Science.gov

Sample records for fusion plasma turbulence

  1. Critically balanced ion temperature gradient turbulence in fusion plasmas.

    PubMed

    Barnes, M; Parra, F I; Schekochihin, A A

    2011-09-01

    Scaling laws for ion temperature gradient driven turbulence in magnetized toroidal plasmas are derived and compared with direct numerical simulations. Predicted dependences of turbulence fluctuation amplitudes, spatial scales, and resulting heat fluxes on temperature gradient and magnetic field line pitch are found to agree with numerical results in both the driving and inertial ranges. Evidence is provided to support the critical balance conjecture that parallel streaming and nonlinear perpendicular decorrelation times are comparable at all spatial scales, leading to a scaling relationship between parallel and perpendicular spatial scales. This indicates that even strongly magnetized plasma turbulence is intrinsically three dimensional. PMID:22026680

  2. Critically Balanced Ion Temperature Gradient Turbulence in Fusion Plasmas

    SciTech Connect

    Barnes, M.

    2011-09-09

    Scaling laws for ion temperature gradient driven turbulence in magnetized toroidal plasmas are derived and compared with direct numerical simulations. Predicted dependences of turbulence fluctuation amplitudes, spatial scales, and resulting heat fluxes on temperature gradient and magnetic field line pitch are found to agree with numerical results in both the driving and inertial ranges. Evidence is provided to support the critical balance conjecture that parallel streaming and nonlinear perpendicular decorrelation times are comparable at all spatial scales, leading to a scaling relationship between parallel and perpendicular spatial scales. This indicates that even strongly magnetized plasma turbulence is intrinsically three dimensional.

  3. Phase space structures in gyrokinetic simulations of fusion plasma turbulence

    NASA Astrophysics Data System (ADS)

    Ghendrih, Philippe; Norscini, Claudia; Cartier-Michaud, Thomas; Dif-Pradalier, Guilhem; Abiteboul, Jérémie; Dong, Yue; Garbet, Xavier; Gürcan, Ozgür; Hennequin, Pascale; Grandgirard, Virginie; Latu, Guillaume; Morel, Pierre; Sarazin, Yanick; Storelli, Alexandre; Vermare, Laure

    2014-10-01

    Gyrokinetic simulations of fusion plasmas give extensive information in 5D on turbulence and transport. This paper highlights a few of these challenging physics in global, flux driven simulations using experimental inputs from Tore Supra shot TS45511. The electrostatic gyrokinetic code GYSELA is used for these simulations. The 3D structure of avalanches indicates that these structures propagate radially at localised toroidal angles and then expand along the field line at sound speed to form the filaments. Analysing the poloidal mode structure of the potential fluctuations (at a given toroidal location), one finds that the low modes m = 0 and m = 1 exhibit a global structure; the magnitude of the m = 0 mode is much larger than that of the m = 1 mode. The shear layers of the corrugation structures are thus found to be dominated by the m = 0 contribution, that are comparable to that of the zonal flows. This global mode seems to localise the m = 2 mode but has little effect on the localisation of the higher mode numbers. However when analysing the pulsation of the latter modes one finds that all modes exhibit a similar phase velocity, comparable to the local zonal flow velocity. The consequent dispersion like relation between the modes pulsation and the mode numbers provides a means to measure the zonal flow. Temperature fluctuations and the turbulent heat flux are localised between the corrugation structures. Temperature fluctuations are found to exhibit two scales, small fluctuations that are localised by the corrugation shear layers, and appear to bounce back and forth radially, and large fluctuations, also readily observed on the flux, which are associated to the disruption of the corrugations. The radial ballistic velocity of both avalanche events if of the order of 0.5ρ∗c0 where ρ∗ = ρ0/a, a being the tokamak minor radius and ρ0 being the characteristic Larmor radius, ρ0 = c0/Ω0. c0 is the reference ion thermal velocity and Ω0 = qiB0/mi the reference

  4. Steady State Turbulent Transport in Magnetic Fusion Plasmas

    SciTech Connect

    Lee, W. W.; Ethier, S.; Kolesnikov, R.; Wang, W. X.; Tang, W. M.

    2007-12-20

    For more than a decade, the study of microturbulence, driven by ion temperature gradient (ITG) drift instabilities in tokamak devices, has been an active area of research in magnetic fusion science for both experimentalists and theorists alike. One of the important impetus for this avenue of research was the discovery of the radial streamers associated the ITG modes in the early nineties using a Particle-In-Cell (PIC) code. Since then, ITG simulations based on the codes with increasing realism have become possible with the dramatic increase in computing power. The notable examples were the demonstration of the importance of nonlinearly generated zonal flows in regulating ion thermal transport and the transition from Bohm to GyroBoham scaling with increased device size. In this paper, we will describe another interesting nonlinear physical process associated with the parallel acceleration of the ions, that is found to play an important role for the steady state turbulent transport. Its discovery is again through the use of the modern massively parallel supercomputers.

  5. Plasma turbulence

    SciTech Connect

    Horton, W.; Hu, G.

    1998-07-01

    The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates.

  6. The nonlinear coupling between gyroradius scale turbulence and mesoscale magnetic islands in fusion plasmas

    SciTech Connect

    Hornsby, W. A.; Peeters, A. G.; Snodin, A. P.; Casson, F. J.; Camenen, Y.; Szepesi, G.; Siccinio, M.; Poli, E.

    2010-09-15

    The interaction between small scale turbulence (of the order of the ion Larmor radius) and mesoscale magnetic islands is investigated within the gyrokinetic framework. Turbulence, driven by background temperature and density gradients, over nonlinear mode coupling, pumps energy into long wavelength modes, and can result in an electrostatic vortex mode that coincides with the magnetic island. The strength of the vortex is strongly enhanced by the modified plasma flow response connected with the change in topology, and the transport it generates can compete with the parallel motion along the perturbed magnetic field. Despite the stabilizing effect of sheared plasma flows in and around the island, the net effect of the island is a degradation of the confinement. When density and temperature gradients inside the island are below the threshold for turbulence generation, turbulent fluctuations still persist through turbulence convection and spreading. The latter mechanisms then generate a finite transport flux and, consequently, a finite pressure gradient in the island. A finite radial temperature gradient inside the island is also shown to persist due to the trapped particles, which do not move along the field around the island. In the low collisionality regime, the finite gradient in the trapped population leads to the generation of a bootstrap current, which reduces the neoclassical drive.

  7. Correlation Reflectometry for Turbulence and Magnetic Field Measurements in Fusion Plasmas

    SciTech Connect

    G.J. Kramer; R. Nazikian; and E. Valeo

    2002-07-09

    For the interpretation of correlation reflectometry data a fast two-dimensional full wave code has been developed in which realistic plasma geometries are used. Results of this code are compared with experiments and turbulence correlation lengths and fluctuation levels are extracted with statistical optics methods. It is shown that in general the measured reflectometer correlation length is not equal to the turbulence correlation length. The code is also used to study the possibility of O-X correlation reflectometry in FIRE for the determination of the local magnetic field strength. It was found that this is only possible at very low fluctuation levels.

  8. Cyclokinetic models and simulations for high-frequency turbulence in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Deng, Zhao; Waltz, R. E.; Wang, Xiaogang

    2016-10-01

    Gyrokinetics is widely applied in plasma physics. However, this framework is limited to weak turbulence levels and low drift-wave frequencies because high-frequency gyro-motion is reduced by the gyro-phase averaging. In order to test where gyrokinetics breaks down, Waltz and Zhao developed a new theory, called cyclokinetics [R. E. Waltz and Zhao Deng, Phys. Plasmas 20, 012507 (2013)]. Cyclokinetics dynamically follows the high-frequency ion gyro-motion which is nonlinearly coupled to the low-frequency drift-waves interrupting and suppressing gyro-averaging. Cyclokinetics is valid in the high-frequency (ion cyclotron frequency) regime or for high turbulence levels. The ratio of the cyclokinetic perturbed distribution function over equilibrium distribution function δf/ F can approach 1. This work presents, for the first time, a numerical simulation of nonlinear cyclokinetic theory for ions, and describes the first attempt to completely solve the ion gyro-phase motion in a nonlinear turbulence system. Simulations are performed [Zhao Deng and R. E. Waltz, Phys. Plasmas 22(5), 056101 (2015)] in a local flux-tube geometry with the parallel motion and variation suppressed by using a newly developed code named rCYCLO, which is executed in parallel by using an implicit time-advanced Eulerian (or continuum) scheme [Zhao Deng and R. E. Waltz, Comp. Phys. Comm. 195, 23 (2015)]. A novel numerical treatment of the magnetic moment velocity space derivative operator guarantee saccurate conservation of incremental entropy. By comparing the more fundamental cyclokinetic simulations with the corresponding gyrokinetic simulations, the gyrokinetics breakdown condition is quantitatively tested. Gyrokinetic transport and turbulence level recover those of cyclokinetics at high relative ion cyclotron frequencies and low turbulence levels, as required. Cyclokinetic transport and turbulence level are found to be lower than those of gyrokinetics at high turbulence levels and low- Ω* values

  9. Measurement of Turbulence Decorrelation during Transport Barrier Evolution in a High Temperature Fusion Plasma

    SciTech Connect

    R. Nazikian; K. Shinohara; G.J. Kramer; E. Valeo; K. Hill; T.S. Hahm; G. Rewoldt; S. Ide; Y. Koide; Y. Oyama; H. Shirai; W. Tang

    2005-03-29

    A low power polychromatic beam of microwaves is used to diagnose the behavior of turbulent fluctuations in the core of the JT-60U tokamak during the evolution of the internal transport barrier. A continuous reduction in the size of turbulent structures is observed concomitant with the reduction of the density scale length during the evolution of the internal transport barrier. The density correlation length decreases to the order of the ion gyroradius, in contrast to the much longer scale lengths observed earlier in the discharge, while the density fluctuation level remain similar to the level before transport barrier formation.

  10. BOUndary Plasma Turbulence

    2008-01-25

    BOUT is a parallelized 3D nonlocal electromagnetic turbulence code. The principal calculations are the boundary plasma turbulence in a realistic magnetic geometry. BOUT uses fluid Braginskii equations for plasma vorticity, density, electron and ion temperature and Parallel mementum. With sources added in the core-edge region and sinks in the scrape-off-layer (SOL), BOUT follows the self-consistent profile evolution together with turbulence. BOUT also includes coupling to a magnetohyfrodynamic equlibrium (EFIT package) and a two-dimensional hydrodynamic edgemore » transport model (UEDGE package).« less

  11. Scaling laws in magnetized plasma turbulence

    SciTech Connect

    Boldyrev, Stanislav

    2015-06-28

    Interactions of plasma motion with magnetic fields occur in nature and in the laboratory in an impressively broad range of scales, from megaparsecs in astrophysical systems to centimeters in fusion devices. The fact that such an enormous array of phenomena can be effectively studied lies in the existence of fundamental scaling laws in plasma turbulence, which allow one to scale the results of analytic and numerical modeling to the sized of galaxies, velocities of supernovae explosions, or magnetic fields in fusion devices. Magnetohydrodynamics (MHD) provides the simplest framework for describing magnetic plasma turbulence. Recently, a number of new features of MHD turbulence have been discovered and an impressive array of thought-provoking phenomenological theories have been put forward. However, these theories have conflicting predictions, and the currently available numerical simulations are not able to resolve the contradictions. MHD turbulence exhibits a variety of regimes unusual in regular hydrodynamic turbulence. Depending on the strength of the guide magnetic field it can be dominated by weakly interacting Alfv\\'en waves or strongly interacting wave packets. At small scales such turbulence is locally anisotropic and imbalanced (cross-helical). In a stark contrast with hydrodynamic turbulence, which tends to ``forget'' global constrains and become uniform and isotropic at small scales, MHD turbulence becomes progressively more anisotropic and unbalanced at small scales. Magnetic field plays a fundamental role in turbulent dynamics. Even when such a field is not imposed by external sources, it is self-consistently generated by the magnetic dynamo action. This project aims at a comprehensive study of universal regimes of magnetic plasma turbulence, combining the modern analytic approaches with the state of the art numerical simulations. The proposed study focuses on the three topics: weak MHD turbulence, which is relevant for laboratory devices, the solar

  12. Boundary Plasma Turbulence Simulations for Tokamaks

    SciTech Connect

    Xu, X; Umansky, M; Dudson, B; Snyder, P

    2008-05-15

    The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.

  13. Self-organized criticality and the dynamics of near-marginal turbulent transport in magnetically confined fusion plasmas

    NASA Astrophysics Data System (ADS)

    Sanchez, R.; Newman, D. E.

    2015-12-01

    The high plasma temperatures expected at reactor conditions in magnetic confinement fusion toroidal devices suggest that near-marginal operation could be a reality in future devices and reactors. By near-marginal it is meant that the plasma profiles might wander around the local critical thresholds for the onset of instabilities. Self-organized criticality (SOC) was suggested in the mid 1990s as a more proper paradigm to describe the dynamics of tokamak plasma transport in near-marginal conditions. It advocated that, near marginality, the evolution of mean profiles and fluctuations should be considered simultaneously, in contrast to the more common view of a large separation of scales existing between them. Otherwise, intrinsic features of near-marginal transport would be missed, that are of importance to understand the properties of energy confinement. In the intervening 20 years, the relevance of the idea of SOC for near-marginal transport in fusion plasmas has transitioned from an initial excessive hype to the much more realistic standing of today, which we will attempt to examine critically in this review paper. First, the main theoretical ideas behind SOC will be described. Secondly, how they might relate to the dynamics of near-marginal transport in real magnetically confined plasmas will be discussed. Next, we will review what has been learnt about SOC from various numerical studies and what it has meant for the way in which we do numerical simulation of fusion plasmas today. Then, we will discuss the experimental evidence available from the several experiments that have looked for SOC dynamics in fusion plasmas. Finally, we will conclude by identifying the various problems that still remain open to investigation in this area. Special attention will be given to the discussion of frequent misconceptions and ongoing controversies. The review also contains a description of ongoing efforts that seek effective transport models better suited than traditional

  14. Coherent Structures and Intermittency in Plasma Turbulence

    SciTech Connect

    Das, Amita; Kaw, Predhiman; Sen, Abhijit

    2008-10-15

    The paper discusses some fundamental issues related to the phenomenon of intermittency in plasma turbulence with particular reference to experimental observations in fusion devices. Intermittency is typically associated with the presence of coherent structures in turbulence. Since coherent structures can play an important role in governing the transport properties of a system they have received a great deal of attention in fusion research. We review some of the experimental measurements and numerical simulation studies on the presence and formation of coherent structures in plasmas and discuss their relevance to intermittency. Intermittency, as widely discussed in the context of neutral fluid turbulence, implies multiscaling behaviour in contrast to self-similar scaling patterns observed in self organized criticality (SOC) phenomenon. The experimental evidence from plasma turbulence measurements reveal a mixed picture--while some observations support the SOC model description others indicate the presence of multiscaling behaviour. We discuss these results in the light of our present understanding of plasma turbulence and in terms of certain unique aspects of intermittency as revealed by fluid models of plasmas.

  15. Simulation of Fusion Plasmas

    ScienceCinema

    Holland, Chris [UC San Diego, San Diego, California, United States

    2016-07-12

    The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the “burning plasma” regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.

  16. Low-to-High Confinement Transition Mediated by Turbulence Radial Wave Number Spectral Shift in a Fusion Plasma.

    PubMed

    Xu, G S; Wan, B N; Wang, H Q; Guo, H Y; Naulin, V; Rasmussen, J Juul; Nielsen, A H; Wu, X Q; Yan, N; Chen, L; Shao, L M; Chen, R; Wang, L; Zhang, W

    2016-03-01

    A new model for the low-to-high (L-H) confinement transition has been developed based on a new paradigm for turbulence suppression by velocity shear [G. M. Staebler et al., Phys. Rev. Lett. 110, 055003 (2013)]. The model indicates that the L-H transition can be mediated by a shift in the radial wave number spectrum of turbulence, as evidenced here, for the first time, by the direct observation of a turbulence radial wave number spectral shift and turbulence structure tilting prior to the L-H transition at tokamak edge by direct probing. This new mechanism does not require a pretransition overshoot in the turbulent Reynolds stress, shunting turbulence energy to zonal flows for turbulence suppression as demonstrated in the experiment.

  17. Low-to-High Confinement Transition Mediated by Turbulence Radial Wave Number Spectral Shift in a Fusion Plasma

    NASA Astrophysics Data System (ADS)

    Xu, G. S.; Wan, B. N.; Wang, H. Q.; Guo, H. Y.; Naulin, V.; Rasmussen, J. Juul; Nielsen, A. H.; Wu, X. Q.; Yan, N.; Chen, L.; Shao, L. M.; Chen, R.; Wang, L.; Zhang, W.

    2016-03-01

    A new model for the low-to-high (L -H ) confinement transition has been developed based on a new paradigm for turbulence suppression by velocity shear [G. M. Staebler et al., Phys. Rev. Lett. 110, 055003 (2013)]. The model indicates that the L -H transition can be mediated by a shift in the radial wave number spectrum of turbulence, as evidenced here, for the first time, by the direct observation of a turbulence radial wave number spectral shift and turbulence structure tilting prior to the L -H transition at tokamak edge by direct probing. This new mechanism does not require a pretransition overshoot in the turbulent Reynolds stress, shunting turbulence energy to zonal flows for turbulence suppression as demonstrated in the experiment.

  18. Visualization of plasma turbulence with laser-induced fluorescence (invited)

    SciTech Connect

    Levinton, Fred M.; Trintchouk, Fedor

    2001-01-01

    Turbulence is a key factor limiting the performance of fusion devices. Plasma edge turbulence determines the boundary values of the plasma density and temperature, which in turn determine the internal gradients and controls global plasma transport. In recent years, significant progress has been made in modeling turbulence behavior in plasmas and its effect on transport. Progress has also been made in diagnostics for turbulence measurement; however, there is still a large gap in our understanding of it. An approach to improve this situation is to experimentally visualize the turbulence, that is, a high resolution 2-D image of the plasma density. Visualization of turbulence can improve the connection to theory and help validate theoretical models. One method that has been successfully developed to visualize turbulence in gases and fluids is planar laser-induced fluorescence. We have recently applied this technique to visualize turbulence and structures in a plasma. This was accomplished using an Alexandrite laser that is tunable between 700 and 800 nm, and from 350 to 400 nm with second harmonic generation. The fluorescence light from an argon ion transition has been imaged onto an intensified charged coupled device camera that is gated in synchronization with the laser. Images from the plasma show a rotating structure at 30 kHz in addition to small scale turbulence.

  19. Final Report on The Theory of Fusion Plasmas

    SciTech Connect

    Steven C. Cowley

    2008-06-17

    Report describes theoretical research in the theory of fusion plasmas funded under grant DE-FG02-04ER54737. This includes work on: explosive instabilities, plasma turbulence, Alfven wave cascades, high beta (pressure) tokamaks and magnetic reconnection. These studies have lead to abetter understanding of fusion plasmas and in particular the future behavior of ITER. More than ten young researchers were involved in this research -- some were funded under the grant.

  20. Nondiffusive transport regimes for suprathermal ions in turbulent plasmas

    NASA Astrophysics Data System (ADS)

    Bovet, A.; Fasoli, A.; Ricci, P.; Furno, I.; Gustafson, K.

    2015-04-01

    The understanding of the transport of suprathermal ions in the presence of turbulence is important for fusion plasmas in the burning regime that will characterize reactors, and for space plasmas to understand the physics of particle acceleration. Here, three-dimensional measurements of a suprathermal ion beam in the toroidal plasma device TORPEX are presented. These measurements demonstrate, in a turbulent plasma, the existence of subdiffusive and superdiffusive transport of suprathermal ions, depending on their energy. This result stems from the unprecedented combination of uniquely resolved measurements and first-principles numerical simulations that reveal the mechanisms responsible for the nondiffusive transport. The transport regime is determined by the interaction of the suprathermal ion orbits with the turbulent plasma dynamics, and is strongly affected by the ratio of the suprathermal ion energy to the background plasma temperature.

  1. Validation metrics for turbulent plasma transport

    NASA Astrophysics Data System (ADS)

    Holland, C.

    2016-06-01

    Developing accurate models of plasma dynamics is essential for confident predictive modeling of current and future fusion devices. In modern computer science and engineering, formal verification and validation processes are used to assess model accuracy and establish confidence in the predictive capabilities of a given model. This paper provides an overview of the key guiding principles and best practices for the development of validation metrics, illustrated using examples from investigations of turbulent transport in magnetically confined plasmas. Particular emphasis is given to the importance of uncertainty quantification and its inclusion within the metrics, and the need for utilizing synthetic diagnostics to enable quantitatively meaningful comparisons between simulation and experiment. As a starting point, the structure of commonly used global transport model metrics and their limitations is reviewed. An alternate approach is then presented, which focuses upon comparisons of predicted local fluxes, fluctuations, and equilibrium gradients against observation. The utility of metrics based upon these comparisons is demonstrated by applying them to gyrokinetic predictions of turbulent transport in a variety of discharges performed on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)], as part of a multi-year transport model validation activity.

  2. Trajectory structures in turbulent plasmas

    SciTech Connect

    Vlad, Madalina; Spineanu, Florin

    2006-11-03

    Particle stochastic advection in two dimensional divergence free velocity fields is studied. The special statistical properties of this process (non-Gaussian distribution, memory effects and quasi-coherent behavior) are determined using a new approach, the nested subensemble method. The effect of the statistics of trajectories on the evolution of drift turbulence in magnetized plasmas is studied. It essentialy consists in the tendency of structure formation.

  3. Electromagnetic scattering from turbulent plasmas

    SciTech Connect

    Resendes, D.G. Instituto Superior Tecnico, Rua Rovisco Pais, Lisboa )

    1992-11-15

    A self-consistent multiple-scattering theory of vector electromagnetic waves scattered from a turbulent plasma is presented. This approach provides a general and systematic treatment to all orders in turbulence of the scattering of electromagnetic waves in terms of the properties of the turbulent structure of the scattering system and is applicable in the full regime from underdense to overdense plasmas. To illustrate the theory, a plasma consisting of a finite number density of discrete scatterers with a simple geometry and statistical properties is chosen. In this approach the exact solution for a single scatterer is obtained first. From it the configuration-dependent solution for {ital N} scatterers is constructed. Rather than solving explicitly for this solution and then averaging, the averaging operation will be taken first in order to find an approximate equation obeyed by the mean or coherent field. The coherent and incoherent scattering are then determined in terms of the coherent field and the backscatter is evaluated. The coherent and incoherent scattering, our principal results, are expressed in a plane-wave basis in a form suitable for numerical computation. A number of interesting phenomena which may readily be incorporated into the theory are indicated.

  4. Plasma Turbulence and observational effects

    NASA Astrophysics Data System (ADS)

    Jiang, Yan Wei

    Plasma Turbulence is present in many astronomical settings, and it plays an important role in releasing the magnetic and/or kinetic energy into accelerating particles and heating the plasma. With the diffusion approximation, I study the cascade and damping of Alfvén-cyclotron turbulence in solar plasmas numerically. Motivated by wave-wave couplings and nonlinear effects, I test several forms of the diffusion tensor. For a general locally anisotropic and inhomogeneous diffusion tensor in the wave vector space, the turbulence spectrum in the inertial range can be fitted with power-laws with the index varying with the wave propagation direction. For several locally isotropic but inhomogeneous diffusion coefficients, the steady-state turbulence spectra are nearly isotropic in the absence of damping and can be fitted by a single power-law function. However, the energy flux is strongly polarized due to the inhomogeneity that leads to an anisotropic cascade. Including the anisotropic thermal damping, the turbulence spectrum cuts off at the wave numbers, where the damping rates become comparable to the cascade rates. The combined anisotropic effects of cascade and damping make this cutoff wave number dependent on the wave propagation direction, and the propagation direction integrated turbulence spectrum resembles a broken power-law, which cuts off at the maximum of the cutoff wave numbers or the 4 He cyclotron frequency. Taking into account the Doppler effects, the model can naturally reproduce the broken power-law wave spectra observed in the solar wind and predicts that a higher break frequency is always accompanied with a greater spectral index change that may be caused by the increase of the Alfvén Mach number, the reciprocal of the plasma beta, and/or the angle between the solar wind velocity and the mean magnetic field. These predictions can be tested by future observations. Solar flare is the most energetic process in solar system and becomes the natural

  5. Fusion Plasma Theory project summaries

    SciTech Connect

    Not Available

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program.

  6. The BOUT Project: Validation and Benchmark of BOUT Code and Experimental Diagnostic Tools for Fusion Boundary Turbulence

    SciTech Connect

    Xu, X Q

    2001-08-09

    A boundary plasma turbulence code BOUT is presented. The preliminary encouraging results have been obtained when comparing with probe measurements for a typical Ohmic discharge in CT-7 tokamak. The validation and benchmark of BOUT code and experimental diagnostic tools for fusion boundary plasma turbulence is proposed.

  7. The BOUT Project; Validation and Benchmark of BOUT Code and Experimental Diagnostic Tools for Fusion Boundary Turbulence

    NASA Astrophysics Data System (ADS)

    Xu, Xue-qiao

    2001-10-01

    A boundary plasma turbulence code BOUT is presented. The preliminary encouraging results have been obtained when comparing with probe measurements for a typical Ohmic discharge in HT-7 tokamak. The validation and benchmark of BOUT code and experimental diagnostic tools for fusion boundary plasma turbulence is proposed.

  8. Turbulence in solar wind and laboratory plasmas

    SciTech Connect

    Carbone, V.

    2010-06-16

    Recent studies of plasma turbulence based on measurements within solar wind and laboratory plasmas has been discussed. Evidences for the presence of a turbulent energy cascade, using the Yaglom's law for MHD turbulence, has been provided through data from the Ulysses spacecraft. This allows, for the first time, a direct estimate of the turbulent energy transfer rate, which can contribute to the in situ heating of the solar wind. The energy cascade has been evidenced also for ExB electrostatic turbulence in laboratory magnetized plasmas using measurements of intermittent transport (bursty turbulence) at the edge of the RFX-mod reversed field pinch plasma device. Finally the problem of the dispersive region of turbulence in solar wind above the ion-cyclotron frequency, where a spectral break is usually observed, and the problem of dissipation in a collisionless fluid as the solar wind, are briefly discussed.

  9. Plasma physics goes beyond fusion

    NASA Astrophysics Data System (ADS)

    Franklin, Raoul

    2008-11-01

    I was interested to read the fusion supplement published with the October issue of Physics World. However, in asserting that fusion created the need to recognize plasma physics as a separate branch of the subject, Stephen Cowley, the new director of the United Kingdom Atomic Energy Authority, was not quite correct. In fact, the word "plasma" was appropriated from the Greek by the chemical physicist (and later Nobel laureate) Irving Langmuir in 1928. It was used to describe the positive column of a gas discharge, which was then the subject of research into better lighting sources and advertising displays, as well as the underlying science.

  10. Global Variation of Meteor Trail Plasma Turbulence

    NASA Technical Reports Server (NTRS)

    Dyrud, L. P.; Hinrichs, J.; Urbina, J.

    2011-01-01

    We present the first global simulations on the occurrence of meteor trail plasma irregularities. These results seek to answer the following questions: when a meteoroid disintegrates in the atmosphere will the resulting trail become plasma turbulent, what are the factors influencing the development of turbulence, and how do they vary on a global scale. Understanding meteor trail plasma turbulence is important because turbulent meteor trails are visible as non-specular trails to coherent radars, and turbulence influences the evolution of specular radar meteor trails, particularly regarding the inference of mesospheric temperatures from trail diffusion rates, and their usage for meteor burst communication. We provide evidence of the significant effect that neutral atmospheric winds and density, and ionospheric plasma density have on the variability of meteor trail evolution and the observation of nonspecular meteor trails, and demonstrate that trails are far less likely to become and remain turbulent in daylight, explaining several observational trends using non-specular and specular meteor trails.

  11. Two-Dimensional Turbulence in Magnetized Plasmas

    ERIC Educational Resources Information Center

    Kendl, A.

    2008-01-01

    In an inhomogeneous magnetized plasma the transport of energy and particles perpendicular to the magnetic field is in general mainly caused by quasi two-dimensional turbulent fluid mixing. The physics of turbulence and structure formation is of ubiquitous importance to every magnetically confined laboratory plasma for experimental or industrial…

  12. Intermittent transport of nonlinear reduced models in tokomak plasmas turbulence

    NASA Astrophysics Data System (ADS)

    Belgherras, S.; Benouaz, T.; Bekkouche, S. M. A.; Bekkouche

    2012-12-01

    Understanding the origin and nature of turbulent transport in tokomak plasmas is one of the major challenges of a successful magnetic confinement fusion. The aim of this work is to study instability associated with the ion-temperature gradient (ITG)-driven turbulence in the core of the plasma, which is the seat of fusion reactions. We used a low degree of freedom model composed of 18 ordinary differential equations. When the system is slightly above the stability threshold of the ITG mode, it is considered to be in the convection regime and convective heat transport of the system is time-independent, or oscillates periodically. As ITG is increased further, the system bifurcates to the turbulent regime. In a strongly turbulent regime, intermittent bursts (the so-called avalanches) are observed. This intermittency is a result of the competition among the following three factors: generation of sheared flows and suppression of ITG turbulence, gradual reduction of the sheared flows due to viscosity, and rapid regrowth of ITG modes due to reduction of sheared flows.

  13. Recent developments in plasma turbulence and turbulent transport

    SciTech Connect

    Terry, P.W.

    1997-09-22

    This report contains viewgraphs of recent developments in plasma turbulence and turbulent transport. Localized nonlinear structures occur under a variety of circumstances in turbulent, magnetically confined plasmas, arising in both kinetic and fluid descriptions, i.e., in either wave-particle or three-wave coupling interactions. These structures are non wavelike. They cannot be incorporated in the collective wave response, but interact with collective modes through their shielding by the plasma dielectric. These structures are predicted to modify turbulence-driven transport in a way that in consistent with, or in some cases are confirmed by recent experimental observations. In kinetic theory, non wavelike structures are localized perturbations of phase space density. There are two types of structures. Holes are self-trapped, while clumps have a self-potential that is too weak to resist deformation and mixing by ambient potential fluctuations. Clumps remain correlated in turbulence if their spatial extent is smaller than the correlation length of the scattering fields. In magnetic turbulence, clumps travel along stochastic magnetic fields, shielded by the plasma dielectric. A drag on the clump macro-particle is exerted by the shielding, inducing emission into the collective response. The emission in turn damps back on the particle distribution via Landau dampling. The exchange of energy between clumps and particles, as mediated by the collective mode, imposes constraints on transport. For a turbulent spectrum whose mean wavenumber along the equilibrium magnetic field is nonzero, the electron thermal flux is proportional to the ion thermal velocity. Conventional predictions (which account only for collective modes) are larger by the square root of the ion to electron mass ratio. Recent measurements are consistent with the small flux. In fluid plasma,s localized coherent structures can occur as intense vortices.

  14. Plasma sheet turbulence observed by Cluster II

    NASA Technical Reports Server (NTRS)

    Weygand, James M.; Kivelson, M. G.; Khurana, K. K.; Schwarzl, H. K.; Thompson, S. M.; McPherron, R. L.; Balogh, A.; Kistler, L. M.; Goldstein, M. L.; Borovsky, J.

    2005-01-01

    Cluster fluxgate magnetometer (FGM) and ion spectrometer (CIS) data are employed to analyze magnetic field fluctuations within the plasma sheet during passages through the magnetotail region in the summers of 2001 and 2002 and, in particular, to look for characteristics of magnetohydrodynamic (MHD) turbulence. Power spectral indices determined from power spectral density functions are on average larger than Kolmogorov's theoretical value for fluid turbulence as well as Kraichnan's theoretical value for MHD plasma turbulence. Probability distribution functions of the magnetic fluctuations show a scaling law over a large range of temporal scales with non-Gaussian distributions at small dissipative scales and inertial scales and more Gaussian distribution at large driving scales. Furthermore, a multifractal analysis of the magnetic field components shows scaling behavior in the inertial range of the fluctuations from about 20 s to 13 min for moments through the fifth order. Both the scaling behavior of the probability distribution functions and the multifractal structure function suggest that intermittent turbulence is present within the plasma sheet. The unique multispacecraft aspect and fortuitous spacecraft spacing allow us to examine the turbulent eddy scale sizes. Dynamic autocorrelation and cross correlation analysis of the magnetic field components allow us to determine that eddy scale sizes fit within the plasma sheet. These results suggest that magnetic field turbulence is occurring within the plasma sheet resulting in turbulent energy dissipation.

  15. Experimental Achievements on Plasma Confinement and Turbulence

    SciTech Connect

    Fujisawa, A.

    2009-02-19

    This article presents a brief review of the experimental studies on turbulence and resultant transport in toroidal plasmas. The article focuses on two topics, physics of transport barrier and the role of mesoscale structure on plasma confinement, i.e. zonal flows. The two topics show the important roles of the mutual interactions between sheared flows, zonal flows and drift waves for plasma turbulence and transport. The findings can lead us to further generalized concept of the disparate scale interactions which could give a fundamental understanding of the plasma confinement from the first principle.

  16. Electromagnetic gyrokinetic simulation of turbulence in torus plasmas

    NASA Astrophysics Data System (ADS)

    Ishizawa, A.; Maeyama, S.; Watanabe, T.-H.; Sugama, H.; Nakajima, N.

    2015-04-01

    Gyrokinetic simulations of electromagnetic turbulence in magnetically confined torus plasmas including tokamak and heliotron/stellarator are reviewed. Numerical simulation of turbulence in finite beta plasmas is an important task for predicting the performance of fusion reactors and a great challenge in computational science due to multiple spatio-temporal scales related to electromagnetic ion and electron dynamics. The simulation becomes further challenging in non-axisymmetric plasmas. In finite beta plasmas, magnetic perturbation appears and influences some key mechanisms of turbulent transport, which include linear instability and zonal flow production. Linear analysis shows that the ion-temperature gradient (ITG) instability, which is essentially an electrostatic instability, is unstable at low beta and its growth rate is reduced by magnetic field line bending at finite beta. On the other hand, the kinetic ballooning mode (KBM), which is an electromagnetic instability, is destabilized at high beta. In addition, trapped electron modes (TEMs), electron temperature gradient (ETG) modes, and micro-tearing modes (MTMs) can be destabilized. These instabilities are classified into two categories: ballooning parity and tearing parity modes. These parities are mixed by nonlinear interactions, so that, for instance, the ITG mode excites tearing parity modes. In the nonlinear evolution, the zonal flow shear acts to regulate the ITG driven turbulence at low beta. On the other hand, at finite beta, interplay between the turbulence and zonal flows becomes complicated because the production of zonal flow is influenced by the finite beta effects. When the zonal flows are too weak, turbulence continues to grow beyond a physically relevant level of saturation in finite-beta tokamaks. Nonlinear mode coupling to stable modes can play a role in the saturation of finite beta ITG mode and KBM. Since there is a quadratic conserved quantity, evaluating nonlinear transfer of the

  17. Computer Modeling of a Fusion Plasma

    SciTech Connect

    Cohen, B I

    2000-12-15

    Progress in the study of plasma physics and controlled fusion has been profoundly influenced by dramatic increases in computing capability. Computational plasma physics has become an equal partner with experiment and traditional theory. This presentation illustrates some of the progress in computer modeling of plasma physics and controlled fusion.

  18. Plasma physics and controlled thermonuclear fusion

    SciTech Connect

    Krikorian, R. )

    1989-01-01

    This proceedings contains papers on plasma physics and controlled thermonuclear fusion. Included are the following topics: Plasma focus and Z-pinch, Review of mirror fusion research, Progress in studies of x-ray and ion-beam emission from plasma focus facilities.

  19. Plasmas are Hot and Fusion is Cool

    SciTech Connect

    2011-01-01

    Plasmas are Hot and Fusion is Cold. The DOE Princeton Plasma Physics Laboratory (PPPL) collaborates to develop fusion as a safe, clean and abundant energy source for the future. This video discusses PPPL's research and development on plasma, the fourth state of matter.

  20. Comparing simulation of plasma turbulence with experiment

    NASA Astrophysics Data System (ADS)

    Ross, David W.; Bravenec, Ronald V.; Dorland, William; Beer, Michael A.; Hammett, G. W.; McKee, George R.; Fonck, Raymond J.; Murakami, Masanori; Burrell, Keith H.; Jackson, Gary L.; Staebler, Gary M.

    2002-01-01

    The direct quantitative correspondence between theoretical predictions and the measured plasma fluctuations and transport is tested by performing nonlinear gyro-Landau-fluid simulations with the GRYFFIN (or ITG) code [W. Dorland and G. W. Hammett, Phys. Fluids B 5, 812 (1993); M. A. Beer and G. W. Hammett, Phys. Plasmas 3, 4046 (1996)]. In an L-mode reference discharge in the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)], which has relatively large fluctuations and transport, the turbulence is dominated by ion temperature gradient (ITG) modes. Trapped electron modes and impurity drift waves also play a role. Density fluctuations are measured by beam emission spectroscopy [R. J. Fonck, P. A. Duperrex, and S. F. Paul, Rev. Sci. Instrum. 61, 3487 (1990)]. Experimental fluxes and corresponding diffusivities are analyzed by the TRANSP code [R. J. Hawryluk, in Physics of Plasmas Close to Thermonuclear Conditions, edited by B. Coppi, G. G. Leotta, D. Pfirsch, R. Pozzoli, and E. Sindoni (Pergamon, Oxford, 1980), Vol. 1, p. 19]. The shape of the simulated wave number spectrum is close to the measured one. The simulated ion thermal transport, corrected for E×B low shear, exceeds the experimental value by a factor of 1.5 to 2.0. The simulation overestimates the density fluctuation level by an even larger factor. On the other hand, the simulation underestimates the electron thermal transport, which may be accounted for by modes that are not accessible to the simulation or to the BES measurement.

  1. Hall MHD Stability and Turbulence in Magnetically Accelerated Plasmas

    SciTech Connect

    H. R. Strauss

    2012-11-27

    The object of the research was to develop theory and carry out simulations of the Z pinch and plasma opening switch (POS), and compare with experimental results. In the case of the Z pinch, there was experimental evidence of ion kinetic energy greatly in excess of the ion thermal energy. It was thought that this was perhaps due to fine scale turbulence. The simulations showed that the ion energy was predominantly laminar, not turbulent. Preliminary studies of a new Z pinch experiment with an axial magnetic field were carried out. The axial magnetic is relevant to magneto - inertial fusion. These studies indicate the axial magnetic field makes the Z pinch more turbulent. Results were also obtained on Hall magnetohydrodynamic instability of the POS.

  2. Turbulence in laboratory and natural plasmas: Connecting the dots

    NASA Astrophysics Data System (ADS)

    Jenko, Frank

    2015-11-01

    It is widely recognized that turbulence is an important and fascinating frontier topic of both basic and applied plasma physics. Numerous aspects of this paradigmatic example of self-organization in nonlinear systems far from thermodynamic equilibrium remain to be better understood. Meanwhile, for both laboratory and natural plasmas, an impressive combination of new experimental and observational data, new theoretical concepts, and new computational capabilities (on the brink of the exascale era) have become available. Thus, it seems fair to say that we are currently facing a golden age of plasma turbulence research, characterized by fundamental new insights regarding the role and nature of turbulent processes in phenomena like cross-field transport, particle acceleration and propagation, plasma heating, magnetic reconnection, or dynamo action. At the same time, there starts to emerge a more unified view of this key topic of basic plasma physics, putting it into the much broader context of complex systems research and connecting it, e.g., to condensed matter physics and biophysics. I will describe recent advances and future challenges in this vibrant area of plasma physics, highlighting novel insights into the redistribution and dissipation of energy in turbulent plasmas at kinetic scales, using gyrokinetic, hybrid, and fully kinetic approaches in a complementary fashion. In this context, I will discuss, among other things, the influence of damped eigenmodes, the importance of nonlocal interactions, the origin and nature of non-universal power law spectra, as well as the role of coherent structures. Moreover, I will outline exciting new research opportunities on the horizon, combining extreme scale simulations with basic plasma and fusion experiments as well as with observations from satellites.

  3. Non-Linear Dynamics and Emergence in Laboratory Fusion Plasmas

    SciTech Connect

    Hnat, B.

    2011-09-22

    Turbulent behaviour of laboratory fusion plasma system is modelled using extended Hasegawa-Wakatani equations. The model is solved numerically using finite difference techniques. We discuss non-linear effects in such a system in the presence of the micro-instabilities, specifically a drift wave instability. We explore particle dynamics in different range of parameters and show that the transport changes from diffusive to non-diffusive when large directional flows are developed.

  4. Complex Spectra in Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    von Hellermann, M. G.; Bertschinger, G.; Biel, W.; Giroud, C.; Jaspers, R.; Jupen, C.; Marchuk, O.; O'Mullane, M.; Summers, H. P.; Whiteford, A.; Zastrow, K.-D.

    2005-01-01

    The need for quantitative evaluation of complex line emission spectra as observed in hot fusion plasmas initiated a challenging development of sophisticated interpretation tools based on integrating advanced atomic modelling with detailed treatment of the plasma environment. The successful merging of the two worlds has led to routine diagnostic procedures which have contributed enormously to the understanding of underlying plasma processes and also to a wide acceptance of spectroscopy as a reliable diagnostic method. In this paper three characteristic types of spectra of current and continuing interest are presented. The first is that of medium/heavy species with many ionisation stages revealed in survey VUV and XUV spectra. Such species occur as control gases, as wall materials, as ablated heavy species and possible as layered wall dopants for monitoring erosion. The spectra are complex with line-like and quasi-continuum regions and are amenable to advanced `pattern recognition' methods. The second type is of few electron, highly ionised systems observed as line-of-sight integrated passive emission spectra in the soft x-ray region. They are analysed successfully in terms of plasma parameters through matching of observation with predicted synthetic spectra. Examples used here include highly resolved helium-like emission spectra of argon, iron and titanium observed on the tokamaks TEXTOR and Tore Supra. The third type, and the emphasis of this work, comprises spectra linked to active beam spectroscopy, that is, charge exchange recombination spectroscopy (CXRS) and beam emission spectroscopy (BES). In this case, a complex spectrum is again composed of a (usually) dominating active spectrum and an underlying passive emission spectrum. Its analysis requires modelling of both active and passive features. Examples used here are from the CXRS diagnostic at JET and TEXTOR. They display characteristic features of the main light impurity ions (C+6, He+2, N+7, Ne+10 and Ar+18

  5. Influence of plasma turbulence on microwave propagation

    NASA Astrophysics Data System (ADS)

    Köhn, A.; Holzhauer, E.; Leddy, J.; Thomas, M. B.; Vann, R. G. L.

    2016-11-01

    It is not fully understood how electromagnetic waves propagate through plasma density fluctuations when the size of the fluctuations is comparable with the wavelength of the incident radiation. In this paper, the perturbing effect of a turbulent plasma density layer on a traversing microwave beam is simulated with full-wave simulations. The deterioration of the microwave beam is calculated as a function of the characteristic turbulence structure size, the turbulence amplitude, the depth of the interaction zone and the size of the waist of the incident beam. The maximum scattering is observed for a structure size on the order of half the vacuum wavelength. The scattering and beam broadening was found to increase linearly with the depth of the turbulence layer and quadratically with the fluctuation strength. Consequences for experiments and 3D effects are considered.

  6. Far infrared fusion plasma diagnostics

    SciTech Connect

    Luhmann, N.C. Jr.; Peebles, W.A.

    1990-01-01

    Over the last several years, reflectometry has grown in importance as a diagnostic for both steady-state density Profiles as well as for the investigation of density fluctuations and turbulence. As a diagnostic for density profile measurement, it is generally believed to be well understood in the tokamak environment. However, its use as a fluctuation diagnostic is hampered by a lack of quantitative experimental understanding of its wavenumber sensitivity and spatial resolution. Several researchers, have theoretically investigated these questions. However, prior to the UCLA laboratory investigation, no group has experimentally investigated these questions. Because of the reflectometer's importance to the world effort in understanding plasma turbulence and transport, UCLA has, over the last year, made its primary Task IIIA effort the resolution of these questions. UCLA has taken the lead in a quantitative experimental understanding of reflectometer data as applied to the measurement of density fluctuations. In addition to this, work has proceeded on the design, construction, and installation of a reflectometer system on UCLA's CCT tokamak. This effort will allow a comparison between the improved confinement regimes (H-mode) observed on both the DIII-D and CCT machines with the goal of achieving a physics understanding of the phenomena. Preliminary investigation of a new diagnostic technique to measure density profiles as a function of time has been initiated at UCLA. The technique promises to be a valuable addition to the range of available plasma diagnostics. Work on advanced holographic reflectometry technique as applied to fluctuation diagnostics has awaited a better understanding of the reflectometer signal itself as discussed above. Efforts to ensure the transfer of the diagnostic developments have continued with particular attention devoted to the preliminary design of a multichannel FIR interferometer for MST.

  7. Origin and turbulence spreading of plasma blobs

    SciTech Connect

    Manz, P.; Birkenmeier, G.; Stroth, U.; Ribeiro, T. T.; Scott, B. D.; Carralero, D.; Müller, S. H.; Müller, H. W.; Wolfrum, E.; Fuchert, G.

    2015-02-15

    The formation of plasma blobs is studied by analyzing their trajectories in a gyrofluid simulation in the vicinity of the separatrix. Most blobs arise at the maximum radial electric field outside the separatrix. In general, blob generation is not bound to one particular radial position or instability. A simple model of turbulence spreading for the scrape-off layer is derived. The simulations show that the blob dynamics can be represented by turbulence spreading, which constitutes a substantial energy drive for far scrape-off layer turbulence and is a more suitable quantity to study blob generation compared to the skewness.

  8. The time evolution of turbulent parameters in reversed-field pinch plasmas

    SciTech Connect

    Titus, J. B.; Alexander, Brandon; Johnson, J. A. III

    2013-04-28

    Turbulence is abundant in fully ionized fusion plasmas, with unique turbulent characteristics in different phases of the discharge. Using Fourier and chaos-based techniques, a set of parameters have been developed to profile the time evolution of turbulence in high temperature, fusion plasmas, specifically in self-organized, reversed-field pinch plasma in the Madison Symmetric Torus. With constant density and plasma current, the turbulence profile is measured during ramp-up, magnetic reconnection, and increased confinement phases. During magnetic reconnection, a scan of plasma current is performed with a constant density. Analysis revealed that the energy associated with turbulence (turbulent energy) is found to increase when changes in magnetic energy occur and is correlated to edge ion temperatures. As the turbulent energy increases with increasing current, the rate at which this energy flow between scales (spectral index) and anti-persistence of the fluctuations increases (Hurst exponent). These turbulent parameters are then compared to the ramp-up phase and increased confinement regime.

  9. Plasma Physics and Controlled Nuclear Fusion

    NASA Astrophysics Data System (ADS)

    Fisch, N. J.

    2010-01-01

    Already while making his famous contributions in uncontrolled nuclear fusion for wartime uses, Edward Teller contemplated how the abundant energy release through nuclear fusion might serve peacetime uses as well. His legacy in controlled nuclear fusion, and the associated physics of plasmas, spans both magnetic and inertial confinement approaches. His contributions in plasma physics, both the intellectual and the administrative, continue to impact the field.

  10. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Kirkpatrick, Ronald C.; Knapp, Charles E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Magnetized target fusion is an emerging, relatively unexplored approach to fusion for electrical power and propulsion application. The physical principles of the concept are founded upon both inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). It attempts to combine the favorable attributes of both these orthogonal approaches to fusion, but at the same time, avoiding the extreme technical challenges of both by exploiting a fusion regime intermediate between them. It uses a material liner to compress, heat and contain the fusion reacting plasma (the target plasma) mentally. By doing so, the fusion burn could be made to occur at plasma densities as high as six orders of magnitude higher than conventional MCF such as tokamak, thus leading to an approximately three orders of magnitude reduction in the plasma energy required for ignition. It also uses a transient magnetic field, compressed to extremely high intensity (100's T to 1000T) in the target plasma, to slow down the heat transport to the liner and to increase the energy deposition of charged-particle fusion products. This has several compounding beneficial effects. It leads to longer energy confinement time compared with conventional ICF without magnetized target, and thus permits the use of much lower plasma density to produce reasonable burn-up fraction. The compounding effects of lower plasma density and the magneto-insulation of the target lead to greatly reduced compressional heating power on the target. The increased energy deposition rate of charged-particle fusion products also helps to lower the energy threshold required for ignition and increasing the burn-up fraction. The reduction in ignition energy and the compressional power compound to lead to reduced system size, mass and R&D cost. It is a fusion approach that has an affordable R&D pathway, and appears attractive for propulsion application in the nearer term.

  11. Wakes in Inertial Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Ellis, Ian Norman

    Plasma wave wakes, which are the collective oscillatory response near the plasma frequency to the propagation of particles or electromagnetic waves through a plasma, play a critical role in many plasma processes. New results from backwards stimulated Raman scattering (BSRS), in which wakes with phase velocities much less than the speed of light are induced by the beating of counter-propagating light waves, and from electron beam stopping, in which the wakes are produced by the motion of relativistically propagating electrons through the dense plasma, are discussed. Both processes play important roles in Inertial Confinement Fusion (ICF). In BSRS, laser light is scattered backwards out of the plasma, decreasing the energy available to compress the ICF capsule and affecting the symmetry of where the laser energy hits the hohlraum wall in indirect drive ICF. The plasma wave wake can also generate superthermal electrons that can preheat the core and/or the ablator. Electron beam stopping plays a critical role in the Fast Ignition (FI) ICF concept, in which a beam of relativistic electrons is used to heat the target core to ignition temperatures after the compression stage. The beam stopping power determines the effectiveness of the heating process. This dissertation covers new discoveries on the importance of plasma wave wakes in both BSRS and electron beam stopping. In the SRS studies, 1D particle-in-cell (PIC) simulations using OSIRIS are performed, which model a short-duration (˜500/ω0 --1FWHM) counter-propagating scattered light seed pulse in the presence of a constant pump laser with an intensity far below the absolute instability threshold for plasma waves undergoing Landau damping. The seed undergoes linear convective Raman amplification and dominates over the amplification of fluctuations due to particle discreteness. The simulation results are in good agreement with results from a coupled-mode solver when special relativity and the effects of finite size PIC

  12. A Tutorial on Basic Principles of Microwave Reflectometry Applied to Fluctuation Measurements in Fusion Plasmas

    SciTech Connect

    Nazikian, R.; Kramer, G.J.; Valeo, E.

    2001-02-16

    Microwave reflectometry is now routinely used for probing the structure of magnetohydrodynamic and turbulent fluctuations in fusion plasmas. Conditions specific to the core of tokamak plasmas, such as small amplitude of density irregularities and the uniformity of the background plasma, have enabled progress in the quantitative interpretation of reflectometer signals. In particular, the extent of applicability of the 1-D [one-dimensional] geometric optics description of the reflected field is investigated by direct comparison to 1-D full wave analysis. Significant advances in laboratory experiments are discussed which are paving the way towards a thorough understanding of this important measurement technique. Data is presented from the Tokamak Fusion Test Reactor [R. Hawryluk, Plasma Physics and Controlled Fusion 33 (1991) 1509] identifying the validity of the geometric optics description of the scattered field and demonstrating the feasibility of imaging turbulent fluctuations in fusion scale devices.

  13. Understanding of Edge Plasmas in Magnetic Fusion Energy Devices

    SciTech Connect

    Rognlien, T

    2004-11-01

    A limited overview is given of the theoretical understanding of edge plasmas in fusion devices. This plasma occupies the thin region between the hot core plasma and material walls in magnetically confinement configurations. The region is often formed by a change in magnetic topology from close magnetic field lines (i.e., the core region) and open field lines that contact material surfaces (i.e., the scrape-off layer [SOL]), with the most common example being magnetically diverted tokamaks. The physics of this region is determined by the interaction of plasma with neutral gas in the presence of plasma turbulence, with impurity radiation being an important component. Recent advances in modeling strong, intermittent micro-turbulent edge-plasma transport is given, and the closely coupled self-consistent evolution of the edge-plasma profiles in tokamaks. In addition, selected new results are given for the characterization of edge-plasmas behavior in the areas of edge-pedestal relaxation and SOL transport via Edge-Localize Modes (ELMs), impurity formation including dust, and magnetic field-line stochasticity in tokamaks.

  14. Explosive Particle Dispersion in Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Servidio, S.; Haynes, C. T.; Matthaeus, W. H.; Burgess, D.; Carbone, V.; Veltri, P.

    2016-08-01

    Particle dynamics are investigated in plasma turbulence, using self-consistent kinetic simulations, in two dimensions. In the steady state, the trajectories of single protons and proton pairs are studied, at different values of plasma β (ratio between kinetic and magnetic pressure). For single-particle displacements, results are consistent with fluids and magnetic field line dynamics, where particles undergo normal diffusion for very long times, with higher β 's being more diffusive. In an intermediate time range, with separations lying in the inertial range, particles experience an explosive dispersion in time, consistent with the Richardson prediction. These results, obtained for the first time with a self-consistent kinetic model, are relevant for astrophysical and laboratory plasmas, where turbulence is crucial for heating, mixing, and acceleration processes.

  15. Explosive Particle Dispersion in Plasma Turbulence.

    PubMed

    Servidio, S; Haynes, C T; Matthaeus, W H; Burgess, D; Carbone, V; Veltri, P

    2016-08-26

    Particle dynamics are investigated in plasma turbulence, using self-consistent kinetic simulations, in two dimensions. In the steady state, the trajectories of single protons and proton pairs are studied, at different values of plasma β (ratio between kinetic and magnetic pressure). For single-particle displacements, results are consistent with fluids and magnetic field line dynamics, where particles undergo normal diffusion for very long times, with higher β's being more diffusive. In an intermediate time range, with separations lying in the inertial range, particles experience an explosive dispersion in time, consistent with the Richardson prediction. These results, obtained for the first time with a self-consistent kinetic model, are relevant for astrophysical and laboratory plasmas, where turbulence is crucial for heating, mixing, and acceleration processes. PMID:27610862

  16. Structure of nonlocality of plasma turbulence

    NASA Astrophysics Data System (ADS)

    Gürcan, Ö. D.; Vermare, L.; Hennequin, P.; Berionni, V.; Diamond, P. H.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, P.; Grandgirard, V.; McDevitt, C. J.; Morel, P.; Sarazin, Y.; Storelli, A.; Bourdelle, C.; the Tore Supra Team

    2013-07-01

    Various indications on the weakly nonlocal character of turbulent plasma transport both from experimental fluctuation measurements from Tore Supra and observations from the full-f, flux-driven gyrokinetic code GYSELA are reported. A simple Fisher equation model of this weakly nonlocal dynamics can be formulated in terms of an evolution equation for the turbulent entropy density, which contains the basic phenomenon of radial turbulence spreading in addition to avalanche-like dynamics via coupling to profile modulations. A derivation of this model, which contains the so-called beach effect, a diffusive and convective flux components for the flux of turbulence intensity, in addition to linear group propagation is given, starting from the drift-kinetic equation. The proposed model has the form of a transport equation for turbulence intensity, and may be considered as an addition to transport modelling. The kinetic fluxes given, can be computed using model closures, or local gyrokinetics. The model is also used in a particular setup that represents the near edge region as a relatively stable zone between the core and edge region where the energy injection is locally more substantial. It is observed that with constant, physical coefficients, the model gives a convincing qualitative profile of fluctuation intensity when the turbulence is coming from the core region with either a group velocity or a convective flux.

  17. Complexity and Intermittent Turbulence in Space Plasmas

    NASA Technical Reports Server (NTRS)

    Chang, Tom; Tam, Sunny W. Y.; Wu, Cheng-Chin

    2004-01-01

    Sporadic and localized interactions of coherent structures arising from plasma resonances can be the origin of "complexity" of the coexistence of non- propagating spatiotemporal fluctuations and propagating modes in space plasmas. Numerical simulation results are presented to demonstrate the intermittent character of the non-propagating fluctuations. The technique of the dynamic renormalization-group is introduced and applied to the study of scale invariance of such type of multiscale fluctuations. We also demonstrate that the particle interactions with the intermittent turbulence can lead to the efficient energization of the plasma populations. An example related to the ion acceleration processes in the auroral zone is provided.

  18. Fusion programs in applied plasma physics

    SciTech Connect

    Not Available

    1992-02-01

    The objectives of the theoretical science program are: To support the interpretation of present experiments and predict the outcome of future planned experiments; to improve on existing models and codes and validate against experimental results; and to conduct theoretical physics development of advanced concepts with applications for DIII-D and future devices. Major accomplishments in FY91 include the corroboration between theory and experiment on MHD behavior in the second stable regime of operation on DIII-D, and the frequency and mode structure of toroidal Alfven eigenmodes in high beta, shaped plasmas. We have made significant advances in the development of the gyro-Landau fluid approach to turbulence simulation which more accurately models kinetic drive and damping mechanisms. Several theoretical models to explain the bifurcation phenomenon in L- to H-mode transition were proposed providing the theoretical basis for future experimental verification. The capabilities of new rf codes have been upgraded in response to the expanding needs of the rf experiments. Codes are being employed to plan for a fully non-inductive current drive experiment in a high beta, enhanced confinement regime. GA's experimental effort in Applied Physics encompasses two advanced diagnostics essential for the operation of future fusion experiments: Alpha particle diagnostic, and current and density profile diagnostics. This paper discusses research in all these topics.

  19. Magnetic curvature effects on plasma interchange turbulence

    NASA Astrophysics Data System (ADS)

    Li, B.; Liao, X.; Sun, C. K.; Ou, W.; Liu, D.; Gui, G.; Wang, X. G.

    2016-06-01

    The magnetic curvature effects on plasma interchange turbulence and transport in the Z-pinch and dipole-like systems are explored with two-fluid global simulations. By comparing the transport levels in the systems with a different magnetic curvature, we show that the interchange-mode driven transport strongly depends on the magnetic geometry. For the system with large magnetic curvature, the pressure and density profiles are strongly peaked in a marginally stable state and the nonlinear evolution of interchange modes produces the global convective cells in the azimuthal direction, which lead to the low level of turbulent convective transport.

  20. Nonlinear Dynamics and Complex Behaviors in Magnetized Plasmas of Fusion Interest

    SciTech Connect

    Zonca, F.; Chen, L.

    2008-10-15

    Complexity and self-organization in burning plasmas are consequence of the interaction of energetic ions with plasma instabilities and turbulence; of the strong nonlinear coupling that will take place between fusion reactivity profiles, pressure driven currents, MHD stability, transport and plasma boundary interactions, mediated by the energetic particle population; and finally of the long time scale nonlinear (complex) behaviors that may affect the overall fusion performance and eventually pose issues for the stability and control of the fusion burn. These issues are briefly discussed in this work, with a view on their potential applications to other research areas.

  1. Strong Turbulence in Alkali Halide Negative Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Sheehan, Daniel

    1999-11-01

    Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 <= fracm_+m- <= 20 are achievable. The source will allow tests of strong turbulence theory^2. 1 Sheehan, D.P., et al., Phys. Fluids B5, 1593 (1993). 2 Tsytovich, V. and Wharton, C.W., Comm. Plasma Phys. Cont. Fusion 4, 91 (1978).

  2. Turbulent dynamo in a collisionless plasma.

    PubMed

    Rincon, François; Califano, Francesco; Schekochihin, Alexander A; Valentini, Francesco

    2016-04-12

    Magnetic fields pervade the entire universe and affect the formation and evolution of astrophysical systems from cosmological to planetary scales. The generation and dynamical amplification of extragalactic magnetic fields through cosmic times (up to microgauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions, and on scales of at least tens of kiloparsecs) are major puzzles largely unconstrained by observations. A dynamo effect converting kinetic flow energy into magnetic energy is often invoked in that context; however, extragalactic plasmas are weakly collisional (as opposed to magnetohydrodynamic fluids), and whether magnetic field growth and sustainment through an efficient turbulent dynamo instability are possible in such plasmas is not established. Fully kinetic numerical simulations of the Vlasov equation in a 6D-phase space necessary to answer this question have, until recently, remained beyond computational capabilities. Here, we show by means of such simulations that magnetic field amplification by dynamo instability does occur in a stochastically driven, nonrelativistic subsonic flow of initially unmagnetized collisionless plasma. We also find that the dynamo self-accelerates and becomes entangled with kinetic instabilities as magnetization increases. The results suggest that such a plasma dynamo may be realizable in laboratory experiments, support the idea that intracluster medium turbulence may have significantly contributed to the amplification of cluster magnetic fields up to near-equipartition levels on a timescale shorter than the Hubble time, and emphasize the crucial role of multiscale kinetic physics in high-energy astrophysical plasmas. PMID:27035981

  3. Turbulent dynamo in a collisionless plasma

    PubMed Central

    Rincon, François; Califano, Francesco; Schekochihin, Alexander A.; Valentini, Francesco

    2016-01-01

    Magnetic fields pervade the entire universe and affect the formation and evolution of astrophysical systems from cosmological to planetary scales. The generation and dynamical amplification of extragalactic magnetic fields through cosmic times (up to microgauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions, and on scales of at least tens of kiloparsecs) are major puzzles largely unconstrained by observations. A dynamo effect converting kinetic flow energy into magnetic energy is often invoked in that context; however, extragalactic plasmas are weakly collisional (as opposed to magnetohydrodynamic fluids), and whether magnetic field growth and sustainment through an efficient turbulent dynamo instability are possible in such plasmas is not established. Fully kinetic numerical simulations of the Vlasov equation in a 6D-phase space necessary to answer this question have, until recently, remained beyond computational capabilities. Here, we show by means of such simulations that magnetic field amplification by dynamo instability does occur in a stochastically driven, nonrelativistic subsonic flow of initially unmagnetized collisionless plasma. We also find that the dynamo self-accelerates and becomes entangled with kinetic instabilities as magnetization increases. The results suggest that such a plasma dynamo may be realizable in laboratory experiments, support the idea that intracluster medium turbulence may have significantly contributed to the amplification of cluster magnetic fields up to near-equipartition levels on a timescale shorter than the Hubble time, and emphasize the crucial role of multiscale kinetic physics in high-energy astrophysical plasmas. PMID:27035981

  4. Turbulent dynamo in a collisionless plasma

    NASA Astrophysics Data System (ADS)

    Rincon, François; Califano, Francesco; Schekochihin, Alexander A.; Valentini, Francesco

    2016-04-01

    Magnetic fields pervade the entire universe and affect the formation and evolution of astrophysical systems from cosmological to planetary scales. The generation and dynamical amplification of extragalactic magnetic fields through cosmic times (up to microgauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions, and on scales of at least tens of kiloparsecs) are major puzzles largely unconstrained by observations. A dynamo effect converting kinetic flow energy into magnetic energy is often invoked in that context; however, extragalactic plasmas are weakly collisional (as opposed to magnetohydrodynamic fluids), and whether magnetic field growth and sustainment through an efficient turbulent dynamo instability are possible in such plasmas is not established. Fully kinetic numerical simulations of the Vlasov equation in a 6D-phase space necessary to answer this question have, until recently, remained beyond computational capabilities. Here, we show by means of such simulations that magnetic field amplification by dynamo instability does occur in a stochastically driven, nonrelativistic subsonic flow of initially unmagnetized collisionless plasma. We also find that the dynamo self-accelerates and becomes entangled with kinetic instabilities as magnetization increases. The results suggest that such a plasma dynamo may be realizable in laboratory experiments, support the idea that intracluster medium turbulence may have significantly contributed to the amplification of cluster magnetic fields up to near-equipartition levels on a timescale shorter than the Hubble time, and emphasize the crucial role of multiscale kinetic physics in high-energy astrophysical plasmas.

  5. Turbulent dynamo in a collisionless plasma.

    PubMed

    Rincon, François; Califano, Francesco; Schekochihin, Alexander A; Valentini, Francesco

    2016-04-12

    Magnetic fields pervade the entire universe and affect the formation and evolution of astrophysical systems from cosmological to planetary scales. The generation and dynamical amplification of extragalactic magnetic fields through cosmic times (up to microgauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions, and on scales of at least tens of kiloparsecs) are major puzzles largely unconstrained by observations. A dynamo effect converting kinetic flow energy into magnetic energy is often invoked in that context; however, extragalactic plasmas are weakly collisional (as opposed to magnetohydrodynamic fluids), and whether magnetic field growth and sustainment through an efficient turbulent dynamo instability are possible in such plasmas is not established. Fully kinetic numerical simulations of the Vlasov equation in a 6D-phase space necessary to answer this question have, until recently, remained beyond computational capabilities. Here, we show by means of such simulations that magnetic field amplification by dynamo instability does occur in a stochastically driven, nonrelativistic subsonic flow of initially unmagnetized collisionless plasma. We also find that the dynamo self-accelerates and becomes entangled with kinetic instabilities as magnetization increases. The results suggest that such a plasma dynamo may be realizable in laboratory experiments, support the idea that intracluster medium turbulence may have significantly contributed to the amplification of cluster magnetic fields up to near-equipartition levels on a timescale shorter than the Hubble time, and emphasize the crucial role of multiscale kinetic physics in high-energy astrophysical plasmas.

