Fusion Safety Program annual report, fiscal year 1994
NASA Astrophysics Data System (ADS)
Longhurst, Glen R.; Cadwallader, Lee C.; Dolan, Thomas J.; Herring, J. Stephen; McCarthy, Kathryn A.; Merrill, Brad J.; Motloch, Chester C.; Petti, David A.
1995-03-01
This report summarizes the major activities of the Fusion Safety Program in fiscal year 1994. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions, including the University of Wisconsin. The technical areas covered in this report include tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate data base development, and thermalhydraulics code development and their application to fusion safety issues. Much of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and of the technical support for commercial fusion facility conceptual design studies. A major activity this year has been work to develop a DOE Technical Standard for the safety of fusion test facilities.
NASA Astrophysics Data System (ADS)
Akiba, Masato; Matsui, Hideki; Takatsu, Hideyuki; Konishi, Satoshi
Technical issues regarding the fusion power plant that are required to be developed in the period of ITER construction and operation, both with ITER and with other facilities that complement ITER are described in this section. Three major fields are considered to be important in fusion technology. Section 4.1 summarizes blanket study, and ITER Test Blanket Module (TBM) development that focuses its effort on the first generation power blanket to be installed in DEMO. ITER will be equipped with 6 TBMs which are developed under each party's fusion program. In Japan, the solid breeder using water as a coolant is the primary candidate, and He-cooled pebble bed is the alternative. Other liquid options such as LiPb, Li or molten salt are developed by other parties' initiatives. The Test Blanket Working Group (TBWG) is coordinating these efforts. Japanese universities are investigating advanced concepts and fundamental crosscutting technologies. Section 4.2 introduces material development and particularly, the international irradiation facility, IFMIF. Reduced activation ferritic/martensitic steels are identified as promising candidates for the structural material of the first generation fusion blanket, while and vanadium alloy and SiC/SiC composite are pursued as advanced options. The IFMIF is currently planning the next phase of joint activity, EVEDA (Engineering Validation and Engineering Design Activity) that encompasses construction. Material studies together with the ITER TBM will provide essential technical information for development of the fusion power plant. Other technical issues to be addressed regarding the first generation fusion power plant are summarized in section 4.3. Development of components for ITER made remarkable progress for the major essential technology also necessary for future fusion plants, however many still need further improvements toward power plant. Such areas includes; the divertor, plasma heating/current drive, magnets, tritium, and remote handling. There remain many other technical issues for power plant which require integrated efforts.
A Technical Analysis Information Fusion Approach for Stock Price Analysis and Modeling
NASA Astrophysics Data System (ADS)
Lahmiri, Salim
In this paper, we address the problem of technical analysis information fusion in improving stock market index-level prediction. We present an approach for analyzing stock market price behavior based on different categories of technical analysis metrics and a multiple predictive system. Each category of technical analysis measures is used to characterize stock market price movements. The presented predictive system is based on an ensemble of neural networks (NN) coupled with particle swarm intelligence for parameter optimization where each single neural network is trained with a specific category of technical analysis measures. The experimental evaluation on three international stock market indices and three individual stocks show that the presented ensemble-based technical indicators fusion system significantly improves forecasting accuracy in comparison with single NN. Also, it outperforms the classical neural network trained with index-level lagged values and NN trained with stationary wavelet transform details and approximation coefficients. As a result, technical information fusion in NN ensemble architecture helps improving prediction accuracy.
Towards reconstitution of membrane fusion mediated by SNAREs and other synaptic proteins
Brunger, Axel T.; Cipriano, Daniel J.; Diao, Jiajie
2015-01-01
Abstract Proteoliposomes have been widely used for in vitro studies of membrane fusion mediated by synaptic proteins. Initially, such studies were made with large unsynchronized ensembles of vesicles. Such ensemble assays limited the insights into the SNARE-mediated fusion mechanism that could be obtained from them. Single particle microscopy experiments can alleviate many of these limitations but they pose significant technical challenges. Here we summarize various approaches that have enabled studies of fusion mediated by SNAREs and other synaptic proteins at a single-particle level. Currently available methods are described and their advantages and limitations are discussed. PMID:25788028
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, D.W.
The objectives are: (1) to advance the transport studies of tokamaks, including development and maintenance of the Magnetic Fusion Energy Database, and (2) to provide theoretical interpretation, modeling and equilibrium and stability studies for TEXT-Upgrade. Recent reports, publications, and conference presentations of the Fusion Research Center are listed.
Local bone graft harvesting and volumes in posterolateral lumbar fusion: a technical report.
Carragee, Eugene J; Comer, Garet C; Smith, Micah W
2011-06-01
In lumbar surgery, local bone graft is often harvested and used in posterolateral fusion procedures. The volume of local bone graft available for posterolateral fusion has not been determined in North American patients. Some authors have described this as minimal, but others have suggested the volume was sufficient to be reliably used as a stand-alone bone graft substitute for single-level fusion. To describe the technique used and determine the volume of local bone graft available in a cohort of patients undergoing single-level primary posterolateral fusion by the authors harvesting technique. Technical description and cohort report. Consecutive patients undergoing lumbar posterolateral fusion with or without instrumentation for degenerative processes. Local bone graft volume. Consecutive patients undergoing lumbar posterolateral fusion with or without instrumentation for degenerative processes of were studied. Local bone graft was harvested by a standard method in each patient and the volume measured by a standard procedure. Twenty-five patients were studied, and of these 11 (44%) had a previous decompression. The mean volume of local bone graft harvested was measured to be 25 cc (range, 12-36 cc). Local bone graft was augmented by iliac crest bone in six of 25 patients (24%) if the posterolateral fusion bed was not well packed with local bone alone. There was a trend to greater local bone graft volumes in men and in patients without previous decompression. Large volumes of local bone can be harvested during posterolateral lumbar fusion surgery. Even in patients with previous decompression the volume harvested is similar to that reported harvested from the posterior iliac crest for single-level fusion. Copyright © 2011 Elsevier Inc. All rights reserved.
The status of beryllium technology for fusion
NASA Astrophysics Data System (ADS)
Scaffidi-Argentina, F.; Longhurst, G. R.; Shestakov, V.; Kawamura, H.
2000-12-01
Beryllium was used for a number of years in the Joint European Torus (JET), and it is planned to be used extensively on the lower heat-flux surfaces of the reduced technical objective/reduced cost international thermonuclear experimental reactor (RTO/RC ITER). It has been included in various forms in a number of tritium breeding blanket designs. There are technical advantages but also a number of safety issues associated with the use of beryllium. Research in a variety of technical areas in recent years has revealed interesting issues concerning the use of beryllium in fusion. Progress in this research has been presented at a series of International Workshops on Beryllium Technology for Fusion. The most recent workshop was held in Karlsruhe, Germany on 15-17 September 1999. In this paper, a summary of findings presented there and their implications for the use of beryllium in the development of fusion reactors are presented.
Chowdhury, Forhad H; Haque, Mohammod Raziul; Alam, Sarwar Murshed; Khaled Chowdhury, S M Noman; Khan, Shamsul Islam; Goel, Atul
2017-11-01
Nontraumatic spontaneous atlanto-occipital dislocation (AOD) is rare. In this report, we discuss the technical steps of condylar joint fusion and stabilization (by screws and plates) in nontraumatic AOD. To the best of our knowledge, it is the first report of such techniques. A young girl and a young man with progressive quadriparesis due to nontraumatic spontaneous atlanto-occipital dislocation were managed by microsurgical reduction, fusion, and stabilization of the joint by occipital condylar and C1 lateral mass screw and plate fixation after mobilization of vertebral artery. In both cases, condylar joints fixation and fusion were done successfully. Condylar joint stabilization and fusion may be a good or alternative option for AOD. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Norimatsu, T.; Kozaki, Y.; Shiraga, H.; Fujita, H.; Okano, K.; Members of LIFT Design Team
2017-11-01
We present the conceptual design of an experimental laser fusion plant known as the laser inertial fusion test (LIFT) reactor. The conceptual design aims at technically connecting a single-shot experiment and a commercial power plant. The LIFT reactor is designed on a three-phase scheme, where each phase has specific goals and the dedicated chambers of each phase are driven by the same laser. Technical issues related to the chamber technology including radiation safety to repeat burst mode operation are discussed in this paper.
Kang, Tae Wook; Lee, Min Woo; Song, Kyoung Doo; Kim, Mimi; Kim, Seung Soo; Kim, Seong Hyun; Ha, Sang Yun
2017-01-01
To assess whether contrast-enhanced ultrasonography (CEUS) with Sonazoid can improve the lesion conspicuity and feasibility of percutaneous biopsies for focal hepatic lesions invisible on fusion imaging of real-time ultrasonography (US) with computed tomography/magnetic resonance images, and evaluate its impact on clinical decision making. The Institutional Review Board approved this retrospective study. Between June 2013 and January 2015, 711 US-guided percutaneous biopsies were performed for focal hepatic lesions. Biopsies were performed using CEUS for guidance if lesions were invisible on fusion imaging. We retrospectively evaluated the number of target lesions initially invisible on fusion imaging that became visible after applying CEUS, using a 4-point scale. Technical success rates of biopsies were evaluated based on histopathological results. In addition, the occurrence of changes in clinical decision making was assessed. Among 711 patients, 16 patients (2.3%) were included in the study. The median size of target lesions was 1.1 cm (range, 0.5-1.9 cm) in pre-procedural imaging. After CEUS, 15 of 16 (93.8%) focal hepatic lesions were visualized. The conspicuity score was significantly increased after adding CEUS, as compared to that on fusion imaging (p < 0.001). The technical success rate of biopsy was 87.6% (14/16). After biopsy, there were changes in clinical decision making for 11 of 16 patients (68.8%). The addition of CEUS could improve the conspicuity of focal hepatic lesions invisible on fusion imaging. This dual guidance using CEUS and fusion imaging may affect patient management via changes in clinical decision-making.
ERIC Educational Resources Information Center
Dingee, David A.
1979-01-01
Discusses the extraordinary potential, the technical difficulties, and the financial problems that are associated with research and development of fusion power plants as a major source of energy. (GA)
Fusion or confusion: knowledge or nonsense?
NASA Astrophysics Data System (ADS)
Rothman, Peter L.; Denton, Richard V.
1991-08-01
The terms 'data fusion,' 'sensor fusion,' multi-sensor integration,' and 'multi-source integration' have been used widely in the technical literature to refer to a variety of techniques, technologies, systems, and applications which employ and/or combine data derived from multiple information sources. Applications of data fusion range from real-time fusion of sensor information for the navigation of mobile robots to the off-line fusion of both human and technical strategic intelligence data. The Department of Defense Critical Technologies Plan lists data fusion in the highest priority group of critical technologies, but just what is data fusion? The DoD Critical Technologies Plan states that data fusion involves 'the acquisition, integration, filtering, correlation, and synthesis of useful data from diverse sources for the purposes of situation/environment assessment, planning, detecting, verifying, diagnosing problems, aiding tactical and strategic decisions, and improving system performance and utility.' More simply states, sensor fusion refers to the combination of data from multiple sources to provide enhanced information quality and availability over that which is available from any individual source alone. This paper presents a survey of the state-of-the- art in data fusion technologies, system components, and applications. A set of characteristics which can be utilized to classify data fusion systems is presented. Additionally, a unifying mathematical and conceptual framework within which to understand and organize fusion technologies is described. A discussion of often overlooked issues in the development of sensor fusion systems is also presented.
Villavicencio, Alan T; Burneikiene, Sigita; Babuska, Jason M; Nelson, Ewell L; Mason, Alexander; Rajpal, Sharad
2015-04-01
The purpose of this study was to evaluate potential technical advantages of the CO2 laser technology in mini-open transforaminal lumbar interbody fusion (TLIF) surgeries and report our preliminary clinical data on the safety and clinical outcomes. There is currently no literature discussing the recently redeveloped CO2 laser technology application for lumbar fusion. Safety and clinical outcomes were compared between two groups: 24 patients that underwent CO2 laser-assisted one-level TLIF surgeries and 30 patients that underwent standard one-level TLIF surgeries without the laser. There were no neural thermal injuries or other intraoperative laser-related complications encountered in this cohort of patients. At a mean follow-up of 17.4 months, significantly reduced lower back pain scores (P=0.013) were reported in the laser-assisted patient group compared to a standard fusion patient group. Lower extremity radicular pain intensity scores were similar in both groups. Laser-assisted TLIF surgeries showed a tendency (P = 0.07) of shorter operative times that was not statistically significant. Based on this preliminary clinical report, the safety of the CO2 laser device for lumbar fusion surgeries was assessed. There were no neural thermal injuries or other intraoperative laser-related complications encountered in this cohort of patients. Further investigation of CO2 laser-assisted lumbar fusion procedures is warranted in order to evaluate its effect on clinical outcomes.
Kang, Tae Wook; Song, Kyoung Doo; Kim, Mimi; Kim, Seung Soo; Kim, Seong Hyun; Ha, Sang Yun
2017-01-01
Objective To assess whether contrast-enhanced ultrasonography (CEUS) with Sonazoid can improve the lesion conspicuity and feasibility of percutaneous biopsies for focal hepatic lesions invisible on fusion imaging of real-time ultrasonography (US) with computed tomography/magnetic resonance images, and evaluate its impact on clinical decision making. Materials and Methods The Institutional Review Board approved this retrospective study. Between June 2013 and January 2015, 711 US-guided percutaneous biopsies were performed for focal hepatic lesions. Biopsies were performed using CEUS for guidance if lesions were invisible on fusion imaging. We retrospectively evaluated the number of target lesions initially invisible on fusion imaging that became visible after applying CEUS, using a 4-point scale. Technical success rates of biopsies were evaluated based on histopathological results. In addition, the occurrence of changes in clinical decision making was assessed. Results Among 711 patients, 16 patients (2.3%) were included in the study. The median size of target lesions was 1.1 cm (range, 0.5–1.9 cm) in pre-procedural imaging. After CEUS, 15 of 16 (93.8%) focal hepatic lesions were visualized. The conspicuity score was significantly increased after adding CEUS, as compared to that on fusion imaging (p < 0.001). The technical success rate of biopsy was 87.6% (14/16). After biopsy, there were changes in clinical decision making for 11 of 16 patients (68.8%). Conclusion The addition of CEUS could improve the conspicuity of focal hepatic lesions invisible on fusion imaging. This dual guidance using CEUS and fusion imaging may affect patient management via changes in clinical decision-making. PMID:28096725
European DEMO design strategy and consequences for materials
NASA Astrophysics Data System (ADS)
Federici, G.; Biel, W.; Gilbert, M. R.; Kemp, R.; Taylor, N.; Wenninger, R.
2017-09-01
Demonstrating the production of net electricity and operating with a closed fuel-cycle remain unarguably the crucial steps towards the exploitation of fusion power. These are the aims of a demonstration fusion reactor (DEMO) proposed to be built after ITER. This paper briefly describes the DEMO design options that are being considered in Europe for the current conceptual design studies as part of the Roadmap to Fusion Electricity Horizon 2020. These are not intended to represent fixed and exclusive design choices but rather ‘proxies’ of possible plant design options to be used to identify generic design/material issues that need to be resolved in future fusion reactor systems. The materials nuclear design requirements and the effects of radiation damage are briefly analysed with emphasis on a pulsed ‘low extrapolation’ system, which is being used for the initial design integration studies, based as far as possible on mature technologies and reliable regimes of operation (to be extrapolated from the ITER experience), and on the use of materials suitable for the expected level of neutron fluence. The main technical issues arising from the plasma and nuclear loads and the effects of radiation damage particularly on the structural and heat sink materials of the vessel and in-vessel components are critically discussed. The need to establish realistic target performance and a development schedule for near-term electricity production tends to favour more conservative technology choices. The readiness of the technical (physics and technology) assumptions that are being made is expected to be an important factor for the selection of the technical features of the device.
[MRI/TRUS fusion-guided prostate biopsy : Value in the context of focal therapy].
Franz, T; von Hardenberg, J; Blana, A; Cash, H; Baumunk, D; Salomon, G; Hadaschik, B; Henkel, T; Herrmann, J; Kahmann, F; Köhrmann, K-U; Köllermann, J; Kruck, S; Liehr, U-B; Machtens, S; Peters, I; Radtke, J P; Roosen, A; Schlemmer, H-P; Sentker, L; Wendler, J J; Witzsch, U; Stolzenburg, J-U; Schostak, M; Ganzer, R
2017-02-01
Several systems for MRI/TRUS fusion-guided biopsy of the prostate are commercially available. Many studies have shown superiority of fusion systems for tumor detection and diagnostic quality compared to random biopsy. The benefit of fusion systems in focal therapy of prostate cancer (PC) is less clear. Critical considerations of fusion systems for planning and monitoring of focal therapy of PC were investigated. A systematic literature review of available fusion systems for the period 2013-5/2016 was performed. A checklist of technical details, suitability for special anatomic situations and suitability for focal therapy was established by the German working group for focal therapy (Arbeitskreis fokale und Mikrotherapie). Eight fusion systems were considered (Artemis™, BioJet, BiopSee®, iSR´obot™ Mona Lisa, Hitachi HI-RVS, UroNav and Urostation®). Differences were found for biopsy mode (transrectal, perineal, both), fusion mode (elastic or rigid), navigation (image-based, electromagnetic sensor-based or mechanical sensor-based) and space requirements. Several consensus groups recommend fusion systems for focal therapy. Useful features are "needle tracking" and compatibility between fusion system and treatment device (available for Artemis™, BiopSee® and Urostation® with Focal One®; BiopSee®, Hitachi HI-RVS with NanoKnife®; BioJet, BiopSee® with cryoablation, brachytherapy). There are a few studies for treatment planning. However, studies on treatment monitoring after focal therapy are missing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, J.R.; Fillo, J.A.; Twining, B.G.
1975-08-01
The first volume of these Proceedings is devoted to summarizing the results of the activities of the five technical area Study Groups. These Study Groups played a major role in the Workshop since it was their mission to identify key research and development requirements in their technical areas, etimate the prospects for success of research and development projects directed toward fulfilling these requirements, and determine appropriate time scales for the initiation and completion of these efforts. The determination of which new scientific and technological knowledge, data, and techniques will be required to achieve the Division of Magnetic Fusion Energy programmore » goals, and the construction of an evaluated compilation of research and development needs along with suggestions for levels of effort needed to achieve these goals were among the objectives of the Study Groups. The Conclusions and Recommendations of the Study Groups are summaries of the individual Study Group's findings prepared by the chairmen and co-chairmen/secretaries. These findings were presented to all the Workshop participants in a plenary session, and the discussion and comments on the findings are included in this volume.« less
Information Fusion for Situational Awareness
2003-01-01
UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP021704 TITLE: Information Fusion for Situational Awareness DISTRIBUTION...component part numbers comprise the compilation report: ADP021634 thru ADP021736 UNCLASSIFIED Information Fusion for Situational Awareness Dr. John...Situation Assessment, or level 2 be applied to address Situational Awareness - the processing, the knowledge of objects, their goal of this paper
Jun, Yong Woong; Wang, Taejun; Hwang, Sekyu; Kim, Dokyoung; Ma, Donghee; Kim, Ki Hean; Kim, Sungjee; Jung, Junyang; Ahn, Kyo Han
2018-06-05
Vesicles exchange its contents through membrane fusion processes-kiss-and-run and full-collapse fusion. Indirect observation of these fusion processes using artificial vesicles enhanced our understanding on the molecular mechanisms involved. Direct observation of the fusion processes in a real biological system, however, remains a challenge owing to many technical obstacles. We disclose a ratiometric two-photon probe offering real-time tracking of lysosomal ATP with quantitative information for the first time. By applying the probe to two-photon live-cell imaging technique, lysosomal membrane fusion process in cells has been directly observed along with the concentration of its content-lysosomal ATP. Results show that the kiss-and-run process between lysosomes proceeds through repeating transient interactions with gradual content mixing, whereas the full-fusion process occurs at once. Furthermore, it is confirmed that both the fusion processes proceed with conservation of the content. Such a small-molecule probe exerts minimal disturbance and hence has potential for studying various biological processes associated with lysosomal ATP. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Meade, Dale
2010-01-01
Fusion energy research began in the early 1950s as scientists worked to harness the awesome power of the atom for peaceful purposes. There was early optimism for a quick solution for fusion energy as there had been for fission. However, this was soon tempered by reality as the difficulty of producing and confining fusion fuel at temperatures of 100 million °C in the laboratory was appreciated. Fusion research has followed two main paths—inertial confinement fusion and magnetic confinement fusion. Over the past 50 years, there has been remarkable progress with both approaches, and now each has a solid technical foundation that has led to the construction of major facilities that are aimed at demonstrating fusion energy producing plasmas.
Cellular bone matrices: viable stem cell-containing bone graft substitutes
Skovrlj, Branko; Guzman, Javier Z.; Al Maaieh, Motasem; Cho, Samuel K.; Iatridis, James C.; Qureshi, Sheeraz A.
2015-01-01
BACKGROUND CONTEXT Advances in the field of stem cell technology have stimulated the development and increased use of allogenic bone grafts containing live mesenchymal stem cells (MSCs), also known as cellular bone matrices (CBMs). It is estimated that CBMs comprise greater than 17% of all bone grafts and bone graft substitutes used. PURPOSE To critically evaluate CBMs, specifically their technical specifications, existing published data supporting their use, US Food and Drug Administration (FDA) regulation, cost, potential pitfalls, and other aspects pertaining to their use. STUDY DESIGN Areview of literature. METHODS A series of Ovid, Medline, and Pubmed-National Library of Medicine/National Institutes of Health (www.ncbi.nlm.nih.gov) searches were performed. Only articles in English journals or published with English language translations were included. Level of evidence of the selected articles was assessed. Specific technical information on each CBM was obtained by direct communication from the companies marketing the individual products. RESULTS Five different CBMs are currently available for use in spinal fusion surgery. There is a wide variation between the products with regard to the average donor age at harvest, total cellular concentration, percentage of MSCs, shelf life, and cell viability after defrosting. Three retrospective studies evaluating CBMs and fusion have shown fusion rates ranging from 90.2% to 92.3%, and multiple industry-sponsored trials are underway. No independent studies evaluating spinal fusion rates with the use of CBMs exist. All the commercially available CBMs claim to meet the FDA criteria under Section 361, 21 CFR Part 1271, and are not undergoing FDA premarket review. The CBMs claim to provide viable MSCs and are offered at a premium cost. Numerous challenges exist in regard to MSCs’ survival, function, osteoblastic potential, and cytokine production once implanted into the intended host. CONCLUSIONS Cellular bone matrices may be a promising bone augmentation technology in spinal fusion surgery. Although CBMs appear to be safe for use as bone graft substitutes, their efficacy in spinal fusion surgery remains highly inconclusive. Large, nonindustry sponsored studies evaluating the efficacy of CBMs are required. Without results from such studies, surgeons must be made aware of the potential pitfalls of CBMs in spinal fusion surgery. With the currently available data, there is insufficient evidence to support the use of CBMs as bone graft substitutes in spinal fusion surgery. PMID:24929059
Funding for the 2ND IAEA technical meeting on fusion data processing, validation and analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenwald, Martin
The International Atomic Energy Agency (IAEA) will organize the second Technical Meeting on Fusion Da Processing, Validation and Analysis from 30 May to 02 June, 2017, in Cambridge, MA USA. The meeting w be hosted by the MIT Plasma Science and Fusion Center (PSFC). The objective of the meeting is to provide a platform where a set of topics relevant to fusion data processing, validation and analysis are discussed with the view of extrapolation needs to next step fusion devices such as ITER. The validation and analysis of experimental data obtained from diagnostics used to characterize fusion plasmas are crucialmore » for a knowledge based understanding of the physical processes governing the dynamics of these plasmas. The meeting will aim at fostering, in particular, discussions of research and development results that set out or underline trends observed in the current major fusion confinement devices. General information on the IAEA, including its mission and organization, can be found at the IAEA websit Uncertainty quantification (UQ) Model selection, validation, and verification (V&V) Probability theory and statistical analysis Inverse problems & equilibrium reconstru ction Integrated data analysis Real time data analysis Machine learning Signal/image proc essing & pattern recognition Experimental design and synthetic diagnostics Data management« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neilson, Hutch
Nuclear fusion — the process that powers the sun — offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITER fusion collaboration, which involves seven parties representing half the world’s population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan,more » aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW’s task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.)« less
Introduction to the special issue on the technical status of materials for a fusion reactor
NASA Astrophysics Data System (ADS)
Stork, D.; Zinkle, S. J.
