Science.gov

Sample records for fusion reactor applications

  1. Demountable vacuum seals for fusion reactor applications

    SciTech Connect

    Batzer, T.H.; Call, W.R.

    1987-10-16

    Demountable vacuum seals for fusion reactor applications must be compatible with the reactor environment, easily scalable, very reliable and readily maintained by remote handling methods. We are investigating gate valves as well as flanges in our efforts to provide such seals. They are all metal and scalable without becoming massive and require no axial fasteners. Preliminary tests on an initial 30 cm aluminum flange using no soft metal coatings or gaskets have given several vacuum tight closures. Weld fatigue of this preliminary design caused degradation of the seal with further cycling to leakage levels of 10/sup -6/ Tl/sec, which is acceptable with differential pumping for either valves or flanges. Additional flange pairs using slightly altered geometry, fabrication techniques, and seal plating materials will be tested and reported on.

  2. Vanadium-base alloys for fusion reactor applications

    SciTech Connect

    Smith, D.L.; Loomis, B.A.; Diercks, D.R.

    1984-10-01

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined.

  3. The properties and weldability of materials for fusion reactor applications

    SciTech Connect

    Chin, B.A.; Kee, C.K.; Wilcox, R.C.; Zinkle, S.J.

    1991-11-15

    Low-activation austenitic stainless steels have been suggested for applications within fusion reactors. The use of these nickel-free steels will help to reduce the radioactive waste management problem after service. one requirement for such steels is the ability to obtain sound welds for fabrication purposes. Thus, two austenitic Fe-Cr-Mn alloys were studied to characterize the welded microstructure and mechanical properties. The two steels investigated were a Russian steel (Fe-11.6Cr19.3Mn-0.181C) and an US steel (Fe-12.lCr-19.4Mn-0.24C). Welding was performed using a gas tungsten arc welding (GTAW) process. Microscopic examinations of the structure of both steels were conducted. The as-received Russian steel was found to be in the annealed state. Only the fusion zone and the base metal were observed in the welded Russian steel. No visible heat affected zone was observed. Examination revealed that the as-received US steel was in the cold rolled condition. After welding, a fusion zone and a heat affected zone along with the base metal region were found.

  4. Reactor applications of the Compact Fusion Advanced Rankine (CFAR) cycle for a D-T tokamak fusion reactor

    NASA Astrophysics Data System (ADS)

    Hoffman, H. A.; Logan, B. G.; Campbell, R. B.

    1988-03-01

    A preliminary design of a D-T fusion reactor blanket and MHD power conversion system is made based on the CFAR concept, and it was found that performance and costs for the reference cycle are very attractive. While much remains to be done, the potential advantage of liquid metal Rankine cycles for fusion applications are much clearer now. These include low pressures and mass flow rates, a nearly isothermal module shell which minimizes problems of thermal distortion and stresses, and an insensitivity to pressure losses in the blanket so that the two-phase MHD pressure drops in the boiling part of the blanket and the ordinary vapor pressure drops in the pebble-bed superheating zones are acceptable (the direct result of pumping a liquid rather than having to compress a gas). There are no moving parts in the high-temperature MHD power generators, no steam bottoming plant is required, only small vapor precoolers and condensers are needed because of the high heat rejection temperatures, and only a relatively small natural-draft heat exchanger is required to reject the heat to the atmosphere. The net result is a very compact fusion reactor and power conversion system which fit entirely inside an 18 meter radius reactor vault. Although a cost analysis has not yet been performed, preliminary cost estimates indicate low capital costs and a very attractive cost of electricity.

  5. Aerosol Resuspension Model for MELCOR for Fusion and Very High Temperature Reactor Applications

    SciTech Connect

    B.J. Merrill

    2011-01-01

    Dust is generated in fusion reactors from plasma erosion of plasma facing components within the reactor’s vacuum vessel (VV) during reactor operation. This dust collects in cooler regions on interior surfaces of the VV. Because this dust can be radioactive, toxic, and/or chemically reactive, it poses a safety concern, especially if mobilized by the process of resuspension during an accident and then transported as an aerosol though out the reactor confinement building, and possibly released to the environment. A computer code used at the Idaho National Laboratory (INL) to model aerosol transport for safety consequence analysis is the MELCOR code. A primary reason for selecting MELCOR for this application is its aerosol transport capabilities. The INL Fusion Safety Program (FSP) organization has made fusion specific modifications to MELCOR. Recent modifications include the implementation of aerosol resuspension models in MELCOR 1.8.5 for Fusion. This paper presents the resuspension models adopted and the initial benchmarking of these models.

  6. Development of ferritic steels for fusion reactor applications

    SciTech Connect

    Klueh, R.L.; Maziasz, P.J.; Corwin, W.R.

    1988-08-01

    Chromium-molybdenum ferritic (martensitic) steels are leading candidates for the structural components for future fusion reactors. However, irradiation of such steels in a fusion environment will produce long-lived radioactive isotopes that will lead to difficult waste-disposal problems. Such problems could be reduced by replacing the elements in the steels (i.e., Mo, Nb, Ni, N, and Cu) that lead to long-lived radioactive isotopes. We have proposed the development of ferritic steels analogous to conventional Cr-Mo steels, which contain molybdenum and niobium. It is proposed that molybdenum be replaced by tungsten and niobium be replaced by tantalum. Eight experimental steels were produced. Chromium concentrations of 2.25, 5, 9, and 12% were used (all concentrations are in wt %). Steels with these chromium compositions, each containing 2% W and 0.25% V, were produced. To determine the effect of tungsten and vanadium, 2.25 Cr steels were produced with 2% W and no vanadium and with 0.25% V and O and 1% W. A 9Cr steel containing 2% W, 0.25 V, and 0.07% Ta was also studied. For all alloys, carbon was maintained at 0.1%. Tempering studies on the normalized steels indicated that the tempering behavior of the new Cr-W steels was similar to that of the analogous Cr-Mo steels. Microscopy studies indicated that 2% tungsten was required in the 2.25 Cr steels to produce 100% bainite in 15.9-mm-thick plate during normalization. The 5Cr and 9Cr steels were 100% martensite, but the 12 Cr steel contained about 75% martensite with the balance delta-ferrite. 33 refs., 35 figs., 5 tabs.

  7. Proceedings of the Office of Fusion Energy/DOE workshop on ceramic matrix composites for structural applications in fusion reactors

    SciTech Connect

    Jones, R.H. ); Lucas, G.E. )

    1990-11-01

    A workshop to assess the potential application of ceramic matrix composites (CMCs) for structural applications in fusion reactors was held on May 21--22, 1990, at University of California, Santa Barbara. Participants included individuals familiar with materials and design requirements in fusion reactors, ceramic composite processing and properties and radiation effects. The primary focus was to list the feasibility issues that might limit the application of these materials in fusion reactors. Clear advantages for the use of CMCs are high-temperature operation, which would allow a high-efficiency Rankine cycle, and low activation. Limitations to their use are material costs, fabrication complexity and costs, lack of familiarity with these materials in design, and the lack of data on radiation stability at relevant temperatures and fluences. Fusion-relevant feasibility issues identified at this workshop include: hermetic and vacuum properties related to effects of matrix porosity and matrix microcracking; chemical compatibility with coolant, tritium, and breeder and multiplier materials, radiation effects on compatibility; radiation stability and integrity; and ability to join CMCs in the shop and at the reactor site, radiation stability and integrity of joints. A summary of ongoing CMC radiation programs is also given. It was suggested that a true feasibility assessment of CMCs for fusion structural applications could not be completed without evaluation of a material tailored'' to fusion conditions or at least to radiation stability. It was suggested that a follow-up workshop be held to design a tailored composite after the results of CMC radiation studies are available and the critical feasibility issues are addressed.

  8. Proton Collimators for Fusion Reactors

    NASA Technical Reports Server (NTRS)

    Miley, George H.; Momota, Hiromu

    2003-01-01

    Proton collimators have been proposed for incorporation into inertial-electrostatic-confinement (IEC) fusion reactors. Such reactors have been envisioned as thrusters and sources of electric power for spacecraft and as sources of energetic protons in commercial ion-beam applications.

  9. Spherical torus fusion reactor

    DOEpatents

    Martin Peng, Y.K.M.

    1985-10-03

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  10. Volatility from copper and tungsten alloys for fusion reactor applications

    SciTech Connect

    Smolik, G.R.; Neilson, R.M. Jr.; Piet, S.J. )

    1989-01-01

    Accident scenarios for fusion power plants present the potential for release and transport of activated constituents volatilized from first wall and structural materials. The extent of possible mobilization and transport of these activated species, many of which are oxidation driven'', is being addressed by the Fusion Safety Program at the Idaho National Engineering Laboratory (INEL). This report presents experimental measurements of volatilization from a copper alloy in air and steam and from a tungsten alloy in air. The major elements released included zinc from the copper alloy and rhenium and tungsten from the tungsten alloy. Volatilization rates of several constituents of these alloys over temperatures ranging from 400 to 1200{degree}C are presented. These values represent release rates recommended for use in accident assessment calculations. 8 refs., 3 figs., 5 tabs.

  11. Ion cyclotron and lower hybrid arrays applicable to current drive in fusion reactors

    NASA Astrophysics Data System (ADS)

    Bosia, G.; Helou, W.; Goniche, M.; Hillairet, J.; Ragona, R.

    2014-02-01

    This paper presents concepts for Ion Cyclotron and Lower Hybrid Current Drive arrays applicable to fusion reactors and based on periodically loaded line power division. It is shown that, in large arrays, such as the ones proposed for fusion reactor applications, these schemes can offer, in principle, a number of practical advantages, compared with currently adopted ones, such as in-blanket operation at significantly reduced power density, lay out suitable for water cooling, single ended or balanced power feed, simple and load independent impedance matching In addition, a remote and accurate real time measurement of the complex impedance of all array elements as well as detection, location, and measurement of the complex admittance of a single arc occurring anywhere in the structure is possible.

  12. Fusion reactor materials

    SciTech Connect

    none,

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  13. Spherical torus fusion reactor

    DOEpatents

    Peng, Yueng-Kay M.

    1989-04-04

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  14. Spherical torus fusion reactor

    DOEpatents

    Peng, Yueng-Kay M.

    1989-01-01

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  15. Fusion reactor pumped laser

    DOEpatents

    Jassby, Daniel L.

    1988-01-01

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  16. Fabrication and performance of AIN insulator coatings for application in fusion reactor blankets

    SciTech Connect

    Natesan, K.

    1995-09-01

    The liquid-metal blanket concept for fusion reactors requires an coating on the first-wall structural material to minimize the magnetohydrodynamic pressure drop that occurs during the flow of liquid metal in a magnetic field. Based on the thermodynamics of interactions betwen the coating and the liquid lithium on one side and the structural V-base alloy on the other side, an AIN coating was selected as a candidate. Detailed investigations were conducted on the fabrication, metallurgical microstructure, compatibility in liquid Li, and electrical characteristics of AIN material obtained from several sources. Lithium compatibility was studied in static systems by exposing AIN-coated specimens to liquid Li for several time periods. Electrical resistance was measured at room temperature on the specimens before and after exposure to liquid Li. The results obtained in this study indicate that AIN is a viable coating from the standpoint of chemical compatibility in Li, electrical insulation, and ease of fabrication; for these reasons, the coating should be examined further for fusion reactor applications.

  17. Fusion reactor pumped laser

    DOEpatents

    Jassby, D.L.

    1987-09-04

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

  18. Thick SS316 materials TIG welding development activities towards advanced fusion reactor vacuum vessel applications

    NASA Astrophysics Data System (ADS)

    Kumar, B. Ramesh; Gangradey, R.

    2012-11-01

    Advanced fusion reactors like ITER and up coming Indian DEMO devices are having challenges in terms of their materials design and fabrication procedures. The operation of these devices is having various loads like structural, thermo-mechanical and neutron irradiation effects on major systems like vacuum vessel, divertor, magnets and blanket modules. The concept of double wall vacuum vessel (VV) is proposed in view of protecting of major reactor subsystems like super conducting magnets, diagnostic systems and other critical components from high energy 14 MeV neutrons generated from fusion plasma produced by D-T reactions. The double walled vacuum vessel is used in combination with pressurized water circulation and some special grade borated steel blocks to shield these high energy neutrons effectively. The fabrication of sub components in VV are mainly used with high thickness SS materials in range of 20 mm- 60 mm of various grades based on the required protocols. The structural components of double wall vacuum vessel uses various parts like shields, ribs, shells and diagnostic vacuum ports. These components are to be developed with various welding techniques like TIG welding, Narrow gap TIG welding, Laser welding, Hybrid TIG laser welding, Electron beam welding based on requirement. In the present paper the samples of 20 mm and 40 mm thick SS 316 materials are developed with TIG welding process and their mechanical properties characterization with Tensile, Bend tests and Impact tests are carried out. In addition Vickers hardness tests and microstructural properties of Base metal, Heat Affected Zone (HAZ) and Weld Zone are done. TIG welding application with high thick SS materials in connection with vacuum vessel requirements and involved criticalities towards welding process are highlighted.

  19. Overview of fusion reactor safety

    NASA Astrophysics Data System (ADS)

    Cohen, S.; Crocker, J. G.

    Use of deuterium-tritium fusion reactors requires examination of several major safety and environmental issues: (1) tritium inventory control; (2) neutron activation of structural materials, fluid streams and reactor hall environment; (3) release of radioactivity from energy sources including lithium spill reactions, superconducting magnet stored energy release, and plasma disruptions; (4) high magnetic and electromagnetic fields associated with fusion reactor superconducting magnets and radio frequency heating devices; and (5) handling and disposal of radioactive waste. Early recognition of potential safety problems with fusion reactors provides the opportunity for improvement in design and materials to eliminate or greatly reduce these problems. With an early start in this endeavor, fusion should be among the lower risk technologies for generation of commercial electrical power.

  20. Physical and mechanical characteristics and chemical compatibility of aluminum nitride insulator coatings for fusion reactor applications

    SciTech Connect

    Natesan, K.; Rink, D.L.

    1996-04-01

    The blanket system is one of the most important components in a fusion reactor because it has a major impact on both the economics and safety of fusion energy. The primary functions of the blanket in a deuterium/tritium-fueled fusion reactor are to convert the fusion energy into sensible heat and to breed tritium for the fuel cycle. The Blanket Comparison and Selection Study, conducted earlier, described the overall comparative performance of various concepts, including liquid metal, molten salt, water, and helium. Based on the requirements for an electrically insulating coating on the first-wall structural material to minimize the MHD pressure drop during the flow of liquid metal in a magnetic field, AlN was selected as a candidate coating material for the Li self-cooled blanket concept. This report discusses the results from an ongoing study of physical and mechanical characteristics and chemical compatibility of AlN electrical insulator coatings in a liquid Li environment. Details are presented on the AlN coating fabrication methods, and experimental data are reported for microstructures, chemistry of coatings, pretreatment of substrate, heat treatment of coatings, hardness data for coatings, coating/lithium interactions, and electrical resistance before and after exposure to lithium. Thermodynamic calculations are presented to establish regions of stability for AlN coatings in an Li environment as a function of O concentration and temperature, which can aid in-situ development of AlN coatings in Li.

  1. Alternative approaches to fusion. [reactor design and reactor physics for Tokamak fusion reactors

    NASA Technical Reports Server (NTRS)

    Roth, R. J.

    1976-01-01

    The limitations of the Tokamak fusion reactor concept are discussed and various other fusion reactor concepts are considered that employ the containment of thermonuclear plasmas by magnetic fields (i.e., stellarators). Progress made in the containment of plasmas in toroidal devices is reported. Reactor design concepts are illustrated. The possibility of using fusion reactors as a power source in interplanetary space travel and electric power plants is briefly examined.

  2. Prospects for Tokamak Fusion Reactors

    SciTech Connect

    Sheffield, J.; Galambos, J.

    1995-04-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant.

  3. Prospects for toroidal fusion reactors

    SciTech Connect

    Sheffield, J.; Galambos, J.D.

    1994-06-01

    Work on the International Thermonuclear Experimental Reactor (ITER) tokamak has refined understanding of the realities of a deuterium-tritium (D-T) burning magnetic fusion reactor. An ITER-like tokamak reactor using ITER costs and performance would lead to a cost of electricity (COE) of about 130 mills/kWh. Advanced tokamak physics to be tested in the Toroidal Physics Experiment (TPX), coupled with moderate components in engineering, technology, and unit costs, should lead to a COE comparable with best existing fission systems around 60 mills/kWh. However, a larger unit size, {approximately}2000 MW(e), is favored for the fusion system. Alternative toroidal configurations to the conventional tokamak, such as the stellarator, reversed-field pinch, and field-reversed configuration, offer some potential advantage, but are less well developed, and have their own challenges.

  4. Inertial confinement fusion reactor systems

    SciTech Connect

    Frank, T.G.; Bohachevsky, I.O.; Pendergrass, J.H.

    1980-01-01

    A variety of reactor cavity concepts, drivers, and energy conversion mechanisms are being considered to realize commercial applications of ICF. Presented in this paper are: (1) a review of reactor concepts with estimates of practically achievable pulse repetition rates; (2) a survey of drivers with estimates of the requirements on reactor conditions imposed by beam propagation characteristics; and (3) an assessment of compatible driver-reactor combinations.

  5. Fatigue behavior of irradiated helium-containing ferritic steels for fusion reactor applications*1

    NASA Astrophysics Data System (ADS)

    Grossbeck, M. L.; Vitek, J. M.; Liu, K. C.

    1986-11-01

    The martensitic alloys 12Cr-1MoVW and 9Cr-1MoVNb have been irradiated in the High Flux Isotope Reactor (HFIR) and subsequently tested in fatigue. In order to achieve helium levels characteristic of fusion reactors, the 12Cr-1MoVW was doped with 1 and 2% Ni, resulting in helium levels of 210 and 410 appm at damage levels of 25 dpa. The 9Cr-1MoVNb was irradiated to a damage level of 3 dpa and contained less than 5 appm He. Irradiations were carried out at 55°C and testing at 22°C. No significant changes were found in 9Cr-1MoVNb upon irradiation at this damage level, but effects that could possibly be attributed to helium were found in 12Cr-1MoVW. Levels of 210 and 410 appm He produced cyclic strengthening of 29 and 34% over unirradiated nickel-doped materials, respectively. This cyclic hardening, attributable largely to helium, resulted in degradation of the cyclic life. However, the fatigue life remained comparable to or better than unirradiated 20%-cold-worked 316 stainless steel.

  6. (Meeting on fusion reactor materials)

    SciTech Connect

    Jones, R.H. ); Klueh, R.L.; Rowcliffe, A.F.; Wiffen, F.W. ); Loomis, B.A. )

    1990-11-01

    During his visit to the KfK, Karlsruhe, F. W. Wiffen attended the IEA 12th Working Group Meeting on Fusion Reactor Materials. Plans were made for a low-activation materials workshop at Culham, UK, for April 1991, a data base workshop in Europe for June 1991, and a molecular dynamics workshop in the United States in 1991. At the 11th IEA Executive Committee on Fusion Materials, discussions centered on the recent FPAC and Colombo panel review in the United States and EC, respectively. The Committee also reviewed recent progress toward a neutron source in the United States (CWDD) and in Japan (ESNIT). A meeting with D. R. Harries (consultant to J. Darvas) yielded a useful overview of the EC technology program for fusion. Of particular interest to the US program is a strong effort on a conventional ferritic/martensitic steel for fist wall/blanket operation beyond NET/ITER.

  7. An evaluation of potential material coolant compatibility for applications in advanced fusion reactors

    NASA Astrophysics Data System (ADS)

    Kondo, T.; Watanabe, Y.; Yi, Y. S.; Hishinuma, A.

    1998-10-01

    In assessing possible potential issues for fusion applications, the compatibility of several metallic structural materials was examined using high temperature/pressure steam as test environment. High corrosion resistance associated with protective oxide film formation was regarded as essential for the function of protecting from tritium permeation and corrosion damage. A Ti-Al-based intermetallic compound with V addition, recently developed, showed excellent performance. A low-activation ferritic/martensitic steel, F82-H, was comparable with the current advanced materials for modern supercritical fossil boilers, while some potential vanadium alloys, although not intended for use in steam, were found less compatible.

  8. High thermal conductivity of graphite fiber silicon carbide composites for fusion reactor application

    NASA Astrophysics Data System (ADS)

    Snead, L. L.; Balden, M.; Causey, R. A.; Atsumi, H.

    2002-12-01

    The benefits of using CVI SiC/graphite fiber composites as low tritium retaining, high thermal conductivity composites for fusion applications are presented. Three-dimensional woven composites have been chemically vapor infiltrated with SiC and their thermophysical properties measured. One material used an intermediate grade graphite fiber in all directions (Amoco P55) while a second material used very high thermal conductive fiber (Amoco K-1100) in the high fiber density direction. The overall void was less than 20%. Strength as measured by four-point bending was comparable to those of SiC/SiC composite. The room temperature thermal conductivity in the high conductivity direction was impressive for both materials, with values >70 W/m K for the P-55 and >420 W/m K for the K-1100 variant. The thermal conductivity was measured as a function of temperature and exceeds the highest thermal conductivity of CVD SiC currently available at fusion relevant temperatures (>600 °C). Limited data on the irradiation-induced degradation in thermal conductivity is consistent with carbon fiber composite literature.

  9. Modular stellarator fusion reactor concept

    NASA Astrophysics Data System (ADS)

    Miller, R. L.; Krakowski, R. A.

    1981-08-01

    A steady-state ignited, DT-fueled, magnetic fusion reactor is proposed for use as a central electric-power station. The MSR concept combines the physics of the classic stellarator confinement topology with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an 1 = 2 system with a plasma aspect ratio of 11. The physical basis of the design point is described together with supporting magnetics, coil-force, and stress computations.

  10. Innovative energy production in fusion reactors

    NASA Astrophysics Data System (ADS)

    Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-10-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are: (1) traveling wave direct energy conversion of 14.7 MeV protons; (2) cusp type direct energy conversion of charged particles; (3) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas; and (4) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising.

  11. Application of carbon-aluminum nanostructures in divertor coatings from fusion reactor

    NASA Astrophysics Data System (ADS)

    Ciupina, V.; Lungu, C. P.; Vladoiu, R.; Epure, T. D.; Prodan, G.; Porosnicu, C.; Prodan, M.; Stanescu, I. M.; Contulov, M.; Mandes, A.; Dinca, V.; Zarovschi, V.

    2012-10-01

    Nanostructured carbon materials have increasingly attracted the interest of the scientific community, because of their fascinating physical properties and potential applications in high-tech devices. In the current ITER design, the tiles made of carbon fiber composites (CFCs) are foreseen for the strike point zone and tungsten (W) for other parts of the divertor region. This choice is a compromise based mainly on experience with individual materials in many different tokamaks. Also Carbon-Aluminum composites are the candidate material for the First Wall in ITER. In order to prepare nanostructured carbon-aluminum nanocomposite for the divertor part in fusion applications, the original method thermionic vacuum arc (TVA) was used in two electronic guns configuration. One of the main advantages of this technology is the bombardment of the growing thin film just by the ions of the depositing film. Moreover, the energy of ions can be controlled. Thermo-electrons emitted by an externally heated cathode and focused by a Wehnelt focusing cylinder are strongly accelerated towards the anode whose material is evaporated and bright plasma is ignited by a high voltage DC supply. The nanostructured C-Al films were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM). Tribological properties in dry sliding were evaluated using a CSM ball-on-disc tribometer. The carbon - aluminum films were identified as a nanocrystals complex (from 2nm to 50 nm diameters) surrounded by amorphous structures with a strong graphitization tendency, allowing the creating of adherent and wear resistant films. The friction coefficients (0.1 - 0.2, 0.5) of the C-Al coatings was decreased more than 2-5 times in comparison with the uncoated substrates proving excellent tribological properties. C-Al nanocomposites coatings were designed to have excellent tribological properties while the structure is composed by nanocrystals complex surrounded by amorphous structures

  12. Electron microscopy characterization of some carbon based nanostructures with application in divertors coatings from fusion reactor

    NASA Astrophysics Data System (ADS)

    Ciupina, V.; Morjan, I.; Lungu, C. P.; Vladoiu, R.; Prodan, G.; Prodan, M.; Zarovschi, V.; Porosnicu, C.; Stanescu, I. M.; Contulov, M.; Mandes, A.; Dinca, V.; Sugiyama, K.

    2011-10-01

    Nanostructured carbon materials have increasingly attracted the interest of the scientific community, because of their fascinating physical properties and potential applications in high-tech devices. In the current ITER design, the tiles made of carbon fiber composites (CFCs) are foreseen for the strike point zone and tungsten (W) for other parts of the divertor region. This choice is a compromise based mainly on experience with individual materials in many different tokamaks. Also Beryllium is the candidate material for the First Wall in ITER. In order to prepare nanostructured carbon-tungsten nanocomposite for the divertor part in fusion applications, the original method thermionic vacuum arc (TVA) was used in two electronic guns configuration. One of the main advantages of this technology is the bombardment of the growing thin film just by the ions of the depositing film. The nanostructured C-W and C-Be films were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM). The C-W films were identified as a nanocrystals complex (5 nm average diameter) surrounded by amorphous structures with a strong graphitization tendency, allowing the creating of adherent and wear resistant films. The C-Be films are polycrystalline with mean grain size about 15 nm. The friction coefficients (0.15 - 0.35) of the C-W coatings was decreased more than 3-5 times in comparison with the uncoated substrates proving excellent tribological properties. C-W nanocomposites coatings were designed to have excellent tribological properties while the structure is composed by nanocrystals complex surrounded by amorphous structures with a strong graphitization tendency, allowing the creating of adherent and wear resistant films.&updat

  13. Materials issues in fusion reactors

    NASA Astrophysics Data System (ADS)

    Suri, A. K.; Krishnamurthy, N.; Batra, I. S.

    2010-02-01

    The world scientific community is presently engaged in one of the toughest technological tasks of the current century, namely, exploitation of nuclear fusion in a controlled manner for the benefit of mankind. Scientific feasibility of controlled fusion of the light elements in plasma under magnetic confinement has already been proven. International efforts in a coordinated and co-operative manner are presently being made to build ITER - the International Thermonuclear Experimental Reactor - to test, in this first step, the concept of 'Tokamak' for net fusion energy production. To exploit this new developing option of making energy available through the route of fusion, India too embarked on a robust fusion programme under which we now have a working tokamak - the Aditya and a steady state tokamak (SST-1), which is on the verge of functioning. The programme envisages further development in terms of making SST-2 followed by a DEMO and finally the fusion power reactor. Further, with the participation of India in the ITER program in 2005, and recent allocation of half - a - port in ITER for placing our Lead - Lithium Ceramic Breeder (LLCB) based Test Blanket Module (TBM), meant basically for breeding tritium and extracting high grade heat, the need to understand and address issues related to materials for these complex systems has become all the more necessary. Also, it is obvious that with increasing power from the SST stages to DEMO and further to PROTOTYPE, the increasing demands on performance of materials would necessitate discovery and development of new materials. Because of the 14.1 MeV neutrons that are generated in the D+T reaction exploited in a tokamak, the materials, especially those employed for the construction of the first wall, the diverter and the blanket segments, suffer crippling damage due to the high He/dpa ratios that result due to the high energy of the neutrons. To meet this challenge, the materials that need to be developed for the tokamaks

  14. Investigation of materials for fusion power reactors

    NASA Astrophysics Data System (ADS)

    Bouhaddane, A.; Slugeň, V.; Sojak, S.; Veterníková, J.; Petriska, M.; Bartošová, I.

    2014-06-01

    The possibility of application of nuclear-physical methods to observe radiation damage to structural materials of nuclear facilities is nowadays a very actual topic. The radiation damage to materials of advanced nuclear facilities, caused by extreme radiation stress, is a process, which significantly limits their operational life as well as their safety. In the centre of our interest is the study of the radiation degradation and activation of the metals and alloys for the new nuclear facilities (Generation IV fission reactors, fusion reactors ITER and DEMO). The observation of the microstructure changes in the reactor steels is based on experimental investigation using the method of positron annihilation spectroscopy (PAS). The experimental part of the work contains measurements focused on model reactor alloys and ODS steels. There were 12 model reactor steels and 3 ODS steels. We were investigating the influence of chemical composition on the production of defects in crystal lattice. With application of the LT 9 program, the spectra of specimen have been evaluated and the most convenient samples have been determined.

  15. Laser-driven fusion reactor

    DOEpatents

    Hedstrom, J.C.

    1973-10-01

    A laser-driven fusion reactor consisting of concentric spherical vessels in which the thermonuclear energy is derived from a deuterium-tritium (D + T) burn within a pellet'', located at the center of the vessels and initiated by a laser pulse. The resulting alpha -particle energy and a small fraction of the neutron energy are deposited within the pellet; this pellet energy is eventually transformed into sensible heat of lithium in a condenser outside the vessels. The remaining neutron energy is dissipated in a lithium blanket, located within the concentric vessels, where the fuel ingredient, tritium, is also produced. The heat content of the blanket and of the condenser lithium is eventually transferred to a conventional thermodynamic plant where the thermal energy is converted to electrical energy in a steam Rankine cycle. (Official Gazette)

  16. Development of divertor plate with CFCs bonded onto DSCu cooling tube for fusion reactor application

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Suzuki, T.; Araki, M.; Nakamura, K.; Akiba, M.

    1998-10-01

    This paper presents the high heat flux experiment of divertor mock-ups with CFC-Cu duplex structure. A plasma-facing component (PFC), which is served as a protection wall against heat and particle loads from fusion plasma, is one of the critical components of next fusion devices such as ITER. A divertor plate which is one of the PFCs must be capable of withstanding cyclic heat load of 5-20 MW/m 2 in ITER. To investigate the thermal fatigue behavior, a thermal cycling experiment was conducted in Particle Beam Engineering Facility. As a result, the divertor mock-up with a dispersion strengthened copper cooling tube could withstand a heat flux of 20 MW/m 2 for 1000 cycles. On the other hand, the mock-up with an oxygen-free-high conductivity copper cooling tube showed a water leakage at about 400 cycles due to thermal fatigue cracking.

  17. Nuclear design of a very-low-activation fusion reactor

    SciTech Connect

    Cheng, E.T.; Hopkins, G.R.

    1983-06-01

    An investigation was conducted to study the nuclear design aspects of using very-low-activation materials, such as SiC, MgO, and aluminum for fusion-reactor first wall, blanket, and shield applications. In addition to the advantage of very-low radioactive inventory, it was found that the very-low-activation fusion reactor can also offer an adequate tritium-breeding ratio and substantial amount of blanket nuclear heating as a conventional-material-structured reactor does. The most-stringent design constraint found in a very-low-activation fusion reactor is the limited space available in the inboard region of a tokamak concept for shielding to protect the superconducting toroidal field coil. A reference design was developed which mitigates the constraint by adopting a removable tungsten shield design that retains the inboard dimensions and gives the same shield performance as the reference STARFIRE tokamak reactor design.

  18. Generic Magnetic Fusion Reactor Revisited

    NASA Astrophysics Data System (ADS)

    Sheffield, John; Milora, Stanley

    2015-11-01

    The original Generic Magnetic Fusion Reactor paper was published in 1986. This update describes what has changed in 30 years. Notably, the construction of ITER is providing important benchmark numbers for technologies and costs. In addition, we use a more conservative neutron wall flux and fluence. But these cost-increasing factors are offset by greater optimism on the thermal-electric conversion efficiency and potential availability. The main examples show the cost of electricity (COE) as a function of aspect ratio and neutron flux to the first wall. The dependence of the COE on availability, thermo-electric efficiency, electrical power output, and the present day's low interest rates is also discussed. Interestingly, at fixed aspect ratio there is a shallow minimum in the COE at neutron flux around 2.5 MW/m2. The possibility of operating with only a small COE penalty at even lower wall loadings (to 1.0 MW/m2 at larger plant size) and the use of niobium-titanium coils are also investigated. J. Sheffield was supported by ORNL subcontract 4000088999 with the University of Tennessee.

  19. Trends in fusion reactor safety research

    SciTech Connect

    Herring, J.S.; Holland, D.F.; Piet, S.J.

    1991-01-01

    Fusion has the potential to be an attractive energy source. From the safety and environmental perspective, fusion must avoid concerns about catastrophic accidents and unsolvable waste disposal. In addition, fusion must achieve an acceptable level of risk from operational accidents that result in public exposure and economic loss. Finally, fusion reactors must control routine radioactive effluent, particularly tritium. Major progress in achieving this potential rests on development of low-activation materials or alternative fuels. The safety and performance of various material choices and fuels for commercial fusion reactors can be investigated relatively inexpensively through reactor design studies. These studies bring together experts in a wide range of backgrounds and force the group to either agree on a reactor design or identify areas for further study. Fusion reactors will be complex with distributed radioactive inventories. The next generation of experiments will be critical in demonstrating that acceptable levels of safe operation can be achieved. These machines will use materials which are available today and for which a large database exists (e.g. for 316 stainless steel). Researchers have developed a good understanding of the risks associated with operation of these devices. Specifically, consequences from coolant system failures, loss of vacuum events, tritium releases, and liquid metal reactions have been studied. Recent studies go beyond next step designs and investigate commercial reactor concerns including tritium release and liquid metal reactions. 18 refs.

  20. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor refueling

    SciTech Connect

    Kim, K.

    1991-08-01

    This report contains three documents describing the progress made by the University of Illinois electromagnetic railgun program sponsored by the Office of Fusion Energy of the United States Department of Energy during the period from July 16, 1990 to August 16, 1991. The first document contains a brief summary of the tasks initiated, continued, or completed, the status of major tasks, and the research effort distribution, estimated and actual, during the period. The second document contains a description of the work performed on time resolved laser interferometric density measurement of the railgun plasma-arc armature. The third document is an account of research on the spectroscopic measurement of the electron density and temperature of the railgun plasma arc.

  1. IPFR: Integrated Pool Fusion Reactor concept

    SciTech Connect

    Sze, D.K.

    1986-01-01

    The IPFR (Integrated Pool Fusion Reactor) concept is to place a fusion reactor into a pool of molten Flibe. The Flibe will serve the multiple functions of breeding, cooling, shielding, and moderating. Therefore, the only structural material between the superconducting magnets and the plasma is the first wall. The first wall is a stand-alone structure with no coolant connection and is cooled by Flibe at the atmospheric pressure. There is also no need of the primary coolant loop. The design is expected to improve the safety, reliability, and maintainability aspects of the fusion system.

  2. Laser-fusion targets for reactors

    DOEpatents

    Nuckolls, John H.; Thiessen, Albert R.

    1987-01-01

    A laser target comprising a thermonuclear fuel capsule composed of a centrally located quantity of fuel surrounded by at least one or more layers or shells of material for forming an atmosphere around the capsule by a low energy laser prepulse. The fuel may be formed as a solid core or hollow shell, and, under certain applications, a pusher-layer or shell is located intermediate the fuel and the atmosphere forming material. The fuel is ignited by symmetrical implosion via energy produced by a laser, or other energy sources such as an electron beam machine or ion beam machine, whereby thermonuclear burn of the fuel capsule creates energy for applications such as generation of electricity via a laser fusion reactor.

  3. Status and problems of fusion reactor development.

    PubMed

    Schumacher, U

    2001-03-01

    Thermonuclear fusion of deuterium and tritium constitutes an enormous potential for a safe, environmentally compatible and sustainable energy supply. The fuel source is practically inexhaustible. Further, the safety prospects of a fusion reactor are quite favourable due to the inherently self-limiting fusion process, the limited radiologic toxicity and the passive cooling property. Among a small number of approaches, the concept of toroidal magnetic confinement of fusion plasmas has achieved most impressive scientific and technical progress towards energy release by thermonuclear burn of deuterium-tritium fuels. The status of thermonuclear fusion research activity world-wide is reviewed and present solutions to the complicated physical and technological problems are presented. These problems comprise plasma heating, confinement and exhaust of energy and particles, plasma stability, alpha particle heating, fusion reactor materials, reactor safety and environmental compatibility. The results and the high scientific level of this international research activity provide a sound basis for the realisation of the International Thermonuclear Experimental Reactor (ITER), whose goal is to demonstrate the scientific and technological feasibility of a fusion energy source for peaceful purposes.

  4. Generic Stellarator-like Magnetic Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Sheffield, John; Spong, Donald

    2015-11-01

    The Generic Magnetic Fusion Reactor paper, published in 1985, has been updated, reflecting the improved science and technology base in the magnetic fusion program. Key changes beyond inflation are driven by important benchmark numbers for technologies and costs from ITER construction, and the use of a more conservative neutron wall flux and fluence in modern fusion reactor designs. In this paper the generic approach is applied to a catalyzed D-D stellarator-like reactor. It is shown that an interesting power plant might be possible if the following parameters could be achieved for a reference reactor: R/ < a > ~ 4 , confinement factor, fren = 0.9-1.15, < β > ~ 8 . 0 -11.5 %, Zeff ~ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ~ 0.07, Bm ~ 14-16 T, and R ~ 18-24 m. J. Sheffield was supported under ORNL subcontract 4000088999 with the University of Tennessee.

  5. Radiation Effects in Fission and Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Odette, G. Robert; Wirth, Brian D.

    Since the prediction of "Wigner disease" [1] and the subsequent observation of anisotropic growth of the graphite used in the Chicago Pile, the effects of radiation on materials has been an important technological concern. The broad field of radiation effects impacts many critical advanced technologies, ranging from semiconductor processing to severe materials degradation in nuclear reactor environments. Radiation effects also occur in many natural environments, ranging from deep space to inside the Earth's crust. As selected examples that involve many basic phenomena that cross-cut and illustrate the broader impacts of radiation exposure on materials, this article focuses on modeling microstructural changes in iron-based ferritic alloys under high-energy neutron irradiation relevant to light water fission reactor pressure vessels. We also touch briefly on radiation effects in structural alloys for fusion reactor first wall and blanket structures; in this case the focus is on modeling the evolution of self-interstitial atom clusters and dislocation loops. Note, since even the narrower topic of structural materials for nuclear energy applications encompass a vast literature dating from 1942, the references included in this article are primarily limited to these two narrower subjects. Thus, the references cited here are presented as examples, rather than comprehensive bibliographies. However, the interested reader is referred to proceedings of continuing symposia series that have been sponsored by several organizations, several monographs [2-4] and key journals (e.g., Journal of Nuclear Materials, Radiation Effects and Defects in Solids).

  6. The Cascade inertial confinement fusion reactor concept

    NASA Astrophysics Data System (ADS)

    Pitts, J. H.; Hogan, W. J.; Tobin, M. T.; Bourque, R. F.; Meier, W. R.

    1990-12-01

    The Cascade reactor concept has the potential of converting inertial confinement fusion (ICF) energy into electrical power safely, efficiently, and with low activation. Its flexibility permits a number of options for materials, blankets, fuel-pellet designs and drivers. This report documents a theoretical and experimental study culminating in a reference Cascade conceptual design that produces 890 MW of electrical power with a net plant efficiency of 47 percent if a heavy-ion driver if used. The reactor is double-cone shaped and rotates at 50 rpm. A ceramic-granule blanket flows through the reactor held against the reactor wall by the rotation. The blanket serves several functions: it absorbs energy from fusion reactions that occur at 5 Hz in the center of the reactor, thereby protecting the reactor wall and extending its lifetime to that of power plant; it acts as a heat-exchange medium to transfer fusion energy to high-pressure helium gas used in power conversion; and it produces tritium to replace that burned in the fusion process. Cascade's illumination geometry is restricted, so that good energy coupling to presently-envisioned fuel pellets is practical only with heavy-ion drivers. Laser drivers would require the use of fuel pellets with advanced design features. We discuss the reactor concept, heat exchanger, balance of plant, other systems that would be necessary for a full-scale production of electrical power, and experiments that prove the feasibility of a flowing granular blanket. A cost study predicts that Cascade, using a heavy-ion driver, could produce electricity for between 5.5 and 6.8 cents/kWh-comparable to the cost of power using modular high-temperature gas-cooled reactors, pressurized-water reactors, or coal-fired power plants. Finally, we include an annotated bibliography of the over 50 reports which have been written about Cascade.

  7. Computational mathematics and physics of fusion reactors

    PubMed Central

    Garabedian, Paul R.

    2003-01-01

    Theory has contributed significantly to recent advances in magnetic fusion research. New configurations have been found for a stellarator experiment by computational methods. Solutions of a free-boundary problem are applied to study the performance of the plasma and look for islands in the magnetic surfaces. Mathematical analysis and numerical calculations have been used to study equilibrium, stability, and transport of optimized fusion reactors. PMID:14614129

  8. Evaluation of charcoal sorbents for helium cryopumping in fusion reactors

    SciTech Connect

    Tobin, A.G.; Sedgley, D.W.; Batzer, T.H.; Call, W.R.

    1987-01-01

    Improved methods for cryopumping helium were developed for application to fusion reactors where high helium generation rates are expected. In this study, small coconut charcoal granules were utilized as the sorbent, and braze alloys and low temperature curing cements were used as the bonding agents for attachment to a copper support structure. Problems of scale-up of the bonding agent to a 40 cm diam panel were also investigated. Our results indicate that acceptable helium pumping performance of braze bonded and cement bonded charcoals can be achieved over the range of operating conditions expected in fusion reactors.

  9. Fuel provision for nonbreeding deuterium-tritium fusion reactors

    SciTech Connect

    Jassby, D.L.; Katsurai, M.

    1980-01-01

    Nonbreeding D-T reactors have decisive advantages in minimum size, unit cost, variety of applications, and ease of heat removal over reactors using any other fusion cycle, and significant advantages in environmental and safety characteristics over breeding D-T reactors. Considerations of relative energy production demonstrate that the most favorable source of tritium for a widely deployed system of nonbreeding D-T reactors is the very large (approx. 10 GW thermal) semi-catalyzed-deuterium (SCD), or sub-SCD reactor, where none of the escaping /sup 3/He (> 95%) or tritium (< 25%) is reinjected for burn-up. Feasibility of the ignited SCD tokamak reactor requires spatially averaged betas of 15 to 20% with a magnetic field at the TF coils of 12 to 13 Tesla.

  10. Packed fluidized bed blanket for fusion reactor

    DOEpatents

    Chi, John W. H.

    1984-01-01

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  11. Results of tritium experiments on ceramic electrolysis cells and palladium diffusers for application to fusion reactor fuel cleanup systems

    SciTech Connect

    Carlson, R.V.; Binning, K.E.; Konishi, S.; Yoshida, H.; Naruse, Y.

    1987-01-01

    Tritium tests at the Tritium Systems Test Assembly have demonstrated that ceramic electrolysis cells and palladium alloy diffuser developed in Japan are possible components for a fusion reactor fuel cleanup system. Both components have been successfully operated with tritium for over a year. A failure of the first electrolysis cell was most likely the result of an over voltage on the ceramic. A simple circuit was developed to eliminate this mode of failure. The palladium diffusers tubes exhibited some degradation of mechanical properties as a result of the build up of helium from the tritium decay, after 450 days of operation with tritium, however the effects were not significant enough to affect the performance. New models of the diffuser and electrolysis cell, providing higher flow rates and more tritium compatible designs are currently being tested with tritium. 8 refs., 5 figs.

  12. Design considerations for an interial confinement fusion reactor power plant

    NASA Astrophysics Data System (ADS)

    Massey, J. V.; Simpson, J. E.

    1981-08-01

    A conceptual design study to further define the engineering and economic concerns for inertial confinement fusion reactors is presented. Alternatives to the Livermore HYLIFE concept were examined and information from liquid metal cooled fast breeder reactor power plant studies was incorporated into the design. Laser and target physics models were employed in a reactor design with a low coolant flowrate and a high driver repetition rate. An example of such a design is the JADE concept. In addition to a power plant design developed using the JADE example, the applicability of the energy absorbing gas lithium ejector concept was investigated.

  13. Neutronic analysis of a fusion hybrid reactor

    SciTech Connect

    Kammash, T.

    2012-07-01

    In a PHYSOR 2010 paper(1) we introduced a fusion hybrid reactor whose fusion component is the gasdynamic mirror (GDM), and whose blanket was made of thorium - 232. The thrust of that study was to demonstrate the performance of such a reactor by establishing the breeding of uranium - 233 in the blanket, and the burning thereof to produce power. In that analysis, we utilized the diffusion equation for one-energy neutron group, namely, those produced by the fusion reactions, to establish the power distribution and density in the system. Those results should be viewed as a first approximation since the high energy neutrons are not effective in inducing fission, but contribute primarily to the production of actinides. In the presence of a coolant, however, such as water, these neutrons tend to thermalize rather quickly, hence a better assessment of the reactor performance would require at least a two group analysis, namely the fast and thermal groups. We follow that approach and write an approximate set of equations for the fluxes of these groups. From these relations we deduce the all-important quantity, k{sub eff}, which we utilize to compute the multiplication factor, and subsequently, the power density in the reactor. We show that k{sub eff} can be made to have a value of 0.99, thus indicating that 100 thermal neutrons are generated per fusion neutron, while allowing the system to function as 'subcritical.' Moreover, we show that such a hybrid reactor can generate hundreds of megawatts of thermal power per cm of length depending on the flux of the fusion neutrons impinging on the blanket. (authors)

  14. Selection of a toroidal fusion reactor concept for a magnetic fusion production reactor

    NASA Astrophysics Data System (ADS)

    Jassby, D. L.

    1987-03-01

    The basic fusion driver requirements of a toroidal materials production reactor are considered. The tokamak, stellarator, bumpy torus, and reversed-field pinch are compared with regard to their demonstrated performance, probable near-term development, and potential advantages and disadvantages if used as reactors for materials production. Of the candidate fusion drivers, the tokamak is determined to be the most viable for a near-term production reactor. Four tokamak reactor concepts (TORFA/FED-R, AFTR/ZEPHYR, Riggatron, and Superconducting Coil) of approximately 500-MW fusion power are compared with regard to their demands on plasma performance, required fusion technology development, and blanket configuration characteristics. Because of its relatively moderate requirements on fusion plasma physics and technology development, as well as its superior configuration of production blankets, the TORFA/FED-R type of reactor operating with a fusion power gain of about 3 is found to be the most suitable tokamak candidate for implementation as a near-term production reactor.

  15. Applications of (n, p) and (n, α) reactions and a backscattering technique to fusion reactor materials, archeometry, and nuclear spectroscopy

    NASA Astrophysics Data System (ADS)

    Fink, D.; Biersack, J. P.; Grawe, H.; Riederer, J.; Müller, K.; Henkelmann, R.

    1980-01-01

    Depth profiles of He, Li and B are determined by 3He(n, p)T, 6Li(n, α)T and 10B(n, α) 7Li reactions with thermal neutrons at the high flux reactor of the ILL, Grenoble. The behaviour of Li in Be is examined with respect to future fusion reactors. Range profiles of 70-300 keV Li + are measured and found to agree with theory based on Lindhard-Scharff electronic stopping and Molière potential. Li becomes mobile in Be above 100°C. Further, B and Li distributions in glaze of ancient pottery are examined for studying ancient production techniques. It is found that all examined samples (of Islamic, Thai and North American provenience) show Li and B concentrations which are enriched relative to the original material. Li is mostly depleted in a surface layer of 0.1-1.6 μm half-width due to various burning conditions. In experimental nuclear physics, gas cells are now often replaced by thin foils with implanted gas. In many cases the knowledge of the concentration profile is required, and is presently evaluated for the case of 3He in Ni and Au with the (n, p) reaction. This is compared to results obtained by a special Rutherford backscattering technique yielding good agreement.

  16. First wall for polarized fusion reactors

    DOEpatents

    Greenside, H.S.; Budny, R.V.; Post, D.E. Jr.

    1985-01-29

    A first-wall or first-wall coating for use in a fusion reactor having polarized fuel may be formed of a low-Z non-metallic material having slow spin relaxation, i.e., a depolarization rate greater than 1 sec/sup -1/. Materials having these properties include hydrogenated and deuterated amorphous semiconductors. A method for preventing the rapid depolarization of a polarized plasma in a fusion device may comprise the step of providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec/sup -1/.

  17. Perspectives of SiC-Based Ceramic Composites and Their Applications to Fusion Reactors 5.Development of Evaluation and Application Techniques of SiC⁄SiC Composites for Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Hinoki, Tatsuya

    Evaluation techniques and mechanical properties of silicon carbide composites (SiC⁄SiC composites) reinforced with highly crystalline fibers are reviewed for fusion applications. The SiC⁄SiC composites used were fabricated by means of the CVI method. The evaluation includes in-plane tensile strength by in-plane tensile test, transthickness tensile strength by transthickness tensile test and diametral compression test and shear strength by compression test using double-notched specimen. All tests were successfully conducted using small specimens for neutron irradiation experiment. As application technique, the novel tungsten(W) coating technique on SiC is reviewed. The W powder melted by high power lamp in a few seconds and formed coating on SiC. No thick reaction layers of WC and W5Si3, which are formed by the other coating methods, were formed by this method.

  18. Conceptual design of Fusion Experimental Reactor

    NASA Astrophysics Data System (ADS)

    Seki, Yasushi; Takatsu, Hideyuki; Iida, Hiromasa

    1991-08-01

    Safety analysis and evaluation have been made for the FER (Fusion Experimental Reactor) as well as for the ITER (International Thermonuclear Experimental Reactor) which are basically the same in terms of safety. This report describes the results obtained in fiscal years 1988 - 1990, in addition to a summary of the results obtained prior to 1988. The report shows the philosophy of the safety design, safety analysis and evaluation for each of the operation conditions, namely, normal operation, repair and maintenance, and accident. Considerations for safety regulations and standards are also added.

  19. Code development incorporating environmental, safety, and economic aspects of fusion reactors (FY 89--91)

    SciTech Connect

    Ho, S.K.; Fowler, T.K.; Holdren, J.P.

    1991-11-01

    This report discusses the following aspects of Fusion reactors.: Activation Analysis; Tritium Inventory; Environmental and Safety Indices and Their Graphical Representation; Probabilistic Risk Assessment (PRA) and Decision Analysis; Plasma Burn Control -- Application to ITER; and Other Applications.

  20. First wall for polarized fusion reactors

    DOEpatents

    Greenside, Henry S.; Budny, Robert V.; Post, Jr., Douglass E.

    1988-01-01

    Depolarization mechanisms arising from the recycling of the polarized fuel at the limiter and the first-wall of a fusion reactor are greater than those mechanisms in the plasma. Rapid depolarization of the plasma is prevented by providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec.sup.-1.

  1. Choice of coils for a fusion reactor

    PubMed Central

    Alexander, Romeo; Garabedian, Paul R.

    2007-01-01

    In a fusion reactor a hot plasma of deuterium and tritium is confined by a strong magnetic field to produce helium ions and release energetic neutrons. The 3D geometry of a stellarator provides configurations for such a device that reduce net toroidal current that might lead to disruptions. We construct smooth coils generating an external magnetic field designed to prevent the plasma from deteriorating. PMID:17640879

  2. Colliding Beam Fusion Reactor Space Propulsion System

    NASA Astrophysics Data System (ADS)

    Cheung, A.; Binderbauer, M.; Liu, F.; Qerushi, A.; Rostoker, N.; Wessel, F. J.

    2004-02-01

    The Colliding Beam Fusion Reactor Space Propulsion System, CBFR-SPS, is an aneutronic, magnetic-field-reversed configuration, fueled by an energetic-ion mixture of hydrogen and boron11 (H-B11). Particle confinement and transport in the CBFR-SPS are classical, hence the system is scaleable. Fusion products are helium ions, α-particles, expelled axially out of the system. α-particles flowing in one direction are decelerated and their energy recovered to ``power'' the system; particles expelled in the opposite direction provide thrust. Since the fusion products are charged particles, the system does not require the use of a massive-radiation shield. This paper describes a 100 MW CBFR-SPS design, including estimates for the propulsion-system parameters and masses. Specific emphasis is placed on the design of a closed-cycle, Brayton-heat engine, consisting of heat-exchangers, turbo-alternator, compressor, and finned radiators.

  3. Ceramics for fusion applications

    SciTech Connect

    Clinard, F.W. Jr.

    1986-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al/sub 2/O/sub 3/, MgAl/sub 2/O/sub 4/, BeO, Si/sub 3/N/sub 4/ and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications.

  4. Materials needs for compact fusion reactors

    SciTech Connect

    Krakowski, R.A.

    1983-01-01

    The economic prospects for magnetic fusion energy can be dramatically improved if for the same total power output the fusion neutron first-wall (FW) loading and the system power density can be increased by factors of 3 to 5 and 10 to 30, respectively. A number of compact fusion reactor embodiments have been proposed, all of which would operate with increased FW loadings, would use thin (0.5 to 0.6 m) blankets, and would confine quasi-steady-state plasma with resistive, water-cooled copper or aluminum coils. Increased system power density (5 to 15 MWt/m/sup 3/ versus 0.3 to 0.5 MW/m/sup 3/), considerably reduced physical size of the fusion power core (FPC), and appreciably reduced economic leverage exerted by the FPC and associated physics result. The unique materials requirements anticipated for these compact reactors are outlined against the well documented backdrop provided by similar needs for the mainline approaches. Surprisingly, no single materials need that is unique to the compact systems is identified; crucial uncertainties for the compact approaches must also be addressed by the mainline approaches, particularly for in-vacuum components (FWs, limiters, divertors, etc.).

  5. The spheromak as a compact fusion reactor

    SciTech Connect

    Hagenson, R.L.; Krakowski, R.A.

    1987-03-01

    After summarizing the economic and utility-based rationale for compact, higher-power-density fusion reactors, the gun-sustained spheromak concept is explored as one of a number of poloidal-field-dominated confinement configurations that might improve the prospects for economically attractive and operationally simplified fusion power plants. Using a comprehensive physics/engineering/costing model for the spheromak, guided by realistic engineering constraints and physics extrapolation, a range of cost-optimized reactor design points is presented, and the sensitivity of cost to key physics, engineering, and operational variables is reported. The results presented herein provide the basis for conceptual engineering designs of key fusion-power-core (FPC) subsystems and more detailed plasma modeling of this promising, high mass-power-density concept, which stresses single-piece FPC maintenance, steady-state current drive through electrostatic magnetic helicity injection, a simplified co-axial electrode-divertor, and efficient resistive-coal equilibrium-field coils. The optimal FPC size and the cost estimates project a system that competes aggressively with the best offered by alternative energy sources while simplifying considerably the complexity that has generally been associated with most approaches to magnetic fusion energy.

  6. The nano-particle dispersion strengthening of V-4Cr-4Ti alloys for high temperature application in fusion reactors

    NASA Astrophysics Data System (ADS)

    Zheng, Pengfei; Chen, Jiming; Xu, Zengyu; Duan, Xuru

    2013-10-01

    V-4Cr-4Ti was identified as an attractive structural material for Li blanket in fusion reactors. However, both high temperature and irradiation induced degradation are great challenges for this material. It was thought that the nano-particles with high thermal stability can efficiently strengthen the alloy at elevated temperatures, and accommodate the irradiation induced defects at the boundaries. This study is a starting work aiming at improving the creep resistance and reducing the irradiation induced degradation for V-4Cr-4Ti alloy. Currently, we focus on the preparation of some comparative nano-particle dispersion strengthened V-4Cr-4Ti alloys. A mechanical alloying (MA) route is used to fabricate yttrium and carbides added V-4Cr-4Ti alloys. Nano-scale yttria, carbides and other possible particles have a combined dispersion-strengthening effect on the matrices of these MA-fabricated V-4Cr-4Ti alloys. High-temperature annealing is carried out to stabilize the optimized nano-particles. Mechanical properties are tested. Microstructures of the MA-fabricated V-4Cr-4Ti alloys with yttrium and carbide additions are characterized. Based on these results, the thermal stability of different nano-particle agents are classified. ITER related China domestic project 2011GB108007.

  7. Diamond neutral particle spectrometer for fusion reactor ITER

    SciTech Connect

    Krasilnikov, V.; Amosov, V.; Kaschuck, Yu.; Skopintsev, D.

    2014-08-21

    A compact diamond neutral particle spectrometer with digital signal processing has been developed for fast charge-exchange atoms and neutrons measurements at ITER fusion reactor conditions. This spectrometer will play supplementary role for Neutral Particle Analyzer providing 10 ms time and 30 keV energy resolutions for fast particle spectra in non-tritium ITER phase. These data will also be implemented for independent studies of fast ions distribution function evolution in various plasma scenarios with the formation of a single fraction of high-energy ions. In tritium ITER phase the DNPS will measure 14 MeV neutrons spectra. The spectrometer with digital signal processing can operate at peak counting rates reaching a value of 10{sup 6} cps. Diamond neutral particle spectrometer is applicable to future fusion reactors due to its high radiation hardness, fast response and high energy resolution.

  8. Diamond neutral particle spectrometer for fusion reactor ITER

    NASA Astrophysics Data System (ADS)

    Krasilnikov, V.; Amosov, V.; Kaschuck, Yu.; Skopintsev, D.

    2014-08-01

    A compact diamond neutral particle spectrometer with digital signal processing has been developed for fast charge-exchange atoms and neutrons measurements at ITER fusion reactor conditions. This spectrometer will play supplementary role for Neutral Particle Analyzer providing 10 ms time and 30 keV energy resolutions for fast particle spectra in non-tritium ITER phase. These data will also be implemented for independent studies of fast ions distribution function evolution in various plasma scenarios with the formation of a single fraction of high-energy ions. In tritium ITER phase the DNPS will measure 14 MeV neutrons spectra. The spectrometer with digital signal processing can operate at peak counting rates reaching a value of 106 cps. Diamond neutral particle spectrometer is applicable to future fusion reactors due to its high radiation hardness, fast response and high energy resolution.

  9. Fusion reactor high vacuum pumping: Charcoal cryosorber tritium exposure results

    SciTech Connect

    Sedgley, D.W.; Walthers, C.R.; Jenkins, E.M. )

    1991-01-01

    Recent experiments, have shown the practically of using activated charcoal (coconut charcoal) at 4{degrees}K to pump helium and hydrogen isotopes for a fusion reactor. Both speed and capacity for deuterium/helium and tritium/helium-3 mixtures were shown to be satisfactory. The long term effects of tritium on the charcoal/cement system developed by Grumman and LLNL were not known and a program was undertaken to see what, if any, effect long term tritium exposure has on the cryosorber. Several charcoal on aluminum test samples were subjected to six months exposure of tritium at approximately 77{degrees}K. The tritium was scanned several times with a residual gas analyzer and the speed-capacity performance of the samples was measured before, approximately half way through and after the exposure. Modest effects were noted which would not seriously restrict charcoal's use as a cryosorber for fusion reactor high vacuum pumping applications. 4 refs., 8 figs.

