Although Tn5-induced flcA mutants showed higher potentials for nitrogenase expression than Sp7, their potentials were lower than that of Sp7-S, indicating that other factors in this strain contribute to its exceptional nitrogenase activity rates on plants. The lack of lateral flagella is not one of these factors, as Sp7-PM23, a spontaneous mutant impaired in swarming and lateral-flagellum production but not in flocculation, showed wild-type nitrogenase activity and expression. The results also suggest factors of importance in evolving an effective symbiosis between Azospirillum and wheat, such as increasing the availability of microaerobic niches along the root, increased supply of carbon sources by the plant, and the retention of the bacterial cells in vegetative form for faster metabolism. PMID:10788397

  17. Mechanism for Active Membrane Fusion Triggering by Morbillivirus Attachment Protein

    PubMed Central

    Ader, Nadine; Brindley, Melinda; Avila, Mislay; Örvell, Claes; Horvat, Branka; Hiltensperger, Georg; Schneider-Schaulies, Jürgen; Vandevelde, Marc; Zurbriggen, Andreas; Plemper, Richard K.

    2013-01-01

    The paramyxovirus entry machinery consists of two glycoproteins that tightly cooperate to achieve membrane fusion for cell entry: the tetrameric attachment protein (HN, H, or G, depending on the paramyxovirus genus) and the trimeric fusion protein (F). Here, we explore whether receptor-induced conformational changes within morbillivirus H proteins promote membrane fusion by a mechanism requiring the active destabilization of prefusion F or by the dissociation of prefusion F from intracellularly preformed glycoprotein complexes. To properly probe F conformations, we identified anti-F monoclonal antibodies (MAbs) that recognize conformation-dependent epitopes. Through heat treatment as a surrogate for H-mediated F triggering, we demonstrate with these MAbs that the morbillivirus F trimer contains a sufficiently high inherent activation energy barrier to maintain the metastable prefusion state even in the absence of H. This notion was further validated by exploring the conformational states of destabilized F mutants and stabilized soluble F variants combined with the use of a membrane fusion inhibitor (3g). Taken together, our findings reveal that the morbillivirus H protein must lower the activation energy barrier of metastable prefusion F for fusion triggering. PMID:23077316

  18. CD4 molecules with a diversity of mutations encompassing the CDR3 region efficiently support human immunodeficiency virus type 1 envelope glycoprotein-mediated cell fusion.

    PubMed Central

    Broder, C C; Berger, E A

    1993-01-01

    The third complementarity-determining region (CDR3) within domain 1 of the human CD4 molecule has been suggested to play a critical role in membrane fusion mediated by the interaction of CD4 with the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein. To analyze in detail the role of CDR3 and adjacent regions in the fusion process, we used cassette mutagenesis to construct a panel of 30 site-directed mutations between residues 79 and 96 of the full-length CD4 molecule. The mutant proteins were transiently expressed by using recombinant vaccinia virus vectors and were analyzed for cell surface expression, recombinant gp120-binding activity, and overall structural integrity as assessed by reactivity with a battery of anti-CD4 monoclonal antibodies. Cells expressing the CD4 mutants were assayed for their ability to form syncytia when mixed with cells expressing the HIV-1 envelope glycoprotein. Surprisingly in view of published data from others, most of the mutations had little effect on syncytium-forming activity. Normal fusion was observed in 21 mutants, including substitution of human residues 85 to 95 with the corresponding sequences from either chimpanzee, rhesus, or mouse CD4; a panel of Ser-Arg double insertions after each residue from 86 to 91; and a number of other charge, hydrophobic, and proline substitutions and insertions within this region. The nine mutants that showed impaired fusion all displayed defective gp120 binding and disruption of overall structural integrity. In further contrast with results of other workers, we observed that transformant human cell lines expressing native chimpanzee or rhesus CD4 efficiently formed syncytia when mixed with cells expressing the HIV-1 envelope glycoprotein. These data refute the conclusion that certain mutations in the CDR3 region of CD4 abolish cell fusion activity, and they suggest that a wide variety of sequences can be functionally tolerated in this region, including those from highly divergent

  19. CD4 molecules with a diversity of mutations encompassing the CDR3 region efficiently support human immunodeficiency virus type 1 envelope glycoprotein-mediated cell fusion.

    PubMed

    Broder, C C; Berger, E A

    1993-02-01

    The third complementarity-determining region (CDR3) within domain 1 of the human CD4 molecule has been suggested to play a critical role in membrane fusion mediated by the interaction of CD4 with the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein. To analyze in detail the role of CDR3 and adjacent regions in the fusion process, we used cassette mutagenesis to construct a panel of 30 site-directed mutations between residues 79 and 96 of the full-length CD4 molecule. The mutant proteins were transiently expressed by using recombinant vaccinia virus vectors and were analyzed for cell surface expression, recombinant gp120-binding activity, and overall structural integrity as assessed by reactivity with a battery of anti-CD4 monoclonal antibodies. Cells expressing the CD4 mutants were assayed for their ability to form syncytia when mixed with cells expressing the HIV-1 envelope glycoprotein. Surprisingly in view of published data from others, most of the mutations had little effect on syncytium-forming activity. Normal fusion was observed in 21 mutants, including substitution of human residues 85 to 95 with the corresponding sequences from either chimpanzee, rhesus, or mouse CD4; a panel of Ser-Arg double insertions after each residue from 86 to 91; and a number of other charge, hydrophobic, and proline substitutions and insertions within this region. The nine mutants that showed impaired fusion all displayed defective gp120 binding and disruption of overall structural integrity. In further contrast with results of other workers, we observed that transformant human cell lines expressing native chimpanzee or rhesus CD4 efficiently formed syncytia when mixed with cells expressing the HIV-1 envelope glycoprotein. These data refute the conclusion that certain mutations in the CDR3 region of CD4 abolish cell fusion activity, and they suggest that a wide variety of sequences can be functionally tolerated in this region, including those from highly divergent

  20. Vacuolar ATPase in Phagosome-Lysosome Fusion

    PubMed Central

    Kissing, Sandra; Hermsen, Christina; Repnik, Urska; Nesset, Cecilie Kåsi; von Bargen, Kristine; Griffiths, Gareth; Ichihara, Atsuhiro; Lee, Beth S.; Schwake, Michael; De Brabander, Jef; Haas, Albert; Saftig, Paul

    2015-01-01

    The vacuolar H+-ATPase (v-ATPase) complex is instrumental in establishing and maintaining acidification of some cellular compartments, thereby ensuring their functionality. Recently it has been proposed that the transmembrane V0 sector of v-ATPase and its a-subunits promote membrane fusion in the endocytic and exocytic pathways independent of their acidification functions. Here, we tested if such a proton-pumping independent role of v-ATPase also applies to phagosome-lysosome fusion. Surprisingly, endo(lyso)somes in mouse embryonic fibroblasts lacking the V0 a3 subunit of the v-ATPase acidified normally, and endosome and lysosome marker proteins were recruited to phagosomes with similar kinetics in the presence or absence of the a3 subunit. Further experiments used macrophages with a knockdown of v-ATPase accessory protein 2 (ATP6AP2) expression, resulting in a strongly reduced level of the V0 sector of the v-ATPase. However, acidification appeared undisturbed, and fusion between latex bead-containing phagosomes and lysosomes, as analyzed by electron microscopy, was even slightly enhanced, as was killing of non-pathogenic bacteria by V0 mutant macrophages. Pharmacologically neutralized lysosome pH did not affect maturation of phagosomes in mouse embryonic cells or macrophages. Finally, locking the two large parts of the v-ATPase complex together by the drug saliphenylhalamide A did not inhibit in vitro and in cellulo fusion of phagosomes with lysosomes. Hence, our data do not suggest a fusion-promoting role of the v-ATPase in the formation of phagolysosomes. PMID:25903133

  1. Vacuolar ATPase in phagosome-lysosome fusion.

    PubMed

    Kissing, Sandra; Hermsen, Christina; Repnik, Urska; Nesset, Cecilie Kåsi; von Bargen, Kristine; Griffiths, Gareth; Ichihara, Atsuhiro; Lee, Beth S; Schwake, Michael; De Brabander, Jef; Haas, Albert; Saftig, Paul

    2015-05-29

    The vacuolar H(+)-ATPase (v-ATPase) complex is instrumental in establishing and maintaining acidification of some cellular compartments, thereby ensuring their functionality. Recently it has been proposed that the transmembrane V0 sector of v-ATPase and its a-subunits promote membrane fusion in the endocytic and exocytic pathways independent of their acidification functions. Here, we tested if such a proton-pumping independent role of v-ATPase also applies to phagosome-lysosome fusion. Surprisingly, endo(lyso)somes in mouse embryonic fibroblasts lacking the V0 a3 subunit of the v-ATPase acidified normally, and endosome and lysosome marker proteins were recruited to phagosomes with similar kinetics in the presence or absence of the a3 subunit. Further experiments used macrophages with a knockdown of v-ATPase accessory protein 2 (ATP6AP2) expression, resulting in a strongly reduced level of the V0 sector of the v-ATPase. However, acidification appeared undisturbed, and fusion between latex bead-containing phagosomes and lysosomes, as analyzed by electron microscopy, was even slightly enhanced, as was killing of non-pathogenic bacteria by V0 mutant macrophages. Pharmacologically neutralized lysosome pH did not affect maturation of phagosomes in mouse embryonic cells or macrophages. Finally, locking the two large parts of the v-ATPase complex together by the drug saliphenylhalamide A did not inhibit in vitro and in cellulo fusion of phagosomes with lysosomes. Hence, our data do not suggest a fusion-promoting role of the v-ATPase in the formation of phagolysosomes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. High yield recombinant production of a self-assembling polycationic peptide for silica biomineralization.

    PubMed

    Zerfaß, Christian; Braukmann, Sandra; Nietzsche, Sandor; Hobe, Stephan; Paulsen, Harald

    2015-04-01

    We report the recombinant bacterial expression and purification at high yields of a polycationic oligopeptide, P5S3. The sequence of P5S3 was inspired by a diatom silaffin, a silica precipitating peptide. Like its native model, P5S3 exhibits silica biomineralizing activity, but furthermore has unusual self-assembling properties. P5S3 is efficiently expressed in Escherichia coli as fusion with ketosteroid isomerase (KSI), which causes deposition in inclusion bodies. After breaking the fusion by cyanogen bromide reaction, P5S3 was purified by cation exchange chromatography, taking advantage of the exceptionally high content of basic amino acids. The numerous cationic charges do not prevent, but may even promote counterion-independent self-assembly which in turn leads to silica precipitation. Enzymatic phosphorylation, a common modification in native silica biomineralizing peptides, can be used to modify the precipitation activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis.

    PubMed

    Marty, Caroline; Pecquet, Christian; Nivarthi, Harini; El-Khoury, Mira; Chachoua, Ilyas; Tulliez, Micheline; Villeval, Jean-Luc; Raslova, Hana; Kralovics, Robert; Constantinescu, Stefan N; Plo, Isabelle; Vainchenker, William

    2016-03-10

    Frameshift mutations in the calreticulin (CALR) gene are seen in about 30% of essential thrombocythemia and myelofibrosis patients. To address the contribution of the CALR mutants to the pathogenesis of myeloproliferative neoplasms, we engrafted lethally irradiated recipient mice with bone marrow cells transduced with retroviruses expressing these mutants. In contrast to wild-type CALR, CALRdel52 (type I) and, to a lesser extent, CALRins5 (type II) induced thrombocytosis due to a megakaryocyte (MK) hyperplasia. Disease was transplantable into secondary recipients. After 6 months, CALRdel52-, in contrast to rare CALRins5-, transduced mice developed a myelofibrosis associated with a splenomegaly and a marked osteosclerosis. Monitoring of virus-transduced populations indicated that CALRdel52 leads to expansion at earlier stages of hematopoiesis than CALRins5. However, both mutants still specifically amplified the MK lineage and platelet production. Moreover, a mutant deleted of the entire exon 9 (CALRdelex9) did not induce a disease, suggesting that the oncogenic property of CALR mutants was related to the new C-terminus peptide. To understand how the CALR mutants target the MK lineage, we used a cell-line model and demonstrated that the CALR mutants, but not CALRdelex9, specifically activate the thrombopoietin (TPO) receptor (MPL) to induce constitutive activation of Janus kinase 2 and signal transducer and activator of transcription 5/3/1. We confirmed in c-mpl- and tpo-deficient mice that expression of Mpl, but not of Tpo, was essential for the CALR mutants to induce thrombocytosis in vivo, although Tpo contributes to disease penetrance. Thus, CALR mutants are sufficient to induce thrombocytosis through MPL activation. © 2016 by The American Society of Hematology.

  4. Effects of halophilic peptide fusion on solubility, stability, and catalytic performance of D-phenylglycine aminotransferase.

    PubMed

    Javid, Hossein; Jomrit, Juntratip; Chantarasiri, Aiya; Isarangkul, Duangnate; Meevootisom, Vithaya; Wiyakrutta, Suthep

    2014-05-01

    D-Phenylglycine aminotransferase (D-PhgAT) from Pseudomonas stutzeri ST-201 is useful for enzymatic synthesis of enantiomerically pure D-phenylglycine. However, its low protein solubility prevents its application at high substrate concentration. With an aim to increase the protein solubility, the N-terminus of D-PhgAT was genetically fused with short peptides (A1 α- helix, A2 α-helix, and ALAL, which is a hybrid of A1 and A2) from a ferredoxin enzyme of a halophilic archaeon, Halobacterium salinarum. The fused enzymes A1-D-PhgAT, A2-D-PhgAT, and ALAL-D-PhgAT displayed a reduced pI and increased in solubility by 6.1-, 5.3-, and 8.1- fold in TEMP (pH 7.6) storage, respectively, and 5-, 4.5-, and 5.9-fold in CAPSO (pH 9.5) reaction buffers, respectively, compared with the wild-type enzyme (WT-D-PhgAT). In addition, all the fused D-PhgAT displayed higher enzymatic reaction rates than the WT-DPhgAT at all concentrations of L-glutamate monosodium salt used. The highest rate, 23.82 ± 1.47 mM/h, was that obtained from having ALAL-D-PhgAT reacted with 1,500 mM of the substrate. Moreover, the halophilic fusion significantly increased the tolerance of D-PhgAT in the presence of NaCl and KCl, being slightly in favor of KCl, where under the same condition at 3.5 M NaCl or KCl all halophilic-fused variants showed higher activity than WT-D-PhgAT.

  5. Regulation of Sleep by Insulin-like Peptide System in Drosophila melanogaster.

    PubMed

    Cong, Xiaona; Wang, Haili; Liu, Zhenxing; He, Chunxia; An, Chunju; Zhao, Zhangwu

    2015-07-01

    Most organisms have behavioral and physiological circadian rhythms, which are controlled by an endogenous clock. Although genetic analysis has revealed the intracellular mechanism of the circadian clock, the manner in which this clock communicates its temporal information to produce systemic regulation is still largely unknown. Sleep behavior was measured using the Drosophila Activity Monitoring System (DAMS) monitor under a 12 h light:12 h dark cycle and constant darkness (DD), and 5 min without recorded activity were defined as a bout of sleep. Here we show that Drosophila insulin-like peptides (DILPs) and their receptor (DInR) regulate sleep behavior. All mutants of the seven dilps and the mutant of their receptor exhibit decreases of total sleep except dilp4 mutants, whereas upregulation of DILP and DInR in the nervous system led to increased sleep. Histological analysis identified four previously unidentified neurons expressing DILP: D1, P1, L1, and L2, of which L1 and L2 belong to the LNd and LNv clock neurons that separately regulate different times of sleep. In addition, dilp2 levels significantly decrease when flies were fasted, which is consistent with a previous report that starvation inhibits sleep, further indicating that the dilp system is involved in sleep regulation. Taken together, the results indicate that the Drosophila insulin-like peptide system is a crucial regulator of sleep. © 2015 Associated Professional Sleep Societies, LLC.

  6. Peptide P5 (residues 628–683), comprising the entire membrane proximal region of HIV-1 gp41 and its calcium-binding site, is a potent inhibitor of HIV-1 infection

    PubMed Central

    Yu, Huifeng; Tudor, Daniela; Alfsen, Annette; Labrosse, Beatrice; Clavel, François; Bomsel, Morgane

    2008-01-01

    The membrane proximal region (MPR) of the transmembrane subunit, gp41, of the HIV envelope glycoprotein plays a critical role in HIV-1 infection of CD4+ target cells and CD4-independent mucosal entry. It contains continuous epitopes recognized by neutralizing IgG antibodies 2F5, 4E10 and Z13, and is therefore considered to be a promising target for vaccine design. Moreover, some MPR-derived peptides, such as T20 (enfuvirtide), are in clinical use as HIV-1 inhibitors. We have shown that an extended MPR peptide, P5, harbouring the lectin-like domain of gp41 and a calcium-binding site, is implicated in the interaction of HIV with its mucosal receptor. We now investigate the potential antiviral activities of P5 and other such long MPR-derived peptides. Structural studies of gp41 MPR-derived peptides using circular dichroism showed that the peptides P5 (a.a.628–683), P1 (a.a.648–683), P5L (a.a.613–683) and P7 (a.a.613–746) displayed a well-defined α-helical structure. Peptides P5 inhibited HIV-1 envelope mediated cell-cell fusion and infection of peripheral blood mononuclear cells by both X4- and R5-tropic HIV-1 strains, whereas peptides P5 mutated in the calcium binding site or P1 lacked antiviral activity, when P5L blocked cell fusion in contrast to P7. Strikingly, P5 inhibited CD4-dependent infection by T20-resistant R5-tropic HIV-1 variants. Cell-cell fusion studies indicated that the anti-HIV-1 activity of P5, unlike T20, could not be abrogated in the presence of the N-terminal leucine zipper domain (LZ). These results suggested that P5 could serve as a potent fusion inhibitor. PMID:18925934

  7. A mutant of the Buthus martensii Karsch antitumor-analgesic peptide exhibits reduced inhibition to hNav1.4 and hNav1.5 channels while retaining analgesic activity.

    PubMed

    Xu, Yijia; Meng, Xiangxue; Hou, Xue; Sun, Jianfang; Kong, Xiaohua; Sun, Yuqi; Liu, Zeyu; Ma, Yuanyuan; Niu, Ye; Song, Yongbo; Cui, Yong; Zhao, Mingyi; Zhang, Jinghai

    2017-11-03

    Scorpion toxins can kill other animals by inducing paralysis and arrhythmia, which limits the potential applications of these agents in the clinical management of diseases. Antitumor-analgesic peptide (AGAP), purified from Buthus martensii Karsch, has been proved to possess analgesic and antitumor activities. Trp 38 , a conserved aromatic residue of AGAP, might play an important role in mediating AGAP activities according to the sequence and homology-modeling analyses. Therefore, an AGAP mutant, W38G, was generated, and effects of both AGAP and the mutant W38G were examined by whole-cell patch clamp techniques on the sodium channels hNa v 1.4 and hNa v 1.5, which were closely associated with the biotoxicity of skeletal and cardiac muscles, respectively. The data showed that both W38G and AGAP inhibited the peak currents of hNa v 1.4 and hNa v 1.5; however, W38G induced a much weaker inhibition of both channels than AGAP. Accordingly, W38G exhibited much less toxic effect on both skeletal and cardiac muscles than AGAP in vivo The analgesic activity of W38G and AGAP were verified in vivo as well, and W38G retained analgesic activity similar to AGAP. Inhibition to both Na v 1.7 and Na v 1.8 was involved in the analgesic mechanism of AGAP and W38G. These findings indicated that Trp 38 was a key amino acid involved in the biotoxicity of AGAP, and the AGAP mutant W38G might be a safer alternative for clinical application because it retains the analgesic efficacy with less toxicity to skeletal and cardiac muscles. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Development of bacterial display peptides for use in biosensing applications

    NASA Astrophysics Data System (ADS)

    Stratis-Cullum, Dimitra N.; Kogot, Joshua M.; Sellers, Michael S.; Hurley, Margaret M.; Sarkes, Deborah A.; Pennington, Joseph M.; Val-Addo, Irene; Adams, Bryn L.; Warner, Candice R.; Carney, James P.; Brown, Rebecca L.; Pellegrino, Paul M.

    2012-06-01

    Recent advances in synthetic library engineering continue to show promise for the rapid production of reagent technology in response to biological threats. A synthetic library of peptide mutants built off a bacterial host offers a convenient means to link the peptide sequence, (i.e., identity of individual library members) with the desired molecular recognition traits, but also allows for a relatively simple protocol, amenable to automation. An improved understanding of the mechanisms of recognition and control of synthetic reagent isolation and evolution remain critical to success. In this paper, we describe our approach to development of peptide affinity reagents based on peptide bacterial display technology with improved control of binding interactions for stringent evolution of reagent candidates, and tailored performance capabilities. There are four key elements to the peptide affinity reagent program including: (1) the diverse bacterial library technology, (2) advanced reagent screening amenable to laboratory automation and control, (3) iterative characterization and feedback on both affinity and specificity of the molecular interactions, and (3) integrated multiscale computational prescreening of candidate peptide ligands including in silico prediction of improved binding performance. Specific results on peptides binders to Protective Antigen (PA) protein of Bacillus anthracis and Staphylococcal Enterotoxin B (SEB) will be presented. Recent highlights of on cell vs. off-cell affinity behavior and correlation of the results with advanced docking simulations on the protein-peptide system(s) are included. The potential of this technology and approach to enable rapid development of a new affinity reagent with unprecedented speed (less than one week) would allow for rapid response to new and constantly emerging threats.

  9. Lactobacillus buchneri S-layer as carrier for an Ara h 2-derived peptide for peanut allergen-specific immunotherapy.

    PubMed

    Anzengruber, Julia; Bublin, Merima; Bönisch, Eva; Janesch, Bettina; Tscheppe, Angelika; Braun, Matthias L; Varga, Eva-Maria; Hafner, Christine; Breiteneder, Heimo; Schäffer, Christina

    2017-05-01

    Peanut allergy is an IgE-mediated severe hypersensitivity disorder. The lack of a treatment of this potentially fatal allergy has led to intensive research on vaccine development. Here, we describe the design and initial characterization of a carrier-bound peptide derived from the most potent peanut allergen, Ara h 2, as a candidate vaccine. Based on the adjuvant capability of bacterial surface (S-) layers, a fusion protein of the S-layer protein SlpB from Lactobacillus buchneri CD034 and the Ara h 2-derived peptide AH3a42 was produced. This peptide comprised immunodominant B-cell epitopes as well as one T cell epitope. The fusion protein SlpB-AH3a42 was expressed in E. coli, purified, and tested for its IgE binding capacity as well as for its ability to activate sensitized rat basophil leukemia (RBL) cells. The capacity of Ara h 2-specific IgG rabbit-antibodies raised against SlpB-AH3a42 or Ara h 2 to inhibit IgE-binding was determined by ELISA inhibition assays using sera of peanut allergic patients sensitized to Ara h 2. IgE specific to the SlpB-AH3a42 fusion protein was detected in 69% (25 of 36) of the sera. Despite the recognition by IgE, the SlpB-AH3a42 fusion protein was unable to induce β-hexosaminidase release from sensitized RBL cells at concentrations up to 100ng per ml. The inhibition of IgE-binding to the natural allergen observed after pre-incubation of the 20 sera with rabbit anti-SlpB-AH3a42 IgG was more than 30% for four sera, more than 20% for eight sera, and below 10% for eight sera. In comparison, anti-Ara h 2 rabbit IgG antibodies inhibited binding to Ara h 2 by 48% ±13.5%. Our data provide evidence for the feasibility of this novel approach towards the development of a peanut allergen peptide-based carrier-bound vaccine. Our experiments further indicate that more than one allergen-peptide will be needed to induce a broader protection of patients allergic to Ara h 2. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights

  10. The immunological and clinical effects of mutated ras peptide vaccine in combination with IL-2, GM-CSF, or both in patients with solid tumors.

    PubMed

    Rahma, Osama E; Hamilton, J Michael; Wojtowicz, Malgorzata; Dakheel, Omar; Bernstein, Sarah; Liewehr, David J; Steinberg, Seth M; Khleif, Samir N

    2014-02-24

    Mutant Ras oncogenes produce proteins that are unique to cancer cells and represent attractive targets for vaccine therapy. We have shown previously that vaccinating cancer patients with mutant ras peptides is feasible and capable of inducing a specific immune response against the relevant mutant proteins. Here, we tested the mutant ras peptide vaccine administered in combination with low dose interleukin-2 (IL-2) or/and granulocyte-macrophage colony-stimulating factor (GM-CSF) in order to enhance the vaccine immune response. 5000 μg of the corresponding mutant ras peptide was given subcutaneously (SQ) along with IL-2 (Arm A), GM-CSF (Arm B) or both (Arm C). IL-2 was given SQ at 6.0 million IU/m²/day starting at day 5, 5 days/week for 2 weeks. GM-CSF was given SQ in a dose of 100 μg/day one day prior to each ras peptide vaccination for 4 days. Vaccines were repeated every 5 weeks on arm A and C, and every 4 weeks on arm B, for a maximum of 15 cycles or until disease progression. We treated 53 advanced cancer patients (38 with colorectal, 11 with pancreatic, 1 with common bile duct and 3 with lung) on 3 different arms (16 on arm A, 18 on arm B, and 19 on arm C). The median progression free survival (PFS) and overall survival (OS) was 3.6 and 16.9 months, respectively, for all patients evaluable for clinical response (n = 48). There was no difference in PFS or OS between the three arms (P = 0.73 and 0.99, respectively). Most adverse events were grade 1-2 toxicities and resolved spontaneously. The vaccine induced an immune response to the relevant ras peptide in a total of 20 out of 37 evaluable patients (54%) by ELISPOT, proliferative assay, or both. While 92.3% of patients on arm B had a positive immune response, only 31% of patients on arm A and 36% of patients on arm C had positive immune responses (P = 0.003, Fisher's exact test). The reported data showed that IL-2 might have a negative effect on the specific immune response induced by the relevant mutant

  11. HMG CoA Lyase (HL): Mutation detection and development of a bacterial expression system for screening the activity of mutant alleles from HL-deficient patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert, M.F.; Ashmarina, L.; Poitier, E.

    1994-09-01

    HL catalyzes the last step of ketogenesis, and autosomal recessive HL deficiency in humans can cause episodes of hypoglycemia and coma. Structurally, HL is a dimer of identical 325-residue peptides which requires a reducing environment to maintain activity. We cloned the human and mouse HL cDNAs and genes and have performed mutation analysis on cells from 30 HL-deficient probands. Using SSCP and also genomic Southern analysis we have identified putative mutations on 53/60 alleles of these patients (88%). To date, we have found 20 mutations: 3 large deletions, 4 termination mutations, 5 frameshift mutations, and 8 missense mutations which wemore » suspect to be pathogenic based on evolutionary conservation and/or our previous studies on purified HL protein. We have also identified 3 polymorphic variants. In order to directly test the activity of the missense mutations, we established a pGEX-based system, using a glutathione S transferase (GST)-HL fusion protein. Expressed wild-type GST-HL was insoluble. We previously located a reactive Cys at the C-terminus of chicken HL which is conserved in human HL. We produced a mutant HL peptide, C323S, which replaced Cys323 with Ser. Purified C323S is soluble and has similar kinetics to wild-type HL. C323S-containing GST-HL is soluble and enzymatically active. We are cloning and expressing the 8 missense mutations.« less

  12. Peptide chemistry toolbox - Transforming natural peptides into peptide therapeutics.

    PubMed

    Erak, Miloš; Bellmann-Sickert, Kathrin; Els-Heindl, Sylvia; Beck-Sickinger, Annette G

    2018-06-01

    The development of solid phase peptide synthesis has released tremendous opportunities for using synthetic peptides in medicinal applications. In the last decades, peptide therapeutics became an emerging market in pharmaceutical industry. The need for synthetic strategies in order to improve peptidic properties, such as longer half-life, higher bioavailability, increased potency and efficiency is accordingly rising. In this mini-review, we present a toolbox of modifications in peptide chemistry for overcoming the main drawbacks during the transition from natural peptides to peptide therapeutics. Modifications at the level of the peptide backbone, amino acid side chains and higher orders of structures are described. Furthermore, we are discussing the future of peptide therapeutics development and their impact on the pharmaceutical market. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Efficient secretory expression of recombinant proteins in Escherichia coli with a novel actinomycete signal peptide.