  6. Applications of spectral methods to turbulent magnetofluids in space and fusion research

    NASA Technical Reports Server (NTRS)

    Montgomery, D.; Voigt, R. G. (Editor); Gottlieb, D. (Editor); Hussaini, M. Y. (Editor)

    1984-01-01

    Recent and potential applications of spectral method computation to incompressible, dissipative magnetohydrodynamics are surveyed. Linear stability problems for one dimensional, quasi-equilibria are approachable through a close analogue of the Orr-Sommerfeld equation. It is likely that for Reynolds-like numbers above certain as-yet-undetermined thresholds, all magnetofluids are turbulent. Four recent effects in MHD turbulence are remarked upon, as they have displayed themselves in spectral method computations: (1) inverse cascades; (2) small-scale intermittent dissipative structures; (3) selective decays of ideal global invariants relative to each other; and (4) anisotropy induced by a mean dc magnetic field. Two more conjectured applications are suggested. All the turbulent processes discussed are sometimes involved in current carrying confined fusion magnetoplasmas and in space plasmas.

  7. Plasma Emission by Weak Turbulence Processes

    NASA Astrophysics Data System (ADS)

    Ziebell, L. F.; Yoon, P. H.; Gaelzer, R.; Pavan, J.

    2014-11-01

    The plasma emission is the radiation mechanism responsible for solar type II and type III radio bursts. The first theory of plasma emission was put forth in the 1950s, but the rigorous demonstration of the process based upon first principles had been lacking. The present Letter reports the first complete numerical solution of electromagnetic weak turbulence equations. It is shown that the fundamental emission is dominant and unless the beam speed is substantially higher than the electron thermal speed, the harmonic emission is not likely to be generated. The present findings may be useful for validating reduced models and for interpreting particle-in-cell simulations.

  8. Studies of Zonal Flows Driven by Drift Mode Turbulence in Laboratory and Space Plasmas

    SciTech Connect

    Bingham, R.; Trines, R.; Dunlop, M. W.; Davies, J. A.; Bamford, R. A.; Mendonca, J. T.; Silva, L. O.; Shukla, P. K.; Vaivads, A.; Mori, W. B.; Tynan, G.

    2008-10-15

    The interaction between broadband drift mode turbulence and zonal flows is an important topic associated with transport at plasma boundaries. The generation of zonal flows by the modulational instability of broad band drift waves has resulted in the observation of self organized solitary wave structures at the magnetopause. To understand these structures and their importance to future burning plasmas and space plasmas we have developed a unique numerical simulation code that describes drift wave--zonal flow turbulence. We show that observations by cluster spacecraft confirms the role of drift wave zonal flow turbulence at the Earth's magnetopause and further demonstrates that the magnetopause boundary acts in a s similar manner to transport barriers in tokamak fusion devices. Thus cementing the relationship between the plasma physics of laboratory devices and space plasmas.

  9. Calculation of fusion product angular correlation coefficients for fusion plasmas

    SciTech Connect

    Murphy, T.J.

    1987-08-01

    The angular correlation coefficients for fusion products are calculated in the cases of Maxwellian and beam-target plasmas. Measurement of these coefficients as a localized ion temperature or fast-ion diagnostic is discussed. 8 refs., 7 figs., 1 tab.

  10. New Thermodynamical Force in Plasma Phase Space that Controls Turbulence and Turbulent Transport

    NASA Astrophysics Data System (ADS)

    Itoh, Sanae-I.; Itoh, Kimitaka

    2012-11-01

    Physics of turbulence and turbulent transport has been developed on the central dogma that spatial gradients constitute the controlling parameters, such as Reynolds number and Rayleigh number. Recent experiments with the nonequilibrium plasmas in magnetic confinement devices, however, have shown that the turbulence and transport change much faster than global parameters, after an abrupt change of heating power. Here we propose a theory of turbulence in inhomogeneous magnetized plasmas, showing that the heating power directly influences the turbulence. New mechanism, that an external source couples with plasma fluctuations in phase space so as to affect turbulence, is investigated. A new thermodynamical force in phase-space, i.e., the derivative of heating power by plasma pressure, plays the role of new control parameter, in addition to spatial gradients. Following the change of turbulence, turbulent transport is modified accordingly. The condition under which this new effect can be observed is also evaluated.

  11. New Thermodynamical Force in Plasma Phase Space that Controls Turbulence and Turbulent Transport

    PubMed Central

    Itoh, Sanae-I.; Itoh, Kimitaka

    2012-01-01

    Physics of turbulence and turbulent transport has been developed on the central dogma that spatial gradients constitute the controlling parameters, such as Reynolds number and Rayleigh number. Recent experiments with the nonequilibrium plasmas in magnetic confinement devices, however, have shown that the turbulence and transport change much faster than global parameters, after an abrupt change of heating power. Here we propose a theory of turbulence in inhomogeneous magnetized plasmas, showing that the heating power directly influences the turbulence. New mechanism, that an external source couples with plasma fluctuations in phase space so as to affect turbulence, is investigated. A new thermodynamical force in phase-space, i.e., the derivative of heating power by plasma pressure, plays the role of new control parameter, in addition to spatial gradients. Following the change of turbulence, turbulent transport is modified accordingly. The condition under which this new effect can be observed is also evaluated. PMID:23155481

  12. A kinetic model of plasma turbulence

    NASA Astrophysics Data System (ADS)

    Servidio, S.; Valentini, F.; Perrone, D.; Greco, A.; Califano, F.; Matthaeus, W. H.; Veltri, P.

    2015-01-01

    A Hybrid Vlasov-Maxwell (HVM) model is presented and recent results about the link between kinetic effects and turbulence are reviewed. Using five-dimensional (2D in space and 3D in the velocity space) simulations of plasma turbulence, it is found that kinetic effects (or non-fluid effects) manifest through the deformation of the proton velocity distribution function (DF), with patterns of non-Maxwellian features being concentrated near regions of strong magnetic gradients. The direction of the proper temperature anisotropy, calculated in the main reference frame of the distribution itself, has a finite probability of being along or across the ambient magnetic field, in general agreement with the classical definition of anisotropy T ⊥/T ∥ (where subscripts refer to the magnetic field direction). Adopting the latter conventional definition, by varying the global plasma beta (β) and fluctuation level, simulations explore distinct regions of the space given by T ⊥/T ∥ and β∥, recovering solar wind observations. Moreover, as in the solar wind, HVM simulations suggest that proton anisotropy is not only associated with magnetic intermittent events, but also with gradient-type structures in the flow and in the density. The role of alpha particles is reviewed using multi-ion kinetic simulations, revealing a similarity between proton and helium non-Maxwellian effects. The techniques presented here are applied to 1D spacecraft-like analysis, establishing a link between non-fluid phenomena and solar wind magnetic discontinuities. Finally, the dimensionality of turbulence is investigated, for the first time, via 6D HVM simulations (3D in both spaces). These preliminary results provide support for several previously reported studies based on 2.5D simulations, confirming several basic conclusions. This connection between kinetic features and turbulence open a new path on the study of processes such as heating, particle acceleration, and temperature

  13. Self-Organization in Turbulent Plasmas

    NASA Astrophysics Data System (ADS)

    Diamond, P. H.

    1997-11-01

    Self-Organization is a ubiquitous phenomenon in turbulent laboratory, space and astrophysical plasmas. In this review, we focus on the emergent behavior of large scale order in turbulent plasmas. Instances of such emergent behavior have the common elements of broken symmetry, criticality and auto-regulation, which collectively govern order parameter evolution. Here, we discuss three classic and illustrative paradigms of self-organization (s.-o.). Perhaps the simplest paradigm of s.-o. is that of criticality in one and two-dimensional cellular automata (CA). The goal is to understand the link between emergent macroscopic profile structure and microscopic automata rules, an end closely related to the calculation of tokamak confinement from gradient-driven micro-instabilities. Here, profile shape and stiffness may be calculated to good accuracy from Markov-chain algorithms, which agree well with direct implementation of the CA's with noise. For strongly-driven piles, hydrodynamic models reproduce ballistic propagation scaling and confirm the expectation that cross-gradient shear flows significantly alter avalanche statistics and scaling. A second paradigm of s.-o. is the magnetic dynamo, a classic realization of large scale s.-o. induced by small scale symmetry breaking. Here, it is the reflection symmetry of the small-scale turbulence which is broken, yielding a net helicity and alpha-effect. The structure of the self-organized state (i.e. scale of growth) is determined by alpha, which displays the footprint of small scale asymmetry. A novel element in the theory is the nonlinearity induced by rapid amplification of small scale magnetic fields. This, in turn, induces a nonlinear feedback which quenches the dynamo at finite amplitude. The quenching process is also manifested in passive scalar and magnetic flux transport. The third paradigm is the self-regulating shear flow. Here, small scale and large scale asymmetry are linked by a mechanism very similar to that

  14. Role of edge turbulence in detached divertor plasmas

    NASA Astrophysics Data System (ADS)

    Gang, F. Y.; Sigmar, D. J.; Krasheninnikov, S. I.

    1996-04-01

    The role of edge turbulence in detached divertor plasmas is investigated. It is shown that the edge turbulence, through poloidal transport of parallel momentum, can produce a significant plasma pressure drop along the magnetic field lines toward the divertor plate, a feature that characterizes the detached divertor plasma regime.

  15. Advective turbulent transport in the fluid plasma

    NASA Astrophysics Data System (ADS)

    Min, Byung-Hoon; An, Chan-Yong; Kim, Chang-Bae

    2013-10-01

    The Hasegawa-Wakatani model (HWM) has been employed in pedagogical analyses of the physics behind the behavior of the tokamak plasmas. In addition to the geometric simplicity HWM has an appealing feature of sustaining autonomous quasi-steady state, unstable modes providing the power that is being transported by the nonlinear interactions and is eventually dissipated by the collisional damping at small scales. Emergence of the zonal flow out of the turbulence is a main candidate to cause the transition from the low plasma confinement to the high mode. In the study of such LH transition with the HWM, the adiabaticity parameter has been shown to play an important role in forcing the zonal flow that results in the regulation of the drift-wave turbulence. Instead of concentrating on the physics of the feedback loop between the turbulence and the zonal flow the present study focuses on the presence of the advective transport of the energy. Numerical simulations of HWM are performed and the connections between the advective transport and the zonal flow will be presented. This work was supported by the Supercpmputing Center/Korea Institute of Science and Technology Information with supercomputing resources including technical support (KSC-2013-C1-009).

  16. Approaching the investigation of plasma turbulence through a rigorous verification and validation procedure: A practical example

    SciTech Connect

    Ricci, P. Riva, F.; Theiler, C.; Fasoli, A.; Furno, I.; Halpern, F. D.; Loizu, J.

    2015-05-15

    In the present work, a Verification and Validation procedure is presented and applied showing, through a practical example, how it can contribute to advancing our physics understanding of plasma turbulence. Bridging the gap between plasma physics and other scientific domains, in particular, the computational fluid dynamics community, a rigorous methodology for the verification of a plasma simulation code is presented, based on the method of manufactured solutions. This methodology assesses that the model equations are correctly solved, within the order of accuracy of the numerical scheme. The technique to carry out a solution verification is described to provide a rigorous estimate of the uncertainty affecting the numerical results. A methodology for plasma turbulence code validation is also discussed, focusing on quantitative assessment of the agreement between experiments and simulations. The Verification and Validation methodology is then applied to the study of plasma turbulence in the basic plasma physics experiment TORPEX [Fasoli et al., Phys. Plasmas 13, 055902 (2006)], considering both two-dimensional and three-dimensional simulations carried out with the GBS code [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. The validation procedure allows progress in the understanding of the turbulent dynamics in TORPEX, by pinpointing the presence of a turbulent regime transition, due to the competition between the resistive and ideal interchange instabilities.

  17. Dust in fusion plasmas: theory and modeling

    SciTech Connect

    Smirnov, R. D.; Pigarov, A. Yu.; Krasheninnikov, S. I.; Mendis, D. A.; Rosenberg, M.; Rudakov, D.; Tanaka, Y.; Rognlien, T. D.; Soboleva, T. K.; Shukla, P. K.; Bray, B. D.; West, W. P.; Roquemore, A. L.; Skinner, C. H.

    2008-09-07

    Dust may have a large impact on ITER-scale plasma experiments including both safety and performance issues. However, the physics of dust in fusion plasmas is very complex and multifaceted. Here, we discuss different aspects of dust dynamics including dust-plasma, and dust-surface interactions. We consider the models of dust charging, heating, evaporation/sublimation, dust collision with material walls, etc., which are suitable for the conditions of fusion plasmas. The physical models of all these processes have been incorporated into the DUST Transport (DUSTT) code. Numerical simulations demonstrate that dust particles are very mobile and accelerate to large velocities due to the ion drag force (cruise speed >100 m/s). Deep penetration of dust particles toward the plasma core is predicted. It is shown that DUSTT is capable of reproducing many features of recent dust-related experiments, but much more work is still needed.

  18. Electromagnetic gyrokinetic turbulence in high-beta helical plasmas

    NASA Astrophysics Data System (ADS)

    Ishizawa, Akihiro

    2013-10-01

    Gyrokinetic simulation of electromagnetic turbulence in finite-beta plasmas is important for predicting the performance of fusion reactors. Whereas in low-beta tokamaks the zonal flow shear acts to regulate ion temperature gradient (ITG) driven turbulence, it has often been observed that the kinetic ballooning mode (KBM) and, at moderate-beta, the ITG mode continue to grow without reaching a physically relevant level of saturation. The corresponding problem in helical high-beta plasmas, the identification of a saturation mechanism for microturbulence in regimes where zonal flow generation is too weak, is the subject of the present work. This problem has not been previously explored because of numerical difficulties associated with complex three-dimensional magnetic structures as well as multiple spatio-temporal scales related to electromagnetic ion and electron dynamics. The present study identifies a new saturation process of the KBM turbulence originating from the spatial structure of the KBM instabilities in a high-beta Large Helical Device (LHD) plasma. Specifically, the most unstable KBM in LHD has an inclined mode structure with respect to the mid-plane of a torus, i.e. it has finite radial wave-number in flux tube coordinates, in contrast to KBMs in tokamaks as well as ITG modes in tokamaks and helical systems. The simulations reveal that the growth of KBMs in LHD is saturated by nonlinear interactions of oppositely inclined convection cells through mutual shearing, rather than by the zonal flow shear. The mechanism is quantitatively evaluated by analysis of the nonlinear entropy transfer.

  19. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Eskridge, Richard; Smith, James; Lee, Michael; Richeson, Jeff; Schmidt, George; Knapp, Charles E.; Kirkpatrick, Ronald C.; Turchi, Peter J.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC). For the successful implementation of the scheme, plasma jets of the requisite momentum flux density need to be produced. Their transport over sufficiently large distances (a few meters) needs to be assured. When they collide and merge into a liner, relative differences in velocity, density and temperature of the jets could give rise to instabilities in the development of the liner. Variation in the jet properties must be controlled to ensure that the growth rate of the instabilities are not significant over the time scale of the liner formation before engaging with the target plasma. On impact with the target plasma, some plasma interpenetration might occur between the liner and the target. The operating parameter space needs to be identified to ensure that a reasonably robust and conducting contact surface is formed between the liner and the target. A mismatch in the "impedance" between the liner and the target plasma could give rise to undesirable shock heating of the liner leading to increased entropy (thermal losses) in the liner. Any irregularities in the liner will accentuate the Rayleigh-Taylor instabilities during the compression of the target plasma by the liner.

  20. Space plasma turbulent dissipation - Reality or myth?

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.

    1985-01-01

    A prevalent approach to understanding magnetospheric dynamics is to combine a hydromagnetic description of the large scale magnetic structure and convection flows with a locally determined anomalous dissipation which develops in boundary layers. Three problems (nose and tail reconnection, auroral field-aligned currents, and diffuse auroral precipitation) are critically examined to test the validity of this theoretical philosophy. Although the expected plasma wave turbulence is observed for each case, the concept of local anomalous dissipation fails to provide an adequate or complete description of the phenomenae.

  1. Plasma flow, turbulence and magnetic islands in TJ-II

    NASA Astrophysics Data System (ADS)

    Estrada, T.; Ascasíbar, E.; Blanco, E.; Cappa, A.; Hidalgo, C.; Ida, K.; López-Fraguas, A.; van Milligen, B. Ph

    2016-02-01

    The effect of magnetic islands on plasma flow and turbulence has been experimentally investigated in ohmically induced magnetic configuration scans at the stellarator TJ-II. This operational mode allows sweeping the radial position of a low order rational surface from the plasma core towards the edge in a controlled way, what reveals effects that are difficult to notice in scans performed on a shot to shot basis. The main diagnostic used in the present work is a two-channel Doppler reflectometer that allows the measurement of the perpendicular rotation velocity of the turbulence and density fluctuations with good spatial and temporal resolution. A characteristic signature of the n/m  =  3/2 magnetic island as it crosses the measurement position is clearly detected: the perpendicular flow reverses at the center of the magnetic island and a flow shear develops at the island boundaries. Fluctuations of the perpendicular flow and density have been also measured along the 3/2 magnetic island. An increase in the low frequency flow oscillations is measured at the magnetic island boundaries together with a reduction in the density fluctuation level; the later being more pronounced at the inner island boundary. These observations could explain the link between magnetic islands and transport barriers observed in a number of fusion devices.

  2. Vortex Stabilized Compressed Fusion Grade Plasma

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    2015-03-01

    Inertial confinement fusion schemes comprise of highly compressed dense plasmas. Some involve short pulses of powerful beams (lasers, particles) applied to solid pellets, while others utilize plasma focus to obtain dense pinch plasmas. Although compression factor >1000 has been achieved for starting pressures in the Torr range, the latter is limited by instabilities for initial gas density above 10 Torr. One alternative approach could be shooting electron beams through very dense, atmospheric pressure, vortex stabilized plasma. Large azimuthal magnetic generated by an electron beam can compress and heat the plasma to fusion viable parameters. This configuration is stable against sausage, kink, or beam - plasma instabilities. Based on experimental evidence beam propagation through the plasma is not be an issue. A second possibility is to tangentially squeeze a quasi-neutral plasma focus flow by a surrounding gas vortex. Based on currently available electron beams, the first scheme viability as an electrical power generating reactor does not seem to be promising. But using a plasma cathode electron beam that was developed a while ago, for which DOE has a patent U.S. Patent 4,942,339, could result in net generation of electricity. Calculations will be presented. Work supported by Work supported under Contract No. DE-AC02-98CH1-886 with the US Department of Energy.

  3. Generation of a magnetic island by edge turbulence in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Poyé, A.; Agullo, O.; Muraglia, M.; Garbet, X.; Benkadda, S.; Sen, A.; Dubuit, N.

    2015-03-01

    We investigate, through extensive 3D magneto-hydro-dynamics numerical simulations, the nonlinear excitation of a large scale magnetic island and its dynamical properties due to the presence of small-scale turbulence. Turbulence is induced by a steep pressure gradient in the edge region [B. D. Scott, Plasma Phys. Controlled Fusion 49, S25 (2007)], close to the separatrix in tokamaks where there is an X-point magnetic configuration. We find that quasi-resonant localized interchange modes at the plasma edge can beat together and produce extended modes that transfer energy to the lowest order resonant surface in an inner stable zone and induce a seed magnetic island. The island width displays high frequency fluctuations that are associated with the fluctuating nature of the energy transfer process from the turbulence, while its mean size is controlled by the magnetic energy content of the turbulence.

  4. Generation of a magnetic island by edge turbulence in tokamak plasmas

    SciTech Connect

    Poyé, A.; Agullo, O.; Muraglia, M.; Benkadda, S.; Dubuit, N.; Garbet, X.; Sen, A.

    2015-03-15

    We investigate, through extensive 3D magneto-hydro-dynamics numerical simulations, the nonlinear excitation of a large scale magnetic island and its dynamical properties due to the presence of small-scale turbulence. Turbulence is induced by a steep pressure gradient in the edge region [B. D. Scott, Plasma Phys. Controlled Fusion 49, S25 (2007)], close to the separatrix in tokamaks where there is an X-point magnetic configuration. We find that quasi-resonant localized interchange modes at the plasma edge can beat together and produce extended modes that transfer energy to the lowest order resonant surface in an inner stable zone and induce a seed magnetic island. The island width displays high frequency fluctuations that are associated with the fluctuating nature of the energy transfer process from the turbulence, while its mean size is controlled by the magnetic energy content of the turbulence.

  5. Weak turbulence theory for collisional plasmas

    NASA Astrophysics Data System (ADS)

    Yoon, P. H.; Ziebell, L. F.; Kontar, E. P.; Schlickeiser, R.

    2016-03-01

    Plasma is an ionized gas in which the collective behavior dominates over the individual particle interactions. For this reason, plasma is often treated as collisionless or collision-free. However, the discrete nature of the particles can be important, and often, the description of plasmas is incomplete without properly taking the discrete particle effects into account. The weak turbulence theory is a perturbative nonlinear theory, whose essential formalism was developed in the late 1950s and 1960s and continued on through the early 1980s. However, the standard material found in the literature does not treat the discrete particle effects and the associated fluctuations emitted spontaneously by thermal particles completely. Plasma particles emit electromagnetic fluctuations in all frequencies and wave vectors, but in the standard literature, the fluctuations are approximately treated by considering only those frequency-wave number regimes corresponding to the eigenmodes (or normal modes) satisfying the dispersion relations, while ignoring contributions from noneigenmodes. The present paper shows that the noneigenmode fluctuations modify the particle kinetic equation so that the generalized equation includes the Balescu-Lénard-Landau collision integral and also modify the wave kinetic equation to include not only the collisional damping term but also a term that depicts the bremsstrahlung emission of plasma normal modes.

  6. Turbulent expansion during parametric plasma heating

    NASA Astrophysics Data System (ADS)

    Trakhtengerts, V. Iu.

    1983-10-01

    In recent experiments on the parametric heating of the ionosphere, the application of intense electromagnetic radiation in the shortwave range to the ionospheric F layer has been accompanied by comparatively broad-band stimulated radio emission with a central frequency near the frequency of the pump wave. This emission is thought to result from the conversion of plasma waves into electromagnetic radiation during the three-wave interaction with the ion probe, and is observed even after the pump is turned off. Suprathermal electrons accelerated to 25-30 eV have been observed simultaneously. The anomalously long lifetime of the stimulated emission is explained here in terms of the turbulent expansion of a cloud of suprathermal particles in a collisionless plasma.

  7. Development of the megahertz planar laser-induced fluorescence diagnostic for plasma turbulence visualization

    SciTech Connect

    Kuritsyn, Aleksey; Levinton, Fred M.

    2004-10-01

    A megahertz laser-induced fluorescence-based diagnostic system for measuring ion density fluctuations in two spatial dimensions is described. Well resolved spatial and temporal two-dimensional (2D) images of turbulent structures will be useful in understanding ion turbulence in magnetically confined plasmas which is a key factor in the performance of fusion experimental devices. A sheet beam of a megahertz repetition rate tunable Alexandrite laser is used to excite ion emission from argon plasma. The fluorescence emitted from the plane of the laser beam is detected with a narrow band interference filter and intensified ultrafast charge coupled device camera providing 2D images of relative ion density fluctuations every microsecond. It is expected that the edge plasma on fusion devices will be accessible to this technique.

  8. Development of the Megahertz Planar Laser-induced Fluorescence Diagnostic for Plasma Turbulence Visualization

    SciTech Connect

    Aleksey Kuritsyn; Fred M. Levinton

    2004-04-27

    A megahertz LIF-based diagnostic system for measuring ion density fluctuations in two spatial dimensions is described. Well resolved spatial and temporal 2D images of turbulent structures will be useful in understanding ion turbulence in magnetically confined plasmas which is a key factor in the performance of fusion experimental devices. A sheet beam of a megahertz repetition rate tunable Alexandrite laser is used to excite ion emission from argon plasma. The fluorescence emitted from the plane of the laser beam is detected with a narrow band interference filter and intensified ultra-fast CCD camera providing 2D images of relative ion density fluctuations every microsecond. It is expected that the edge plasma on fusion devices will be accessible to this technique.

  9. EDITORIAL: Plasma Surface Interactions for Fusion

    NASA Astrophysics Data System (ADS)

    2006-05-01

    Because plasma-boundary physics encompasses some of the most important unresolved issues for both the International Thermonuclear Experimental Reactor (ITER) project and future fusion power reactors, there is a strong interest in the fusion community for better understanding and characterization of plasma wall interactions. Chemical and physical sputtering cause the erosion of the limiters/divertor plates and vacuum vessel walls (made of C, Be and W, for example) and degrade fusion performance by diluting the fusion fuel and excessively cooling the core, while carbon redeposition could produce long-term in-vessel tritium retention, degrading the superior thermo-mechanical properties of the carbon materials. Mixed plasma-facing materials are proposed, requiring optimization for different power and particle flux characteristics. Knowledge of material properties as well as characteristics of the plasma material interaction are prerequisites for such optimizations. Computational power will soon reach hundreds of teraflops, so that theoretical and plasma science expertise can be matched with new experimental capabilities in order to mount a strong response to these challenges. To begin to address such questions, a Workshop on New Directions for Advanced Computer Simulations and Experiments in Fusion-Related Plasma Surface Interactions for Fusion (PSIF) was held at the Oak Ridge National Laboratory from 21 to 23 March, 2005. The purpose of the workshop was to bring together researchers in fusion related plasma wall interactions in order to address these topics and to identify the most needed and promising directions for study, to exchange opinions on the present depth of knowledge of surface properties for the main fusion-related materials, e.g., C, Be and W, especially for sputtering, reflection, and deuterium (tritium) retention properties. The goal was to suggest the most important next steps needed for such basic computational and experimental work to be facilitated

  10. Measuring plasma turbulence using low coherence microwave radiation

    SciTech Connect

    Smith, D. R.

    2012-02-20

    Low coherence backscattering (LCBS) is a proposed diagnostic technique for measuring plasma turbulence and fluctuations. LCBS is an adaptation of optical coherence tomography, a biomedical imaging technique. Calculations and simulations show LCBS measurements can achieve centimeter-scale spatial resolution using low coherence microwave radiation. LCBS measurements exhibit several advantages over standard plasma turbulence measurement techniques including immunity to spurious reflections and measurement access in hollow density profiles. Also, LCBS is scalable for 1-D profile measurements and 2-D turbulence imaging.

  11. Global Scale-Invariant Dissipation in Collisionless Plasma Turbulence

    SciTech Connect

    Kiyani, K. H.; Chapman, S. C.; Khotyaintsev, Yu. V.; Dunlop, M. W.; Sahraoui, F.

    2009-08-14

    A higher-order multiscale analysis of the dissipation range of collisionless plasma turbulence is presented using in situ high-frequency magnetic field measurements from the Cluster spacecraft in a stationary interval of fast ambient solar wind. The observations, spanning five decades in temporal scales, show a crossover from multifractal intermittent turbulence in the inertial range to non-Gaussian monoscaling in the dissipation range. This presents a strong observational constraint on theories of dissipation mechanisms in turbulent collisionless plasmas.

  12. Turbulent cascade in a two-ion plasma

    SciTech Connect

    Qiu, Xin; Liu, San-Qiu; Yu, Ming-Yang

    2014-11-15

    It is shown that small but finite-amplitude drift wave turbulence in a two-ion-species plasma can be modeled by a Hasegawa-Mima equation. The mode cascade process and resulting turbulent spectrum are investigated. The spectrum is found to be similar to that of a two-component plasma, but the space and time scales of the turbulent cascade process can be quite different since they are rescaled by the presence of the second ion species.

  13. Characterization of radial turbulent fluxes in the Santander linear plasma machine

    SciTech Connect

    Mier, J. A. Anabitarte, E.; Sentíes, J. M.; Sánchez, R.; Newman, D. E.; Castellanos, O. F.; Milligen, B. Ph. van

    2014-05-15

    It is shown that the statistical and correlation properties of the local turbulent flux measured at different radial locations of the cold, weakly ionized plasmas inside the Santander Linear Plasma Machine [Castellanos et al., Plasma Phys. Control. Fusion 47, 2067 (2005)] are consistent with diffusive-like transport dynamics. This is in contrast to the dynamical behavior inferred from similar measurements taken in hotter, fully ionized tokamak and stellarator edge plasmas, in which long-term correlations and other features characteristic of complex, non-diffusive transport dynamics have been reported in the past. These results may shed some light on a recent controversy regarding the possible universality of the dynamics of turbulent transport in magnetized plasmas.

  14. Characterization of radial turbulent fluxes in the Santander linear plasma machine

    NASA Astrophysics Data System (ADS)

    Mier, J. A.; Sánchez, R.; Newman, D. E.; Castellanos, O. F.; Anabitarte, E.; Sentíes, J. M.; van Milligen, B. Ph.

    2014-05-01

    It is shown that the statistical and correlation properties of the local turbulent flux measured at different radial locations of the cold, weakly ionized plasmas inside the Santander Linear Plasma Machine [Castellanos et al., Plasma Phys. Control. Fusion 47, 2067 (2005)] are consistent with diffusive-like transport dynamics. This is in contrast to the dynamical behavior inferred from similar measurements taken in hotter, fully ionized tokamak and stellarator edge plasmas, in which long-term correlations and other features characteristic of complex, non-diffusive transport dynamics have been reported in the past. These results may shed some light on a recent controversy regarding the possible universality of the dynamics of turbulent transport in magnetized plasmas.

  15. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, Jason; Eskridge, Richard; Kirkpatrick, Ronald C.; Knapp, Charles E.; Lee, Michael; Martin, Adam; Smith, James; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    For practical applications of magnetized target fusion, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Quasi-spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a quasi-spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC). Theoretical analysis and computer modeling of the concept are presented. It is shown that, with the appropriate choice of the flow parameters in the liner and the target, the impact between the liner and the target plasma can be made to be shockless in the liner or to generate at most a very weak shock in the liner. Additional information is contained in the original extended abstract.

  16. Fusion Reaction Rate in an Inhomogeneous Plasma

    SciTech Connect

    S. Son; N.J. Fisch

    2004-09-03

    The local fusion rate, obtained from the assumption that the distribution is a local Maxwellian, is inaccurate if mean-free-paths of fusing particles are not sufficiently small compared with the inhomogeneity length of the plasma. We calculate the first order correction of P0 in terms of the small spatial gradient and obtain a non-local modification of P(sub)0 in a shock region when the gradient is not small. Use is made of the fact that the fusion reaction cross section has a relatively sharp peak as a function of energy.

  17. Effects of Plasma Shaping on Nonlinear Gyrokinetic Turbulence

    SciTech Connect

    E. A. Belli; Hammett, G. W.; Dorland, W.

    2008-08-01

    The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the GS2 code [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995); W. Dorland, F. Jenko, M. Kotschenreuther, and B.N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. Studies of the scaling of nonlinear turbulence with shaping parameters are performed using analytic equilibria based on interpolations of representative shapes of the Joint European Torus (JET) [P.H. Rebut and B.E. Keen, Fusion Technol. 11, 13 (1987)]. High shaping is found to be a stabilizing influence on both the linear ion-temperature-gradient (ITG) instability and the nonlinear ITG turbulence. For the parameter regime studied here, a scaling of the heat flux with elongation of χ ~ κ-1.5 or κ-2.0, depending on the triangularity, is observed at fixed average temperature gradient. While this is not as strong as empirical elongation scalings, it is also found that high shaping results in a larger Dimits upshift of the nonlinear critical temperature gradient due to an enhancement of the Rosenbluth-Hinton residual zonal flows.

  18. Role of impurities in fusion plasmas

    SciTech Connect

    Tokar, M. Z.

    2008-10-15

    The role of impurity at the plasma edge of fusion devices is considered by analysing the influence on radiation losses and anomalous transport of particle and energy. The conditions critical for the development of radiative instabilities leading to the formation of detachment and MARFE and those necessary for the creation of a stable radiating edge, protecting the wall elements from intensive heat loads, are analyzed. Mechanisms responsible for anomalous transport suppression with impurity seeding are elucidated.

  19. A Concept of Cross-Ferroic Plasma Turbulence.

    PubMed

    Inagaki, S; Kobayashi, T; Kosuga, Y; Itoh, S-I; Mitsuzono, T; Nagashima, Y; Arakawa, H; Yamada, T; Miwa, Y; Kasuya, N; Sasaki, M; Lesur, M; Fujisawa, A; Itoh, K

    2016-02-26

    The variety of scalar and vector fields in laboratory and nature plasmas is formed by plasma turbulence. Drift-wave fluctuations, driven by density gradients in magnetized plasmas, are known to relax the density gradient while they can generate flows. On the other hand, the sheared flow in the direction of magnetic fields causes Kelvin-Helmholtz type instabilities, which mix particle and momentum. These different types of fluctuations coexist in laboratory and nature, so that the multiple mechanisms for structural formation exist in extremely non-equilibrium plasmas. Here we report the discovery of a new order in plasma turbulence, in which chained structure formation is realized by cross-interaction between inhomogeneities of scalar and vector fields. The concept of cross-ferroic turbulence is developed, and the causal relation in the multiple mechanisms behind structural formation is identified, by measuring the relaxation rate and dissipation power caused by the complex turbulence-driven flux.

  20. A Concept of Cross-Ferroic Plasma Turbulence

    PubMed Central

    Inagaki, S.; Kobayashi, T.; Kosuga, Y.; Itoh, S.-I.; Mitsuzono, T.; Nagashima, Y.; Arakawa, H.; Yamada, T.; Miwa, Y.; Kasuya, N.; Sasaki, M.; Lesur, M.; Fujisawa, A.; Itoh, K.

    2016-01-01

    The variety of scalar and vector fields in laboratory and nature plasmas is formed by plasma turbulence. Drift-wave fluctuations, driven by density gradients in magnetized plasmas, are known to relax the density gradient while they can generate flows. On the other hand, the sheared flow in the direction of magnetic fields causes Kelvin-Helmholtz type instabilities, which mix particle and momentum. These different types of fluctuations coexist in laboratory and nature, so that the multiple mechanisms for structural formation exist in extremely non-equilibrium plasmas. Here we report the discovery of a new order in plasma turbulence, in which chained structure formation is realized by cross-interaction between inhomogeneities of scalar and vector fields. The concept of cross-ferroic turbulence is developed, and the causal relation in the multiple mechanisms behind structural formation is identified, by measuring the relaxation rate and dissipation power caused by the complex turbulence-driven flux. PMID:26917218

  1. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    SciTech Connect

    Davidson, Ronald C.

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described. (MOW)

  2. Particle pinch and collisionality in gyrokinetic simulations of tokamak plasma turbulence

    SciTech Connect

    Angioni, C.; Candy, J.; Waltz, R. E.; Fable, E.; Maslov, M.; Weisen, H.; Peeters, A. G.

    2009-06-15

    The generic problem of how, in a turbulent plasma, the experimentally relevant conditions of a particle flux very close to the null are achieved, despite the presence of strong heat fluxes, is addressed. Nonlinear gyrokinetic simulations of plasma turbulence in tokamaks reveal a complex dependence of the particle flux as a function of the turbulent spatial scale and of the velocity space as collisionality is increased. At experimental values of collisionality, the particle flux is found close to the null, in agreement with the experiment, due to the balance between inward and outward contributions at small and large scales, respectively. These simulations provide full theoretical support to the prediction of a peaked density profile in a future nuclear fusion reactor.

  3. Non-thermal Dupree diffusivity and shielding effects on atomic collisions in Lorentzian turbulent plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-05-01

    The influence of non-thermal Dupree turbulence and the plasma shielding on the electron-ion collision is investigated in Lorentzian turbulent plasmas. The second-order eikonal analysis and the effective interaction potential including the Lorentzian far-field term are employed to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the diffusion coefficient, impact parameter, collision energy, Debye length and spectral index of the astrophysical Lorentzian plasma. It is shown that the non-thermal effect suppresses the eikonal scattering phase shift. However, it enhances the eikonal collision cross section in astrophysical non-thermal turbulent plasmas. The effect of non-thermal turbulence on the eikonal atomic collision cross section is weakened with increasing collision energy. The variation of the atomic cross section due to the non-thermal Dupree turbulence is also discussed. This research was supported by Nuclear Fusion Research Program through NRF funded by the Ministry of Science, ICT & Future Planning (Grant No. 2015M1A7A1A01002786).

  4. Atmospheric turbulence mitigation using complex wavelet-based fusion.

    PubMed

    Anantrasirichai, Nantheera; Achim, Alin; Kingsbury, Nick G; Bull, David R

    2013-06-01

    Restoring a scene distorted by atmospheric turbulence is a challenging problem in video surveillance. The effect, caused by random, spatially varying, perturbations, makes a model-based solution difficult and in most cases, impractical. In this paper, we propose a novel method for mitigating the effects of atmospheric distortion on observed images, particularly airborne turbulence which can severely degrade a region of interest (ROI). In order to extract accurate detail about objects behind the distorting layer, a simple and efficient frame selection method is proposed to select informative ROIs only from good-quality frames. The ROIs in each frame are then registered to further reduce offsets and distortions. We solve the space-varying distortion problem using region-level fusion based on the dual tree complex wavelet transform. Finally, contrast enhancement is applied. We further propose a learning-based metric specifically for image quality assessment in the presence of atmospheric distortion. This is capable of estimating quality in both full- and no-reference scenarios. The proposed method is shown to significantly outperform existing methods, providing enhanced situational awareness in a range of surveillance scenarios.

  5. Mass dependency of turbulent parameters in stationary glow discharge plasmas

    SciTech Connect

    Titus, J. B.; Alexander, A. B.; Wiggins, D. L.; Johnson, J. A. III

    2013-05-15

    A direct current glow discharge tube is used to determine how mass changes the effects of certain turbulence characteristics in a weakly ionized gas. Helium, neon, argon, and krypton plasmas were created, and an axial magnetic field, varied from 0.0 to 550.0 Gauss, was used to enhance mass dependent properties of turbulence. From the power spectra of light emission variations associated with velocity fluctuations, determination of mass dependency on turbulent characteristic unstable modes, energy associated with turbulence, and the rate at which energy is transferred from scale to scale are measured. The magnetic field strength is found to be too weak to overcome particle diffusion to the walls to affect the turbulence in all four types of plasmas, though mass dependency is still detected. Though the total energy and the rate at which the energy moves between scales are mass invariant, the amplitude of the instability modes that characterize each plasma are dependent on mass.

  6. Recent results on analytical plasma turbulence theory: Realizability, intermittency, submarginal turbulence, and self-organized criticality

    SciTech Connect

    Krommes, J.A.

    2000-01-18

    Recent results and future challenges in the systematic analytical description of plasma turbulence are described. First, the importance of statistical realizability is stressed, and the development and successes of the Realizable Markovian Closure are briefly reviewed. Next, submarginal turbulence (linearly stable but nonlinearly self-sustained fluctuations) is considered and the relevance of nonlinear instability in neutral-fluid shear flows to submarginal turbulence in magnetized plasmas is discussed. For the Hasegawa-Wakatani equations, a self-consistency loop that leads to steady-state vortex regeneration in the presence of dissipation is demonstrated and a partial unification of recent work of Drake (for plasmas) and of Waleffe (for neutral fluids) is given. Brief remarks are made on the difficulties facing a quantitatively accurate statistical description of submarginal turbulence. Finally, possible connections between intermittency, submarginal turbulence, and self-organized criticality (SOC) are considered and outstanding questions are identified.

  7. Low-frequency turbulence in a linear magnetized plasma.

    PubMed

    Rogers, B N; Ricci, Paolo

    2010-06-01

    Plasma turbulence in a linear device is explored for the first time with three-dimensional global two-fluid simulations, focusing on the plasma parameters of the Large Plasma Device. Three instabilities are present in the simulations: the Kelvin-Helmholtz instability, a sheath-driven instability, and a resistive drift wave instability. The Kelvin-Helmholtz mode is shown to dominate the transport of plasma across the magnetic field. Simple scaling laws are obtained for the plasma profiles. PMID:20867177

  8. Can Venus magnetosheath plasma evolve into turbulence?

    NASA Astrophysics Data System (ADS)

    Dwivedi, Navin; Schmid, Daniel; Narita, Yasuhito; Volwerk, Martin; Delva, Magda; Voros, Zoltan; Zhang, Tielong

    2014-05-01

    The present work aims to understand turbulence properties in planetary magnetosheath regions to obtain physical insight on the energy transfer from the larger to smaller scales, in spirit of searching for power-law behaviors in the spectra which is an indication of the energy cascade and wave-wave interaction. We perform a statistical analysis of energy spectra using the Venus Express spacecraft data in the Venusian magnetosheath. The fluxgate magnetometer data (VEXMAG) calibrated down to 1 Hz as well as plasma data from the ion mass analyzer (ASPERA) aboard the spacecraft are used in the years 2006-2009. Ten-minute intervals in the magnetosheath are selected, which is typical time length of observations of quasi-stationary fluctuations avoiding multiple boundaries crossings. The magnetic field data are transformed into the mean-field-aligned (MFA) coordinate system with respect to the large-scale magnetic field direction and the energy spectra are evaluated using a Welch algorithm in the frequency range between 0.008 Hz and 0.5 Hz for 105 time intervals. The averaged energy spectra show a power law upto 0.3 Hz with the approximate slope of -1, which is flatter than the Kolmogorov slope, -5/3. A slight hump in the spectra is found in the compressive component near 0.3 Hz, which could possibly be realization of mirror mode in the magnetosheath. A spectral break (sudden change in slope) accompanies the spectral hump at 0.4 Hz, above which the spectral curve becomes steeper. The overall spectral shape is reminiscent of turbulence. The low-frequency part with the slope -1 is interpreted as realization of the energy containing range, while the high-frequency part with the steepening is interpreted either as the beginning of energy cascade mediated by mirror mode or as the dissipation range due to wave-particle resonance processes. The present research work is fully supported by FP7/STORM (313038).

  9. Synthetic diagnostics platform for fusion plasmas (invited)

    NASA Astrophysics Data System (ADS)

    Shi, L.; Valeo, E. J.; Tobias, B. J.; Kramer, G. J.; Hausammann, L.; Tang, W. M.; Chen, M.

    2016-11-01

    A Synthetic Diagnostics Platform (SDP) for fusion plasmas has been developed which provides state of the art synthetic reflectometry, beam emission spectroscopy, and Electron Cyclotron Emission (ECE) diagnostics. Interfaces to the plasma simulation codes GTC, XGC-1, GTS, and M3D-C1 are provided, enabling detailed validation of these codes. In this paper, we give an overview of SDP's capabilities, and introduce the synthetic diagnostic modules. A recently developed synthetic ECE Imaging module which self-consistently includes refraction, diffraction, emission, and absorption effects is discussed in detail. Its capabilities are demonstrated on two model plasmas. The importance of synthetic diagnostics in validation is shown by applying the SDP to M3D-C1 output and comparing it with measurements from an edge harmonic oscillation mode on DIII-D.

  10. Numerical Studies of Impurities in Fusion Plasmas

    DOE R&D Accomplishments Database

    Hulse, R. A.

    1982-09-01

    The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.

  11. A dynamical model of plasma turbulence in the solar wind

    PubMed Central

    Howes, G. G.

    2015-01-01

    A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kinetic plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfvén waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfvén waves with the development of small-scale current sheets is presented and its physical implications are discussed. This model leads to a simplified perspective on the nature of turbulence in a weakly collisional plasma: the nonlinear interactions responsible for the turbulent cascade of energy and the formation of current sheets are essentially fluid in nature, while the collisionless damping of the turbulent fluctuations and the energy injection by kinetic instabilities are essentially kinetic in nature. PMID:25848075

  12. A dynamical model of plasma turbulence in the solar wind.

    PubMed

    Howes, G G

    2015-05-13

    A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kinetic plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfvén waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfvén waves with the development of small-scale current sheets is presented and its physical implications are discussed. This model leads to a simplified perspective on the nature of turbulence in a weakly collisional plasma: the nonlinear interactions responsible for the turbulent cascade of energy and the formation of current sheets are essentially fluid in nature, while the collisionless damping of the turbulent fluctuations and the energy injection by kinetic instabilities are essentially kinetic in nature.

  13. Scaling law of plasma turbulence with nonconservative fluxes.

    PubMed

    Gogoberidze, Grigol

    2005-10-01

    It is shown that in the presence of anisotropic kinetic dissipation existence of the scale invariant power law spectrum of plasma turbulence is possible. The obtained scale invariant spectrum is not associated with the constant flux of any physical quantity. Application of the model to the high frequency part of the solar wind turbulence is discussed.

  14. A dynamical model of plasma turbulence in the solar wind.

    PubMed

    Howes, G G

    2015-05-13

    A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kinetic plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfvén waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfvén waves with the development of small-scale current sheets is presented and its physical implications are discussed. This model leads to a simplified perspective on the nature of turbulence in a weakly collisional plasma: the nonlinear interactions responsible for the turbulent cascade of energy and the formation of current sheets are essentially fluid in nature, while the collisionless damping of the turbulent fluctuations and the energy injection by kinetic instabilities are essentially kinetic in nature. PMID:25848075

  15. Penetration of resonant magnetic perturbations in turbulent edge plasmas

    NASA Astrophysics Data System (ADS)

    Monnier, A.; Fuhr, G.; Beyer, P.; Marcus, F. A.; Benkadda, S.; Garbet, X.

    2014-06-01

    Comprehension of the interactions between tokamak edge plasmas and externally induced resonant magnetic perturbations (RMPs) is an important step in the understanding of the control of edge-localized modes by these RMPs. Such control has been demonstrated experimentally, but previous theoretical investigations have revealed a possible screening of RMPs by a sheared rotation of the plasma. In this work, the penetration of RMPs is investigated via numerical simulations in a reduced magnetohydrodynamic model using the three-dimensional electromagnetic turbulence code EMEDGE3D. In this model, the plasma response to RMPs can be studied in the presence of flux-driven micro-turbulence and a transport barrier induced by sheared plasma rotation. The interplay is, in a first part, studied in a non-turbulent case to deduce a criterion for the penetration in a rotating plasma that is governed by the generation of counter currents. When the plasma is studied in a statistically stationary turbulent state, the self-consistent plasma rotation, governed by Reynolds and Maxwell stresses, leads to a self-organization where RMP penetrates. In a turbulent plasma in the presence of a transport barrier, the RMP harmonic that is resonant at the barrier centre is found to penetrate partially. This partial penetration is sufficient to trigger a local flattening of the pressure gradient that is known to be at the origin of the control of transport barrier relaxations in the present model.

  16. Doppler tomography in fusion plasmas and astrophysics

    NASA Astrophysics Data System (ADS)

    Salewski, M.; Geiger, B.; Heidbrink, W. W.; Jacobsen, A. S.; Korsholm, S. B.; Leipold, F.; Madsen, J.; Moseev, D.; Nielsen, S. K.; Rasmussen, J.; Stagner, L.; Steeghs, D.; Stejner, M.; Tardini, G.; Weiland, M.

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion Dα (FIDA) spectroscopy measurements in magnetically confined plasma, the Dα-photons are likewise Doppler-shifted ultimately due to gyration of the fast ions. In either case, spectra of Doppler-shifted line emission are sensitive to the velocity distribution of the emitters. Astrophysical Doppler tomography has lead to images of accretion discs of binaries revealing bright spots, spiral structures and flow patterns. Fusion plasma Doppler tomography has led to an image of the fast-ion velocity distribution function in the tokamak ASDEX Upgrade. This image matched numerical simulations very well. Here we discuss achievements of the Doppler tomography approach, its promise and limits, analogies and differences in astrophysical and fusion plasma Doppler tomography and what can be learned by comparison of these applications.

  17. Exploring Plasma Turbulence in the Kronian Magnetosheath Using Cassini Data

    NASA Astrophysics Data System (ADS)

    Hadid, L.; Sahraoui, F.; Kiyani, K. H.; Modolo, R.; Retino, A.; Canu, P.; Masters, A.; Dougherty, M. K.

    2014-12-01

    The shocked solar wind plasma upstream of the bowshock forms the magnetosheath. Through this region energy, mass and momentum are transported from the solar wind into the planet's magnetosphere, playing a crucial role in the solar-planet interactions. Hence, the planets' magnetosheath present a high level of turbulence, with a rich variety of wave and stochastic phenomena. While the magnetic turbulence of the terrestrial magnetosheath has been extensively studied, not so much work has been done regarding the planets magnetosheaths. Therefore, and in order to expand our knowledge on plasma turbulence, we investigate here the main properties of the plasma turbulence in the magnetosheath of Saturn using the Cassini spacecraft data and compare it with the well-explored terrestrial solar wind turbulence. These properties include the magnetic field energy spectra, the magnetic compressibility and intermittency, at both MHD and kinetic scales. The analysis is based on in-situ data provided by the Fluxgate Magnetometer of the MAG instrument, which measures the magnetic field data with 32ms time resolution and the plasma data from the CAPS/IMS (Cassini Plasma Spectrometer) and the Electron Spectrometer (ELS), during 39 shock-crossings between 2004 and 2005. Similarities and differences were found between the different media, in particular about the nature of the turbulence and its scaling laws. These finding will be discussed along with theoretical implications on the modeling of space plasma.

  18. Immediate Influence of External Sources on Turbulent Plasma Transport

    NASA Astrophysics Data System (ADS)

    Kosuga, Yusuke; Itoh, Sanae-I.; Itoh, Kimitaka

    Immediate impact of external sources on pressure-gradient-driven turbulence and turbulent transport (without waiting the evolution of global parameters and those in mean velocity distribution function) is discussed. The case, where an external source directly couples with plasma fluctuations in particle source and momentum source, is investigated. Theoretical analysis is developed by use of Hasegawa-Wakatani model equations. It is shown that the momentum source can induce the immediate influence on the turbulence and turbulent transport. The effect of this coupling between source and fluctuations on the momentum theorem is also explained.

  19. Turbulent transport of fast ions in the Large Plasma Device

    SciTech Connect

    Zhou Shu; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T.; Vincena, S.; Tripathi, S. K. P.; Popovich, P.; Friedman, B.; Jenko, F.

    2010-09-15

    Strong drift wave turbulence is observed in the Large Plasma Device [H. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] on density gradients produced by a plate limiter. Energetic lithium ions orbit through the turbulent region. Scans with a collimated ion analyzer and with Langmuir probes give detailed profiles of the fast ion spatial distribution and the fluctuating fields. The fast ion transport decreases rapidly with increasing fast ion gyroradius. Unlike the diffusive transport caused by Coulomb collisions, in this case the turbulent transport is nondiffusive. Analysis and simulation suggest that such nondiffusive transport is due to the interaction of the fast ions with stationary two-dimensional electrostatic turbulence.

  20. Turbulence studies in Tokamak boundary plasmas with realistic divertor geometry

    SciTech Connect

    Xu, X.Q.

    1998-10-14

    Results are presented from the 3D nonlocal electromagnetic turbulence code BOUT [1] and the linearized shooting code BAL[2] to study turbulence in tokamak boundary plasmas and its relationship to the L-H transition, in a realistic divertor plasma geometry. The key results include: (1) the identification of the dominant, resistive X-point mode in divertor geometry and (2) turbulence suppression in the L-H transition by shear in the ExB drift speed, ion diamagnetism and finite polarization. Based on the simulation results, a parameterization of the transport is given that includes the dependence on the relevant physical parameters.

  1. The energetic coupling of scales in gyrokinetic plasma turbulence

    SciTech Connect

    Teaca, Bogdan; Jenko, Frank

    2014-07-15

    In magnetized plasma turbulence, the couplings of perpendicular spatial scales that arise due to the nonlinear interactions are analyzed from the perspective of the free-energy exchanges. The plasmas considered here, with appropriate ion or electron adiabatic electro-neutrality responses, are described by the gyrokinetic formalism in a toroidal magnetic geometry. Turbulence develops due to the electrostatic fluctuations driven by temperature gradient instabilities, either ion temperature gradient (ITG) or electron temperature gradient (ETG). The analysis consists in decomposing the system into a series of scale structures, while accounting separately for contributions made by modes possessing special symmetries (e.g., the zonal flow modes). The interaction of these scales is analyzed using the energy transfer functions, including a forward and backward decomposition, scale fluxes, and locality functions. The comparison between the ITG and ETG cases shows that ETG turbulence has a more pronounced classical turbulent behavior, exhibiting a stronger energy cascade, with implications for gyrokinetic turbulence modeling.

  2. Toward the Theory of Turbulence in Magnetized Plasmas

    SciTech Connect

    Boldyrev, Stanislav

    2013-07-26

    The goal of the project was to develop a theory of turbulence in magnetized plasmas at large scales, that is, scales larger than the characteristic plasma microscales (ion gyroscale, ion inertial scale, etc.). Collisions of counter-propagating Alfven packets govern the turbulent cascade of energy toward small scales. It has been established that such an energy cascade is intrinsically anisotropic, in that it predominantly supplies energy to the modes with mostly field-perpendicular wave numbers. The resulting energy spectrum of MHD turbulence, and the structure of the fluctuations were studied both analytically and numerically. A new parallel numerical code was developed for simulating reduced MHD equations driven by an external force. The numerical setting was proposed, where the spectral properties of the force could be varied in order to simulate either strong or weak turbulent regimes. It has been found both analytically and numerically that weak MHD turbulence spontaneously generates a “condensate”, that is, concentration of magnetic and kinetic energy at small k{sub {parallel}}. A related topic that was addressed in the project is turbulent dynamo action, that is, generation of magnetic field in a turbulent flow. We were specifically concentrated on the generation of large-scale magnetic field compared to the scales of the turbulent velocity field. We investigate magnetic field amplification in a turbulent velocity field with nonzero helicity, in the framework of the kinematic Kazantsev-Kraichnan model.

  3. A weakened cascade model for turbulence in astrophysical plasmas

    SciTech Connect

    Howes, G. G.; TenBarge, J. M.; Dorland, W.

    2011-10-15

    A refined cascade model for kinetic turbulence in weakly collisional astrophysical plasmas is presented that includes both the transition between weak and strong turbulence and the effect of nonlocal interactions on the nonlinear transfer of energy. The model describes the transition between weak and strong MHD turbulence and the complementary transition from strong kinetic Alfven wave (KAW) turbulence to weak dissipating KAW turbulence, a new regime of weak turbulence in which the effects of shearing by large scale motions and kinetic dissipation play an important role. The inclusion of the effect of nonlocal motions on the nonlinear energy cascade rate in the dissipation range, specifically the shearing by large-scale motions, is proposed to explain the nearly power-law energy spectra observed in the dissipation range of both kinetic numerical simulations and solar wind observations.

  4. TURBULENT RECONNECTION IN RELATIVISTIC PLASMAS AND EFFECTS OF COMPRESSIBILITY

    SciTech Connect

    Takamoto, Makoto; Inoue, Tsuyoshi; Lazarian, Alexandre E-mail: tsuyoshi.inoue@nao.ac.jp

    2015-12-10

    We report on the turbulence effects on magnetic reconnection in relativistic plasmas using three-dimensional relativistic resistive magnetohydrodynamics simulations. We found that the reconnection rate became independent of the plasma resistivity due to turbulence effects similarly to non-relativistic cases. We also found that compressible turbulence effects modified the turbulent reconnection rate predicted in non-relativistic incompressible plasmas; the reconnection rate saturates, and even decays, as the injected velocity approaches to the Alfvén velocity. Our results indicate that compressibility cannot be neglected when a compressible component becomes about half of the incompressible mode, occurring when the Alfvén Mach number reaches about 0.3. The obtained maximum reconnection rate is around 0.05–0.1, which will be able to reach around 0.1–0.2 if injection scales are comparable to the sheet length.

  5. Toward a Fully Kinetic Theory of Turbulence in Magnetized Plasmas

    SciTech Connect

    Yoon, Peter H.

    2010-12-30

    This paper outlines the present status of the kinetic theory of turbulence in magnetized plasmas as being developed by the present author. The systematic program to formulate the theory of turbulence starting from the Vlasov-Klimontovich formalism began with the works by pioneers of modern plasma physics in the 1960s and 1970s. However, early efforts adopted the heuristic semi-classical method instead of the statistical mechanical formulation, which is necessary for a quantitative analysis. Recently, the present author picked up where the early pioneers left, and began to reformulate the kinetic turbulence theory of turbulence in magnetized plasmas from statistical mechanical formalism. This paper is a brief outline of the progress to date.

  6. The Dynamical Generation of Current Sheets in Astrophysical Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Howes, Gregory G.

    2016-08-01

    Turbulence profoundly affects particle transport and plasma heating in many astrophysical plasma environments, from galaxy clusters to the solar corona and solar wind to Earth's magnetosphere. Both fluid and kinetic simulations of plasma turbulence ubiquitously generate coherent structures, in the form of current sheets, at small scales, and the locations of these current sheets appear to be associated with enhanced rates of dissipation of the turbulent energy. Therefore, illuminating the origin and nature of these current sheets is critical to identifying the dominant physical mechanisms of dissipation, a primary aim at the forefront of plasma turbulence research. Here, we present evidence from nonlinear gyrokinetic simulations that strong nonlinear interactions between counterpropagating Alfvén waves, or strong Alfvén wave collisions, are a natural mechanism for the generation of current sheets in plasma turbulence. Furthermore, we conceptually explain this current sheet development in terms of the nonlinear dynamics of Alfvén wave collisions, showing that these current sheets arise through constructive interference among the initial Alfvén waves and nonlinearly generated modes. The properties of current sheets generated by strong Alfvén wave collisions are compared to published observations of current sheets in the Earth's magnetosheath and the solar wind, and the nature of these current sheets leads to the expectation that Landau damping of the constituent Alfvén waves plays a dominant role in the damping of turbulently generated current sheets.

  7. Reverse Energy Cascade in Turbulent Weakly Ionized Plasmas

    NASA Technical Reports Server (NTRS)

    Williams, Kyron; Appartaim, R.; Belay, K.; Johnson, J. A., III

    1998-01-01

    For systems far from equilibrium, the neglect of a role for viscous effects in turbulence may be generally inappropriate when the relaxation time for the molecular process approaches the local flow time (Orou et al. (1996)). Furthermore, for stationary collisional plasmas, the conventional Reynolds number is irrelevant under circumstances where the standard features of turbulence in ordinary gases are observed in the plasma (Johnson et al. (1987)). The current theoretical understanding of these turbulent phenomenon is particularly inadequate for turbulence associated with ionizing shock waves; generally speaking, thermodynamic, acoustic and pressure fluctuations are all seen as amplified across the shock wave followed by a dramatic decay (relaminarization) usually attributed to a lack of importance of viscosity in the turbulent regions. This decay would be accelerated when the flow speed is also reduced due to the importance usually given to the conventional Reynolds number (which is directly proportional to velocity) as a quality of turbulence index. However, evidence supporting this consensus is lacking. By contrast, recent evidence of vanishing triple correlations form De Silva et al. (1996) provides strong support for early theoretical speculation of inherently molecular effects in macroscopic turbulence in Tsuge (1974). This specifically suggests that the role of compressive effects ordinarily associated with the shock wave could be significantly muted by the existence of a strongly turbulent local environment. There is also more recent theoretical speculation (Frisch et al. (1984)) of an inherently and previously unsuspected non-dissipative nature to turbulence, with energy conservation being nurtured by reverse energy cascades in the turbulent fluctuation spectra. Furthermore, the role which might be played by fluctuations on quantum mechanical phenomena and variations in molecular parameters is completely unknown, especially of the sort which might be found

  8. NSTX Diagnostics for Fusion Plasma Science Studies

    SciTech Connect

    R. Kaita; D. Johnson; L. Roquemore; M. Bitter; F. Levinton; F. Paoletti; D. Stutman; and the NSTX Team

    2001-07-05

    This paper will discuss how plasma science issues are addressed by the diagnostics for the National Spherical Torus Experiment (NSTX), the newest large-scale machine in the magnetic confinement fusion (MCF) program. The development of new schemes for plasma confinement involves the interplay of experimental results and theoretical interpretations. A fundamental requirement, for example, is a determination of the equilibria for these configurations. For MCF, this is well established in the solutions of the Grad-Shafranov equation. While it is simple to state its basis in the balance between the kinetic and magnetic pressures, what they are as functions of space and time are often not easy to obtain. Quantities like the plasma pressure and current density are not directly measurable. They are derived from data that are themselves complex products of more basic parameters. The same difficulties apply to the understanding of plasma instabilities. Not only are the needs for spatial and temporal resolution more stringent, but the wave parameters which characterize the instabilities are difficult to resolve. We will show how solutions to the problems of diagnostic design on NSTX, and the physics insight the data analysis provides, benefits both NSTX and the broader scientific community.

  9. Numerical Study of Microwave Reflectometry in Plasmas with 2D Turbulent Fluctuations

    SciTech Connect

    E. Mazzucato

    1998-02-01

    This paper describes a numerical study of the role played by 2D turbulent fluctuations in microwave reflectometry -- a radar technique for density measurements using the reflection of electromagnetic waves from a plasma cutoff. The results indicate that, if the amplitude of fluctuations is below a threshold which is set by the spectrum of poloidal wavenumbers, the measured backward field appears to originate from a virtual location behind the reflecting layer, and to arise from the phase modulation of the probing wave, with an amplitude given by 1D geometric optics. These results suggest a possible scheme for turbulence measurements in tokamaks, where the backward field is collected with a wide aperture antenna, and the virtual reflecting layer is imaged onto the plane of an array of detectors. Such a scheme should be capable of providing additional information on the nature of the short-scale turbulence observed in tokamaks, which still remains one of the unresolved issues in fusion research.

  10. Status and Verification of Edge Plasma Turbulence Code BOUT

    SciTech Connect

    Umansky, M V; Xu, X Q; Dudson, B; LoDestro, L L; Myra, J R

    2009-01-08

    The BOUT code is a detailed numerical model of tokamak edge turbulence based on collisional plasma uid equations. BOUT solves for time evolution of plasma uid variables: plasma density N{sub i}, parallel ion velocity V{sub {parallel}i}, electron temperature T{sub e}, ion temperature T{sub i}, electric potential {phi}, parallel current j{sub {parallel}}, and parallel vector potential A{sub {parallel}}, in realistic 3D divertor tokamak geometry. The current status of the code, physics model, algorithms, and implementation is described. Results of verification testing are presented along with illustrative applications to tokamak edge turbulence.

  11. DIFFUSION OF ENERGETIC PARTICLES IN TURBULENT MAGNETOHYDRODYNAMIC PLASMAS

    SciTech Connect

    Wisniewski, M.; Spanier, F.; Kissmann, R.

    2012-05-10

    In this paper, we investigate the transport of energetic particles in turbulent plasmas. A numerical approach is used to simulate the effect of the background plasma on the motion of energetic protons. The background plasma is in a dynamically turbulent state found from numerical magnetohydrodynamic simulations, where we use parameters typical for the heliosphere. The implications for the transport parameters (i.e., pitch-angle diffusion coefficients and mean free path) are calculated and deviations from the quasi-linear theory are discussed.

  12. Plasma turbulence and instabilities at ion kinetic scales

    NASA Astrophysics Data System (ADS)

    Hellinger, Petr; Matteini, Lorenzo; Landi, Simone; Verdini, Andrea; Franci, Luca; Travnicek, Pavel

    2015-04-01

    In situ observations in the solar wind indicate existence of many bounds on plasma parameters which are often compatible with constraints expected from theoretical linear predictions for kinetic instabilities in homogeneous plasmas. Relationship between these instabilities and ubiquitous large-amplitude turbulent fluctuations in the expanding solar wind remains to large extent an open problem. We will present results from a two-dimensional, large-scale hybrid expanding box simulation of the solar wind plasma turbulence. We impose an initial ambient magnetic field perpendicular to the simulation box, and we add an isotropic and balanced spectrum of large-scale, linearly polarized Alfvén waves with relatively strong amplitudes and we let the system evolve in a slowly expanding medium. A turbulent cascade rapidly develops with a Kolmogorov-like spectrum on large scales and a steeper spectrum on smaller scales. The turbulent spectrum heats protons both in parallel and perpendicular directions but this heating is not sufficient to overcome the double-adiabatic perpendicular cooling due to the expansion. This generates an important proton parallel temperature anisotropy which eventually leads to a fire hose-like instability which locally develops and reduces the temperature anisotropy. The present work demonstrates that fire hose can coexist with turbulence and even in the regime of strong turbulence constrains the plasma parameter space. This supports the interpretation of the many observed bounds being consequence of constraints owing to kinetic instabilities.