2017-09-01
Materials determine in a fundamental way the performance and environmental attractiveness of a fusion reactor: through the size (power fluxes to the divertor, neutron fluxes to the first wall); economics (replacement lifetime of critical in-vessel components, thermodynamic efficiency through operating temperature etc); plasma performance (erosion by plasma fluxes to the divertor surfaces); robustness against off-normal accidents (safety); and the effects of post-operation radioactivity on waste disposal and maintenance. The major philosophies and methodologies used to formulate programmes for the development of fusion materials are outlined, as the basis for other articles in this special issue, which deal with the fundamental understanding of the issues regarding these materials and their technical status and prospects for development.
Review of the magnetic fusion program by the 1986 ERAB Fusion Panel
NASA Astrophysics Data System (ADS)
Davidson, Ronald C.
1987-09-01
The 1986 ERAB Fusion Panel finds that fusion energy continues to be an attractive energy source with great potential for the future, and that the magnetic fusion program continues to make substantial technical progress. In addition, fusion research advances plasma physics, a sophisticated and useful branch of applied science, as well as technologies important to industry and defense. These factors fully justify the substantial expenditures by the Department of Energy in fusion research and development (R&D). The Panel endorses the overall program direction, strategy, and plans, and recognizes the importance and timeliness of proceeding with a burning plasma experiment, such as the proposed Compact Ignition Tokamak (CIT) experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hakime, Antoine, E-mail: thakime@yahoo.com; Yevich, Steven; Tselikas, Lambros
PurposeTo assess whether fusion imaging-guided percutaneous microwave ablation (MWA) can improve visibility and targeting of liver metastasis that were deemed inconspicuous on ultrasound (US).Materials and MethodsMWA of liver metastasis not judged conspicuous enough on US was performed under CT/US fusion imaging guidance. The conspicuity before and after the fusion imaging was graded on a five-point scale, and significance was assessed by Wilcoxon test. Technical success, procedure time, and procedure-related complications were evaluated.ResultsA total of 35 patients with 40 liver metastases (mean size 1.3 ± 0.4 cm) were enrolled. Image fusion improved conspicuity sufficiently to allow fusion-targeted MWA in 33 patients. The time requiredmore » for image fusion processing and tumors’ identification averaged 10 ± 2.1 min (range 5–14). Initial conspicuity on US by inclusion criteria was 1.2 ± 0.4 (range 0–2), while conspicuity after localization on fusion imaging was 3.5 ± 1 (range 1–5, p < 0.001). Technical success rate was 83% (33/40) in intention-to-treat analysis and 100% in analysis of treated tumors. There were no major procedure-related complications.ConclusionsFusion imaging broadens the scope of US-guided MWA to metastasis lacking adequate conspicuity on conventional US. Fusion imaging is an effective tool to increase the conspicuity of liver metastases that were initially deemed non visualizable on conventional US imaging.« less
Cellular bone matrices: viable stem cell-containing bone graft substitutes.
Skovrlj, Branko; Guzman, Javier Z; Al Maaieh, Motasem; Cho, Samuel K; Iatridis, James C; Qureshi, Sheeraz A
2014-11-01
Advances in the field of stem cell technology have stimulated the development and increased use of allogenic bone grafts containing live mesenchymal stem cells (MSCs), also known as cellular bone matrices (CBMs). It is estimated that CBMs comprise greater than 17% of all bone grafts and bone graft substitutes used. To critically evaluate CBMs, specifically their technical specifications, existing published data supporting their use, US Food and Drug Administration (FDA) regulation, cost, potential pitfalls, and other aspects pertaining to their use. Areview of literature. A series of Ovid, Medline, and Pubmed-National Library of Medicine/National Institutes of Health (www.ncbi.nlm.nih.gov) searches were performed. Only articles in English journals or published with English language translations were included. Level of evidence of the selected articles was assessed. Specific technical information on each CBM was obtained by direct communication from the companies marketing the individual products. Five different CBMs are currently available for use in spinal fusion surgery. There is a wide variation between the products with regard to the average donor age at harvest, total cellular concentration, percentage of MSCs, shelf life, and cell viability after defrosting. Three retrospective studies evaluating CBMs and fusion have shown fusion rates ranging from 90.2% to 92.3%, and multiple industry-sponsored trials are underway. No independent studies evaluating spinal fusion rates with the use of CBMs exist. All the commercially available CBMs claim to meet the FDA criteria under Section 361, 21 CFR Part 1271, and are not undergoing FDA premarket review. The CBMs claim to provide viable MSCs and are offered at a premium cost. Numerous challenges exist in regard to MSCs' survival, function, osteoblastic potential, and cytokine production once implanted into the intended host. Cellular bone matrices may be a promising bone augmentation technology in spinal fusion surgery. Although CBMs appear to be safe for use as bone graft substitutes, their efficacy in spinal fusion surgery remains highly inconclusive. Large, nonindustry sponsored studies evaluating the efficacy of CBMs are required. Without results from such studies, surgeons must be made aware of the potential pitfalls of CBMs in spinal fusion surgery. With the currently available data, there is insufficient evidence to support the use of CBMs as bone graft substitutes in spinal fusion surgery. Copyright © 2014 Elsevier Inc. All rights reserved.
Plasma Physics Network Newsletter, no. 5
NASA Astrophysics Data System (ADS)
1992-08-01
The fifth Plasma Physics Network Newsletter (IAEA, Vienna, Aug. 1992) includes the following topics: (1) the availability of a list of the members of the Third World Plasma Research Network (TWPRN); (2) the announcement of the fourteenth IAEA International Conference on Plasma Physics and Controlled Nuclear Fusion Research to be held in Wuerzburg, Germany, from 30 Sep. to 7 Oct. 1992; (3) the announcement of a Technical Committee Meeting on research using small tokamaks, organized by the IAEA as a satellite meeting to the aforementioned fusion conference; (4) IAEA Fellowships and Scientific Visits for the use of workers in developing member states, and for which plasma researchers are encouraged to apply through Dr. D. Banner, Head, Physics Section, IAEA, P.O. Box 100, A-1400 Vienna, Austria; (5) the initiation in 1993 of a new Coordinated Research Programme (CRP) on 'Development of Software for Numerical Simulation and Data Processing in Fusion Energy Research', as well as a proposed CRP on 'Fusion Research in Developing Countries using Middle- and Small-Scale Plasma Devices'; (6) support from the International Centre for Theoretical Physics (ICTP) for meetings held in Third World countries; (7) a report by W. Usada on Fusion Research in Indonesia; (8) News on ITER; (9) the Technical Committee Meeting planned 8-12 Sep. 1992, Canada, on Tokamak Plasma Biasing; (10) software made available for the study of tokamak transport; (11) the electronic mail address of the TWPRN; (12) the FAX, e-mail, and postal address for contributions to this plasma physics network newsletter.
Processing and Fusion of Electro-Optic Information
2001-04-01
UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP010886 TITLE: Processing and Fusion of Electro - Optic Information...component part numbers comprise the compilation report: ADP010865 thru ADP010894 UNCLASSIFIED 21-1 Processing and Fusion of Electro - Optic Information I...additional electro - optic (EO) sensor model within OOPSDG. It describes TM IT TT T T T performance estimates found prior to producing the New Ne- New
Vollnhals, Florian; Audinot, Jean-Nicolas; Wirtz, Tom; Mercier-Bonin, Muriel; Fourquaux, Isabelle; Schroeppel, Birgit; Kraushaar, Udo; Lev-Ram, Varda; Ellisman, Mark H; Eswara, Santhana
2017-10-17
Correlative microscopy combining various imaging modalities offers powerful insights into obtaining a comprehensive understanding of physical, chemical, and biological phenomena. In this article, we investigate two approaches for image fusion in the context of combining the inherently lower-resolution chemical images obtained using secondary ion mass spectrometry (SIMS) with the high-resolution ultrastructural images obtained using electron microscopy (EM). We evaluate the image fusion methods with three different case studies selected to broadly represent the typical samples in life science research: (i) histology (unlabeled tissue), (ii) nanotoxicology, and (iii) metabolism (isotopically labeled tissue). We show that the intensity-hue-saturation fusion method often applied for EM-sharpening can result in serious image artifacts, especially in cases where different contrast mechanisms interplay. Here, we introduce and demonstrate Laplacian pyramid fusion as a powerful and more robust alternative method for image fusion. Both physical and technical aspects of correlative image overlay and image fusion specific to SIMS-based correlative microscopy are discussed in detail alongside the advantages, limitations, and the potential artifacts. Quantitative metrics to evaluate the results of image fusion are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive actionmore » plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide a strategic framework for realizing practical fusion energy. The portfolio is the product of ten months of fusion-community study and discussion, culminating in a Workshop held in Bethesda, Maryland, from June 8 to June 12, 2009. The Workshop involved some 200 scientists from Universities, National Laboratories and private industry, including several scientists from outside the US. Largely following the Basic Research Needs model established by the Office of Basic Energy Sciences (BES ), the Report presents a collection of discrete research activities, here called 'thrusts.' Each thrust is based on an explicitly identified question, or coherent set of questions, on the frontier of fusion science. It presents a strategy to find the needed answers, combining the necessary intellectual and hardware tools, experimental facilities, and computational resources into an integrated, focused program. The thrusts should be viewed as building blocks for a fusion program plan whose overall structure will be developed by OFES , using whatever additional community input it requests. Part I of the Report reviews the issues identified in previous fusion-community studies, which systematically identified the key research issues and described them in considerable detail. It then considers in some detail the scientific and technical means that can be used to address these is sues. It ends by showing how these various research requirements are organized into a set of eighteen thrusts. Part II presents a detailed and self-contained discussion of each thrust, including the goals, required facilities and tools for each. This Executive Summary focuses on a survey of the ReNeW thrusts. The following brief review of fusion science is intended to provide context for that survey. A more detailed discussion of fusion science can be found in an Appendix to this Summary, entitled 'A Fusion Primer.'« less
Inertial Fusion Energy reactor design studies: Prometheus-L, Prometheus-H. Volume 2, Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waganer, L.M.; Driemeyer, D.E.; Lee, V.D.
1992-03-01
This report contains a review of design studies for Inertial Confinement reactor. This second of three volumes discussions is some detail the following: Objectives, requirements, and assumptions; rationale for design option selection; key technical issues and R&D requirements; and conceptual design selection and description.
Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiffen, Frederick W; Katoh, Yutai; Melton, Stephanie G.
2016-12-01
This document summarizes FY2016 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for MFE carried out by ORNL. The organization of the report is mainly by material type, with sections on specific technical activities.
A Standard Mammography Unit - Standard 3D Ultrasound Probe Fusion Prototype: First Results.
Schulz-Wendtland, Rüdiger; Jud, Sebastian M; Fasching, Peter A; Hartmann, Arndt; Radicke, Marcus; Rauh, Claudia; Uder, Michael; Wunderle, Marius; Gass, Paul; Langemann, Hanna; Beckmann, Matthias W; Emons, Julius
2017-06-01
The combination of different imaging modalities through the use of fusion devices promises significant diagnostic improvement for breast pathology. The aim of this study was to evaluate image quality and clinical feasibility of a prototype fusion device (fusion prototype) constructed from a standard tomosynthesis mammography unit and a standard 3D ultrasound probe using a new method of breast compression. Imaging was performed on 5 mastectomy specimens from patients with confirmed DCIS or invasive carcinoma (BI-RADS ™ 6). For the preclinical fusion prototype an ABVS system ultrasound probe from an Acuson S2000 was integrated into a MAMMOMAT Inspiration (both Siemens Healthcare Ltd) and, with the aid of a newly developed compression plate, digital mammogram and automated 3D ultrasound images were obtained. The quality of digital mammogram images produced by the fusion prototype was comparable to those produced using conventional compression. The newly developed compression plate did not influence the applied x-ray dose. The method was not more labour intensive or time-consuming than conventional mammography. From the technical perspective, fusion of the two modalities was achievable. In this study, using only a few mastectomy specimens, the fusion of an automated 3D ultrasound machine with a standard mammography unit delivered images of comparable quality to conventional mammography. The device allows simultaneous ultrasound - the second important imaging modality in complementary breast diagnostics - without increasing examination time or requiring additional staff.
The choice of the energy embedding law in the design of heavy ionic fusion cylindrical targets
NASA Astrophysics Data System (ADS)
Dolgoleva, GV; Zykova, A. I.
2017-10-01
The paper considers the numerical design of heavy ion fusion (FIHIF) targets, which is one of the branches of controlled thermonuclear fusion (CTF). One of the important tasks in the targets design for controlled thermonuclear fusion is the energy embedding selection whereby it is possible to obtain “burning” (the presence of thermonuclear reactions) of the working DT region. The work is devoted to the rapid ignition of FIHIF targets by means of an additional short-term energy contribution to the DT substance already compressed by massively more longer by energy embedding. This problem has been fairly well studied for laser targets, but this problem is new for heavy ion fusion targets. Maximum momentum increasing is very technically difficult and expensive on modern FIHIF installations. The work shows that the additional energy embedding (“igniting” impulse) reduces the requirements to the maximum impulse. The purpose of this work is to research the ignition impulse effect on the FIHIF target parameters.
Fusion Advanced Design Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Guebaly, Laila; Henderson, Douglass; Wilson, Paul
2017-03-24
During the January 1, 2013 – December 31, 2015 contract period, the UW Fusion Technology Institute personnel have actively participated in the ARIES-ACT and FESS-FNSF projects, led the nuclear and thermostructural tasks, attended several project meetings, and participated in all conference calls. The main areas of effort and technical achievements include updating and documenting the nuclear analysis for ARIES-ACT1, performing nuclear analysis for ARIES-ACT2, performing thermostructural analysis for ARIES divertor, performing disruption analysis for ARIES vacuum vessel, and developing blanket testing strategy and Materials Test Module for FNSF.
Progress in understanding the neuronal SNARE function and its regulation.
Yoon, T-Y; Shin, Y-K
2009-02-01
Vesicle budding and fusion underlies many essential biochemical deliveries in eukaryotic cells, and its core fusion machinery is thought to be built on one protein family named soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE). Recent technical advances based on site-directed fluorescence labelling and nano-scale detection down to the single-molecule level rapidly unveiled the protein and the lipid intermediates along the fusion pathway as well as the molecular actions of fusion effectors. Here we summarize these new exciting findings in context with a new mechanistic model that reconciles two existing fusion models: the proteinaceous pore model and the hemifusion model. Further, we attempt to locate the points of action for the fusion effectors along the fusion pathway and to delineate the energetic interplay between the SNARE complexes and the fusion effectors.
The history of head transplantation: a review.
Lamba, Nayan; Holsgrove, Daniel; Broekman, Marike L
2016-12-01
Since the turn of the last century, the prospect of head transplantation has captured the imagination of scientists and the general public. Recently, head transplant has regained attention in popular media, as neurosurgeons have proposed performing this procedure in 2017. Given the potential impact of such a procedure, we were interested in learning the history of the technical hurdles that need to be overcome, and determine if it is even technically possible to perform such a procedure on humans today. We conducted a historical review of available literature on the technical challenges and developments of head transplantation. The many social, psychological, ethical, religious, cultural, and legal questions of head transplantation were beyond the scope of this review. Our historical review identified the following important technical considerations related to performing a head transplant: maintenance of blood flow to an isolated brain via vessel anastomosis; availability of immunosuppressive agents; spinal anastomosis and fusion following cord transfection; pain control in the recipient. Several animal studies have demonstrated success in maintaining recipient cerebral perfusion and achieving immunosuppression. However, there is currently sparse evidence in favor of successful spinal anastomosis and fusion after transection. While recent publications by an Italian group offer novel approaches to this challenge, research on this topic has been sparse and hinges on procedures performed in animal models in the 1970s. How transferrable these older methods are to the human nervous system is unclear and warrants further exploration. Our review identified several important considerations related to performing a viable head transplantation. Besides the technical challenges that remain, there are important ethical issues to consider, such as exploitation of vulnerable patients and informed consent. Thus, besides the remaining technical challenges, these ethical issues will also need to be addressed before moving these studies to the clinic.
Heating Efficiency of Beat Wave Excitation in a Density Gradient,
1988-02-01
and Technology, January 1988. PPG-1124 Research Highlights in The Pisces Program," R.V. Conn, et al, January 1988. PPG-1125 "Magnetic Fusion ... Energy , vol. 5. Technical Assessement of Critical Issues in the Steady State Operation of Fusion Confinement Devices," D. M. Goebel, Assessment Chairman
Lee, Choon Sung; Hwang, Chang Ju; Lee, Dong-Ho; Cho, Jae Hwan
2017-07-01
Shoulder imbalance, coronal decompensation, and adding-on phenomenon following corrective surgery in patients with adolescent idiopathic scoliosis are known to be related to the fusion level selected. Although many studies have assessed the appropriate selection of the proximal and distal fusion level, no definite conclusions have been drawn thus far. We aimed to assess the problems with fusion level selection for corrective surgery in patients with adolescent idiopathic scoliosis, and to enhance understanding about these problems. This study is a narrative review. We conducted a literature search of fusion level selection in corrective surgery for adolescent idiopathic scoliosis. Accordingly, we selected and reviewed five debatable topics related to fusion level selection: (1) selective thoracic fusion; (2) selective thoracolumbar-lumbar (TL-L) fusion; (3) adding-on phenomenon; (4) distal fusion level selection for major TL-L curves; and (5) proximal fusion level selection and shoulder imbalance. Selective fusion can be chosen in specific curve types, although there is a risk of coronal decompensation or adding-on phenomenon. Generally, wider indications for selective fusions are usually associated with more frequent complications. Despite the determination of several indications for selective fusion to avoid such complications, no clear guidelines have been established. Although authors have suggested various criteria to prevent the adding-on phenomenon, no consensus has been reached on the appropriate selection of lower instrumented vertebra. The fusion level selection for major TL-L curves primarily focuses on whether distal fusion can terminate at L3, a topic that remains unclear. Furthermore, because of the presence of several related factors and complications, proximal level selection and shoulder imbalance has been constantly debated and remains controversial from its etiology to its prevention. Although several difficult problems in the diagnosis and treatment of adolescent idiopathic scoliosis have been resolved by understanding its mechanism and via technical advancement, no definite guideline for fusion level selection has been established. A review of five major controversial issues about fusion level selection could provide better understanding of adolescent idiopathic scoliosis. We believe that a thorough validation study of the abovementioned controversial issues can help address them. Copyright © 2017 Elsevier Inc. All rights reserved.
Schulz-Wendtland, Rüdiger; Jud, Sebastian M.; Fasching, Peter A.; Hartmann, Arndt; Radicke, Marcus; Rauh, Claudia; Uder, Michael; Wunderle, Marius; Gass, Paul; Langemann, Hanna; Beckmann, Matthias W.; Emons, Julius
2017-01-01
Aim The combination of different imaging modalities through the use of fusion devices promises significant diagnostic improvement for breast pathology. The aim of this study was to evaluate image quality and clinical feasibility of a prototype fusion device (fusion prototype) constructed from a standard tomosynthesis mammography unit and a standard 3D ultrasound probe using a new method of breast compression. Materials and Methods Imaging was performed on 5 mastectomy specimens from patients with confirmed DCIS or invasive carcinoma (BI-RADS ™ 6). For the preclinical fusion prototype an ABVS system ultrasound probe from an Acuson S2000 was integrated into a MAMMOMAT Inspiration (both Siemens Healthcare Ltd) and, with the aid of a newly developed compression plate, digital mammogram and automated 3D ultrasound images were obtained. Results The quality of digital mammogram images produced by the fusion prototype was comparable to those produced using conventional compression. The newly developed compression plate did not influence the applied x-ray dose. The method was not more labour intensive or time-consuming than conventional mammography. From the technical perspective, fusion of the two modalities was achievable. Conclusion In this study, using only a few mastectomy specimens, the fusion of an automated 3D ultrasound machine with a standard mammography unit delivered images of comparable quality to conventional mammography. The device allows simultaneous ultrasound – the second important imaging modality in complementary breast diagnostics – without increasing examination time or requiring additional staff. PMID:28713173
Schaefgen, Benedikt; Heil, Joerg; Barr, Richard G; Radicke, Marcus; Harcos, Aba; Gomez, Christina; Stieber, Anne; Hennigs, André; von Au, Alexandra; Spratte, Julia; Rauch, Geraldine; Rom, Joachim; Schütz, Florian; Sohn, Christof; Golatta, Michael
2018-06-01
To determine the feasibility of a prototype device combining 3D-automated breast ultrasound (ABVS) and digital breast tomosynthesis in a single device to detect and characterize breast lesions. In this prospective feasibility study, the FUSION-X-US prototype was used to perform digital breast tomosynthesis and ABVS in 23 patients with an indication for tomosynthesis based on current guidelines after clinical examination and standard imaging. The ABVS and tomosynthesis images of the prototype were interpreted separately by two blinded experts. The study compares the detection and BI-RADS® scores of breast lesions using only the tomosynthesis and ABVS data from the FUSION-X-US prototype to the results of the complete diagnostic workup. Image acquisition and processing by the prototype was fast and accurate, with some limitations in ultrasound coverage and image quality. In the diagnostic workup, 29 solid lesions (23 benign, including three cases with microcalcifications, and six malignant lesions) were identified. Using the prototype, all malignant lesions were detected and classified as malignant or suspicious by both investigators. Solid breast lesions can be localized accurately and fast by the Fusion-X-US system. Technical improvements of the ultrasound image quality and ultrasound coverage are needed to further study this new device. The prototype combines tomosynthesis and automated 3D-ultrasound (ABVS) in one device. It allows accurate detection of malignant lesions, directly correlating tomosynthesis and ABVS data. The diagnostic evaluation of the prototype-acquired data was interpreter-independent. The prototype provides a time-efficient and technically reliable diagnostic procedure. The combination of tomosynthesis and ABVS is a promising diagnostic approach.
Novel spinal instrumentation to enhance osteogenesis and fusion: a preliminary study.
MacEwan, Matthew R; Talcott, Michael R; Moran, Daniel W; Leuthardt, Eric C
2016-09-01
OBJECTIVE Instrumented spinal fusion continues to exhibit high failure rates in patients undergoing multilevel lumbar fusion or pseudarthrosis revision; with Grade II or higher spondylolisthesis; or in those possessing risk factors such as obesity, tobacco use, or metabolic disorders. Direct current (DC) electrical stimulation of bone growth represents a unique surgical adjunct in vertebral fusion procedures, yet existing spinal fusion stimulators are not optimized to enhance interbody fusion. To develop an advanced method of applying DC electrical stimulation to promote interbody fusion, a novel osteogenic spinal system capable of routing DC through rigid instrumentation and into the vertebral bodies was fabricated. A pilot study was designed to assess the feasibility of osteogenic instrumentation and compare the ability of osteogenic instrumentation to promote successful interbody fusion in vivo to standard spinal instrumentation with autograft. METHODS Instrumented, single-level, posterior lumbar interbody fusion (PLIF) with autologous graft was performed at L4-5 in adult Toggenburg/Alpine goats, using both osteogenic spinal instrumentation (plus electrical stimulation) and standard spinal instrumentation (no electrical stimulation). At terminal time points (3 months, 6 months), animals were killed and lumbar spines were explanted for radiographic analysis using a SOMATOM Dual Source Definition CT Scanner and high-resolution Microcat II CT Scanner. Trabecular continuity, radiodensity within the fusion mass, and regional bone formation were examined to determine successful spinal fusion. RESULTS Quantitative analysis of average bone density in pedicle screw beds confirmed that electroactive pedicle screws used in the osteogenic spinal system focally enhanced bone density in instrumented vertebral bodies. Qualitative and quantitative analysis of high-resolution CT scans of explanted lumbar spines further demonstrated that the osteogenic spinal system induced solid bony fusion across the L4-5 disc space as early as 6 weeks postoperatively. In comparison, inactive spinal instrumentation with autograft was unable to promote successful interbody fusion by 6 months postoperatively. CONCLUSIONS Results of this study demonstrate that novel osteogenic spinal instrumentation supports interbody fusion through the focal delivery of DC electrical stimulation. With further technical development and scientific/clinical validation, osteogenic spinal instrumentation may offer a unique alternative to biological scaffolds and pharmaceutical adjuncts used in spinal fusion procedures.