    PubMed

    Cui, Yanbing; Meng, Yiwei; Zhang, Juan; Cheng, Bin; Yin, Huijia; Gao, Chao; Xu, Ping; Yang, Chunyu

    2017-01-01

    In well-established heterologous hosts, such as Escherichia coli, recombinant proteins are usually intracellular and frequently found as inclusion bodies-especially proteins possessing high rare codon content. In this study, successful secretory expression of three hydrolases, in a constructed inducible or constitutive system, was achieved by fusion with a novel signal peptide (Kp-SP) from an actinomycete. The signal peptide efficiently enabled extracellular protein secretion and also contributed to the active expression of the intracellular recombinant proteins. The thermophilic α-amylase gene of Bacillus licheniformis was fused with Kp-SP. Both recombinants, carrying inducible and constitutive plasmids, showed remarkable increases in extracellular and intracellular amylolytic activity. Amylase activity was observed to be > 10-fold in recombinant cultures with the constitutive plasmid, pBSPPc, compared to that in recombinants lacking Kp-SP. Further, the signal peptide enabled efficient secretion of a thermophilic cellulase into the culture medium, as demonstrated by larger halo zones and increased enzymatic activities detected in both constructs from different plasmids. For heterologous proteins with a high proportion of rare codons, it is difficult to obtain high expression in E. coli owing to the codon bias. Here, the fusion of an archaeal homologue of the amylase encoding gene, FSA, with Kp-SP resulted in > 5-fold higher extracellular activity. The successful extracellular expression of the amylase indicated that the signal peptide also contributed significantly to its active expression and signified the potential value of this novel and versatile signal peptide in recombinant protein production. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Molecular Origin of Gerstmann-Sträussler-Scheinker Syndrome: Insight from Computer Simulation of an Amyloidogenic Prion Peptide

    PubMed Central

    Daidone, Isabella; Di Nola, Alfredo; Smith, Jeremy C.

    2011-01-01

    Prion proteins become pathogenic through misfolding. Here, we characterize the folding of a peptide consisting of residues 109–122 of the Syrian hamster prion protein (the H1 peptide) and of a more amyloidogenic A117V point mutant that leads in humans to an inheritable form of the Gerstmann-Sträussler-Scheinker syndrome. Atomistic molecular dynamics simulations are performed for 2.5 μs. Both peptides lose their α-helical starting conformations and assume a β-hairpin that is structurally similar in both systems. In each simulation several unfolding/refolding events occur, leading to convergence of the thermodynamics of the conformational states to within 1 kJ/mol. The similar stability of the β-hairpin relative to the unfolded state is observed in the two peptides. However, substantial differences are found between the two unfolded states. A local minimum is found within the free energy unfolded basin of the A117V mutant populated by misfolded collapsed conformations of comparable stability to the β-hairpin state, consistent with increased amyloidogenicity. This population, in which V117 stabilizes a hydrophobic core, is absent in the wild-type peptide. These results are supported by simulations of oligomers showing a slightly higher stability of the associated structures and a lower barrier to association for the mutated peptide. Hence, a single point mutation carrying only two additional methyl groups is here shown to be responsible for rather dramatic differences of structuring within the unfolded (misfolded) state. PMID:21689534

  15. A study of carbobenzoxy-D-phenylalanine-L-phenylalanine-glycine, an inhibitor of membrane fusion, in phospholipid bilayers with multinuclear magnetic resonance.

    PubMed

    Dentino, A R; Westerman, P W; Yeagle, P L

    1995-05-04

    The anti-viral and membrane fusion inhibitor, carbobenzoxy-D-phenylalanine-L-phenylalanine-glycine (ZfFG), was studied in phospholipid bilayers, where earlier studies had indicated this peptide functioned. Multinuclear magnetic resonance (NMR) studies were performed with isotopically labeled peptide. A peptide labeled in the glycine carboxyl with 13C was synthesized, and the isotropic 13C-NMR chemical shift of that carbon was measured as a function of pH. A pKa of 3.6 for the carboxyl was determined from the peptide bound to a phosphatidylcholine bilayer. ZfFG inhibits the formation by sonication of highly curved, small unilamellar vesicles. Experiments as a function of pH revealed that this ability of ZfFG was governed by a pKa of 3.7. Therefore the protonation state of the carboxyl of ZfFG appeared to regulate the effectiveness of this anti-viral peptide at destabilizing highly curved phospholipid assemblies. Such destabilization had previously been discovered to be related to the mechanism of the anti-fusion and anti-viral activity of this peptide. The location of the carboxyl of ZfFG in the membrane was probed with paramagnetic relaxation enhancement of the 13C spin lattice relaxation of the carboxyl carbon in the glycine of ZfFG (enriched in 13C). Results suggested that this carboxyl is at or above the surface of the phospholipid bilayer. The dynamics of the molecule in the membrane were examined with 2H-NMR studies of ZfFG, deuterated in the alpha-carbon protons of the glycine. When ZfFG was bound to membranes of phosphatidylcholine, a sharp 2H-NMR spectral component was observed, consistent with a disordering of the glycine methylene segment of the peptide. When ZfFG was bound to N-methyl dioleoylphosphatidylethanolamine (N-methyl DOPE) bilayers at temperatures below 30 degrees C, a large quadrupole splitting was observed. These results suggest that ZfFG likely inhibits membrane fusion from the surface of the lipid bilayer, but not by forming a tight

  16. Functional importance of short-range binding and long-range solvent interactions in helical antifreeze peptides.

    PubMed

    Ebbinghaus, Simon; Meister, Konrad; Prigozhin, Maxim B; Devries, Arthur L; Havenith, Martina; Dzubiella, Joachim; Gruebele, Martin

    2012-07-18

    Short-range ice binding and long-range solvent perturbation both have been implicated in the activity of antifreeze proteins and antifreeze glycoproteins. We study these two mechanisms for activity of winter flounder antifreeze peptide. Four mutants are characterized by freezing point hysteresis (activity), circular dichroism (secondary structure), Förster resonance energy transfer (end-to-end rigidity), molecular dynamics simulation (structure), and terahertz spectroscopy (long-range solvent perturbation). Our results show that the short-range model is sufficient to explain the activity of our mutants, but the long-range model provides a necessary condition for activity: the most active peptides in our data set all have an extended dynamical hydration shell. It appears that antifreeze proteins and antifreeze glycoproteins have reached different evolutionary solutions to the antifreeze problem, utilizing either a few precisely positioned OH groups or a large quantity of OH groups for ice binding, assisted by long-range solvent perturbation. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. ProSAAS-derived peptides are regulated by cocaine and are required for sensitization to the locomotor effects of cocaine.

    PubMed

    Berezniuk, Iryna; Rodriguiz, Ramona M; Zee, Michael L; Marcus, David J; Pintar, John; Morgan, Daniel J; Wetsel, William C; Fricker, Lloyd D

    2017-11-01

    To identify neuropeptides that are regulated by cocaine, we used a quantitative peptidomic technique to examine the relative levels of neuropeptides in several regions of mouse brain following daily intraperitoneal administration of 10 mg/kg cocaine or saline for 7 days. A total of 102 distinct peptides were identified in one or more of the following brain regions: nucleus accumbens, caudate putamen, frontal cortex, and ventral tegmental area. None of the peptides detected in the caudate putamen or frontal cortex were altered by cocaine administration. Three peptides in the nucleus accumbens and seven peptides in the ventral tegmental area were significantly decreased in cocaine-treated mice. Five of these ten peptides are derived from proSAAS, a secretory pathway protein and neuropeptide precursor. To investigate whether proSAAS peptides contribute to the physiological effects of psychostimulants, we examined acute responses to cocaine and amphetamine in the open field with wild-type (WT) and proSAAS knockout (KO) mice. Locomotion was stimulated more robustly in the WT compared to mutant mice for both psychostimulants. Behavioral sensitization to amphetamine was not maintained in proSAAS KO mice and these mutants failed to sensitize to cocaine. To determine whether the rewarding effects of cocaine were altered, mice were tested in conditioned place preference (CPP). Both WT and proSAAS KO mice showed dose-dependent CPP to cocaine that was not distinguished by genotype. Taken together, these results suggest that proSAAS-derived peptides contribute differentially to the behavioral sensitization to psychostimulants, while the rewarding effects of cocaine appear intact in mice lacking proSAAS. © 2017 International Society for Neurochemistry.

  18. Mutations in the Cytoplasmic Domain of the Newcastle Disease Virus Fusion Protein Confer Hyperfusogenic Phenotypes Modulating Viral Replication and Pathogenicity

    PubMed Central

    Samal, Sweety; Khattar, Sunil K.; Paldurai, Anandan; Palaniyandi, Senthilkumar; Zhu, Xiaoping; Collins, Peter L.

    2013-01-01

    The Newcastle disease virus (NDV) fusion protein (F) mediates fusion of viral and host cell membranes and is a major determinant of NDV pathogenicity. In the present study, we demonstrate the effects of functional properties of F cytoplasmic tail (CT) amino acids on virus replication and pathogenesis. Out of a series of C-terminal deletions in the CT, we were able to rescue mutant viruses lacking two or four residues (rΔ2 and rΔ4). We further rescued viral mutants with individual amino acid substitutions at each of these four terminal residues (rM553A, rK552A, rT551A, and rT550A). In addition, the NDV F CT has two conserved tyrosine residues (Y524 and Y527) and a dileucine motif (LL536-537). In other paramyxoviruses, these residues were shown to affect fusion activity and are central elements in basolateral targeting. The deletion of 2 and 4 CT amino acids and single tyrosine substitution resulted in hyperfusogenic phenotypes and increased viral replication and pathogenesis. We further found that in rY524A and rY527A viruses, disruption of the targeting signals did not reduce the expression on the apical or basolateral surface in polarized Madin-Darby canine kidney cells, whereas in double tyrosine mutant, it was reduced on both the apical and basolateral surfaces. Interestingly, in rL536A and rL537A mutants, the F protein expression was more on the apical than on the basolateral surface, and this effect was more pronounced in the rL537A mutant. We conclude that these wild-type residues in the NDV F CT have an effect on regulating F protein biological functions and thus modulating viral replication and pathogenesis. PMID:23843643

  19. Mutations in the cytoplasmic domain of the Newcastle disease virus fusion protein confer hyperfusogenic phenotypes modulating viral replication and pathogenicity.

    PubMed

    Samal, Sweety; Khattar, Sunil K; Paldurai, Anandan; Palaniyandi, Senthilkumar; Zhu, Xiaoping; Collins, Peter L; Samal, Siba K

    2013-09-01

    The Newcastle disease virus (NDV) fusion protein (F) mediates fusion of viral and host cell membranes and is a major determinant of NDV pathogenicity. In the present study, we demonstrate the effects of functional properties of F cytoplasmic tail (CT) amino acids on virus replication and pathogenesis. Out of a series of C-terminal deletions in the CT, we were able to rescue mutant viruses lacking two or four residues (rΔ2 and rΔ4). We further rescued viral mutants with individual amino acid substitutions at each of these four terminal residues (rM553A, rK552A, rT551A, and rT550A). In addition, the NDV F CT has two conserved tyrosine residues (Y524 and Y527) and a dileucine motif (LL536-537). In other paramyxoviruses, these residues were shown to affect fusion activity and are central elements in basolateral targeting. The deletion of 2 and 4 CT amino acids and single tyrosine substitution resulted in hyperfusogenic phenotypes and increased viral replication and pathogenesis. We further found that in rY524A and rY527A viruses, disruption of the targeting signals did not reduce the expression on the apical or basolateral surface in polarized Madin-Darby canine kidney cells, whereas in double tyrosine mutant, it was reduced on both the apical and basolateral surfaces. Interestingly, in rL536A and rL537A mutants, the F protein expression was more on the apical than on the basolateral surface, and this effect was more pronounced in the rL537A mutant. We conclude that these wild-type residues in the NDV F CT have an effect on regulating F protein biological functions and thus modulating viral replication and pathogenesis.

  20. Mutant p53 proteins counteract autophagic mechanism sensitizing cancer cells to mTOR inhibition.

    PubMed

    Cordani, Marco; Oppici, Elisa; Dando, Ilaria; Butturini, Elena; Dalla Pozza, Elisa; Nadal-Serrano, Mercedes; Oliver, Jordi; Roca, Pilar; Mariotto, Sofia; Cellini, Barbara; Blandino, Giovanni; Palmieri, Marta; Di Agostino, Silvia; Donadelli, Massimo

    2016-08-01

    Mutations in TP53 gene play a pivotal role in tumorigenesis and cancer development. Here, we report that gain-of-function mutant p53 proteins inhibit the autophagic pathway favoring antiapoptotic effects as well as proliferation of pancreas and breast cancer cells. We found that mutant p53 significantly counteracts the formation of autophagic vesicles and their fusion with lysosomes throughout the repression of some key autophagy-related proteins and enzymes as BECN1 (and P-BECN1), DRAM1, ATG12, SESN1/2 and P-AMPK with the concomitant stimulation of mTOR signaling. As a paradigm of this mechanism, we show that atg12 gene repression was mediated by the recruitment of the p50 NF-κB/mutant p53 protein complex onto the atg12 promoter. Either mutant p53 or p50 NF-κB depletion downregulates atg12 gene expression. We further correlated the low expression levels of autophagic genes (atg12, becn1, sesn1, and dram1) with a reduced relapse free survival (RFS) and distant metastasis free survival (DMFS) of breast cancer patients carrying TP53 gene mutations conferring a prognostic value to this mutant p53-and autophagy-related signature. Interestingly, the mutant p53-driven mTOR stimulation sensitized cancer cells to the treatment with the mTOR inhibitor everolimus. All these results reveal a novel mechanism through which mutant p53 proteins promote cancer cell proliferation with the concomitant inhibition of autophagy. Copyright © 2016 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Rational Design of Dual Agonist-Antibody Fusions as Long-acting Therapeutic Hormones.

    PubMed

    Liu, Yan; Wang, Ying; Zhang, Yong; Liu, Tao; Jia, Haiqun; Zou, Huafei; Fu, Qiangwei; Zhang, Yuhan; Lu, Lucy; Chao, Elizabeth; Parker, Holly; Nguyen-Tran, Van; Shen, Weijun; Wang, Danling; Schultz, Peter G; Wang, Feng

    2016-11-18

    Recent studies have suggested that modulation of two or more signaling pathways can achieve substantial weight loss and glycemic stability. We have developed an approach to the generation of bifunctional antibody agonists that activate leptin receptor and GLP-1 receptor. Leptin was fused into the complementarity determining region 3 loop of the light chain alone, or in combination with exendin-4 (EX4) fused at the N-terminus of the heavy chain of Herceptin. The antibody fusions exhibit similar or increased in vitro activities on their cognate receptors, but 50-100-fold longer circulating half-lives in rodents compared to the corresponding native peptides/proteins. The efficacy of the leptin/EX4 dual antibody fusion on weight loss, especially fat mass loss, was enhanced in ob/ob mice and DIO mice compared to the antibody fusion of either EX4 or leptin alone. This work demonstrates the versatility of this combinatorial fusion strategy for generating dual antibody agonists with long half-lives.

  2. Multiplex Detection of KRAS Mutations Using Passive Droplet Fusion.

    PubMed

    Pekin, Deniz; Taly, Valerie

    2017-01-01

    We describe a droplet microfluidics method to screen for multiple mutations of a same oncogene in a single experiment using passive droplet fusion. Genomic DNA from H1573 cell-line was screened for the presence of the six common mutations of the KRAS oncogene as well as wild-type sequences with a detection efficiency of 98 %. Furthermore, the mutant allelic fraction of the cell-line was also assessed correctly showing that the technique is quantitative.

  3. Controlling the Surface Chemistry of Graphite by Engineered Self-Assembled Peptides

    PubMed Central

    Khatayevich, Dmitriy; So, Christopher R.; Hayamizu, Yuhei; Gresswell, Carolyn; Sarikaya, Mehmet

    2012-01-01

    The systematic control over surface chemistry is a long-standing challenge in biomedical and nanotechnological applications for graphitic materials. As a novel approach, we utilize graphite-binding dodecapeptides that self-assemble into dense domains to form monolayer thick long-range ordered films on graphite. Specifically, the peptides are rationally designed through their amino acid sequences to predictably display hydrophilic and hydrophobic characteristics while maintaining their self-assembly capabilities on the solid substrate. The peptides are observed to maintain a high tolerance for sequence modification, allowing the control over surface chemistry via their amino acid sequence. Furthermore, through a single step co-assembly of two different designed peptides, we predictably and precisely tune the wettability of the resulting functionalized graphite surfaces from 44 to 83 degrees. The modular molecular structures and predictable behavior of short peptides demonstrated here give rise to a novel platform for functionalizing graphitic materials that offers numerous advantages, including non-invasive modification of the substrate, bio-compatible processing in an aqueous environment, and simple fusion with other functional biological molecules. PMID:22428620

  4. Twin-arginine signal peptide of Bacillus subtilis YwbN can direct Tat-dependent secretion of methyl parathion hydrolase.

    PubMed

    Liu, Ruihua; Zuo, Zhenqiang; Xu, Yingming; Song, Cunjiang; Jiang, Hong; Qiao, Chuanling; Xu, Ping; Zhou, Qixing; Yang, Chao

    2014-04-02

    The twin-arginine translocation (Tat) pathway exports folded proteins across the cytoplasmic membranes of bacteria and archaea. Two parallel Tat pathways (TatAdCd and TatAyCy systems) with distinct substrate specificities have previously been discovered in Bacillus subtilis. In this study, to secrete methyl parathion hydrolase (MPH) into the growth medium, the twin-arginine signal peptide of B. subtilis YwbN was used to target MPH to the Tat pathway of B. subtilis. Western blot analysis and MPH assays demonstrated that active MPH was secreted into the culture supernatant of wild-type cells. No MPH secretion occurred in a total-tat2 mutant, indicating that the observed export in wild-type cells was mediated exclusively by the Tat pathway. Export was fully blocked in a tatAyCy mutant. In contrast, the tatAdCd mutant was still capable of secreting MPH. These results indicated that the MPH secretion directed by the YwbN signal peptide was specifically mediated by the TatAyCy system. The N-terminal sequence of secreted MPH was determined as AAPQVR, demonstrating that the YwbN signal peptide had been processed correctly. This is the first report of functional secretion of a heterologous protein via the B. subtilis TatAyCy system. This study highlights the potential of the TatAyCy system to be used for secretion of other heterologous proteins in B. subtilis.

  5. A Ca sup 2+ influx associated with exocytosis is specifically abolished in a Paramecium exocytotic mutant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerboeuf, D.; Cohen, J.

    1990-12-01

    A Paramecium possesses secretory organelles called trichocysts which are docked beneath the plasma membrane awaiting an external stimulus that triggers their exocytosis. Membrane fusion is the sole event provoked by the stimulation and can therefore be studied per se. Using 3 microM aminoethyl dextran as a vital secretagogue, we analyzed the movements of calcium (Ca{sup 2+}) during the discharge of trichocysts. We showed that (a) external Ca{sup 2+}, at least at 3 X 10(-7) M, is necessary for AED to induce exocytosis; (b) a dramatic and transient influx of Ca{sup 2+} as measured from {sup 45}Ca uptake is induced bymore » AED; (c) this influx is independent of the well-characterized voltage-operated Ca{sup 2+} channels of the ciliary membranes since it persists in a mutant devoid of these channels; and (d) this influx is specifically abolished in one of the mutants unable to undergo exocytosis, nd12. We propose that the Ca{sup 2+} influx induced by AED reflects an increase in membrane permeability through the opening of novel Ca{sup 2+} channel or the activation of other Ca{sup 2+} transport mechanism in the plasma membrane. The resulting rise in cytosolic Ca{sup 2+} concentration would in turn induce membrane fusion. The mutation nd12 would affect a gene product involved in the control of plasma membrane permeability to Ca{sup 2+}, specifically related to membrane fusion.« less

  6. Thio-Linked UDP–Peptide Conjugates as O-GlcNAc Transferase Inhibitors

    PubMed Central

    2018-01-01

    O-GlcNAc transferase (OGT) is an essential glycosyltransferase that installs the O-GlcNAc post-translational modification on the nucleocytoplasmic proteome. We report the development of S-linked UDP–peptide conjugates as potent bisubstrate OGT inhibitors. These compounds were assembled in a modular fashion by photoinitiated thiol–ene conjugation of allyl-UDP and optimal acceptor peptides in which the acceptor serine was replaced with cysteine. The conjugate VTPVC(S-propyl-UDP)TA (Ki = 1.3 μM) inhibits the OGT activity in HeLa cell lysates. Linear fusions of this conjugate with cell penetrating peptides were explored as prototypes of cell-penetrant OGT inhibitors. A crystal structure of human OGT with the inhibitor revealed mimicry of the interactions seen in the pseudo-Michaelis complex. Furthermore, a fluorophore-tagged derivative of the inhibitor works as a high affinity probe in a fluorescence polarimetry hOGT assay. PMID:29723473

  7. High-Throughput Method for Ranking the Affinity of Peptide Ligands Selected from Phage Display Libraries

    PubMed Central

    González-Techera, A.; Umpiérrez-Failache, M.; Cardozo, S.; Obal, G.; Pritsch, O.; Last, J. A.; Gee, S. J.; Hammock, B. D.; González-Sapienza, G.

    2010-01-01

    The use of phage display peptide libraries allows rapid isolation of peptide ligands for any target selector molecule. However, due to differences in peptide expression and the heterogeneity of the phage preparations, there is no easy way to compare the binding properties of the selected clones, which operates as a major “bottleneck” of the technology. Here, we present the development of a new type of library that allows rapid comparison of the relative affinity of the selected peptides in a high-throughput screening format. As a model system, a phage display peptide library constructed on a phagemid vector that contains the bacterial alkaline phosphatase gene (BAP) was selected with an antiherbicide antibody. Due to the intrinsic switching capacity of the library, the selected peptides were transferred “en masse” from the phage coat protein to BAP. This was coupled to an optimized affinity ELISA where normalized amounts of the peptide–BAP fusion allow direct comparison of the binding properties of hundreds of peptide ligands. The system was validated by plasmon surface resonance experiments using synthetic peptides, showing that the method discriminates among the affinities of the peptides within 3 orders of magnitude. In addition, the peptide–BAP protein can find direct application as a tracer reagent. PMID:18393454

  8. [Preparation of anti-hCG single domain antibody by antibody grafting technique using an antigen-binding peptide].

    PubMed

    Peng, Jing; Wang, Qiong; Cheng, Xiaoling; Liu, Mengwen; Wang, Mei; Xin, Huawei

    2018-04-25

    We used the antibody grafting technology to prepare anti-hCG single-domain antibodies on the basis of antigen-binding peptide to simplify the single-domain antibody preparation process and improving the biochemical stability of peptide. By using a universal single-domain antibody backbone (cAbBCII10), CDR1 or CDR3 was replaced by the hCG-binding peptide, and the grafted antibody gene sequences were synthesized and cloned into the prokaryotic expression vector pET30a(+) in fusion with a C-terminal sfGFP gene, i.e. pET30a-(His6)-cAbBCII10-CDR1/hCGBP1-sfGFP and pET30a-(His6)-cAbBCII10-CDR3/hCGBP3-sfGFP. The recombinant plasmids were transformed into E. coli BL21(DE3), and the fusion proteins were induced by IPTG. Highly soluble recombinant fusion proteins were obtained and purified by Ni-NTA affinity column. SDS-PAGE confirmed the purified protein as the target protein. The antigen-antibody binding assay showed that both the CDR1 and CDR3 grafted antibodies have hCG-binding activities. While the titers of the two grafted antibodies were similar, the binding affinity of CDR3 grafted antibody was higher than that of CDR1 grafted protein (about 2-3 times). The grafted antibodies retained the relatively high biochemical stability of the single-domain antibody backbone and were relatively thermostable and alkaline tolerant. The obtained antibodies also had a relatively high antigen-binding specificity to hCG. This study provided a reliable experimental basis for further optimization of anti-hCG single domain antibody by antibody grafting technology using antigen-binding peptide.

  9. A protein disulfide isomerase gene fusion expression system that increases the extracellular productivity of Bacillus brevis.

    PubMed

    Kajino, T; Ohto, C; Muramatsu, M; Obata, S; Udaka, S; Yamada, Y; Takahashi, H

    2000-02-01

    We have developed a versatile Bacillus brevis expression and secretion system based on the use of fungal protein disulfide isomerase (PDI) as a gene fusion partner. Fusion with PDI increased the extracellular production of heterologous proteins (light chain of immunoglobulin G, 8-fold; geranylgeranyl pyrophosphate synthase, 12-fold). Linkage to PDI prevented the aggregation of the secreted proteins, resulting in high-level accumulation of fusion proteins in soluble and biologically active forms. We also show that the disulfide isomerase activity of PDI in a fusion protein is responsible for the suppression of the aggregation of the protein with intradisulfide, whereas aggregation of the protein without intradisulfide was prevented even when the protein was fused to a mutant PDI whose two active sites were disrupted, suggesting that another PDI function, such as chaperone-like activity, synergistically prevented the aggregation of heterologous proteins in the PDI fusion expression system.

  10. A Protein Disulfide Isomerase Gene Fusion Expression System That Increases the Extracellular Productivity of Bacillus brevis

    PubMed Central

    Kajino, Tsutomu; Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Udaka, Shigezo; Yamada, Yukio; Takahashi, Haruo

    2000-01-01

    We have developed a versatile Bacillus brevis expression and secretion system based on the use of fungal protein disulfide isomerase (PDI) as a gene fusion partner. Fusion with PDI increased the extracellular production of heterologous proteins (light chain of immunoglobulin G, 8-fold; geranylgeranyl pyrophosphate synthase, 12-fold). Linkage to PDI prevented the aggregation of the secreted proteins, resulting in high-level accumulation of fusion proteins in soluble and biologically active forms. We also show that the disulfide isomerase activity of PDI in a fusion protein is responsible for the suppression of the aggregation of the protein with intradisulfide, whereas aggregation of the protein without intradisulfide was prevented even when the protein was fused to a mutant PDI whose two active sites were disrupted, suggesting that another PDI function, such as chaperone-like activity, synergistically prevented the aggregation of heterologous proteins in the PDI fusion expression system. PMID:10653729

  11. Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane.

    PubMed

    Farnsworth, Aaron; Wisner, Todd W; Webb, Michael; Roller, Richard; Cohen, Gary; Eisenberg, Roselyn; Johnson, David C

    2007-06-12

    Herpesviruses must traverse the nuclear envelope to gain access to the cytoplasm and, ultimately, to exit cells. It is believed that herpesvirus nucleocapsids enter the perinuclear space by budding through the inner nuclear membrane (NM). To reach the cytoplasm these enveloped particles must fuse with the outer NM and the unenveloped capsids then acquire a second envelope in the trans-Golgi network. Little is known about the process by which herpesviruses virions fuse with the outer NM. Here we show that a herpes simplex virus (HSV) mutant lacking both the two putative fusion glycoproteins gB and gH failed to cross the nuclear envelope. Enveloped virions accumulated in the perinuclear space or in membrane vesicles that bulged into the nucleoplasm (herniations). By contrast, mutants lacking just gB or gH showed only minor or no defects in nuclear egress. We concluded that either HSV gB or gH can promote fusion between the virion envelope and the outer NM. It is noteworthy that fusion associated with HSV entry requires the cooperative action of both gB and gH, suggesting that the two types of fusion (egress versus entry) are dissimilar processes.