  10. The TITAN reversed-field-pinch fusion reactor study

    SciTech Connect

    Not Available

    1990-01-01

    This paper on titan plasma engineering contains papers on the following topics: reversed-field pinch as a fusion reactor; parametric systems studies; magnetics; burning-plasma simulations; plasma transient operations; current drive; and physics issues for compact RFP reactors.

  11. Decommissioning of the Tokamak Fusion Test Reactor

    SciTech Connect

    E. Perry; J. Chrzanowski; C. Gentile; R. Parsells; K. Rule; R. Strykowsky; M. Viola

    2003-10-28

    The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D&D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D&D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D&D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget.

  12. Pulse Star inertial confinement fusion reactor

    SciTech Connect

    Blink, J.A.; Hogan, W.J.

    1985-04-15

    Pulse Star is a pool-type ICF reactor that emphasizes low cost and high safety levels. The reactor consists of a vacuum chamber (belljar) submerged in a compact liquid metal (Li/sub 17/Pb/sub 83/ or lithium) pool which also contains the heat exchangers and liquid metal pumps. The shielding efficiency of the liquid metal pool is high enough to allow hands-on maintenance of (removed) pumps and heat exchangers. Liquid metal is allowed to spray through the 5.5 m radius belljar at a controlled rate, but is prohibited from the target region by a 4 m radius mesh first wall. The wetted first wall absorbs the fusion x-rays and debris while the spray region absorbs the fusion neutrons. The mesh allows vaporized liquid metal to blow through to the spray region where it can quickly cool and condense. Preliminary calculations show that a 2 m thick first wall could handle the mechanical (support, buckling, and x-ray-induced hoop) loads. Wetting and gas flow issues are in an initial investigation stage.

  13. Natural fueling of a tokamak fusion reactor

    NASA Astrophysics Data System (ADS)

    Wan, Weigang; Parker, Scott E.; Chen, Yang; Perkins, Francis W.

    2010-04-01

    A natural fueling mechanism that helps to maintain the main core deuterium and tritium (DT) density profiles in a tokamak fusion reactor is presented. In H-mode plasmas dominated by ion-temperature gradient (ITG) driven turbulence, cold DT ions near the edge will naturally pinch radially inward toward the core. This mechanism is due to the quasineutral heat flux dominated nature of ITG turbulence and still applies when trapped and passing kinetic electron effects are included. Fueling using shallow pellet injection is augmented by an inward pinch of cold DT fuel. The natural fueling mechanism is investigated using the gyrokinetic turbulence code GEM [Y. Chen and S. E. Parker, J. Comput. Phys. 220, 839 (2007)] and is analyzed using quasilinear theory. Profiles similar to those used for conservative International Thermonuclear Experimental Reactor [R. Aymar et al., Nucl. Fusion 41, 1301 (2001)] transport modeling that have a completely flat density profile are examined and it is found that natural fueling actually reduces the linear growth rate and energy transport. Natural fueling requires a two-component plasma and ion-ion and charge-exchange collisions set limits on this favorable effect.

  14. Present status of liquid metal research for a fusion reactor

    NASA Astrophysics Data System (ADS)

    Tabarés, Francisco L.

    2016-01-01

    Although the use of solid materials as targets of divertor plasmas in magnetic fusion research is accepted as the standard solution for the very challenging issue of power and particle handling in a fusion reactor, a generalized feeling that the present options chosen for ITER will not represent the best choice for a reactor is growing up. The problems found for tungsten, the present selection for the divertor target of ITER, in laboratory tests and in hot plasma fusion devices suggest so. Even in the absence of the strong neutron irradiation expected in a reactor, issues like surface melting, droplet ejection, surface cracking, dust generation, etc., call for alternative solutions in a long pulse, high efficient fusion energy-producing continuous machine. Fortunately enough, decades of research on plasma facing materials based on liquid metals (LMs) have produced a wealth of appealing ideas that could find practical application in the route to the realization of a commercial fusion power plant. The options presently available, although in a different degree of maturity, range from full coverage of the inner wall of the device with liquid metals, so that power and particle exhaust together with neutron shielding could be provided, to more conservative combinations of liquid metal films and conventional solid targets basically representing a sort of high performance, evaporative coating for the alleviation of the surface degradation issues found so far. In this work, an updated review of worldwide activities on LM research is presented, together with some open issues still remaining and some proposals based on simple physical considerations leading to the optimization of the most conservative alternatives.

  15. Environmental and economic assessments of magnetic and inertial fusion energy reactors

    NASA Astrophysics Data System (ADS)

    Yamazaki, K.; Oishi, T.; Mori, K.

    2011-10-01

    Global warming due to rapid greenhouse gas (GHG) emissions is one of the present-day crucial problems, and fusion reactors are expected to be abundant electric power generation systems to reduce human GHG emission amounts. To search for an environmental-friendly and economical fusion reactor system, comparative system studies have been done for several magnetic fusion energy reactors, and have been extended to include inertial fusion energy reactors. We clarify new scaling formulae for the cost of electricity and GHG emission rate with respect to key design parameters, which might be helpful in making a strategy for fusion research development. Comparisons with other conventional electric power generation systems are carried out taking into account the introduction of GHG taxes and the application of the carbon dioxide capture and storage system to fossil power generators.

  16. New concept for muon catalyzed fusion reactor

    SciTech Connect

    Tajima, T.; Eliezer, S.; Kulsrud, R.M.

    1988-12-27

    A new concept for a muon catalyzed pure fusion reactor is considered. To our best knowledge this constitutes a first plausible configuration to make energy gain without resorting to fissile matter breeding by fusion neutrons, although a number of crucial physical and engineering questions as well as details have yet to be resolved. A bundle of DT ice ribbons (with a filling factor f) is immersed in the magnetic field. The overall magnetic field in the mirror configuration confines pions created by the injected high energy deuterium (or tritium) beam. The DT materials is long enough to be inertially confined along the axis of mirror. The muon catalyzed mesomolecule formation and nuclear fusion take place in the DT target, leaving ..cap alpha../sup + +/ and occasionally (..cap alpha mu..)/sup +/ (muon sticking). The stuck muons are stripped fast enough in the target, while they are accelerated by ion cyclotron resonance heating when they circulate in the vaccum (or dilute plasma). The ribbon is (eventually) surrounded and pressure-confined by this coronal plasma, whereas the corona is magnetically confined. The overall bundle of ribbons (a pellet) is inertially confined. This configuration may also be of use for stripping stuck muons via the plasma mechanism of Menshikov and Ponomarev.

  17. Design considerations for an inertial confinement fusion reactor power plant

    SciTech Connect

    Massey, J.V.; Simpson, J.E.

    1981-08-10

    To further define the engineering and economic concerns for inertial confinement fusion reactors (ICR's), a conceptual design study was performed by Bechtel Group Incorporated under the direction of Lawrence Livermore National Laboratory (LLNL). The study examined alternatives to the LLNL HYLIFE concept and expanded the previous balance of plant design to incorporate information from recent liquid metal cooled fast breeder reactor (LMFBR) power plant studies. The majority of the effort was to incorporate present laser and target physics models into a reactor design with a low coolant flowrate and a high driver repetition rate. An example of such a design is the LLNL JADE concept. In addition to producing a power plant design for LLNL using the JADE example, Bechtel has also examined the applicability of the EAGLE (Energy Absorbing Gas Lithium Ejector) concept.

  18. Improvement in fusion reactor performance due to ion channeling

    SciTech Connect

    Emmert, G.A.; El-Guebaly, L.A.; Kulcinski, G.L.; Santarius, J.F.; Sviatoslavsky, I.N.; Meade, D.M.

    1994-11-01

    Ion channeling is a recent idea for improving the performance of fusion reactors by increasing the fraction of the fusion power deposited in the ions. In this paper the authors assess the effect of ion channeling on D-T and D-{sup 3}He reactors. The figures of merit used are the fusion power density and the cost of electricity. It is seen that significant ion channeling can lead to about a 50-65% increase in the fusion power density. For the Apollo D-{sup 3}He reactor concept the reduction in the cost of electricity can be as large as 30%.

  19. Multivariable optimization of fusion reactor blankets

    SciTech Connect

    Meier, W.R.

    1984-04-01

    The optimization problem consists of four key elements: a figure of merit for the reactor, a technique for estimating the neutronic performance of the blanket as a function of the design variables, constraints on the design variables and neutronic performance, and a method for optimizing the figure of merit subject to the constraints. The first reactor concept investigated uses a liquid lithium blanket for breeding tritium and a steel blanket to increase the fusion energy multiplication factor. The capital cost per unit of net electric power produced is minimized subject to constraints on the tritium breeding ratio and radiation damage rate. The optimal design has a 91-cm-thick lithium blanket denatured to 0.1% /sup 6/Li. The second reactor concept investigated uses a BeO neutron multiplier and a LiAlO/sub 2/ breeding blanket. The total blanket thickness is minimized subject to constraints on the tritium breeding ratio, the total neutron leakage, and the heat generation rate in aluminum support tendons. The optimal design consists of a 4.2-cm-thick BeO multiplier and 42-cm-thick LiAlO/sub 2/ breeding blanket enriched to 34% /sup 6/Li.

  20. The need and prospects for improved fusion reactors

    NASA Astrophysics Data System (ADS)

    Krakowski, R. A.; Miller, R. L.; Hagenson, R. L.

    1986-09-01

    Conceptual fusion reactor studies over the past 10-15 yr have projected systems that may be too large, complex, and costly to be of commercial interest. One main direction for improved fusion reactors points toward smaller, higher-power-density approaches. First-order economic issues (i.e., unit direct cost and cost of electricity) are used to support the need for more compact fusion reactors. The results of a number of recent conceptual designs of reversed-field pinch, spheromak, and tokamak fusion reactors are summarized as examples of more compact approaches. While a focus has been placed on increasing the fusion-power-core mass power density beyond the minimum economic threshold of 100-200 kWe/tonne, other means by which the overall attractiveness of fusion as a long-term energy source are also addressed.

  1. Superconducting magnets for fusion applications

    SciTech Connect

    Henning, C.D.

    1987-07-02

    Fusion magnet technology has made spectacular advances in the past decade; to wit, the Mirror Fusion Test Facility and the Large Coil Project. However, further advances are still required for advanced economical fusion reactors. Higher fields to 14 T and radiation-hardened superconductors and insulators will be necessary. Coupled with high rates of nuclear heating and pulsed losses, the next-generation magnets will need still higher current density, better stability and quench protection. Cable-in-conduit conductors coupled with polyimide insulations and better steels seem to be the appropriate path. Neutron fluences up to 10/sup 19/ neutrons/cm/sup 2/ in niobium tin are achievable. In the future, other amorphous superconductors could raise these limits further to extend reactor life or decrease the neutron shielding and corresponding reactor size.

  2. Burning nuclear wastes in fusion reactors

    SciTech Connect

    Meldner, H.W.; Howard, W.M.

    1980-02-20

    We have studied actinide burn-up in ICF reactor pellets; i.e., 14 MeV neutron fission of the very long-lived actinides that pose storage problems. A major advantage of pellet fuel region burn-up is safety: only milligrams of highly toxic and active material need to be present in the fusion chamber, whereas blanket burn-up requires the continued presence of tons of actinides in a small volume. The actinide data tables required for Monte Carlo calculations of the burn-up of /sup 241/Am and /sup 243/Am are discussed in connection with a study of the sensitivity to cross section uncertainties. More accurate and complete cross sections are required for realistic quantitative calculations.

  3. Thermomagnetic burn control for magnetic fusion reactor

    DOEpatents

    Rawls, John M.; Peuron, Unto A.

    1982-01-01

    Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors (30a, 30b, etc.) formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma (12) and a toroidal field coil (18). A mechanism (60) for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

  4. Thermomagnetic burn control for magnetic fusion reactor

    DOEpatents

    Rawls, J.M.; Peuron, A.U.

    1980-07-01

    Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma and a toroidal field coil. A mechanism for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

  5. Prospects of steady state magnetic diagnostic of fusion reactors based on metallic Hall sensors

    NASA Astrophysics Data System (ADS)

    Ďuran, I.; Sentkerestiová, J.; Kovařík, K.; Viererbl, L.

    2012-06-01

    Employment of sensors based on Hall effect (Hall sensors) is one of the candidate approaches to detection of almost steady state magnetic fields in future fusion reactors based on magnetic confinement (tokamaks, stellarators etc.), and also in possible fusion-fission hybrid systems having these fusion reactors as a neutron source and driver. This contribution reviews the initial considerations concerning application of metallic Hall sensors in fusion reactor harsh environment that include high neutron loads (>1018 cm-2) and elevated temperatures (>200°C). In particular, the candidate sensing materials, candidate technologies for sensors production, initial analysis of activation and transmutation of sensors under reactor relevant neutron loads and the tests of the the first samples of copper Hall sensors are presented.

  6. Introduction to Nuclear Fusion Power and the Design of Fusion Reactors. An Issue-Oriented Module.

    ERIC Educational Resources Information Center

    Fillo, J. A.

    This three-part module focuses on the principles of nuclear fusion and on the likely nature and components of a controlled-fusion power reactor. The physical conditions for a net energy release from fusion and two approaches (magnetic and inertial confinement) which are being developed to achieve this goal are described. Safety issues associated…

  7. Fusion-fission hybrids for nuclear waste transmutation : a synergistic step between Gen-IV fission and fusion reactors.

    SciTech Connect

    Olson, Craig Lee; Mehlhorn, Thomas Alan; Cipiti, Benjamin B.; Rochau, Gary Eugene

    2007-09-01

    Energy demand and GDP per capita are strongly correlated, while public concern over the role of energy in climate change is growing. Nuclear power plants produce 16% of world electricity demands without greenhouse gases. Generation-IV advanced nuclear energy systems are being designed to be safe and economical. Minimizing the handling and storage of nuclear waste is important. NIF and ITER are bringing sustainable fusion energy closer, but a significant gap in fusion technology development remains. Fusion-fission hybrids could be a synergistic step to a pure fusion economy and act as a technology bridge. We discuss how a pulsed power-driven Z-pinch hybrid system producing only 20 MW of fusion yield can drive a sub-critical transuranic blanket that transmutes 1280 kg of actinide wastes per year and produces 3000 MW. These results are applicable to other inertial and magnetic fusion energy systems. A hybrid system could be introduced somewhat sooner because of the modest fusion yield requirements and can provide both a safe alternative to fast reactors for nuclear waste transmutation and a maturation path for fusion technology. The development and demonstration of advanced materials that withstand high-temperature, high-irradiation environments is a fundamental technology issue that is common to both fusion-fission hybrids and Generation-IV reactors.

  8. Cost assessment of a generic magnetic fusion reactor

    SciTech Connect

    Sheffield, J.; Dory, R.A.

    1984-01-01

    A generic magnetic fusion reactor model is used to determine the conditions under which electricity generation from fusion would be economically viable. The use of a generic model helps to circumvent problems associated with present perceptions of magnetic configurations. It helps also to decouple those limitations set by generic constraints such as nuclear cross sections from those set by the state of development today. The model shows that only moderate advances are required in reactor characteristics over current designs to make an economically attractive magnetic fusion reactor.

  9. Applying design principles to fusion reactor configurations for propulsion in space

    NASA Technical Reports Server (NTRS)

    Carpenter, Scott A.; Deveny, Marc E.; Schulze, Norman R.

    1993-01-01

    The application of fusion power to space propulsion requires rethinking the engineering-design solution to controlled-fusion energy. Whereas the unit cost of electricity (COE) drives the engineering-design solution for utility-based fusion reactor configurations; initial mass to low earth orbit (IMLEO), specific jet power (kW(thrust)/kg(engine)), and reusability drive the engineering-design solution for successful application of fusion power to space propulsion. We applied three design principles (DP's) to adapt and optimize three candidate-terrestrial-fusion-reactor configurations for propulsion in space. The three design principles are: provide maximum direct access to space for waste radiation, operate components as passive radiators to minimize cooling-system mass, and optimize the plasma fuel, fuel mix, and temperature for best specific jet power. The three candidate terrestrial fusion reactor configurations are: the thermal barrier tandem mirror (TBTM), field reversed mirror (FRM), and levitated dipole field (LDF). The resulting three candidate space fusion propulsion systems have their IMLEO minimized and their specific jet power and reusability maximized. We performed a preliminary rating of these configurations and concluded that the leading engineering-design solution to space fusion propulsion is a modified TBTM that we call the Mirror Fusion Propulsion System (MFPS).

  10. Code development incorporating environmental, safety, and economic aspects of fusion reactors (FY 89--91). Final report

    SciTech Connect

    Ho, S.K.; Fowler, T.K.; Holdren, J.P.

    1991-11-01

    This report discusses the following aspects of Fusion reactors.: Activation Analysis; Tritium Inventory; Environmental and Safety Indices and Their Graphical Representation; Probabilistic Risk Assessment (PRA) and Decision Analysis; Plasma Burn Control -- Application to ITER; and Other Applications.

  11. Alternative fusion concepts and the prospects for improved reactors

    NASA Astrophysics Data System (ADS)

    Krakowski, R. A.

    1985-05-01

    Past trends, present status, and future directions in the search for an improved fusion reactor are reviewed, and promising options available to both the principle tokamak and other supporting concept are summarized.

  12. Helium-3 blankets for tritium breeding in fusion reactors

    NASA Technical Reports Server (NTRS)

    Steiner, Don; Embrechts, Mark; Varsamis, Georgios; Vesey, Roger; Gierszewski, Paul

    1988-01-01

    It is concluded that He-3 blankets offers considerable promise for tritium breeding in fusion reactors: good breeding potential, low operational risk, and attractive safety features. The availability of He-3 resources is the key issue for this concept. There is sufficient He-3 from decay of military stockpiles to meet the International Thermonuclear Experimental Reactor needs. Extraterrestrial sources of He-3 would be required for a fusion power economy.

  13. 3D Neutronic Analysis in MHD Calculations at ARIES-ST Fusion Reactors Systems

    NASA Astrophysics Data System (ADS)

    Hançerliogulları, Aybaba; Cini, Mesut

    2013-10-01

    In this study, we developed new models for liquid wall (FW) state at ARIES-ST fusion reactor systems. ARIES-ST is a 1,000 MWe fusion reactor system based on a low aspect ratio ST plasma. In this article, we analyzed the characteristic properties of magnetohydrodynamics (MHD) and heat transfer conditions by using Monte-Carlo simulation methods (ARIES Team et al. in Fusion Eng Des 49-50:689-695, 2000; Tillack et al. in Fusion Eng Des 65:215-261, 2003) . In fusion applications, liquid metals are traditionally considered to be the best working fluids. The working liquid must be a lithium-containing medium in order to provide adequate tritium that the plasma is self-sustained and that the fusion is a renewable energy source. As for Flibe free surface flows, the MHD effects caused by interaction with the mean flow is negligible, while a fairly uniform flow of thick can be maintained throughout the reactor based on 3-D MHD calculations. In this study, neutronic parameters, that is to say, energy multiplication factor radiation, heat flux and fissile fuel breeding were researched for fusion reactor with various thorium and uranium molten salts. Sufficient tritium amount is needed for the reactor to work itself. In the tritium breeding ratio (TBR) >1.05 ARIES-ST fusion model TBR is >1.1 so that tritium self-sufficiency is maintained for DT fusion systems (Starke et al. in Fusion Energ Des 84:1794-1798, 2009; Najmabadi et al. in Fusion Energ Des 80:3-23, 2006).

  14. Heat transfer in inertial confinement fusion reactor systems

    SciTech Connect

    Hovingh, J.

    1980-04-23

    The short time and deposition distance for the energy from inertial fusion products results in local peak power densities on the order of 10/sup 18/ watts/m/sup 3/. This paper presents an overview of the various inertial fusion reactor designs which attempt to reduce these peak power intensities and describes the heat transfer considerations for each design.

  15. Fission-suppressed hybrid reactor: the fusion breeder

    SciTech Connect

    Moir, R.W.; Lee, J.D.; Coops, M.S.

    1982-12-01

    Results of a conceptual design study of a /sup 233/U-producing fusion breeder are presented. The majority of the study was devoted to conceptual design and evaluation of a fission-suppressed blanket and to fuel cycle issues such as fuel reprocessing, fuel handling, and fuel management. Studies in the areas of fusion engineering, reactor safety, and economics were also performed.

  16. Coatings and claddings for the reduction of plasma contamination and surface erosion in fusion reactors

    SciTech Connect

    Kaminsky, M.

    1980-01-01

    For the successful operation of plasma devices and future fusion reactors it is necessary to control plasma impurity release and surface erosion. Effective methods to obtain such controls include the application of protective coatings to, and the use of clad materials for, certain first wall components. Major features of the development programs for coatings and claddings for fusion applications will be described together with an outline of the testing program. A discussion of some pertinent test results will be included.

  17. Homopolar Gun for Pulsed Spheromak Fusion Reactors II

    SciTech Connect

    Fowler, T

    2004-06-14

    A homopolar gun is discussed that could produce the high currents required for pulsed spheromak fusion reactors even with unit current amplification and open field lines during injection, possible because close coupling between the gun and flux conserver reduces gun losses to acceptable levels. Example parameters are given for a gun compatible with low cost pulsed reactors and for experiments to develop the concept.

  18. Helium cryopumping for fusion applications

    SciTech Connect

    Sedgley, D.W.; Batzer, T.H.; Call, W.R.

    1988-05-01

    Large quantities of helium and hydrogen isotopes will be exhausted continuously from fusion power reactors. This paper summarizes two development programs undertaken to address vacuum pumping for this application: (i) A continuous duty cryopump for pumping helium and/or hydrogen species using charcoal sorbent and (ii) a cryopump configuration with an alternative shielding arrangement using charcoal sorbent or argon spray. A test program evaluated automatic pumping of helium, helium pumping by charcoal cryosorption and with argon spray, and cryosorption of helium/hydrogen mixtures. The continuous duty cryopump pumped helium continuously and conveniently. Helium pumping speed was 7.7 l/s/cm/sup 2/ of charcoal, compared to 5.8 l/s/cm/sup 2/ for the alternative pump. Helium speed using argon spray was 18% of that obtained by charcoal cryosorption in the same (W-panel) pump. During continuous duty cryopump mixture tests with helium and hydrogen copumped on charcoal, gas was released sporadically. Testing was insufficient to explain this unacceptable event.

  19. HYLIFE-2 inertial confinement fusion reactor design

    NASA Astrophysics Data System (ADS)

    Moir, Ralph W.

    1990-10-01

    The HYLIFE-II inertial fusion power plant design study uses a liquid fall, in the form of jets to protect the first structural wall from neutron damage, x rays, and blast to provide a 30-y lifetime. HYLIFE-I used liquid lithium. HYLIFE-II avoids the fire hazard of lithium by using a molten salt composed of fluorine, lithium, and beryllium (Li2BeF4) called Flibe. Access for heavy-ion beams is provided. Calculations for assumed heavy-ion beam performance show a nominal gain of 70 at 5 MJ producing 350 MJ, about 5.2 times less yield than the 1.8 GJ from a driver energy of 4.5 MJ with gain of 400 for HYLIFE-I. The nominal 1 GWe of power can be maintained by increasing the repetition rate by a factor of about 5.2, from 1.5 to 8 Hz. A higher repetition rate requires faster re-establishment of the jets after a shot, which can be accomplished in part by decreasing the jet fall height and increasing the jet flow velocity. Multiple chambers may be required. In addition, although not considered for HYLIFE-I, there is undoubtedly liquid splash that must be forcibly cleared because gravity is too slow, especially at high repetition rates. Splash removal can be accomplished by either pulsed or oscillating jet flows. The cost of electricity is estimated to be 0.09 $/kW h in constant 1988 dollars, about twice that of future coal and light water reactor nuclear power. The driver beam cost is about one-half the total cost.

  20. HYLIFE-2 inertial confinement fusion reactor design

    SciTech Connect

    Moir, R.W.

    1990-10-04

    The HYLIFE-II inertial fusion power plant design study uses a liquid fall, in the form of jets to protect the first structural wall from neutron damage, x-rays, and blast to provide a 30-y lifetime. HYLIFE-I used liquid lithium. HYLIFE-II avoids the fire hazard of lithium by using a molten salt composed of fluorine, lithium, and beryllium (Li{sub 2}BeF{sub 4}) called Flibe. Access for heavy-ion beams is provided. Calculations for assumed heavy-ion beam performance show a nominal gain of 70 at 5 MJ producing 350 MJ, about 5.2 times less yield than the 1.8 GJ from a driver energy of 4.5 MJ with gain of 400 for HYLIFE-I. The nominal 1 GWe of power can be maintained by increasing the repetition rate by a factor of about 5.2, from 1.5 to 8 Hz. A higher repetition rate requires faster re-establishment of the jets after a shot, which can be accomplished in part by decreasing the jet fall height and increasing the jet flow velocity. Multiple chambers may be required. In addition, although not considered for HYLIFE-I, there is undoubtedly liquid splash that must be forcibly cleared because gravity is too slow, especially at high repetition rates. Splash removal can be accomplished by either pulsed or oscillating jet flows. The cost of electricity is estimated to be 0.09$/kW{center dot}h in constant 1988 dollars, about twice that of future coal and light water reactor nuclear power. The driver beam cost is about one-half the total cost. 12 refs., 9 figs., 5 tabs.

  1. SABR fusion-fission hybrid transmutation reactor design concept

    NASA Astrophysics Data System (ADS)

    Stacey, Weston

    2009-11-01

    A conceptual design has been developed for a sub-critical advanced burner reactor (SABR) consisting of i) a sodium cooled fast reactor fueled with the transuranics (TRU) from spent nuclear fuel, and ii) a D-T tokamak fusion neutron source based on ITER physics and technology. Subcritical operation enables more efficient transmutation fuel cycles in TRU fueled reactors (without compromising safety), which may be essential for significant reduction in high-level waste repository requirements. ITER will serve as the prototype for the fusion neutron source, which means SABRs could be implemented to help close the nuclear fuel cycle during the 2^nd quarter of the century.

  2. Design study of a G-band FEL amplifier for application to cyclotron resonant heating in magnetic fusion reactors

    NASA Astrophysics Data System (ADS)

    Freund, H. P.; Read, M. E.; Jackson, R. H.; Pershing, D. E.; Taccetti, J. M.

    1995-04-01

    A G-band (140-150 GHz) free-electron laser is described using a coaxial hybrid iron (CHI) wiggler. The CHI wiggler is produced by insertion into a solenoid of a central rod and an outer ring composed of alternating ferrite and nonferrite spacers. The position of the spacers is such that the ferrite (nonferrite) spacers on the central rod are opposite the nonferrite (ferrite) spacers on the outer ring. The field is cylindrically symmetric and exhibits minima in the center of the gap providing for enhanced beam focusing. We describe a tapered wiggler amplifier for plasma heating applications. Preliminary design studies using a nonlinear simulation indicates that output powers of 3.5 MW are possible using a 690 kV/40 A electron beam for a total efficiency of 13%. It is important to note that no beam loss was observed even for realistic values of beam energy spread.

  3. Plasma transport control and self-sustaining fusion reactor

    SciTech Connect

    Ono, M.; Bell, R.; Choe, W.

    1997-02-01

    The possibility of a high performance/low cost fusion reactor concept which can simultaneously satisfy (1) high beta, (2) high bootstrap fraction (self-sustaining), and (3) high confinement is discussed. In CDX-U, a tokamak configuration was created and sustained solely by internally generated bootstrap currents, in which a seed current is created through a non-classical current diffusion process. Recent theoretical studies of MHD stability limits in spherical torus [e.g., the National Spherical Torus Experiment (NSTX)] produced a promising regime with stable beta of 45% and bootstrap current fraction of {ge}99%. Since the bootstrap current is generated by the pressure gradient, to satisfy the needed current profile for MHD stable high beta regimes, it is essential to develop a means to control the pressure profile. It is suggested that the most efficient approach for pressure profile control is through a creation of transport barriers (localized regions of low plasma transport) in the plasma. As a tool for creating the core transport barrier, poloidal-sheared-flow generation by ion Bernstein waves (IBW) near the wave absorption region appears to be promising. In PBX-M, application of IBW power produced a high-quality internal transport barrier where the ion energy and particle transport became neoclassical in the barrier region. The observation is consistent with the IBW-induced-poloidal-sheared-flow model. An experiment is planned on TFTR to demonstrate this concept with D-T reactor-grade plasmas. For edge transport control, a method based on electron ripple injection (ERI), driven by electron cyclotron heating (ECH), is being developed on CDX-U. It is estimated that both the IBW and ERI methods can create a transport barrier in reactor-grade plasmas (e.g., ITER) with a relatively small amount of power ({approx}10 MW {much_lt} P{sub fusion}).

  4. Flibe use in fusion reactors -- An initial safety assessment

    SciTech Connect

    Cadwallader, L.C.; Longhurst, G.R.

    1999-03-01

    This report is an initial effort to identify and evaluate safety issues associated with the use of Flibe (LiF-BeF{sub 2}) as a molten salt coolant for nuclear fusion power plant applications. Flibe experience in the Molten Salt Reactor Experiment is briefly reviewed. Safety issues identified include chemical toxicity, radiological issues resulting from neutron activation, and the operational concerns of handling a high temperature coolant. Beryllium compounds and fluorine pose be toxicological concerns. Some controls to protect workers are discussed. Since Flibe has been handled safely in other applications, its hazards appear to be manageable. Some safety issues that require further study are pointed out. Flibe salt interaction with strong magnetic fields should be investigated. Evolution of Flibe constituents and activation products at high temperature (i.e., will Fluorine release as a gas or remain in the molten salt) is an issue. Aerosol and tritium release from a Flibe spill requires study, as does neutronics analysis to characterize radiological doses. Tritium migration from Flibe into the cooling system is also a safety concern. Investigation of these issues will help determine the extent to which Flibe shows promise as a fusion power plant coolant or plasma-facing material.

  5. Flibe Use in Fusion Reactors - An Initial Safety Assessment

    SciTech Connect

    Cadwallader, Lee Charles; Longhurst, Glen Reed

    1999-04-01

    This report is an initial effort to identify and evaluate safety issues associated with the use of Flibe (LiF-BeF2) as a molten salt coolant for nuclear fusion power plant applications. Flibe experience in the Molten Salt Reactor Experiment is briefly reviewed. Safety issues identified include chemical toxicity, radiological issues resulting from neutron activation, and the operational concerns of handling a high temperature coolant. Beryllium compounds and fluorine pose be toxicological concerns. Some controls to protect workers are discussed. Since Flibe has been handled safely in other applications, its hazards appear to be manageable. Some safety issues that require further study are pointed out. Flibe salt interaction with strong magnetic fields should be investigated. Evolution of Flibe constituents and activation products at high temperature (i.e., will Fluorine release as a gas or remain in the molten salt) is an issue. Aerosol and tritium release from a Flibe spill requires study, as does neutronics analysis to characterize radiological doses. Tritium migration from Flibe into the cooling system is also a safety concern. Investigation of these issues will help determine the extent to which Flibe shows promise as a fusion power plant coolant or plasma-facing material.

  6. Alloy development for irradiation performance in fusion reactors

    NASA Astrophysics Data System (ADS)

    Harling, O. K.; Grant, N. J.

    1980-12-01

    The development of improved structural alloys for the fusion reactor first wall application is addressed. Several new alloys were produced by rapid solidification. Emphasis in alloy design and production was placed on producing austenitic Type 316SS with fine dispersions of TiC and Al2O3 particles. Results of mechanical and microstructural tests are presented. A number of neutron irradiations were initiated on samples fabricated from alloys produced. A dual beam, heavy ion, and helium ion, irradiation was completed using several alloys and a range of temperatures, damage rates, and total doses. Modeling of irradiation phenomena was continued with emphasis on understanding the effect of recoil resolution on relatively stable second phase particles. The microstructure of several ZrB2 doped stainless steels was characterized.

  7. Evaluation of performance of select fusion experiments and projected reactors

    NASA Technical Reports Server (NTRS)

    Miley, G. H.

    1978-01-01

    The performance of NASA Lewis fusion experiments (SUMMA and Bumpy Torus) is compared with other experiments and that necessary for a power reactor. Key parameters cited are gain (fusion power/input power) and the time average fusion power, both of which may be more significant for real fusion reactors than the commonly used Lawson parameter. The NASA devices are over 10 orders of magnitude below the required powerplant values in both gain and time average power. The best experiments elsewhere are also as much as 4 to 5 orders of magnitude low. However, the NASA experiments compare favorably with other alternate approaches that have received less funding than the mainline experiments. The steady-state character and efficiency of plasma heating are strong advantages of the NASA approach. The problem, though, is to move ahead to experiments of sufficient size to advance in gain and average power parameters.

  8. The TITAN Reversed-Field Pinch fusion reactor study

    SciTech Connect

    Not Available

    1988-03-01

    The TITAN Reversed-Field Pinch (RFP) fusion reactor study is a multi-institutional research effort to determine the technical feasibility and key developmental issues of an RFP fusion reactor, especially at high power density, and to determine the potential economics, operations, safety, and environmental features of high-mass-power-density fusion systems. The TITAN conceptual designs are DT burning, 1000 MWe power reactors based on the RFP confinement concept. The designs are compact, have a high neutron wall loading of 18 MW/m{sup 2} and a mass power density of 700 kWe/tonne. The inherent characteristics of the RFP confinement concept make fusion reactors with such a high mass power density possible. Two different detailed designs have emerged: the TITAN-I lithium-vanadium design, incorporating the integrated-blanket-coil concept; and the TITAN-II aqueous loop-in-pool design with ferritic steel structure. This report contains a collection of 16 papers on the results of the TITAN study which were presented at the International Symposium on Fusion Nuclear Technology. This collection describes the TITAN research effort, and specifically the TITAN-I and TITAN-II designs, summarizing the major results, the key technical issues, and the central conclusions and recommendations. Overall, the basic conclusions are that high-mass power-density fusion reactors appear to be technically feasible even with neutron wall loadings up to 20 MW/m{sup 2}; that single-piece maintenance of the FPC is possible and advantageous; that the economics of the reactor is enhanced by its compactness; and the safety and environmental features need not to be sacrificed in high-power-density designs. The fact that two design approaches have emerged, and others may also be possible, in some sense indicates the robustness of the general findings.

  9. Fission-suppressed blankets for fissile fuel breeding fusion reactors

    NASA Astrophysics Data System (ADS)

    Lee, J. D.; Moir, R. W.

    1981-07-01

    Two blanket concepts for deuterium-tritium (DT) fusion reactors are presented which maximize fissile fuel production while at the same time suppress fission reactions. By suppressing fission reactions, the reactor will be less hazardous, and therefore easier to design, develop, and license. A fusion breeder operating a given nuclear power level can produce much more fissile fuel by suppressing fission reactions. The two blankets described use beryllium for neutron multiplication. One blanket uses two separate circulating molten salts: one salt for tritium breeding and the other salt for U-233 breeding. The other uses separate solid forms of lithium and thorium for breeding and helium for cooling.

  10. Overview of the Lockheed Martin Compact Fusion Reactor (CFR) Program

    NASA Astrophysics Data System (ADS)

    McGuire, Thomas

    2015-11-01

    The Lockheed Martin Compact Fusion Reactor (CFR) Program endeavors to quickly develop a compact fusion power plant with favorable commercial economics and military utility. An overview of the concept and its diamagnetic, high beta magnetically encapsulated linear ring cusp confinement scheme will be given. The analytical model of the major loss mechanisms and predicted performance will be discussed, along with the major physics challenges. Key features of an operational CFR reactor will be highlighted. The proposed developmental path following the current experimental efforts will be presented. ©2015 Lockheed Martin Corporation. All Rights Reserved.

  11. Argon frost continuous cryopump for fusion applications

    SciTech Connect

    Foster, C.A.; McCurdy, H.C.

    1993-12-01

    A cryopumping system based on the snail continuous cryopump concept is being developed for fusion applications under a DOE SBIR grant. The primary pump is a liquid helium cooled compound pump designed to continuously pump and fractionate deuterium/tritium and helium. The D/T pumping stage is a 500 mm bore cryocondensation pump with a nominal pumping speed of 45,000 L/s. It will be continuously regenerated by a snail regeneration by head every 12 minutes. Continuous regeneration will dramatically reduce the vulnerable tritium inventory in a fusion reactor. Operating at an inlet pressure of 1 millitorr, eight of these pumps could pump the projected D/T flow in the ITER CDA design while reducing the inventory of tritium in the pumping system from 630 to 43 grams. The helium fraction will be pumped in a compound argon frost stage. This stage will also operate continuously with a snail regeneration head. In addition the argon spray head will be enclosed inside the snail, thereby removing gaseous argon from the process chamber. Since the cryocondensation stage will intercept over 90% of the D/T/H steam, a purified stream from this stage could be directly reinjected into the plasma as gas or pellets, thereby bypassing the isotope separation system and further simplifying the fuel cycle. Experiments were undertaken in Phase I which demonstrated continuous cryosorption pumping of hydrogen on CO{sub 2} and argon frosts. The pumping system and its relevance to fusion reactor pumping will be discussed.

  12. Using reactor operating experience to improve the design of a new Broad Application Test Reactor

    SciTech Connect

    Fletcher, C.D.; Ryskamp, J.M.; Drexler, R.L.; Leyse, C.F.

    1993-07-01

    Increasing regulatory demands and effects of plant aging are limiting the operation of existing test reactors. Additionally, these reactors have limited capacities and capabilities for supporting future testing missions. A multidisciplinary team of experts developed sets of preliminary safety requirements, facility user needs, and reactor design concepts for a new Broad Application Test Reactor (BATR). Anticipated missions for the new reactor include fuels and materials irradiation testing, isotope production, space testing, medical research, fusion testing, intense positron research, and transmutation doping. The early BATR design decisions have benefited from operating experiences with existing reactors. This paper discusses these experiences and highlights their significance for the design of a new BATR.

  13. Fusion energy calorimeter for the tokamak fusion test reactor

    SciTech Connect

    Jassby, D.L.; Imel, G.R.

    1981-04-01

    One and two-dimensional neutronic analyses treating the transport and scattering of neutrons and the production and transport of gamma rays in the TFTR demonstrate that the fusion energy production in a D-T pulse in the TFTR can be determined with an uncertainty of +- 15% or less, simply by integrating the measured profile of temperature increase along the central radial axis of a large hydrocarbon moderator that fills the bay between adjacent toroidal-field coils, just outside the vacuum vessel. Limitations in thermopile temperature measurements dictate a minimum fusion-neutron fluence at the vacuum vessel of the order of 10/sup 12/ n/cm/sup 2/ per pulse (a source strength of 10/sup 18/ n/pulse in TFTR), in order that this simple calorimeter can provide useful accuracy.

  14. Inertial-fusion-reactor studies at Lawrence Livermore National Laboratory

    SciTech Connect

    Monsler, M.J.; Meier, W.R.

    1982-08-01

    We present results of our reactor studies for inertial-fusion energy production. Design studies of liquid-metal wall chambers have led to reactors that are remarkably simple in design, and that promise long life and low cost. Variants of the same basic design, called HYLIFE, can be used for electricity production, as a fissile-fuel factory, a dedicated tritium breeder, or hybrids of each.

  15. An evaluation of fusion gain in the compact helical fusion reactor FFHR-c1

    NASA Astrophysics Data System (ADS)

    Miyazawa, J.; Goto, T.; Sakamoto, R.; Sagara, A.; the FFHR Design Group

    2014-01-01

    A new procedure to predict achievable fusion gain in a sub-ignition fusion reactor is proposed. This procedure uses the direct profile extrapolation (DPE) method based on the gyro-Bohm model. The DPE method has been developed to predict the radial profiles in a fusion reactor sustained without auxiliary heating (i.e., in the self-ignition state) from the experimental data. To evaluate the fusion gain in a fusion reactor sustained with auxiliary heating (i.e., in the sub-ignition state), the DPE method is modified to include the influence of the auxiliary heating. The beta scale factor from experiment to reactor is assumed to be 1. Under this assumption, it becomes reasonable to apply the magnetohydrodynamic (MHD) equilibrium (which is calculated to reproduce the experimental data) to the reactor. At the same time, the MHD stability of the reactor plasma is also guaranteed to a certain extent since that beta was already proven in the experiment. The fusion gain in the helical type nuclear test machine FFHR-c1 has been evaluated using this modified DPE method. FFHR-c1 is basically a large duplication of the Large Helical Device (LHD) with a scale factor of 10/3, which corresponds to the major radius of the helical coils of 13.0 m and the plasma volume of ∼1000 m3. Two options with different magnetic field strengths are considered. The fusion gain in FFHR-c1 extrapolated from a set of radial profile data obtained in LHD ranges from 1 to 7, depending on the profiles used together with the assumptions of the magnetic field strength and the alpha heating efficiency.

  16. The neutronics studies of fusion fission hybrid power reactor

    SciTech Connect

    Zheng Youqi; Wu Hongchun; Zu Tiejun; Yang Chao; Cao Liangzhi

    2012-06-19

    In this paper, a series of neutronics analysis of hybrid power reactor is proposed. The ideas of loading different fuels in a modular-type fission blanket is analyzed, fitting different level of fusion developments, i.e., the current experimental power output, the level can be obtained in the coming future and the high-power fusion reactor like ITER. The energy multiplication of fission blankets and tritium breeding ratio are evaluated as the criterion of design. The analysis is implemented based on the D-type simplified model, aiming to find a feasible 1000MWe hybrid power reactor for 5 years' lifetime. Three patterns are analyzed: 1) for the low fusion power, the reprocessed fuel is chosen. The fuel with high plutonium content is loaded to achieve large energy multiplication. 2) For the middle fusion power, the spent fuel from PWRs can be used to realize about 30 times energy multiplication. 3) For the high fusion power, the natural uranium can be directly used and about 10 times energy multiplication can be achieved.

  17. Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    SciTech Connect

    E. Perry; J. Chrzanowski; K. Rule; M. Viola; M. Williams; R. Strykowsky

    1999-11-01

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. The Decontamination and Decommissioning (D and D) of the TFTR is scheduled to occur over a period of three years beginning in October 1999. This is not a typical Department of Energy D and D Project where a facility is isolated and cleaned up by ''bulldozing'' all facility and hardware systems to a greenfield condition. The mission of TFTR D and D is to: (a) surgically remove items which can be re-used within the DOE complex, (b) remove tritium contaminated and activated systems for disposal, (c) clear the test cell of hardware for future reuse, (d) reclassify the D-site complex as a non-nuclear facility as defined in DOE Order 420.1 (Facility Safety) and (e) provide data on the D and D of a large magnetic fusion facility. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The record-breaking deuterium-tritium experiments performed on TFTR resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 Mev neutrons. The total tritium content within the vessel is in excess of 7,000 Curies while dose rates approach 75 mRem/hr. These radiological hazards along with the size and shape of the Tokamak present a unique and challenging task for dismantling.

  18. Plasma transport control and self-sustaining fusion reactor

    SciTech Connect

    Ono, M.; Peng, Yueng Kay Martin

    1997-01-01

    The possibility of a high-performance/low-cost fusion reactor concept which can simultaneously satisfy (1) high beta, (2) high bootstrap fractio (self-sustaining) and (3) high confinement is discussed. In CDX-U, a tokamak configuration was created and sustained solely by internally generated bootstrap currents, in which a seed current is created through a nonclassical current diffusion process. Recent theoretical studies of MHD stability limits in spherical tori [e.g. the National Spherical Torus Experiment (NSTX)] produced a promising regime with stable beta of 45% and bootstrap current fraction of > 99%. Since the bootstrap current is generated by the pressure gradient, to satisfy the needed current profile for MHD stable high beta regimes, it is essential to develop a means to control the pressure profile. It is suggested that the most efficient approach for pressure profile control is through the creation of transport barriers (localized regions of low plasma transport) in the plasma. As a tool for creating the core transport barrier, poloidal-sheared-flow generation by ion Bernstein waves (IBW) near the wave absorption region appears to be promising. In PBX-M, application of IBW power produced a high-quality internal transport barrier where the ion energy and particle transport became neoclassical in the barrier region. The observation is consistent with the IBW-inducedpoloidal- sheared-flow model. An experiment is planned on TFTR to demonstrate this concept with D T reactor-grade plasmas. For edge transport control, a method based on electron ripple injection (ERI), driven by electron cyclotron heating (ECH), is being developed on CDX-U. It is estimated that both the IBW and ERI methods can create a transport barrier in reactor-grade plasmas (e.g. ITER) with a relatively small amount of power ( 10 MW Pfusion).

  19. Principles and rationale of the Fusion-Fission Hybrid burner reactor

    NASA Astrophysics Data System (ADS)

    Stacey, Weston M.

    2012-06-01

    The potential advantages of Fusion-Fission Hybrid (FFH) reactors (relative to critical fast reactors) for closing the back end of the nuclear fuel cycle are discussed. The choices of fission and fusion technologies for FFH burner reactors that would fission the transuranics remaining in spent fuel discharged from nuclear power reactors are summarized. The conceptual design and fuel cycle performance of the SABR FFH burner reactor are presented, and a fusion power development schedule with a symbiotic dual FFH path is outlined.

  20. Plasma transport control and self-sustaining fusion reactor

    NASA Astrophysics Data System (ADS)

    Ono, M.; Bell, R.; Choe, W.; Chang, C. S.; Forest, C. B.; Goldston, R.; Hwang, Y. S.; Jardin, S. C.; Kaita, R.; Kaye, S.; Kessel, C. E.; Kugel, H.; LeBlanc, B.; Manickam, J.; Menard, J. E.; Munsat, T.; Okabayashi, M.; Peng, M.; Sesnic, S.; Tighe, W.

    1997-05-01

    The possibility of a high-performance/low-cost fusion reactor concept which can simultaneously satisfy (1) high beta, (2) high bootstrap fractio (self-sustaining) and (3) high confinement is discussed. In CDX-U, a tokamak configuration was created and sustained solely by internally generated bootstrap currents, in which a 'seed' current is created through a nonclassical current diffusion process. Recent theoretical studies of MHD stability limits in spherical tori [e.g. the National Spherical Torus Experiment (NSTX)] produced a promising regime with stable beta of 45% and bootstrap current fraction of $\\ge$ 99%application of IBW power produced a high-quality internal transport barrier where the ion energy and particle transport became neoclassical in the barrier region. The observation is consistent with the IBW-induced-poloidal-sheared-flow model. An experiment is planned on TFTR to demonstrate this concept with D - T reactor-grade plasmas. For edge transport control, a method based on electron ripple injection (ERI), driven by electron cyclotron heating (ECH), is being developed on CDX-U. It is estimated that both the IBW and ERI methods can create a transport barrier in reactor-grade plasmas (e.g. ITER) with a relatively small amount of power $(\\approx 10 MW \\ll P_{<span class=fusion})$" SRC="http://www.iop.org/0741-3335/39/5A/033/img2

  1. Future engineering needs of mirror fusion reactors

    SciTech Connect

    Thomassen, K.I.

    1982-07-30

    Fusion research has matured during the last decade and significant insight into the future program needs has emerged. While some will properly note that the crystal ball is cloudy, it is equally important to note that the shape and outline of our course is discernable. In this short summary paper, I will draw upon the National Mirror Program Plan for mirror projects and on available design studies of these projects to put the specific needs of the mirror program in perspective.

  2. Application of polarized nuclei to fusion

    SciTech Connect

    Kulsrud, R.M.

    1987-07-01

    It is shown that the d-t fusion reaction can be modified by polarizing nuclear spins. The ways in which this improves reactor performance are mentioned and the feasibility of the process of spin polarization for magnetic fusion is discussed. 18 refs.

  3. Modular stellarator reactor: a fusion power plant

    SciTech Connect

    Miller, R.L.; Bathke, C.G.; Krakowski, R.A.; Heck, F.M.; Green, L.; Karbowski, J.S.; Murphy, J.H.; Tupper, R.B.; DeLuca, R.A.; Moazed, A.

    1983-07-01

    A comparative analysis of the modular stellarator and the torsatron concepts is made based upon a steady-state ignited, DT-fueled, reactor embodiment of each concept for use as a central electric-power station. Parametric tradeoff calculations lead to the selection of four design points for an approx. 4-GWt plant based upon Alcator transport scaling in l = 2 systems of moderate aspect ratio. The four design points represent high-aspect ratio. The four design points represent high-(0.08) and low-(0.04) beta versions of the modular stellarator and torsatron concepts. The physics basis of each design point is described together with supporting engineering and economic analyses. The primary intent of this study is the elucidation of key physics and engineering tradeoffs, constraints, and uncertainties with respect to the ultimate power reactor embodiment.

  4. Diamond Wire Cutting of the Tokamak Fusion Test Reactor

    SciTech Connect

    Keith Rule; Erik Perry; Robert Parsells

    2003-01-31

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. As a result, decommissioning commenced in October 1999. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The deuterium-tritium experiments resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 MeV neutrons. The total tritium content within the vessel is in excess of 7,000 Curies, while dose rates approach 50 mRem/hr. These radiological hazards along with the size of the tokamak present a unique and challenging task for dismantling. Engineers at the Princeton Plasma Physics Laboratory (PPPL) decided to investigate an alternate, innovative approach for dismantlement of the TFTR vacuum vessel: diamond wire cutting technology. In August 1999, this technology was successfully demonstrated and evaluated on vacuum vessel surrogates. Subsequently, the technology was improved and redesigned for the actual cutting of the vacuum vessel. Ten complete cuts were performed in a 6-month period to complete the removal of this unprecedented type of D&D (Decontamination and Decommissioning) activity.

  5. Elevated temperature properties of SiC-fibre reinforced CuCr1Zr, a candidate heat sink material for application in fusion reactors

    NASA Astrophysics Data System (ADS)

    Peters, P. W. M.; Hemptenmacher, J.; Muchilo, D.

    2007-03-01

    In experimental fusion reactors the copper alloy CuCr1Zr is a widely used alloy for heat sinks. The thermal conductivity at room temperature of this alloy measures 370 W m-1K-1. Its room temperature mechanical properties with a tensile strength of 400-470 MPa and a yield stress of 280-380 MPa are based on a dispersion hardening and an aging treatment. The long-term temperature capability is however limited due to an overaging effect taking place in the temperature range of roughly 350 °C up to an aging temperature of 480 °C. A possibile way to improve the properties at elevated temperatures is by embedding stiff, strong fibres, e.g. SiC-fibres. In the present study, the mechanical behaviour of SiC-fibre reinforced CuCr1Zr is determined at 550 °C and compared with the room temperature properties. The thermal conductivity is considerably reduced by embedding SiC-fibres. From measured values of the thermal conductivity of the composite material the axial thermal conductivity of the SiC-fibre can be roughly estimated to be 16 W m-1K-1.

  6. Overview of Indian activities on fusion reactor materials

    NASA Astrophysics Data System (ADS)

    Banerjee, Srikumar

    2014-12-01

    This paper on overview of Indian activities on fusion reactor materials describes in brief the efforts India has made to develop materials for the first wall of a tokamak, its blanket and superconducting magnet coils. Through a systematic and scientific approach, India has developed and commercially produced reduced activation ferritic/martensitic (RAFM) steel that is comparable to Eurofer 97. Powder of low activation ferritic/martensitic oxide dispersion strengthened steel with characteristics desired for its application in the first wall of a tokamak has been produced on the laboratory scale. V-4Cr-4Ti alloy was also prepared in the laboratory, and kinetics of hydrogen absorption in this was investigated. Cu-1 wt%Cr-0.1 wt%Zr - an alloy meant for use as heat transfer elements for hypervapotrons and heat sink for the first wall - was developed and characterized in detail for its aging behavior. The role of addition of a small quantity of Zr in its improved fatigue performance was delineated, and its diffusion bonding with both W and stainless steel was achieved using Ni as an interlayer. The alloy was produced in large quantities and used for manufacturing both the heat transfer elements and components for the International Thermonuclear Experimental Reactor (ITER). India has proposed to install and test a lead-lithium cooled ceramic breeder test blanket module (LLCB-TBM) at ITER. To meet this objective, efforts have been made to produce and characterize Li2TiO3 pebbles, and also improve the thermal conductivity of packed beds of these pebbles. Liquid metal loops have been set up and corrosion behavior of RAFM steel in flowing Pb-Li eutectic has been studied in the presence as well as absence of magnetic fields. To prevent permeation of tritium and reduce the magneto-hydro-dynamic drag, processes have been developed for coating alumina on RAFM steel. Apart from these activities, different approaches being attempted to make the U-shaped first wall of the TBM box

  7. Development of fusion blanket technology for the DEMO reactor.

    PubMed

    Colling, B R; Monk, S D

    2012-07-01

    The viability of various materials and blanket designs for use in nuclear fusion reactors can be tested using computer simulations and as parts of the test blanket modules within the International Thermonuclear Experimental Reactor (ITER) facility. The work presented here focuses on blanket model simulations using the Monte Carlo simulation package MCNPX (Computational Physics Division Los Alamos National Laboratory, 2010) and FISPACT (Forrest, 2007) to evaluate the tritium breeding capability of a number of solid and liquid breeding materials. The liquid/molten salt breeders are found to have the higher tritium breeding ratio (TBR) and are to be considered for further analysis of the self sufficiency timing.

  8. Development of fusion blanket technology for the DEMO reactor.

    PubMed

    Colling, B R; Monk, S D

    2012-07-01

    The viability of various materials and blanket designs for use in nuclear fusion reactors can be tested using computer simulations and as parts of the test blanket modules within the International Thermonuclear Experimental Reactor (ITER) facility. The work presented here focuses on blanket model simulations using the Monte Carlo simulation package MCNPX (Computational Physics Division Los Alamos National Laboratory, 2010) and FISPACT (Forrest, 2007) to evaluate the tritium breeding capability of a number of solid and liquid breeding materials. The liquid/molten salt breeders are found to have the higher tritium breeding ratio (TBR) and are to be considered for further analysis of the self sufficiency timing. PMID:22112596

  9. Present Status of Vanadium Alloys for Fusion Applications

    SciTech Connect

    Muroga, Takeo; Chen, J. M.; Chernov, V. M.; Kurtz, Richard J.; Le Flem, M.

    2014-12-01

    Vanadium alloys are advanced options for low activation structural materials. After more than two decades of research, V-4Cr-4Ti has been emerged as the leading candidate, and technological progress has been made in reducing the number of critical issues for application of vanadium alloys to fusion reactors. Notable progress has been made in fabricating alloy products and weld joints without degradation of properties. Various efforts are also being made to improve high temperature strength and creep-rupture resistance, low temperature ductility after irradiation, and corrosion resistance in blanket conditions. Future research should focus on clarifying remaining uncertainty in the operating temperature window of V-4Cr-4Ti for application to near to middle term fusion blanket systems, and on further exploration of advanced materials for improved performance for longer-term fusion reactor systems.

  10. Frontier of Fusion Research: Path to the Steady State Fusion Reactor by Large Helical Device

    NASA Astrophysics Data System (ADS)

    Motojima, Osamu

    2006-12-01

    The ITER, the International Thermonuclear Experimental Reactor, which will be built in Cadarache in France, has finally started this year, 2006. Since the thermal energy produced by fusion reactions divided by the external heating power, i.e., the Q value, will be larger than 10, this is a big step of the fusion research for half a century trying to tame the nuclear fusion for the 6.5 Billion people on the Earth. The source of the Sun's power is lasting steadily and safely for 8 Billion years. As a potentially safe environmentally friendly and economically competitive energy source, fusion should provide a sustainable future energy supply for all mankind for ten thousands of years. At the frontier of fusion research important milestones are recently marked on a long road toward a true prototype fusion reactor. In its own merits, research into harnessing turbulent burning plasmas and thereby controlling fusion reaction, is one of the grand challenges of complex systems science. After a brief overview of a status of world fusion projects, a focus is given on fusion research at the National Institute for Fusion Science (NIFS) in Japan, which is playing a role of the Inter University Institute, the coordinating Center of Excellence for academic fusion research and by the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility. The current status of LHD project is presented focusing on the experimental program and the recent achievements in basic parameters and in steady state operations. Since, its start in a year 1998, a remarkable progress has presently resulted in the temperature of 140 Million degree, the highest density of 500 Thousand Billion/cc with the internal density barrier (IDB) and the highest steady average beta of 4.5% in helical plasma devices and the largest total input energy of 1.6 GJ, in all magnetic confinement fusion devices. Finally, a perspective is given of the ITER Broad Approach program

  11. Frontier of Fusion Research: Path to the Steady State Fusion Reactor by Large Helical Device

    SciTech Connect

    Motojima, Osamu

    2006-12-01

    The ITER, the International Thermonuclear Experimental Reactor, which will be built in Cadarache in France, has finally started this year, 2006. Since the thermal energy produced by fusion reactions divided by the external heating power, i.e., the Q value, will be larger than 10, this is a big step of the fusion research for half a century trying to tame the nuclear fusion for the 6.5 Billion people on the Earth. The source of the Sun's power is lasting steadily and safely for 8 Billion years. As a potentially safe environmentally friendly and economically competitive energy source, fusion should provide a sustainable future energy supply for all mankind for ten thousands of years. At the frontier of fusion research important milestones are recently marked on a long road toward a true prototype fusion reactor. In its own merits, research into harnessing turbulent burning plasmas and thereby controlling fusion reaction, is one of the grand challenges of complex systems science.After a brief overview of a status of world fusion projects, a focus is given on fusion research at the National Institute for Fusion Science (NIFS) in Japan, which is playing a role of the Inter University Institute, the coordinating Center of Excellence for academic fusion research and by the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility. The current status of LHD project is presented focusing on the experimental program and the recent achievements in basic parameters and in steady state operations. Since, its start in a year 1998, a remarkable progress has presently resulted in the temperature of 140 Million degree, the highest density of 500 Thousand Billion/cc with the internal density barrier (IDB) and the highest steady average beta of 4.5% in helical plasma devices and the largest total input energy of 1.6 GJ, in all magnetic confinement fusion devices. Finally, a perspective is given of the ITER Broad Approach program

  12. Hydrogen isotopes transport parameters in fusion reactor materials

    NASA Astrophysics Data System (ADS)

    Serra, E.; Benamati, G.; Ogorodnikova, O. V.

    1998-06-01

    This work presents a review of hydrogen isotopes-materials interactions in various materials of interest for fusion reactors. The relevant parameters cover mainly diffusivity, solubility, trap concentration and energy difference between trap and solution sites. The list of materials includes the martensitic steels (MANET, Batman and F82H-mod.), beryllium, aluminium, beryllium oxide, aluminium oxide, copper, tungsten and molybdenum. Some experimental work on the parameters that describe the surface effects is also mentioned.