  13. Long-wavelength turbulence measurements in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Fonck, Raymond

    1999-11-01

    A quantum jump in our understanding of turbulence in magnetically confined plasmas has been driven by advances in both plasma theory and diagnostic capabilities. Beam Emission Spectroscopy, reflectometry, and microwave scattering provide increasingly detailed measurements of tokamak plasma turbulence, especially for long wavelength (i.e., larger than the ion gyroradius) modes. Measurements of amplitudes and spatial and temporal correlation properties are consistent with this turbulence causing the ion transport observed in standard confinement regimes such as L-mode and hot-ion regimes. Radial and poloidal spectra are in good agreement with those calculated in theoretical gyrokinetic simulations. A signature characteristic of ion temperature gradient driven turbulence is the prediction of relatively large ion thermal fluctuations, which has been confirmed to exist in experiment and establishes ITG turbulence as the dominant mechanism in the ion channel. This identification has been reinforced by the reduction of turbulence in the presence of shear flow stabilization. At both the plasma edge region (H-mode) and the hot plasma interior (Internal Transport Barrier), a drop in local turbulence and transport is observed when the local flow-induced shearing rate exceeds the calculated growth rate of the most unstable modes. Advances in challenging theory will require new experimental techniques: nonlinear spectral analysis to provide experimentally determined growth rates; 2-D visualization of the density turbulence via several proposed techniques; and high time resolution measurements to provide details on intermittency. New correlation techniques may allow measurement of flow velocity fluctuations. This in turn may allow study of zonal flows and/or fluctuations in the local electrostatic potential.

  14. A Review of Nonlinear Low Frequency (LF) Wave Observations in Space Plasmas: On the Development of Plasma Turbulence

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.

    1995-01-01

    As the lead-off presentation for the topic of nonlinear waves and their evolution, we will illustrate some prominent examples of waves in space plasmas. We will describe recent observations detected within planetary foreshocks, near comets and in interplanetary space. It is believed that the nonlinear LF plasma wave features discussed here are part of and may be basic to the development of plasma turbulence. In this sense, this is one area of space plasma physics that is fundamental, with applications to fusion physics and astrophysics as well. It is hoped that the reader(s) will be stimulated to study nonlinear wave development themselves, if he/she is not already involved.

  15. Surface conditioning of fusion devices plasma assisted thin film deposition

    SciTech Connect

    Winter, J.; Waelbroeck, F.; Weinhold, P.; Esser, H.G.; von Seggern, J.; Philipps, V.; Vietzke, E. )

    1990-02-05

    Conditioning of the plasma facing surfaces of a fusion device is a necessary prerequisite for the generaton of pure, hot and stable fusion plasmas. Thin layers of carbon or of boron containing carbon deposited plasmachemically on the entire inner surfaces of a tokamak have proven to be a very effective technique for wall prehandling.

  16. Magnetohydrodynamic turbulence and enhanced atomic processes in astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Spangler, Steven R.

    1998-08-01

    This article discusses a way in which enhanced atomic physics processes, including radiative energy losses, may occur in an astrophysical plasma containing magnetohydrodynamic turbulence. Two-dimensional (2D) magnetohydrodynamics (MHD) is adopted as a model. A major characteristic feature of 2D MHD turbulence is the development of strong current sheets on a dynamical time scale L/V0 where L is the spatial scale of the turbulent fluid and V0 is the scale of the velocity fluctuations. The current contained in the sheets will be carried by an electron drift relative to the ions. The case of a plasma containing minority atoms or ions with an excited state accessible to collisions from the tail of the electron distribution is considered. In the current carrying sheets or filaments, the electron distribution function will be perturbed such that collisional excitations will be enhanced relative to the current-free plasma. Subsequent radiative de-excitation of the atoms or ions removes energy from the turbulence. Expressions are presented for the electron drift velocity arising in 2D turbulence, the enhancement of collisional excitations of a trace atom or ion, and the energy lost to the plasma turbulence by radiative de-excitation of these atoms or ions. The mechanism would be most pronounced in plasmas for which the magnitude of the magnetic field is large, the outer scale of the turbulence is small, and the electron density and temperature are low. A brief discussion of the relevance of this mechanism to some specific astrophysical plasmas is given.

  17. Tomography as a promising diagnostic tool for plasma turbulence

    NASA Astrophysics Data System (ADS)

    Fujisawa, A.; Nagashima, Y.; Inagaki, S.; Onchi, T.; Ohshima, S.; Shimizu, A.

    2016-02-01

    A system for plasma turbulence tomography has been developed in a linear cylindrical plasma as a prototype with aiming at future application on toroidal plasma of higher temperature. This paper describes the diagnostic system in both aspects of the soft- and hardware, and reports the first results of tomographic reconstruction that can successfully produce local emission and its fluctuations. In the reconstruction process, two dimensional view of plasma is obtained for approximately 0.6 ms in every sampling time of 1 μs using parallel processing of 120 cores with 10 personal computers. The results include the steady state analysis of local fluctuation power spectra using fast Fourier transform, analysis of temporal behavior of fluctuation power spectra with wavelet transform, and analyses of the structural deformation or pattern of local plasma emission, demonstrating that the success of tomography as a promising diagnostic tool for plasma turbulence.

  18. Thomson scattering from inertial confinement fusion plasmas

    SciTech Connect

    Glenzer, S.H.; Back, C.A.; Suter, L.J.

    1997-07-08

    Thomson scattering has been developed at the Nova laser facility as a direct and accurate diagnostic to characterize inertial confinement fusion plasmas. Flat disks coated with thin multilayers of gold and beryllium were with one laser beam to produce a two ion species plasma with a controlled amount of both species. Thomson scattering spectra from these plasmas showed two ion acoustic waves belonging to gold and beryllium. The phase velocities of the ion acoustic waves are shown to be a sensitive function of the relative concentrations of the two ion species and are in good agreement with theoretical calculations. These open geometry experiments further show that an accurate measurement of the ion temperature can be derived from the relative damping of the two ion acoustic waves. Subsequent Thomson scattering measurements from methane-filled, ignition-relevant hohlraums apply the theory for two ion species plasmas to obtain the electron and ion temperatures with high accuracy. The experimental data provide a benchmark for two-dimensional hydrodynamic simulations using LASNEX, which is presently in use to predict the performance of future megajoule laser driven hohlraums of the National Ignition Facility (NIF). The data are consistent with modeling using significantly inhibited heat transport at the peak of the drive. Applied to NIF targets, this flux limitation has little effect on x- ray production. The spatial distribution of x-rays is slightly modified but optimal symmetry can be re-established by small changes in power balance or pointing. Furthermore, we find that stagnating plasma regions on the hohlraum axis are well described by the calculations. This result implies that stagnation in gas-filled hohlraums occurs too late to directly affect the capsule implosion in ignition experiments.

  19. Coherent structures, dissipation and intermittency in plasma turbulence

    NASA Astrophysics Data System (ADS)

    Wan, M.; Matthaeus, W. H.; Roytershteyn, V.; Parashar, T.; Shay, M. A.; Karimabadi, H.; Wu, P.

    2015-12-01

    The nature of collisionless dissipation in turbulent plasmas such as the solar wind and the solar corona has been hotly debated recently. Here we report results from high resolution, fully kinetic simulations of plasmas turbulence in both two and three dimensions. The simulations show development of turbulent coherent structures, characterized by sheet-like current density structures spanning a range of scales. Results from particle-in-cell (PIC) simulations are also compared with MHD simulations in terms of coherent structures, dissipation and intermittency. An important conclusion, for all simulations examined, is that the dissipation is concentrated in very small volumes, reminiscent of the scenario that motivates the Kolmogorov refined similarity hypothesis in hydrodynamic turbulence. Extrapolated to large heliospheric system sizes, this leads to the expectation of significant departures from heating processes that operate uniformly in space. Results from latest 3D driven PIC simulations, as well as the connection to solar wind observations, will also be discussed.

  20. Major minority: energetic particles in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Breizman, B. N.; Sharapov, S. E.

    2011-05-01

    This paper describes advances made in the field of energetic-particle physics since the topical review of Alfvén eigenmode observations in toroidal plasmas (Wong 1999 Plasma Phys. Control. Fusion 41 R1-R56). The development of plasma confinement scenarios with reversed magnetic shear and significant population of energetic particles, and the development of novel energetic-particle diagnostics were the main milestones in the past decade, and these are the main experimental subjects of this review. The theory of Alfvén cascade eigenmodes in reversed-shear tokamaks and its use in magnetohydrodynamic spectroscopy are presented. Based on experimental observations and nonlinear theory of energetic-particle instabilities in the near-threshold regime, the frequency-sweeping events for spontaneously formed phase-space holes and clumps and the evolution of the fishbone oscillations are described. The multi-mode scenarios of enhanced particle transport are discussed and a brief summary is given of several engaging research topics that are beyond the authors' direct involvement.

  1. Turbulent transport of alpha particles in reactor plasmas

    SciTech Connect

    Estrada-Mila, C.; Candy, J.; Waltz, R. E.

    2006-11-15

    A systematic study of the behavior of energetic ions in reactor plasmas is presented. Using self-consistent gyrokinetic simulations, in concert with an analytic asymptotic theory, it is found that alpha particles can interact significantly with core ion-temperature-gradient turbulence. Specifically, the per-particle flux of energetic alphas is comparable to the per-particle flux of thermal species (deuterium or helium ash). This finding opposes the conventional wisdom that energetic ions, because of their large gyroradii, do not interact with the turbulence. For the parameters studied, a turbulent modification of the alpha-particle density profile appears to be stronger than turbulent modification of the alpha-particle pressure profile. Crude estimates indicate that the alpha density modification, which is directly proportional to the core turbulence intensity, could be in the range of 15% at midradius in a reactor. The corresponding modification of the alpha-particle pressure profile is predicted to be smaller (in the 1% range)

  2. BOOK REVIEW: Plasma and Fluid Turbulence: Theory and Modelling

    NASA Astrophysics Data System (ADS)

    Yoshizawa, A.; Itoh, S. I.; Itoh, K.

    2003-03-01

    The area of turbulence has been covered by many books over the years. This has, of course, mainly been fluid turbulence, while the area of plasma turbulence has been treated much less. This book by Yoshizawa et al covers both plasma and fluid turbulence, in a way that does justice to both areas at the same time as cross-disciplinary aspects are illuminated. The book should be useful to physicists working in both areas partly because it examines fundamental aspects in a pedagogical way, partly because it is up to date and partly because of the cross-disciplinary aspects which enrich both areas. It is written as an advanced textbook. The reader should have previous knowledge of at least one of the areas and also some background in statistical physics. The book starts with the very important and highly up to date area of structure formation which is relevant both to fluids and plasmas. Here, pipe flow of fluids is treated as an introduction to the area, then follows discussion of the generation of magnetic fields by turbulent motion in stellar objects and stucture formation in plasmas confined by a magnetic field. Also the concept of bifurcation is introduced. This part builds up knowledge from the simple fluid case to the problems of magnetic confinement of plasmas in a very pedagogical way. It continues by introducing the fundamentals of fluid turbulence. This is done very systematically and concepts useful for industrial applications like the K-e method and several ways of heuristic modelling are introduced. Also the two dimensional vortex equation, which is also relevant to magnetized plasmas is introduced. In chapter 5 the statistical theory of turbulence is treated. It starts with a very nice and easy to understand example of renormalization of a simple nonlinear equation where the exact solution is known. It introduces the method of partial renormalization, Greens functions and the direct interaction approximation (DIA). The book then continues with an

  3. Turbulence in Toroidally Confined Plasma: Ion - - Gradient-Driven Turbulence; Dynamics of Magnetic Relaxation in Current-Carrying Plasma

    NASA Astrophysics Data System (ADS)

    Lee, Gyung Su.

    This thesis is devoted to two studies of low-frequency turbulence in toroidally confined plasma. Low-frequency turbulence is believed to play an important role in anomalous transport in toroidal confinement devices. The first study pertains the the development of an analytic theory of ion-temperature-gradient-driven turbulence in tokamaks. Energy-conserving, renormalized spectrum equations are derived and solved in order to obtain the spectra of stationary ion-temperature-gradient-driven turbulence. Corrections to mixing-length estimates are calculated explicitly. The resulting anomalous ion thermal diffusivity is derived and is found to be consistent with experimentally-deduced ion thermal diffusivities. The associated electron thermal diffusivity, particle and heat-pinch velocities are also calculated. The effects of impurity gradients on saturated ion-temperature-gradient-driven turbulence are discussed and a related explanation of density profile steepening during Z-mode operation is proposed. The second study is devoted to the role of multiple helicity nonlinear interactions of tearing modes and dynamics of magnetic relaxation in a high-temperature current-carrying plasma. To extend the resistive MHD theory of magnetic fluctuations and dynamo activity observed in the reversed field pinch, the fluid equations for high-temperature regime are derived and basic nonlinear interaction mechanism and the effects of diamagnetic corrections to the MHD turbulence theory are studied for the case of fully developed, densely packed turbulence. Modifications to the MHD dynamo theory and anomalous thermal transport and confinement scaling predictions are examined.

  4. Magnetized Plasma Compression for Fusion Energy

    NASA Astrophysics Data System (ADS)

    Degnan, James; Grabowski, Christopher; Domonkos, Matthew; Amdahl, David

    2013-10-01

    Magnetized Plasma Compression (MPC) uses magnetic inhibition of thermal conduction and enhancement of charge particle product capture to greatly reduce the temporal and spatial compression required relative to un-magnetized inertial fusion (IFE)--to microseconds, centimeters vs nanoseconds, sub-millimeter. MPC greatly reduces the required confinement time relative to MFE--to microseconds vs minutes. Proof of principle can be demonstrated or refuted using high current pulsed power driven compression of magnetized plasmas using magnetic pressure driven implosions of metal shells, known as imploding liners. This can be done at a cost of a few tens of millions of dollars. If demonstrated, it becomes worthwhile to develop repetitive implosion drivers. One approach is to use arrays of heavy ion beams for energy production, though with much less temporal and spatial compression than that envisioned for un-magnetized IFE, with larger compression targets, and with much less ambitious compression ratios. A less expensive, repetitive pulsed power driver, if feasible, would require engineering development for transient, rapidly replaceable transmission lines such as envisioned by Sandia National Laboratories. Supported by DOE-OFES.

  5. Plasma turbulence in the downstream ionosheath of Venus

    NASA Technical Reports Server (NTRS)

    Intriligator, D. S.; Scarf, F. L.

    1982-01-01

    Observations made by the Pioneer Venus Orbiter plasma analyzer and the plasma wave instrument in the Venus ionosheath are compared. Large increases in plasma wave turbulence levels appear to be connected with changing plasma distributions and interpenetrating plasma beams. Some of these plasma waves are identified as Doppler - shifted ion acoustic waves due to beam/beam interactions, but it is noted that different forms of instabilities are probably also operative. The changes in the temperature, intensity and energy of the peak in the PVO plasma distributions are similar to those observed by Venera 10 closer to the planet and appear to be evidence for rarefaction and compression in the downstream ionosheath. Some of the changes in the PVO plasma distributions may be related to the presence of a second ion population or the acceleration of protons.

  6. Simultaneous Multi-angle Measurements of Plasma Turbulence at HAARP

    NASA Astrophysics Data System (ADS)

    Watanabe, Naomi; Golkowski, Mark; Sheerin, James; University of Colorado Denver Team

    2013-10-01

    We report the results from a recent series of experiments employing the HAARP HF transmitter to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) located at HAARP, the Super DARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Short pulse, low duty cycle experiments demonstrate control and suppression of artificial field-aligned irregularities (AFAI). This allows the isolation of ponderomotive plasma turbulence effects. For the first time, plasma line spectra measured simultaneously in different spots of the interaction region displayed marked but contemporaneous differences dependent on the aspect angle of the HF pump beam and the pointing angle of the MUIR diagnostic radar. Outshifted Plasma Line (OPL) spectra, rarely observed in past experiments, occurred with sufficient regularity for experimentation. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.

  7. Investigation of an Oscillating Surface Plasma for Turbulent Drag Reduction

    NASA Technical Reports Server (NTRS)

    Wilkinson, Stephen P.

    2003-01-01

    An oscillating, weakly ionized surface plasma has been investigated for use in turbulent boundary layer viscous drag reduction. The study was based on reports showing that mechanical spanwise oscillations of a wall can reduce viscous drag due to a turbulent boundary layer by up to 40%. It was hypothesized that the plasma induced body force in high electric field gradients of a surface plasma along strip electrodes could also be configured to oscillate the flow. Thin dielectric panels with millimeter-scale, flush- mounted, triad electrode arrays with one and two-phase high voltage excitation were tested. Results showed that while a small oscillation could be obtained, the effect was lost at a low frequency (less than 100Hz). Furthermore, a mean flow was generated during the oscillation that complicates the effect. Hot-wire and pitot probe diagnostics are presented along with phase-averaged images revealing plasma structure.

  8. Vortex stabilized electron beam compressed fusion grade plasma

    SciTech Connect

    Hershcovitch, Ady

    2014-03-19

    Most inertial confinement fusion schemes are comprised of highly compressed dense plasmas. Those schemes involve short, extremely high power, short pulses of beams (lasers, particles) applied to lower density plasmas or solid pellets. An alternative approach could be to shoot an intense electron beam through very dense, atmospheric pressure, vortex stabilized plasma.

  9. RF wave propagation and scattering in turbulent tokamak plasmas

    SciTech Connect

    Horton, W. Michoski, C.; Peysson, Y.; Decker, J.

    2015-12-10

    Drift wave turbulence driven by the steep electron and ion temperature gradients in H-mode divertor tokamaks produce scattering of the RF waves used for heating and current drive. The X-ray emission spectra produced by the fast electrons require the turbulence broaden RF wave spectrum. Both the 5 GHz Lower Hybrid waves and the 170 GHz electron cyclotron [EC] RF waves experience scattering and diffraction by the electron density fluctuations. With strong LHCD there are bifurcations in the coupled turbulent transport dynamics giving improved steady-state confinement states. The stochastic scattering of the RF rays makes the prediction of the distribution of the rays and the associated particle heating a statistical problem. Thus, we introduce a Fokker-Planck equation for the probably density of the RF rays. The general frame work of the coupled system of coupled high frequency current driving rays with the low-frequency turbulent transport determines the profiles of the plasma density and temperatures.

  10. RF wave propagation and scattering in turbulent tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Horton, W.; Michoski, C.; Peysson, Y.; Decker, J.

    2015-12-01

    Drift wave turbulence driven by the steep electron and ion temperature gradients in H-mode divertor tokamaks produce scattering of the RF waves used for heating and current drive. The X-ray emission spectra produced by the fast electrons require the turbulence broaden RF wave spectrum. Both the 5 GHz Lower Hybrid waves and the 170 GHz electron cyclotron [EC] RF waves experience scattering and diffraction by the electron density fluctuations. With strong LHCD there are bifurcations in the coupled turbulent transport dynamics giving improved steady-state confinement states. The stochastic scattering of the RF rays makes the prediction of the distribution of the rays and the associated particle heating a statistical problem. Thus, we introduce a Fokker-Planck equation for the probably density of the RF rays. The general frame work of the coupled system of coupled high frequency current driving rays with the low-frequency turbulent transport determines the profiles of the plasma density and temperatures.

  11. Spontaneous emission of electromagnetic radiation in turbulent plasmas

    SciTech Connect

    Ziebell, L. F.; Yoon, P. H.; Simões, F. J. R.; Pavan, J.; Gaelzer, R.

    2014-01-15

    Known radiation emission mechanisms in plasmas include bremmstrahlung (or free-free emission), gyro- and synchrotron radiation, cyclotron maser, and plasma emission. For unmagnetized plasmas, only bremmstrahlung and plasma emissions are viable. Of these, bremmstrahlung becomes inoperative in the absence of collisions, and the plasma emission requires the presence of electron beam, followed by various scattering and conversion processes. The present Letter proposes a new type of radiation emission process for plasmas in a state of thermodynamic quasi-equilibrium between particles and enhanced Langmuir turbulence. The radiation emission mechanism proposed in the present Letter is not predicted by the linear theory of thermal plasmas, but it relies on nonlinear wave-particle resonance processes. The electromagnetic particle-in-cell numerical simulation supports the new mechanism.

  12. Scattering of electromagnetic waves from a turbulent plasma slab.

    NASA Technical Reports Server (NTRS)

    Liu, C. H.

    1972-01-01

    Scattering of electromagnetic waves from a turbulent plasma slab is studied. Part of the effects of the multiple scattering is taken into account. The reflection coefficient is found to be increased and its variation with respect to the slab thickness is smoothed out by the random scattering.

  13. Non-thermal fusion in a beam plasma system

    NASA Astrophysics Data System (ADS)

    Santini, F.

    2006-02-01

    The problem of producing fusion power with low neutron emission has been debated in the past in the framework of the magnetic confinement fusion research. Proposals are still being renewed to use advanced fuels in various plasma systems. Since today's toroidal devices cannot support plasma conditions suitable for a large fusion production with such fuels, new concepts and configurations have been studied, where the plasma components are not in a thermal equilibrium. Here, a system of a neutral beam injected into a confined plasma is considered where fusion is produced only between the beam and plasma ions. The collisional slowing down of the beam into the plasma is described by a fluid model. General considerations in this model allow conditions to be found for the fusion-produced power to breakeven against the power needed to sustain the system itself. These conditions are only necessary since the nuclear power is maximized in the present analysis by using favourable assumptions. Nevertheless, the results for different advanced fuels indicate again the very high difficulty of getting a net power produced by the fusion of such fuels, unless the plasma target temperature reaches very high and unrealistic values.

  14. High-Gain High-Field Fusion Plasma.

    PubMed

    Li, Ge

    2015-01-01

    A Faraday wheel (FW)-an electric generator of constant electrical polarity that produces huge currents-could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST. PMID:26507314

  15. Progress In Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Francis Y. C.; Kirkpatrick, Ronald C.; Knapp, Charles E.; Cassibry, Jason; Eskridge, Richard; Lee, Michael; Smith, James; Martin, Adam; Wu, S. T.; Schmidt, George; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC).

  16. High-Gain High-Field Fusion Plasma

    NASA Astrophysics Data System (ADS)

    Li, Ge

    2015-10-01

    A Faraday wheel (FW)—an electric generator of constant electrical polarity that produces huge currents—could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST.

  17. Identification of new turbulence contributions to plasma transport and confinement in spherical tokamak regime

    DOE PAGES

    Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.; Li, Z. Q.

    2015-10-15

    Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E x B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transportmore » that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around kθρs ~ 0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E x B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E x B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Furthermore, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma transport in

  18. Identification of new turbulence contributions to plasma transport and confinement in spherical tokamak regime

    SciTech Connect

    Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.; Li, Z. Q.

    2015-10-15

    Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E x B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transport that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around kθρs ~ 0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E x B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E x B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Furthermore, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma

  19. US/Russian Magnetized Target Fusion Plasma Formation Experiments

    NASA Astrophysics Data System (ADS)

    Benage, John F., Jr.; Mtf Team; Broste, W.; Westley, D.; Mago Team

    1998-11-01

    Magnetized target fusion (MTF) is a potentially very low cost route to producing a fusion energy source. Many of MTF's plasma properties are intermediate between magnetically confined fusion (MFE) and inertially confined fusion (ICF). MTF consists of first producing a magnetically thermally insulated target plasma with a temperature of 100 eV or more with a lifetime of 5-10 microseconds. The target plasma is then compressed to fusion conditions by a magnetically driven imploding liner. One target plasma candidate is VNIIEF's MAGO, in which a cylindrical chamber with two cavities is filled with DT gas at a pressure of 10 Torr and driven by a current of 2-8 MA. A series of experiments under different plasma conditions have been performed to evaluate MAGO as an MTF target plasma. Diagnostics used to characterize the MAGO plasma include B dot probes to measure the current distribution, filtered silicon diodes to measure the spectrum and duration of the plasma radiation and a UV spectrometer to measure impurity line radiation.

  20. Intermittent Dissipation and Heating in 3D Kinetic Plasma Turbulence.

    PubMed

    Wan, M; Matthaeus, W H; Roytershteyn, V; Karimabadi, H; Parashar, T; Wu, P; Shay, M

    2015-05-01

    High resolution, fully kinetic, three dimensional (3D) simulation of collisionless plasma turbulence shows the development of turbulence characterized by sheetlike current density structures spanning a range of scales. The nonlinear evolution is initialized with a long wavelength isotropic spectrum of fluctuations having polarizations transverse to an imposed mean magnetic field. We present evidence that these current sheet structures are sites for heating and dissipation, and that stronger currents signify higher dissipation rates. The analyses focus on quantities such as J·E, electron, and proton temperatures, and conditional averages of these quantities based on local electric current density. Evidently, kinetic scale plasma, like magnetohydrodynamics, becomes intermittent due to current sheet formation, leading to the expectation that heating and dissipation in astrophysical and space plasmas may be highly nonuniform. Comparison with previous results from 2D kinetic simulations, as well as high frequency solar wind observational data, are discussed. PMID:25978241

  1. Strongly turbulent stabilization of electron beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Freund, H. P.; Haber, I.; Palmadesso, P.; Papadopoulos, K.

    1980-01-01

    The stabilization of electron beam interactions due to strongly turbulent nonlinearities is studied analytically and numerically for a wide range of plasma parameters. A fluid mode coupling code is described in which the effects of electron and ion Landau damping and linear growth due to the energetic electron beam are included in a phenomenological manner. Stabilization of the instability is found to occur when the amplitudes of the unstable modes exceed the threshold of the oscillating two-stream instability. The coordinate space structure of the turbulent spectrum which results clearly shows that soliton-like structures are formed by this process. Phenomenological models of both the initial stabilization and the asymptotic states are developed. Scaling laws between the beam-plasma growth rate and the fluctuations in the fields and plasma density are found in both cases, and shown to be in good agreement with the results of the simulation.

  2. Vorticity scaling and intermittency in drift-interchange plasma turbulence

    SciTech Connect

    Dura, P. D.; Hnat, B.; Robinson, J.; Dendy, R. O.

    2012-09-15

    The effects of spatially varying magnetic field strength on the scaling properties of plasma turbulence, modelled by an extended form of Hasegawa-Wakatani model, are investigated. We study changes in the intermittency of the velocity, density, and vorticity fields, as functions of the magnetic field inhomogeneity C=-{partial_derivative} ln B/{partial_derivative}x. While the velocity fluctuations are always self-similar and their scaling is unaffected by the value of C, the intermittency levels in density and vorticity change with parameter C, reflecting morphological changes in the coherent structures due to the interchange mechanism. Given the centrality of vorticity in conditioning plasma transport, this result is of interest in scaling the results of transport measurements and simulations in tokamak edge plasmas, where drift-interchange turbulence in the presence of a magnetic field gradient is likely to occur.

  3. GYROKINETIC PARTICLE SIMULATION OF TURBULENT TRANSPORT IN BURNING PLASMAS

    SciTech Connect

    Horton, Claude Wendell

    2014-06-10

    The SciDAC project at the IFS advanced the state of high performance computing for turbulent structures and turbulent transport. The team project with Prof Zhihong Lin [PI] at Univ California Irvine produced new understanding of the turbulent electron transport. The simulations were performed at the Texas Advanced Computer Center TACC and the NERSC facility by Wendell Horton, Lee Leonard and the IFS Graduate Students working in that group. The research included a Validation of the electron turbulent transport code using the data from a steady state university experiment at the University of Columbia in which detailed probe measurements of the turbulence in steady state were used for wide range of temperature gradients to compare with the simulation data. These results were published in a joint paper with Texas graduate student Dr. Xiangrong Fu using the work in his PhD dissertation. X.R. Fu, W. Horton, Y. Xiao, Z. Lin, A.K. Sen and V. Sokolov, “Validation of electron Temperature gradient turbulence in the Columbia Linear Machine, Phys. Plasmas 19, 032303 (2012).

  4. Turbulence in strongly coupled dusty plasmas using generalized hydrodynamic description

    SciTech Connect

    Tiwari, Sanat Kumar; Dharodi, Vikram Singh; Das, Amita; Patel, Bhavesh G.; Kaw, Predhiman

    2015-02-15

    The properties of decaying turbulence have been studied with the help of a Generalized Hydrodynamic (GHD) fluid model in the context of strongly coupled dusty plasma medium in two dimensions. The GHD model treats the strongly coupled dusty plasma system as a visco-elastic medium. The incompressible limit of the GHD model is considered here. The studies carried out here are, however, applicable to a wider class of visco-elastic systems, and are not merely confined to the dusty plasma medium. Our simulations studies show that an initial spectrum that is confined in a limited domain of wave numbers becomes broad, even when the Reynold's number is much less than the critical value required for the onset of turbulence in Newtonian fluids. This is a signature of elastic turbulence, where Weissenberg's number also plays an important role on the onset of turbulence. This feature has been observed in several experiments. It is also shown that the existence of memory relaxation time parameter and the transverse shear wave inhibit the normal process (for 2-D systems) of inverse spectral cascade in this case. A detailed simulation study has been carried out for the understanding of this inhibition.

  5. Sudden Viscous Dissipation of Compressing Turbulence

    DOE PAGES

    Davidovits, Seth; Fisch, Nathaniel J.

    2016-03-11

    Here we report compression of turbulent plasma can amplify the turbulent kinetic energy, if the compression is fast compared to the viscous dissipation time of the turbulent eddies. A sudden viscous dissipation mechanism is demonstrated, whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, suggesting a new paradigm for fast ignition inertial fusion.

  6. Ion temperature gradient turbulence in helical and axisymmetric RFP plasmas

    SciTech Connect

    Predebon, I.; Xanthopoulos, P.

    2015-05-15

    Turbulence induced by the ion temperature gradient (ITG) is investigated in the helical and axisymmetric plasma states of a reversed field pinch device by means of gyrokinetic calculations. The two magnetic configurations are systematically compared, both linearly and nonlinearly, in order to evaluate the impact of the geometry on the instability and its ensuing transport, as well as on the production of zonal flows. Despite its enhanced confinement, the high-current helical state demonstrates a lower ITG stability threshold compared to the axisymmetric state, and ITG turbulence is expected to become an important contributor to the total heat transport.

  7. Plasma transport induced by kinetic Alfven wave turbulence

    SciTech Connect

    Izutsu, T.; Hasegawa, H.; Fujimoto, M.; Nakamura, T. K. M.

    2012-10-15

    At the Earth's magnetopause that separates the hot-tenuous magnetospheric plasma from the cold dense solar wind plasma, often seen is a boundary layer where plasmas of both origins coexist. Plasma diffusions of various forms have been considered as the cause of this plasma mixing. Here, we investigate the plasma transport induced by wave-particle interaction in kinetic Alfven wave (KAW) turbulence, which is one of the candidate processes. We clarify that the physical origin of the KAW-induced cross-field diffusion is the drift motions of those particles that are in Cerenkov resonance with the wave: E Multiplication-Sign B-like drift that emerges in the presence of non-zero parallel electric field component and grad-B drift due to compressional magnetic fluctuations. We find that KAW turbulence, which has a spectral breakpoint at which an MHD inertial range transits to a dissipation range, causes selective transport for particles whose parallel velocities are specified by the local Alfven velocity and the parallel phase velocity at the spectral breakpoint. This finding leads us to propose a new data analysis method for identifying whether or not a mixed plasma in the boundary layer is a consequence of KAW-induced transport across the magnetopause. The method refers to the velocity space distribution function data obtained by a spacecraft that performs in situ observations and, in principle, is applicable to currently available dataset such as that provided by the NASA's THEMIS mission.

  8. Magnetized Target Fusion Propulsion: Plasma Injectors for MTF Guns

    NASA Technical Reports Server (NTRS)

    Griffin, Steven T.

    2003-01-01

    To achieve increased payload size and decreased trip time for interplanetary travel, a low mass, high specific impulse, high thrust propulsion system is required. This suggests the need for research into fusion as a source of power and high temperature plasma. The plasma would be deflected by magnetic fields to provide thrust. Magnetized Target Fusion (MTF) research consists of several related investigations into these topics. These include the orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the gun as it relates to plasma initiation and repeatability are under investigation. One of the items under development is the plasma injector. This is a surface breakdown driven plasma generator designed to function at very low pressures. The performance, operating conditions and limitations of these injectors need to be determined.

  9. Anisotropy in solar wind plasma turbulence.

    PubMed

    Oughton, S; Matthaeus, W H; Wan, M; Osman, K T

    2015-05-13

    A review of spectral anisotropy and variance anisotropy for solar wind fluctuations is given, with the discussion covering inertial range and dissipation range scales. For the inertial range, theory, simulations and observations are more or less in accord, in that fluctuation energy is found to be primarily in modes with quasi-perpendicular wavevectors (relative to a suitably defined mean magnetic field), and also that most of the fluctuation energy is in the vector components transverse to the mean field. Energy transfer in the parallel direction and the energy levels in the parallel components are both relatively weak. In the dissipation range, observations indicate that variance anisotropy tends to decrease towards isotropic levels as the electron gyroradius is approached; spectral anisotropy results are mixed. Evidence for and against wave interpretations and turbulence interpretations of these features will be discussed. We also present new simulation results concerning evolution of variance anisotropy for different classes of initial conditions, each with typical background solar wind parameters.

  10. Edge ambipolar potential in toroidal fusion plasmas

    SciTech Connect

    Spizzo, G. Vianello, N.; Agostini, M.; Puiatti, M. E.; Scarin, P.; Spolaore, M.; Terranova, D.; White, R. B.; Abdullaev, S. S.; Schmitz, O.; Cavazzana, R.; Ciaccio, G.

    2014-05-15

    A series of issues with toroidally confined fusion plasmas are related to the generation of 3D flow patterns by means of edge magnetic islands, embedded in a chaotic field and interacting with the wall. These issues include the Greenwald limit in Tokamaks and reversed-field pinches, the collisionality window for ELM mitigation with the resonant magnetic perturbations (RMPs) in Tokamaks, and edge islands interacting with the bootstrap current in stellarators. Measurements of the 2D map of the edge electric field E{sup r}(r=a,θ,ϕ) in the RFX reversed-field pinch show that E{sup r} has the same helicity of the magnetic islands generated by a m/n perturbation: in fact, defining the helical angle u=mθ−nϕ+ωt, maps show a sinusoidal dependence as a function of u, E{sup r}=E{sup ~r}sin u. The associated E × B flow displays a huge convective cell with v(a)≠0 which, in RFX and near the Greenwald limit, determines a stagnation point for density and a reversal of the sign of E{sup r}. From a theoretical point of view, the question is how a perturbed toroidal flux of symmetry m/n gives rise to an ambipolar potential Φ=Φ{sup ~}sin u. On the basis of a model developed with the guiding center code ORBIT and applied to RFX and the TEXTOR tokamak, we will show that the presence of an m/n perturbation in any kind of device breaks the toroidal symmetry with a drift proportional to the gyroradius ρ, thus larger for ions (ρ{sub i} ≫ ρ{sub e}). Immediately, an ambipolar potential arises to balance the drifts, with the same symmetry as the original perturbation.

  11. Fusion programs in applied plasma physics and development and technology at GA Technologies, Inc.

    NASA Astrophysics Data System (ADS)

    Overskei, D. O.

    1988-01-01

    Research carried out by GA for the Department of Energy Office of Fusion Energy provides key information and insight necessary for the development of fusion power systems. Highlights of the fusion theory effort described in this report include progress in numerical simulations of turbulent transport in tokamak plasmas, extension of novel theories of the H-mode, development and application of advanced codes for evaluating ECRF current drive efficiency, and new understanding and techniques for dealing with high beta tokamak equilibria. Experimental plasma research efforts are addresssing several important issues in fusion research. Neutron and alpha particle spectroscopy and triton confinement diagnostics are being developed to enable fusion researchers to understand alpha particle confinement and slowdown in burning plasmas. Development of Li beam diagnostic systems continued and has shown a capability for measuring both magnetic field pitch angle and relative current density profiles. Experiments on Ergodic Magnetic Divertor (EMD) phenomena on the Texas Experimental Tokamak (TEXT) continued to demonstrate low plasma edge temperatures and impurity reduction that make the concept attractive for reactor applications. GA led efforts continuing the Resonant Island Divertor (RID) experiments on TEXT using the EMD as a controlled magnetic perturbation. Research carried out in GA's Development and Technology programs included reactor systems design studies, and development of ferritic steels suitable for use as a structural material in fusion reactors. In the reactor systems design area, GA participated in the TITAN Reserved Field Pinch (RFP) Reactor Design Study. GA is responsible for project operation, safety design and analysis, and blanket shield neutronics calculations for this study.

  12. Neoclassical diffusion in a turbulent plasma

    SciTech Connect

    Yushmanov, P. . Inst. Atomnoj Ehnergii Texas Univ., Austin, TX . Inst. for Fusion Studies)

    1991-11-01

    This work describes a new approach to plasma transport where the toroidal drift motion is considered as a perturbation to the fluctuating velocity. Percolation theory is used to determine the scaling of the diffusion coefficient. Several neoclassical phenomena should persist even when diffusion is enhanced from neoclassical predictions. Numerical simulation results support the theoretical scaling arguments.

  13. PREFACE: Theory of Fusion Plasmas, 13th Joint Varenna-Lausanne International Workshop (2012)

    NASA Astrophysics Data System (ADS)

    Garbet, Xavier; Sauter, Olivier

    2012-12-01

    The 2012 joint Varenna-Lausanne international workshop on the theory of fusion plasmas has been very fruitful. A broad variety of topics were addressed, as usual covering turbulence, MHD, edge physic, RF wave heating and a taste of astrophysics. Moreover the scope of the meeting was extended this year to include the physics of materials and diagnostics for burning plasmas. This evolution reflects the complexity of problems at hand in fusion, in particular in the context of ITER construction. Long-standing problems without immediate consequences have sometimes become an urgent matter in that context. One may quote for instance the choice of plasma facing components or the design of control systems. Another characteristic of the meeting is the interplay between various domains of plasma physics. For instance MHD modes are now currently investigated with gyrokinetic codes, kinetic effects are more and more included in MHD stability analysis, and turbulence is now accounted for in wave propagation problems. This is the proof of cross-fertilization and it is certainly a healthy sign in our community. Finally introducing some novelty in the programme does not prevent us from respecting the traditions of the meeting. As usual a good deal of the presentations were dedicated to numerical simulations. Combining advanced numerical techniques with elaborated analytical theory is certainly a trademark of the Varenna-Lausanne conference, which was respected again this year. The quality and size of the scientific production is illustrated by the 26 papers which appear in the present volume of Journal of Physics: Conference Series, all refereed. We would also like to mention another set of 20 papers to be published in Plasma Physics and Controlled Fusion. We hope the readers will enjoy this special issue of JPCS and the one to come in PPCF. Xavier Garbet and Olivier Sauter October 26, 2012

  14. Study of intermittent small-scale turbulence in Wendelstein 7-AS plasmas during controlled confinement transitions

    NASA Astrophysics Data System (ADS)

    Basse, N. P.; Zoletnik, S.; Michelsen, P. K.; W7-As Team

    2005-01-01

    Confinement transitions in the Wendelstein 7-AS stellarator [H. Renner et al., Plasma Phys. Controlled Fusion 31, 1579 (1989)] can be induced by varying either the internal plasma current or the external magnetic field. In this paper we report on experiments where closely matched confinement states (good and bad) were constructed using the latter method. Analysis using the former scheme has been reported upon previously [S. Zoletnik et al., Plasma Phys. Controlled Fusion 44, 1581 (2002)]. The electron temperature, along with the major spectral characteristics of magnetic and small-scale electron density fluctuations, changes dramatically at the transition from good to bad confinement. The fluctuation power is intermittent, and core bursts traveling in the electron diamagnetic drift (DD) direction are correlated between the bottom and top of the plasma, especially during degraded confinement. A corresponding top-bottom correlation for the edge ion DD direction turbulence feature was not found. Strong correlations are observed both between the two density fluctuation signals and between magnetic and density fluctuations in bad compared to good confinement. The correlation time of the bursts is of order 100μs, similar to the lifetime observed during edge localized modes.

  15. Study of intermittent small-scale turbulence in Wendelstein 7-AS plasmas during controlled confinement transitions

    SciTech Connect

    Basse, N.P.; Zoletnik, S.; Michelsen, P.K.

    2005-01-01

    Confinement transitions in the Wendelstein 7-AS stellarator [H. Renner et al., Plasma Phys. Controlled Fusion 31, 1579 (1989)] can be induced by varying either the internal plasma current or the external magnetic field. In this paper we report on experiments where closely matched confinement states (good and bad) were constructed using the latter method. Analysis using the former scheme has been reported upon previously [S. Zoletnik et al., Plasma Phys. Controlled Fusion 44, 1581 (2002)]. The electron temperature, along with the major spectral characteristics of magnetic and small-scale electron density fluctuations, changes dramatically at the transition from good to bad confinement. The fluctuation power is intermittent, and core bursts traveling in the electron diamagnetic drift (DD) direction are correlated between the bottom and top of the plasma, especially during degraded confinement. A corresponding top-bottom correlation for the edge ion DD direction turbulence feature was not found. Strong correlations are observed both between the two density fluctuation signals and between magnetic and density fluctuations in bad compared to good confinement. The correlation time of the bursts is of order 100 {mu}s, similar to the lifetime observed during edge localized modes.

  16. Fission and activation of uranium by fusion-plasma neutrons

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.; Mcfarland, D. R.

    1978-01-01

    Fusion-fission hybrid reactors are discussed in terms of two main purposes: to breed fissile materials (Pu 233 and Th 233 from U 238 or Th 232) for use in low-reactivity breeders, and to produce tritium from lithium to refuel fusion plasma cores. Neutron flux generation is critical for both processes. Various methods for generating the flux are described, with attention to new geometries for multiple plasma focus arrays, e.g., hypocycloidal pinch and staged plasma focus devices. These methods are evaluated with reference to their applicability to D-D fusion reactors, which will ensure a virtually unlimited energy supply. Accurate observations of the neutron flux from such schemes are obtained by using different target materials in the plasma focus.

  17. Complexity Induced Anisotropic Bimodal Intermittent Turbulence in Space Plasmas

    NASA Technical Reports Server (NTRS)

    Chang, Tom; Tam, Sunny W. Y.; Wu, Cheng-Chin

    2004-01-01

    The "physics of complexity" in space plasmas is the central theme of this exposition. It is demonstrated that the sporadic and localized interactions of magnetic coherent structures arising from the plasma resonances can be the source for the coexistence of nonpropagating spatiotemporal fluctuations and propagating modes. Non-Gaussian probability distribution functions of the intermittent fluctuations from direct numerical simulations are obtained and discussed. Power spectra and local intermittency measures using the wavelet analyses are presented to display the spottiness of the small-scale turbulent fluctuations and the non-uniformity of coarse-grained dissipation that can lead to magnetic topological reconfigurations. The technique of the dynamic renormalization group is applied to the study of the scaling properties of such type of multiscale fluctuations. Charged particle interactions with both the propagating and nonpropagating portions of the intermittent turbulence are also described.

  18. Anisotropy in solar wind plasma turbulence.

    PubMed

    Oughton, S; Matthaeus, W H; Wan, M; Osman, K T

    2015-05-13

    A review of spectral anisotropy and variance anisotropy for solar wind fluctuations is given, with the discussion covering inertial range and dissipation range scales. For the inertial range, theory, simulations and observations are more or less in accord, in that fluctuation energy is found to be primarily in modes with quasi-perpendicular wavevectors (relative to a suitably defined mean magnetic field), and also that most of the fluctuation energy is in the vector components transverse to the mean field. Energy transfer in the parallel direction and the energy levels in the parallel components are both relatively weak. In the dissipation range, observations indicate that variance anisotropy tends to decrease towards isotropic levels as the electron gyroradius is approached; spectral anisotropy results are mixed. Evidence for and against wave interpretations and turbulence interpretations of these features will be discussed. We also present new simulation results concerning evolution of variance anisotropy for different classes of initial conditions, each with typical background solar wind parameters. PMID:25848082

  19. Anisotropy in solar wind plasma turbulence

    PubMed Central

    Oughton, S.; Matthaeus, W. H.; Wan, M.; Osman, K. T.

    2015-01-01

    A review of spectral anisotropy and variance anisotropy for solar wind fluctuations is given, with the discussion covering inertial range and dissipation range scales. For the inertial range, theory, simulations and observations are more or less in accord, in that fluctuation energy is found to be primarily in modes with quasi-perpendicular wavevectors (relative to a suitably defined mean magnetic field), and also that most of the fluctuation energy is in the vector components transverse to the mean field. Energy transfer in the parallel direction and the energy levels in the parallel components are both relatively weak. In the dissipation range, observations indicate that variance anisotropy tends to decrease towards isotropic levels as the electron gyroradius is approached; spectral anisotropy results are mixed. Evidence for and against wave interpretations and turbulence interpretations of these features will be discussed. We also present new simulation results concerning evolution of variance anisotropy for different classes of initial conditions, each with typical background solar wind parameters. PMID:25848082

  20. Trapped Electron Mode Turbulence Driven Intrinsic Rotation in Tokamak Plasmas

    SciTech Connect

    Wang, W. X.; Hahm, T. S.; Ethier, S.; Zakharov, L. E.

    2011-02-07

    Recent progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported with emphasis on electron thermal transport dominated regimes. The turbulence driven intrinsic torque associated with nonlinear residual stress generation by the fluctuation intensity and the intensity gradient in the presence of zonal flow shear induced asymmetry in the parallel wavenumber spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current. These results qualitatively reproduce empirical scalings of intrinsic rotation observed in various experiments. The origin of current scaling is found to be due to enhanced kll symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The physics origin for the linear dependence of intrinsic torque on pressure gradient is that both turbulence intensity and the zonal flow shear, which are two key ingredients for driving residual stress, increase with the strength of turbulence drive, which is R0/LTe and R0/Lne for the trapped electron mode. __________________________________________________

  1. First fusion proton measurements in TEXTOR plasmas using activation technique

    SciTech Connect

    Bonheure, G.; Wassenhove, G. Van; Mlynar, J.; Hult, M.; Gonzalez de Orduna, R.; Lutter, G.; Vermaercke, P.; Huber, A.; Schweer, B.; Esser, G.; Biel, W.

    2012-10-15

    MeV particle loss measurements from fusion plasmas, in particular alpha particles, remain difficult in large fusion devices and further R and D is needed for ITER. This paper describes the first attempt to measure 3 MeV escaping fusion protons emitted from TEXTOR tokamak plasmas using activation technique. This technique was successfully demonstrated, initially, in 2006 on the JET tokamak. An ion camera equipped with a collimator and several types of activation detectors was installed inside the TEXTOR vacuum vessel to perform these measurements. After irradiation, the detectors were analyzed using ultra low level gamma-ray spectrometry at the HADES underground laboratory. 3 MeV escaping fusion protons were detected in larger number -{approx}6 times more - compared to earlier measurements using this technique on JET. Another major progress was the reduction of the cooling time by a factor of 50, which made possible to detect radionuclides with half-life of less than 90 min.

  2. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion.

    PubMed

    Betti, R; Christopherson, A R; Spears, B K; Nora, R; Bose, A; Howard, J; Woo, K M; Edwards, M J; Sanz, J

    2015-06-26

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ. PMID:26197131

  3. Alpha heating and burning plasmas in inertial confinement fusion

    SciTech Connect

    Betti, R.; Christopherson, A. R.; Spears, B. K.; Nora, R.; Bose, A.; Howard, J.; Woo, K. M.; Edwards, M. J.; Sanz, J.

    2015-06-01

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.

  4. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Betti, R.; Christopherson, A. R.; Spears, B. K.; Nora, R.; Bose, A.; Howard, J.; Woo, K. M.; Edwards, M. J.; Sanz, J.

    2015-06-01

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.

  5. Plasma Physics, Fusion Science, and California High School Science

    NASA Astrophysics Data System (ADS)

    Correll, Donald

    2004-11-01

    In order to further engage California HIgh School science teachers in plasma physics and fusion science, a collaboration was formed between LLNL's Fusion Energy Program and the University of California's Edward Teller Education Center (etec.ucdavis.edu). California's Science Content Standards for high school physics (www.cde.ca.gov/be/st/ss/scphysics.asp) were used to create a public lecture (education.llnl.gov/sos/) that covered "students are expected to achieve" physics topics relevant to astrophysical and fusion plasma research. In addition to the lecture, a two day workshop for the Edward Teller Education Symposium, September 24 - 25, 2004 (education.llnl.gov/symposium2004) was designed around plasma spectroscopy (education.llnl.gov/symposium2004/agenda_astro.html). Plasma spectroscopy was chosen as the "anchor" to the workshop given the breadth and depth of the field to both astrophysical and fusion plasma research. Workshop participation includes lectures, tours, spectroscopic measurements, and building a 'spectroscope' for use in the teachers' respective high school classrooms. Accomplishments will be reported and future plans will be presented that include development of a one to two week expanded workshop that includes plasma research methods and advanced science skills essential to guiding students to conduct research projects.

  6. Tritium Plasma Experiment Upgrade for Fusion Tritium and Nuclear Sciences

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Taylor, Chase N.; Kolasinski, Robert D.; Buchenauer, Dean A.

    2015-11-01

    The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. Recently the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of tritium plasma-driven permeation and optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.

  7. Low-frequency instabilities and plasma turbulence

    NASA Technical Reports Server (NTRS)

    Ilic, D. B.

    1973-01-01

    A theoretical and experimental study is reported of steady-state and time-dependent characteristics of the positive column and the hollow cathode discharge (HCD). The steady state of a non-isothermal, cylindrical positive column in an axial magnetic field is described by three moment equations in the plasma approximation. Volume generation of electron-ion pairs by single-stage ionization, the presence of axial current, and collisions with neutrals are considered. The theory covers the range from the low pressure, collisionless regime to the intermediate pressure, collisional regime. It yields radial profiles of the charged particle velocities, density, potential, electron and ion temperatures, and demonstrates similarity laws for the positive column. The results are compared with two moment theories and with experimental data on He, Ar and Hg found in the literature for a wide range of pressures. A simple generalization of the isothermal theory for an infinitely long cylinder in an axial magnetic field to the case of a finite column with axial current flow is also demonstrated.

  8. Probing plasma turbulence by modulating the electron temperature gradient

    SciTech Connect

    DeBoo, J. C.; Petty, C. C.; Holland, C.; Rhodes, T. L.; Schmitz, L.; Wang, G.; Doyle, E. J.; Hillesheim, J.; Peebles, W. A.; Zeng, L.; White, A. E.; Austin, M. E.; Yan, Z.

    2010-05-15

    The local value of a/L{sub Te}, a turbulence drive term, was modulated with electron cyclotron heating in L-mode discharges on DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] and the density and electron temperature fluctuations in low, intermediate, and high-k regimes were measured and compared with nonlinear gyrokinetic turbulence simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)]. The local drive term at rhoapprox0.6 was reduced by up to 50%, which produced comparable reductions in electron temperature fluctuations at low-k. At intermediate k, k{sub t}hetaapprox4 cm{sup -1} and k{sub t}hetarho{sub s}approx0.8, a very interesting and unexpected result was observed where density fluctuations increased by up to 10% when the local drive term was decreased by 50%. Initial comparisons of simulations from GYRO with the thermal diffusivity from power balance analysis and measured turbulence response are reported. Simulations for the case with the lowest drive term are challenging as they are near the marginal value of a/L{sub Te} for trapped electron mode activity.

  9. Coherent structure and Intermittent Turbulence in the Solar Wind Plasma

    NASA Astrophysics Data System (ADS)

    Sondhiya, Deepak Kumar; Gwal, Ashok Kumar; Kasde, Satish Kumar

    2016-07-01

    We analyze the coherent structures and intermittent turbulence in the solar wind plasma using measurements from the Wind spacecraft. Previously established novel wavelet and higher order statistics are used in this work. We analyze the wavelet power spectrum of various solar wind plasma parameters. We construct a statistical significance level in the wavelet power spectrum to quantify the interference effects arising from filling missing data in the time series, allowing extraction of significant power from the measured data. We analyze each wavelet power spectra for transient coherency, and global periodicities resulting from the superposition of repeating coherent structures. Furthermore, these coherent structures are preferentially found in plasma unstable to the mirror and firehose instabilities. These results offer a new understanding of various processes in a turbulent regime. Finally, we discuss the implications of our results for current theories of solar wind generation and describe future work for determining the relationship between the coherent structures in our ionic composition data and the structure of the coronal magnetic field. Keywords: Wavelet Power Spectrum, Coherent structure and Solar wind plasma

  10. Turbulent energy transfer in electromagnetic turbulence: hints from a Reversed Field Pinch plasma

    NASA Astrophysics Data System (ADS)

    Vianello, N.; Bergsaker, H.

    2005-10-01

    The relationship between electromagnetic turbulence and sheared plasma flow in a Reversed Field Pinch is addressed. ExB sheared flows and turbulence at the edge tends to organize themeselves near marginal stability, suggesting an underlying energy exchange process between turbulence and mean flow. In MHD this process is well described through the quantity P which represents the energy transfer (per mass and time unit) from turbulence to mean fields. In the edge region of RFP configuration, where magnetic field is mainly poloidal and the mean ExB is consequently toroidal, the quantity P results: P =[ -ρμ0 + ]Vφr where Vφ is the mean ExB toroidal flow, ρ the mean mass density and b and v the fluctuations of velocity and magnetic field respectively. Both the radial profiles and the temporal evolution of P have been measured in the edge region of Extrap-T2R Reversed Field Pinch experiment. The results support the existence of oscillating energy exchange process between fluctuations and mean flow.

  11. Fusion Science Outreach at the MIT Plasma Science and Fusion Center

    NASA Astrophysics Data System (ADS)

    Censabella, V.; Rivenberg, P.; Granville, J.; Nachtrieb, R.; Gangadhara, S.

    1997-11-01

    Educational Outreach at the MIT Plasma Science and Fusion Center is organized and energized by volunteers working together to increase the public's knowledge of fusion and plasma-related experiments. The PSFC holds a number of outreach activities throughout the year, such as Middle and High School Outreach Days. Included in these days is a demonstration of how magnets affect plasma using the ``Plasma Demo," an educational tool which will be on display for the first time outside the MIT area. Also featured is ``C-Mod Jr.," a video game which helps students discover how computers manipulate magnetic pulses to keep a plasma confined in the C-Mod tokamak for as long as possible. The PSFC maintains a Home Page on the World Wide Web, which can be reached at HTTP://PFC.MIT.EDU.

  12. Fundamental Statistical Descriptions of Plasma Turbulence in Magnetic Fields

    SciTech Connect

    John A. Krommes

    2001-02-16

    A pedagogical review of the historical development and current status (as of early 2000) of systematic statistical theories of plasma turbulence is undertaken. Emphasis is on conceptual foundations and methodology, not practical applications. Particular attention is paid to equations and formalism appropriate to strongly magnetized, fully ionized plasmas. Extensive reference to the literature on neutral-fluid turbulence is made, but the unique properties and problems of plasmas are emphasized throughout. Discussions are given of quasilinear theory, weak-turbulence theory, resonance-broadening theory, and the clump algorithm. Those are developed independently, then shown to be special cases of the direct-interaction approximation (DIA), which provides a central focus for the article. Various methods of renormalized perturbation theory are described, then unified with the aid of the generating-functional formalism of Martin, Siggia, and Rose. A general expression for the renormalized dielectric function is deduced and discussed in detail. Modern approaches such as decimation and PDF methods are described. Derivations of DIA-based Markovian closures are discussed. The eddy-damped quasinormal Markovian closure is shown to be nonrealizable in the presence of waves, and a new realizable Markovian closure is presented. The test-field model and a realizable modification thereof are also summarized. Numerical solutions of various closures for some plasma-physics paradigms are reviewed. The variational approach to bounds on transport is developed. Miscellaneous topics include Onsager symmetries for turbulence, the interpretation of entropy balances for both kinetic and fluid descriptions, self-organized criticality, statistical interactions between disparate scales, and the roles of both mean and random shear. Appendices are provided on Fourier transform conventions, dimensional and scaling analysis, the derivations of nonlinear gyrokinetic and gyrofluid equations

  13. Response of nickel surface to pulsed fusion plasma radiations

    SciTech Connect

    Niranjan, Ram Rout, R. K. Srivastava, R. Gupta, Satish C.; Chakravarthy, Y.; Patel, N. N.; Alex, P.

    2014-04-24

    Nickel based alloys are being projected as suitable materials for some components of the next generation fusion reactor because of compatible thermal, electrical and mechanical properties. Pure nickel material is tested here for possibility of similar application purpose. Nickel samples (> 99.5 % purity) are exposed here to plasma radiations produced due to D-D fusion reaction inside an 11.5 kJ plasma focus device. The changes in the physical properties of the nickel surface at microscopic level which in turn change the mechanical properties are analyzed using scanning electron microscope, optical microscope, glancing incident X-ray diffractometer and Vicker's hardness gauge. The results are reported here.

  14. Response of nickel surface to pulsed fusion plasma radiations

    NASA Astrophysics Data System (ADS)

    Niranjan, Ram; Rout, R. K.; Srivastava, R.; Chakravarthy, Y.; Patel, N. N.; Alex, P.; Gupta, Satish C.

    2014-04-01

    Nickel based alloys are being projected as suitable materials for some components of the next generation fusion reactor because of compatible thermal, electrical and mechanical properties. Pure nickel material is tested here for possibility of similar application purpose. Nickel samples (> 99.5 % purity) are exposed here to plasma radiations produced due to D-D fusion reaction inside an 11.5 kJ plasma focus device. The changes in the physical properties of the nickel surface at microscopic level which in turn change the mechanical properties are analyzed using scanning electron microscope, optical microscope, glancing incident X-ray diffractometer and Vicker's hardness gauge. The results are reported here.

  15. Intermittent Dissipation at Kinetic Scales in Plasma Turbulence (Invited)

    NASA Astrophysics Data System (ADS)

    Wan, M.; Matthaeus, W. H.; Karimabadi, H.; Roytershteyn, V.; Shay, M. A.; Wu, P.; Daughton, W. S.; Loring, B.; Chapman, S. C.

    2013-12-01

    The nature of collisionless dissipation has been hotly debated in recent years, with alternative ideas posed in terms of various wave modes, such as kinetic Alfven waves, whistlers, linear Vlasov instabilities, cyclotron resonance, and Landau damping. Here we use high resolution kinetic simulations of collisionless plasma driven by shear which show the development of turbulence characterized by dynamic coherent sheetlike current density structures spanning a range of scales down to electron scales. We present evidence that these structures are sites for heating and dissipation, and that stronger current structures signify higher dissipation rates. Evidently, kinetic scale plasma, like magnetohydrodynamics, becomes intermittent due to current sheet formation, leading to the expectation that heating and dissipation in astrophysical and space plasmas may be highly nonuniform and patchy. Comparison with high frequency solar wind observational data, as well as latest results from three-dimensional PIC simulations will also be discussed.

  16. Book review: Modern Plasma Physics, Vol. I: Physical Kinetics of Turbulent Plasmas, by Patrick H. Diamond, Sanae-I. Itoh and Kimitaka Itoh, Cambridge University Press, Cambridge (UK), 2010, IX, 417 p., ISBN 978-0-521-86920-1 (Hardback)

    NASA Astrophysics Data System (ADS)

    Somov, B. V.

    If you want to learn not only the most fundamental things about the physics of turbulent plasmas but also the current state of the problem including the most recent results in theoretical and experimental investigations - and certainly many physicists and astrophysicists do - this series of three excellent monographs is just for you. The first volume "Physical Kinetics of Turbulent Plasmas" develops the kinetic theory of turbulence through a focus on quasi-particle models and dynamics. It discusses the concepts and theoretical methods for describing weak and strong fluid and phase space turbulence in plasma systems far from equilibrium. The core material includes fluctuation theory, self-similar cascades and transport, mean field theory, resonance broadening and nonlinear wave-particle interaction, wave-wave interaction and wave turbulence, strong turbulence theory and renormalization. The book gives readers a deep understanding of the fields under consideration and builds a foundation for future applications to multi-scale processes of self-organization in tokamaks and other confined plasmas. In spite of a short pedagogical introduction, the book is addressed mainly to well prepared readers with a serious background in plasma physics, to researchers and advanced graduate students in nonlinear plasma physics, controlled fusions and related fields such as cosmic plasma physics

  17. The Plasma Anvil in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Fechner, Walter; Morley, P. D.

    We examine theoretically an inertial confinement fusion (ICF) target consisting of a spherical wedge embedded in a relatively nondeformable "anvil". Questions such as heat loss to the anvil, optimum wedge angle, liner and anvil materials, anvil deformations and deleterious 2-D shock effects on D-T burn and compression symmetry are discussed.

  18. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    SciTech Connect

    Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.

    2007-07-18

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  19. Physics of laser fusion. Vol. I. Theory of the coronal plasma in laser-fusion targets

    SciTech Connect

    Max, C.E.

    1981-12-01

    This monograph deals with the physics of the coronal region in laser fusion targets. The corona consists of hot plasma which has been evaporated from the initially solid target during laser heating. It is in the corona that the laser light is absorbed by the target, and the resulting thermal energy is conducted toward cold high-density regions, where ablation occurs. The topics to be discussed are theoretical mechanisms for laser light absorption and reflection, hot-electron production, and the physics of heat conduction in laser-produced plasmas. An accompanying monograph by H. Ahlstrom (Vol.II) reviews the facilities, diagnostics, and data from recent laser fusion experiments.

  20. Laser-plasma interactions relevant to Inertial Confinement Fusion

    SciTech Connect

    Wharton, K.B.

    1998-11-02

    Research into laser-driven inertial confinement fusion is now entering a critical juncture with the construction of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). Many of the remaining unanswered questions concerning NIF involve interactions between lasers and plasmas. With the eventual goal of fusion power in mind, laser-plasma interactions relevant to laser fusion schemes is an important topic in need of further research. This work experimentally addresses some potential shortcuts and pitfalls on the road to laser-driven fusion power. Current plans on NIF have 192 laser beams directed into a small cylindrical cavity which will contain the fusion fuel; to accomplish this the beams must cross in the entrance holes, and this intersection will be in the presence of outward-flowing plasma. To investigate the physics involved, interactions of crossing laser beams in flowing plasmas are investigated with experiments on the Nova laser facility at LLNL. It was found that in a flowing plasma, energy is transferred between two crossing laser beams, and this may have deleterious consequences for energy balance and ignition in NIF. Possible solutions to this problem are presented. A recently-proposed alternative to standard laser-driven fusion, the ''fast ignitor'' concept, is also experimentally addressed in this dissertation. Many of the laser-plasma interactions necessary for the success of the fast ignitor have not previously been explored at the relevant laser intensities. Specifically, the transfer of high-intensity laser energy to electrons at solid-target interfaces is addressed. 20-30% conversion efficiencies into forward-propagated electrons were measured, along with an average electron energy that varied with the type of target material. The directionality of the electrons was also measured, revealing an apparent beaming of the highest energy electrons. This work was extended to various intensities and pulse lengths and a

  1. Solar system plasma Turbulence: Observations, inteRmittency and Multifractals

    NASA Astrophysics Data System (ADS)

    Echim, Marius M.

    2016-04-01

    The FP7 project STORM is funded by the European Commission to "add value to existing data bases through a more comprehensive interpretation". STORM targets plasma and magnetic field databases collected in the solar wind (Ulysses and also some planetary missions), planetary magnetospheres (Venus Express, Cluster, a few orbits from Cassini), cometary magnetosheaths (e.g. Haley from Giotto observations). The project applies the same package of analysis methods on geomagnetic field observations from ground and on derived indices (e.g. AE, AL, AU, SYM-H). The analysis strategy adopted in STORM is built on the principle of increasing complexity, from lower (like, e.g., the Power Spectral Density - PSD) to higher order analyses (the Probability Distribution Functions - PDFs, Structure Functions - SFs, Fractals and Multifractals - MFs). Therefore STORM targets not only the spectral behavior of turbulent fluctuations but also their topology and scale behavior inferred from advanced mathematical algorithms and geometrical-like analogs. STORM started in January 2013 and ended in December 2015. We will report on a selection of scientific and technical achievements and will highlight: (1) the radial evolution of solar wind turbulence and intermittency based on Ulysses data with some contributions from Venus Express and Cluster; (2) comparative study of fast and slow wind turbulence and intermittency at solar minimum; (3) comparative study of the planetary response (Venus and Earth magnetosheaths) to turbulent solar wind; (4) the critical behavior of geomagnetic fluctuations and indices; (5) an integrated library for non-linear analysis of time series that includes all the approaches adopted in STORM to investigate solar system plasma turbulence. STORM delivers an unprecedented volume of analysed data for turbulence. The project made indeed a systematic survey, orbit by orbit, of data available from ESA repositories and Principal Investigators and provides results ordered as a

  2. Lithium As Plasma Facing Component for Magnetic Fusion Research

    SciTech Connect

    Masayuki Ono

    2012-09-10

    The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor of two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (< 0.1%) of lithium fraction in main fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main

  3. Electrostatic turbulence in the low-density plasma column

    NASA Astrophysics Data System (ADS)

    Ricci, Daria; Granucci, Gustavo; Garavaglia, Saul; Cremona, Anna; Minelli, Daniele; Mellera, Vittoria

    2010-11-01

    Electron plasma density fluctuations are observed in plasma when a radial pressure gradient excites drift waves. The linear machine GyM (R=0.125 m, L= 2.11 m, B<0.1T), operating at IFP-CNR since 2008, has started experiments aimed at characterizing drift waves excited in its non-uniform magnetized plasma. Two different plasma sources (magnetron 2.45 GHz or hot filament) have been used to sustain plasma with adjustable sections (1.5 cmplasma density have been observed and characterized as a function of the injected RF power. The dynamic (frequency and amplitude) of such fluctuations has been related to the spontaneous radial electric field consequence of different electron density profiles. The results from the new probe array, recently implemented in GyM to provide a deeper study of the spatial distribution of turbulence, are shown.