  12. Membrane Organization and Cell Fusion During Mating in Fission Yeast Requires Multipass Membrane Protein Prm1

    PubMed Central

    Curto, M.-Ángeles; Sharifmoghadam, Mohammad Reza; Calpena, Eduardo; De León, Nagore; Hoya, Marta; Doncel, Cristina; Leatherwood, Janet; Valdivieso, M.-Henar

    2014-01-01

    The involvement of Schizosaccharomyces pombe prm1+ in cell fusion during mating and its relationship with other genes required for this process have been addressed. S. pombe prm1Δ mutant exhibits an almost complete blockade in cell fusion and an abnormal distribution of the plasma membrane and cell wall in the area of cell–cell interaction. The distribution of cellular envelopes is similar to that described for mutants devoid of the Fig1-related claudin-like Dni proteins; however, prm1+ and the dni+ genes act in different subpathways. Time-lapse analyses show that in the wild-type S. pombe strain, the distribution of phosphatidylserine in the cytoplasmic leaflet of the plasma membrane undergoes some modification before an opening is observed in the cross wall at the cell–cell contact region. In the prm1Δ mutant, this membrane modification does not take place, and the cross wall between the mating partners is not extensively degraded; plasma membrane forms invaginations and fingers that sometimes collapse/retract and that are sometimes strengthened by the synthesis of cell-wall material. Neither prm1Δ nor prm1Δ dniΔ zygotes lyse after cell–cell contact in medium containing and lacking calcium. Response to drugs that inhibit lipid synthesis or interfere with lipids is different in wild-type, prm1Δ, and dni1Δ strains, suggesting that membrane structure/organization/dynamics is different in all these strains and that Prm1p and the Dni proteins exert some functions required to guarantee correct membrane organization that are critical for cell fusion. PMID:24514900

  13. Reduction of Blood Pressure by AT1 Receptor Decoy Peptides.

    PubMed

    Re, Richard N; Chen, Ben; Alam, Jawed; Cook, Julia L

    2013-01-01

    We previously identified the binding of the chaperone protein gamma-aminobutyric acid receptor-associated protein (GABARAP) to a sequence on the carboxy-terminus of the angiotensin II AT1 receptor (AT1R) and showed that this binding enhances AT1R trafficking to the cell surface as well as angiotensin signaling. In this study, we treated sodium-depleted mice with decoy peptides consisting either of a fusion of the cell-penetrating peptide penetratin and the GABARAP/AT1R binding sequence or penetratin fused to a mutated AT1R sequence. We used telemetry to measure blood pressure. Systolic and diastolic pressure fell during the 24 hours following decoy peptide injection but not after control peptide injection. Active cell-penetrating decoy peptide decreased 24-hour average systolic blood pressure from 129.8 ± 4.7 mmHg to 125.0 ± 6.0 mmHg (mean ± standard deviation). Diastolic blood pressure fell from 99.0 ± 7.1 mmHg to 95.0 ± 9.2 mmHg (n=5). Administration of the control peptide raised systolic blood pressure from 128.7 ± 1.3 mmHg to 131.7 ± 2.9 mmHg and diastolic pressure from 93.9 ± 4.5 mmHg to 95.9 ± 4.2 mmHg (n=5). The decreases in both systolic and diastolic blood pressure after active peptide administration were statistically significant compared to control peptide administration (P<0.05, two-tailed Wilcoxon rank-sum test). These results indicate the physiological and potentially therapeutic relevance of inhibitors of GABARAP/AT1R binding.

  14. Engineering RNA phage MS2 virus-like particles for peptide display

    NASA Astrophysics Data System (ADS)

    Jordan, Sheldon Keith

    present on the surface of the virus particle and can accept foreign sequence insertions without disruption of protein folding and viral particle assembly, and (2) on the encapsidation of nucleic acid sequences encoding both the VLP and the peptide it displays. The experiments described here are aimed at satisfying the first of these two requirements by engineering efficient peptide display at two different sites in MS2 coat protein. First, we evaluated the suitability of the N-terminus of MS2 coat for peptide insertions. It was observed that random N-terminal 10-mer fusions generally disrupted protein folding and VLP assembly, but by bracketing the foreign sequences with certain specific dipeptides, these defects could be suppressed. Next, the suitability of a coat protein surface loop for foreign sequence insertion was tested. Specifically, random sequence peptides were inserted into the N-terminal-most AB-loop of a coat protein single-chain dimer. Again we found that efficient display required the presence of appropriate dipeptides bracketing the peptide insertion. Finally, it was shown that an N-terminal fusion that tended to interfere specifically with capsid assembly could be efficiently incorporated into mosaic particles when co-expressed with wild-type coat protein.

  15. Drosophila 14-3-3ε has a crucial role in anti-microbial peptide secretion and innate immunity.

    PubMed

    Shandala, Tetyana; Woodcock, Joanna M; Ng, Yeap; Biggs, Lisa; Skoulakis, Efthimios M C; Brooks, Doug A; Lopez, Angel F

    2011-07-01

    The secretion of anti-microbial peptides is recognised as an essential step in innate immunity, but there is limited knowledge of the molecular mechanism controlling the release of these effectors from immune response cells. Here, we report that Drosophila 14-3-3ε mutants exhibit reduced survival when infected with either Gram-positive or Gram-negative bacteria, indicating a functional role for 14-3-3ε in innate immunity. In 14-3-3ε mutants, there was a reduced release of the anti-microbial peptide Drosomycin into the haemolymph, which correlated with an accumulation of Drosomycin-containing vesicles near the plasma membrane of cells isolated from immune response tissues. Drosomycin appeared to be delivered towards the plasma membrane in Rab4- and Rab11-positive vesicles and smaller Rab11-positive vesicles. RNAi silencing of Rab11 and Rab4 significantly blocked the anterograde delivery of Drosomycin from the perinuclear region to the plasma membrane. However, in 14-3-3ε mutants there was an accumulation of small Rab11-positive vesicles near the plasma membrane. This vesicular phenotype was similar to that observed in response to the depletion of the vesicular Syntaxin protein Syx1a. In wild-type Drosophila immune tissue, 14-3-3ε was detected adjacent to Rab11, and partially overlapping with Syx1a, on vesicles near the plasma membrane. We conclude that 14-3-3ε is required for Rab11-positive vesicle function, which in turn enables antimicrobial peptide secretion during an innate immune response.

  16. Landscape phages and their fusion proteins targeted to breast cancer cells

    PubMed Central

    Fagbohun, Olusegun A.; Bedi, Deepa; Grabchenko, Natalia I.; Deinnocentes, Patricia A.; Bird, Richard C.; Petrenko, Valery A.

    2012-01-01

    Breast cancer is a leading cause of death among women in the USA. The efficacy of existing anticancer therapeutics can be improved by targeting them through conjugation with ligands binding to cellular receptors. Recently, we developed a novel drug targeting strategy based on the use of pre-selected cancer-specific ‘fusion pVIII proteins’ (fpVIII), as targeting ligands. To study the efficiency of this approach in animal models, we developed a panel of breast cancer cell-binding phages as a source of targeted fpVIIIs. Two landscape phage peptide libraries (8-mer f8/8 and 9-mer f8/9) were screened to isolate 132 phage variants that recognize breast carcinoma cells MCF-7 and ZR-75-1 and internalize into the cells. When tested for their interaction with the breast cancer cells in comparison with liver cancer cells HepG2, human mammary cells MCF-10A cells and serum, 16 of the phage probes selectively interacted with the breast cancer cells whereas 32 bound both breast and liver cancer cells. The most prominent cancer-specific phage DMPGTVLP, demonstrating sub-nanomolar Kd in interaction with target cells, was used for affinity chromatography of cellular membrane molecules to reveal its potential binding receptor. The isolated protein was identified by direct sequencing as cellular surface nucleolin. This conclusion was confirmed by inhibition of the phage–cell interaction with nucleolin antibodies. Other prominent phage binders VPTDTDYS, VEEGGYIAA, and DWRGDSMDS demonstrate consensus motifs common to previously identified cancer-specific peptides. Isolated phage proteins exhibit inherent binding specificity towards cancer cells, demonstrating the functional activity of the selected fused peptides. The selected phages, their peptide inserts and intact fusion proteins can serve as promising ligands for the development of targeted nanomedicines and their study in model mice with xenograft of human cells MCF-7 and ZR-75-1. PMID:22490956

  17. Characterization of the Mouse Beta Defensin 1, Defb1, Mutant Mouse Model

    PubMed Central

    Morrison, Gillian; Kilanowski, Fiona; Davidson, Donald; Dorin, Julia

    2002-01-01

    Beta defensins are small cationic antimicrobial peptides present in the respiratory system which have been proposed to be dysfunctional in the environment of the cystic fibrosis lung. Defb1, a murine homologue to the human beta defensins, has also been found to be expressed in the respiratory system and, in order to examine the function of beta defensins in vivo, gene targeting was used to generate Defb1-deficient (Defb1tm1Hgu/Defb1tm1Hgu [Defb1−/−]) mice. The Defb1 synthetic peptide was shown to have a salt-sensitive antimicrobial activity that was stronger against Staphylococcus aureus than against Escherichia coli or Pseudomonas aeruginosa. Defb1−/− mice were found, however, to be effective in the clearance of the cystic fibrosis relevant pathogen S. aureus from the airways after nebulization. Although no overt deleterious phenotype was evident in the Defb1−/− mice, the number of mutant mice found to harbor bacteria of the Staphylococcus species in the bladder was significantly higher (P = 0.008) than that of controls, suggesting a role for these peptides in resistance to urinary tract infection. PMID:12010997

  18. Selective Intracellular Delivery of Ganglioside GM3-Binding Peptide through Caveolae/Raft-Mediated Endocytosis.

    PubMed

    Matsubara, Teruhiko; Otani, Ryohei; Yamashita, Miki; Maeno, Haruka; Nodono, Hanae; Sato, Toshinori

    2017-02-13

    Glycosphingolipids are major components of the membrane raft, and several kinds of viruses and bacterial toxins are known to bind to glycosphingolipids in the membrane raft. Since the viral genes and pathogenic proteins that are taken into cells are directly delivered to their target organelles, caveolae/raft-mediated endocytosis represents a promising pathway for specific delivery. In the present study, we demonstrated the ability of an artificial pentadecapeptide, which binds to ganglioside GM3, to deliver protein into cells by caveolae/raft-mediated endocytosis. The cellular uptake of a biotinylated GM3-binding peptide (GM3BP)-avidin complex into HeLa cells was observed, and the cellular uptake of this complex was inhibited by an incubation with sialic acid or endocytic inhibitors such as methyl-ß-cyclodextrin, and also by an incubation at 4 °C. These results indicate that the GM3BP-avidin complex bind to GM3 in membrane raft, and are taken into cell through caveolae/raft-mediated endocytosis. The GM3BP-avidin complex was transported into cells and localized around the nucleus more slowly than a human immunodeficiency virus type 1 TAT peptide. Furthermore, the uptake of a green fluorescent protein (GFP) linked with GM3BP into HeLa cells was similar to that of the GM3BP-avidin complex, and the localization of the GM3BP-GFP fusion protein was markedly different with that of the TAT-GFP fusion protein. The uptake and trafficking of GM3BP were distinguished from conventional cell-penetrating peptides. GM3BP has potential as a novel peptide for the selective delivery of therapeutic proteins and materials into cells in addition to being a cell-penetrating peptide.

  19. Efficient induction of anti-tumor immunity by a TAT-CEA fusion protein vaccine with poly(I:C) in a murine colorectal tumor model.

    PubMed

    Park, Jung-Sun; Kim, Hye-Sung; Park, Hye-Mi; Kim, Chang-Hyun; Kim, Tai-Gyu

    2011-11-03

    Protein vaccines may be a useful strategy for cancer immunotherapy because recombinant tumor antigen proteins can be produced on a large scale at relatively low cost and have been shown to be safe for clinical application. However, protein vaccines have historically exhibited poor immunogenicity; thus, an improved strategy is needed for successful induction of immune responses. TAT peptide is a protein transduction domain composed of an 11-amino acid peptide (TAT(47-57): YGRKKRRQRRR). The positive charge of this peptide allows protein antigen fused with it to improve cell penetration. Poly(I:C) is a synthetic double-stranded RNA that is negatively charged and favors interaction with the cationic TAT peptide. Poly(I:C) has been reported on adjuvant role in tumor vaccine through promotion of immune responses. Therefore, we demonstrated that vaccine with a mixture of TAT-CEA fusion protein and poly(I:C) can induce anti-tumor immunity in a murine colorectal tumor model. Splenocytes from mice vaccinated with a mixture of TAT-CEA fusion protein and poly(I:C) effectively induced CEA-specific IFN-γ-producing T cells and showed cytotoxic activity specific for MC-38-cea2 tumor cells expressing CEA. Vaccine with a mixture of TAT-CEA fusion protein and poly(I:C) delayed tumor growth in MC-38-cea-2 tumor-bearing mice. Depletion of CD8(+) T cells and NK cells reversed the inhibition of tumor growth in an MC-38-cea2-bearing mice, indicating that CD8(+) T cells and NK cells are responsible for anti-tumor immunity by vaccine with a mixture of TAT-CEA fusion protein and poly(I:C). Taken together, these results suggest that poly(I:C) could be used as a potent adjuvant to induce the anti-tumor immunity of a TAT-CEA fusion protein vaccine in a murine colorectal tumor model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Efficacy of peptide nucleic acid and selected conjugates against specific cellular pathologies of amyotrophic lateral sclerosis.

    PubMed

    Browne, Elisse C; Parakh, Sonam; Duncan, Luke F; Langford, Steven J; Atkin, Julie D; Abbott, Belinda M

    2016-04-01

    Cellular studies have been undertaken on a nonamer peptide nucleic acid (PNA) sequence, which binds to mRNA encoding superoxide dismutase 1, and a series of peptide nucleic acids conjugated to synthetic lipophilic vitamin analogs including a recently prepared menadione (vitamin K) analog. Reduction of both mutant superoxide dismutase 1 inclusion formation and endoplasmic reticulum stress, two of the key cellular pathological hallmarks in amyotrophic lateral sclerosis, by two of the prepared PNA oligomers is reported for the first time. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  1. Analysis of Yersinia enterocolitica Effector Translocation into Host Cells Using Beta-lactamase Effector Fusions.

    PubMed

    Wolters, Manuel; Zobiak, Bernd; Nauth, Theresa; Aepfelbacher, Martin

    2015-10-13

    Many gram-negative bacteria including pathogenic Yersinia spp. employ type III secretion systems to translocate effector proteins into eukaryotic target cells. Inside the host cell the effector proteins manipulate cellular functions to the benefit of the bacteria. To better understand the control of type III secretion during host cell interaction, sensitive and accurate assays to measure translocation are required. We here describe the application of an assay based on the fusion of a Yersinia enterocolitica effector protein fragment (Yersinia outer protein; YopE) with TEM-1 beta-lactamase for quantitative analysis of translocation. The assay relies on cleavage of a cell permeant FRET dye (CCF4/AM) by translocated beta-lactamase fusion. After cleavage of the cephalosporin core of CCF4 by the beta-lactamase, FRET from coumarin to fluorescein is disrupted and excitation of the coumarin moiety leads to blue fluorescence emission. Different applications of this method have been described in the literature highlighting its versatility. The method allows for analysis of translocation in vitro and also in in vivo, e.g., in a mouse model. Detection of the fluorescence signals can be performed using plate readers, FACS analysis or fluorescence microscopy. In the setup described here, in vitro translocation of effector fusions into HeLa cells by different Yersinia mutants is monitored by laser scanning microscopy. Recording intracellular conversion of the FRET reporter by the beta-lactamase effector fusion in real-time provides robust quantitative results. We here show exemplary data, demonstrating increased translocation by a Y. enterocolitica YopE mutant compared to the wild type strain.

  2. Telomere fusion in Drosophila: The role of subtelomeric chromatin

    PubMed Central

    Marzullo, Marta; Gatti, Maurizio

    2015-01-01

    Drosophila telomeres are maintained by transposition to chromosome ends of the HeT-A, TART and TAHRE retrotransposons, collectively designated as HTT. Although all Drosophila telomeres terminate with HTT arrays and are capped by the terminin complex, they differ in the type of subtelomeric chromatin. The HTT sequences of YS, YL, XR, and 4L are juxtaposed to constitutive heterochromatin, while the HTTs of the other telomeres are linked to either the TAS repeat-associated chromatin (XL, 2L, 2R, 3L, 3R) or to the specialized 4R chromatin. We found that mutations in pendolino (peo) cause (telomeric fusions) that preferentially involve the heterochromatin-associated telomeres (Ha-telomeres), a telomeric fusion pattern never observed in the other 10 telomere-capping mutants characterized so far. Peo, is homologous to the E2 variant ubiquitin-conjugating enzymes and is required for DNA replication. Our analyses lead us to hypothesize that DNA replication in Peo-depleted cells results in specific fusigenic lesions concentrated in Ha-telomeres. These data provide the first demonstration that subtelomeres can affect telomere fusion. PMID:26786804

  3. Disoxaril mutants of Coxsackievirus B1: phenotypic characteristics and analysis of the target VP1 gene.

    PubMed

    Nikolova, Ivanka; Galabov, Angel S; Petkova, Rumena; Chakarov, Stoyan; Atanasov, Boris

    2011-01-01

    Disoxaril inhibits enterovirus replication by binding to the hydrophobic pocket within the VP1 coat protein, thus stabilizing the virion and blocking its uncoating. Disoxaril-resistant (RES) mutants of the Coxsackievirus B1 (CVB1/RES) were derived from the wild disoxaril-sensitive (SOF) strain (CVB1/SOF) using a selection approach. A disoxaril-dependent (DEP) mutant (CVB1/DEP) was obtained following nine consecutive passages of the disoxaril-resistant mutant in the presence of disoxaril. Phenotypic characteristics of the disoxaril mutants were investigated. A timing-of-addition study of the CVB1/DEP replication demonstrated that in the absence of disoxaril the virus particle assembly stopped. VP1 RNA sequences of disoxaril mutants were compared with the existing Gen Bank CVB1 reference structure. The amino acid sequence of a large VP1 196-258 peptide (disoxaril-binding region) of CVB1/RES was significantly different from that of the CVB1/SOF. Crucially important changes in CVB1/RES were two point mutations, M213H and F237L, both in the ligand-binding pocket. The sequence analysis of the CVB1/DEP showed some reversion to CVB1/SOF. The amino acid sequences of the three VP1 proteins are presented.

  4. A voltage-gated calcium channel regulates lysosomal fusion with endosomes and autophagosomes and is required for neuronal homeostasis.

    PubMed

    Tian, Xuejun; Gala, Upasana; Zhang, Yongping; Shang, Weina; Nagarkar Jaiswal, Sonal; di Ronza, Alberto; Jaiswal, Manish; Yamamoto, Shinya; Sandoval, Hector; Duraine, Lita; Sardiello, Marco; Sillitoe, Roy V; Venkatachalam, Kartik; Fan, Hengyu; Bellen, Hugo J; Tong, Chao

    2015-03-01

    Autophagy helps deliver sequestered intracellular cargo to lysosomes for proteolytic degradation and thereby maintains cellular homeostasis by preventing accumulation of toxic substances in cells. In a forward mosaic screen in Drosophila designed to identify genes required for neuronal function and maintenance, we identified multiple cacophony (cac) mutant alleles. They exhibit an age-dependent accumulation of autophagic vacuoles (AVs) in photoreceptor terminals and eventually a degeneration of the terminals and surrounding glia. cac encodes an α1 subunit of a Drosophila voltage-gated calcium channel (VGCC) that is required for synaptic vesicle fusion with the plasma membrane and neurotransmitter release. Here, we show that cac mutant photoreceptor terminals accumulate AV-lysosomal fusion intermediates, suggesting that Cac is necessary for the fusion of AVs with lysosomes, a poorly defined process. Loss of another subunit of the VGCC, α2δ or straightjacket (stj), causes phenotypes very similar to those caused by the loss of cac, indicating that the VGCC is required for AV-lysosomal fusion. The role of VGCC in AV-lysosomal fusion is evolutionarily conserved, as the loss of the mouse homologues, Cacna1a and Cacna2d2, also leads to autophagic defects in mice. Moreover, we find that CACNA1A is localized to the lysosomes and that loss of lysosomal Cacna1a in cerebellar cultured neurons leads to a failure of lysosomes to fuse with endosomes and autophagosomes. Finally, we show that the lysosomal CACNA1A but not the plasma-membrane resident CACNA1A is required for lysosomal fusion. In summary, we present a model in which the VGCC plays a role in autophagy by regulating the fusion of AVs with lysosomes through its calcium channel activity and hence functions in maintaining neuronal homeostasis.

  5. Wortmannin-induced vacuole fusion enhances amyloplast dynamics in Arabidopsis zigzag1 hypocotyls

    PubMed Central

    Alvarez, Ashley Ann; Han, Sang Won; Toyota, Masatsugu; Brillada, Carla; Zheng, Jiameng; Gilroy, Simon

    2016-01-01

    Gravitropism in Arabidopsis shoots depends on the sedimentation of amyloplasts in the endodermis, and a complex interplay between the vacuole and F-actin. Gravity response is inhibited in zigzag-1 (zig-1), a mutant allele of VTI11, which encodes a SNARE protein involved in vacuole fusion. zig-1 seedlings have fragmented vacuoles that fuse after treatment with wortmannin, an inhibitor of phosphatidylinositol 3-kinase, and underscore a role of phosphoinositides in vacuole fusion. Using live-cell imaging with a vertical stage microscope, we determined that young endodermal cells below the apical hook that are smaller than 70 μm in length are the graviperceptive cells in dark-grown hypocotyls. This result was confirmed by local wortmannin application to the top of zig-1 hypocotyls, which enhanced shoot gravitropism in zig-1 mutants. Live-cell imaging of zig-1 hypocotyl endodermal cells indicated that amyloplasts are trapped between juxtaposed vacuoles and their movement is severely restricted. Wortmannin-induced fusion of vacuoles in zig-1 seedlings increased the formation of transvacuolar strands, enhanced amyloplast sedimentation and partially suppressed the agravitropic phenotype of zig-1 seedlings. Hypergravity conditions at 10 g were not sufficient to displace amyloplasts in zig-1, suggesting the existence of a physical tether between the vacuole and amyloplasts. Our results overall suggest that vacuole membrane remodeling may be involved in regulating the association of vacuoles and amyloplasts during graviperception. PMID:27816929

  6. The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations

    PubMed Central

    Fuchs, Helmut; Sabrautzki, Sibylle; Przemeck, Gerhard K. H.; Leuchtenberger, Stefanie; Lorenz-Depiereux, Bettina; Becker, Lore; Rathkolb, Birgit; Horsch, Marion; Garrett, Lillian; Östereicher, Manuela A.; Hans, Wolfgang; Abe, Koichiro; Sagawa, Nobuho; Rozman, Jan; Vargas-Panesso, Ingrid L.; Sandholzer, Michael; Lisse, Thomas S.; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Calzada-Wack, Julia; Ehrhard, Nicole; Elvert, Ralf; Gau, Christine; Hölter, Sabine M.; Micklich, Katja; Moreth, Kristin; Prehn, Cornelia; Puk, Oliver; Racz, Ildiko; Stoeger, Claudia; Vernaleken, Alexandra; Michel, Dian; Diener, Susanne; Wieland, Thomas; Adamski, Jerzy; Bekeredjian, Raffi; Busch, Dirk H.; Favor, John; Graw, Jochen; Klingenspor, Martin; Lengger, Christoph; Maier, Holger; Neff, Frauke; Ollert, Markus; Stoeger, Tobias; Yildirim, Ali Önder; Strom, Tim M.; Zimmer, Andreas; Wolf, Eckhard; Wurst, Wolfgang; Klopstock, Thomas; Beckers, Johannes; Gailus-Durner, Valerie; Hrabé de Angelis, Martin

    2016-01-01

    The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein) family consists of three independent members, Scube1–3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and their roles during adulthood. Here, we present the first Scube3 mutant mouse line (Scube3N294K/N294K), which clearly shows phenotypic alterations by carrying a missense mutation in exon 8, and thus contributes to our understanding of SCUBE3 functions. We performed a detailed phenotypic characterization in the German Mouse Clinic (GMC). Scube3N294K/N294K mutants showed morphological abnormalities of the skeleton, alterations of parameters relevant for bone metabolism, changes in renal function, and hearing impairments. These findings correlate with characteristics of the rare metabolic bone disorder Paget disease of bone (PDB), associated with the chromosomal region of human SCUBE3. In addition, alterations in energy metabolism, behavior, and neurological functions were detected in Scube3N294K/N294K mice. The Scube3N294K/N294K mutant mouse line may serve as a new model for further studying the effect of impaired SCUBE3 gene function. PMID:27815347

  7. Production of Trichoderma strains with pesticide-polyresistance by mutagenesis and protoplast fusion.

    PubMed

    Hatvani, Lóránt; Manczinger, László; Kredics, László; Szekeres, András; Antal, Zsuzsanna; Vágvölgyi, Csaba

    2006-01-01

    The sensitivity of two cold-tolerant Trichoderma strains belonging to the species T. harzianum and T. atroviride was determined to a series of pesticides widely used in agriculture. From the 16 pesticides tested, seven fungicides: copper sulfate, carbendazim, mancozeb, tebuconazole, imazalil, captan and thiram inhibited colony growth of the test strains significantly with minimal inhibitory concentrations of 300, 0.4, 50, 100, 100, 100 and 50 microg/ml, respectively. Mutants resistant to carbendazim and tebuconazole were produced from both wild type strains by means of UV-mutagenesis. The cross-resistance capabilities and in vitro antagonistic properties of the mutants were determined. Carbendazim-resistant mutants showed total cross-resistance to benomyl and thiabendazole at a concentration of 20 microg/ml. Intraspecific protoplast fusion was carried out between carbendazim- and tebuconazole-resistant mutants of both parental strains, and putative haploid recombinants with stable resistance to both pesticides were produced in the case of T. atroviride. These pesticide-polyresistant progenies are potential candidates for application in an integrated pest management system.