  13. Characterization of the axial plasma shock in a table top plasma focus after the pinch and its possible application to testing materials for fusion reactors

    SciTech Connect

    Soto, Leopoldo Pavez, Cristian; Moreno, José; Inestrosa-Izurieta, María José; Veloso, Felipe; Gutiérrez, Gonzalo; Vergara, Julio; Clausse, Alejandro; Bruzzone, Horacio; Castillo, Fermín; and others

    2014-12-15

    The characterization of plasma bursts produced after the pinch phase in a plasma focus of hundreds of joules, using pulsed optical refractive techniques, is presented. A pulsed Nd-YAG laser at 532 nm and 8 ns FWHM pulse duration was used to obtain Schlieren images at different times of the plasma dynamics. The energy, interaction time with a target, and power flux of the plasma burst were assessed, providing useful information for the application of plasma focus devices for studying the effects of fusion-relevant pulses on material targets. In particular, it was found that damage factors on targets of the order of 10{sup 4} (W/cm{sup 2})s{sup 1/2} can be obtained with a small plasma focus operating at hundred joules.

  14. Thermonuclear Fusion Research Progress and the Way to the Reactor

    NASA Astrophysics Data System (ADS)

    Koch, Raymond

    2006-06-01

    The paper reviews the progress of fusion research and its prospects for electricity generation. It starts with a reminder of the principles of thermonuclear fusion and a brief discussion of its potential role in the future of the world energy production. The reactions allowing energy production by fusion of nuclei in stars and on earth and the conditions required to sustain them are reviewed. At the high temperatures required for fusion (hundred millions kelvins), matter is completely ionized and has reached what is called its 4th state: the plasma state. The possible means to achieve these extreme temperatures is discussed. The remainder of the paper focuses on the most promising of these approaches, magnetic confinement. The operating principles of the presently most efficient machine of this type — the tokamak — is described in some detail. On the road to producing energy with fusion, a number of obstacles have to be overcome. The plasma, a fluid that reacts to electromagnetic forces and carries currents and charges, is a complex medium. Fusion plasma is strongly heated and is therefore a good example of a system far from equilibrium. A wide variety of instabilities can grow in this system and lead to self-organized structures and spontaneous cycles. Turbulence is generated that degrades the confinement and hinders easy achievement of long lasting hot plasmas. Physicists have learned how to quench turbulence, thereby creating sort of insulating bottles inside the plasma itself to circumvent this problem. The recent history of fusion performance is outlined and the prospect of achieving power generation by fusion in a near future is discussed in the light of the development of the "International Tokamak Experimental Reactor" project ITER.

  15. On the fusion triple product and fusion power gain of tokamak pilot plants and reactors

    NASA Astrophysics Data System (ADS)

    Costley, A. E.

    2016-06-01

    The energy confinement time of tokamak plasmas scales positively with plasma size and so it is generally expected that the fusion triple product, nTτ E, will also increase with size, and this has been part of the motivation for building devices of increasing size including ITER. Here n, T, and τ E are the ion density, ion temperature and energy confinement time respectively. However, tokamak plasmas are subject to operational limits and two important limits are a density limit and a beta limit. We show that when these limits are taken into account, nTτ E becomes almost independent of size; rather it depends mainly on the fusion power, P fus. In consequence, the fusion power gain, Q fus, a parameter closely linked to nTτ E is also independent of size. Hence, P fus and Q fus, two parameters of critical importance in reactor design, are actually tightly coupled. Further, we find that nTτ E is inversely dependent on the normalised beta, β N; an unexpected result that tends to favour lower power reactors. Our findings imply that the minimum power to achieve fusion reactor conditions is driven mainly by physics considerations, especially energy confinement, while the minimum device size is driven by technology and engineering considerations. Through dedicated R&D and parallel developments in other fields, the technology and engineering aspects are evolving in a direction to make smaller devices feasible.

  16. Characteristics of irradiation creep in the first wall of a fusion reactor

    SciTech Connect

    Coghlan, W.A.; Mansur, L.K.

    1981-01-01

    A number of significant differences in the irradiation environment of a fusion reactor are expected with respect to the fission reactor irradiation environment. These differences are expected to affect the characteristics of irradiation creep in the fusion reactor. Special conditions of importance are identified as the (1) large number of defects produced per pka, (2) high helium production rate, (3) cyclic operation, (4) unique stress histories, and (5) low temperature operations. Existing experimental data from the fission reactor environment is analyzed to shed light on irradiation creep under fusion conditions. Theoretical considerations are used to deduce additional characteristics of irradiation creep in the fusion reactor environment for which no experimental data are available.

  17. Fe-15Ni-13Cr austenitic stainless steels for fission and fusion reactor applications - Part 1: Effects of minor alloying elements on precipitate phases in melt products and implication in alloy fabrication

    NASA Astrophysics Data System (ADS)

    Lee, E. H.; Mansur, L. K.

    2000-01-01

    In an effort to develop alloys for fission and fusion reactor applications, 28Fe-15Ni-13Cr base alloys were fabricated by adding various combinations of the minor alloying elements, Mo, Ti, C, Si, P, Nb, and B. The results showed that a significant fraction of undesirable residual oxygen was removed as oxides when Ti, C, and Si were added. Accordingly, the concentrations of the latter three essential alloying elements were reduced also. Among these elements, Ti was the strongest oxide former, but the largest oxygen removal (over 80%) was observed when carbon was added alone without Ti, since gaseous CO boiled off during melting. This paper recommends an alloy melting procedure to mitigate solute losses while reducing the undesirable residual oxygen. In this work, 14 different types of precipitate phases were identified. Compositions of precipitate phases and their crystallographic data are documented. Finally, stability of precipitate phases was examined in view of Gibbs free energy of formation.

  18. Burning high-level TRU waste in fusion fission reactors

    NASA Astrophysics Data System (ADS)

    Shen, Yaosong

    2016-09-01

    Recently, the concept of actinide burning instead of a once-through fuel cycle for disposing spent nuclear fuel seems to get much more attention. A new method of burning high-level transuranic (TRU) waste combined with Thorium-Uranium (Th-U) fuel in the subcritical reactors driven by external fusion neutron sources is proposed in this paper. The thorium-based TRU fuel burns all of the long-lived actinides via a hard neutron spectrum while outputting power. A one-dimensional model of the reactor concept was built by means of the ONESN_BURN code with new data libraries. The numerical results included actinide radioactivity, biological hazard potential, and much higher burnup rate of high-level transuranic waste. The comparison of the fusion-fission reactor with the thermal reactor shows that the harder neutron spectrum is more efficient than the soft. The Th-U cycle produces less TRU, less radiotoxicity and fewer long-lived actinides. The Th-U cycle provides breeding of 233U with a long operation time (>20 years), hence significantly reducing the reactivity swing while improving safety and burnup.

  19. Perspectives of SiC-Based Ceramic Composites and Their Applications to Fusion Reactors 6.Recent Research Activities regarding SiC-Based Ceramic Composites for Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Ogasawara, Toshio

    In this article, the present and future prospects of the research and development regarding continuous SiC fiber reinforced ceramic matrix composites (CMCs) for aerospace applications are reviewed. These activities in Japan are described in term of their major applications, i.e. turbo fan engine components for aircrafts, rocket propulsion components, thermal protection system for future re-entry vehicles, thruster for satellites. It is suggested that high performance, affordable processing cost, and excellent reliability will be important factors in the practical use of CMCs in the future.

  20. Material options for a commercial fusion reactor first wall

    SciTech Connect

    Dabiri, A.E.

    1986-05-01

    A study has been conducted to evaluate the potential of various materials for use as first walls in high-power-density commercial fusion reactors. Operating limits for each material were obtained based on a number of criteria, including maximum allowable structural temperatures, critical heat flux, ultimate tensile strength, and design-allowable stress. The results with water as a coolant indicate that a modified alloy similar to HT-9 may be a suitable candidate for low- and medium-power-density reactor first walls with neutron loads of up to 6 MW/m/sup 2/. A vanadium or copper alloy must be used for high-power-density reactors. The neutron wall load limit for vanadium alloys is about 14 MW/sup 2/, provided a suitable coating material is chosen. The extremely limited data base for radiation effects hinders any quantitative assessment of the limits for copper alloys.

  1. Z-Pinch Fusion for Energy Applications

    SciTech Connect

    SPIELMAN,RICK B.

    2000-01-01

    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

  2. Status of the irradiation test vehicle for testing fusion materials in the Advanced Test Reactor

    SciTech Connect

    Tsai, H.; Gomes, I.C.; Smith, D.L.; Palmer, A.J.; Ingram, F.W.; Wiffen, F.W.

    1998-09-01

    The design of the irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) has been completed. The main application for the ITV is irradiation testing of candidate fusion structural materials, including vanadium-base alloys, silicon carbide composites, and low-activation steels. Construction of the vehicle is underway at the Lockheed Martin Idaho Technology Company (LMITCO). Dummy test trains are being built for system checkout and fine-tuning. Reactor insertion of the ITV with the dummy test trains is scheduled for fall 1998. Barring unexpected difficulties, the ITV will be available for experiments in early 1999.

  3. Repair welding of fusion reactor components. Final technical report

    SciTech Connect

    Chin, B.A.; Wang, C.A.

    1997-09-30

    The exposure of metallic materials, such as structural components of the first wall and blanket of a fusion reactor, to neutron irradiation will induce changes in both the material composition and microstructure. Along with these changes can come a corresponding deterioration in mechanical properties resulting in premature failure. It is, therefore, essential to expect that the repair and replacement of the degraded components will be necessary. Such repairs may require the joining of irradiated materials through the use of fusion welding processes. The present ITER (International Thermonuclear Experimental Reactor) conceptual design is anticipated to have about 5 km of longitudinal welds and ten thousand pipe butt welds in the blanket structure. A recent study by Buende et al. predict that a failure is most likely to occur in a weld. The study is based on data from other large structures, particularly nuclear reactors. The data used also appear to be consistent with the operating experience of the Fast Flux Test Facility (FFTF). This reactor has a fuel pin area comparable with the area of the ITER first wall and has experienced one unanticipated fuel pin failure after two years of operation. The repair of irradiated structures using fusion welding will be difficult due to the entrapped helium. Due to its extremely low solubility in metals, helium will diffuse and agglomerate to form helium bubbles after being trapped at point defects, dislocations, and grain boundaries. Welding of neutron-irradiated type 304 stainless steels has been reported with varying degree of heat-affected zone cracking (HAZ). The objectives of this study were to determine the threshold helium concentrations required to cause HAZ cracking and to investigate techniques that might be used to eliminate the HAZ cracking in welding of helium-containing materials.

  4. Electronuclear ion fusion in an ion cyclotron resonance reactor

    SciTech Connect

    Cowgill, Donald F.

    1996-12-01

    A method and apparatus for generating nuclear fusion by ion cyclotron resonance in an ion trap reactor. The reactor includes a cylindrical housing having an axial axis, an internal surface, and first and second ends. First and second end plates that are charged are respectively located at the first and second ends of the cylindrical housing. A gas layer is adsorbed on the internal surface of the cylindrical housing. Ions are desorbed from the gas layer, forming a plasma layer adjacent to the cylindrical housing that includes first ions that have a same charge sign as the first and second end plates. A uniform magnetic field is oriented along the axial axis of the cylindrical housing. Second ions, that are unlike the first ions, but have the same charge sign, are injected into the cylindrical housing along the axial axis of the cylindrical housing. A radio frequency field resonantly accelerates the injected second ions at the cyclotron resonance frequency of the second ions. The second ions circulate in increasing helical orbits and react with the first ions, at the optimum energy for nuclear fusion. The amplitude of the radio frequency field is adjusted to accelerate the second ions at a rate equal to the rate of tangential energy loss of the second ions by nuclear scattering in the first ions, causing the ions to continually interact until fusion occurs.

  5. Repair welding of fusion reactor components

    SciTech Connect

    Chin, B.A.

    1993-05-15

    Experiments have shown that irradiated Type 316 stainless steel is susceptible to heat-affected-zone (HAZ) cracking upon cooling when welded using the gas tungsten arc (GTA) process under lateral constraint. The cracking has been hypothesized to be caused by stress-assisted helium bubble growth and rupture at grain boundaries. This study utilized an experimental welding setup which enabled different compressive stresses to be applied to the plates during welding. Autogenous GTA welds were produced in Type 316 stainless steel doped with 256 appm helium. The application of a compressive stress, 55 MPa, during welding suppressed the previously observed catastrophic cracking. Detailed examinations conducted after welding showed a dramatic change in helium bubble morphology. Grain boundary bubble growth along directions parallel to the weld was suppressed. Results suggest that stress-modified welding techniques may be used to suppress or eliminate helium-induced cracking during joining of irradiated materials.

  6. Review of progress on fusion materials technology, Harwell, December 1980. Irradiation effects in fusion reactor materials

    NASA Astrophysics Data System (ADS)

    Harries, D. R.

    1981-03-01

    The evolution of the radiation damage structure, void and gas bubble swelling, and surface blistering effects in both model and potential first wall materials for a D-T fusion reactor system of the TOKAMAK type was investigated along with radiation effects in inorganic insulator materials. In addition, investigations were carried out into the effects of irradiation on organic insulators and on the performance of rubber seals. The principal achievements are summarized and a list of 50 references is given.

  7. Tritium retention in fusion reactor plasma facing components

    SciTech Connect

    Langley, R.A.

    1995-03-01

    The IAEA has proposed a coordinated research program to address tritium retention and release in fusion reactor plasma facing components. This program will address materials which are mainly of interest to the design and construction of ITER, namely beryllium, carbon based materials and medium and high-Z metals, e.g. tungsten, vanadium and molybdenum, but will not be limited to these materials. Experimental data are needed for: recycling models, tritium inventory estimates, tritium permeation calculations and hydrogen embrittlement characterization. The ultimate use of the data would be to influence the formation of models for use by fusion reactor designers. Judicious material choices must be made by the designers and accurate predictive codes are required in order to make these choices. The proposed coordinated research program will provide a forum for discussions between experimentalists, theoreticians, modelers and reactor designers, provide financial support for relevant research projects and collect and evaluate experimental and theoretical data. This paper briefly reviews existing data, addresses the data gaps and points out experiments designed to obtain the needed data. 18 refs., 3 figs., 1 tab.

  8. Innovative approaches to inertial confinement fusion reactors: Final report

    SciTech Connect

    Bourque, R.F.; Schultz, K.R.

    1986-11-01

    Three areas of innovative approaches to inertial confinement fusion (ICF) reactor design are given. First, issues pertaining to the Cascade reactor concept are discussed. Then, several innovative concepts are presented which attempt to directly recover the blast energy from a fusion target. Finally, the Turbostar concept for direct recovery of that energy is evaluated. The Cascade issues discussed are combustion of the carbon granules in the event of air ingress, the use of alternate granule materials, and the effect of changes in carbon flow on details of the heat exchanger. Carbon combustion turns out to be a minor problem. Four ICF innovative concepts were considered: a turbine with ablating surfaces, a liquid piston system, a wave generator, and a resonating pump. In the final analysis, none show any real promise. The Turbostar concept of direct recovery is a very interesting idea and appeared technically viable. However, it shows no efficiency gain or any decrease in capital cost compared to reactors with conventional thermal conversion systems. Attempts to improve it by placing a close-in lithium sphere around the target to increase gas generation increased efficiency only slightly. It is concluded that these direct conversion techniques require thermalization of the x-ray and debris energy, and are Carnot limited. They therefore offer no advantage over existing and proposed methods of thermal energy conversion or direct electrical conversion.

  9. Radiation Hydrodynamic Simulations of an Inertial Fusion Energy Reactor Chamber

    NASA Astrophysics Data System (ADS)

    Sacks, Ryan Foster

    Inertial fusion energy reactors present great promise for the future as they are capable of providing baseline power with no carbon footprint. Simulation work regarding the chamber response and first wall insult is carried out using the 1-D BUCKY radiation hydrodynamics code for a variety of differing chamber fills, radii, chamber obstructions and first wall materials. Discussion of the first wall temperature rise, x-ray spectrum incident on the wall, shock timing and maximum overpressure are presented. An additional discussion of the impact of different gas opacities and their effect on overall chamber dynamics, including the formation of two shock fronts, is also presented. This work is performed under collaboration with Lawrence Livermore National Laboratory at the University of Wisconsin-Madison's Fusion Technology Institute.

  10. Novel Doppler laser radar for diagnostics in fusion reactors

    SciTech Connect

    Menon, Madhavan; Slotwinski, Anthony

    2004-10-01

    We describe the development of a novel Doppler laser radar (DOLAR) for remote measurement of flow velocity (0-10 m/s) and film thickness of liquid metal walls, currently being studied for their superior heat handling and self-healing characteristics. Small fluctuations in flow velocity({approx}mm/s) and flow thickness ({approx}50 {mu}m) that may arise during plasma discharges can also be measured. The DOLAR is also designed for non intrusive mapping of features of plasma-facing solid surfaces with very high precision ({approx}50 {mu}m). It can also measure the motion of structural components of a fusion reactor during plasma discharges and during plasma disruptions. The device utilizes frequency modulation laser radar principles for precision range measurements. Compensation of Doppler frequency shift is used to measure flow velocity. The DOLAR probe head is designed with acousto-optic and piezoelectric devices for operation in the harsh fusion environment.

  11. Biomagnetic effects: a consideration in fusion reactor development.

    PubMed Central

    Mahlum, D D

    1977-01-01

    Fusion reactors will utilize powerful magnetic fields for the confinement and heating of plasma and for the diversion of impurities. Large dipole fields generated by the plasma current and the divertor and transformer coils will radiate outward for several hundred meters, resulting in magnetic fields up to 450 gauss in working areas. Since occupational personnel could be exposed to substantial magnetic fields in a fusion power plant, an attempt has been made to assess the possible biological and health consequences of such exposure, using the existing literature. The available data indicate that magnetic fields can interact with biological material to produce effects, although the reported effects are usually small in magnitude and often unconfirmed. The existing data base is judged to be totally inadequate for assessment of potential health and environmental consequences of magnetic fields and for the establishment of appropriate standards. Requisite studies to provide an adequate data base are outlined. PMID:598345

  12. Fission Fusion Hybrids: a nearer term application of Fusion

    NASA Astrophysics Data System (ADS)

    Kotschenreuther, M.; Valanju, P.; Mahajan, S.; Covele, B.

    2011-10-01

    Fission-fusion hybrids enjoy unique advantages for addressing long standing societal acceptability issues of nuclear fission power at a much lower level of technical development than a competitive fusion power plant. For waste incineration, hybrids burn intransigent transuranic residues (with the long lived biohazard) from light water reactors (LWRs). The number of hybrids needed is 5-10 times less than the corresponding number of fast reactors (FRs). The highly sub-critical hybrids, with a thermal/epithermal spectrum, incinerate > 95% of the waste in decades rather than the centuries needed for FRs. For fuel production, hybrids can produce fuel for 3-4 times as many LWRs with no fuel reprocessing. Thorium fuel rods exposed to neutrons in the hybrid reach fissile concentrations that enable efficient burning in LWR without the proliferation risks of reprocessing. The proliferation risks of this method are far less than other fuel breeding approaches, including today's gas centrifuge. With this cycle, US Thorium reserves could supply the entire US electricity supply for centuries. The centerpiece of the fuel cycle is a high power density Compact Fusion Neutron Source (major+minor radius ~ 2.5-3.5 m), which is made feasible by the super-X divertor.

  13. Estimated radiactive and shock loading of fusion reactor armor

    SciTech Connect

    Swift, D C

    2008-11-25

    Inertial confinement fusion (ICF) is of interest as a source of neutrons for proliferation-resistant and high burn-up fission reactor designs. ICF is a transient process, each implosion leading to energy release over a short period, with a continuous series of ICF operations needed to drive the fission reactor. ICF yields energy in the form of MeV-range neutrons and ions, and thermal x-rays. These radiations, particularly the thermal x-rays, can deposit a pulse of energy in the wall of the ICF chamber, inducing loading by isochoric heating (i.e. at constant volume before the material can expand) or by ablation of material from the surface. The explosion of the hot ICF system, and the compression of any fill material in the chamber, may also result in direct mechanical loading by a blast wave (decaying shock) reaching the chamber wall. The chamber wall must be able to survive the repetitive loading events for long enough for the reactor to operate economically. It is thus necessary to understand the loading induced by ICF systems in possible chamber wall designs, and to predict the response and life time of the wall. Estimates are given for the loading induced in the wall armor of the fusion chamber caused by ablative thermal radiation from the fusion plasma and by the hydrodynamic shock. Taking a version of the LIFE design as an example, the ablation pressure was estimated to be {approx}0.6 GPa with an approximately exponential decay with time constant {approx}0.6 ns. Radiation hydrodynamics simulations suggested that ablation of the W armor should be negligible.

  14. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    SciTech Connect

    Werner, R.W.; Ribe, F.L.

    1981-01-21

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units. (MOW)

  15. Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor

    SciTech Connect

    Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

    1998-12-14

    Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvén eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

  16. Articulated limiter blade for a tokamak fusion reactor

    DOEpatents

    Doll, D.W.

    1982-10-21

    A limiter blade for a large tokomak fusion reactor includes three articulated blade sections for enabling the limiter blade to be adjusted for plasmas of different sizes. Each blade section is formed of a rigid backing plate carrying graphite tiles coated with titanium carbide, and the limiter blade forms a generally elliptic contour in both the poloidal and toroidal directions to uniformly distribute the heat flow to the blade. The limiter blade includes a central blade section movable along the major radius of the vacuum vessel, and upper and lower pivotal blade sections which may be pivoted by linear actuators having rollers held to the back surface of the pivotal blade sections.

  17. Articulated limiter blade for a tokamak fusion reactor

    DOEpatents

    Doll, David W.

    1985-01-01

    A limiter blade for a large tokomak fusion reactor includes three articulated blade sections for enabling the limiter blade to be adjusted for plasmas of different sizes. Each blade section is formed of a rigid backing plate carrying graphite tiles coated with titanium carbide, and the limiter blade forms a generally elliptic contour in both the poloidal and toroidal directions to uniformly distribute the heat flow to the blade. The limiter blade includes a central blade section movable along the major radius of the vacuum vessel, and upper and lower pivotal blade sections which may be pivoted by linear actuators having rollers held to the back surface of the pivotal blade sections.

  18. Radiation-induced segregation in candidate fusion-reactor alloys

    SciTech Connect

    Brimhall, J.L.; Baer, D.R.; Jones, R.H.

    1981-07-01

    The effect of radiation on surface segregation of minor and impurity elements has been studied in four candidate fusion reactor alloys. Radiation induced surface segregation of phosphorus was found in both 316 type stainless steel and in Nimonic PE-16. Segregation and depletion of the other alloying elements in 316 stainless steel agreed with that reported by other investigators. Segregation of nitrogen in ferritic HT-9 was enhanced by radiation but no phosphorus segregation was detected. No significant radiation enhanced or induced segregation was observed in a Ti-6Al-4V alloy. The results indicate that radiaton enhanced grain boundary segregation could contribute to the embrittlement of 316 SS and PE-16.

  19. Articulated limiter blade for a tokomak fusion reactor

    SciTech Connect

    Doll, D. W.

    1985-07-30

    A limiter blade for a large tokomak fusion reactor includes three articulated blade sections for enabling the limiter blade to be adjusted for plasmas of different sizes. Each blade section is formed of a rigid backing plate carrying graphite tiles coated with titanium carbide, and the limiter blade forms a generally elliptic contour in both the poloidal and toroidal directions to uniformly distribute the heat flow to the blade. The limiter blade includes a central blade section movable along the major radius of the vacuum vessel, and upper and lower pivotal blade sections which may be pivoted by linear actuators having rollers held to the back surface of the pivotal blade sections.

  20. High conductivity Be-Cu alloys for fusion reactors

    SciTech Connect

    Lilley, E.A.; Adachi, Takao; Ishibashi, Yoshiki

    1995-09-01

    The optimum material has not yet been identified. This will result in heat from plasma to the first wall and divertor. That is, because of cracks and melting by thermal power and shock. Today, it is considered to be some kinds of copper, alloys, however, for using, it must have high conductivity. And it is also needed another property, for example, high strength and so on. We have developed some new beryllium copper alloys with high conductivity, high strength, and high endurance. Therefore, we are introducing these new alloys as suitable materials for the heat sink in fusion reactors.

  1. A Z-Pinch Driven Fusion Reactor Concept

    NASA Astrophysics Data System (ADS)

    Derzon, Mark; Rochau, Gregory; Spielman, Rick; Slutz, Stephen; Rochau, G. E.; Peterson, R. R.; Peterson, P. F.

    1999-11-01

    Recent z-pinch target physics progress has encouraged us to consider how a power reactor could be configured based on a fast z-pinch driver. Initial cost estimates show that recyclable transmission lines (RTLs) are economically viable. Providing 'standoff' between the primary power supply and the target, which is what disposable RTLs provide, has historically been the main obstacle to the consideration of pinches as fusion drivers. We will be introducing basic reactor scaling in terms of shot rate, yield, tritium breeding and neutron flux, etc. This concept has advantages in that z-pinches provide a robust mechanical environment, as well as a chamber which does not require low-pressure pumping between shots and the wall lifetime is expected to be limited factors other than neutron damage. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  2. Cryogenic system operating experience review for fusion applications

    SciTech Connect

    Cadwallader, L.C.

    1992-01-01

    This report presents a review of cryogenic system operating experiences, from particle accelerator, fusion experiment, space research, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of cryogenic component failure rates and accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with cryogenic systems are discussed, including ozone formation, effects of spills, and modeling spill behavior. This information should be useful to fusion system designers and safety analysts, such as the team working on the International Thermonuclear Experimental Reactor design.

  3. Fire protection system operating experience review for fusion applications

    SciTech Connect

    Cadwallader, L.C.

    1995-12-01

    This report presents a review of fire protection system operating experiences from particle accelerator, fusion experiment, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of fire protection system component failure rates and fire accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with these systems are discussed, including spurious operation. This information should be useful to fusion system designers and safety analysts, such as the team working on the Engineering Design Activities for the International Thermonuclear Experimental Reactor.

  4. Fusion-reactor plasmas with polarized nuclei. II

    SciTech Connect

    Kulsrud, R.M.; Furth, H.P.; Valeo, E.J.; Budny, R.V.; Jassby, D.L.; Micklich, B.J.; Post, D.E.; Goldhaber, M.; Happer, W.

    1982-11-01

    New techniques of bulk polarization could be used to fuel a reactor with polarized hydrogenic atoms, so as to form a plasma of polarized nuclei. Theoretical calculations indicate that, once the nuclei of the plasma are polarized in some preferred state, they can maintain this state with a probability near 100% during their lifetime in the reactor, including possible recycling. There are a number of practical advantages to be gained from the use of polarized plasma in a fusion reactor. The nuclear reaction rates can be increased or decreased, and/or the direction of emission of the reaction products can be controlled. The D-T reaction rate can be enhanced by as much as 50%, with the reaction products emitted perpendicular to the magnetic field. Alternatively, it is possible to direct the reaction products primarily along the field, with no enhancement. In this case of the D-D reaction, the theoretical predictions are somewhat less certain. Enhancement of the reaction rate by a factor of 1.5-2.5 is to be expected. In a different polarization state, suppression of D-D reactions may be feasible - a possibility that would be of interest for a neutron-free D-He/sup 3/ reactor. A quantitative discussion of the relevant nuclear physics as well as of the various mechanisms producing depolarization is given.

  5. Materials degradation in fission reactors: Lessons learned of relevance to fusion reactor systems

    NASA Astrophysics Data System (ADS)

    Was, Gary S.

    2007-08-01

    The management of materials in power reactor systems has become a critically important activity in assuring the safe, reliable and economical operation of these facilities. Over the years, the commercial nuclear power reactor industry has faced numerous 'surprises' and unexpected occurrences in materials. Mitigation strategies have sometimes solved one problem at the expense of creating another. Other problems have been solved successfully and have motivated the development of techniques to foresee problems before they occur. This paper focuses on three aspects of fission reactor experience that may benefit future fusion systems. The first is identification of parameters and processes that have had a large impact on the behavior of materials in fission systems such as temperature, dose rate, surface condition, gradients, metallurgical variability and effects of the environment. The second is the development of materials performance and failure models to provide a basis for assuring component integrity. Last is the development of proactive materials management programs that identify and pre-empt degradation processes before they can become problems. These aspects of LWR experience along with the growing experience with materials in the more demanding advanced fission reactor systems form the basis for a set of 'lessons learned' to aid in the successful management of materials in fusion reactor systems.

  6. Special purpose materials for fusion application

    SciTech Connect

    Scott, J.L.; Clinard, F.W. Jr.; Wiffen, F.W.

    1984-01-01

    Originally in 1978 the Special Purpose Materials Task Group was concerned with tritium breeding materials, coolants, tritium barriers, graphite and silicon carbide, ceramics, heat-sink materials, and magnet components. Since then several other task groups have been created, so now the category includes only materials for superconducting magnets and ceramics. For the former application copper-stabilized Nb/sub 3/Sn (Ti) insulated with polyimides will meet the general requirements, so that testing of prototype components is the priority task. Ceramics are required for several critical components of fusion reactors either as dielectrics or as a structural material. Components near the first wall will receive exposures of 5 to 20 MW.year/m/sup 2/. Other ceramic applications are well behind the first wall, with lower damage levels. Most insulators operate near room temperature, but ceramic blanket structures may operate up to 1000/sup 0/C. Because of a meager data base, one cannot identify optimum ceramics for structural application; but MgAl/sub 2/O/sub 4/ is an attractive dielectric material.

  7. Exploratory studies of tokamaks as fusion test reactors

    NASA Astrophysics Data System (ADS)

    Mau, T. K.; Conn, R. W.

    1982-06-01

    Studies have been performed to explore various plasma burn scenarios for a tokamak test reactor which could follow the next generation of large tokamak experiments. Tradeoffs between an ignited burning plasma and a sub-ignited driven plasma are examined in terms of device size and performance as a fusion engineering test facility. It is found that plasma performance levels, measured by ignition margin, amplification factor Q, and fusion power output, increase with device size, more optimistic transport scaling laws, lower magnetic field ripple, and higher Β. The performance of a generally low stress ( B 0=4 T) reference device, with major radius R=4.5 m and minor radius a=1.3 m in a D-shaped ( κ=1.6) plasma has been evaluated over a wide range of operating parameters. In particular, a moderate fusion power output of 300 MW is obtained, the driven plasma having Q≅ 10, an edge ripple of 1%, and a density ranging between 1.0 and 1.5×1014 cm-3. The same device operated at a higher general level of stress ( B 0=5.3 T) is predicted to achieve ignition, but is not required for the mission of an engineering test facility and would entail greater technical risk.

  8. Reactor Application for Coaching Newbies

    SciTech Connect

    2015-06-17

    RACCOON is a Moose based reactor physics application designed to engage undergraduate and first-year graduate students. The code contains capabilities to solve the multi group Neutron Diffusion equation in eigenvalue and fixed source form and will soon have a provision to provide simple thermal feedback. These capabilities are sufficient to solve example problems found in Duderstadt & Hamilton (the typical textbook of senior level reactor physics classes). RACCOON does not contain any advanced capabilities as found in YAK.

  9. Introduction to D-He(3) fusion reactors

    NASA Technical Reports Server (NTRS)

    Vlases, G. C.; Steinhauer, L. C.

    1989-01-01

    A review and evaluation of D-He(3) fusion reactor technology is presented. The advantages and disadvantages of the D-He(3) and D-T reactor cycles are outlined and compared. In addition, the general design features of D-He(3) tokamaks and field reversed configuration (FRC) reactors are described and the relative merits of each are compared. It is concluded that both tokamaks and FRC's offer certain advantages, and that the ultimate decision as to which to persue for terrestrial power generation will depend heavily on how the physics performance of each of them develops over the next few years. It is clear that the D-He(3) fuel cycle offers marked advantages over the D-T cycle. Although the physics requirements for D-He(3) are more demanding, the overwhelming advantages resulting from the two order of magnitude reduction of neutron flux are expected to lead to a shorter time to commercialization than for the D-T cycle.

  10. Dynamic evaluation of environmental impact due to tritium accidental release from the fusion reactor.

    PubMed

    Nie, Baojie; Ni, Muyi; Jiang, Jieqiong; Wu, Yican

    2015-10-01

    As one of the key safety issues of fusion reactors, tritium environmental impact of fusion accidents has attracted great attention. In this work, the dynamic tritium concentrations in the air and human body were evaluated on the time scale based on accidental release scenarios under the extreme environmental conditions. The radiation dose through various exposure pathways was assessed to find out the potential relationships among them. Based on this work, the limits of HT and HTO release amount for arbitrary accidents were proposed for the fusion reactor according to dose limit of ITER. The dynamic results aim to give practical guidance for establishment of fusion emergency standard and design of fusion tritium system.

  11. Georgia Tech Studies of Sub-Critical Advanced Burner Reactors with a D-T Fusion Tokamak Neutron Source for the Transmutation of Spent Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Stacey, W. M.

    2009-09-01

    The possibility that a tokamak D-T fusion neutron source, based on ITER physics and technology, could be used to drive sub-critical, fast-spectrum nuclear reactors fueled with the transuranics (TRU) in spent nuclear fuel discharged from conventional nuclear reactors has been investigated at Georgia Tech in a series of studies which are summarized in this paper. It is found that sub-critical operation of such fast transmutation reactors is advantageous in allowing longer fuel residence time, hence greater TRU burnup between fuel reprocessing stages, and in allowing higher TRU loading without compromising safety, relative to what could be achieved in a similar critical transmutation reactor. The required plasma and fusion technology operating parameter range of the fusion neutron source is generally within the anticipated operational range of ITER. The implications of these results for fusion development policy, if they hold up under more extensive and detailed analysis, is that a D-T fusion tokamak neutron source for a sub-critical transmutation reactor, built on the basis of the ITER operating experience, could possibly be a logical next step after ITER on the path to fusion electrical power reactors. At the same time, such an application would allow fusion to contribute to meeting the nation's energy needs at an earlier stage by helping to close the fission reactor nuclear fuel cycle.

  12. Programmable AC power supply for simulating power transient expected in fusion reactor

    SciTech Connect

    Halimi, B.; Suh, K. Y.

    2012-07-01

    This paper focus on control engineering of the programmable AC power source which has capability to simulate power transient expected in fusion reactor. To generate the programmable power source, AC-AC power electronics converter is adopted to control the power of a set of heaters to represent the transient phenomena of heat exchangers or heat sources of a fusion reactor. The International Thermonuclear Experimental Reactor (ITER) plasma operation scenario is used as the basic reference for producing this transient power source. (authors)

  13. Astronomers Reveal Extinct Extra-Terrestrial Fusion Reactor

    NASA Astrophysics Data System (ADS)

    2004-06-01

    An international team of astronomers, studying the left-over remnants of stars like our own Sun, have found a remarkable object where the nuclear reactor that once powered it has only just shut down. This star, the hottest known white dwarf, H1504+65, seems to have been stripped of its entire outer regions during its death throes leaving behind the core that formed its power plant. Scientists from the United Kingdom, Germany and the USA focused two of NASA's space telescopes, the Chandra X-ray Observatory and the Far Ultraviolet Spectroscopic Explorer (FUSE), onto H1504+65 to probe its composition and measure its temperature. The data revealed that the stellar surface is extremely hot, 200,000 degrees, and is virtually free of hydrogen and helium, something never before observed in any star. Instead, the surface is composed mainly of carbon and oxygen, the 'ashes' of the fusion of helium in a nuclear reactor. An important question we must answer is why has this unique star lost the hydrogen and helium, which usually hide the stellar interior from our view? Professor Martin Barstow (University of Leicester) said. 'Studying the nature of the ashes of dead stars give us important clues as to how stars like the Sun live their lives and eventually die. The nuclear waste of carbon and oxygen produced in the process are essential elements for life and are eventually recycled into interstellar space to form new stars, planets and, possibly, living beings.' Professor Klaus Werner (University of Tübingen) said. 'We realized that this star has, on astronomical time scales, only very recently shut down nuclear fusion (about a hundred years ago). We clearly see the bare, now extinct reactor that once powered a bright giant star.' Dr Jeffrey Kruk (Johns Hopkins University) said: 'Astronomers have long predicted that many stars would have carbon-oxygen cores near the end of their lives, but I never expected we would actually be able to see one. This is a wonderful opportunity to

  14. Method and apparatus for making uniform pellets for fusion reactors

    DOEpatents

    Budrick, Ronald G.; King, Frank T.; Martin, Alfred J.; Nolen, Jr., Robert L.; Solomon, David E.

    1977-01-01

    A method and apparatus for making uniform pellets for laser driven fusion reactors which comprises selection of a quantity of glass frit which has been accurately classified as to size within a few micrometers and contains an occluded material, such as urea, which gasifies and expands when heated. The sized particles are introduced into an apparatus which includes a heated vertical tube with temperatures ranging from 800.degree. C to 1300.degree. C. The particles are heated during the drop through the tube to molten condition wherein the occluded material gasifies to form hollow microspheres which stabilize in shape and plunge into a collecting liquid at the bottom of the tube. The apparatus includes the vertical heat resistant tube, heaters for the various zones of the tube and means for introducing the frit and collecting the formed microspheres.

  15. Radiation Hydrodynamic Parameter Study of Inertial Fusion Energy Reactor Chambers

    NASA Astrophysics Data System (ADS)

    Sacks, Ryan; Moses, Gregory

    2014-10-01

    Inertial fusion energy reactors present great promise for the future as they are capable of providing baseline power with no carbon footprint. Simulation work regarding the chamber response and first wall insult is performed with the 1-D radiation hydrodynamics code BUCKY. Simulation with differing chamber parameters are implemented to study the effect of gas fill, gas mixtures and chamber radii. Xenon and argon gases are of particular interest as shielding for the first wall due to their high opacity values and ready availability. Mixing of the two gases is an attempt to engineer a gas cocktail to provide the maximum amount of shielding with the least amount of cost. A parameter study of different chamber radii shows a consistent relationship with that of first wall temperature (~1/r2) and overpressure (~1/r3). This work is performed under collaboration with Lawrence Livermore National Laboratory.

  16. Tritium pellet injector design for tokamak fusion test reactor

    SciTech Connect

    Fisher, P.W.; Baylor, L.R.; Bryan, W.E.; Combs, S.K.; Easterly, C.E.; Lunsford, R.V.; Milora, S.L.; Schuresko, D.D.; White, J.A.; Williamson, D.H.

    1985-01-01

    A tritium pellet injector (TPI) system has been designed for the Tokamak Fusion Test Reactor (TFTR) Q approx. 1 phase of operation. The injector gun utilizes a radial design with eight independent barrels and a common extruder to minimize tritium inventory. The injection line contains guide tubes with intermediate vacuum pumping stations and fast valves to minimize propellant leakage to the torus. The vacuum system is designed for tritium compatibility. The entire injector system is contained in a glove box for secondary containment protection against tritium release. Failure modes and effects have been analyzed, and structural analysis has been performed for most intense predicted earthquake conditions. Details of the design and operation of this system are presented in this paper.

  17. Laser in vessel-viewing system for nuclear fusion reactors

    NASA Astrophysics Data System (ADS)

    Bartolini, Luciano; Bordone, Andrea; Coletti, Alberto; Ferri De Collibus, Mario; Fornetti, Giorgio G.; Lupini, S.; Neri, Carlo; Poggi, Claudio; Riva, Marco; Semeraro, Luigi; Talarico, Carlo

    2000-11-01

    An amplitude modulated laser radar has been developed by ENEA (Italian Agency for New Technologies, Energy and Environment) for periodic in-vessel inspection in large fusion machines. Its overall optical design has been developed taking into account the extremely high radiation levels and operating temperatures foreseen in large European fusion machines such as JET (Joint European Torus) and ITER (International Thermo- nuclear Experimental Reactor). The viewing system is based on a transceiving optical radar using a RF modulated single mode 840 nm wavelength laser beam. The sounding beam is transmitted through a coherent optical fiber and a focusing optic to the inner part of the nuclear reactor vessel by a stainless steel probe on the tip of which a suitable scanning silica prism steers the laser beam along a linear raster spanning a -90 degree(s) to +60 degree(s) in elevation and 360 degree(s) in azimuth for a complete mapping of the vessel itself. All the electronics, including the laser source, avalanche photodiode and all the active components are located outside the bioshield, while passive components (receiving optics, transmitting collimator, fiber optics), located in the torus hall, are made of fused silica so that the overall laser radar is radiation resistant. The signal is acquired, the raster lines being synchronized with the aid of optical encoders linked to the scanning prism, thus yielding a TV like image. Preliminary results have been obtained scanning large sceneries including several real targets having different backscattering properties, colors and surface reflectivity ranging over several decades to simulate the expected dynamic range of the video signals incoming from the vessel.

  18. The Magnetic Dipole as an Attractive Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Dawson, John M.

    1997-11-01

    Stability for low β plasma confined by closed B field lines is PV^γ = C_0, P = pressure, V = flux tube volume, γ is c_p/cv = 5/3. Kesner(J. Kesner, Innovative Confinement Concepts Workshop, Mar. 3-6, 1997) proposed a levitated current ring with the plasma stabilized by this condition as an alternate fusion reactor. Such a reactor has many attractive features; at radii large compared to the ring radius, V goes like r^4; the stability condition is Pr^20/3 = C_1. If nr^4 = C_2, then interchanges keep the density constant. The temperature can drop according to Tr^8/3 = C_3. If the chamber is ten times the ring radius, the density can drop from 10^14 near the ring to 10^10 at the edge and the temperature can drop from 50 keV near the ring to 100 eV at the edge. This plasma should present no problems for a divertor. Reacting plasma near the ring will heat it, upsetting the stability relation and cause convection to carry burnt plasma out; it will cool as it expands. At the same time the convection will bring in fresh fuel from the outside which will be compressed and heated to ignition. A super conducting ring design that can float in reacting D-He^3 for 16 hours exists(J.M. Dawson, FUSION, edited by Edward Teller, Vol. 1, Magnetic Confinement, Part, Ch. 16, Academic Press, 1981).

  19. A Fusion Reactor Design with a Liquid First Wall and Divertor

    SciTech Connect

    Nygren, R E; Rognlien, T D; Rensink, M E; Smolentsev, S S; Youssef, M E; Sawan, M Z; Merrill, B J; Eberle, C; Fogarty, P J; Nelson, B E; Sze, D K; Majeski, R

    2003-11-13

    Within the magnetic fusion energy program in the US, a program called APEX is investigating the use of free flowing liquid surfaces to form the inner surface of the chamber around the plasma. As part of this work, the APEX Team has investigated several possible design implementations and developed a specific engineering concept for a fusion reactor with liquid walls. Our approach has been to utilize an already established design for a future fusion reactor, the ARIES-RS, for the basic chamber geometry and magnetic configuration and to replace the chamber technology in this design with liquid wall technology for a first wall and divertor and a blanket with adequate tritium breeding. This paper gives an overview of one design with a molten salt (a mixture of lithium, beryllium and sodium fluorides) forming the liquid surfaces and a ferritic steel for the structural material of the blanket. The design point is a reactor with 3840MW of fusion power of which 767MW is in the form of energetic particles (alpha power) and 3073MW is in the form of neutrons. The alpha plus auxiliary power total 909MW of which 430MW is radiated from the core mostly onto the first wall and the balance flows into the edge plasma and is distributed between the first wall and the divertor. In pursuing the application of liquid surfaces in APEX, the team has developed analytical tools that are significant achievements themselves and also pursued experiments on flowing liquids. This work is covered elsewhere, but the paper will also note several such areas to indicate the supporting science behind the design presented. Significant new work in modeling the plasma edge to understand the interaction of the plasma with the liquid walls is one example. Another is the incorporation of magneto-hydrodynamic (MHD) effects in fluid modeling and heat transfer.

  20. Transient getter scheme for the Tokamak Fusion Test Reactor

    SciTech Connect

    Cecchi, J.L.; Cohen, S.A.; Sredniawski, J.J.

    1980-01-01

    The ability of the Tokamak Fusion Test Reactor (TFTR) to attain the largest fusion power gain depends critically on minimizing plasma contamination and controlling the densities of the reacting deuterium and tritium. Experiments on a number of tokamaks have demonstrated that gettering over an appreciable surface area (greater than or equal to 10%) of the vacuum vessel greatly facilitates both of these objectives. One particular problem in implementing a surface pumping system in TFTR, however, is a restriction on the maximum allowable tritium content of the getter. This restriction could require regeneration of the absorbed tritium after as few as 50 machine pulses. We have developed a scheme utilizing SAES Zr/Al getter modules which obviates the need for such frequent interruptions of machine operation by taking advantage of the pulsed operation of TFTR. With the Zr/Al getter at temperatures between 500/sup 0/C to 600/sup 0/C it is possible to achieve a quasi-steady state in the tritium loading where the quantity of tritium desorbed between pulses is equal to the quantity which is absorbed during a pulse. Since frequent thermal cycling is not required, this scheme also reduces the possibility of Zr/Al getter material fatigue.

  1. Materials research and development for fusion energy applications

    SciTech Connect

    Zinkle, S.J.; Snead, L.L.

    1998-11-01

    Some of the critical issues associated with materials selection for proposed magnetic fusion reactors are reviewed, with a brief overview of refractory alloys (vanadium, tantalum, molybdenum, tungsten) and primary emphasis on ceramic materials. SiC/SiC composites are under consideration for the first wall and blanket structure, and dielectric insulators will be used for the heating, control and diagnostic measurement of the fusion plasma. Key issues for SiC/SiC composites include radiation-induced degradation in the strength and thermal conductivity. Recent work has focused on the development of radiation-resistant fibers and fiber/matrix interfaces (porous SiC, SiC multilayers) which would also produce improved SiC/SiC performance for applications such as heat engines and aerospace components. The key physical parameters for dielectrics include electrical conductivity, dielectric loss tangent and thermal conductivity. Ionizing radiation can increase the electrical conductivity of insulators by many orders of magnitude, and surface leakage currents can compromise the performance of some fusion energy components. Irradiation can cause a pronounced degradation in the loss tangent and thermal conductivity. Fundamental physical parameter measurements on ceramics which are of interest for both fusion and non-fusion applications are discussed.

  2. Microchannel Reactors for ISRU Applications

    NASA Astrophysics Data System (ADS)

    Carranza, Susana; Makel, Darby B.; Blizman, Brandon; Ward, Benjamin J.

    2005-02-01

    Affordable planning and execution of prolonged manned space missions depend upon the utilization of local resources and the waste products which are formed in manned spacecraft and surface bases. Successful in-situ resources utilization (ISRU) will require component technologies which provide optimal size, weight, volume, and power efficiency. Microchannel reactors enable the efficient chemical processing of in situ resources. The reactors can be designed for the processes that generate the most benefit for each mission. For instance, propellants (methane) can be produced from carbon dioxide from the Mars atmosphere using the Sabatier reaction and ethylene can be produced from the partial oxidation of methane. A system that synthesizes ethylene could be the precursor for systems to synthesize ethanol and polyethylene. Ethanol can be used as a nutrient for Astrobiology experiments, as well as the production of nutrients for human crew (e.g. sugars). Polyethylene can be used in the construction of habitats, tools, and replacement parts. This paper will present recent developments in miniature chemical reactors using advanced Micro Electro Mechanical Systems (MEMS) and microchannel technology to support ISRU of Mars and lunar missions. Among other applications, the technology has been demonstrated for the Sabatier process and for the partial oxidation of methane. Microchannel reactors were developed based on ceramic substrates as well as metal substrates. In both types of reactors, multiple layers coated with catalytic material are bonded, forming a monolithic structure. Such reactors are readily scalable with the incorporation of extra layers. In addition, this reactor structure minimizes pressure drop and catalyst settling, which are common problems in conventional packed bed reactors.

  3. Tandem-mirror end plugs for future fusion reactors

    NASA Astrophysics Data System (ADS)

    1981-06-01

    Electrostatic fields for confining central-cell plasma are achieved by heating the electrons in end-plugs via electron-cyclotron-resonance heating. Four end-plug magnetic configurations are being developed and tested to determine which will provide the best thermal barrier between plug- and central-cell electrons in a fusion reactor: (1) the inside barrier, with its auxiliary solenoid; (2) the auxiliary-mirror-cell (A-cell) barrier, which makes use of C-shaped magnet coils; (3) the axisymmetric-cusp barrier, using circular coils; and (4) the electron-ring barrier, in which two magnetic coils are stabilized by a ring of hot electrons. Calculations of the magnetohydrodynamic (MHD) stability are being performed with respect to the magnetic curvatures of each end-plug configuration. Models for describing the behavior of plasmas with finite ion orbits are being developed to predict MHD stability. Charge-exchange pumping systems for reactors with inside, A-cell, and axisymmetric-cusp barriers have already been designed, and a pumping system for removing thermalized helium ions is being explored.

  4. Design of the DEMO Fusion Reactor Following ITER

    PubMed Central

    Garabedian, Paul R.; McFadden, Geoffrey B.

    2009-01-01

    Runs of the NSTAB nonlinear stability code show there are many three-dimensional (3D) solutions of the advanced tokamak problem subject to axially symmetric boundary conditions. These numerical simulations based on mathematical equations in conservation form predict that the ITER international tokamak project will encounter persistent disruptions and edge localized mode (ELMS) crashes. Test particle runs of the TRAN transport code suggest that for quasineutrality to prevail in tokamaks a certain minimum level of 3D asymmetry of the magnetic spectrum is required which is comparable to that found in quasiaxially symmetric (QAS) stellarators. The computational theory suggests that a QAS stellarator with two field periods and proportions like those of ITER is a good candidate for a fusion reactor. For a demonstration reactor (DEMO) we seek an experiment that combines the best features of ITER, with a system of QAS coils providing external rotational transform, which is a measure of the poloidal field. We have discovered a configuration with unusually good quasisymmetry that is ideal for this task. PMID:27504224

  5. Elevator mode convection in liquid metal blankets for fusion reactors

    NASA Astrophysics Data System (ADS)

    Zikanov, Oleg; Liu, Li

    2015-11-01

    The work is motivated by the design of liquid-metal blankets for nuclear fusion reactors. Mixed convection in a downward flow in a vertical duct with strong contant-rate heating of one wall (the Grashof number up to 1012) and strong transverse magnetic field (the Hartmann number up to 104) is considered. It is found that in an infinitely long duct the flow is dominated by exponentially growing elevator modes having the form of a combination of ascending and descending jets. An analytical solution approximating the growth rate of the modes is derived. Analogous flows in finite-length pipes and ducts are analyzed using the high-resolution numerical simulations. The results of the recent experiments are reproduced and explained. It is found that the flow evolves in cycles consisting of periods of exponential growth and breakdowns of the jets. The resulting high-amplitude fluctuations of temperature is a feature potentially dangerous for operation of a reactor blanket. Financial support was provided by the US NSF (Grant CBET 1232851).

  6. Reactor prospects of muon-catalyzed fusion of deuterium and tritium concentrated in transition metals

    SciTech Connect

    Stacey, W.M. Jr. . Fusion Research Center )

    1989-09-01

    It is conjectured that the number of fusion events catalyzed by a single muon is orders of magnitude greater for deuterium and tritium concentrated in a transition metal than in gaseous form and that the recent observation of 2.5-MeV neutrons from a D/sub 2/O electrolytic cell with palladium and titanium cathodes can thereby be interpreted in terms of cosmic muon-catalyzed deuterium-deuterium fusion. This suggests a new fusion reactor reactor consisting of deuterium and tritium concentrated in transition metal fuel elements in a fusion core that surrounds an accelerator-produced muon source. The feasibility of net energy production in such a reactor is established in terms of requirements on the number of fusion events catalyzed per muon. The technological implications for a power reactor based on this concept are examined. The potential of such a concept as a neutron source for materials testing and tritium and plutonium production is briefly discussed.

  7. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor refueling. Technical progress report, [July 16, 1990--August 16, 1991

    SciTech Connect

    Kim, K.

    1991-08-01

    This report contains three documents describing the progress made by the University of Illinois electromagnetic railgun program sponsored by the Office of Fusion Energy of the United States Department of Energy during the period from July 16, 1990 to August 16, 1991. The first document contains a brief summary of the tasks initiated, continued, or completed, the status of major tasks, and the research effort distribution, estimated and actual, during the period. The second document contains a description of the work performed on time resolved laser interferometric density measurement of the railgun plasma-arc armature. The third document is an account of research on the spectroscopic measurement of the electron density and temperature of the railgun plasma arc.

  8. A preliminary assessment of beryllium dust oxidation during a wet bypass accident in a fusion reactor

    SciTech Connect

    Brad J. Merrill; Richard L. Moore; J. Phillip Sharp

    2008-09-01

    A beryllium dust oxidation model has been developed at the Idaho National Laboratory (INL) by the Fusion Safety Program (FSP) for the MELCOR safety computer code. The purpose of this model is to investigate hydrogen production from beryllium dust layers on hot surfaces inside a fusion reactor vacuum vessel (VV) during in-vessel loss-of-cooling accidents (LOCAs). This beryllium dust oxidation model accounts for the diffusion of steam into a beryllium dust layer, the oxidation of the dust particles inside this layer based on the beryllium-steam oxidation equations developed at the INL, and the effective thermal conductivity of this beryllium dust layer. This paper details this oxidation model and presents the results of the application of this model to a wet bypass accident scenario in the ITER device.

  9. Reactor Application for Coaching Newbies

    2015-06-17

    RACCOON is a Moose based reactor physics application designed to engage undergraduate and first-year graduate students. The code contains capabilities to solve the multi group Neutron Diffusion equation in eigenvalue and fixed source form and will soon have a provision to provide simple thermal feedback. These capabilities are sufficient to solve example problems found in Duderstadt & Hamilton (the typical textbook of senior level reactor physics classes). RACCOON does not contain any advanced capabilities asmore » found in YAK.« less

  10. Modular System for Neutronics Calculations of Fission Reactors, Fusion Blankets, and Other Systems.

    1999-07-23

    AUS is a neutronics code system which may be used for calculations of a wide range of fission reactors, fusion blankets and other neutron applications. The present version, AUS98, has a nuclear cross section library based on ENDF/B-VI and includes modules which provide for reactor lattice calculations, one-dimensional transport calculations, multi-dimensional diffusion calculations, cell and whole reactor burnup calculations, and flexible editing of results. Calculations of multi-region resonance shielding, coupled neutron and photon transport, energymore » deposition, fission product inventory and neutron diffusion are combined within the one code system. The major changes from the previous release, AUS87, are the inclusion of a cross-section library based on ENDF/B-VI, the addition of the POW3D multi-dimensional diffusion module, the addition of the MICBURN module for controlling whole reactor burnup calculations, and changes to the system as a consequence of moving from IBM mainframe computers to UNIX workstations.« less

  11. Plasma engineering studies for Tennessee Tokamak (TENTOK) fusion power reactor

    SciTech Connect

    Yokoyama, K.E.; Lacatski, J.T.; Miller, J.B.; Bryan, W.E.; King, P.W.; Santoro, R.T.; Uckan, N.A.; Shannon, T.E.

    1984-02-01

    This paper summarizes the results of the plasma engineering and systems analysis studies for the Tennessee Tokamak (TENTOK) fusion power reactor. TENTOK is a 3000-MW(t) central station power plant that uses deuterium-tritium fuel in a D-shaped tokamak plasma configuration with a double-null poloidal divertor. The major parameters are R/sub 0/ = 6.4 m, a = 1.6 m, sigma (elongation) = 1.65, (n) = 1.5 x 10/sup 20/ m/sup -3/, (T) = 15 keV, (..beta..) = 6%, B/sub T/ (on-axis) = 5.6 T, I/sub p/ = 8.5 MA, and wall loading = 3 MW/m/sup 2/. Detailed analyses are performed in the areas of (1) transport simulation using the one-and-one-half-dimensional (1-1/2-D) WHIST transport code, (2) equilibrium/poloidal field coil systems, (3) neutral beam and radiofrequency (rf) heating, and (4) pellet fueling. In addition, impurity control systems, diagnostics and controls, and possible microwave plasma preheating and steady-state current drive options are also considered. Some of the major features of TENTOK include rf heating in the ion cyclotron range of frequencies, superconducting equilibrium field coils outside the superconducting toroidal field coils, a double-null poloidal divertor for impurity control and alpha ash removal, and rf-assisted plasma preheating and current startup.

  12. Scale length study in TFTR (Tokamak Fusion Test Reactor)

    SciTech Connect

    Hiroe, S.; Goldston, R.J.; Bitter, M.; Bush, C.E.; Efthimion, P.C.; Grek, B.; Johnson, D.W.; Murakami, M.; Schivell, J.; Towner, H.H.

    1988-12-01

    The scale lengths of the electron density (L/sub n//sub e/), temperature (L/sub T//sub e/), and pressure (L/sub p//sub e/) gradients were investigated during the 1985 operating period of the Tokamak Fusion Test Reactor (TFTR) for gas-fueled plasmas with neutral beam injection and movable limiter. Although the global energy confinement time degrades as the heating power increases or the plasma current decreases, the radial profiles of the scale lengths (L/sub T//sub e/ and L/sup p//sub e/) remain unchanged. Especially, the electron pressure profile is constrained not to change. This trend appears to hold over a fairly wide range of TFTR operational regimes. The radial profiles of L/sub n//sub e/ and /eta//sub e/ (= L/sub n//sub e//L/sub T//sub e/) also appear to remain unchanged, although the uncertainties of the experimental data for these quantities are greater than those for L/sub T//sub e/ and L/sub p//sub e/. The experimental parameters are used to evaluate theoretical predictions of the electron thermal diffusivity, and the results are compared with the empirical thermal diffusivity. 34 refs., 18 figs., 2 tabs.

  13. Research and development on vanadium alloys for fusion applications

    SciTech Connect

    Zinkle, S.J.; Rowcliffe, A.F.; Matsui, H.; Abe, K.; Smith, D.L.; Osch, E. van; Kazakov, V.A.

    1998-03-01

    The current status of research and development on unirradiated and irradiated V-Cr-Ti alloys intended for fusion reactor structural applications is reviewed, with particular emphasis on the flow and fracture behavior of neutron-irradiated vanadium alloys. Recent progress on fabrication, joining, oxidation behavior, and the development of insulator coatings is also summarized. Fabrication of large (>500 kg) heats of V-4Cr-4Ti with properties similar to previous small laboratory heats has now been demonstrated. Impressive advances in the joining of thick sections of vanadium alloys using GTA and electron beam welds have been achieved in the past two years, although further improvements are still needed.

  14. New applications of Spectral Edge image fusion

    NASA Astrophysics Data System (ADS)

    Hayes, Alex E.; Montagna, Roberto; Finlayson, Graham D.