  4. Statistical characterization of turbulence in the boundary plasma of EAST

    NASA Astrophysics Data System (ADS)

    Yan, N.; Nielsen, A. H.; Xu, G. S.; Naulin, V.; Rasmussen, J. J.; Madsen, J.; Wang, H. Q.; Liu, S. C.; Zhang, W.; Wang, L.; Wan, B. N.

    2013-11-01

    In Ohmic heated low confinement mode (L-mode) discharges, the intermittent statistical characteristics of turbulent fluctuations have been investigated in the edge and the scrape-off layer (SOL) plasma on EAST (the experimental advanced superconducting tokamak) by fast reciprocating Langmuir probe measurements. Plasma structures (blobs and holes) are observed and found to originate together inside the edge shear layer where the skewness (S) of the ion-saturation current fluctuations is close to zero. The probability density functions of the density fluctuations in edge and SOL plasma show a well-defined parabolic relation between the S and the kurtosis (K). In edge plasma with holes, the geodesic acoustic mode (GAM) is identified with a dominant frequency fpeak ˜ 5-7 kHz both in floating potential fluctuations and ion-saturation current fluctuations. However, the GAM can only be detected in the floating potential fluctuations rather than the ion-saturation current fluctuations in the edge plasma with blobs. The ESEL (edge-SOL electrostatic) code based on interchange dynamics is used to simulate the experimental results on EAST. Reasonable agreement between the ESEL simulation and the EAST experiment is reached. Experimentally, the parallel SOL flow shows a remarkable dependence on the plasma density, which resembles the theoretical predicted Pfirsch-Schlüter flow but with a much higher magnitude at the outboard mid-plane of EAST.

  5. Co-current toroidal rotation-driven and turbulent stresses with resonant magnetic perturbations in the edge plasmas of the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Zhao, K. J.; Shi, Yuejiang; Liu, H.; Diamond, P. H.; Li, F. M.; Cheng, J.; Chen, Z. P.; Nie, L.; Ding, Y. H.; Wu, Y. F.; Chen, Z. Y.; Rao, B.; Cheng, Z. F.; Gao, L.; Zhang, X. Q.; Yang, Z. J.; Wang, N. C.; Wang, L.; Jin, W.; Xu, J. Q.; Yan, L. W.; Dong, J. Q.; Zhuang, G.; J-TEXT Team

    2016-07-01

    The acceleration of the co-current toroidal rotations around resonant surfaces by resonant magnetic perturbations (RMPs) through turbulence is presented. These experiments were performed using a Langmuir probe array in the edge plasmas of the J-TEXT tokamak. This study aims at understanding the RMP effects on edge toroidal rotations and exploring its control method. With RMPs, the flat electron temperature T e profile, due to magnetic islands, appears around resonant surfaces (Zhao et al 2015 Nucl. Fusion 55 073022). When the resonant surface is closer to the last closed flux surface, the flat T e profile vanishes with RMPs. In both cases, the toroidal rotations significantly increase in the direction of the plasma current around the resonant surfaces with RMPs. The characteristics of turbulence are significantly affected by RMPs around the resonant surfaces. The turbulence intensity profile changes and the poloidal wave vector k θ increases with RMPs. The power fraction of the turbulence components in the ion diamagnetic drift direction increases with RMPs. The measurements of turbulent Reynolds stresses are consistent with the toroidal flows that can be driven by turbulence. The estimations of the energy transfer between the turbulence and toroidal flows suggest that turbulence energy transfers into toroidal flows. The result has the implication of the intrinsic rotation being driven by RMPs via turbulence.

  6. TEST FOR WAVEVECTOR ANISOTROPIES IN PLASMA TURBULENCE CASCADES

    SciTech Connect

    Gary, S. Peter

    2013-05-20

    The frequency and wavevector matching conditions in nonlinear three-wave coupling are used to test whether the forward cascade of plasma turbulence may lead to wavevector anisotropies in a homogeneous, collisionless, magnetized plasma. Linear kinetic theory at {beta}{sub p} = 0.01, 0.10, and 1.0 is used to determine the frequency-wavenumber dispersion of three normal modes: long-wavelength Alfven-cyclotron waves, long-wavelength magnetosonic waves, and intermediate-wavelength magnetosonic-whistler waves. Using linear dispersion in the nonlinear matching conditions, the test predicts with one exception that forward cascades are favored by fluctuations propagating nearly perpendicular to the background magnetic field B{sub o}. This is consistent with the typical development of wavevector anisotropies with k >> k{sub Parallel-To} (subscripts refer to directions perpendicular and parallel to B{sub o}, respectively) in computer simulations of the forward cascade of various types of plasma turbulence. The exception is that, at {beta}{sub p} = 1.0, the test predicts that the cascade of long-wavelength magnetosonic waves should be favored by modes at k {approx} k{sub Parallel-To }.

  7. Plasma-Jet Magneto-Inertial Fusion Investigations

    NASA Astrophysics Data System (ADS)

    Santarius, John; Aplin, Carol

    2008-11-01

    Several issues related to using plasma jets to implode a Magneto-Inertial Fusion (MIF) liner onto a magnetized plasmoid and compress it to fusion-relevant temperatures[1] are explored. One simple problem modeled is pure plasma jet convergence and compression without a target present. More elaborate cases with a target present explore how well the target's magnetic field reduces thermal conduction and the liner's inertia provides transient plasma stability and confinement. The investigation uses UW's 1-D Lagrangian radiation-hydrodynamics code, BUCKY, which solves single-fluid equations of motion with ion-electron interactions, PdV work, table-lookup equations of state, fast-ion energy deposition, and pressure contributions from all species. Extensions to the code include magnetic field evolution as the plasmoid compresses plus dependence of the thermal conductivity and fusion product energy deposition on the magnetic field. [1] Y.C. F. Thio, et al., ``Magnetized Target Fusion in a Spheroidal Geometry with Standoff Drivers,'' in Current Trends in International Fusion Research, E. Panarella, ed. (National Research Council of Canada, Ottawa, Canada, 1999), p. 113.

  8. Studies of numerical algorithms for gyrokinetics and the effects of shaping on plasma turbulence

    NASA Astrophysics Data System (ADS)

    Belli, Emily Ann

    Advanced numerical algorithms for gyrokinetic simulations are explored for more effective studies of plasma turbulent transport. The gyrokinetic equations describe the dynamics of particles in 5-dimensional phase space, averaging over the fast gyromotion, and provide a foundation for studying plasma microturbulence in fusion devices and in astrophysical plasmas. Several algorithms for Eulerian/continuum gyrokinetic solvers are compared. An iterative implicit scheme based on numerical approximations of the plasma response is developed. This method reduces the long time needed to set-up implicit arrays, yet still has larger time step advantages similar to a fully implicit method. Various model preconditioners and iteration schemes, including Krylov-based solvers, are explored. An Alternating Direction Implicit algorithm is also studied and is surprisingly found to yield a severe stability restriction on the time step. Overall, an iterative Krylov algorithm might be the best approach for extensions of core tokamak gyrokinetic simulations to edge kinetic formulations and may be particularly useful for studies of large-scale ExB shear effects. The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the nonlinear GS2 gyrokinetic code with analytic equilibria based on interpolations of representative JET-like shapes. High shaping is found to be a stabilizing influence on both the linear ITG instability and nonlinear ITG turbulence. A scaling of the heat flux with elongation of chi ˜ kappa-1.5 or kappa-2 (depending on the triangularity) is observed, which is consistent with previous gyrofluid simulations. Thus, the GS2 turbulence simulations are explaining a significant fraction, but not all, of the empirical elongation scaling. The remainder of the scaling may come from (1) the edge boundary conditions for core turbulence, and (2) the larger Dimits nonlinear critical temperature gradient shift due to the

  9. High-Gain High-Field Fusion Plasma

    PubMed Central

    Li, Ge

    2015-01-01

    A Faraday wheel (FW)—an electric generator of constant electrical polarity that produces huge currents—could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST. PMID:26507314

  10. Atomic Hydrogen Measurements in a Fusion-Relevant Plasma

    NASA Astrophysics Data System (ADS)

    Samuell, Cameron; Corr, Cormac

    2012-10-01

    Critical to the success of large-scale fusion reactors is the development of new materials that can withstand the extreme conditions at the plasma-surface boundary. The materials required for plasma-facing components will need to withstand a very aggressive environment that is characterized by both a high heat load and high ion flux produced by the hydrogen isotope plasma. As such, investigating the ways in which hydrogen plasmas interact with a range of materials is an important area for research and development and is vital to the future success of fusion. A new experimental reactor, the MAGnetized Plasma Interaction Experiment (MAGPIE), has been constructed at the Australian National University to help resolve some of the critical issues surrounding the choice of fusion reactor materials. MAGPIE is a linear system with a 2.5kW, 13.56MHz helicon source that operates in a magnetic hill configuration with field strengths up to 0.19T. Densities up to 10^19m-3 at temperatures < 5eV have been achieved. The focus of this presentation is the interaction between a magnetized hydrogen plasma and tungsten and graphite targets in MAGPIE. Results from two-photon absorption laser induced fluorescence (TALIF), optical emission spectroscopy (OES) and probe diagnostics will be presented.

  11. Transport equation for plasmas in a stationary-homogeneous turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Shaojie

    2016-02-01

    For a plasma in a stationary homogeneous turbulence, the Fokker-Planck equation is derived from the nonlinear Vlasov equation by introducing the entropy principle. The ensemble average in evaluating the kinetic diffusion tensor, whose symmetry has been proved, can be computed in a straightforward way when the fluctuating particle trajectories are provided. As an application, it has been shown that a mean parallel electric filed can drive a particle flux through the Stokes-Einstein relation, independent of the details of the fluctuations.

  12. Turbulence and Proton–Electron Heating in Kinetic Plasma

    NASA Astrophysics Data System (ADS)

    Matthaeus, William H.; Parashar, Tulasi N.; Wan, Minping; Wu, P.

    2016-08-01

    Analysis of particle-in-cell simulations of kinetic plasma turbulence reveals a connection between the strength of cascade, the total heating rate, and the partitioning of dissipated energy into proton heating and electron heating. A von Karman scaling of the cascade rate explains the total heating across several families of simulations. The proton to electron heating ratio increases in proportion to total heating. We argue that the ratio of gyroperiod to nonlinear turnover time at the ion kinetic scales controls the ratio of proton and electron heating. The proposed scaling is consistent with simulations.

  13. Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation.

    PubMed

    Weber, C R; Clark, D S; Cook, A W; Busby, L E; Robey, H F

    2014-05-01

    Achieving ignition in inertial confinement fusion (ICF) requires the formation of a high-temperature (>10 keV) central hot spot. Turbulence has been suggested as a mechanism for degrading the hot-spot conditions by altering transport properties, introducing colder, mixed material, or reducing the conversion of radially directed kinetic energy to hot-spot heating. We show, however, that the hot spot is very viscous, and the assumption of turbulent conditions in the hot spot is incorrect. This work presents the first high-resolution, three-dimensional simulations of National Ignition Facility (NIF) implosion experiments using detailed knowledge of implosion dynamics and instability seeds and including an accurate model of physical viscosity. We find that when viscous effects are neglected, the hot spot can exhibit a turbulent kinetic energy cascade. Viscous effects, however, are significant and strongly damp small-scale velocity structures, with a hot-spot Reynolds number in the range of only 10-100.

  14. Core turbulent transport in tokamak plasmas: bridging theory and experiment with QuaLiKiz

    NASA Astrophysics Data System (ADS)

    Bourdelle, C.; Citrin, J.; Baiocchi, B.; Casati, A.; Cottier, P.; Garbet, X.; Imbeaux, F.; Contributors, JET

    2016-01-01

    Nonlinear gyrokinetic codes allow for detailed understanding of tokamak core turbulent transport. However, their computational demand precludes their use for predictive profile modeling. An alternative approach is required to bridge the gap between theoretical understanding and prediction of experiments. A quasilinear gyrokinetic model, QuaLiKiz (Bourdelle et al 2007 Phys. Plasmas 14 112501), is demonstrated to be rapid enough to ease systematic interface with experiments. The derivation and approximation of this approach are reviewed. The quasilinear approximation is proven valid over a wide range of core plasma parameters. Examples of profile prediction using QuaLiKiz coupled to the CRONOS integrated modeling code (Artaud et al 2010 Nucl. Fusion 50 043001) are presented. QuaLiKiz is being coupled to other integrated modeling platforms such as ETS and JETTO. QuaLiKiz quasilinear gyrokinetic turbulent heat, particle and angular momentum fluxes are available to all users. It allows for extensive stand-alone interpretative analysis and for first principle based integrated predictive modeling.

  15. Massachusetts Institute of Technology Plasma Fusion Center 1992--1993 report to the President

    SciTech Connect

    Not Available

    1993-07-01

    This report discusses research being conducted at MIT`s plasma fusion center. Some of the areas covered are: plasma diagnostics; rf plasma heating; gyrotron research; treatment of solid waste by arc plasma; divertor experiments; tokamak studies; and plasma and fusion theory.

  16. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Betti, R.; Christopherson, A. R.; Bose, A.; Woo, K. M.

    2016-05-01

    Assessing the degree to which fusion alpha particles contribute to the fusion yield is essential to understanding the onset of the thermal runaway process of thermonuclear ignition. It is shown that in inertial confinement fusion, the yield enhancement due to alpha particle heating (before ignition occurs) depends on the generalized Lawson parameter that can be inferred from experimental observables. A universal curve valid for arbitrary laser-fusion targets shows the yield amplification due to alpha heating for a given value of the Lawson parameter. The same theory is used to determine the onset of the burning plasma regime when the alpha heating exceeds the compression work. This result can be used to assess the performance of current ignition experiments at the National Ignition Facility.

  17. Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interface

    SciTech Connect

    Allain, Jean Paul; Taylor, Chase N.

    2012-05-15

    The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.

  18. Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interfacea)

    NASA Astrophysics Data System (ADS)

    Allain, Jean Paul; Taylor, Chase N.

    2012-05-01

    The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.

  19. Exploring turbulent energy dissipation and particle energization in space plasmas: the science of THOR mission

    NASA Astrophysics Data System (ADS)

    Retinò, Alessandro

    2016-04-01

    The Universe is permeated by hot, turbulent magnetized plasmas. They are found in active galactic nuclei, supernova remnants, the intergalactic and interstellar medium, as well as in the solar corona, the solar wind and the Earth's magnetosphere. Turbulent plasmas are also found in laboratory devices such as e.g. tokamaks. Our comprehension of the plasma Universe is largely based on measurements of electromagnetic radiation such as light or X-rays which originate from particles that are heated and accelerated as a result of energy dissipation in turbulent environments. Therefore it is of key importance to study and understand how plasma is energized by turbulence. Most of the energy dissipation occurs at kinetic scales, where plasma no longer behaves as a fluid and the properties of individual plasma species (electrons, protons and other ions) become important. THOR (Turbulent Heating ObserveR - http://thor.irfu.se/) is a space mission currently in Study Phase as candidate for M-class mission within the Cosmic Vision program of the European Space Agency. The scientific theme of the THOR mission is turbulent energy dissipation and particle energization in space plasmas, which ties in with ESA's Cosmic Vision science. The main focus is on turbulence and shock processes, however areas where the different fundamental processes interact, such as reconnection in turbulence or shock generated turbulence, are also of high importance. The THOR mission aims to address fundamental questions such as how plasma is heated and particles are accelerated by turbulent fluctuations at kinetic scales, how energy is partitioned among different plasma components and how dissipation operates in different regimes of turbulence. To reach the goal, a careful design of the THOR spacecraft and its payload is ongoing, together with a strong interaction with numerical simulations. Here we present the science of THOR mission and we discuss implications of THOR observations for space

  20. Scale-free transport in fusion plasmas: theory and applications

    NASA Astrophysics Data System (ADS)

    Sanchez, R.; Mier, J. A.; Newman, D. E.; Carreras, B. A.; Garcia, L.; Leboeuf, J. N.; Decyk, V.

    2008-11-01

    A novel approach to detect the existence of scale-free transport in turbulent flows, based on the characterization of its Lagrangian characteristics, is presented and applied to two situations relevant for tokamak plasmas. The first one, radial transport in the presence of near-critical turbulence, has been known for quite some time to yield scale-free, superdiffusive transport. We use it to test the method and illustrate its robustness with respect to other approaches. The second situation, radial transport across radially-sheared poloidal zonal flows driven by turbulence via the Reynold stresses, is examined for the first time in this manner. The result is rather surprising and different from the traditionally assumed diffusive behavior. Instead, radial transport behaves instead in a scale-free, subdiffusive manner, which may have implications for the modeling of transport across transport barriers.

  1. Plasma emission from isotropic Langmuir turbulence - Are radio microbursts structureless?

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    1993-01-01

    The brightness temperature of radio emission through the fundamental and second harmonic plasma processes is determined for isotropic Langmuir waves of low-energy density in order to account for the microbursts at meter-dekameter wavelengths. The probable cause for low levels of Langmuir turbulence is the presence of isotropic density fluctuations in the corona which isotropize the beam-generated Langmuir waves. We determined the energy density of Langmuir waves attainable from the beam-plasma instability in the presence of isotropic density fluctuations. Since the electron density fluctuations isotropize the beam-generated plasma waves, the head-on collision of plasma waves becomes efficient to produce the second harmonic plasma emission. For reasonable beam parameters, the brightness temmperature of the fundamental never exceeds 10 exp 6 K, while the second harmonic covers the observed range of microburst brightness temperatures. Thus, the microbursts are predominantly at second harmonic. This leads to an important conclusion that the microbursts are structureless, similar to a population of normal type III bursts of low polarization with no fundamental-harmonic structure.

  2. THE TURBULENT DYNAMO IN HIGHLY COMPRESSIBLE SUPERSONIC PLASMAS

    SciTech Connect

    Federrath, Christoph; Schober, Jennifer; Bovino, Stefano; Schleicher, Dominik R. G.

    2014-12-20

    The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024{sup 3} cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = ν/η = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm ≥ 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm{sub crit}=129{sub −31}{sup +43}, showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present and early universe, we conclude that magnetic fields need to be taken into account during structure formation from the early to the present cosmic ages, because they suppress gas fragmentation and drive powerful jets and outflows, both greatly affecting the initial mass function of stars.

  3. Web Interface Connecting Gyrokinetic Turbulence Simulations with Tokamak Fusion Data

    NASA Astrophysics Data System (ADS)

    Suarez, A.; Ernst, D. R.

    2005-10-01

    We are developing a comprehensive interface to connect plasma microturbulence simulation codes with experimental data in the U.S. and abroad. This website automates the preparation and launch of gyrokinetic simulations utilizing plasma profile and magnetic equilibrium data. The functionality of existing standalone interfaces, such as GS2/PREP [D. R. Ernst et al., Phys. Plasmas 11(5) 2637 (2004)], in use for several years for the GS2 code [W. Dorland et al., Phys. Rev. Lett. 85(26) 5579 (2000)], will be extended to other codes, including GYRO [J. Candy / R.E. Waltz, J. Comput. Phys.186, (2003) 545]. Data is read from mdsplus and TRANSP [\\underline {http://w3.pppl.gov/transp}] and can be viewed using a java plotter, Webgraph, developed for this project by previous students Geoffrey Catto and Bo Feng. User sessions are tracked and saved to allow users to access their previous simulations, which can be used as templates for future work.

  4. Unified models of E-layer plasma turbulence from density gradients and Hall currents

    NASA Astrophysics Data System (ADS)

    Hassan, Ehab; Litt, Sandeep; Horton, Wendell; Smolyakov, Andrei; Skiff, Fred

    2013-10-01

    The Earth's ionosphere is rich with plasma irregularities of scale-lengths extend from few centimeters to hundreds of kilometers. The combination of small-scale turbulence with large coherent structures is at the forefront of basic plasma turbulence theory. A new unified model for the small-scale plasma turbulence called Type-I and Type-II in the E-region ionosphere is presented. Simulations and a proposed laboratory experiment for these plasma waves in a weakly ionized plasma are reported. The ions [Argon in the lab and NO+ in the ionosphere] are collisional and the electrons ExB drifts produce Hall currents. The dispersion relations are analyzed for both density gradient and electron current driven instabilities. A basic understanding of the turbulence is important for forecasting disruptions in GNSS communication signals from RF signal scattering produced by the E-layer plasma turbulence on the 10cm to 10m scales lengths. NSF:AGS-0964692.

  5. Zonal flows and turbulence in fluids and plasmas

    NASA Astrophysics Data System (ADS)

    Parker, Jeffrey Bok-Cheung

    In geophysical and plasma contexts, zonal flows are well known to arise out of turbulence. We elucidate the transition from statistically homogeneous turbulence without zonal flows to statistically inhomogeneous turbulence with steady zonal flows. Starting from the Hasegawa--Mima equation, we employ both the quasilinear approximation and a statistical average, which retains a great deal of the qualitative behavior of the full system. Within the resulting framework known as CE2, we extend recent understanding of the symmetry-breaking 'zonostrophic instability'. Zonostrophic instability can be understood in a very general way as the instability of some turbulent background spectrum to a zonally symmetric coherent mode. As a special case, the background spectrum can consist of only a single mode. We find that in this case the dispersion relation of zonostrophic instability from the CE2 formalism reduces exactly to that of the 4-mode truncation of generalized modulational instability. We then show that zonal flows constitute pattern formation amid a turbulent bath. Zonostrophic instability is an example of a Type I s instability of pattern-forming systems. The broken symmetry is statistical homogeneity. Near the bifurcation point, the slow dynamics of CE2 are governed by a well-known amplitude equation, the real Ginzburg-Landau equation. The important features of this amplitude equation, and therefore of the CE2 system, are multiple. First, the zonal flow wavelength is not unique. In an idealized, infinite system, there is a continuous band of zonal flow wavelengths that allow a nonlinear equilibrium. Second, of these wavelengths, only those within a smaller subband are stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets. These behaviors are shown numerically to hold in the CE2 system, and we calculate a stability diagram. The stability diagram is in agreement with direct numerical simulations of the quasilinear

  6. Impact of E × B flow shear on turbulence and resulting power fall-off width in H-mode plasmas in experimental advanced superconducting tokamak

    SciTech Connect

    Yang, Q. Q. Zhong, F. C. E-mail: fczhong@dhu.edu.cn; Jia, M. N.; Xu, G. S. E-mail: fczhong@dhu.edu.cn; Wang, L.; Wang, H. Q.; Chen, R.; Yan, N.; Liu, S. C.; Chen, L.; Li, Y. L.; Liu, J. B.

    2015-06-15

    The power fall-off width in the H-mode scrape-off layer (SOL) in tokamaks shows a strong inverse dependence on the plasma current, which was noticed by both previous multi-machine scaling work [T. Eich et al., Nucl. Fusion 53, 093031 (2013)] and more recent work [L. Wang et al., Nucl. Fusion 54, 114002 (2014)] on the Experimental Advanced Superconducting Tokamak. To understand the underlying physics, probe measurements of three H-mode discharges with different plasma currents have been studied in this work. The results suggest that a higher plasma current is accompanied by a stronger E×B shear and a shorter radial correlation length of turbulence in the SOL, thus resulting in a narrower power fall-off width. A simple model has also been applied to demonstrate the suppression effect of E×B shear on turbulence in the SOL and shows relatively good agreement with the experimental observations.

  7. Impact of E × B flow shear on turbulence and resulting power fall-off width in H-mode plasmas in experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Yang, Q. Q.; Xu, G. S.; Zhong, F. C.; Wang, L.; Wang, H. Q.; Chen, R.; Yan, N.; Liu, S. C.; Chen, L.; Jia, M. N.; Li, Y. L.; Liu, J. B.

    2015-06-01

    The power fall-off width in the H-mode scrape-off layer (SOL) in tokamaks shows a strong inverse dependence on the plasma current, which was noticed by both previous multi-machine scaling work [T. Eich et al., Nucl. Fusion 53, 093031 (2013)] and more recent work [L. Wang et al., Nucl. Fusion 54, 114002 (2014)] on the Experimental Advanced Superconducting Tokamak. To understand the underlying physics, probe measurements of three H-mode discharges with different plasma currents have been studied in this work. The results suggest that a higher plasma current is accompanied by a stronger E × B shear and a shorter radial correlation length of turbulence in the SOL, thus resulting in a narrower power fall-off width. A simple model has also been applied to demonstrate the suppression effect of E × B shear on turbulence in the SOL and shows relatively good agreement with the experimental observations.

  8. Turbulent convective flows in the solar photospheric plasma

    NASA Astrophysics Data System (ADS)

    Caroli, A.; Giannattasio, F.; Fanfoni, M.; Del Moro, D.; Consolini, G.; Berrilli, F.

    2015-10-01

    > The origin of the 22-year solar magnetic cycle lies below the photosphere where multiscale plasma motions, due to turbulent convection, produce magnetic fields. The most powerful intensity and velocity signals are associated with convection cells, called granules, with a scale of typically 1 Mm and a lifetime of a few minutes. Small-scale magnetic elements (SMEs), ubiquitous on the solar photosphere, are passively transported by associated plasma flows. This advection makes their traces very suitable for defining the convective regime of the photosphere. Therefore the solar photosphere offers an exceptional opportunity to investigate convective motions, associated with compressible, stratified, magnetic, rotating and large Rayleigh number stellar plasmas. The magnetograms used here come from a Hinode/SOT uninterrupted 25-hour sequence of spectropolarimetric images. The mean-square displacement of SMEs has been modelled with a power law with spectral index . We found for times up to and for times up to . An alternative way to investigate the advective-diffusive motion of SMEs is to look at the evolution of the two-dimensional probability distribution function (PDF) for the displacements. Although at very short time scales the PDFs are affected by pixel resolution, for times shorter than the PDFs seem to broaden symmetrically with time. In contrast, at longer times a multi-peaked feature of the PDFs emerges, which suggests the non-trivial nature of the diffusion-advection process of magnetic elements. A Voronoi distribution analysis shows that the observed small-scale distribution of SMEs involves the complex details of highly nonlinear small-scale interactions of turbulent convective flows detected in solar photospheric plasma.

  9. Nonlinear Laser-Plasma Interaction in Magnetized Liner Inertial Fusion

    DOE PAGES

    Geissel, Matthias; Awe, Thomas James; Bliss, David E.; Campbell, Edward Michael; Gomez, Matthew R.; Harding, Eric; Harvey-Thompson, Adam James; Hansen, Stephanie B.; Jennings, Christopher Ashley; Kimmel, Mark W.; et al

    2016-03-04

    Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. Although magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Ultimately, nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Wemore » determine and discuss key LPI processes and mitigation methods. Results with and without improvement measures are presented.« less

  10. Nonlinear laser-plasma interaction in magnetized liner inertial fusion

    NASA Astrophysics Data System (ADS)

    Geissel, Matthias; Awe, T. J.; Bliss, D. E.; Campbell, M. E.; Gomez, M. R.; Harding, E.; Harvey-Thompson, A. J.; Hansen, S. B.; Jennings, C.; Kimmel, M. W.; Knapp, P.; Lewis, S. M.; McBride, R. D.; Peterson, K.; Schollmeier, M.; Scoglietti, D. J.; Sefkow, A. B.; Shores, J. E.; Sinars, D. B.; Slutz, S. A.; Smith, I. C.; Speas, C. S.; Vesey, R. A.; Porter, J. L.

    2016-03-01

    Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. While magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Key LPI processes are determined, and mitigation methods are discussed. Results with and without improvement measures are presented.

  11. Fluctuations and transport in fusion plasmas. Final report

    SciTech Connect

    Gould, R.W.; Liewer, P.C.

    1995-02-01

    The energy confinement in tokamaks in thought to be limited by transport caused by plasma turbulence. Three dimensional plasma particle-in-cell (PIC) codes are used to model the turbulent transport in tokamaks to attempt to understand this phenomena so that tokamaks can be made more efficient. Presently, hundreds of hours of Cray time are used to model these experiments and much bigger and longer runs are desired, to model a large tokamak with realistic parameters is beyond the capability of existing sequential supercomputers. Parallel supercomputers might be a cost effect tool for performing such large scale 3D tokamak simulations. The goal of the work was to develop algorithms for performing PIC codes on coarse-grained message passing parallel computers and to evaluate the performance of such parallel computers on PIC codes. This algorithm would be used in a large scale PIC production code such as the UCLA 3D gyrokinetic code.

  12. Fusion for Space Propulsion and Plasma Liner Driven MTF

    NASA Technical Reports Server (NTRS)

    Thio, Y.C. Francis; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    in the light of significant development of the enabling pulsed power component technologies that have occurred in the last two decades because of defense and other energy requirements. The extreme states of matter required to produce fusion reactions may be more readily realizable in the pulsed states with less system mass than in steady states. Significant saving in system mass may result in pulsed fusion systems using plasmas in the appropriate density regimes. Magnetized target fusion, which attempts to combine the favorable attributes of magnetic confinement and inertial compression-containment into one single integrated fusion scheme, appears to have benefits that are worth exploring for propulsion application.

  13. Plasma-Jet Magnetized-Target Fusion Burn Dynamics

    NASA Astrophysics Data System (ADS)

    Santarius, John F.

    2006-10-01

    In magnetized-target fusion (MTF), an imploding, conducting liner compresses a magnetized plasmoid, such as a spheromak or field-reversed configuration (FRC). The increasing magnetic field of the target reduces thermal conduction and the liner's inertia provides transient plasma stability and confinement. This poster explores the burn dynamics of using plasma jets to form the liner [1]. The investigation uses the University of Wisconsin’s 1 D Lagrangian radiation hydrodynamics code, BUCKY, which solves single-fluid equations of motion with pressure contributions from electrons, ions, radiation, and fast charged particles, using either ideal-gas or table-lookup equations of state. BUCKY includes ion-electron interactions, PdV work, and fast-ion energy deposition. For this research, the code has been extended to include the magnetic field evolution as the plasmoid compresses plus the dependence of the thermal conductivity and fusion product energy deposition on the magnetic field.[1] Y.C. F. Thio, et al., ``Magnetized Target Fusion in a Spheroidal Geometry with Standoff Drivers,'' in Current Trends in International Fusion Research, E. Panarella, ed. (National Research Council of Canada, Ottawa, Canada, 1999), p. 113.* Research funded by the DOE Office of Fusion Energy Sciences, grant DE-FG02-04ER54751.

  14. Mixing and turbulent mixing in fluids, plasma and materials: summary of works presented at the 3rd International Conference on Turbulent Mixing and Beyond

    NASA Astrophysics Data System (ADS)

    Gauthier, Serge; Keane, Christopher J.; Niemela, Joseph J.; Abarzhi, Snezhana I.

    2013-07-01

    Mixing and turbulent mixing are non-equilibrium processes that occur in a broad variety of processes in fluids, plasmas and materials. The processes can be natural or artificial, their characteristic scales can be astrophysical or atomistic, and energy densities can be low or high. Understanding the fundamental aspects of turbulent mixing is necessary to comprehend the dynamics of supernovae and accretion discs, stellar non-Boussinesq and magneto-convection, mantle-lithosphere tectonics and volcanic eruptions, atmospheric and oceanographic flows in geophysics, and premixed and non-premixed combustion. It is crucial for the development of the methods of control in technological applications, including mixing mitigation in inertial confinement and magnetic fusion, and mixing enhancement in reactive flows, as well as material transformation under the action of high strain rates. It can improve our knowledge of realistic turbulent processes at low energy density involving walls, unsteady transport, interfaces and vortices, as well as high energy density hydrodynamics including strong shocks, explosions, blast waves and supersonic flows. A deep understanding of mixing and turbulent mixing requires one to go above and beyond canonical approaches and demands further enhancements in the quality and information capacity of experimental and numerical data sets, and in the methods of theoretical analysis of continuous dynamics and kinetics. This has the added potential then of bringing the experiment, numerical modelling, theoretical analysis and data processing to a new level of standards. At the same time, mixing and turbulent mixing being one of the most formidable and multi-faceted problems of modern physics and mathematics, is well open for a curious mind. In this article we briefly review various aspects of turbulent mixing, and present a summary of over 70 papers that were discussed at the third International Conference on 'Turbulent Mixing and Beyond', TMB-2011, that

  15. LiWall Fusion - The New Concept of Magnetic Fusion

    SciTech Connect

    L.E. Zakharov

    2011-01-12

    Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.

  16. Muon catalyzed fusion in plasma state and high intensity DT fusion neutron source

    SciTech Connect

    Takahashi, Hiroshi

    1989-01-01

    dt/mu/ molecular formation rates in a plasma state of DT mixture by d and t ions are, respectively, 63 and 77 times higher than the ones by electrons. High plasma oscillation frequency in a high electron density plasma enhances the formation rate in the high temperature dt mixture. The DT muon catalyzed fusion has the ability to produce much higher intensity 14 MeV neutron source (in order of 5 /times/ 10/sup 16/n/cm/sup 2//sec) than other means of stripping and spallation approaches. Such neutrons can be used for testing of first wall material candidates for magnetic fusion reactors, for incinerating fission products (e.g., Cs/sup 137/) and for creating high thermal flux neutron sources, on the order of 10/sup 17/n/cm/sup 2//sec. 12 refs., 2 figs.

  17. TOWARD A THEORY OF ASTROPHYSICAL PLASMA TURBULENCE AT SUBPROTON SCALES

    SciTech Connect

    Boldyrev, Stanislav; Horaites, Konstantinos; Xia, Qian; Perez, Jean Carlos

    2013-11-01

    We present an analytical study of subproton electromagnetic fluctuations in a collisionless plasma with a plasma beta of the order of unity. In the linear limit, a rigorous derivation from the kinetic equation is conducted focusing on the role and physical properties of kinetic-Alfvén and whistler waves. Then, nonlinear fluid-like equations for kinetic-Alfvén waves and whistler modes are derived, with special emphasis on the similarities and differences in the corresponding plasma dynamics. The kinetic-Alfvén modes exist in the lower-frequency region of phase space, ω << k v{sub Ti} , where they are described by the kinetic-Alfvén system. These modes exist both below and above the ion-cyclotron frequency. The whistler modes, which are qualitatively different from the kinetic-Alfvén modes, occupy a different region of phase space, k v{sub Ti} << ω << k{sub z}v{sub Te} , and they are described by the electron magnetohydrodynamics (MHD) system or the reduced electron MHD system if the propagation is oblique. Here, k{sub z} and k are the wavenumbers along and transverse to the background magnetic field, respectively, and v{sub Ti} and v{sub Te} are the ion and electron thermal velocities, respectively. The models of subproton plasma turbulence are discussed and the results of numerical simulations are presented. We also point out possible implications for solar-wind observations.

  18. Energetic particle instabilities in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Sharapov, S. E.; Alper, B.; Berk, H. L.; Borba, D. N.; Breizman, B. N.; Challis, C. D.; Classen, I. G. J.; Edlund, E. M.; Eriksson, J.; Fasoli, A.; Fredrickson, E. D.; Fu, G. Y.; Garcia-Munoz, M.; Gassner, T.; Ghantous, K.; Goloborodko, V.; Gorelenkov, N. N.; Gryaznevich, M. P.; Hacquin, S.; Heidbrink, W. W.; Hellesen, C.; Kiptily, V. G.; Kramer, G. J.; Lauber, P.; Lilley, M. K.; Lisak, M.; Nabais, F.; Nazikian, R.; Nyqvist, R.; Osakabe, M.; Perez von Thun, C.; Pinches, S. D.; Podesta, M.; Porkolab, M.; Shinohara, K.; Schoepf, K.; Todo, Y.; Toi, K.; Van Zeeland, M. A.; Voitsekhovich, I.; White, R. B.; Yavorskij, V.; TG, ITPA EP; Contributors, JET-EFDA

    2013-10-01

    Remarkable progress has been made in diagnosing energetic particle instabilities on present-day machines and in establishing a theoretical framework for describing them. This overview describes the much improved diagnostics of Alfvén instabilities and modelling tools developed world-wide, and discusses progress in interpreting the observed phenomena. A multi-machine comparison is presented giving information on the performance of both diagnostics and modelling tools for different plasma conditions outlining expectations for ITER based on our present knowledge.

  19. The plasma-wall interaction region: a key low temperature plasma for controlled fusion

    NASA Astrophysics Data System (ADS)

    Counsell, G. F.

    2002-08-01

    The plasma-wall interaction region of a fusion device provides the interface between the hot core plasma and the material surfaces. To obtain acceptably low levels of erosion from these surfaces requires most of the power leaving the core to be radiated. This is accomplished in existing devices by encouraging plasma detachment, in which the hot plasma arriving in the region is cooled by volume recombination and ion-neutral momentum transfer with a dense population of neutrals recycled from the surface. The result is a low temperature (1 eV1019 m-3) but weakly ionized (n0>1020 m-3, ne/n0<0.1) plasma found nowhere else in the fusion environment. This plasma provides many of the conditions found in industrial plasmas exploiting plasma chemistry and the presence of carbon in the region (in the form of carbon-fibre composite used in the plasma facing materials) can result in the formation of deposited hydrocarbon films. The plasma-wall interaction region is therefore among the most difficult in fusion to model, requiring an understanding of atomic, molecular and surface physics issues.

  20. Laser plasma interaction physics in the context of fusion

    NASA Astrophysics Data System (ADS)

    Labaune, C.; Fuchs, J.; Depierreux, S.; Baldis, H. A.; Pesme, D.; Myatt, J.; Hüller, S.; Tikhonchuk, V. T.; Laval, G.

    2000-08-01

    Of vital importance for Inertial Confinement Fusion (ICF) are the understanding and control of the nonlinear processes which can occur during the propagation of the laser pulses through the underdense plasma surrounding the fusion capsule. The control of parametric instabilities has been studied experimentally, using the LULI six-beam laser facility, and also theoretically and numerically. New results based on the direct observation of plasma waves with Thomson scattering of a short wavelength probe beam have revealed the occurence of the Langmuir decay instability. This secondary instability may play an imporant role in the saturation of stimulated Raman scattering. Another mechanism for reducing the growth of the scattering instabilities is the so-called `plasma-induced incoherence'. Namely, recent theoretical studies have shown that the propagation of laser beams through the underdense plasma can increase their spatial and temporal incoherence. This plasma-induced beam smoothing can reduce the levels of parametric instabilities. One signature of this process is a large increase of the spectral width of the laser light after propagation through the plasma. Comparison of the experimental results with numerical simulations shows an excellent agreement between the observed and calculated time-resolved spectra of the transmitted laser light at various laser intensities.

  1. Beams, brightness, and background: Using active spectroscopy techniques for precision measurements in fusion plasma research

    SciTech Connect

    Thomas, Dan M.

    2012-05-15

    The use of an injected neutral beam-either a dedicated diagnostic beam or the main heating beams-to localize and enhance plasma spectroscopic measurements can be exploited for a number of key physics issues in magnetic confinement fusion research, yielding detailed profile information on thermal and fast ion parameters, the radial electric field, plasma current density, and turbulent transport. The ability to make these measurements has played a significant role in much of our recent progress in the scientific understanding of fusion plasmas. The measurements can utilize emission from excited state transitions either from plasma ions or from the beam atoms themselves. The primary requirement is that the beam 'probe' interacts with the plasma in a known fashion. Advantages of active spectroscopy include high spatial resolution due to the enhanced localization of the emission and the use of appropriate imaging optics, background rejection through the appropriate modulation and timing of the beam and emission collection/detection system, and the ability of the beam to populate emitter states that are either nonexistent or too dim to utilize effectively in the case of standard or passive spectroscopy. In addition, some active techniques offer the diagnostician unique information because of the specific quantum physics responsible for the emission. This paper will describe the general principles behind a successful active spectroscopic measurement, emphasize specific techniques that facilitate the measurements and include several successful examples of their implementation, briefly touching on some of the more important physics results. It concludes with a few remarks about the relevance and requirements of active spectroscopic techniques for future burning plasma experiments.

  2. Aneutronic Fusion in a Degenerate Plasma

    SciTech Connect

    S. Son; N.J. Fisch

    2004-09-03

    In a Fermi-degenerate plasma, the electronic stopping of a slow ion is smaller than that given by the classical formula, because some transitions between the electron states are forbidden. The bremsstrahlung losses are then smaller, so that the nuclear burning of an aneutronic fuel is more efficient. Consequently, there occurs a parameter regime in which self-burning is possible. Practical obstacles in this regime that must be overcome before net energy can be realized include the compression of the fuel to an ultra dense state and the creation of a hot spot.

  3. Recyclotron III, a recirculating plasma fusion system

    SciTech Connect

    Jarnagin, W.S.

    1987-01-27

    This patent describes a recyclotron nuclear fusion system comprising recyclotrons. Each recyclotron comprises cyclotron means for receiving and accelerating charged particles in spiral and work conservative pathways. An output means forms a beam from particles received from the cyclotron means; (i) the cyclotron means comprising (a) a channel shaped electromagnet having a pair of indented polefaces, oriented along an input axis and defining an input axis and defining an input magnetic well, (b) a pair of elongated linear electrodes centered along the input magnetic well arranged generally parallel to the input axis and having a gap therebetween, (c) tuned oscillator means connected to the electrodes for applying an oscillating electric potential thereto, (ii) the output means comprising (e) inverter means comprising an electromagnet having a polarity opposite that of the channel shaped electromagnet oriented contigously therealong for extracting fully accelerated particles from the cyclotron means, and (f) reinverter means comprising an electromagnet having a polarity the same as that of the channel shaped electromagnet for correcting the flightpath of the extracted particles.

  4. Synthetic aperture microwave imaging with active probing for fusion plasma diagnostics

    SciTech Connect

    Shevchenko, Vladimir F.; Freethy, Simon J.; Huang, Billy K.

    2014-08-21

    A Synthetic Aperture Microwave Imaging (SAMI) system has been designed and built to obtain 2-D images at several frequencies from fusion plasmas. SAMI uses a phased array of linearly polarised antennas. The array configuration has been optimised to achieve maximum synthetic aperture beam efficiency. The signals received by antennas are down-converted to the intermediate frequency range and then recorded in a full vector form. Full vector signals allow beam focusing and image reconstruction in both real time and a post-processing mode. SAMI can scan over 16 pre-programmed frequencies in the range of 10-35GHz with a switching time of 300ns. The system operates in 2 different modes simultaneously: both a 'passive' imaging of plasma emission and also an 'active' imaging of the back-scattered signal of the radiation launched by one of the antennas from the same array. This second mode is similar to so-called Doppler backscattering (DBS) reflectometry with 2-D resolution of the propagation velocity of turbulent structures. Both modes of operation show good performance in fusion plasma experiments on Mega Amp Spherical Tokamak (MAST). We have obtained the first ever 2-D images of BXO mode conversion windows. With active probing, first ever turbulence velocity maps have been obtained. We present an overview of the diagnostic and discuss recent results. In contrast to quasi-optical microwave imaging systems SAMI requires neither big aperture viewing ports nor large 2-D detector arrays to achieve the desired imaging resolution. The number of effective 'pixels' of the synthesized image is proportional to the number of receiving antennas squared. Thus only a small number of optimised antennas is sufficient for the majority of applications. Possible implementation of SAMI on ITERand DEMO is discussed.

  5. Turbulence and bias-induced flows in simple magnetized toroidal plasmas

    SciTech Connect

    Li, B.; Rogers, B. N.; Ricci, P.; Gentle, K. W.; Bhattacharjee, A.

    2011-05-15

    Turbulence and bias-induced flows in simple magnetized toroidal plasmas are explored with global three-dimensional fluid simulations, focusing on the parameters of the Helimak experiment. The simulations show that plasma turbulence and transport in the regime of interest are dominated by the ideal interchange instability. The application of a bias voltage alters the structure of the plasma potential, resulting in the equilibrium sheared flows.These bias-induced vertical flows located in the gradient region appear to reduce the radial extent of turbulent structures,and thereby lower the radial plasma transport on the low field side.

  6. Plasma Heating and Current Drive for Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Holtkamp, Norbert

    2010-02-01

    ITER (in Latin ``the way'') is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier one and thus release energy. In the fusion process two isotopes of hydrogen - deuterium and tritium - fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q >= 10 (input power 50 MW / output power 500 MW). In a Tokamak the definition of the functionalities and requirements for the Plasma Heating and Current Drive are relevant in the determination of the overall plant efficiency, the operation cost of the plant and the plant availability. This paper summarise these functionalities and requirements in perspective of the systems under construction in ITER. It discusses the further steps necessary to meet those requirements. Approximately one half of the total heating will be provided by two Neutral Beam injection systems at with energy of 1 MeV and a beam power of 16 MW into the plasma. For ITER specific test facility is being build in order to develop and test the Neutral Beam injectors. Remote handling maintenance scheme for the NB systems, critical during the nuclear phase of the project, will be developed. In addition the paper will give an overview over the general status of ITER. )

  7. Fourier-domain study of drift turbulence driven sheared flow in a laboratory plasma

    SciTech Connect

    Xu, M.; Tynan, G. R.; Holland, C.; Muller, S. H.; Yan, Z.; Yu, J. H.

    2010-03-15

    Frequency-resolved nonlinear internal and kinetic energy transfer rates have been measured in the Controlled Shear Decorrelation Experiment (CSDX) linear plasma device using a recently developed technique [Xu et al., Phys. Plasmas 16, 042312 (2009)]. The results clearly show a net kinetic energy transfer into the zonal flow frequency region, consistent with previous time-domain observations of turbulence-driven shear flows [Tynan et al., Plasma Phys. Controlled Fusion 48, S51 (2006)]. The experimentally measured dispersion relation has been used to map the frequency-resolved energy transfer rates into the wave number domain, which shows that the shear flow drive comes from midrange (k{sub t}hetarho{sub S}>0.3) drift fluctuations, and the strongest flow drive comes from k{sub t}hetarho{sub S}approx =1 fluctuations. Linear growth rates have been inferred from a linearized Hasegawa-Wakatani model [Hasegawa et al., Phys. Fluids 22, 2122 (1979)], which indicates that the m=0 mode is linearly stable and the m=1-10 modes (corresponding to k{sub t}hetarho{sub S}>0.3) are linearly unstable for the n=1 and n=2 radial eigenmodes. This is consistent with our energy transfer measurements.

  8. Multispecies density peaking in gyrokinetic turbulence simulations of low collisionality Alcator C-Mod plasmas

    SciTech Connect

    Mikkelsen, D. R. Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Greenwald, M.; Howard, N. T.; Hughes, J. W.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Ma, Y.; Candy, J.; Waltz, R. E.

    2015-06-15

    Peaked density profiles in low-collisionality AUG and JET H-mode plasmas are probably caused by a turbulently driven particle pinch, and Alcator C-Mod experiments confirmed that collisionality is a critical parameter. Density peaking in reactors could produce a number of important effects, some beneficial, such as enhanced fusion power and transport of fuel ions from the edge to the core, while others are undesirable, such as lower beta limits, reduced radiation from the plasma edge, and consequently higher divertor heat loads. Fundamental understanding of the pinch will enable planning to optimize these impacts. We show that density peaking is predicted by nonlinear gyrokinetic turbulence simulations based on measured profile data from low collisionality H-mode plasma in Alcator C-Mod. Multiple ion species are included to determine whether hydrogenic density peaking has an isotope dependence or is influenced by typical levels of low-Z impurities, and whether impurity density peaking depends on the species. We find that the deuterium density profile is slightly more peaked than that of hydrogen, and that experimentally relevant levels of boron have no appreciable effect on hydrogenic density peaking. The ratio of density at r/a = 0.44 to that at r/a = 0.74 is 1.2 for the majority D and minority H ions (and for electrons), and increases with impurity Z: 1.1 for helium, 1.15 for boron, 1.3 for neon, 1.4 for argon, and 1.5 for molybdenum. The ion temperature profile is varied to match better the predicted heat flux with the experimental transport analysis, but the resulting factor of two change in heat transport has only a weak effect on the predicted density peaking.

  9. Multispecies density peaking in gyrokinetic turbulence simulations of low collisionality Alcator C-Mod plasmas

    NASA Astrophysics Data System (ADS)

    Mikkelsen, D. R.; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Greenwald, M.; Howard, N. T.; Hughes, J. W.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Ma, Y.; Candy, J.; Waltz, R. E.

    2015-06-01

    Peaked density profiles in low-collisionality AUG and JET H-mode plasmas are probably caused by a turbulently driven particle pinch, and Alcator C-Mod experiments confirmed that collisionality is a critical parameter. Density peaking in reactors could produce a number of important effects, some beneficial, such as enhanced fusion power and transport of fuel ions from the edge to the core, while others are undesirable, such as lower beta limits, reduced radiation from the plasma edge, and consequently higher divertor heat loads. Fundamental understanding of the pinch will enable planning to optimize these impacts. We show that density peaking is predicted by nonlinear gyrokinetic turbulence simulations based on measured profile data from low collisionality H-mode plasma in Alcator C-Mod. Multiple ion species are included to determine whether hydrogenic density peaking has an isotope dependence or is influenced by typical levels of low-Z impurities, and whether impurity density peaking depends on the species. We find that the deuterium density profile is slightly more peaked than that of hydrogen, and that experimentally relevant levels of boron have no appreciable effect on hydrogenic density peaking. The ratio of density at r/a = 0.44 to that at r/a = 0.74 is 1.2 for the majority D and minority H ions (and for electrons), and increases with impurity Z: 1.1 for helium, 1.15 for boron, 1.3 for neon, 1.4 for argon, and 1.5 for molybdenum. The ion temperature profile is varied to match better the predicted heat flux with the experimental transport analysis, but the resulting factor of two change in heat transport has only a weak effect on the predicted density peaking.

  10. Subgrid-scale modeling for the study of compressible magnetohydrodynamic turbulence in space plasmas

    NASA Astrophysics Data System (ADS)

    Chernyshov, A. A.; Karelsky, K. V.; Petrosyan, A. S.

    2014-05-01

    A state-of-the-art review is given of research by computing physics methods on compressible magnetohydrodynamic turbulence in space plasmas. The presence of magnetic fields and compressibility in this case makes space plasma turbulence much less amenable to direct numerical simulations than a neutral incompressible fluid. The large eddy simulation method is discussed, which was developed as an alternative to direct modeling and which filters the initial magnetohydrodynamic equations and uses the subgrid-scale modeling of universal small-scale turbulence. A detailed analysis is made of both the method itself and different subgrid-scale parametrizations for compressible magnetohydrodynamic turbulent flows in polytropic and heat-conducting plasmas. The application of subgrid-scale modeling to study turbulence in the local interstellar medium and the scale-invariant spectra of magnetohydrodynamic turbulence are discussed.

  11. Plasma-Jet Magneto-Inertial Fusion Burn Calculations

    NASA Astrophysics Data System (ADS)

    Santarius, John

    2010-11-01

    Several issues exist related to using plasma jets to implode a Magneto-Inertial Fusion (MIF) liner onto a magnetized plasmoid and compress it to fusion-relevant temperatures [1]. The poster will explore how well the liner's inertia provides transient plasma confinement and affects the burn dynamics. The investigation uses the University of Wisconsin's 1-D Lagrangian radiation-hydrodynamics code, BUCKY, which solves single-fluid equations of motion with ion-electron interactions, PdV work, table-lookup equations of state, fast-ion energy deposition, pressure contributions from all species, and one or two temperatures. Extensions to the code include magnetic field evolution as the plasmoid compresses plus dependence of the thermal conductivity on the magnetic field. [4pt] [1] Y.C. F. Thio, et al.,``Magnetized Target Fusion in a Spheroidal Geometry with Standoff Drivers,'' in Current Trends in International Fusion Research, E. Panarella, ed. (National Research Council of Canada, Ottawa, Canada, 1999), p. 113.

  12. Mixing and turbulent mixing in fluids, plasma and materials: summary of works presented at the 3rd International Conference on Turbulent Mixing and Beyond

    NASA Astrophysics Data System (ADS)

    Gauthier, Serge; Keane, Christopher J.; Niemela, Joseph J.; Abarzhi, Snezhana I.

    2013-07-01

    Mixing and turbulent mixing are non-equilibrium processes that occur in a broad variety of processes in fluids, plasmas and materials. The processes can be natural or artificial, their characteristic scales can be astrophysical or atomistic, and energy densities can be low or high. Understanding the fundamental aspects of turbulent mixing is necessary to comprehend the dynamics of supernovae and accretion discs, stellar non-Boussinesq and magneto-convection, mantle-lithosphere tectonics and volcanic eruptions, atmospheric and oceanographic flows in geophysics, and premixed and non-premixed combustion. It is crucial for the development of the methods of control in technological applications, including mixing mitigation in inertial confinement and magnetic fusion, and mixing enhancement in reactive flows, as well as material transformation under the action of high strain rates. It can improve our knowledge of realistic turbulent processes at low energy density involving walls, unsteady transport, interfaces and vortices, as well as high energy density hydrodynamics including strong shocks, explosions, blast waves and supersonic flows. A deep understanding of mixing and turbulent mixing requires one to go above and beyond canonical approaches and demands further enhancements in the quality and information capacity of experimental and numerical data sets, and in the methods of theoretical analysis of continuous dynamics and kinetics. This has the added potential then of bringing the experiment, numerical modelling, theoretical analysis and data processing to a new level of standards. At the same time, mixing and turbulent mixing being one of the most formidable and multi-faceted problems of modern physics and mathematics, is well open for a curious mind. In this article we briefly review various aspects of turbulent mixing, and present a summary of over 70 papers that were discussed at the third International Conference on 'Turbulent Mixing and Beyond', TMB-2011, that

  13. Microwave imaging of magnetohydrodynamic instabilities in fusion plasma

    NASA Astrophysics Data System (ADS)

    Sabot, Roland; Elbèze, Didier; Lee, Woochang; Nam, Yoonbum; Park, Hyeon; Shen, Junsong; Yun, Gunsu; Choi, Minjun; Giacalone, Jean-Claude; Nicolas, Timothée; Bottereau, Christine; Clairet, Frédéric; Lotte, Philippe; Molina, Diego

    2016-11-01

    Microwave imaging diagnostics are extremely useful for observing magnetohydrodynamic (MHD) instabilities in magnetic fusion plasmas. Two imaging diagnostics will be available on the WEST tokamak. A method was developed to reconstruct electron density maps from electron density profiles measured by ultrafast reflectometry, a technique based on FM-CW radar principle. It relies on plasma rotation to perform 2D reconstruction. An Electron Cyclotron Emission Imaging (ECEI) diagnostic will image directly the temperature fluctuations. It will be equivalent to 24 stacked vertically radiometers, each probing a spot of few centimetres. These two complementary techniques will contribute to the validation of MHD models. xml:lang="fr"

  14. Ignition Regime for Fusion in a Degenerate Plasma

    SciTech Connect

    Son, S.; Fisch, N.J.

    2005-12-01

    We identify relevant parameter regimes in which aneutronic fuels can undergo fusion ignition in hot-ion degenerate plasma. Because of relativistic effects and partial degeneracy, the self-sustained burning regime is considerably larger than previously calculated. Inverse bremsstrahlung plays a major role in containing the reactor energy. We solve the radiation transfer equation and obtain the contribution to the heat conductivity from inverse bremsstrahlung.

  15. Kinetic theory of weak turbulence in magnetized plasmas: Perpendicular propagation

    SciTech Connect

    Yoon, Peter H.

    2015-08-15

    The present paper formulates a weak turbulence theory in which electromagnetic perturbations are assumed to propagate in directions perpendicular to the ambient magnetic field. By assuming that all wave vectors lie in one direction transverse to the ambient magnetic field, the linear solution and second-order nonlinear solutions to the equation for the perturbed distribution function are obtained. Nonlinear perturbed current from the second-order nonlinearity is derived in general form, but the limiting situation of cold plasma temperature is taken in order to derive an explicit nonlinear wave kinetic equation that describes three-wave decay/coalescence interactions among X and Z modes. A potential application of the present formalism is also discussed.

  16. Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas.

    PubMed

    Meinecke, Jena; Tzeferacos, Petros; Bell, Anthony; Bingham, Robert; Clarke, Robert; Churazov, Eugene; Crowston, Robert; Doyle, Hugo; Drake, R Paul; Heathcote, Robert; Koenig, Michel; Kuramitsu, Yasuhiro; Kuranz, Carolyn; Lee, Dongwook; MacDonald, Michael; Murphy, Christopher; Notley, Margaret; Park, Hye-Sook; Pelka, Alexander; Ravasio, Alessandra; Reville, Brian; Sakawa, Youichi; Wan, Willow; Woolsey, Nigel; Yurchak, Roman; Miniati, Francesco; Schekochihin, Alexander; Lamb, Don; Gregori, Gianluca

    2015-07-01

    The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe.

  17. Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas.

    PubMed

    Meinecke, Jena; Tzeferacos, Petros; Bell, Anthony; Bingham, Robert; Clarke, Robert; Churazov, Eugene; Crowston, Robert; Doyle, Hugo; Drake, R Paul; Heathcote, Robert; Koenig, Michel; Kuramitsu, Yasuhiro; Kuranz, Carolyn; Lee, Dongwook; MacDonald, Michael; Murphy, Christopher; Notley, Margaret; Park, Hye-Sook; Pelka, Alexander; Ravasio, Alessandra; Reville, Brian; Sakawa, Youichi; Wan, Willow; Woolsey, Nigel; Yurchak, Roman; Miniati, Francesco; Schekochihin, Alexander; Lamb, Don; Gregori, Gianluca

    2015-07-01

    The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe. PMID:26100873

  18. Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas

    PubMed Central

    Meinecke, Jena; Tzeferacos, Petros; Bell, Anthony; Bingham, Robert; Clarke, Robert; Churazov, Eugene; Crowston, Robert; Doyle, Hugo; Drake, R. Paul; Heathcote, Robert; Koenig, Michel; Kuramitsu, Yasuhiro; Kuranz, Carolyn; Lee, Dongwook; MacDonald, Michael; Murphy, Christopher; Notley, Margaret; Park, Hye-Sook; Pelka, Alexander; Ravasio, Alessandra; Reville, Brian; Sakawa, Youichi; Wan, Willow; Woolsey, Nigel; Yurchak, Roman; Miniati, Francesco; Schekochihin, Alexander; Lamb, Don; Gregori, Gianluca

    2015-01-01

    The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe. PMID:26100873

  19. Internet and web projects for fusion plasma science and education. Final technical report

    SciTech Connect

    Eastman, Timothy E.

    1999-08-30

    The plasma web site at http://www.plasmas.org provides comprehensive coverage of all plasma science and technology with site links worldwide. Prepared to serve the general public, students, educators, researchers, and decision-makers, the site covers basic plasma physics, fusion energy, magnetic confinement fusion, high energy density physics include ICF, space physics and astrophysics, pulsed-power, lighting, waste treatment, plasma technology, plasma theory, simulations and modeling.

  20. Super-diffusion scalings - space versus fusion

    NASA Astrophysics Data System (ADS)

    Savin, Sergey; Budaev, Vyacheslav; Silin, Victor

    2016-07-01

    In the plasma kinetics, looking at the plasma waves interactions with the particles, most people use the Boltzman nonlinear approach for a variate of the waves, which could be interpreted as a "turbulence". We have now a theory for ion-sound turbulence [Silin e. a., 2011] that predicts fast heating of the ions: it can be either in fusion devices , magnetosphere or solar plasma. The ion heating could result into the power lowers for the turbulent spectra. We compare the theory predictions with the experimental data both from the fusion laboratory devices and from space plasma data, discussing their applicability to the solar plasma.

  1. Interstellar turbulence model : A self-consistent coupling of plasma and neutral fluids

    SciTech Connect

    Shaikh, Dastgeer; Zank, Gary P.; Pogorelov, Nikolai

    2006-09-26

    We present results of a preliminary investigation of interstellar turbulence based on a self-consistent two-dimensional fluid simulation model. Our model describes a partially ionized magnetofluid interstellar medium (ISM) that couples a neutral hydrogen fluid to a plasma through charge exchange interactions and assumes that the ISM turbulent correlation scales are much bigger than the shock characteristic length-scales, but smaller than the charge exchange mean free path length-scales. The shocks have no influence on the ISM turbulent fluctuations. We find that nonlinear interactions in coupled plasma-neutral ISM turbulence are influenced substantially by charge exchange processes.

  2. Magneto-inertial Fusion: An Emerging Concept for Inertial Fusion and Dense Plasmas in Ultrahigh Magnetic Fields

    SciTech Connect

    Thio, Francis Y.C.

    2008-01-01

    An overview of the U.S. program in magneto-inertial fusion (MIF) is given in terms of its technical rationale, scientific goals, vision, research plans, needs, and the research facilities currently available in support of the program. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. A vigorous program in magnetized high energy density laboratory plasmas (HED-LP) addressing the scientific basis of magneto-inertial fusion has been initiated by the Office of Fusion Energy Sciences of the U.S. Department of Energy involving a number of universities, government laboratories and private institutions.

  3. Tempest Neoclassical Simulation of Fusion Edge Plasmas

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Xiong, Z.; Cohen, B. I.; Cohen, R. H.; Dorr, M.; Hittinger, J.; Kerbel, G. D.; Nevins, W. M.; Rognlien, T. D.

    2006-04-01

    We are developing a continuum gyrokinetic full-F code, TEMPEST, to simulate edge plasmas. The geometry is that of a fully diverted tokamak and so includes boundary conditions for both closed magnetic flux surfaces and open field lines. The code, presently 4-dimensional (2D2V), includes kinetic ions and electrons, a gyrokinetic Poisson solver for electric field, and the nonlinear Fokker-Planck collision operator. Here we present the simulation results of neoclassical transport with Boltzmann electrons. In a large aspect ratio circular geometry, excellent agreement is found for neoclassical equilibrium with parallel flows in the banana regime without a temperature gradient. In divertor geometry, it is found that the endloss of particles and energy induces pedestal-like density and temperature profiles inside the magnetic separatrix and parallel flow stronger than the neoclassical predictions in the SOL. The impact of the X-point divertor geometry on the self-consistent electric field and geo-acoustic oscillations will be reported. We will also discuss the status of extending TEMPEST into a 5-D code.

  4. Azimuthal inhomogeneity of turbulence structure and its impact on intermittent particle transport in linear magnetized plasmas

    SciTech Connect

    Kobayashi, T.; Inagaki, S.; Sasaki, M.; Nagashima, Y.; Kasuya, N.; Fujisawa, A.; Itoh, S.-I.; Kosuga, Y.; Arakawa, H.; Yamada, T.; Miwa, Y.; Itoh, K.

    2015-11-15

    Fluctuation component in the turbulence regime is found to be azimuthally localized at a phase of the global coherent modes in a linear magnetized plasma PANTA. Spatial distribution of squared bicoherence is given in the azimuthal cross section as an indicator of nonlinear energy transfer function from the global coherent mode to the turbulence. Squared bicoherence is strong at a phase where the turbulence amplitude is large. As a result of the turbulence localization, time evolution of radial particle flux becomes bursty. Statistical features such as skewness and kurtosis are strongly modified by the localized turbulence component, although contribution to mean particle flux profile is small.