  8. Organic crystal-binding peptides: morphology control and one-pot formation of protein-displaying organic crystals

    NASA Astrophysics Data System (ADS)

    Niide, Teppei; Ozawa, Kyohei; Nakazawa, Hikaru; Oliveira, Daniel; Kasai, Hitoshi; Onodera, Mari; Asano, Ryutaro; Kumagai, Izumi; Umetsu, Mitsuo

    2015-11-01

    Crystalline assemblies of fluorescent molecules have different functional properties than the constituent monomers, as well as unique optical characteristics that depend on the structure, size, and morphological homogeneity of the crystal particles. In this study, we selected peptides with affinity for the surface of perylene crystal particles by exposing a peptide-displaying phage library in aqueous solution to perylene crystals, eluting the surface-bound phages by means of acidic desorption or liquid-liquid extraction, and amplifying the obtained phages in Escherichia coli. One of the perylene-binding peptides, PeryBPb1: VQHNTKYSVVIR, selected by this biopanning procedure induced perylene molecules to form homogenous planar crystal nanoparticles by means of a poor solvent method, and fusion of the peptide to a fluorescent protein enabled one-pot formation of protein-immobilized crystalline nanoparticles. The nanoparticles were well-dispersed in aqueous solution, and Förster resonance energy transfer from the perylene crystals to the fluorescent protein was observed. Our results show that the crystal-binding peptide could be used for simultaneous control of perylene crystal morphology and dispersion and protein immobilization on the crystals.Crystalline assemblies of fluorescent molecules have different functional properties than the constituent monomers, as well as unique optical characteristics that depend on the structure, size, and morphological homogeneity of the crystal particles. In this study, we selected peptides with affinity for the surface of perylene crystal particles by exposing a peptide-displaying phage library in aqueous solution to perylene crystals, eluting the surface-bound phages by means of acidic desorption or liquid-liquid extraction, and amplifying the obtained phages in Escherichia coli. One of the perylene-binding peptides, PeryBPb1: VQHNTKYSVVIR, selected by this biopanning procedure induced perylene molecules to form homogenous planar

  9. Mocr: A novel fusion tag for enhancing solubility that is compatible with structural biology applications

    PubMed Central

    DelProposto, James; Majmudar, Chinmay Y.; Smith, Janet L.; Brown, William Clay

    2010-01-01

    A persistent problem in heterologous protein production is insolubility of the target protein when expressed to high level in the host cell. A widely employed strategy for overcoming this problem is the use of fusion tags. The best fusion tags promote solubility, may function as purification handles and either do not interfere with downstream applications or may be removed from the passenger protein preparation. A novel fusion tag is identified that meets these criteria. This fusion tag is a monomeric mutant of the Ocr protein (0.3 gene product) of bacteriophage T7. This fusion tag displays solubilizing activity with a variety of different passenger proteins. We show that it may be used as a purification handle similar to other fusion tags. Its small size and compact structure are compatible with its use in downstream applications of the passenger protein or it may be removed and purified away from the passenger protein. The use of monomeric Ocr (Mocr) as a complement to other fusion tags such as maltose-binding protein will provide greater flexibility in protein production and processing for a wide variety of protein applications. PMID:18824232

  10. Mocr: a novel fusion tag for enhancing solubility that is compatible with structural biology applications.

    PubMed

    DelProposto, James; Majmudar, Chinmay Y; Smith, Janet L; Brown, William Clay

    2009-01-01

    A persistent problem in heterologous protein production is insolubility of the target protein when expressed to high level in the host cell. A widely employed strategy for overcoming this problem is the use of fusion tags. The best fusion tags promote solubility, may function as purification handles and either do not interfere with downstream applications or may be removed from the passenger protein preparation. A novel fusion tag is identified that meets these criteria. This fusion tag is a monomeric mutant of the Ocr protein (0.3 gene product) of bacteriophage T7. This fusion tag displays solubilizing activity with a variety of different passenger proteins. We show that it may be used as a purification handle similar to other fusion tags. Its small size and compact structure are compatible with its use in downstream applications of the passenger protein or it may be removed and purified away from the passenger protein. The use of monomeric Ocr (Mocr) as a complement to other fusion tags such as maltose-binding protein will provide greater flexibility in protein production and processing for a wide variety of protein applications.

  11. A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum

    PubMed Central

    1987-01-01

    We have devised a genetic selection for mutant yeast cells that fail to translocate secretory protein precursors into the lumen of the endoplasmic reticulum (ER). Mutant cells are selected by a procedure that requires a signal peptide-containing cytoplasmic enzyme chimera to remain in contact with the cytosol. This approach has uncovered a new secretory mutant, sec61, that is thermosensitive for growth and that accumulates multiple secretory and vacuolar precursor proteins that have not acquired any detectable posttranslational modifications associated with translocation into the ER. Preproteins that accumulate at the sec61 block sediment with the particulate fraction, but are exposed to the cytosol as judged by sensitivity to proteinase K. Thus, the sec61 mutation defines a gene that is required for an early cytoplasmic or ER membrane-associated step in protein translocation. PMID:3305520

  12. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadam, Rameshwar U.; Wilson, Ian A.

    The broad-spectrum antiviral drug Arbidol shows efficacy against influenza viruses by targeting the hemagglutinin (HA) fusion machinery. However, the structural basis of the mechanism underlying fusion inhibition by Arbidol has remained obscure, thereby hindering its further development as a specific and optimized influenza therapeutic. We determined crystal structures of Arbidol in complex with influenza virus HA from pandemic 1968 H3N2 and recent 2013 H7N9 viruses. Arbidol binds in a hydrophobic cavity in the HA trimer stem at the interface between two protomers. This cavity is distal to the conserved epitope targeted by broadly neutralizing stem antibodies and is ~16 Åmore » from the fusion peptide. Arbidol primarily makes hydrophobic interactions with the binding site but also induces some conformational rearrangements to form a network of inter- and intraprotomer salt bridges. By functioning as molecular glue, Arbidol stabilizes the prefusion conformation of HA that inhibits the large conformational rearrangements associated with membrane fusion in the low pH of the endosome. This unique binding mode compared with the small-molecule inhibitors of other class I fusion proteins enhances our understanding of how small molecules can function as fusion inhibitors and guides the development of broad-spectrum therapeutics against influenza virus.« less

  13. Structure of Respiratory Syncytial Virus Fusion Glycoprotein in the Postfusion Conformation Reveals Preservation of Neutralizing Epitopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLellan, Jason S.; Yang, Yongping; Graham, Barney S.

    2011-09-16

    Respiratory syncytial virus (RSV) invades host cells via a type I fusion (F) glycoprotein that undergoes dramatic structural rearrangements during the fusion process. Neutralizing monoclonal antibodies, such as 101F, palivizumab, and motavizumab, target two major antigenic sites on the RSV F glycoprotein. The structures of these sites as peptide complexes with motavizumab and 101F have been previously determined, but a structure for the trimeric RSV F glycoprotein ectodomain has remained elusive. To address this issue, we undertook structural and biophysical studies on stable ectodomain constructs. Here, we present the 2.8-{angstrom} crystal structure of the trimeric RSV F ectodomain in itsmore » postfusion conformation. The structure revealed that the 101F and motavizumab epitopes are present in the postfusion state and that their conformations are similar to those observed in the antibody-bound peptide structures. Both antibodies bound the postfusion F glycoprotein with high affinity in surface plasmon resonance experiments. Modeling of the antibodies bound to the F glycoprotein predicts that the 101F epitope is larger than the linear peptide and restricted to a single protomer in the trimer, whereas motavizumab likely contacts residues on two protomers, indicating a quaternary epitope. Mechanistically, these results suggest that 101F and motavizumab can bind to multiple conformations of the fusion glycoprotein and can neutralize late in the entry process. The structural preservation of neutralizing epitopes in the postfusion state suggests that this conformation can elicit neutralizing antibodies and serve as a useful vaccine antigen.« less

  14. Cloning and heterologous expression of plnE, -F, -J and -K genes derived from soil metagenome and purification of active plantaricin peptides.

    PubMed

    Pal, Gargi; Srivastava, Sheela

    2014-02-01

    Plantaricin gene-specific primers were used to obtain plnE, -F, -J and -K structural gene amplicons from soil metagenome. These amplicons were cloned and expressed in pET32a (+) vector in Escherichia coli BL21 (DE3). PlnE, -F, -J and -K peptides were expressed as His-tagged-fusion proteins and were separated by Ni(2+) -chelating affinity chromatography. The peptides were released from the fusion by enterokinase cleavage and separated from the carrier thioredoxin. The cleaved peptides were further analysed for antimicrobial activity and found to be active against Listeria innocua NRRL B33314, Micrococcus luteus MTCC 106 and lactic acid bacteria, such as Enterococcus casseliflavus NRRL B3502, Lactococcus lactis lactis NRRL 1821, Lactobacillus curvatus NRRL B4562 and Lactobacillus plantarum NRRL B4496. E. coli has been successfully exploited as a host for heterologous expression with a significant yield of fused and cleaved peptides in the range of 8-12 and 1-1.5 mg/l of the culture, respectively. Heterologous expression, therefore, can be used to overcome the constraints of low yield often reported from a native strain.

  15. Fusion expression of the PGLa-AM1 with native structure and evaluation of its anti-Helicobacter pylori activity.

    PubMed

    Zhang, Xiaolin; Jiang, Anmin; Wang, Guisheng; Yu, Hao; Qi, Banghua; Xiong, Youyi; Zhou, Guoliang; Qin, Meisong; Dou, Jinfeng; Wang, Jianfei

    2017-07-01

    Helicobacter pylori (H. pylori) shows increasingly enhanced resistance to various antibiotics, and its eradication has become a major problem in medicine. The antimicrobial peptide PGLa-AM1 is a short peptide with 22 amino acids and exhibits strong antibacterial activity. In this study, we investigated whether it has anti-H. pylori activity for the further development of anti-H. pylori drugs to replace existing antibiotics. However, the natural antimicrobial peptide PGLa-AM1 shows a low yield and is difficult to separate, limiting its application. A good strategy to solve this problem is to express the antimicrobial peptide PGLa-AM1 using gene engineering at a high level and low cost. For getting PGLa-AM1 with native structure, in this study, a specific protease cleavage site of tobacco etch virus (TEV) was designed before the PGLa-AM1 peptide. For convenience to purify and identify high-efficiency expression PGLa-AM1, the PGLa-AM1 gene was fused with the polyhedrin gene of Bombyx mori (B. mori), and a 6 × His tag was designed to insert before the amino terminus of the fusion protein. The fusion antibacterial peptide PGLa-AM1 (FAMP) gene codon was optimized, and the gene was synthesized and cloned into the Escherichia coli (E. coli) pET-30a (+) expression vector. The results showed that the FAMP was successfully expressed in E. coli. Its molecular weight was approximately 34 kDa, and its expression level was approximately 30 mg/L. After the FAMP was purified, it was further digested with TEV protease. The acquired recombinant antimicrobial peptide PGLa-AM1 exerted strong anti-H. pylori activity and therapeutic effect in vitro and in vivo.

  16. Mapping the signal peptide binding and oligomer contact sites of the core subunit of the pea twin arginine protein translocase.

    PubMed

    Ma, Xianyue; Cline, Kenneth

    2013-03-01

    Twin arginine translocation (Tat) systems of thylakoid and bacterial membranes transport folded proteins using the proton gradient as the sole energy source. Tat substrates have hydrophobic signal peptides with an essential twin arginine (RR) recognition motif. The multispanning cpTatC plays a central role in Tat operation: It binds the signal peptide, directs translocase assembly, and may facilitate translocation. An in vitro assay with pea (Pisum sativum) chloroplasts was developed to conduct mutagenesis and analysis of cpTatC functions. Ala scanning mutagenesis identified mutants defective in substrate binding and receptor complex assembly. Mutations in the N terminus (S1) and first stromal loop (S2) caused specific defects in signal peptide recognition. Cys matching between substrate and imported cpTatC confirmed that S1 and S2 directly and specifically bind the RR proximal region of the signal peptide. Mutations in four lumen-proximal regions of cpTatC were defective in receptor complex assembly. Copurification and Cys matching analyses suggest that several of the lumen proximal regions may be important for cpTatC-cpTatC interactions. Surprisingly, RR binding domains of adjacent cpTatCs directed strong cpTatC-cpTatC cross-linking. This suggests clustering of binding sites on the multivalent receptor complex and explains the ability of Tat to transport cross-linked multimers. Transport of substrate proteins cross-linked to the signal peptide binding site tentatively identified mutants impaired in the translocation step.

  17. Integrated continuous dissolution, refolding and tag removal of fusion proteins from inclusion bodies in a tubular reactor.

    PubMed

    Pan, Siqi; Zelger, Monika; Jungbauer, Alois; Hahn, Rainer

    2014-09-20

    An integrated continuous tubular reactor system was developed for processing an autoprotease expressed as inclusion bodies. The inclusion bodies were suspended and fed into the tubular reactor system for continuous dissolving, refolding and precipitation. During refolding, the dissolved autoprotease cleaves itself, separating the fusion tag from the target peptide. Subsequently, the cleaved fusion tag and any uncleaved autoprotease were precipitated out in the precipitation step. The processed exiting solution results in the purified soluble target peptide. Refolding and precipitation yields performed in the tubular reactor were similar to batch reactor and process was stable for at least 20 h. The authenticity of purified peptide was also verified by mass spectroscopy. Productivity (in mg/l/h and mg/h) calculated in the tubular process was twice and 1.5 times of the batch process, respectively. Although it is more complex to setup a tubular than a batch reactor, it offers faster mixing, higher productivity and better integration to other bioprocessing steps. With increasing interest of integrated continuous biomanufacturing, the use of tubular reactors in industrial settings offers clear advantages. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Structure and immune recognition of trimeric pre-fusion HIV-1 Env

    DOE PAGES

    Pancera, Marie; Zhou, Tongqing; Druz, Aliaksandr; ...

    2014-10-08

    The human immunodeficiency virus type 1 (HIV-1) envelope (Env) spike, comprising three gp120 and three gp41 subunits, is a conformational machine that facilitates HIV-1 entry by rearranging from a mature unliganded state, through receptor-bound intermediates, to a post-fusion state. As the sole viral antigen on the HIV-1 virion surface, Env is both the target of neutralizing antibodies and a focus of vaccine efforts. Here we report the structure at 3.5 Å resolution for an HIV-1 Env trimer captured in a mature closed state by antibodies PGT122 and 35O22. This structure reveals the pre-fusion conformation of gp41, indicates rearrangements needed formore » fusion activation, and defines parameters of immune evasion and immune recognition. Pre-fusion gp41 encircles amino- and carboxy-terminal strands of gp120 with four helices that form a membrane-proximal collar, fastened by insertion of a fusion peptide-proximal methionine into a gp41-tryptophan clasp. Spike rearrangements required for entry involve opening the clasp and expelling the termini. In conclusion, N-linked glycosylation and sequence-variable regions cover the pre-fusion closed spike; we used chronic cohorts to map the prevalence and location of effective HIV-1-neutralizing responses, which were distinguished by their recognition of N-linked glycan and tolerance for epitope-sequence variation.« less

  19. Structure and immune recognition of trimeric pre-fusion HIV-1 Env

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pancera, Marie; Zhou, Tongqing; Druz, Aliaksandr

    The human immunodeficiency virus type 1 (HIV-1) envelope (Env) spike, comprising three gp120 and three gp41 subunits, is a conformational machine that facilitates HIV-1 entry by rearranging from a mature unliganded state, through receptor-bound intermediates, to a post-fusion state. As the sole viral antigen on the HIV-1 virion surface, Env is both the target of neutralizing antibodies and a focus of vaccine efforts. Here we report the structure at 3.5 Å resolution for an HIV-1 Env trimer captured in a mature closed state by antibodies PGT122 and 35O22. This structure reveals the pre-fusion conformation of gp41, indicates rearrangements needed formore » fusion activation, and defines parameters of immune evasion and immune recognition. Pre-fusion gp41 encircles amino- and carboxy-terminal strands of gp120 with four helices that form a membrane-proximal collar, fastened by insertion of a fusion peptide-proximal methionine into a gp41-tryptophan clasp. Spike rearrangements required for entry involve opening the clasp and expelling the termini. In conclusion, N-linked glycosylation and sequence-variable regions cover the pre-fusion closed spike; we used chronic cohorts to map the prevalence and location of effective HIV-1-neutralizing responses, which were distinguished by their recognition of N-linked glycan and tolerance for epitope-sequence variation.« less

  20. Identification of Novel Fusion Inhibitors of Influenza A Virus by Chemical Genetics

    PubMed Central

    Lai, Kin Kui; Cheung, Nam Nam; Yang, Fang; Dai, Jun; Liu, Li; Chen, Zhiwei; Sze, Kong Hung; Chen, Honglin

    2015-01-01

    ABSTRACT A previous screening of more than 50,000 compounds led to the identification of a pool of bioactive small molecules with inhibitory effect on the influenza A virus. One of these compounds, now widely known as nucleozin, is a small molecule that targets the influenza A virus nucleoprotein. Here we identify and characterize two structurally different novel fusion inhibitors of the influenza A virus group 1 hemagglutinin (HA), FA-583 and FA-617, with low nanomolar activities. Escape mutants that are highly resistant to each of these compounds were generated, and both were found to carry mutations localized in close proximity to the B-loop of the hemagglutinin 2 protein, which plays a crucial role in the virion-host cell fusion process. Recombinant virus, generated through reverse genetics, confirmed the resistance phenotype. In addition, the proposed binding pockets predicted by molecular docking studies are in accordance with the resistance-bearing mutation sites. We show through mechanistic studies that FA-583 and FA-617 act as fusion inhibitors by prohibiting the low-pH-induced conformational change of hemagglutinin. Our study has offered concrete biological and mechanistic explorations for the strategic development of novel fusion inhibitors of influenza A viruses. IMPORTANCE Here we report two structurally distinctive novel fusion inhibitors of influenza A virus that act by interfering with the structural change of HA at acidic pH, a process necessary for successful entry of the virus. Mutational and molecular docking studies have identified their binding pockets situated in close proximity to the B-loop region of hemagglutinin 2. The reduced sensitivity of FA-583- or FA-617-associated mutants to another compound suggests a close proximity and even partial overlap of their binding sites on hemagglutinin. Amino acid sequence alignments and crystal structure analyses of group 1 and group 2 hemagglutinins have shed light on the possible binding mode of

  1. Intracellular Action of a Secreted Peptide Required for Fungal Virulence.

    PubMed

    Homer, Christina M; Summers, Diana K; Goranov, Alexi I; Clarke, Starlynn C; Wiesner, Darin L; Diedrich, Jolene K; Moresco, James J; Toffaletti, Dena; Upadhya, Rajendra; Caradonna, Ippolito; Petnic, Sarah; Pessino, Veronica; Cuomo, Christina A; Lodge, Jennifer K; Perfect, John; Yates, John R; Nielsen, Kirsten; Craik, Charles S; Madhani, Hiten D

    2016-06-08

    Quorum sensing (QS) is a bacterial communication mechanism in which secreted signaling molecules impact population function and gene expression. QS-like phenomena have been reported in eukaryotes with largely unknown contributing molecules, functions, and mechanisms. We identify Qsp1, a secreted peptide, as a central signaling molecule that regulates virulence in the fungal pathogen Cryptococcus neoformans. QSP1 is a direct target of three transcription factors required for virulence, and qsp1Δ mutants exhibit attenuated infection, slowed tissue accumulation, and greater control by primary macrophages. Qsp1 mediates autoregulatory signaling that modulates secreted protease activity and promotes cell wall function at high cell densities. Peptide production requires release from a secreted precursor, proQsp1, by a cell-associated protease, Pqp1. Qsp1 sensing requires an oligopeptide transporter, Opt1, and remarkably, cytoplasmic expression of mature Qsp1 complements multiple phenotypes of qsp1Δ. Thus, C. neoformans produces an autoregulatory peptide that matures extracellularly but functions intracellularly to regulate virulence. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Structural and functional specificity of Influenza virus haemagglutinin and paramyxovirus fusion protein anchoring peptides.

    PubMed

    Kordyukova, Larisa

    2017-01-02

    Two enveloped virus families, Orthomyxoviridae and Paramyxoviridae, comprise a large number of dangerous pathogens that enter the host cell via fusion of their envelope with a target cell membrane at acidic or neutral pH. The Class I prototypic glycoproteins responsible for this reaction are the Influenza virus haemagglutinin (HA) protein or paramyxovirus fusion (F) protein. X-ray crystallography and cryoelectron microscopy data are available for the HA and F ectodomains in pre- and post-fusion conformations, revealing similar spiky architectures, albeit with clear differences in the details. In contrast, their anchoring segments, which possess a linker region, transmembrane domain and cytoplasmic tail that is specifically modified with long fatty acids (highly conserved in HA and occasional in F), are not resolved. Recent experimental, bioinformatics and molecular modelling data showing the primary, secondary and quaternary organization of the HA and F anchoring segments are summarized in this review. Some amino acid patterns that are crucial for protein thermal stability or lipid membrane order/cholesterol binding are addressed, and new achievements in vaccine practice using HA transmembrane domain chimaeras are discussed. The oligomerization properties of the transmembrane domains are considered in the context of Group-1 and Group-2 antigenic HA subtypes and various genera/subfamilies of paramyxoviruses. A specific focus is the late steps of fusion that are reportedly facilitated by (1) β-sheet-promoting β-branched amino acids (valine and isoleucine) that are enriched in the transmembrane domain of paramyxovirus F or (2) a post-translational modification of C-terminal cysteines with palmitate/stearate (differential S-acylation) that is highly conserved in Influenza virus HA. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Heterologous expression and purification of plantaricin NC8, a two-peptide bacteriocin against Salmonella spp. from Lactobacillus plantarum ZJ316.

    PubMed

    Jiang, Han; Li, Ping; Gu, Qing

    2016-11-01

    Bacteriocin, which is produced by lactic acid bacteria (LAB), has the potential to act as natural preservatives in the food industry. To develop strategies to overproduce such peptides, plantaricin NC8, a class IIb LAB bacteriocin that consists of two peptides, PLNC8α and PLNC8β, was successfully heterologously expressed in Escherichia coli BL21 (DE3). PLNC8α and PLNC8β peptides were expressed as His6-tag fusion proteins and were separated by Ni(2+) chelating affinity chromatography. To get the PLNC8α and PLNC8β peptides without extra amino acids in the N-terminus, the fusion proteins were cleaved by enterokinase and further purified using the Ni-NTA Sefinose™ Resin Kit. The molecular masses of peptides were checked using Tricine-SDS-PAGE and MALDI-TOF-MS. The yield of purified PLNC8α was around 2-2.5 mg/L, and the yield of PLNC8β was around 1.5-2 mg/L. The antimicrobial spectrum of cleaved peptides was detected and the synergistic action of PLNC8α and PLNC8β was preliminarily confirmed. It was found that E. coli was a suitable host for heterologous expression of plantaricin NC8 with a significant yield. Importantly, the bacteriocin appeared to be very active for controlling and inhibiting the food-borne pathogenic Gram-negative bacteria Salmonella spp., and might be useful as a natural preservative candidate. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A nonallergenic birch pollen allergy vaccine consisting of hepatitis PreS-fused Bet v 1 peptides focuses blocking IgG toward IgE epitopes and shifts immune responses to a tolerogenic and Th1 phenotype.

    PubMed

    Marth, Katharina; Breyer, Isabella; Focke-Tejkl, Margarete; Blatt, Katharina; Shamji, Mohamed H; Layhadi, Janice; Gieras, Anna; Swoboda, Ines; Zafred, Domen; Keller, Walter; Valent, Peter; Durham, Stephen R; Valenta, Rudolf

    2013-04-01

    Allergen-specific immunotherapy is the only allergen-specific and disease-modifying treatment for allergy. The construction and characterization of a vaccine for birch pollen allergy is reported. Two nonallergenic peptides, PA and PB, derived from the IgE-reactive areas of the major birch pollen allergen Bet v 1 were fused to the hepatitis B surface protein, PreS, in four recombinant fusion proteins containing different numbers and combinations of the peptides. Fusion proteins expressed in Escherichia coli and purified to homogeneity showed a lack of IgE reactivity and allergenic activity when tested with sera and basophils from patients allergic to birch pollen. Compared to Bet v 1 allergen, peptides PA and PB showed reduced T cell activation in PBMCs from allergic patients, whereas PreS fusion proteins induced less IL-5 and more IL-10 and IFN-γ. Immunization of rabbits with the fusion proteins, in particular with a PreS fusion protein 2PAPB-PreS, containing two copies of each peptide, induced high levels of IgG Abs against the major IgE-reactive site on Bet v 1 and related allergens. These IgG Abs inhibited allergic patients' IgE binding to Bet v 1 better than did IgG induced by immunization with complete Bet v 1. Furthermore, 2PAPB-PreS-induced IgG inhibited Bet v 1-induced basophil activation in allergic patients and CD23-facilitated allergen presentation. Our study exemplifies novel beneficial features for a PreS carrier-based peptide vaccine for birch pollen, which, in addition to the established reduction in allergenic activity, include the enhanced focusing of blocking Ab responses toward IgE epitopes, immunomodulatory activity, and reduction of CD23-facilitated allergen presentation.

  5. A Nonallergenic Birch Pollen Allergy Vaccine Consisting of Hepatitis PreS–Fused Bet v 1 Peptides Focuses Blocking IgG toward IgE Epitopes and Shifts Immune Responses to a Tolerogenic and Th1 Phenotype

    PubMed Central

    Marth, Katharina; Breyer, Isabella; Focke-Tejkl, Margarete; Blatt, Katharina; Shamji, Mohamed H.; Layhadi, Janice; Gieras, Anna; Swoboda, Ines; Zafred, Domen; Keller, Walter; Valent, Peter; Durham, Stephen R.; Valenta, Rudolf

    2014-01-01

    Allergen-specific immunotherapy is the only allergen-specific and disease-modifying treatment for allergy. The construction and characterization of a vaccine for birch pollen allergy is reported. Two nonallergenic peptides, PA and PB, derived from the IgE-reactive areas of the major birch pollen allergen Bet v 1 were fused to the hepatitis B surface protein, PreS, in four recombinant fusion proteins containing different numbers and combinations of the peptides. Fusion proteins expressed in Escherichia coli and purified to homogeneity showed a lack of IgE reactivity and allergenic activity when tested with sera and basophils from patients allergic to birch pollen. Compared to Bet v 1 allergen, peptides PA and PB showed reduced T cell activation in PBMCs from allergic patients, whereas PreS fusion proteins induced less IL-5 and more IL-10 and IFN-γ. Immunization of rabbits with the fusion proteins, in particular with a PreS fusion protein 2PAPB-PreS, containing two copies of each peptide, induced high levels of IgG Abs against the major IgE-reactive site on Bet v 1 and related allergens. These IgG Abs inhibited allergic patients’ IgE binding to Bet v 1 better than did IgG induced by immunization with complete Bet v 1. Furthermore, 2PAPB-PreS–induced IgG inhibited Bet v 1–induced basophil activation in allergic patients and CD23-facilitated allergen presentation. Our study exemplifies novel beneficial features for a PreS carrier–based peptide vaccine for birch pollen, which, in addition to the established reduction in allergenic activity, include the enhanced focusing of blocking Ab responses toward IgE epitopes, immunomodulatory activity, and reduction of CD23-facilitated allergen presentation. PMID:23440415

  6. Selective Gene Delivery for Integrating Exogenous DNA into Plastid and Mitochondrial Genomes Using Peptide-DNA Complexes.

    PubMed

    Yoshizumi, Takeshi; Oikawa, Kazusato; Chuah, Jo-Ann; Kodama, Yutaka; Numata, Keiji

    2018-05-14

    Selective gene delivery into organellar genomes (mitochondrial and plastid genomes) has been limited because of a lack of appropriate platform technology, even though these organelles are essential for metabolite and energy production. Techniques for selective organellar modification are needed to functionally improve organelles and produce transplastomic/transmitochondrial plants. However, no method for mitochondrial genome modification has yet been established for multicellular organisms including plants. Likewise, modification of plastid genomes has been limited to a few plant species and algae. In the present study, we developed ionic complexes of fusion peptides containing organellar targeting signal and plasmid DNA for selective delivery of exogenous DNA into the plastid and mitochondrial genomes of intact plants. This is the first report of exogenous DNA being integrated into the mitochondrial genomes of not only plants, but also multicellular organisms in general. This fusion peptide-mediated gene delivery system is a breakthrough platform for both plant organellar biotechnology and gene therapy for mitochondrial diseases in animals.

  7. Pyrin gene and mutants thereof, which cause familial Mediterranean fever

    DOEpatents

    Kastner, Daniel L [Bethesda, MD; Aksentijevichh, Ivona [Bethesda, MD; Centola, Michael [Tacoma Park, MD; Deng, Zuoming [Gaithersburg, MD; Sood, Ramen [Rockville, MD; Collins, Francis S [Rockville, MD; Blake, Trevor [Laytonsville, MD; Liu, P Paul [Ellicott City, MD; Fischel-Ghodsian, Nathan [Los Angeles, CA; Gumucio, Deborah L [Ann Arbor, MI; Richards, Robert I [North Adelaide, AU; Ricke, Darrell O [San Diego, CA; Doggett, Norman A [Santa Cruz, NM; Pras, Mordechai [Tel-Hashomer, IL

    2003-09-30

    The invention provides the nucleic acid sequence encoding the protein associated with familial Mediterranean fever (FMF). The cDNA sequence is designated as MEFV. The invention is also directed towards fragments of the DNA sequence, as well as the corresponding sequence for the RNA transcript and fragments thereof. Another aspect of the invention provides the amino acid sequence for a protein (pyrin) associated with FMF. The invention is directed towards both the full length amino acid sequence, fusion proteins containing the amino acid sequence and fragments thereof. The invention is also directed towards mutants of the nucleic acid and amino acid sequences associated with FMF. In particular, the invention discloses three missense mutations, clustered in within about 40 to 50 amino acids, in the highly conserved rfp (B30.2) domain at the C-terminal of the protein. These mutants include M6801, M694V, K695R, and V726A. Additionally, the invention includes methods for diagnosing a patient at risk for having FMF and kits therefor.