    2016-05-01

    In this paper, we present new applications of the Spectral Edge image fusion method. The Spectral Edge image fusion algorithm creates a result which combines details from any number of multispectral input images with natural color information from a visible spectrum image. Spectral Edge image fusion is a derivative-based technique, which creates an output fused image with gradients which are an ideal combination of those of the multispectral input images and the input visible color image. This produces both maximum detail and natural colors. We present two new applications of Spectral Edge image fusion. Firstly, we fuse RGB-NIR information from a sensor with a modified Bayer pattern, which captures visible and near-infrared image information on a single CCD. We also present an example of RGB-thermal image fusion, using a thermal camera attached to a smartphone, which captures both visible and low-resolution thermal images. These new results may be useful for computational photography and surveillance applications.

  15. Vacuum system operating experience review for fusion applications

    SciTech Connect

    Cadwallader, L.C.

    1994-03-01

    This report presents a review of vacuum system operating experiences from particle accelerator, fusion experiment, space simulation chamber, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of vacuum system component failure rates and accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with vacuum systems are discussed, including personnel safety, foreign material intrusion, and factors relevant to vacuum systems being the primary confinement boundary for tritium and activated dusts. This information should be useful to fusion system designers and safety analysts, such as the team working on the Engineering Design Activities for the International Thermonuclear Experimental Reactor.

  16. Beyond ITER: Neutral beams for a demonstration fusion reactor (DEMO) (invited)

    SciTech Connect

    McAdams, R.

    2014-02-15

    In the development of magnetically confined fusion as an economically sustainable power source, International Tokamak Experimental Reactor (ITER) is currently under construction. Beyond ITER is the demonstration fusion reactor (DEMO) programme in which the physics and engineering aspects of a future fusion power plant will be demonstrated. DEMO will produce net electrical power. The DEMO programme will be outlined and the role of neutral beams for heating and current drive will be described. In particular, the importance of the efficiency of neutral beam systems in terms of injected neutral beam power compared to wallplug power will be discussed. Options for improving this efficiency including advanced neutralisers and energy recovery are discussed.

  17. Beyond ITER: neutral beams for a demonstration fusion reactor (DEMO) (invited).

    PubMed

    McAdams, R

    2014-02-01

    In the development of magnetically confined fusion as an economically sustainable power source, International Tokamak Experimental Reactor (ITER) is currently under construction. Beyond ITER is the demonstration fusion reactor (DEMO) programme in which the physics and engineering aspects of a future fusion power plant will be demonstrated. DEMO will produce net electrical power. The DEMO programme will be outlined and the role of neutral beams for heating and current drive will be described. In particular, the importance of the efficiency of neutral beam systems in terms of injected neutral beam power compared to wallplug power will be discussed. Options for improving this efficiency including advanced neutralisers and energy recovery are discussed.

  18. Fusion reactor materials. Semiannual progress report for period ending September 30, 1993

    SciTech Connect

    Rowcliffe, A.F.; Burn, G.L.; Knee`, S.S.; Dowker, C.L.

    1994-02-01

    This is the fifteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; Special purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the U.S. Department of Energy. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide.

  19. HYLIFE-II inertial confinement fusion reactor design

    NASA Astrophysics Data System (ADS)

    Moir, R. W.

    1990-12-01

    The HYLIFE-2 inertial fusion power plant design study uses a liquid fall, in the form of jets to protect the first structural wall from neutron damage, x rays, and blast to provide a 30-y lifetime. HYLIFE-1 used liquid lithium. HYLIFE 2 avoids the fire hazard of lithium by using a molten salt composed of fluorine, lithium, and beryllium (Li2, BeF4) called Flibe. Access for heavy-ion beams is provided. Calculations for assumed heavy-ion beam performance show a nominal gain of 70 at 5 MJ producing 350 MJ, about 5.2 times less yield than the 1.8 GJ from a driver energy of 4.5 MJ with gain of 400 for HYLIFE-1. The nominal 1 GWe of power can be maintained by increasing the repetition rate by a factor of about 5.2, from 1.5 to 8 Hz. A higher repetition rate requires faster re-establishment of the jets after a shot, which can be accomplished in part by decreasing the jet fall height and increasing the jet flow velocity. Multiple chambers may be required. In addition, although not considered for HYLIFE-1, there is undoubtedly liquid splash that must be forcibly cleared because gravity is too slow, especially at high repetition rates. Splash removal can be accomplished by either pulsed or oscillating jet flows. The cost of electricity is estimated to be 0.09 $/kW times h in constant 1988 dollars, about twice that of future coal and light water reactor nuclear power. The driver beam cost is about one-half the total cost.

  20. HYLIFE-II inertial confinement fusion reactor design

    SciTech Connect

    Moir, R.W.

    1990-12-14

    The HYLIFE-2 inertial fusion power plant design study uses a liquid fall, in the form of jets to protect the first structural wall from neutron damage, x rays, and blast to provide a 30-y lifetime. HYLIFE-1 used liquid lithium. HYLIFE 2 avoids the fire hazard of lithium by using a molten salt composed of fluorine, lithium, and beryllium (Li{sub 2}BeF{sub 4}) called Flibe. Access for heavy-ion beams is provided. Calculations for assumed heavy-ion beam performance show a nominal gain of 70 at 5 MJ producing 350 MJ, about 5.2 times less yield than the 1.8 GJ from a driver energy of 4.5 MJ with gain of 400 for HYLIFE-1. The nominal 1 GWe of power can be maintained by increasing the repetition rate by a factor of about 5.2, from 1.5 to 8 Hz. A higher repetition rate requires faster re-establishment of the jets after a shot, which can be accomplished in part by decreasing the jet fall height and increasing the jet flow velocity. Multiple chambers may be required. In addition, although not considered for HYLIFE-1, there is undoubtedly liquid splash that must be forcibly cleared because gravity is too slow, especially at high repetition rates. Splash removal can be accomplished by either pulsed or oscillating jet flows. The cost of electricity is estimated to be 0.09 $/kW{center dot}h in constant 1988 dollars, about twice that of future coal and light water reactor nuclear power. The driver beam cost is about one-half the total cost. 15 refs., 9 figs., 3 tabs.

  1. Fusion reactor materials semiannual progress report for the period ending March 31, 1993

    SciTech Connect

    Not Available

    1993-07-01

    This is the fourteenth in a series of semiannual technical progress reports on fusion reactor materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Depart of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. Separate abstracts were prepared for each individual section.

  2. OPERATION OF FUSION REACTORS IN ONE ATMOSPHERE OF AIR INSTEAD OF VACUUM SYSTEMS

    SciTech Connect

    Roth, J. Reece

    2009-07-26

    Engineering design studies of both magnetic and inertial fusion power plants have assumed that the plasma will undergo fusion reactions in a vacuum environment. Operation under vacuum requires an expensive additional major system for the reactor-a vacuum vessel with vacuum pumping, and raises the possibility of sudden unplanned outages if the vacuum containment is breached. It would be desirable in many respects if fusion reactors could be made to operate at one atmosphere with air surrounding the plasma, thus eliminating the requirement of a pressure vessel and vacuum pumping. This would have obvious economic, reliability, and engineering advantages for currently envisaged power plant reactors; it would make possible forms of reactor control not possible under vacuum conditions (i.e. adiabatic compression of the fusion plasma by increasing the pressure of surrounding gas); it would allow reactors used as aircraft engines to operate as turbojets or ramjets in the atmosphere, and it would allow reactors used as fusion rockets to take off from the surface of the earth instead of low earth orbit.

  3. Effect of particle pinch on the fusion performance and profile features of an international thermonuclear experimental reactor-like fusion reactor

    NASA Astrophysics Data System (ADS)

    Wang, Shijia; Wang, Shaojie

    2015-04-01

    The evolution of the plasma temperature and density in an international thermonuclear experimental reactor (ITER)-like fusion device has been studied by numerically solving the energy transport equation coupled with the particle transport equation. The effect of particle pinch, which depends on the magnetic curvature and the safety factor, has been taken into account. The plasma is primarily heated by the alpha particles which are produced by the deuterium-tritium fusion reactions. A semi-empirical method, which adopts the ITERH-98P(y,2) scaling law, has been used to evaluate the transport coefficients. The fusion performances (the fusion energy gain factor, Q) similar to the ITER inductive scenario and non-inductive scenario (with reversed magnetic shear) are obtained. It is shown that the particle pinch has significant effects on the fusion performance and profiles of a fusion reactor. When the volume-averaged density is fixed, particle pinch can lower the pedestal density by ˜30 % , with the Q value and the central pressure almost unchanged. When the particle source or the pedestal density is fixed, the particle pinch can significantly enhance the Q value by 60 % , with the central pressure also significantly raised.

  4. Effect of particle pinch on the fusion performance and profile features of an international thermonuclear experimental reactor-like fusion reactor

    SciTech Connect

    Wang, Shijia Wang, Shaojie

    2015-04-15

    The evolution of the plasma temperature and density in an international thermonuclear experimental reactor (ITER)-like fusion device has been studied by numerically solving the energy transport equation coupled with the particle transport equation. The effect of particle pinch, which depends on the magnetic curvature and the safety factor, has been taken into account. The plasma is primarily heated by the alpha particles which are produced by the deuterium-tritium fusion reactions. A semi-empirical method, which adopts the ITERH-98P(y,2) scaling law, has been used to evaluate the transport coefficients. The fusion performances (the fusion energy gain factor, Q) similar to the ITER inductive scenario and non-inductive scenario (with reversed magnetic shear) are obtained. It is shown that the particle pinch has significant effects on the fusion performance and profiles of a fusion reactor. When the volume-averaged density is fixed, particle pinch can lower the pedestal density by ∼30%, with the Q value and the central pressure almost unchanged. When the particle source or the pedestal density is fixed, the particle pinch can significantly enhance the Q value by  60%, with the central pressure also significantly raised.

  5. A Subcritical, Gas-Cooled Fast Transmutation Reactor with a Fusion Neutron Source

    SciTech Connect

    Stacey, W.M.; Beavers, V.L.; Casino, W.A.; Cheatham, J.R.; Friis, Z.W.; Green, R.D.; Hamilton, W.R.; Haufler, K.W.; Hutchinson, J.D.; Lackey, W.J.; Lorio, R.A.; Maddox, J.W.; Mandrekas, J.; Manzoor, A.A.; Noelke, C.A.; Oliveira, C. de; Park, M.; Tedder, D.W.; Terry, M.R.; Hoffman, E.A.

    2005-05-15

    A design is presented for a subcritical, He-cooled fast reactor, driven by a tokamak D-T fusion neutron source, for the transmutation of spent nuclear fuel (SNF). The reactor is fueled with coated transuranic (TRU) particles and is intended for the deep-burn (>90%) transmutation of the TRUs in SNF without reprocessing of the coated fuel particles. The reactor design is based on the materials, fuel, and separations technologies under near-term development in the U.S. Department of Energy (DOE) Nuclear Energy Program and on the plasma physics and fusion technologies under near-term development in the DOE Fusion Energy Sciences Program, with the objective of intermediate-term ({approx}2040) deployment. The physical and performance characteristics and research and development requirements of such a reactor are described.

  6. Applying design principles to fusion reactor configurations for propulsion in space

    NASA Technical Reports Server (NTRS)

    Carpenter, Scott A.; Deveny, Marc E.; Schulze, Norman R.

    1993-01-01

    We applied three design principles (DPs) to adapt and optimize three candidate-terrestrial-fusion-reactor configurations for propulsion in space. The three design principles are: (1) provide maximum direct access to space for waste radiation, (2) operate components as passive radiators to minimize cooling-system mass, and (3) optimize the plasma fuel, fuel mix, and temperature for best specific Jet power. The three candidate-terrestrial-fusion-reactor configurations are: (1) the thermal-barrier-tandem-mirror (TBTM), (2) field-reversed-mirror (FRM), and (3) levitated-dipole-field (LDF). The resulting three candidate-space-fusion-propulsion systems have their initial-mass-to-LEO minimized and their specific jet power and reusability maximized. We performed a preliminary rating of these configurations and concluded that the leading engineering-design solution to space fusion propulsion is a modified TBTM that we call the Mirror Fusion Propulsion System.

  7. Optimization of tritium breeding and shielding analysis to plasma in ITER fusion reactor

    NASA Astrophysics Data System (ADS)

    Indah Rosidah, M.; Suud, Zaki; Yazid, Putranto Ilham

    2015-09-01

    The development of fusion energy is one of the important International energy strategies with the important milestone is ITER (International Thermonuclear Experimental Reactor) project, initiated by many countries, such as: America, Europe, and Japan who agreed to set up TOKAMAK type fusion reactor in France. In ideal fusion reactor the fuel is purely deuterium, but it need higher temperature of reactor. In ITER project the fuels are deuterium and tritium which need lower temperature of the reactor. In this study tritium for fusion reactor can be produced by using reaction of lithium with neutron in the blanket region. With the tritium breeding blanket which react between Li-6 in the blanket with neutron resulted from the plasma region. In this research the material used in each layer surrounding the plasma in the reactor is optimized. Moreover, achieving self-sufficiency condition in the reactor in order tritium has enough availability to be consumed for a long time. In order to optimize Tritium Breeding Ratio (TBR) value in the fusion reactor, there are several strategies considered here. The first requirement is making variation in Li-6 enrichment to be 60%, 70%, and 90%. But, the result of that condition can not reach TBR value better than with no enrichment. Because there is reduction of Li-7 percent when increasing Li-6 percent. The other way is converting neutron multiplier material with Pb. From this, we get TBR value better with the Be as neutron multiplier. Beside of TBR value, fusion reactor can analyze the distribution of neutron flux and dose rate of neutron to know the change of neutron concentration for each layer in reactor. From the simulation in this study, 97% neutron concentration can be absorbed by material in reactor, so it is good enough. In addition, it is required to analyze spectrum neutron energy in many layers in the fusion reactor such as in blanket, coolant, and divertor. Actually material in that layer can resist in high temperature

  8. Optimization of tritium breeding and shielding analysis to plasma in ITER fusion reactor

    SciTech Connect

    Indah Rosidah, M. Suud, Zaki; Yazid, Putranto Ilham

    2015-09-30

    The development of fusion energy is one of the important International energy strategies with the important milestone is ITER (International Thermonuclear Experimental Reactor) project, initiated by many countries, such as: America, Europe, and Japan who agreed to set up TOKAMAK type fusion reactor in France. In ideal fusion reactor the fuel is purely deuterium, but it need higher temperature of reactor. In ITER project the fuels are deuterium and tritium which need lower temperature of the reactor. In this study tritium for fusion reactor can be produced by using reaction of lithium with neutron in the blanket region. With the tritium breeding blanket which react between Li-6 in the blanket with neutron resulted from the plasma region. In this research the material used in each layer surrounding the plasma in the reactor is optimized. Moreover, achieving self-sufficiency condition in the reactor in order tritium has enough availability to be consumed for a long time. In order to optimize Tritium Breeding Ratio (TBR) value in the fusion reactor, there are several strategies considered here. The first requirement is making variation in Li-6 enrichment to be 60%, 70%, and 90%. But, the result of that condition can not reach TBR value better than with no enrichment. Because there is reduction of Li-7 percent when increasing Li-6 percent. The other way is converting neutron multiplier material with Pb. From this, we get TBR value better with the Be as neutron multiplier. Beside of TBR value, fusion reactor can analyze the distribution of neutron flux and dose rate of neutron to know the change of neutron concentration for each layer in reactor. From the simulation in this study, 97% neutron concentration can be absorbed by material in reactor, so it is good enough. In addition, it is required to analyze spectrum neutron energy in many layers in the fusion reactor such as in blanket, coolant, and divertor. Actually material in that layer can resist in high temperature

  9. Conceptual study of fusion-driven transmutation reactor with ITER physics and engineering constraints

    NASA Astrophysics Data System (ADS)

    Hong, Bong

    2011-10-01

    A conceptual study of fusion-driven transmutation reactor was performed based on ITER physics and engineering constraints. A compact reactor concept is desirable from an economic viewpoint. For the optimal design of a reactor, a radial build of reactor components has to be determined by considering the plasma physics and engineering constraints which inter-relate various reactor components. In a transmutation reactor, design of blanket and shield play a key role in determining the size of a reactor; the blanket should produce enough tritium for tritium self-sufficiency, the transmutation rate of waste has to be maximized, and the shield should provide sufficient protection for the superconducting toroidal field (TF) coil. To determine the radial build of the blanket and the shield, not only a radiation transport analysis but also a burnup calculation were coupled with the system analysis and it allowed the self-consistent determination of the design parameters of a transmutation reactor.

  10. Licensed reactor nuclear safety criteria applicable to DOE reactors

    SciTech Connect

    Not Available

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC (Nuclear Regulatory Commission) licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor.

  11. Radiation facilities for fusion-reactor first-wall and blanket structural-materials development

    SciTech Connect

    Klueh, R.L.; Bloom, E.E.

    1981-12-01

    Present and future irradiation facilities for the study of fusion reactor irradiation damage are reviewed. Present studies are centered on irradiation in accelerator-based neutron sources, fast- and mixed-spectrum fission reactors, and ion accelerators. The accelerator-based neutron sources are used to demonstrate damage equivalence between high-energy neutrons and fission reactor neutrons. Once equivalence is demonstrated, the large volume of test space available in fission reactors can be used to study displacement damage, and in some instances, the effects of high-helium concentrations and the interaction of displacement damage and helium on properties. Ion bombardment can be used to study the mechanisms of damage evolution and the interaction of displacement damage and helium. These techniques are reviewed, and typical results obtained from such studies are examined. Finally, future techniques and facilities for developing damage levels that more closely approach those expected in an operating fusion reactor are discussed.

  12. Evaluating and planning the radioactive waste options for dismantling the Tokamak Fusion Test Reactor

    SciTech Connect

    Rule, K.; Scott, J.; Larson, S.

    1995-12-31

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a kind tritium fusion research reactor, and is planned to be decommissioned within the next several years. This is the largest fusion reactor in the world and as a result of deuterium-tritum reactions is tritium contaminated and activated from 14 Mev neutrons. This presents many unusual challenges when dismantling, packaging and disposing its components and ancillary systems. Special containers are being designed to accommodate the vacuum vessel, neutral beams, and tritium delivery and processing systems. A team of experienced professionals performed a detailed field study to evaluate the requirements and appropriate methods for packaging the radioactive materials. This team focused on several current and innovative methods for waste minimization that provides the oppurtunmost cost effective manner to package and dispose of the waste. This study also produces a functional time-phased schedule which conjoins the waste volume, weight, costs and container requirements with the detailed project activity schedule for the entire project scope. This study and project will be the first demonstration of the decommissioning of a tritium fusion test reactor. The radioactive waste disposal aspects of this project are instrumental in demonstrating the viability of a fusion power reactor with regard to its environmental impact and ultimate success.

  13. The TITAN reversed-field-pinch fusion reactor study

    SciTech Connect

    Not Available

    1990-01-01

    This report discusses research on the titan-1 fusion power core. The major topics covered are: titan-1 fusion-power-core engineering; titan-1 divertor engineering; titan-1 tritium systems; titan-1 safety design and radioactive-waste disposal; and titan-1 maintenance procedures.

  14. Lithium Ceramic Blankets for Russian Fusion Reactors and Influence of Breeding Operation Mode on Parameters of Reactor Tritium Systems

    SciTech Connect

    Kapyshev, Victor K.; Chernetsov, Mikhail Yu.; Zhevotov, Sergej I.; Kersnovskij, Alexandr Yu.; Kolbasov, Boris N.; Kovalenko, Victor G.; Paltusov, Nikolaj P.; Sernyaev, Georgeij A.; Sterebkov, Juri S.; Zyryanov, Alexej P.

    2005-07-15

    Russian controlled fusion program supposes development of a DEMO reactor design and participation in ITER Project. A solid breeder blanket of DEMO contains a ceramic lithium orthosilicate breeder and a beryllium multiplier. Test modules of the blanket are developed within the scope of ITER activities. Experimental models of module tritium breeding zones (TBZ), materials and fabrication technology of the TBZ, tritium reactor systems to analyse and process gas released from lithium ceramics are being developed. Two models of tritium breeding and neutron multiplying elements of the TBZ have been designed, manufactured and tested in IVV-2M nuclear reactor. Initial results of the in-pile experiments and outcome of lithium ceramics irradiation in a water-graphite nuclear reactor are considered to be a data base for development of the test modules and initial requirements for DEMO tritium system design. Influence of the tritium release parameters and hydrogen concentration in a purge gas on parameters of reactor system are discussed.

  15. Safety and environmental constraints on space applications of fusion energy

    NASA Technical Reports Server (NTRS)

    Roth, J. Reece

    1990-01-01

    Some of the constraints are examined on fusion reactions, plasma confinement systems, and fusion reactors that are intended for such space related missions as manned or unmanned operations in near earth orbit, interplanetary missions, or requirements of the SDI program. Of the many constraints on space power and propulsion systems, those arising from safety and environmental considerations are emphasized since these considerations place severe constraints on some fusion systems and have not been adequately treated in previous studies.

  16. Evaluation of Nb-base alloys for the divertor structure in fusion reactors

    SciTech Connect

    Purdy, I.M.

    1996-04-01

    Niobium-base alloys are candidate materials for the divertor structure in fusion reactors. For this application, an alloy should resist aqueous corrosion, hydrogen embrittlement, and radiation damage and should have high thermal conductivity and low thermal expansion. Results of corrosion and embrittlement screening tests of several binary and ternary Nb alloys in high-temperature water indicated the Mb-1Zr, Nb-5MO-1Zr, and Nb-5V-1Z4 (wt %) showed sufficient promise for further investigation. These alloys, together with pure Nb and Zircaloy-4 have been exposed to high purity water containing a low concentration of dissolved oxygen (<12 ppb) at 170, 230, and 300{degrees}C for up to {approx}3200 h. Weight-change data, microstructural observations, and qualitative mechanical-property evaluation reveal that Nb-5V-1Zr is the most promising alloy at higher temperatures. Below {approx}200{degrees}C, the alloys exhibit similiar corrosion behavior.

  17. Progress on Gyrotrons for ITER and Future Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Thumm, Manfred K.

    2009-11-01

    The prototype of the Japan 170 GHz ITER gyrotron holds the energy and efficiency world record of 2.88 GJ (0.8 MW, 3600 s, 57%) with 55% efficiency at 1 MW, 800 s, whereas the Russian 170 GHz ITER prototype tube achieved 0.83 MW with a pulse duration of 203 s at 48% efficiency and 1 MW at 116 s and 52%. The record parameters of the European megawatt-class 140 GHz gyrotron for the Stellarator Wendelstein W7-X are: 0.92 MW output power at 1800 s pulse duration, almost 45% efficiency and 97.5% Gaussian mode purity. All these gyrotrons employ a cylindrical cavity, a quasi-optical output coupler, a synthetic diamond window and a single-stage depressed collector (SDC) for energy recovery. In coaxial cavities the existence of the longitudinally corrugated inner conductor reduces the problems of mode competition and limiting current, thus allowing one to use even higher order modes with lower Ohmic attenuation than in cylindrical cavities. Synthetic diamond windows with a transmission capability of 2 MW, continuous wave (CW) are feasible. In order to keep the number of the required gyrotrons and magnets as low as possible, to reduce the costs of the ITER 26 MW, 170 GHz ECRH system and to allow compact upper launchers for plasma stabilization, 2 MW mm-wave power per gyrotron tube is desirable. The FZK pre-prototype tube for an EU 170 GHz, 2 MW ITER gyrotron has achieved 1.8 MW at 28% efficiency (without depressed collector). Design studies for a 4 MW 170 GHz coaxial-cavity gyrotron with two synthetic diamond output windows and two 2 MW mm-wave output beams for future fusion reactors are currently being performed at FZK. The availability of sources with fast frequency tunability (several GHz s-1, tuning in 1.5-2.5% steps for about ten different frequencies) would permit the use of a simple, fixed, non-steerable mirror antenna for local current drive (ECCD) experiments and plasma stabilization. GYCOM in Russia develops in collaboration with IPP Garching and FZK an industrial

  18. Licensed reactor nuclear safety criteria applicable to DOE reactors

    SciTech Connect

    Not Available

    1993-11-01

    This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards.

  19. Negative Halogen Ions for Fusion Applications

    SciTech Connect

    Grisham, L.R.; Kwan, J.W.; Hahto, S.K.; Hahto, S.T.; Leung, K.N.; Westenskow, G.

    2006-01-01

    Over the past quarter century, advances in hydrogen negative ion sources have extended the usable range of hydrogen isotope neutral beams to energies suitable for large magnetically confined fusion devices. Recently, drawing upon this experience, negative halogen ions have been proposed as an alternative to positive ions for heavy ion fusion drivers in inertial confinement fusion, because electron accumulation would be prevented in negative ion beams, and if desired, the beams could be photo-detached to neutrals. This paper reports the results of an experiment comparing the current density and beam emittance of Cl+ and Cl- extracted from substantially ion-ion plasmas with that of Ar+ extracted from an ordinary electron-ion plasma, all using the same source, extractor, and emittance scanner. At similar discharge conditions, the Cl- current was typically 85 – 90% of the positive chlorine current, with an e-/ Cl- ratio as low as seven without grid magnets. The Cl- was as much as 76% of the Ar+ current from a discharge with the same RF drive. The minimum normalized beam emittance and inferred ion temperatures of Cl+, Cl-, and Ar+ were all similar, so the current density and optical quality of Cl- appear as suitable for heavy ion fusion driver applications as a positive noble gas ion of similar mass. Since F, I, and Br should all behave similarly in an ion source, they should also be suitable as driver beams.

  20. Fusion

    NASA Astrophysics Data System (ADS)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  1. Physical sputtering code for fusion applications

    SciTech Connect

    Smith, D.L.; Brooks, J.N.; Post, D.E.

    1981-10-01

    A computer code, DSPUT, has been developed to compute the physical sputtering yields for various plasma particles incident on candidate fusion-reactor first-wall materials. The code, which incorporates the energy and angular-dependence of the sputtering yield, treats both high- and low-Z incident particles bombarding high- and low-Z wall materials. The physical sputtering yield is expressed in terms of the atomic and mass numbers of the incident and target atoms, the surface binding energy of the wall materials, and the incident angle and energy of the particle. An auxiliary code has been written to provide sputtering yields for a Maxwellian-averaged incident particle flux. The code DSPUT has been used as part of a Monte Carlo code for analyzing plasma-wall interactions.

  2. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    NASA Astrophysics Data System (ADS)

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.

    2015-12-01

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  3. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    SciTech Connect

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A. Ignatiev, V. V.; Subbotin, S. A. Tsibulskiy, V. F.

    2015-12-15

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  4. Technical issues for beryllium use in fusion blanket applications

    SciTech Connect

    McCarville, T.J.; Berwald, D.H.; Wolfer, W.; Fulton, F.J.; Lee, J.D.; Maninger, R.C.; Moir, R.W.; Beeston, J.M.; Miller, L.G.

    1985-01-01

    Beryllium is an excellent non-fissioning neutron multiplier for fusion breeder and fusion electric blanket applications. This report is a compilation of information related to the use of beryllium with primary emphasis on the fusion breeder application. Beryllium resources, production, fabrication, properties, radiation damage and activation are discussed. A new theoretical model for beryllium swelling is presented.

  5. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOEpatents

    Lasche, George P.

    1988-01-01

    A high-power-density laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems.

  6. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOEpatents

    Lasche, G.P.

    1987-02-20

    A high-power-density-laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems. 25 figs.

  7. Advances in implosion physics, alternative targets design, and neutron effects on heavy ion fusion reactors

    NASA Astrophysics Data System (ADS)

    Velarde, G.; Perlado, J. M.; Alonso, E.; Alonso, M.; Domínguez, E.; Rubiano, J. G.; Gil, J. M.; Gómez del Rio, J.; Lodi, D.; Malerba, L.; Marian, J.; Martel, P.; Martínez-Val, J. M.; Mínguez, E.; Piera, M.; Ogando, F.; Reyes, S.; Salvador, M.; Sanz, J.; Sauvan, P.; Velarde, M.; Velarde, P.

    2001-05-01

    The coupling of a new radiation transport (RT) solver with an existing multimaterial fluid dynamics code (ARWEN) using Adaptive Mesh Refinement named DAFNE, has been completed. In addition, improvements were made to ARWEN in order to work properly with the RT code, and to make it user-friendlier, including new treatment of Equations of State, and graphical tools for visualization. The evaluation of the code has been performed, comparing it with other existing RT codes (including the one used in DAFNE, but in the single-grid version). These comparisons consist in problems with real input parameters (mainly opacities and geometry parameters). Important advances in Atomic Physics, Opacity calculations and NLTE atomic physics calculations, with participation in significant experiments in this area, have been obtained. Early published calculations showed that a DT x fuel with a small tritium initial content ( x<3%) could work in a catalytic regime in Inertial Fusion Targets, at very high burning temperatures (≫100 keV). Otherwise, the cross-section of DT remains much higher than that of DD and no internal breeding of tritium can take place. Improvements in the calculation model allow to properly simulate the effect of inverse Compton scattering which tends to lower Te and to enhance radiation losses, reducing the plasma temperature, Ti. The neutron activation of all natural elements in First Structural Wall (FSW) component of an Inertial Fusion Energy (IFE) reactor for waste management, and the analysis of activation of target debris in NIF-type facilities has been completed. Using an original efficient modeling for pulse activation, the FSW behavior in inertial fusion has been studied. A radiological dose library coupled to the ACAB code is being generated for assessing impact of environmental releases, and atmospheric dispersion analysis from HIF reactors indicate the uncertainty in tritium release parameters. The first recognition of recombination barriers in Si

  8. Composite materials for fusion applications

    SciTech Connect

    Jones, R.H.; Henager, C.H. Jr.; Hollenberg, G.W.

    1991-10-01

    Ceramic matrix composites, CMCs, are being considered for advanced first-wall and blanket structural applications because of their high-temperature properties, low neutron activation, low density and low coefficient of expansion coupled with good thermal conductivity and corrosion behavior. This paper presents a review and analysis of the hermetic, thermal conductivity, corrosion, crack growth and radiation damage properties of CMCs. It was concluded that the leak rates of a gaseous coolant into the plasma chamber or tritium out of the blanket could exceed design criteria if matrix microcracking causes existing porosity to become interconnected. Thermal conductivities of unirradiated SiC/SiC and C/SiC materials are about 1/2 to 2/3 that of Type 316 SS whereas the thermal conductivity for C/C composites is seven times larger. The thermal stress figure-of-merit value for CMCs exceeds that of Type 316 SS for a single thermal cycle. SiC/SiC composites are very resistant to corrosion and are expected to be compatible with He or Li coolants if the O{sub 2} concentrations are maintained at the appropriate levels. CMCs exhibit subcritical crack growth at elevated temperatures and the crack velocity is a function of the corrosion conditions. The radiation stability of CMCs will depend on the stability of the fiber, microcracking of the matrix, and the effects of gaseous transmutation products on properties. 23 refs., 14 figs., 1 tab.

  9. Charge-exchange and fusion reaction measurements during compression experiments with neutral beam heating in the Tokamak Fusion Test Reactor

    SciTech Connect

    Kaita, R.; Heidbrink, W.W.; Hammett, G.W.; Chan, A.A.; England, A.C.; Hendel, H.W.; Medley, S.S.; Nieschmidt, E.; Roquemore, A.L.; Scott, S.D.

    1986-04-01

    Adiabatic toroidal compression experiments were performed in conjunction with high power neutral beam injection in the Tokamak Fusion Test Reactor (TFTR). Acceleration of beam ions to energies nearly twice the injection energy was measured with a charge-exchange neutral particle analyzer. Measurements were also made of 2.5 MeV neutrons and 15 MeV protons produced in fusion reactions between the deuterium beam ions and the thermal deuterium and /sup 3/He ions, respectively. When the plasma was compressed, the d(d,n)/sup 3/He fusion reaction rate increased a factor of five, and the /sup 3/He(d,p)/sup 4/He rate by a factor of twenty. These data were simulated with a bounce-averaged Fokker-Planck program, which assumed conservation of angular momentum and magnetic moment during compression. The results indicate that the beam ion acceleration was consistent with adiabatic scaling.

  10. The TITAN reversed-field-pinch fusion reactor study

    SciTech Connect

    Not Available

    1990-01-01

    This report discusses the following topics: overview of titan-2 design; titan-2 fusion-power-core engineering; titan-2 divertor engineering; titan-2 tritium systems; titan-2 safety design and radioactive-waste disposal; and titan-2 maintenance procedures.

  11. Fusion-power-core design of a Compact Reversed-Field Pinch Reactor (CRFPR)

    NASA Astrophysics Data System (ADS)

    Copenhaver, C.; Schnurr, N. M.; Krakowski, R. A.; Hagenson, R. L.; Mynard, R. C.; Cappiello, C.; Lujan, R. E.; Davidson, J. W.; Chaffee, A. D.; Battat, M. E.

    A conceptual design of a fusion power core (FPC, i.e., plasma chamber, first wall, blanket, shield, coils) based on a Reversed-Field Pinch (RFP) has been completed. After a brief statement of rationale and description of the reactor configuraton, the FPC integration is described in terms of power balance, thermal-hydraulics, and mechanical design. The engineering versatility, promise, and problems of this high-power-density approach to fusion are addressed.

  12. Advanced Fusion Reactors for Space Propulsion and Power Systems

    SciTech Connect

    Chapman, John J.

    2011-06-15

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  13. Advanced Fusion Reactors for Space Propulsion and Power Systems

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    2011-01-01

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  14. SAFIRE: A systems analysis code for ICF (inertial confinement fusion) reactor economics

    SciTech Connect

    McCarville, T.J.; Meier, W.R.; Carson, C.F.; Glasgow, B.B.

    1987-01-12

    The SAFIRE (Systems Analysis for ICF Reactor Economics) code incorporates analytical models for scaling the cost and performance of several inertial confinement fusion reactor concepts for electric power. The code allows us to vary design parameters (e.g., driver energy, chamber pulse rate, net electric power) and evaluate the resulting change in capital cost of power plant and the busbar cost of electricity. The SAFIRE code can be used to identify the most attractive operating space and to identify those design parameters with the greatest leverage for improving the economics of inertial confinement fusion electric power plants.

  15. Fusion reactor materials: Semiannual progress report for the period ending March 31, 1987

    SciTech Connect

    none,

    1987-09-01

    This is the second in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities in the following areas: (1) Alloy Development for Irradiation Performance; (2) Damage Analysis and Fundamental Studies; and (3) Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. Separate analytics were prepared for the reports in this volume.

  16. Development of the cascade inertial-confinement-fusion reactor

    SciTech Connect

    Pitts, J.H.

    1985-04-15

    Cascade, originally conceived as a football-shaped, steel-walled reactor containing a Li/sub 2/O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO/sub 2/ granules. Average blanket exit temperature is 1670/sup 0/K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis and experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation.

  17. Development of the cascade inertial-confinement-fusion reactor

    SciTech Connect

    Pitts, J.H.

    1985-07-01

    Caqscade, originally conceived as a football-shaped, steel-walled reactor containing a Li/sub 2/O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO/sub 2/ granules. Average blanket exit temperature is 1670 K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis and experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation.

  18. Electron cyclotron emission imaging and applications in magnetic fusion energy

    NASA Astrophysics Data System (ADS)

    Tobias, Benjamin John

    Energy production through the burning of fossil fuels is an unsustainable practice. Exponentially increasing energy consumption and dwindling natural resources ensure that coal and gas fueled power plants will someday be a thing of the past. However, even before fuel reserves are depleted, our planet may well succumb to disastrous side effects, namely the build up of carbon emissions in the environment triggering world-wide climate change and the countless industrial spills of pollutants that continue to this day. Many alternatives are currently being developed, but none has so much promise as fusion nuclear energy, the energy of the sun. The confinement of hot plasma at temperatures in excess of 100 million Kelvin by a carefully arranged magnetic field for the realization of a self-sustaining fusion power plant requires new technologies and improved understanding of fundamental physical phenomena. Imaging of electron cyclotron radiation lends insight into the spatial and temporal behavior of electron temperature fluctuations and instabilities, providing a powerful diagnostic for investigations into basic plasma physics and nuclear fusion reactor operation. This dissertation presents the design and implementation of a new generation of Electron Cyclotron Emission Imaging (ECEI) diagnostics on toroidal magnetic fusion confinement devices, or tokamaks, around the world. The underlying physics of cyclotron radiation in fusion plasmas is reviewed, and a thorough discussion of millimeter wave imaging techniques and heterodyne radiometry in ECEI follows. The imaging of turbulence and fluid flows has evolved over half a millennium since Leonardo da Vinci's first sketches of cascading water, and applications for ECEI in fusion research are broad ranging. Two areas of physical investigation are discussed in this dissertation: the identification of poloidal shearing in Alfven eigenmode structures predicted by hybrid gyrofluid-magnetohydrodynamic (gyrofluid-MHD) modeling, and

  19. Neutron transport-burnup code MCORGS and its application in fusion fission hybrid blanket conceptual research

    NASA Astrophysics Data System (ADS)

    Shi, Xue-Ming; Peng, Xian-Jue

    2016-09-01

    Fusion science and technology has made progress in the last decades. However, commercialization of fusion reactors still faces challenges relating to higher fusion energy gain, irradiation-resistant material, and tritium self-sufficiency. Fusion Fission Hybrid Reactors (FFHR) can be introduced to accelerate the early application of fusion energy. Traditionally, FFHRs have been classified as either breeders or transmuters. Both need partition of plutonium from spent fuel, which will pose nuclear proliferation risks. A conceptual design of a Fusion Fission Hybrid Reactor for Energy (FFHR-E), which can make full use of natural uranium with lower nuclear proliferation risk, is presented. The fusion core parameters are similar to those of the International Thermonuclear Experimental Reactor. An alloy of natural uranium and zirconium is adopted in the fission blanket, which is cooled by light water. In order to model blanket burnup problems, a linkage code MCORGS, which couples MCNP4B and ORIGEN-S, is developed and validated through several typical benchmarks. The average blanket energy Multiplication and Tritium Breeding Ratio can be maintained at 10 and 1.15 respectively over tens of years of continuous irradiation. If simple reprocessing without separation of plutonium from uranium is adopted every few years, FFHR-E can achieve better neutronic performance. MCORGS has also been used to analyze the ultra-deep burnup model of Laser Inertial Confinement Fusion Fission Energy (LIFE) from LLNL, and a new blanket design that uses Pb instead of Be as the neutron multiplier is proposed. In addition, MCORGS has been used to simulate the fluid transmuter model of the In-Zinerater from Sandia. A brief comparison of LIFE, In-Zinerater, and FFHR-E will be given.

  20. Multilayer mirror based monitors for impurity controls in large fusion reactor type devices

    SciTech Connect

    Regan, S.P.; May, M.J.; Soukhanovskii, V.; Finkenthal, M.; Moos, H.W.

    1995-12-31

    Multilayer Mirror (MLM) based monitors are compact, high throughput diagnostics capable of extracting XUV emissions (the wavelength range including the soft-x-ray and the extreme ultraviolet, 10 {angstrom} to 304 {angstrom}) of impurities from the harsh environment of large fusion reactor type devices. For several years the Plasma Spectroscopy Group at Johns Hopkins University has investigated the application of MLM based XUV spectroscopic diagnostics for magnetically confined fusion plasmas. MLM based monitors have been constructed for and extensively used on DIII-D, Alcator C-mod, TEXT, Phaedrus-T, and CDX-U tokamaks to study the impurity behavior of elements ranging from He to Mo. On ITER MLM based devices would be used to monitor the spectral line emissions from Li I-like to F I-like charge states of Fe, Cr, and Ni, as well as extractors for the bands of emissions from high Z elements such as Mo or W for impurity controls of the fusion plasma. In addition to monitoring the impurity emissions from the main plasma, MLM based devices can also be adapted for radiation measurements of low Z elements in the divertor. The concepts and designs of these MLM based monitors for impurity controls in ITER will be presented. The results of neutron irradiation experiments of the MLMs performed in the Los Alamos Spallation Radiation Effects Facility (LASREF) at the Los Alamos National Laboratory will also be discussed. These preliminary neutron exposure studies show that the dispersive and reflective qualities of the MLMs were not affected in a significant manner.

  1. Adapting computational optimization concepts from aeronautics to nuclear fusion reactor design

    NASA Astrophysics Data System (ADS)

    Dekeyser, W.; Reiter, D.; Baelmans, M.

    2012-10-01

    Even on the most powerful supercomputers available today, computational nuclear fusion reactor divertor design is extremely CPU demanding, not least due to the large number of design variables and the hybrid micro-macro character of the flows. Therefore, automated design methods based on optimization can greatly assist current reactor design studies. Over the past decades, "adjoint methods" for shape optimization have proven their virtue in the field of aerodynamics. Applications include drag reduction for wing and wing-body configurations. Here we demonstrate that also for divertor design, these optimization methods have a large potential. Specifically, we apply the continuous adjoint method to the optimization of the divertor geometry in a 2D poloidal cross section of an axisymmetric tokamak device (as, e.g., JET and ITER), using a simplified model for the plasma edge. The design objective is to spread the target material heat load as much as possible by controlling the shape of the divertor, while maintaining the full helium ash removal capabilities of the vacuum pumping system.

  2. Plasma Heating and Current Drive for Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Holtkamp, Norbert

    2010-02-01

    ITER (in Latin ``the way'') is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier one and thus release energy. In the fusion process two isotopes of hydrogen - deuterium and tritium - fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q >= 10 (input power 50 MW / output power 500 MW). In a Tokamak the definition of the functionalities and requirements for the Plasma Heating and Current Drive are relevant in the determination of the overall plant efficiency, the operation cost of the plant and the plant availability. This paper summarise these functionalities and requirements in perspective of the systems under construction in ITER. It discusses the further steps necessary to meet those requirements. Approximately one half of the total heating will be provided by two Neutral Beam injection systems at with energy of 1 MeV and a beam power of 16 MW into the plasma. For ITER specific test facility is being build in order to develop and test the Neutral Beam injectors. Remote handling maintenance scheme for the NB systems, critical during the nuclear phase of the project, will be developed. In addition the paper will give an overview over the general status of ITER. )

  3. Utilization of Heavy Metal Molten Salts in the ARIES-RS Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Übeyli, Mustafa; Yapıcı, Hüseyin

    2008-09-01

    ARIES-RS is one of the major magnetic fusion energy reactor designs that uses a blanket having vanadium alloy structure cooled by lithium [1, 2]. It is a deuterium-tritium (DT) fusion driven reactor, having a fusion power of 2170 MW [1, 2]. This study presents the neutronic analysis of the ARIES-RS fusion reactor using heavy metal molten salts in which Li2BeF4 as the main constituent was mixed with increased mole fractions of heavy metal salt (ThF4 or UF4) starting by 2 mol.% up to 12 mol.%. Neutron transport calculations were carried out with the help of the SCALE 4.3 system by solving the Boltzmann transport equation with the XSDRNPM code in 238 neutron groups and a S 8- P 3 approximation. According to the numerical results, tritium self-sufficiency was attained for the coolants, Flibe with 2% UF4 or ThF4 and 4% UF4. In addition, higher energy multiplication values were found for the salt with UF4 compared to that with ThF4. Furthermore, significant amount of high quality nuclear fuel was produced to be used in external reactors.

  4. Fusion reactor materials semiannual progress report for the period ending March 31, 1991

    SciTech Connect

    none,

    1991-07-01

    This is the tenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: alloy development for irradiation performance; damage analysis and fundamental studies; special purpose materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of program participants, and to provide a means of communicating the efforts of materials scientists to the test of the fusion community, both nationally and worldwide.

  5. The development of a universal diagnostic probe system for Tokamak fusion test reactor

    NASA Technical Reports Server (NTRS)

    Mastronardi, R.; Cabral, R.; Manos, D.

    1982-01-01

    The Tokamak Fusion Test Reactor (TFTR), the largest such facility in the U.S., is discussed with respect to instrumentation in general and mechanisms in particular. The design philosophy and detailed implementation of a universal probe mechanism for TFTR is discussed.

  6. Fusion reactor materials semiannual progress report for the period ending September 30, 1989

    SciTech Connect

    none,

    1989-01-01

    This is the seventh in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following technical progress reports: alloy development for irradiation performance, damage analysis and fundamental studies, and special purpose materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide.

  7. Fusion reactor materials semiannual progress report for the period ending September 30, 1988

    SciTech Connect

    none,

    1989-04-01

    This paper discusses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  8. Fusion reactor materials: Semiannual progress report for period ending September 30, 1987

    SciTech Connect

    none,

    1988-03-01

    This is the third in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following technical progress reports: Alloy Development for Irradiation Performances; Damage Analysis and Fundamental Studies; Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide.

  9. Fusion reactor materials semiannual progress report for period ending September 30, 1990

    SciTech Connect

    Not Available

    1991-04-01

    This is the ninth in series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following technical progress reports: Alloy Development of Irradiation Performance; Damage Analysis and Fundamental Studies; and Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide.

  10. Fusion Reactor Materials semiannual progress report for the period ending March 31, 1992

    SciTech Connect

    Not Available

    1992-07-01

    This is the twelfth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; and Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide.

  11. Reduction in TFTR (Tokamak Fusion Test Reactor) fusion reaction rate by unbalanced beam injection and rotation

    SciTech Connect

    Hendel, H.W.; Jassby, D.L.; Bitter, M.L.; Taylor, G.

    1987-06-01

    In TFTR plasmas at low to moderate density, the highest fusion energy gain Q/sub dd/ (D-D fusion power/injected power P/sub b/) is obtained with nearly balanced co- and counter-injection of neutral beams. For a given beam power, significantly unbalanced injection reduces Q/sub dd/ because the accompanying plasma rotation reduces the beam-target fusion reactivity, the fast-ion slowing-down time, and the beam-beam reaction rate, while and decrease from their maximum values. 9 refs., 3 figs., 1 tab.

  12. Prospects for fusion applications of reversed-field pinches

    NASA Astrophysics Data System (ADS)

    Bathke, C. G.; Krakowski, R. A.; Hagenson, R. L.

    1985-11-01

    The applicability of the Reversed-Field Pinch (RFP) as a source of fusion neutrons for use in developing key fusion nuclear technologies is examined. This Fusion Test Facility (FTF) would emphasize high neutron wall loading, small plasma volume, low fusion and driver powers, and steady-state operation. Both parametric tradeoffs based on present-day physics understanding and a conceptual design based on an approx. 1-MW/m (neutron) driven operation are reported.

  13. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOEpatents

    Lasche, G.P.

    1983-09-29

    The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.

  14. The First Decommissioning of a Fusion Reactor Fueled by Deuterium-Tritium

    SciTech Connect

    Charles A. Gentile; Erik Perry; Keith Rule; Michael Williams; Robert Parsells; Michael Viola; James Chrzanowski

    2003-10-28

    The Tokamak Fusion Test Reactor (TFTR) at the Plasma Physics Laboratory of Princeton University (PPPL) was the first fusion reactor fueled by a mixture of deuterium and tritium (D-T) to be decommissioned in the world. The decommissioning was performed over a period of three years and was completed safely, on schedule, and under budget. Provided is an overview of the project and detail of various factors which led to the success of the project. Discussion will cover management of the project, engineering planning before the project started and during the field work as it was being performed, training of workers in the field, the novel adaptation of tools from other industry, and the development of an innovative process for the use of diamond wire to segment the activated/contaminated vacuum vessel. The success of the TFTR decommissioning provides a viable model for the decommissioning of D-T burning fusion devices in the future.

  15. FIREBIRD: A conceptual design of a field reversed configuration Compact Torus Fusion Reactor (CTFR)

    NASA Astrophysics Data System (ADS)

    Raman, Roger; Zubrin, Robert M.

    Work carried out by the Nuclear Engineering 512 design team at the University of Washington on a conceptual design study of a Compact-Torus (field-reverse) Fusion Reactor Configuration (CTFR) is summarized. The primary objective was to develop a reactor design for high engineering power density, modest recirculating power, and competitive cost of electrical power. A conceptual design was developed for a translating field-reversed configuration reactor; based on the physics developed by Tuszewski and Lindford at LANL and by Hoffman and Milroy at MSNW. Furthermore, it also appears possible to operate a simplified form of this reactor using a pure D-D fuel cycle after an initial D-T ignition ramp to reach the advanced fuel operating regime. One optimistic reactor so designed has a length of about 35 meters, producing a net electrical power of about 375 MWe.

  16. A revaluation of helium/dpa ratios for fast reactor and thermal reactor data in fission-fusion correlations

    SciTech Connect

    Garner, F.A.; Greenwood, L.R.; Oliver, B.M.

    1996-10-01

    For many years it has been accepted that significant differences exist in the helium/dpa ratios produced in fast reactors and various proposed fusion energy devices. In general, the differences arise from the much larger rate of (n,{alpha}) threshold reactions occurring in fusion devices, reactions which occur for energies {ge} 6 MeV. It now appears, however, that for nickel-containing alloys in fast reactors the difference may not have been as large as was originally anticipated. In stainless steels that have a very long incubation period for swelling, for instance, the average helium concentration over the duration of the transient regime have been demonstrated in an earlier paper to be much larger in the FFTF out-of-core regions than first calculated. The helium/dpa ratios in some experiments conducted near the core edge or just outside of the FFTF core actually increase strongly throughout the irradiation, as {sup 59}Ni slowly forms by transmutation of {sup 58}Ni. This highly exothermic {sup 59}Ni(n,{alpha}) reaction occurs in all fast reactors, but is stronger in the softer spectra of oxide-fueled cores such as FFTF and weaker in the harder spectra of metal-fueled cores such as EBR-II. The formation of {sup 59}Ni also increases strongly in out-of-core unfueled regions where the reactor spectra softens with distance from the core.

  17. Code development incorporating environmental, safety, and economic aspects of fusion reactors (FY 92--94). Final report

    SciTech Connect

    Ho, S.K.; Fowler, T.K.; Holdren, J.P.

    1994-11-01

    This is the Final Report for a three-year (FY 92--94) study of the Environmental, Safety, and Economic (ESE) aspects of fusion energy systems, emphasizing development of computerized approaches suitable for incorporation as modules in fusion system design codes. First, as is reported in Section 2, the authors now have operating a simplified but complete environment and safety evaluation code, BESAFE. The first tests of BESAFE as a module of the SUPERCODE, a design optimization systems code at LLNL, are reported in Section 3. Secondly, as reported in Section 4, the authors have maintained a strong effort in developing fast calculational schemes for activation inventory evaluation. In addition to these major accomplishments, considerable progress has been made on research on specific topics as follows. A tritium modeling code TRIDYN was developed in collaboration with the TSTA group at LANL and the Fusion Nuclear Technology group at UCLA. A simplified algorithm has been derived to calculate the transient temperature profiles in the blanket during accidents. The scheme solves iteratively a system of non-linear ordinary differential equations describing about 10 regions of the blanket by preserving energy balance. The authors have studied the physics and engineering aspects of divertor modeling for safety applications. Several modifications in the automation and characterization of environmental and safety indices have been made. They have applied this work to the environmental and safety comparisons of stainless steel with alternative structural materials for fusion reactors. A methodology in decision analysis utilizing influence and decision diagrams has been developed to model fusion reactor design problems. Most of the work during this funding period has been reported in 26 publications including theses, journal publications, conference papers, and technical reports, as listed in Section 11.

  18. Inertial fusion energy power reactor fuel recovery system

    SciTech Connect

    Gentile, C. A.; Kozub, T.; Langish, S. W.; Ciebiera, L. P.; Nobile, A.; Wermer, J.; Sessions, K.

    2008-07-15

    A conceptual design is proposed to support the recovery of un-expended fuel, ash, and associated post-detonation products resident in plasma exhaust from a {approx}2 GWIFE direct drive power reactor. The design includes systems for the safe and efficient collection, processing, and purification of plasma exhaust fuel components. The system has been conceptually designed and sized such that tritium bred within blankets, lining the reactor target chamber, can also be collected, processed, and introduced into the fuel cycle. The system will nominally be sized to process {approx}2 kg of tritium per day and is designed to link directly to the target chamber vacuum pumping system. An effort to model the fuel recovery system (FRS) using the Aspen Plus engineering code has commenced. The system design supports processing effluent gases from the reactor directly from the exhaust of the vacuum pumping system or in batch mode, via a buffer vessel in the Receiving and Analysis System. Emphasis is on nuclear safety, reliability, and redundancy as to maximize availability. The primary goal of the fuel recovery system design is to economically recycle components of direct drive IFE fuel. The FRS design is presented as a facility sub-system in the context of supporting the larger goal of producing safe and economical IFE power. (authors)

  19. Status of beryllium development for fusion applications

    SciTech Connect

    Billone, M.C.; Donne, M.D.; Macaulay-Newcombe, R.B.

    1994-12-31

    Beryllium is a leading candidate material for the neutron multiplier of tritium breeding blankets and the plasma facing components of first wall and divertor systems. Depending on the application, the fabrication methods proposed include hot-pressing, cold isostatic pressing/sintering, rotary electrode processing and plasma spraying. Product forms include blocks, tubes, pebbles, and coatings. While, in general, beryllium is not a leading structural material candidate, its mechanical performance, as well its performance with regard to sputtering, heat transport, tritium retention/ release, helium-induced swelling and chemical compatibility, is an important consideration in first-wall/blanket design. Differential expansion within the beryllium causes internal stresses which may result in cracking, thereby affecting the heat transport and barrier performance of the material. Overall deformation can result in loading of neighboring structural material. In this current work, the range of anticipated fusion operating conditions is reviewed with regard to surface heat loads, temperatures, displacement damage rates and levels, tritium generation rates and levels and helium generation rates and levels. The thermal, mechanical, chemical compatibility, tritium retention/release, and helium retention/swelling data bases are then reviewed for the proposed fabrication methods and fusion operating conditions of interest. Properties correlations and uncertainty ranges are also discussed brief.

  20. Acceleration of compact toroid plasma rings for fusion applications

    NASA Astrophysics Data System (ADS)

    Hartman, C. W.; Barr, W. L.; Eddleman, J. L.; Gee, M.; Hammer, J. H.; Ho, S. K.; Logan, B. G.; Meeker, D. J.; Mirin, A. A.; Nevins, W. M.

    1988-08-01

    We describe experimental results for a new type of collective accelerator based on magnetically confined compact torus (CT) plasma rings and discuss applications to both inertial and magnetic fusion. We have demonstrated the principle of CT acceleration in the RACE device with acceleration of 0.5 mg ring masses to 400 km/s and 0.02 mg ring masses to 1400 km/s at greater than or equal to 30 percent efficiency. Scaling the CT accelerator to the multi-megajoule level could provide an efficient, economical driver for inertial fusion (ICF) or magnetically insulated inertial fusion. Efficient conversion to X-rays for driving hohlraum-type ICF targets has been modeled using a radiation-hydrodynamics code. At less demanding conditions than required for ICF, a CT accelerator can be applied to fueling and current drive in tokamaks. Fueling is accomplished by injecting CTs at the required rate to sustain the particle inventory and at a velocity sufficient to penetrate to the magnetic axis before CT dissolution. Current drive is a consequence of the magnetic helicity content of the CT, which is approximately conserved during reconnection of the CT fields with the tokamak. Major areas of uncertainty in CT fueling and current drive concern the mechanism by which CTs will stop in a tokamak plasma and the effects of the CT on energy confinement and magnetic stability. Bounds on the required CT injection velocity are obtained by considering drag due to emission of an Alfven-wave wake and rapid reconnection and tilting on the internal Alfven time scale of the CT. Preliminary results employing a 3-D, resistive MHD code show rapid tilting with the CT aligning its magnetic moment with the tokamak field. Requirements for an experimental test of CT injection and scenarios for fueling a reactor will also be discussed.

  1. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited)

    SciTech Connect

    Smith, Roger J.

    2008-10-15

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B{sub pol} diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T{sub e}, n{sub e}, and B{sub ||} along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n{sub e}B{sub ||} product and higher n{sub e} and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.

  2. Radioactive waste produced by DEMO and commercial fusion reactors extrapolated from ITER and advanced data bases

    SciTech Connect

    Stacey, W.M.; Hertel, N.E.; Hoffman, E.A.

    1994-07-01

    The radioactive wastes that would be produced in demonstration (DEMO) and commercial (CFR) fusion reactors which could be extrapolated from the design data base that will be provided by ITER and its supporting R&D and from a design data base supplemented by advanced physics and advanced materials R&D programs are identified and characterized in terms of a number of possible criteria for near-surface burial. The results indicate that there is a possibility that all fusion wastes could satisfy a ``low level`` waste criterion for ``near-surface`` burial.

  3. Radiation-induced electrical breakdown of helium in fusion reactor superconducting magnet systems

    SciTech Connect

    Perkins, L.J.

    1983-12-02

    A comprehensive theoretical study has been performed on the reduction of the electrical breakdown potential of liquid and gaseous helium under neutron and gamma radiation. Extension of the conventional Townsend breakdown theory indicates that radiation fields at the superconducting magnets of a typical fusion reactor are potentially capable of significantly reducing currently established (i.e., unirradiated) helium breakdown voltages. Emphasis is given to the implications of these results including future deployment choices of magnet cryogenic methods (e.g., pool-boiling versus forced-flow), the possible impact on magnet shielding requirements and the analogous situation for radiation-induced electrical breakdown in fusion RF transmission systems.

  4. A spherical torus nuclear fusion reactor space propulsion vehicle concept for fast interplanetary travel

    NASA Astrophysics Data System (ADS)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.

    1999-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a>5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including payload, central truss, nuclear reactor (including diverter and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, and component design.

  5. A Spherical Torus Nuclear Fusion Reactor Space Propulsion Vehicle Concept for Fast Interplanetary Travel

    NASA Technical Reports Server (NTRS)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.

    1998-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a greater than 5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all ma or systems including payload, central truss, nuclear reactor (including divertor and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, power utilization, and component design.

  6. Synfuels from fusion: producing hydrogen with the tandem mirror reactor and thermochemical cycles

    SciTech Connect

    Ribe, F.L.; Werner, R.W.

    1981-01-21

    This report examines, for technical merit, the combination of a fusion reactor driver and a thermochemical plant as a means for producing synthetic fuel in the basic form of hydrogen. We studied: (1) one reactor type - the Tandem Mirror Reactor - wishing to use to advantage its simple central cell geometry and its direct electrical output; (2) two reactor blanket module types - a liquid metal cauldron design and a flowing Li/sub 2/O solid microsphere pellet design so as to compare the technology, the thermal-hydraulics, neutronics and tritium control in a high-temperature operating mode (approx. 1200 K); (3) three thermochemical cycles - processes in which water is used as a feedstock along with a high-temperature heat source to produce H/sub 2/ and O/sub 2/.

  7. Application of Reactor Antineutrinos: Neutrinos for Peace

    NASA Astrophysics Data System (ADS)

    Suekane, F.