  5. Permutation entropy and statistical complexity analysis of turbulence in laboratory plasmas and the solar wind.

    PubMed

    Weck, P J; Schaffner, D A; Brown, M R; Wicks, R T

    2015-02-01

    The Bandt-Pompe permutation entropy and the Jensen-Shannon statistical complexity are used to analyze fluctuating time series of three different turbulent plasmas: the magnetohydrodynamic (MHD) turbulence in the plasma wind tunnel of the Swarthmore Spheromak Experiment (SSX), drift-wave turbulence of ion saturation current fluctuations in the edge of the Large Plasma Device (LAPD), and fully developed turbulent magnetic fluctuations of the solar wind taken from the Wind spacecraft. The entropy and complexity values are presented as coordinates on the CH plane for comparison among the different plasma environments and other fluctuation models. The solar wind is found to have the highest permutation entropy and lowest statistical complexity of the three data sets analyzed. Both laboratory data sets have larger values of statistical complexity, suggesting that these systems have fewer degrees of freedom in their fluctuations, with SSX magnetic fluctuations having slightly less complexity than the LAPD edge I(sat). The CH plane coordinates are compared to the shape and distribution of a spectral decomposition of the wave forms. These results suggest that fully developed turbulence (solar wind) occupies the lower-right region of the CH plane, and that other plasma systems considered to be turbulent have less permutation entropy and more statistical complexity. This paper presents use of this statistical analysis tool on solar wind plasma, as well as on an MHD turbulent experimental plasma. PMID:25768612

  6. Permutation entropy and statistical complexity analysis of turbulence in laboratory plasmas and the solar wind.

    PubMed

    Weck, P J; Schaffner, D A; Brown, M R; Wicks, R T

    2015-02-01

    The Bandt-Pompe permutation entropy and the Jensen-Shannon statistical complexity are used to analyze fluctuating time series of three different turbulent plasmas: the magnetohydrodynamic (MHD) turbulence in the plasma wind tunnel of the Swarthmore Spheromak Experiment (SSX), drift-wave turbulence of ion saturation current fluctuations in the edge of the Large Plasma Device (LAPD), and fully developed turbulent magnetic fluctuations of the solar wind taken from the Wind spacecraft. The entropy and complexity values are presented as coordinates on the CH plane for comparison among the different plasma environments and other fluctuation models. The solar wind is found to have the highest permutation entropy and lowest statistical complexity of the three data sets analyzed. Both laboratory data sets have larger values of statistical complexity, suggesting that these systems have fewer degrees of freedom in their fluctuations, with SSX magnetic fluctuations having slightly less complexity than the LAPD edge I(sat). The CH plane coordinates are compared to the shape and distribution of a spectral decomposition of the wave forms. These results suggest that fully developed turbulence (solar wind) occupies the lower-right region of the CH plane, and that other plasma systems considered to be turbulent have less permutation entropy and more statistical complexity. This paper presents use of this statistical analysis tool on solar wind plasma, as well as on an MHD turbulent experimental plasma.

  7. Permutation entropy and statistical complexity analysis of turbulence in laboratory plasmas and the solar wind

    NASA Astrophysics Data System (ADS)

    Weck, P. J.; Schaffner, D. A.; Brown, M. R.; Wicks, R. T.

    2015-02-01

    The Bandt-Pompe permutation entropy and the Jensen-Shannon statistical complexity are used to analyze fluctuating time series of three different turbulent plasmas: the magnetohydrodynamic (MHD) turbulence in the plasma wind tunnel of the Swarthmore Spheromak Experiment (SSX), drift-wave turbulence of ion saturation current fluctuations in the edge of the Large Plasma Device (LAPD), and fully developed turbulent magnetic fluctuations of the solar wind taken from the Wind spacecraft. The entropy and complexity values are presented as coordinates on the CH plane for comparison among the different plasma environments and other fluctuation models. The solar wind is found to have the highest permutation entropy and lowest statistical complexity of the three data sets analyzed. Both laboratory data sets have larger values of statistical complexity, suggesting that these systems have fewer degrees of freedom in their fluctuations, with SSX magnetic fluctuations having slightly less complexity than the LAPD edge Isat. The CH plane coordinates are compared to the shape and distribution of a spectral decomposition of the wave forms. These results suggest that fully developed turbulence (solar wind) occupies the lower-right region of the CH plane, and that other plasma systems considered to be turbulent have less permutation entropy and more statistical complexity. This paper presents use of this statistical analysis tool on solar wind plasma, as well as on an MHD turbulent experimental plasma.

  8. Three-dimensional modeling of beam emission spectroscopy measurements in fusion plasmas

    SciTech Connect

    Guszejnov, D.; Pokol, G. I.; Pusztai, I.; Refy, D.; Zoletnik, S.; Lampert, M.; Nam, Y. U.

    2012-11-15

    One of the main diagnostic tools for measuring electron density profiles and the characteristics of long wavelength turbulent wave structures in fusion plasmas is beam emission spectroscopy (BES). The increasing number of BES systems necessitated an accurate and comprehensive simulation of BES diagnostics, which in turn motivated the development of the Rate Equations for Neutral Alkali-beam TEchnique (RENATE) simulation code that is the topic of this paper. RENATE is a modular, fully three-dimensional code incorporating all key features of BES systems from the atomic physics to the observation, including an advanced modeling of the optics. Thus RENATE can be used both in the interpretation of measured signals and the development of new BES systems. The most important components of the code have been successfully benchmarked against other simulation codes. The primary results have been validated against experimental data from the KSTAR tokamak.

  9. Three-dimensional modeling of beam emission spectroscopy measurements in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Guszejnov, D.; Pokol, G. I.; Pusztai, I.; Refy, D.; Zoletnik, S.; Lampert, M.; Nam, Y. U.

    2012-11-01

    One of the main diagnostic tools for measuring electron density profiles and the characteristics of long wavelength turbulent wave structures in fusion plasmas is beam emission spectroscopy (BES). The increasing number of BES systems necessitated an accurate and comprehensive simulation of BES diagnostics, which in turn motivated the development of the Rate Equations for Neutral Alkali-beam TEchnique (RENATE) simulation code that is the topic of this paper. RENATE is a modular, fully three-dimensional code incorporating all key features of BES systems from the atomic physics to the observation, including an advanced modeling of the optics. Thus RENATE can be used both in the interpretation of measured signals and the development of new BES systems. The most important components of the code have been successfully benchmarked against other simulation codes. The primary results have been validated against experimental data from the KSTAR tokamak.

  10. Three-dimensional modeling of beam emission spectroscopy measurements in fusion plasmas.

    PubMed

    Guszejnov, D; Pokol, G I; Pusztai, I; Refy, D; Zoletnik, S; Lampert, M; Nam, Y U

    2012-11-01

    One of the main diagnostic tools for measuring electron density profiles and the characteristics of long wavelength turbulent wave structures in fusion plasmas is beam emission spectroscopy (BES). The increasing number of BES systems necessitated an accurate and comprehensive simulation of BES diagnostics, which in turn motivated the development of the Rate Equations for Neutral Alkali-beam TEchnique (RENATE) simulation code that is the topic of this paper. RENATE is a modular, fully three-dimensional code incorporating all key features of BES systems from the atomic physics to the observation, including an advanced modeling of the optics. Thus RENATE can be used both in the interpretation of measured signals and the development of new BES systems. The most important components of the code have been successfully benchmarked against other simulation codes. The primary results have been validated against experimental data from the KSTAR tokamak.

  11. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Christopherson, A. R.

    2015-11-01

    In inertial confinement fusion, a spherical capsule of cryogenic DT is accelerated inward at a high velocity. Near stagnation, a dense hot spot is formed where the deuterium and tritium ions begin to fuse, creating a 3.5-MeV alpha particle per reaction. These alpha particles deposit energy back into the plasma, thereby increasing the pressure, temperature, and reaction rate. This feedback process is called ``alpha heating,'' and ignition is a direct consequence of this thermal instability. The onset of a burning-plasma regime occurs when the total alpha-particle energy produced exceeds the shell compression work. Using an analytic compressible-shell model for the implosion, it is found that the onset of the burning-plasma regime is a unique function of the neutron yield enhancement caused by alpha particles for any target, direct or indirect drive. This yield enhancement can then be inferred from experimentally measureable quantities, such as the Lawson parameter. From this analysis, the onset of a burning plasma occurs at yields exceeding 50 kJ for implosions at the National Ignition Facility. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and DE-FC02-04ER54789 (Fusion Science Center).

  12. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device.

    PubMed

    Whalley, Richard D; Walsh, James L

    2016-01-01

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence. PMID:27561246

  13. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device

    PubMed Central

    Whalley, Richard D.; Walsh, James L.

    2016-01-01

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence. PMID:27561246

  14. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device

    NASA Astrophysics Data System (ADS)

    Whalley, Richard D.; Walsh, James L.

    2016-08-01

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence.

  15. Gaussianity versus intermittency in solar system plasma turbulence

    NASA Astrophysics Data System (ADS)

    Echim, M.

    2014-12-01

    Statistical properties of plasma and magnetic field fluctuations exhibit features linked with the dynamics of the targeted system and sometimes with the physical processes that are at the origin of these fluctuations. Intermittency is sometimes discussed in terms of non-Gaussianity of the Probability Distribution Functions (PDFs) of fluctuations for ranges of spatio/temporal scales. Some examples of self-similarity have been however shown for PDFs whose wings are not Gaussian. In this study we discuss intermittency in terms of non-Gaussianity as well as scale dependence of the higher order moments of PDFs, in particular the flatness. We use magnetic field and plasma data from several space missions, in the solar wind (Ulysses, Cluster, and Venus Express), and in the planetary magnetosheaths (Cluster and Venus Express). We analyze Ulysses data that satisfy a consolidated set of selection criteria able to identify "pure" fast and slow wind. We investigate Venus Express data close to the orbital apogee, in the solar wind, at 0.72 AU, and in the Venus magnetosheath. We study Cluster data in the solar wind (for time intervals not affected by planetary ions effects), and the magnetosheath. We organize our results in three solar wind data bases (one for the solar maximum, 1999-2001, two for the solar minimum, 1997-1998 and respectively, 2007-2008), and two planetary databases (one for the solar maximum, 2000-2001, that includes PDFs obtained in the terrestrial magnetosphere, and one for the solar minimum, 2007-2008, that includes PDFs obtained in the terrestrial and Venus magnetospheres and magnetosheaths). In addition to investigating the statistical properties of fluctuations for the minimum and maximum of the solar cycle we also analyze the similarities and differences between fast and slow wind. We emphasize the importance of our data survey and analysis in the context of understanding the solar wind turbulence and complexity, and the exploitation of data bases and as

  16. Trends in laser-plasma-instability experiments for laser fusion

    SciTech Connect

    Drake, R.P. Lawrence Livermore National Lab., CA )

    1991-06-06

    Laser-plasma instability experiments for laser fusion have followed three developments. These are advances in the technology and design of experiments, advances in diagnostics, and evolution of the design of high-gain targets. This paper traces the history of these three topics and discusses their present state. Today one is substantially able to produce controlled plasma conditions and to diagnose specific instabilities within such plasmas. Experiments today address issues that will matter for future laser facilities. Such facilities will irradiate targets with {approx}1 MJ of visible or UV light pulses that are tens of nanoseconds in duration, very likely with a high degree of spatial and temporal incoherence. 58 refs., 4 figs.

  17. Dust remobilization in fusion plasmas under steady state conditions

    NASA Astrophysics Data System (ADS)

    Tolias, P.; Ratynskaia, S.; De Angeli, M.; De Temmerman, G.; Ripamonti, D.; Riva, G.; Bykov, I.; Shalpegin, A.; Vignitchouk, L.; Brochard, F.; Bystrov, K.; Bardin, S.; Litnovsky, A.

    2016-02-01

    The first combined experimental and theoretical studies of dust remobilization by plasma forces are reported. The main theoretical aspects of remobilization in fusion devices under steady state conditions are analyzed. In particular, the dominant role of adhesive forces is highlighted and generic remobilization conditions—direct lift-up, sliding, rolling—are formulated. A novel experimental technique is proposed, based on controlled adhesion of dust grains on tungsten samples combined with detailed mapping of the dust deposition profile prior and post plasma exposure. Proof-of-principle experiments in the TEXTOR tokamak and the EXTRAP-T2R reversed-field pinch are presented. The versatile environment of the linear device Pilot-PSI allowed for experiments with different magnetic field topologies and varying plasma conditions that were complemented with camera observations.

  18. Simulation of Turbulence in the Divertor Region of Tokamak Edge Plasma

    SciTech Connect

    Umansky, M; Rognlien, T; Xu, X

    2004-10-04

    Results are presented for turbulence simulations with the fluid edge turbulence code BOUT [1]. The present study is focused on turbulence in the divertor leg region and on the role of the X-point in the structure of turbulence. Results of the present calculations indicate that the ballooning effects are important for the divertor fluctuations. The X-point shear leads to weak correlation of turbulence across the X-point regions, in particular for large toroidal wavenumber. For the saturated amplitudes of the divertor region turbulence it is found that amplitudes of density fluctuations are roughly proportional to the local density of the background plasma. The amplitudes of electron temperature and electric potential fluctuations are roughly proportional to the local electron temperature of the background plasma.

  19. Ultrasmooth plasma polymerized coatings for laser-fusion targets

    SciTech Connect

    Letts, S.A.; Myers, D.W.; Witt, L.A.

    1980-08-26

    Coatings for laser fusion targets were deposited up to 135 ..mu..m thick by plasma polymerization onto 140 ..mu..m diameter DT filled glass microspheres. Ultrasmooth surfaces (no defect higher than 0.1 ..mu..m) were achieved by eliminating particulate contamination. Process generated particles were eliminated by determining the optimum operating conditions of power, gas flow, and pressure, and maintaining these conditions through feedback control. From a study of coating defects grown over known surface irregularities, a quantitative relationship between irregularity size, film thickness, and defect size was determined. This relationship was used to set standards for the maximum microshell surface irregularity tolerable in the production of hydrocarbon or fluorocarbon coated laser fusion targets.

  20. Probing spherical tokamak plasmas using charged fusion products

    NASA Astrophysics Data System (ADS)

    Boeglin, Werner U.; Perez, Ramona V.; Darrow, Douglass S.; Cecconello, Marco; Klimek, Iwona; Allan, Scott Y.; Akers, Rob J.; Jones, Owen M.; Keeling, David L.; McClements, Ken G.; Scannell, Rory

    2015-11-01

    The detection of charged fusion products, such as protons and tritons resulting from D(d,p)t reactions, can be used to determine the fusion reaction rate profile in large spherical tokamak plasmas with neutral beam heating. The time resolution of a diagnostic of this type makes it possible to study the slowly-varying beam density profile, as well as rapid changes resulting from MHD instabilities. A 4-channel prototype proton detector (PD) was installed and operated on the MAST spherical tokamak in August/September 2013, and a new 6-channel system for the NSTX-U spherical tokamak is under construction. PD and neutron camera measurements obtained on MAST will be compared with TRANSP calculations, and the design of the new NSTX-U system will be presented, together with the first results from this diagnostic, if available. Supported in part by DOE DE-SC0001157.

  1. Modeling hydrogen isotope behavior in fusion plasma-facing components

    NASA Astrophysics Data System (ADS)

    Hu, Alice; Hassanein, Ahmed

    2014-03-01

    In this work, we focus on understanding hydrogen isotope retention in plasma-facing materials in fusion devices. Three common simulation methods are usually used to study this problem that includes Monte Carlo, molecular dynamics, and numerical/analytical methods. A system of partial differential equations describing deuterium behavior in tungsten under various conditions is solved numerically to explain recent data compared to other methods. The developed model of hydrogen retention in metals includes classic, intercrystalline and trapped-induced Gorsky effects. The bombardment and depth profile of 200 eV deuterium in single crystal tungsten are simulated and compared with recent work. The total deuterium retention at various temperatures and fluences are also calculated and compared with available data. The results are in reasonable agreement with data and therefore, this model can be used to estimate deuterium inventory and recovery in future fusion devices.

  2. 2012 Joint Varenna-Lausanne International Workshop on the theory of fusion plasmas (Varenna, Italy, 27-31 August 2012)

    NASA Astrophysics Data System (ADS)

    Gabet, Xavier; Sauter, Olivier

    2013-07-01

    The 2012 Joint Varenna-Lausanne International Workshop on the theory of fusion plasmas was very fruitful. A broad variety of topics was addressed, covering turbulence, magnetohydrodynamics (MHD), edge physics, and radio frequency (RF) wave heating. Moreover, the scope of the meeting was extended this year to include the physics of materials and diagnostics for burning plasmas. This evolution reflects the complexity of problems at hand in fusion, some of them triggered by the construction of ITER and JT-60SA. Long-standing problems without immediate consequences have sometimes become an urgent matter in that context. One may refer to, for instance, the choice of plasma facing components or the design of control systems. Another characteristic of these workshops is the interplay between various domains of plasma physics. For instance, MHD modes are currently investigated with gyrokinetic codes, kinetic effects are included in MHD stability analysis more and more, and turbulence is now accounted for in wave propagation problems. This is proof of cross-fertilization and is certainly a healthy sign for our community. Finally, introducing some novelty in the programme does not prevent from us respecting old traditions. As usual, many presentations were dedicated to numerical simulations. Combining advanced numerical techniques with elaborated analytical theory is certainly a trademark of the Varenna-Lausanne Workshop, which was respected again this year. The quality and size of the scientific output from this workshop is shown in this special issue of Plasma Physics and Controlled Fusion; a further 26 papers have already appeared in Journal of Physics: Conference Series in December 2012. We hope the readers will enjoy this special issue, and find therein knowledge and inspiration.

  3. Thermal plasma and fast ion transport in electrostatic turbulence in the large plasma device

    SciTech Connect

    Zhou Shu; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Tripathi, S. K. P.; Van Compernolle, B.

    2012-05-15

    The transport of thermal plasma and fast ions in electrostatic microturbulence is studied. Strong density and potential fluctuations ({delta}n/n{approx}{delta}{phi}/kT{sub e}{approx} 0.5, f {approx} 5-50 kHz) are observed in the large plasma device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky et al., Rev. Sci. Instrum. 62, 2875 (1991)] in density gradient regions produced by obstacles with slab or cylindrical geometry. Wave characteristics and the associated plasma transport are modified by driving sheared E Multiplication-Sign B drift through biasing the obstacle and by modification of the axial magnetic fields (B{sub z}) and the plasma species. Cross-field plasma transport is suppressed with small bias and large B{sub z} and is enhanced with large bias and small B{sub z}. The transition in thermal plasma confinement is well explained by the cross-phase between density and potential fluctuations. Large gyroradius lithium fast ion beam ({rho}{sub fast}/{rho}{sub s} {approx} 10) orbits through the turbulent region. Scans with a collimated analyzer give detailed profiles of the fast ion spatial-temporal distribution. Fast-ion transport decreases rapidly with increasing fast-ion energy and gyroradius. Background waves with different scale lengths also alter the fast ion transport. Experimental results agree well with gyro-averaging theory. When the fast ion interacts with the wave for most of a wave period, a transition from super-diffusive to sub-diffusive transport is observed, as predicted by diffusion theory. Besides turbulent-wave-induced fast-ion transport, the static radial electric field (E{sub r}) from biasing the obstacle leads to drift of the fast-ion beam centroid. The drift and broadening of the beam due to static E{sub r} are evaluated both analytically and numerically. Simulation results indicate that the E{sub r} induced transport is predominately convective.

  4. Scaling mechanisms of vapour/plasma shielding from laser-produced plasmas to magnetic fusion regimes

    NASA Astrophysics Data System (ADS)

    Sizyuk, Tatyana; Hassanein, Ahmed

    2014-02-01

    The plasma shielding effect is a well-known mechanism in laser-produced plasmas (LPPs) reducing laser photon transmission to the target and, as a result, significantly reducing target heating and erosion. The shielding effect is less pronounced at low laser intensities, when low evaporation rate together with vapour/plasma expansion processes prevent establishment of a dense plasma layer above the surface. Plasma shielding also loses its effectiveness at high laser intensities when the formed hot dense plasma plume causes extensive target erosion due to radiation fluxes back to the surface. The magnitude of emitted radiation fluxes from such a plasma is similar to or slightly higher than the laser photon flux in the low shielding regime. Thus, shielding efficiency in LPPs has a peak that depends on the laser beam parameters and the target material. A similar tendency is also expected in other plasma-operating devices such as tokamaks of magnetic fusion energy (MFE) reactors during transient plasma operation and disruptions on chamber walls when deposition of the high-energy transient plasma can cause severe erosion and damage to the plasma-facing and nearby components. A detailed analysis of these abnormal events and their consequences in future power reactors is limited in current tokamak reactors. Predictions for high-power future tokamaks are possible only through comprehensive, time-consuming and rigorous modelling. We developed scaling mechanisms, based on modelling of LPP devices with their typical temporal and spatial scales, to simulate tokamak abnormal operating regimes to study wall erosion, plasma shielding and radiation under MFE reactor conditions. We found an analogy in regimes and results of carbon and tungsten erosion of the divertor surface in ITER-like reactors with erosion due to laser irradiation. Such an approach will allow utilizing validated modelling combined with well-designed and well-diagnosed LPP experimental studies for predicting

  5. Soft X-ray measurements in magnetic fusion plasma physics

    NASA Astrophysics Data System (ADS)

    Botrugno, A.; Gabellieri, L.; Mazon, D.; Pacella, D.; Romano, A.

    2010-11-01

    Soft X-ray diagnostic systems and their successful application in the field of magnetic fusion plasma physics are discussed. Radiation with wavelength in the region of Soft X-Ray (1-30 keV) is largely produced by high temperature plasmas, carrying important information on many processes during a plasma discharge. Soft X-ray diagnostics are largely used in various fusion devices all over the world. These diagnostic systems are able to obtain information on electron temperature, electron density, impurity transport, Magneto Hydro Dynamic instabilities. We will discuss the SXR diagnostic installed on FTU in Frascati (Italy) and on Tore Supra in Cadarache (France), with special emphasis on diagnostic performances. Moreover, we will discuss the two different inversion methods for tomographic reconstruction used in Frascati and in Cadarache, the first one is relied on a guessed topology of iso-emissivity surfaces, the second one on regularization techniques, like minimum Fisher or maximum entropy. Finally, a new and very fast 2D imaging system with energy discrimination and high time resolution will be summarized as an alternative approach of SXR detection system.

  6. Differential turbulent heating of different ions in electron cyclotron resonance ion source plasma

    SciTech Connect

    Elizarov, L.I.; Ivanov, A.A.; Serebrennikov, K.S.; Vostrikova, E.A.

    2006-03-15

    The article considers the collisionless ion sound turbulent heating of different ions in an electron cyclotron resonance ion source (ECRIS). The ion sound arises due to parametric instability of pumping wave propagating along the magnetic field with the frequency close to that of electron cyclotron. Within the framework of turbulent heating model the different ions temperatures are calculated in gas-mixing ECRIS plasma.

  7. Simulations of drift resistive ballooning L-mode turbulence in the edge plasma of the DIII-D tokamaka)

    NASA Astrophysics Data System (ADS)

    Cohen, B. I.; Umansky, M. V.; Nevins, W. M.; Makowski, M. A.; Boedo, J. A.; Rudakov, D. L.; McKee, G. R.; Yan, Z.; Groebner, R. J.

    2013-05-01

    Results from simulations of electromagnetic drift-resistive ballooning turbulence for tokamak edge turbulence in realistic single-null geometry are reported. The calculations are undertaken with the BOUT three-dimensional fluid code that solves Braginskii-based fluid equations [X. Q. Xu and R. H. Cohen, Contrib. Plasma Phys. 36, 158 (1998)]. The simulation setup models L-mode edge plasma parameters in the actual magnetic geometry of the DIII-D tokamak [J. L. Luxon et al., Fusion Sci. Technol. 48, 807 (2002)]. The computations track the development of drift-resistive ballooning turbulence in the edge region to saturation. Fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes are compared to experimental data near the outer midplane from Langmuir probe and beam-emission-spectroscopy for a few well-characterized L-mode discharges in DIII-D. The simulations are comprised of a suite of runs in which the physics model is varied to include more fluid fields and physics terms. The simulations yield results for fluctuation amplitudes, correlation lengths, particle and energy fluxes, and diffusivities that agree with measurements within an order of magnitude and within factors of 2 or better for some of the data. The agreement of the simulations with the experimental measurements varies with respect to including more physics in the model equations within the suite of models investigated. The simulations show stabilizing effects of sheared E × B poloidal rotation (imposed zonal flow) and of lower edge electron temperature and density.

  8. Spectrometry of charged particles from inertial-confinement-fusion plasmas

    NASA Astrophysics Data System (ADS)

    Séguin, F. H.; Frenje, J. A.; Li, C. K.; Hicks, D. G.; Kurebayashi, S.; Rygg, J. R.; Schwartz, B.-E.; Petrasso, R. D.; Roberts, S.; Soures, J. M.; Meyerhofer, D. D.; Sangster, T. C.; Knauer, J. P.; Sorce, C.; Glebov, V. Yu.; Stoeckl, C.; Phillips, T. W.; Leeper, R. J.; Fletcher, K.; Padalino, S.

    2003-02-01

    High-resolution spectrometry of charged particles from inertial-confinement-fusion (ICF) experiments has become an important method of studying plasma conditions in laser-compressed capsules. In experiments at the 60-beam OMEGA laser facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)], utilizing capsules with D2, D3He, DT, or DTH fuel in a shell of plastic, glass, or D2 ice, we now routinely make spectral measurements of primary fusion products (p, D, T, 3He, α), secondary fusion products (p), "knock-on" particles (p, D, T) elastically scattered by primary neutrons, and ions from the shell. Use is made of several types of spectrometers that rely on detection and identification of particles with CR-39 nuclear track detectors in conjunction with magnets and/or special ranging filters. CR-39 is especially useful because of its insensitivity to electromagnetic noise and its ability to distinguish the types and energies of individual particles, as illustrated here by detailed calibrations of its response to 0.1-13.8 MeV protons from a Van de Graaff accelerator and to p, D, T, and α from ICF experiments at OMEGA. A description of the spectrometers is accompanied by illustrations of their operating principles using data from OMEGA. Sample results and discussions illustrate the relationship of secondary-proton and knock-on spectra to capsule fuel and shell areal densities and radial compression ratios; the relationship of different primary fusion products to each other and to ion temperatures; the relationship of deviations from spherical symmetry in particle yields and energies to capsule structure; the acceleration of fusion products and the spectra of ions from the shell due to external fields; and other important physical characteristics of the laser-compressed capsules.

  9. Simulation of transition dynamics to high confinement in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Nielsen, A. H.; Xu, G. S.; Madsen, J.; Naulin, V.; Juul Rasmussen, J.; Wan, B. N.

    2015-12-01

    The transition dynamics from the low (L) to the high (H) confinement mode in magnetically confined plasmas is investigated using a first-principles four-field fluid model. Numerical results are in agreement with measurements from the Experimental Advanced Superconducting Tokamak - EAST. Particularly, the slow transition with an intermediate dithering phase is well reproduced at proper parameters. The model recovers the power threshold for the L-H transition as well as the decrease in power threshold switching from single to double null configuration observed experimentally. The results are highly relevant for developing predictive models of the transition, essential for understanding and optimizing future fusion power reactors.

  10. Education Outreach at MIT Plasma Science and Fusion Center

    NASA Astrophysics Data System (ADS)

    Censabella, V.; Rivenberg, P.

    1999-11-01

    Outreach at the MIT PSFC consists of volunteers working together to increase the public's knowledge of fusion and plasma-related experiments. Seeking to generate excitement about science, engineering and mathematics, the PSFC holds a number of outreach activities throughout the year, such as Middle and High School Outreach Days. Outreach also includes the Mr. Magnet Program, which uses an interactive strategy to engage elementary school children. The PSFC maintains a Home Page on the World Widee Web, which can be reached at http://psfc.mit.edu.

  11. Recombination of H atoms on the dust in fusion plasmas

    SciTech Connect

    Bakhtiyari-Ramezani, M. Alinejad, N.; Mahmoodi, J.

    2015-07-15

    We survey a model for theoretical study of the interaction of hydrogen and dust surface and apply our results for dusty plasmas to fusion devices. In this model, considering the mobility of ad-atoms from one physisorbed, or chemisorbed site, to other one by thermal diffusion, we describe the formation of H{sub 2} on grain surfaces. Finally, we calculate the formation rate on the high temperature dust surfaces for a range of temperature and density in typical conditions of divertor of tokamak.

  12. Educational Outreach at the MIT Plasma Science and Fusion Center

    NASA Astrophysics Data System (ADS)

    Rivenberg, Paul; Thomas, Paul

    2006-10-01

    At the MIT PSFC, student and staff volunteers work together to increase the public's knowledge of fusion science and plasma technology. Seeking to generate excitement in young people about science and engineering, the PSFC hosts a number of educational outreach activities throughout the year, including Middle and High School Outreach Days. The PSFC also has an in-school science demonstration program on the theme of magnetism. The Mr. Magnet Program, headed by Mr. Paul Thomas, has been bringing lively demonstrations on magnetism into local elementary and middle schools for 15 years. This year Mr. Magnet presented the program to nearly 30,000 students at over 67 schools and other events, reaching kindergartners through college freshmen. In addition to his program on magnetism, he is offering an interactive lecture about plasma to high schools. The "Traveling Plasma Lab" encourages students to learn more about plasma science while having fun investigating plasma properties using actual laboratory techniques and equipment. Beyond the classroom, Paul Thomas has provided technical training for Boston Museum of Science staff in preparation for the opening of a Star Wars exhibit. His hands-on demos have also been filmed by the History Channel for a one-hour program about Magnetism, which aired in June 2006.

  13. Electromagnetic gyrokinetic turbulence in finite-beta helical plasmas

    SciTech Connect

    Ishizawa, A.; Watanabe, T.-H.; Sugama, H.; Nakajima, N.; Maeyama, S.

    2014-05-15

    A saturation mechanism for microturbulence in a regime of weak zonal flow generation is investigated by means of electromagnetic gyrokinetic simulations. The study identifies a new saturation process of the kinetic ballooning mode (KBM) turbulence originating from the spatial structure of the KBM instabilities in a finite-beta Large Helical Device (LHD) plasma. Specifically, the most unstable KBM in LHD has an inclined mode structure with respect to the mid-plane of a torus, i.e., it has a finite radial wave-number in flux tube coordinates, in contrast to KBMs in tokamaks as well as ion-temperature gradient modes in tokamaks and helical systems. The simulations reveal that the growth of KBMs in LHD is saturated by nonlinear interactions of oppositely inclined convection cells through mutual shearing as well as by the zonal flow. The saturation mechanism is quantitatively investigated by analysis of the nonlinear entropy transfer that shows not only the mutual shearing but also a self-interaction with an elongated mode structure along the magnetic field line.

  14. Influence of Dupree diffusivity on the occurrence scattering time advance in turbulent plasmas

    SciTech Connect

    Lee, Myoung-Jae; Jung, Young-Dae

    2015-12-15

    The influence of Dupree diffusivity on the occurrence scattering time advance for the electron-ion collision is investigated in turbulent plasmas. The second-order eikonal method and the effective Dupree potential term associated with the plasma turbulence are employed to obtain the occurrence scattering time as a function of the diffusion coefficient, impact parameter, collision energy, thermal energy, and Debye length. The result shows that the occurrence scattering time advance decreases with an increase of the Dupree diffusivity. Hence, we have found that the influence of plasma turbulence diminishes the occurrence time advance in forward electron-ion collisions in thermal turbulent plasmas. The occurrence time advance shows that the propensity of the occurrence time advance increases with increasing scattering angle. It is also found that the effect of turbulence due to the Dupree diffusivity on the occurrence scattering time advance decreases with an increase of the thermal energy. In addition, the variation of the plasma turbulence on the occurrence scattering time advance due to the plasma parameters is also discussed.

  15. Spectroscopic investigations of tungsten EUV spectra for fusion plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Clementson, Joel; Lennartsson, Thomas; Beiersdorfer, Peter; Safronova, Ulyana; Brage, Tomas; Grumer, Jon

    2011-10-01

    The Livermore WOLFRAM spectroscopy project consists of experimental and theoretical investigations of tungsten ions of relevance to the diagnostics of magnetically confined fusion plasmas. A recent effort has focused on the complex extreme ultraviolet spectra of few-times ionized tungsten atoms that are expected to be abundant in ITER divertor plasmas. The tungsten ions were produced and excited in the Livermore EBIT-I electron beam ion trap by scanning the electron-beam energy between 30 and 300 eV. The emission was studied using a broad-band grazing-incidence spectrometer covering 150 - 300 Å and a high-resolution spectrometer covering the 180 - 220 Å region. Experimental spectra are presented together with analysis based on calculations using the FAC, GRASP, Cowan, HULLAC, and RMBPT codes. Part of this work was performed under the auspices of the US DOE by LLNL under Contract No. DE-AC52-07NA-27344.

  16. Particle model for nonlocal heat transport in fusion plasmas.

    PubMed

    Bufferand, H; Ciraolo, G; Ghendrih, Ph; Lepri, S; Livi, R

    2013-02-01

    We present a simple stochastic, one-dimensional model for heat transfer in weakly collisional media as fusion plasmas. Energies of plasma particles are treated as lattice random variables interacting with a rate inversely proportional to their energy schematizing a screened Coulomb interaction. We consider both the equilibrium (microcanonical) and nonequilibrium case in which the system is in contact with heat baths at different temperatures. The model exhibits a characteristic length of thermalization that can be associated with an interaction mean free path and one observes a transition from ballistic to diffusive regime depending on the average energy of the system. A mean-field expression for heat flux is deduced from system heat transport properties. Finally, it is shown that the nonequilibrium steady state is characterized by long-range correlations.

  17. Onsager's symmetry relation and the residual parallel Reynolds stress in a magnetized plasma with electrostatic turbulence

    SciTech Connect

    Zuo, Yang Wang, Shaojie

    2014-09-15

    The physics of the residual parallel Reynolds stress in a rotating plasma with electrostatic turbulence is explicitly identified by using the transport formulation of the gyrokinetic turbulence. It is clarified that the residual stress consists of four terms, among which are the cross terms due to the pressure gradient and the temperature gradient and the terms related to the turbulent acceleration impulse and the turbulent heating rate. The last two terms are identified for the first time, and are shown to cause analogous residual term in the heat flux. Meanwhile, the transport matrix reveals diffusion in the phase space. The transport matrix is demonstrated to satisfy the Onsager's symmetry relation.

  18. Plasma transport control and self-sustaining fusion reactor

    SciTech Connect

    Ono, M.; Bell, R.; Choe, W.

    1997-02-01

    The possibility of a high performance/low cost fusion reactor concept which can simultaneously satisfy (1) high beta, (2) high bootstrap fraction (self-sustaining), and (3) high confinement is discussed. In CDX-U, a tokamak configuration was created and sustained solely by internally generated bootstrap currents, in which a seed current is created through a non-classical current diffusion process. Recent theoretical studies of MHD stability limits in spherical torus [e.g., the National Spherical Torus Experiment (NSTX)] produced a promising regime with stable beta of 45% and bootstrap current fraction of {ge}99%. Since the bootstrap current is generated by the pressure gradient, to satisfy the needed current profile for MHD stable high beta regimes, it is essential to develop a means to control the pressure profile. It is suggested that the most efficient approach for pressure profile control is through a creation of transport barriers (localized regions of low plasma transport) in the plasma. As a tool for creating the core transport barrier, poloidal-sheared-flow generation by ion Bernstein waves (IBW) near the wave absorption region appears to be promising. In PBX-M, application of IBW power produced a high-quality internal transport barrier where the ion energy and particle transport became neoclassical in the barrier region. The observation is consistent with the IBW-induced-poloidal-sheared-flow model. An experiment is planned on TFTR to demonstrate this concept with D-T reactor-grade plasmas. For edge transport control, a method based on electron ripple injection (ERI), driven by electron cyclotron heating (ECH), is being developed on CDX-U. It is estimated that both the IBW and ERI methods can create a transport barrier in reactor-grade plasmas (e.g., ITER) with a relatively small amount of power ({approx}10 MW {much_lt} P{sub fusion}).

  19. Experimental and theoretical research in applied plasma physics

    SciTech Connect

    Porkolab, M.

    1992-01-01

    This report discusses research in the following areas: fusion theory and computations; theory of thermonuclear plasmas; user service center; high poloidal beta studies on PBX-M; fast ECE fluctuation diagnostic for balloning mode studies; x-ray imaging diagnostic; millimeter/submillimeter-wave fusion ion diagnostics; small scale turbulence and nonlinear dynamics in plasmas; plasma turbulence and transport; phase contrast interferometer diagnostic for long wavelength fluctuations in DIII-D; and charged and neutral fusion production for fusio plasmas.

  20. Feedback control of plasma instabilities with charged particle beams and study of plasma turbulence

    NASA Technical Reports Server (NTRS)

    Tham, Philip Kin-Wah

    1994-01-01

    . A plasma instability is usually observed in its saturated state and appears as a single feature in the frequency spectrum with a single azimuthal and parallel wavenumbers. The physics of the non-zero spectral width was investigated in detail because the finite spectral width can cause "turbulent" transport. One aspect of the "turbulence" was investigated by obtaining the scaling of the linear growth rate of the instabilities with the fluctuation levels. The linear growth rates were measured with the established gated feedback technique. The research showed that the ExB instability evolves into a quasi-coherent state when the fluctuation level is high. The coherent aspects were studied with a bispectral analysis. Moreover, the single spectral feature was discovered to be actually composed of a few radial harmonics. The radial harmonics play a role in the nonlinear saturation of the instability via three-wave coupling.

  1. Robustness of predator-prey models for confinement regime transitions in fusion plasmas

    SciTech Connect

    Zhu, H.; Chapman, S. C.; Dendy, R. O.

    2013-04-15

    Energy transport and confinement in tokamak fusion plasmas is usually determined by the coupled nonlinear interactions of small-scale drift turbulence and larger scale coherent nonlinear structures, such as zonal flows, together with free energy sources such as temperature gradients. Zero-dimensional models, designed to embody plausible physical narratives for these interactions, can help to identify the origin of enhanced energy confinement and of transitions between confinement regimes. A prime zero-dimensional paradigm is predator-prey or Lotka-Volterra. Here, we extend a successful three-variable (temperature gradient; microturbulence level; one class of coherent structure) model in this genre [M. A. Malkov and P. H. Diamond, Phys. Plasmas 16, 012504 (2009)], by adding a fourth variable representing a second class of coherent structure. This requires a fourth coupled nonlinear ordinary differential equation. We investigate the degree of invariance of the phenomenology generated by the model of Malkov and Diamond, given this additional physics. We study and compare the long-time behaviour of the three-equation and four-equation systems, their evolution towards the final state, and their attractive fixed points and limit cycles. We explore the sensitivity of paths to attractors. It is found that, for example, an attractive fixed point of the three-equation system can become a limit cycle of the four-equation system. Addressing these questions which we together refer to as 'robustness' for convenience is particularly important for models which, as here, generate sharp transitions in the values of system variables which may replicate some key features of confinement transitions. Our results help to establish the robustness of the zero-dimensional model approach to capturing observed confinement phenomenology in tokamak fusion plasmas.

  2. Plasma engineering studies for Tennessee Tokamak (TENTOK) fusion power reactor

    SciTech Connect

    Yokoyama, K.E.; Lacatski, J.T.; Miller, J.B.; Bryan, W.E.; King, P.W.; Santoro, R.T.; Uckan, N.A.; Shannon, T.E.

    1984-02-01

    This paper summarizes the results of the plasma engineering and systems analysis studies for the Tennessee Tokamak (TENTOK) fusion power reactor. TENTOK is a 3000-MW(t) central station power plant that uses deuterium-tritium fuel in a D-shaped tokamak plasma configuration with a double-null poloidal divertor. The major parameters are R/sub 0/ = 6.4 m, a = 1.6 m, sigma (elongation) = 1.65, (n) = 1.5 x 10/sup 20/ m/sup -3/, (T) = 15 keV, (..beta..) = 6%, B/sub T/ (on-axis) = 5.6 T, I/sub p/ = 8.5 MA, and wall loading = 3 MW/m/sup 2/. Detailed analyses are performed in the areas of (1) transport simulation using the one-and-one-half-dimensional (1-1/2-D) WHIST transport code, (2) equilibrium/poloidal field coil systems, (3) neutral beam and radiofrequency (rf) heating, and (4) pellet fueling. In addition, impurity control systems, diagnostics and controls, and possible microwave plasma preheating and steady-state current drive options are also considered. Some of the major features of TENTOK include rf heating in the ion cyclotron range of frequencies, superconducting equilibrium field coils outside the superconducting toroidal field coils, a double-null poloidal divertor for impurity control and alpha ash removal, and rf-assisted plasma preheating and current startup.

  3. Acceleration of compact toroid plasma rings for fusion applications

    NASA Astrophysics Data System (ADS)

    Hartman, C. W.; Barr, W. L.; Eddleman, J. L.; Gee, M.; Hammer, J. H.; Ho, S. K.; Logan, B. G.; Meeker, D. J.; Mirin, A. A.; Nevins, W. M.

    1988-08-01

    We describe experimental results for a new type of collective accelerator based on magnetically confined compact torus (CT) plasma rings and discuss applications to both inertial and magnetic fusion. We have demonstrated the principle of CT acceleration in the RACE device with acceleration of 0.5 mg ring masses to 400 km/s and 0.02 mg ring masses to 1400 km/s at greater than or equal to 30 percent efficiency. Scaling the CT accelerator to the multi-megajoule level could provide an efficient, economical driver for inertial fusion (ICF) or magnetically insulated inertial fusion. Efficient conversion to X-rays for driving hohlraum-type ICF targets has been modeled using a radiation-hydrodynamics code. At less demanding conditions than required for ICF, a CT accelerator can be applied to fueling and current drive in tokamaks. Fueling is accomplished by injecting CTs at the required rate to sustain the particle inventory and at a velocity sufficient to penetrate to the magnetic axis before CT dissolution. Current drive is a consequence of the magnetic helicity content of the CT, which is approximately conserved during reconnection of the CT fields with the tokamak. Major areas of uncertainty in CT fueling and current drive concern the mechanism by which CTs will stop in a tokamak plasma and the effects of the CT on energy confinement and magnetic stability. Bounds on the required CT injection velocity are obtained by considering drag due to emission of an Alfven-wave wake and rapid reconnection and tilting on the internal Alfven time scale of the CT. Preliminary results employing a 3-D, resistive MHD code show rapid tilting with the CT aligning its magnetic moment with the tokamak field. Requirements for an experimental test of CT injection and scenarios for fueling a reactor will also be discussed.

  4. Ionospheric plasma Turbulence detection in the VLF data observed by DEMETER Satellite

    NASA Astrophysics Data System (ADS)

    Sondhiya, Deepak Kumar; Gwal, Ashok Kumar; Kumar, Sushil

    2016-07-01

    The electromagnetic wave data in the Very Low Frequency (VLF) range detected by DEMETER satellite has been analyzed, with special attention to the variation in spectral characteristics and non-linear effects, using the statistical and wavelet based techniques.The enhancement in statistical parameters shows the coherent structure and intermittent phenomenon which is the signature of turbulence. The characteristics features of VLF disturbances have further been studied using the wavelet and bispectral analysis tools which provide useful information on the plasma turbulence.A more interesting result emerges when the low-frequency turbulence emissions produce turbulence in VLF range. Finally, the relevance of the various turbulence mechanisms and their importance in ionospheric turbulence is discussed. Keywords:DEMETER, Earthquake, Phenomena of Intermittence, Coherent Structure.

  5. Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology

    NASA Astrophysics Data System (ADS)

    Rawat, R. S.

    2015-03-01

    The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of

  6. Low Frequency Turbulence as the Source of High Frequency Waves in Multi-Component Space Plasmas

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Krivorutsky, Emmanuel N.; Uritsky, Vadim M.

    2011-01-01

    Space plasmas support a wide variety of waves, and wave-particle interactions as well as wavewave interactions are of crucial importance to magnetospheric and ionospheric plasma behavior. High frequency wave turbulence generation by the low frequency (LF) turbulence is restricted by two interconnected requirements: the turbulence should be strong enough and/or the coherent wave trains should have the appropriate length. These requirements are strongly relaxed in the multi-component plasmas, due to the heavy ions large drift velocity in the field of LF wave. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves, in particular those associated with LF turbulence, may generate LHW s in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We also argue that the described scenario can playa vital role in various parts of the outer magnetosphere featuring strong LF turbulence accompanied by LHW activity. Using the data from THEMIS spacecraft, we validate the conditions for such cross-scale coupling in the near-Earth "flow-braking" magnetotail region during the passage of sharp injection/dipolarization fronts, as well as in the turbulent outflow region of the midtail reconnection site.

  7. A burning plasma program strategy to advance fusion energy. Report of the Fusion Energy Sciences Advisory Committee, Burning Plasma Strategy Panel

    SciTech Connect

    None, None

    2002-09-01

    Fusion energy shows great promise to contribute to securing the energy future of humanity. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are strong reasons to pursue fusion energy now. The world effort to develop fusion energy is at the threshold of a new stage in its research: the investigation of burning plasmas. This investigation, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. The defining feature of a burning plasma is that it is self-heated: the 100 million degree temperature of the plasma is maintained mainly by the heat generated by the fusion reactions themselves, as occurs in burning stars. The fusion-generated alpha particles produce new physical phenomena that are strongly coupled together as a nonlinear complex system. Understanding all elements of this system poses a major challenge to fundamental plasma physics. The technology needed to produce and control a burning plasma presents challenges in engineering science similarly essential to the development of fusion energy.

  8. Upper-hybrid wave-driven Alfvénic turbulence in magnetized dusty plasmas.

    PubMed

    Misra, A P; Banerjee, S

    2011-03-01

    The nonlinear dynamics of coupled electrostatic upper-hybrid (UH) and Alfvén waves (AWs) is revisited in a magnetized electron-ion plasma with charged dust impurities. A pair of nonlinear equations that describe the interaction of UH wave envelopes (including the relativistic electron mass increase) and the density as well as the compressional magnetic field perturbations associated with the AWs are solved numerically to show that many coherent solitary patterns can be excited and saturated due to modulational instability of unstable UH waves. The evolution of these solitary patterns is also shown to appear in the states of spatiotemporal coherence, temporal as well as spatiotemporal chaos, due to collision and fusion among the patterns in stochastic motion. Furthermore, these spatiotemporal features are demonstrated by the analysis of wavelet power spectra. It is found that a redistribution of wave energy takes place to higher harmonic modes with small wavelengths, which, in turn, results in the onset of Alfvénic turbulence in dusty magnetoplasmas. Such a scenario can occur in the vicinity of Saturn's magnetosphere as many electrostatic solitary structures have been observed there by the Cassini spacecraft. PMID:21517632

  9. Upper-hybrid wave-driven Alfvenic turbulence in magnetized dusty plasmas

    SciTech Connect

    Misra, A. P.; Banerjee, S.

    2011-03-15

    The nonlinear dynamics of coupled electrostatic upper-hybrid (UH) and Alfven waves (AWs) is revisited in a magnetized electron-ion plasma with charged dust impurities. A pair of nonlinear equations that describe the interaction of UH wave envelopes (including the relativistic electron mass increase) and the density as well as the compressional magnetic field perturbations associated with the AWs are solved numerically to show that many coherent solitary patterns can be excited and saturated due to modulational instability of unstable UH waves. The evolution of these solitary patterns is also shown to appear in the states of spatiotemporal coherence, temporal as well as spatiotemporal chaos, due to collision and fusion among the patterns in stochastic motion. Furthermore, these spatiotemporal features are demonstrated by the analysis of wavelet power spectra. It is found that a redistribution of wave energy takes place to higher harmonic modes with small wavelengths, which, in turn, results in the onset of Alfvenic turbulence in dusty magnetoplasmas. Such a scenario can occur in the vicinity of Saturn's magnetosphere as many electrostatic solitary structures have been observed there by the Cassini spacecraft.

  10. A self-organized criticality model for ion temperature gradient mode driven turbulence in confined plasma

    SciTech Connect

    Isliker, H.; Pisokas, Th.; Vlahos, L.; Strintzi, D.

    2010-08-15

    A new self-organized criticality (SOC) model is introduced in the form of a cellular automaton (CA) for ion temperature gradient (ITG) mode driven turbulence in fusion plasmas. Main characteristics of the model are that it is constructed in terms of the actual physical variable, the ion temperature, and that the temporal evolution of the CA, which necessarily is in the form of rules, mimics actual physical processes as they are considered to be active in the system, i.e., a heating process and a local diffusive process that sets on if a threshold in the normalized ITG R/L{sub T} is exceeded. The model reaches the SOC state and yields ion temperature profiles of exponential shape, which exhibit very high stiffness, in that they basically are independent of the loading pattern applied. This implies that there is anomalous heat transport present in the system, despite the fact that diffusion at the local level is imposed to be of a normal kind. The distributions of the heat fluxes in the system and of the heat out-fluxes are of power-law shape. The basic properties of the model are in good qualitative agreement with experimental results.

  11. Study of the turbulence in the central plasma sheet using the CLUSTER satellite data

    NASA Astrophysics Data System (ADS)

    Stepanova, M.; Arancibia Riveros, K.; Bosqued, J.; Antonova, E.

    2008-05-01

    Recent studies are shown that the turbulent processes in the space plasmas are very important. It includes the behavior of the plasma sheet plasma during geomagnetic substorms and storms. Study of the plasma turbulence in the central plasma sheet was made using the CLUSTER satellite mission data. For this studies we used the Cluster Ion Spectrometry experiment (CIS), and fluxgate magnetometer (FGM) data for studying fluctuations of the plasma bulk velocity and geomagnetic field fluctuations for different levels of geomagnetic activity and different locations inside the plasma sheet. Case studies for the orbits during quiet geomagnetic conditions, different phases of geomagnetic substroms and storms showed that the properties of plasma turbulence inside the sheet differ significantly for all afore mentioned cases. Variations in the probability distribution functions, flatness factors, local intermittency measure parameters, and eddy diffusion coefficients indicate that the turbulence increases significantly during substorm growth and expansion phases and decreases slowly to the initial level during the recovery phase. It became even stronger during the storm main phase.

  12. 1991 US-Japan workshop on Nuclear Fusion in Dense Plasmas. Proceedings

    SciTech Connect

    Ichimaru, S.; Tajima, T.

    1991-10-01

    The scientific areas covered at the Workshop may be classified into the following subfields: (1) basic theory of dense plasma physics and its interface with atomic physics and nuclear physics; (2) physics of dense z-pinches, ICF plasmas etc; (3) stellar interior plasmas; (4) cold fusion; and (5) other dense plasmas.

  13. 1991 US-Japan workshop on Nuclear Fusion in Dense Plasmas

    SciTech Connect

    Ichimaru, S. . Dept. of Physics); Tajima, T. . Inst. for Fusion Studies)

    1991-10-01

    The scientific areas covered at the Workshop may be classified into the following subfields: (1) basic theory of dense plasma physics and its interface with atomic physics and nuclear physics; (2) physics of dense z-pinches, ICF plasmas etc; (3) stellar interior plasmas; (4) cold fusion; and (5) other dense plasmas.

  14. Diagnosis of Magnetic Structures and Intermittency in Space Plasma Turbulence using the Method of Surrogate Data

    NASA Technical Reports Server (NTRS)

    Sahraoui, Fouad; Goldstein, Melvyn

    2008-01-01

    Several observations in space plasmas have reported the presence of coherent structures at different plasma scales. Structure formation is believed to be a direct consequence of nonlinear interactions between the plasma modes, which depend strongly on phase synchronization of those modes. Despite this important role of the phases in turbulence, very limited work has been however devoted to study the phases as a potential tracers of nonlinearities in comparison with the wealth of literature on power spectra of turbulence where phases are totally missed. We present a method based on surrogate data to systematically detect coherent structures in turbulent signals. The new method has been applied successfully to magnetosheath turbulence (Sahraoui, Phys. Rev. E, 2008, in press), where the relationship between the identified phase coherence and intermittency (classically identified as non Gaussian tails of the PDFs) as well as the energy cascade has been studied. Here we review the main results obtained in that study and show further applications to small scale solar wind turbulence. Implications of the results on theoretical modelling of space turbulence (applicability of weak/wave turbulence, its validity limits and its connection to intermittency) will be discussed.

  15. Diffusion and radiation in magnetized collisionless plasmas with small-scale Whistler turbulence

    NASA Astrophysics Data System (ADS)

    Keenan, Brett D.; Medvedev, Mikhail V.

    2016-04-01

    > Magnetized high-energy-density plasmas can often have strong electromagnetic fluctuations whose correlation scale is smaller than the electron Larmor radius. Radiation from the electrons in such plasmas - which markedly differs from both synchrotron and cyclotron radiation - is tightly related to their energy and pitch-angle diffusion. In this paper, we present a comprehensive theoretical and numerical study of particle transport in cold, `small-scale' Whistler-mode turbulence and its relation to the spectra of radiation simultaneously produced by these particles. We emphasize that this relation is a superb diagnostic tool of laboratory, astrophysical, interplanetary and solar plasmas with a mean magnetic field and strong small-scale turbulence.

  16. Dissipation in Turbulent Plasma due to Reconnection in Thin Current Sheets

    SciTech Connect

    Sundkvist, David; Bale, Stuart D.; Retino, Alessandro; Vaivads, Andris

    2007-07-13

    We present in situ measurements in a space plasma showing that thin current sheets the size of an ion inertial length exist and are abundant in strong and intermittent plasma turbulence. Many of these current sheets exhibit the microphysical signatures of reconnection. The spatial scale where intermittency occurs corresponds to the observed structures. The reconnecting current sheets represent a type of dissipation mechanism, with observed dissipation rates comparable to or even dominating over collisionless damping rates of waves at ion inertial length scales (x100), and can have far reaching implications for small-scale dissipation in all turbulent plasmas.

  17. Probabilistic analysis of turbulent structures from two-dimensional plasma imaging

    SciTech Connect

    Mueller, S. H.; Diallo, A.; Fasoli, A.; Furno, I.; Labit, B.; Plyushchev, G.; Podesta, M.; Poli, F. M.

    2006-10-15

    A method is presented to construct object-related structure observables, such as size, mass, shape, and trajectories from two-dimensional plasma imaging data. The probability distributions of these observables, deduced from measurements of many realizations, provide a robust framework in which the fluctuations, the turbulence, and the related transport are characterized. The results for imaging data recorded in the presence of drift-interchange instabilities and turbulence on the TORPEX toroidal plasma experiment [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)] are discussed.

  18. Fusion-reactor plasmas with polarized nuclei. II

    SciTech Connect

    Kulsrud, R.M.; Furth, H.P.; Valeo, E.J.; Budny, R.V.; Jassby, D.L.; Micklich, B.J.; Post, D.E.; Goldhaber, M.; Happer, W.

    1982-11-01

    New techniques of bulk polarization could be used to fuel a reactor with polarized hydrogenic atoms, so as to form a plasma of polarized nuclei. Theoretical calculations indicate that, once the nuclei of the plasma are polarized in some preferred state, they can maintain this state with a probability near 100% during their lifetime in the reactor, including possible recycling. There are a number of practical advantages to be gained from the use of polarized plasma in a fusion reactor. The nuclear reaction rates can be increased or decreased, and/or the direction of emission of the reaction products can be controlled. The D-T reaction rate can be enhanced by as much as 50%, with the reaction products emitted perpendicular to the magnetic field. Alternatively, it is possible to direct the reaction products primarily along the field, with no enhancement. In this case of the D-D reaction, the theoretical predictions are somewhat less certain. Enhancement of the reaction rate by a factor of 1.5-2.5 is to be expected. In a different polarization state, suppression of D-D reactions may be feasible - a possibility that would be of interest for a neutron-free D-He/sup 3/ reactor. A quantitative discussion of the relevant nuclear physics as well as of the various mechanisms producing depolarization is given.

  19. Computing nonlinear magnetohydrodynamic edge localized instabilities in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Brennan, D. P.; Kruger, S. E.; Schnack, D. D.; Sovinec, C. R.; Pankin, A.

    2006-09-01

    The onset and nonlinear evolution of Edge Localized Modes (ELMs) in toroidally confined plasmas are known to shed thermal energy from the edge of the confinement region, and may also affect the core plasma through nonlinear mode coupling. The physics of this process is not well understood, although the concomitant large bursts of thermal energy transport are a major concern for future burning plasma experiments. The evolution of ELMs is inherently nonlinear and analytic approaches are limited by the complexity of the problem. Save a handful of recent important theoretical works, the nonlinear consequences of ELMs are mainly unexplored. Recent developments in the NIMROD code [http://nimrodteam.org] have enabled the computational study of ELMs in tokamaks in the extended magnetohydrodynamic (MHD) framework, and a new initiative was formed to understand the basic physics of their nonlinear evolution. The results of these investigations are presented for both model equilibria and accurate reconstructions from the DIII-D experiment at General Atomics [http://fusion.gat.com/diii-d/]. These results show a filamentary high temperature structure propagating radially outward, which is strongly damped by experimentally relevant toroidal flow shear. Two fluid and gyroviscous terms are included linearly as a preliminary indication of these important physical effects, and stabilization of higher wave number modes is observed.

  20. Subcritical fluctuations and suppression of turbulence in differentially rotating gyrokinetic plasmas

    NASA Astrophysics Data System (ADS)

    Schekochihin, A. A.; Highcock, E. G.; Cowley, S. C.

    2012-05-01

    Differential rotation is known to suppress linear instabilities in fusion plasmas. However, numerical experiments show that even in the absence of growing eigenmodes, subcritical fluctuations that grow transiently can lead to sustained turbulence, limiting the ability of the velocity shear to suppress anomalous transport. Here transient growth of electrostatic fluctuations driven by the parallel velocity gradient (PVG) and the ion temperature gradient (ITG) in the presence of a perpendicular (E × B) velocity shear is considered. The maximally simplified (but, as numerical simulations suggest, most promising for transport reduction) case of zero magnetic shear is treated in the framework of a local shearing box approximation. In this case there are no linearly growing eigenmodes, so all excitations are transient. In the PVG-dominated regime, the maximum amplification factor is found to be eN with N ∝ q/ɛ (safety factor/inverse aspect ratio), the maximally amplified wavenumbers perpendicular and parallel to the magnetic field are related by kyρi ≈ (ɛ/q)1/3k∥vthi/S, where ρi is the ion Larmor radius, vthi the ion thermal speed and S the E × B shear. In the ITG-dominated regime, N is independent of wavenumber and N ∝ vthi/(LTS), where LT is the ion-temperature scale length. Intermediate ITG-PVG regimes are also analysed and N is calculated as a function of q/ɛ, LT and S. Analytical results are corroborated and supplemented by linear gyrokinetic numerical tests. Regimes with N ≲ 1 for all wavenumbers are possible for sufficiently low values of q/ɛ (≲7 in our model); ion-scale turbulence is expected to be fully suppressed in such regimes. For cases when it is not suppressed, an elementary heuristic theory of subcritical PVG turbulence leading to a scaling of the associated ion heat flux with q, ɛ, S and LT is proposed; it is argued that the transport is much less ‘stiff’ than in the ITG regime.

  1. Secondary Nuclear Reactions in Magneto-Inertial Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Knapp, Patrick

    2014-10-01

    The goal of Magneto-Inertial Fusion (MIF) is to relax the extreme pressure requirements of inertial confinement fusion by magnetizing the fuel. Understanding the level of magnetization at stagnation is critical for charting the performance of any MIF concept. We show here that the secondary nuclear reactions in magnetized deuterium plasma can be used to infer the magnetic field-radius product (BR), the critical confinement parameter for MIF. The secondary neutron yields and spectra are examined and shown to be extremely sensitive to BR. In particular, embedded magnetic fields are shown to affect profoundly the isotropy of the secondary neutron spectra. Detailed modeling of these spectra along with the ratio of overall secondary to primary neutron yields is used to form the basis of a diagnostic technique used to infer BR at stagnation. Effects of gradients in density, temperature and magnetic field strength are examined, as well as other possible non-uniform fuel configurations. Computational results employing a fully kinetic treatment of charged reaction product transport and Monte Carlo treatment of secondary reactions are compared to results from recent experiments at Sandia National Laboratories' Z machine testing the MAGnetized Liner Inertial Fusion (MagLIF) concept. The technique reveals that the charged reaction products were highly magnetized in these experiments. Implications for eventual ignition-relevant experiments with deuterium-tritium fuel are discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  2. High quality actively cooled plasma facing components for fusion

    SciTech Connect

    Nygren, R.

    1993-12-31

    This paper interweaves some suggestions for developing actively-cooled PFCs (plasma facing components) for future fusion devices with supporting examples taken from the design, fabrication and operation of Tore Supra`s Phase III Outboard Pump Limiter (OPL). This actively-cooled midplane limiter, designed for heat and particle removal during long pulse operation, has been operated in essentially thermally steady state conditions. From experience with testing to identify braze flaws in the OPL, recommendations are made to analyze the impact of joining flaws on thermal-hydraulic performance of PFCs and to validate a method of inspection for such flaws early in the design development. Capability for extensive in-service monitoring of future PFCs is also recommended and the extensive calorimetry and IR thermography used to confirm and update safe operating limits for power handling of the OPL are reviewed.

  3. Fusion Plasma Theory: Task 3, Auxiliary radiofrequency heating of tokamaks

    SciTech Connect

    Scharer, J.E.

    1992-01-01

    The research performed under this grant during the past year has been concentrated on the following several key tokamak ICRF (Ion Cyclotron Range of Frequencies) coupling, heating and current drive issues: Efficient coupling during the L- to H- mode transition by analysis and computer simulation of ICRF antennas; analysis of ICRF cavity-backed coil antenna coupling to plasma edge profiles including fast and ion Bernstein wave coupling for heating and current drive; benchmarking the codes to compare with current JET, D-IIID and ASDEX experimental results and predictions for advanced tokamaks such as BPX and SSAT (Steady-State Advanced Tokamak); ICRF full-wave field solutions, power conservation, heating analyses and minority ion current drive; and the effects of fusion alpha particle or ion tail populations on the ICRF absorption. Research progress, publications, and conference and workshop presentations are summarized in this report.

  4. Experimental Investigation of Active Feedback Control of Turbulent Transport in a Magnetized Plasma

    SciTech Connect

    Gilmore, Mark Allen

    2013-07-07

    A new and unique basic plasma science laboratory device - the HelCat device (HELicon-CAThode) - has been constructed and is operating at the University of New Mexico. HelCat is a 4 m long, 0.5 m diameter device, with magnetic field up to 2.2 kG, that has two independent plasmas sources - an RF helicon source, and a thermionic cathode. These two sources, which can operate independently or simultaneously, are capable of producing plasmas with a wide range of parameters and turbulence characteristics, well suited to a variety of basic plasma physics experiments. An extensive set of plasma diagnostics is also operating. Experiments investigating the active feedback control of turbulent transport of particles and heat via electrode biasing to affect plasma ExB flows are underway, and ongoing.

  5. Tritium retention in fusion reactor plasma facing components

    SciTech Connect

    Langley, R.A.

    1995-03-01

    The IAEA has proposed a coordinated research program to address tritium retention and release in fusion reactor plasma facing components. This program will address materials which are mainly of interest to the design and construction of ITER, namely beryllium, carbon based materials and medium and high-Z metals, e.g. tungsten, vanadium and molybdenum, but will not be limited to these materials. Experimental data are needed for: recycling models, tritium inventory estimates, tritium permeation calculations and hydrogen embrittlement characterization. The ultimate use of the data would be to influence the formation of models for use by fusion reactor designers. Judicious material choices must be made by the designers and accurate predictive codes are required in order to make these choices. The proposed coordinated research program will provide a forum for discussions between experimentalists, theoreticians, modelers and reactor designers, provide financial support for relevant research projects and collect and evaluate experimental and theoretical data. This paper briefly reviews existing data, addresses the data gaps and points out experiments designed to obtain the needed data. 18 refs., 3 figs., 1 tab.

  6. Stabilization effect of Weibel modes in relativistic laser fusion plasma

    NASA Astrophysics Data System (ADS)

    Belghit, Slimen; Sid, Abdelaziz

    2016-06-01

    In this work, the Weibel instability (WI) due to inverse bremsstrahlung (IB) absorption in a laser fusion plasma has been investigated. The stabilization effect due to the coupling of the self-generated magnetic field by WI with the laser wave field is explicitly shown. In this study, the relativistic effects are taken into account. Here, the basic equation is the relativistic Fokker-Planck (F-P) equation. The main obtained result is that the coupling of self-generated magnetic field with the laser wave causes a stabilizing effect of excited Weibel modes. We found a decrease in the spectral range of Weibel unstable modes. This decreasing is accompanied by a reduction of two orders in the growth rate of instable Weibel modes or even stabilization of these modes. It has been shown that the previous analysis of the Weibel instability due to IB has overestimated the values of the generated magnetic fields. Therefore, the generation of magnetic fields by the WI due to IB should not affect the experiences of an inertial confinement fusion.

  7. Plasma transport control and self-sustaining fusion reactor

    NASA Astrophysics Data System (ADS)

    Ono, M.; Bell, R.; Choe, W.; Chang, C. S.; Forest, C. B.; Goldston, R.; Hwang, Y. S.; Jardin, S. C.; Kaita, R.; Kaye, S.; Kessel, C. E.; Kugel, H.; LeBlanc, B.; Manickam, J.; Menard, J. E.; Munsat, T.; Okabayashi, M.; Peng, M.; Sesnic, S.; Tighe, W.