  8. Heterologous expression of antigenic peptides in Bacillus subtilis biofilms.

    PubMed

    Vogt, Cédric M; Schraner, Elisabeth M; Aguilar, Claudio; Eichwald, Catherine

    2016-08-11

    Numerous strategies have been developed for the display of heterologous proteins in the surface of live bacterial carriers, which can be used as vaccines, immune-modulators, cancer therapy or bioremediation. Bacterial biofilms have emerged as an interesting approach for the expression of proteins of interest. Bacillus subtilis is a well-described, endospore-forming organism that is able to form biofilms and also used as a probiotic, thus making it a suitable candidate for the display of heterologous proteins within the biofilm. Here, we describe the use of TasA, an important structural component of the biofilms formed by B. subtilis, as a genetic tool for the display of heterologous proteins. We first engineered the fusion protein TasA-mCherry and showed that was widely deployed within the B. subtilis biofilms. A significant enhancement of the expression of TasA-mCherry within the biofilm was obtained when depleting both tasA and sinR genes. We subsequently engineered fusion proteins of TasA to antigenic peptides of the E. granulosus parasite, paramyosin and tropomyosin. Our results show that the antigens were well expressed within the biofilm as denoted by macrostructure complementation and by the detection of the fusion protein in both immunoblot and immunohistochemistry. In addition, we show that the recombinant endospores of B. subtilis preserve their biophysical and morphological properties. In this work we provide strong evidence pointing that TasA is a suitable candidate for the display of heterologous peptides, such as antigens, cytokines, enzymes or antibodies, in the B. subtilis biofilms. Finally, our data portray that the recombinant endospores preserve their morphological and biophysical properties and could be an excellent tool to facilitate the transport and the administration.

  9. Individual N-Glycans Added at Intervals along the Stalk of the Nipah Virus G Protein Prevent Fusion but Do Not Block the Interaction with the Homologous F Protein

    PubMed Central

    Zhu, Qiyun; Biering, Scott B.; Mirza, Anne M.; Grasseschi, Brittany A.; Mahon, Paul J.; Lee, Benhur; Aguilar, Hector C.

    2013-01-01

    The promotion of membrane fusion by most paramyxoviruses requires an interaction between the viral attachment and fusion (F) proteins to enable receptor binding by the former to trigger the activation of the latter for fusion. Numerous studies demonstrate that the F-interactive sites on the Newcastle disease virus (NDV) hemagglutinin-neuraminidase (HN) and measles virus (MV) hemagglutinin (H) proteins reside entirely within the stalk regions of those proteins. Indeed, stalk residues of NDV HN and MV H that likely mediate the F interaction have been identified. However, despite extensive efforts, the F-interactive site(s) on the Nipah virus (NiV) G attachment glycoprotein has not been identified. In this study, we have introduced individual N-linked glycosylation sites at several positions spaced at intervals along the stalk of the NiV G protein. Five of the seven introduced sites are utilized as established by a retardation of electrophoretic mobility. Despite surface expression, ephrinB2 binding, and oligomerization comparable to those of the wild-type protein, four of the five added N-glycans completely eliminate the ability of the G protein to complement the homologous F protein in the promotion of fusion. The most membrane-proximal added N-glycan reduces fusion by 80%. However, unlike similar NDV HN and MV H mutants, the NiV G glycosylation stalk mutants retain the ability to bind F, indicating that the fusion deficiency of these mutants is not due to prevention of the G-F interaction. These findings suggest that the G-F interaction is not mediated entirely by the stalk domain of G and may be more complex than that of HN/H-F. PMID:23283956

  10. Probing the interaction mechanisms between transmembrane peptides and the chaperonin GroEL with fluorescence anisotropy

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoqiang; Chen, Han; Lu, Xinwei; Chi, Haixia; Li, Shixin; Huang, Fang

    2018-04-01

    Proper translocation, membrane insertion and folding are crucial biophysical steps in the biogenesis of functional transmembrane peptides/proteins (TMPs). ATP-dependent chaperonins are able to regulate each of these processes, but the underlying mechanisms remain unclear. In this work, interaction between the bacterial chaperonin GroEL and a synthetic fluorescent transmembrane peptide was investigated by fluorescence anisotropy. Binding of the peptide with GroEL resulted in increased fluorescence anisotropy and intensity. The dissociation constant and binding stoichiometry, as assessed by titration of the peptide with GroEL, were estimated to be 0.6 ± 0.2 μM and 2.96 ± 0.35, respectively. Complementary study with the single-ring version of GroEL confirmed the high-affinity peptide binding, and indicates that the two GroEL rings may function alternatively in binding the peptides. The co-chaperonin GroES was found to be effective at releasing the peptides initially bound to GroEL with the help of ATP. Moreover, our observation with the single-ring GroEL mutant demonstrated that during the encapsulation of GroEL by GroES, the bound peptides may either be confined in the cage thus formed, or escape outside. Competitive binding experiments indicated that the peptides studied interact with GroEL through the paired helices H and I on its apical domain. Our spectroscopic studies revealed some basic mechanisms of interaction between transmembrane peptides and GroEL, which would be instrumental for deciphering the chaperonin-mediated TMP biogenesis.

  11. Direct and selective immobilization of proteins by means of an inorganic material-binding peptide: discussion on functionalization in the elongation to material-binding peptide.

    PubMed

    Yokoo, Nozomi; Togashi, Takanari; Umetsu, Mitsuo; Tsumoto, Kouhei; Hattori, Takamitsu; Nakanishi, Takeshi; Ohara, Satoshi; Takami, Seiichi; Naka, Takashi; Abe, Hiroya; Kumagai, Izumi; Adschiri, Tadafumi

    2010-01-14

    Using an artificial peptide library, we have identified a peptide with affinity for ZnO materials that could be used to selectively accumulate ZnO particles on polypropylene-gold plates. In this study, we fused recombinant green fluorescent protein (GFP) with this ZnO-binding peptide (ZnOBP) and then selectively immobilized the fused protein on ZnO particles. We determined an appropriate condition for selective immobilization of recombinant GFP, and the ZnO-binding function of ZnOBP-fused GFP was examined by elongating the ZnOBP tag from a single amino acid to the intact sequence. The fusion of ZnOBP with GFP enabled specific adsorption of GFP on ZnO substrates in an appropriate solution, and thermodynamic studies showed a predominantly enthalpy-dependent electrostatic interaction between ZnOBP and the ZnO surface. The ZnOBP's binding affinity for the ZnO surface increased first in terms of material selectivity and then in terms of high affinity as the GFP-fused peptide was elongated from a single amino acid to intact ZnOBP. We concluded that the enthalpy-dependent interaction between ZnOBP and ZnO was influenced by the presence of not only charged amino acids but also their surrounding residues in the ZnOBP sequence.

  12. A Novel Molecular Targeting of a Tumor-Specific Oncogenic Mutant Receptor in Human Prostate Cancer

    DTIC Science & Technology

    2005-02-01

    in cells and can generate dominant negative mutant (15). Hammerhead ribozymes are self-cleaving RNAs whose catalytic activity has been mapped to a...specific ribozyme targeted at the fusion junction of EGFRvIII. This specific EGFRvIII ribozyme is able to effectively cleave EGFRvIII mRNA under...physiological conditions in a cell-free system. While expressing this EGFRvIII- ribozyme in 32D/EGFRvIII cell, EGFRvIII- ribozyme is capable of down-regulating

  13. Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli

    PubMed Central

    2011-01-01

    Background In recent years, it has been gradually realized that bacterial inclusion bodies (IBs) could be biologically active. In particular, several proteins including green fluorescent protein, β-galactosidase, β-lactamase, alkaline phosphatase, D-amino acid oxidase, polyphosphate kinase 3, maltodextrin phosphorylase, and sialic acid aldolase have been successfully produced as active IBs when fused to an appropriate partner such as the foot-and-mouth disease virus capsid protein VP1, or the human β-amyloid peptide Aβ42(F19D). As active IBs may have many attractive advantages in enzyme production and industrial applications, it is of considerable interest to explore them further. Results In this paper, we report that an ionic self-assembling peptide ELK16 (LELELKLK)2 was able to effectively induce the formation of cytoplasmic inclusion bodies in Escherichia coli (E. coli) when attached to the carboxyl termini of four model proteins including lipase A, amadoriase II, β-xylosidase, and green fluorescent protein. These aggregates had a general appearance similar to the usually reported cytoplasmic inclusion bodies (IBs) under transmission electron microscopy or fluorescence confocal microscopy. Except for lipase A-ELK16 fusion, the three other fusion protein aggregates retained comparable specific activities with the native counterparts. Conformational analyses by Fourier transform infrared spectroscopy revealed the existence of newly formed antiparallel beta-sheet structures in these ELK16 peptide-induced inclusion bodies, which is consistent with the reported assembly of the ELK16 peptide. Conclusions This has been the first report where a terminally attached self-assembling β peptide ELK16 can promote the formation of active inclusion bodies or active protein aggregates in E. coli. It has the potential to render E. coli and other recombinant hosts more efficient as microbial cell factories for protein production. Our observation might also provide hints for

  14. Recombinant proteins and peptides as diagnostic and therapeutic reagents for arthropod allergies.

    PubMed

    Ramos, John Donnie A; Valmonte, Gardette R; de Guia, Roldan M

    2007-01-01

    Domestic arthropods are chief sources of potent allergens that trigger sensitization and stimulate IgE-mediated allergies. Diagnosis and immunotherapy of arthropod allergies rely on the use of natural allergen extracts which are associated with low specificity and efficacy, the risk of anaphylactic reactions, and the extended period of treatment. Most of the problems associated with natural allergen extracts for allergy diagnosis and immunotherapy can be circumvented with the use of recombinant allergens and peptides. Recombinant allergens are recently developed for microarray-based multi-allergen tests which provide component-resolved diagnosis (CRD) of the patient's sensitization profile. Moreover, recombinant protein technology and peptide chemistry have been used to construct isoallergens, allergen mutants, allergoids, T and B cell peptides, hypoallergens, and mimotopes with reduced allergenicity but enhanced immunogenicity for allergen-specific immunotherapy (SIT) and vaccination. The basics of recombinant arthropod allergen technology are in place providing a lucid future for the advancement of diagnosis and immunotherapy of arthropod allergies.

  15. A pleîotropic acid phosphatase-deficient mutant of Escherichia coli shows premature termination in the dsbA gene. Use of dsbA::phoA fusions to localize a structurally important domain in DsbA.

    PubMed

    Belin, P; Quéméneur, E; Boquet, P L

    1994-01-01

    A one-step mutant of Escherichia coli K-12 lacking both glucose-1-phosphatase (Agp) and pH 2.5 acid phosphatase (AppA) activities in the periplasmic space was isolated. The mutation which mapped close to chlB, at 87 min on the E. coli linkage map, also caused the loss of alkaline phosphatase (PhoA) activity, even when this activity was expressed from TnphoA fusions to genes encoding periplasmic or membrane proteins. A DNA fragment that complements the mutation was cloned and shown to carry the dsbA gene, which encodes a periplasmic disulphide bond-forming factor. The mutant had an ochre triplet in dsbA, truncating the protein at amino acid 70. Introduction of TnphoA fusions into a plasmid-borne dsbA gene resulted in DsbA-PhoA hybrid proteins that were all exported to the periplasmic space in both dsbA+ and dsbA strains. They belong to three different classes, depending on the length of the DsbA fragment fused to PhoA. When PhoA was fused to an amino-terminal DsbA heptapeptide, the protein was only seen in the periplasm of a dsbA+ strain, as in the case of wild-type PhoA. Hybrid proteins missing up to 29 amino acids at the carboxy-terminus of DsbA were stable and retained both the DsbA and PhoA activities. Those with shorter DsbA fragments that still carried the -Cys-Pro-His-Cys- motif were rapidly degraded (no DsbA activity). The presence is discussed of a structural domain lying around amino acid 170 of DsbA and which is probably essential for its folding into a proteolytic-resistant and enzymatically active form.

  16. Altered gene regulation and synaptic morphology in Drosophila learning and memory mutants

    PubMed Central

    Guan, Zhuo; Buhl, Lauren K.; Quinn, William G.; Littleton, J. Troy

    2011-01-01

    Genetic studies in Drosophila have revealed two separable long-term memory pathways defined as anesthesia-resistant memory (ARM) and long-lasting long-term memory (LLTM). ARM is disrupted in radish (rsh) mutants, whereas LLTM requires CREB-dependent protein synthesis. Although the downstream effectors of ARM and LLTM are distinct, pathways leading to these forms of memory may share the cAMP cascade critical for associative learning. Dunce, which encodes a cAMP-specific phosphodiesterase, and rutabaga, which encodes an adenylyl cyclase, both disrupt short-term memory. Amnesiac encodes a pituitary adenylyl cyclase-activating peptide homolog and is required for middle-term memory. Here, we demonstrate that the Radish protein localizes to the cytoplasm and nucleus and is a PKA phosphorylation target in vitro. To characterize how these plasticity pathways may manifest at the synaptic level, we assayed synaptic connectivity and performed an expression analysis to detect altered transcriptional networks in rutabaga, dunce, amnesiac, and radish mutants. All four mutants disrupt specific aspects of synaptic connectivity at larval neuromuscular junctions (NMJs). Genome-wide DNA microarray analysis revealed ∼375 transcripts that are altered in these mutants, suggesting defects in multiple neuronal signaling pathways. In particular, the transcriptional target Lapsyn, which encodes a leucine-rich repeat cell adhesion protein, localizes to synapses and regulates synaptic growth. This analysis provides insights into the Radish-dependent ARM pathway and novel transcriptional targets that may contribute to memory processing in Drosophila. PMID:21422168

  17. A peptide hormone required for Casparian strip diffusion barrier formation in Arabidopsis roots.

    PubMed

    Nakayama, Takuya; Shinohara, Hidefumi; Tanaka, Mina; Baba, Koki; Ogawa-Ohnishi, Mari; Matsubayashi, Yoshikatsu

    2017-01-20

    Plants achieve mineral ion homeostasis by means of a hydrophobic barrier on endodermal cells called the Casparian strip, which restricts lateral diffusion of ions between the root vascular bundles and the soil. We identified a family of sulfated peptides required for contiguous Casparian strip formation in Arabidopsis roots. These peptide hormones, which we named Casparian strip integrity factor 1 (CIF1) and CIF2, are expressed in the root stele and specifically bind the endodermis-expressed leucine-rich repeat receptor kinase GASSHO1 (GSO1)/SCHENGEN3 and its homolog, GSO2. A mutant devoid of CIF peptides is defective in ion homeostasis in the xylem. CIF genes are environmentally responsive. Casparian strip regulation is not merely a passive process driven by root developmental cues; it also serves as an active strategy to cope with adverse soil conditions. Copyright © 2017, American Association for the Advancement of Science.

  18. PAS-cal: a Generic Recombinant Peptide Calibration Standard for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Breibeck, Joscha; Serafin, Adam; Reichert, Andreas; Maier, Stefan; Küster, Bernhard; Skerra, Arne

    2014-08-01

    We describe the design, preparation, and mass-spectrometric characterization of a new recombinant peptide calibration standard with uniform biophysical and ionization characteristics for mass spectrometry. "PAS-cal" is an artificial polypeptide concatamer of peptide cassettes with varying lengths, each composed of the three small, chemically stable amino acids Pro, Ala, and Ser, which are interspersed by Arg residues to allow site-specific cleavage with trypsin. PAS-cal is expressed at high yields in Escherichia coli as a Small Ubiquitin-like MOdifier (SUMO) fusion protein, which is easily purified and allows isolation of the PAS-cal moiety after SUMO protease cleavage. Upon subsequent in situ treatment with trypsin, the PAS-cal polypeptide yields a set of four defined homogeneous peptides in the range from 2 to 8 kDa with equal mass spacing. ESI-MS analysis revealed a conveniently interpretable raw spectrum, which after deconvolution resulted in a very simple pattern of four peaks with similar ionization signals. MALDI-MS analysis of a PAS-cal peptide mixture comprising both the intact polypeptide and its tryptic fragments revealed not only the four standard peptides but also the singly and doubly charged states of the intact concatamer as well as di- and trimeric adduct ion species between the peptides, thus augmenting the observable m/z range. The advantageous properties of PAS-cal are most likely a result of the strongly hydrophilic and conformationally disordered PEG-like properties of the PAS sequences. Therefore, PAS-cal offers an inexpensive and versatile recombinant peptide calibration standard for mass spectrometry in protein/peptide bioanalytics and proteomics research, the composition of which may be further adapted to fit individual needs.

  19. Inhibition of pressure-activated cancer cell adhesion by FAK-derived peptides

    PubMed Central

    Zeng, Bixi; Devadoss, Dinesh; Wang, Shouye; Vomhof-DeKrey, Emilie E.; Kuhn, Leslie A.; Basson, Marc D.

    2017-01-01

    Forces within the surgical milieu or circulation activate cancer cell adhesion and potentiate metastasis through signaling requiring FAK-Akt1 interaction. Impeding FAK-Akt1 interaction might inhibit perioperative tumor dissemination, facilitating curative cancer surgery without global FAK or AKT inhibitor toxicity. Serial truncation and structurally designed mutants of FAK identified a seven amino acid, short helical structure within FAK that effectively competes with Akt1-FAK interaction. Adenoviral overexpression of this FAK-derived peptide inhibited pressure-induced FAK phosphorylation and AKT-FAK coimmunoprecipitation in human SW620 colon cancer cells briefly exposed to 15mmHg increased pressure, consistent with laparoscopic or post-surgical pressures. Adenoviral FAK-derived peptide expression prevented pressure-activation of SW620 adhesion not only to collagen-I-coated plates but also to murine surgical wounds. A scrambled peptide did not. Finally, we modeled operative shedding of tumor cells before irrigation and closure by transient cancer cell adhesion to murine surgical wounds before irrigation and closure. Thirty minute preincubation of SW620 cells at 15mmHg increased pressure impaired subsequent tumor free survival in mice exposed to cells expressing the scrambled peptide. The FAK-derived sequence prevented this. These results suggest that blocking FAK-Akt1 interaction may prevent perioperative tumor dissemination and that analogs or mimics of this 7 amino acid FAK-derived peptide could impair metastasis. PMID:29228673

  20. Trimeric Transmembrane Domain Interactions in Paramyxovirus Fusion Proteins

    PubMed Central

    Smith, Everett Clinton; Smith, Stacy E.; Carter, James R.; Webb, Stacy R.; Gibson, Kathleen M.; Hellman, Lance M.; Fried, Michael G.; Dutch, Rebecca Ellis

    2013-01-01

    Paramyxovirus fusion (F) proteins promote membrane fusion between the viral envelope and host cell membranes, a critical early step in viral infection. Although mutational analyses have indicated that transmembrane (TM) domain residues can affect folding or function of viral fusion proteins, direct analysis of TM-TM interactions has proved challenging. To directly assess TM interactions, the oligomeric state of purified chimeric proteins containing the Staphylococcal nuclease (SN) protein linked to the TM segments from three paramyxovirus F proteins was analyzed by sedimentation equilibrium analysis in detergent and buffer conditions that allowed density matching. A monomer-trimer equilibrium best fit was found for all three SN-TM constructs tested, and similar fits were obtained with peptides corresponding to just the TM region of two different paramyxovirus F proteins. These findings demonstrate for the first time that class I viral fusion protein TM domains can self-associate as trimeric complexes in the absence of the rest of the protein. Glycine residues have been implicated in TM helix interactions, so the effect of mutations at Hendra F Gly-508 was assessed in the context of the whole F protein. Mutations G508I or G508L resulted in decreased cell surface expression of the fusogenic form, consistent with decreased stability of the prefusion form of the protein. Sedimentation equilibrium analysis of TM domains containing these mutations gave higher relative association constants, suggesting altered TM-TM interactions. Overall, these results suggest that trimeric TM interactions are important driving forces for protein folding, stability and membrane fusion promotion. PMID:24178297

  1. Hydrodynamic effects on β-amyloid (16-22) peptide aggregation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiricotto, Mara; Sterpone, Fabio, E-mail: fabio.sterpone@ibpc.fr; Melchionna, Simone

    Computer simulations based on simplified representations are routinely used to explore the early steps of amyloid aggregation. However, when protein models with implicit solvent are employed, these simulations miss the effect of solvent induced correlations on the aggregation kinetics and lifetimes of metastable states. In this work, we apply the multi-scale Lattice Boltzmann Molecular Dynamics technique (LBMD) to investigate the initial aggregation phases of the amyloid Aβ{sub 16−22} peptide. LBMD includes naturally hydrodynamic interactions (HIs) via a kinetic on-lattice representation of the fluid kinetics. The peptides are represented by the flexible OPEP coarse-grained force field. First, we have tuned themore » essential parameters that control the coupling between the molecular and fluid evolutions in order to reproduce the experimental diffusivity of elementary species. The method is then deployed to investigate the effect of HIs on the aggregation of 100 and 1000 Aβ{sub 16−22} peptides. We show that HIs clearly impact the aggregation process and the fluctuations of the oligomer sizes by favouring the fusion and exchange dynamics of oligomers between aggregates. HIs also guide the growth of the leading largest cluster. For the 100 Aβ{sub 16−22} peptide system, the simulation of ∼300 ns allowed us to observe the transition from ellipsoidal assemblies to an elongated and slightly twisted aggregate involving almost the totality of the peptides. For the 1000 Aβ{sub 16−22} peptides, a system of unprecedented size at quasi-atomistic resolution, we were able to explore a branched disordered fibril-like structure that has never been described by other computer simulations, but has been observed experimentally.« less

  2. Use of green fluorescent protein fusions to analyse the N- and C-terminal signal peptides of GPI-anchored cell wall proteins in Candida albicans.

    PubMed

    Mao, Yuxin; Zhang, Zimei; Wong, Brian

    2003-12-01

    Glycophosphatidylinositol (GPI)-anchored proteins account for 26-35% of the Candida albicans cell wall. To understand the signals that regulate these proteins' cell surface localization, green fluorescent protein (GFP) was fused to the N- and C-termini of the C. albicans cell wall proteins (CWPs) Hwp1p, Als3p and Rbt5p. C. albicans expressing all three fusion proteins were fluorescent at the cell surface. GFP was released from membrane fractions by PI-PLC and from cell walls by beta-glucanase, which implied that GFP was GPI-anchored to the plasma membrane and then covalently attached to cell wall glucans. Twenty and 25 amino acids, respectively, from the N- and C-termini of Hwp1p were sufficient to target GFP to the cell surface. C-terminal substitutions that are permitted by the omega rules (G613D, G613N, G613S, G613A, G615S) did not interfere with GFP localization, whereas some non-permitted substitutions (G613E, G613Q, G613R, G613T and G615Q) caused GFP to accumulate in intracellular ER-like structures and others (G615C, G613N/G615C and G613D/G615C) did not. These results imply that (i) GFP fusions can be used to analyse the N- and C-terminal signal peptides of GPI-anchored CWPs, (ii) the omega amino acid in Hwp1p is G613, and (iii) C can function at the omega+2 position in C. albicans GPI-anchored proteins.

  3. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities.

    PubMed

    Zhao, Jun; Zhao, Chao; Liang, Guizhao; Zhang, Mingzhen; Zheng, Jie

    2013-12-23

    The rapid rise of antibiotic resistance in pathogens becomes a serious and growing threat to medicine and public health. Naturally occurring antimicrobial peptides (AMPs) are an important line of defense in the immune system against invading bacteria and microbial infection. In this work, we present a combined computational and experimental study of the biological activity and membrane interaction of the computationally designed Bac2A-based peptide library. We used the MARTINI coarse-grained molecular dynamics with adaptive biasing force method and the umbrella sampling technique to investigate the translocation of a total of 91 peptides with different amino acid substitutions through a mixed anionic POPE/POPG (3:1) bilayer and a neutral POPC bilayer, which mimic the bacterial inner membrane and the human red blood cell (hRBC) membrane, respectively. Potential of mean force (PMF, free energy profile) was obtained to measure the free energy barrier required to transfer the peptides from the bulk water phase to the water-membrane interface and to the bilayer interior. Different PMF profiles can indeed identify different membrane insertion scenarios by mapping out peptide-lipid energy landscapes, which are correlated with antimicrobial activity and hemolytic activity. Computationally designed peptides were further tested experimentally for their antimicrobial and hemolytic activities using bacteria growth inhibition assay and hemolysis assay. Comparison of PMF data with cell assay results reveals a good correlation of the peptides between predictive transmembrane activity and antimicrobial/hemolytic activity. Moreover, the most active mutants with the balanced substitutions of positively charged Arg and hydrophobic Trp residues at specific positions were discovered to achieve the improved antimicrobial activity while minimizing red blood cell lysis. Such substitutions provide more effective and cooperative interactions to distinguish the peptide interaction with

  4. The heparin-binding domain of HB-EGF as an efficient cell-penetrating peptide for drug delivery.

    PubMed

    Luo, Zhao; Cao, Xue-Wei; Li, Chen; Wu, Miao-Dan; Yang, Xu-Zhong; Zhao, Jian; Wang, Fu-Jun

    2016-11-01

    Cell-penetrating peptides (CPPs) have been shown to be potential drug carriers for cancer therapy. The inherently low immunogenicity and cytotoxicity of human-derived CPPs make them more suitable for intracellular drug delivery compared to other delivery vehicles. In this work, the protein transduction ability of a novel CPP (termed HBP) derived from the heparin-binding domain of HB-EGF was evaluated. Our data shows, for the first time, that HBP possesses similar properties to typical CPPs and is a potent drug delivery vector for improving the antitumor activity of impermeable MAP30. The intrinsic bioactivities of recombinant MAP30-HBP were well preserved compared to those of free MAP30. Furthermore, HBP conjugated to the C-terminus of MAP30 promoted the cellular uptake of recombinant MAP30-HBP. Moreover, the fusion of HBP to MAP30 gave rise to significantly enhanced cytotoxic effects in all of the tumor cell lines tested. In HeLa cells, this cytotoxicity was mainly caused by the induction of cell apoptosis. Further investigation revealed that HBP enhanced MAP30-induced apoptosis through the activation of the mitochondrial- and death receptor-mediated signaling pathways. In addition, the MAP30-HBP fusion protein caused more HeLa cells to become arrested in S phase compared to MAP30 alone. These results highlight the MAP30-HBP fusion protein as a promising drug candidate for cancer therapy and demonstrate HBP, a novel CPP derived from human HB-EGF, as a new potential vector for antitumor drug delivery. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  5. Isolation and analysis of lipase-overproducing mutants of Serratia marcescens.