    2013-02-01

    In nuclear reactors, 239Pu are produced along with burn-up of nuclear fuel. 239Pu is subject of safeguard controls since it is an explosive component of nuclear weapon. International Atomic Energy Agency (IAEA) is watching undeclared operation of reactors to prevent illegal production and removal of 239Pu. In operating reactors, a huge numbers of anti electron neutrinos (ν) are produced. Neutrino flux is approximately proportional to the operating power of reactor in short term and long term decrease of the neutrino flux per thermal power is proportional to the amount of 239Pu produced. Thus rector ν's carry direct and real time information useful for the safeguard purposes. Since ν can not be hidden, it could be an ideal medium to monitor the reactor operation. IAEA seeks for novel technologies which enhance their ability and reactor neutrino monitoring is listed as one of such candidates. Currently neutrino physicists are performing R&D of small reactor neutrino detectors to use specifically for the safeguard use in response to the IAEA interest. In this proceedings of the neutrino2012 conference, possibilities of such reactor neutrinos application and current world-wide R&D status are described.

  8. Application of image fusion techniques in DSA

    NASA Astrophysics Data System (ADS)

    Ye, Feng; Wu, Jian; Cui, Zhiming; Xu, Jing

    2007-12-01

    Digital subtraction angiography (DSA) is an important technology in both medical diagnoses and interposal therapy, which can eliminate the interferential background and give prominence to blood vessels by computer processing. After contrast material is injected into an artery or vein, a physician produces fluoroscopic images. Using these digitized images, a computer subtracts the image made with contrast material from a series of post injection images made without background information. By analyzing the characteristics of DSA medical images, this paper provides a solution of image fusion which is in allusion to the application of DSA subtraction. We fuse the images of angiogram and subtraction, in order to obtain the new image which has more data information. The image that fused by wavelet transform can display the blood vessels and background information clearly, and medical experts gave high score on the effect of it.

  9. Preliminary study of fusion reactor: Solution of Grad Shapranov equation

    NASA Astrophysics Data System (ADS)

    Setiawan, Y.; Fermi, N.; Su'ud, Z.

    2012-06-01

    Nuclear fussion is prospective energy sources for the future due to the abundance of the fuel and can be categorized and clean energy sources. The problem is how to contain very hot plasma of temperature few hundreed million degrees safety and reliably. Tokamax type fussion reactors is considered as the most prospective concept. To analyze the plasma confining process and its movement Grad-Shavranov equation must be solved. This paper discuss about solution of Grad-Shavranov equation using Whittaker function. The formulation is then applied to the ITER design and example.

  10. Polarized Nuclei in a Simple Mirror Fusion Reactor

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1995-01-01

    The possibility of enhancing the ratio of output to input power Q in a simple mirror machine by polarizing Deuterium-Tritium (D- T) nuclei is evaluated. Taking the Livermore mirror reference design mirror ratio of 6.54, the expected sin(sup 2) upsilon angular distribution of fusion decay products reduces immediate losses of alpha particles to the loss cone by 7.6% and alpha-ion scattering losses by approx. 50%. Based on these findings, alpha- particle confinement times for a polarized plasma should therefore be 1.11 times greater than for isotropic nuclei. Coupling this enhanced alpha-particle heating with the expected greater than 50% D- T reaction cross section, a corresponding power ratio for polarized nuclei, Q(sub polarized), is found to be 1.63 times greater than the classical unpolarized value Q(sub classical). The effects of this increase in Q are assessed for the simple mirror.

  11. Multi-Application Small Light Water Reactor

    SciTech Connect

    Pierre Babka

    2002-10-31

    The Multi-Application Small Light Water Reactor (MASLWR ) project was conducted under the auspices of the Nuclear Energy Research Initiative (NERI) of the U.S. Department of Energy (DOE). The primary project objective was to develop the conceptual design for a safe and economic small, natural circulation light water reactor, to address the economic and safety attributes of the concept, and to demonstrate the technical feasibility by testing in an integral test facility.

  12. Disassembly of the fusion-1 capsule after irradiation in the BOR-60 reactor

    SciTech Connect

    Tsai, H.; Kazakov, V.A.; Chakin, V.P.

    1997-04-01

    A U.S./Russia (RF) collaborative irradiation experiment, Fusion-1, was completed in June 1996 after reaching a peak exposure of {approx}17 dpa in the BOR-60 fast reactor at the Research Institute of Atomic Reactors (RIAR) in Russia. The specimens were vanadium alloys, mainly of recent heats from both countries. In this reporting period, the capsule was disassembled at the RIAR hot cells and all test specimens were successfully retrieved. For the disassembly, an innovative method of using a heated diffusion oil to melt and separate the lithium bond from the test specimens was adopted. This method proved highly successful.

  13. Development of new generation reduced activation ferritic-martenstic steels for advanced fusion reactors

    DOE PAGES

    Tan, Lizhen; Snead, Lance Lewis; Katoh, Yutai

    2016-05-26

    International development of reduced activation ferritic-martensitic (RAFM) steels has focused on 9 wt percentage Cr, which primarily contain M23C6 (M = Cr-rich) and small amounts of MX (M = Ta/V, X = C/N) precipitates, not adequate to maintain strength and creep resistance above ~500 °C. To enable applications at higher temperatures for better thermal efficiency of fusion reactors, computational alloy thermodynamics coupled with strength modeling have been employed to explore a new generation RAFM steels. The new alloys are designed to significantly increase the amount of MX nanoprecipitates, which are manufacturable through standard and scalable industrial steelmaking methods. Preliminary experimentalmore » results of the developed new alloys demonstrated noticeably increased amount of MX, favoring significantly improved strength, creep resistance, and Charpy impact toughness as compared to current RAFM steels. Furthermore, the strength and creep resistance were comparable or approaching to the lower bound of, but impact toughness was noticeably superior to 9–20Cr oxide dispersion-strengthened ferritic alloys.« less

  14. A miniaturized test method for the mechanical characterization of structural materials for fusion reactors

    NASA Astrophysics Data System (ADS)

    Gondi, P.; Donato, A.; Montanari, R.; Sili, A.

    1996-10-01

    This work deals with a non-destructive method for mechanical tests which is based on the indentation of materials at a constant rate by means of a cylinder with a small radius and penetrating flat surface. The load versus penetration depth curves obtained using this method have shown correspondences with those of tensile tests and have given indications about the mechanical properties on a reduced scale. In this work penetration tests have been carried out on various kinds of Cr martensitic steels (MANET-2, BATMAN and modified F82H) which are of interest for first wall and structural applications in future fusion reactors. The load versus penetration depth curves have been examined with reference to data obtained in tensile tests and to microhardness measurements. Penetration tests have been performed at various temperature (from -180 to 100°C). Conclusions, which can be drawn for the ductile to brittle transition, are discussed for MANET-2 steel. Preliminary results obtained on BATMAN and modified F82H steels are reported. The characteristics of the indenter imprints have been studied by scanning electron microscopy.

  15. Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors

    NASA Astrophysics Data System (ADS)

    Tan, L.; Snead, L. L.; Katoh, Y.

    2016-09-01

    International development of reduced activation ferritic-martensitic (RAFM) steels has focused on 9 wt percentage Cr, which primarily contain M23C6 (M = Cr-rich) and small amounts of MX (M = Ta/V, X = C/N) precipitates, not adequate to maintain strength and creep resistance above ∼500 °C. To enable applications at higher temperatures for better thermal efficiency of fusion reactors, computational alloy thermodynamics coupled with strength modeling have been employed to explore a new generation RAFM steels. The new alloys are designed to significantly increase the amount of MX nanoprecipitates, which are manufacturable through standard and scalable industrial steelmaking methods. Preliminary experimental results of the developed new alloys demonstrated noticeably increased amount of MX, favoring significantly improved strength, creep resistance, and Charpy impact toughness as compared to current RAFM steels. The strength and creep resistance were comparable or approaching to the lower bound of, but impact toughness was noticeably superior to 9-20Cr oxide dispersion-strengthened ferritic alloys.

  16. Study of a water-cooled convective divertor prototype for the DEMO fusion reactor

    NASA Astrophysics Data System (ADS)

    Di Maio, P.; Oliveri, E.; Vella, G.

    2000-04-01

    The plasma facing components of a fusion power reactor have a large impact on the overall plant design, its performance and availability and on the cost of electricity. The present work concerns a study of feasibility for a water-cooled prototype of the convective divertor component of the DEMO fusion reactor. The study has been carried out in two steps. In the first one thermal-hydraulic and neutronic parametric analyses have been performed to find out the prototype optimized configuration. In the second step thermo-mechanical analyses have been carried out on the obtained configuration to investigate the potential and limits of the proposed prototype, with a particular reference to the maximum heat flux it can undergo without incoming both in critical heat flux and in mechanical stress limits. The results show that the proposed divertor prototype is able to safely withstand peak heat fluxes of 9 MW/m2.

  17. Status of R&D activities on materials for fusion power reactors

    NASA Astrophysics Data System (ADS)

    Baluc, N.; Abe, K.; Boutard, J. L.; Chernov, V. M.; Diegele, E.; Jitsukawa, S.; Kimura, A.; Klueh, R. L.; Kohyama, A.; Kurtz, R. J.; Lässer, R.; Matsui, H.; Möslang, A.; Muroga, T.; Odette, G. R.; Tran, M. Q.; van der Schaaf, B.; Wu, Y.; Yu, J.; Zinkle, S. J.

    2007-10-01

    Current R&D activities on materials for fusion power reactors are mainly focused on plasma facing, structural and tritium breeding materials for plasma facing (first wall, divertor) and breeding blanket components. Most of these activities are being performed in Europe, Japan, the People's Republic of China, Russia and the USA. They relate to the development of new high temperature, radiation resistant materials, the development of coatings that will act as erosion, corrosion, permeation and/or electrical/MHD barriers, characterization of candidate materials in terms of mechanical and physical properties, assessment of irradiation effects, compatibility experiments, development of reliable joints, and development and/or validation of design rules. Priorities defined worldwide in the field of materials for fusion power reactors are summarized, as well as the main achievements obtained during the last few years and the near-term perspectives in the different investigation areas.

  18. Tritium management in a fusion reactor--safety, handling and economical issues--

    SciTech Connect

    Tanabe, Tetsuo

    2009-02-19

    In order to establish a D-T fusion reactor as an energy source, it is not enough to have a DT burning plasma, and economical conversion of fusion energy to electricity and/or heat, a large enough margin of tritium breeding and tritium safety must be simultaneously achieved. In particular, handling of huge amount of tritium needs significant efforts to ensure that the radiation dose of radiological workers and of the public is below the limits specified by the International Commission on Radiological Protection (ICRP). In this paper, after the introduction of tritium as a fuel of DT reactors and as a radioisotope of hydrogen, tritium safety issues in fuel cycle and blanket systems are summarized. In particular, in-vessel tritium inventory, the most important and uncertain tritium safety issue, is discussed in detail.

  19. Study of a Water-Cooled Convective Divertor Prototype for the DEMO Fusion Reactor

    SciTech Connect

    P. Di Maio; E. Oliveri; G. Vella

    2000-12-31

    The plasma facing components of a fusion power reactor have a large impact on the overall plant design, its performance and availability and on the cost of electricity. The present work concerns a study of feasibility for a water-cooled prototype of the convective divertor component of the DEMO fusion reactor. The study has been carried out in two steps. In the first one thermal-hydraulic and neutronic parametric analyses have been performed to find out the prototype optimized configuration. In the second step thermo-mechanical analyses have been carried out on the obtained configuration to investigate the potential and limits of the proposed prototype, with a particular reference to the maximum heat flux it can undergo without incoming both in critical heat flux and in mechanical stress limits. the results show that the proposed divertor prototype is able to safely withstand peak heat fluxes of 9 MW/m{sup 2}.

  20. Neutronic analysis of alternative structural materials for fusion reactor blankets

    NASA Astrophysics Data System (ADS)

    Santos, Raul dos

    1988-07-01

    The neutronic performance of the International Tokamak Reactor (INTOR) blanket was studied when several alternative structural materials were used instead of the INTOR reference structural material, type 316 stainless steel. The alternative structural materials included: ferritic-, vanadium-, titanium-, long range ordered-, manganese austenitic-, and nimonic-alloys. All were treated both with and without a first-wall coating of beryllium or graphite. The tritium breeding ratio, the nuclear heating, and the gas (hydrogen and helium) production rates in the structural materials were calculated for the possible combinations of structural material and first-wall coating. These parameters were compared with those obtained by using SS-316. The nimonic alloy was the only one with worse neutronic performance than the SS-316.

  1. Summary of TFTR (Tokamak Fusion Test Reactor) diagnostics, including JET (Joint European Torus) and JT-60

    SciTech Connect

    Hill, K.W.; Young, K.M.; Johnson, L.C.

    1990-05-01

    The diagnostic instrumentation on TFTR (Tokamak Fusion Test Reactor) and the specific properties of each diagnostic, i.e., number of channels, time resolution, wavelength range, etc., are summarized in tables, grouped according to the plasma parameter measured. For comparison, the equivalent diagnostic capabilities of JET (Joint European Torus) and the Japanese large tokamak, JT-60, as of late 1987 are also listed in the tables. Extensive references are given to publications on each instrument.

  2. A three-bar model for ratcheting of fusion reactor first wall

    SciTech Connect

    Wolters, J.; Majumdar, S.

    1994-12-01

    First wall structures of fusion reactors are subjected to cyclic bending stresses caused by inhomogeneous temperature distribution during plasma burn cycles and by electromagnetically induced impact loads during plasma disruptions. Such a combination of loading can potentially lead to ratcheting or incremental accumulation of plastic strain with cycles. An elastic-plastic three-bar model is developed to investigate the ratcheting behavior of the first wall.

  3. Model for collisional fast ion diffusion into Tokamak Fusion Test Reactor loss cone

    SciTech Connect

    Chang, C.S. |; Zweben, S.J.; Schivell, J.; Budny, R.; Scott, S.

    1994-08-01

    An analytic model is developed to estimate the classical pitch angle scattering loss of energetic fusion product ions into prompt loss orbits in a tokamak geometry. The result is applied to alpha particles produced by deutrium-tritium fusion reactions in a plasma condition relevant to Tokamak Fusion Test Reactor (TFTR). A poloidal angular distribution of collisional fast ion loss at the first wall is obtained and the numerical result from the TRANSP code is discussed. The present model includes the effect that the prompt loss boundary moves away from the slowing-down path due to reduction in banana thickness, which enables us to understand, for the first time. the dependence of the collisional loss rate on Z{sub eff}.

  4. Modular control of fusion power heating applications

    SciTech Connect

    Demers, D. R.

    2012-08-24

    This work is motivated by the growing demand for auxiliary heating on small and large machines worldwide. Numerous present and planned RF experiments (EBW, Lower Hybrid, ICRF, and ECH) are increasingly complex systems. The operational challenges are indicative of a need for components of real-time control that can be implemented with a moderate amount of effort in a time- and cost-effective fashion. Such a system will improve experimental efficiency, enhance experimental quality, and expedite technological advancements. The modular architecture of this control-suite serves multiple purposes. It facilitates construction on various scales from single to multiple controller systems. It enables expandability of control from basic to complex via the addition of modules with varying functionalities. It simplifies the control implementation process by reducing layers of software and electronic development. While conceived with fusion applications in mind, this suite has the potential to serve a broad range of scientific and industrial applications. During the Phase-I research effort we established the overall feasibility of this modular control-suite concept. We developed the fundamental modules needed to implement open-loop active-control and demonstrated their use on a microwave power deposition experiment.

  5. Status of beryllium development for fusion applications

    SciTech Connect

    Billone, M.C.; Donne, M.D.; Macaulay-Newcombe, R.G.

    1994-05-01

    Beryllium is a leading candidate material for the neutron multiplier of tritium breeding blankets and the plasma facing component of first wall and divertor systems. Depending on the application, the fabrication methods proposed include hot-pressing, hot-isostatic-pressing, cold isostatic pressing/sintering, rotary electrode processing and plasma spraying. Product forms include blocks, tubes, pebbles, tiles and coatings. While, in general, beryllium is not a leading structural material candidate, its mechanical performance, as well its performance with regard to sputtering, heat transport, tritium retention/release, helium-induced swelling and chemical compatibility, is an important consideration in first-wall/blanket design. Differential expansion within the beryllium causes internal stresses which may result in cracking, thereby affecting the heat transport and barrier performance of the material. Overall deformation can result in loading of neighboring structural material. Thus, in assessing the performance of beryllium for fusion applications, it is important to have a good database in all of these performance areas, as well as a set of properties correlations and models for the purpose of interpolation/extrapolation.

  6. X-ray-ablated plumes in inertial confinement fusion reactors

    NASA Astrophysics Data System (ADS)

    Scott, John Mitchell

    Modeling of inertial confinement fusion (ICF) target chamber phenomena presents researchers with various technical problems requiring creative solutions. In particular, the wide ranging physical and time scales of the problem give special difficulty when modeling one shot cycle of an ICF target chamber. Ultimately, the goal of the modeling effort is a unified model beginning with target injection and ending with condensation of the vaporized debris. The work here develops a combined gas dynamics/X-ray ablation model used to predict the response of materials to X-ray emissions from ICF targets. This model in combination with experiments performed at the Nova facility at Lawrence Livermore National Laboratory (LLNL) aided in the design effort for the first wall of the National Ignition Facility (NIF). The phenomena inside an ICF target chamber include the fusion bum of a D-T fuel capsule enclosed in a hohlraum leading to the emission of neutrons, debris, and X rays. The X rays emitted from the target deposit on target facing surfaces, heating and vaporizing the surface layers of the material. The vapor plume generated will travel through the chamber and deposit on various other surfaces. For the NIF and other ICF laser facilities, modeling of these X-ray ablated plumes is important to ascertain the performance of the first wall surface of the target chamber. The first wall must be designed to minimize contamination to laser optics that interface with the target chamber. For this work, experiments were performed to assess the performance of materials at X-ray fluences expected at the NIF first wall. These experiments included long-term exposure of potential target chamber materials, the X-ray response of stainless steel, and a louvered geometry experiment to aid in the assessment of the geometrical design and material selection of the first wall. The results of these experiments show that boron carbide and stainless steel will both perform adequately during facility

  7. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  8. Nuclear fuel cycle analysis of the SABR fusion-fission hybrid transmutation reactor

    NASA Astrophysics Data System (ADS)

    Sommer, Chris; Stacey, Weston; Petrovic, Bojan

    2009-11-01

    Various fuel cycles have been designed and analyzed for the Subcritical Advanced Burner Reactor (SABR). SABR is a sodium cooled fast reactor fueled with transuranics (TRU) from spent fuel of light water reactors and driven by a tokamak fusion neutron source based on ITER physics and technology. SABR employs a four batch fuel cycle using an out-to-in shuffling pattern, with the fuel being reprocessed at the end of each cycle. The reprocessing method assumes recovery rates of 99.9% of the actinides and 0.1% of the fission products remain in the recycled fuel. The reprocessing fuel cycles were analyzed to find an optimal cycle length in terms of burn up, power distribution, and materials limitations. Fuel cycles are analyzed using CEA's ERANOS2.0 code, with fuel residence times limited by radiation damage at 100, 150 and 200 dpa.

  9. Low power reactor for remote applications

    NASA Astrophysics Data System (ADS)

    Meier, K. L.; Palmer, R. G.; Kirchner, W. L.

    1985-05-01

    A compact, low power reactor is being designed to provide electric power for remote, unattended applications. Because of the high fuel and maintenance costs for conventional power sources such as diesel generators, a reactor power supply appears especially attractive for remote and inaccessible locations. Operating at a thermal power level of 135 kWt, the power supply achieves a gross electrical output of 25 kWe from an organic Rankine cycle (ORC) engine. By intentional selection of design features stressing inherent safety, operation in an unattended mode is possible with minimal risk to the environment. Reliability is achieved through the use of components representing existing, proven technology. Low enrichment uranium particle fuel, in graphite core blocks, cooled by heat pipes coupled to an ORC converter insures long term, virtually maintenance free, operation of this reactor for remote applications.

  10. Low power reactor for remote applications

    SciTech Connect

    Meier, K.L.; Palmer, R.G.; Kirchner, W.L.

    1985-01-01

    A compact, low power reactor is being designed to provide electric power for remote, unattended applications. Because of the high fuel and maintenance costs for conventional power sources such as diesel generators, a reactor power supply appears especially attractive for remote and inaccessible locations. Operating at a thermal power level of 135 kWt, the power supply achieves a gross electrical output of 25 kWe from an organic Rankine cycle (ORC) engine. By intentional selection of design features stressing inherent safety, operation in an unattended mode is possible with minimal risk to the environment. Reliability is achieved through the use of components representing existing, proven technology. Low enrichment uranium particle fuel, in graphite core blocks, cooled by heat pipes coupled to an ORC converter insures long-term, virtually maintenance free, operation of this reactor for remote applications. 10 refs., 7 figs., 3 tabs.

  11. The TITAN Reversed-Field Pinch fusion reactor study: Scoping phase report

    SciTech Connect

    Not Available

    1987-01-01

    The TITAN research program is a multi-institutional effort to determine the potential of the Reversed-Field Pinch (RFP) magnetic fusion concept as a compact, high-power-density, and ''attractive'' fusion energy system from economic (cost of electricity, COE), environmental, and operational viewpoints. In particular, a high neutron wall loading design (18 MW/m/sup 2/) has been chosen as the reference case in order to quantify the issue of engineering practicality, to determine the physics requirements and plasma operating mode, to assess significant benefits of compact systems, and to illuminate the main drawbacks. The program has been divided into two phases, each roughly one year in length: the Scoping Phase and the Design Phase. During the scoping phase, the TITAN design team has defined the parameter space for a high mass power density (MPD) RFP reactor, and explored a variety of approaches to the design of major subsystems. Two major design approaches consistent with high MPD and low COE, the lithium-vanadium blanket design and aqueous loop-in-pool design, have been selected for more detailed engineering evaluation in the design phase. The program has retained a balance in its approach to investigating high MPD systems. On the one hand, parametric investigations of both subsystems and overall system performance are carried out. On the other hand, more detailed analysis and engineering design and integration are performed, appropriate to determining the technical feasibility of the high MPD approach to RFP fusion reactors. This report describes the work of the scoping phase activities of the TITAN program. A synopsis of the principal technical findings and a brief description of the TITAN multiple-design approach is given. The individual chapters on Plasma Physics and Engineering, Parameter Systems Studies, Divertor, Reactor Engineering, and Fusion Power Core Engineering have been cataloged separately.

  12. Plasma-material Interactions in Current Tokamaks and their Implications for Next-step Fusion Reactors

    SciTech Connect

    Federici, G.; Skinner, C.H.; Brooks, J.N.; Coad, J.P.; Grisolia, C.

    2001-01-10

    The major increase in discharge duration and plasma energy in a next-step DT [deuterium-tritium] fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D [Research and Development] avenues for their resolution are presented.

  13. High-power-density approaches to magnetic fusion energy: Problems and promise of compact Reversed-Field Pinch Reactors (CRFPR)

    NASA Astrophysics Data System (ADS)

    Hagenson, R. L.; Krakowski, R. A.; Dreicer, H.

    If the cost assumptions upon which the positive assessment of conventional large superconducting fusion reactors are based proves optimistic, approaches that promise considerably increased system power density and reduced mass utilization are required. These more compact reactor embodiments generally must operate with reduced shield thickness and resistive magnets. Because of the unique magnetic topology associated with the Reversed Field Pinch (RFP), the compact reactor embodiment of this approach is particularly attractive from the view point of low field resistive coils operating with Ohmic losses that are small relative to the fusion power. The RFP, one example of a high power density (HPD) approach to magnetic fusion energy. A comprehensive system model is described and applied to select a unique, cost optimized design point that is used for a subsequent conceptual engineering design of the Compact RFP Reactor.

  14. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    DOEpatents

    Bers, Abraham

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma.

  15. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    DOEpatents

    Fisch, Nathaniel J.

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma.

  16. Repair welding of fusion reactor components. Second year technical report

    SciTech Connect

    Chin, B.A.

    1993-05-15

    Experiments have shown that irradiated Type 316 stainless steel is susceptible to heat-affected-zone (HAZ) cracking upon cooling when welded using the gas tungsten arc (GTA) process under lateral constraint. The cracking has been hypothesized to be caused by stress-assisted helium bubble growth and rupture at grain boundaries. This study utilized an experimental welding setup which enabled different compressive stresses to be applied to the plates during welding. Autogenous GTA welds were produced in Type 316 stainless steel doped with 256 appm helium. The application of a compressive stress, 55 MPa, during welding suppressed the previously observed catastrophic cracking. Detailed examinations conducted after welding showed a dramatic change in helium bubble morphology. Grain boundary bubble growth along directions parallel to the weld was suppressed. Results suggest that stress-modified welding techniques may be used to suppress or eliminate helium-induced cracking during joining of irradiated materials.

  17. Gaseous fuel reactor systems for aerospace applications

    NASA Technical Reports Server (NTRS)

    Thom, K.; Schwenk, F. C.

    1977-01-01

    Research on the gaseous fuel nuclear rocket concept continues under the programs of the U.S. National Aeronautics and Space Administration (NASA) Office for Aeronautics and Space Technology and now includes work related to power applications in space and on earth. In a cavity reactor test series, initial experiments confirmed the low critical mass determined from reactor physics calculations. Recent work with flowing UF6 fuel indicates stable operation at increased power levels. Preliminary design and experimental verification of test hardware for high-temperature experiments have been accomplished. Research on energy extraction from fissioning gases has resulted in lasers energized by fission fragments. Combined experimental results and studies indicate that gaseous-fuel reactor systems have significant potential for providing nuclear fission power in space and on earth.

  18. Existing and new applications of micropellet injection (MPI) in magnetic fusion

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Lunsford, Robert; Mansfield, Dennis K.; Nichols, Jacob H.

    2016-04-01

    > The intense heat and energetic particle fluxes expected in ITER and future magnetic fusion reactors pose prohibitive problems to the design, selection and maintenance of the first wall and divertor. Micropellet injection (MPI) technologies can offer some innovative solutions to the material and extreme heat challenges. Basic physics of micropellet motion, ablation and interactions with high-temperature plasmas and energetic particles are presented first. We then discuss MPI technology options and applications. In addition to plasma diagnostic applications, controlled injection of micropellets of different sizes, velocities and injection frequencies will offer several possibilities: (1) better assessment of the core plasma cooling due to dust produced in situ; (2) better understanding of the plasma-material interaction physics near the wall; (3) new methods for plasma fuelling and impurity control; and (4) techniques for edge cooling with minimal impact on the plasma core. Dedicated small-scale laboratory experiments will complement major fusion experiments in development and applications of MPI.

  19. Manganese-stabilized austenitic stainless steels for fusion applications

    DOEpatents

    Klueh, Ronald L.; Maziasz, Philip J.

    1990-01-01

    An austenitic stainless steel that is comprised of Fe, Cr, Mn, C but no Ni or Nb and minimum N. To enhance strength and fabricability minor alloying additions of Ti, W, V, B and P are made. The resulting alloy is one that can be used in fusion reactor environments because the half-lives of the elements are sufficiently short to allow for handling and disposal.

  20. Manganese-stabilized austenitic stainless steels for fusion applications

    DOEpatents

    Klueh, Ronald L.; Maziasz, Philip J.

    1990-08-07

    An austenitic stainless steel that is comprised of Fe, Cr, Mn, C but no Ni or Nb and minimum N. To enhance strength and fabricability minor alloying additions of Ti, W, V, B and P are made. The resulting alloy is one that can be used in fusion reactor environments because the half-lives of the elements are sufficiently short to allow for handling and disposal.

  1. A magnetohydrodynamic stability study of reverse shear equilibria in the Tokamak Fusion Test Reactor

    SciTech Connect

    Phillips, M.W.; Zarnstorff, M.C.; Manickam, J.; Levinton, F.M.; Hughes, M.H.

    1996-05-01

    A study is presented of the low-{ital n} ({ital n}=1,2,3) magnetohydrodynamic stability of equilibria with reverse shear safety factor profiles. The low-{ital n} stability boundaries are found to be characterized by resonance structures due to internal so-called {open_quote}{open_quote}infernal{close_quote}{close_quote} mode types of instabilities. The parametric dependence of shear reversal width and depth, current, and pressure gradient on the beta limit are determined by using profile models that allow each parameter to be varied independently. Reverse magnetic shear is found to have a stabilizing influence for modes with toroidal mode numbers {ital n}{ge}2 leading to the possibility of improved {beta} limits in the Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Nucl. Fusion Res. {bold 26}, 11 (1984)]. {copyright} {ital 1996 American Institute of Physics.}

  2. The VISTA spacecraft: Advantages of ICF (Inertial Confinement Fusion) for interplanetary fusion propulsion applications

    SciTech Connect

    Orth, C.D.; Klein, G.; Sercel, J.; Hoffman, N.; Murray, K.; Chang-Diaz, F.

    1987-10-02

    Inertial Confinement Fusion (ICF) is an attractive engine power source for interplanetary manned spacecraft, especially for near-term missions requiring minimum flight duration, because ICF has inherent high power-to-mass ratios and high specific impulses. We have developed a new vehicle concept called VISTA that uses ICF and is capable of round-trip manned missions to Mars in 100 days using A.D. 2020 technology. We describe VISTA's engine operation, discuss associated plasma issues, and describe the advantages of DT fuel for near-term applications. Although ICF is potentially superior to non-fusion technologies for near-term interplanetary transport, the performance capabilities of VISTA cannot be meaningfully compared with those of magnetic-fusion systems because of the lack of a comparable study of the magnetic-fusion systems. We urge that such a study be conducted.

  3. The VISTA spacecraft: Advantages of ICF (Inertial Confinement Fusion) for interplanetary fusions propulsion applications

    NASA Technical Reports Server (NTRS)

    Orth, Charles D.; Klein, Gail; Sercel, Joel; Hoffman, Nate; Murray, Kathy; Chang-Diaz, Franklin

    1987-01-01

    Inertial Confinement Fusion (ICF) is an attractive engine power source for interplanetary manned spacecraft, especially for near-term missions requiring minimum flight duration, because ICF has inherent high power-to-mass ratios and high specific impulses. We have developed a new vehicle concept called VISTA that uses ICF and is capable of round-trip manned missions to Mars in 100 days using A.D. 2020 technology. We describe VISTA's engine operation, discuss associated plasma issues, and describe the advantages of DT fuel for near-term applications. Although ICF is potentially superior to non-fusion technologies for near-term interplanetary transport, the performance capabilities of VISTA cannot be meaningfully compared with those of magnetic-fusion systems because of the lack of a comparable study of the magnetic-fusion systems. We urge that such a study be conducted.

  4. Review of deuterium--tritium results from the Tokamak Fusion Test Reactor*

    SciTech Connect

    McGuire, K. M.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J. L.; Anderson, J W.; Arunasalam, V.; Ascione, G.; Ashcroft, D.; Barnes, C. W.; Barnes, G.; Batha, S.; Bateman, G.; Beer, M; Bell, M. G.; Bell, R.; Bitter, M.; Blanchard, W.; Bretz, N. L.; Brunkhorst, C.; Budny, R.; Bush, C. E.; Camp, R.; Caorlin, M.; Carnevale, H.; Cauffman, S.; Chang, Z.; Chang, C. S.; Cheng, C. Z.; Chrzanowski, J.; Collins, J.; Coward, G.; Cropper, M.; Darrow, D. S; Daugert, R.; DeLooper, J.; Dendy, R.; Dorland, W.; Dudek, L.; Duong, H.; Durst, R.; Efthimion, P. C.; Ernst, D.; Evenson, H.; Fisch, N.; Fisher, R.; Fonck, R. J.; Fredd, E.; Fredrickson, E.; Fromm, N.; Fu, G. Y.; Fujita, T.; Furth, H. P.; Garzotto, V.; Gentile, C.; Gilbert, J.; Gioia, J.; Gorelenkov, N.; Grek, B.; Grisham, L. R.; Hammett, G.; Hanson, G. R.; Hawryluk, R. J.; Heidbrink, W.; Herrmann, H. W.; Hill, K. W.; Hosea, J.; Hsuan, H.; Hughes, M.; Hulse, R.; Janos, A.; Jassby, D. L.; Jobes, F. C.; Johnson, D. W.; Johnson, L. C.; Kalish, M.; Kamperschroer, J.; Kesner, J.; Kugel, H.; Labik, G.; Lam, N. T.; LaMarche, P. H.; Lawson, E.; LeBlanc, B.; Levine, J.; Levinton, F. M.; Loesser, D.; Long, D.; Loughlin, M. J.; Machuzak, J.; Majeski, R.; Mansfield, D. K.; Marmar, E. S.; Marsala, R.; Martin, A.; Martin, G.; Mazzucato, E.; Mauel, M.; McCarthy, M. P.; McChesney, J.; McCormack, B.; McCune, D. C.; McKee, G.; Meade, D. M.; Medley, S. S.; Mikkelsen, D. R.; Mirnov, S. V.; Mueller, D.; Murakami, M.; Murphy, J. A.; Nagy, A.; Navratil, G. A.; Nazikian, R.; Newman, R.; Norris, M.; O`Connor, T.; Oldaker, M.; Ongena, J.; Osakabe, M.; Owens, D. K.; Park, H.; Park, W.; Parks, P.; Paul, S. F.; Pearson, G.; Perry, E.; Persing, R.; Petrov, M.; Phillips, C. K.; Phillips, M.; Pitcher, S.; Pysher, R.; Qualls, A. L.; Raftopoulos, S.; Ramakrishnan, S.; Ramsey, A.; Rasmussen, D. A.; Redi, M. H.; Renda, G.; Rewoldt, G.; Roberts, D.; Rogers, J.; Rossmassler, R.; Roquemore, A. L.; Ruskov, E.; Sabbagh, S. A.; Sasao, M.; Schilling, G.; Schivell, J.; Schmidt, G.; Scillia, R.; Scott, S. D.; Semenov, I.; Senko, T.; Sesnic, S.; Sissingh, R.; Skinner, C. H.; Snipes, J.; Stencel, J.; Stevens, J.; Stevenson, T.; Stratton, B. C.; Strachan, J. D.; Stodiek, W.; Swanson, J.; Synakowski, E.; Takahashi, H.; Tang, W.; Taylor, G.; Terry, J.; Thompson, M. E.; Tighe, W.; Timberlake, J. R.; Tobita, K.; Towner, H. H.; Tuszewski, M.; Halle, A. Von; Vannoy, C.; Viola, M.; Goeler, S. Von; Voorhees, D.; Walters, R. T.; Wester, R.; White, R.; Wieland, R.; Wilgen, J. B.; Williams, M.; Wilson, J. R.; Winston, J.; Wright, K.; Wong, K. L.; Woskov, P.; Wurden, G. A.; Yamada, M.; Yoshikawa, S.; Young, K. M.; Zarnstorff, M. C.; Zavereev, V.; Zweben, S. J.

    1995-01-01

    The first magnetic fusion experiments to study plasmas using nearly equal concentrations of deuterium and tritium have been carried out on TFTR. At present the maximum fusion power of 10.7 MW, using 39.5 MW of neutral-beam heating, in a supershot discharge and 6.7 MW in a high-βp discharge following a current rampdown. The fusion power density in a core of the plasma is ≈ 2.8 MW m₋3, exceeding that expected in the International Thermonuclear Experimental Reactor (ITER) at 1500 MW total fusion power. The energy confinement time, τE, is observed to increase in D–T, relative to D plasmas, by 20% and the ni (0) Ti(0) τE product by 55%. The improvement in thermal confinement is caused primarily by a decrease in ion heat conductivity in both supershot and limiter-H-mode discharges. Extensive lithium pellet injection increased the confinement time to 0.27 s and enabled higher current operation in both supershot and high-βp discharges. Ion cyclotron range of frequencies (ICRF) heating of a D–T plasma, using the second harmonic of tritium, has been demonstrated. First measurements of the confined alpha particles have been performed and found to be in good agreement with TRANSP simulations. Initial measurements of the alpha ash profile have been compared with simulations using particle transport coefficients from He gas puffing experiments. The loss of alpha particles to a detector at the bottom of the vessel is well described by the first-orbit loss mechanism. No loss due to alpha-particle-driven instabilities has yet been observed. D–T experiments on TFTR will continue to explore the assumptions of the ITER design and to examine some of the physics issues associated with an advanced tokamak reactor.

  5. High-power-density approaches to magnetic fusion energy: Problems and promise of compact reversed-field pinch reactors (CRFPR)

    NASA Astrophysics Data System (ADS)

    Hagenson, Randy L.; Krakowski, Robert A.; Dreicer, Harry

    1983-03-01

    If the costing assumptions upon which the positive assessment of conventional large superconducting fusion reactors are based proves overly optimistic, approaches that promise considerably increased system power density and reduced mass utilization will be required. These more compact reactor embodiments generally must operate with reduced shield thickness and resistive magnets. Because of the unique magnetic topology associated with the Reversed-Field Pinch (RFP), the compact reactor embodiment for this approach is particularly attractive from the viewpoint of low-field resistive coils operating with ohmic losses that can be made small relative to the fusion power. The RFP, therefore, is used as one example of a high-power-density (HPD) approach to magnetic fusion energy. A comprehensive system model is described and applied to select a unique, cost-optimized design point that will be used for a subsequent conceptual engineering design of the compact RFP Reactor (CRFPR). This cost-optimized CRFPR design serves as an example of a HPD fusion reactor that would operate with system power densities and mass utilizations that are comparable to fission power plants, these measures of system performance being an order of magnitude more favorable than the conventional approaches to magnetic fusion energy (MFE).

  6. Note: Readout of a micromechanical magnetometer for the ITER fusion reactor

    SciTech Connect

    Rimminen, H.; Kyynaeraeinen, J.

    2013-05-15

    We present readout instrumentation for a MEMS magnetometer, placed 30 m away from the MEMS element. This is particularly useful when sensing is performed in high-radiation environment, where the semiconductors in the readout cannot survive. High bandwidth transimpedance amplifiers are used to cancel the cable capacitances of several nanofarads. A frequency doubling readout scheme is used for crosstalk elimination. Signal-to-noise ratio in the range of 60 dB was achieved and with sub-percent nonlinearity. The presented instrument is intended for the steady-state magnetic field measurements in the ITER fusion reactor.

  7. Fusion reactor materials: Semiannual progress report for period ending September 30, 1986

    SciTech Connect

    none,

    1987-09-01

    These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The major areas of concern covered in this report are irradiation facilities, test matrices, and experimental methods; dosimetry, damage parameters and activation calculations; materials engineering and design requirements; radiation effects; development of structural alloys; solid breeding materials; ceramics and superconducting magnet materials. There are 61 reports cataloged separately. (LSP)

  8. Modifications made to the MELCOR Code for Analyzing Lithium Fires in Fusion Reactors

    SciTech Connect

    B. J. Merrill

    2000-04-01

    This report documents initial modifications made to the MELCOR code that allows MELCOR to predict the consequences of lithium spill accidents for evolving fusion reactor designs. These modifications include thermodynamic and transport properties for lithium, and physical models for predicting the rate of reaction of and energy production from the lithium-air reaction. A benchmarking study was performed with this new MELCOR capability. Two lithium-air reaction tests conducted at the Hanford Engineering Development Laboratory (HEDL) were selected for this benchmark study. Excellent agreement was achieved between MELCOR predictions and measured data. Recommendations for modeling lithium fires with MELCOR and for future work in this area are included in this report.

  9. Modifications Made to the MELCOR Code for Analyzing Lithium Fires in Fusion Reactors

    SciTech Connect

    Merrill, Brad Johnson

    2000-04-01

    This report documents initial modifications made to the MELCOR code that allows MELCOR to predict the consequences of lithium spill accidents for evolving fusion reactor designs. These modifications include thermodynamic and transport properties for lithium, and physical models for predicting the rate of reaction of and energy production from the lithium-air reaction. A benchmarking study was performed with this new MELCOR capability. Two lithium-air reaction tests conducted at the Hanford Engineering Development Laboratory (HEDL) were selected for this benchmark study. Excellent agreement was achieved between MELCOR predictions and measured data. Recommendations for modeling lithium fires with MELCOR and for future work in this area are included in this report.

  10. Radiation streaming analysis for the beam ports of the laser fusion reactor, SENRI-I

    SciTech Connect

    Oomura, H.; Ido, S.; Nakai, S.; Nakashima, H.; Yamanaka, C.

    1984-01-01

    Three-dimensional Monte Carlo analyses are performed for the three-legged beam ports of the laser fusion reactor SENRI-I. The validity of two devices for attenuating neutron flux is examined, and it is shown that the fast neutron flux attenuation of 1.4 X 10/sup 5/ can be reached by adopting these two devices in combination. The effectiveness of variance reduction techniques is also examined. It is determined that path length stretching is useful for neutron groups above 1 MeV. Adopting adjoint flux-dependent Russian roulette weight cutoff also seems useful.

  11. Industrial Hygiene Concerns during the Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    SciTech Connect

    M.E. Lumia; C.A. Gentile

    2002-01-18

    A significant industrial hygiene concern during the Decontamination and Decommissioning (D and D) of the Tokamak Fusion Test Reactor (TFTR) was the oxidation of the lead bricks' surface, which were utilized for radiation shielding. This presented both airborne exposure and surface contamination issues for the workers in the field removing this material. This paper will detail the various protection and control methods tested and implemented to protect the workers, including those technologies deployed to decontaminate the work surfaces. In addition, those techniques employed to recycle the lead for additional use at the site will be discussed.

  12. Risk assessment of a fusion-reactor fuel-processing system

    SciTech Connect

    Bruske, S.Z.; Holland, D.F.

    1983-07-01

    The probabilistic risk assessment (PRA) methodology provides a means to systematically examine the potential for accidents that may result in a release of hazardous materials. This report presents the PRA for a typical fusion reactor fuel processing system. The system used in the analysis is based on the Tritium Systems Test Assembly, which is being operated at the Los Alamos National Laboratory. The results of the evaluation are presented in a probability-consequence plot that describes the probability of various accidental tritium release magnitudes.

  13. Recent results and challenges in development of metallic Hall sensors for fusion reactors

    SciTech Connect

    Ďuran, Ivan; Mušálek, Radek; Kovařík, Karel; Sentkerestiová, Jana; Kohout, Michal

    2014-08-21

    Reliable and precise diagnostic of local magnetic field is crucial for successful operation of future thermonuclear fusion reactors based on magnetic confinement. Magnetic sensors at these devices will experience an extremely demanding operational environment with large radiation and thermal loads in combination with required long term, reliable, and service-free performance. Neither present day commercial nor laboratory measurement systems comply with these requirements. Metallic Hall sensors based on e.g. copper or bismuth could potentially satisfy these needs. We present the technology for manufacturing of such sensors and some initial results on characterization of their properties.

  14. Thermionic plasma injection for the Lockheed Martin T4 Compact Fusion Reactor experiment

    NASA Astrophysics Data System (ADS)

    Heinrich, Jonathon

    2015-11-01

    Lockheed Martin's Compact Fusion Reactor (CFR) concept relies on diamagnetic confinement in a magnetically encapsulated linear ring cusp geometry. Plasma injection into cusp field configurations requires careful deliberation. Previous work has shown that axial injection via a plasma gun is capable of achieving high-beta conditions in cusp configurations. We present a pulsed, high power thermionic plasma source and the associated magnetic field topology for plasma injection into the caulked-cusp magnetic field. The resulting plasma fueling and cross-field diffusion is discussed.

  15. Demountable Toroidal Field Magnets for Use in a Compact Modular Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Mangiarotti, F. J.; Goh, J.; Takayasu, M.; Bromberg, L.; Minervini, J. V.; Whyte, D.

    2014-05-01

    A concept of demountable toroidal field magnets for a compact fusion reactor is discussed. The magnets generate a magnetic field of 9.2 T on axis, in a 3.3 m major radius tokamak. Subcooled YBCO conductors have a critical current density adequate to provide this large magnetic field, while operating at 20 K reduces thermodynamic cooling cost of the resistive electrical joints. Demountable magnets allow for vertical replacement and maintenance of internal components, potentially reducing cost and time of maintenance when compared to traditional sector maintenance. Preliminary measurements of contact resistance of a demountable YBCO electrical joint between are presented.

  16. Local tests of parallel electrical resistivity in the Tokamak Fusion Test Reactor

    SciTech Connect

    Batha, S.H.; Levinton, F.M.; Ramsey, A.T.; Schmidt, G.L.; Zarnstorff, M.C.

    1997-01-01

    The motional Stark effect (MSE) polarimeter measures the local magnetic field pitch angle, proportional to the ratio of the poloidal to toroidal magnetic fields, in the Tokamak Fusion Test Reactor (TFTR). The authors have used the polarimeter to measure the temporal evolution of the local value of the magnetic field pitch angle during large changes in the current profile such as during a current ramp or discharge initiation. The measured evolution is compared to the evolution predicted by classical and neoclassical resistivity models. The neoclassical resistivity model is a better predictor of the local pitch angle temporal evolution than the classical model.

  17. Note: Readout of a micromechanical magnetometer for the ITER fusion reactor.

    PubMed

    Rimminen, H; Kyynäräinen, J

    2013-05-01

    We present readout instrumentation for a MEMS magnetometer, placed 30 m away from the MEMS element. This is particularly useful when sensing is performed in high-radiation environment, where the semiconductors in the readout cannot survive. High bandwidth transimpedance amplifiers are used to cancel the cable capacitances of several nanofarads. A frequency doubling readout scheme is used for crosstalk elimination. Signal-to-noise ratio in the range of 60 dB was achieved and with sub-percent nonlinearity. The presented instrument is intended for the steady-state magnetic field measurements in the ITER fusion reactor.

  18. Preliminary evaluation of beta-spodumene as a fusion reactor structural material

    SciTech Connect

    Kelsey, P.V. Jr.; Schmunk, R.E.; Henslee, S.P.

    1981-01-01

    Beta-spodumene was investigated as a candidate material for use in fusion reactor environments. Properties which support the use of beta-spodumene include good thermal shock resistance, a very low coefficient of thermal expansion, a low-Z composition which would result in minimum impact on the plasma, and flexibility in fabrication processes. Specimens were irradiated in the Advanced Test Reactor (ATR) to a fluence of 5.3 x 10/sup 22/ n/m/sup 2/, E > 0.1 MeV, and 4.9 x 10/sup 23/ n/m/sup 2/ thermal fluence in order to obtain a preliminary evaluation of the impact of irradiation on the material. Preliminary data indicate that the mechanical properties of beta-spodumene are little affected by irradiation. Gas production and release have also been investigated.

  19. Alpha particle losses from Tokamak Fusion Test Reactor deuterium{endash}tritium plasmas

    SciTech Connect

    Darrow, D.S.; Zweben, S.J.; Batha, S.; Budny, R.V.; Bush, C.E.; Chang, Z.; Cheng, C.Z.; Duong, H.H.; Fang, J.; Fisch, N.J.; Fischer, R.; Fredrickson, E.D.; Fu, G.Y.; Heeter, R.F.; Heidbrink, W.W.; Herrmann, H.W.; Herrmann, M.C.; Hill, K.; Jaeger, E.F.; James, R.; Majeski, R.; Medley, S.S.; Murakami, M.; Petrov, M.; Phillips, C.K.; Redi, M.H.; Ruskov, E.; Spong, D.A.; Strait, E.J.; Taylor, G.; White, R.B.; Wilson, J.R.; Wong, K.; Zarnstorff, M.C.

    1996-05-01

    Because alpha particle losses can have a significant influence on tokamak reactor viability, the loss of deuterium{endash}tritium alpha particles from the Tokamak Fusion Test Reactor (TFTR) [K. M. McGuire {ital et} {ital al}., Phys. Plasmas {bold 2}, 2176 (1995)] has been measured under a wide range of conditions. In TFTR, first orbit loss and stochastic toroidal field ripple diffusion are always present. Other losses can arise due to magnetohydrodynamic instabilities or due to waves in the ion cyclotron range of frequencies. No alpha particle losses have yet been seen due to collective instabilities driven by alphas. Ion Bernstein waves can drive large losses of fast ions from TFTR, and details of those losses support one element of the alpha energy channeling scenario. {copyright} {ital 1996 American Institute of Physics.}

  20. Treatment of irradiation effects in structural design criteria for fusion reactors

    SciTech Connect

    Majumdar, S.; Smith, P.

    1997-03-01

    The irradiation environment experienced by the in-vessel components of fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) presents structural design challenges not envisioned in the development of existing structural design criteria such as the ASME Code or RCC-MR. From the standpoint of structural design criteria, the most significant issues stem from the irradiation-induced changes in material properties, specifically the reduction of ductility, strain hardening capability, and fracture toughness with neutron irradiation. These effects call into question the basis of the design rules in existing structural design criteria which assume that only code-approved materials with high toughness, ductility and strain hardening capability will be used. The present paper reviews the basis of new rules that address these issues in Draft 5 of the interim ITER structural design criteria (ISDC) which was released recently for trial use by the ITER designers.

  1. Stability of the lithium 'waterfall' first wall protection concept for inertial confinement fusion reactors

    SciTech Connect

    Esser, P.D.; Paul, D.D.; Abdel-Khalik, S.I.

    1981-01-01

    Uncertainties regarding the feasibility of using an annular waterfall of liquid lithium to protect the first wall in inertial confinement fusion reactor cavities have prompted a theoretical investigation of annular jet stability. Infinitesimal perturbation techniques are applied to an idealized model of the jet with disturbances acting upon either or both of the free surfaces. Dispersion relations are derived that predict the range of disturbance frequencies leading to instability, as well as the perturbation growth rates and jet break-up length. The results are extended to turbulent annular jets and are evaluated for the lithium waterfall design. It is concluded that inherent instabilities due to turbulent fluctuations will not cause the jet to break up over distances comparable to the height of the reactor cavity.

  2. Stability of the lithium ''WATERFALL'' first wall protection concept for inertial confinement fusion reactors

    SciTech Connect

    Esser, P.D.; Abel-Khalik, S.I.; Paul, D.D.

    1981-04-01

    Uncertainties regarding the feasibility of using an annular ''waterfall'' of liquid lithium to protect the first wall in inertial confinement fusion reactor cavities have prompted a theoretical investigation of annular jet stability. Infinitesimal perturbation techniques are applied to an idealized model of the jet with disturbances acting upon either or both of the free surfaces. Dispersion relations are derived that predict the range of disturbance frequencies leading to instability, as well as the perturbation growth rates and jet breakup length. The results are extended to turbulent annular jets and are evaluated for the lithium waterfall design. It is concluded that inherent instabilities due to turbulent fluctuations will not cause the jet to break up over distances comparable to the height of the reactor cavity.

  3. Fusion core start-up, ignition and burn simulations of reversed-field pinch (RFP) reactors

    SciTech Connect

    Chu, Yuh-Yi

    1988-01-01

    A transient reactor simulation model is developed to investigate and simulate the start-up, ignition and burn of a reversed-field pinch reactor. The simulation is based upon a spatially averaged plasma balance model with field profiles obtained from MHD quasi-equilibrium analysis. Alpha particle heating is estimated from Fokker-Planck calculations. The instantaneous plasma current is derived from a self-consistent circuit analysis for plasma/coil/eddy current interactions. The simulation code is applied to the TITAN RFP reactor design which features a compact, high-power-density reversed-field pinch fusion system. A contour analysis is performed using the steady-state global plasma balance. The results are presented with contours of constant plasma current. A saddle point is identified in the contour plot which determines the minimum value of plasma current required to achieve ignition. An optimized start-up to ignition and burn path can be obtained by passing through the saddle point. The simulation code is used to study and optimize the start-up scenario. In the simulations of the TITAN RFP reactor, the OH-driven superconducting EF coils are found to deviate from the required equilibrium values as the induced plasma current increases. This results in the modification of superconducting EF coils and the addition of a set of EF trim coils. The design of the EF coil system is performed with the simulation code subject to the optimization of trim-coil power and current. In addition, the trim-coil design is subject to the constraints of vertical-field stability index and maintenance access. A power crowbar is also needed to prevent the superconducting EF coils from generating excessive vertical field. A set of basic results from the simulation of TITAN RFP reactor yield a picture of RFP plasma operation in a reactor. Investigations of eddy current are also presented. 145 refs., 37 figs., 2 tabs.

  4. Dense Z-pinch (DZP) as a fusion power reactor: preliminary scaling calculations and sysems energy balance

    SciTech Connect

    Hagenson, R.L.; Tai, A.S.; Krakowski, R.A.; Moses, R.W.

    1980-01-01

    A conceptual DT fusion reactor concept is described that is based upon the dense Z-pinch (DZP). This study emphasizes plasma modeling and the parametric assessment of the reactor energy balance. To this end simple analytic and numerical models have been developed and evaluated. The resulting optimal reactor operating point promises a high-Q, low-yield system of a scale that may allow the use of conventional high-voltage Marx/water-line technology to drive a potentially very small reactor system.

  5. Applications for reactor-pumped lasers

    NASA Astrophysics Data System (ADS)

    Lipinski, R. J.; McArthur, D. A.

    Nuclear reactor-pumped lasers (RPL's) have been developed in the US by the Department of Energy for over two decades, with the primary research occurring at Sandia National Laboratories and Idaho National Engineering Laboratory. The US program has experimentally demonstrated reactor-pumped lasing in various mixtures of xenon, argon, neon, and helium at wavelengths of 585, 703, 725, 1,271, 1,733, 1,792, 2,032, 2,630, 2,650, and 3,370 nm with intrinsic efficiency as high as 2.5%. The major strengths of a reactor-pumped laser are continuous high-power operation, modular construction, self-contained power, compact size, and a variety of wavelengths (from visible to infrared). These characteristics suggest numerous applications not easily accessible to other laser types. The continuous high power of an RPL opens many potential manufacturing applications such as deep-penetration welding and cutting of thick structures, wide-area hardening of metal surfaces by heat treatment or cladding application, wide-area vapor deposition of ceramics onto metal surfaces, production of sub-micron sized particles for manufacturing of ceramics, and 3-D ceramic lithography. In addition, a ground-based RPL could beam its power to space for such activities as illuminating geosynchronous communication satellites in the earth's shadow to extend their lives, beaming power to orbital transfer vehicles, removing space debris, and providing power (from earth) to a lunar base during the long lunar night.

  6. Process Model of A Fusion Fuel Recovery System for a Direct Drive IFE Power Reactor

    NASA Astrophysics Data System (ADS)

    Natta, Saswathi; Aristova, Maria; Gentile, Charles

    2008-11-01

    A task has been initiated to develop a detailed representative model for the fuel recovery system (FRS) in the prospective direct drive inertial fusion energy (IFE) reactor. As part of the conceptual design phase of the project, a chemical process model is developed in order to observe the interaction of system components. This process model is developed using FEMLAB Multiphysics software with the corresponding chemical engineering module (CEM). Initially, the reactants, system structure, and processes are defined using known chemical species of the target chamber exhaust. Each step within the Fuel recovery system is modeled compartmentally and then merged to form the closed loop fuel recovery system. The output, which includes physical properties and chemical content of the products, is analyzed after each step of the system to determine the most efficient and productive system parameters. This will serve to attenuate possible bottlenecks in the system. This modeling evaluation is instrumental in optimizing and closing the fusion fuel cycle in a direct drive IFE power reactor. The results of the modeling are presented in this paper.

  7. Performance of a palladium membrane reactor using a Ni catalyst for fusion fuel impurities processing

    SciTech Connect

    Willms, R.S.; Wilhelm, R.; Okuno, K.

    1994-07-01

    The palladium membrane reactor (PNM) provides a means to recover hydrogen isotopes from impurities expected to be present in fusion reactor exhaust. This recovery is based on reactions such as water-gas shift and steam reforming for which conversion is equilibrium limited. By including a selectively permeable membrane such as Pd/Ag in the catalyst bed, hydrogen isotopes can be removed from the reacting environment, thus promoting the reaction to complete conversion. Such a device has been built and operated at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory (LANL). For the reactions listed above, earlier study with this unit has shown that hydrogen single-pass recoveries approaching 100% can be achieved. It was also determined that a nickel catalyst is a feasible choice for use with a PMR appropriate for fusion fuel impurities processing. The purpose of this study was to systematically assess the performance of the PMR using a nickel catalyst over a range of temperatures, feed compositions and flowrates. Reactions which were studied are the water-gas shift reaction and steam reforming.

  8. Neutronics shielding analysis for the end plug of a tandem mirror fusion reactor

    NASA Astrophysics Data System (ADS)

    Ragheb, Magdi M. H.; Maynard, Charles W.

    1981-10-01

    A neutronics analysis using the Monte Carlo method is carried out for the end-plug penetration and magnet system of a tandem mirror fusion reactor. Detailed penetration and the magnets' three-dimensional configurations are modeled. A method of position dependent angular source biasing is developed to adequately sample the DT fusion source in the central cell region and obtain flux contributions at the penetration components. To assure cryogenic stability, the barrier cylindrical solenoid is identified as needing substantial shielding of about 1 m of a steel-lead-boron-carbide-water mixture. Heating rates there would require a thermal-hydraulic design similar to that in the central cell blanket region. The transition coils, however, need a minimal 0.2 m thickness shield. The leakage neutron flux at the direct converters is estimated at 1.3×1015 n/(m2·s), two orders of magnitude lower than that reported at the neutral beam injectors for tokamaks around 1017 n/(m2·s) for a 1 MW/m2 14 MeV neutron wall loading. This result is obtained through a coupling between the nuclear and plasma physics designs in which hydrogen ions rather than deuterium atoms are used for energy injection at the end plug, to avoid creating a neutron source there. This lower and controllable radiation leakage problem is perceived as a potential major advantage of tandem mirrors compared to tokamaks and laser reactor systems.

  9. Analysis of Induced Gamma Activation by D-T Neutrons in Selected Fusion Reactor Relevant Materials with EAF-2010

    NASA Astrophysics Data System (ADS)

    Klix, Axel; Fischer, Ulrich; Gehre, Daniel

    2016-02-01

    Samples of lanthanum, erbium and titanium which are constituents of structural materials, insulating coatings and tritium breeder for blankets of fusion reactor designs have been irradiated in a fusion peak neutron field. The induced gamma activities were measured and the results were used to check calculations with the European activation system EASY-2010. Good agreement for the prediction of major contributors to the contact dose rate of the materials was found, but for minor contributors the calculation deviated up to 50%.