[A technical modification of the use of Dwyer's equipment].
Carlioz, H; Damsin, J P
1991-01-01
Dwyer's technique for correction and anterior fusion of the spine was improved by using lockers at the level of each screw. So, like with the Zielke's technic this procedure allowed a global progressive and controllable correction and a real derotation of the spine.
Molecular imaging of malignant tumor metabolism: whole-body image fusion of DWI/CT vs. PET/CT.
Reiner, Caecilia S; Fischer, Michael A; Hany, Thomas; Stolzmann, Paul; Nanz, Daniel; Donati, Olivio F; Weishaupt, Dominik; von Schulthess, Gustav K; Scheffel, Hans
2011-08-01
To prospectively investigate the technical feasibility and performance of image fusion for whole-body diffusion-weighted imaging (wbDWI) and computed tomography (CT) to detect metastases using hybrid positron emission tomography/computed tomography (PET/CT) as reference standard. Fifty-two patients (60 ± 14 years; 18 women) with different malignant tumor disease examined by PET/CT for clinical reasons consented to undergo additional wbDWI at 1.5 Tesla. WbDWI was performed using a diffusion-weighted single-shot echo-planar imaging during free breathing. Images at b = 0 s/mm(2) and b = 700 s/mm(2) were acquired and apparent diffusion coefficient (ADC) maps were generated. Image fusion of wbDWI and CT (from PET/CT scan) was performed yielding for wbDWI/CT fused image data. One radiologist rated the success of image fusion and diagnostic image quality. The presence or absence of metastases on wbDWI/CT fused images was evaluated together with the separate wbDWI and CT images by two different, independent radiologists blinded to results from PET/CT. Detection rate and positive predictive values for diagnosing metastases was calculated. PET/CT examinations were used as reference standard. PET/CT identified 305 malignant lesions in 39 of 52 (75%) patients. WbDWI/CT image fusion was technically successful and yielded diagnostic image quality in 73% and 92% of patients, respectively. Interobserver agreement for the evaluation of wbDWI/CT images was κ = 0.78. WbDWI/CT identified 270 metastases in 43 of 52 (83%) patients. Overall detection rate and positive predictive value of wbDWI/CT was 89% (95% CI, 0.85-0.92) and 94% (95% CI, 0.92-0.97), respectively. WbDWI/CT image fusion is technically feasible in a clinical setting and allows the diagnostic assessment of metastatic tumor disease detecting nine of 10 lesions as compared with PET/CT. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.
Application of Recommended Design Practices for Conceptual Nuclear Fusion Space Propulsion Systems
NASA Technical Reports Server (NTRS)
Williams, Craig H.
2004-01-01
An AIAA Special Project Report was recently produced by AIAA's Nuclear and Future Flight Propulsion Technical Committee and is currently in peer review. The Report provides recommended design practices for conceptual engineering studies of nuclear fusion space propulsion systems. Discussion and recommendations are made on key topics including design reference missions, degree of technological extrapolation and concomitant risk, thoroughness in calculating mass properties (nominal mass properties, weight-growth contingency and propellant margins, and specific impulse), and thoroughness in calculating power generation and usage (power-flow, power contingencies, specific power). The report represents a general consensus of the nuclear fusion space propulsion system conceptual design community and proposes 15 recommendations. This paper expands on the Report by providing specific examples illustrating how to apply each of the recommendations.
EDITORIAL: Safety aspects of fusion power plants
NASA Astrophysics Data System (ADS)
Kolbasov, B. N.
2007-07-01
This special issue of Nuclear Fusion contains 13 informative papers that were initially presented at the 8th IAEA Technical Meeting on Fusion Power Plant Safety held in Vienna, Austria, 10-13 July 2006. Following recommendation from the International Fusion Research Council, the IAEA organizes Technical Meetings on Fusion Safety with the aim to bring together experts to discuss the ongoing work, share new ideas and outline general guidance and recommendations on different issues related to safety and environmental (S&E) aspects of fusion research and power facilities. Previous meetings in this series were held in Vienna, Austria (1980), Ispra, Italy (1983), Culham, UK (1986), Jackson Hole, USA (1989), Toronto, Canada (1993), Naka, Japan (1996) and Cannes, France (2000). The recognized progress in fusion research and technology over the last quarter of a century has boosted the awareness of the potential of fusion to be a practically inexhaustible and clean source of energy. The decision to construct the International Thermonuclear Experimental Reactor (ITER) represents a landmark in the path to fusion power engineering. Ongoing activities to license ITER in France look for an adequate balance between technological and scientific deliverables and complying with safety requirements. Actually, this is the first instance of licensing a representative fusion machine, and it will very likely shape the way in which a more common basis for establishing safety standards and policies for licensing future fusion power plants will be developed. Now that ITER licensing activities are underway, it is becoming clear that the international fusion community should strengthen its efforts in the area of designing the next generations of fusion power plants—demonstrational and commercial. Therefore, the 8th IAEA Technical Meeting on Fusion Safety focused on the safety aspects of power facilities. Some ITER-related safety issues were reported and discussed owing to their potential importance for the fusion power plant research programmes. The objective of this Technical Meeting was to examine in an integrated way all the safety aspects anticipated to be relevant to the first fusion power plant prototype expected to become operational by the middle of the century, leading to the first generation of economically viable fusion power plants with attractive S&E features. After screening by guest editors and consideration by referees, 13 (out of 28) papers were accepted for publication. They are devoted to the following safety topics: power plant safety; fusion specific operational safety approaches; test blanket modules; accident analysis; tritium safety and inventories; decommissioning and waste. The paper `Main safety issues at the transition from ITER to fusion power plants' by W. Gulden et al (EU) highlights the differences between ITER and future fusion power plants with magnetic confinement (off-site dose acceptance criteria, consequences of accidents inside and outside the design basis, occupational radiation exposure, and waste management, including recycling and/or final disposal in repositories) on the basis of the most recent European fusion power plant conceptual study. Ongoing S&E studies within the US inertial fusion energy (IFE) community are focusing on two design concepts. These are the high average power laser (HAPL) programme for development of a dry-wall, laser-driven IFE power plant, and the Z-pinch IFE programme for the production of an economically-attractive power plant using high-yield Z-pinch-driven targets. The main safety issues related to these programmes are reviewed in the paper `Status of IFE safety and environmental activities in the US' by S. Reyes et al (USA). The authors propose future directions of research in the IFE S&E area. In the paper `Recent accomplishments and future directions in the US Fusion Safety & Environmental Program' D. Petti et al (USA) state that the US fusion programme has long recognized that the S&E potential of fusion can be attained by prudent materials selection, judicious design choices, and integration of safety requirements into the design of the facility. To achieve this goal, S&E research is focused on understanding the behaviour of the largest sources of radioactive and hazardous materials in a fusion facility, understanding how energy sources in a fusion facility could mobilize those materials, developing integrated state-of-the-art S&E computer codes and risk tools for safety assessment, and evaluating and improving fusion facility design in terms of accident safety, worker safety, and waste disposal. There are three papers considering safety issues of the test blanket modules (TBM) producing tritium to be installed in ITER. These modules represent different concepts of demonstration fusion power facilities (DEMO). L. Boccaccini et al (Germany) analyses the possibility of jeopardizing the ITER safety under specific accidents in the European helium-cooled pebble-bed TBM, e.g. pressurization of the vacuum vessel (VV), hydrogen production from the Be-steam reaction, the possible interconnection between the port cell and VV causing air ingress. Safety analysis is also presented for Chinese TBM with a helium-cooled solid breeder to be tested in ITER by Z. Chen et al (China). Radiological inventories, afterheat, waste disposal ratings, electromagnetic characteristics, LOCA and tritium safety management are considered. An overview of a preliminary safety analysis performed for a US proposed TBM is presented by B. Merrill et al (USA). This DEMO relevant dual coolant liquid lead-lithium TBM has been explored both in the USA and EU. T. Pinna et al (Italy) summarize the six-year development of a failure rate database for fusion specific components on the basis of data coming from operating experience gained in various fusion laboratories. The activity began in 2001 with the study of the Joint European Torus vacuum and active gas handling systems. Two years later the neutral beam injectors and the power supply systems were considered. This year the ion cyclotron resonant heating system is under evaluation. I. Cristescu et al (Germany) present the paper `Tritium inventories and tritium safety design principles for the fuel cycle of ITER'. She and her colleagues developed the dynamic mathematical model (TRIMO) for tritium inventory evaluation within each system of the ITER fuel cycle in various operational scenarios. TRIMO is used as a tool for trade-off studies within the fuel cycle systems with the final goal of global tritium inventory minimization. M. Matsuyama et al (Japan) describes a new technique for in situ quantitative measurements of high-level tritium inventory and its distribution in the VV and tritium systems of ITER and future fusion reactors. This technique is based on utilization of x-rays induced by beta-rays emitting from tritium species. It was applied to three physical states of high-level tritium: to gaseous, aqueous and solid tritium retained on/in various materials. Finally, there are four papers devoted to safety issues in fusion reactor decommissioning and waste management. A paper by R. Pampin et al (UK) provides the revised radioactive waste analysis of two models in the PPCS. Another paper by M. Zucchetti (Italy), S.A. Bartenev (Russia) et al describes a radiochemical extraction technology for purification of V-Cr-Ti alloy components from activation products to the dose rate of 10 µSv/h allowing their clearance or hands-on recycling which has been developed and tested in laboratory stationary conditions. L. El-Guebaly (USA) and her colleagues submitted two papers. In the first paper she optimistically considers the possibility of replacing the disposal of fusion power reactor waste with recycling and clearance. Her second paper considers the implications of new clearance guidelines for nuclear applications, particularly for slightly irradiated fusion materials.
CONFERENCE REPORT: Summary of the 8th IAEA Technical Meeting on Fusion Power Plant Safety
NASA Astrophysics Data System (ADS)
Girard, J. Ph.; Gulden, W.; Kolbasov, B.; Louzeiro-Malaquias, A.-J.; Petti, D.; Rodriguez-Rodrigo, L.
2008-01-01
Reports were presented covering a selection of topics on the safety of fusion power plants. These included a review on licensing studies developed for ITER site preparation surveying common and non-common issues (i.e. site dependent) as lessons to a broader approach for fusion power plant safety. Several fusion power plant models, spanning from accessible technology to more advanced-materials based concepts, were discussed. On the topic related to fusion-specific technology, safety studies were reported on different concepts of breeding blanket modules, tritium handling and auxiliary systems under normal and accident scenarios' operation. The testing of power plant relevant technology in ITER was also assessed in terms of normal operation and accident scenarios, and occupational doses and radioactive releases under these testings have been determined. Other specific safety issues for fusion have also been discussed such as availability and reliability of fusion power plants, dust and tritium inventories and component failure databases. This study reveals that the environmental impact of fusion power plants can be minimized through a proper selection of low activation materials and using recycling technology helping to reduce waste volume and potentially open the route for its reutilization for the nuclear sector or even its clearance into the commercial circuit. Computational codes for fusion safety have been presented in support of the many studies reported. The on-going work on establishing validation approaches aiming at improving the prediction capability of fusion codes has been supported by experimental results and new directions for development have been identified. Fusion standards are not available and fission experience is mostly used as the framework basis for licensing and target design for safe operation and occupational and environmental constraints. It has been argued that fusion can benefit if a specific fusion approach is implemented, in particular for materials selection which will have a large impact on waste disposal and recycling and in the real limits of radiation releases if indexed to the real impact on individuals and the environment given the differences in the types of radiation emitted by tritium when compared with the fission products. Round table sessions resulted in some common recommendations. The discussions also created the awareness of the need for a larger involvement of the IAEA in support of fusion safety standards development.
Data fusion algorithm for rapid multi-mode dust concentration measurement system based on MEMS
NASA Astrophysics Data System (ADS)
Liao, Maohao; Lou, Wenzhong; Wang, Jinkui; Zhang, Yan
2018-03-01
As single measurement method cannot fully meet the technical requirements of dust concentration measurement, the multi-mode detection method is put forward, as well as the new requirements for data processing. This paper presents a new dust concentration measurement system which contains MEMS ultrasonic sensor and MEMS capacitance sensor, and presents a new data fusion algorithm for this multi-mode dust concentration measurement system. After analyzing the relation between the data of the composite measurement method, the data fusion algorithm based on Kalman filtering is established, which effectively improve the measurement accuracy, and ultimately forms a rapid data fusion model of dust concentration measurement. Test results show that the data fusion algorithm is able to realize the rapid and exact concentration detection.
Fusion power for space propulsion.
NASA Technical Reports Server (NTRS)
Roth, R.; Rayle, W.; Reinmann, J.
1972-01-01
Principles of operation, interplanetary orbit-to-orbit mission capabilities, technical problems, and environmental safeguards are examined for thermonuclear fusion propulsion systems. Two systems examined include (1) a fusion-electric concept in which kinetic energy of charged particles from the plasma is converted into electric power (for accelerating the propellant in an electrostatic thrustor) by the van de Graaf generator principle and (2) the direct fusion rocket in which energetic plasma lost from the reactor has a suitable amount of added propellant to obtain the optimum exhaust velocity. The deuterium-tritium and the deuterium/helium-3 reactions are considered as suitable candidates, and attention is given to problems of cryogenic refrigeration systems, magnet shielding, and high-energy particle extraction and guidance.
Painful lumbosacral melorheostosis treated by fusion.
Robertson, Peter A; Don, Angus S; Miller, Mary V
2003-06-15
A case report of low back pain associated with a diagnosis of melorheostosis of the lumbosacral spine. To describe a rare presentation of melorheostosis and subsequent successful surgical treatment. Melorheostosis is a rare condition and spinal pain has not been described in association with the condition. A patient with disabling low back pain and suspected melorheostosis of the lumbosacral spine responded favorably to diagnostic facet joint blocks. Treatment was lumbosacral fusion and biopsy of the abnormal bone. The densely sclerotic bone presented technical difficulties requiring modification of surgical technique. Dramatic pain and disability reduction occurred following lumbosacral fusion. Histologic examination was consistent with melorheostosis. Melorheostosis rarely causes severe low back pain that can respond favorably to fusion surgery.
Extraforaminal Lumbar Interbody Fusion at the L5-S1 Level: Technical Considerations and Feasibility.
Kurzbuch, Arthur Robert; Kaech, Denis; Baranowski, Pawel; Baranowska, Alicja; Recoules-Arche, Didier
2017-09-01
Background Extraforaminal lumbar interbody fusion (ELIF) surgery is a muscle-sparing approach that allows the treatment of various degenerative spinal diseases. It is technical challenging to perform the ELIF approach at the L5-S1 level because the sacral ala obstructs the view of the intervertebral disk space. Methods We reported earlier on the ELIF technique in which the intervertebral disk is targeted at an angle of 45 degrees relative to the midline. In this article we describe the technical process we developed to overcome the anatomic relation between the sacral ala and the intervertebral disk space L5-S1 that hinders the ELIF approach at this level. We then report in a retrospective analysis on the short-term clinical and radiologic outcome of 100 consecutive patients with degenerative L5-S1 pathologies who underwent ELIF surgery. Results The L5-S1 ELIF approach could be realized in all patients. The short-term clinical outcome was evaluated 5 months after surgery: 92% of the patients were satisfied with their postoperative result; 8% had a poor result. Overall, 17% of the patients presented light radicular or low back pain not influencing their daily activity, and 82% of the patients working before surgery returned to work 3 to 7 months after surgery. The radiologic outcome was documented by computed tomography at 5 months after surgery and showed fusion in 99% of the patients. Lumbar magnetic resonance imaging performed in 5 patients at 6 months after surgery revealed the integrity of the paraspinal muscles. Conclusions ELIF surgery at the L5-S1 level is technically feasible for various degenerative spinal diseases. Analysis of the clinical and radiologic data in a consecutive retrospective cohort of patients who underwent this surgical procedure showed a good short-term clinical outcome and fusion rate. Georg Thieme Verlag KG Stuttgart · New York.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berk, Herbert L.
2018-02-15
The study of this project focused on developing a reduced nonlinear model to describe chirping processes in a fusion plasma. A successful method was developed with results clear enough to allow an analytic theory to be developed that replicates the long term response of a nonlinear phase space structure immersed in the MHD continnuum.
Schwein, Adeline; Chinnadurai, Ponraj; Shah, Dipan J; Lumsden, Alan B; Bechara, Carlos F; Bismuth, Jean
2017-05-01
Three-dimensional image fusion of preoperative computed tomography (CT) angiography with fluoroscopy using intraoperative noncontrast cone-beam CT (CBCT) has been shown to improve endovascular procedures by reducing procedure length, radiation dose, and contrast media volume. However, patients with a contraindication to CT angiography (renal insufficiency, iodinated contrast allergy) may not benefit from this image fusion technique. The primary objective of this study was to evaluate the feasibility of magnetic resonance angiography (MRA) and fluoroscopy image fusion using noncontrast CBCT as a guidance tool during complex endovascular aortic procedures, especially in patients with renal insufficiency. All endovascular aortic procedures done under MRA image fusion guidance at a single-center were retrospectively reviewed. The patients had moderate to severe renal insufficiency and underwent diagnostic contrast-enhanced magnetic resonance imaging after gadolinium or ferumoxytol injection. Relevant vascular landmarks electronically marked in MRA images were overlaid on real-time two-dimensional fluoroscopy for image guidance, after image fusion with noncontrast intraoperative CBCT. Technical success, time for image registration, procedure time, fluoroscopy time, number of digital subtraction angiography (DSA) acquisitions before stent deployment or vessel catheterization, and renal function before and after the procedure were recorded. The image fusion accuracy was qualitatively evaluated on a binary scale by three physicians after review of image data showing virtual landmarks from MRA on fluoroscopy. Between November 2012 and March 2016, 10 patients underwent endovascular procedures for aortoiliac aneurysmal disease or aortic dissection using MRA image fusion guidance. All procedures were technically successful. A paired t-test analysis showed no difference between preimaging and postoperative renal function (P = .6). The mean time required for MRA-CBCT image fusion was 4:09 ± 01:31 min:sec. Total fluoroscopy time was 20.1 ± 6.9 minutes. Five of 10 patients (50%) underwent stent graft deployment without any predeployment DSA acquisition. Three of six vessels (50%) were cannulated under image fusion guidance without any precannulation DSA runs, and the remaining vessels were cannulated after one planning DSA acquisition. Qualitative evaluation showed 14 of 22 virtual landmarks (63.6%) from MRA overlaid on fluoroscopy were completely accurate, without the need for adjustment. Five of eight incorrect virtual landmarks (iliac and visceral arteries) resulted from vessel deformation caused by endovascular devices. Ferumoxytol or gadolinium-enhanced MRA imaging and image fusion with fluoroscopy using noncontrast CBCT is feasible and allows patients with renal insufficiency to benefit from optimal guidance during complex endovascular aortic procedures, while preserving their residual renal function. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Radiological Source Localisation
2007-07-01
activity. This algorithm was able to provide reasonable source estimates based on real data collected using the Low Cost Advanced Airborne...courses in Australia, Europe and the US. He is lecturing a post-graduate subject at Adelaide University (subject ”Multi-Sensor Data Fusion ”). He served on...technical committees of several international conferences, and is the Chair of the Fourth Australian Data Fusion Sym- posium (IDC-07). Dr Ristic won
The Light Ion Pulsed Power Induction Accelerator for ETF
1995-07-01
the technical development necessary to demonstrate scientific and engineering feasibility for fusion energy production with a reprated driver. In...order for ETF to be cost effective, the accelerator system must be able to drive several target chambers which will test various Inertial Fusion ... Energy (IFE) reactor technologies. We envision an elevator system positioning and removing multiple target chambers from the center area of the ion beam
Image fusion and navigation platforms for percutaneous image-guided interventions.
Rajagopal, Manoj; Venkatesan, Aradhana M
2016-04-01
Image-guided interventional procedures, particularly image guided biopsy and ablation, serve an important role in the care of the oncology patient. The need for tumor genomic and proteomic profiling, early tumor response assessment and confirmation of early recurrence are common scenarios that may necessitate successful biopsies of targets, including those that are small, anatomically unfavorable or inconspicuous. As image-guided ablation is increasingly incorporated into interventional oncology practice, similar obstacles are posed for the ablation of technically challenging tumor targets. Navigation tools, including image fusion and device tracking, can enable abdominal interventionalists to more accurately target challenging biopsy and ablation targets. Image fusion technologies enable multimodality fusion and real-time co-displays of US, CT, MRI, and PET/CT data, with navigational technologies including electromagnetic tracking, robotic, cone beam CT, optical, and laser guidance of interventional devices. Image fusion and navigational platform technology is reviewed in this article, including the results of studies implementing their use for interventional procedures. Pre-clinical and clinical experiences to date suggest these technologies have the potential to reduce procedure risk, time, and radiation dose to both the patient and the operator, with a valuable role to play for complex image-guided interventions.
Ion-ion charge exchange processes. Final technical report, June 1, 1977-May 31, 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poe, R.T.; Choi, B.H.
Under the auspices of ERDA, we have undertaken a vigorous study of ion-ion charge exchange process pertinent to the storage-ring configurations in the heavy-ion fusion program. One particular reaction, singly charged helium charge exchange, was investigated in detail. General trend of the singly charged heavy-ion charge exchange reaction can be inferred from the present study. Some of our results were presented at Proceedings of the Heavy-Ion Fusion Workshop, Argonne National Laboratory (September 1978) as a paper entitled Charge Exchange Between Singly Ionized Helium Ions, by B.H. Choi, R.T. Poe and K.T. Tang. Here, we briefly describe our method and reportmore » the results.« less
Status and problems of fusion reactor development.
Schumacher, U
2001-03-01
Thermonuclear fusion of deuterium and tritium constitutes an enormous potential for a safe, environmentally compatible and sustainable energy supply. The fuel source is practically inexhaustible. Further, the safety prospects of a fusion reactor are quite favourable due to the inherently self-limiting fusion process, the limited radiologic toxicity and the passive cooling property. Among a small number of approaches, the concept of toroidal magnetic confinement of fusion plasmas has achieved most impressive scientific and technical progress towards energy release by thermonuclear burn of deuterium-tritium fuels. The status of thermonuclear fusion research activity world-wide is reviewed and present solutions to the complicated physical and technological problems are presented. These problems comprise plasma heating, confinement and exhaust of energy and particles, plasma stability, alpha particle heating, fusion reactor materials, reactor safety and environmental compatibility. The results and the high scientific level of this international research activity provide a sound basis for the realisation of the International Thermonuclear Experimental Reactor (ITER), whose goal is to demonstrate the scientific and technological feasibility of a fusion energy source for peaceful purposes.
Fusion materials semiannual progress report for the period ending June 30, 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burn, G.
1998-09-01
This is the twenty-fourth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.
Current situation: New enthusiasm. [Nuclear fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
For decades the costly field of controlled nuclear fusion has been rocked by ups and downs, promise and problems. In spite of the many setbacks, scientists and DOE officials are determined to push ahead. [open quotes]We are very confident that by some time after the first decade of the next century, we will have a clear demonstration [of the technology] to give us unlimited energy....We are very excited about it,[close quotes] Energy Secretary Watkins said last spring in proposing a $360 million fusion energy budget for fiscal 1993. This article cites recent hey developments in terms of technical accomplishments, fundingmore » decisions, policy decisions, and efforts to collaborate internationally on controlled nuclear fusion. The International Thermonuclear Experimental Reactor is discussed also.« less
Fusion Power—A Chemical Engineering View of the Integrated Enterprise
NASA Astrophysics Data System (ADS)
Manganaro, James L.