    PubMed

    Kawai, E; Akatsuka, H; Sakurai, N; Idei, A; Matsumae, H; Shibatani, T; Komatsubara, S; Omori, K

    2001-01-01

    We have isolated a lipase-overproducing mutant, GE14, from Serratia marcescens 8000 after three rounds of N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. The mutant GE14 produced 95 kU/ml of extracellular lipase in the lipase medium, which was about threefold higher than that of produced by the original strain 8000. Enzymatic characteristics including specific activity of purified lipases from culture supernatants of GE14 and 8000 were almost same. The lipase gene (lipA) of GE14 contained two base substitutions; one in the promoter region and another in the N-terminal region of the lipA gene without an amino acid substitution. Promoter analysis using lipA-lacZ fusion plasmids revealed that these substitutions were responsible for the increase in the lipA expression level, independently. In contrast, no base substitution was found in the genes encoding the lipase secretion device, the Lip system. In addition, the genes coding for metalloprotease and the cell surface layer protein which are both secreted through the Lip system and associated with extracellular lipase production, also contained no base substitution. The strain GE14 carrying a high-copy-number lipA plasmid produced a larger amount of the extracellular lipase than the recombinant strains of 8000 and other mutants also did, indicating that GE14 was not only a lipase-overproducing strain, but also an advantageous host strain for overproducing the lipase by a recombinant DNA technique. These results suggest that the lipase-overproducing mutant GE14 and its recombinant strains are promising candidates for the industrial production of the S. marcescens lipase.

  6. Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement.

    PubMed

    Carmen Herranz, Ma; Sanchez-Navarro, Jesús-Angel; Saurí, Ana; Mingarro, Ismael; Pallás, Vicente

    2005-08-15

    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive charges prevented the cell-to-cell movement even though all mutants showed a similar accumulation level in protoplasts to those observed with the wild-type (wt) MP. Synthetic peptides representing the mutants and wild-type RBDs were used to study RNA-binding affinities by EMSA assays being approximately 20-fold lower in the mutants. Circular dichroism analyses revealed that the secondary structure of the peptides was not significantly affected by mutations. The involvement of the affinity changes between the viral RNA and the MP in the viral cell-to-cell movement is discussed.

  7. Structure-based optimization of salt-bridge network across the complex interface of PTPN4 PDZ domain with its peptide ligands in neuroglioma.

    PubMed

    Xiao, Xian; He, Qiang-Hua; Yu, Li-Yan; Wang, Song-Qing; Li, Yang; Yang, Hua; Zhang, Ai-Hua; Ma, Xiao-Hong; Peng, Yu-Jie; Chen, Bing

    2017-02-01

    The PTP non-receptor type 4 (PTPN4) is an important regulator protein in learning, spatial memory and cerebellar synaptic plasticity; targeting the PDZ domain of PTPN4 has become as attractive therapeutic strategy for human neuroglioma. Here, we systematically examined the complex crystal structures of PTPN4 PDZ domain with its known peptide ligands; a number of charged amino acid residues were identified in these ligands and in the peptide-binding pocket of PDZ domain, which can constitute a complicated salt-bridge network across the complex interface. Molecular dynamics (MD) simulations, binding free energy calculations and continuum model analysis revealed that the electrostatic effect plays a predominant role in domain-peptide binding, while other noncovalent interactions such as hydrogen bonds and hydrophobic forces are also responsible for the binding. The computational findings were then used to guide structure-based optimization of the interfacial salt-bridge network. Consequently, five peptides were rationally designed using the high-affinity binder Cyto8-RETEV (RETEV -COOH ) as template, including four single-point mutants (i.e. Cyto8-mtxe 0 : RETEE -COOH , Cyto8-mtxd -1 : RETDV -COOH , Cyto8-mtxd -3 : RDTEV -COOH and Cyto8-mtxk -4 : KETEV -COOH ) and one double-point mutant (i.e. Cyto8-mtxd -1 k -4 : KETDV -COOH ). Binding assays confirmed that three (Cyto8-mtxd -1 , Cyto8-mtxk -4 and Cyto8-mtxd -1 k -4 ) out of the five designed peptides exhibit moderately or considerably increased affinity as compared to the native peptide Cyto8-RETEV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Pharmacological chaperones facilitate the post-ER transport of recombinant N370S mutant β-glucocerebrosidase in plant cells: Evidence that N370S is a folding mutant

    PubMed Central

    Babajani, Gholamreza; Tropak, Michael B.; Mahuran, Don J.; Kermode, Allison R.

    2012-01-01

    Gaucher disease is a prevalent lysosomal storage disease in which affected individuals inherit mutations in the gene (GBA1) encoding lysosomal acid β-glucosidase (glucocerebrosidase, GCase, EC 3.2.1.45). One of the most prevalent disease-causing mutations in humans is a N370S missense mutation in the GCase protein. As part of a larger endeavor to study the fate of mutant human proteins expressed in plant cells, the N370S mutant protein along with the wild-type- (WT)-GCase, both equipped with a signal peptide, were synthesized in transgenic tobacco BY2 cells, which do not possess lysosomes. The enzymatic activity of plant-recombinant N370S GCase lines was significantly lower (by 81–95%) than that of the WT-GCase lines. In contrast to the WT-GCase protein, which was efficiently secreted from tobacco BY2 cells, and detected in large amounts in the culture medium, only a small proportion of the N370S GCase was secreted. Pharmacological chaperones such as N-(n-nonyl) deoxynojirimycin and ambroxol increased the steady-state mutant protein levels both inside the plant cells and in the culture medium. These findings contradict the assertion that small molecule chaperones increase N370S GCase activity (as assayed in treated patient cell lysates) by stabilizing the enzyme in the lysosome, and suggest that the mutant protein is impaired in its ability to obtain its functional folded conformation, which is a requirement for exiting the lumen of the ER. PMID:22592100

  9. Evolution of inhibitor-resistant natural mutant forms of HIV-1 protease probed by pre-steady state kinetic analysis.

    PubMed

    Zakharova, Maria Yu; Kuznetsova, Alexandra A; Kaliberda, Elena N; Dronina, Maria A; Kolesnikov, Alexander V; Kozyr, Arina V; Smirnov, Ivan V; Rumsh, Lev D; Fedorova, Olga S; Knorre, Dmitry G; Gabibov, Alexander G; Kuznetsov, Nikita A

    2017-11-01

    Pre-steady state kinetic analysis of mechanistic features of substrate binding and processing is crucial for insight into the evolution of inhibitor-resistant forms of HIV-1 protease. These data may provide a correct vector for rational drug design assuming possible intrinsic dynamic effects. These data should also give some clues to the molecular mechanism of protease action and resistance to inhibitors. Here we report pre-steady state kinetics of the interaction of wild type or mutant forms of HIV-1 protease with a FRET-labeled peptide. The three-stage "minimal" kinetic scheme with first and second reversible steps of substrate binding and with following irreversible peptide cleavage step adequately described experimental data. For the first time, a set of "elementary" kinetic parameters of wild type HIV-1 protease and its natural mutant inhibitor-resistant forms MDR-HM, ANAM-11 and prDRV4 were compared. Inhibitors of the first and second generation were used to estimate the inhibitory effects on HIV-1 protease activity. The resulting set of kinetic data supported that the mutant forms are kinetically unaffected by inhibitors of the first generation, proving their functional resistance to these compounds. The second generation inhibitor darunavir inhibited mutant forms MDR-HM and ANAM-11, but was ineffective against prDRV4. Our kinetic data revealed that these inhibitors induced different conformational changes in the enzyme and, thereby they have different mode of binding in the enzyme active site. These data confirmed hypothesis that the driving force of the inhibitor-resistance evolution is disruption of enzyme-inhibitor complex by changing of the contact network in the inhibitor binding site. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  10. Sharing mutants and experimental information prepublication using FgMutantDB

    USDA-ARS?s Scientific Manuscript database

    There has been no central location for storing generated mutants of Fusarium graminearum or for data associated with these mutants. Instead researchers relied on several independent, non-integrated databases. FgMutantDB was designed as a simple spreadsheet that is accessible globally on the web th...

  11. Elastin-like-polypeptide based fusion proteins for osteogenic factor delivery in bone healing.

    PubMed

    McCarthy, Bryce; Yuan, Yuan; Koria, Piyush

    2016-07-08

    Modern treatments of bone injuries and diseases are becoming increasingly dependent on the usage of growth factors to stimulate bone growth. Bone morphogenetic protein-2 (BMP-2), a potent osteogenic inductive protein, exhibits promising results in treatment models, but recently has had its practical efficacy questioned due to the lack of local retention, ectopic bone formation, and potentially lethal inflammation. Where a new delivery technique of the BMP-2 is necessary, here we demonstrate the viability of an elastin-like peptide (ELP) fusion protein containing BMP-2 for delivery of the BMP-2. This fusion protein retains the performance characteristics of both the BMP-2 and ELP. The fusion protein was found to induce osteogenic differentiation of mesenchymal stem cells as evidenced by the production of alkaline phosphatase and extracellular calcium deposits in response to treatment by the fusion protein. Retention of the ELPs inverse phase transition property has allowed for expression of the fusion protein within a bacterial host (such as Escherichia coli) and easy and rapid purification using inverse transition cycling. The fusion protein formed self-aggregating nanoparticles at human-body temperature. The data collected suggests the viability of these fusion protein nanoparticles as a dosage-efficient and location-precise noncytotoxic delivery vehicle for BMP-2 in bone treatment. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1029-1037, 2016. © 2016 American Institute of Chemical Engineers.

  12. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes.

    PubMed

    Diao, Jiajie; Liu, Rong; Rong, Yueguang; Zhao, Minglei; Zhang, Jing; Lai, Ying; Zhou, Qiangjun; Wilz, Livia M; Li, Jianxu; Vivona, Sandro; Pfuetzner, Richard A; Brunger, Axel T; Zhong, Qing

    2015-04-23

    Autophagy, an important catabolic pathway implicated in a broad spectrum of human diseases, begins by forming double membrane autophagosomes that engulf cytosolic cargo and ends by fusing autophagosomes with lysosomes for degradation. Membrane fusion activity is required for early biogenesis of autophagosomes and late degradation in lysosomes. However, the key regulatory mechanisms of autophagic membrane tethering and fusion remain largely unknown. Here we report that ATG14 (also known as beclin-1-associated autophagy-related key regulator (Barkor) or ATG14L), an essential autophagy-specific regulator of the class III phosphatidylinositol 3-kinase complex, promotes membrane tethering of protein-free liposomes, and enhances hemifusion and full fusion of proteoliposomes reconstituted with the target (t)-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) syntaxin 17 (STX17) and SNAP29, and the vesicle (v)-SNARE VAMP8 (vesicle-associated membrane protein 8). ATG14 binds to the SNARE core domain of STX17 through its coiled-coil domain, and stabilizes the STX17-SNAP29 binary t-SNARE complex on autophagosomes. The STX17 binding, membrane tethering and fusion-enhancing activities of ATG14 require its homo-oligomerization by cysteine repeats. In ATG14 homo-oligomerization-defective cells, autophagosomes still efficiently form but their fusion with endolysosomes is blocked. Recombinant ATG14 homo-oligomerization mutants also completely lose their ability to promote membrane tethering and to enhance SNARE-mediated fusion in vitro. Taken together, our data suggest an autophagy-specific membrane fusion mechanism in which oligomeric ATG14 directly binds to STX17-SNAP29 binary t-SNARE complex on autophagosomes and primes it for VAMP8 interaction to promote autophagosome-endolysosome fusion.

  13. Immune response to synthetic peptides representing antigenic sites on the glycoprotein of infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Emmenegger, Eveline J.; Huang, C.; LaPatra, S.; Winton, James R.

    1995-01-01

    Summary ― Monoclonal antibodies against infectious hematopoietic necrosis virus have been used to react with recombinant expression products in immunoblots and to select neutralization-resistant mutants for sequence analysis. These strategies identified neutralizing and non-neutralizing antigenic sites on the viral glycoprotein. Synthetic peptides based upon the amino acid sequences of these antigenic sites were synthesized and were injected together with an adjuvant into rainbow trout. The constructs generally failed to stimulate neutralizing antibodies in the fish. These results indicate that we need to understand more about the ability of peptide antigens to stimulate fish immune systems.

  14. Characterization of Mutants Deficient in the l,d-Carboxypeptidase (DacB) and WalRK (VicRK) Regulon, Involved in Peptidoglycan Maturation of Streptococcus pneumoniae Serotype 2 Strain D39▿†

    PubMed Central

    Barendt, Skye M.; Sham, Lok-To; Winkler, Malcolm E.

    2011-01-01

    Peptidoglycan (PG) hydrolases play critical roles in the remodeling of bacterial cell walls during division. PG hydrolases have been studied extensively in several bacillus species, such as Escherichia coli and Bacillus subtilis, but remain relatively uncharacterized in ovococcus species, such as Streptococcus pneumoniae (pneumococcus). In this work, we identified genes that encode proteins with putative PG hydrolytic domains in the genome of S. pneumoniae strain D39. Knockout mutations in these genes were constructed, and the resulting mutants were characterized in comparison with the parent strain for growth, cell morphology, PG peptide incorporation, and in some cases, PG peptide composition. In addition, we characterized deletion mutations in nonessential genes of unknown function in the WalRKSpn two-component system regulon, which also contains the essential pcsB cell division gene. Several mutants did not show overt phenotypes, which is perhaps indicative of redundancy. In contrast, two new mutants showed distinct defects in PG biosynthesis. One mutation was in a gene designated dacB (spd_0549), which we showed encodes an l,d-carboxypeptidase involved in PG maturation. Notably, dacB mutants, similar to dacA (d,d-carboxypeptidase) mutants, exhibited defects in cell shape and septation, consistent with the idea that the availability of PG peptide precursors is important for proper PG biosynthesis. Epistasis analysis indicated that DacA functions before DacB in d-Ala removal, and immunofluorescence microscopy showed that DacA and DacB are located over the entire surface of pneumococcal cells. The other mutation was in WalRKSpn regulon gene spd_0703, which encodes a putative membrane protein that may function as a type of conserved streptococcal shape, elongation, division, and sporulation (SEDS) protein. PMID:21378199

  15. Peptide mimics of the M13 coat protein transmembrane segment. Retention of helix-helix interaction motifs.

    PubMed

    Wang, C; Deber, C M

    2000-05-26

    Sequence-specific noncovalent helix-helix interactions between transmembrane (TM) segments in proteins are investigated by incorporating selected TM sequences into synthetic peptides using the construct CKKK-TM-KKK. The peptides are of suitable hydrophobicity for spontaneous membrane insertion, whereas formation of an N-terminal S-S bond can bring pairs of TM helices into proximity and promote their parallel orientation. Using the propensity of the protein to undergo thermally induced alpha-helix --> beta-sheet transitions as a parameter for helix stability, we compared the wild type and mutant (V29A and V31A) bacteriophage M13 coat proteins with their corresponding TM peptide constructs (M13 residues 24-42). Our results demonstrated that the relevant helix-helix tertiary contacts found in the intact proteins persist in the peptide mimics. Molecular dynamics simulations support the tight "two in-two out" dimerization motif for V31A consistent with mutagenesis data. The overall results reinforce the notion of TM segments as autonomous folding domains and suggest that the generic peptide construct provides a viable reductionist system for membrane protein structural and computational analysis.

  16. Escherichia coli ArgR mutants defective in cer/Xer recombination, but not in DNA binding.

    PubMed

    Sénéchal, Hélène; Delesques, Jérémy; Szatmari, George

    2010-04-01

    The Escherichia coli arginine repressor (ArgR) is an L-arginine-dependent DNA-binding protein that controls the expression of the arginine biosynthetic genes and is required as an accessory factor for Xer site-specific recombination at cer and related recombination sites in plasmids. We used the technique of pentapeptide scanning mutagenesis to isolate a series of ArgR mutants that were considerably reduced in cer recombination, but were still able to repress an argA::lacZ fusion. DNA sequence analysis showed that all of the mutants mapped to the same nucleotide, resulting in a five amino acid insertion between residues 149 and 150 of ArgR, corresponding to the end of the alpha6 helix. A truncated ArgR containing a stop codon at residue 150 displayed the same phenotype as the protein with the five amino acid insertion, and both mutants displayed sequence-specific DNA-binding activity that was L-arginine dependent. These results show that the C-terminus of ArgR is more important in cer/Xer site-specific recombination than in DNA binding.

  17. Melittin-MIL-2 fusion protein as a candidate for cancer immunotherapy.

    PubMed

    Liu, Mingjun; Wang, Haitao; Liu, Linjie; Wang, Bin; Sun, Guirong

    2016-06-01

    Cytokine fusion protein that modulates the immune response holds great potential for cancer immunotherapy. IL-2 is an effective treatment against advanced cancers. However, the therapeutic efficacy of IL-2 is limited by severe systemic toxicity. Several mutants recombinant IL-2 can increase antitumor activity and minimize systemic toxicity. Melittin is an attractive anticancer candidate because of its wide-spectrum lytic properties. We previously generated a bifunctional fusion protein melittin-MIL-2, composed of melittin and a mutant IL-2. The melittin-MIL-2 inhibited the growth of human ovarian cancer SKOV3 cells in vitro and in vivo tumor growth. However, whether this antitumor effect could also be used in cancer immunotherapy was unknown. To assess its cancer immunotherapy potential, we further investigated its more effective antitumor immune response and antitumor effect against cancers of different tissue origins in vitro and in vivo. The specific IL-2 activity of the melittin-MIL-2 fusion protein was tested on the cytokine growth dependent cell line CTLL-2. The cytolytic activity was detected by standard 4-h (51)Cr-release assays. PBMC stimulation in response to the melittin-MIL-2 was determined by IFN-γ release assay. We observed the cancer cell proliferation of different tissue origins by MTT assay. The ability of melittin-MIL-2 to inhibit tumor growth in vivo was evaluated by using human liver (SMMC-7721 cancer cells), lung (A549 cancer cells) and ovarian (SKOV3 cancer cells) cancer xenograft models. To assess the immunity within the tumor microenvironment, the level of some cytokines including IFN-γ, TNF-α, IL-12 and IL-4 was analyzed by ELISA. We injected the MDA-MB-231 cells and the melittin-MIL-2 into mice, and the anti-metastatic effect was examined by counting nodules in the lung. The melittin-MIL-2 was more effective in inducing T cell and NK-cell cytotoxicity. The fusion protein significantly increased IFN-γ production in PBMCs. In vitro, the

  18. Mutation of the dengue virus type 2 envelope protein heparan sulfate binding sites or the domain III lateral ridge blocks replication in Vero cells prior to membrane fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roehrig, John T., E-mail: jtr1@cdc.gov; Butrapet, Siritorn; Liss, Nathan M.

    Using an infectious cDNA clone we engineered seven mutations in the putative heparan sulfate- and receptor-binding motifs of the envelope protein of dengue virus serotype 2, strain 16681. Four mutant viruses, KK122/123EE, E202K, G304K, and KKK305/307/310EEE, were recovered following transfection of C6/36 cells. A fifth mutant, KK291/295EE, was recovered from C6/36 cells with a compensatory E295V mutation. All mutants grew in and mediated fusion of virus-infected C6/36 cells, but three of the mutants, KK122/123EE, E202K, G304K, did not grow in Vero cells without further modification. Two Vero cell lethal mutants, KK291/295EV and KKK307/307/310EEE, failed to replicate in DC-SIGN-transformed Raji cellsmore » and did not react with monoclonal antibodies known to block DENV attachment to Vero cells. Additionally, both mutants were unable to initiate negative-strand vRNA synthesis in Vero cells by 72 h post-infection, suggesting that the replication block occurred prior to virus-mediated membrane fusion. - Highlights: • Heparan sulfate- and receptor-binding motifs of DENV2 envelope protein were mutated. • Four mutant viruses were isolated—all could fuse C6/36 cells. • Two of these mutants were lethal in Vero cells without further modification. • Lethal mutations were KK291/295EV and KKK305/307/310EEE. • Cell attachment was implicated as the replication block for both mutants.« less

  19. SP-LL-37, human antimicrobial peptide, enhances disease resistance in transgenic rice.

    PubMed

    Lee, In Hye; Jung, Yu-Jin; Cho, Yong Gu; Nou, Ill Sup; Huq, Md Amdadul; Nogoy, Franz Marielle; Kang, Kwon-Kyoo

    2017-01-01

    Human LL-37 is a multifunctional antimicrobial peptide of cathelicidin family. It has been shown in recent studies that it can serve as a host's defense against influenza A virus. We now demonstrate in this study how signal peptide LL-37 (SP-LL-37) can be used in rice resistance against bacterial leaf blight and blast. We synthesized LL-37 peptide and subcloned in a recombinant pPZP vector with pGD1 as promoter. SP-LL-37 was introduced into rice plants by Agrobacterium mediated transformation. Stable expression of SP-LL-37 in transgenic rice plants was confirmed by RT-PCR and ELISA analyses. Subcellular localization of SP-LL-37-GFP fusion protein showed evidently in intercellular space. Our data on testing for resistance to bacterial leaf blight and blast revealed that the transgenic lines are highly resistant compared to its wildtype. Our results suggest that LL-37 can be further explored to improve wide-spectrum resistance to biotic stress in rice.

  20. Trastuzumab-binding peptide display by Tobacco mosaic virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolova, Olga Y.; Petrunia, Igor V.; Komarova, Tatiana V.

    2010-11-10

    Human epidermal growth factor receptor-2 (HER2/neu) is a target for the humanized monoclonal antibody trastuzumab. Recently, trastuzumab-binding peptides (TBP) of HER2/neu that inhibit proliferation of breast cancer cells were identified. We have now studied conditions of efficient assembly in vivo of Tobacco mosaic virus (TMV)-based particles displaying TBP on its surface. The system is based on an Agrobacterium-mediated co-delivery of binary vectors encoding TMV RNA and coat protein (CP) with TBP in its C-terminal extension into plant leaves. We show how the fusion of amino acid substituted TBP (sTBP) to CP via a flexible peptide linker can improve the manufacturabilitymore » of recombinant TMV (rTMV). We also reveal that rTMV particles with exposed sTBP retained trastuzumab-binding capacity but lost an anti-HER2/neu immunogenic scaffold function. Mouse antibodies against rTMV did not recognize HER2/neu on surface of human SK-BR-3 cells.« less

  1. Molecular drug targets in myeloproliferative neoplasms: mutant ABL1, JAK2, MPL, KIT, PDGFRA, PDGFRB and FGFR1

    PubMed Central

    Tefferi, Ayalew

    2009-01-01

    Abstract Therapeutically validated oncoproteins in myeloproliferative neoplasms (MPN) include BCR-ABL1 and rearranged PDGFR proteins. The latter are products of intra- (e.g. FIP1L1-PDGFRA) or inter-chromosomal (e.g.ETV6-PDGFRB) gene fusions. BCR-ABL1 is associated with chronic myelogenous leukaemia (CML) and mutant PDGFR with an MPN phenotype characterized by eosinophilia and in addition, in case of FIP1L1-PDGFRA, bone marrow mastocytosis. These genotype-phenotype associations have been effectively exploited in the development of highly accurate diagnostic assays and molecular targeted therapy. It is hoped that the same will happen in other MPN with specific genetic alterations: polycythemia vera (JAK2V617F and other JAK2 mutations), essential thrombocythemia (JAK2V617F and MPL515 mutations), primary myelofibrosis (JAK2V617F and MPL515 mutations), systemic mastocytosis (KITD816V and other KIT mutations) and stem cell leukaemia/lymphoma (ZNF198-FGFR1 and other FGFR1 fusion genes). The current review discusses the above-listed mutant molecules in the context of their value as drug targets. PMID:19175693

  2. Simultaneous prediction of binding free energy and specificity for PDZ domain-peptide interactions

    NASA Astrophysics Data System (ADS)

    Crivelli, Joseph J.; Lemmon, Gordon; Kaufmann, Kristian W.; Meiler, Jens

    2013-12-01

    Interactions between protein domains and linear peptides underlie many biological processes. Among these interactions, the recognition of C-terminal peptides by PDZ domains is one of the most ubiquitous. In this work, we present a mathematical model for PDZ domain-peptide interactions capable of predicting both affinity and specificity of binding based on X-ray crystal structures and comparative modeling with R osetta. We developed our mathematical model using a large phage display dataset describing binding specificity for a wild type PDZ domain and 91 single mutants, as well as binding affinity data for a wild type PDZ domain binding to 28 different peptides. Structural refinement was carried out through several R osetta protocols, the most accurate of which included flexible peptide docking and several iterations of side chain repacking and backbone minimization. Our findings emphasize the importance of backbone flexibility and the energetic contributions of side chain-side chain hydrogen bonds in accurately predicting interactions. We also determined that predicting PDZ domain-peptide interactions became increasingly challenging as the length of the peptide increased in the N-terminal direction. In the training dataset, predicted binding energies correlated with those derived through calorimetry and specificity switches introduced through single mutations at interface positions were recapitulated. In independent tests, our best performing protocol was capable of predicting dissociation constants well within one order of magnitude of the experimental values and specificity profiles at the level of accuracy of previous studies. To our knowledge, this approach represents the first integrated protocol for predicting both affinity and specificity for PDZ domain-peptide interactions.

  3. Structure and Mutagenesis of the Parainfluenza Virus 5 Hemagglutinin-Neuraminidase Stalk Domain Reveals a Four-Helix Bundle and the Role of the Stalk in Fusion Promotion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, Sayantan; Welch, Brett D.; Kors, Christopher A.

    2014-10-02

    Paramyxovirus entry into cells requires the fusion protein (F) and a receptor binding protein (hemagglutinin-neuraminidase [HN], H, or G). The multifunctional HN protein of some paramyxoviruses, besides functioning as the receptor (sialic acid) binding protein (hemagglutinin activity) and the receptor-destroying protein (neuraminidase activity), enhances F activity, presumably by lowering the activation energy required for F to mediate fusion of viral and cellular membranes. Before or upon receptor binding by the HN globular head, F is believed to interact with the HN stalk. Unfortunately, until recently none of the receptor binding protein crystal structures have shown electron density for the stalkmore » domain. Parainfluenza virus 5 (PIV5) HN exists as a noncovalent dimer-of-dimers on the surface of cells, linked by a single disulfide bond in the stalk. Here we present the crystal structure of the PIV5-HN stalk domain at a resolution of 2.65 {angstrom}, revealing a four-helix bundle (4HB) with an upper (N-terminal) straight region and a lower (C-terminal) supercoiled part. The hydrophobic core residues are a mix of an 11-mer repeat and a 3- to 4-heptad repeat. To functionally characterize the role of the HN stalk in F interactions and fusion, we designed mutants along the PIV5-HN stalk that are N-glycosylated to physically disrupt F-HN interactions. By extensive study of receptor binding, neuraminidase activity, oligomerization, and fusion-promoting functions of the mutant proteins, we found a correlation between the position of the N-glycosylation mutants on the stalk structure and their neuraminidase activities as well as their abilities to promote fusion.« less

  4. Structure and Mutagenesis of the Parainfluenza Virus 5 Hemagglutinin-Neuraminidase Stalk Domain Reveals a Four-Helix Bundle and the Role of the Stalk in Fusion Promotion▿

    PubMed Central

    Bose, Sayantan; Welch, Brett D.; Kors, Christopher A.; Yuan, Ping; Jardetzky, Theodore S.; Lamb, Robert A.