  10. Preparations for deuterium--tritium experiments on the Tokamak Fusion Test Reactor*

    SciTech Connect

    Hawryluk, R.J.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.L.; Anderson, J.W.; Arunasalam, V.; Ascione, G.; Aschroft, D.; Barnes, C.W.; Barnes, G.; Batchelor, D.B.; Bateman, G.; Batha, S.; Baylor, L.A.; Beer, M.; Bell, M.G.; Biglow, T.S.; Bitter, M.; Blanchard, W.; Bonoli, P.; Bretz, N.L.; Brunkhorst, C.; Budny, R.; Burgess, T.; Bush, H.; Bush, C.E.; Camp, R.; Caorlin, M.; Carnevale, H.; Chang, Z.; Chen, L.; Cheng, C.Z.; Chrzanowski, J.; Collazo, I.; Collins, J.; Coward, G.; Cowley, S.; Cropper, M.; Darrow, D.S.; Daugert, R.; DeLooper, J.; Duong, H.; Dudek, L.; Durst, R.; Efthimion, P.C.; Ernst, D.; Faunce, J.; Fonck, R.J.; Fredd, E.; Fredrickson, E.; Fromm, N.; Fu, G.Y.; Furth, H.P.; Garzotto, V.; Gentile, C.; Gettelfinger, G.; Gilbert, J.; Gioia, J.; Goldfinger, R.C.; Golian, T.; Gorelenkov, N.; Gouge, M.J.; Grek, B.; Grisham, L.R.; Hammett, G.; Hanson, G.R.; Heidbrink, W.; Hermann, H.W.; Hill, K.W.; Hirshman, S.; Hoffman, D.J.; Hosea, J.; Hulse, R.A.; Hsuan, H.; Ja

    1994-05-01

    The final hardware modifications for tritium operation have been completed for the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. [bold 21], 1324 (1992)]. These activities include preparation of the tritium gas handling system, installation of additional neutron shielding, conversion of the toroidal field coil cooling system from water to a Fluorinert[sup TM] system, modification of the vacuum system to handle tritium, preparation, and testing of the neutral beam system for tritium operation and a final deuterium--deuterium (D--D) run to simulate expected deuterium--tritium (D--T) operation. Testing of the tritium system with low concentration tritium has successfully begun. Simulation of trace and high power D--T experiments using D--D have been performed. The physics objectives of D--T operation are production of [approx]10 MW of fusion power, evaluation of confinement, and heating in deuterium--tritium plasmas, evaluation of [alpha]-particle heating of electrons, and collective effects driven by alpha particles and testing of diagnostics for confined [alpha] particles. Experimental results and theoretical modeling in support of the D--T experiments are reviewed.

  11. Anomalous fast ion losses at high β on the tokamak fusion test reactor

    SciTech Connect

    Fredrickson, E. D.; Bell, M. G.; Budny, R. V.; Darrow, D. S.; White, R.

    2015-03-15

    This paper describes experiments carried out on the Tokamak Fusion Test Reactor (TFTR) [R. J. Hawryluk et al., Plasma Phys. Controlled Fusion 33, 1509 (1991)] to investigate the dependence of β-limiting disruption characteristics on toroidal field strength. The hard disruptions found at the β-limit in high field plasmas were not found at low field, even for β's 50% higher than the empirical β-limit of β{sub n} ≈ 2 at high field. Comparisons of experimentally measured β's to TRANSP simulations suggest anomalous loss of up to half of the beam fast ions in the highest β, low field shots. The anomalous transport responsible for the fast ion losses may at the same time broaden the pressure profile. Toroidal Alfvén eigenmodes, fishbone instabilities, and Geodesic Acoustic Modes are investigated as possible causes of the enhanced losses. Here, we present the first observations of high frequency fishbones [F. Zonca et al., Nucl. Fusion 49, 085009 (2009)] on TFTR. The interpretation of Axi-symmetric Beam-driven Modes as Geodesic Acoustic Modes and their possible correlation with transport barrier formation are also presented.

  12. Bayesian information fusion networks for biosurveillance applications.

    PubMed

    Mnatsakanyan, Zaruhi R; Burkom, Howard S; Coberly, Jacqueline S; Lombardo, Joseph S

    2009-01-01

    This study introduces new information fusion algorithms to enhance disease surveillance systems with Bayesian decision support capabilities. A detection system was built and tested using chief complaints from emergency department visits, International Classification of Diseases Revision 9 (ICD-9) codes from records of outpatient visits to civilian and military facilities, and influenza surveillance data from health departments in the National Capital Region (NCR). Data anomalies were identified and distribution of time offsets between events in the multiple data streams were established. The Bayesian Network was built to fuse data from multiple sources and identify influenza-like epidemiologically relevant events. Results showed increased specificity compared with the alerts generated by temporal anomaly detection algorithms currently deployed by NCR health departments. Further research should be done to investigate correlations between data sources for efficient fusion of the collected data.

  13. High-Yield Lithium-Injection Fusion-Energy (HYLIFE) reactor

    SciTech Connect

    Blink, J.A.; Hogam, W.J.; Hovingh, J.; Meier, E.R.; Pitts, J.H.

    1985-12-23

    The High-Yield Lithium-Injection Fusion Energy (HYLIFE) concept to convent inertial confinement fusion energy into electric power has undergone intensive research and refinement at LLNL since 1978. This paper reports on the final HYLIFE design, focusing on five major areas: the HYLIFE reaction chamber (which includes neutronics, liquid-metal jet-array hydrocynamics, and structural design), supporting systems, primary steam system and balance of plant, safety and environmental protection, and costs. An annotated bibliography of reports applicable to HYLIFE is also provided. We conclude that HYLIFE is a particularly viable concept for the safe, clean production of electrical energy. The liquid-metal jet array, HYLIFE's key design feature, protects the surrounding structural components from x-rays, fusion fuel-pellet debris, neutron damage and activation, and high temperatures and stresses, allowing the structure to last for the plant's entire 30-year lifetime without being replaced. 127 refs., 18 figs.

  14. Magnet operating experience review for fusion applications

    SciTech Connect

    Cadwallader, L.C.

    1991-11-01

    This report presents a review of magnet operating experiences for normal-conducting and superconducting magnets from fusion, particle accelerator, medical technology, and magnetohydrodynamics research areas. Safety relevant magnet operating experiences are presented to provide feedback on field performance of existing designs and to point out the operational safety concerns. Quantitative estimates of magnet component failure rates and accident event frequencies are also presented, based on field experience and on performance of similar components in other industries.

  15. Applications and Progress of Dust Injection to Fusion Energy

    SciTech Connect

    Wang Zhehui; Wurden, Glen A.; Mansfield, Dennis K.; Roquemore, Lane A.; Ticos, Catalin M.

    2008-09-07

    Three regimes of dust injection are proposed for different applications to fusion energy. In the 'low-speed' regime (<5 km/s), basic dust transport study, edge plasma diagnostics, edge-localized-mode (ELM) pacing in magnetic fusion devices can be realized by injecting dust of known properties into today's fusion experiments. ELM pacing, as an alternative to mini-pellet injection, is a promising scheme to prevent disruptions and type I ELM's that can cause catastrophic damage to fusion devices. Different schemes are available to inject dust. In the 'intermediate-speed' regime (10-200 km/s), possible applications of dust injection include fueling of the next-step fusion devices, core-diagnostics of the next-step fusion devices, and compression of plasma and solid targets to aid fusion energy production. Promising laboratory results of dust moving at 10-50 km/s do exist. Significant advance in this regime may be expected in the near term to achieve higher dust speeds. In the 'high-speed' regime (>500 km/s), dust injection can potentially be used to directly produce fusion energy through impact. Ideas on how to achieve these extremely high speeds are mostly on paper. No plan exists today to realize them in laboratory. Some experimental results, including electrostatic, electromagnetic, gas-dragged, plasma-dragged, and laser-ablation-based acceleration, are summarized and compared. Some features and limitations of the different acceleration methods will be discussed. A necessary component of all dust injectors is the dust dropper (also known as dust dispenser). A computer-controlled piezoelectric crystals has been developed to dropped dust in a systematic and reproducible manner. Particle fluxes ranges from a few tens of particles per second up to thousands of particles per second by this simple device.

  16. Report of the DOE panel on low activation materials for fusion applications

    SciTech Connect

    Conn, R.W.

    1983-06-01

    In February, 1982, the Office of Fusion Energy, DOE, through its Division of Development and Technology, established a Panel to examine materials with attractive radioactivation characteristics for applications in fusion power reactors. Since February, the Panel has met together and in subgroups numerous times. Input from knowledgeable people was elicited via a two day workshop held at UCLA in April, 1982. The agenda, titles of talks, and speakers are given in Appendix II. We present here a synopsis of the Panel's findings based upon both external information provided to us and upon the work and deliberations of the Panel itself. Conclusions and recommendations follow. Background technical information brought together by the Panel is relegated to Appendices III and IV.

  17. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    SciTech Connect

    Wendt, Amy; Callis, Richard; Efthimion, Philip; Foster, John; Keane, Christopher; Onsager, Terry; O'Shea, Patrick

    2015-09-01

    Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality. However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density

  18. A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium

    SciTech Connect

    Reed, Mark; Parker, Ronald R.; Forget, Benoit

    2012-06-19

    This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more

  19. Torus configuration and materials selection on a fusion DEMO reactor, SlimCS

    NASA Astrophysics Data System (ADS)

    Tobita, K.; Nishio, S.; Tanigawa, H.; Enoeda, M.; Isono, T.; Nakamura, H.; Tsuru, D.; Suzuki, S.; Hayashi, T.; Tsuchiya, K.; Hayashi, T.; Nishitani, T.; DEMO design Team

    2009-04-01

    SlimCS is the conceptual design of a compact fusion DEMO plant assuming technologies foreseeable in 2020-2030s. For continuity of blanket technology from the Japanese ITER-TBM, the prime option of blanket is water-cooled solid breeder with Li 2TiO 3 (or Li 4SiO 4) and Be. A reduced-activation ferritic-martensitic steel (RAFM) and subcritical water are chosen as the structural material and coolant, respectively. The reactor has somewhat complex torus configuration with a sector-wide conducting plate slipped in between the replaceable (front) and permanent (back) blanket. In order to allow flexibility of maintenance in such a complex configuration, sector transport hot cell maintenance scheme is adopted. This paper describes characteristics of SlimCS with a focus on materials selection.

  20. Calculation procedures for the analysis of integral experiments for fusion-reactor design

    NASA Astrophysics Data System (ADS)

    Santoro, R. T.; Barnes, J. M.; Alsmiller, R. G., Jr.; Oblow, E. M.

    1981-07-01

    The calculational models, nuclear data, and radiation transport codes that are used in the analysis of integral measurements of the transport of approxmately 14 MeV neutrons through laminated slabs of materials typical of those found in fusion reactor shields are described. The two dimensional discrete ordinates calculations to optimize the experimental configuration of reducing the neutron and gamma ray background levels and for obtaining and equivalent, reduced geometry of the calculational model to reduce computer core storage and running times are also presented. The equations and data to determine the energy-angle relations to neutrons produced in the reactions of 250 keV deuterons in a titanium tritide target are given. The procedures used to collapse the 17ln 36gamma VATAMIN C cross section library to a 53n 21 gamma broad group library are described.

  1. Tritium permeation characterization of materials for fusion and generation IV very high temperature reactors

    SciTech Connect

    Thomson, S.; Pilatzke, K.; McCrimmon, K.; Castillo, I.; Suppiah, S.

    2015-03-15

    The objective of this work is to establish the tritium-permeation properties of structural alloys considered for Fusion systems and very high temperature reactors (VHTR). A description of the work performed to set up an apparatus to measure permeation rates of hydrogen and tritium in 304L stainless steel is presented. Following successful commissioning with hydrogen, the test apparatus was commissioned with tritium. Commissioning tests with tritium suggest the need for a reduction step that is capable of removing the oxide layer from the test sample surfaces before accurate tritium-permeation data can be obtained. Work is also on-going to clearly establish the temperature profile of the sample to correctly estimate the tritium-permeability data.

  2. Calculation of neutron and gamma ray energy spectra for fusion reactor shield design: comparison with experiment

    SciTech Connect

    Santoro, R.T.; Alsmiller, R.G. Jr.; Barnes, J.M.; Chapman, G.T.

    1980-08-01

    Integral experiments that measure the transport of approx. 14 MeV D-T neutrons through laminated slabs of proposed fusion reactor shield materials have been carried out. Measured and calculated neutron and gamma ray energy spectra are compared as a function of the thickness and composition of stainless steel type 304, borated polyethylene, and Hevimet (a tungsten alloy), and as a function of detector position behind these materials. The measured data were obtained using a NE-213 liquid scintillator using pulse-shape discrimination methods to resolve neutron and gamma ray pulse height data and spectral unfolding methods to convert these data to energy spectra. The calculated data were obtained using two-dimensional discrete ordinates radiation transport methods in a complex calculational network that takes into account the energy-angle dependence of the D-T neutrons and the nonphysical anomalies of the S/sub n/ method.

  3. Removing tritium and other impurities during industrial recycling of beryllium from a fusion reactor

    SciTech Connect

    Dylst, K.; Seghers, J.; Druyts, F.; Braet, J.

    2008-07-15

    Recycling beryllium used in a fusion reactor might be a good way to overcome problems related to the disposal of neutron irradiated beryllium. The critical issues for the recycling of used first wall beryllium are the presence of tritium and (transuranic) impurities. High temperature annealing seems to be the most promising technique for detritiation. Purification of the de-tritiated beryllium can be achieved by chlorination of the irradiated beryllium and the subsequent reduction of beryllium chloride to highly pure metallic beryllium. After that, the beryllium can be re-fabricated into first wall tiles via powder metallurgy which is already a mature industrial practice. This paper outlines the path to define the experimental needs for beryllium recycling and tackles problems related to the detritiation and the purification via the chlorine route. (authors)

  4. Particle confinement property in the cusp-mirror field of a compact fusion reactor

    NASA Astrophysics Data System (ADS)

    Zhu, Limin; Liu, Haifeng; Wang, Xianqu

    2016-09-01

    The cusp-mirror magnetic structure in a compact fusion reactor (CFR) is investigated to understand the properties of the particle confinement for the first time. Compared with a cascade magnetic mirror device, its advanced performance is shown by means of test particle simulations. Some interesting results are obtained as follows: the adiabatic region and non-adiabatic region are found in the CFR’s magnetic configuration. In the non-adiabatic region, due to the magnetic field-free space existing, the ions are scattered stochastically and are not directly guided into the loss cone, unlike the particles around the fixed magnetic lines in the adiabatic region, which decrease the ion loss fraction. The CFR’s configuration, combining advantages of cusp-magnetic configuration and mirror-magnetic configuration, leads to confine particles longer than cascade magnetic mirror’s. This phenomenon may be relevant to the construction of advanced magnetic-confinement devices.

  5. The role of risk management in the design of diagnostics for fusion reactors

    SciTech Connect

    Ingesson, L. C.; Collaboration: F4E Diagnostic Project Team

    2014-08-21

    A project-oriented approach is beneficial for the selection and design of viable diagnostics for fusion reactors because of the associated complex physical and organizational environment. The project-oriented approach includes rigorous risk management. The nature and impact of risks related to technical, organizational and commercial aspects in relation to the development of ITER diagnostics under EU responsibility are analyzed. The majority of risks are related to organizational aspects and technical feasibility issues. The experience with ITER is extrapolated to DEMO and beyond. It should not be taken for granted that technical solutions will be found, while a risk analysis of various diagnostic techniques with quantitative assessments undertaken early in the design of DEMO would be beneficial.

  6. Investigation of Liquid Metal Embrittlement of Materials for use in Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Kennedy, Daniel; Jaworski, Michael

    2014-10-01

    Liquid metals can provide a continually replenished material for the first wall and extraction blankets of fusion reactors. However, research has shown that solid metal surfaces will experience embrittlement when exposed to liquid metals under stress. Therefore, it is important to understand the changes in structural strength of the solid metal materials and test different surface treatments that can limit embrittlement. Research was conducted to design and build an apparatus for exposing solid metal samples to liquid metal under high stress and temperature. The apparatus design, results of tensile testing, and surface imaging of fractured samples will be presented. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

  7. An integrated approach to assessing the fracture safe margins of fusion reactor structures

    SciTech Connect

    Odette, G.R.

    1996-10-01

    Design and operation of fusion reactor structures will require an appropriate data base closely coupled to a reliable failure analysis method to safely manage irradiation embrittlement. However, ongoing irradiation programs will not provide the information on embrittlement necessary to accomplish these objectives. A new engineering approach is proposed based on the concept of a master toughness-temperature curve indexed on an absolute temperature scale using shifts to account for variables such as size scales, crack geometry and loading rates as well as embrittlement. While providing a simple practical engineering expedient, the proposed method can also be greatly enhanced by fundamental mechanism based models of fracture and embrittlement. Indeed, such understanding is required for the effective use of small specimen test methods, which is a integral element in developing the necessary data base.

  8. Kβ spectra of heliumlike iron from tokomak-fusion-test-reactor plasmas

    NASA Astrophysics Data System (ADS)

    Smith, A. J.; Bitter, M.; Hsuan, H.; Hill, K. W.; von Goeler, S.; Timberlake, J.; Beiersdorfer, P.; Osterheld, A.

    1993-04-01

    Kβ spectra of heliumlike iron, Fe xxv, have been observed from tokamak-fusion-test-reactor (TFTR) plasmas with a high-resolution crystal spectrometer. The wavelength range of the Fe Kβ spectrum partially overlaps the spectrum of heliumlike nickel (Ni xxvii), which is used on TFTR and the joint European torus for ion-temperature measurements. The experimental arrangement made it possible to observe the Fe xxv Kβ lines and their satellite transitions of the type 1s2l'3l''-->1s22l', as well as the entire satellite spectrum of the Ni xxvii Kα line simultaneously. In order to identify the features of the Kβ spectra and to study their possible interference with the Ni xxvii spectrum, the intensity of the Kβ spectrum was enhanced by the injection of iron into the plasma. Accurate wavelengths and intensities have been obtained and compared with different theoretical calculations.

  9. Long- and short-term trends in vessel conditioning of TFTR (Tokamak Fusion Test Reactor)

    SciTech Connect

    LaMarche, P.H.; Dylla, H.F.; Bell, M.G.; Boody, F.P.; Bush, C.E.; Groebuer, R.J.; Hawryluk, R.J.; Hill, K.W.; Mueller, D.; Owens, D.K.

    1986-10-01

    We have investigated trends in the conditioning of the Tokamak Fusion Test Reactor (TFTR) vacuum vessel during the May 1984 to April 1985 run period. The initial conditioning of the vessel, consisting of glow discharge cleaning (GDC) and pulse discharge cleaning (PDC) in concert with a 150/sup 0/C vessel bakeout, is necessary to assure plasma operation after atmospheric venting. A long-term conditioning process, ascribed to limiter conditioning, effectively improves operational conditions during the course of the run. Over several thousand high power plasma discharges, the improvement was documented by using standard parameter (fiducial) plasma discharges. Several techniques demonstrated short-term improvements in vessel conditioning during this time period, including: Cr gettering and programming the plasma position relative to the limiter contact area.

  10. Divertor conditions relevant for fusion reactors achieved with linear plasma generator

    SciTech Connect

    Eck, H. J. N. van; Lof, A.; Meiden, H. J. van der; Rooij, G. J. van; Scholten, J.; Zeijlmans van Emmichoven, P. A.; Kleyn, A. W.

    2012-11-26

    Intense magnetized hydrogen and deuterium plasmas have been produced with electron densities up to 3.6 Multiplication-Sign 10{sup 20} m{sup -3} and electron temperatures up to 3.7 eV with a linear plasma generator. Exposure of a W target has led to average heat and particle flux densities well in excess of 4 MW m{sup -2} and 10{sup 24} m{sup -2} s{sup -1}, respectively. We have shown that the plasma surface interactions are dominated by the incoming ions. The achieved conditions correspond very well to the projected conditions at the divertor strike zones of fusion reactors such as ITER. In addition, the machine has an unprecedented high gas efficiency.

  11. Advanced fueling system for steady-state operation of a fusion reactor

    SciTech Connect

    Raman, R.

    2008-07-15

    Steady-state Advanced Tokamak scenarios rely on optimized density and pressure profiles to maximize the bootstrap current fraction. Under this mode of operation, the fuelling system must deposit small amounts of fuel where it is needed, and as often as needed, so as to compensate for fuel losses, but not to adversely alter the established density and pressure profiles. A precision fuelling system has the capability for controlling the fusion burn by maintaining the required pressure profile to maximize the bootstrap current fraction. An advanced fuelling system based on Compact Toroid (CT) injection has the potential to meet these needs while simultaneously simplifying the requirements of the tritium handling systems. Simpler engineering systems would reduce reactor construction and maintenance cost through increased reliability. A CT fueling system is described together with the associated tritium handling requirements. (authors)

  12. Dust Combustion Safety Issues for Fusion Applications

    SciTech Connect

    L. C. Cadwallader

    2003-05-01

    This report summarizes the results of a safety research task to identify the safety issues and phenomenology of metallic dust fires and explosions that are postulated for fusion experiments. There are a variety of metal dusts that are created by plasma erosion and disruptions within the plasma chamber, as well as normal industrial dusts generated in the more conventional equipment in the balance of plant. For fusion, in-vessel dusts are generally mixtures of several elements; that is, the constituent elements in alloys and the variety of elements used for in-vessel materials. For example, in-vessel dust could be composed of beryllium from a first wall coating, tungsten from a divertor plate, copper from a plasma heating antenna or diagnostic, and perhaps some iron and chromium from the steel vessel wall or titanium and vanadium from the vessel wall. Each of these elements has its own unique combustion characteristics, and mixtures of elements must be evaluated for the mixture’s combustion properties. Issues of particle size, dust temperature, and presence of other combustible materials (i.e., deuterium and tritium) also affect combustion in air. Combustion in other gases has also been investigated to determine if there are safety concerns with “inert” atmospheres, such as nitrogen. Several coolants have also been reviewed to determine if coolant breach into the plasma chamber would enhance the combustion threat; for example, in-vessel steam from a water coolant breach will react with metal dust. The results of this review are presented here.

  13. Acceleration of compact toruses and fusion applications

    SciTech Connect

    Hartman, C.W.; Eddleman, J.L.; Hammer, J.H.; Logan, B.G.; McLean, H.S.; Molvik, A.W.

    1990-10-11

    The Compact Torus (Spheromak-type) is a near ideal plasma confinement configuration for acceleration. The fields are mostly generated by internal plasma currents, plasma confinement is toroidal, and the compact torus exhibits resiliency and stability in virtue of the ``rugged`` helicity invariant. Based on these considerations we are developing a coaxial rail-gun type Compact Torus Accelerator (CTA). In the CTA, the CT ring is formed between coaxial electrodes using a magnetized Marshall gun, it is quasistatically ``precompressed`` in a conical electrode section for inductive energy storage, it is accelerated in a straight-coaxial electrode section as in a conventional rail-gun, and it is focused to small size and high energy and power density in a final ``focus`` cone section. The dynamics of slow precompression and acceleration have been demonstrated experimentally in the RACE device with results in good agreement with 2-D MHD code calculations. CT plasma rings with 100 {micro}gms mass have been accelerated to 40 Kj kinetic energy at 20% efficiency with final velocity = 1 X 10{sup 8} cm/s (= 5 KeV/H{sup +}). Preliminary focus tests exhibi dynamics of radius compression, deceleration, and bouncing. Compression ratios of 2-3 have been achieved. A scaled-up 10-100 MJ CTA is predicted to achieve a focus radius of several cm to deliver = 30 MJ ring kinetic energy in 5-10 nsec. This is sufficient energy, power, and power density to enable the CTA to act as a high efficiency, low cost ICF driver. Alternatively, the focused CT can form the basis for an magnetically insulated, inertial confinement fusion (MICF) system. Preliminary calculations of these fusion systems will be discussed.

  14. Dust dynamics and diagnostic applications in quasi-neutral plasmas and magnetic fusion

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Ticos, Catalin M.; Si, Jiahe; Delzanno, Gian Luca; Lapenta, Gianni; Wurden, Glen

    2007-11-01

    Little is known about dust dynamics in highly ionized quasi-neutral plasmas with ca. 1.0 e+20 per cubic meter density and ion temperature at a few eV and above, including in magnetic fusion. For example, dust motion in fusion, better known as UFO's, has been observed since 1980's but not explained. Solid understanding of dust dynamics is also important to International Thermonuclear Experimental Reactor (ITER) because of concerns about safety and dust contamination of fusion core. Compared with well studied strongly-coupled dusty plasma regime, new physics may arise in the higher density quasi-neutral plasma regime because of at least four orders of magnitude higher density and two orders of magnitude hotter ion temperature. Our recent laboratory experiments showed that plasma-flow drag force dominates over other forces in a quasi-neutral flowing plasma. In contrast, delicate balance among different forces in dusty plasma has led to many unique phenomena, in particular, the formation of dust crystal. Based on our experiments, we argue that 1) dust crystal will not form in the highly ionized plasmas with flows; 2) the UFO's are moving dust dragged by plasma flows; 3) dust can be used to measure plasma flow. Two diagnostic applications using dust for laboratory quasi-neutral plasmas and magnetic fusion will also be presented.

  15. Peaceful Uses of Fusion

    DOE R&D Accomplishments Database

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.

  16. LBB application in the US operating and advanced reactors

    SciTech Connect

    Wichman, K.; Tsao, J.; Mayfield, M.

    1997-04-01

    The regulatory application of leak before break (LBB) for operating and advanced reactors in the U.S. is described. The U.S. Nuclear Regulatory Commission (NRC) has approved the application of LBB for six piping systems in operating reactors: reactor coolant system primary loop piping, pressurizer surge, safety injection accumulator, residual heat removal, safety injection, and reactor coolant loop bypass. The LBB concept has also been applied in the design of advanced light water reactors. LBB applications, and regulatory considerations, for pressurized water reactors and advanced light water reactors are summarized in this paper. Technology development for LBB performed by the NRC and the International Piping Integrity Research Group is also briefly summarized.

  17. High poloidal beta long-pulse experiments in the Tokamak Fusion Test Reactor*

    NASA Astrophysics Data System (ADS)

    Kesner, J.; Mauel, M. E.; Navratil, G. A.; Sabbagh, S. A.; Bell, M.; Budny, R.; Bush, C.; Fredrickson, E.; Grek, B.; Janos, A.; Johnson, D.; Mansfield, D.; McCune, D.; McGuire, K.; Park, H.; Ramsey, A.; Synakowski, E.; Taylor, G.; Zarnstorff, M.; Batha, S. H.; Levinton, F. M.

    1993-07-01

    Experiments have been performed in the Tokamak Fusion Test Reactor [D. M. Meade et al. in Plasma Physics Controlled Nuclear Fusion Research, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 1, p. 9] with neutral beam injection of up to 4 sec. duration, which is comparable to the time scale for resistive redistribution of the plasma current profile. These plasmas were created using a rapid decrease of the plasma current which initially created a plasma with enhanced stability and confinement. As the current profile evolved, a significantly reduced beta limit was observed. The high ɛβp plasmas had up to 90% of the current driven noninductively which significantly broadened the current profile during the long pulse lengths. These experiments demonstrated that high βN plasmas could not be sustained for times longer than the resistive relaxation of the outer current region which at early times after the current ramp-down carried negative current. At later times in lower βN discharges, beta collapses were sometimes observed as the current profile broadened at βN˜1.5. The appearance of disruptions was consistent with the predictions of ideal magnetohydrodynamics (MHD) stability analyses.

  18. Materials recycle and waste management in fusion power reactors. Progress report for 1982

    SciTech Connect

    Vogler, S.; Jung, J.; Steindler, M.J.; Maya, I.; Levine, H.E.; Peterman, D.D.; Strausburg, S.; Schultz, K.R.

    1983-01-01

    Several components of a STARFIRE fusion reactor have been studied. The breeding ratios were calculated as a function of lithium enrichment and neutron multiplier for systems containing either Li/sub 2/O or LiAlO/sub 2/. The lithium requirements for a fusion economy were also estimated for those cases and the current US resources were found to be adequate. However, competition with other lithium demands in the future emphasizes the need for recovering and reusing lithium. The radioactivities induced in the breeder and the impurities responsible for their formation were determined. The residual radioactivities of several low-activation structural materials were compared with the radioactivity from the prime candidate alloy (PCA) a titanium modified Type 316 stainless steel used in STARFIRE. The impurities responsible for the radioactivity levels were identified. From these radioactive impurity levels it was determined that V15Cr5Ti could meet the requirements for shallow land burial as specified by the Nuclear Regulatory Commission (10CFR61), whereas PCA would require a more restrictive disposal mode, i.e. in a geologic medium. The costs for each of these disposal modes were then estimated.

  19. Radioactive waste produced by DEMO and commerical fusion reactors extrapolated from ITER and advanced data bases

    SciTech Connect

    Stacey, W.M.; Hertel, N.E.; Hoffman, E.A.

    1994-12-31

    The potential for providing energy with minimal environmental impact is a powerful motivation for the development of fusion and is the long-term objective of most fusion programs. However, the societal acceptability of magnetic fusion may well be decided in the near-term when decisions are taken on the construction of DEMO to follow ITER (if not when the construction decision is taken on ITER). Component wastes were calculated for DEMOs based on each data base by first calculating reactor sizes needed to satisfy the physics, stress and radiation attenuation requirements, and then calculating component replacement rates based on radiation damage and erosion limits. Then, radioactive inventories were calculated and compared to a number of international criteria for {open_quote}near-surface{close_quote} burial. None of the components in either type of design would meet the Japanese LLW criterion (<1 Ci/m{sup 3}) within 10 years of shutdown, although the advanced (V/Li) blanket would do so soon afterwards. The vanadium first wall, divertor and blanket would satisfy the IAEA LLW criterion (<2 mSv/h contact dose) within about 10 years after shutdown, but none of the stainless steel or copper components would. All the components in the advanced data base designs except the stainless steel vacuum vessel and shield readily satisfy the US extended 10CFR61 intruder dose criterion, but none of the components in the {open_quotes}ITER data base{close_quotes} designs do so. It seems unlikely that a stainless steel first wall or a copper divertor plate could satisfy the US (class C) criterion for near surface burial, much less the more stringent international, criteria. On the other hand, the first wall, divertor and blanket of the V/Li system would still satisfy the intruder dose concentration limits even if the dose criterion was reduced by two orders of magnitude.

  20. Deuterium-tritium plasmas in novel regimes in the Tokamak Fusion Test Reactor

    SciTech Connect

    Bell, M.G.; Beer, M.; Batha, S.

    1997-02-01

    Experiments in the Tokamak Fusion Test Reactor (TFTR) have explored several novel regimes of improved tokamak confinement in deuterium-tritium (D-T) plasmas, including plasmas with reduced or reversed magnetic shear in the core and high-current plasmas with increased shear in the outer region (high-l{sub i}). New techniques have also been developed to enhance the confinement in these regimes by modifying the plasma-limiter interaction through in-situ deposition of lithium. In reversed-shear plasmas, transitions to enhanced confinement have been observed at plasma currents up to 2.2 MA (q{sub a} {approx} 4.3), accompanied by the formation of internal transport barriers, where large radial gradients develop in the temperature and density profiles. Experiments have been performed to elucidate the mechanism of the barrier formation and its relationship with the magnetic configuration and with the heating characteristics. The increased stability of high-current, high-l{sub i} plasmas produced by rapid expansion of the minor cross-section, coupled with improvement in the confinement by lithium deposition has enabled the achievement of high fusion power, up to 8.7 MW, with D-T neutral beam heating. The physics of fusion alpha-particle confinement has been investigated in these regimes, including the interactions of the alphas with endogenous plasma instabilities and externally applied waves in the ion cyclotron range of frequencies. In D-T plasmas with q{sub 0} > 1 and weak magnetic shear in the central region, a toroidal Alfven eigenmode instability driven purely by the alpha particles has been observed for the first time. The interactions of energetic ions with ion Bernstein waves produced by mode-conversion from fast waves in mixed-species plasmas have been studied as a possible mechanism for transferring the energy of the alphas to fuel ions.

  1. Nuclear fuels for low-beta fusion reactors: Lithium resources revisited

    SciTech Connect

    Eckhartt, D.

    1995-12-01

    In searching to attain optimum conditions for the controlled release of nuclear energy by fusion processes, the stationary confinement of low-pressure ring-shaped plasmas by strong magnetic fields is now regarded as the most promising approach. The author considers a number of fuel combinations that could be operated in such low-beta reactor systems and looks upon the relevant fuel reserves. The {open_quotes}classical{close_quotes} D-T-Li cycle will be used as a standard and is extensively discussed therefore. It could supply most of mankind`s future long-term power needs - but only on condition that the required lithium fuel can be extracted from seawater at reasonable expenses. The estimated land-bound lithium reserves are too small to that end, they will last for about 500 years at most, depending on forecasts of future energy consumption and on assumptions about exploitable resources. Recovery of lithium from seawater would extend the possible range by a factor of 300 or so, provided that extraction technologies which are at present available in the laboratory, could be extended to a very large and industrial scale. Deuterium is abundant on earth but D-D fusion is difficult, if not impossible, to be achieved in the low-beta systems presently investigated for D-T fusion. The same arguments apply to so-called {open_quotes}advanced{close_quotes} concepts, such as the D-{sup 3}He and the D-{sup 6}Li cycles. 37 refs., 1 fig., 1 tab.

  2. Deuterium--tritium plasmas in novel regimes in the Tokamak Fusion Test Reactor

    SciTech Connect

    Bell, M.G.; Batha, S.; Beer, M.; Bell, R.E.; Belov, A.; Berk, H.; Bernabei, S.; Bitter, M.; Breizman, B.; Bretz, N.L.; Budny, R.; Bush, C.E.; Callen, J.; Cauffman, S.; Chang, C.S.; Chang, Z.; Cheng, C.Z.; Darrow, D.S.; Dendy, R.O.; Dorland, W.; Duong, H.; Efthimion, P.C.; Ernst, D.; Evenson, H.; Fisch, N.J.; Fisher, R.; Fonck, R.J.; Fredrickson, E.D.; Fu, G.Y.; Furth, H.P.; Gorelenkov, N.N.; Goloborodko, V.Y.; Grek, B.; Grisham, L.R.; Hammett, G.W.; Hawryluk, R.J.; Heidbrink, W.; Herrmann, H.W.; Herrmann, M.C.; Hill, K.W.; Hogan, J.; Hooper, B.; Hosea, J.C.; Houlberg, W.A.; Hughes, M.; Jassby, D.L.; Jobes, F.C.; Johnson, D.W.; Kaita, R.; Kaye, S.; Kesner, J.; Kim, J.S.; Kissick, M.; Krasilnikov, A.V.; Kugel, H.; Kumar, A.; Lam, N.T.; Lamarche, P.; LeBlanc, B.; Levinton, F.M.; Ludescher, C.; Machuzak, J.; Majeski, R.P.; Manickam, J.; Mansfield, D.K.; Mauel, M.; Mazzucato, E.; McChesney, J.; McCune, D.C.; McKee, G.; McGuire, K.M.; Meade, D.M.; Medley, S.S.; Mikkelsen, D.R.; Mirnov, S.V.; Mueller, D.; Nagayama, Y.; Navratil, G.A.; Nazikian, R.; Okabayashi, M.; Osakabe, M.; Owens, D.K.; Park, H.K.; Park, W.; Paul, S.F.; Petrov, M.P.; Phillips, C.K.; Phillips, M.; Phillips, P.; Ramsey, A.T.; Rice, B.; Redi, M.H.; Rewoldt, G.; Reznik, S.; Roquemore, A.L.; Rogers, J.; Ruskov, E.; Sabbagh, S.A.; Sasao, M.; Schilling, G.; Schmidt, G.L.; Scott, S.D.; Semenov, I.; Senko, T.; Skinner, C.H.; Stevenson, T.; Strait, E.J.; Stratton, B.C.; Strachan, J.D.; Stodiek, W.; Synakowski, E.; Takahashi, H.; Tang, W.; Taylor, G.; Thompson, M.E.; von Goeler, S.; Von Halle, A.; Walters, R.T.; Wang, S.; White, R.; Wieland, R.M.; Williams, M.; Wilson, J.R.; Wong, K.L.; Wurden, G.A.; Yamada, M.; Yavorski, V.; Young, K.M.; Zakharov, L.; Zarnstorff, M.C.; Zweben, S.J.

    1997-05-01

    Experiments in the Tokamak Fusion Test Reactor (TFTR) [Phys. Plasmas {bold 2}, 2176 (1995)] have explored several novel regimes of improved tokamak confinement in deuterium{endash}tritium (D--T) plasmas, including plasmas with reduced or reversed magnetic shear in the core and high-current plasmas with increased shear in the outer region (high l{sub i}). New techniques have also been developed to enhance the confinement in these regimes by modifying the plasma-limiter interaction through {ital in situ} deposition of lithium. In reversed-shear plasmas, transitions to enhanced confinement have been observed at plasma currents up to 2.2 MA (q{sub a}{approx}4.3), accompanied by the formation of internal transport barriers, where large radial gradients develop in the temperature and density profiles. Experiments have been performed to elucidate the mechanism of the barrier formation and its relationship with the magnetic configuration and with the heating characteristics. The increased stability of high-current, high-l{sub i} plasmas produced by rapid expansion of the minor cross section, coupled with improvement in the confinement by lithium deposition has enabled the achievement of high fusion power, up to 8.7 MW, with D--T neutral beam heating. The physics of fusion alpha-particle confinement has been investigated in these regimes, including the interactions of the alphas with endogenous plasma instabilities and externally applied waves in the ion cyclotron range of frequencies. In D--T plasmas with q{sub 0}{gt}1 and weak magnetic shear in the central region, a toroidal Alfvn eigenmode instability driven purely by the alpha particles has been observed for the first time. The interactions of energetic ions with ion Bernstein waves produced by mode conversion from fast waves in mixed-species plasmas have been studied as a possible mechanism for transferring the energy of the alphas to fuel ions. {copyright} {ital 1997 American Institute of Physics.}

  3. Conceptual design of a laser-fusion power plant. Part II. Two technical options: 1. JADE reactor; 2. Heat transfer by heat pipes

    SciTech Connect

    Not Available

    1981-07-01

    A laser fusion reactor concept is described that employs liquid metal walls. The concept envisions a porous medium, called the JADE, of specific geometry lining the reactor cavity. Some advantages and disadvantages of the concept are pointed out. The possibility of using heat pipes for passive cooling in ICF reactors is discussed. Some of the problems are outlined. (MOW)

  4. A target station for plasma exposure of neutron irradiated fusion material samples to reactor relevant conditions

    NASA Astrophysics Data System (ADS)

    Rapp, Juergen; Giuliano, Dominic; Ellis, Ronald; Howard, Richard; Lore, Jeremy; Lumsdaine, Arnold; Lessard, Timothy; McGinnis, William; Meitner, Steven; Owen, Larry; Varma, Venugopal

    2015-11-01

    The Material Plasma Exposure eXperiment (MPEX) is a device planned to address scientific and technological gaps for the development of viable plasma facing components for fusion reactor conditions (FNSF, DEMO). It will have to address the relevant plasma conditions in a reactor divertor (electron density, electron temperature, ion fluxes) and it needs to be able to expose a-priori neutron irradiated samples. A pre design of a target station able to handle activated materials will be presented. This includes detailed MCNP as well as SCALE and MAVRIC calculations for all potential plasma-facing materials to estimate dose rates. Details on the remote handling schemes for the material samples will be presented. 2 point modeling of the linear plasma transport has been used to scope out the parameter range of the anticipated power fluxes to the target. This has been used to design the cooling capability of the target. The operational conditions of surface temperatures, plasma conditions, and oblique angle of incidence of magnetic field to target surface will be discussed. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC-05-00OR22725.

  5. Liquid immersion blanket design for use in a compact modular fusion reactor

    NASA Astrophysics Data System (ADS)

    Sorbom, Brandon; Ball, Justin; Barnard, Harold; Haakonsen, Christian; Hartwig, Zachary; Olynyk, Geoffrey; Sierchio, Jennifer; Whyte, Dennis

    2012-10-01

    Traditional tritium breeding blankets in fusion reactor designs include a large amount of structural material. This results in complex engineering requirements, complicated sector maintenance, and marginal tritium breeding ratios (TBR). We present a conceptual design of a fully liquid blanket. To maximize tritium breeding volume, the vacuum vessel is completely immersed in a continuously recycled FLiBe blanket, with the exception of small support posts. FLiBe has a wide liquid temperature window (459 C to 1430 C), low electrical conductivity to minimize MHD effects, similar thermal/fluid characteristics to water, and is chemically inert. While tritium breeding with FLiBe in traditional blankets is poor, we use MCNP neutronics analysis to show that the immersion blanket design coupled with a beryllium neutron multiplier results in TBR > 1. FLiBe is shown to be a sufficient radiation shield for the toroidal field magnets and can be used as a coolant for the vacuum vessel and divertor, allowing for a simplified single-phase, low-pressure, single-fluid cooling scheme. When coupled with a high-field compact reactor design, the immersion blanket eliminates the need for complex sector maintenance, allows the vacuum vessel to be a replaceable component, and reduces financial cost.

  6. Technical evaluation of major candidate blanket systems for fusion power reactor

    NASA Astrophysics Data System (ADS)

    Tone, Tatsuzo; Seki, Masahiro; Minato, Akio

    1987-03-01

    The key functions required for tritium breeding blankets for a fusion power reactor are ; (1) self-sufficient tritium breeding, (2) in-situ tritium recovery and low tritium inventory, (3) high temperature cooling giving a high efficiency of electricity generation and (4) thermo-mechanical reliability and simplified remote maintenance to obtain high plant availability. Blanket performance is substantially governed by materials selection. Major options of structure/breeder/coolant/neutron multiplier materials considered for the present design study are PCA/Li/sub 2/O/H/sub 2/O/Be, Mo-alloy/Li/sub 2/O/He/Be, Mo-alloy/LiAlO/sub 2//He/Be, V-alloy/Li/Li/none, and Mo-alloy/Li/He/none. In addition, remote maintenance of blankets, tritium recovery system, heat transport and energy conversion have been investigated. In this report, technological problems and critical R and D issues for power reactor blanket development are identified and a comparison of major candidate blanket concepts is discussed in terms of the present materials data base, economic performance, prospects for future improvements, and engineering feasibility and difficulties based on the results obtained from individual design studies. improvements, and engineering feasibility and difficulties based on the results obtained from individual design studies.

  7. Anomalous Loss of DT Alpha Particles in the Tokamak Fusion Test Reactor

    SciTech Connect

    Herrmann, Hans W.

    1997-06-01

    Princeton's Tokamak Fusion Test Reactor (TFTR) is the first experimental fusion device to routinely use tritium to study the deuterium-tritium (DT) fusion reaction,allowing the first systematic study of DT alpha particles in tokamak plasmas. A crucial aspect of alpha-particle physics is the fraction of alphas that escape from the plasma, particularly since these energetic particles can do severe damage to the first wall of a reactor. An escaping alpha collector probe has been developed for TFTR's DT phase. Energy distributions of escaping alphas have been determined by measuring the range of alpha-particles implanted into nickel foils located within the alpha collector. Results at 1.0 MA of plasma current are in good agreement with predictions for first orbit alpha loss. Results at 1.8 MA, however, show a significant anomalous loss of partially thermalized alphas (in addition to the expected first orbit loss), which is not observed with the lost alpha scintillator detectors in DT plasmas, but does resemble the anomalous "delayed" loss seen in DD plasmas. None of the candidate explanations proposed thus far are fully consistent with the anomalous loss observations. An experiment designed to study the effect of plasma major radius shifts on alpha-particle loss has led to a better understanding of alpha-particle dynamics in tokamaks. Intuitively, one might suppose that confined marginally passing alpha-particles forced to move toward higher magnetic field during an inward major radius shift (i.e. compression) would mirror and become trapped particles, leading to increased alpha loss. Such an effect was looked for during the shift experiment, however, no significant changes in alpha loss to the 90 degree lost alpha scintillator detector were observed during the shifts. It is calculated that the energy gained by an alpha-particle during the inward shift is sufficient to explain this result. However, an unexpected loss of partially thermalized alpha-particles near the

  8. The EU programme for modelling radiation effects in fusion reactor materials: An overview of recent advances and future goals

    NASA Astrophysics Data System (ADS)

    Dudarev, S. L.; Boutard, J.-L.; Lässer, R.; Caturla, M. J.; Derlet, P. M.; Fivel, M.; Fu, C.-C.; Lavrentiev, M. Y.; Malerba, L.; Mrovec, M.; Nguyen-Manh, D.; Nordlund, K.; Perlado, M.; Schäublin, R.; Van Swygenhoven, H.; Terentyev, D.; Wallenius, J.; Weygand, D.; Willaime, F.

    2009-04-01

    The EU fusion materials modelling programme was initiated in 2002 with the objective of developing a comprehensive set of computer modelling techniques and approaches, aimed at rationalising the extensive available experimental information on properties of irradiated fusion materials, developing capabilities for predicting the behaviour of materials under conditions not yet accessible to experimental tests, assessing results of tests involving high dose rates, and extrapolating these results to the fusion-relevant conditions. The programme presently gives emphasis to modelling a single class of materials, which are ferritic-martensitic EUROFER-type steels, and focuses on the investigation of key physical phenomena and interpretation of experimental observations. The objective of the programme is the development of computational capabilities for predicting changes in mechanical properties, hardening and embrittlement, as well as changes in the microstructure and phase stability of EUROFER and FeCr model alloys occurring under fusion reactor relevant irradiation conditions.

  9. Multimodality Image Fusion-Guided Procedures: Technique, Accuracy, and Applications

    SciTech Connect

    Abi-Jaoudeh, Nadine; Kruecker, Jochen; Kadoury, Samuel; Kobeiter, Hicham; Venkatesan, Aradhana M. Levy, Elliot Wood, Bradford J.

    2012-10-15

    Personalized therapies play an increasingly critical role in cancer care: Image guidance with multimodality image fusion facilitates the targeting of specific tissue for tissue characterization and plays a role in drug discovery and optimization of tailored therapies. Positron-emission tomography (PET), magnetic resonance imaging (MRI), and contrast-enhanced computed tomography (CT) may offer additional information not otherwise available to the operator during minimally invasive image-guided procedures, such as biopsy and ablation. With use of multimodality image fusion for image-guided interventions, navigation with advanced modalities does not require the physical presence of the PET, MRI, or CT imaging system. Several commercially available methods of image-fusion and device navigation are reviewed along with an explanation of common tracking hardware and software. An overview of current clinical applications for multimodality navigation is provided.

  10. Integrated continuous dissolution, refolding and tag removal of fusion proteins from inclusion bodies in a tubular reactor.

    PubMed

    Pan, Siqi; Zelger, Monika; Jungbauer, Alois; Hahn, Rainer

    2014-09-20

    An integrated continuous tubular reactor system was developed for processing an autoprotease expressed as inclusion bodies. The inclusion bodies were suspended and fed into the tubular reactor system for continuous dissolving, refolding and precipitation. During refolding, the dissolved autoprotease cleaves itself, separating the fusion tag from the target peptide. Subsequently, the cleaved fusion tag and any uncleaved autoprotease were precipitated out in the precipitation step. The processed exiting solution results in the purified soluble target peptide. Refolding and precipitation yields performed in the tubular reactor were similar to batch reactor and process was stable for at least 20 h. The authenticity of purified peptide was also verified by mass spectroscopy. Productivity (in mg/l/h and mg/h) calculated in the tubular process was twice and 1.5 times of the batch process, respectively. Although it is more complex to setup a tubular than a batch reactor, it offers faster mixing, higher productivity and better integration to other bioprocessing steps. With increasing interest of integrated continuous biomanufacturing, the use of tubular reactors in industrial settings offers clear advantages.

  11. Mirror Advanced Reactor Study (MARS). Final report. Volume 2. Commercial fusion synfuels plant

    SciTech Connect

    Donohue, M.L.; Price, M.E.

    1984-07-01

    Volume 2 contains the following chapters: (1) synfuels; (2) physics base and parameters for TMR; (3) high-temperature two-temperature-zone blanket system for synfuel application; (4) thermochemical hydrogen processes; (5) interfacing the sulfur-iodine cycle; (6) interfacing the reactor with the thermochemical process; (7) tritium control in the blanket system; (8) the sulfur trioxide fluidized-bed composer; (9) preliminary cost estimates; and (10) fuels beyond hydrogen. (MOW)

  12. Applications of plasma core reactors to terrestrial energy systems

    NASA Technical Reports Server (NTRS)

    Latham, T. S.; Biancardi, F. R.; Rodgers, R. J.

    1974-01-01

    Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrial applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times.-

  13. Fusion Power Program biannual progress report, April-September 1979

    SciTech Connect

    Not Available

    1980-02-01

    This biannual report summarizes the Argonne National Laboratory work performed for the Office of Fusion Energy during the April-September 1979 quarter in the following research and development areas: materials; energy storage and transfer; tritium containment, recovery and control; advanced reactor design; atomic data; reactor safety; fusion-fission hybrid systems; alternate applications of fusion energy; and other work related to fusion power. Separate abstracts were prepared for three sections. (MOW)

  14. Applications of computer modeling to fusion research

    SciTech Connect

    Dawson, J.M.

    1989-01-01

    Progress achieved during this report period is presented on the following topics: Development and application of gyrokinetic particle codes to tokamak transport, development of techniques to take advantage of parallel computers; model dynamo and bootstrap current drive; and in general maintain our broad-based program in basic plasma physics and computer modeling.

  15. Applications of high-speed dust injection to magnetic fusion

    SciTech Connect

    Wang, Zhehui; Li, Yangfang

    2012-08-08

    It is now an established fact that a significant amount of dust is produced in magnetic fusion devices due to plasma-wall interactions. Dust inventory must be controlled, in particular for the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and degrade performance. Safety concerns are due to tritium retention, dust radioactivity, toxicity, and flammability. Performance concerns include high-Z impurities carried by dust to the fusion core that can reduce plasma temperature and may even induce sudden termination of the plasma. We have recognized that dust transport, dust-plasma interactions in magnetic fusion devices can be effectively studied experimentally by injection of dust with known properties into fusion plasmas. Other applications of injected dust include diagnosis of fusion plasmas and edge localized mode (ELM)'s pacing. In diagnostic applications, dust can be regarded as a source of transient neutrals before complete ionization. ELM's pacing is a promising scheme to prevent disruptions and type I ELM's that can cause catastrophic damage to fusion machines. Different implementation schemes are available depending on applications of dust injection. One of the simplest dust injection schemes is through gravitational acceleration of dust in vacuum. Experiments at Los Alamos and Princeton will be described, both of which use piezoelectric shakers to deliver dust to plasma. In Princeton experiments, spherical particles (40 micron) have been dropped in a systematic and reproducible manner using a computer-controlled piezoelectric bending actuator operating at an acoustic (0,2) resonance. The circular actuator was constructed with a 2.5 mm diameter central hole. At resonance ({approx} 2 kHz) an applied sinusoidal voltage has been used to control the flux of particles exiting the hole. A simple screw throttle located {approx}1mm above the hole has been used to set the magnitude of the flux achieved for a given

  16. Inertial Fusion Sciences and Applications 2003: State of the Art 2003, Published by the American Nuclear Society

    SciTech Connect

    Editors: B. A. Hammel; D. D. Meyerhofer; J. Meyer-ter-Vehn; H. Azechi. Organizing Chair: W. J. Hogan

    2004-06-01

    Collection of all papers presented and submitted at the IFSA2003 conference. Topics included target design and performance, fast ignition, plasma instabilities, laser technology, fusion reactor technology

  17. A carbon-carbon composite materials development program for fusion energy applications

    SciTech Connect

    Burchell, T.D.; Eatherly, W.P. ); Engle, G.B. ); Hollenberg, G.W. )

    1992-10-01

    Carbon-carbon composites increasingly are being used for plasma-facing component (PFC) applications in magnetic-confinement plasma-fusion devices. They offer substantial advantages such as enhanced physical and mechanical properties and superior thermal shock resistance compared to the previously favored bulk graphite. Next-generation plasma-fusion reactors, such as the International Thermonuclear Experimental Reactor (ITER) and the Burning Plasma Experiment (BPX), will require advanced carbon-carbon composites possessing extremely high thermal conductivity to manage the anticipated extreme thermal heat loads. This report outlines a program that will facilitate the development of advanced carbon-carbon composites specifically tailored to meet the requirements of ITER and BPX. A strategy for developing the necessary associated design data base is described. Materials property needs, i.e., high thermal conductivity, radiation stability, tritium retention, etc., are assessed and prioritized through a systems analysis of the functional, operational, and component requirements for plasma-facing applications. The current Department of Energy (DOE) Office of Fusion Energy Program on carbon-carbon composites is summarized. Realistic property goals are set based upon our current understanding. The architectures of candidate PFC carbon-carbon composite materials are outlined, and architectural features considered desirable for maximum irradiation stability are described. The European and Japanese carbon-carbon composite development and irradiation programs are described. The Working Group conclusions and recommendations are listed. It is recommended that developmental carbon-carbon composite materials from the commercial sector be procured via request for proposal/request for quotation (RFP/RFQ) as soon as possible.

  18. Big fusion, little fusion

    NASA Astrophysics Data System (ADS)

    Chen, Frank; ddtuttle

    2016-08-01

    In reply to correspondence from George Scott and Adam Costley about the Physics World focus issue on nuclear energy, and to news of construction delays at ITER, the fusion reactor being built in France.

  19. Sensor fusion by pseudo information measure: a mobile robot application.

    PubMed

    Asharif, Mohammad Reza; Moshiri, Behzad; HoseinNezhad, Reza

    2002-07-01

    In any autonomous mobile robot, one of the most important issues to be designed and implemented is environment perception. In this paper, a new approach is formulated in order to perform sensory data integration for generation of an occupancy grid map of the environment. This method is an extended version of the Bayesian fusion method for independent sources of information. The performance of the proposed method of fusion and its sensitivity are discussed. Map building simulation for a cylindrical robot with eight ultrasonic sensors and mapping implementation for a Khepera robot have been separately tried in simulation and experimental works. A new neural structure is introduced for conversion of proximity data that are given by Khepera IR sensors to occupancy probabilities. Path planning experiments have also been applied to the resulting maps. For each map, two factors are considered and calculated: the fitness and the augmented occupancy of the map with respect to the ideal map. The length and the least distance to obstacles were the other two factors that were calculated for the routes that are resulted by path planning experiments. Experimental and simulation results show that by using the new fusion formulas, more informative maps of the environment are obtained. By these maps more appropriate routes could be achieved. Actually, there is a tradeoff between the length of the resulting routes and their safety and by choosing the proper fusion function, this tradeoff is suitably tuned for different map building applications.

  20. Sensor fusion by pseudo information measure: a mobile robot application.

    PubMed

    Asharif, Mohammad Reza; Moshiri, Behzad; HoseinNezhad, Reza

    2002-07-01

    In any autonomous mobile robot, one of the most important issues to be designed and implemented is environment perception. In this paper, a new approach is formulated in order to perform sensory data integration for generation of an occupancy grid map of the environment. This method is an extended version of the Bayesian fusion method for independent sources of information. The performance of the proposed method of fusion and its sensitivity are discussed. Map building simulation for a cylindrical robot with eight ultrasonic sensors and mapping implementation for a Khepera robot have been separately tried in simulation and experimental works. A new neural structure is introduced for conversion of proximity data that are given by Khepera IR sensors to occupancy probabilities. Path planning experiments have also been applied to the resulting maps. For each map, two factors are considered and calculated: the fitness and the augmented occupancy of the map with respect to the ideal map. The length and the least distance to obstacles were the other two factors that were calculated for the routes that are resulted by path planning experiments. Experimental and simulation results show that by using the new fusion formulas, more informative maps of the environment are obtained. By these maps more appropriate routes could be achieved. Actually, there is a tradeoff between the length of the resulting routes and their safety and by choosing the proper fusion function, this tradeoff is suitably tuned for different map building applications. PMID:12160343

  1. Radio frequency heating of ceramic windows in fusion applications

    SciTech Connect

    Fowler, J.D. Jr.

    1981-11-01

    Ceramic windows will be used as material barriers for radio frequency plasma heating in fusion reactors. This report examines the theory behind rf heating phenomena. Heating calculations are presented for various window materials, thicknesses, wavelengths, and power densities. The most pertinent material properties are loss tangent, thermal conductivity, dielectric constant, strength, and radiation resistance. Calculations indicate that among candidate materials, beryllium oxide offers the most promise because of its large thermal conductivity and relatively low loss tangent and dielectric constant. On the other hand, beryllia is susceptible to neutron damage, and this may adversely affect its electrical properties. Another promising candidate is sapphire, particularly at lower temperatures where the thermal conductivity is high. Fused silica suffers from low thermal conductivity and large positive temperature coefficient for loss tangent, but it may be useful under some conditions. In summary, calculations of heating can lead to elimination of some candidate materials and selection of others for further study.

  2. Modelling Thermodynamics of Alloys for Fusion Application

    SciTech Connect

    Caro, A; Sadigh, B; Turchi, P A; Caro, M; Lopasso, E; Crowson, D

    2006-01-26

    This research has two main objectives: (1) On one side is the development of computational tools to evaluate alloy properties, using the information contained in thermodynamic functions to improve the ability of classic potentials to account for complex alloy behavior. (2) On the other hand, to apply the tools so developed to predict properties of alloys under irradiation. Atomistic simulations of alloys at the empirical level face the challenge of correctly modeling basic thermodynamic properties. In this work we develop a methodology to generalize many-body classic potentials to incorporate complex formation energy curves. Application to Fe-Cr allows us to predict the implications of the ab initio results of formation energy on the phase diagram of this alloy.

  3. MIRI: A multichannel far-infrared laser interferometer for electron density measurements on TFTR (Tokamak Fusion Test Reactor)

    SciTech Connect

    Mansfield, D.K.; Park, H.K.; Johnson, L.C.; Anderson, H.M.; Chouinard, R.; Foote, V.S.; Ma, C.H.; Clifton, B.J.

    1987-07-01

    A ten-channel far-infrared laser interferometer which is routinely used to measure the spatial and temporal behavior of the electron density profile on the TFTR tokamak is described and representative results are presented. This system has been designed for remote operation in the very hostile environment of a fusion reactor. The possible expansion of the system to include polarimetric measurements is briefly outlined. 13 refs., 8 figs.

  4. FORIG: a computer code for calculating radionuclide generation and depletion in fusion and fission reactors. User's manual

    SciTech Connect

    Blink, J.A.

    1985-03-01

    In this manual we describe the use of the FORIG computer code to solve isotope-generation and depletion problems in fusion and fission reactors. FORIG runs on a Cray-1 computer and accepts more extensive activation cross sections than ORIGEN2 from which it was adapted. This report is an updated and a combined version of the previous ORIGEN2 and FORIG manuals. 7 refs., 15 figs., 13 tabs.

  5. Energy confinement time and electron density profile shape in TFTR (Tokamak Fusion Test Reactor)

    SciTech Connect

    Park, H.K.; Bell, M.G.; Goldston, R.J.; Hawryluk, R.J.; Johnson, D.W.; Scott, S.D.; Wieland, R.M.; Zarnstorff, M.C.; Bitter, M.; Bretz, N.; Budny, R.; Dylla, H.F.; Grek, B.; Howell, R.B.; Hsuan , H.; Johnson, L.C.; Mansfield, D.K.; Ramsey, A.T.; Schivell, J.; Taylor, G.; Ulrickson, M.