2003-03-01
The purpose of this article was to achieve the beginning of an understanding of the integrated fusion enterprise from raw materials through power generation to decommissioning and waste disposal. The particular view point is that of a technically trained person who is only casually acquainted with the field. Emphasis is given to the chemical engineering aspects of controlled fusion power. It is concluded that there are indeed many areas in which the discipline of chemical engineering may contribute to the fusion effort. These areas include separation technology by physical and chemical means, heat and mass transfer in a packed bed blanket, tritium removal from molten coolants, distillation technology for isotope separation, and preparation of deuterium and lithium feed materials.
A technical case report on use of tubular retractors for anterior cervical spine surgery.
Kulkarni, Arvind G; Patel, Ankit; Ankith, N V
2017-12-19
The authors put-forth this technical report to establish the feasibility of performing an anterior cervical corpectomy and fusion (ACCF) and a two-level anterior cervical discectomy and fusion (ACDF) using a minimally invasive approach with tubular retractors. First case: cervical spondylotic myelopathy secondary to a large postero-inferiorly migrated disc treated with corpectomy and reconstruction with a mesh cage and locking plate. Second case: cervical disc herniation with radiculopathy treated with a two-level ACDF. Both cases were operated with minimally invasive approach with tubular retractor using a single incision. Technical aspects and clinical outcomes have been reported. No intra or post-operative complications were encountered. Intra-operative blood loss was negligible. The patients had a cosmetic scar on healing. Standard procedure of placement of tubular retractors is sufficient for adequate surgical exposure with minimal invasiveness. Minimally invasive approach to anterior cervical spine with tubular retractors is feasible. This is the first report on use of minimally invasive approach for ACCF and two-level ACDF.
Scientific and technical challenges on the road towards fusion electricity
NASA Astrophysics Data System (ADS)
Donné, A. J. H.; Federici, G.; Litaudon, X.; McDonald, D. C.
2017-10-01
The goal of the European Fusion Roadmap is to deliver fusion electricity to the grid early in the second half of this century. It breaks the quest for fusion energy into eight missions, and for each of them it describes a research and development programme to address all the open technical gaps in physics and technology and estimates the required resources. It points out the needs to intensify industrial involvement and to seek all opportunities for collaboration outside Europe. The roadmap covers three periods: the short term, which runs parallel to the European Research Framework Programme Horizon 2020, the medium term and the long term. ITER is the key facility of the roadmap as it is expected to achieve most of the important milestones on the path to fusion power. Thus, the vast majority of present resources are dedicated to ITER and its accompanying experiments. The medium term is focussed on taking ITER into operation and bringing it to full power, as well as on preparing the construction of a demonstration power plant DEMO, which will for the first time demonstrate fusion electricity to the grid around the middle of this century. Building and operating DEMO is the subject of the last roadmap phase: the long term. Clearly, the Fusion Roadmap is tightly connected to the ITER schedule. Three key milestones are the first operation of ITER, the start of the DT operation in ITER and reaching the full performance at which the thermal fusion power is 10 times the power put in to the plasma. The Engineering Design Activity of DEMO needs to start a few years after the first ITER plasma, while the start of the construction phase will be a few years after ITER reaches full performance. In this way ITER can give viable input to the design and development of DEMO. Because the neutron fluence in DEMO will be much higher than in ITER, it is important to develop and validate materials that can handle these very high neutron loads. For the testing of the materials, a dedicated 14 MeV neutron source is needed. This DEMO Oriented Neutron Source (DONES) is therefore an important facility to support the fusion roadmap.
Ierardi, Anna Maria; Petrillo, Mario; Xhepa, Genti; Laganà, Domenico; Piacentino, Filippo; Floridi, Chiara; Duka, Ejona; Fugazzola, Carlo; Carrafiello, Gianpaolo
2016-02-01
Recently different software with the ability to plan ablation volumes have been developed in order to minimize the number of attempts of positioning electrodes and to improve a safe overall tumor coverage. To assess the feasibility of three-dimensional cone beam computed tomography (3D CBCT) fusion imaging with "virtual probe" positioning, to predict ablation volume in lung tumors treated percutaneously. Pre-procedural computed tomography contrast-enhanced scans (CECT) were merged with a CBCT volume obtained to plan the ablation. An offline tumor segmentation was performed to determine the number of antennae and their positioning within the tumor. The volume of ablation obtained, evaluated on CECT performed after 1 month, was compared with the pre-procedural predicted one. Feasibility was assessed on the basis of accuracy evaluation (visual evaluation [VE] and quantitative evaluation [QE]), technical success (TS), and technical effectiveness (TE). Seven of the patients with lung tumor treated by percutaneous thermal ablation were selected and treated on the basis of the 3D CBCT fusion imaging. In all cases the volume of ablation predicted was in accordance with that obtained. The difference in volume between predicted ablation volumes and obtained ones on CECT at 1 month was 1.8 cm(3) (SD ± 2, min. 0.4, max. 0.9) for MW and 0.9 cm(3) (SD ± 1.1, min. 0.1, max. 0.7) for RF. Use of pre-procedural 3D CBCT fusion imaging could be useful to define expected ablation volumes. However, more patients are needed to ensure stronger evidence. © The Foundation Acta Radiologica 2015.
Final Technical Report for "Nuclear Technologies for Near Term Fusion Devices"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Paul P.H.; Sawan, Mohamed E.; Davis, Andrew
Over approximately 18 years, this project evolved to focus on a number of related topics, all tied to the nuclear analysis of fusion energy systems. For the earliest years, the University of Wisconsin (UW)’s effort was in support of the Advanced Power Extraction (APEX) study to investigate high power density first wall and blanket systems. A variety of design concepts were studied before this study gave way to a design effort for a US Test Blanket Module (TBM) to be installed in ITER. Simultaneous to this TBM project, nuclear analysis supported the conceptual design of a number of fusion nuclearmore » science facilities that might fill a role in the path to fusion energy. Beginning in approximately 2005, this project added a component focused on the development of novel radiation transport software capability in support of the above nuclear analysis needs. Specifically, a clear need was identified to support neutron and photon transport on the complex geometries associated with Computer-Aided Design (CAD). Following the initial development of the Direct Accelerated Geoemtry Monte Carlo (DAGMC) capability, additional features were added, including unstructured mesh tallies and multi-physics analysis such as the Rigorous 2-Step (R2S) methodology for Shutdown Dose Rate (SDR) prediction. Throughout the project, there were also smaller tasks in support of the fusion materials community and for the testing of changes to the nuclear data that is fundamental to this kind of nuclear analysis.« less
Distributed Multisensor Data Fusion under Unknown Correlation and Data Inconsistency
Abu Bakr, Muhammad; Lee, Sukhan
2017-01-01
The paradigm of multisensor data fusion has been evolved from a centralized architecture to a decentralized or distributed architecture along with the advancement in sensor and communication technologies. These days, distributed state estimation and data fusion has been widely explored in diverse fields of engineering and control due to its superior performance over the centralized one in terms of flexibility, robustness to failure and cost effectiveness in infrastructure and communication. However, distributed multisensor data fusion is not without technical challenges to overcome: namely, dealing with cross-correlation and inconsistency among state estimates and sensor data. In this paper, we review the key theories and methodologies of distributed multisensor data fusion available to date with a specific focus on handling unknown correlation and data inconsistency. We aim at providing readers with a unifying view out of individual theories and methodologies by presenting a formal analysis of their implications. Finally, several directions of future research are highlighted. PMID:29077035
Dong, Yi; Wang, Wen-Ping; Mao, Feng; Ji, Zheng-Biao; Huang, Bei-Jian
2016-04-01
The aim of this study is to explore the value of volume navigation image fusion-assisted contrast-enhanced ultrasound (CEUS) in detection for radiofrequency ablation guidance of hepatocellular carcinomas (HCCs), which were undetectable on conventional ultrasound. From May 2012 to May 2014, 41 patients with 49 HCCs were included in this study. All lesions were detected by dynamic magnetic resonance imaging (MRI) and planned for radiofrequency ablation but were undetectable on conventional ultrasound. After a bolus injection of 2.4 ml SonoVue® (Bracco, Italy), LOGIQ E9 ultrasound system with volume navigation system (version R1.0.5, GE Healthcare, Milwaukee, WI, USA) was used to fuse CEUS and MRI images. The fusion time, fusion success rate, lesion enhancement pattern, and detection rate were analyzed. Image fusions were conducted successfully in 49 HCCs, the technical success rate was 100%. The average fusion time was (9.2 ± 2.1) min (6-12 min). The mean diameter of HCCs was 25.2 ± 5.3 mm (mean ± SD), and mean depth was 41.8 ± 17.2 mm. The detection rate of HCCs using CEUS/MRI imaging fusion (95.9%, 47/49) was significantly higher than CEUS (42.9%, 21/49) (P < 0.05). For small HCCs (diameter, 1-2 cm), the detection rate using imaging fusion (96.9%, 32/33) was also significantly higher than CEUS (18.2%, 6/33) (P < 0.01). All HCCs displayed a rapid wash-in pattern in the arterial phase of CEUS. Imaging fusion combining CEUS and MRI is a promising technique to improve the detection, precise localization, and accurate diagnosis of undetectable HCCs on conventional ultrasound, especially small and atypical HCCs. © 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
NASA Astrophysics Data System (ADS)
Ritz, G.; Hirai, T.; Norajitra, P.; Reiser, J.; Giniyatulin, R.; Makhankov, A.; Mazul, I.; Pintsuk, G.; Linke, J.
2009-12-01
Tungsten was selected as armor material for the helium-cooled divertor in future DEMO-type fusion reactors and fusion power plants. After realizing the design and testing of them under cyclic thermal loads of up to ~14 MW m-2, the tungsten divertor plasma-facing units were examined by metallography; they revealed failures such as cracks at the thermal loaded and as-machined surfaces, as well as degradation of the brazing layers. Furthermore, in order to optimize the machining processes, the quality of tungsten surfaces prepared by turning, milling and using a diamond cutting wheel were examined. This paper presents a metallographic examination of the tungsten plasma-facing units as well as technical studies and the characterization on machining of tungsten and alternative brazing joints.
Proceedings of the Augmented VIsual Display (AVID) Research Workshop
NASA Technical Reports Server (NTRS)
Kaiser, Mary K. (Editor); Sweet, Barbara T. (Editor)
1993-01-01
The papers, abstracts, and presentations were presented at a three day workshop focused on sensor modeling and simulation, and image enhancement, processing, and fusion. The technical sessions emphasized how sensor technology can be used to create visual imagery adequate for aircraft control and operations. Participants from industry, government, and academic laboratories contributed to panels on Sensor Systems, Sensor Modeling, Sensor Fusion, Image Processing (Computer and Human Vision), and Image Evaluation and Metrics.
RTO Technical Publications: A Quarterly Listing
NASA Technical Reports Server (NTRS)
2004-01-01
This is a listing of recent unclassified RTO technical publications for April 1, 2004 through June 30, 2004, processed by the NASA Center for AeroSpace Information. Topics covered include: heat transfer and cooling in propulsion and power systems; assessment of operator functional state; microwaves; aerodynamics in solid rocket propulsion; command, control, communications and intelligence modeling; personal protective equipment against anti-personnel mine blast; and data fusion and visualization.
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.
1986-01-01
Applicabilities and limitations of three techniques analyzed. NASA technical memorandum discusses physics of electron-beam, gas/ tungsten-arc, and laser-beam welding. From comparison of capabilities and limitations of each technique with regard to various welding conditions and materials, possible to develop criteria for selecting best welding technique in specific application. All three techniques classified as fusion welding; small volume of workpiece melted by intense heat source. Heat source moved along seam, leaving in wake solid metal that joins seam edges together.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, W.R.; Bieri, R.L.; Monsler, M.J.
1992-03-01
The primary objective of the of the IFE Reactor Design Studies was to provide the Office of Fusion Energy with an evaluation of the potential of inertial fusion for electric power production. The term reactor studies is somewhat of a misnomer since these studies included the conceptual design and analysis of all aspects of the IFE power plants: the chambers, heat transport and power conversion systems, other balance of plant facilities, target systems (including the target production, injection, and tracking systems), and the two drivers. The scope of the IFE Reactor Design Studies was quite ambitious. The majority of ourmore » effort was spent on the conceptual design of two IFE electric power plants, one using an induction linac heavy ion beam (HIB) driver and the other using a Krypton Fluoride (KrF) laser driver. After the two point designs were developed, they were assessed in terms of their (1) environmental and safety aspects; (2) reliability, availability, and maintainability; (3) technical issues and technology development requirements; and (4) economics. Finally, we compared the design features and the results of the assessments for the two designs.« less
2016-05-31
and included explosives such as TATP, HMTD, RDX, RDX, ammonium nitrate , potassium perchlorate, potassium nitrate , sugar, and TNT. The approach...Distribution Unlimited UU UU UU UU 31-05-2016 15-Apr-2014 14-Jan-2015 Final Report: Technical Topic 3.2.2. d Bayesian and Non- parametric Statistics...of Papers published in non peer-reviewed journals: Final Report: Technical Topic 3.2.2. d Bayesian and Non-parametric Statistics: Integration of Neural
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokoyama, Yoko; Shimizu, Akira; Okada, Etsuko
Highlights: Black-Right-Pointing-Pointer We developed new method to rapidly identify COL1A1-PDGFB fusion in DFSP. Black-Right-Pointing-Pointer New PCR method using a single primer pair detected COL1A1-PDGFB fusion in DFSP. Black-Right-Pointing-Pointer This is the first report of DFSP with a novel COL1A1 breakpoint in exon 5. -- Abstract: The detection of fusion transcripts of the collagen type 1{alpha}1 (COL1A1) and platelet-derived growth factor-BB (PDGFB) genes by genetic analysis has recognized as a reliable and valuable molecular tool for the diagnosis of dermatofibrosarcoma protuberans (DFSP). To detect the COL1A1-PDGFB fusion, almost previous reports performed reverse transcription polymerase chain reaction (RT-PCR) using multiplex forward primersmore » from COL1A1. However, it has possible technical difficulties with respect to the handling of multiple primers and reagents in the procedure. The objective of this study is to establish a rapid, easy, and efficient one-step method of PCR using only a single primer pair to detect the fusion transcripts of the COL1A1 and PDGFB in DFSP. To validate new method, we compared the results of RT-PCR in five patients of DFSP between the previous method using multiplex primers and our established one-step RT-PCR using a single primer pair. In all cases of DFSP, the COL1A1-PDGFB fusion was detected by both previous method and newly established one-step PCR. Importantly, we detected a novel COL1A1 breakpoint in exon 5. The newly developed method is valuable to rapidly identify COL1A1-PDGFB fusion transcripts in DFSP.« less
Gerszten, Peter C; Tobler, William; Raley, Thomas J; Miller, Larry E; Block, Jon E; Nasca, Richard J
2012-04-01
Case series. To describe a minimally invasive surgical technique for treatment of lumbosacral spondylolisthesis. Traditional surgical management of lumbosacral spondylolisthesis is technically challenging and associated with significant complications. Minimally invasive surgical techniques offer patients treatment alternatives with lower operative morbidity risk. The combination of percutaneous pedicle screw reduction and an axial presacral approach for lumbosacral discectomy and fusion is an option for the surgical management of low-grade lumbosacral spondylolisthesis. Twenty-six consecutive patients with symptomatic L5-S1 level isthmic spondylolisthesis (grade 1 or grade 2) underwent axial presacral lumbar interbody fusion and percutaneous posterior fixation. Study outcomes included visual analogue scale for axial pain severity, Odom criteria, and radiographic fusion. The procedure was successfully completed in all patients with no intraoperative complications reported. Intraoperative blood loss was minimal (range, 20-150 mL). Median hospital stay was 1 day (range, <1-2 d). Spondylolisthesis grade was improved after axial lumbar interbody fusion (P<0.001) with 50% (13 of 26) of patients showing a reduction of at least 1 grade. Axial pain severity improved from 8.1±1.4 at baseline to 2.8±2.3 after axial lumbar interbody fusion, representing a 66% reduction from baseline (95% confidence interval, 54.3%-77.9%). At 2-year posttreatment, all patients showed solid fusion. Using Odom criteria, 81% of patients were judged as excellent or good (16 excellent, 5 good, 3 fair, and 2 poor). There were no perioperative procedure-related complications including infection or bowel perforation. During postoperative follow-up, 4 patients required reintervention due to recurrent radicular (n=2) or screw-related (n=2) pain. The minimally invasive presacral axial interbody fusion and posterior instrumentation technique is a safe and effective treatment for low-grade isthmic spondylolisthesis.
Minami, Yasunori; Minami, Tomohiro; Hagiwara, Satoru; Ida, Hiroshi; Ueshima, Kazuomi; Nishida, Naoshi; Murakami, Takamichi; Kudo, Masatoshi
2018-05-01
To assess the clinical feasibility of US-US image overlay fusion with evaluation of the ablative margin in radiofrequency ablation (RFA) for hepatocellular carcinoma (HCC). Fifty-three patients with 68 HCCs measuring 0.9-4.0 cm who underwent RFA guided by US-US overlay image fusion were included in this retrospective study. By an overlay of pre-/postoperative US, the tumor image could be projected onto the ablative hyperechoic zone. Therefore, the ablative margin three-dimensionally could be shown during the RFA procedure. US-US image overlay was compared to dynamic CT a few days after RFA for assessment of early treatment response. Accuracy of graded response was calculated, and the performance of US-US image overlay fusion was compared with that of CT using a Kappa agreement test. Technically effective ablation was achieved in a single session, and 59 HCCs (86.8 %) succeeded in obtaining a 5-mm margin on CT. The response with US-US image overlay correctly predicted early CT evaluation with an accuracy of 92.6 % (63/68) (k = 0.67; 95 % CI: 0.39-0.95). US-US image overlay fusion can be proposed as a feasible guidance in RFA with a safety margin and predicts early response of treatment assessment with high accuracy. • US-US image overlay fusion visualizes the ablative margin during RFA procedure. • Visualizing the margin during the procedure can prompt immediate complementary treatment. • US image fusion correlates with the results of early evaluation CT.
NASA Astrophysics Data System (ADS)
Barty, C. P. J.; Key, M.; Britten, J.; Beach, R.; Beer, G.; Brown, C.; Bryan, S.; Caird, J.; Carlson, T.; Crane, J.; Dawson, J.; Erlandson, A. C.; Fittinghoff, D.; Hermann, M.; Hoaglan, C.; Iyer, A.; Jones, L., II; Jovanovic, I.; Komashko, A.; Landen, O.; Liao, Z.; Molander, W.; Mitchell, S.; Moses, E.; Nielsen, N.; Nguyen, H.-H.; Nissen, J.; Payne, S.; Pennington, D.; Risinger, L.; Rushford, M.; Skulina, K.; Spaeth, M.; Stuart, B.; Tietbohl, G.; Wattellier, B.
2004-12-01
The technical challenges and motivations for high-energy, short-pulse generation with NIF and possibly other large-scale Nd : glass lasers are reviewed. High-energy short-pulse generation (multi-kilojoule, picosecond pulses) will be possible via the adaptation of chirped pulse amplification laser techniques on NIF. Development of metre-scale, high-efficiency, high-damage-threshold final optics is a key technical challenge. In addition, deployment of high energy petawatt (HEPW) pulses on NIF is constrained by existing laser infrastructure and requires new, compact compressor designs and short-pulse, fibre-based, seed-laser systems. The key motivations for HEPW pulses on NIF is briefly outlined and includes high-energy, x-ray radiography, proton beam radiography, proton isochoric heating and tests of the fast ignitor concept for inertial confinement fusion.
In vitro laser nerve repair: protein solder strip irradiation or irradiation alone?
Trickett, I; Dawes, J M; Knowles, D S; Lanzetta, M; Owen, E R
1997-01-01
This study investigated the potential of sutureless nerve repair using two promising laser fusion methods: direct 2 microns irradiation of the epineurium, and protein solder assisted epineurial fusion using a 800 nm laser. Laser anastomosis of the rat sciatic nerve was performed in vitro without stay sutures in two groups of six animals. In the first group, direct laser fusion used a pulsed Cr, Tm: YAG laser. In the second group an albumin-based fluid solder containing the dye indocyanine green was applied to the epineurium, then irradiated with a diode laser. These two techniques were compared with regards to coaptation success and axonal damage. Direct laser welding produced weak bonds despite microscopic investigation of the irradiated nerves showing fusion of the epineurium. The unsatisfactory bonding can be attributed to poor tissue overlap and insufficient protein in the thin epineurium denaturation of underlying axons was also observed. In contrast, the laser solder method produced successful welds with greatly reduced axonal damage, and significantly improved the tensile strength. This study confirmed the technical possibilities of sutureless nerve anastomosis. Laser activated solders enable stronger bonds, by the addition of protein to the anastomosis site, and less thermal damage to underlying tissue through selective absorption of laser energy by dye in the solder. Further in vivo studies are required before drawing final conclusions.
Fusion materials semiannual progress report for the period ending December 31, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-04-01
This is the twenty-first in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reportedmore » separately. The report covers the following topics: vanadium alloys; silicon carbide composite materials; ferritic/martensitic steels; copper alloys and high heat flux materials; austenitic stainless steels; insulating ceramics and optical materials; solid breeding materials; radiation effects, mechanistic studies and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; and irradiation facilities, test matrices, and experimental methods.« less
Fusion Materials Semiannual Progress Report for Period Ending December 31, 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowcliff, A.F.; Burn, G.
1999-04-01
This is the twenty-fifth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the U.S. Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reportedmore » separately.« less
Harnessing Novel Secreted Inhibitors of EGF Receptor Signaling for Breast Cancer Treatment
2007-04-01
the original proposal, we described approaches for displaying the basic Argos and Dkk scaffolds as pIII fusions on M13 phage , so that we could...deal of effort into displaying Argos and other relevant proteins as pIII fusions on M13 phage (Task 2a). This has been technically very challenging... display function Argos on the surface of phage M13 , requiring a change in experimental strategy • To replace the phage display , we have established
Atomic Scale Mixing for Inertial Confinement Fusion Associated Hydro Instabilities
2013-01-26
observe that the obvious step of RT validation using NIF or Omega laser data does not address themultimode, mode coupling RTgrowth stage, as the...ignition facility, Phys. Plasmas 18 (2011) 051001. [2] W. Goldstein, R. Rosner, Workshop on the Science of Fusion Ignition on NIF , Technical Report LLNL-TR...11 (2004) 339e491. [6] S.P. Regan, R. Epstein, B.A. Hammel, L.J. Suter, J. Ralph, et al., Hot-spot mix in ignition-scale implosions on the NIF , Phys
An accelerated fusion power development plan
NASA Astrophysics Data System (ADS)
Dean, Stephen O.; Baker, Charles C.; Cohn, Daniel R.; Kinkead, Susan D.
1991-06-01
Energy for electricity and transportation is a national issue with worldwide environmental and political implications. The world must have energy options for the next century that are not vulnerable to possible disruption for technical, environmental, public confidence, or other reasons. Growing concerns about the greenhouse effect and the safety of transporting oil may lead to reduced burning of coal and other fossil fuels, and the incidents at Three Mile Island and Chernobyl, as well as nuclear waste storage problems, have eroded public acceptance of nuclear fission. Meeting future world energy needs will require improvements in energy efficiency and conservation. However, the world will soon need new central station power plants and increasing amounts of fuel for the transportation sector. The use of fossil fuels, and possibly even fission power, will very likely be restricted because of environmental, safety, and, eventually, supply considerations. Time is running out for policymakers. New energy technologies cannot be brought to the marketplace overnight. Decades are required to bring a new energy production technology from conception to full market penetration. With the added urgency to mitigate deleterious environmental effects of energy use, policymakers must act decisively now to establish and support vigorous energy technology development programs. The U.S. has invested 8 billion over the past 40 years in fusion research and development. If the U.S. fusion program proceeds according to its present strategy, an additional 40 years, and more money, will be expended before fusion will provide commercial electricity. Such an extended schedule is neither cost-effective nor technically necessary. It is time to launch a national venture to construct and operate a fusion power pilot plant. Such a plant could be operational within 15 years of a national commitment to proceed.