    2011-01-01

    Paramyxovirus entry into cells requires the fusion protein (F) and a receptor binding protein (hemagglutinin-neuraminidase [HN], H, or G). The multifunctional HN protein of some paramyxoviruses, besides functioning as the receptor (sialic acid) binding protein (hemagglutinin activity) and the receptor-destroying protein (neuraminidase activity), enhances F activity, presumably by lowering the activation energy required for F to mediate fusion of viral and cellular membranes. Before or upon receptor binding by the HN globular head, F is believed to interact with the HN stalk. Unfortunately, until recently none of the receptor binding protein crystal structures have shown electron density for the stalk domain. Parainfluenza virus 5 (PIV5) HN exists as a noncovalent dimer-of-dimers on the surface of cells, linked by a single disulfide bond in the stalk. Here we present the crystal structure of the PIV5-HN stalk domain at a resolution of 2.65 Å, revealing a four-helix bundle (4HB) with an upper (N-terminal) straight region and a lower (C-terminal) supercoiled part. The hydrophobic core residues are a mix of an 11-mer repeat and a 3- to 4-heptad repeat. To functionally characterize the role of the HN stalk in F interactions and fusion, we designed mutants along the PIV5-HN stalk that are N-glycosylated to physically disrupt F-HN interactions. By extensive study of receptor binding, neuraminidase activity, oligomerization, and fusion-promoting functions of the mutant proteins, we found a correlation between the position of the N-glycosylation mutants on the stalk structure and their neuraminidase activities as well as their abilities to promote fusion. PMID:21994464

  5. Regulation of N-formyl peptide-mediated degranulation by receptor phosphorylation.

    PubMed

    Vines, Charlotte M; Xue, Mei; Maestas, Diane C; Cimino, Daniel F; Prossnitz, Eric R

    2002-12-15

    One of the major functions of the N-formyl peptide receptor (FPR) is to mediate leukocyte degranulation. Phosphorylation of the C-terminal domain of the FPR is required for receptor internalization and desensitization. Although arrestins mediate phosphorylation-dependent desensitization, internalization, and initiation of novel signaling cascades for a number of G protein-coupled receptors, their roles in FPR regulation and signaling remain unclear. CXCR1-mediated degranulation of RBL-2H3 cells is promoted by arrestin binding. To determine whether receptor phosphorylation or arrestin binding is required to promote FPR-mediated degranulation, we used RBL-2H3 cells stably transfected with either the wild-type FPR or a mutant form, DeltaST, which is incapable of undergoing ligand-stimulated phosphorylation. We observed that stimulation of wild-type FPR resulted in very low levels of degranulation compared with that mediated by cross-linking of the Fc(epsilon)RI receptor. Stimulation of the DeltaST mutant, however, resulted in levels of degranulation comparable to those of the Fc(epsilon)RI receptor, demonstrating that neither receptor phosphorylation nor arrestin binding was necessary to initiate FPR-mediated degranulation. Degranulation initiated by the DeltaST mutant was proportional to the level of active cell surface receptor, suggesting that either receptor internalization or desensitization may be responsible for terminating degranulation of the wild-type FPR. To distinguish between these possibilities, we used a partially phosphorylation-deficient mutant of the FPR that can undergo internalization, but not desensitization. Degranulation by this mutant FPR was indistinguishable from that of the DeltaST mutant, indicating that FPR phosphorylation or binding of arrestin but not internalization terminates the degranulation response.

  6. Revisiting PC1/3 Mutants: Dominant-Negative Effect of Endoplasmic Reticulum-Retained Mutants.

    PubMed

    Blanco, Elias H; Ramos-Molina, Bruno; Lindberg, Iris

    2015-10-01

    Prohormone convertase 1/3 (PC1/3), encoded by the gene PCSK1, is critical for peptide hormone synthesis. An increasing number of studies have shown that inactivating mutations in PCSK1 are correlated with endocrine pathologies ranging from intestinal dysfunction to morbid obesity, whereas the common nonsynonymous polymorphisms rs6232 (N221D) and rs6234-rs6235 (Q665E-S690T) are highly associated with obesity risk. In this report, we revisited the biochemical and cellular properties of PC1/3 variants in the context of a wild-type PC1/3 background instead of the S357G hypermorph background used for all previous studies. In the wild-type background the PC1/3 N221D variant exhibited 30% lower enzymatic activity in a fluorogenic assay than wild-type PC1/3; this inhibition was greater than that detected in an equivalent experiment using the PC1/3 S357G background. A PC1/3 variant with the linked carboxyl-terminal polymorphisms Q665E-S690T did not show this difference. We also analyzed the biochemical properties of 2 PC1/3 mutants, G209R and G593R, which are retained in the endoplasmic reticulum (ER), and studied their effects on wild-type PC1/3. The expression of ER-retained mutants induced ER stress markers and also resulted in dominant-negative blockade of wild-type PC1/3 prodomain cleavage and decreased expression of wild-type PC1/3, suggesting facilitation of the entry of wild-type protein to a degradative proteasomal pathway. Dominant-negative effects of PC1/3 mutations on the expression and maturation of wild-type protein, with consequential effects on PC1/3 availability, add a new element which must be considered in population and clinical studies of this gene.

  7. Bactericidal activity of tracheal antimicrobial peptide against respiratory pathogens of cattle.

    PubMed

    Taha-Abdelaziz, Khaled; Perez-Casal, José; Schott, Courtney; Hsiao, Jason; Attah-Poku, Samuel; Slavić, Durđa; Caswell, Jeff L

    2013-04-15

    Tracheal antimicrobial peptide (TAP) is a β-defensin produced by mucosal epithelial cells of cattle. Although effective against several human pathogens, the activity of this bovine peptide against the bacterial pathogens that cause bovine respiratory disease have not been reported. This study compared the antibacterial effects of synthetic TAP against Mannheimia haemolytica, Histophilus somni, Pasteurella multocida, and Mycoplasma bovis. Bactericidal activity against M. bovis was not detected. In contrast, the Pasteurellaceae bacteria showed similar levels of susceptibility to that of Escherichia coli, with 0.125μg TAP inhibiting growth in a radial diffusion assay and minimum inhibitory concentrations of 1.56-6.25μg/ml in a bactericidal assay. Significant differences among isolates were not observed. Sequencing of exon 2 of the TAP gene from 23 cattle revealed a prevalent non-synonymous single nucleotide polymorphism (SNP) A137G, encoding either serine or asparagine at residue 20 of the mature peptide. The functional effect of this SNP was tested against M. haemolytica using synthetic peptides. The bactericidal effect of the asparagine-containing peptide was consistently higher than the serine-containing peptide. Bactericidal activities were similar for an acapsular mutant of M. haemolytica compared to the wild type. These findings indicate that the Pasteurellaceae bacteria that cause bovine respiratory disease are susceptible to killing by bovine TAP and appear not to have evolved resistance, whereas M. bovis appears to be resistant. A non-synonymous SNP was identified in the coding region of the TAP gene, and the corresponding peptides vary in their bactericidal activity against M. haemolytica. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Lactoferricin B causes depolarization of the cytoplasmic membrane of Escherichia coli ATCC 25922 and fusion of negatively charged liposomes.

    PubMed

    Ulvatne, H; Haukland, H H; Olsvik, O; Vorland, L H

    2001-03-09

    Antimicrobial peptides have been extensively studied in order to elucidate their mode of action. Most of these peptides have been shown to exert a bactericidal effect on the cytoplasmic membrane of bacteria. Lactoferricin is an antimicrobial peptide with a net positive charge and an amphipatic structure. In this study we examine the effect of bovine lactoferricin (lactoferricin B; Lfcin B) on bacterial membranes. We show that Lfcin B neither lyses bacteria, nor causes a major leakage from liposomes. Lfcin B depolarizes the membrane of susceptible bacteria, and induces fusion of negatively charged liposomes. Hence, Lfcin B may have additional targets responsible for the antibacterial effect.

  9. Arrest of trans-SNARE zippering uncovers loosely and tightly docked intermediates in membrane fusion.

    PubMed

    Yavuz, Halenur; Kattan, Iman; Hernandez, Javier Matias; Hofnagel, Oliver; Witkowska, Agata; Raunser, Stefan; Walla, Peter Jomo; Jahn, Reinhard

    2018-04-17

    Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins mediate intracellular membrane fusion in the secretory pathway. They contain conserved regions, termed SNARE motifs, that assemble between opposing membranes directionally from their N-termini to their membrane-proximal C-termini in a highly exergonic reaction. However, how this energy is utilized to overcome the energy barriers along the fusion pathway is still under debate. Here we have used mutants of the SNARE synaptobrevin to arrest trans-SNARE zippering at defined stages. We have uncovered two distinct vesicle docking intermediates, where the membranes are loosely and tightly connected, respectively. The tightly connected state is irreversible and independent of maintaining assembled SNARE complexes. Together, our results shed new light on the intermediate stages along the pathway of membrane fusion. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Fluorescence Detection of KRAS2 mRNA Hybridization in Lung Cancer Cells with PNA-Peptides Containing an Internal Thiazole Orange

    PubMed Central

    2015-01-01

    We previously developed reporter-peptide nucleic acid (PNA)-peptides for sequence-specific radioimaging and fluorescence imaging of particular mRNAs in cells and tumors. However, a direct test for PNA-peptide hybridization with RNA in the cytoplasm would be desirable. Thiazole orange (TO) dye at the 5′ end of a hybridization agent shows a strong increase in fluorescence quantum yield when stacked upon a 5′ terminal base pair, in solution and in cells. We hypothesized that hybridization agents with an internal TO could distinguish a single base mutation in RNA. Thus, we designed KRAS2 PNA-IGF1 tetrapeptide agents with an internal TO adjacent to the middle base of the 12th codon, a frequent site of cancer-initiating mutations. Our molecular dynamics calculations predicted a disordered bulge with weaker hybridization resulting from a single RNA mismatch. We observed that single-stranded PNA-IGF1 tetrapeptide agents with an internal TO showed low fluorescence, but fluorescence escalated 5–6-fold upon hybridization with KRAS2 RNA. Circular dichroism melting curves showed ∼10 °C higher Tm for fully complementary vs single base mismatch TO-PNA-peptide agent duplexes with KRAS2 RNA. Fluorescence measurements of treated human lung cancer cells similarly showed elevated cytoplasmic fluorescence intensity with fully complementary vs single base mismatch agents. Sequence-specific elevation of internal TO fluorescence is consistent with our hypothesis of detecting cytoplasmic PNA-peptide:RNA hybridization if a mutant agent encounters the corresponding mutant mRNA. PMID:25180641

  11. Binding affinity of pro-apoptotic BH3 peptides for the anti-apoptotic Mcl-1 and A1 proteins: Molecular dynamics simulations of Mcl-1 and A1 in complex with six different BH3 peptides.

    PubMed

    Modi, Vivek; Sankararamakrishnan, Ramasubbu

    2017-05-01

    The anti-apoptotic members of Bcl-2 family of proteins bind to their pro-apoptotic counterparts to induce or prevent cell death.Based on the distinct binding profiles for specific pro-apoptotic BH3 peptides, the anti-apoptotic Bcl-2 proteins can be divided into at least two subclasses. The subclass that includes Bcl-X L binds strongly to Bad BH3 peptide while it has weak binding affinity for the second subclass of Bcl-2 proteins such as Mcl-1 and A1. Anti-apoptotic Bcl-2 proteins are considered to be attractive drug targets for anti-cancer drugs. BH3-mimetic inhibitors such as ABT-737 have been shown to be specific to Bcl-X L subclass while Mcl-1 and A1 show resistance to the same drug. An efficacious inhibitor should target all the anti-apoptotic Bcl-2 proteins. Hence, development of inhibitors selective to Mcl-1 and A1 is of prime importance for targeted cancer therapeutics. The first step to achieve this goal is to understand the molecular basis of high binding affinities of specific pro-apoptotic BH3 peptides for Mcl-1 and A1. To understand the interactions between the BH3 peptides and Mcl-1/A1, we performed multi-nanosecond molecular dynamics (MD) simulations of six complex structures of Mcl-1 and A1. With the exception of Bad, all complex structures were experimentally determined. Bad complex structures were modeled. Our simulation studies identified specific pattern of polar interactions between Mcl-1/A1 and high-affinity binding BH3 peptides. The lack of such polar interactions in Bad peptide complex is attributed to specific basic residues present before and after the highly conserved Leu residue. The close approach of basic residues in Bad and Mcl-1/A1 is hypothesized to be the cause of weak binding affinity. To test this hypothesis, we generated in silico mutants of these basic residues in Bad peptide and Mcl-1/A1 proteins. MD simulations of the mutant systems established the pattern of stable polar interactions observed in high-affinity binding BH3

  12. A novel cysteine-rich antifungal peptide ToAMP4 from Taraxacum officinale Wigg. flowers.

    PubMed

    Astafieva, A A; Rogozhin, Eugene A; Andreev, Yaroslav A; Odintsova, T I; Kozlov, S A; Grishin, Eugene V; Egorov, Tsezi A

    2013-09-01

    A novel peptide named ToAMP4 was isolated from Taraxacum officinale Wigg. flowers by a combination of acetic acid extraction and different types of chromatography: affinity, size-exclusion, and RP-HPLC. The amino acid sequence of ToAMP4 was determined by automated Edman degradation. The peptide is basic, consists of 41 amino acids, and incorporates three disulphide bonds. Due to the unusual cysteine spacing pattern, ToAMP4 does not belong to any known plant AMP family, but classifies together with two other antimicrobial peptides ToAMP1 and ToAMP2 previously isolated from the dandelion flowers. To study the biological activity of ToAMP4, it was successfully produced in a prokaryotic expression system as a fusion protein with thioredoxin. The recombinant peptide was shown to be identical to the native ToAMP4 by chromatographic behavior, molecular mass, and N-terminal amino acid sequence. The peptide displays broad-spectrum antifungal activity against important phytopathogens. Two ToAMP4-mediated inhibition strategies depending on the fungus were demonstrated. The results obtained add to our knowledge on the structural and functional diversity of AMPs in plants. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. Enfuvirtide (T20)-Based Lipopeptide Is a Potent HIV-1 Cell Fusion Inhibitor: Implications for Viral Entry and Inhibition.

    PubMed

    Ding, Xiaohui; Zhang, Xiujuan; Chong, Huihui; Zhu, Yuanmei; Wei, Huamian; Wu, Xiyuan; He, Jinsheng; Wang, Xinquan; He, Yuxian

    2017-09-15

    The peptide drug enfuvirtide (T20) is the only viral fusion inhibitor used in combination therapy for HIV-1 infection, but it has relatively low antiviral activity and easily induces drug resistance. Emerging studies demonstrate that lipopeptide-based fusion inhibitors, such as LP-11 and LP-19, which mainly target the gp41 pocket site, have greatly improved antiviral potency and in vivo stability. In this study, we focused on developing a T20-based lipopeptide inhibitor that lacks pocket-binding sequence and targets a different site. First, the C-terminal tryptophan-rich motif (TRM) of T20 was verified to be essential for its target binding and inhibition; then, a novel lipopeptide, termed LP-40, was created by replacing the TRM with a fatty acid group. LP-40 showed markedly enhanced binding affinity for the target site and dramatically increased inhibitory activity on HIV-1 membrane fusion, entry, and infection. Unlike LP-11 and LP-19, which required a flexible linker between the peptide sequence and the lipid moiety, addition of a linker to LP-40 sharply reduced its potency, implying different binding modes with the extended N-terminal helices of gp41. Also, interestingly, LP-40 showed more potent activity than LP-11 in inhibiting HIV-1 Env-mediated cell-cell fusion while it was less active than LP-11 in inhibiting pseudovirus entry, and the two inhibitors displayed synergistic antiviral effects. The crystal structure of LP-40 in complex with a target peptide revealed their key binding residues and motifs. Combined, our studies have not only provided a potent HIV-1 fusion inhibitor, but also revealed new insights into the mechanisms of viral inhibition. IMPORTANCE T20 is the only membrane fusion inhibitor available for treatment of viral infection; however, T20 requires high doses and has a low genetic barrier for resistance, and its inhibitory mechanism and structural basis remain unclear. Here, we report the design of LP-40, a T20-based lipopeptide inhibitor

  14. Expression and characterization of hydrophobin HGFI fused with the cell-specific peptide TPS in Pichia pastoris.

    PubMed

    Niu, Baolong; Huang, Yujian; Zhang, Suai; Wang, Dandan; Xu, Haijin; Kong, Deling; Qiao, Mingqiang

    2012-05-01

    The cell-specific peptide TPS (TPSLEQRTVYAK) has been proposed as a potential candidate for fabricating tissue engineering scaffolds based on its ability of binding to human endothelial progenitor cells (EPC) with high affinity and specificity. In this study, the class I hydrophobin hgfI gene from Grifola frondosa and the tps were fused and cloned into pPIC9. The fusion gene was expressed in Pichia pastoris under the control of alcohol oxidase 1 promoter. Tricine-SDS-PAGE and Western blotting confirmed that the fusion protein TPS-linker-HGFI (TLH) was successfully secreted into the culture medium. The fusion protein TLH was purified by ultrafiltration and reverse-phase high performance liquid chromatography (RP-HPLC). Water contact angle (WCA) demonstrated that similar to recombinant HGFI (rHGFI), the purified TLH could convert the surface wettability of polystyrene and mica. X-ray photoelectron spectroscopy (XPS) measurements indicated that the purified TLH could form stable films on the hydrophobic siliconized glass surface. The cell adhesion examination showed that the TLH modified poly(ε-caprolactone) (PCL) could specially facilitate the EPC (particularly EPC derived from human) binding, while rHGFI modified PCL could nonselectively enhance cells adhesion. To the best of our knowledge, this is the first report that demonstrates that the TPS peptide was immobilized on biomaterial-PCL surface by fusion with hydrophobin. The potential application of this finding in combination with biomedical devices for EPC culture, will facilitate the current techniques used for cell-based therapies. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Calcium release through P2X4 activates calmodulin to promote endolysosomal membrane fusion.

    PubMed

    Cao, Qi; Zhong, Xi Zoë; Zou, Yuanjie; Murrell-Lagnado, Ruth; Zhu, Michael X; Dong, Xian-Ping

    2015-06-22

    Intra-endolysosomal Ca(2+) release is required for endolysosomal membrane fusion with intracellular organelles. However, the molecular mechanisms for intra-endolysosomal Ca(2+) release and the downstream Ca(2+) targets involved in the fusion remain elusive. Previously, we demonstrated that endolysosomal P2X4 forms channels activated by luminal adenosine triphosphate in a pH-dependent manner. In this paper, we show that overexpression of P2X4, as well as increasing endolysosomal P2X4 activity by alkalinization of endolysosome lumen, promoted vacuole enlargement in cells and endolysosome fusion in a cell-free assay. These effects were prevented by inhibiting P2X4, expressing a dominant-negative P2X4 mutant, and disrupting the P2X4 gene. We further show that P2X4 and calmodulin (CaM) form a complex at endolysosomal membrane where P2X4 activation recruits CaM to promote fusion and vacuolation in a Ca(2+)-dependent fashion. Moreover, P2X4 activation-triggered fusion and vacuolation were suppressed by inhibiting CaM. Our data thus suggest a new molecular mechanism for endolysosomal membrane fusion involving P2X4-mediated endolysosomal Ca(2+) release and subsequent CaM activation. © 2015 Cao et al.

  16. Calcium release through P2X4 activates calmodulin to promote endolysosomal membrane fusion

    PubMed Central

    Cao, Qi; Zhong, Xi Zoë; Zou, Yuanjie; Murrell-Lagnado, Ruth; Zhu, Michael X.

    2015-01-01

    Intra-endolysosomal Ca2+ release is required for endolysosomal membrane fusion with intracellular organelles. However, the molecular mechanisms for intra-endolysosomal Ca2+ release and the downstream Ca2+ targets involved in the fusion remain elusive. Previously, we demonstrated that endolysosomal P2X4 forms channels activated by luminal adenosine triphosphate in a pH-dependent manner. In this paper, we show that overexpression of P2X4, as well as increasing endolysosomal P2X4 activity by alkalinization of endolysosome lumen, promoted vacuole enlargement in cells and endolysosome fusion in a cell-free assay. These effects were prevented by inhibiting P2X4, expressing a dominant-negative P2X4 mutant, and disrupting the P2X4 gene. We further show that P2X4 and calmodulin (CaM) form a complex at endolysosomal membrane where P2X4 activation recruits CaM to promote fusion and vacuolation in a Ca2+-dependent fashion. Moreover, P2X4 activation-triggered fusion and vacuolation were suppressed by inhibiting CaM. Our data thus suggest a new molecular mechanism for endolysosomal membrane fusion involving P2X4-mediated endolysosomal Ca2+ release and subsequent CaM activation. PMID:26101220

  17. Empirical Estimation of Local Dielectric Constants: Toward Atomistic Design of Collagen Mimetic Peptides

    PubMed Central

    Pike, Douglas H.; Nanda, Vikas

    2017-01-01

    One of the key challenges in modeling protein energetics is the treatment of solvent interactions. This is particularly important in the case of peptides, where much of the molecule is highly exposed to solvent due to its small size. In this study, we develop an empirical method for estimating the local dielectric constant based on an additive model of atomic polarizabilities. Calculated values match reported apparent dielectric constants for a series of Staphylococcus aureus nuclease mutants. Calculated constants are used to determine screening effects on Coulombic interactions and to determine solvation contributions based on a modified Generalized Born model. These terms are incorporated into the protein modeling platform protCAD, and benchmarked on a data set of collagen mimetic peptides for which experimentally determined stabilities are available. Computing local dielectric constants using atomistic protein models and the assumption of additive atomic polarizabilities is a rapid and potentially useful method for improving electrostatics and solvation calculations that can be applied in the computational design of peptides. PMID:25784456

  18. Genetic Characterization of Escherichia coli Type 1 Pilus Adhesin Mutants and Identification of a Novel Binding Phenotype

    PubMed Central

    Hamrick, Terri S.; Harris, Sandra L.; Spears, Patricia A.; Havell, Edward A.; Horton, John R.; Russell, Perry W.; Orndorff, Paul E.

    2000-01-01

    Five Escherichia coli type 1 pilus mutants that had point mutations in fimH, the gene encoding the type 1 pilus adhesin FimH, were characterized. FimH is a minor component of type 1 pili that is required for the pili to bind and agglutinate guinea pig erythrocytes in a mannose-inhibitable manner. Point mutations were located by DNA sequencing and deletion mapping. All mutations mapped within the signal sequence or in the first 28% of the predicted mature protein. All mutations were missense mutations except for one, a frameshift lesion that was predicted to cause the loss of approximately 60% of the mature FimH protein. Bacterial agglutination tests with polyclonal antiserum raised to a LacZ-FimH fusion protein failed to confirm that parental amounts of FimH cross-reacting material were expressed in four of the five mutants. The remaining mutant, a temperature-sensitive (ts) fimH mutant that agglutinated guinea pig erythrocytes after growth at 31°C but not at 42°C, reacted with antiserum at both temperatures in a manner similar to the parent. Consequently, this mutant was chosen for further study. Temperature shift experiments revealed that new FimH biosynthesis was required for the phenotypic change. Guinea pig erythrocyte and mouse macrophage binding experiments using the ts mutant grown at the restrictive and permissive temperatures revealed that whereas erythrocyte binding was reduced to a level comparable to that of a fimH insertion mutant at the restrictive temperature, mouse peritoneal macrophages were bound with parental efficiency at both the permissive and restrictive temperatures. Also, macrophage binding by the ts mutant was insensitive to mannose inhibition after growth at 42°C but sensitive after growth at 31°C. The ts mutant thus binds macrophages with one receptor specificity at 31°C and another at 42°C. PMID:10869080

  19. Atypical Signaling and Functional Desensitization Response of MAS Receptor to Peptide Ligands

    PubMed Central

    Tirupula, Kalyan C.; Desnoyer, Russell; Speth, Robert C.; Karnik, Sadashiva S.

    2014-01-01

    MAS is a G protein-coupled receptor (GPCR) implicated in multiple physiological processes. Several physiological peptide ligands such as angiotensin-(1–7), angiotensin fragments and neuropeptide FF (NPFF) are reported to act on MAS. Studies of conventional G protein signaling and receptor desensitization upon stimulation of MAS with the peptide ligands are limited so far. Therefore, we systematically analyzed G protein signals activated by the peptide ligands. MAS-selective non-peptide ligands that were previously shown to activate G proteins were used as controls for comparison on a common cell based assay platform. Activation of MAS by the non-peptide agonist (1) increased intracellular calcium and D-myo-inositol-1-phosphate (IP1) levels which are indicative of the activation of classical Gαq-phospholipase C signaling pathways, (2) decreased Gαi mediated cAMP levels and (3) stimulated Gα12-dependent expression of luciferase reporter. In all these assays, MAS exhibited strong constitutive activity that was inhibited by the non-peptide inverse agonist. Further, in the calcium response assay, MAS was resistant to stimulation by a second dose of the non-peptide agonist after the first activation has waned suggesting functional desensitization. In contrast, activation of MAS by the peptide ligand NPFF initiated a rapid rise in intracellular calcium with very weak IP1 accumulation which is unlike classical Gαq-phospholipase C signaling pathway. NPFF only weakly stimulated MAS-mediated activation of Gα12 and Gαi signaling pathways. Furthermore, unlike non-peptide agonist-activated MAS, NPFF-activated MAS could be readily re-stimulated the second time by the agonists. Functional assays with key ligand binding MAS mutants suggest that NPFF and non-peptide ligands bind to overlapping regions. Angiotensin-(1–7) and other angiotensin fragments weakly potentiated an NPFF-like calcium response at non-physiological concentrations (≥100 µM). Overall, our data

  20. Impaired Cleavage of Preproinsulin Signal Peptide Linked to Autosomal-Dominant Diabetes

    PubMed Central

    Liu, Ming; Lara-Lemus, Roberto; Shan, Shu-ou; Wright, Jordan; Haataja, Leena; Barbetti, Fabrizio; Guo, Huan; Larkin, Dennis; Arvan, Peter

    2012-01-01

    Recently, missense mutations upstream of preproinsulin’s signal peptide (SP) cleavage site were reported to cause mutant INS gene-induced diabetes of youth (MIDY). Our objective was to understand the molecular pathogenesis using metabolic labeling and assays of proinsulin export and insulin and C-peptide production to examine the earliest events of insulin biosynthesis, highlighting molecular mechanisms underlying β-cell failure plus a novel strategy that might ameliorate the MIDY syndrome. We find that whereas preproinsulin-A(SP23)S is efficiently cleaved, producing authentic proinsulin and insulin, preproinsulin-A(SP24)D is inefficiently cleaved at an improper site, producing two subpopulations of molecules. Both show impaired oxidative folding and are retained in the endoplasmic reticulum (ER). Preproinsulin-A(SP24)D also blocks ER exit of coexpressed wild-type proinsulin, accounting for its dominant-negative behavior. Upon increased expression of ER–oxidoreductin-1, preproinsulin-A(SP24)D remains blocked but oxidative folding of wild-type proinsulin improves, accelerating its ER export and increasing wild-type insulin production. We conclude that the efficiency of SP cleavage is linked to the oxidation of (pre)proinsulin. In turn, impaired (pre)proinsulin oxidation affects ER export of the mutant as well as that of coexpressed wild-type proinsulin. Improving oxidative folding of wild-type proinsulin may provide a feasible way to rescue insulin production in patients with MIDY. PMID:22357960

  1. Bradyrhizobium japonicum mutants with enhanced sensitivity to genistein resulting in altered nod gene regulation.

    PubMed

    Ip, H; D'Aoust, F; Begum, A A; Zhang, H; Smith, D L; Driscoll, B T; Charles, T C

    2001-12-01

    Bradyrhizobium japonicum mutants with altered nod gene induction characteristics were isolated by screening mutants for genistein-independent nod gene expression. Plasmid pZB32, carrying a nodY::lacZ transcriptional gene fusion, was introduced into B. japonicum cells that had been subjected to UV mutagenesis. Ten independent transformants producing a blue color on plates containing 5bromo-4chloro-3indolyl-beta-D-galactopyranoside but lacking genistein, indicative of constitutive expression of the nodY::lacZ reporter gene, were isolated. Beta-galactosidase activity assays revealed that while all of the 10 strains were sensitive to low concentrations of genistein, none exhibited truly constitutive nodY::lacZ expression in liquid culture. Soybean plants inoculated with three of the mutants were chlorotic and stunted, with shoot dry weights close to those of the uninoculated plants, indicating the absence of nitrogen fixation. Differences in the kinetics of nodY::lacZ expression and lipochitin oligosaccharide Nod signal production suggested that the strains carried different mutations. Some of these strains may be useful in mitigating the low root zone temperature-associated delay in soybean nodulation at the northern extent of soybean cultivation.