    1997-05-01

    The possibility of a high-performance/low-cost fusion reactor concept which can simultaneously satisfy (1) high beta, (2) high bootstrap fractio (self-sustaining) and (3) high confinement is discussed. In CDX-U, a tokamak configuration was created and sustained solely by internally generated bootstrap currents, in which a 'seed' current is created through a nonclassical current diffusion process. Recent theoretical studies of MHD stability limits in spherical tori [e.g. the National Spherical Torus Experiment (NSTX)] produced a promising regime with stable beta of 45% and bootstrap current fraction of $\\ge$ 99%plasma transport) in the plasma. As a tool for creating the core transport barrier, poloidal-sheared-flow generation by ion Bernstein waves (IBW) near the wave absorption region appears to be promising. In PBX-M, application of IBW power produced a high-quality internal transport barrier where the ion energy and particle transport became neoclassical in the barrier region. The observation is consistent with the IBW-induced-poloidal-sheared-flow model. An experiment is planned on TFTR to demonstrate this concept with D - T reactor-grade plasmas. For edge transport control, a method based on electron ripple injection (ERI), driven by electron cyclotron heating (ECH), is being developed on CDX-U. It is estimated that both the IBW and ERI methods can create a transport barrier in reactor-grade plasmas (e.g. ITER) with a relatively small amount of power $(\\approx 10 MW \\ll P_{<span class=fusion})$" SRC="http://www.iop.org/0741-3335/39/5A/033/img2

  8. Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse

    DOE PAGES

    Bang, W.

    2015-07-02

    Energetic deuterium ions from large deuterium clusters (>10 nm diameter) irradiated by an intense laser pulse (>10¹⁶ W/cm²) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We show an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the availablemore » experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10 - keV deuterium fusion plasma for 10 ns.« less

  9. Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse

    SciTech Connect

    Bang, W.

    2015-07-02

    Energetic deuterium ions from large deuterium clusters (>10 nm diameter) irradiated by an intense laser pulse (>10¹⁶ W/cm²) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We show an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the available experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10 - keV deuterium fusion plasma for 10 ns.

  10. Plasma transport control and self-sustaining fusion reactor

    SciTech Connect

    Ono, M.; Peng, Yueng Kay Martin

    1997-01-01

    The possibility of a high-performance/low-cost fusion reactor concept which can simultaneously satisfy (1) high beta, (2) high bootstrap fractio (self-sustaining) and (3) high confinement is discussed. In CDX-U, a tokamak configuration was created and sustained solely by internally generated bootstrap currents, in which a seed current is created through a nonclassical current diffusion process. Recent theoretical studies of MHD stability limits in spherical tori [e.g. the National Spherical Torus Experiment (NSTX)] produced a promising regime with stable beta of 45% and bootstrap current fraction of > 99%. Since the bootstrap current is generated by the pressure gradient, to satisfy the needed current profile for MHD stable high beta regimes, it is essential to develop a means to control the pressure profile. It is suggested that the most efficient approach for pressure profile control is through the creation of transport barriers (localized regions of low plasma transport) in the plasma. As a tool for creating the core transport barrier, poloidal-sheared-flow generation by ion Bernstein waves (IBW) near the wave absorption region appears to be promising. In PBX-M, application of IBW power produced a high-quality internal transport barrier where the ion energy and particle transport became neoclassical in the barrier region. The observation is consistent with the IBW-inducedpoloidal- sheared-flow model. An experiment is planned on TFTR to demonstrate this concept with D T reactor-grade plasmas. For edge transport control, a method based on electron ripple injection (ERI), driven by electron cyclotron heating (ECH), is being developed on CDX-U. It is estimated that both the IBW and ERI methods can create a transport barrier in reactor-grade plasmas (e.g. ITER) with a relatively small amount of power ( 10 MW Pfusion).

  11. Observation of multi-scale turbulence and non-local transport in LHD plasmas

    SciTech Connect

    Tokuzawa, T.; Inagaki, S.; Ida, K.; Itoh, K.; Ido, T.; Shimizu, A.; Takahashi, H.; Tamura, N.; Yoshinuma, M.; Tsuchiya, H.; Yamada, I.; Tanaka, K.; Akiyama, T.; Nagayama, Y.; Kawahata, K.; Watanabe, K. Y.; Yamada, H.; Kitajima, S.

    2014-05-15

    We have studied two types of spatio-temporal turbulence dynamics in plasmas in the Large Helical Device, based on turbulence measurements with high spatial and temporal resolution. Applying conditional ensemble-averaging to a plasma with Edge-Localized Modes (ELMs), fast radial inward propagation of a micro-scale turbulence front is observed just after ELM event, and the propagation speed is evaluated as ∼100 m/s. A self-organized radial electric field structure is observed in an electrode biasing experiment, and it is found to realize a multi-valued state. The curvature of the radial electric field is found to play an important role for turbulence reduction.

  12. Kinetic Study of Plasma Transport from Turbulence Driven by Parallel Velocity Shear

    NASA Astrophysics Data System (ADS)

    Fu, X. Y.; Dong, J. Q.; Horton, W.

    1996-11-01

    Particle, momentum and energy transport from turbulence in plasmas with multiple ion species are studied. The turbulence driven by a parallel velocity shear, a ion temperature gradient and an impurity density gradient is considered. The kinetic theory in a sheared slab configuration is applied. Both positive and negative magnetic shears are studied. The effects of a perpendicular velocity shear of the ions are taken into account. The impurity and hydrogenic ions are treated equally. A special attention is paid to the regimes with a low magnetic shear where it is demonstrated that the turbulence induced Reynold stress is higher, beneficial to the poloidal shear flow generation, and the stabilizing effects of such flow are dramatically enhanced. In addition, it is found that the fluxes may change direction depending on plasma parameters and turbulence driving mechanisms. Quasi-linear evaluations of the transport are given . Possible correlations with tokamak experiments such as formation of an internal transport barrier are discussed.

  13. Turbulent transport across shear layers in magnetically confined plasmas

    SciTech Connect

    Nold, B.; Ramisch, M.; Manz, P.; Birkenmeier, G.; Ribeiro, T. T.; Müller, H. W.; Scott, B. D.; Fuchert, G.; Stroth, U.

    2014-10-15

    Shear layers modify the turbulence in diverse ways and do not only suppress it. A spatial-temporal investigation of gyrofluid simulations in comparison with experiments allows to identify further details of the transport process across shear layers. Blobs in and outside a shear layer merge, thereby exchange particles and heat and subsequently break up. Via this mechanism particles and heat are transported radially across shear layers. Turbulence spreading is the immanent mechanism behind this process.

  14. Interaction of turbulent plasma flow with a hypersonic shock wave

    SciTech Connect

    Belay, K.; Valentine, J.M.; Williams, R.L.; Johnson, J.A. III

    1997-02-01

    A transient increase is observed in both the spectral energy decay rate and the degree of chaotic complexity at the interface of a shock wave and a turbulent ionized gas. Even though the gas is apparently brought to rest by the shock wave, no evidence is found either of prompt relaminarization or of any systematic influence of end-wall material thermal conductivities on the turbulence parameters. {copyright} {ital 1997 American Institute of Physics.}

  15. The Transition to Collisionless Ion-temperature-gradient-driven Plasma Turbulence: A Dynamical Systems Approach

    SciTech Connect

    R.A. Kolesnikov; J.A. Krommes

    2004-10-21

    The transition to collisionless ion-temperature-gradient-driven plasma turbulence is considered by applying dynamical systems theory to a model with ten degrees of freedom. Study of a four-dimensional center manifold predicts a ''Dimits shift'' of the threshold for turbulence due to the excitation of zonal flows and establishes the exact value of that shift in terms of physical parameters. For insight into fundamental physical mechanisms, the method provides a viable alternative to large simulations.

  16. Route to Drift Wave Chaos and Turbulence in a Bounded Low-{beta} Plasma Experiment

    SciTech Connect

    Klinger, T.; Latten, A.; Piel, A.; Bonhomme, G.; Pierre, T.; Dudok de Wit, T.

    1997-11-01

    The transition scenario from stability to drift wave turbulence is experimentally investigated in a magnetized low-{beta} plasma with cylindrical geometry. It is demonstrated that the temporal dynamics is determined by the interaction and destabilization of spatiotemporal patterns, in particular, traveling waves. The analysis of the temporal and the spatiotemporal data shows that the bifurcations sequence towards weakly developed turbulence follows the Ruelle-Takens scenario. {copyright} {ital 1997} {ital The American Physical Society}

  17. Magnetosheath Plasma Turbulence and Its Spatiotemporal Evolution as Observed by the Cluster Spacecraft

    SciTech Connect

    Yordanova, E.; Vaivads, A.; Andre, M.; Buchert, S. C.; Voeroes, Z.

    2008-05-23

    We study the plasma turbulence, at scales larger than the ion inertial length scale, downstream of a quasiparallel bow shock using Cluster multispacecraft measurements. We show that turbulence is intermittent and well described by the extended structure function model, which takes into account the spatial inhomogeneity of the cascade rate. For the first time we use multispacecraft observations to characterize the evolution of magnetosheath turbulence, particularly its intermittency, as a function of the distance from the bow shock. The intermittency significantly changes over the distance of the order of 100 ion inertial lengths, being increasingly stronger and anisotropic away from the bow shock.

  18. Graphite as a plasma-facing material in fusion experiments

    SciTech Connect

    Langley, R.A. )

    1989-01-01

    Graphite is now used extensively in most of the major fusion experiments in the world and will be used more extensively in future devices. In addition to its excellent tolerance of high heat fluxes, graphite has many unusual characteristics that pertain to its use as a plasma-facing material; these are its propensity for releasing gases when heated and when exposed to ion fluxes, its ability to absorb copious quantities of hydrogen during hydrogen bombardment, and its ability to pump hydrogen after noble gas bombardment. The graphite used in existing machines and considered for use in future machines is isotropic on a macroscopic scale and anisotropic on a microscopic scale; it has a large open porosity, up to 20%. This leads to enormous internal surface areas for adsorption and desorption of gases. Most early hydrogen-graphite interaction experiments were incorrectly analyzed because of this property. In addition, interaction of energetic hydrogen ions with graphite can lead to erosion, with concomitant deposition of carbon films with high hydrogen content on chamber surfaces. These effects are observed experimentally and have been modeled with some success. This paper presents experimental data dealing with these topics and their influences on present-day plasma operations and on graphite use in future machines. 34 refs., 8 figs., 1 tab.

  19. Transmission Grating Imaging Spectrometer for Magnetically Confined Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Blagojevic, B.; Stutman, D.; Vero, R.; Finkenthal, M.; Moos, H. W.

    2001-10-01

    The Johns Hopkins Plasma Spectroscopy Group is developing a transmission grating (TG) based imaging spectrometer for the soft and ultrasoft X-ray (USXR) ranges. The spectrometer will be integrated into a multi-purpose impurity diagnostic package for Magnetically Confined Fusion experiments, which will provide time and space resolved information about radiation losses, Zeff profiles and particle transport. The package will also include 2-D filtered USXR diode arrays and atomic physics and impurity transport computational capability. The spectrometer has a very simple layout, consisting of two collimating and space resolving slits, a TG and a 2-D imaging detector. As detector we are developing phosphor (P45) coated fiber optic plates with CCD and intensified CCD image readout. The performance of a test 5000 l/mm, 2:1 bar to open area ratio TG has been evaluated in the laboratory using a K-alpha Manson source and the emission from a Penning Discharge. The incident and diffracted photon flux was recorded in the 10-300 Å range with a gas flow proportional counter. The measurements show that spectral resolution and efficiency agree well with the predicted values. A device optimized for spectral resolution and higher order suppression will be tested on the CDX-U and NSTX tokamak at Princeton Plasma Physics Laboratory. Work supported by DoE grant No. DE-FG02-86ER52314ATDoE

  20. Sheared E×B flow and plasma turbulence viscosity in a Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Vianello, N.; Antoni, V.; Spada, E.; Spolaore, M.; Serianni, G.; Regnoli, G.; Zuin, M.; Cavazzana, R.; Bergsåker, H.; Cecconello, M.; Drake, J. R.

    2004-11-01

    The relationship between electromagnetic turbulence and sheared plasma flow in Reversed Field Pinch configuration is addressed. The momentum balance equation for a compressible plasma is considered and the terms involved are measured in the outer region of Extrap-T2R RFP device. It results that electrostatic fluctuations determine the plasma flow through the electrostatic component of Reynolds Stress tensor. This term involves spatial and temporal scales comparable to those of MHD activity. The derived experimental perpendicular viscosity is consistent with anomalous diffusion, the latter being discussed in terms of electrostatic turbulence background and coherent structures emerging from fluctuations. The results indicate a dynamical interplay between turbulence, anomalous transport and mean E×B profiles. The momentum balance has been studied also in non-stationary condition during the application of Pulsed Poloidal Current Drive, which is known to reduce the amplitude of MHD modes.

  1. Quasilinear wave-particle scattering rate in high-beta turbulent collisionless plasmas

    NASA Astrophysics Data System (ADS)

    Santos de Lima, Reinaldo; Yan, Huirong; Lazarian, Alex; de Gouveia Dal Pino, Elisabete

    2015-08-01

    Collisionless or weakly collisional plasmas, like the plasma of the intracluster medium of galaxies, are subject to electromagnetic instabilities driven by temperature anisotropy, which naturally arise in the presence of turbulence. These instabilities produce anomalous collisionality via wave-particle scattering, then reducing the mean-free-path of the particles by several orders of magnitude. This reduction affects directly the transport properties of the plasma and makes its large scale dynamics to behave similar to collisional MHD. In particular, it allows the turbulence to amplify the magnetic fields via the small-scale dynamo. Using the quasilinear theory, we calculate the scattering rate of ions due to the kinetic instabilities ion-cyclotron, mirror, and firehose. Using these results we estimate the average scattering rate of ions consistent with data cubes of high-beta MHD turbulence which represent the intracluster medium.

  2. Coherent and Turbulent Fluctuation Dynamics in a Linear Magnetized Plasma with Biasing

    NASA Astrophysics Data System (ADS)

    Desjardins, Tiiffany; Gilmore, Mark; Fisher, Dustin; Reynolds-Barredo, Jose-Miguel

    2014-10-01

    The Helicon-Cathode (HelCat) Device at the University of New Mexico is a linear plasma device that exhibits a wide range of plasma dynamics. HelCat has intrinsic fluctuations that vary from coherent to fully turbulent, depending on variables such as magnetic field strength, source power, and neutral background fill. In addition, biased grid and ring electrodes are found to strongly affect the fluctuation dynamics. A detailed study of the transition from a coherent state to a fully turbulent states with the variation of operating parameters and electrode bias is underway. It is seen that with increased magnetic field, fluctuation mode and character changes, and the plasma may become chaotic, before becoming turbulent. With biasing, it is possible to fully suppress instabilities and in some cases excite new ones. In addition to experimental measurements, a linear eigenmode solver is used to accurately identify the instabilities resent. A basic overview of results and analysis will be presented.

  3. Kinetic simulation of edge instability in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Fulton, Daniel Patrick

    In this work, gyrokinetic simulations in edge plasmas of both tokamaks and field reversed. configurations (FRC) have been carried out using the Gyrokinetic Toroidal Code (GTC) and A New Code (ANC) has been formulated for cross-separatrix FRC simulation. In the tokamak edge, turbulent transport in the pedestal of an H-mode DIII-D plasma is. studied via simulations of electrostatic driftwaves. Annulus geometry is used and simulations focus on two radial locations corresponding to the pedestal top with mild pressure gradient and steep pressure gradient. A reactive trapped electron instability with typical ballooning mode structure is excited in the pedestal top. At the steep gradient, the electrostatic instability exhibits unusual mode structure, peaking at poloidal angles theta=+- pi/2. Simulations find this unusual mode structure is due to steep pressure gradients in the pedestal but not due to the particular DIII-D magnetic geometry. Realistic DIII-D geometry has a stabilizing effect compared to a simple circular tokamak geometry. Driftwave instability in FRC is studied for the first time using gyrokinetic simulation. GTC. is upgraded to treat realistic equilibrium calculated by an MHD equilibrium code. Electrostatic local simulations in outer closed flux surfaces find ion-scale modes are stable due to the large ion gyroradius and that electron drift-interchange modes are excited by electron temperature gradient and bad magnetic curvature. In the scrape-off layer (SOL) ion-scale modes are excited by density gradient and bad curvature. Collisions have weak effects on instabilities both in the core and SOL. Simulation results are consistent with density fluctuation measurements in the C-2 experiment using Doppler backscattering (DBS). The critical density gradients measured by the DBS qualitatively agree with the linear instability threshold calculated by GTC simulations. One outstanding critical issue in the FRC is the interplay between turbulence in the FRC. core

  4. Fusion gamma diagnostics for D-T and D-/sup 3/He plasmas

    SciTech Connect

    Medley, S.S.; Hendel, H.

    1982-11-01

    Nuclear reactions of interest in controlled thermonuclear fusion research often possess a branch yielding prompt emission of gamma radiation. In principle, the gamma emission can be exploited to provide a new fusion diagnostic offering measurements comparable to those obtained by the well established neutron diagnostics methods. The conceptual aspects for a fusion gamma diagnostic are discussed in this paper and the feasibility for application to the Tokamak Fusion Test Reactor during deuterium neutral beam heating of a D-T plasma and minority ion cyclotron resonance heating of a D-/sup 3/He plasma is examined.

  5. Characteristics of Turbulence-driven Plasma Flow and Origin of Experimental Empirical Scalings of Intrinsic Rotation

    SciTech Connect

    Wang, W. X.; Hahm, T. S.; Ethier, S.; Rewoldt, G.; Tang, W. M.; Lee, W. W.; Diamond, P. H.

    2011-03-20

    Toroidal plasma flow driven by turbulent torque associated with nonlinear residual stress generation is shown to recover the observed key features of intrinsic rotation in experiments. Specifically, the turbulence-driven intrinsic rotation scales close to linearly with plasma gradients and the inverse of the plasma current, qualitatively reproducing empirical scalings obtained from a large experimental data base. The effect of magnetic shear on the symmetry breaking in the parallel wavenumber spectrum is identified. The origin of the current scaling is found to be the enhanced kll symmetry breaking induced by increased radial variation of the safety factor as the current decreases. The physics origin for the linear dependence of intrinsic rotation on the pressure gradient comes from the fact that both turbulence intensity and the zonal flow shear, which are two key ingredients for driving the residual stress, are increased with the strength of the turbulence drives, which are R/LTe and R/Lne for the collisionless trapped electron mode (CTEM). Highlighted results also include robust radial pinches in toroidal flow, heat and particle transport driven by CTEM turbulence, which emerge "in phase", and are shown to play important roles in determining plasma profiles. Also discussed are experimental tests proposed to validate findings from these gyrokinetic simulations.

  6. The Numerical Tokamak Project (NTP) simulation of turbulent transport in the core plasma: A grand challenge in plasma physics

    SciTech Connect

    Not Available

    1993-12-01

    The long-range goal of the Numerical Tokamak Project (NTP) is the reliable prediction of tokamak performance using physics-based numerical tools describing tokamak physics. The NTP is accomplishing the development of the most advanced particle and extended fluid model`s on massively parallel processing (MPP) environments as part of a multi-institutional, multi-disciplinary numerical study of tokamak core fluctuations. The NTP is a continuing focus of the Office of Fusion Energy`s theory and computation program. Near-term HPCC work concentrates on developing a predictive numerical description of the core plasma transport in tokamaks driven by low-frequency collective fluctuations. This work addresses one of the greatest intellectual challenges to our understanding of the physics of tokamak performance and needs the most advanced computational resources to progress. We are conducting detailed comparisons of kinetic and fluid numerical models of tokamak turbulence. These comparisons are stimulating the improvement of each and the development of hybrid models which embody aspects of both. The combination of emerging massively parallel processing hardware and algorithmic improvements will result in an estimated 10**2--10**6 performance increase. Development of information processing and visualization tools is accelerating our comparison of computational models to one another, to experimental data, and to analytical theory, providing a bootstrap effect in our understanding of the target physics. The measure of success is the degree to which the experimentally observed scaling of fluctuation-driven transport may be predicted numerically. The NTP is advancing the HPCC Initiative through its state-of-the-art computational work. We are pushing the capability of high performance computing through our efforts which are strongly leveraged by OFE support.

  7. Plasma wave turbulence associated with an interplanetary shock. [wave in solar wind upstream of magnetosphere

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Neubauer, F. M.; Schwenn, R.

    1979-01-01

    The present paper deals with interplanetary shocks, detected and analyzed to date, from the Helios 1 and 2 spacecraft in eccentric solar orbits. The plasma wave turbulence associated with the shock observed on March 30, 1976 is studied in detail. This event is of particular interest because it represents a clearly defined burst of turbulence against a quiet solar wind background both upstream and downstream of the shock. The shock itself is an oblique shock with upstream parameters characterized by a low Mach number, a low beta, and an abnormally large electron to ion temperature ratio. The types of plasma wave detected are discussed.

  8. Alfvén wave collisions, the fundamental building block of plasma turbulence. II. Numerical solution

    SciTech Connect

    Nielson, K. D.; Howes, G. G.; Dorland, W.

    2013-07-15

    This paper presents the numerical verification of an asymptotic analytical solution for the nonlinear interaction between counterpropagating Alfvén waves, the fundamental building block of astrophysical plasma turbulence. The analytical solution, derived in the weak turbulence limit using the equations of incompressible MHD, is compared to a nonlinear gyrokinetic simulation of an Alfvén wave collision. The agreement between these methods signifies that the incompressible solution satisfactorily describes the essential dynamics of the nonlinear energy transfer, even under the weakly collisional plasma conditions relevant to many astrophysical environments.

  9. Collisionless Plasma Turbulence: Insights from Magnetohydrodynamic and Hall Magnetohydrodynamic Simulations and Observations of the Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Stawarz, Julia E.

    Turbulence is a ubiquitous phenomenon that occurs throughout the universe, in both neutral fluids and plasmas. For collisionless plasmas, kinetic effects, which alter the nonlinear dynamics and result in small-scale dissipation, are still not well understood in the context of turbulence. This work uses direct numerical simulations (DNS) and observations of Earth's magnetosphere to study plasma turbulence. Long-time relaxation in magnetohydrodynamic (MHD) turbulence is examined using DNS with particular focus on the role of magnetic and cross helicity and symmetries of the initial configurations. When strong symmetries are absent or broken through perturbations, flows evolve towards states predicted by statistical mechanics with an energy minimization principle, which features two main regimes; one magnetic helicity dominated and one with quasi-equipartition of kinetic and magnetic energy. The role of the Hall effect, which contributes to the dynamics of collisionless plasmas, is also explored numerically. At scales below the ion inertial length, a transition to a magnetically dominated state, associated with advection becoming subdominant to dissipation, occurs. Real-space current, vorticity, and electric fields are examined. Strong current structures are associated with alignment between the current and magnetic field, which may be important in collisionless plasmas where field-aligned currents can be unstable. Turbulence within bursty bulk flow braking events, thought to be associated with near-Earth magnetotail reconnection, are then studied using the THEMIS spacecraft. It is proposed that strong field-aligned currents associated with turbulent intermittency destabilize into double layers, providing a collisionless dissipation mechanism for the turbulence. Plasma waves may also radiate from the region, removing energy from the turbulence and potentially depositing it in the aurora. Finally, evidence for turbulence in the Kelvin-Helmholtz instability (KHI) on the

  10. Vortices, Reconnection and Turbulence in High Electron-Beta Plasmas

    SciTech Connect

    Stenzel, R. L.

    2004-08-31

    Plasmas in which the kinetic energy exceeds the magnetic energy by a significant factor are common in space and in the laboratory. Such plasmas can convect magnetic fields and create null points in whose vicinity first the ions become unmagnetized, then the electrons. This project focuses on the detailed study of the transition regime of these plasmas.

  11. PLASMA TURBULENCE AND KINETIC INSTABILITIES AT ION SCALES IN THE EXPANDING SOLAR WIND

    SciTech Connect

    Hellinger, Petr; Trávnícek, Pavel M.; Landi, Simone; Verdini, Andrea; Franci, Luca

    2015-10-01

    The relationship between a decaying strong turbulence and kinetic instabilities in a slowly expanding plasma is investigated using two-dimensional (2D) hybrid expanding box simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we start with a spectrum of large-scale, linearly polarized, random-phase Alfvénic fluctuations that have energy equipartition between kinetic and magnetic fluctuations and vanishing correlation between the two fields. A turbulent cascade rapidly develops; magnetic field fluctuations exhibit a power-law spectrum at large scales and a steeper spectrum at ion scales. The turbulent cascade leads to an overall anisotropic proton heating, protons are heated in the perpendicular direction, and, initially, also in the parallel direction. The imposed expansion leads to generation of a large parallel proton temperature anisotropy which is at later stages partly reduced by turbulence. The turbulent heating is not sufficient to overcome the expansion-driven perpendicular cooling and the system eventually drives the oblique firehose instability in a form of localized nonlinear wave packets which efficiently reduce the parallel temperature anisotropy. This work demonstrates that kinetic instabilities may coexist with strong plasma turbulence even in a constrained 2D regime.

  12. Dynamics of the gas flow turbulent front in atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Pei, X.; Ghasemi, M.; Xu, H.; Hasnain, Q.; Wu, S.; Tu, Y.; Lu, X.

    2016-06-01

    In this paper, dynamic characterizations of the turbulent flow field in atmospheric pressure plasma jets (APPJs) are investigated by focusing on the effect of different APPJ parameters, such as gas flow rate, applied voltage, pulse repetition frequency, and time duration of the pulse. We utilize Schlieren photography and photomultiplier tubes (PMT) as a signal triggering of an intensified charge coupled device (ICCD) and also a high speed camera to examine the formation of the turbulent front and its dynamics. The results reveal that the turbulent front will appear earlier and closer to the tube nozzle by increasing the gas flow rate or the applied voltage amplitude. However, the pulse time duration and repetition frequency cannot change the dynamics and formation of the turbulent front. Further investigation shows that every pulse can excite one turbulent front which is created in a specific position in a laminar region and propagates downstream. It seems that the dominating mechanisms responsible for the formation of turbulent fronts in plasma jets might not be ion momentum transfer.

  13. Plasma Turbulence and Kinetic Instabilities at Ion Scales in the Expanding Solar Wind

    NASA Astrophysics Data System (ADS)

    Hellinger, Petr; Matteini, Lorenzo; Landi, Simone; Verdini, Andrea; Franci, Luca; Trávníček, Pavel M.

    2015-10-01

    The relationship between a decaying strong turbulence and kinetic instabilities in a slowly expanding plasma is investigated using two-dimensional (2D) hybrid expanding box simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we start with a spectrum of large-scale, linearly polarized, random-phase Alfvénic fluctuations that have energy equipartition between kinetic and magnetic fluctuations and vanishing correlation between the two fields. A turbulent cascade rapidly develops; magnetic field fluctuations exhibit a power-law spectrum at large scales and a steeper spectrum at ion scales. The turbulent cascade leads to an overall anisotropic proton heating, protons are heated in the perpendicular direction, and, initially, also in the parallel direction. The imposed expansion leads to generation of a large parallel proton temperature anisotropy which is at later stages partly reduced by turbulence. The turbulent heating is not sufficient to overcome the expansion-driven perpendicular cooling and the system eventually drives the oblique firehose instability in a form of localized nonlinear wave packets which efficiently reduce the parallel temperature anisotropy. This work demonstrates that kinetic instabilities may coexist with strong plasma turbulence even in a constrained 2D regime.

  14. Fusion programs in applied plasma physics. Final report, fiscal years 1989--1991

    SciTech Connect

    Not Available

    1992-02-01

    The objectives of the theoretical science program are: To support the interpretation of present experiments and predict the outcome of future planned experiments; to improve on existing models and codes and validate against experimental results; and to conduct theoretical physics development of advanced concepts with applications for DIII-D and future devices. Major accomplishments in FY91 include the corroboration between theory and experiment on MHD behavior in the second stable regime of operation on DIII-D, and the frequency and mode structure of toroidal Alfven eigenmodes in high beta, shaped plasmas. We have made significant advances in the development of the gyro-Landau fluid approach to turbulence simulation which more accurately models kinetic drive and damping mechanisms. Several theoretical models to explain the bifurcation phenomenon in L- to H-mode transition were proposed providing the theoretical basis for future experimental verification. The capabilities of new rf codes have been upgraded in response to the expanding needs of the rf experiments. Codes are being employed to plan for a fully non-inductive current drive experiment in a high beta, enhanced confinement regime. GA`s experimental effort in Applied Physics encompasses two advanced diagnostics essential for the operation of future fusion experiments: Alpha particle diagnostic, and current and density profile diagnostics. This paper discusses research in all these topics.

  15. Fluctuations and transport in fusion plasmas. Final report, October 1, 1981-December 31, 1983

    SciTech Connect

    Gould, R.W.

    1983-01-01

    This report describes continuing research on fluctuations and anomalous transport in fusion plasmas. The research has an experimental task and a theoretical task. The primary objective is to characterize the properties of the fluctuations observed in tokamaks and to try to develop an understanding of the fluctuation-induced anomalous transport of particles and heat. The experimental and theoretical activities are closely related. The main thrust of the experimental activity has been to measure and to characterize, in some detail, the main properties of the electric and magnetic fluctuations through various measurements, with emphasis on those properties which appear to relate to transport. The temporal and spatial distribution, spectral characteristics, and cross correlation of various fluctuating quantities are observed. Recently probe arrays (Langmuir probes and photodiodes) have been introduced to permit imaging of the fluctuations. The theoretical activity has emphasized the comparison of experimental results on both turbulence and anomalous transport from various machines with existing theories, including numerical computation and extension of existing theories where necessary. The theoretical activity also provided valuable guidance to the Caltech experimental program.

  16. Experimental observation of electron-temperature-gradient turbulence in a laboratory plasma.

    PubMed

    Mattoo, S K; Singh, S K; Awasthi, L M; Singh, R; Kaw, P K

    2012-06-22

    We report the observation of electron-temperature-gradient (ETG) driven turbulence in the laboratory plasma of a large volume plasma device. The removal of unutilized primary ionizing and nonthermal electrons from uniform density plasma and the imposition and control of the gradient in the electron temperature (T[Symbol: see text] T(e)) are all achieved by placing a large (2 m diameter) magnetic electron energy filter in the middle of the device. In the dressed plasma, the observed ETG turbulence in the lower hybrid range of frequencies ν = (1-80 kHz) is characterized by a broadband with a power law. The mean wave number k perpendicular ρ(e) = (0.1-0.2) satisfies the condition k perpendicular ρ(e) ≤ 1, where ρ(e) is the electron Larmor radius.

  17. A tutorial introduction to the statistical theory of turbulent plasmas, a half-century after Kadomtsev's Plasma Turbulence and the resonance-broadening theory of Dupree and Weinstock

    NASA Astrophysics Data System (ADS)

    Krommes, John A.

    2015-12-01

    > In honour of the 50th anniversary of the influential review/monograph on plasma turbulence by B. B. Kadomtsev as well as the seminal works of T. H. Dupree and J. Weinstock on resonance-broadening theory, an introductory tutorial is given about some highlights of the statistical-dynamical description of turbulent plasmas and fluids, including the ideas of nonlinear incoherent noise, coherent damping, and self-consistent dielectric response. The statistical closure problem is introduced. Incoherent noise and coherent damping are illustrated with a solvable model of passive advection. Self-consistency introduces turbulent polarization effects that are described by the dielectric function . Dupree's method of using to estimate the saturation level of turbulence is described; then it is explained why a more complete theory that includes nonlinear noise is required. The general theory is best formulated in terms of Dyson equations for the covariance and an infinitesimal response function , which subsumes . An important example is the direct-interaction approximation (DIA). It is shown how to use Novikov's theorem to develop an -space approach to the DIA that is complementary to the original -space approach of Kraichnan. A dielectric function is defined for arbitrary quadratically nonlinear systems, including the Navier-Stokes equation, and an algorithm for determining the form of in the DIA is sketched. The independent insights of Kadomtsev and Kraichnan about the problem of the DIA with random Galilean invariance are described. The mixing-length formula for drift-wave saturation is discussed in the context of closures that include nonlinear noise (shielded by ). The role of in the calculation of the symmetry-breaking (zonostrophic) instability of homogeneous turbulence to the generation of inhomogeneous mean flows is addressed. The second-order cumulant expansion and the stochastic structural stability theory are also discussed in that context. Various historical

  18. Simulation study of hysteresis in the gradient-flux relation in toroidal plasma turbulence

    NASA Astrophysics Data System (ADS)

    Kasuya, N.; Sugita, S.; Inagaki, S.; Itoh, K.; Yagi, M.; Itoh, S.-I.

    2015-04-01

    Global nonlinear simulations with heat modulation are carried out to understand the turbulent transport mechanism in toroidal plasmas. Rapid propagation of the heat modulation and a hysteresis in the gradient-flux relation are found in the turbulent simulation of drift-interchange modes. A global mode is excited nonlinearly, and the nonlinear couplings with Reynolds stress take a finite temporal duration for self-consistent redistribution of the energy. The mode also has a seesaw effect: increase of the amplitude of the global mode at one position affects the turbulence at the other radial position not by inducing the radial flux by itself, but by absorbing the energy from microscopic modes. Successive excitations of microscopic modes cause the accelerated propagation of the flux change like turbulence spreading after the onset of modulation. Owing to these non-diffusive processes, the hysteresis appears in the gradient-flux relation, which is compared with experiments.

  19. Fluctuation-induced shear flow and energy transfer in plasma interchange turbulence

    SciTech Connect

    Li, B.; Sun, C. K.; Wang, X. Y.; Zhou, A.; Wang, X. G.; Ernst, D. R.

    2015-11-15

    Fluctuation-induced E × B shear flow and energy transfer for plasma interchange turbulence are examined in a flux-driven system with both closed and open magnetic field lines. The nonlinear evolution of interchange turbulence shows the presence of two confinement regimes characterized by low and high E × B flow shear. In the first regime, the large-scale turbulent convection is dominant and the mean E × B shear flow is at a relatively low level. By increasing the heat flux above a certain threshold, the increased turbulent intensity gives rise to the transfer of energy from fluctuations to mean E × B flows. As a result, a transition to the second regime occurs, in which a strong mean E × B shear flow is generated.

  20. Neutron computed tomography of plasma facing components for fusion experiments

    NASA Astrophysics Data System (ADS)

    Schillinger, B.; Greuner, H.; Linsmeier, Ch.

    2011-09-01

    In nuclear fusion experiments, divertor plates are used to remove energy and particles from the plasma. These divertor plates can be made of water-cooled copper heat sinks covered by carbon fiber composite (CFC) protection tiles. During operation, surface temperatures in excess of 1000 °C are reached for typical heat loads of 10 MW/m 2. The large mismatch in the coefficients of thermal expansion for CFC and Cu causes high stresses and possibly bonding defects. Growing joint defects, which lead to unacceptable overheating of the protection tiles, are critical for the lifetime of the components. A prototype component was subjected to 10,000 cycles at 10 MW/m 2 to study the crack growth mechanism. Neutron computed tomography offers the possibility to analyze such structures on centimeter-sized samples non-destructively with a high spatial resolution. At the ANTARES neutron imaging facility of the FRM II reactor, the samples were loaded with a contrast agent and examined with neutron computed tomography.

  1. Education Outreach at MIT Plasma Science Fusion Center

    NASA Astrophysics Data System (ADS)

    Censabella, V.; Nachtrieb, R.; Rivenberg, P.

    1998-11-01

    Outreach at the MIT PSFC consists of volunteers working together to increase the public's knowledge of fusion and plasma-related experiments. Seeking to generate excitement about science, engineering and mathematics, the PSFC holds a number of outreach activities throughout the year, such as Middle and High School Outreach Days. Outreach also includes the Mr. Magnet Program, which uses an interactive strategy to engage elementary school children. Included in this year's presentation will be a live demo of a compressed-air bottle rocket (really a one-liter plastic soda bottle) for use in high school science classrooms that researchers at the Cambridge Physics Outlet (a PSFC spin-off company) have developed. To prepare the rocket for launch, the bottle is filled with compressed air at pressures up to 80 psi and the end is plugged. The rocket is released when the plug is pulled. The gas escapes at supersonic velocities and accelerates the bottle at over 1000 m/s^2. The velocity of the bottle is measured at many locations along its ``trajectory". A simple thermodynamic model predicts performance in excellent agreement with observation. The PSFC maintains a Home Page on the World Wide Web, which can be reached at http://pfc.mit.edu.

  2. Solar Wind Turbulent Spectrum at Plasma Kinetic Scales

    NASA Astrophysics Data System (ADS)

    Alexandrova, O.; Lacombe, C.; Mangeney, A.; Grappin, R.; Maksimovic, M.

    2012-12-01

    The description of the turbulent spectrum of magnetic fluctuations in the solar wind in the kinetic range of scales is not yet completely established. Here, we perform a statistical study of 100 spectra measured by the STAFF instrument on the Cluster mission, which allows us to resolve turbulent fluctuations from ion scales down to a fraction of electron scales, i.e., from ~102 km to ~300 m. We show that for k ρ e in [0.03, 3] (which corresponds approximately to the frequency in the spacecraft frame f in [3, 300] Hz), all the observed spectra can be described by a general law E(k )vpropk -8/3 exp (- k ρ e ), where k is the wavevector component normal to the background magnetic field and ρ e the electron Larmor radius. This exponential tail found in the solar wind seems compatible with the Landau damping of magnetic fluctuations onto electrons.

  3. Turbulence and wave particle interactions in solar-terrestrial plasmas

    NASA Technical Reports Server (NTRS)

    Dulk, G. A.; Goldman, M. V.; Toomre, J.

    1985-01-01

    Activities in the following study areas are reported: (1) particle and wave processes in solar flares; (2) solar convection zone turbulence; and (3) solar radiation emission. To investigate the amplification of cyclotron maser radiation in solar flares, a radio frequency. (RF) heating model was developed for the corona surrounding the energy release site. Then nonlinear simulations of compressible convection display prominent penetration by plumes into regions of stable stratification at the base of the solar convection zone, leading to the excitation of internal gravity waves there. Lastly, linear saturation of electron-beam-driven Langmuir waves by ambient density fluctuations, nonlinear saturation by strong turbulence processes, and radiation emission mechanisms are examined. An additional section discusses solar magnetic fields and hydromagnetic waves in inhomogeneous media, and the effect of magnetic fields on stellar oscillation.

  4. Coatings and claddings for the reduction of plasma contamination and surface erosion in fusion reactors

    SciTech Connect

    Kaminsky, M.

    1980-01-01

    For the successful operation of plasma devices and future fusion reactors it is necessary to control plasma impurity release and surface erosion. Effective methods to obtain such controls include the application of protective coatings to, and the use of clad materials for, certain first wall components. Major features of the development programs for coatings and claddings for fusion applications will be described together with an outline of the testing program. A discussion of some pertinent test results will be included.

  5. Application of Soft Computing Techniques to Experimental Space Plasma Turbulence Observations - Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Bates, I.; Lawton, A.; Breikin, T.; Dunlop, M.

    Space Systems Group, University of Sheffield, U.K. Automatic Control and Systems Engineering, University of Sheffield, U.K. 3 Imperial College, London, U.K.A Genetic Algorithm (GA) approach is presented to solve a problem for turbulent space plasma system modelling in the form of Generalised Frequency Response Functions (GFRFs), using in-situ multi-satellite magnetic field measurements of the plasma turbulence. Soft Computing techniques have now been used for many years in Industry for nonlinear system identification. These techniques approach the problem of understanding a system, e.g. a chemical plant or a jet engine, by model structure selection and fitting parameters of the chosen model for the system using measured inputs and outputs of the system, which can then be used to determine physical characteristics of the system. GAs are one such technique that has been developed, providing essentially a series of solutions that evolve in a way to improve the model. Experimental space plasma turbulence studies have benefited from these System Identification techniques. Multi-point satellite observations provide input and output measurements of the turbulent plasma system. In previous work it was found natural to fit parameters to GFRFs, which derive from Volterra series and lead to quantitative measurements of linear wave-field growth and higher order wave-wave interactions. In previous work these techniques were applied using a Least Squares (LS) parameter fit. Results using GAs are compared to results obtained from the LS approach.

  6. Dust dynamics and diagnostic applications in quasi-neutral plasmas and magnetic fusion

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Ticos, Catalin M.; Si, Jiahe; Delzanno, Gian Luca; Lapenta, Gianni; Wurden, Glen

    2007-11-01

    Little is known about dust dynamics in highly ionized quasi-neutral plasmas with ca. 1.0 e+20 per cubic meter density and ion temperature at a few eV and above, including in magnetic fusion. For example, dust motion in fusion, better known as UFO's, has been observed since 1980's but not explained. Solid understanding of dust dynamics is also important to International Thermonuclear Experimental Reactor (ITER) because of concerns about safety and dust contamination of fusion core. Compared with well studied strongly-coupled dusty plasma regime, new physics may arise in the higher density quasi-neutral plasma regime because of at least four orders of magnitude higher density and two orders of magnitude hotter ion temperature. Our recent laboratory experiments showed that plasma-flow drag force dominates over other forces in a quasi-neutral flowing plasma. In contrast, delicate balance among different forces in dusty plasma has led to many unique phenomena, in particular, the formation of dust crystal. Based on our experiments, we argue that 1) dust crystal will not form in the highly ionized plasmas with flows; 2) the UFO's are moving dust dragged by plasma flows; 3) dust can be used to measure plasma flow. Two diagnostic applications using dust for laboratory quasi-neutral plasmas and magnetic fusion will also be presented.

  7. Experimental and theoretical research in applied plasma physics. Technical progress report, October 15, 1990--October 14, 1993

    SciTech Connect

    Porkolab, M.

    1992-06-01

    This report discusses research in the following areas: fusion theory and computations; theory of thermonuclear plasmas; user service center; high poloidal beta studies on PBX-M; fast ECE fluctuation diagnostic for balloning mode studies; x-ray imaging diagnostic; millimeter/submillimeter-wave fusion ion diagnostics; small scale turbulence and nonlinear dynamics in plasmas; plasma turbulence and transport; phase contrast interferometer diagnostic for long wavelength fluctuations in DIII-D; and charged and neutral fusion production for fusio plasmas.

  8. On the effect of intermittency of turbulence on the parabolic relation between skewness and kurtosis in magnetized plasmas

    SciTech Connect

    Guszejnov, Dávid; Lazányi, Nóra; Bencze, Attila; Zoletnik, Sándor

    2013-11-15

    This paper is aimed to contribute to the scientific discussions that have been triggered by the experimental observation of a quadratic relation between the kurtosis and skewness of turbulent fluctuations present in fusion plasmas and other nonlinear physical systems. In this paper, we offer a general statistical model which attributes the observed K=aS{sup 2}+b relation to the varying intermittency of the experimental signals. The model is a two random variable model constructed to catch the essential intermittent feature of the real signal. One of the variables is the amplitude of the underlying intermittent event (e.g., turbulent structure) while the other is connected to the intermittency level of the system. This simple model can attribute physical meaning to the a and b coefficients, as they characterize the spatio-temporal statistics of intermittent events. By constructing a particle-conserving Gaussian model for the underlying coherent structures, the experimentally measured a and b coefficients could be adequately reproduced.

  9. Intrinsic momentum generation by a combined neoclassical and turbulence mechanism in diverted DIII-D plasma edge

    SciTech Connect

    Seo, Janghoon; Choe, W.; Chang, C. S.; Ku, S.; Kwon, J. M.; Müller, Stefan H.

    2014-09-15

    Fluid Reynolds stress from turbulence has usually been considered to be responsible for the anomalous toroidal momentum transport in tokamak plasma. Experiment by Müller et al. [Phys. Rev. Lett. 106, 115001 (2011)], however, reported that neither the observed edge rotation profile nor the inward momentum transport phenomenon at the edge region of an H-mode plasma could be explained by the fluid Reynolds stress measured with reciprocating Langmuir-probe. The full-function gyrokinetic code XGC1 is used to explain, for the first time, Müller et al.'s experimental observations. It is discovered that, unlike in the plasma core, the fluid Reynolds stress from turbulence is not sufficient for momentum transport physics in plasma edge. The “turbulent neoclassical” physics arising from the interaction between kinetic neoclassical orbit dynamics and plasma turbulence is key in the tokamak edge region across the plasma pedestal into core.

  10. Turbulence and selective decay in the SSX plasma wind tunnel

    NASA Astrophysics Data System (ADS)

    Gray, Tim; Brown, Michael; Dandurand, Dan; Fisher, Mike; Flanagan, Ken; Weinhold, Darren; Lukin, V.

    2011-10-01

    A helical, relaxed plasma state has been observed in a long cylindrical volume. The cylinder has dimensions L = 1 m and R = 0 . 08 m. The cylinder is long enough so that the predicted minimum energy state is a close approximation to the infinite cylinder solution. The plasma is injected at v >= 50 km/s by a coaxial magnetized plasma gun located at one end of the cylindrical volume. Typical plasma parameters are Ti = 25 eV, ne >=1015 cm-3, and B = 0 . 25 T. The relaxed state is rapidly attained in 1-2 axial Alfvén times after initiation of the plasma. Magnetic data is favorably compared with an analytical model. Magnetic data exhibits broadband fluctuations of the measured axial modes during the formation period. The broadband activity rapidly decays as the energy condenses into the lowest energy mode, which is in agreement to the minimum energy eigenstate of ∇ × B --> = λ B --> . While the global structure roughly corresponds to the minimum energy eigenstate for the wind tunnel geometry, the plasma is high beta (β = 0 . 5) and does not have a flat λ profile. Merging with plasma plumes injected from both ends of the cylinder will be compared to the non-merging plasmas. Supported by US DOE and NSF.

  11. An intercomparison of plasma turbulence at three comets: Grigg-Skjellerup, Giacobini-Zinner, and Halley

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Glassmeier, K.-H.; Neubauer, F. M.

    1995-01-01

    We examine and intercompare the LF plasma wave turbulence at three comets: Grigg-Skjellerup (GS), Giacobini-Zinner (GZ), and Halley (H). All three have power spectral peaks at the local ion cyclotron frequency (the pump wave) at approx. 10(exp -2) Hz, and a power-law fall-off at higher frequencies that suggest the development of turbulent cascades. The power laws for the three comets are approximately f(exp -1.9), f(exp -1.9) and f(exp -2.1), respectively. However, other than the similarities in the power spectra, we find the magnetic field turbulence is considerably different at the three comets. Phase steepening is demonstrated to occur at the trailing edges of the GS waves. This is probably due to nonlinear steepening plus dispersion of the left-hand mode components. A coherency analysis of GZ turbulence indicates that it is primarily composed of righthanded mode components, i.e., the turbulence is 'whistlermode.' This too can be explained by nonlinear steepening plus dispersion of the magnetosonic waves. At the level of GS and GZ turbulence development when the spacecraft measurements were made, classical three-wave processes, such as the decay or modulation instabilities do not appear to play important roles. It is most likely that the nonlinear steepening and dispersive time scales are more rapid than three-wave processes, and the latter had not had time to develop for the relatively 'new' turbulence. The wave turbulence at Halley is linearly polarized. The exact nature of this turbulence is still not well understood at this time. Several possibilities are suggested, based on our preliminary analyses.

  12. Observed Multi-Decade DD and DT Z-Pinch Fusion Rate Scaling in 5 Dense Plasma Focus Fusion Machines

    SciTech Connect

    Hagen, E. C.; Lowe, D. R.; O'Brien, R.; Meehan, B. T.

    2013-06-18

    Dense Plasma Focus (DPF) machines are in use worldwide or a wide variety of applications; one of these is to produce intense, short bursts of fusion via r-Z pinch heating and compression of a working gas. We have designed and constructed a series of these, ranging from portable to a maximum energy storage capacity of 2 MJ. Fusion rates from 5 DPF pulsed fusion generators have been measured in a single laboratory using calibrated activation detectors. Measured rates range from ~ 1015 to more than 1019 fusions per second have been measured. Fusion rates from the intense short (20 – 50 ns) periods of production were inferred from measurement of neutron production using both calibrated activation detectors and scintillator-PMT neutron time of flight (NTOF) detectors. The NTOF detectors are arranged to measure neutrons versus time over flight paths of 30 Meters. Fusion rate scaling versus energy and current will be discussed. Data showing observed fusion cutoff at D-D fusion yield levels of approximately 1*1012, and corresponding tube currents of ~ 3 MA will be shown. Energy asymmetry of product neutrons will also be discussed. Data from the NTOF lines of sight have been used to measure energy asymmetries of the fusion neutrons. From this, center of mass energies for the D(d,n)3He reaction are inferred. A novel re-entrant chamber that allows extremely high single pulse neutron doses (> 109 neutrons/cm2 in 50 ns) to be supplied to samples will be described. Machine characteristics and detector types will be discussed.

  13. Effect of different tritium fractions on some plasma parameters in deuterium-tritium magnetic confinement fusion

    NASA Astrophysics Data System (ADS)

    Motevalli, S. M.; Mohsenpour, T.; Dashtban, N.

    2016-09-01

    Nearly all reactor projects have considered deuterium-tritium (D-T) fusion. The cross section of D-T reaction is larger than those of other fusion reactions, thus it is considered to be a more favorable reaction. The mix of fuel can vary. In this work, a comparison between the effects of different mixture of D-T fuel on the plasma parameters is made. A time dependence calculation of the fusion process is performed using the zero-dimensional model based on a coupled set of particle and energy balance equations in ITER (International Thermonuclear Experimental Reactor). The time evolution of plasma parameters is also analyzed numerically.

  14. Temporal and spatial turbulent spectra of MHD plasma and an observation of variance anisotropy

    SciTech Connect

    Schaffner, D. A.; Brown, M. R.; Lukin, V. S.

    2014-08-01

    The nature of magnetohydrodynamic (MHD) turbulence is analyzed through both temporal and spatial magnetic fluctuation spectra. A magnetically turbulent plasma is produced in the MHD wind tunnel configuration of the Swarthmore Spheromak Experiment. The power of magnetic fluctuations is projected into directions perpendicular and parallel to a local mean field; the ratio of these quantities shows the presence of variance anisotropy which varies as a function of frequency. Comparisons among magnetic, velocity, and density spectra are also made, demonstrating that the energy of the turbulence observed is primarily seeded by magnetic fields created during plasma production. Direct spatial spectra are constructed using multi-channel diagnostics and are used to compare to frequency spectra converted to spatial scales using the Taylor hypothesis. Evidence for the observation of dissipation due to ion inertial length scale physics is also discussed, as well as the role laboratory experiments can play in understanding turbulence typically studied in space settings such as the solar wind. Finally, all turbulence results are shown to compare fairly well to a Hall-MHD simulation of the experiment.

  15. Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas

    SciTech Connect

    Diamond, P.H.; Lin, Z.; Wang, W.; Horton, W.; Klasky, S.; Decyk, V.; Ma, K.-L.; Chames, J.; Adams, M.

    2011-09-21

    The three-year project GPS-TTBP resulted in over 152 publications and 135 presentations. This summary focuses on the scientific progress made by the project team. A major focus of the project was on the physics intrinsic rotation in tokamaks. Progress included the first ever flux driven study of net intrinsic spin-up, mediated by boundary effects (in collaboration with CPES), detailed studies of the microphysics origins of the Rice scaling, comparative studies of symmetry breaking mechanisms, a pioneering study of intrinsic torque driven by trapped electron modes, and studies of intrinsic rotation generation as a thermodynamic engine. Validation studies were performed with C-Mod, DIII-D and CSDX. This work resulted in very successful completion of the FY2010 Theory Milestone Activity for OFES, and several prominent papers of the 2008 and 2010 IAEA Conferences. A second major focus was on the relation between zonal flow formation and transport non-locality. This culminated in the discovery of the ExB staircase - a conceptually new phenomenon. This also makes useful interdisciplinary contact with the physics of the PV staircase, well-known in oceans and atmospheres. A third topic where progress was made was in the simulation and theory of turbulence spreading. This work, now well cited, is important for understanding the dynamics of non-locality in turbulent transport. Progress was made in studies of conjectured non-diffusive transport in trapped electron turbulence. Pioneering studies of ITB formation, coupling to intrinsic rotation and hysteresis were completed. These results may be especially significant for future ITER operation. All told, the physics per dollar performance of this project was quite good. The intense focus was beneficial and SciDAC resources were essential to its success.

  16. Gyrokinetic Particle Simulation of Compressible Electromagnetic Turbulence in High-β Plasmas

    SciTech Connect

    Lin, Zhihong

    2014-03-13

    Supported by this award, the PI and his research group at the University of California, Irvine (UCI) have carried out computational and theoretical studies of instability, turbulence, and transport in laboratory and space plasmas. Several massively parallel, gyrokinetic particle simulation codes have been developed to study electromagnetic turbulence in space and laboratory plasmas. In space plasma projects, the simulation codes have been successfully applied to study the spectral cascade and plasma heating in kinetic Alfven wave turbulence, the linear and nonlinear properties of compressible modes including mirror instability and drift compressional mode, and the stability of the current sheet instabilities with finite guide field in the context of collisionless magnetic reconnection. The research results have been published in 25 journal papers and presented at many national and international conferences. Reprints of publications, source codes, and other research-related information are also available to general public on the PI’s webpage (http://phoenix.ps.uci.edu/zlin/). Two PhD theses in space plasma physics are highlighted in this report.

  17. Turbulence induced radial transport of toroidal momentum in boundary plasma of EAST tokamak

    NASA Astrophysics Data System (ADS)

    Zhao, N.; Yan, N.; Xu, G. S.; Wang, Z. X.; Wang, H. Q.; Wang, L.; Ding, S. Y.; Chen, R.; Chen, L.; Zhang, W.; Hu, G. H.; Shao, L. M.

    2016-06-01

    Turbulence induced toroidal momentum transport in boundary plasma is investigated in H-mode discharge using Langmuir-Mach probes on EAST. The Reynolds stress is found to drive an inward toroidal momentum transport, while the outflow of particles convects the toroidal momentum outwards in the edge plasma. The Reynolds stress driven momentum transport dominates over the passive momentum transport carried by particle flux, which potentially provides a momentum source for the edge plasma. The outflow of particles delivers a momentum flux into the scrape-off layer (SOL) region, contributing as a momentum source for the SOL flows. At the L-H transitions, the outward momentum transport suddenly decreases due to the suppression of edge turbulence and associated particle transport. The SOL flows start to decelerate as plasma entering into H-mode. The contributions from turbulent Reynolds stress and particle transport for the toroidal momentum transport are identified. These results shed lights on the understanding of edge plasma accelerating at L-H transitions.

  18. The effects of plasma diffusion and viscosity on turbulent instability growth

    SciTech Connect

    Haines, Brian M. Vold, Erik L.; Molvig, Kim; Aldrich, Charles; Rauenzahn, Rick

    2014-09-15

    We perform two-dimensional simulations of strongly–driven compressible Rayleigh–Taylor and Kelvin–Helmholtz instabilities with and without plasma transport phenomena, modeling plasma species diffusion, and plasma viscosity in order to determine their effects on the growth of the hydrodynamic instabilities. Simulations are performed in hydrodynamically similar boxes of varying sizes, ranging from 1 μm to 1 cm in order to determine the scale at which plasma effects become important. Our results suggest that these plasma effects become noticeable when the box size is approximately 100 μm, they become significant in the 10 μm box, and dominate when the box size is 1 μm. Results suggest that plasma transport may be important at scales and conditions relevant to inertial confinement fusion, and that a plasma fluid model is capable of representing some of the kinetic transport effects.

  19. Short-wavelength plasma turbulence and temperature anisotropy instabilities: recent computational progress

    PubMed Central

    Gary, S. Peter

    2015-01-01

    Plasma turbulence consists of an ensemble of enhanced, broadband electromagnetic fluctuations, typically driven by multi-wave interactions which transfer energy in wavevector space via non- linear cascade processes. Temperature anisotropy instabilities in collisionless plasmas are driven by quasi-linear wave–particle interactions which transfer particle kinetic energy to field fluctuation energy; the resulting enhanced fluctuations are typically narrowband in wavevector magnitude and direction. Whatever their sources, short-wavelength fluctuations are those at which charged particle kinetic, that is, velocity-space, properties are important; these are generally wavelengths of the order of or shorter than the ion inertial length or the thermal ion gyroradius. The purpose of this review is to summarize and interpret recent computational results concerning short-wavelength plasma turbulence, short-wavelength temperature anisotropy instabilities and relationships between the two phenomena. PMID:25848081

  20. Short-wavelength plasma turbulence and temperature anisotropy instabilities: Recent computational progress

    SciTech Connect

    Gary, S. Peter

    2015-04-06

    Plasma turbulence consists of an ensemble of enhanced, broadband electromagnetic fluctuations, typically driven by multi-wave interactions which transfer energy in wavevector space via non- linear cascade processes. In addition, temperature anisotropy instabilities in collisionless plasmas are driven by quasi-linear wave–particle interactions which transfer particle kinetic energy to field fluctuation energy; the resulting enhanced fluctuations are typically narrowband in wavevector magnitude and direction. Whatever their sources, short-wavelength fluctuations are those at which charged particle kinetic, that is, velocity-space, properties are important; these are generally wavelengths of the order of or shorter than the ion inertial length or the thermal ion gyroradius. The purpose of this review is to summarize and interpret recent computational results concerning short-wavelength plasma turbulence, short-wavelength temperature anisotropy instabilities and relationships between the two phenomena.

  1. Short-wavelength plasma turbulence and temperature anisotropy instabilities: Recent computational progress

    DOE PAGES

    Gary, S. Peter

    2015-04-06

    Plasma turbulence consists of an ensemble of enhanced, broadband electromagnetic fluctuations, typically driven by multi-wave interactions which transfer energy in wavevector space via non- linear cascade processes. In addition, temperature anisotropy instabilities in collisionless plasmas are driven by quasi-linear wave–particle interactions which transfer particle kinetic energy to field fluctuation energy; the resulting enhanced fluctuations are typically narrowband in wavevector magnitude and direction. Whatever their sources, short-wavelength fluctuations are those at which charged particle kinetic, that is, velocity-space, properties are important; these are generally wavelengths of the order of or shorter than the ion inertial length or the thermal ion gyroradius.more » The purpose of this review is to summarize and interpret recent computational results concerning short-wavelength plasma turbulence, short-wavelength temperature anisotropy instabilities and relationships between the two phenomena.« less

  2. Ion distribution in the hot spot of an inertial confinement fusion plasma

    NASA Astrophysics Data System (ADS)

    Tang, Xianzhu; Guo, Zehua; Berk, Herb

    2012-10-01

    Maximizing the fusion gain of inertial confinement fusion (ICF) for inertial fusion energy (IFE) applications leads to the standard scenario of central hot spot ignition followed by propagating burn wave through the cold/dense assembled fuel. The fact that the hot spot is surrounded by cold but dense fuel layer introduces subtle plasma physics which requires a kinetic description. Here we perform Fokker-Planck calculations and kinetic PIC simulations for an ICF plasma initially in pressure balance but having large temperature gradient over a narrow transition layer. The loss of the fast ion tail from the hot spot, which is important for fusion reactivity, is quantified by Fokker-Planck models. The role of electron energy transport and the ambipolar electric field is investigated via kinetic simulations and the fluid moment models. The net effect on both hot spot ion temperature and the ion tail distribution, and hence the fusion reactivity, is elucidated.

  3. Cross-Scale Interactions between Electron and Ion Scale Turbulence in a Tokamak Plasma.

    PubMed

    Maeyama, S; Idomura, Y; Watanabe, T-H; Nakata, M; Yagi, M; Miyato, N; Ishizawa, A; Nunami, M

    2015-06-26

    Multiscale gyrokinetic turbulence simulations with the real ion-to-electron mass ratio and β value are realized for the first time, where the β value is given by the ratio of plasma pressure to magnetic pressure and characterizes electromagnetic effects on microinstabilities. Numerical analysis at both the electron scale and the ion scale is used to reveal the mechanism of their cross-scale interactions. Even with the real-mass scale separation, ion-scale turbulence eliminates electron-scale streamers and dominates heat transport, not only of ions but also of electrons. Suppression of electron-scale turbulence by ion-scale eddies, rather than by long-wavelength zonal flows, is also demonstrated by means of direct measurement of nonlinear mode-to-mode coupling. When the ion-scale modes are stabilized by finite-β effects, the contribution of the electron-scale dynamics to the turbulent transport becomes non-negligible and turns out to enhance ion-scale turbulent transport. Damping of the ion-scale zonal flows by electron-scale turbulence is responsible for the enhancement of ion-scale transport.

  4. Plasma size and power scaling of ion temperature gradient driven turbulence

    SciTech Connect

    Idomura, Yasuhiro; Nakata, Motoki

    2014-02-15

    The transport scaling with respect to plasma size and heating power is studied for ion temperature gradient driven turbulence using a fixed-flux full-f gyrokinetic Eulerian code. It is found that when heating power is scaled with plasma size, the ion heat diffusivity increases with plasma size in a local limit regime, where fixed-gradient δf simulations predict a gyro-Bohm scaling. In the local limit regime, the transport scaling is strongly affected by the stiffness of ion temperature profiles, which is related to the power degradation of confinement.

  5. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    DOEpatents

    Bers, Abraham

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma.

  6. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    DOEpatents

    Fisch, Nathaniel J.

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma.

  7. Cluster observation of magnetohydrodynamic turbulence in the plasma sheet boundary layer

    NASA Astrophysics Data System (ADS)

    Narita, Y.

    2016-04-01

    Measurement of turbulent magnetic field is presented from the Earth magnetotail crossing of the Cluster spacecraft on August 25, 2006, as an ideal case study of magnetohydrodynamic turbulence in the plasma sheet boundary layer on a spatial scale of about 10,000 km. The fluctuation energy of the magnetic field is evaluated in both the frequency and wavevector domains. The observed plasma sheet turbulence event shows anisotropy in the wavevector domain with a spectral extension perpendicular to the mean magnetic field. The analyses of the dispersion relation and phase speed diagrams indicate that the coherent wave components should be regarded as a set of the linear-mode waves and the other fluctuation components in magnetohydrodynamics. Although the magnetic field fluctuation amplitudes are sufficiently small compared to the large-scale field strength, there is no clear indication of the linear-mode dominance in the plasma sheet. As a lesson, magnetohydrodynamic turbulence must be modeled by including both linear-mode waves and nonlinear wave components such as sideband waves.

  8. Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation

    NASA Astrophysics Data System (ADS)

    Liu, Zhiwei; Bao, Weimin; Li, Xiaoping; Shi, Lei; Liu, Donglin

    2016-06-01

    The randomness of turbulent reentry plasma sheaths can affect the propagation and scattering properties of electromagnetic waves. This paper developed algorithms to estimate the influences. With the algorithms and typical reentry data, influences of GPS frequency and Ka frequency are studied respectively. Results show that, in terms of wave scattering, the scattering loss caused by the randomness of the turbulent plasma sheath increases with the increase of the ensemble average electron density, ensemble average collision frequency, electron density fluctuation and turbulence integral scale respectively. Also the scattering loss is much smaller than the dielectric loss. The scattering loss of Ka frequency is much less than that of the GPS frequency. In terms of wave propagation, the randomness arouses the fluctuations of amplitude and phase of waves. The fluctuations change with altitudes that when the altitude is below 30 km, fluctuations increase with altitude increasing, and when the altitude is above 30 km, fluctuations decrease with altitude increasing. The fluctuations of GPS frequency are strong enough to affect the tracking, telemetry, and command at appropriate conditions, while the fluctuations of Ka frequency are much more feeble. This suggests that the Ka frequency suffers less influences of the randomness of a turbulent plasma sheath. supported by the National Basic Research Program of China (No. 2014CB340205) and National Natural Science Foundation of China (Nos. 61301173 and 61473228)

  9. Nonlinear competition of turbulent structures and improved confinement in magnetized cylindrical plasmas

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Kasuya, N.; Itoh, K.; Yagi, M.; Itoh, S.-I.

    2014-11-01

    Nonlinear competition of turbulent structures and their roles in transport are investigated by using three-dimensional simulation code of resistive drift wave turbulence in magnetized cylindrical plasmas. Selective formation of zonal flows and streamers has been obtained by controlling the strength of damping of the zonal flow. In addition, there is an energy path from the drift waves to a flute type structure, which is linearly stable, and it becomes effective just below the stability boundary of the zonal flow. The flute structure directly induces transport effectively, and affects the drift waves and the zonal flow. A large amplitude zonal flow is formed selectively even with existence of the flute structure. The property of the particle confinement is investigated by changing the particle source intensity, which controls the strength of driving of the drift waves. The characteristic of the particle confinement changes according to turbulent states, and an improved confinement regime is obtained in the zonal flow dominant state. Study on cylindrical plasmas reveals the fundamental mechanism of improved confinement in the magnetized plasma with influence of turbulent structural formation.