Gene Fusion: A Genome Wide Survey
NASA Technical Reports Server (NTRS)
Liang, Ping; Riley, Monica
2001-01-01
As a well known fact, organisms form larger and complex multimodular (composite or chimeric) and mostly multi-functional proteins through gene fusion of two or more individual genes which have independent evolution histories and functions. We call each of these components a module. The existence of multimodular proteins may improves the efficiency in gene regulation and in cellular functions, and thus may give the host organism advantages in adaptation to environments. Analysis of all gene fusions in present-day organisms should allow us to examine the patterns of gene fusion in context with cellular functions, to trace back the evolution processes from the ancient smaller and uni-functional proteins to the present-day larger and complex multi-functional proteins, and to estimate the minimal number of ancestor proteins that existed in the last common ancestor for all life on earth. Although many multimodular proteins have been experimentally known, identification of gene fusion events systematically at genome scale had not been possible until recently when large number of completed genome sequences have been becoming available. In addition, technical difficulties for such analysis also exist due to the complexity of this biological and evolutionary process. We report from this study a new strategy to computationally identify multimodular proteins using completed genome sequences and the results surveyed from 22 organisms with the data from over 40 organisms to be presented during the meeting. Additional information is contained in the original extended abstract.
Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiffen, F. W.; Katoh, Yutai; Melton, Stephanie G.
The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the Oak Ridge National Laboratory (ORNL) fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing Department of Energy (DOE) Office of Science fusion energy program while developing materials for fusionmore » power systems. In doing so the program continues to be integrated both with the larger United States (US) and international fusion materials communities, and with the international fusion design and technology communities.This document provides a summary of Fiscal Year (FY) 2015 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for Magnetic Fusion Energy (AT-60-20-10-0) carried out by ORNL. The organization of this report is mainly by material type, with sections on specific technical activities. Four projects selected in the Funding Opportunity Announcement (FOA) solicitation of late 2011 and funded in FY2012-FY2014 are identified by “FOA” in the titles. This report includes the final funded work of these projects, although ORNL plans to continue some of this work within the base program.« less
Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X
NASA Astrophysics Data System (ADS)
Bosch, H.-S.; Wolf, R. C.; Andreeva, T.; Baldzuhn, J.; Birus, D.; Bluhm, T.; Bräuer, T.; Braune, H.; Bykov, V.; Cardella, A.; Durodié, F.; Endler, M.; Erckmann, V.; Gantenbein, G.; Hartmann, D.; Hathiramani, D.; Heimann, P.; Heinemann, B.; Hennig, C.; Hirsch, M.; Holtum, D.; Jagielski, J.; Jelonnek, J.; Kasparek, W.; Klinger, T.; König, R.; Kornejew, P.; Kroiss, H.; Krom, J. G.; Kühner, G.; Laqua, H.; Laqua, H. P.; Lechte, C.; Lewerentz, M.; Maier, J.; McNeely, P.; Messiaen, A.; Michel, G.; Ongena, J.; Peacock, A.; Pedersen, T. S.; Riedl, R.; Riemann, H.; Rong, P.; Rust, N.; Schacht, J.; Schauer, F.; Schroeder, R.; Schweer, B.; Spring, A.; Stäbler, A.; Thumm, M.; Turkin, Y.; Wegener, L.; Werner, A.; Zhang, D.; Zilker, M.; Akijama, T.; Alzbutas, R.; Ascasibar, E.; Balden, M.; Banduch, M.; Baylard, Ch.; Behr, W.; Beidler, C.; Benndorf, A.; Bergmann, T.; Biedermann, C.; Bieg, B.; Biel, W.; Borchardt, M.; Borowitz, G.; Borsuk, V.; Bozhenkov, S.; Brakel, R.; Brand, H.; Brown, T.; Brucker, B.; Burhenn, R.; Buscher, K.-P.; Caldwell-Nichols, C.; Cappa, A.; Cardella, A.; Carls, A.; Carvalho, P.; Ciupiński, Ł.; Cole, M.; Collienne, J.; Czarnecka, A.; Czymek, G.; Dammertz, G.; Dhard, C. P.; Davydenko, V. I.; Dinklage, A.; Drevlak, M.; Drotziger, S.; Dudek, A.; Dumortier, P.; Dundulis, G.; Eeten, P. v.; Egorov, K.; Estrada, T.; Faugel, H.; Fellinger, J.; Feng, Y.; Fernandes, H.; Fietz, W. H.; Figacz, W.; Fischer, F.; Fontdecaba, J.; Freund, A.; Funaba, T.; Fünfgelder, H.; Galkowski, A.; Gates, D.; Giannone, L.; García Regaña, J. M.; Geiger, J.; Geißler, S.; Greuner, H.; Grahl, M.; Groß, S.; Grosman, A.; Grote, H.; Grulke, O.; Haas, M.; Haiduk, L.; Hartfuß, H.-J.; Harris, J. H.; Haus, D.; Hein, B.; Heitzenroeder, P.; Helander, P.; Heller, R.; Hidalgo, C.; Hildebrandt, D.; Höhnle, H.; Holtz, A.; Holzhauer, E.; Holzthüm, R.; Huber, A.; Hunger, H.; Hurd, F.; Ihrke, M.; Illy, S.; Ivanov, A.; Jablonski, S.; Jaksic, N.; Jakubowski, M.; Jaspers, R.; Jensen, H.; Jenzsch, H.; Kacmarczyk, J.; Kaliatk, T.; Kallmeyer, J.; Kamionka, U.; Karaleviciu, R.; Kern, S.; Keunecke, M.; Kleiber, R.; Knauer, J.; Koch, R.; Kocsis, G.; Könies, A.; Köppen, M.; Koslowski, R.; Koshurinov, J.; Krämer-Flecken, A.; Krampitz, R.; Kravtsov, Y.; Krychowiak, M.; Krzesinski, G.; Ksiazek, I.; Kubkowska, M.; Kus, A.; Langish, S.; Laube, R.; Laux, M.; Lazerson, S.; Lennartz, M.; Li, C.; Lietzow, R.; Lohs, A.; Lorenz, A.; Louche, F.; Lubyako, L.; Lumsdaine, A.; Lyssoivan, A.; Maaßberg, H.; Marek, P.; Martens, C.; Marushchenko, N.; Mayer, M.; Mendelevitch, B.; Mertens, Ph.; Mikkelsen, D.; Mishchenko, A.; Missal, B.; Mizuuchi, T.; Modrow, H.; Mönnich, T.; Morizaki, T.; Murakami, S.; Musielok, F.; Nagel, M.; Naujoks, D.; Neilson, H.; Neubauer, O.; Neuner, U.; Nocentini, R.; Noterdaeme, J.-M.; Nührenberg, C.; Obermayer, S.; Offermanns, G.; Oosterbeek, H.; Otte, M.; Panin, A.; Pap, M.; Paquay, S.; Pasch, E.; Peng, X.; Petrov, S.; Pilopp, D.; Pirsch, H.; Plaum, B.; Pompon, F.; Povilaitis, M.; Preinhaelter, J.; Prinz, O.; Purps, F.; Rajna, T.; Récsei, S.; Reiman, A.; Reiter, D.; Remmel, J.; Renard, S.; Rhode, V.; Riemann, J.; Rimkevicius, S.; Riße, K.; Rodatos, A.; Rodin, I.; Romé, M.; Roscher, H.-J.; Rummel, K.; Rummel, Th.; Runov, A.; Ryc, L.; Sachtleben, J.; Samartsev, A.; Sanchez, M.; Sano, F.; Scarabosio, A.; Schmid, M.; Schmitz, H.; Schmitz, O.; Schneider, M.; Schneider, W.; Scheibl, L.; Scholz, M.; Schröder, G.; Schröder, M.; Schruff, J.; Schumacher, H.; Shikhovtsev, I. V.; Shoji, M.; Siegl, G.; Skodzik, J.; Smirnow, M.; Speth, E.; Spong, D. A.; Stadler, R.; Sulek, Z.; Szabó, V.; Szabolics, T.; Szetefi, T.; Szökefalvi-Nagy, Z.; Tereshchenko, A.; Thomsen, H.; Thumm, M.; Timmermann, D.; Tittes, H.; Toi, K.; Tournianski, M.; Toussaint, U. v.; Tretter, J.; Tulipán, S.; Turba, P.; Uhlemann, R.; Urban, J.; Urbonavicius, E.; Urlings, P.; Valet, S.; Van Eester, D.; Van Schoor, M.; Vervier, M.; Viebke, H.; Vilbrandt, R.; Vrancken, M.; Wauters, T.; Weissgerber, M.; Weiß, E.; Weller, A.; Wendorf, J.; Wenzel, U.; Windisch, T.; Winkler, E.; Winkler, M.; Wolowski, J.; Wolters, J.; Wrochna, G.; Xanthopoulos, P.; Yamada, H.; Yokoyama, M.; Zacharias, D.; Zajac, J.; Zangl, G.; Zarnstorff, M.; Zeplien, H.; Zoletnik, S.; Zuin, M.
2013-12-01
The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate steady-state operation under plasma conditions relevant for a fusion power plant. Steady-state operation of a fusion device, on the one hand, requires the implementation of special technologies, giving rise to technical challenges during the design, fabrication and assembly of such a device. On the other hand, also the physics development of steady-state operation at high plasma performance poses a challenge and careful preparation. The electron cyclotron resonance heating system, diagnostics, experiment control and data acquisition are prepared for plasma operation lasting 30 min. This requires many new technological approaches for plasma heating and diagnostics as well as new concepts for experiment control and data acquisition.
Realizing "2001: A Space Odyssey": Piloted Spherical Torus Nuclear Fusion Propulsion
NASA Technical Reports Server (NTRS)
Williams, Craig H.; Dudzinski, Leonard A.; Borowski, Stanley K.; Juhasz, Albert J.
2005-01-01
A conceptual vehicle design enabling fast, piloted outer solar system travel was created predicated on a small aspect ratio spherical torus nuclear fusion reactor. The initial requirements were satisfied by the vehicle concept, which could deliver a 172 mt crew payload from Earth to Jupiter rendezvous in 118 days, with an initial mass in low Earth orbit of 1,690 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including artificial gravity payload, central truss, nuclear fusion reactor, power conversion, magnetic nozzle, fast wave plasma heating, tankage, fuel pellet injector, startup/re-start fission reactor and battery bank, refrigeration, reaction control, communications, mission design, and space operations. Detailed fusion reactor design included analysis of plasma characteristics, power balance/utilization, first wall, toroidal field coils, heat transfer, and neutron/x-ray radiation. Technical comparisons are made between the vehicle concept and the interplanetary spacecraft depicted in the motion picture 2001: A Space Odyssey.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pimputkar, S.M.; McCoy, J.K.; Stets, J.A.
1991-03-01
The integrity of a pipeline system is determined by its weakest links which may be the joints. Heat fusion is the most common method for joining gas distribution polyethylene (PE) piping. There are procedural, thermal, and mechanical aspects of making fusion joints. Acceptable procedural aspects, such as heater calibration and cleanliness, can be assured by rigorous training and certification of the operators. Thermal and mechanical aspects consist of specifying joining conditions such as the heater temperature, heating time, and joining pressure. In the absence of procedural errors, the strength of a fusion joint should depend on the pipe material, pipemore » dimensions, and the thermal and mechanical joining conditions. Socket heat fusion was studied both experimentally and analytically to determine how the strength of the joint varied with the conditions under which it was made. The standard tensile impact test was modified to test socket fusion joint samples in shear. The developed shear impact energy test data were found to be reliable measures of strength if the setup conditions were meticulously identical. A parameter, termed the socket joining parameter, was found to characterize the joining conditions. It is a strong function of melt volume at the end of the heating phase, and, physically, it is polyethylene transported parallel to the axis during insertion. The results for three resins are presented in the form of three nomographs. The nomographs may be used to select the required heater temperature or the heating time, for a given ambient temperature and a PE resin, to ensure a structurally sound socket heat fusion joint.« less
NASA Technical Reports Server (NTRS)
1989-01-01
Technology developed during a joint research program with Langley and Kinetic Systems Corporation led to Kinetic Systems' production of a high speed Computer Automated Measurement and Control (CAMAC) data acquisition system. The study, which involved the use of CAMAC equipment applied to flight simulation, significantly improved the company's technical capability and produced new applications. With Digital Equipment Corporation, Kinetic Systems is marketing the system to government and private companies for flight simulation, fusion research, turbine testing, steelmaking, etc.
Thick Nano-Crystalline Diamond films for fusion applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawedeit, Christoph
This Diplomarbeit deals with the characterization of 9 differently grown diamond samples. Several techniques were used to determine the quality of these specimens for inertial confinement fusion targets. The quality of chemical vapor deposition diamond is usually considered in terms of the proportion of sp3-bonded carbon to sp2-bonded carbon in the sample. For fusion targets smoothness, Hydrogen content and density of the diamonds are further important characteristics. These characteristics are analyzed in this thesis. The research for thesis was done at Lawrence Livermore National Laboratory in collaboration with the Fraunhofer Institut für angewandte Festkörperphysik Freiburg, Germany. Additionally the Lehrstuhl fuermore » Nukleartechnik at Technical University of Germany supported the work.« less
NASA Technical Reports Server (NTRS)
Schulze, Norman R.; Miley, George H.; Santarius, John F.
1991-01-01
The fusion energy conversion design approach, the Field Reversed Configuration (FRC) - when burning deuterium and helium-3, offers a new method and concept for space transportation with high energy demanding programs, like the Manned Mars Mission and planetary science outpost missions require. FRC's will increase safety, reduce costs, and enable new missions by providing a high specific power propulsion system from a high performance fusion engine system that can be optimally designed. By using spacecraft powered by FRC's the space program can fulfill High Energy Space Missions (HESM) in a manner not otherwise possible. FRC's can potentially enable the attainment of high payload mass fractions while doing so within shorter flight times.
Rapid Method for Sodium Hydroxide Fusion of Asphalt ...
Technical Brief--Addendum to Selected Analytical Methods (SAM) 2012 The method will be used for qualitative analysis of americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in asphalt matrices samples.
Magnetized Target Fusion Driven by Plasma Liners
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Kirkpatrick, Ronald C.; Knapp, Charles E.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Magnetized target fusion is an emerging, relatively unexplored approach to fusion for electrical power and propulsion application. The physical principles of the concept are founded upon both inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). It attempts to combine the favorable attributes of both these orthogonal approaches to fusion, but at the same time, avoiding the extreme technical challenges of both by exploiting a fusion regime intermediate between them. It uses a material liner to compress, heat and contain the fusion reacting plasma (the target plasma) mentally. By doing so, the fusion burn could be made to occur at plasma densities as high as six orders of magnitude higher than conventional MCF such as tokamak, thus leading to an approximately three orders of magnitude reduction in the plasma energy required for ignition. It also uses a transient magnetic field, compressed to extremely high intensity (100's T to 1000T) in the target plasma, to slow down the heat transport to the liner and to increase the energy deposition of charged-particle fusion products. This has several compounding beneficial effects. It leads to longer energy confinement time compared with conventional ICF without magnetized target, and thus permits the use of much lower plasma density to produce reasonable burn-up fraction. The compounding effects of lower plasma density and the magneto-insulation of the target lead to greatly reduced compressional heating power on the target. The increased energy deposition rate of charged-particle fusion products also helps to lower the energy threshold required for ignition and increasing the burn-up fraction. The reduction in ignition energy and the compressional power compound to lead to reduced system size, mass and R&D cost. It is a fusion approach that has an affordable R&D pathway, and appears attractive for propulsion application in the nearer term.
NASA Astrophysics Data System (ADS)
Berk, H. L.
2012-09-01
The topic of the behaviour of energetic alpha particles in magnetic fusion confined plasmas is perhaps the ultimate frontier plasma physics issue that needs to be understood in the quest to achieve controlled power from the fusion reaction in magnetically confined plasmas. The partial pressure of alpha particles in a burning plasma will be ~5-10% of the total pressure and under these conditions the alpha particles may be prone to develop instability through Alfvénic interaction. This may lead, even with moderate alpha particle loss, to a burn quench or severe wall damage. Alternatively, benign Alfvénic signals may allow the vital information to control a fusion burn. The significance of this issue has led to extensive international investigations and a biannual meeting that began in Kyiv in 1989, followed by subsequent meetings in Aspenäs (1991), Trieste (1993), Princeton (1995), JET/Abingdon (1997), Naka (1999), Gothenburg (2001), San Diego (2003), Takayama (2005), Kloster Seeon (2007) and Kyiv (2009). The meeting was initially entitled 'Alpha Particles in Fusion Research' and then was changed during the 1997 meeting to 'Energetic Particles in Magnetic Confinement Systems' in appreciation of the need to study the significance of the electron runaway, which can lead to the production of energetic electrons with energies that can even exceed the energy produced by fusion products. This special issue presents some of the mature interesting work that was reported at the 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems, which was held in Austin, Texas, USA (7-11 September 2011). This meeting immediately followed a related meeting, the 5th IAEA Technical Meeting on Theory of Plasma Wave Instabilities (5-7 September 2011). The meetings shared one day (7 September 2011) with presentations relevant to both groups. The presentations from most of the participants, as well as some preliminary versions of papers, are available at the websites [1, 2]. To view a presentation or paper, go to the link 'program', view the list or speakers and poster presenters and press 'talk' or 'paper' under the appropriate name. Summaries of the Energetic Particle Conference presentations were given by Kazuo Toi and Boris Breizman. They respectively discussed the experimental and theoretical progress presented at the meeting. Their presentations can be viewed on the 'iaeaep' website [1], by pressing 'Summary-I (or II)' by each of their names. Highlights of this meeting include the tremendous progress that has been achieved in the development of diagnostics that enables the 'viewing' of internal fluctuations and allows comparison with theoretical predictions, as demonstrated, for example, in the talks of P. Lauber and M. Osakabe. The need and development of hardened diagnostics in the severe radiation environment, such as those that will exist in ITER, was discussed in the talks of V. Kiptiley and V.A. Kazakhov. In theoretical studies, much of the effort is focused on nonlinear phenomena. For example, detailed comparison of theory and experiment on D-III-D on the n = 0 geodesic mode was reported in separate papers by R. Nazikian and G. Fu. A large number of theoretical papers were presented on wave chirping including a paper by B.N. Breizman, which notes that continual wave chirping from a single frequency may emanate continuously once marginal stability conditions have been established. Another area of wide interest was the detailed study of alpha orbits in a burning plasma, where losses can come from perturbations from perfect toroidal symmetry arising from finite coil number, magnetic field imperfections introduced by diagnostic or test modules and from instability. An important area of development, covered by M.A. Hole and D.A. Spong, is concerned with the self-consistent treatment of the induced fields that accounts for responses beyond vacuum field perturbations or a pure toroidally symmetric MHD response. In addition, a significant number of studies focused on understanding nonlinear behaviour by means of computer simulation of energetic particle driven instability. An under-represented area of investigation was the study of electron runaway formation during major tokamak disruptions. It was noted in an overview by S. Putvinski that electron energies in the 10-20 MeV range is to be expected during projected major disruptions in ITER and that reliable methods for mitigation of the runaway process needs to be developed. Significant recent work in the field of the disruption induced electron runaway, which was reported by J. Riemann, does not appear in this special issue of Nuclear Fusion as the work had been previously submitted to Physics of Plasmas [3]. Overall it is clear that reliable mitigation of electron runaway is an extremely important topic that is in need of better understanding and solutions. It has been my pleasure to serve as the organizer of the 12th meeting and to serve as a Guest Editor of this issue of Nuclear Fusion. I am sure that the contents of this issue will serve as a valuable research guide to the field of energetic particle behaviour in a burning plasma for many years to come. The site of the next meeting will by Beijing, China in the fall of 2013, which will be organized by Zinghong Lin. References [1] Program 2011 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems (Austin, Texas, USA, 7-11 September 2011) http://w3fusion.ph.utexas.edu/ifs/iaeaep/program.html [2] Program 2011 5th IAEA Technical Meeting on Theory of Plasma Wave Instabilities (Austin, Texas, USA, 5-7 September 2011) http://w3fusion.ph.utexas.edu/ifs/iaeapi/program.html [3] Riemann J., Smith H.M. and Helander P. 2012 Phys. Plasmas 19 012507
Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.
2014-08-21
In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and representmore » the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ–ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.« less
Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER
NASA Astrophysics Data System (ADS)
Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.
2014-08-01
In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ-ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.
Wang, Shun-Yi; Chen, Xian-Xia; Li, Yi; Zhang, Yu-Ying
2016-12-20
The arrival of precision medicine plan brings new opportunities and challenges for patients undergoing precision diagnosis and treatment of malignant tumors. With the development of medical imaging, information on different modality imaging can be integrated and comprehensively analyzed by imaging fusion system. This review aimed to update the application of multimodality imaging fusion technology in the precise diagnosis and treatment of malignant tumors under the precision medicine plan. We introduced several multimodality imaging fusion technologies and their application to the diagnosis and treatment of malignant tumors in clinical practice. The data cited in this review were obtained mainly from the PubMed database from 1996 to 2016, using the keywords of "precision medicine", "fusion imaging", "multimodality", and "tumor diagnosis and treatment". Original articles, clinical practice, reviews, and other relevant literatures published in English were reviewed. Papers focusing on precision medicine, fusion imaging, multimodality, and tumor diagnosis and treatment were selected. Duplicated papers were excluded. Multimodality imaging fusion technology plays an important role in tumor diagnosis and treatment under the precision medicine plan, such as accurate location, qualitative diagnosis, tumor staging, treatment plan design, and real-time intraoperative monitoring. Multimodality imaging fusion systems could provide more imaging information of tumors from different dimensions and angles, thereby offing strong technical support for the implementation of precision oncology. Under the precision medicine plan, personalized treatment of tumors is a distinct possibility. We believe that multimodality imaging fusion technology will find an increasingly wide application in clinical practice.
NASA Astrophysics Data System (ADS)
Bowman, Christopher; Haith, Gary; Steinberg, Alan; Morefield, Charles; Morefield, Michael
2013-05-01
This paper describes methods to affordably improve the robustness of distributed fusion systems by opportunistically leveraging non-traditional data sources. Adaptive methods help find relevant data, create models, and characterize the model quality. These methods also can measure the conformity of this non-traditional data with fusion system products including situation modeling and mission impact prediction. Non-traditional data can improve the quantity, quality, availability, timeliness, and diversity of the baseline fusion system sources and therefore can improve prediction and estimation accuracy and robustness at all levels of fusion. Techniques are described that automatically learn to characterize and search non-traditional contextual data to enable operators integrate the data with the high-level fusion systems and ontologies. These techniques apply the extension of the Data Fusion & Resource Management Dual Node Network (DNN) technical architecture at Level 4. The DNN architecture supports effectively assessment and management of the expanded portfolio of data sources, entities of interest, models, and algorithms including data pattern discovery and context conformity. Affordable model-driven and data-driven data mining methods to discover unknown models from non-traditional and `big data' sources are used to automatically learn entity behaviors and correlations with fusion products, [14 and 15]. This paper describes our context assessment software development, and the demonstration of context assessment of non-traditional data to compare to an intelligence surveillance and reconnaissance fusion product based upon an IED POIs workflow.