  2. Insights into the Functions of M-T Hook Structure in HIV Fusion Inhibitor Using Molecular Modeling.

    PubMed

    Tan, Jianjun; Yuan, Hongling; Li, Chunhua; Zhang, Xiaoyi; Wang, Cunxin

    2016-04-01

    HIV-1 membrane fusion plays an important role in the process that HIV-1 entries host cells. As a treatment strategy targeting HIV-1 entry process, fusion inhibitors have been proposed. Nevertheless, development of a short peptide possessing high anti-HIV potency is considered a daunting challenge. He et al. found that two residues, Met626 and Thr627, located the upstream of the C-terminal heptad repeat of the gp41, formed a unique hook-like structure (M-T hook) that can dramatically improve the binding stability and anti-HIV activity of the inhibitors. In this work, we explored the molecular mechanism why M-T hook structure could improve the anti-HIV activity of inhibitors. Firstly, molecular dynamic simulation was used to obtain information on the time evolution between gp41 and ligands. Secondly, based on the simulations, molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and molecular mechanics Generalized Born surface area (MM-GBSA) methods were used to calculate the binding free energies. The binding free energy of the ligand with M-T hook was considerably higher than the other without M-T. Further studies showed that the hydrophobic interactions made the dominant contribution to the binding free energy. The numbers of Hydrogen bonds between gp41 and the ligand with M-T hook structure were more than the other. These findings should provide insights into the inhibition mechanism of the short peptide fusion inhibitors and be useful for the rational design of novel fusion inhibitors in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Two M-T hook residues greatly improve the antiviral activity and resistance profile of the HIV-1 fusion inhibitor SC29EK

    PubMed Central

    2014-01-01

    Background Peptides derived from the C-terminal heptad repeat (CHR) of HIV-1 gp41 such as T20 (Enfuvirtide) and C34 are potent viral fusion inhibitors. We have recently found that two N-terminal residues (Met115 and Thr116) of CHR peptides form a unique M-T hook structure that can greatly enhance the binding and anti-HIV activity of inhibitors. Here, we applied two M-T hook residues to optimize SC29EK, an electrostatically constrained peptide inhibitor with a potent anti-HIV activity. Results The resulting peptide MT-SC29EK showed a dramatically increased binding affinity and could block the six-helical bundle (6-HB) formation more efficiently. As expected, MT-SC29EK potently inhibited HIV-1 entry and infection, especially against those T20- and SC29EK-resistant HIV-1 variants. More importantly, MT-SC29EK and its short form (MT-SC22EK) suffered from the difficulty to induce HIV-1 resistance during the in vitro selection, suggesting their high genetic barriers to the development of resistance. Conclusions Our studies have verified the M-T hook structure as a vital strategy to design novel HIV-1 fusion inhibitors and offered an ideal candidate for clinical development. PMID:24884671

  4. A vocabulary of ancient peptides at the origin of folded proteins

    PubMed Central

    Alva, Vikram; Söding, Johannes; Lupas, Andrei N

    2015-01-01

    The seemingly limitless diversity of proteins in nature arose from only a few thousand domain prototypes, but the origin of these themselves has remained unclear. We are pursuing the hypothesis that they arose by fusion and accretion from an ancestral set of peptides active as co-factors in RNA-dependent replication and catalysis. Should this be true, contemporary domains may still contain vestiges of such peptides, which could be reconstructed by a comparative approach in the same way in which ancient vocabularies have been reconstructed by the comparative study of modern languages. To test this, we compared domains representative of known folds and identified 40 fragments whose similarity is indicative of common descent, yet which occur in domains currently not thought to be homologous. These fragments are widespread in the most ancient folds and enriched for iron-sulfur- and nucleic acid-binding. We propose that they represent the observable remnants of a primordial RNA-peptide world. DOI: http://dx.doi.org/10.7554/eLife.09410.001 PMID:26653858

  5. The Analysis of Pendolino (peo) Mutants Reveals Differences in the Fusigenic Potential among Drosophila Telomeres

    PubMed Central

    Marzullo, Marta; Raffa, Grazia D.; Morciano, Patrizia; Raimondo, Domenico; Burla, Romina; Saggio, Isabella; Gatti, Maurizio

    2015-01-01

    Drosophila telomeres are sequence-independent structures that are maintained by transposition to chromosome ends of three specialized retroelements (HeT-A, TART and TAHRE; collectively designated as HTT) rather than telomerase activity. Fly telomeres are protected by the terminin complex (HOAP-HipHop-Moi-Ver) that localizes and functions exclusively at telomeres and by non-terminin proteins that do not serve telomere-specific functions. Although all Drosophila telomeres terminate with HTT arrays and are capped by terminin, they differ in the type of subtelomeric chromatin; the Y, XR, and 4L HTT are juxtaposed to constitutive heterochromatin, while the XL, 2L, 2R, 3L and 3R HTT are linked to the TAS repetitive sequences; the 4R HTT is associated with a chromatin that has features common to both euchromatin and heterochromatin. Here we show that mutations in pendolino (peo) cause telomeric fusions (TFs). The analysis of several peo mutant combinations showed that these TFs preferentially involve the Y, XR and 4th chromosome telomeres, a TF pattern never observed in the other 10 telomere-capping mutants so far characterized. peo encodes a non-terminin protein homologous to the E2 variant ubiquitin-conjugating enzymes. The Peo protein directly interacts with the terminin components, but peo mutations do not affect telomeric localization of HOAP, Moi, Ver and HP1a, suggesting that the peo-dependent telomere fusion phenotype is not due to loss of terminin from chromosome ends. peo mutants are also defective in DNA replication and PCNA recruitment. However, our results suggest that general defects in DNA replication are unable to induce TFs in Drosophila cells. We thus hypothesize that DNA replication in Peo-depleted cells results in specific fusigenic lesions concentrated in heterochromatin-associated telomeres. Alternatively, it is possible that Peo plays a dual function being independently required for DNA replication and telomere capping. PMID:26110638

  6. Suppression of gastric cancer dissemination by ephrin-B1-derived peptide.

    PubMed

    Tanaka, Masamitsu; Kamata, Reiko; Yanagihara, Kazuyoshi; Sakai, Ryuichi

    2010-01-01

    Interaction of the Eph family of receptor protein tyrosine kinases and their ligands, ephrin family members, induces bidirectional signaling through cell-cell contacts. High expression of B-type ephrin is associated with high invasion potential of tumors, and we previously observed that signaling through the C-terminus of ephrin-B1 mediates the migration and invasion of cells, and is involved in the promotion of carcinomatous peritonitis in vivo. Here we show that the intracellular introduction of a synthetic peptide derived from ephrin-B1 C-terminus blocks ephrin-B1 mediated signaling in scirrhous gastric cancer cells. Treatment of cancer cells with a fusion peptide consisting of HIV-TAT and amino acids 331-346 of ephrin-B1 (PTD-EFNB1-C) suppressed the activation of RhoA, mediated by the association of ephrin-B1 with an adaptor protein Dishevelled, and also inhibited extracellular secretion of metalloproteinase. Moreover, injection of PTD-EFNB1-C peptide into the peritoneal cavity of nude mice suppressed carcinomatous peritonitis of intraperitoneally transplanted scirrhous gastric cancer cells. These results indicate the possible application of ephrin-B1 C-terminal peptide to develop novel protein therapy for scirrhous gastric carcinoma, especially in the stage of tumor progression, including peritoneal dissemination.

  7. Phospholamban mutants compete with wild type for SERCA binding in living cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruber, Simon J.; Haydon, Suzanne; Thomas, David D., E-mail: ddt@umn.edu

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer PLB phosphorylation in HEK cells increased FRET between YFP-PLB and CFP-SERCA. Black-Right-Pointing-Pointer Competition: Expressing loss-of-function PLB mutants in the system decreased FRET. Black-Right-Pointing-Pointer The FRET assay could screen potential therapeutic PLB mutants to activate SERCA. -- Abstract: We have used fluorescent fusion proteins stably expressed in HEK cells to detect directly the interaction between the sarcoplasmic reticulum Ca-ATPase (SERCA) and phospholamban (PLB) in living cells, in order to design PLB mutants for gene therapy. Ca{sup 2+} cycling in muscle cells depends strongly on SERCA. Heart failure (HF), which contributes to 12% of US deaths, typically exhibits decreased SERCAmore » activity, and several potential therapies for HF aim to increase SERCA activity. We are investigating the use of LOF-PLB mutants (PLB{sub M}) as gene therapy vectors to increase SERCA activity. Active SERCA1a and WT-PLB, tagged at their N termini with fluorescent proteins (CFP and YFP), were coexpressed in stable HEK cell lines, and fluorescence resonance energy transfer (FRET) was used to detect their interaction directly. Phosphorylation of PLB, induced by forskolin, caused an increase in FRET from CFP-SERCA to YFP-PLB, indicating that SERCA inhibition can be relieved without dissociation of the complex. This suggests that a LOF mutant might bind to SERCA with sufficient affinity to complete effectively with WT-PLB, thus relieving SERCA inhibition. Therefore, we transiently expressed a series of PLB{sub M} in the CFP-SERCA/YFP-PLB cell line, and found decreased FRET, implying competition between PLB{sub M} and WT-PLB for binding to SERCA. These results establish this FRET assay as a rapid and quantitative means of screening PLB{sub M} for optimization of gene therapy to activate SERCA, as needed for gene therapy in HF.« less

  8. Spider-Venom Peptides as Bioinsecticides

    PubMed Central

    Windley, Monique J.; Herzig, Volker; Dziemborowicz, Sławomir A.; Hardy, Margaret C.; King, Glenn F.; Nicholson, Graham M.

    2012-01-01

    Over 10,000 arthropod species are currently considered to be pest organisms. They are estimated to contribute to the destruction of ~14% of the world’s annual crop production and transmit many pathogens. Presently, arthropod pests of agricultural and health significance are controlled predominantly through the use of chemical insecticides. Unfortunately, the widespread use of these agrochemicals has resulted in genetic selection pressure that has led to the development of insecticide-resistant arthropods, as well as concerns over human health and the environment. Bioinsecticides represent a new generation of insecticides that utilise organisms or their derivatives (e.g., transgenic plants, recombinant baculoviruses, toxin-fusion proteins and peptidomimetics) and show promise as environmentally-friendly alternatives to conventional agrochemicals. Spider-venom peptides are now being investigated as potential sources of bioinsecticides. With an estimated 100,000 species, spiders are one of the most successful arthropod predators. Their venom has proven to be a rich source of hyperstable insecticidal mini-proteins that cause insect paralysis or lethality through the modulation of ion channels, receptors and enzymes. Many newly characterized insecticidal spider toxins target novel sites in insects. Here we review the structure and pharmacology of these toxins and discuss the potential of this vast peptide library for the discovery of novel bioinsecticides. PMID:22741062

  9. Core protein cleavage by signal peptide peptidase is required for hepatitis C virus-like particle assembly

    PubMed Central

    Ait-Goughoulte, Malika; Hourioux, Christophe; Patient, Romuald; Trassard, Sylvie; Brand, Denys; Roingeard, Philippe

    2006-01-01

    SUMMARY Hepatitis C virus (HCV) core protein, expressed with a Semliki forest virus (SFV) replicon, self-assembles into HCV-like particles (HCV-LP) at the endoplasmic reticulum (ER) membrane, providing an opportunity to study HCV assembly and morphogenesis by electron microscopy. We used this model to investigate whether the processing of the HCV core protein by the signal peptide peptidase (SPP) is required for the HCV-LP assembly. We designed several mutants as there are conflicting reports concerning the cleavage of mutant proteins by SPP. Production of the only core mutant protein that escaped SPP processing led to the formation of multiple layers of electron-dense ER membrane, with no evidence of HCV-LP assembly. Our data shed light on the HCV core residues involved in SPP cleavage and suggest that this cleavage is essential for HCV assembly. PMID:16528035

  10. Correlation between In Vitro Cytotoxicity and In Vivo Lethal Activity in Mice of Epsilon Toxin Mutants from Clostridium perfringens

    PubMed Central

    Dorca-Arévalo, Jonatan; Pauillac, Serge; Díaz-Hidalgo, Laura; Martín-Satué, Mireia; Popoff, Michel R.; Blasi, Juan

    2014-01-01

    Epsilon toxin (Etx) from Clostridium perfringens is a pore-forming protein with a lethal effect on livestock, producing severe enterotoxemia characterized by general edema and neurological alterations. Site-specific mutations of the toxin are valuable tools to study the cellular and molecular mechanism of the toxin activity. In particular, mutants with paired cysteine substitutions that affect the membrane insertion domain behaved as dominant-negative inhibitors of toxin activity in MDCK cells. We produced similar mutants, together with a well-known non-toxic mutant (Etx-H106P), as green fluorescent protein (GFP) fusion proteins to perform in vivo studies in an acutely intoxicated mouse model. The mutant (GFP-Etx-I51C/A114C) had a lethal effect with generalized edema, and accumulated in the brain parenchyma due to its ability to cross the blood-brain barrier (BBB). In the renal system, this mutant had a cytotoxic effect on distal tubule epithelial cells. The other mutants studied (GFP-Etx-V56C/F118C and GFP-Etx-H106P) did not have a lethal effect or cross the BBB, and failed to induce a cytotoxic effect on renal epithelial cells. These data suggest a direct correlation between the lethal effect of the toxin, with its cytotoxic effect on the kidney distal tubule cells, and the ability to cross the BBB. PMID:25013927

  11. Correlation between in vitro cytotoxicity and in vivo lethal activity in mice of epsilon toxin mutants from Clostridium perfringens.

    PubMed

    Dorca-Arévalo, Jonatan; Pauillac, Serge; Díaz-Hidalgo, Laura; Martín-Satué, Mireia; Popoff, Michel R; Blasi, Juan

    2014-01-01

    Epsilon toxin (Etx) from Clostridium perfringens is a pore-forming protein with a lethal effect on livestock, producing severe enterotoxemia characterized by general edema and neurological alterations. Site-specific mutations of the toxin are valuable tools to study the cellular and molecular mechanism of the toxin activity. In particular, mutants with paired cysteine substitutions that affect the membrane insertion domain behaved as dominant-negative inhibitors of toxin activity in MDCK cells. We produced similar mutants, together with a well-known non-toxic mutant (Etx-H106P), as green fluorescent protein (GFP) fusion proteins to perform in vivo studies in an acutely intoxicated mouse model. The mutant (GFP-Etx-I51C/A114C) had a lethal effect with generalized edema, and accumulated in the brain parenchyma due to its ability to cross the blood-brain barrier (BBB). In the renal system, this mutant had a cytotoxic effect on distal tubule epithelial cells. The other mutants studied (GFP-Etx-V56C/F118C and GFP-Etx-H106P) did not have a lethal effect or cross the BBB, and failed to induce a cytotoxic effect on renal epithelial cells. These data suggest a direct correlation between the lethal effect of the toxin, with its cytotoxic effect on the kidney distal tubule cells, and the ability to cross the BBB.

  12. Direct expression and validation of phage-selected peptide variants in mammalian cells.

    PubMed

    Quinlan, Brian D; Gardner, Matthew R; Joshi, Vinita R; Chiang, Jessica J; Farzan, Michael

    2013-06-28

    Phage display is a key technology for the identification and maturation of high affinity peptides, antibodies, and other proteins. However, limitations of bacterial expression restrict the range and sensitivity of assays that can be used to evaluate phage-selected variants. To address this problem, selected genes are typically transferred to mammalian expression vectors, a major rate-limiting step in the iterative improvement of peptides and proteins. Here we describe a system that combines phage display and efficient mammalian expression in a single vector, pDQ1. This system permits immediate expression of phage-selected genes as IgG1-Fc fusions in mammalian cells, facilitating the rapid, sensitive characterization of a large number of library outputs for their biochemical and functional properties. We demonstrate the utility of this system by improving the ability of a CD4-mimetic peptide to bind the HIV-1 envelope glycoprotein and neutralize HIV-1 entry. We further improved the potency of the resulting peptide, CD4mim6, by limiting its ability to induce the CD4-bound conformation of the envelope glycoprotein. Thus, CD4mim6 and its variants can be used to investigate the properties of the HIV-1 envelope glycoprotein, and pDQ1 can accelerate the discovery of new peptides and proteins through phage display.

  13. Fusion of raft-like lipid bilayers operated by a membranotropic domain of the HSV-type I glycoprotein gH occurs through a cholesterol-dependent mechanism.

    PubMed

    Vitiello, Giuseppe; Falanga, Annarita; Petruk, Ariel Alcides; Merlino, Antonello; Fragneto, Giovanna; Paduano, Luigi; Galdiero, Stefania; D'Errico, Gerardino

    2015-04-21

    A wealth of evidence indicates that lipid rafts are involved in the fusion of the viral lipid envelope with the target cell membrane. However, the interplay between these sterol- and sphingolipid-enriched ordered domains and viral fusion glycoproteins has not yet been clarified. In this work we investigate the molecular mechanism by which a membranotropic fragment of the glycoprotein gH of the Herpes Simplex Virus (HSV) type I (gH625) drives fusion of lipid bilayers formed by palmitoyl oleoyl phosphatidylcholine (POPC)-sphingomyelin (SM)-cholesterol (CHOL) (1 : 1 : 1 wt/wt/wt), focusing on the role played by each component. The comparative analysis of the liposome fusion assays, Dynamic Light Scattering (DLS), spectrofluorimetry, Neutron Reflectivity (NR) and Electron Spin Resonance (ESR) experiments, and Molecular Dynamics (MD) simulations shows that CHOL is fundamental for liposome fusion to occur. In detail, CHOL stabilizes the gH625-bilayer association by specific interactions with the peptide Trp residue. The interaction with gH625 causes an increased order of the lipid acyl chains, whose local rotational motion is significantly hampered. SM plays only a minor role in the process, favoring the propagation of lipid perturbation to the bilayer inner core. The stiffening of the peptide-interacting bilayer leaflet results in an asymmetric perturbation of the membrane, which is locally destabilized thus favoring fusion events. Our results show that viral fusion glycoproteins are optimally suited to exert a high fusogenic activity on lipid rafts and support the relevance of cholesterol as a key player of membrane-related processes.

  14. Engineering domain fusion chimeras from I-OnuI family LAGLIDADG homing endonucleases

    PubMed Central

    Lambert, Abigail R.; Kuhar, Ryan; Jarjour, Jordan; Kulshina, Nadia; Parmeggiani, Fabio; Danaher, Patrick; Gano, Jacob; Baker, David; Stoddard, Barry L.; Scharenberg, Andrew M.

    2012-01-01

    Although engineered LAGLIDADG homing endonucleases (LHEs) are finding increasing applications in biotechnology, their generation remains a challenging, industrial-scale process. As new single-chain LAGLIDADG nuclease scaffolds are identified, however, an alternative paradigm is emerging: identification of an LHE scaffold whose native cleavage site is a close match to a desired target sequence, followed by small-scale engineering to modestly refine recognition specificity. The application of this paradigm could be accelerated if methods were available for fusing N- and C-terminal domains from newly identified LHEs into chimeric enzymes with hybrid cleavage sites. Here we have analyzed the structural requirements for fusion of domains extracted from six single-chain I-OnuI family LHEs, spanning 40–70% amino acid identity. Our analyses demonstrate that both the LAGLIDADG helical interface residues and the linker peptide composition have important effects on the stability and activity of chimeric enzymes. Using a simple domain fusion method in which linker peptide residues predicted to contact their respective domains are retained, and in which limited variation is introduced into the LAGLIDADG helix and nearby interface residues, catalytically active enzymes were recoverable for ∼70% of domain chimeras. This method will be useful for creating large numbers of chimeric LHEs for genome engineering applications. PMID:22684507

  15. A rationally designed peptide IA-2-P2 against type 1 diabetes in streptozotocin-induced diabetic mice.

    PubMed

    Shen, Lili; Lu, Shiping; Huang, Dongcheng; Li, Guoliang; Liu, Kunfeng; Cao, Rongyue; Zong, Li; Jin, Liang; Wu, Jie

    2017-05-01

    Recent studies have investigated the potential of type 1 diabetes mellitus-related autoantigens, such as heat shock protein 60, to induce immunological tolerance or to suppress the immune response. A functional 24-residue peptide derived from heat shock protein 60 (P277) has shown anti-type 1 diabetes mellitus potential in experimental animals and in clinical studies, but it also carries a potential atherogenic effect. In this study, we have modified P277 to retain an anti-type 1 diabetes mellitus effect and minimize the atherogenic potential by replacing the P277 B epitope with another diabetes-associated autoantigen, insulinoma antigen-2 (IA-2), to create the fusion peptide IA-2-P2. In streptozotocin-induced diabetic C57BL/6J mice, the IA-2-P2 peptide displayed similar anti-diabetic effects to the control P277 peptide. Also, the IA-2-P2 peptide did not show atherogenic activity in a rabbit model. Our findings indicate the potential of IA-2-P2 as a promising vaccine against type 1 diabetes mellitus.

  16. The phocein homologue SmMOB3 is essential for vegetative cell fusion and sexual development in the filamentous ascomycete Sordaria macrospora.

    PubMed

    Bernhards, Yasmine; Pöggeler, Stefanie

    2011-04-01

    Members of the striatin family and their highly conserved interacting protein phocein/Mob3 are key components in the regulation of cell differentiation in multicellular eukaryotes. The striatin homologue PRO11 of the filamentous ascomycete Sordaria macrospora has a crucial role in fruiting body development. Here, we functionally characterized the phocein/Mob3 orthologue SmMOB3 of S. macrospora. We isolated the gene and showed that both, pro11 and Smmob3 are expressed during early and late developmental stages. Deletion of Smmob3 resulted in a sexually sterile strain, similar to the previously characterized pro11 mutant. Fusion assays revealed that ∆Smmob3 was unable to undergo self-fusion and fusion with the pro11 strain. The essential function of the SmMOB3 N-terminus containing the conserved mob domain was demonstrated by complementation analysis of the sterile S. macrospora ∆Smmob3 strain. Downregulation of either pro11 in ∆Smmob3, or Smmob3 in pro11 mutants by means of RNA interference (RNAi) resulted in synthetic sexual defects, demonstrating for the first time the importance of a putative PRO11/SmMOB3 complex in fruiting body development.

  17. Relationship between SU Subdomains That Regulate the Receptor-Mediated Transition from the Native (Fusion-Inhibited) to the Fusion-Active Conformation of the Murine Leukemia Virus Glycoprotein

    PubMed Central

    Lavillette, Dimitri; Ruggieri, Alessia; Boson, Bertrand; Maurice, Marielle; Cosset, François-Loïc

    2002-01-01

    Envelope glycoproteins (Env) of retroviruses are trimers of SU (surface) and TM (transmembrane) heterodimers and are expressed on virions in fusion-competent forms that are likely to be metastable. Activation of the viral receptor-binding domain (RBD) via its interaction with a cell surface receptor is thought to initiate a cascade of events that lead to refolding of the Env glycoprotein into its stable fusion-active conformation. While the fusion-active conformation of the TM subunit has been described in detail for several retroviruses, little is known about the fusion-competent structure of the retroviral glycoproteins or the molecular events that mediate the transition between the two conformations. By characterizing Env chimeras between the ecotropic and amphotropic murine leukemia virus (MLV) SUs as well as a set of point mutants, we show that alterations of the conformation of the SU glycoprotein strongly elevate Env fusogenicity by disrupting the stability of the Env complex. Compensatory mutations that restored both Env stability and fusion control were also identified, allowing definition of interactions within the Env complex that maintain the stability of the native Env complex. We show that, in the receptor-unbound form, structural interactions between the N terminus of the viral RBD (NTR domain), the proline-rich region (PRR), and the distal part of the C-terminal domain of the SU subunit maintain a conformation of the glycoprotein that is fusion inhibitory. Additionally, we identified mutations that disrupt this fusion-inhibitory conformation and allow fusion activation in the absence of viral receptors, provided that receptor-activated RBD fragments are added in trans during infection. Other mutations were identified that allow fusion activation in the absence of receptors for both the viral glycoprotein and the trans-acting RBD. Finally, we found mutations of the SU that bypass in cis the requirement for the NTR domain in fusion activation. All

  18. N-terminal domain of the dual-targeted pea glutathione reductase signal peptide controls organellar targeting efficiency.

    PubMed

    Rudhe, Charlotta; Clifton, Rachel; Whelan, James; Glaser, Elzbieta

    2002-12-06

    Import of nuclear-encoded proteins into mitochondria and chloroplasts is generally organelle specific and its specificity depends on the N-terminal signal peptide. Yet, a group of proteins known as dual-targeted proteins have a targeting peptide capable of leading the mature protein to both organelles. We have investigated the domain structure of the dual-targeted pea glutathione reductase (GR) signal peptide by using N-terminal truncations. A mutant of the GR precursor (pGR) starting with the second methionine residue of the targeting peptide, pGRdelta2-4, directed import into both organelles, negating the possibility that dual import was controlled by the nature of the N terminus. The deletion of the 30 N-terminal residues (pGRdelta2-30) inhibited import efficiency into chloroplasts substantially and almost completely into mitochondria, whereas the removal of only 16 N-terminal amino acid residues (pGRdelta2-16) resulted in the strongly stimulated mitochondrial import without significantly affecting chloroplast import. Furthermore, N-terminal truncations of the signal peptide (pGRdelta2-16 and pGRdelta2-30) greatly stimulated the mitochondrial processing activity measured with the isolated processing peptidase. These results suggest a domain structure for the dual-targeting peptide of pGR and the existence of domains controlling organellar import efficiency therein.

  19. Mutant glucocerebrosidase in Gaucher disease recruits Hsp27 to the Hsp90 chaperone complex for proteasomal degradation

    PubMed Central

    Yang, Chunzhang; Wang, Herui; Zhu, Dongwang; Hong, Christopher S.; Dmitriev, Pauline; Zhang, Chao; Li, Yan; Ikejiri, Barbara; Brady, Roscoe O.; Zhuang, Zhengping

    2015-01-01

    Gaucher disease is caused by mutations of the GBA1 gene, which encodes the lysosomal anchored gluococerebrosidase (GCase). GBA1 mutations commonly result in protein misfolding, abnormal chaperone recognition, and premature degradation, but are less likely to affect catalytic activity. In the present study, we demonstrate that the Hsp90/HOP/Cdc37 complex recruits Hsp27 after recognition of GCase mutants with subsequent targeting of GCase mutant peptides to degradation mechanisms such as VCP and the 26S proteasome. Inhibition of Hsp27 not only increased the quantity of enzyme but also enhanced GCase activity in fibroblasts derived from patients with Gaucher disease. These findings provide insight into a possible therapeutic strategy for protein misfolding diseases by correcting chaperone binding and altering subsequent downstream patterns of protein degradation. PMID:25583479

  20. Mutant glucocerebrosidase in Gaucher disease recruits Hsp27 to the Hsp90 chaperone complex for proteasomal degradation.

    PubMed

    Yang, Chunzhang; Wang, Herui; Zhu, Dongwang; Hong, Christopher S; Dmitriev, Pauline; Zhang, Chao; Li, Yan; Ikejiri, Barbara; Brady, Roscoe O; Zhuang, Zhengping

    2015-01-27

    Gaucher disease is caused by mutations of the GBA1 gene, which encodes the lysosomal anchored gluococerebrosidase (GCase). GBA1 mutations commonly result in protein misfolding, abnormal chaperone recognition, and premature degradation, but are less likely to affect catalytic activity. In the present study, we demonstrate that the Hsp90/HOP/Cdc37 complex recruits Hsp27 after recognition of GCase mutants with subsequent targeting of GCase mutant peptides to degradation mechanisms such as VCP and the 26S proteasome. Inhibition of Hsp27 not only increased the quantity of enzyme but also enhanced GCase activity in fibroblasts derived from patients with Gaucher disease. These findings provide insight into a possible therapeutic strategy for protein misfolding diseases by correcting chaperone binding and altering subsequent downstream patterns of protein degradation.