  10. Intermittency of solar system plasma turbulence near Venus and Earth

    NASA Astrophysics Data System (ADS)

    Teodorescu, Eliza; Echim, Marius; Chang, Tom

    2016-04-01

    We analyze magnetic field data from Venus Express (VEX) and CLUSTER to investigate the turbulent properties of the solar wind and the Earth's and Venus' magnetosheaths. A systematic study of the PDFs (Probability Distribution Functions) of the measured magnetic fluctuations and their fourth order moments (kurtosis) reveals numerous intermittent time series. The presence of intermittency is marked by non-Gaussian PDFs with heavy wings and a scale dependent kurtosis. Higher order analyses on the scale dependence of several moment orders of the PDFs, the structure functions, along with the scaling of the kurtosis allow for a selection of scales that pertain to different scaling regimes, governed by different physics. On such sub-ranges of scales we investigate the fractal structure of fluctuations through the Rank Ordered Multifractal Analysis - ROMA (Chang and Wu, 2008). ROMA is applied to a selection of intermittent magnetic field time series in the solar wind and planetary magnetosheaths and helps to quantify the turbulence properties through the estimation of a spectrum of local Hurst exponents. Research supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 313038/STORM, and a grant of the Romanian Ministry of National Education, CNCS - UEFISCDI, project number PN-II-ID-PCE-2012-4-0418.

  11. Role of nonlinear localized structures and turbulence in magnetized plasma

    NASA Astrophysics Data System (ADS)

    Pathak, Neha; Yadav, Nitin; Uma, R.; Sharma, R. P.

    2016-09-01

    In the present study, we have analyzed the field localization of kinetic Alfvén wave (KAW) due to the presence of background density perturbation, which are assumed to be originated by the three dimensionally propagating low frequency KAW. These localized structures play an important role for energy transportation at smaller scales in the dispersion range of magnetic power spectrum. For the present model, governing dynamic equations of high frequency pump KAW and low frequency KAW has been derived by considering ponderomotive nonlinearity. Further, these coupled equations have been numerically solved to analyze the resulting localized structures of pump KAW and magnetic power spectrum in the magnetopause regime. Numerically calculated spectrum exhibits inertial range having spectral index of -3/2 followed by steeper scaling; this steepening in the turbulent spectrum is a signature of energy transportation from larger to smaller scales. In this way, the proposed mechanism, which is based on nonlinear wave-wave interaction, may be useful for understanding the particle acceleration and turbulence in magnetopause.

  12. On the validity of the local diffusive paradigm in turbulent plasma transport

    SciTech Connect

    Dif-Pradalier, G.; Diamond, P. H.; Grandgirard, V.; Sarazin, Y.; Abiteboul, J.; Garbet, X.; Ghendrih, Ph.; Strugarek, A.; Ku, S.; Chang, C. S.

    2010-08-15

    A systematic, constructive and self-consistent procedure to quantify nonlocal, nondiffusive action at a distance in plasma turbulence is exposed and applied to turbulent heat fluxes computed from the state-of-the-art full-f, flux-driven gyrokinetic GYSELA and XGC1 codes. A striking commonality is found: heat transport below a dynamically selected mesoscale has the structure of a Levy distribution, is strongly nonlocal, nondiffusive, scale-free, and avalanche mediated; at larger scales, we report the observation of a self-organized flow structure which we call the 'ExB staircase' after its planetary analog.

  13. Transitions to spatiotemporal chaos and turbulence of flute instabilities in a magnetized plasma.

    PubMed

    Brochard, F; Gravier, E; Bonhomme, G

    2006-03-01

    The spatiotemporal transition scenario of flute instabilities from a regular to a turbulent state is experimentally investigated in the plasma column of a thermionic discharge. The same transition scenario, i.e., the Ruelle-Takens route to turbulence, is found for both the Kelvin-Helmholtz and the Rayleigh-Taylor instabilities. It is demonstrated that the transition can be more or less smooth, according to the discharge mode. In both cases, a strong radial dependence is observed, which is linked to the velocity shear layer in the case of the Kelvin-Helmholtz instability.

  14. Transitions to spatiotemporal chaos and turbulence of flute instabilities in a low-{beta} magnetized plasma

    SciTech Connect

    Brochard, F.; Gravier, E.; Bonhomme, G.

    2006-03-15

    The spatiotemporal transition scenario of flute instabilities from a regular to a turbulent state is experimentally investigated in the low-{beta} plasma column of a thermionic discharge. The same transition scenario, i.e., the Ruelle-Takens route to turbulence, is found for both the Kelvin-Helmholtz and the Rayleigh-Taylor instabilities. It is demonstrated that the transition can be more or less smooth, according to the discharge mode. In both cases, a strong radial dependence is observed, which is linked to the velocity shear layer in the case of the Kelvin-Helmholtz instability.

  15. Flux tube train model for local turbulence simulation of toroidal plasmas

    SciTech Connect

    Watanabe, T.-H.; Sugama, H.; Ishizawa, A.; Nunami, M.

    2015-02-15

    A new simulation method for local turbulence in toroidal plasmas is developed by extending the conventional idea of the flux tube model. In the new approach, a train of flux tubes is employed, where flux tube simulation boxes are serially connected at each end along a field line so as to preserve a symmetry of the local gyrokinetic equations for image modes in an axisymmetric torus. Validity of the flux tube train model is confirmed against the toroidal ion temperature gradient turbulence for a case with a long parallel correlation of fluctuations, demonstrating numerical advantages over the conventional method in the time step size and the symmetry-preserving property.

  16. Hybrid modeling of plasmas and applications to fusion and space physics

    NASA Astrophysics Data System (ADS)

    Kazeminejad, Farzad

    Since the early days of controlled fusion research, plasma physicists have encountered great challenges in obtaining solutions to the highly nonlinear equations which govern the behavior of fusion plasmas; with the growth of other applications of plasma physics these problems have grown in importance. Obtaining reasonable solutions to the nonlinear equations is crucial to understanding the behavior of plasmas. With the advent of high speed computers, computer modeling of plasmas has moved into the front row of the tools used in research of their nonlinear plasma dynamics. There are roughly speaking two types of plasma models, particle models and fluid models. Particle models in general require larger memory for the computer due to the massive amounts of data associated with the particles' kinematical variables. Fluid models are better fit to handle large scales and long times. The drawback of fluid models however, is that they miss the physical phenomena taking place at the microscale and these phenomena can influence the properties of the fluids. Another approach is to start with fluid models and incorporate more physics. Such models are referred to as hybrid models: two such models are discussed. They are then applied to two problems; the first is a simulation of the artificial comet generated by the AMPTE experiment; the second is the production of enhanced noise in fusion plasmas by injected energetic ions or by fusion reaction products. In both cases, the models demonstrate qualitative agreement with the experimental observations.

  17. Turbulence

    NASA Astrophysics Data System (ADS)

    Frisch, Uriel

    1996-01-01

    Written five centuries after the first studies of Leonardo da Vinci and half a century after A.N. Kolmogorov's first attempt to predict the properties of flow, this textbook presents a modern account of turbulence, one of the greatest challenges in physics. "Fully developed turbulence" is ubiquitous in both cosmic and natural environments, in engineering applications and in everyday life. Elementary presentations of dynamical systems ideas, probabilistic methods (including the theory of large deviations) and fractal geometry make this a self-contained textbook. This is the first book on turbulence to use modern ideas from chaos and symmetry breaking. The book will appeal to first-year graduate students in mathematics, physics, astrophysics, geosciences and engineering, as well as professional scientists and engineers.

  18. Complexity methods applied to turbulence in plasma astrophysics

    NASA Astrophysics Data System (ADS)

    Vlahos, L.; Isliker, H.

    2016-09-01

    In this review many of the well known tools for the analysis of Complex systems are used in order to study the global coupling of the turbulent convection zone with the solar atmosphere where the magnetic energy is dissipated explosively. Several well documented observations are not easy to interpret with the use of Magnetohydrodynamic (MHD) and/or Kinetic numerical codes. Such observations are: (1) The size distribution of the Active Regions (AR) on the solar surface, (2) The fractal and multi fractal characteristics of the observed magnetograms, (3) The Self-Organised characteristics of the explosive magnetic energy release and (4) the very efficient acceleration of particles during the flaring periods in the solar corona. We review briefly the work published the last twenty five years on the above issues and propose solutions by using methods borrowed from the analysis of complex systems. The scenario which emerged is as follows: (a) The fully developed turbulence in the convection zone generates and transports magnetic flux tubes to the solar surface. Using probabilistic percolation models we were able to reproduce the size distribution and the fractal properties of the emerged and randomly moving magnetic flux tubes. (b) Using a Non Linear Force Free (NLFF) magnetic extrapolation numerical code we can explore how the emerged magnetic flux tubes interact nonlinearly and form thin and Unstable Current Sheets (UCS) inside the coronal part of the AR. (c) The fragmentation of the UCS and the redistribution of the magnetic field locally, when the local current exceeds a Critical threshold, is a key process which drives avalanches and forms coherent structures. This local reorganization of the magnetic field enhances the energy dissipation and influences the global evolution of the complex magnetic topology. Using a Cellular Automaton and following the simple rules of Self Organized Criticality (SOC), we were able to reproduce the statistical characteristics of the

  19. Q, Break-even and the n{tau{sub E}} Diagram for Transient Fusion Plasmas

    SciTech Connect

    Dale M. Meade

    1998-04-01

    Q, break-even and the Lawson diagram are well defined and understood for steady-state fusion plasma conditions. Since many fusion experiments are transient, it is necessary to clarify the definitions for instantaneous Q values and break-even so that the Lawson diagram can be interpreted for transient plasma conditions. This discussion shows that there are two mathematically correct methods to describe the Lawson diagram for a transient plasma: the Lawson/TFTR method and the JET/JT-60 method. These methods are discussed in detail in this paper.

  20. Kinetic dissipation and anisotropic heating in a turbulent collisionless plasma

    SciTech Connect

    Parashar, T. N.; Shay, M. A.; Cassak, P. A.; Matthaeus, W. H.

    2009-03-15

    The kinetic evolution of the Orszag-Tang vortex is studied using collisionless hybrid simulations. In magnetohydrodynamics (MHD) this configuration leads rapidly to broadband turbulence. At large length scales, the evolution of the hybrid simulations is very similar to MHD, with magnetic power spectra displaying scaling similar to a Kolmogorov scaling of -5/3. At small scales, differences from MHD arise, as energy dissipates into heat almost exclusively through the magnetic field. The magnetic energy spectrum of the hybrid simulation shows a break where linear theory predicts that the Hall term in Ohm's law becomes significant, leading to dispersive kinetic Alfven waves. A key result is that protons are heated preferentially in the plane perpendicular to the mean magnetic field, creating a proton temperature anisotropy of the type observed in the corona and solar wind.

  1. Orszag Tang vortex - Kinetic study of a turbulent plasma

    SciTech Connect

    Parashar, T. N.; Servidio, S.; Shay, M. A.; Matthaeus, W. H.; Cassak, P. A.

    2010-03-25

    Kinetic evolution of the Orszag-Tang vortex is studied using collisionless hybrid simulations based on particle in cell ions and fluid electrons. In magnetohydrodynamics (MHD) this configuration leads rapidly to broadband turbulence. An earlier study estimated the dissipation in the system. A comparison of MHD and hybrid simulations showed similar behavior at large scales but substantial differences at small scales. The hybrid magnetic energy spectrum shows a break at the scale where Hall term in the Ohm's law becomes important. The protons heat perpendicularly and most of the energy is dissipated through magnetic interactions. Here, the space time structure of the system is studied using frequency-wavenumber (k-omega) decomposition. No clear resonances appear, ruling out the cyclotron resonances as a likely candidate for the perpendicular heating. The only distinguishable wave modes present, which constitute a small percentage of total energy, are magnetosonic modes.

  2. Comments on adiabatic modifications to plasma turbulence theory

    SciTech Connect

    Krommes, J.A.

    1980-11-01

    Catto earlier introduced an interesting and plausible modification of the usual resonance-broadening prescription for obtaining the nonlinear dielectric function. He argued reasonably that one should employ that prescription only for the nonadiabatic response, and that one should treat the adiabatic response essentially exactly. However, Misguich, in a recent Comment on Catto's work, found an apparent divergence in a form for the renormalized dielectric which he argued was equivalent to Catto's. Misguich was thus led to conclude that, at least for stationary turbulence, Catto's form was suspect, and that a more intricate renormalization might have to be used to obtain a sensible, convergent result. It is argued that this conclusion is incorrect, at least for the reasons Misguich gives.

  3. Simulation of plasma turbulence in scrape-off layer conditions: the GBS code, simulation results and code validation

    NASA Astrophysics Data System (ADS)

    Ricci, P.; Halpern, F. D.; Jolliet, S.; Loizu, J.; Mosetto, A.; Fasoli, A.; Furno, I.; Theiler, C.

    2012-12-01

    Based on the drift-reduced Braginskii equations, the Global Braginskii Solver, GBS, is able to model the scrape-off layer (SOL) plasma turbulence in terms of the interplay between the plasma outflow from the tokamak core, the turbulent transport, and the losses at the vessel. Model equations, the GBS numerical algorithm, and GBS simulation results are described. GBS has been first developed to model turbulence in basic plasma physics devices, such as linear and simple magnetized toroidal devices, which contain some of the main elements of SOL turbulence in a simplified setting. In this paper we summarize the findings obtained from the simulation carried out in these configurations and we report the first simulations of SOL turbulence. We also discuss the validation project that has been carried out together with the GBS development.

  4. On vapor shielding of dust grains of iron, molybdenum, and tungsten in fusion plasmas

    SciTech Connect

    Brown, B. T.; Smirnov, R. D. Krasheninnikov, S. I.

    2014-02-15

    The shielding effects of ablation cloud around a small dust grain composed of iron, molybdenum, or tungsten in fusion plasmas are considered. These include collisional dissipation of momentum flux of impinging plasma ions, heat transfer by secondary plasma created due to electron impact ionization of the ablated atoms, and radiative plasma power losses in the ablation cloud. The maximum radius, which limits applicability of existing dust-plasma interaction models neglecting the cloud shielding effects, for dust grains of the considered high-Z metals is calculated as function of plasma parameters. The thermal bifurcation triggered by thermionic electron emission from dust grains, observed for some of the considered materials, is analyzed. The results are compared with previous calculations for dust composed of low-Z fusion related materials, i.e., lithium, beryllium, and carbon.

  5. Simulating the magnetized liner inertial fusion plasma confinement with smaller-scale experiments

    SciTech Connect

    Ryutov, D. D.; Cuneo, M. E.; Herrmann, M. C.; Sinars, D. B.; Slutz, S. A.

    2012-06-15

    The recently proposed magnetized liner inertial fusion approach to a Z-pinch driven fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is based on the use of an axial magnetic field to provide plasma thermal insulation from the walls of the imploding liner. The characteristic plasma transport regimes in the proposed approach cover parameter domains that have not been studied yet in either magnetic confinement or inertial confinement experiments. In this article, an analysis is presented of the scalability of the key physical processes that determine the plasma confinement. The dimensionless scaling parameters are identified and conclusion is drawn that the plasma behavior in scaled-down experiments can correctly represent the full-scale plasma, provided these parameters are approximately the same in two systems. This observation is important in that smaller-scale experiments typically have better diagnostic access and more experiments per year are possible.

  6. Ionization balance of impurities in turbulent scrape-off layer plasmas I: local ionization-recombination equilibrium

    NASA Astrophysics Data System (ADS)

    Guzman, F.; Marandet, Y.; Tamain, P.; Bufferand, H.; Ciraolo, G.; Ghendrih, Ph; Guirlet, R.; Rosato, J.; Valentinuzzi, M.

    2015-12-01

    In magnetized fusion devices, cross field impurity transport is often dominated by turbulence, in particular in the scrape-off layer. In these outer regions of the plasma, fluctuations of plasma parameters can be comparable to mean values, and the way ionization and recombination sources are treated in transport codes becomes questionnable. In fact, sources are calculated using the mean density and temperature values, with no account of fluctuations. In this work we investigate the modeling uncertainties introduced by this approximation, both qualitatively and quantitatively for the local ionization equilibrium. As a first step transport effects are neglected, and their role will be discussed in a companion paper. We show that temperature fluctuations shift the ionization balance towards lower temperatures, essentially because of the very steep temperature dependence of the ionization rate coefficients near the threshold. To reach this conclusion, a thorough analysis of the time scales involved is carried out, in order to devise a proper way of averaging over fluctuations. The effects are found to be substantial only for fairly large relative fluctuation levels for temperature, that is of the order of a few tens of percents.

  7. Bifurcation Theory of the Transition to Collisionless Ion-temperature-gradient-driven Plasma Turbulence

    SciTech Connect

    Kolesnikov, R.A.; Krommes, J.A.

    2005-09-22

    The collisionless limit of the transition to ion-temperature-gradient-driven plasma turbulence is considered with a dynamical-systems approach. The importance of systematic analysis for understanding the differences in the bifurcations and dynamics of linearly damped and undamped systems is emphasized. A model with ten degrees of freedom is studied as a concrete example. A four-dimensional center manifold (CM) is analyzed, and fixed points of its dynamics are identified and used to predict a ''Dimits shift'' of the threshold for turbulence due to the excitation of zonal flows. The exact value of that shift in terms of physical parameters is established for the model; the effects of higher-order truncations on the dynamics are noted. Multiple-scale analysis of the CM equations is used to discuss possible effects of modulational instability on scenarios for the transition to turbulence in both collisional and collisionless cases.

  8. Mean and Oscillating Plasma Flows and Turbulence Interactions across the L-H Confinement Transition

    SciTech Connect

    Conway, G. D.; Angioni, C.; Ryter, F.; Sauter, P.; Vicente, J.

    2011-02-11

    A complex interaction between turbulence driven ExB zonal flow oscillations, i.e., geodesic acoustic modes (GAMs), the turbulence, and mean equilibrium flows is observed during the low to high (L-H) plasma confinement mode transition in the ASDEX Upgrade tokamak. Below the L-H threshold at low densities a limit-cycle oscillation forms with competition between the turbulence level and the GAM flow shearing. At higher densities the cycle is diminished, while in the H mode the cycle duration becomes too short to sustain the GAM, which is replaced by large amplitude broadband flow perturbations. Initially GAM amplitude increases as the H-mode transition is approached, but is then suppressed in the H mode by enhanced mean flow shear.

  9. STATISTICS OF THE VELOCITY GRADIENT TENSOR IN SPACE PLASMA TURBULENT FLOWS

    SciTech Connect

    Consolini, Giuseppe; Marcucci, Maria Federica; Pallocchia, Giuseppe; Materassi, Massimo

    2015-10-10

    In the last decade, significant advances have been presented for the theoretical characterization and experimental techniques used to measure and model all of the components of the velocity gradient tensor in the framework of fluid turbulence. Here, we attempt the evaluation of the small-scale velocity gradient tensor for a case study of space plasma turbulence, observed in the Earth's magnetosheath region by the CLUSTER mission. In detail, we investigate the joint statistics P(R, Q) of the velocity gradient geometric invariants R and Q, and find that this P(R, Q) is similar to that of the low end of the inertial range for fluid turbulence, with a pronounced increase in the statistics along the so-called Vieillefosse tail. In the context of hydrodynamics, this result is referred to as the dissipation/dissipation-production due to vortex stretching.

  10. Self-regulation of E x B flow shear via plasma turbulence.

    PubMed

    Vianello, N; Spada, E; Antoni, V; Spolaore, M; Serianni, G; Regnoli, G; Cavazzana, R; Bergsåker, H; Drake, J R

    2005-04-01

    The momentum balance has been applied to the ExB flow in the edge region of a reversed field pinch (RFP) configuration. All terms, including those involving fluctuations, have been measured in stationary condition in the edge region of the Extrap-T2R RFP experiment. It is found that the component of the Reynolds stress driven by electrostatic fluctuations is the term playing the major role in driving the shear of the ExB flow to a value marginal for turbulent suppression, so that the results are in favor of a turbulence self-regulating mechanism underlying the momentum balance at the edge. Balancing the sheared flow driving and damping terms, the plasma viscosity is found anomalous and consistent with the diffusivity due to electrostatic turbulence.

  11. Self-Regulation of E×B Flow Shear via Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Vianello, N.; Spada, E.; Antoni, V.; Spolaore, M.; Serianni, G.; Regnoli, G.; Cavazzana, R.; Bergsåker, H.; Drake, J. R.

    2005-04-01

    The momentum balance has been applied to the E×B flow in the edge region of a reversed field pinch (RFP) configuration. All terms, including those involving fluctuations, have been measured in stationary condition in the edge region of the Extrap-T2R RFP experiment. It is found that the component of the Reynolds stress driven by electrostatic fluctuations is the term playing the major role in driving the shear of the E×B flow to a value marginal for turbulent suppression, so that the results are in favor of a turbulence self-regulating mechanism underlying the momentum balance at the edge. Balancing the sheared flow driving and damping terms, the plasma viscosity is found anomalous and consistent with the diffusivity due to electrostatic turbulence.

  12. Observation of Double Impurity Critical Gradients for Electromagnetic Turbulence Excitation in Tokamak Plasmas.

    PubMed

    Zhong, W L; Shen, Y; Zou, X L; Gao, J M; Shi, Z B; Dong, J Q; Duan, X R; Xu, M; Cui, Z Y; Li, Y G; Ji, X Q; Yu, D L; Cheng, J; Xiao, G L; Jiang, M; Yang, Z C; Zhang, B Y; Shi, P W; Liu, Z T; Song, X M; Ding, X T; Liu, Yong

    2016-07-22

    The impact of impurity ions on a pedestal has been investigated in the HL-2A Tokamak, at the Southwestern Institute of Physics, Chengdu, China. Experimental results have clearly shown that during the H-mode phase, an electromagnetic turbulence was excited in the edge plasma region, where the impurity ions exhibited a peaked profile. It has been found that double impurity critical gradients are responsible for triggering the turbulence. Strong stiffness of the impurity profile has been observed during cyclic transitions between the I-phase and H-mode regime. The results suggest that the underlying physics of the self-regulated edge impurity profile offers the possibility for an active control of the pedestal dynamics via pedestal turbulence.

  13. Laser induced fluorescence measurements of axial velocity, velocity shear, and parallel ion temperature profiles during the route to plasma turbulence in a linear magnetized plasma device

    NASA Astrophysics Data System (ADS)

    Chakraborty Thakur, S.; Adriany, K.; Gosselin, J. J.; McKee, J.; Scime, E. E.; Sears, S. H.; Tynan, G. R.

    2016-11-01

    We report experimental measurements of the axial plasma flow and the parallel ion temperature in a magnetized linear plasma device. We used laser induced fluorescence to measure Doppler resolved ion velocity distribution functions in argon plasma to obtain spatially resolved axial velocities and parallel ion temperatures. We also show changes in the parallel velocity profiles during the transition from resistive drift wave dominated plasma to a state of weak turbulence driven by multiple plasma instabilities.

  14. Transport Analysis of Edge Turbulence in Tore Supra

    NASA Astrophysics Data System (ADS)

    White, Roscoe; Benkadda, Sadruddin; Beyer, Peter; Garbet, Xavier

    1999-11-01

    Simulations of 3D resistive ballooning turbulence in Tore Supra have been carried out(Pl Beyer et. al., Plasma Physics Controlled Fusion, 1999). Test particle analysis of transport in this turbulence is investigated using a guiding center Monte Carlo code(R. B. White, Phys Fluids B, 845 (1900). Particular emphasis is using a flux driven case which shows avalanche like transport.

  15. Solar system plasma turbulence and intermittency at the maximum and minimum of the solar cycle

    NASA Astrophysics Data System (ADS)

    Echim, Marius M.

    2015-04-01

    We report on the analysis of turbulence properties of the solar wind and the planetary magnetosheaths of Venus and Earth at solar maximum (2000-2001) and minimum (1997-1998, 2007-2008) as revealed by Ulysses, Cluster and Venus Express. We provide an overview of the spectral and scaling properties of turbulence during the targeted time periods. A selection of Ulysses data reveals the spectral properties of the "pure" slow and "pure" fast solar wind turbulence, out of the ecliptic, at radial distances ranging between 1.3 and 5.4 AU. Venus Express and Cluster data contribute to the description of the solar wind turbulence at 0.72 AU and respectively 1 AU. The spectral analysis of magnetosheath data from Venus Express and Cluster reveals the properties of turbulence to be compared to solar wind turbulence. The statistical properties of plasma and magnetic field fluctuations exhibit features linked with intermittency revealed as non-Gaussian Probability Distribution Functions (PDFs) and scale dependent kurtosis. PDFs are computed for the solar wind data from Ulysses, Venus Express and Cluster, and complement the analysis based on second order corrrelation function. The same strategy is applied to study the intermittency of the magnetosheath turbulence of Venus and the Earth. The results of our thorough survey of data bases are organized in catalogues available on line: PSD and PDFs results are stored in three solar wind data bases (one for the solar maximum, 1999-2001, two for the solar minimum, 1997-1998 and respectively, 2007-2008), and two planetary databases (one for the solar maximum, 2000-2001, that includes PSDs and PDFs obtained in the terrestrial magnetosheath, and one for the solar minimum, 2007-2008, that includes PSDs and PDFs obtained in the terrestrial and Venus magnetosheaths). As an example of higher order analysis resulting from these results we discuss the similarities and differences between fast and slow wind turbulence and intermittency. We also

  16. Synergistic cross-scale coupling of turbulence in a tokamak plasma

    SciTech Connect

    Howard, N. T.; Holland, C.; White, A. E.; Greenwald, M.; Candy, J.

    2014-11-15

    For the first time, nonlinear gyrokinetic simulations spanning both the ion and electron spatio-temporal scales have been performed with realistic electron mass ratio ((m{sub D}∕m{sub e}){sup 1∕2 }= 60.0), realistic geometry, and all experimental inputs, demonstrating the coexistence and synergy of ion (k{sub θ}ρ{sub s}∼O(1.0)) and electron-scale (k{sub θ}ρ{sub e}∼O(1.0)) turbulence in the core of a tokamak plasma. All multi-scale simulations utilized the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] to study the coupling of ion and electron-scale turbulence in the core (r/a = 0.6) of an Alcator C-Mod L-mode discharge shown previously to exhibit an under-prediction of the electron heat flux when using simulations only including ion-scale turbulence. Electron-scale turbulence is found to play a dominant role in setting the electron heat flux level and radially elongated (k{sub r} ≪ k{sub θ}) “streamers” are found to coexist with ion-scale eddies in experimental plasma conditions. Inclusion of electron-scale turbulence in these simulations is found to increase both ion and electron heat flux levels by enhancing the transport at the ion-scale while also driving electron heat flux at sub-ρ{sub i} scales. The combined increases in the low and high-k driven electron heat flux may explain previously observed discrepancies between simulated and experimental electron heat fluxes and indicates a complex interaction of short and long wavelength turbulence.

  17. Synergistic cross-scale coupling of turbulence in a tokamak plasma

    NASA Astrophysics Data System (ADS)

    Howard, N. T.; Holland, C.; White, A. E.; Greenwald, M.; Candy, J.

    2014-11-01

    For the first time, nonlinear gyrokinetic simulations spanning both the ion and electron spatio-temporal scales have been performed with realistic electron mass ratio ((mD/me)1/2 = 60.0), realistic geometry, and all experimental inputs, demonstrating the coexistence and synergy of ion (kθρs˜O (1.0 ) ) and electron-scale (kθρe˜O (1.0 ) ) turbulence in the core of a tokamak plasma. All multi-scale simulations utilized the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] to study the coupling of ion and electron-scale turbulence in the core (r/a = 0.6) of an Alcator C-Mod L-mode discharge shown previously to exhibit an under-prediction of the electron heat flux when using simulations only including ion-scale turbulence. Electron-scale turbulence is found to play a dominant role in setting the electron heat flux level and radially elongated (kr ≪ kθ) "streamers" are found to coexist with ion-scale eddies in experimental plasma conditions. Inclusion of electron-scale turbulence in these simulations is found to increase both ion and electron heat flux levels by enhancing the transport at the ion-scale while also driving electron heat flux at sub-ρi scales. The combined increases in the low and high-k driven electron heat flux may explain previously observed discrepancies between simulated and experimental electron heat fluxes and indicates a complex interaction of short and long wavelength turbulence.

  18. Multi-Megawatt MPD Plasma Source Operation and Modeling for Fusion Propulsion Simulations

    NASA Astrophysics Data System (ADS)

    Gilland, James; Williams, Craig; Mikellides, Ioannis; Mikellides, Pavlos; Marriott, Darin

    2004-02-01

    The expansion of a high temperature fusion plasma through an expanding magnetic field is a process common to most fusion propulsion concepts. The efficiency of this process has a strong bearing on the overall performance of fusion propulsion. In order to simulate the expansion of a fusion plasma, a concept has been developed in which a high velocity plasma is first stagnated in a converging magnetic field to high (100's of eV) temperatures, then expanded though a converging/diverging magnetic nozzle. A Magnetoplasmadynamic (MPD) plasma accelerator has been constructed to generate the initial high velocity plasma and is currently undergoing characterization at the Ohio State University. The device has been operated with currents up to 300 kA and power levels up to 200 MWe. The source is powered by a 1.6 MJ, 1.6 ms pulse-forming-network. In addition to experimental tests of the accelerator, computational and theoretical modeling of both the accelerator and the plasma stagnation have been performed using the MACH2 MHD code. Insights into plasma compression and attachment to magnetic field lines have led to recommended design improvements in the facility and to preliminary predictions of nozzle performance.

  19. Thermionic plasma injection for the Lockheed Martin T4 Compact Fusion Reactor experiment

    NASA Astrophysics Data System (ADS)

    Heinrich, Jonathon

    2015-11-01

    Lockheed Martin's Compact Fusion Reactor (CFR) concept relies on diamagnetic confinement in a magnetically encapsulated linear ring cusp geometry. Plasma injection into cusp field configurations requires careful deliberation. Previous work has shown that axial injection via a plasma gun is capable of achieving high-beta conditions in cusp configurations. We present a pulsed, high power thermionic plasma source and the associated magnetic field topology for plasma injection into the caulked-cusp magnetic field. The resulting plasma fueling and cross-field diffusion is discussed.

  20. Experiments on Turbulence and Transport in the Edge Plasma of the Text Tokamak

    NASA Astrophysics Data System (ADS)

    Rhodes, Terry Lee

    We studied the turbulence and fluctuation driven transport in the edge plasma of the TEXT tokamak using a Langmuir probe array. In this dissertation we present three separate experiments, each of which examines a particular aspect of the edge turbulence and transport. In the first experiment we compare the observed fluctuation levels to the scaling predictions of several turbulence theories. We found that the fluctuations and transport were not proportional to the density and temperature gradients. Thus, drift wave turbulence theories, which predict strong scalings with density gradients, do not describe the edge plasma turbulence. In the second experiment we identify low frequency modulations (<=q1KHz) in the edge density, potential and temperature to be associated with heat and density pulses (sawtooth oscillations) which originate from the central region of the tokamak. Concurrent with the edge sawtooth oscillations are significant increases in the density and potential fluctuation levels. As a result of these increases, the fluctuation driven particle flux and associated heat flux are increased as much as 60 and 100% respectively during the sawtooth. This result has direct implications on the current methods of determining the electron thermal diffusivity chi_ {e}. The effect of electron cyclotron heating (ECH) on the edge plasma was investigated in the third experiment. Increases in edge temperature, density and potential with simultaneous increases in the density and potential fluctuations were observed during ECH. These increased fluctuation levels resulted in a significant increase (20-50%) in the fluctuation driven particle flux. Comparison of these results to an equal input power, ohmic only discharge showed similar increases in the average density, temperature and potential. However, the density fluctuations did not increase as much with the additional ohmic heating (compared to ECH) resulting in a generally smaller comparative level of fluctuation

  1. Wavelet characterization of 2D turbulence and intermittency in magnetized electron plasmas

    NASA Astrophysics Data System (ADS)

    Romé, M.; Chen, S.; Maero, G.

    2016-06-01

    A study of the free relaxation of turbulence in a two-dimensional (2D) flow is presented, with a focus on the role of the initial vorticity conditions. Exploiting a well-known analogy with 2D inviscid incompressible fluids, the system investigated here is a magnetized pure electron plasma. The dynamics of this system are simulated by means of a 2D particle-in-cell code, starting from different spiral density (vorticity) distributions. A wavelet multiresolution analysis is adopted, which allows the coherent and incoherent parts of the flow to be separated. Comparison of the turbulent evolution in the different cases is based on the investigation of the time evolution of statistical properties, including the probability distribution functions and structure functions of the vorticity increments. It is also based on an analysis of the enstrophy evolution and its spectrum for the two components. In particular, while the statistical features assess the degree of flow intermittency, spectral analysis allows us not only to estimate the time required to reach a state of fully developed turbulence, but also estimate its dependence on the thickness of the initial spiral density distribution, accurately tracking the dynamics of both the coherent structures and the turbulent background. The results are compared with those relevant to annular initial vorticity distributions (Chen et al 2015 J. Plasma Phys. 81 495810511).

  2. Propagation in a shearing plasma. II - Turbulence and the frequency range of pulsar microstructure

    NASA Technical Reports Server (NTRS)

    Harding, A. K.; Tademaru, E.

    1980-01-01

    Numerical calculations are presented which explore the propagation of radio waves and pulses through a turbulent shearing plasma. A stochastic model is used to describe the turbulent velocity field, in which random fluctuations are superposed on a mean profile. Both Gaussian wave packets and shot-noise pulses polarized in the plane of shearing acquire quasi-periodic intensity modulations above the rest-frame plasma frequency. The frequency range over which these modulations appear is shown to depend on the spatial correlation length of the turbulent fluctuations and on their standard deviation from the mean velocity. The period of the modulations is variable from one realization of the random process to the next, and the average period is frequency dependent. The results of these calculations lend further support to a model for pulsar microstructure in which periodic micropulses are pure temporal modulations of the emitted radiation due to propagation effects in magnetospheric shearing regions. It is shown that turbulence on a scale of approximately 10 cm can produce these quasi-periodic modulations over a frequency range comparable to that of observed microstructure.

  3. Understanding Turbulence in the Plasma Sheet and Its Role in Transport

    NASA Astrophysics Data System (ADS)

    El-Alaoui, M.; Ashour-Abdalla, M.; Lapenta, G.; Richard, R. L.

    2014-12-01

    In this study the nature and implications of turbulence in the plasma sheet is explored with emphasis on large scale and meso-scale processes. The relationship between turbulence and reconnection, and its contribution to magnetospheric transport and dynamics will be evaluated. Observational studies to date have shown that the magnetotail rarely exhibits simple steady convection; instead, flows in the magnetotail have a high level of fluctuations. Flows driven on the scale of the entire system are well described by MHD and break up into structures that cascade to smaller scales. MHD simulation studies have shown the presence of realistic fluctuation spectra both in case studies where direct comparisons to observations have been made and in idealized test cases which have been compared to the statistical studies of observed events. The simulations do a good job of representing the effects of dissipation and yield dissipative scale lengths that are comparable to those inferred from observations. At intermediate, meso-scales, which receive energy from both large and small scales, turbulent processes are important in the plasma sheet, in particular around dipolarization fronts. We will explore the interaction between large-scale and smaller-scale fluctuations and their contributions to the magnetotail current sheet structure. We will use a global MHD simulation and a two dimensional version of the iPIC3Dimplicit particle in cell simulation separately to examine how turbulence is related to global and local processes involved in the current sheet.

  4. Transport matrix for particles and momentum in collisional drift waves turbulence in linear plasma devices

    NASA Astrophysics Data System (ADS)

    Ashourvan, Arash; Diamond, P. H.; Gürcan, Ö. D.

    2016-02-01

    The relationship between the physics of turbulent transport of particles and azimuthal momentum in a linear plasma device is investigated using a simple model with a background density gradient and zonal flows driven by turbulent stresses. Pure shear flow driven Kelvin-Helmholtz instabilities (k∥=0 ) relax the flow and drive an outward (down gradient) flux of particles. However, instabilities at finite k∥ with flow enhanced pumping can locally drive an inward particle pinch. The turbulent vorticity flux consists of a turbulent viscosity term, which acts to reduce the global vorticity gradient and the residual vorticity flux term, accelerating the zonal flows from rest. Moreover, we use the positivity of the production of fluctuation potential enstrophy to obtain a constraint relation, which tightly links the vorticity transport to the particle transport. This relation can be useful in explaining the experimentally observed correlation between the presence of E ×B flow shear and the measured inward particle flux in various magnetically confined plasma devices.

  5. Examining Turbulence in the Plasma Sheet and its Role in Transport

    NASA Astrophysics Data System (ADS)

    El-Alaoui, M.; Ashour-Abdalla, M.; Lapenta, G.; Richard, R. L.

    2015-12-01

    In this study the nature and implications of turbulence in the plasma sheet is explored with emphasis on large scale and meso-scale processes. The relationship between turbulence and reconnection, and its contribution to magnetospheric transport and dynamics will be evaluated. Observational studies to date have shown that the magnetotail rarely exhibits simple steady convection; instead, flows in the magnetotail have a high level of fluctuations. Flows driven on the scale of the entire system break up into structures that cascade to smaller scales finally reaching scales at which they are dissipated. MHD simulation studies have been carried out both for idealized cases which can be compared to statistical studies of observed events and for event studies where direct comparisons to observations have been made. . In both cases realistic fluctuation spectra were produced in the inertial range. The simulations also do a good job of representing the effects of dissipation and yield dissipative scale lengths that are comparable to those inferred from observations. Turbulence is important at intermediate scales in the plasma sheet, in particular around dipolarization fronts. We will explore the interaction between large-scale and smaller-scale fluctuations and their contributions to the magnetotail structure. We will use a global MHD simulation and iPIC3D implicit particle in cell simulation to examine how turbulence is related to global and local processes involved in the current sheet.

  6. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets

    PubMed Central

    Prada, Ilaria; Meldolesi, Jacopo

    2016-01-01

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated. PMID:27517914

  7. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.

    PubMed

    Prada, Ilaria; Meldolesi, Jacopo

    2016-01-01

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated. PMID:27517914

  8. Self-Consistent Simulation of Turbulence and Transport in Tokamak Edge Plasmas

    SciTech Connect

    Rognlien, T D; Umansky, M V; Xu, X Q; Cohen, R H

    2003-09-03

    The status of coupling the fluid 3D turbulence code BOUT and the fluid plasma/neutral 2D transport code UEDGE is reported, where both codes simulate the edge region of diverted tokamaks from several cm inside the magnetic separatrix to the far scrape-off layer (SOL), thereby including the magnetic X-point. Because the characteristic time scale of the turbulence is short ({approx} 10{sup -5}-10{sup -4}s) and the profile evolution time scale can be long ({approx} 10{sup -2}-10{sup -1} s owing to recycling), an iterative scheme is used that relaxes the turbulent fluxes passed from BOUT to UEDGE and the profiles from UEDGE to BOUT over many coupling steps. Each code is run on its own characteristic time scale, yielding a statistically averaged steady state. For this initial study, the ion and neutral densities and parallel velocities are evolved, while the temperature profiles are stationary. Here the turbulence code is run in the electrostatic approximation. For this example of self-consistent coupling with strong L-mode-like turbulence, the ion flux to the main-chamber exceeds that to the divertor plates.

  9. Shear flow and drift wave turbulence dynamics in a cylindrical plasma device

    SciTech Connect

    Yan, Z.; Tynan, G. R.; Holland, C.; Xu, M.; Mueller, S. H.; Yu, J. H.

    2010-03-15

    The experimental observations of the dynamics of the coupled drift wave turbulence (DWT)/sheared zonal flow (ZF) system in a cylindrical plasma device using a combination of Langmuir probe and fast-framing imaging measurements are reported. The results show the presence of an azimuthal ZF that exhibits low frequency (approx250 Hz) fluctuations. The envelope of the higher frequency (above 5 kHz) floating potential fluctuations associated with the DWT, the density gradient, and the turbulent radial particle flux are all modulated out of phase with the strength of the ZF. The divergence of the turbulent Reynolds stress is also modulated at the same slow time scale in a phase-coherent manner consistent with a turbulent-driven shear flow sustained against the collisional and viscous damping. The radial turbulence correlation length and cross-field particle transport are reduced during periods of strong flow shear. The results are qualitatively consistent with theoretical expectations for coupled DWT-ZF dynamics.

  10. THIN CURRENT SHEETS AND ASSOCIATED ELECTRON HEATING IN TURBULENT SPACE PLASMA

    SciTech Connect

    Chasapis, A.; Retinò, A.; Sahraoui, F.; Canu, P.; Vaivads, A.; Khotyaintsev, Yu. V.; Sundkvist, D.; Greco, A.; Sorriso-Valvo, L.

    2015-05-01

    Intermittent structures, such as thin current sheets, are abundant in turbulent plasmas. Numerical simulations indicate that such current sheets are important sites of energy dissipation and particle heating occurring at kinetic scales. However, direct evidence of dissipation and associated heating within current sheets is scarce. Here, we show a new statistical study of local electron heating within proton-scale current sheets by using high-resolution spacecraft data. Current sheets are detected using the Partial Variance of Increments (PVI) method which identifies regions of strong intermittency. We find that strong electron heating occurs in high PVI (>3) current sheets while no significant heating occurs in low PVI cases (<3), indicating that the former are dominant for energy dissipation. Current sheets corresponding to very high PVI (>5) show the strongest heating and most of the time are consistent with ongoing magnetic reconnection. This suggests that reconnection is important for electron heating and dissipation at kinetic scales in turbulent plasmas.

  11. REDUCTION OF COMPRESSIBILITY AND PARALLEL TRANSFER BY LANDAU DAMPING IN TURBULENT MAGNETIZED PLASMAS

    SciTech Connect

    Hunana, P.; Laveder, D.; Passot, T.; Sulem, P. L.; Borgogno, D.

    2011-12-20

    Three-dimensional numerical simulations of decaying turbulence in a magnetized plasma are performed using a so-called finite Larmor radius (FLR)-Landau fluid model which incorporates linear Landau damping and FLR corrections. It is shown that compared to simulations of compressible Hall-MHD, linear Landau damping is responsible for significant damping of magnetosonic waves, which is consistent with the linear kinetic theory. Compressibility of the fluid and parallel energy cascade along the ambient magnetic field are also significantly inhibited when the beta parameter is not too small. In contrast with Hall-MHD, the FLR-Landau fluid model can therefore correctly describe turbulence in collisionless plasmas such as solar wind, providing an interpretation for its nearly incompressible behavior.

  12. Lagrangian Mapping Approach to Generate Intermittency and its Application in Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Subedi, P.; Matthaeus, W. H.; Tessein, J.; Chhiber, R.; Wan, M.

    2014-12-01

    The Minimal Lagrangian Mapping procedure developed in the context of neutral fluid turbulence(Rosales and Meneveau 2006) is a simple method to generate synthetic vector fields. Using a sequenceof low pass filtered fields, fluid particles are displaced at their rms-speed for some scale-dependenttime interval, and then interpolated back to a regular grid. Fields produced in this way are seen topossess certain properties of real turbulence. We extend the technique to plasmas by takinginto account the coupling between the velocity and magnetic fields. We examine several possibleapplications to plasma systems. One use is as initial conditions for simulations, wherein these syntheticfields may efficiently produce a strongly intermittent cascade. The intermittency properties of thesynthetic fields are also compared with those of the solar wind. Finally, studies of cosmic ray transportand modulation in the test particle approximation may benefit from improved realism in syntheticfields produced in this way.

  13. Linear vs. nonlinear acceleration in plasma turbulence. I. Global versus local measures

    SciTech Connect

    Ghosh, Sanjoy; Parashar, Tulasi N.

    2015-04-15

    Magnetized turbulent plasmas are generally characterized as strongly or weakly turbulent based on the average relative strengths of the linear and nonlinear terms. While this description is useful, it does not represent the full picture and can be misleading. We study the variation of linear and nonlinear accelerations in the Fourier space of a magnetohydrodynamic system with a mean magnetic field and broad selection of initial states and plasma parameters. We show that the local picture can show significant departures from what is expected from the general global picture. We find that high cross helicity systems that are traditionally believed to have relatively weaker nonlinearities, compared to low cross helicity systems, can show strong nonlinearities in parts of the Fourier space that are orthogonal to the mean magnetic field direction. In some cases, these nonlinearities can exceed in strength the level of nonlinearities recovered from low cross helicity systems.

  14. Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Labaune, C.; Baccou, C.; Depierreux, S.; Goyon, C.; Loisel, G.; Yahia, V.; Rafelski, J.

    2013-10-01

    The advent of high-intensity-pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high-energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments.

  15. Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma.

    PubMed

    Labaune, C; Baccou, C; Depierreux, S; Goyon, C; Loisel, G; Yahia, V; Rafelski, J

    2013-01-01

    The advent of high-intensity-pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high-energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments. PMID:24104859

  16. Residual parallel Reynolds stress due to turbulence intensity gradient in tokamak plasmas

    SciTech Connect

    Guercan, Oe. D.; Hennequin, P.; Diamond, P. H.; McDevitt, C. J.; Garbet, X.; Bourdelle, C.

    2010-11-15

    A novel mechanism for driving residual stress in tokamak plasmas based on k{sub ||} symmetry breaking by the turbulence intensity gradient is proposed. The physics of this mechanism is explained and its connection to the wave kinetic equation and the wave-momentum flux is described. Applications to the H-mode pedestal in particular to internal transport barriers, are discussed. Also, the effect of heat transport on the momentum flux is discussed.

  17. Heating and acceleration of solar wind ions by turbulent wave spectrum in inhomogeneous expanding plasma

    NASA Astrophysics Data System (ADS)

    Ofman, Leon; Ozak, Nataly; Viñas, Adolfo F.

    2016-03-01

    Near the Sun (< 10Rs) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super-Alfvénic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.

  18. Structure of Langmuir and electromagnetic collapsing wave packets in two-dimensional strong plasma turbulence

    NASA Astrophysics Data System (ADS)

    Alinejad, H.; Robinson, P. A.; Cairns, I. H.; Skjaeraasen, O.; Sobhanian, S.

    2007-07-01

    Nucleating and collapsing wave packets relevant to electromagnetic strong plasma turbulence are studied theoretically in two dimensions. Model collapsing Langmuir and transverse potentials are constructed as superpositions of approximate eigenstates of a spherically symmetric density well. Electrostatic and electromagnetic potentials containing only components with azimuthal quantum numbers m =0, 1, 2 are found to give a good representation of the electric fields of nucleating collapsing wave packets in turbulence simulations. The length scales of these trapped states are related to the electron thermal speed ve and the length scale of the density well. It is shown analytically that the electromagnetic trapped states change with ve and that for ve≲0.17c they are delocalized, in accord with recent simulations. In this case, the Langmuir mode collapses independently, as in electrostatic plasma turbulence. For ve≳0.17c, the Langmuir and transverse modes remain coupled during collapse, with autocorrelation lengths in a constant ratio. An investigation of energy transfer to packets localized in density wells shows that the strongest power transfer to the nucleating state occurs for Langmuir waves. Energy transitions between different trapped and free states for collapsing wave packets are studied, and the transition rate from trapped Langmuir to free plane electromagnetic waves is calculated and related to the emission of electromagnetic waves at the plasma frequency.

  19. Hybrid Vlasov-Maxwell simulations of two-dimensional turbulence in plasmas

    SciTech Connect

    Valentini, F.; Servidio, S.; Veltri, P.; Perrone, D.; Califano, F.; Matthaeus, W. H.

    2014-08-15

    Turbulence in plasmas is a very challenging problem since it involves wave-particle interactions, which are responsible for phenomena such as plasma dissipation, acceleration mechanisms, heating, temperature anisotropy, and so on. In this work, a hybrid Vlasov-Maxwell numerical code is employed to study local kinetic processes in a two-dimensional turbulent regime. In the present model, ions are treated as a kinetic species, while electrons are considered as a fluid. As recently reported in [S. Servidio, Phys. Rev. Lett. 108, 045001 (2012)], nearby regions of strong magnetic activity, kinetic effects manifest through a deformation of the ion velocity distribution function that consequently departs from the equilibrium Maxwellian configuration. Here, the structure of turbulence is investigated in detail in phase space, by evaluating the high-order moments of the particle velocity distribution, i.e., temperature, skewness, and kurtosis. This analysis provides quantitative information about the non-Maxwellian character of the system dynamics. This departure from local thermodynamic equilibrium triggers several processes commonly observed in many astrophysical and laboratory plasmas.

  20. Study of the Ignition Requirements and Burn Characteristics of Aneutronic Fusion in Degenerate Plasma

    NASA Astrophysics Data System (ADS)

    Mahdavi, M.; Rohaninejad, S.

    2012-10-01

    The reactions such as; D + 3 He and p + 11B are aneutronic fusion reactions that, in characteristic conditions create degenerate plasma. The electronic stopping power of degenerate plasma is smaller than the classical plasma, because some transitions between the electron states are forbidden. The equations that predict the behavior of these plasmas are different from the classical ones, and this is the main factor in decreasing the ignition temperature of the plasma. In this research, the nuclear fusion in deuterium-helium with a small seeding born, D/3 He/11B, is considered using a time dependent model based on nuclear reactions, including ion-electron collisions, Bremsstrahlung losses and mechanical expansion. The effect of the initial born concentration on ignition temperature and energy gain is analyzed with calculating the effect of radiation loss in ignition temperature.

  1. Spectral characteristics of low-frequency plasma turbulence upstream of Comet P/Halley

    NASA Astrophysics Data System (ADS)

    Glassmeier, K.-H.; Coates, A. J.; Acuna, M. H.; Goldstein, M. L.; Johnstone, A. D.; Neubauer, F. M.; Reme, H.

    1989-01-01

    Two upstream regions have been identified in Giotto spacecraft magnetic field and plasma measurements subjected to cross-spectral analyses, in order to determine this cometary environment's low-frequency plasma turbulence spectral characteristics. One region's solar wind magnetic field was approximately parallel, and the other's perpendicular, to the solar wind flow velocity direction. Additional divergences relate to the regions having magnetic field lines that are either connected or disconnected to the cometary bow shock wave in either the quasi-parallel or quasi-perpendicular regions.

  2. Generation of electrostatic shocks and turbulence through the interaction of conics with the background plasma

    NASA Astrophysics Data System (ADS)

    Pottelette, R.; Treumann, R.; Bauer, O. H.; Lebreton, J. P.

    1985-01-01

    Experimental results, obtained during the PORCUPINE experiment and dealing with the interaction of an artificial ion conic with the background auroral plasma, are presented. In addition, these results are compared to the measurements performed by the S3-3 satellite when natural ion conics are present. This comparison shows that the physical processes associated with the neutralization of conical ion distributions and with their interaction with the background plasma induce the same kind of electrostatic shocks and turbulence as those recorded by S3-3.

  3. Study of Plasma Liner Driven Magnetized Target Fusion Via Advanced Simulations

    SciTech Connect

    Samulyak, Roman V.; Parks, Paul

    2013-08-31

    The feasibility of the plasma liner driven Magnetized Target Fusion (MTF) via terascale numerical simulations will be assessed. In the MTF concept, a plasma liner, formed by merging of a number (60 or more) of radial, highly supersonic plasma jets, implodes on the target in the form of two compact plasma toroids, and compresses it to conditions of the fusion ignition. By avoiding major difficulties associated with both the traditional laser driven inertial confinement fusion and solid liner driven MTF, the plasma liner driven MTF potentially provides a low-cost and fast R&D path towards the demonstration of practical fusion energy. High fidelity numerical simulations of full nonlinear models associated with the plasma liner MTF using state-of-art numerical algorithms and terascale computing are necessary in order to resolve uncertainties and provide guidance for future experiments. At Stony Brook University, we have developed unique computational capabilities that ideally suite the MTF problem. The FronTier code, developed in collaboration with BNL and LANL under DOE funding including SciDAC for the simulation of 3D multi-material hydro and MHD flows, has beenbenchmarked and used for fundamental and engineering problems in energy science applications. We have performed 3D simulations of converging supersonic plasma jets, their merger and the formation of the plasma liner, and a study of the corresponding oblique shock problem. We have studied the implosion of the plasma liner on the magnetized plasma target by resolving Rayleigh-Taylor instabilities in 2D and 3D and other relevant physics and estimate thermodynamic conditions of the target at the moment of maximum compression and the hydrodynamic efficiency of the method.

  4. “The Marshall Rosenbluth International Summer School – 2007: Plasma Thermonuclear Fusion and Plasma Astrophysics – 2007”

    SciTech Connect

    Stefan, Vladislav Alexander

    2007-10-01

    Contents: H. Berk: Frequency Sweeping Due to Phase Space Structure Formation in Plasmas M. Campbell : The Legacy of Marshall Rosenbluth in the Development of the Laser Fusion Program in the United States J. Candy: Gyrokinetic Simulations of Fusion Plasmas P. Diamond: The Legacy of Marshall Rosenbluth in Magnetic Confinement Theory G-Y. Fu: Nonlinear Hybrid Simulations of Multiple Energetic Particle Driven Alfven Modes in Toroidal Plasmas O. Gurcan: Theory of Intrinsic Rotation and Momentum Transport V. L. Jacobs: Kinetic and Spectral Descriptions for Atomic Processes in Astrophysical and Laboratory Plasmas C. F. Kennel: Marshall Rosenbluth and Roald Sagdeev in Trieste:The Birth of Modern Space Plasma N. A. Krall: The Contribution of Marshall Rosenbluth in the Development of Plasma Drift Wave and Universal Instability Theories C. S. Liu: The Legacy of Marshall Rosenbluth in Laser-Plasma Interaction Research N. Rostoker: Plasma Physics Research With Marshall Rosenbluth - My Teacher R. Z. Sagdeev: The Legacy of Marshall Rosenbluth in Plasma Physics V. Alexander Stefan A Note on the Rosenbluth Paper: Phys. Rev. Letters, 29, 565 (1972), and the Research in Parametric Plasma Theory Thereupon J. W. Van Dam: The Role of Marshall Rosenbluth in the Development of the Thermonuclear Fusion Program in the U.S.A. E. P. Velikhov: Problems in Plasma Astrophysics R. White: The Role of Marshall Rosenbluth in the Development of the Particle and MHD Interaction in Plasmas X. Xu: Edge Gyrokinetic Theory and Continuum Simulations Marshall Nicholas ROSENBLUTH (A Brief Biography) b. February 5,1927 - Albany, New York. d. September 28, 2003 - San Diego, California. M. N. Rosenbluth, a world-acclaimed scientist, is one of the ultimate authorities in plasma and thermonuclear fusion research, often indicated by the sobriquet the "Pope of Plasma Physics." His theoretical contributions have been central to the development of controlled thermonuclear fusion. In the 1950s his pioneering work in

  5. Differential cargo mobilisation within Weibel-Palade bodies after transient fusion with the plasma membrane.

    PubMed

    Kiskin, Nikolai I; Babich, Victor; Knipe, Laura; Hannah, Matthew J; Carter, Tom

    2014-01-01

    Inflammatory chemokines can be selectively released from Weibel-Palade bodies (WPBs) during kiss-and-run exocytosis. Such selectivity may arise from molecular size filtering by the fusion pore, however differential intra-WPB cargo re-mobilisation following fusion-induced structural changes within the WPB may also contribute to this process. To determine whether WPB cargo molecules are differentially re-mobilised, we applied FRAP to residual post-fusion WPB structures formed after transient exocytosis in which some or all of the fluorescent cargo was retained. Transient fusion resulted in WPB collapse from a rod to a spheroid shape accompanied by substantial swelling (>2 times by surface area) and membrane mixing between the WPB and plasma membranes. Post-fusion WPBs supported cumulative WPB exocytosis. To quantify diffusion inside rounded organelles we developed a method of FRAP analysis based on image moments. FRAP analysis showed that von Willebrand factor-EGFP (VWF-EGFP) and the VWF-propolypeptide-EGFP (Pro-EGFP) were immobile in post-fusion WPBs. Because Eotaxin-3-EGFP and ssEGFP (small soluble cargo proteins) were largely depleted from post-fusion WPBs, we studied these molecules in cells preincubated in the weak base NH4Cl which caused WPB alkalinisation and rounding similar to that produced by plasma membrane fusion. In these cells we found a dramatic increase in mobilities of Eotaxin-3-EGFP and ssEGFP that exceeded the resolution of our method (∼ 2.4 µm2/s mean). In contrast, the membrane mobilities of EGFP-CD63 and EGFP-Rab27A in post-fusion WPBs were unchanged, while P-selectin-EGFP acquired mobility. Our data suggest that selective re-mobilisation of chemokines during transient fusion contributes to selective chemokine secretion during transient WPB exocytosis. Selective secretion provides a mechanism to regulate intravascular inflammatory processes with reduced risk of thrombosis. PMID:25233365

  6. Differential Cargo Mobilisation within Weibel-Palade Bodies after Transient Fusion with the Plasma Membrane

    PubMed Central

    Kiskin, Nikolai I.; Babich, Victor; Knipe, Laura; Hannah, Matthew J.; Carter, Tom

    2014-01-01

    Inflammatory chemokines can be selectively released from Weibel-Palade bodies (WPBs) during kiss-and-run exocytosis. Such selectivity may arise from molecular size filtering by the fusion pore, however differential intra-WPB cargo re-mobilisation following fusion-induced structural changes within the WPB may also contribute to this process. To determine whether WPB cargo molecules are differentially re-mobilised, we applied FRAP to residual post-fusion WPB structures formed after transient exocytosis in which some or all of the fluorescent cargo was retained. Transient fusion resulted in WPB collapse from a rod to a spheroid shape accompanied by substantial swelling (>2 times by surface area) and membrane mixing between the WPB and plasma membranes. Post-fusion WPBs supported cumulative WPB exocytosis. To quantify diffusion inside rounded organelles we developed a method of FRAP analysis based on image moments. FRAP analysis showed that von Willebrand factor-EGFP (VWF-EGFP) and the VWF-propolypeptide-EGFP (Pro-EGFP) were immobile in post-fusion WPBs. Because Eotaxin-3-EGFP and ssEGFP (small soluble cargo proteins) were largely depleted from post-fusion WPBs, we studied these molecules in cells preincubated in the weak base NH4Cl which caused WPB alkalinisation and rounding similar to that produced by plasma membrane fusion. In these cells we found a dramatic increase in mobilities of Eotaxin-3-EGFP and ssEGFP that exceeded the resolution of our method (∼2.4 µm2/s mean). In contrast, the membrane mobilities of EGFP-CD63 and EGFP-Rab27A in post-fusion WPBs were unchanged, while P-selectin-EGFP acquired mobility. Our data suggest that selective re-mobilisation of chemokines during transient fusion contributes to selective chemokine secretion during transient WPB exocytosis. Selective secretion provides a mechanism to regulate intravascular inflammatory processes with reduced risk of thrombosis. PMID:25233365

  7. Membrane fusion by VAMP3 and plasma membrane t-SNAREs

    SciTech Connect

    Hu Chuan Hardee, Deborah; Minnear, Fred

    2007-09-10

    Pairing of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins on vesicles (v-SNAREs) and SNARE proteins on target membranes (t-SNAREs) mediates intracellular membrane fusion. VAMP3/cellubrevin is a v-SNARE that resides in recycling endosomes and endosome-derived transport vesicles. VAMP3 has been implicated in recycling of transferrin receptors, secretion of {alpha}-granules in platelets, and membrane trafficking during cell migration. Using a cell fusion assay, we examined membrane fusion capacity of the ternary complexes formed by VAMP3 and plasma membrane t-SNAREs syntaxin1, syntaxin4, SNAP-23 and SNAP-25. VAMP3 forms fusogenic pairing with t-SNARE complexes syntaxin1/SNAP-25, syntaxin1/SNAP-23 and syntaxin4/SNAP-25, but not with syntaxin4/SNAP-23. Deletion of the N-terminal domain of syntaxin4 enhanced membrane fusion more than two fold, indicating that the N-terminal domain negatively regulates membrane fusion. Differential membrane fusion capacities of the ternary v-/t-SNARE complexes suggest that transport vesicles containing VAMP3 have distinct membrane fusion kinetics with domains of the plasma membrane that present different t-SNARE proteins.

  8. Simulation of magnetohydrodynamics turbulence with application to plasma-assisted supersonic combustion

    NASA Astrophysics Data System (ADS)

    Miki, Kenji

    Plasma assisted combustion (PAC) is a promising alternative to hold or ignite a fuel and air mixture in a supersonic environment. Efficient supersonic combustion is of primary importance for SCRAMJET technology. The advantages of PAC is the addition of large amounts of energy to specific regions of the SCRAMJET flow-field for short periods of time, and as a result accelerate the fuel/air kinetic rates to achieve a self-sustaining condition. Moreover, the promise of enhancement of fuel-air mixing by magnetohydrodynamics (MHD) flow control offers significant improvement of combustion performance. The development of a numerical tool for investigating high-temperature chemistry and plasmadynamic effects of a discharge arc is desired to gain understanding of PAC technology and the potential improvement of the operational efficiency of SCRAMJET engines. The main objective of this research is to develop a comprehensive model with the capability of modeling both high Reynolds number and high magnetic Reynolds number turbulent flow for application to supersonic combustor. The development of this model can be divided into three categories: first, the development of a self-consistent MHD numerical model capable of modeling magnetic turbulence in high magnetic Reynolds number applications. Second, the development of a gas discharge model which models the interaction of externally applied fields in conductive medium. Third, the development of models necessary for studying supersonic combustion applications with plasma-assistance such the extension of chemical kinetics models to extremely high temperature and non-equilibrium phenomenon. Finally, these models are combined and utilized to model plasma assisted combustion in a SCRAMJET. Two types of plasmas are investigated: an equilibrium electrical discharge (arc) and a non-equilibrium plasma jet. It is shown that both plasmas significantly increase the concentration of radicals such as O, OH and H, and both have positive impact

  9. Local regulation of interchange turbulence in a dipole-confined plasma torus using current-collection feedback

    SciTech Connect

    Roberts, T. M. Mauel, M. E. Worstell, M. W.

    2015-05-15

    Turbulence in plasma confined by a magnetic dipole is dominated by interchange fluctuations with complex dynamics and short spatial coherence. We report the first use of local current-collection feedback to modify, amplify, and suppress these fluctuations. The spatial extent of turbulence regulation is limited to a correlation length near the collector. Changing the gain and phase of collection results in power either extracted from or injected into the turbulence. The measured plasma response shows some agreement with calculations of the linear response of global interchange-like MHD and entropy modes to current-collection feedback.

  10. Magnetic-Nozzle Studies for Fusion Propulsion Applications: Gigawatt Plasma Source Operation and Magnetic Nozzle Analysis

    NASA Technical Reports Server (NTRS)

    Gilland, James H.; Mikekkides, Ioannis; Mikellides, Pavlos; Gregorek, Gerald; Marriott, Darin

    2004-01-01

    This project has been a multiyear effort to assess the feasibility of a key process inherent to virtually all fusion propulsion concepts: the expansion of a fusion-grade plasma through a diverging magnetic field. Current fusion energy research touches on this process only indirectly through studies of plasma divertors designed to remove the fusion products from a reactor. This project was aimed at directly addressing propulsion system issues, without the expense of constructing a fusion reactor. Instead, the program designed, constructed, and operated a facility suitable for simulating fusion reactor grade edge plasmas, and to examine their expansion in an expanding magnetic nozzle. The approach was to create and accelerate a dense (up to l0(exp 20)/m) plasma, stagnate it in a converging magnetic field to convert kinetic energy to thermal energy, and examine the subsequent expansion of the hot (100's eV) plasma in a subsequent magnetic nozzle. Throughout the project, there has been a parallel effort between theoretical and numerical design and modelling of the experiment and the experiment itself. In particular, the MACH2 code was used to design and predict the performance of the magnetoplasmadynamic (MPD) plasma accelerator, and to design and predict the design and expected behavior for the magnetic field coils that could be added later. Progress to date includes the theoretical accelerator design and construction, development of the power and vacuum systems to accommodate the powers and mass flow rates of interest to out research, operation of the accelerator and comparison to theoretical predictions, and computational analysis of future magnetic field coils and the expected performance of an integrated source-nozzle experiment.