INTRODUCTION: Status report on fusion research
NASA Astrophysics Data System (ADS)
Burkart, Werner
2005-10-01
A major milestone on the path to fusion energy was reached in June 2005 on the occasion of the signing of the joint declaration of all parties to the ITER negotiations, agreeing on future arrangements and on the construction site at Cadarache in France. The International Atomic Energy Agency has been promoting fusion activities since the late 1950s; it took over the auspices of the ITER Conceptual Design Activities in 1988, and of the ITER Engineering and Design Activities in 1992. The Agency continues its support to Member States through the organization of consultancies, workshops and technical meetings, the most prominent being the series of International Fusion Energy Conferences (formerly called the International Conference on Plasma Physics and Controlled Nuclear Fusion Research). The meetings serve as a platform for experts from all Member States to have open discussions on their latest accomplishments as well as on their problems and eventual solutions. The papers presented at the meetings and conferences are routinely published, many being sent to the journal it Nuclear Fusion, co-published monthly by Institute of Physics Publishing, Bristol, UK. The journal's reputation is reflected in the fact that it is a world-renowned publication, and the International Fusion Research Council has used it for the publication of a Status Report on Controlled Thermonuclear Fusion in 1978 and 1990. This present report marks the conclusion of the preparatory phases of ITER activities. It provides background information on the progress of fusion research within the last 15 years. The International Fusion Research Council (IFRC), which initiated the report, was fully aware of the complexities of including all scientific results in just one paper, and so decided to provide an overview and extensive references for the interested reader who need not necessarily be a fusion specialist. Professor Predhiman K. Kaw, Chairman, prepared the report on behalf of the IFRC, reflecting members' personal views on the latest achievements in fusion research, including magnetic and inertial confinement scenarios. The report describes fusion fundamentals and progress in fusion science and technology, with ITER as a possible partner in the realization of self-sustainable burning plasma. The importance of the socio-economic aspects of energy production using fusion power plants is also covered. Noting that applications of plasma science are of broad interest to the Member States, the report addresses the topic of plasma physics to assist in understanding the achievements of better coatings, cheaper light sources, improved heat-resistant materials and other high-technology materials. Nuclear fusion energy production is intrinsically safe, but for ITER the full range of hazards will need to be addressed, including minimising radiation exposure, to accomplish the goal of a sustainable and environmentally acceptable production of energy. We anticipate that the role of the Agency will in future evolve from supporting scientific projects and fostering information exchange to the preparation of safety principles and guidelines for the operation of burning fusion plasmas with a Q > 1. Technical progress in inertial and magnetic confinement, as well as in alternative concepts, will lead to a further increase in international cooperation. New means of communication will be needed, utilizing the best resources of modern information technology to advance interest in fusion. However, today the basis of scientific progress is still through journal publications and, with this in mind, we trust that this report will find an interested readership. We acknowledge with thanks the support of the members of the IFRC as an advisory body to the Agency. Seven chairmen have presided over the IFRC since its first meeting in 1971 in Madison, USA, ensuring that the IAEA fusion efforts were based on the best professional advice possible, and that information on fusion developments has been widely and expertly disseminated. We further acknowledge the efforts of the Chairman of the IFRC and of all authors and experts who contributed to this report on the present status of fusion research.
NASA Astrophysics Data System (ADS)
Zhirkin, A. V.; Alekseev, P. N.; Batyaev, V. F.; Gurevich, M. I.; Dudnikov, A. A.; Kuteev, B. V.; Pavlov, K. V.; Titarenko, Yu. E.; Titarenko, A. Yu.
2017-06-01
In this report the calculation accuracy requirements of the main parameters of the fusion neutron source, and the thermonuclear blankets with a DT fusion power of more than 10 MW, are formulated. To conduct the benchmark experiments the technical documentation and calculation models were developed for two blanket micro-models: the molten salt and the heavy water solid-state blankets. The calculations of the neutron spectra, and 37 dosimetric reaction rates that are widely used for the registration of thermal, resonance and threshold (0.25-13.45 MeV) neutrons, were performed for each blanket micro-model. The MCNP code and the neutron data library ENDF/B-VII were used for the calculations. All the calculations were performed for two kinds of neutron source: source I is the fusion source, source II is the source of neutrons generated by the 7Li target irradiated by protons with energy 24.6 MeV. The spectral indexes ratios were calculated to describe the spectrum variations from different neutron sources. The obtained results demonstrate the advantage of using the fusion neutron source in future experiments.
Classification of weld defect based on information fusion technology for radiographic testing system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hongquan; Liang, Zeming, E-mail: heavenlzm@126.com; Gao, Jianmin
Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster–Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defectmore » feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification.« less
Jiang, Hongquan; Liang, Zeming; Gao, Jianmin; Dang, Changying
2016-03-01
Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster-Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defect feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification.
Addressing Common Technical challenges in Inertial Confinement Fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haynes, Donald A.
2016-09-22
The implosion phase for Inertial Confinement Fusion (ICF) occurs from initiation of the drive until just before stagnation. Evolution of the shell and fusion fuel during the implosion phase is affected by the initial conditions of the target, the drive history. Poor performing implosions are a result of the behavior that occurs during the implosion phase such as low mode asymmetries, mixing of the ablator into the fuel, and the hydrodynamic evolution of initial target features and defects such as the shell mounting hardware. The ultimate results of these effects can only be measured at stagnation. However, studying the implosionmore » phase can be effective for understanding and mitigating these effects and for of ultimately improving the performance of ICF implosions. As the ICF program moves towards the 2020 milestone to “determine the efficacy of ignition”, it will be important to understand the physics that occurs during the implosion phase. This will require both focused and integrated experiments. Focused experiments will provide the understanding and the evidence needed to support any determination concerning the efficacy of ignition.« less
Goudeketting, Seline R; Heinen, Stefan G; van den Heuvel, Daniel A; van Strijen, Marco J; de Haan, Michiel W; Slump, Cornelis H; de Vries, Jean-Paul P
2018-02-01
The effect of the insertion of guidewires and catheters on fusion accuracy of the three-dimensional (3D) image fusion technique during iliac percutaneous transluminal angioplasty (PTA) procedures has not yet been investigated. Technical validation of the 3D fusion technique was evaluated in 11 patients with common and/or external iliac artery lesions. A preprocedural contrast-enhanced magnetic resonance angiogram (CE-MRA) was segmented and manually registered to a cone-beam computed tomography image created at the beginning of the procedure for each patient. The treating physician visually scored the fusion accuracy (i.e., accurate [<2 mm], mismatch [2-5 mm], or inaccurate [>5 mm]) of the entire vasculature of the overlay with respect to the digital subtraction angiography (DSA) directly after the first obtained DSA. Contours of the vasculature of the fusion images and DSAs were drawn after the procedure. The cranial-caudal, lateral-medial, and absolute displacement were calculated between the vessel centerlines. To determine the influence of the catheters, displacement of the catheterized iliac trajectories were compared with the noncatheterized trajectories. Electronic databases were systematically searched for available literature published between January 2010 till August 2017. The mean registration error for all iliac trajectories (N.=20) was small (4.0±2.5 mm). No significant difference in fusion displacement was observed between catheterized (N.=11) and noncatheterized (N.=9) iliac arteries. The systematic literature search yielded 2 manuscripts with a total of 22 patients. The methodological quality of these studies was poor (≤11 MINORS Score), mainly due to a lack of a control group. Accurate image fusion based on preprocedural CE-MRA is possible and could potentially be of help in iliac PTA procedures. The flexible guidewires and angiographic catheters, routinely used during endovascular procedures of iliac arteries, did not cause significant displacement that influenced the image fusion. Current literature on 3D image fusion in iliac PTA procedures is of limited methodological quality.
He, Er-Xing; Guo, Jing; Ling, Qin-Jie; Yin, Zhi-Xun; Wang, Ying; Li, Ming
2017-06-01
Spinal endoscopy has been widely applied in lumbar discectomy and decompression. However, endoscopic lumbar interbody fusion still remains a technical challenge due to the limited space within the working trocar for cage implantation. The purpose of this study was to investigate the feasibility and effectiveness of using a narrow-surface fusion cage in full endoscopic minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) for the treatment of lumbar degenerative disease. From Jun 2013 to Dec 2014, a total of 42 patients (23 males, 19 females) underwent full endoscopic MIS-TLIF at our hospital was recruited. An 8-mm-wide narrow-surface fusion cage was selected for all cases. Perioperative parameters and complications were recorded. Comparisons on visual analog scale (VAS) and oswestry disability index (ODI) scores before and after surgery were performed. At the last follow-up, Nakai grading system was applied to assess patients' satisfaction; meanwhile, interbody fusion was evaluated by computed tomography. Mean operation time was 233.1 ± 69.5 min, and mean blood loss during surgery was 221.8 ± 98.5 ml. Two patients (4.8%) developed neurological complications. Postoperative follow-up ranged from 24 to 36 months (mean 27.6 ± 3.8 months). VAS and ODI scores were significantly improved 3 months after surgery and at the final follow-up, respectively (P < 0.05). Outcome of surgery was graded as excellent for 32 patients, good for 8 patients, and acceptable for 2 patients, corresponding to a success rate ("good" and "excellent") of 95.2%. Thirty-nine of the 42 patients demonstrated solid interbody fusion at the last follow-up, indicating a fusion rate of 92.9%. Application of a narrow-surface fusion cage in full endoscopic MIS-TLIF for the treatment of lumbar degenerative disease is feasible and effective. The clinical outcome and fusion success of this procedure were acceptable and promising. Copyright © 2017 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
Kashimura, Hiroshi; Ogasawara, Kuniaki; Arai, Hiroshi; Beppu, Takaaki; Inoue, Takashi; Takahashi, Tsutomu; Matsuda, Koichi; Takahashi, Yujiro; Fujiwara, Shunrou; Ogawa, Akira
2008-09-01
A fusion technique for magnetic resonance (MR) angiography and MR imaging was developed to help assess the peritumoral angioarchitecture during surgical planning for meningioma. Three-dimensional time-of-flight (3D-TOF) and 3D-spoiled gradient recalled (SPGR) datasets were obtained from 10 patients with intracranial meningioma, and fused using newly developed volume registration and visualization software. Maximum intensity projection (MIP) images from 3D-TOF MR angiography and axial SPGR MR imaging were displayed at the same time on the monitor. Selecting a vessel on the real-time MIP image indicated the corresponding points on the axial image automatically. Fusion images showed displacement of the anterior cerebral or middle cerebral artery in 7 patients and encasement of the anterior cerebral arteries in 1 patient, with no relationship between the main arterial trunk and tumor in 2 patients. Fusion of MR angiography and MR imaging can clarify relationships between the intracranial vasculature and meningioma, and may be helpful for surgical planning for meningioma.
Current strategies for the restoration of adequate lordosis during lumbar fusion
Barrey, Cédric; Darnis, Alice
2015-01-01
Not restoring the adequate lumbar lordosis during lumbar fusion surgery may result in mechanical low back pain, sagittal unbalance and adjacent segment degeneration. The objective of this work is to describe the current strategies and concepts for restoration of adequate lordosis during fusion surgery. Theoretical lordosis can be evaluated from the measurement of the pelvic incidence and from the analysis of spatial organization of the lumbar spine with 2/3 of the lordosis given by the L4-S1 segment and 85% by the L3-S1 segment. Technical aspects involve patient positioning on the operating table, release maneuvers, type of instrumentation used (rod, screw-rod connection, interbody cages), surgical sequence and the overall surgical strategy. Spinal osteotomies may be required in case of fixed kyphotic spine. AP combined surgery is particularly efficient in restoring lordosis at L5-S1 level and should be recommended. Finally, not one but several strategies may be used to achieve the need for restoration of adequate lordosis during fusion surgery. PMID:25621216
Beutler, William J; Peppelman, Walter C; DiMarco, Luciano A
2013-02-15
Technique development to use the da Vince Robotic Surgical System for anterior lumbar interbody fusion at L5-S1 is detailed. A case report is also presented. To evaluate and develop the da Vinci robotic assisted laparoscopic anterior lumbar stand-alone interbody fusion procedure. Anterior lumbar interbody fusion is a common procedure associated with potential morbidity related to the surgical approach. The da Vinci robot provides intra-abdominal dissection and visualization advantages compared with the traditional open and laparoscopic approach. The surgical techniques for approach to the anterior lumbar spine using the da Vinci robot were developed and modified progressively beginning with operative models followed by placement of an interbody fusion cage in the living porcine model. Development continued to progress with placement of fusion cage in a human cadaver, completed first in the laboratory setting and then in the operating room. Finally, the first patient with fusion completed using the da Vinci robot-assisted approach is presented. The anterior transperitoneal approach to the lumbar spine is accomplished with enhanced visualization and dissection capability, with maintenance of pneumoperitoneum using the da Vinci robot. Blood loss is minimal. The visualization inside the disc space and surrounding structures was considered better than current open and laparoscopic techniques. The da Vinci robot Surgical System technique continues to develop and is now described for the transperitoneal approach to the anterior lumbar spine. 4.
Igniting the Light Elements: The Los Alamos Thermonuclear Weapon Project, 1942-1952
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzpatrick, Anne C.
1999-07-01
The American system of nuclear weapons research and development was conceived and developed not as a result of technological determinism, but by a number of individual architects who promoted the growth of this large technologically-based complex. While some of the technological artifacts of this system, such as the fission weapons used in World War II, have been the subject of many historical studies, their technical successors--fusion (or hydrogen) devices--are representative of the largely unstudied highly secret realms of nuclear weapons science and engineering. In the postwar period a small number of Los Alamos Scientific Laboratory's staff and affiliates were responsiblemore » for theoretical work on fusion weapons, yet the program was subject to both the provisions and constraints of the US Atomic Energy Commission, of which Los Alamos was a part. The Commission leadership's struggle to establish a mission for its network of laboratories, least of all to keep them operating, affected Los Alamos's leaders' decisions as to the course of weapons design and development projects. Adapting Thomas P. Hughes's ''large technological systems'' thesis, I focus on the technical, social, political, and human problems that nuclear weapons scientists faced while pursuing the thermonuclear project, demonstrating why the early American thermonuclear bomb project was an immensely complicated scientific and technological undertaking. I concentrate mainly on Los Alamos Scientific Laboratory's Theoretical, or T, Division, and its members' attempts to complete an accurate mathematical treatment of the ''Super''--the most difficult problem in physics in the postwar period--and other fusion weapon theories. Although tackling a theoretical problem, theoreticians had to address technical and engineering issues as well. I demonstrate the relative value and importance of H-bomb research over time in the postwar era to scientific, politician, and military participants in this project. I analyze how and when participants in the H-bomb project recognized both blatant and subtle problems facing the project, how scientists solved them, and the relationship this process had to official nuclear weapons policies. Consequently, I show how the practice of nuclear weapons science in the postwar period became an extremely complex, technologically-based endeavor.« less
Different source image fusion based on FPGA
NASA Astrophysics Data System (ADS)
Luo, Xiao; Piao, Yan
2016-03-01
The fusion technology of video image is to make the video obtained by different image sensors complementary to each other by some technical means, so as to obtain the video information which is rich in information and suitable for the human eye system. Infrared cameras in harsh environments such as when smoke, fog and low light situations penetrating power, but the ability to obtain the details of the image is poor, does not meet the human visual system. Single visible light imaging can be rich in detail, high resolution images and for the visual system, but the visible image easily affected by the external environment. Infrared image and visible image fusion process involved in the video image fusion algorithm complexity and high calculation capacity, have occupied more memory resources, high clock rate requirements, such as software, c ++, c, etc. to achieve more, but based on Hardware platform less. In this paper, based on the imaging characteristics of infrared images and visible light images, the software and hardware are combined to obtain the registration parameters through software matlab, and the gray level weighted average method is used to implement the hardware platform. Information fusion, and finally the fusion image can achieve the goal of effectively improving the acquisition of information to increase the amount of information in the image.
PREFACE: The fifth International Conference on Inertial Fusion Sciences and Applications (IFSA2007)
NASA Astrophysics Data System (ADS)
Azechi, Hiroshi; Hammel, Bruce; Gauthier, Jean-Claude
2008-06-01
The Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007) was held on 9-14 September 2007 at Kobe International Conference Center in Kobe, Japan. The host organizations for this conference were Osaka University and the Institute of Laser Engineering (ILE) at Osaka University; and co-organized by the Institute Lasers and Plasmas (ILP) in France, the Commissariatá l'Energie Atomique (CEA), Lawrence Livermore National Laboratory (LLNL), National Institute for Fusion Science (NIFS) in Japan, and Kansai Photon Science Institute (KPSI), Japan Atomic Energy Agency (JAEA). The conference objective was to review the state of the art of research in inertial fusion sciences and applications since the last conference held in Biarritz, France, in 2005. 470 abstracts were accepted, and 448 persons from 18 countries attended the conference. These Proceedings contain 287 of the papers presented at IFSA 2007. This collection of papers represents the manuscripts submitted to and passing the peer review process. The program was organized with some specific features: The reviews of influential programs appeared both at the very beginning and at the very end of the Conference to attract attendance throughout the Conference. Each poster session had the same time period as a single oral session, thereby avoiding overlap with oral talks. The everyday program was structured to be as similar as possible so the attendees could easily recognize the program. With a goal of achieving inertial fusion ignition and burn propagation in the laboratory, researchers presented the exciting advances in both traditional hot spot ignition and fast ignition approach, including status report of USA's National Ignition Facility (NIF), French Laser Magajoule (LMJ), Japanese Fast Ignition Realization Experiment (FIREX), and European High Power laser Energy Research (HiPER). A particular emphasis of the meeting was that the `physics of inertial fusion' category was dominated by fast-ignition and related ultra-intense laser interaction. Progress in direct drive over the past few years resulted in the achievement of high-density cryogenic implosions at OMEGA. Continuous progresses in hohlraum physics gave confidence in the achievement of ignition at NIF and LMJ. Advances in Z-pinch included double-hohlraum irradiation symmetry and the PW laser beam for the Z-facility. Progress of laser material development for IFE driver was a very interesting topic of inertial fusion energy drivers, including KrF and DPSSL lasers and particle beams. Of special interest, a future session was focused on strategy of inertial fusion energy development. Laboratory tours were held in the middle of the Conference. The Laser for Fusion EXperiments (LFEX), a new high-energy petawatt laser at ILE, was one of the key attractions of IFSA 2007. 83 participants toured LFEX and GEKKO XII lasers, and 35 joined a tour of KPSA-JAEA. In parallel to the tour, the `Symposium on Academics-Industries Cooperation for Applications of High-Power Lasers' was held with more than 90 participants mostly from the industrial community. These Proceedings start with special chapters on the keynote and focus speeches and the Teller lectures. The keynotes and focus give an overview of progress in inertial fusion in Asia, North America, and Europe. The Teller lectures show the contributions of this year's two winners: Brian Thomas of AWE, UK and Kunioki Mima of ILE. The remainder of the Proceedings is divided into three parts. Part A covers the physics of inertial fusion; Part B covers laser, particle beams, and fusion technology including IFE reactors and target fabrication; and Part C covers science and technology applications such as laboratory astrophysics, laser particle acceleration, x-ray and EUV sources, and new applications of intense lasers. These parts are further divided into chapters covering specific areas of science or technology. Within each chapter the talks relevant to that subject are gathered. The IFSA International Organizing Committee and Scientific Advisory Board appreciate the efforts of inertial fusion researchers worldwide in making IFSA 2007 an extremely successful conference. The proceedings were published with the support of Dr Y Sakawa, Dr H Homma, Ms S Karasuyama, Ms M Odagiri, and Ms I Kobatake. Kunioki Mima Co-chair Hiroshi Azechi Technical Program Committee Co-chair John Lindl Co-chair Bruce Hammel Technical Program Committee Co-chair Christine Labaune Co-chair Jean-Claude Gauthier Technical Program Committee Co-chair
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verdeyen, J.T.; Cherrington, B.E.
1977-01-01
Three areas of work during this contract period are discussed: (1) a low energy (1 to 10 keV) experiment to demonstrate focusing and to clarify the physics of bunching, (2) an experiment at high energy (100 to 500 keV) to scale prior results, and (3) a theoretical effort to formulate a self-consistent transient analysis of the virtual cathode--plasma interaction. Some results of this work are discussed. (MOW)
Rapid Method for Sodium Hydroxide/Sodium Peroxide Fusion ...
Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Plutonium-238 and plutonium-239 in water and air filters Method Selected for: SAM lists this method as a pre-treatment technique supporting analysis of refractory radioisotopic forms of plutonium in drinking water and air filters using the following qualitative techniques: • Rapid methods for acid or fusion digestion • Rapid Radiochemical Method for Plutonium-238 and Plutonium 239/240 in Building Materials for Environmental Remediation Following Radiological Incidents. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)
2001-01-01
There is little doubt that humans will attempt to explore and develop the solar system in this century. A large amount of energy will be required for accomplishing this. The need for fusion propulsion is discussed. For a propulsion system, there are three important thermodynamical attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion can produce exhaust velocity up to about 5 km/s. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a hydrogen propellant increases the exhaust velocity by only a factor of about two. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. The principal advantage of the fission process is that its development is relatively mature and is available right now. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. The technical priorities for developing and applying fusion for propulsion are somewhat different from those for terrestrial electrical power generation. Thus fusion schemes that are initially attractive for electrical power generation might not necessarily be attractive also for propulsion and vice versa, though the underlying fusion science and engineering enjoy much overlap. Parallel efforts to develop these qualitatively differently fusion schemes for the two applications could benefit greatly from each other due to the synergy in the underlying physics and engineering. Pulsed approaches to fusion have not been explored to the same degree as steady-state or long-pulse approaches to fusion in the fusion power research program. The concerns early on were several. One was that the pulsed power components might not have the service lifetimes meeting the requirements of a practical power generating plant. Another was that, for many pulsed fusion schemes, it was not clear whether the destruction of hardware per pulse could be minimized or eliminated or recycled to such an extent as to make economical electrical power generation feasible, Significant development of the underlying pulsed power component technologies have occurred in the last two decades because of defense and other energy requirements. The state of development of the pulsed power technologies are sufficiently advanced now to make it compelling to visit or re-visit pulsed fusion approaches for application to propulsion where the cost of energy is not so demanding a factor as in the case of terrestrial power application. For propulsion application, the overall mass of the fusion system is the critical factor. Producing fusion reactions require extreme states of matter. Conceptually, these extreme states of matter are more readily realizable in the pulsed states, at least within appropriate bounds, than in the steady states. Significant saving in system mass may result in such systems. Magnetic fields are effective in confining plasma energy, whereas inertial compression is an effective way of heating and containing the plasma. Intensive research in developing magnetic energy containment and inertial plasma compression are being pursued in distinctively different fusion experiments in the terrestrial fusion power program. Fusion schemes that attempt to combine the favorable attributes of these two aspects into one single integrated fusion scheme appear to have benefits that are worth exploring for propulsion application.
Review of Two-Stage FEL Research at KMS Fusion.
1983-01-21
vi ty Research and Engineering Technical Library (3 copies) NST. Station, MS 39529 Information Office Library Branch The Pentagon Naval Explosive ...Shafer Associates, Inc. Office of Naval Research 10 Lakeside Office Park Arlington, VA 22217 Wakefield, MA 01880 Dr. Don Prosnitz Dr. T. C. Marshall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldsmith, M.W.; Forbes, I.A.; Turnage, J.C.
The potential of new and future energy technologies is discussed, with information provided on availability, technical and economic feasibility, and limitations due to the form of the energy. Energy sources not presently in use (i.e., shale oil, garbage, geothermal, wind, tidal, breeder reactors, ocean thermal gradients, solar energy, and fusion) are expected to supply only 10 to 15% of the Nation's energy requirements in the year 2000. The following chapters are included: Energy Use and Supply; Extending Chemical Fuel Resources, which covers oil shale and tar sands, coal gasification and liquefaction, garbage, and biomass energy; Harnessing the Forces of Nature,more » which describes geothermal, tidal, hydro, wind, and solar energy; New Nuclear Technology (e.g., converter reactors, breeder reactors, fusion by magnetic confinement, and laser fusion); and Improving Energy Production Efficiency, with discussions on energy storage, MHD (magnetohydrodynamics), and combined cycles. (64 references) (BYB)« less
Joda, Tim; Brägger, Urs; Gallucci, German
2015-01-01
Digital developments have led to the opportunity to compose simulated patient models based on three-dimensional (3D) skeletal, facial, and dental imaging. The aim of this systematic review is to provide an update on the current knowledge, to report on the technical progress in the field of 3D virtual patient science, and to identify further research needs to accomplish clinical translation. Searches were performed electronically (MEDLINE and OVID) and manually up to March 2014 for studies of 3D fusion imaging to create a virtual dental patient. Inclusion criteria were limited to human studies reporting on the technical protocol for superimposition of at least two different 3D data sets and medical field of interest. Of the 403 titles originally retrieved, 51 abstracts and, subsequently, 21 full texts were selected for review. Of the 21 full texts, 18 studies were included in the systematic review. Most of the investigations were designed as feasibility studies. Three different types of 3D data were identified for simulation: facial skeleton, extraoral soft tissue, and dentition. A total of 112 patients were investigated in the development of 3D virtual models. Superimposition of data on the facial skeleton, soft tissue, and/or dentition is a feasible technique to create a virtual patient under static conditions. Three-dimensional image fusion is of interest and importance in all fields of dental medicine. Future research should focus on the real-time replication of a human head, including dynamic movements, capturing data in a single step.