    1989-11-01

    The electron density profiles of intense deuterium neutral-beam- heated plasmas (P{sub tot}/P{sub ohm} {gt} 10) are characterized as a peakedness parameter (F{sub ne} = n{sub eo}/{l angle}n{sub e}{r angle}) in the Tokamak Fusion Test Reactor (TFTR). The gross energy confinement time ({tau}{sub E} = E{sub tot}/P{sub tot}) at the time of maximum stored energy is found to be a weak function of the plasma current and total heating power but depends strongly on the peakedness parameter. A regression study showed {tau}{sub E} = 2.4 {times} 10{sup {minus}3}F{sub ne}{sup 0.76}I{sub P}{sup 0.18}P{sub tot}{sup {minus}0.12} for a data set of 561 discharges in the TFTR. Also {tau}{sub E} can be represented as {tau}{sub E} = {tau}{sub E}{sup L}f(F{sub ne}), where {tau}{sub E}{sup L} is the empirical L-mode scaling result. A similar scaling applies to an appropriately defined incremental energy confinement time ({tau}{sub inc} = dE{sub tot}/dP{sub tot}{vert bar}{sub F{sub ne} = constant}). 14 refs., 4 figs.

  6. Basic experiments during loss of vacuum event (LOVE) in fusion experimental reactor

    NASA Astrophysics Data System (ADS)

    Ogawa, Masuro; Kunugi, Tomoaki; Seki, Yasushi

    1993-06-01

    If a loss of vacuum event (LOVE) occurs due to damage of the vacuum vessel of a nuclear fusion experimental reactor, some chemical reactions such as a graphic oxidation and a buoyancy-driven exchange flow take place after equalization of the gas pressure between the inside and outside of the vacuum vessel. The graphite oxidation would generate inflammable carbon monoxide and release tritium retained in the graphite. The exchange flow through the breaches may transport the carbon monoxide and tritium out of the vacuum vessel. To add confidence to the safety evaluations and analyses, it is important to grasp the basic phenomena such as the exchange flow and the graphite oxidation. Experiments of the exchange flow and the graphite oxidation were carried out to obtain the exchange flow rate and the rate constant for the carbon monoxide combustion, respectively. These experimental results were compared with existing correlations. We plan a scaled-model test and a full-scale model test for the LOVE.

  7. Design of deuterium and tritium pellet injector systems for Tokamak Fusion Test Reactor

    SciTech Connect

    Wysor, R.B.; Baylor, L.R.; Bryan, W.E.; Combs, S.K.; Fisher, P.W.; Lunsford, R.V.; Maxon, B.S.; Milora, S.L.; Webster, D.J.; Schmidt, G.L.

    1985-01-01

    Three pellet injector designs developed by the Oak Ridge National Laboratory (ORNL) are planned for the Tokamak Fusion Test Reactor (TFTR) to reach the goal of a tritium pellet injector by 1988. These are the Repeating Pneumatic Injector (RPI), the Deuterium Pellet Injector (DPI) and the Tritium Pellet Injector (TPI). Each of the pellet injector designs have similar performance characteristics in that they deliver up to 4-mm-dia pellets at velocities up to 1500 m/s with a dsign goal to 2000 m/s. Similar techniques are utilized to freeze and extrude the pellet material. The injector systems incorporate three gun concepts which differ in the number of gun barrels and the method of forming and chambering the pellets. The RPI, a single barrel repeating design, has been operational on TFTR since April 1985. Fabrication and assembly are essentially complete for DPI, and TPI is presently on hold after completing about 80% of the design. The TFTR pellet injector program is described, and each of the injector systems is described briefly. Design details are discussed in other papers at this symposium.

  8. [ital K][beta] spectra of heliumlike iron from tokomak-fusion-test-reactor plasmas

    SciTech Connect

    Smith, A.J. ); Bitter, M.; Hsuan, H.; Hill, K.W.; von Goeler, S.; Timberlake, J. ); Beiersdorfer, P.; Osterheld, A. )

    1993-04-01

    [ital K][beta] spectra of heliumlike iron, Fe XXV, have been observed from tokamak-fusion-test-reactor (TFTR) plasmas with a high-resolution crystal spectrometer. The wavelength range of the Fe [ital K][beta] spectrum partially overlaps the spectrum of heliumlike nickel (Ni XXVII), which is used on TFTR and the joint European torus for ion-temperature measurements. The experimental arrangement made it possible to observe the Fe XXV [ital K][beta] lines and their satellite transitions of the type 1[ital s]2[ital l][prime]3[ital l][prime][prime][r arrow]1[ital s][sup 2]2[ital l][prime], as well as the entire satellite spectrum of the Ni XXVII [ital K][alpha] line simultaneously. In order to identify the features of the [ital K][beta] spectra and to study their possible interference with the Ni XXVII spectrum, the intensity of the [ital K][beta] spectrum was enhanced by the injection of iron into the plasma. Accurate wavelengths and intensities have been obtained and compared with different theoretical calculations.

  9. Ion source development for a photoneutralization based NBI system for fusion reactors

    NASA Astrophysics Data System (ADS)

    Simonin, A.; de Esch, H. P. L.; Garibaldi, P.; Grand, C.; Bechu, S.; Bès, A.; Lacoste, A.

    2015-04-01

    The next step after ITER is to demonstrate the viability and generation of electricity by a future fusion reactor (DEMO). The specifications required to operate an NBI system on DEMO are very demanding. The system has to provide a very high level of power and energy, ~100MW of D° beam at 1MeV, including high wall-plug efficiency (η > 60%). For this purpose, a new injector concept, called Siphore, is under investigation between CEA and French universities. Siphore is based on the stripping of the accelerated negative ions by photo-detachment provided by several Fabry-Perot cavities (3.5MW of light power per cavity) implemented along the D- beam. The beamline is designed to be tall and narrow in order that the photon flux overlaps the entire negative ion beam. The paper will describe the present R&D at CEA which addresses the development of an ion source and pre-accelerator prototypes for Siphore, the main goal being to produce an intense negative ion beam sheet. The negative ion source Cybele is based on a magnetized plasma column where hot electrons are emitted from the source center. Parametric studies of the source are performed using Langmuir probes in order to characterize the plasma and to compare with numerical models being developed in French universities.

  10. Analysis and experiments in support of inertial confinement fusion reactor concepts

    NASA Astrophysics Data System (ADS)

    Moses, G. A.; Peterson, R. R.; MacFarlane, J. J.

    1991-08-01

    Cost-effective and safe containment of high-yield inertial confinement fusion (ICF) microexplosions in near-term laboratory microfusion facilities (LMF) and longer-term reactors requires an understanding of the interaction of target-generated x rays and ionic debris with surrounding buffer gases and the first solid surface that faces the target. The microfireball plasma created when a target explodes in a gas atmosphere of 1-10 Torr is not in local thermodynamic equilibrium. The plasma state must be determined by coupling the radiation field to the atomic level population calculation in order to correctly predict the surface emission of the plasma. Conditions similar to those predicted for ICF target chambers can be simulated using the SATURN x-ray simulator facility [Proceedings of the 2nd International Conference on Dense Z-Pinches, AIP Conf. Proc. 195 (AIP, New York, 1989), p. 3]. Aluminum and graphite samples that represent possible first wall materials were tested in SATURN. Coated aluminum samples and four-directional graphite weaves in a carbon matrix survived the tests.

  11. Ion source development for a photoneutralization based NBI system for fusion reactors

    SciTech Connect

    Simonin, A.; Esch, H. P. L. de; Garibaldi, P.; Grand, C.; Bechu, S.; Bès, A.; Lacoste, A.

    2015-04-08

    The next step after ITER is to demonstrate the viability and generation of electricity by a future fusion reactor (DEMO). The specifications required to operate an NBI system on DEMO are very demanding. The system has to provide a very high level of power and energy, ~100MW of D° beam at 1MeV, including high wall-plug efficiency (η > 60%). For this purpose, a new injector concept, called Siphore, is under investigation between CEA and French universities. Siphore is based on the stripping of the accelerated negative ions by photo-detachment provided by several Fabry-Perot cavities (3.5MW of light power per cavity) implemented along the D{sup −} beam. The beamline is designed to be tall and narrow in order that the photon flux overlaps the entire negative ion beam. The paper will describe the present R and D at CEA which addresses the development of an ion source and pre-accelerator prototypes for Siphore, the main goal being to produce an intense negative ion beam sheet. The negative ion source Cybele is based on a magnetized plasma column where hot electrons are emitted from the source center. Parametric studies of the source are performed using Langmuir probes in order to characterize the plasma and to compare with numerical models being developed in French universities.

  12. Influence of steel type on the activation and decay of fusion-reactor first walls

    SciTech Connect

    Blink, J.A.; Lasche, G.P.

    1983-01-01

    Five steels (PCA, HT-9, thermally stabilized 2.25 Cr-1 Mo, Nb stabilized 2.25 Cr-1 Mo, and 2.25 Cr-1 V) are compared as a function of time from the viewpoints of activation, afterheat, inhalation biological hazard potential (bhp), ingestion bhp, and feasibility of disposal by shallow land burial. An additional case uses the 2.25 Cr-1 V steel with a metal wall (LMW) protective shield between the neutron source and the wall. (This geometry is feasible for inertial confinement fusion reactors.) The PCA steel is the worst choice and the LMW protected 2.25 Cr-1 V is the best choice by substantial margins from all five viewpoints. The HT-9 and two versions of 2.25 Cr-1 Mo are roughly the same at intermediate values. The 2.25 Cr-1 V has about the same afterheat as those three steels, but its waste disposal feasibility is considerably better. Under NRC's proposed low level waste disposal rule (10CFR61), only the 2.25 Cr-1 V could be considered low level waste suitable for shallow land burial.

  13. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    SciTech Connect

    Nietert, R.E.

    1983-02-01

    The heat-transfer characteristics of flowing and stationary packed-particle beds have recently become of interest in connection with conceptual designs of fusion reactor blankets. A detailed literature survey has shown that the processes taking place in such beds are not fully understood despite their widespread use in the chemical industry and other engineering disciplines for more than five decades. In this study, two experimental investigations were pursued. In the first, a heat-transfer loop was constructed through which glass microspheres were allowed to flow by rgravity at controlled rates through an electrically heated stainless steel tubular test section. In the second, an annular packed bed was constructed in which heat was applied through the outer wall by electric heating of a stainless steel tube. Cooling occurred at the inner wall of the annular bed by flowing air through the central tube. A second air stream was allowed to flow through the voids of the packed bed. An error-minimization technique was utilized in order to obtain the two-dimensional one-parameter effective conductivity for the bed by comparing the experimental and theoretically predicted temperature profiles. Experiments were conducted for various modified Reynolds numbers less than ten.

  14. Radiation Damage and Tritium Breeding Study in a Fusion Reactor Using a Liquid Wall of Various Thorium Molten Salts

    NASA Astrophysics Data System (ADS)

    Übeyli, Mustafa

    2007-12-01

    A new magnetic fusion reactor design, called APEX uses a liquid wall between fusion plasma and solid first wall to reach high neutron wall loads and eliminate the replacement of the first wall structure during the reactor's operation due to the radiation damage. In this paper, radiation damage behavior of the inboard and outboard first walls made of a ferritic steel, 9Cr-2WVTa, in the APEX blanket using various thorium molten salts, 75% LiF-25% ThF4, 75% LiF-24% ThF4-1% 233UF4 and 75% LiF-23% ThF4-2% 233UF4 was investigated. Furthermore, tritium breeding potential of these salts in such a blanket was also examined. Computations were carried out using the code Scale 4.3 by solving Boltzmann neutron transport equation. Numerical results brought out that only the liquid wall containing the molten salt, 75% LiF-23% ThF4-2% 233UF4 and having a thickness of ≥38 cm would be suitable to be used in the APEX reactor with respect to radiation damage criteria for the first wall structures and tritium self-sufficiency for the (DT) fusion driver.

  15. Sensor Fusion and Smart Sensor in Sports and Biomedical Applications.

    PubMed

    Mendes, José Jair Alves; Vieira, Mário Elias Marinho; Pires, Marcelo Bissi; Stevan, Sergio Luiz

    2016-01-01

    The following work presents an overview of smart sensors and sensor fusion targeted at biomedical applications and sports areas. In this work, the integration of these areas is demonstrated, promoting a reflection about techniques and applications to collect, quantify and qualify some physical variables associated with the human body. These techniques are presented in various biomedical and sports applications, which cover areas related to diagnostics, rehabilitation, physical monitoring, and the development of performance in athletes, among others. Although some applications are described in only one of two fields of study (biomedicine and sports), it is very likely that the same application fits in both, with small peculiarities or adaptations. To illustrate the contemporaneity of applications, an analysis of specialized papers published in the last six years has been made. In this context, the main characteristic of this review is to present the largest quantity of relevant examples of sensor fusion and smart sensors focusing on their utilization and proposals, without deeply addressing one specific system or technique, to the detriment of the others.

  16. Sensor Fusion and Smart Sensor in Sports and Biomedical Applications.

    PubMed

    Mendes, José Jair Alves; Vieira, Mário Elias Marinho; Pires, Marcelo Bissi; Stevan, Sergio Luiz

    2016-01-01

    The following work presents an overview of smart sensors and sensor fusion targeted at biomedical applications and sports areas. In this work, the integration of these areas is demonstrated, promoting a reflection about techniques and applications to collect, quantify and qualify some physical variables associated with the human body. These techniques are presented in various biomedical and sports applications, which cover areas related to diagnostics, rehabilitation, physical monitoring, and the development of performance in athletes, among others. Although some applications are described in only one of two fields of study (biomedicine and sports), it is very likely that the same application fits in both, with small peculiarities or adaptations. To illustrate the contemporaneity of applications, an analysis of specialized papers published in the last six years has been made. In this context, the main characteristic of this review is to present the largest quantity of relevant examples of sensor fusion and smart sensors focusing on their utilization and proposals, without deeply addressing one specific system or technique, to the detriment of the others. PMID:27669260

  17. Development and testing ov danadium alloys for fusion applications

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Smith, D.L.

    1996-10-01

    V base alloys have advantages for fusion reactor first-wall and blanket structure. To screen candidate alloys and optimize a V-base alloy, physical and mechanical properties of V-Ti, V-Cr-Ti, and V-Ti- Si alloys were studied before and after irradiation in Li environment in fast fission reactors. V-4Cr-4Ti containing 500-1000 wppM Si and <1000 wppM O+N+C was investigated as the most promising alloy, and more testing is being done. Major results of the work are presented in this paper. The reference V-4Cr-4Ti had the most attractive combination of the mechanical and physical properties that are prerequisite for first-wall and blanket structures: good thermal creep, good tensile strength/ductility, high impact energy, excellent resistance to swelling, and very low ductile-brittle transition temperature before and after irradiation. The alloy was highly resistant to irradiation-induced embrittlement in Li at 420-600 C, and the effects of dynamically charged He on swelling and mechanical properties were insignificant. However, several important issues remain unresolved: welding, low-temperature irradiation, He effect at high dose and high He concentration, irradiation creep, and irradiation performance in air or He. Initial results of investigation of some of these issues are also given.

  18. Sorbent development for transport reactor applications

    SciTech Connect

    Gupta, R.P.; Turk, B.S.; Vierheilig, A.A.; Cicero, D.C.

    1998-12-31

    Advanced power generation systems employing gasification of carbonaceous fuels offer increased efficiency and reduced emissions over pulverized coal-fired boiler systems currently in service. Integrated gasification combined cycle (IGCC) is the leading gasification-based system which is being advanced worldwide to produce electricity from carbonaceous fuels. This technology has the potential to reduce sulfur and nitrogen emissions the precursors of acid-rain and could lead to significant reductions in carbon dioxide emissions, which, it is believed, are major contributors to global warming. Successful commercialization of the IGCC technology requires economic competitiveness with other power generation systems. This economic competitiveness has propelled research and development of gas desulfurization systems. A number of mixed metal oxide sorbents have been investigated for removal of reduced sulfur species (H{sub 2}S, COS, CS{sub 2}, etc.) at high-temperature, high-pressure (HTHP) conditions, the best candidates have been the ZnO-based sorbents because of their ability to reduce the fuel gas sulfur level to a few parts per million by volume (ppmv). The work described in this paper deals with the development of zinc titanate sorbents for transport reactor applications.

  19. Ventilation Systems Operating Experience Review for Fusion Applications

    SciTech Connect

    Cadwallader, Lee Charles

    1999-12-01

    This report is a collection and review of system operation and failure experiences for air ventilation systems in nuclear facilities. These experiences are applicable for magnetic and inertial fusion facilities since air ventilation systems are support systems that can be considered generic to nuclear facilities. The report contains descriptions of ventilation system components, operating experiences with these systems, component failure rates, and component repair times. Since ventilation systems have a role in mitigating accident releases in nuclear facilities, these data are useful in safety analysis and risk assessment of public safety. An effort has also been given to identifying any safety issues with personnel operating or maintaining ventilation systems. Finally, the recommended failure data were compared to an independent data set to determine the accuracy of individual values. This comparison is useful for the International Energy Agency task on fusion component failure rate data collection.

  20. Assessment of nuclear reactor concepts for low power space applications

    NASA Technical Reports Server (NTRS)

    Klein, Andrew C.; Gedeon, Stephen R.; Morey, Dennis C.

    1988-01-01

    The results of a preliminary small reactor concepts feasibility and safety evaluation designed to provide a first order validation of the nuclear feasibility and safety of six small reactor concepts are given. These small reactor concepts have potential space applications for missions in the 1 to 20 kWe power output range. It was concluded that low power concepts are available from the U.S. nuclear industry that have the potential for meeting both the operational and launch safety space mission requirements. However, each design has its uncertainties, and further work is required. The reactor concepts must be mated to a power conversion technology that can offer safe and reliable operation.

  1. Dynamic reactor modeling with applications to SPR and ZEDNA.

    SciTech Connect

    Suo-Anttila, Ahti Jorma

    2011-12-01

    A dynamic reactor model has been developed for pulse-type reactor applications. The model predicts reactor power, axial and radial fuel expansion, prompt and delayed neutron population, and prompt and delayed gamma population. All model predictions are made as a function of time. The model includes the reactivity effect of fuel expansion on a dynamic timescale as a feedback mechanism for reactor power. All inputs to the model are calculated from first principles, either directly by solving systems of equations, or indirectly from Monte Carlo N-Particle Transport Code (MCNP) derived results. The model does not include any empirical parameters that can be adjusted to match experimental data. Comparisons of model predictions to actual Sandia Pulse Reactor SPR-III pulses show very good agreement for a full range of pulse magnitudes. The model is also applied to Z-pinch externally driven neutron assembly (ZEDNA) type reactor designs to model both normal and off-normal ZEDNA operations.

  2. Silicon Carbide and Silicon Carbide Composites for Fusion Reactor Applications

    SciTech Connect

    Hinoki, Tatsuya; Hasegawa, Akira; Katoh, Yutai; Snead, Lance Lewis; Jung, H.C.; Katsui, Hirokazu; Kondo, Sosuke; Zhong, Z. H.; Park, Y. H.; Shih, Chunghao; Ozawa, Kazumi; Parish, Chad M; Meisner, Roberta Ann

    2013-01-01

    This paper reviews recent achievements as to "nuclear-grade" SiC composites in particular for materials-system integration. SiC composite component development are reviewed including VHTR control rod scale model and compact intermediate heat exchanger scale mode by current joining and assembly techniques. Joining methods for SiC to metal and results of characterization of joint shear strength by the torsion tests using small specimens were also reviewed. The recent results of neutron irradiation experiments were also reviewed including detailed analysis of mechanical properties, irradiation creep and preliminary results on tritium behavior in SiC.

  3. Reactor for boron fusion with picosecond ultrahigh power laser pulses and ultrahigh magnetic field trapping

    NASA Astrophysics Data System (ADS)

    Miley, G. H.; Hora, H.; Kirchhoff, G.

    2016-05-01

    Compared with the deuterium tritium (DT) fusion, the environmentally clean fusion of protons with 11B is extremely difficult. When instead of nanosecond laser pulses for thermal-ablating driven ignition, picosecond pulses are used, a drastic change by nonlinearity results in ultrahigh acceleration of plasma blocks. This radically changes to economic boron fusion by a measured new avalanche ignition.

  4. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices.

    PubMed

    Pilan, N; Antoni, V; De Lorenzi, A; Chitarin, G; Veltri, P; Sartori, E

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming. PMID:26932053

  5. Damage analysis and fundamental studies for fusion reactor materials development for the period March 1, 1991--February 28, 1994. Final report

    SciTech Connect

    Odette, G.R.; Lucas, G.E.

    1995-01-01

    The philosophy of the program at the University of California Santa Barbara has been to develop a fundamental understanding of both the basic damage processes and microstructural evolution that take place in a material during neutron irradiation and the consequent dimensional and mechanical property changes. This fundamental understanding can be used in conjunction with empirical data obtained from a variety of irradiation facilities to develop physically-based models of neutron irradiation effects in structural materials. The models in turn can be used to guide alloy development and to help extrapolate the irradiation data base to the fusion reactor regime. This philosophy is consistent with that of the national and international programs for developing structural materials for fusion reactors. During this period work has encompassed: (1) analysis of the degradation of the mechanical properties of austenitic stainless steels for the purpose of assessing the feasibility of using these steels in ITER; (2) examining helium effects on radiation damage in austenitic and ferritic stainless steels; (3) development and application of electropotential drop techniques to monitor the growth of cracks in steel specimens for a variety of specimen geometries (4) development of advanced methods of measuring fracture properties; (5) combining micromechanical modeling of fracture with finite element calculations of crack and notch-tip stress and strain fields to predict failure; (6) developing a data base on flow and fracture properties of ferritic steels. Each of these activities is described in more detail below and in greater detail in the attached publications.

  6. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices.

    PubMed

    Pilan, N; Antoni, V; De Lorenzi, A; Chitarin, G; Veltri, P; Sartori, E

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  7. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    NASA Astrophysics Data System (ADS)

    Pilan, N.; Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E.

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  8. Glassy materials investigated for nuclear reactor applications

    NASA Technical Reports Server (NTRS)

    Lynch, E. D.

    1968-01-01

    Studies determine the feasibility of preparing fuel-bearing glasses and glasses bearing neutron-absorbing materials for use as crystalline fuel and control rods for reactors. Properties investigated were devitrification resistance, urania solubility, and density.

  9. Heat pipe reactors for space power applications

    NASA Technical Reports Server (NTRS)

    Koenig, D. R.; Ranken, W. A.; Salmi, E. W.

    1977-01-01

    A family of heat pipe reactors design concepts has been developed to provide heat to a variety of electrical conversion systems. Three power plants are described that span the power range 1-500 kWe and operate in the temperature range 1200-1700 K. The reactors are fast, compact, heat-pipe cooled, high-temperature nuclear reactors fueled with fully enriched refractory fuels, UC-ZrC or UO2. Each fuel element is cooled by an axially located molybdenum heat pipe containing either sodium or lithium vapor. Virtues of the reactor designs are the avoidance of single-point failure mechanisms, the relatively high operating temperature, and the expected long lifetimes of the fuel element components.

  10. Fusion protein technologies for biopharmaceuticals: Applications and challenges

    PubMed Central

    Berger, Sven; Lowe, Peter; Tesar, Michael

    2015-01-01

    Stefan R. Schmidt consolidates the hugely diverse field of fusion proteins and their application in the creation of biopharmaceuticals. The text is replete with case studies and clinical data that inform and intrigue the reader as to the myriad possibilities available when considering the creation of a fusion protein. This valuable text will serve the novice as a broad introduction or the seasoned professional as a thorough review of the state of the art. The first marketed therapeutic recombinant protein was human insulin (Humulin® R). Its approval in 1982 was followed by other such products, including erythropoietin (EPO), interferon (IFN), and tissue plasminogen activator (tPa). Since the 1980s, the number and general availability of recombinant products that replace natural proteins harvested from animal or human sources has increased considerably. Following the initial success, researchers started de novo designs of therapeutic proteins that do not occur in nature. The first of these new drugs to be approved was etanercept (Enbrel®), a fusion portion containing a section of the tumor necrosis factor (TNF) receptor fused to the Fc portion of human IgG1.

  11. Artificial intelligence program in a computer application supporting reactor operations

    SciTech Connect

    Stratton, R.C.; Town, G.G.

    1985-01-01

    Improving nuclear reactor power plant operability is an ever-present concern for the nuclear industry. The definition of plant operability involves a complex interaction of the ideas of reliability, safety, and efficiency. This paper presents observations concerning the issues involved and the benefits derived from the implementation of a computer application which combines traditional computer applications with artificial intelligence (AI) methodologies. A system, the Component Configuration Control System (CCCS), is being installed to support nuclear reactor operations at the Experimental Breeder Reactor II.

  12. Natural Fueling of the Core and Edge in a Tokamak Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Wan, Weigang

    2010-11-01

    A natural fueling mechanismootnotetextW. Wan, S. E. Parker, Y. Chen and F. W. Perkins, Phys. Plasmas 17, 040701 (2010). that helps to maintain the main core deuterium and tritium (DT) density profiles in a tokamak fusion reactor is presented. In H-mode plasmas dominated by ion-temperature gradient (ITG) driven turbulence, cold DT ions near the edge will naturally pinch radially inward towards the core. This mechanism is due to the quasi-neutral heat flux dominated nature of ITG turbulence and still applies when trapped and passing kinetic electron effects are included. Fueling using shallow pellet injection or supersonic gas jets is augmented by an inward pinch of could DT fuel. The natural fueling mechanism is investigated using the gyrokinetic turbulence code GEM and is analyzed using quasilinear theory. Profiles similar to those used for conservative ITER transport modeling that have a completely flat density profile are examined and it is found that natural fueling actually reduces the linear growth rates and energy transport. Additionally, it is shown that the Helium ash diffuses radially outward as the cold fuel moves radially inward. The natural fueling effect may also apply to the edge pedestal density buildup. Recent DEGAS 2 calculations indicate the neutrals in the pedestal are colder than the background ions.ootnotetextD. Stotler, International Transport Task Force Meeting, Annapolis, MD (2010). We intend to do further work to determine what cold fuel profiles are needed to fuel the pedestal and if they are consistent with edge neutral source models. Natural fueling (either in the core or edge) requires a two component (hot bulk and cold fuel) plasma and charge exchange collisions tend to equilibrate the ion and neutral source temperature reducing the effect. We will further investigate the relevant collisional time scales and further demonstrate the viability of the natural fueling mechanism for ITER parameters.

  13. End points in discharge cleaning on TFTR (Tokamak Fusion Test Reactor)

    SciTech Connect

    Mueller, D.; Dylla, H.F.; Bell, M.G.; Blanchard, W.R.; Bush, C.E.; Gettelfinger, G.; Hawryluk, R.J.; Hill, K.W.; Janos, A.C.; Jobes, F.C.

    1989-07-01

    It has been found necessary to perform a series of first-wall conditioning steps prior to successful high power plasma operation in the Tokamak Fusion Test Reactor (TFTR). This series begins with glow discharge cleaning (GDC) and is followed by pulse discharge cleaning (PDC). During machine conditioning, the production of impurities is monitored by a Residual Gas Analyzer (RGA). PDC is made in two distinct modes: Taylor discharge cleaning (TDC), where the plasma current is kept low (15--50 kA) and of short duration (50 ms) by means of a relatively high prefill pressure and aggressive PDC, where lower prefill pressure and higher toroidal field result in higher current (200--400 kA) limited by disruptions at q(a) /approx/ 3 at /approx/ 250 ms. At a constant repetition rate of 12 discharges/minute, the production rate of H/sub 2/O, CO, or other impurities has been found to be an unreliable measure of progress in cleaning. However, the ability to produce aggressive PDC with substantial limiter heating, but without the production of x-rays from runaway electrons, is an indication that TDC is no longer necessary after /approx/ 10/sup 5/ pulses. During aggressive PDC, the uncooled limiters are heated by the plasma from the bakeout temperature of 150/degree/C to about 250/degree/C over a period of three to eight hours. This limiter heating is important to enhance the rate at which H/sub 2/O is removed from the graphite limiter. 14 refs., 3 figs., 1 tab.

  14. The structure, properties and performance of plasma-sprayed beryllium for fusion applications

    SciTech Connect

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.

    1995-09-01

    Plasma-spray technology is under investigation as a method for producing high thermal conductivity beryllium coatings for use in magnetic fusion applications. Recent investigations have focused on optimizing the plasma-spray process for depositing beryllium coatings on damaged beryllium surfaces. Of particular interest has been optimizing the processing parameters to maximize the through-thickness thermal conductivity of the beryllium coatings. Experimental results will be reported on the use of secondary H{sub 2} gas additions to improve the melting of the beryllium powder and transferred-arc cleaning to improve the bonding between the beryllium coatings and the underlying surface. Information will also be presented on thermal fatigue tests which were done on beryllium coated ISX-B beryllium limiter tiles using 10 sec cycle times with 60 sec cooldowns and an International Thermonuclear Experimental Reactor (ITER) relevant divertor heat flux slightly in excess of 5 MW/m{sup 2}.

  15. A Spherical Torus Nuclear Fusion Reactor Space Propulsion Vehicle Concept for Fast Interplanetary Piloted and Robotic Missions

    NASA Astrophysics Data System (ADS)

    Williams, C. H.; Borowski, S. K.; Dudzinski, L. A.; Juhasz, A. J.

    1999-11-01

    A conceptual space vehicle concept to support NASA's 21^st century requirements was designed to enable human, multi-month travel throughout the outer solar system. The design was predicated on an ignited, spherical torus fusion reactor (R=2.5 m; a=1.25 m) burning spin polarized D^3He fuel and operating at high beta (30%). Peaked plasma temperature (50 keV) and number density (5×10^20 m-3) profiles were used. Engineering design was performed on all major vehicle systems including fusion reactor, fast wave plasma heating, power conversion, magnetic nozzle (for direct plasma propulsion), tankage and others, with emphasis on 1D fusion power balance, operation physics, first wall, toroidal field coils, and heat transfer. Two related proof-of-concept experiments at OSU, LANL, and PPPL are discussed. Results showed a 108 mt crew habitat payload could be delivered to Saturn rendezvous in 214 days using 6,145 MW of plasma jet power.

  16. Neutronic design studies of a conceptual DCLL fusion reactor for a DEMO and a commercial power plant

    NASA Astrophysics Data System (ADS)

    Palermo, I.; Veredas, G.; Gómez-Ros, J. M.; Sanz, J.; Ibarra, A.

    2016-01-01

    Neutronic analyses or, more widely, nuclear analyses have been performed for the development of a dual-coolant He/LiPb (DCLL) conceptual design reactor. A detailed three-dimensional (3D) model has been examined and optimized. The design is based on the plasma parameters and functional materials of the power plant conceptual studies (PPCS) model C. The initial radial-build for the detailed model has been determined according to the dimensions established in a previous work on an equivalent simplified homogenized reactor model. For optimization purposes, the initial specifications established over the simplified model have been refined on the detailed 3D design, modifying material and dimension of breeding blanket, shield and vacuum vessel in order to fulfil the priority requirements of a fusion reactor in terms of the fundamental neutronic responses. Tritium breeding ratio, energy multiplication factor, radiation limits in the TF coils, helium production and displacements per atom (dpa) have been calculated in order to demonstrate the functionality and viability of the reactor design in guaranteeing tritium self-sufficiency, power efficiency, plasma confinement, and re-weldability and structural integrity of the components. The paper describes the neutronic design improvements of the DCLL reactor, obtaining results for both DEMO and power plant operational scenarios.

  17. Characterization of scintillator materials for fast-ion loss detectors in nuclear fusion reactors

    NASA Astrophysics Data System (ADS)

    Jiménez-Ramos, M. C.; García López, J.; García-Muñoz, M.; Rodríguez-Ramos, M.; Carmona Gázquez, M.; Zurro, B.

    2014-08-01

    In fusion plasma reactors, fast ion generated by heating systems and fusion born particles must be well confined. The presence of magnetohydrodynamic (MHD) instabilities can lead to a significant loss of these ions, which may reduce drastically the heating efficiency and may cause damage to plasma facing components in the vacuum vessel. In order to understand the physics underlying the fast ion loss mechanism, scintillator based detectors have been installed in several fusion devices. In this work we present the absolute photon yield and its degradation with ion fluence in terms of the number of photons emitted per incident ion of several scintillators thin coatings: SrGa2S4:Eu2+ (TG-Green), Y3Al5O12:Ce3+ (P46) and Y2O3:Eu3+ (P56) when irradiated with light ions of different masses (deuterium ions, protons and α-particles) at energies between approximately 575 keV and 3 MeV. The photon yield will be discussed in terms of the energy deposited by the particles into the scintillator. For that, the actual composition and thickness of the thin layers were determined by Rutherford Backscattering Spectrometry (RBS). A collimator with 1 mm of diameter, which defines the beam size for the experiments, placed at the entrance of the chamber. An electrically isolated sample holder biased to +300 V to collect the secondary electrons, connected to a digital current integrator (model 439 by Ortec) to measure the incident beam current. A home made device has been used to store the real-time evolution of the beam current in a computer file allowing the correction of the IL yields due to the current fluctuations. The target holder is a rectangle of 150 × 112 mm2 and can be tilted. The X and Y movements are controlled through stepping motors, which permits a fine control of the beam spot positioning as well as the study of several samples without venting the chamber. A silica optical fiber of 1 mm diameter fixed to the vacuum chamber, which collects the light from the scintillators

  18. Conceptual Design for a 2 GW Inertial Fusion Energy (IFE) Direct-Drive Power Reactor Employing Magnetic Intervention

    NASA Astrophysics Data System (ADS)

    Tresemer, K. R.; Gentile, C. A.

    2007-11-01

    Presented is a conceptual design for a 2 GW IFE direct drive fusion power reactor. This design employs a cusp field to deflect IFE-generated ions away from the dry first wall of the target chamber and into specifically designed ion dumps. The reactor operates at 5 Hz, consuming ˜450,000 tritium targets/day, injected at >100 m/s into the target chamber and uniformly illuminated by laser light, stimulating detonation. The resulting fusion energy is collected by equatorial ion dumps equipped with heat exchangers. The reactor will breed and recycle its own fuel through the use of breeder blankets and a fuel recovery system. To minimize target-particle interference, the chamber will be kept at <0.5 mTorr through the use of magnetically levitated turbomolecular pumps (TMPs) and corresponding backing pumps. Under investigation are the principles of magnetohydrodynamics (MHD) which may be applied to attenuate and harness the energy residing in the post detonation ion fields.

  19. Final Report: Safety of Plasma Components and Aerosol Transport During Hard Disruptions and Accidental Energy Release in Fusion Reactor

    SciTech Connect

    Bourham, Mohamed A.; Gilligan, John G.

    1999-08-14

    Safety considerations in large future fusion reactors like ITER are important before licensing the reactor. Several scenarios are considered hazardous, which include safety of plasma-facing components during hard disruptions, high heat fluxes and thermal stresses during normal operation, accidental energy release, and aerosol formation and transport. Disruption events, in large tokamaks like ITER, are expected to produce local heat fluxes on plasma-facing components, which may exceed 100 GW/m{sup 2} over a period of about 0.1 ms. As a result, the surface temperature dramatically increases, which results in surface melting and vaporization, and produces thermal stresses and surface erosion. Plasma-facing components safety issues extends to cover a wide range of possible scenarios, including disruption severity and the impact of plasma-facing components on disruption parameters, accidental energy release and short/long term LOCA's, and formation of airborne particles by convective current transport during a LOVA (water/air ingress disruption) accident scenario. Study, and evaluation of, disruption-induced aerosol generation and mobilization is essential to characterize database on particulate formation and distribution for large future fusion tokamak reactor like ITER. In order to provide database relevant to ITER, the SIRENS electrothermal plasma facility at NCSU has been modified to closely simulate heat fluxes expected in ITER.

  20. Evaluation of Salt Coolants for Reactor Applications

    SciTech Connect

    Williams, David F

    2008-01-01

    Molten fluorides were initially developed for use in the nuclear industry as the high-temperature fluid fuel for the Molten Salt Reactor (MSR). The U.S. Department of Energy Office of Nuclear Energy is exploring the use of molten salts as primary and secondary coolants in a new generation of solid-fueled, thermal-spectrum, hightemperature reactors. This paper provides a review of relevant properties for use in evaluation and ranking of salt coolants for high-temperature reactors. Nuclear, physical, and chemical properties were reviewed, and metrics for evaluation are recommended. Chemical properties of the salt were examined to identify factors that affect materials compatibility (i.e., corrosion). Some preliminary consideration of economic factors for the candidate salts is also presented.

  1. Application of the JDL data fusion process model to hard/soft information fusion in the condition monitoring of aircraft

    NASA Astrophysics Data System (ADS)

    Bernardo, Joseph T.

    2014-05-01

    Hard/soft information fusion has been proposed as a way to enhance diagnostic capability for the condition monitoring of machinery. However, there is a limited understanding of where hard/soft information fusion could and should be applied in the condition monitoring of aircraft. Condition-based maintenance refers to the philosophy of performing maintenance when the need arises, based upon indicators of deterioration in the condition of the machinery. The addition of the multisensory capability of human cognition to electronic sensors may create a fuller picture of machinery condition. Since 1988, the Joint Directors of Laboratories (JDL) data fusion process model has served as a framework for information fusion research. Advances are described in the application of hard/soft information fusion in condition monitoring using terms that condition-based maintenance professionals in aviation will recognize. Emerging literature on hard/soft information fusion in condition monitoring is organized into the levels of the JDL data fusion process model. Gaps in the literature are identified, and the author's ongoing research is discussed. Future efforts will focus on building domain-specific frameworks and experimental design, which may provide a foundation for improving flight safety, increasing mission readiness, and reducing the cost of maintenance operations.

  2. Reactor Coolant Pump seal issues and their applicability to new reactor designs

    SciTech Connect

    Ruger, C.J.; Higgins, J.C.

    1993-11-01

    Reactor Coolant Pumps (RCPs) of various types are used to circulate the primary coolant through the reactor in most reactor designs. RCPs generally contain mechanical seals to limit the leakage of pressurized reactor coolant along the pump drive shaft into the containment. The relatively large number of RCP seal and seal auxiliary system failures experienced at US operating plants during the 1970`s and early 1980`s raised concerns from the US Nuclear Regulatory Commission (NRC) that gross failures may lead to reactor core uncovery and subsequent core damage. Some seal failure events resulted in a loss of primary coolant to the containment at flow rates greater than the normal makeup capacity of Pressurized Water Reactor (PWR) plants. This is an example of RCP seal failures resulting in a small Loss of Coolant Accident (LOCA). This paper discusses observed and potential causes of RCP seal failure and the recommendations for limiting the likelihood of a seal induced small LOCA. Issues arising out of the research supporting these recommendations and subsequent public comments by the utility industry on them, serve as lessons learned, which are applicable to the design of new reactor plants.

  3. Inertial Fusion Energy reactor design studies: Prometheus-L, Prometheus-H. Volume 1, Final report

    SciTech Connect

    Waganer, L.M.; Driemeyer, D.E.; Lee, V.D.

    1992-03-01

    This report contains a review of design studies for inertial confinement reactors. The first of three volumes briefly discusses the following: Introduction; Key objectives, requirements, and assumptions; Systems modeling and trade studies; Prometheus-L reactor plant design overview; Prometheus-H reactor plant design overview; Key technical issues and R&D requirements; Comparison of IFE designs; and study conclusions.

  4. RACC Code System for Computing Radioactivity-Related Parameters for Fusion Reactor Systems Modified for Pulsed/Intermittent Activation Analysis.

    1996-04-30

    Version 00 CCC-388/RACC was specifically developed to compute the radioactivity and radioactivity-related parameters (e.g., afterheat, biological hazard potential, etc.) due to neutron activation within Inertial Fusion Energy and Magnetic Fusion Energy reactor systems. It can also be utilized to compute the radioactivity in fission, accelerator or any other neutron generating and neutron source system. This new version designated RACC-PULSE is based on CCC-388 and has the capability to model irradiation histories of varying flux levelsmore » having varying pulse widths (on times) and dwell periods (off times) and varying maintenance periods. This provides the user with the flexibility of modeling most any complexity of irradiation history beginning with simple steady state operating systems to complex multi-flux level pulse/intermittent operating systems.« less

  5. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    SciTech Connect

    Ryskamp, J.M.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

  6. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    SciTech Connect

    Ryskamp, J.M.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG&G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

  7. Characterization of scintillator materials for fast-ion loss detectors in nuclear fusion reactors

    NASA Astrophysics Data System (ADS)

    Jiménez-Ramos, M. C.; García López, J.; García-Muñoz, M.; Rodríguez-Ramos, M.; Carmona Gázquez, M.; Zurro, B.

    2014-08-01

    In fusion plasma reactors, fast ion generated by heating systems and fusion born particles must be well confined. The presence of magnetohydrodynamic (MHD) instabilities can lead to a significant loss of these ions, which may reduce drastically the heating efficiency and may cause damage to plasma facing components in the vacuum vessel. In order to understand the physics underlying the fast ion loss mechanism, scintillator based detectors have been installed in several fusion devices. In this work we present the absolute photon yield and its degradation with ion fluence in terms of the number of photons emitted per incident ion of several scintillators thin coatings: SrGa2S4:Eu2+ (TG-Green), Y3Al5O12:Ce3+ (P46) and Y2O3:Eu3+ (P56) when irradiated with light ions of different masses (deuterium ions, protons and α-particles) at energies between approximately 575 keV and 3 MeV. The photon yield will be discussed in terms of the energy deposited by the particles into the scintillator. For that, the actual composition and thickness of the thin layers were determined by Rutherford Backscattering Spectrometry (RBS). A collimator with 1 mm of diameter, which defines the beam size for the experiments, placed at the entrance of the chamber. An electrically isolated sample holder biased to +300 V to collect the secondary electrons, connected to a digital current integrator (model 439 by Ortec) to measure the incident beam current. A home made device has been used to store the real-time evolution of the beam current in a computer file allowing the correction of the IL yields due to the current fluctuations. The target holder is a rectangle of 150 × 112 mm2 and can be tilted. The X and Y movements are controlled through stepping motors, which permits a fine control of the beam spot positioning as well as the study of several samples without venting the chamber. A silica optical fiber of 1 mm diameter fixed to the vacuum chamber, which collects the light from the scintillators

  8. Neutron irradiation of V-Cr-Ti alloys in the BOR-60 fast reactor: Description of the fusion-1 experiment

    SciTech Connect

    Rowcliffe, A.F.; Tsai, H.C.; Smith, D.L.

    1997-08-01

    The FUSION-1 irradiation capsule was inserted in Row 5 of the BOR-60 fast reactor in June 1995. The capsule contains a collaborative RF/U.S. experiment to investigate the irradiation performance of V-Cr-Ti alloys in the temperature range 310 to 350{degrees}C. This report describes the capsule layout, specimen fabrication history, and the detailed test matrix for the U.S. specimens. A description of the operating history and neutronics will be presented in the next semiannual report.

  9. A New Interpretation of Alpha-particle-driven Instabilities in Deuterium-Tritium Experiments on the Tokamak Fusion Test Reactor

    SciTech Connect

    R. Nazikian; G.J. Kramer; C.Z. Cheng; N.N. Gorelenkov; H.L. Berk; S.E. Sharapov

    2003-03-26

    The original description of alpha-particle-driven instabilities in the Tokamak Fusion Test Reactor (TFTR) in terms of Toroidal Alfvin Eigenmodes (TAEs) remained inconsistent with three fundamental characteristics of the observations: (i) the variation of the mode frequency with toroidal mode number, (ii) the chirping of the mode frequency for a given toroidal mode number, and (iii) the anti-ballooning density perturbation of the modes. It is now shown that these characteristics can be explained by observing that cylindrical-like modes can exist in the weak magnetic shear region of the plasma that then make a transition to TAEs as the central safety factor decreases in time.

  10. Effect of Lithium Enrichment on the Tritium Breeding Characteristics of Various Breeders in a Fusion Driven Hybrid Reactor

    NASA Astrophysics Data System (ADS)

    Übeyli, Mustafa

    2009-09-01

    Selection of lithium containing materials is very important in the design of a deuterium-tritium (DT) fusion driven hybrid reactor in order to supply its tritium self-sufficiency. Tritium, an artificial isotope of hydrogen, can be produced in the blanket by using the neutron capture reactions of lithium in the coolants and/or blanket materials which consist of lithium. This study presents the effect of lithium-6 enrichment in the coolant of the reactor on the tritium breeding of the hybrid blanket. Various liquid-solid breeder couples were investigated to determine the effective breeders. Numerical results pointed out that the tritium production increased with increasing lithium-6 enrichment for all cases.

  11. Accuracy and convergence of coupled finite-volume/Monte Carlo codes for plasma edge simulations of nuclear fusion reactors

    NASA Astrophysics Data System (ADS)

    Ghoos, K.; Dekeyser, W.; Samaey, G.; Börner, P.; Baelmans, M.

    2016-10-01

    The plasma and neutral transport in the plasma edge of a nuclear fusion reactor is usually simulated using coupled finite volume (FV)/Monte Carlo (MC) codes. However, under conditions of future reactors like ITER and DEMO, convergence issues become apparent. This paper examines the convergence behaviour and the numerical error contributions with a simplified FV/MC model for three coupling techniques: Correlated Sampling, Random Noise and Robbins Monro. Also, practical procedures to estimate the errors in complex codes are proposed. Moreover, first results with more complex models show that an order of magnitude speedup can be achieved without any loss in accuracy by making use of averaging in the Random Noise coupling technique.

  12. FENIX (Fusion ENgineering International eXperimental): A test facility for ITER (International Thermonuclear Experimental Reactor) and other new superconducting magnets

    SciTech Connect

    Slack, D.S.; Patrick, R.E.; Miller, J.R.

    1990-09-21

    The Fusion ENgineering International eXperimental (FENIX) Test Facility which is nearing completion at Lawrence Livermore National Laboratory, is a 76-t set of superconducting magnets housed in a 4-m-diameter cryostat. It represents a significant step toward meeting the testing needs for the development of superconductors appropriate for large-scale magnet applications such as the International Thermonuclear Experimental Reactor (ITER). The magnet set is configured to allow radial access to the 0.4-m-diameter high-field region where maximum fields up to 14 T will be provided. The facility is fitted with a thermally isolated test well with a port to the high-field region that allows insertion and removal of test conductors without disturbing the cryogenic environment of the magnets. It is expected that the facility will be made available to magnet developers internationally, and this paper discusses its general design features, its construction, and its capabilities.

  13. Response to FESAC survey, non-fusion connections to Fusion Energy Sciences. Applications of the FES-supported beam and plasma simulation code, Warp

    SciTech Connect

    Friedman, A.; Grote, D. P.; Vay, J. L.

    2015-05-29

    The Fusion Energy Sciences Advisory Committee’s subcommittee on non-fusion applications (FESAC NFA) is conducting a survey to obtain information from the fusion community about non-fusion work that has resulted from their DOE-funded fusion research. The subcommittee has requested that members of the community describe recent developments connected to the activities of the DOE Office of Fusion Energy Sciences. Two questions in particular were posed by the subcommittee. This document contains the authors’ responses to those questions.

  14. Development of advanced blanket materials for a solid breeder blanket of a fusion reactor

    NASA Astrophysics Data System (ADS)

    Kawamura, H.; Ishitsuka, E.; Tsuchiya, K.; Nakamichi, M.; Uchida, M.; Yamada, H.; Nakamura, K.; Ito, H.; Nakazawa, T.; Takahashi, H.; Tanaka, S.; Yoshida, N.; Kato, S.; Ito, Y.

    2003-08-01

    The design of an advanced solid breeding blanket in a DEMO reactor requires a tritium breeder and a neutron multiplier that can withstand high temperatures and high neutron fluences, and the development of such advanced blanket materials has been carried out by collaboration between JAERI, universities and industries in Japan. The Li2TiO3 pebble fabricated by a wet process is a reference material as a tritium breeder, but its stability at high temperatures has to be improved for its application in a DEMO blanket. One of these improved materials, TiO2-doped Li2TiO3 pebbles, was successfully fabricated and studied. For the advanced neutron multiplier, beryllides that have a high melting point and good chemical stability have been studied. Some characterization of Be12Ti was conducted, and it became clear that it had lower swelling and tritium inventory than beryllium metal. Pebble fabrication study for Be12Ti was also performed and Be12Ti pebbles were successfully fabricated. These activities have shown that there is a bright prospect in realizing a DEMO blanket by the application of TiO2-doped Li2TiO3 and beryllides.

  15. A New Type of Fusion Analysis Applicable to Many Organisms: Protein Fusions to the URA3 Gene of Yeast

    PubMed Central

    Alani, Eric; Kleckner, Nancy

    1987-01-01

    We have made constructs that join the promoter sequences and a portion of the coding region of the Saccharomyces cerevisiae HIS4 and GAL1 genes and the E. coli lacZ gene to the sixth codon of the S. cerevisiae URA3 gene (encodes orotidine-5'-phosphate (OMP) decarboxylase) to form three in frame protein fusions. In each case the fusion protein has OMP decarboxylase activity as assayed by complementation tests and this activity is properly regulated. A convenient cassette consisting of the URA3 segment plus some immediately proximal amino acids of HIS4C is available for making URA3 fusions to other proteins of interest. URA3 fusions offer several advantages over other systems for gene fusion analysis: the URA3 specified protein is small and cytosolic; genetic selections exist to identify mutants with either increased or decreased URA3 function in both yeast (S. cerevisiae and Schizosaccharomyces pombe) and bacteria (Escherichia coli and Salmonella typhimurium); and a sensitive OMP decarboxylase enzyme assay is available. Also, OMP decarboxylase activity is present in mammals, Drosophila and plants, so URA3 fusions may eventually be applicable in these other organisms as well. PMID:3311876

  16. PREFACE: The fifth International Conference on Inertial Fusion Sciences and Applications (IFSA2007)

    NASA Astrophysics Data System (ADS)

    Azechi, Hiroshi; Hammel, Bruce; Gauthier, Jean-Claude

    2008-06-01

    by fast-ignition and related ultra-intense laser interaction. Progress in direct drive over the past few years resulted in the achievement of high-density cryogenic implosions at OMEGA. Continuous progresses in hohlraum physics gave confidence in the achievement of ignition at NIF and LMJ. Advances in Z-pinch included double-hohlraum irradiation symmetry and the PW laser beam for the Z-facility. Progress of laser material development for IFE driver was a very interesting topic of inertial fusion energy drivers, including KrF and DPSSL lasers and particle beams. Of special interest, a future session was focused on strategy of inertial fusion energy development. Laboratory tours were held in the middle of the Conference. The Laser for Fusion EXperiments (LFEX), a new high-energy petawatt laser at ILE, was one of the key attractions of IFSA 2007. 83 participants toured LFEX and GEKKO XII lasers, and 35 joined a tour of KPSA-JAEA. In parallel to the tour, the `Symposium on Academics-Industries Cooperation for Applications of High-Power Lasers' was held with more than 90 participants mostly from the industrial community. These Proceedings start with special chapters on the keynote and focus speeches and the Teller lectures. The keynotes and focus give an overview of progress in inertial fusion in Asia, North America, and Europe. The Teller lectures show the contributions of this year's two winners: Brian Thomas of AWE, UK and Kunioki Mima of ILE. The remainder of the Proceedings is divided into three parts. Part A covers the physics of inertial fusion; Part B covers laser, particle beams, and fusion technology including IFE reactors and target fabrication; and Part C covers science and technology applications such as laboratory astrophysics, laser particle acceleration, x-ray and EUV sources, and new applications of intense lasers. These parts are further divided into chapters covering specific areas of science or technology. Within each chapter the talks relevant to that

  17. The Virtual Environment for Reactor Applications (VERA). Design and architecture☆

    NASA Astrophysics Data System (ADS)

    Turner, John A.; Clarno, Kevin; Sieger, Matt; Bartlett, Roscoe; Collins, Benjamin; Pawlowski, Roger; Schmidt, Rodney; Summers, Randall

    2016-12-01

    VERA, the Virtual Environment for Reactor Applications, is the system of physics capabilities being developed and deployed by the Consortium for Advanced Simulation of Light Water Reactors (CASL). CASL was established for the modeling and simulation of commercial nuclear reactors. VERA consists of integrating and interfacing software together with a suite of physics components adapted and/or refactored to simulate relevant physical phenomena in a coupled manner. VERA also includes the software development environment and computational infrastructure needed for these components to be effectively used. We describe the architecture of VERA from both software and numerical perspectives, along with the goals and constraints that drove major design decisions, and their implications. We explain why VERA is an environment rather than a framework or toolkit, why these distinctions are relevant (particularly for coupled physics applications), and provide an overview of results that demonstrate the use of VERA tools for a variety of challenging applications within the nuclear industry.

  18. Fiber-Optical Sensors: Basics and Applications in Multiphase Reactors

    PubMed Central

    Li, Xiangyang; Yang, Chao; Yang, Shifang; Li, Guozheng

    2012-01-01

    This work presents a brief introduction on the basics of fiber-optical sensors and an overview focused on the applications to measurements in multiphase reactors. The most commonly principle utilized is laser back scattering, which is also the foundation for almost all current probes used in multiphase reactors. The fiber-optical probe techniques in two-phase reactors are more developed than those in three-phase reactors. There are many studies on the measurement of gas holdup using fiber-optical probes in three-phase fluidized beds, but negative interference of particles on probe function was less studied. The interactions between solids and probe tips were less studied because glass beads etc. were always used as the solid phase. The vision probes may be the most promising for simultaneous measurements of gas dispersion and solids suspension in three-phase reactors. Thus, the following techniques of the fiber-optical probes in multiphase reactors should be developed further: (1) online measuring techniques under nearly industrial operating conditions; (2) corresponding signal data processing techniques; (3) joint application with other measuring techniques.

  19. Inertial-confinement-fusion applications of ion-stopping theory

    SciTech Connect

    More, R.M.; Lee, Y.T.; Bailey, D.S.

    1982-01-22

    Methods were developed to calculate: (1) the stopping power of a hot plasma target, (2) the charge-state of a fast ion projectile, and (3) the final disposition of the deposited energy. The first issue refers to the stopping power for protons. The proton stopping power is altered in high-density or high-temperature targets, especially at velocities below the stopping peak. The second issue concerns the application of a proton stopping curve to the arbitrary projectile. The third topic is more specialized to inertial fusion and concerns the partition of deposited energy between ion (nuclear motion) degrees of freedom and those corresponding to bound and free electrons. The question here is whether a thermal equilibrium plasma is produced.

  20. Research on the HYLIFE liquid-first-wall concept for future laser-fusion reactors. Final report No. 5

    SciTech Connect

    Hoffman, M.A.

    1980-09-01

    It has been proposed to protect the structural walls of a future laser fusion reactor with a curtain or fluid-wall of liquid lithium jets. As part of the investigation of this concept, experiments have been performed on planar sheet water jets issuing vertically downward from slit nozzles. The nozzles were subjected to transverse forced harmonic excitation to simulate the vibrational environment of the laser fusion reactor, and experiments were run at both 1 atm and at lower ambient pressures. Linear temporal stability theory is shown to predict the onset of the unstable regime and the initial spatial growth rates quite well for the cases where the amplitudes of the nozzle vibration are not too large and the waveform is nearly sinusoidal. In addition, both the linear theory and a simplified trajectory theory are shown to predict the initial wave envelope amplitudes very well. For larger amplitude nozzle excitation, the waveform becomes highly nonlinear and non-sinusoidal and can resemble a sawtooth waveform in some cases; these latter experimental results can only be partially explained by existing theories at the present time.

  1. SIPHORE: Conceptual Study of a High Efficiency Neutral Beam Injector Based on Photo-detachment for Future Fusion Reactors

    SciTech Connect

    Simonin, A.; Christin, L.; Esch, H. de; Garibaldi, P.; Grand, C.; Villecroze, F.; Blondel, C.; Delsart, C.; Drag, C.; Vandevraye, M.; Brillet, A.; Chaibi, W.

    2011-09-26

    An innovative high efficiency neutral beam injector concept for future fusion reactors is under investigation (simulation and R and D) between several laboratories in France, the goal being to perform a feasibility study for the neutralization of intense high energy (1 MeV) negative ion (NI) beams by photo-detachment.The objective of the proposed project is to put together the expertise of three leading groups in negative ion quantum physics, high power stabilized lasers and neutral beam injectors to perform studies of a new injector concept called SIPHORE (SIngle gap PHOto-neutralizer energy REcovery injector), based on the photo-detachment of negative ions and energy recovery of unneutralised ions; the main feature of SIPHORE being the relevance for the future Fusion reactors (DEMO), where high injector efficiency (up to 70-80%), technological simplicity and cost reduction are key issues to be addressed.The paper presents the on-going developments and simulations around this project, such as, a new concept of ion source which would fit with this injector topology and which could solve the remaining uniformity issue of the large size ion source, and, finally, the presentation of the R and D program in the laboratories (LAC, ARTEMIS) around the photo-neutralization for Siphore.

  2. Analysis of the energy transport and deposition within the reaction chamber of the prometheus inertial fusion energy reactor

    SciTech Connect

    Eggleston, J.E.; Abdou, M.A.; Tillack, M.S.

    1994-12-31

    One of the parameters affecting the feasibility of Inertial Fusion Energy (IFE) devices is the number of shots per unit time, i.e. the repetition rate. The repetition rate limits the achievable power that can be obtained from the reactor. To obtain an estimate of the allowable time between shots, a code named RECON was developed to model the response of the reaction chamber to the pellet explosion. This paper discusses how the code treats the thermodynamic response of the cavity gas and models the condensation/evaporation of this vapor to and from the first wall. A large amount of energy from the pellet microexplosion is carried by the pellet debris and the x-rays generated in the fusion reaction. Models of x-ray attenuation and ion slowing down are used to estimate the fraction of the pellet energy that is absorbed in the vapor. A large amount of energy is absorbed into the cavity gas, which causes it to become partially ionized. The ionization complicates the calculation of the temperature, pressure, and the radiative heat transfer from the gas to the first wall. To treat this problem, methods developed by Zel`dovich and Raizer are used in modeling the internal energy and the radiative heat flux. RECON was developed to run with a relatively short computational time, yet accurate enough for conceptual reactor design calculations.

  3. Complexity reducing algorithm for near optimal fusion (CRANOF) with application to tracking and information fusion

    NASA Astrophysics Data System (ADS)

    Bamber, D.; Goodman, I. R.; Torrez, William C.; Nguyen, H. T.