  11. Fusion power production from TFTR plasmas fueled with deuterium and tritium

    SciTech Connect

    Strachan, J. D.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J. L.; Ashcroft, D.; Barnes, Cris W.; Barnes, G.; Batha, S.; Bell, M. G.; Bell, R.; Bitter, M.; Blanchard, W.; Bretz, N. L.; Budny, R.; Bush, C. E.; Camp, R.; Caorlin, M.; Cauffman, S.; Chang, Z.; Cheng, C. Z.; Collins, J.; Coward, G.; Darrow, D. S.; DeLooper, J.; Duong, H.; Dudek, L.; Durst, R.; Efthimion, P. C.; Ernst, D.; Fisher, R.; Fonck, R. J.; Fredrickson, E.; Fromm, N.; Fu, G. Y.; Furth, H. P.; Gentile, C.; Gorelenkov, N.; Grek, B.; Grisham, L. R.; Hammett, G.; Hanson, G. R.; Hawryluk, R. J.; Heidbrink, W.; Herrmann, H. W.; Hill, K. W.; Hosea, J.; Hsuan, H.; Janos, A.; Jassby, D. L.; Jobes, F. C.; Johnson, D. W.; Johnson, L. C.; Kamperschroer, J.; Kugel, H.; Lam, N. T.; LaMarche, P. H.; Loughlin, M. J.; LeBlanc, B.; Leonard, M.; Levinton, F. M.; Machuzak, J.; Mansfield, D. K.; Martin, A.; Mazzucato, E.; Majeski, R.; Marmar, E.; McChesney, J.; McCormack, B.; McCune, D. C.; McGuire, K. M.; McKee, G.; Meade, D. M.; Medley, S. S.; Mikkelsen, D. R.; Mueller, D.; Murakami, M.; Nagy, A.; Nazikian, R.; Newman, R.; Nishitani, T.; Norris, M.; O’Connor, T.; Oldaker, M.; Osakabe, M.; Owens, D. K.; Park, H.; Park, W.; Paul, S. F.; Pearson, G.; Perry, E.; Petrov, M.; Phillips, C. K.; Pitcher, S.; Ramsey, A. T.; Rasmussen, D. A.; Redi, M. H.; Roberts, D.; Rogers, J.; Rossmassler, R.; Roquemore, A. L.; Ruskov, E.; Sabbagh, S. A.; Sasao, M.; Schilling, G.; Schivell, J.; Schmidt, G. L.; Scott, S. D.; Sissingh, R.; Skinner, C. H.; Snipes, J. A.; Stevens, J.; Stevenson, T.; Stratton, B. C.; Synakowski, E.; Tang, W.; Taylor, G.; Terry, J. L.; Thompson, M. E.; Tuszewski, M.; Vannoy, C.; von Halle, A.; von Goeler, S.; Voorhees, D.; Walters, R. T.; Wieland, R.; Wilgen, J. B.; Williams, M.; Wilson, J. R.; Wong, K. L.; Wurden, G. A.; Yamada, M.; Young, K. M.; Zarnstorff, M. C.; Zweben, S. J.

    1994-05-01

    Peak fusion power production of 6.2 ± 0.4 MW has been achieved in TFTR plasmas heated by deuterium and tritium neutral beams at a total power of 29.5 MW. These plasmas have an inferred central fusion alpha particle density of 1.2 x 1017 m ₋3 without the appearance of either disruptive magnetohydrodynamics events or detectable changes in Alfvén wave activity. The measured loss rate of energetic alpha particles agreed with the approximately 5% losses expected from alpha particles which are born on unconfined orbits.

  12. Studies of turbulence and transport in Alcator C-Mod H-mode plasmas with phase contrast imaging and comparisons with GYRO

    SciTech Connect

    Lin, L.; Porkolab, M.; Edlund, E. M.; Rost, J. C.; Fiore, C. L.; Greenwald, M.; Lin, Y.; Tsujii, N.; Wukitch, S. J.; Mikkelsen, D. R.

    2009-01-15

    Recent advances in gyrokinetic simulation of core turbulence and associated transport requires an intensified experimental effort to validate these codes using state of the art synthetic diagnostics to compare simulations with experimental data. A phase contrast imaging (PCI) diagnostic [M. Porkolab, J. C. Rost, N. Basse et al., IEEE Trans. Plasma Sci. 34, 229 (2006)] is used to study H-mode plasmas in Alcator C-Mod [M. Greenwald, D. Andelin, N. Basse et al., Nucl. Fusion 45, S109 (2005)]. The PCI system is capable of measuring density fluctuations with high temporal (2 kHz-5 MHz) and wavenumber (0.5-55 cm{sup -1}) resolution. Recent upgrades have enabled PCI to localize the short wavelength turbulence in the electron temperature gradient range and resolve the direction of propagation (i.e., electron versus ion diamagnetic direction) of the longer wavelength turbulence in the ion temperature gradient (ITG) and trapped electron mode range. The studies focus on plasmas before and during internal transport barrier formation in an enhanced D{sub {alpha}} H-mode plasma assisted with ion cyclotron resonance frequency heating. Nonlinear GYRO simulations have also been performed [J. Candy and R. E. Waltz, Phys. Rev. Lett. 91, 045001 (2003)] and the predicted fluctuation is compared against experimental measurements through a synthetic PCI diagnostic method. The simulated fluctuations from GYRO agree with experimental measurements in the ITG regime. GYRO also shows good agreement in transport predictions with experimental measurements after reducing the ion temperature gradient ({approx}15%) and adding ExB shear suppression, all within the experimental uncertainty.

  13. Neutron plasma propulsion - A precursor to magnetic fusion rocket

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoichi; Parrish, Ted; Montalvo, Elena; Carrera, Rodolfo

    1993-06-01

    A novel advanced space propulsion concept, neutron plasma space propulsion (NPP), is proposed. The NPP system is an open cycle nuclear thermal type with a varying specific impulse (800-10 million sec). The NPP system uses a state-of-art magnetic confinement scheme for a hot plasma. The plasma is heated by high energy ions produced by thermal neutron-induced nuclear reactions. The low density plasma is confined in a magnetic bottle for a sufficiently long time period so that the plasma temperature may be high (10 eV to 1 keV). Thermal neutrons are provided by a nuclear fission reactor. A magnetic nozzle is used for the plasma exhaust.

  14. SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas

    SciTech Connect

    Lin, Zhihong

    2013-12-18

    During the first year of the SciDAC gyrokinetic particle simulation (GPS) project, the GPS team (Zhihong Lin, Liu Chen, Yasutaro Nishimura, and Igor Holod) at the University of California, Irvine (UCI) studied the tokamak electron transport driven by electron temperature gradient (ETG) turbulence, and by trapped electron mode (TEM) turbulence and ion temperature gradient (ITG) turbulence with kinetic electron effects, extended our studies of ITG turbulence spreading to core-edge coupling. We have developed and optimized an elliptic solver using finite element method (FEM), which enables the implementation of advanced kinetic electron models (split-weight scheme and hybrid model) in the SciDAC GPS production code GTC. The GTC code has been ported and optimized on both scalar and vector parallel computer architectures, and is being transformed into objected-oriented style to facilitate collaborative code development. During this period, the UCI team members presented 11 invited talks at major national and international conferences, published 22 papers in peer-reviewed journals and 10 papers in conference proceedings. The UCI hosted the annual SciDAC Workshop on Plasma Turbulence sponsored by the GPS Center, 2005-2007. The workshop was attended by about fifties US and foreign researchers and financially sponsored several gradual students from MIT, Princeton University, Germany, Switzerland, and Finland. A new SciDAC postdoc, Igor Holod, has arrived at UCI to initiate global particle simulation of magnetohydrodynamics turbulence driven by energetic particle modes. The PI, Z. Lin, has been promoted to the Associate Professor with tenure at UCI.

  15. Magnetic Probe to Study Plasma Jets for Magneto-Inertial Fusion

    SciTech Connect

    Martens, Daniel; Hsu, Scott C.

    2012-08-16

    A probe has been constructed to measure the magnetic field of a plasma jet generated by a pulsed plasma rail-gun. The probe consists of two sets of three orthogonally-oriented commercial chip inductors to measure the three-dimensional magnetic field vector at two separate positions in order to give information about the magnetic field evolution within the jet. The strength and evolution of the magnetic field is one of many factors important in evaluating the use of supersonic plasma jets for forming imploding spherical plasma liners as a standoff driver for magneto-inertial fusion.

  16. Physics of the edge plasma and first wall in fusion devices: synergistic effects

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. I.; Pigarov, A. Yu; Lee, Wonjae

    2015-04-01

    Various synergistic effects resulting from plasma-wall interactions in magnetic fusion devices are considered. The crucial role of the first wall out-gassing processes in the recovery of pedestal density in the high-confinement mode of tokamak operation after giant type-I edge localized modes (ELMs) transient events as well as in the setting the ELM period is discussed. The shielding effects of vapor plasma formed during interactions of extremely large plasma heat fluxes with material surfaces are analyzed. The strongly non-linear impact of secondary electron emission from the divertor target on the incident plasma heat flux is discussed.

  17. Study of plasma equilibrium in toroidal fusion devices using mesh-free numerical calculation method

    NASA Astrophysics Data System (ADS)

    Rasouli, C.; Abbasi Davani, F.; Rokrok, B.

    2016-08-01

    Plasma confinement using external magnetic field is one of the successful ways leading to the controlled nuclear fusion. Development and validation of the solution process for plasma equilibrium in the experimental toroidal fusion devices is the main subject of this work. Solution of the nonlinear 2D stationary problem as posed by the Grad-Shafranov equation gives quantitative information about plasma equilibrium inside the vacuum chamber of hot fusion devices. This study suggests solving plasma equilibrium equation which is essential in toroidal nuclear fusion devices, using a mesh-free method in a condition that the plasma boundary is unknown. The Grad-Shafranov equation has been solved numerically by the point interpolation collocation mesh-free method. Important features of this approach include truly mesh free, simple mathematical relationships between points and acceptable precision in comparison with the parametric results. The calculation process has been done by using the regular and irregular nodal distribution and support domains with different points. The relative error between numerical and analytical solution is discussed for several test examples such as small size Damavand tokamak, ITER-like equilibrium, NSTX-like equilibrium, and typical Spheromak.

  18. EDITORIAL: Theory of fusion plasmas: selected papers from the Joint Varenna-Lausanne International Workshop Theory of fusion plasmas: selected papers from the Joint Varenna-Lausanne International Workshop

    NASA Astrophysics Data System (ADS)

    Garbet, X.; Sauter, O.

    2011-05-01

    The 2010 edition of the joint Varenna-Lausanne workshop on the theory of fusion plasmas was undoubtedly a great success. The programme encompasses a wide variety of topics, namely turbulence, MHD, edge physics and RF wave heating. The present PPCF issue is a collection of 19 outstanding papers, which cover these topics. It follows the publication of 22 refereed contributed papers in Journal of Physics: Conference Series 2010 260. There is no doubt that the production of articles was both abundant and of high scientific quality. This is why the Varenna-Lausanne meeting takes an important place in the landscape of conferences on fusion. Indeed this is the ideal forum for exchanging ideas on theory and modelling, and for substantiating the best results obtained in our field. The tradition of the meeting is to provide a forum for numerical modelling activities. This custom was clearly respected given the large fraction of papers in this special issue which address this subject. This feature reflects the revolution we have been living through for some years with the fast growth of high-performance computers. It also appears that analytical theory is flourishing. This is important for bringing new ideas and guidance to numerical simulations. Finally, code validation and comparison to experiments are well represented. We believe that this is good news given the complexity of the non-linear physics that is at stake in fusion devices. Another subject of satisfaction was the presence of many young scientists at the meeting. The encounter between young researchers and senior scientists is certainly a strong point of the Varenna-Lausanne conference. In conclusion, we anticipate a great success for this special issue of PPCF and we hope that the readers will find therein ideas and inspiration.

  19. Coherent structures and turbulent spectrum in solar wind plasmas

    SciTech Connect

    Sharma, R. P.; Yadav, N.; Kumari, Anju

    2013-08-15

    The present paper investigates the localization of a uniform plane kinetic Alfvén wave (KAW) due to the coupling with the density/magnetic field fluctuations associated with a magnetosonic wave propagating in the transverse direction, i.e., perpendicular to the background magnetic field. To gain the physical insight into this evolution, a simplified analytical model based on the Mathieu equation has also been studied. Numerical method has also been used to analyse the evolution of KAW. The magnetic fluctuation spectrum follows Kolmogorovian scaling above the proton gyroradius scalelength, which is regarded as the inertial range. Below this scale, a steepened spectrum has been obtained in the dispersive range with power law index ∼−2.5, which continues up to the dissipation range. Our results reveal that the proposed mechanism may be an interesting physical mechanism for transferring the energy from larger lengthscales to smaller lengthscales in the solar wind plasmas. Relevance of the present study with Cluster spacecraft observations has also been discussed.

  20. Deuterium--tritium plasmas in novel regimes in the Tokamak Fusion Test Reactor

    SciTech Connect

    Bell, M.G.; Batha, S.; Beer, M.; Bell, R.E.; Belov, A.; Berk, H.; Bernabei, S.; Bitter, M.; Breizman, B.; Bretz, N.L.; Budny, R.; Bush, C.E.; Callen, J.; Cauffman, S.; Chang, C.S.; Chang, Z.; Cheng, C.Z.; Darrow, D.S.; Dendy, R.O.; Dorland, W.; Duong, H.; Efthimion, P.C.; Ernst, D.; Evenson, H.; Fisch, N.J.; Fisher, R.; Fonck, R.J.; Fredrickson, E.D.; Fu, G.Y.; Furth, H.P.; Gorelenkov, N.N.; Goloborodko, V.Y.; Grek, B.; Grisham, L.R.; Hammett, G.W.; Hawryluk, R.J.; Heidbrink, W.; Herrmann, H.W.; Herrmann, M.C.; Hill, K.W.; Hogan, J.; Hooper, B.; Hosea, J.C.; Houlberg, W.A.; Hughes, M.; Jassby, D.L.; Jobes, F.C.; Johnson, D.W.; Kaita, R.; Kaye, S.; Kesner, J.; Kim, J.S.; Kissick, M.; Krasilnikov, A.V.; Kugel, H.; Kumar, A.; Lam, N.T.; Lamarche, P.; LeBlanc, B.; Levinton, F.M.; Ludescher, C.; Machuzak, J.; Majeski, R.P.; Manickam, J.; Mansfield, D.K.; Mauel, M.; Mazzucato, E.; McChesney, J.; McCune, D.C.; McKee, G.; McGuire, K.M.; Meade, D.M.; Medley, S.S.; Mikkelsen, D.R.; Mirnov, S.V.; Mueller, D.; Nagayama, Y.; Navratil, G.A.; Nazikian, R.; Okabayashi, M.; Osakabe, M.; Owens, D.K.; Park, H.K.; Park, W.; Paul, S.F.; Petrov, M.P.; Phillips, C.K.; Phillips, M.; Phillips, P.; Ramsey, A.T.; Rice, B.; Redi, M.H.; Rewoldt, G.; Reznik, S.; Roquemore, A.L.; Rogers, J.; Ruskov, E.; Sabbagh, S.A.; Sasao, M.; Schilling, G.; Schmidt, G.L.; Scott, S.D.; Semenov, I.; Senko, T.; Skinner, C.H.; Stevenson, T.; Strait, E.J.; Stratton, B.C.; Strachan, J.D.; Stodiek, W.; Synakowski, E.; Takahashi, H.; Tang, W.; Taylor, G.; Thompson, M.E.; von Goeler, S.; Von Halle, A.; Walters, R.T.; Wang, S.; White, R.; Wieland, R.M.; Williams, M.; Wilson, J.R.; Wong, K.L.; Wurden, G.A.; Yamada, M.; Yavorski, V.; Young, K.M.; Zakharov, L.; Zarnstorff, M.C.; Zweben, S.J.

    1997-05-01

    Experiments in the Tokamak Fusion Test Reactor (TFTR) [Phys. Plasmas {bold 2}, 2176 (1995)] have explored several novel regimes of improved tokamak confinement in deuterium{endash}tritium (D--T) plasmas, including plasmas with reduced or reversed magnetic shear in the core and high-current plasmas with increased shear in the outer region (high l{sub i}). New techniques have also been developed to enhance the confinement in these regimes by modifying the plasma-limiter interaction through {ital in situ} deposition of lithium. In reversed-shear plasmas, transitions to enhanced confinement have been observed at plasma currents up to 2.2 MA (q{sub a}{approx}4.3), accompanied by the formation of internal transport barriers, where large radial gradients develop in the temperature and density profiles. Experiments have been performed to elucidate the mechanism of the barrier formation and its relationship with the magnetic configuration and with the heating characteristics. The increased stability of high-current, high-l{sub i} plasmas produced by rapid expansion of the minor cross section, coupled with improvement in the confinement by lithium deposition has enabled the achievement of high fusion power, up to 8.7 MW, with D--T neutral beam heating. The physics of fusion alpha-particle confinement has been investigated in these regimes, including the interactions of the alphas with endogenous plasma instabilities and externally applied waves in the ion cyclotron range of frequencies. In D--T plasmas with q{sub 0}{gt}1 and weak magnetic shear in the central region, a toroidal Alfvn eigenmode instability driven purely by the alpha particles has been observed for the first time. The interactions of energetic ions with ion Bernstein waves produced by mode conversion from fast waves in mixed-species plasmas have been studied as a possible mechanism for transferring the energy of the alphas to fuel ions. {copyright} {ital 1997 American Institute of Physics.}

  1. Distinct turbulence sources and confinement features in the spherical tokamak plasma regime

    DOE PAGES

    Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.

    2015-10-30

    New turbulence contributions to plasma transport and confinement in the spherical tokamak (ST) regime are identified through nonlinear gyrokinetic simulations. The drift wave Kelvin-Helmholtz (KH) mode characterized by intrinsic mode asymmetry is shown to drive significant ion thermal transport in strongly rotating national spherical torus experiment (NSTX) L-modes. The long wavelength, quasi-coherent dissipative trapped electron mode (TEM) is destabilized in NSTX H-modes despite the presence of strong E x B shear, providing a robust turbulence source dominant over collisionless TEM. Dissipative trapped electron mode (DTEM)-driven transport in the NSTX parametric regime is shown to increase with electron collision frequency, offeringmore » one possible source for the confinement scaling observed in experiments. There exists a turbulence-free regime in the collision-induced collisionless trapped electron mode to DTEM transition for ST plasmas. In conclusion, this predicts a natural access to a minimum transport state in the low collisionality regime that future advanced STs may cover.« less

  2. Distinct turbulence sources and confinement features in the spherical tokamak plasma regime

    SciTech Connect

    Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.

    2015-10-30

    New turbulence contributions to plasma transport and confinement in the spherical tokamak (ST) regime are identified through nonlinear gyrokinetic simulations. The drift wave Kelvin-Helmholtz (KH) mode characterized by intrinsic mode asymmetry is shown to drive significant ion thermal transport in strongly rotating national spherical torus experiment (NSTX) L-modes. The long wavelength, quasi-coherent dissipative trapped electron mode (TEM) is destabilized in NSTX H-modes despite the presence of strong E x B shear, providing a robust turbulence source dominant over collisionless TEM. Dissipative trapped electron mode (DTEM)-driven transport in the NSTX parametric regime is shown to increase with electron collision frequency, offering one possible source for the confinement scaling observed in experiments. There exists a turbulence-free regime in the collision-induced collisionless trapped electron mode to DTEM transition for ST plasmas. In conclusion, this predicts a natural access to a minimum transport state in the low collisionality regime that future advanced STs may cover.

  3. Vlasov Simulations of Multi-ion Plasma Turbulence in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Perrone, D.; Valentini, F.; Servidio, S.; Dalena, S.; Veltri, P.

    2013-01-01

    Hybrid Vlasov-Maxwell simulations are employed to investigate the role of kinetic effects in a two-dimensional turbulent multi-ion plasma, composed of protons, alpha particles, and fluid electrons. In the typical conditions of the solar-wind environment, and in situations of decaying turbulence, the numerical results show that the velocity distribution functions of both ion species depart from the typical configuration of thermal equilibrium. These non-Maxwellian features are quantified through the statistical analysis of the temperature anisotropy, for both protons and alpha particles, in the reference frame given by the local magnetic field. Anisotropy is found to be higher in regions of high magnetic stress. Both ion species manifest a preferentially perpendicular heating, although the anisotropy is more pronounced for the alpha particles, according to solar wind observations. The anisotropy of the alpha particle, moreover, is correlated to the proton anisotropy and also depends on the local differential flow between the two species. Evident distortions of the particle distribution functions are present, with the production of bumps along the direction of the local magnetic field. The physical phenomenology recovered in these numerical simulations reproduces very common measurements in the turbulent solar wind, suggesting that the multi-ion Vlasov model constitutes a valid approach to understanding the nature of complex kinetic effects in astrophysical plasmas.

  4. VLASOV SIMULATIONS OF MULTI-ION PLASMA TURBULENCE IN THE SOLAR WIND

    SciTech Connect

    Perrone, D.; Valentini, F.; Servidio, S.; Dalena, S.; Veltri, P.

    2013-01-10

    Hybrid Vlasov-Maxwell simulations are employed to investigate the role of kinetic effects in a two-dimensional turbulent multi-ion plasma, composed of protons, alpha particles, and fluid electrons. In the typical conditions of the solar-wind environment, and in situations of decaying turbulence, the numerical results show that the velocity distribution functions of both ion species depart from the typical configuration of thermal equilibrium. These non-Maxwellian features are quantified through the statistical analysis of the temperature anisotropy, for both protons and alpha particles, in the reference frame given by the local magnetic field. Anisotropy is found to be higher in regions of high magnetic stress. Both ion species manifest a preferentially perpendicular heating, although the anisotropy is more pronounced for the alpha particles, according to solar wind observations. The anisotropy of the alpha particle, moreover, is correlated to the proton anisotropy and also depends on the local differential flow between the two species. Evident distortions of the particle distribution functions are present, with the production of bumps along the direction of the local magnetic field. The physical phenomenology recovered in these numerical simulations reproduces very common measurements in the turbulent solar wind, suggesting that the multi-ion Vlasov model constitutes a valid approach to understanding the nature of complex kinetic effects in astrophysical plasmas.

  5. Reactive Control of Boundary Layer Streaks Induced by Freestream Turbulence Using Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Gouder, Kevin; Naguib, Ahmed; Lavoie, Philippe; Morrison, Jonathan

    2015-11-01

    Over the past few years we have carried out a systematic series of investigations aimed at evaluating the capability of a plasma-actuator-based feedforward-feedback control system to weaken streaks induced ``synthetically'' in a Blasius boundary layer via dynamic roughness elements. This work has been motivated by the delay of bypass boundary layer transition in which the streaks form stochastically beneath a freestream with turbulence of intensity of more than approximately 1%. In the present work, we carry forward the knowhow from our previous research in a first attempt to control such naturally occurring streaks. The experimental setup consists of a turbulence-generating grid upstream of a flat plate with a sharp leading edge. At the freestream velocity of the experiment, turbulent spot formation is observed to start at a streamwise location of x ~ 350 mm from the leading edge. The control system is implemented within a streamwise domain stretching from x = 150 mm to 300mm, where the streaks exhibit linear growth. At the upstream and downstream end of the domain a feedforward and a feedback wall-shear-stress sensors are utilized. The output from the sensors is fed to appropriately designed controllers which drive two plasma actuators providing positive and negative wall-normal forcing to oppose naturally occurring high- and low-speed streaks respectively. The results provide an assessment of the viability of the control approach to weaken the boundary layer streaks and to delay transition.

  6. Plasma diagnostic techniques in thermal-barrier tandem-mirror fusion experiments

    SciTech Connect

    Silver, E.H.; Clauser, J.F.; Carter, M.R.; Failor, B.H.; Foote, J.H.; Hornady, R.S.; James, R.A.; Lasnier, C.J.; Perkins, D.E.

    1986-08-29

    We review two classes of plasma diagnostic techniques used in thermal-barrier tandem-mirror fusion experiments. The emphasis of the first class is to study mirror-trapped electrons at the thermal-barrier location. The focus of the second class is to measure the spatial and temporal behavior of the plasma space potential at various axial locations. The design and operation of the instruments in these two categories are discussed and data that are representative of their performance is presented.

  7. Extended fusion yield integral using pathway idea in case of Shock-compressed heated plasma

    NASA Astrophysics Data System (ADS)

    Kumar, Dilip; Haubold, Hans

    The extended non-resonant thermonuclear reaction rate probability integral obtained in Haubold and Kumar [Haubold, H.J. and Kumar, D.: 2008, Extension of thermonuclear functions through the pathway model including Maxwell-Boltzmann and Tsallis distributions, Astroparticle Physics, 29, 70-76] is used to evaluate the fusion energy by itegrating it over temperature. The closed form representation of the extended reaction rate integral via Meijer's G-function is expressed as a solution of a homogeneous differential equation. A physical model of Guderley[Guderley G. :1942, Starke kugelige und zylindrische Verdichtungsstsse in der Nhe des Kugelmittelpunktes bzw. der Zylinderachse, Luftfahrtforschung, 19, 302] has been considered for the laser driven hydrodynamical process in a compressed fusion plasma and heated strong spherical shock wave. The fusion yield integral obtained in the paper is compared with the standard fusion yield ob-tained by Haubold and John [Haubold, H.J. and John, R.W.:1981, Analytical representation of the thermonuclear reaction rate and fusion energy production in a spherical plasma shock wave, Plasma Physics, 5, 399-411]. The pathway parameter used in this paper is given an interpretation in terms of moments.

  8. One-Dimensional Burn Dynamics of Plasma-Jet Magneto-Inertial Fusion

    NASA Astrophysics Data System (ADS)

    Santarius, John

    2009-11-01

    This poster will discuss several issues related to using plasma jets to implode a Magneto-Inertial Fusion (MIF) liner onto a magnetized plasmoid and compress it to fusion-relevant temperatures [1]. The problem of pure plasma jet convergence and compression without a target present will be investigated. Cases with a target present will explore how well the liner's inertia provides transient plasma stability and confinement. The investigation uses UW's 1-D Lagrangian radiation-hydrodynamics code, BUCKY, which solves single-fluid equations of motion with ion-electron interactions, PdV work, table-lookup equations of state, fast-ion energy deposition, and pressure contributions from all species. Extensions to the code include magnetic field evolution as the plasmoid compresses plus dependence of the thermal conductivity and fusion product energy deposition on the magnetic field.[4pt] [1] Y.C. F. Thio, et al.,``Magnetized Target Fusion in a Spheroidal Geometry with Standoff Drivers,'' in Current Trends in International Fusion Research, E. Panarella, ed. (National Research Council of Canada, Ottawa, Canada, 1999), p. 113.

  9. VAMP8-dependent fusion of recycling endosomes with the plasma membrane facilitates T lymphocyte cytotoxicity

    PubMed Central

    Marshall, Misty R.; Pattu, Varsha; Halimani, Mahantappa; Maier-Peuschel, Monika; Müller, Martha-Lena; Becherer, Ute; Hong, Wanjin; Hoth, Markus; Tschernig, Thomas

    2015-01-01

    Cytotoxic T lymphocytes (CTLs) eliminate infected and neoplastic cells through directed release of cytotoxic granule contents. Although multiple SNARE proteins have been implicated in cytotoxic granule exocytosis, the role of vesicular SNARE proteins, i.e., vesicle-associated membrane proteins (VAMPs), remains enigmatic. VAMP8 was posited to represent the cytotoxic granule vesicular SNARE protein mediating exocytosis in mice. In primary human CTLs, however, VAMP8 colocalized with Rab11a-positive recycling endosomes. Upon stimulation, these endosomes rapidly trafficked to and fused with the plasma membrane, preceding fusion of cytotoxic granules. Knockdown of VAMP8 blocked both recycling endosome and cytotoxic granule fusion at immune synapses, without affecting activating signaling. Mechanistically, VAMP8-dependent recycling endosomes deposited syntaxin-11 at immune synapses, facilitating assembly of plasma membrane SNARE complexes for cytotoxic granule fusion. Hence, cytotoxic granule exocytosis is a sequential, multivesicle fusion process requiring VAMP8-mediated recycling endosome fusion before cytotoxic granule fusion. Our findings imply that secretory granule exocytosis pathways in other cell types may also be more complex than previously appreciated. PMID:26124288

  10. Millstone hill radar studies of plasma waves and turbulence. Annual report, November 1992-October 1993

    SciTech Connect

    Foster, J.C.

    1994-03-15

    The Millstone Hill UHF radar was used as a diagnostic tool for investigating plasma waves and turbulence. During the 15-month interval covered by the first year of this award, experiments were performed using an alternating-code technique in order to assess this capability for use as a plasma diagnostic. Experiments at fixed antenna position and with real-time interaction investigated phenomena near perpendicular flow angle when looking very close to perpendicular magnetic aspect angle conditions. Analysis of prior data showed that when flow angle is varied through per while holding 0 degree aspect angle, an abrupt change in sign of the line of sight phase velocity is observed. Preparations were continued for bistatic coherent backscatter experiments in FY'94 using the MIDAS-C data acquisition system developed at Millstone Hill for use as a bistatic receiver in Canada. Ionosphere, Radar, Radar clutter, Plasmas.

  11. Turbulent Boundary Layer Separation Control on a Convex Ramp using Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Schatzman, David M.

    2005-11-01

    This work is focused toward the development of active feedback control of turbulent boundary layer separation from a convex ramp surface. The work reported here is performed in a subsonic wind tunnel facility and utilizes single dielectric barrier discharge plasma actuators for separation control. Smoke and oil surface flow visualization are used to characterize the separation in the absence of actuation. The surface mounted plasma actuators are positioned upstream of the flow separation locations. Plasma-induced blowing transfers additional momentum to the boundary layer along the ramp surface and has a beneficial effect on flow reattachment. Experimental results are presented which demonstrate the effects of both steady and unsteady actuation. The effectiveness of the active flow control is documented through surface pressure measurements, LDV measurements, and downstream wake surveys.

  12. Development of electrostatic turbulence from drift-interchange instabilities in a toroidal plasma

    SciTech Connect

    Poli, F. M.; Podesta, M.; Fasoli, A.

    2007-05-15

    Electrostatic instabilities develop on TORPEX (TORoidal Plasma EXperiment) [A. Fasoli et al., Phys. of Plasmas, 13, 55902 (2006)] in the bad curvature region and propagate consistently with the drift wave dispersion relation. The wave number and frequency spectra are coherent at the location where the instabilities are generated, then broaden along the ExB convection. The phase coupling between spectral components at different frequencies, measured at different locations over the plasma cross section, indicates that the transition from a coherent to a turbulent spectrum is mainly due to three-wave interaction processes. Nonlinear interactions are measured between the linearly unstable mode and fluctuations with larger frequency, with transfer of energy away from the linearly unstable mode. The results are consistent with a nonlinearity induced by the convection of density fluctuations by the ExB fluctuating velocity.

  13. The Science and Technology Challenges of the Plasma-Material Interface for Magnetic Fusion Energy

    NASA Astrophysics Data System (ADS)

    Whyte, Dennis

    2013-09-01

    The boundary plasma and plasma-material interactions of magnetic fusion devices are reviewed. The boundary of magnetic confinement devices, from the high-temperature, collisionless pedestal through to the surrounding surfaces and the nearby cold high-density collisional plasmas, encompasses an enormous range of plasma and material physics, and their integrated coupling. Due to fundamental limits of material response the boundary will largely define the viability of future large MFE experiments (ITER) and reactors (e.g. ARIES designs). The fusion community faces an enormous knowledge deficit in stepping from present devices, and even ITER, towards fusion devices typical of that required for efficient energy production. This deficit will be bridged by improving our fundamental science understanding of this complex interface region. The research activities and gaps are reviewed and organized to three major axes of challenges: power density, plasma duration, and material temperature. The boundary can also be considered a multi-scale system of coupled plasma and material science regulated through the non-linear interface of the sheath. Measurement, theory and modeling across these scales are reviewed, with a particular emphasis on establishing the use dimensionless parameters to understand this complex system. Proposed technology and science innovations towards solving the PMI/boundary challenges will be examined. Supported by US DOE award DE-SC00-02060 and cooperative agreement DE-FC02-99ER54512.

  14. Deuterium-tritium plasmas in novel regimes in the Tokamak Fusion Test Reactor

    SciTech Connect

    Bell, M.G.; Beer, M.; Batha, S.

    1997-02-01

    Experiments in the Tokamak Fusion Test Reactor (TFTR) have explored several novel regimes of improved tokamak confinement in deuterium-tritium (D-T) plasmas, including plasmas with reduced or reversed magnetic shear in the core and high-current plasmas with increased shear in the outer region (high-l{sub i}). New techniques have also been developed to enhance the confinement in these regimes by modifying the plasma-limiter interaction through in-situ deposition of lithium. In reversed-shear plasmas, transitions to enhanced confinement have been observed at plasma currents up to 2.2 MA (q{sub a} {approx} 4.3), accompanied by the formation of internal transport barriers, where large radial gradients develop in the temperature and density profiles. Experiments have been performed to elucidate the mechanism of the barrier formation and its relationship with the magnetic configuration and with the heating characteristics. The increased stability of high-current, high-l{sub i} plasmas produced by rapid expansion of the minor cross-section, coupled with improvement in the confinement by lithium deposition has enabled the achievement of high fusion power, up to 8.7 MW, with D-T neutral beam heating. The physics of fusion alpha-particle confinement has been investigated in these regimes, including the interactions of the alphas with endogenous plasma instabilities and externally applied waves in the ion cyclotron range of frequencies. In D-T plasmas with q{sub 0} > 1 and weak magnetic shear in the central region, a toroidal Alfven eigenmode instability driven purely by the alpha particles has been observed for the first time. The interactions of energetic ions with ion Bernstein waves produced by mode-conversion from fast waves in mixed-species plasmas have been studied as a possible mechanism for transferring the energy of the alphas to fuel ions.

  15. In situ measurements of ionospheric plasma turbulence over five frequency decades: Heritage flight of the Plasma Local Anomalous Noise Experiment (PLANE)

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Enloe, C. L.; McHarg, M. G.

    2013-12-01

    Observations of ionospheric plasma density and frequency-dependent broadband plasma turbulence made during the heritage flight of the Plasma Local Anomalous Noise Experiment (PLANE) are presented. Rather than record high frequency time series data, the experiment was designed to record Power Spectral Distributions (PSDs) in five decadal frequency bins with upper limits ranging from 1.0 Hz to 10 kHz. Additionally, PLANE was designed distinguish turbulence in the ambient plasma from that local to the spacecraft. The instrument consists of two retarding potential analyzers (RPAs) connected together via a feedback loop to force one analyzer into the I-V trace retardation region at all times. Fluctuations in this measurement are believed to be ambient only as the RPA's voltage would be too high for locally turbulent plasma to surmount the potential barrier, which is nominally at ram energy. The instrument requires pointing along the spacecraft's ram velocity vector to make this measurement, thus requiring stabilization in pitch and yaw. During PLANE's heritage flight, though the satellite's attitude control system failed early in the mission, plasma data were collected during opportune times in which the instrument rotated into and out of the ram. Observations of plasma density and PSDs of high frequency plasma turbulence were recorded on several occasions. Additionally, a plasma source onboard the satellite was used to generate artificial plasma turbulence, and the PLANE data observed periodic structure presumably associated with the rotation of the spacecraft during these source firings. A brief comparison with other high frequency in situ plasma instruments is presented.

  16. Collisionality scaling of turbulence and transport in advanced inductive plasmas in DIII-D

    NASA Astrophysics Data System (ADS)

    Yan, Z.; McKee, G. R.; Petty, C.; Luce, T.; Chen, X.; Holland, C.; Rhodes, T.; Schmitz, L.; Wang, G.; Zeng, L.; Marinoni, A.; Solomon, W.; DIII-D Team

    2015-11-01

    The collisionality scaling of multiscale turbulence properties and thermal transport characteristics in high-beta, high confinement Advanced Inductive (AI) plasmas was determined via systematic dimensionless scaling experiments on DIII-D. Preliminary estimate indicates a weak collisionality dependence of energy confinement as v* varied by a factor of ~2. Electron density and scaled (~Bt2) temperature profiles are well matched in the scan. Interestingly, low-k density fluctuation amplitudes are observed to decrease at lower v* near ρ ~ 0 . 75 . Ion and electron thermal transport values, computed with ONETWO using experimentally measured profiles and sources, will be presented, along with multi-scale turbulence measurements obtained with various fluctuation diagnostics. Altering collisionality should change the relative contribution of different modes to transport.

  17. Ensemble Space-Time Correlation of Plasma Turbulence in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Matthaeus, W. H.; Weygand, J. M.; Dasso, S.

    2016-06-01

    Single point measurement turbulence cannot distinguish variations in space and time. We employ an ensemble of one- and two-point measurements in the solar wind to estimate the space-time correlation function in the comoving plasma frame. The method is illustrated using near Earth spacecraft observations, employing ACE, Geotail, IMP-8, and Wind data sets. New results include an evaluation of both correlation time and correlation length from a single method, and a new assessment of the accuracy of the familiar frozen-in flow approximation. This novel view of the space-time structure of turbulence may prove essential in exploratory space missions such as Solar Probe Plus and Solar Orbiter for which the frozen-in flow hypothesis may not be a useful approximation.

  18. Ensemble Space-Time Correlation of Plasma Turbulence in the Solar Wind.

    PubMed

    Matthaeus, W H; Weygand, J M; Dasso, S

    2016-06-17

    Single point measurement turbulence cannot distinguish variations in space and time. We employ an ensemble of one- and two-point measurements in the solar wind to estimate the space-time correlation function in the comoving plasma frame. The method is illustrated using near Earth spacecraft observations, employing ACE, Geotail, IMP-8, and Wind data sets. New results include an evaluation of both correlation time and correlation length from a single method, and a new assessment of the accuracy of the familiar frozen-in flow approximation. This novel view of the space-time structure of turbulence may prove essential in exploratory space missions such as Solar Probe Plus and Solar Orbiter for which the frozen-in flow hypothesis may not be a useful approximation.

  19. Ensemble Space-Time Correlation of Plasma Turbulence in the Solar Wind.

    PubMed

    Matthaeus, W H; Weygand, J M; Dasso, S

    2016-06-17

    Single point measurement turbulence cannot distinguish variations in space and time. We employ an ensemble of one- and two-point measurements in the solar wind to estimate the space-time correlation function in the comoving plasma frame. The method is illustrated using near Earth spacecraft observations, employing ACE, Geotail, IMP-8, and Wind data sets. New results include an evaluation of both correlation time and correlation length from a single method, and a new assessment of the accuracy of the familiar frozen-in flow approximation. This novel view of the space-time structure of turbulence may prove essential in exploratory space missions such as Solar Probe Plus and Solar Orbiter for which the frozen-in flow hypothesis may not be a useful approximation. PMID:27367391

  20. Time domain analysis of plasma turbulence observed upstream of a quasi-parallel shock

    NASA Astrophysics Data System (ADS)

    Coca, D.; Balikhin, M. A.; Billings, S. A.; Alleyne, H. S. C. K.; Dunlop, M.

    2001-11-01

    This paper presents, for the first time, an analysis of space plasma turbulence based on the NARMAX system identification approach. Fundamental nonlinear processes in the low-frequency turbulence observed in the terrestrial foreshock by Active Magnetospheric Particle Tracer Explorers United Kingdom Satellite (AMPTE UKS) and Ion Release Module (AMPTE IRM) are studied using time domain identification methods developed for nonlinear dynamical systems. It is shown, directly from the experimental data, that the cubic nonlinearity has a significant influence on the steepening of the nonlinear low-frequency waves and on the dependence of the phase velocity upon the wave amplitude. In comparison with a previous frequency domain approach, the present method requires only short data sets.

  1. Electromagnetic turbulent structures: A ubiquitous feature of the edge region of toroidal plasma configurations

    SciTech Connect

    Spolaore, M. Vianello, N.; Agostini, M.; Cavazzana, R.; De Masi, G.; Martines, E.; Momo, B.; Scaggion, A.; Scarin, P.; Spagnolo, S.; Spizzo, G.; Zuin, M.; Furno, I.; Avino, F.; Fasoli, A.; Theiler, C.; Carralero, D.; Alonso, J. A.; Hidalgo, C.

    2015-01-15

    Electromagnetic features of turbulent filaments, emerging from a turbulent plasma background, have been studied in four different magnetic configurations: the stellarator TJ-II, the Reversed Field Pinch RFX-mod, a device that can be operated also as a ohmic tokamak, and the Simple Magnetized Torus, TORPEX. By applying an analogous diagnostic concept in all cases, direct measurements of both field-aligned current density and vorticity were performed inside the filament. The inter-machine comparison reveals a clear dependence of the filament vorticity upon the local time-averaged E × B flow shear. Furthermore, a wide range of local beta was explored allowing concluding that this parameter plays a fundamental role in the appearance of filament electromagnetic features.

  2. Plasma turbulence driven by transversely large-scale standing shear Alfven waves

    SciTech Connect

    Singh, Nagendra; Rao, Sathyanarayan

    2012-12-15

    Using two-dimensional particle-in-cell simulations, we study generation of turbulence consisting of transversely small-scale dispersive Alfven and electrostatic waves when plasma is driven by a large-scale standing shear Alfven wave (LS-SAW). The standing wave is set up by reflecting a propagating LS-SAW. The ponderomotive force of the standing wave generates transversely large-scale density modifications consisting of density cavities and enhancements. The drifts of the charged particles driven by the ponderomotive force and those directly caused by the fields of the standing LS-SAW generate non-thermal features in the plasma. Parametric instabilities driven by the inherent plasma nonlinearities associated with the LS-SAW in combination with the non-thermal features generate small-scale electromagnetic and electrostatic waves, yielding a broad frequency spectrum ranging from below the source frequency of the LS-SAW to ion cyclotron and lower hybrid frequencies and beyond. The power spectrum of the turbulence has peaks at distinct perpendicular wave numbers (k{sub Up-Tack }) lying in the range d{sub e}{sup -1}-6d{sub e}{sup -1}, d{sub e} being the electron inertial length, suggesting non-local parametric decay from small to large k{sub Up-Tack }. The turbulence spectrum encompassing both electromagnetic and electrostatic fluctuations is also broadband in parallel wave number (k{sub ||}). In a standing-wave supported density cavity, the ratio of the perpendicular electric to magnetic field amplitude is R(k{sub Up-Tack }) = |E{sub Up-Tack }(k{sub Up-Tack })/|B{sub Up-Tack }(k{sub Up-Tack })| Much-Less-Than V{sub A} for k{sub Up-Tack }d{sub e} < 0.5, where V{sub A} is the Alfven velocity. The characteristic features of the broadband plasma turbulence are compared with those available from satellite observations in space plasmas.

  3. Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas

    SciTech Connect

    Tuccillo, Angelo A.; Ceccuzzi, Silvio; Phillips, Cynthia K.

    2014-06-15

    It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion “burn” may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to “demo” and “fusion power plant.” A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of

  4. Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Tuccillo, Angelo A.; Phillips, Cynthia K.; Ceccuzzi, Silvio

    2014-06-01

    It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion "burn" may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to "demo" and "fusion power plant." A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of power to the

  5. Inertial-range kinetic turbulence in pressure-anisotropic astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Kunz, M. W.; Schekochihin, A. A.; Chen, C. H. K.; Abel, I. G.; Cowley, S. C.

    2015-10-01

    > A theoretical framework for low-frequency electromagnetic (drift-)kinetic turbulence in a collisionless, multi-species plasma is presented. The result generalises reduced magnetohydrodynamics (RMHD) and kinetic RMHD (Schekochihin et al., Astrophys. J. Suppl. Ser., vol. 182, 2009, pp. 310-377) to the case where the mean distribution function of the plasma is pressure-anisotropic and different ion species are allowed to drift with respect to each other - a situation routinely encountered in the solar wind and presumably ubiquitous in hot dilute astrophysical plasmas such as the intracluster medium. Two main objectives are achieved. First, in a non-Maxwellian plasma, the relationships between fluctuating fields (e.g. the Alfvén ratio) are order-unity modified compared to the more commonly considered Maxwellian case, and so a quantitative theory is developed to support quantitative measurements now possible in the solar wind. Beyond these order-unity corrections, the main physical feature of low-frequency plasma turbulence survives the generalisation to non-Maxwellian distributions: Alfvénic and compressive fluctuations are energetically decoupled, with the latter passively advected by the former; the Alfvénic cascade is fluid, satisfying RMHD equations (with the Alfvén speed modified by pressure anisotropy and species drifts), whereas the compressive cascade is kinetic and subject to collisionless damping (and for a bi-Maxwellian plasma splits into three independent collisionless cascades). Secondly, the organising principle of this turbulence is elucidated in the form of a conservation law for the appropriately generalised kinetic free energy. It is shown that non-Maxwellian features in the distribution function reduce the rate of phase mixing and the efficacy of magnetic stresses, and that these changes influence the partitioning of free energy amongst the various cascade channels. As the firehose or mirror instability thresholds are approached, the dynamics

  6. Fast Magnetic Field Amplification in the Early Universe: Growth of Collisionless Plasma Instabilities in Turbulent Media

    NASA Astrophysics Data System (ADS)

    Falceta-Gonçalves, D.; Kowal, G.

    2015-07-01

    In this work we report on a numerical study of the cosmic magnetic field amplification due to collisionless plasma instabilities. The collisionless magnetohydrodynamic equations derived account for the pressure anisotropy that leads, in specific conditions, to the firehose and mirror instabilities. We study the time evolution of seed fields in turbulence under the influence of such instabilities. An approximate analytical time evolution of the magnetic field is provided. The numerical simulations and the analytical predictions are compared. We found that (i) amplification of the magnetic field was efficient in firehose-unstable turbulent regimes, but not in the mirror-unstable models (ii) the growth rate of the magnetic energy density is much faster than the turbulent dynamo and (iii) the efficient amplification occurs at small scales. The analytical prediction for the correlation between the growth timescales and pressure anisotropy is confirmed by the numerical simulations. These results reinforce the idea that pressure anisotropies—driven naturally in a turbulent collisionless medium, e.g., the intergalactic medium, could efficiently amplify the magnetic field in the early universe (post-recombination era), previous to the collapse of the first large-scale gravitational structures. This mechanism, though fast for the small-scale fields (∼kpc scales), is unable to provide relatively strong magnetic fields at large scales. Other mechanisms that were not accounted for here (e.g., collisional turbulence once instabilities are quenched, velocity shear, or gravitationally induced inflows of gas into galaxies and clusters) could operate afterward to build up large-scale coherent field structures in the long time evolution.

  7. Hybrid Modeling of Plasmas and Applications to Fusion and Space Physics.

    NASA Astrophysics Data System (ADS)

    Kazeminejad, Farzad

    Since the early days of controlled fusion research, plasma physicists have encountered great challenges in obtaining solutions to the highly nonlinear equations which govern the behavior of fusion plasmas; with the growth of other applications of plasma physics (space plasmas, plasma accelerators, ... etc.) these problems have grown in importance. Obtaining reasonable solutions to the nonlinear equations is crucial to our understanding of the behavior of plasmas. With the advent of high speed computers, computer modeling of plasmas has moved into the front row of the tools used in research of their nonlinear plasma dynamics. There are roughly speaking two types of plasma models, particle models and fluid models. Particle models try to emulate nature by following the motion of a large number of charged particles in their self consistent electromagnetic fields. Fluid models on the other hand use macroscopic fluid equations to model the plasma. MHD models are typical of this type. Particle models in general require larger memory for the computer due to the massive amounts of data associated with the particles' kinematical variables. Particle models are generally limited to studying small regions of plasma for relatively short time intervals. Fluid models are better fit to handle large scales and long times; i.e., quite often the complete plasma involved in an experiment. The drawback of the fluid models however is that, they miss the physical phenomenon taking place at the microscale and these phenomenon can influence the properties of fluid; i.e., its resistivity, viscosity, heat transport, etc. One can attempt to put these effects in as phenomenological coefficients, but such approaches are always somewhat ad hoc. Another approach is to start with fluid models and incorporate more physics. Such models are referred to as hybrid models. In this thesis, two such models are discussed. They are then applied to two problems; the first is a simulation of the artificial

  8. A two photon absorption laser induced fluorescence diagnostic for fusion plasmas

    SciTech Connect

    Magee, R. M.; Galante, M. E.; McCarren, D.; Scime, E. E.; Boivin, R. L.; Brooks, N. H.; Groebner, R. J.; Hill, D. N.; Porter, G. D.

    2012-10-15

    The quality of plasma produced in a magnetic confinement fusion device is influenced to a large extent by the neutral gas surrounding the plasma. The plasma is fueled by the ionization of neutrals, and charge exchange interactions between edge neutrals and plasma ions are a sink of energy and momentum. Here we describe a diagnostic capable of measuring the spatial distribution of neutral gas in a magnetically confined fusion plasma. A high intensity (5 MW/cm{sup 2}), narrow bandwidth (0.1 cm{sup -1}) laser is injected into a hydrogen plasma to excite the Lyman {beta} transition via the simultaneous absorption of two 205 nm photons. The absorption rate, determined by measurement of subsequent Balmer {alpha} emission, is proportional to the number of particles with a given velocity. Calibration is performed in situ by filling the chamber to a known pressure of neutral krypton and exciting a transition close in wavelength to that used in hydrogen. We present details of the calibration procedure, including a technique for identifying saturation broadening, measurements of the neutral density profile in a hydrogen helicon plasma, and discuss the application of the diagnostic to plasmas in the DIII-D tokamak.

  9. Generalized scale invariance and log-Poisson statistics for turbulence in the scrape-off-layer plasma in the T-10 tokamak

    SciTech Connect

    Budaev, V. P.

    2008-10-15

    Results are presented from experimental observations of the statistical properties of scrape-off-layer plasma turbulence in the T-10 tokamak. The experimentally observed fluctuations in the fluxes and plasma density are intermittent in nature and obey a non-Gaussian statistics. The generalized property of plasma turbulence is its scale invariance. The experimental scalings for the moments of the distribution function of the difference in the amplitudes of fluctuations in the fluxes and plasma density are described by the log-Poisson model of strong turbulence. The self-similarity properties of turbulence that are associated with the topology of dissipative structures are investigated.

  10. Turbulent energization of ions in warm collisionless plasmas - hybrid simulation study

    NASA Astrophysics Data System (ADS)

    Maneva, Yana; Vinas, Adolfo; Poedts, Stefaan

    2016-04-01

    Turbulent waves and structures are ubiquitous and indispensable part of the solar wind throughout the Heliosphere and have crucial contribution to the energization of particles in the warm collisionless plasma near the Earth, especially in regions where strong wave activity is observed. Wave-based turbulent energization of protons and minor ions in the undisturbed solar wind can occur through resonant and non-resonant wave-particle interactions and related wave absorption, particle scattering and diffusion in phase space. The efficiency of the ion heating depends on the characteristics of the waves carrying energy at the ion scales, such as polarization, direction of propagation and spectral properties of the fluctuations. The observed solar wind turbulence includes different types of waves at all scales, starting from the large-scale fluid regime and reaching towards the small electron scales, where the magnetic fluctuations are ultimately dissipated. Although the spatial and temporal scales of these fluctuation are separated by few orders of magnitudes, they can still exchange energy due to large and small-scales turbulent cascades. Trying to model part of the solar wind turbulence at the ion scales we assume a superposition of non-resonant Alfvén waves, which follow Kolmogorov-type spectral slope by construction. Such waves are frequently observed in situ in the solar wind, and yet their specific role for the energization of minor ions remains unclear. We perform 2.5D hybrid simulations with fluid electrons, kinetic ions and minor ions to study the effects of turbulent energization of minor ions by initial broad-band spectra, consisting of parallel and oblique forward propagating Alfvén waves. The numerical model is driven by observations of the solar wind plasma parameters at 1AU and takes into account the differential streaming between the protons and the minor ions. For the chosen spectral range of the external initial wave spectra we observe preferential

  11. Inertially confined fusion plasmas dominated by alpha-particle self-heating

    NASA Astrophysics Data System (ADS)

    Hurricane, O. A.; Callahan, D. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Haan, S.; Hinkel, D. E.; Berzak Hopkins, L. F.; Jones, O.; Kritcher, A. L.; Le Pape, S.; Ma, T.; Macphee, A. G.; Milovich, J. L.; Moody, J.; Pak, A.; Park, H.-S.; Patel, P. K.; Ralph, J. E.; Robey, H. F.; Ross, J. S.; Salmonson, J. D.; Spears, B. K.; Springer, P. T.; Tommasini, R.; Albert, F.; Benedetti, L. R.; Bionta, R.; Bond, E.; Bradley, D. K.; Caggiano, J.; Celliers, P. M.; Cerjan, C.; Church, J. A.; Dylla-Spears, R.; Edgell, D.; Edwards, M. J.; Fittinghoff, D.; Barrios Garcia, M. A.; Hamza, A.; Hatarik, R.; Herrmann, H.; Hohenberger, M.; Hoover, D.; Kline, J. L.; Kyrala, G.; Kozioziemski, B.; Grim, G.; Field, J. E.; Frenje, J.; Izumi, N.; Gatu Johnson, M.; Khan, S. F.; Knauer, J.; Kohut, T.; Landen, O.; Merrill, F.; Michel, P.; Moore, A.; Nagel, S. R.; Nikroo, A.; Parham, T.; Rygg, R. R.; Sayre, D.; Schneider, M.; Shaughnessy, D.; Strozzi, D.; Town, R. P. J.; Turnbull, D.; Volegov, P.; Wan, A.; Widmann, K.; Wilde, C.; Yeamans, C.

    2016-08-01

    Alpha-particle self-heating, the process of deuterium-tritium fusion reaction products depositing their kinetic energy locally within a fusion reaction region and thus increasing the temperature in the reacting region, is essential for achieving ignition in a fusion system. Here, we report new inertial confinement fusion experiments where the alpha-particle heating of the plasma is dominant with the fusion yield produced exceeding the fusion yield from the work done on the fuel (pressure times volume change) by a factor of two or more. These experiments have achieved the highest yield (26 +/- 0.5 kJ) and stagnation pressures (≍220 +/- 40 Gbar) of any facility-based inertial confinement fusion experiments, although they are still short of the pressures required for ignition on the National Ignition Facility (~300-400 Gbar). These experiments put us in a new part of parameter space that has not been extensively studied so far because it lies between the no-alpha-particle-deposition regime and ignition.

  12. Review of Burning Plasma Physics. Fusion Energy Sciences Advisory Committee (FESAC)

    SciTech Connect

    Berk, Herb; Betti, Riccardo; Dahlburg, Jill; Freidberg, Jeff; Hopper, Bick; Meade, Dale; Navritil, Jerry; Nevins, Bill; Ono, Masa; Perkins, Rip; Prager, Stewart; Schoenburg, Kurt; Taylor, Tony; Uckan, Nermin

    2001-09-01

    The next frontier in the quest for magnetic fusion energy is the development of a basic understanding of plasma behavior in the regime of strong self-heating, the so called “burning plasma” regime. The general consensus in the fusion community is that the exploration of this frontier requires a new, relatively large experimental facility - a burning plasma experiment. The motivation, justification, and steps required to build such a facility are the primary focus of our report. The specific goals of the report are as follows. First, the report describes the critical scientific and engineering phenomena that are expected to arise for the first time, or else in a strongly modified form, in a burning plasma. Second, the report shows that the capabilities of existing experiments are inadequate to investigate these phenomena, thereby providing a major justification for a new facility. Third, the report compares the features and predicted performance of the three major next generation burning plasma experiments under current consideration (ITER-FEAT, FIRE, and IGNITOR), which are aimed at addressing these problems. Deliberately, no selection of the best option is made or attempted since such a decision involves complex scientific and cost issues that are beyond the scope of the present panel report. Fourth, the report makes specific recommendations regarding a process to move the burning plasma program forward, including a procedure for choosing the best option and the future activities of the Next Step Option (NSO) program. Fifth, the report attempts to provide a proper perspective for the role of burning plasmas with respect to the overall U.S. fusion program. The introduction provides the basic background information required for understanding the context in which the U.S. fusion community thinks about burning plasma issues. It “sets the stage” for the remainder of the report.

  13. Phase mixing vs. nonlinear advection in drift-kinetic plasma turbulence

    NASA Astrophysics Data System (ADS)

    Schekochihin, A.; Parker, J.; Highcock, E.; Dellar, P.; Kanekar, A.; Dorland, W.; Hammett, G.; Loureiro, N.; Staines, C.; Stipani, L.

    2015-11-01

    A scaling theory of drift-kinetic turbulence in a weakly collisional plasma is proposed, with account both of the nonlinear advection of the perturbed particle distribution by the fluctuating ExB flow and of its parallel phase mixing, which in a linear problem causes Landau damping. It is found that little free energy leaks into high velocity moments of the distribution, rendering the turbulence in the energetically relevant part of the wave-number space essentially fluid-like. The velocity-space free-energy spectra expressed in terms of Hermite moments are steep power laws and so the energy content of the phase space does not diverge and collisional heating due to long-wavelength perturbations vanishes at inifinitesimal collisionality (both in contrast with the linear problem). The ability of the energy to stay in the low moments is facilitated by ``anti-phase-mixing,'' which in the nonlinear system is due to the stochastic version of plasma echo (the advecting flow couples the phase-mixing and anti-phase-mixing perturbations). The partitioning of the wave-number space between the (energetically dominant) region where this is the case and the region where linear phase mixing wins its competition with nonlinear advection is governed by the ``critical balance'' between linear and nonlinear timescales, which for high Hermite moments splits into two thresholds, one demarcating the wave-number region where phase mixing predominates, the other where plasma echo does.

  14. Plasma wave turbulence around the shuttle - Results from the Spacelab-2 flight

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Kurth, W. S.; Steinberg, J. T.; Shawhan, S. D.

    1988-01-01

    During the Spacelab-2 flight, which occurred from July 29, to August 6, 1985, a spacecraft called the Plasma Diagnostics Package (PDP) was released from the shuttle to explore the plasma environment around the shuttle. The plasma wave instrument on the PDP detected a region of intense broadband turbulence around the shuttle at frequencies extending from a few Hz to about 10 kHz. The noise has broadband intensities ranging from 1 to 5 mV/m and was observed at distances of up to 400 m from the shuttle. The highest intensities occurred in the region downstream of the shuttle and along magnetic field lines passing near the shuttle. The intensities also tended to increase during periods of high thruster activity, which provides strong evidence that the noise is caused by an interaction of the ionosphere with gaseous emissions from the shuttle, similar in many respects to the interaction of a comet with the solar wind. Antenna interference patterns observed in the wideband data show that the wavelength of the turbulence is very short, a few meters or less.

  15. Reconnection and electron temperature anisotropy in sub-proton scale plasma turbulence

    SciTech Connect

    Haynes, C. T.; Burgess, D.; Camporeale, E.

    2014-03-01

    Knowledge of turbulent behavior at sub-proton scales in magnetized plasmas is important for a full understanding of the energetics of astrophysical flows such as the solar wind. We study the formation of electron temperature anisotropy due to reconnection in the turbulent decay of sub-proton scale fluctuations using two-dimensional, particle-in-cell plasma simulations with a realistic electron-proton mass ratio and a guide field perpendicular to the simulation plane. A power spectrum fluctuation with approximately power-law form is created down to scales of the order of the electron gyroradius. We identify the signatures of collisionless reconnection at sites of X-point field geometry in the dynamic magnetic field topology, which gradually relaxes in complexity. The reconnection sites are generally associated with regions of strong parallel electron temperature anisotropy. The evolving topology of magnetic field lines connected to a reconnection site allows for the spatial mixing of electrons accelerated at multiple, spatially separated reconnection regions. This leads to the formation of multi-peaked velocity distribution functions with strong parallel temperature anisotropy. In a three-dimensional system that can support the appropriate wave vectors, the multi-peaked distribution functions would be expected to be unstable to kinetic instabilities, contributing to dissipation. The proposed mechanism of anisotropy formation is also relevant to space and astrophysical systems where the evolution of the plasma is constrained by linear temperature anisotropy instability thresholds. The presence of reconnection sites leads to electron energy gain, nonlocal velocity space mixing, and the formation of strong temperature anisotropy; this is evidence of an important role for reconnection in the dissipation of turbulent fluctuations.

  16. Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence

    NASA Astrophysics Data System (ADS)

    Schekochihin, A. A.; Parker, J. T.; Highcock, E. G.; Dellar, P. J.; Dorland, W.; Hammett, G. W.

    2016-04-01

    > A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g. drift-wave turbulence driven by ion temperature gradients) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating flows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. It is found that it is possible to construct a consistent theory in which very little free energy leaks into high velocity moments of the distribution function, rendering the turbulent cascade in the energetically relevant part of the wavenumber space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also in contrast with the linear problem, in which it occurs at the finite rate equal to the Landau damping rate). The ability of the free energy to stay in the low velocity moments of the distribution function is facilitated by the `anti-phase-mixing' effect, whose presence in the nonlinear system is due to the stochastic version of the plasma echo (the advecting velocity couples the phase-mixing and anti-phase-mixing perturbations). The partitioning of the wavenumber space between the (energetically dominant) region where this is the case and the region where linear phase mixing wins its competition with nonlinear advection is governed by the `critical balance' between linear and nonlinear time scales (which for high Hermite moments splits into two thresholds, one demarcating the wavenumber region where phase mixing predominates, the other where plasma echo does).

  17. Multi-fluid studies of plasma shocks relevant to inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Srinivasan, B.; Kagan, G.; Adams, C. S.

    2016-05-01

    Results from inertial confinement fusion (ICF) experiments performed at the Omega laser facility suggest the potential role of kinetic effects in plasmas during implosion. Recent theoretical and numerical work has indicated the importance of diffusion effects in the presence of multiple ion species as well as the importance of ion viscosity. This provides the motivation to adequately develop multi-fluid plasma models capable of capturing kinetic physics including concentration diffusion and ion species separation driven by the ion concentration gradient, the ion pressure gradient, the electron and ion temperature gradients, and the electric field. Benchmarks between the newly developed code and analytical results are presented for multi-fluid plasma shocks.

  18. Stochastic ion heating from many overlapping laser beams in fusion plasmas.

    PubMed

    Michel, P; Rozmus, W; Williams, E A; Divol, L; Berger, R L; Town, R P J; Glenzer, S H; Callahan, D A

    2012-11-01

    In this Letter, we show through numerical simulations and analytical results that overlapping multiple (N) laser beams in plasmas can lead to strong stochastic ion heating from many (~N(2)) electrostatic perturbations driven by beat waves between pairs of laser beams. For conditions typical of inertial-confinement-fusion experiment conditions, hundreds of such beat waves are driven in mm(3)-scale plasmas, leading to ion heating rates of several keV/ns. This mechanism saturates cross-beam energy transfer, with a reduction of linear gains by a factor ~4-5 and can strongly modify the overall hydrodynamics evolution of such laser-plasma systems. PMID:23215392

  19. K-alpha conversion efficiency measurments for x-ray scattering in inertial confinement fusion plasmas

    SciTech Connect

    Kritcher, A L; Neumayer, P; Urry, M K; Robey, H; Niemann, C; Landen, O L; Morse, E; Glenzer, S H

    2006-11-21

    The conversion efficiency of ultra short-pulse laser radiation to K-{alpha} x-rays has been measured for various chlorine-containing targets to be used as x-ray scattering probes of dense plasmas. The spectral and temporal properties of these sources will allow spectrally-resolved x-ray scattering probing with picosecond temporal resolution required for measuring the plasma conditions in inertial confinement fusion experiments. Simulations of x-ray scattering spectra from these plasmas show that fuel capsule density, capsule ablator density, and shock timing information may be inferred.

  20. Highly charged ions in magnetic fusion plasmas: research opportunities and diagnostic necessities

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.

    2015-07-01

    Highly charged ions play a crucial role in magnetic fusion plasmas. These plasmas are excellent sources for producing highly charged ions and copious amounts of radiation for studying their atomic properties. These studies include calibration of density diagnostics, x-ray production by charge exchange, line identifications and accurate wavelength measurements, and benchmark data for ionization balance calculations. Studies of magnetic fusion plasmas also consume a large amount of atomic data, especially in order to develop new spectral diagnostics. Examples we give are the need for highly accurate wavelengths as references for measurements of bulk plasma motion, the need for accurate line excitation rates that encompass both electron-impact excitation and indirect line formation processes, for accurate position and resonance strength information of dielectronic recombination satellite lines that may broaden or shift diagnostic lines or that may provide electron temperature information, and the need for accurate ionization balance calculations. We show that the highly charged ions of several elements are of special current interest to magnetic fusion, notably highly charged ions of argon, iron, krypton, xenon, and foremost of tungsten. The electron temperatures thought to be achievable in the near future may produce W70+ ions and possibly ions with even higher charge states. This means that all but a few of the most highly charged ions are of potential interest as plasma diagnostics or are available for basic research.