Hee, Hwan Tak
2015-01-01
Study Design Prospective study. Purpose To compare clinical and radiological outcomes of open vs. minimally invasive transforaminal lumbar interbody fusion (MI-TLIF). Overview of Literature MI-TLIF promises smaller incisions and less soft tissue dissection resulting in lower morbidity and faster recovery; however, it is technically challenging. Methods Twenty-five patients with MI-TLIF were compared with 25 matched open TLIF controls. A minimum 2 year follow-up and a statistical analysis of perioperative and long-term outcomes were performed. Potential complications were recorded. Results The mean ages for the open and MI-TLIF cases were 44.4 years (range, 19-69 years) and 43.6 years (range, 20-69 years), respectively. The male:female ratio was 13:12 for both groups. Average follow-up was 26.9 months for the MI-TLIF group and 29.3 months for the open group. Operative duration was significantly longer in the MI-TLIF group than that in the open group (p<0.05). No differences in estimated blood loss, duration to ambulation, or length of stay were found. Significant improvements in the Oswestry disability index and EQ-5D functional scores were observed at 6-, 12-, and 24-months in both groups, but no significant difference was detected between the groups. Fusion rates were comparable. Cage sizes were significantly smaller in the MI-TLIF group at the L5/S1 level (p<0.05). One patient had residual spinal stenosis at the MI-TLIF level, and one patient who underwent two-level MI-TLIF developed a deep vein thrombosis resulting in a pulmonary embolism. Conclusions MI-TLIF and open TLIF had comparable long-term benefits. Due to technical constraints, patients should be advised on the longer operative time and potential undersizing of cages at the L5S1 level. PMID:25901228
Simson, Jacob A; Strehin, Iossif A; Allen, Brian W; Elisseeff, Jennifer H
2013-08-01
The weak intrinsic meniscus healing response and technical challenges associated with meniscus repair contribute to a high rate of repair failures and meniscectomies. Given this limited healing response, the development of biologically active adjuncts to meniscal repair may hold the key to improving meniscal repair success rates. This study demonstrates the development of a bone marrow (BM) adhesive that binds, stabilizes, and stimulates fusion at the interface of meniscus tissues. Hydrogels containing several chondroitin sulfate (CS) adhesive levels (30, 50, and 70 mg/mL) and BM levels (30%, 50%, and 70%) were formed to investigate the effects of these components on hydrogel mechanics, bovine meniscal fibrochondrocyte viability, proliferation, matrix production, and migration ability in vitro. The BM content positively and significantly affected fibrochondrocyte viability, proliferation, and migration, while the CS content positively and significantly affected adhesive strength (ranged from 60±17 kPa to 335±88 kPa) and matrix production. Selected material formulations were translated to a subcutaneous model of meniscal fusion using adhered bovine meniscus explants implanted in athymic rats and evaluated over a 3-month time course. Fusion of adhered meniscus occurred in only the material containing the highest BM content. The technology can serve to mechanically stabilize the tissue repair interface and stimulate tissue regeneration across the injury site.
Zhang, Zhuang; Zhao, Rujin; Liu, Enhai; Yan, Kun; Ma, Yuebo
2018-06-15
This article presents a new sensor fusion method for visual simultaneous localization and mapping (SLAM) through integration of a monocular camera and a 1D-laser range finder. Such as a fusion method provides the scale estimation and drift correction and it is not limited by volume, e.g., the stereo camera is constrained by the baseline and overcomes the limited depth range problem associated with SLAM for RGBD cameras. We first present the analytical feasibility for estimating the absolute scale through the fusion of 1D distance information and image information. Next, the analytical derivation of the laser-vision fusion is described in detail based on the local dense reconstruction of the image sequences. We also correct the scale drift of the monocular SLAM using the laser distance information which is independent of the drift error. Finally, application of this approach to both indoor and outdoor scenes is verified by the Technical University of Munich dataset of RGBD and self-collected data. We compare the effects of the scale estimation and drift correction of the proposed method with the SLAM for a monocular camera and a RGBD camera.
Superconducting magnet development for tokamaks and mirrors: a technical assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laverick, C.; Jacobs, R. B.; Boom, R. W.
1977-11-01
The role of superconducting magnets in Magnetic Fusion Energy Research and Development is assessed from a consideration of program plans and schedules, the present status of the programs and the research and development suggestions arising from recent studies and workshops. A principal conclusion is that the large superconducting magnet systems needed for commercial magnetic fusion reactors can be constructed. However such magnets working under severe conditions, with increasingly stringent reliability, safety and cost restrictions can never be built unless experience is first gained in a number of important installations designed to prove physics and technology steps on the way tomore » commercial power demonstration. The immediate problem is to design a technology program in the absence of definite device needs and specifications, giving a priority weighting to the multiplicity of good, high quality development program suggestions when all proposals cannot be supported.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stelson, P.H.
The bulk of the Division's effort concerned nuclear physics and accelerator development, but work in the areas of nuclear data, research applicable to the magnetic fusion project, atomic and molecular physics, and high-energy physics is also recounted. Lists of publications, technical talks, personnel, etc., are included. Individual reports with sufficient data are abstracted separately. (RWR)
Occipitocervical fusions in children. Retrospective analysis and technical considerations.
Rodgers, W B; Coran, D L; Emans, J B; Hresko, M T; Hall, J E
1999-07-01
This report presents a retrospective analysis of the authors' experience with occipitocervical fusions in children and adolescents during the last 2 decades. A description of an operative technique devised by the senior author (JEH), and a comparison of the results using this and other methods of fusion are given. Twenty-three patients underwent occipitocervical fusion. Fifteen of the patients were operated on using the authors' technique. To achieve stable fixation of the distal cervical vertebra a threaded Kirschner wire was passed transversely through the spinous process; occipital fixation was achieved by the traditional method of wiring corticocancellous bone graft to the skull through burr holes. The occipital wires then were wrapped around the Kirschner wire and the graft was cradled in the resulting nest. Halo immobilization was used in 10 patients for an average of 12.5 weeks (range, 6-24 weeks). Twenty-two patients achieved successful fusion at an average followup of 5.8 years (range, 1-14.33 years). Several complications, including transient quadriplegia in one patient, pseudarthrosis in two (one of which persists), hardware fixation failure in one, unintended distal extension of the fusion, pneumonia, wound infection, halo pin infection, skin breakdown under the halo vest, hydrocephalus, cerebrospinal fluid leak, and traumatic fusion fracture were encountered. Results using the technique described herein are comparable with or better than the results reported in the previous literature, and the results of the patients in this series in whom the technique was not used.
NASA Technical Reports Server (NTRS)
Griffin, Steven T.
2002-01-01
Magnetized target fusion (MTF) is under consideration as a means of building a low mass, high specific impulse, and high thrust propulsion system for interplanetary travel. This unique combination is the result of the generation of a high temperature plasma by the nuclear fusion process. This plasma can then be deflected by magnetic fields to provide thrust. Fusion is initiated by a small traction of the energy generated in the magnetic coils due to the plasma's compression of the magnetic field. The power gain from a fusion reaction is such that inefficiencies due to thermal neutrons and coil losses can be overcome. Since the fusion reaction products are directly used for propulsion and the power to initiate the reaction is directly obtained from the thrust generation, no massive power supply for energy conversion is required. The result should be a low engine mass, high specific impulse and high thrust system. The key is to successfully initiate fusion as a proof-of-principle for this application. Currently MSFC is implementing MTF proof-of-principle experiments. This involves many technical details and ancillary investigations. Of these, selected pertinent issues include the properties, orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the target plasma's behavior under compression and the convergence and mixing of the gun plasma are under investigation. This work is to focus on the gun characterization and development as it relates to plasma initiation and repeatability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Largely in anticipation of a possible nuclear renaissance, there has been an enthusiastic renewal of interest in the fusion-fission hybrid concept, driven primarily by some members of the fusion community. A fusion-fission hybrid consists of a neutron-producing fusion core surrounded by a fission blanket. Hybrids are of interest because of their potential to address the main long-term sustainability issues related to nuclear power: fuel supply, energy production, and waste management. As a result of this renewed interest, the U.S. Department of Energy (DOE), with the participation of the Office of Fusion Energy Sciences (OFES), Office of Nuclear Energy (NE), andmore » National Nuclear Security Administration (NNSA), organized a three-day workshop in Gaithersburg, Maryland, from September 30 through October 2, 2009. Participants identified several goals. At the highest level, it was recognized that DOE does not currently support any R&D in the area of fusion-fission hybrids. The question to be addressed was whether or not hybrids offer sufficient promise to motivate DOE to initiate an R&D program in this area. At the next level, the workshop participants were asked to define the research needs and resources required to move the fusion-fission concept forward. The answer to the high-level question was given in two ways. On the one hand, when viewed as a standalone concept, the fusion-fission hybrid does indeed offer the promise of being able to address the sustainability issues associated with conventional nuclear power. On the other hand, when participants were asked whether these hybrid solutions are potentially more attractive than contemplated pure fission solutions (that is, fast burners and fast breeders), there was general consensus that this question could not be quantitatively answered based on the known technical information. Pure fission solutions are based largely on existing both fusion and nuclear technology, thereby prohibiting a fair side-by-side comparison. Another important issue addressed at the conference was the time scale on which long-term sustainability issues must be solved. There was a wide diversity of opinion and no consensus was possible. One group, primarily composed of members of the fission community, argued that the present strategies with respect to waste management (on-site storage) and fuel supply (from natural uranium) would suffice for at least 50 years, with the main short-term problem being the economics of light water reactors (LWRs). Many from the fusion community believed that the problems, particularly waste management, were of a more urgent nature and that we needed to address them sooner rather than later. There was rigorous debate on all the issues before, during, and after the workshop. Based on this debate, the workshop participants developed a set of high-level Findings and Research Needs and a companion set of Technical Findings and Research Needs. In the context of the Executive Summary it is sufficient to focus on the high-level findings which are summarized.« less
Thomason, K; Eyres, K S
2008-07-01
Salvage of a failed total ankle replacement is technically challenging and although a revision procedure may be desirable, a large amount of bone loss or infection may preclude this. Arthrodesis can be difficult to achieve and is usually associated with considerable shortening of the limb. We describe a technique for restoring talar height using an allograft from the femoral head compressed by an intramedullary nail. Three patients with aseptic loosening were treated successfully by this method with excellent symptomatic relief at a mean follow-up of 32 months (13 to 50).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ives, Robert Lawrence; Marsden, David; Collins, George
Calabazas Creek Research, Inc. developed a 1.5 MW RF load for the ITER fusion research facility currently under construction in France. This program leveraged technology developed in two previous SBIR programs that successfully developed high power RF loads for fusion research applications. This program specifically focused on modifications required by revised technical performance, materials, and assembly specification for ITER. This program implemented an innovative approach to actively distribute the RF power inside the load to avoid excessive heating or arcing associated with constructive interference. The new design implemented materials and assembly changes required to meet specifications. Critical components were builtmore » and successfully tested during the program.« less
Improved Controls for Fusion RF Systems. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casey, Jeffrey A.
2011-11-08
We have addressed the specific requirements for the integrated systems controlling an array of klystrons used for Lower Hybrid Current Drive (LHCD). The immediate goal for our design was to modernize the transmitter protection system (TPS) for LHCD on the Alcator C-Mod tokamak at the MIT Plasma Science and Fusion Center (MIT-PSFC). Working with the Alcator C-Mod team, we have upgraded the design of these controls to retrofit for improvements in performance and safety, as well as to facilitate the upcoming expansion from 12 to 16 klystrons. The longer range goals to generalize the designs in such a way thatmore » they will be of benefit to other programs within the international fusion effort was met by designing a system which was flexible enough to address all the MIT system requirements, and modular enough to adapt to a large variety of other requirements with minimal reconfiguration.« less
Interstellar Travel without 'Magic'
NASA Astrophysics Data System (ADS)
Woodcock, G.
The possibility of interstellar space travel has become a popular subject. Distances of light years are an entirely new realm for human space travel. New means of propulsion are needed. Speculation about propulsion has included "magic", space warps, faster-than-light travel, known physics such as antimatter for which no practical implementation is known and also physics for which current research offers at least a hint of implementation, i.e. fusion. Performance estimates are presented for the latter and used to create vehicle concepts. Fusion propulsion will mean travel times of hundreds of years, so we adopt the "space colony" concepts of O'Neill as a ship design that could support a small civilization indefinitely; this provides the technical means. Economic reasoning is presented, arguing that development and production of "space colony" habitats for relief of Earth's population, with addition of fusion engines, will lead to vessels that can go interstellar. Scenarios are presented and a speculative estimate of a timetable is given.
Plasma Physics Network Newsletter, No. 3
NASA Astrophysics Data System (ADS)
1991-02-01
This issue of the Newsletter contains a report on the First South-North International Workshop on Fusion Theory, Tipaza, Algeria, 17-20 September, 1990; a report in the issuance of the 'Buenos Aires Memorandum' generated during the IV Latin American Workshop on Plasma Physics, Argentina, July 1990, and containing a proposal that the IFRC establish a 'Steering Committee on North-South Collaboration in Controlled Nuclear Fusion and Plasma Physics Research'; the announcement that the 14th International Conference on Plasma Physics and Controlled Nuclear Fusion will be held in Wuerzburg, Germany, September 30 to October 7, 1992; a list of IAEA technical committee meetings for 1991; an item on ITER news; an article 'Long Term Physics R and D Planning (for ITER)' by F. Engelmann; in the planned sequence of 'Reports on National Fusion Programs' contributions on the Chinese and Yugoslav programs; finally, the titles and contacts for two other newsletters of potential interest, i.e., the AAAPT (Asian African Association for Plasma Training) Newsletter, and the IPG (International physics Group-A sub unit of the American Physical Society) Newsletter.
Huhn, S L; Wolf, A L; Ecklund, J
1991-12-01
Cervical instability secondary to fracture/dislocation or traumatic subluxation involving the posterior elements may be treated by a variety of fusion techniques. The rigidity of the stainless steel wires used in posterior cervical fusions often leads to difficulty with insertion, adequate tension, and conformation of the graft construct. This report describes a technique of posterior cervical fusion employing a wire system using flexible stainless steel cables. The wire consists of a flexible, 49-strand, stainless steel cable connected on one end to a short, malleable, blunt leader with the opposite end connected to a small islet. The cable may be used in occipitocervical, atlantoaxial, facet-to-spinous process, and interspinous fusion techniques. The cable loop is secured by using a tension/crimper device that sets the desired tension in the cable. In addition to superior biomechanical strength, the flexibility of the cable allows greater ease of insertion and tension adjustment. In terms of direct operative instrumentation in posterior cervical arthrodesis, involving both the upper and lower cervical spine, the cable system appears to be a safe and efficient alternative to monofilament wires.
Follow-up of negative MRI-targeted prostate biopsies: when are we missing cancer?
Gold, Samuel A; Hale, Graham R; Bloom, Jonathan B; Smith, Clayton P; Rayn, Kareem N; Valera, Vladimir; Wood, Bradford J; Choyke, Peter L; Turkbey, Baris; Pinto, Peter A
2018-05-21
Multiparametric magnetic resonance imaging (mpMRI) has improved clinicians' ability to detect clinically significant prostate cancer (csPCa). Combining or fusing these images with the real-time imaging of transrectal ultrasound (TRUS) allows urologists to better sample lesions with a targeted biopsy (Tbx) leading to the detection of greater rates of csPCa and decreased rates of low-risk PCa. In this review, we evaluate the technical aspects of the mpMRI-guided Tbx procedure to identify possible sources of error and provide clinical context to a negative Tbx. A literature search was conducted of possible reasons for false-negative TBx. This includes discussion on false-positive mpMRI findings, termed "PCa mimics," that may incorrectly suggest high likelihood of csPCa as well as errors during Tbx resulting in inexact image fusion or biopsy needle placement. Despite the strong negative predictive value associated with Tbx, concerns of missed disease often remain, especially with MR-visible lesions. This raises questions about what to do next after a negative Tbx result. Potential sources of error can arise from each step in the targeted biopsy process ranging from "PCa mimics" or technical errors during mpMRI acquisition to failure to properly register MRI and TRUS images on a fusion biopsy platform to technical or anatomic limits on needle placement accuracy. A better understanding of these potential pitfalls in the mpMRI-guided Tbx procedure will aid interpretation of a negative Tbx, identify areas for improving technical proficiency, and improve both physician understanding of negative Tbx and patient-management options.
Schwein, Adeline; Lu, Tony; Chinnadurai, Ponraj; Kitkungvan, Danai; Shah, Dipan J; Chakfe, Nabil; Lumsden, Alan B; Bismuth, Jean
2017-01-01
Endovascular recanalization is considered first-line therapy for chronic central venous occlusion (CVO). Unlike arteries, in which landmarks such as wall calcifications provide indirect guidance for endovascular navigation, sclerotic veins without known vascular branching patterns impose significant challenges. Therefore, safe wire access through such chronic lesions mostly relies on intuition and experience. Studies have shown that magnetic resonance venography (MRV) can be performed safely in these patients, and the boundaries of occluded veins may be visualized on specific MRV sequences. Intraoperative image fusion techniques have become more common to guide complex arterial endovascular procedures. The aim of this study was to assess the feasibility and utility of MRV and intraoperative cone-beam computed tomography (CBCT) image fusion technique during endovascular CVO recanalization. During the study period, patients with symptomatic CVO and failed standard endovascular recanalization underwent further recanalization attempts with use of intraoperative MRV image fusion guidance. After preoperative MRV and intraoperative CBCT image coregistration, a virtual centerline path of the occluded segment was electronically marked in MRV and overlaid on real-time two-dimensional fluoroscopy images. Technical success, fluoroscopy times, radiation doses, number of venograms before recanalization, and accuracy of the virtual centerline overlay were evaluated. Four patients underwent endovascular CVO recanalization with use of intraoperative MRV image fusion guidance. Mean (± standard deviation) time for image fusion was 6:36 ± 00:51 mm:ss. The lesion was successfully crossed in all patients without complications. Mean fluoroscopy time for lesion crossing was 12.5 ± 3.4 minutes. Mean total fluoroscopy time was 28.8 ± 6.5 minutes. Mean total radiation dose was 15,185 ± 7747 μGy/m 2 , and mean radiation dose from CBCT acquisition was 2788 ± 458 μGy/m 2 (18% of mean total radiation dose). Mean number of venograms before recanalization was 1.6 ± 0.9, whereas two lesions were crossed without any prior venography. On qualitative analysis, virtual centerlines from MRV were aligned with actual guidewire trajectory on fluoroscopy in all four cases. MRV image fusion is feasible and may improve success, safety, and the surgeon's confidence during CVO recanalization. Similar to arterial interventions, three-dimensional MRV imaging and image fusion techniques could foster innovative solutions for such complex venous interventions and have the potential to affect a great number of patients. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Rapid Method for Sodium Hydroxide Fusion of Asphalt ...
Technical Brief--Addendum to Selected Analytical Methods (SAM) 2012 Rapid method developed for analysis of Americium-241 (241Am), plutonium-238 (238Pu), plutonium-239 (239Pu), radium-226 (226Ra), strontium-90 (90Sr), uranium-234 (234U), uranium-235 (235U) and uranium-238 (238U) in asphalt roofing material samples
NASA Technical Reports Server (NTRS)
2000-01-01
This is a quarterly listing of unclassified AGARD and RTO technical publications NASA received and announced in the NASA STI Database. Contents include 1) Sensor Data Fusion and Integration of the Human Element; 2) Planar Optical Measurement Methods for Gas Turbine Components; 3) RTO Highlights 1998, December 1998.
Burning plasma regime for Fussion-Fission Research Facility
NASA Astrophysics Data System (ADS)
Zakharov, Leonid E.
2010-11-01
The basic aspects of burning plasma regimes of Fusion-Fission Research Facility (FFRF, R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, P^DT=50-100 MW, P^fission=80-4000 MW, 1 m thick blanket), which is suggested as the next step device for Chinese fusion program, are presented. The mission of FFRF is to advance magnetic fusion to the level of a stationary neutron source and to create a technical, scientific, and technology basis for the utilization of high-energy fusion neutrons for the needs of nuclear energy and technology. FFRF will rely as much as possible on ITER design. Thus, the magnetic system, especially TFC, will take advantage of ITER experience. TFC will use the same superconductor as ITER. The plasma regimes will represent an extension of the stationary plasma regimes on HT-7 and EAST tokamaks at ASIPP. Both inductive discharges and stationary non-inductive Lower Hybrid Current Drive (LHCD) will be possible. FFRF strongly relies on new, Lithium Wall Fusion (LiWF) plasma regimes, the development of which will be done on NSTX, HT-7, EAST in parallel with the design work. This regime will eliminate a number of uncertainties, still remaining unresolved in the ITER project. Well controlled, hours long inductive current drive operation at P^DT=50-100 MW is predicted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Choong-Seock; Greenwald, Martin; Riley, Katherine
The additional computing power offered by the planned exascale facilities could be transformational across the spectrum of plasma and fusion research — provided that the new architectures can be efficiently applied to our problem space. The collaboration that will be required to succeed should be viewed as an opportunity to identify and exploit cross-disciplinary synergies. To assess the opportunities and requirements as part of the development of an overall strategy for computing in the exascale era, the Exascale Requirements Review meeting of the Fusion Energy Sciences (FES) community was convened January 27–29, 2016, with participation from a broad range ofmore » fusion and plasma scientists, specialists in applied mathematics and computer science, and representatives from the U.S. Department of Energy (DOE) and its major computing facilities. This report is a summary of that meeting and the preparatory activities for it and includes a wealth of detail to support the findings. Technical opportunities, requirements, and challenges are detailed in this report (and in the recent report on the Workshop on Integrated Simulation). Science applications are described, along with mathematical and computational enabling technologies. Also see http://exascaleage.org/fes/ for more information.« less
Three-dimensional Image Fusion Guidance for Transjugular Intrahepatic Portosystemic Shunt Placement.
Tacher, Vania; Petit, Arthur; Derbel, Haytham; Novelli, Luigi; Vitellius, Manuel; Ridouani, Fourat; Luciani, Alain; Rahmouni, Alain; Duvoux, Christophe; Salloum, Chady; Chiaradia, Mélanie; Kobeiter, Hicham
2017-11-01
To assess the safety, feasibility and effectiveness of image fusion guidance with pre-procedural portal phase computed tomography with intraprocedural fluoroscopy for transjugular intrahepatic portosystemic shunt (TIPS) placement. All consecutive cirrhotic patients presenting at our interventional unit for TIPS creation from January 2015 to January 2016 were prospectively enrolled. Procedures were performed under general anesthesia in an interventional suite equipped with flat panel detector, cone-beam computed tomography (CBCT) and image fusion technique. All TIPSs were placed under image fusion guidance. After hepatic vein catheterization, an unenhanced CBCT acquisition was performed and co-registered with the pre-procedural portal phase CT images. A virtual path between hepatic vein and portal branch was made using the virtual needle path trajectory software. Subsequently, the 3D virtual path was overlaid on 2D fluoroscopy for guidance during portal branch cannulation. Safety, feasibility, effectiveness and per-procedural data were evaluated. Sixteen patients (12 males; median age 56 years) were included. Procedures were technically feasible in 15 of the 16 patients (94%). One procedure was aborted due to hepatic vein catheterization failure related to severe liver distortion. No periprocedural complications occurred within 48 h of the procedure. The median dose-area product was 91 Gy cm 2 , fluoroscopy time 15 min, procedure time 40 min and contrast media consumption 65 mL. Clinical benefit of the TIPS placement was observed in nine patients (56%). This study suggests that 3D image fusion guidance for TIPS is feasible, safe and effective. By identifying virtual needle path, CBCT enables real-time multiplanar guidance and may facilitate TIPS placement.