    2001-08-01

    Conditional probability logics (CPL's), such as Adams', while producing many satisfactory results, do not agree with commonsense reasoning for a number of key entailment schemes, including transitivity and contraposition. Also, CPL's and bayesian techniques, often: (1) use restrictive independence/simplification assumptions; (2) lack a rationale behind choice of prior distribution; (3) require highly complex implementation calculations; (4) introduce ad hoc techniques. To address the above difficulties, a new CPL is being developed: CRANOF - Complexity Reducing Algorithm for Near Optimal Fusion -based upon three factors: (i) second order probability logic (SOPL), i.e., probability of probabilities within a bayesian framework; (ii) justified use of Dirichlet family priors, based on an extension of Lukacs' characterization theorem; and (iii) replacement of the theoretical optimal solution by a near optimal one where the complexity of computations is reduced significantly. A fundamental application of CRANOF to correlation and tracking is provided here through a generic example in a form similar to transitivity: two track histories are to be merged or left alone, based upon observed kinematic and non-kinematic attribute information and conditional probabilities connecting the observed data to the degrees of matching of attributes, as well as relating the matching of prescribed groups of attributes from each track history to the correlation level between the histories.

  4. Hybrid fusion-fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    NASA Astrophysics Data System (ADS)

    Shmelev, A. N.; Kulikov, G. G.; Kurnaev, V. A.; Salahutdinov, G. H.; Kulikov, E. G.; Apse, V. A.

    2015-12-01

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the 231Pa-232U-233U-Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of 232U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  5. A quasi-optical electron cyclotron maser for fusion reactor heating

    SciTech Connect

    Morse, E.C.

    1990-01-01

    High power microwave and millimeter sources, such as the quasi-optical electron cyclotron maser (QOECM) are important in fusion research as well as in high-energy physics and in other applications. The interaction between the electromagnetic modes of a Fabry-Perot resonator and an electron beam gyrating through a magnetic field has been studied for both the cases of beams parallel and perpendicular to the resonator. The parallel case was theoretically first studied by Kurin for forward and backward wave interaction, and experimentally by Komlev and Kurin. Kreischer and Temkin reviewed the general case of the linear small signal interaction parallel and perpendicular to the resonator. Sprangle, et al discussed the perpendicular case in a self-consistent linear and nonlinear theoretical study using the Gaussian transverse profile of an open resonator with a single longitudinal mode. Experimental verification of the devices operation was first mentioned in work at the Naval Research Laboratory. Theoretical studies using a time-dependent analysis of a large number of longitudinal modes with similar transverse mode profiles have demonstrated that single longitudinal-mode operation can be achieved at equilibrium and that performance can be enhanced by prebunching the electron beam and tapering the magnetic field. The use of output coupling apertures in the mirrors has been studied theoretically in relation to the structure of the modes for both confocal and nonconfocal resonators by Permnoud; use of an open resonator with stepped mirrors has been studied in order to choose a particular longitudinal mode. Studies at the Naval Research Laboratory mirror used configurations that diffraction couple the energy from around the mirror edges, so that the transverse profile inside the resonator can be selective to the fundamental mode.

  6. A quasi-optical electron cyclotron maser for fusion reactor heating. Final report

    SciTech Connect

    Morse, E.C.

    1990-12-31

    High power microwave and millimeter sources, such as the quasi-optical electron cyclotron maser (QOECM) are important in fusion research as well as in high-energy physics and in other applications. The interaction between the electromagnetic modes of a Fabry-Perot resonator and an electron beam gyrating through a magnetic field has been studied for both the cases of beams parallel and perpendicular to the resonator. The parallel case was theoretically first studied by Kurin for forward and backward wave interaction, and experimentally by Komlev and Kurin. Kreischer and Temkin reviewed the general case of the linear small signal interaction parallel and perpendicular to the resonator. Sprangle, et al discussed the perpendicular case in a self-consistent linear and nonlinear theoretical study using the Gaussian transverse profile of an open resonator with a single longitudinal mode. Experimental verification of the devices operation was first mentioned in work at the Naval Research Laboratory. Theoretical studies using a time-dependent analysis of a large number of longitudinal modes with similar transverse mode profiles have demonstrated that single longitudinal-mode operation can be achieved at equilibrium and that performance can be enhanced by prebunching the electron beam and tapering the magnetic field. The use of output coupling apertures in the mirrors has been studied theoretically in relation to the structure of the modes for both confocal and nonconfocal resonators by Permnoud; use of an open resonator with stepped mirrors has been studied in order to choose a particular longitudinal mode. Studies at the Naval Research Laboratory mirror used configurations that diffraction couple the energy from around the mirror edges, so that the transverse profile inside the resonator can be selective to the fundamental mode.

  7. Homeland security application of the Army Soft Target Exploitation and Fusion (STEF) system

    NASA Astrophysics Data System (ADS)

    Antony, Richard T.; Karakowski, Joseph A.

    2010-04-01

    A fusion system that accommodates both text-based extracted information along with more conventional sensor-derived input has been developed and demonstrated in a terrorist attack scenario as part of the Empire Challenge (EC) 09 Exercise. Although the fusion system was developed to support Army military analysts, the system, based on a set of foundational fusion principles, has direct applicability to department of homeland security (DHS) & defense, law enforcement, and other applications. Several novel fusion technologies and applications were demonstrated in EC09. One such technology is location normalization that accommodates both fuzzy semantic expressions such as behind Library A, across the street from the market place, as well as traditional spatial representations. Additionally, the fusion system provides a range of fusion products not supported by traditional fusion algorithms. Many of these additional capabilities have direct applicability to DHS. A formal test of the fusion system was performed during the EC09 exercise. The system demonstrated that it was able to (1) automatically form tracks, (2) help analysts visualize behavior of individuals over time, (3) link key individuals based on both explicit message-based information as well as discovered (fusion-derived) implicit relationships, and (4) suggest possible individuals of interest based on their association with High Value Individuals (HVI) and user-defined key locations.

  8. Heavy ion fusion science research for high energy density physics and fusion applications

    SciTech Connect

    LOGAN, B.G.; Logan, B.G.; Bieniosek, F.M.; Barnard, J.J.; Cohen, R.H.; Coleman, J.E.; Davidson, R.C.; Efthimion, P.C.; Friedman, A.; Gilson, E.P.; Greenway, W.G.; Grisham, L.; Grote, D.P.; Henestroza, E.; Hoffmann, D.H.H.; Kaganovich, I.D.; Kireeff Covo, M.; Kwan, J.W.; LaFortune, K.N.; Lee, E.P.; Leitner, M.; Lund, S.M.; Molvik, A.W.; Ni, P.; Penn, G.E.; Perkins, L.J.; Qin, H.; Roy, P.K.; Sefkow, A.B.; Seidl, P.A.; Sharp, W.; Startsev, E.A.; Varentsov, D.; Vay, J.-L.; Waldron, W.L.; Wurtele, J.S.; Welch, D.; Westenskow, G.A.; Yu, S.S.

    2007-06-25

    During the past two years, the U.S. heavy ion fusion science program has made significant experimental and theoretical progress in simultaneous transverse and longitudinal beam compression, ion-beam-driven warm dense matter targets, high brightness beam transport, advanced theory and numerical simulations, and heavy ion target designs for fusion. First experiments combining radial and longitudinal compression of intense ion beams propagating through background plasma resulted in on-axis beam densities increased by 700X at the focal plane. With further improvements planned in 2007, these results will enable initial ion beam target experiments in warm dense matter to begin next year at LBNL. We are assessing how these new techniques apply to low-cost modular fusion drivers and higher-gain direct-drive targets for inertial fusion energy.

  9. Fusion for Earth and Space

    SciTech Connect

    Williams, Pharis E

    2009-03-16

    The compact reactor concept (Williams, 2007) has the potential to provide clean, safe and unlimited supply of energy for Earth and Space applications. The concept is a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for individual home and space power. The concept also would make it possible for each plant or remote location to have it's own power source, on site, without the need for a connection to the power grid. This would minimize, or eliminate, power blackouts. The concept could replace large fission reactors and fossil fuel power plants plus provide energy for ships, locomotives, trucks and autos. It would make an ideal source of energy for space power applications and for space propulsion.

  10. Preliminary design studies on the Broad Application Test Reactor

    SciTech Connect

    Terry, W.J.; Terry, W.K.; Ryskamp, J.M.; Jahshan, S.N.; Fletcher, C.D.; Moore, R.L.; Leyse, C.F.; Ottewitte, E.H.; Motloch, C.G.; Lacy, J.M.

    1992-08-01

    This report describes progress made at the Idaho National Engineering Laboratory during the first three quarters of Fiscal Year (FY) 1992 on the Laboratory-Directed Research and Development (LDRD) project to perform preliminary design studies on the Broad Application Test Reactor (BATR). This work builds on the FY-92 BATR studies, which identified anticipated mission and safety requirements for BATR and assessed a variety of reactor concepts for their potential capability to meet those requirements. The main accomplishment of the FY-92 BATR program is the development of baseline reactor configurations for the two conventional conceptual test reactors recommended in the FY-91 report. Much of the present report consists of descriptions and neutronics and thermohydraulics analyses of these baseline configurations. In addition, we considered reactor safety issues, compared the consequences of steam explosions for alternative conventional fuel types, explored a Molten Chloride Fast Reactor concept as an alternate BATR design, and examined strategies for the reduction of operating costs. Work planned for the last quarter of FY-92 is discussed, and recommendations for future work are also presented.

  11. Polonium aspects associated with the use of lead-lithium blankets in fusion applications

    SciTech Connect

    Hoffman, N.J.; Blink, J.A.; Meier, W.R.; Murray, K.A.; Vogelsang, W.F.

    1985-07-01

    Polonium, an alpha-emitting sulfur-like element, is formed by neutron irradiation of lead or bismuth impurity in lead. Design studies of both the Pulse*Star inertial confinement fusion (ICF) reactor and the MARS mirror fusion reactor postulated use of 83Pb-17Li melt as the tritium breeding blanket and coolant. Comparison of the amounts of polonium in the melt at plant shutdown indicated that Pulse*Star would have a far higher level of polonium in the melt. Neutronic considerations and the polonium distribution between the vacuum cleanup system and 83Pb-17Li melt for the two reactors are explored in this paper. Sample neutronics runs showed that the codes used by each design team were not the source of the difference in polonium content.

  12. Irradiation creep in austenitic and ferritic steels irradiated in a tailored neutron spectrum to induce fusion reactor levels of helium

    SciTech Connect

    Grossbeck, M.L.; Gibson, L.T.; Jitsukawa, S.

    1996-04-01

    Six austenitic stainless steels and two ferritic alloys were irradiated sequentially in two research reactors where the neutron spectrum was tailored to produce a He production rate typical of a fusion device. Irradiation began in the Oak Ridge Research Reactor where an atomic displacement level of 7.4 dpa was achieved and was then transferred to the High Flux Isotope Reactor for the remainder of the irradiation to a total displacement level of 19 dpa. Temperatures of 60 and 330{degree}C are reported on. At 330{degree}C irradiation creep was found to be linear in stress and fluence with rates in the range of 1.7 - 5.5 x 10{sup -4}% MPa{sup -1} dpa{sup -1}. Annealed and cold-worked materials exhibited similar creep rates. There is some indication that austenitic alloys with TiC or TiO precipitates had a slightly higher irradiation creep rate than those without. The ferritic alloys HT-9 and Fe-16Cr had irradiatoin creep rates about 0.5 x 10{sup -4}% MPa{sup -1} dpa{sup -1}. No meaningful data could be obtained from the tubes irradiated at 60{degree}C because of damage to the tubes.

  13. Improved Nuclear Reactor and Shield Mass Model for Space Applications

    NASA Technical Reports Server (NTRS)

    Robb, Kevin

    2004-01-01

    New technologies are being developed to explore the distant reaches of the solar system. Beyond Mars, solar energy is inadequate to power advanced scientific instruments. One technology that can meet the energy requirements is the space nuclear reactor. The nuclear reactor is used as a heat source for which a heat-to-electricity conversion system is needed. Examples of such conversion systems are the Brayton, Rankine, and Stirling cycles. Since launch cost is proportional to the amount of mass to lift, mass is always a concern in designing spacecraft. Estimations of system masses are an important part in determining the feasibility of a design. I worked under Michael Barrett in the Thermal Energy Conversion Branch of the Power & Electric Propulsion Division. An in-house Closed Cycle Engine Program (CCEP) is used for the design and performance analysis of closed-Brayton-cycle energy conversion systems for space applications. This program also calculates the system mass including the heat source. CCEP uses the subroutine RSMASS, which has been updated to RSMASS-D, to estimate the mass of the reactor. RSMASS was developed in 1986 at Sandia National Laboratories to quickly estimate the mass of multi-megawatt nuclear reactors for space applications. In response to an emphasis for lower power reactors, RSMASS-D was developed in 1997 and is based off of the SP-100 liquid metal cooled reactor. The subroutine calculates the mass of reactor components such as the safety systems, instrumentation and control, radiation shield, structure, reflector, and core. The major improvements in RSMASS-D are that it uses higher fidelity calculations, is easier to use, and automatically optimizes the systems mass. RSMASS-D is accurate within 15% of actual data while RSMASS is only accurate within 50%. My goal this summer was to learn FORTRAN 77 programming language and update the CCEP program with the RSMASS-D model.

  14. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    SciTech Connect

    Werner, R.W.

    1982-11-01

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)

  15. Primary heat transfer loop design for the Cascade inertial confinement fusion reactor

    SciTech Connect

    Murray, K.A.; McDowell, M.W.

    1984-05-01

    This study investigates a heat exchanger and balance of plant design to accompany the Cascade inertial confinement fusion reaction chamber concept. The concept uses solid Li/sub 2/O or other lithium-ceramic granules, held to the wall of a rotating reaction chamber by centrifugal action, as a tritium breeding blanket and first wall protection. The Li/sub 2/O granules enter the chamber at 800 K and exit at 1200 K after absorbing the thermal energy produced by the fusion process.

  16. Economics and Environmental Compatibility of Fusion Reactors —Its Analysis and Coming Issues— 4.Economic Effect of Fusion in Energy Market 4.2Various Externalities of Energy Systems and the Integrated Evaluation

    NASA Astrophysics Data System (ADS)

    Ito, Keishiro

    The primacy of a nuclear fusion reactor in a competitive energy market remarkably depends on to what extent the reactor contributes to reduce the externalities of energy. The reduction effects are classified into two effects, which have quite dissimilar characteristics. One is an effect of environmental dimensions. The other is related to energy security. In this study I took up the results of EC's Extern Eproject studies as are presentative example of the former effect. Concerning the latter effect, I clarified the fundamental characteristics of externalities related to energy security and the conceptual framework for the purpose of evaluation. In the socio-economical evaluation of research into and development investments in nuclear fusions reactors, the public will require the development of integrated evaluation systems to support the cost-effect analysis of how well the reduction effects of externalities have been integrated with the effects of technological innovation, learning, spillover, etc.

  17. Development of ODS FeCrAl for compatibility in fusion and fission energy applications

    DOE PAGES

    Pint, Bruce A.; Dryepondt, Sebastien N.; Unocic, Kinga A.; Hoelzer, David T.

    2014-11-15

    In this paper, oxide dispersion strengthened (ODS) FeCrAl alloys with 12–15% Cr are being evaluated for improved compatibility with Pb-Li for a fusion energy application and with high temperature steam for a more accident-tolerant light water reactor fuel cladding application. A 12% Cr content alloy showed low mass losses in static Pb-Li at 700°C, where a LiAlO2 surface oxide formed and inhibited dissolution into the liquid metal. All the evaluated compositions formed a protective scale in steam at 1200°C, which is not possible with ODS FeCr alloys. However, most of the compositions were not protective at 1400°C, which is amore » general and somewhat surprising problem with ODS FeCrAl alloys that is still being studied. More work is needed to optimize the alloy composition, microstructure and oxide dispersion, but initial promising tensile and creep results have been obtained with mixed oxide additions, i.e. Y2O3 with ZrO2, HfO2 or TiO2.« less

  18. Development of ODS FeCrAl for Compatibility in Fusion and Fission Energy Applications

    NASA Astrophysics Data System (ADS)

    Pint, B. A.; Dryepondt, S.; Unocic, K. A.; Hoelzer, D. T.

    2014-12-01

    Oxide dispersion strengthened (ODS) FeCrAl alloys with 12-15% Cr are being evaluated for improved compatibility with Pb-Li for a fusion energy application and with high temperature steam for a more accident-tolerant light water reactor fuel cladding application. A 12% Cr content alloy showed low mass losses in static Pb-Li at 700°C, where a LiAlO2 surface oxide formed and inhibited dissolution into the liquid metal. All the evaluated compositions formed a protective scale in steam at 1200°C, which is not possible with ODS FeCr alloys. However, most of the compositions were not protective at 1400°C, which is a general and somewhat surprising problem with ODS FeCrAl alloys that is still being studied. More work is needed to optimize the alloy composition, microstructure and oxide dispersion, but initial promising tensile and creep results have been obtained with mixed oxide additions, i.e. Y2O3 with ZrO2, HfO2 or TiO2.

  19. Development of ODS FeCrAl for compatibility in fusion and fission energy applications

    SciTech Connect

    Pint, Bruce A.; Dryepondt, Sebastien N.; Unocic, Kinga A.; Hoelzer, David T.

    2014-11-15

    In this paper, oxide dispersion strengthened (ODS) FeCrAl alloys with 12–15% Cr are being evaluated for improved compatibility with Pb-Li for a fusion energy application and with high temperature steam for a more accident-tolerant light water reactor fuel cladding application. A 12% Cr content alloy showed low mass losses in static Pb-Li at 700°C, where a LiAlO2 surface oxide formed and inhibited dissolution into the liquid metal. All the evaluated compositions formed a protective scale in steam at 1200°C, which is not possible with ODS FeCr alloys. However, most of the compositions were not protective at 1400°C, which is a general and somewhat surprising problem with ODS FeCrAl alloys that is still being studied. More work is needed to optimize the alloy composition, microstructure and oxide dispersion, but initial promising tensile and creep results have been obtained with mixed oxide additions, i.e. Y2O3 with ZrO2, HfO2 or TiO2.

  20. Applications of fusion thermal energy to industrial processes

    SciTech Connect

    Bowman, R. M.; Jody, B. J.; Lu, K. C.

    1980-01-01

    The feasibility of applying fusion thermal energy as process heat in the iron-steel industry, petrochemical industry, cement industry, and in the production of acetylene fom coal via calcium carbide are discussed. These four industries were selected for analysis because they require massive amounts of energy. This preliminary study concludes that the production of synthetic fuels using fusion heat appears to be the most promising method of storing and transporting this heat. Of the four industries studied, the iron-steel and the petrochemical industries appear to be the most promising because they consume substantial amounts of hydrogen and oxygen as feedstocks. These can be produced from water using the high-temperature fusion heat. The production of hydrogen and oxygen using fusion heat will also reduce the capital investment required for these industries. These two industries also consume tremendous amounts of heat at temperatures which can be delivered from a fusion blanket via chemical heat pipes.

  1. Mechanical Performance of Ferritic Martensitic Steels for High Dose Applications in Advanced Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Anderoglu, Osman; Byun, Thak Sang; Toloczko, Mychailo; Maloy, Stuart A.

    2013-01-01

    Ferritic/martensitic (F/M) steels are considered for core applications and pressure vessels in Generation IV reactors as well as first walls and blankets for fusion reactors. There are significant scientific data on testing and industrial experience in making this class of alloys worldwide. This experience makes F/M steels an attractive candidate. In this article, tensile behavior, fracture toughness and impact property, and creep behavior of the F/M steels under neutron irradiations to high doses with a focus on high Cr content (8 to 12) are reviewed. Tensile properties are very sensitive to irradiation temperature. Increase in yield and tensile strength (hardening) is accompanied with a loss of ductility and starts at very low doses under irradiation. The degradation of mechanical properties is most pronounced at <0.3 T M ( T M is melting temperature) and up to 10 dpa (displacement per atom). Ferritic/martensitic steels exhibit a high fracture toughness after irradiation at all temperatures even below 673 K (400 °C), except when tested at room temperature after irradiations below 673 K (400 °C), which shows a significant reduction in fracture toughness. Creep studies showed that for the range of expected stresses in a reactor environment, the stress exponent is expected to be approximately one and the steady state creep rate in the absence of swelling is usually better than austenitic stainless steels both in terms of the creep rate and the temperature sensitivity of creep. In short, F/M steels show excellent promise for high dose applications in nuclear reactors.

  2. Exchange Flow Characteristics in a Tokamak Vacuum Vessel of Fusion Reactor Under the Loss-of-Vacuum Conditions

    NASA Astrophysics Data System (ADS)

    Takase, Kazuyuki; Kunugi, Tomoaki; Seki, Yasushi

    1997-06-01

    When a Tokamak vacuum vessel of fusion reactor is broken, buoyancy-driven exchange flows will take place through breaches after the inside pressure of the vacuum vessel (VV) becomes equal to the outside pressure. The exchange flow may bring a mixture of activated dusts and tritium from the inside of the VV to the outside through the breaches. Moreover, the exchange flow may remove decay heat from the plasma-facing components. A preliminary LOVA (Loss Of VAcuum event) apparatus was constructed to investigate quantitative heat transfer characteristics of the exchange flows through the breaches under the LOVA conditions. The results of this study, the relationship between Froude numbers and breach locations in the VV was determined and empirical correlations for the average Froude numbers were derived.

  3. Evaluating Russian space nuclear reactor technology for United States applications

    SciTech Connect

    Polansky, G.F.; Schmidt, G.L.; Voss, S.S.; Reynolds, E.L.

    1994-08-01

    Space nuclear power and nuclear electric propulsion are considered important technologies for planetary exploration, as well as selected earth orbit applications. The Nuclear Electric Propulsion Space Test Program (NEPSTP) was intended to provide an early flight demonstration of these technologies at relatively low cost through extensive use of existing Russian technology. The key element of Russian technology employed in the program was the Topaz II reactor. Refocusing of the activities of the Ballistic Missile Defense Organization (BMDO), combined with budgetary pressures, forced the cancellation of the NEPSTP at the end of the 1993 fiscal year. The NEPSTP was faced with many unique flight qualification issues. In general, the launch of a spacecraft employing a nuclear reactor power system complicates many spacecraft qualification activities. However, the NEPSTP activities were further complicated because the reactor power system was a Russian design. Therefore, this program considered not only the unique flight qualification issues associated with space nuclear power, but also with differences between Russian and United States flight qualification procedures. This paper presents an overview of the NEPSTP. The program goals, the proposed mission, the spacecraft, and the Topaz II space nuclear power system are described. The subject of flight qualification is examined and the inherent difficulties of qualifying a space reactor are described. The differences between United States and Russian flight qualification procedures are explored. A plan is then described that was developed to determine an appropriate flight qualification program for the Topaz II reactor to support a possible NEPSTP launch.

  4. Development status of CLAM steel for fusion application

    NASA Astrophysics Data System (ADS)

    Huang, Qunying

    2014-12-01

    The China low activation martensitic (CLAM) steel is being developed at the Institute of Nuclear Energy Safety Technology (INEST) under wide collaboration within China. Significant R&D work on CLAM steel was carried out to help make it suitable for industrial applications. The effect of refining processes and thermal aging on composition, microstructures and mechanical properties were investigated. Material properties before irradiation including impact, fracture toughness, thermal aging, creep and fatigue properties etc. were assessed. A series of irradiation tests in the fission reactor HFETR in Chengdu up to 2 dpa and in the spallation neutron source SINQ in Paul Scherrer Institute up to 20 dpa were performed. PbLi corrosion tests for more than 10,000 h were done in the DRAGON-I and PICOLO loops. Fabrication techniques for a test blanket module (TBM) are being developed and a 1/3 scale TBM prototype is being fabricated with CLAM steel. Recent progresses on the development status of this steel are presented here. The code qualification of CLAM steel is under plan for its final application in ITER-TBM and DEMO in the future.

  5. Reactor cell assembly for use in spectroscopy and microscopy applications

    DOEpatents

    Grindstaff, Quirinus; Stowe, Ashley Clinton; Smyrl, Norm; Powell, Louis; McLane, Sam

    2015-08-04

    The present disclosure provides a reactor cell assembly that utilizes a novel design and that is wholly or partially manufactured from Aluminum, such that reactions involving Hydrogen, for example, including solid-gas reactions and thermal decomposition reactions, are not affected by any degree of Hydrogen outgassing. This reactor cell assembly can be utilized in a wide range of optical and laser spectroscopy applications, as well as optical microscopy applications, including high-temperature and high-pressure applications. The result is that the elucidation of the role of Hydrogen in the reactions studied can be achieved. Various window assemblies can be utilized, such that high temperatures and high pressures can be accommodated and the signals obtained can be optimized.

  6. Monte Carlo Particle Transport Capability for Inertial Confinement Fusion Applications

    SciTech Connect

    Brantley, P S; Stuart, L M

    2006-11-06

    A time-dependent massively-parallel Monte Carlo particle transport calculational module (ParticleMC) for inertial confinement fusion (ICF) applications is described. The ParticleMC package is designed with the long-term goal of transporting neutrons, charged particles, and gamma rays created during the simulation of ICF targets and surrounding materials, although currently the package treats neutrons and gamma rays. Neutrons created during thermonuclear burn provide a source of neutrons to the ParticleMC package. Other user-defined sources of particles are also available. The module is used within the context of a hydrodynamics client code, and the particle tracking is performed on the same computational mesh as used in the broader simulation. The module uses domain-decomposition and the MPI message passing interface to achieve parallel scaling for large numbers of computational cells. The Doppler effects of bulk hydrodynamic motion and the thermal effects due to the high temperatures encountered in ICF plasmas are directly included in the simulation. Numerical results for a three-dimensional benchmark test problem are presented in 3D XYZ geometry as a verification of the basic transport capability. In the full paper, additional numerical results including a prototype ICF simulation will be presented.

  7. Magnetic-Nozzle Studies for Fusion Propulsion Applications: Gigawatt Plasma Source Operation and Magnetic Nozzle Analysis

    NASA Technical Reports Server (NTRS)

    Gilland, James H.; Mikekkides, Ioannis; Mikellides, Pavlos; Gregorek, Gerald; Marriott, Darin

    2004-01-01

    This project has been a multiyear effort to assess the feasibility of a key process inherent to virtually all fusion propulsion concepts: the expansion of a fusion-grade plasma through a diverging magnetic field. Current fusion energy research touches on this process only indirectly through studies of plasma divertors designed to remove the fusion products from a reactor. This project was aimed at directly addressing propulsion system issues, without the expense of constructing a fusion reactor. Instead, the program designed, constructed, and operated a facility suitable for simulating fusion reactor grade edge plasmas, and to examine their expansion in an expanding magnetic nozzle. The approach was to create and accelerate a dense (up to l0(exp 20)/m) plasma, stagnate it in a converging magnetic field to convert kinetic energy to thermal energy, and examine the subsequent expansion of the hot (100's eV) plasma in a subsequent magnetic nozzle. Throughout the project, there has been a parallel effort between theoretical and numerical design and modelling of the experiment and the experiment itself. In particular, the MACH2 code was used to design and predict the performance of the magnetoplasmadynamic (MPD) plasma accelerator, and to design and predict the design and expected behavior for the magnetic field coils that could be added later. Progress to date includes the theoretical accelerator design and construction, development of the power and vacuum systems to accommodate the powers and mass flow rates of interest to out research, operation of the accelerator and comparison to theoretical predictions, and computational analysis of future magnetic field coils and the expected performance of an integrated source-nozzle experiment.

  8. Driver Technology for Inertial Fusion Research 1.Status of High Power Solid State Laser for Laser Fusion Experiments and the Prospect of Future Reactor Drivers

    NASA Astrophysics Data System (ADS)

    Fujita, Hisanori

    The progress in development of high-power glass laser systems during the past 30 years is remarkable NIF (National Ignition Facility), which will deliver 1.8 MJ at 0.35 μm is now construction in the United States. Recently, technology that smoothes out the focal pattern has been developed to a great extent. RPP (Random Phase Plate) and PCL (Partially Coherent Laser) both gave an excellent focal pattern with standard deviation of 3% in the Gekko XII laser system. In the US, Japan and Europe, several ultra-short pulse lasers were developed for research on “fast ignition”. “Fast ignition” is a method which will reduce the total required laser energy for ignition. Because a diode-pumped, solid state laser can operate at a repetition rate of over 10 Hz with an efficiency of about 10% research area of high-power systems at the 1 kW level started to focus on the development of a driver for a commercial laser fusion reactor.

  9. A compact-toroid fusion reactor based on the field-reversed theta pinch

    NASA Astrophysics Data System (ADS)

    Hagenson, R. L.; Krakowski, R. A.

    1981-03-01

    A dynamic plasma model and an overall systems approach were used to examine a compact toroid (CTOR) reactor embodiment that uses a field reversed theta pinch as a plasma source. The field reversed plasmoid was formed and compressionally heated to ignition prior to injection into and translation through a linear burn chamber, thereby removing the high technology plasmoid source from the hostile reactor environment. Stabilization of the field reversed plasmoid was provided by a passive conducting shell located outside the high temperature blanket but within the low field superconducting magnets and associated radiation shielding. A reactor concept was developed with a length below approximately 40 m that generates 300-400 MWe of net electrical power with a recirculating power fraction less than 0.15.

  10. Compact-Toroid Fusion Reactor (CTOR) based on the field reversed theta pinch

    NASA Astrophysics Data System (ADS)

    Hagenson, R. L.; Krakowski, R. A.

    Scoping studies of a translating compact torus reactor (CTOR) made on the basis of a dynamic plasma model and an overall systems approach are presented. This CTOR embodiment uses a field reversed theta pinch as a plasma source. The field reversed plasmoid would be formed and compressionally heated to ignition prior to injection into and translation through a linear burn chamber, thereby removing the high technology plasmoid source from the hostile reactor environment. Stabilization of the field reversed plasmoid would be provided by a passive conducting shell located outside the high temperature blanket but within the low field superconducting magnets and associated radiation shielding. On the basis of this batch burn but thermally steady state approach, a reactor concept emerges with a length below approximately 40 m that generates 300 to 400 MWe of net electrical power with a recirculating power fraction less than 0.15.

  11. Compact-Toroid fusion reactor based on the field-reversed theta pinch

    NASA Astrophysics Data System (ADS)

    Hagenson, R. L.; Krakowski, R. A.

    1981-03-01

    Early scoping studies based on approximate, analytic models were extended on the basis of a dynamic plasma model and an overall systems approach to examine a compact toroid (CTOR) reactor embodiment that uses a field-reversed theta pinch as a plasma source. The field-reversed plasmoid would be formed and compressionally heated to ignition prior to injection into and translation through a linear burn chamber, thereby removing the high-technology plasmoid source from the hostile reactor environment. Stabilization of the field-reversed plasmoid would be provided by a passive conducting shell located outside the high temperature blanket but within the low field superconducting magnets and associated radiation shielding. On the basis of this batch-burn but thermally steady-state approach, a reactor concept emerges with a length below approx. 40 m that generates 300 to 400 MWe of net electrical power with a recirculating power fraction less than 0.15.

  12. FOREWORD: 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications/1st International Conference on Fusion Energy Materials Science 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications/1st International Conference on Fusion Energy Materials Science

    NASA Astrophysics Data System (ADS)

    Jacob, Wolfgang; Linsmeier, Christian; Rubel, Marek

    2011-12-01

    The 13th International Workshop on Plasma-Facing Materials and Components (PFMC-13) jointly organized with the 1st International Conference on Fusion Energy Materials Science (FEMaS-1) was held in Rosenheim (Germany) on 9-13 May 2011. PFMC-13 is a successor of the International Workshop on Carbon Materials for Fusion Applications series. Between 1985 and 2003 ten 'Carbon Workshops' were organized in Jülich, Stockholm and Hohenkammer. Then it was time for a change and redefinition of the scope of the symposium to reflect the new requirements of ITER and the ongoing evolution in the field. Under the new name (PFMC-11), the workshop was first organized in 2006 in Greifswald, Germany and PFMC-12 took place in Jülich in 2009. Initially starting in 1985 with about 40 participants as a 1.5 day workshop, the event has continuously grown to about 220 participants at PFMC-12. Due to the joint organization with FEMaS-1, PFMC-13 set a new record with more than 280 participants. The European project Fusion Energy Materials Science, FEMaS, coordinated by the Max-Planck-Institut für Plasmaphysik (IPP), organizes and stimulates cooperative research activities which involve large-scale research facilities as well as other top-level materials characterization laboratories. Five different fields are addressed: benchmarking experiments for radiation damage modelling, the application of micro-mechanical characterization methods, synchrotron and neutron radiation-based techniques and advanced nanoscopic analysis based on transmission electron microscopy. All these fields need to be exploited further by the fusion materials community for timely materials solutions for a DEMO reactor. In order to integrate these materials research fields, FEMaS acted as a co-organizer for the 2011 workshop and successfully introduced a number of participants from research labs and universities into the PFMC community. Plasma-facing materials experience particularly hostile conditions as they are

  13. Neutron Damage in the Plasma Chamber First Wall of the GCFTR-2 Fusion-Fission Hybrid Reactor

    NASA Astrophysics Data System (ADS)

    Pinto, L. N.; Gonnelli, E.; Rossi, P. C. R.; Carluccio, T.; dos Santos, A.

    2015-07-01

    The successful development of energy-conversion machines based on either nuclear fission or fusion is completely dependent on the behaviour of the engineering materials used to construct the fuel containment and primary heat extraction systems. Such materials must be designed in order to maintain their structural integrity and dimensional stability in an environment involving high temperatures and heat fluxes, corrosive media, high stresses and intense neutron fluxes. However, despite the various others damage issues, such as the effects of plasma radiation and particle flux, the neutron flux is sufficiently energetic to displace atoms from their crystalline lattice sites. It is clear that the understanding of the neutron damage is essential for the development and safe operation of nuclear systems. Considering this context, the work presents a study of neutron damage in the Gas Cooled Fast Transmutation Reactor (GCFTR-2) driven by a Tokamak D-T fusion neutron source of 14.03 MeV. The theoretical analysis was performed by MCNP-5 and the ENDF/B-VII.1 neutron data library. A brief discussion about the determination of the radiation damage is presented, along with an analysis of the total neutron energy deposition in seven points through the material of the plasma source wall (PSW), in which was considered the HT-9 steel. The neutron flux was subdivided into three energy groups and their behaviour through the material was also examined.

  14. Spatial Statistical Data Fusion for Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Nguyen, Hai

    2010-01-01

    Data fusion is the process of combining information from heterogeneous sources into a single composite picture of the relevant process, such that the composite picture is generally more accurate and complete than that derived from any single source alone. Data collection is often incomplete, sparse, and yields incompatible information. Fusion techniques can make optimal use of such data. When investment in data collection is high, fusion gives the best return. Our study uses data from two satellites: (1) Multiangle Imaging SpectroRadiometer (MISR), (2) Moderate Resolution Imaging Spectroradiometer (MODIS).

  15. Fusion power production in International Thermonuclear Experimental Reactor baseline H-mode scenarios

    SciTech Connect

    Rafiq, T.; Kritz, A. H.; Kessel, C. E.; Pankin, A. Y.

    2015-04-15

    Self-consistent simulations of 15 MA ITER H-mode DT scenarios, from ramp-up through flat-top, are carried out. Electron and ion temperatures, toroidal angular frequency, and currents are evolved, in simulations carried out using the predictive TRANSPort and integrated modeling code starting with initial profiles and equilibria obtained from tokamak simulation code studies. Studies are carried out examining the dependence and sensitivity of fusion power production on electron density, argon impurity concentration, choice of radio frequency heating, pedestal temperature without and with E × B flow shear effects included, and the degree of plasma rotation. The goal of these whole-device ITER simulations is to identify dependencies that might impact ITER fusion performance.

  16. Apparatus and method for simulating material damage from a fusion reactor

    DOEpatents

    Smith, Dale L.; Greenwood, Lawrence R.; Loomis, Benny A.

    1989-01-01

    An apparatus and method for simulating a fusion environment on a first wall or blanket structure. A material test specimen is contained in a capsule made of a material having a low hydrogen solubility and permeability. The capsule is partially filled with a lithium solution, such that the test specimen is encapsulated by the lithium. The capsule is irradiated by a fast fission neutron source.

  17. Apparatus and method for simulating material damage from a fusion reactor

    DOEpatents

    Smith, D.L.; Greenwood, L.R.; Loomis, B.A.

    1988-05-20

    This paper discusses an apparatus and method for simulating a fusion environment on a first wall or blanket structure. A material test specimen is contained in a capsule made of a material having a low hydrogen solubility and permeability. The capsule is partially filled with a lithium solution, such that the test specimen is encapsulated by the lithium. The capsule is irradiated by a fast fission neutron source.

  18. Apparatus and method for simulating material damage from a fusion reactor

    DOEpatents

    Smith, Dale L.; Greenwood, Lawrence R.; Loomis, Benny A.

    1989-03-07

    An apparatus and method for simulating a fusion environment on a first wall or blanket structure. A material test specimen is contained in a capsule made of a material having a low hydrogen solubility and permeability. The capsule is partially filled with a lithium solution, such that the test specimen is encapsulated by the lithium. The capsule is irradiated by a fast fission neutron source.

  19. (Fusion materials R D programs of the International Thermonuclear Experimental Reactor)

    SciTech Connect

    Reuther, T.C.

    1990-10-12

    The objective of this travel was to advance provisional planning of an activity to coordinate research and development (R D) activities on fusion materials among the existing fusion materials R D programs of the ITER parties. This objective was accomplished in discussions with the Executive Committee for the IEA Implementing Agreement on Fusion Materials in Karlsruhe, Germany, and with the ITER management and staff of Garching, Germany. The IEA Executive Committee deferred substantive consideration of the topic at the insistence of the Ex-Officio member from European Community (EC), Brussels. Discussions with ITER management and staff were positive. It was noted the the draft ITER Long-Term Technology Research and Development Plan contains recommendations for major program effort in materials R D and includes recommendations for coordination among the existing programs of the parties to meet those materials R D needs. ITER management discussions were in the context that decisions on specific activities for the ITER engineering design activity (EDA) must await formal action by the parties on the ITER EDA.

  20. Fusion reactor materials: Semiannual progress report for the period ending March 31, 1988

    SciTech Connect

    none,

    1988-08-01

    This report contains papers on thermonuclear reactor materials. The general categories of these papers are: irradiation facilities, test matrices, and experimental methods; dosimetry, damage parameters and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; development of structural alloys; solid breeding materials; ceramics; and radiation effects. Selected papers have been processed for inclusion in the energy database. (LSP)

  1. Fusion Reactor Materials semiannual progress report for period ending September 30, 1991

    SciTech Connect

    none,

    1992-04-01

    This report contains papers on topic in the following areas of thermonuclear reactor materials: irradiation facilities, test matrices, and experimental methods; dosimetry, damage parameters and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials and beryllium; and ceramics. These paper have been index separately elsewhere. (LSP).

  2. Inertial Fusion Energy reactor design studies: Prometheus-L, Prometheus-H. Volume 2, Final report

    SciTech Connect

    Waganer, L.M.; Driemeyer, D.E.; Lee, V.D.

    1992-03-01

    This report contains a review of design studies for Inertial Confinement reactor. This second of three volumes discussions is some detail the following: Objectives, requirements, and assumptions; rationale for design option selection; key technical issues and R&D requirements; and conceptual design selection and description.

  3. Fusion reactor materials semiannual progress report for the period ending March 31, 1990

    SciTech Connect

    Not Available

    1990-08-01

    This report mainly discusses topics on the physical effects of radiation on thermonuclear reactor materials. The areas discussed are: irradiation facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; fundamental mechanical behavior; radiation effects; mechanistic studies, theory and modeling; development of structural alloys; solid breeding materials; and ceramics. (FI)

  4. Inertial Fusion Energy Reactor Design Studies: Prometheus-L, Prometheus-H. Volume 3, Final report

    SciTech Connect

    Waganer, L.M.; Driemeyer, D.E.; Lee, V.D.

    1992-03-01

    This report contains a review of design studies for inertial confinement reactor. This third of three three volumes discusses the following topics: Driver system definition; vacuum system; fuel processing systems (FPS); cavity design and analysis; heat transport and thermal energy conversion; balance of plant systems; remote maintenance systems; safety and environment; economics; and comparison of IFE designs.

  5. Final report SI 08-SI-004: Fusion application targets

    SciTech Connect

    Biener, J; Kucheyev, S O; Wang, M Y; Dawedeit, C; Worsley, M A; Kim, S H; Walton, C; Gilmer, G; Zepeda-Ruiz, L; Chernov, A A; Lee, J I; Willey, T M; Biener, M M; van Buuren, T; Wu, K J; Satcher, J H; Hamza, A V

    2010-12-03

    Complex target structures are necessary to take full advantage of the unique laboratory environment created by inertial confinement fusion experiments. For example, uses-of-ignition targets that contain a thin layer of a low density nanoporous material inside a spherical ablator shell allow placing dopants in direct contact with the DT fuel. The ideal foam for this application is a low-density hydrocarbon foam that is strong enough to survive wetting with cryogenic hydrogen, and low enough in density (density less than {approx}30 mg/cc) to not reduce the yield of the target. Here, we discuss the fabrication foam-lined uses-of-ignition targets, and the development of low-density foams that can be used for this application. Much effort has been directed over the last 20 years toward the development of spherical foam targets for direct-drive and fast-ignition experiments. In these targets, the spherical foam shell is used to define the shape of the cryogenic DT fuel layer, or acts as a surrogate to simulate the cryogenic fuel layer. These targets are fabricated from relatively high-density aerogels (>100 mg/cc) and coated with a few micron thick permeation barrier. With exception of the above mentioned fast ignition targets, the wall of these targets is typically larger than 100 microns. In contrast, the fusion application targets for indirect-drive experiments on NIF will require a much thinner foam shell surrounded by a much thicker ablator shell. The design requirements for both types of targets are compared in Table 1. The foam shell targets for direct-drive experiments can be made in large quantities and with reasonably high yields using an encapsulation technique pioneered by Takagi et al. in the early 90's. In this approach, targets are made by first generating unsupported foam shells using a triple-orifice droplet generator, followed by coating the dried foam shells with a thin permeation barrier. However, this approach is difficult, if not impossible, to

  6. Inertial confinement fusion reactor cavity analysis: Progress report for the period 1 July 1986 to 30 June 1987

    SciTech Connect

    Peterson, R.R.; MacFarlane, J.J.; Moses, G.A.; El-Afify, M.; Corradini, M.L.

    1987-07-01

    This is a process report for research performed from July 1, 1986 to June 30, 1987, for Lawrence Livermore National Laboratory under subcontract number 9265205 with the project title: Inertial Confinement Fusion Reactor Cavity Analysis. This research generally considers the problems of vaporization and condensation of liquid metal or solid first surface materials in high yield ICF facilities such as reactors or high yield target test experiments. The past year's research consisted of 1.2 man years of effort on three tasks. These tasks were: verify the current vaporization-condensation models in CONRAD through literature surveys of relevant published data, and evaluation and comparison of these data with predictions by CONRAD on condensation phenomena, and with predictions by CONRAD, ZPINCH, and/or MIXERG on radiation phenomena, design a small-scale vaporization experiment by evaluating existing experimental facilities, selecting a primary facility, and conceptually designing an experiment complete with facility parameters and measurables, and design a small-scale condensation experiment including experimental parameters, measurables, and diagnostics. 48 refs.

  7. The role of the boundary plasma in defining the viability of a magnetic fusion reactor: A review

    NASA Astrophysics Data System (ADS)

    Whyte, Dennis

    2012-10-01

    The boundary of magnetic confinement devices, from the pedestal through to the surrounding surfaces, encompasses an enormous range of plasma and material physics, and their integrated coupling. It is becoming clear that due to fundamental limits of plasma stability and material response the boundary will largely define the viability of an MFE reactor. However we face an enormous knowledge deficit in stepping from present devices and ITER towards a demonstration power plant. We review the boundary and plasma-material interaction (PMI) research required to address this deficit as well as related theoretical/scaling methods for extending present results to future devices. The research activities and gaps are reviewed and organized to three major axes of challenges: power density, plasma duration, and material temperature. The boundary can also be considered a multi-scale system of coupled plasma and material science regulated through the non-linear interface of the sheath. Measurement, theory and modeling across these scales are reviewed. Dimensionless parameters, often used to organized core plasma transport on similarity arguments, can be extended to the boundary plasma, plasma-surface interactions and material response. The scaling methodology suggests intriguing ways forward to prescribe and understand the boundary issues of an eventual reactor in intermediate size devices. Finally, proposed technology and science innovations towards solving the extreme PMI/boundary challenges of magnetic fusion energy will be reviewed.

  8. Simulation of plasma–surface interactions in a fusion reactor by means of QSPA plasma streams: recent results and prospects

    NASA Astrophysics Data System (ADS)

    Garkusha, I. E.; Aksenov, N. N.; Byrka, O. V.; Makhlaj, V. A.; Herashchenko, S. S.; Malykhin, S. V.; Petrov, Yu V.; Staltsov, V. V.; Surovitskiy, S. V.; Wirtz, M.; Linke, J.; Sadowski, M. J.; Skladnik-Sadowska, E.

    2016-09-01

    This paper is devoted to plasma–surface interaction issues at high heat-loads which are typical for fusion reactors. For the International Thermonuclear Experimental Reactor (ITER), which is now under construction, the knowledge of erosion processes and the behaviour of various constructional materials under extreme conditions is a very critical issue, which will determine a successful realization of the project. The most important plasma–surface interaction (PSI) effects in 3D geometry have been studied using a QSPA Kh-50 powerful quasi-stationary plasma accelerator. Mechanisms of the droplet and dust generation have been investigated in detail. It was found that the droplets emission from castellated surfaces has a threshold character and a cyclic nature. It begins only after a certain number of the irradiating plasma pulses when molten and shifted material is accumulated at the edges of the castellated structure. This new erosion mechanism, connected with the edge effects, results in an increase in the size of the emitted droplets (as compared with those emitted from a flat surface). This mechanism can even induce the ejection of sub-mm particles. A concept of a new-generation QSPA facility, the current status of this device maintenance, and prospects for further experiments are also presented.

  9. Simulation of plasma-surface interactions in a fusion reactor by means of QSPA plasma streams: recent results and prospects

    NASA Astrophysics Data System (ADS)

    Garkusha, I. E.; Aksenov, N. N.; Byrka, O. V.; Makhlaj, V. A.; Herashchenko, S. S.; Malykhin, S. V.; Petrov, Yu V.; Staltsov, V. V.; Surovitskiy, S. V.; Wirtz, M.; Linke, J.; Sadowski, M. J.; Skladnik-Sadowska, E.

    2016-09-01

    This paper is devoted to plasma-surface interaction issues at high heat-loads which are typical for fusion reactors. For the International Thermonuclear Experimental Reactor (ITER), which is now under construction, the knowledge of erosion processes and the behaviour of various constructional materials under extreme conditions is a very critical issue, which will determine a successful realization of the project. The most important plasma-surface interaction (PSI) effects in 3D geometry have been studied using a QSPA Kh-50 powerful quasi-stationary plasma accelerator. Mechanisms of the droplet and dust generation have been investigated in detail. It was found that the droplets emission from castellated surfaces has a threshold character and a cyclic nature. It begins only after a certain number of the irradiating plasma pulses when molten and shifted material is accumulated at the edges of the castellated structure. This new erosion mechanism, connected with the edge effects, results in an increase in the size of the emitted droplets (as compared with those emitted from a flat surface). This mechanism can even induce the ejection of sub-mm particles. A concept of a new-generation QSPA facility, the current status of this device maintenance, and prospects for further experiments are also presented.

  10. Kalman filter application for distributed parameter estimation in reactor systems

    SciTech Connect

    Martin, R.P.; Edwards, R.M.

    1996-07-01

    An application of the Kalman filter has been developed for the real-time identification of a distributed parameter in a nuclear power plant. This technique can be used to improve numerical method-based best-estimate simulation of complex systems such as nuclear power plants. The application to a reactor system involves a unique modal model that approximates physical components, such as the reactor, as a coupled oscillator, i.e., a modal model with coupled modes. In this model both states and parameters are described by an orthogonal expansion. The Kalman filter with the sequential least-squares parameter estimation algorithm was used to estimate the modal coefficients of all states and one parameter. Results show that this state feedback algorithm is an effective way to parametrically identify a distributed parameter system in the presence of uncertainties.

  11. Acceleration of mini-projectiles using a small-caliber electrothermal gun for fusion applications

    SciTech Connect

    Kincaid, R.W.; Bourham, M.A.; Gilligan, J.G.

    1995-12-31

    The small-caliber electrothermal plasma gun SIRENS has been used to accelerate mini-projectiles to demonstrate the feasibility of using such guns as a pellet injector for fueling of future fusion reactors. The gun has been modified to accommodate acceleration of plastic projectiles to simulate frozen hydrogenic pellets required to fuel fusion reactors. Barrel sections are equipped with diagnostics for velocity and position of the projectile. The length of the acceleration path could be varied between 15 and 45 cm. The pulse forming network (PFN) can provide up to 100 kJ discharge energy over 0.1 to 1.0 ms pulse duration. The projectile velocities have been measured via a set of break wires. The ODIN code has been modified to account for the projectile mass, acceleration and friction. Plasma parameters compared to code results are discussed in detail.

  12. The Virtual Environment for Reactor Applications (VERA): Design and architecture

    DOE PAGES

    Turner, John A.; Clarno, Kevin; Sieger, Matt; Bartlett, Roscoe; Collins, Benjamin; Pawlowski, Roger; Schmidt, Rodney; Summers, Randall

    2016-09-08

    VERA, the Virtual Environment for Reactor Applications, is the system of physics capabilities being developed and deployed by the Consortium for Advanced Simulation of Light Water Reactors (CASL), the first DOE Hub, which was established in July 2010 for the modeling and simulation of commercial nuclear reactors. VERA consists of integrating and interfacing software together with a suite of physics components adapted and/or refactored to simulate relevant physical phenomena in a coupled manner. VERA also includes the software development environment and computational infrastructure needed for these components to be effectively used. We describe the architecture of VERA from both amore » software and a numerical perspective, along with the goals and constraints that drove the major design decisions and their implications. As a result, we explain why VERA is an environment rather than a framework or toolkit, why these distinctions are relevant (particularly for coupled physics applications), and provide an overview of results that demonstrate the application of VERA tools for a variety of challenging problems within the nuclear industry.« less

  13. Iaea Activities Supporting the Applications of Research Reactors in 2013

    NASA Astrophysics Data System (ADS)

    Peld, Nathan D.; Ridikas, Danas

    2014-02-01

    As the underutilization of research reactors around the world persists as a primary topic of concern among facility owners and operators, the IAEA responded in 2013 with a broad range of activities to address the planning, execution and improvement of many experimental techniques. The revision of two critical documents for planning and diversifying a facility's portfolio of applications, TECDOC 1234 “The Applications of Research Reactors” and TECDOC 1212 “Strategic Planning for Research Reactors”, is in progress in order to keep this information relevant, corresponding to the dynamism of experimental techniques and research capabilities. Related to the latter TECDOC, the IAEA convened a meeting in 2013 for the expert review of a number of strategic plans submitted by research reactor operators in developing countries. A number of activities focusing on specific applications are either continuing or beginning as well. In neutron activation analysis, a joint round of inter-comparison proficiency testing sponsored by the IAEA Technical Cooperation Department will be completed, and facility progress in measurement accuracy is described. Also, a training workshop in neutron imaging and Coordinated Research Projects in reactor benchmarks, automation of neutron activation analysis and neutron beam techniques for material testing intend to advance these activities as more beneficial services to researchers and other users.

  14. Multi-Applications Small Light Water Reactor - NERI Final Report

    SciTech Connect

    S. Michale Modro; James E. Fisher; Kevan D. Weaver; Jose N. Reyes, Jr.; John T. Groome; Pierre Babka; Thomas M. Carlson

    2003-12-01

    The Multi-Application Small Light Water Reactor (MASLWR) project was conducted under the auspices of the Nuclear Energy Research Initiative (NERI) of the U.S. Department of Energy (DOE). The primary project objectives were to develop the conceptual design for a safe and economic small, natural circulation light water reactor, to address the economic and safety attributes of the concept, and to demonstrate the technical feasibility by testing in an integral test facility. This report presents the results of the project. After an initial exploratory and evolutionary process, as documented in the October 2000 report, the project focused on developing a modular reactor design that consists of a self-contained assembly with a reactor vessel, steam generators, and containment. These modular units would be manufactured at a single centralized facility, transported by rail, road, and/or ship, and installed as a series of self-contained units. This approach also allows for staged construction of an NPP and ''pull and replace'' refueling and maintenance during each five-year refueling cycle.

  15. Application of reactor-pumped lasers to power beaming

    SciTech Connect

    Repetti, T.E.

    1991-10-01

    Power beaming is the concept of centralized power generation and distribution to remote users via energy beams such as microwaves or laser beams. The power beaming community is presently performing technical evaluations of available lasers as part of the design process for developing terrestrial and space-based power beaming systems. This report describes the suitability of employing a nuclear reactor-pumped laser in a power beaming system. Although there are several technical issues to be resolved, the power beaming community currently believes that the AlGaAs solid-state laser is the primary candidate for power beaming because that laser meets the many design criteria for such a system and integrates well with the GaAs photodiode receiver array. After reviewing the history and physics of reactor-pumped lasers, the advantages of these lasers for power beaming are discussed, along with several technical issues which are currently facing reactor-pumped laser research. The overriding conclusion is that reactor-pumped laser technology is not presently developed to the point of being technially or economically competitive with more mature solid-state technologies for application to power beaming. 58 refs.

  16. A commercial lunar helium 3 fusion power infrasructure

    NASA Astrophysics Data System (ADS)

    Sved, J.; Kulcinski, G. L.; Miley, G. H.

    1995-01-01

    The potential scenario of a commercial aneutronic fusion power economy based on Helium 3 is reviewed with recent developments in fusion grade plasma containment considered. The Spherical Inertial Electrostatic Confinement (IEC) device is a type of fusion reactor with immediate commercial applications as a small non-power reactor. Further development and growth to power reactor fusion reaction rates using Deuterium and Helium 3 offers the potential practical solution to fusion power. Recovery of the lunar Helium 3 inventory for export to power utility customers will require the build-up of a cis-lunar industrial infrastructure. Space transport capacity will be obliged to grow rapidly to support several thousand tons of cargo delivery to the lunar surface per year. A highly reusable, low operations cost cis-lunar transport infrastructure and lunar surface industrial activity will be made more practical by the availability of IEC fusion power units that are intrinsically low mass and compatible with space transport.

  17. Application of small-signal fusion energy gain

    SciTech Connect

    Jassby, D.L.

    1986-11-01

    The measured burnup fraction of the 1-MeV tritons produced in a deuterium tokamak plasma, multiplied by 17.5, is essentially the small-signal fusion energy gain g/sub T/ for an ideal 1-MeV triton beam injected into the deuterium plasma. The measured g/sub T/ can be converted directly into the two-component fusion energy gain that would be realized if a lower energy tritium beam were injected into the plasma, or if a deuterium beam were injected into a tritium target plasma having the same parameters as the acutal deuterium plasma. Under certain conditions, g/sub T/ greater than or equal to 1 can be obtained by injection of a low-current 225-keV tritium beam into a hot deuterium plasma, thereby verifying that the plasma has the essential characteristics needed for achieving macroscopic fusion energy ''break-even.''

  18. A wavelet transformation approach for multi-source gravity fusion: Applications and uncertainty tests

    NASA Astrophysics Data System (ADS)

    Bai, Yongliang; Dong, Dongdong; Wu, Shiguo; Liu, Zhan; Zhang, Guangxu; Xu, Kaijun

    2016-05-01

    Gravity anomalies detected by different measurement platforms have different characteristics and advantages. There are different kinds of gravity data fusion methods for generating single gravity anomaly map with a rich and accurate spectral content. Former studies using wavelet based gravity fusion method which is a newly developed approach did not pay more attention to the fusion uncertainties. In this paper, we firstly introduce the wavelet based gravity fusion method, and then apply this method to one synthetic model and also to the northern margin of the South China Sea. Wavelet type and the decomposition level are two input parameters for this fusion method, and the uncertainty tests show that fusion results are more sensitive to wavelet type than the decomposition level. The optimal application result of the fusion methodology on the synthetic model is closer to the true anomaly field than either of the simulated shipborne anomaly and altimetry-based anomaly grid. The best fusion result on the northern margin of the South China Sea is based on the 'rbio1.3' wavelet and four-level decomposition. The fusion result contains more accurate short-wavelength anomalies than the altimetry-based gravity anomalies along ship tracks, and it also has more accurate long wavelength characteristics than the shipborne gravity anomalies between ship tracks. The real application case shows that the fusion result has better correspondences to the seafloor topography variations and sub-surface structures than each of the two input gravity anomaly maps (shipborne based gravity anomaly map and altimetry based gravity anomaly map). Therefore, it is possible to map and detect more precise seafloor topography and geologic structures by the new gravity anomaly map.

  19. Method and system to directly produce electrical power within the lithium blanket region of a magnetically confined, deuterium-tritium (DT) fueled, thermonuclear fusion reactor

    DOEpatents

    Woolley, Robert D.

    1999-01-01

    A method for integrating liquid metal magnetohydrodynamic power generation with fusion blanket technology to produce electrical power from a thermonuclear fusion reactor located within a confining magnetic field and within a toroidal structure. A hot liquid metal flows from a liquid metal blanket region into a pump duct of an electromagnetic pump which moves the liquid metal to a mixer where a gas of predetermined pressure is mixed with the pressurized liquid metal to form a Froth mixture. Electrical power is generated by flowing the Froth mixture between electrodes in a generator duct. When the Froth mixture exits the generator the gas is separated from the liquid metal and both are recycled.

  20. Method and System to Directly Produce Electrical Power within the Lithium Blanket Region of a Magnetically Confined, Deuterium-Tritium (DT) Fueled, Thermonuclear Fusion Reactor

    SciTech Connect

    Woolley, Robert D.

    1998-09-22

    A method for integrating liquid metal magnetohydrodynamic power generation with fusion blanket technology to produce electrical power from a thermonuclear fusion reactor located within a confining magnetic field and within a toroidal structure. A hot liquid metal flows from a liquid metal blanket region into a pump duct of an electromagnetic pump which moves the liquid metal to a mixer where a gas of predetermined pressure is mixed with the pressurized liquid metal to form a Froth mixture. Electrical power is generated by flowing the Froth mixture between electrodes in a generator duct. When the Froth mixture exits the generator the gas is separated from the liquid metal and both are recycled.