Wang, Yong-Li; Wang, Xiang-Yang
2018-06-01
We sought to report a minimum 12 months' follow-up results of our improved bone graft method for upper cervical surgery with the posterior approach. Among 52 consecutive cases, odontoid nonunion occurred in 33 patients, atlantoaxial instability in 11 patients, and occipitocervical deformity in 8 patients who underwent posterior C1-C2 transarticular screw/screw-rod internal fixation (41 cases) and occipitocervical fusion (11 cases) with the improved bone graft technique. Each surgical procedure was performed by the same senior spine surgeon. We took lateral cervical standing roentgenograms before surgery and immediately after surgery. Then we conducted craniocerebral computed tomography examination with reconstruction at 3, 6, 12, and 24 months and annually thereafter. The postoperative follow-up times are about 12-38 months. All cases showed satisfactory screw fixation by radiographic examination, and there were no postoperative neurologic complications. One case had postoperative retropharyngeal infection after the transoral release and posterior reduction by pedicle screw instrumentation. All patients got solid fusions, and no pseudarthrosis occurred. All cases had solid fusions at the 3-month follow-up. Good bone graft bed, enough bone graft material, solid local fixation, and effective bone graft method are prerequisites for a successful bone graft. By analyzing postoperative follow-up in the consecutive cases in this study, our bone graft method describing a new bone graft structure is a reliable posterior fusion technique. It is worth considering, and further research is needed. Copyright © 2018. Published by Elsevier Inc.
Data fusion for QRS complex detection in multi-lead electrocardiogram recordings
NASA Astrophysics Data System (ADS)
Ledezma, Carlos A.; Perpiñan, Gilberto; Severeyn, Erika; Altuve, Miguel
2015-12-01
Heart diseases are the main cause of death worldwide. The first step in the diagnose of these diseases is the analysis of the electrocardiographic (ECG) signal. In turn, the ECG analysis begins with the detection of the QRS complex, which is the one with the most energy in the cardiac cycle. Numerous methods have been proposed in the bibliography for QRS complex detection, but few authors have analyzed the possibility of taking advantage of the information redundancy present in multiple ECG leads (simultaneously acquired) to produce accurate QRS detection. In our previous work we presented such an approach, proposing various data fusion techniques to combine the detections made by an algorithm on multiple ECG leads. In this paper we present further studies that show the advantages of this multi-lead detection approach, analyzing how many leads are necessary in order to observe an improvement in the detection performance. A well known QRS detection algorithm was used to test the fusion techniques on the St. Petersburg Institute of Cardiological Technics database. Results show improvement in the detection performance with as little as three leads, but the reliability of these results becomes interesting only after using seven or more leads. Results were evaluated using the detection error rate (DER). The multi-lead detection approach allows an improvement from DER = 3:04% to DER = 1:88%. Further works are to be made in order to improve the detection performance by implementing further fusion steps.
NASA Astrophysics Data System (ADS)
Stambaugh, Ronald D.
2014-01-01
This last year being an odd numbered year, the pages of Nuclear Fusion saw a large influx of expanded papers from the 2012 Fusion Energy Conference in San Diego. Many papers have focused on the scientific and technical challenges posed by ITER. Contributions are steadily increasing from the new superconducting tokamaks in Asia. The ITER Project continues to move ahead. Construction at the Cadarache site is quite remarkable. Buildings completed include the huge Poloidal Field Coils Winding Facility and the Headquarters building, which has been occupied by the ITER staff. Work is progressing on the Assembly building and the Cryostat Workshop. The base of the tokamak complex is being laid. Besides the construction that is taking place and will take place at the site, components from around the world have to navigate the complex route from Marseilles to the site. A test convoy replicating the dimensions and weights of the most exceptional ITER loads successfully traversed that route in 2013. We are pleased to report that the IAEA and ITER have finalized the agreement for ITER authors to publish papers in Nuclear Fusion . Nuclear Fusion is proud to continue its key role in providing the leading forum for the documentation of scientific progress and exchange of research results internationally toward fusion energy. Refereeing The Nuclear Fusion editorial office appreciates greatly the effort made by our referees to sustain the high quality of the journal. Since January 2005, we have been offering the most active referees over the past year a personal subscription to Nuclear Fusion with electronic access for one year, free of charge. We have excluded our Board Members, Guest Editors of special editions and those referees who were already listed in previous years. The following people have been selected: J.M. Canik, Oak Ridge National Laboratory, USA I.T. Chapman, Culham Centre for Fusion Energy, UK L.-G. Eriksson, Commission of the European Communities, Belgium T. Evans, General Atomics, USA A. Hassanein, Purdue University, USA Y.-M. Jeon, National Fusion Research Institute, Spain S. Kajita, Nagoya University, Japan T.P. Kiviniemi, Aalto University, Finland R.M. More, Lawrence Livermore National Laboratory, USA F. Sattin, Associazione Euratom-ENEA-CNR, Italy J.A. Snipes, ITER Organization, France W. Suttrop, Max Planck Institute for Plasma Physics-Garching, Germany F.L. Tabares, Energy Environment and Technology Research Centre, Spain Y. Ueda, Osaka University, Japan V.S. Voitsenya, Kharkov Institute of Physics and Technology, Ukraine G. Xu, Chinese Academy of Sciences-Hefei Institutes of Physical Sciences, People's Republic of China In addition, there is a group of several hundred referees who have helped us in the past year to maintain the high scientific standard of Nuclear Fusion . At the end of this issue we give the full list of all referees for 2013. Our thanks to them! We also wish to express our thanks to Paul Thomas, who served as Guest Editor for the special issue of the overview and summary reports from the 24th Fusion Energy Conference in San Diego, October 2012. This issue is of great value as a summary of the major developments worldwide in fusion research in the last two years. Authors The winner of the 2013 Nuclear Fusion Award is D.G. Whyte for the paper: I-mode: an H-mode energy confinement regime with L-mode particle transport in Alcator C-Mod [1], and we congratulate him and coauthors on this achievement. We also note special topic papers published in 2013: Technical challenges in the construction of the steady-state stellarator Wendestein 7-X by H.S. Bosch et al [2], Power requirements for electron cyclotron current drive and ion cyclotron resonance heating for sawtooth control in ITER by I.T. Chapman et al [3] and IFMIF: overview of the validation activities by J. Knaster et al [4]. The Board of Editors The Board of Editors has had a substantial turnover in members. For their great service to the journal, we wish to thank the following outgoing Board Members whose term of service was reached at the end of 2012: Keith Burrell, Atsushi Fukuyama, Guenter Janeschitz, Myeun Kwon, Alberto Loarte, Derek Stork, Tony Taylor and Kazuo Toi. We welcome the new Board Members who have joined the Board from the start of 2013: Pietro Barabaschi, Riccardo Betti, Rich Callis, Wonho Choi, Yasuaki Kishimoto, Joaquin Sánchez, Paul Thomas, Mickey Wade, Howard Wilson, Hiroshi Yamada and Steve Zinkle. We look forward to working with the Board to maintain the high standing of Nuclear Fusion . The Nuclear Fusion office and IOP Publishing Just as the journal depends on the authors, referees, and Board of Editors, so its success is also due to the tireless and largely unsung efforts of the IAEA Nuclear Fusion office in Vienna and IOP Publishing in Bristol. I would like to express my personal thanks to the team for the support that they have given to me, the authors and the referees. Season's greetings I would like to wish our readers, authors, referees, Board of Editors, and Vienna and Bristol office staff season's greetings and thank them for their contributions to Nuclear Fusion in 2013. References [1] Whyte D.G. et al 2010 I-mode: an H-mode energy confinement regime with L-mode particle transport in Alcator C-Mod Nucl. Fusion 50 105005 [2] Bosch H.-S. et al 2013 Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X Nucl. Fusion 53 126001 [3] Chapman I.T. et al 2013 Power requirements for electron cyclotron current drive and ion cyclotron resonance heating for sawtooth control in ITER Nucl. Fusion 53 066001 [4] Knaster J. et al 2013 IFMIF: overview of the validation activities Nucl. Fusion 53 116001
Occipitocervical fusion in skeletal dysplasia: a new surgical technique.
Sitoula, Prakash; Mackenzie, William G; Shah, Suken A; Thacker, Mihir; Ditro, Colleen; Holmes, Laurens; Campbell, Jeffrey W; Rogers, Kenneth J
2014-07-01
Retrospective cohort study. This study describes clinical and radiological results of a new cable technique for occipitocervical fusion (OCF) in children with skeletal dysplasia (SD). Anatomical variability and poor bone quality make upper cervical surgery technically challenging in patients with SD. We present a new cable technique for OCF in children with SD when the posterior elements are not of a size or quality for other types of instrumentation. Retrospective review of 24 patients with SD (8 boys, 16 girls) who underwent OCF between 2001 and 2011. In this technique, cables provide compression across a bone graft that is prevented from entering the canal and the graft resists excessive lordosis. Demographic and radiographical data are presented. All patients were followed for initial outcomes of surgery, and 20 patients (83%) were followed for 2 years or more for mid- and long-term outcomes. Mean age at surgery was 6.5 years and mean follow-up was 4.1 ± 2.4 years. This technique was used as a primary procedure in 20 and a revision procedure in 4 patients. Diagnoses included Morquio syndrome (6), spondyloepiphyseal dysplasia (9), spondyloepimetaphyseal dysplasia (5), metatropic dysplasia (3), and Kniest syndrome (1). Ten patients had upper cervical instability and features of cervical myelopathy, and the remaining 14 patients had instability and signal changes on magnetic resonance image. Fusion extended from occiput to C2 in 71% patients, and upper cervical decompression was needed in 92% patients. Postoperatively, all patients were immobilized in a halo vest for mean duration of 12 weeks. Fusion was achieved in all patients. Complications included halo pin-tract infections (7), junctional instability (2), and extension of fusion (4). This new cable technique is a good alternative for OCF in patients with SD who have altered anatomy at the craniocervical junction not amenable to rigid internal fixation. 4.
Hatakeyama, Hiroyasu; Kanzaki, Makoto
2017-08-15
Comprehensive imaging analyses of glucose transporter 4 (GLUT4) behaviour in mouse skeletal muscle was conducted. Quantum dot-based single molecule nanometry revealed that GLUT4 molecules in skeletal myofibres are governed by regulatory systems involving 'static retention' and 'stimulus-dependent liberation'. Vital imaging analyses and super-resolution microscopy-based morphometry demonstrated that insulin liberates the GLUT4 molecule from its static state by triggering acute heterotypic endomembrane fusion arising from the very small GLUT4-containing vesicles in skeletal myofibres. Prior exposure to exercise-mimetic stimuli potentiated this insulin-responsive endomembrane fusion event involving GLUT4-containing vesicles, suggesting that this endomembranous regulation process is a potential site related to the effects of exercise. Skeletal muscle is the major systemic glucose disposal site. Both insulin and exercise facilitate translocation of the glucose transporter glucose transporter 4 (GLUT4) via distinct signalling pathways and exercise also enhances insulin sensitivity. However, the trafficking mechanisms controlling GLUT4 mobilization in skeletal muscle remain poorly understood as a resuly of technical limitations. In the present study, which employs various imaging techniques on isolated skeletal myofibres, we show that one of the initial triggers of insulin-induced GLUT4 translocation is heterotypic endomembrane fusion arising from very small static GLUT4-containing vesicles with a subset of transferrin receptor-containing endosomes. Importantly, pretreatment with exercise-mimetic stimuli potentiated the susceptibility to insulin responsiveness, as indicated by these acute endomembranous activities. We also found that AS160 exhibited stripe-like localization close to sarcomeric α-actinin and that insulin induced a reduction of the stripe-like localization accompanying changes in its detergent solubility. The results of the present study thus provide a conceptual framework indicating that GLUT4 protein trafficking via heterotypic fusion is a critical feature of GLUT4 translocation in skeletal muscles and also suggest that the efficacy of the endomembranous fusion process in response to insulin is involved in the benefits of exercise. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Research on precise modeling of buildings based on multi-source data fusion of air to ground
NASA Astrophysics Data System (ADS)
Li, Yongqiang; Niu, Lubiao; Yang, Shasha; Li, Lixue; Zhang, Xitong
2016-03-01
Aims at the accuracy problem of precise modeling of buildings, a test research was conducted based on multi-source data for buildings of the same test area , including top data of air-borne LiDAR, aerial orthophotos, and façade data of vehicle-borne LiDAR. After accurately extracted the top and bottom outlines of building clusters, a series of qualitative and quantitative analysis was carried out for the 2D interval between outlines. Research results provide a reliable accuracy support for precise modeling of buildings of air ground multi-source data fusion, on the same time, discussed some solution for key technical problems.
The Physics Basis of ITER Confinement
NASA Astrophysics Data System (ADS)
Wagner, F.
2009-02-01
ITER will be the first fusion reactor and the 50 year old dream of fusion scientists will become reality. The quality of magnetic confinement will decide about the success of ITER, directly in the form of the confinement time and indirectly because it decides about the plasma parameters and the fluxes, which cross the separatrix and have to be handled externally by technical means. This lecture portrays some of the basic principles which govern plasma confinement, uses dimensionless scaling to set the limits for the predictions for ITER, an approach which also shows the limitations of the predictions, and describes briefly the major characteristics and physics behind the H-mode—the preferred confinement regime of ITER.
Hingorani, Pooja; Missiaglia, Edoardo; Shipley, Janet; Anderson, James R; Triche, Timothy J; Delorenzi, Mauro; Gastier-Foster, Julie; Wing, Michele; Hawkins, Douglas S; Skapek, Stephen X
2015-10-15
Pediatric rhabdomyosarcoma (RMS) has two common histologic subtypes: embryonal (ERMS) and alveolar (ARMS). PAX-FOXO1 fusion gene status is a more reliable prognostic marker than alveolar histology, whereas fusion gene-negative (FN) ARMS patients are clinically similar to ERMS patients. A five-gene expression signature (MG5) previously identified two diverse risk groups within the fusion gene-negative RMS (FN-RMS) patients, but this has not been independently validated. The goal of this study was to test whether expression of the MG5 metagene, measured using a technical platform that can be applied to routine pathology material, would correlate with outcome in a new cohort of patients with FN-RMS. Cases were taken from the Children's Oncology Group (COG) D9803 study of children with intermediate-risk RMS, and gene expression profiling for the MG5 genes was performed using the nCounter assay. The MG5 score was correlated with clinical and pathologic characteristics as well as overall and event-free survival. MG5 standardized score showed no significant association with any of the available clinicopathologic variables. The MG5 signature score showed a significant correlation with overall (N = 57; HR, 7.3; 95% CI, 1.9-27.0; P = 0.003) and failure-free survival (N = 57; HR, 6.1; 95% CI, 1.9-19.7; P = 0.002). This represents the first, validated molecular prognostic signature for children with FN-RMS who otherwise have intermediate-risk disease. The capacity to measure the expression of a small number of genes in routine pathology material and apply a simple mathematical formula to calculate the MG5 metagene score provides a clear path toward better risk stratification in future prospective clinical trials. ©2015 American Association for Cancer Research.
Rolls, A E; Maurel, B; Davis, M; Constantinou, J; Hamilton, G; Mastracci, T M
2016-09-01
Fusion of three-dimensional (3D) computed tomography and intraoperative two-dimensional imaging in endovascular surgery relies on manual rigid co-registration of bony landmarks and tracking of hardware to provide a 3D overlay (hardware-based tracking, HWT). An alternative technique (image-based tracking, IMT) uses image recognition to register and place the fusion mask. We present preliminary experience with an agnostic fusion technology that uses IMT, with the aim of comparing the accuracy of overlay for this technology with HWT. Data were collected prospectively for 12 patients. All devices were deployed using both IMT and HWT fusion assistance concurrently. Postoperative analysis of both systems was performed by three blinded expert observers, from selected time-points during the procedures, using the displacement of fusion rings, the overlay of vascular markings and the true ostia of renal arteries. The Mean overlay error and the deviation from mean error was derived using image analysis software. Comparison of the mean overlay error was made between IMT and HWT. The validity of the point-picking technique was assessed. IMT was successful in all of the first 12 cases, whereas technical learning curve challenges thwarted HWT in four cases. When independent operators assessed the degree of accuracy of the overlay, the median error for IMT was 3.9 mm (IQR 2.89-6.24, max 9.5) versus 8.64 mm (IQR 6.1-16.8, max 24.5) for HWT (p = .001). Variance per observer was 0.69 mm(2) and 95% limit of agreement ±1.63. In this preliminary study, the error of magnitude of displacement from the "true anatomy" during image overlay in IMT was less than for HWT. This confirms that ongoing manual re-registration, as recommended by the manufacturer, should be performed for HWT systems to maintain accuracy. The error in position of the fusion markers for IMT was consistent, thus may be considered predictable. Copyright © 2016 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
Final Technical Report for Grant DE-FG02-04ER54795
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merlino, Robert L
This is the final technical report for DOE Grant #DE-FG02-04ER54795-Experimental Investigations of Fundamental Processes in Dusty Plasmas. A plasma is an ionized gas, and a dusty plasmas is a plasma that contains, in addition to electrons and ions, micron-sized dust particles. The dust particles acquire and electric charge in the plasma by collecting electrons and ions. The electrons move more rapidly than the ions, so the dust charge is negative. A 1 micron dust particle in a typical low temperature plasma has a charge corresponding to approximately 2000 electrons. Dusty plasmas are naturally found in astrophysical plasmas, planetary rings, technologicalmore » plasmas, and magnetic fusion plasmas. The goal of this project was to study in the laboratory, the basic physical processes that occur in dusty plasmas. This report provides a summary of the major scientific products and activities of this award.« less
a Study of the Impact of Insolation on Remote Sensing-Based Landcover and Landuse Data Extraction
NASA Astrophysics Data System (ADS)
Becek, K.; Borkowski, A.; Mekik, Ç.
2016-06-01
We examined the dependency of the pixel reflectance of hyperspectral imaging spectrometer data (HISD) on a normalized total insolation index (NTII). The NTII was estimated using a light detection and ranging (LiDAR)-derived digital surface model (DSM). The NTII and the pixel reflectance were dependent, to various degrees, on the band considered, and on the properties of the objects. The findings could be used to improve land cover (LC)/land use (LU) classification, using indices constructed from the spectral bands of imaging spectrometer data (ISD). To study this possibility, we investigated the normalized difference vegetation index (NDVI) at various NTII levels. The results also suggest that the dependency of the pixel reflectance and NTII could be used to mitigate the shadows in ISD. This project was carried out using data provided by the Hyperspectral Image Analysis Group and the NSF-funded Centre for Airborne Laser Mapping (NCALM), University of Houston, for the purpose of organizing the 2013 Data Fusion Contest (IEEE 2014). This contest was organized by the IEEE GRSS Data Fusion Technical Committee.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrafiello, Gianpaolo, E-mail: gcarraf@gmail.com; Ierardi, Anna Maria; Radaelli, Alessandro
AimTo evaluate safety, feasibility, technical success, and clinical success of direct percutaneous sac injection (DPSI) for the treatment of type II endoleaks (T2EL) using anatomical landmarks on cone beam computed tomography (CBCT) and fusion imaging (FI).Materials and MethodsEight patients with T2EL were treated with DPSI using CBCT as imaging guidance. Anatomical landmarks on unenhanced CBCT were used for referencing T2EL location in the first five patients, while FI between unenhanced CBCT and pre-procedural computed tomography angiography (CTA) was used in the remaining three patients. Embolization was performed with thrombin, glue, and ethylene–vinyl alcohol copolymer. Technical and clinical success, iodinated contrastmore » utilization, procedural time, fluoroscopy time, and mean radiation dose were registered.ResultsDPSI was technically successful in all patients: the needle was correctly positioned at the first attempt in six patients, while in two of the first five patients the needle was repositioned once. Neither minor nor major complications were registered. Average procedural time was 45 min and the average administered iodinated contrast was 13 ml. Mean radiation dose of the procedure was 60.43 Gy cm{sup 2} and mean fluoroscopy time was 18 min. Clinical success was achieved in all patients (mean follow-up of 36 months): no sign of T2EL was reported in seven patients until last CT follow-up, while it persisted in one patient with stability of sac diameter.ConclusionsDPSI using unenhanced CBCT and FI is feasible and provides the interventional radiologist with an accurate and safe alternative to endovascular treatment with limited iodinated contrast utilization.« less
System integration and DICOM image creation for PET-MR fusion.
Hsiao, Chia-Hung; Kao, Tsair; Fang, Yu-Hua; Wang, Jiunn-Kuen; Guo, Wan-Yuo; Chao, Liang-Hsiao; Yen, Sang-Hue
2005-03-01
This article demonstrates a gateway system for converting image fusion results to digital imaging and communication in medicine (DICOM) objects. For the purpose of standardization and integration, we have followed the guidelines of the Integrated Healthcare Enterprise technical framework and developed a DICOM gateway. The gateway system combines data from hospital information system, image fusion results, and the information generated itself to constitute new DICOM objects. All the mandatory tags defined in standard DICOM object were generated in the gateway system. The gateway system will generate two series of SOP instances of each PET-MR fusion result; SOP (Service Object Pair) one for the reconstructed magnetic resonance (MR) images and the other for position emission tomography (PET) images. The size, resolution, spatial coordinates, and number of frames are the same in both series of SOP instances. Every new generated MR image exactly fits with one of the reconstructed PET images. Those DICOM images are stored to the picture archiving and communication system (PACS) server by means of standard DICOM protocols. When those images are retrieved and viewed by standard DICOM viewing systems, both images can be viewed at the same anatomy location. This system is useful for precise diagnosis and therapy.
NASA Astrophysics Data System (ADS)
Gauthier, Jean-Claude; Hammel, Bruce; Azechi, Hiroshi; Labaune, Christine
2006-06-01
The Fourth International Conference on Inertial Fusion Sciences and Applications (IFSA 2005) was held September 4-9, 2005 at the Bellevue Conference Center in Biarritz, France. The host organizations for this conference were the University of Bordeaux 1, the Centre National de la Recherche Scientifique (CNRS) and the Commissariat a l'Energie Atomique (CEA). The conference objective was to review of the state of the art of research in inertial fusion sciences and applications since the last conference held in Monterey California, USA, in 2003. Altogether 509 abstracts were submitted, 418 accepted, and more than 440 persons from 23 countries attended the conference. These Proceedings contain 249 of the papers presented at IFSA 2005. This collection of papers represents the manuscripts submitted to and passing the peer review process. The IFSA 2005 conference is the first of a new series of three conferences to be organized in France, Japan and the USA and governed under Annex I of the Memorandum of Agreement, signed in June 2004, among the Lawrence Livermore Laboratory operated by the University of California (UC), Osaka University, and Institut Lasers et Plasmas (ILP), operated by CNRS Delegation Aquitaine. The IFSA 2005 continued the strong tradition of the three previous conferences in Bordeaux, Kyoto and Monterey. It was the largest IFSA yet with a substantial participation from countries such as China and Russia. With a goal of achieving inertial fusion ignition and burn propagation in the laboratory, there continues to be significant progress in the international inertial fusion community. At IFSA 2005, researchers presented the exciting advances in traditional hot spot ignition approach, including results from the early experiments from the NIF laser. A particularly emphasis of the meeting was the rapid and exciting progress in the fast ignition scheme. Integrated and basic physics experiments on GekkoXII, Vulcan, and other laser-matter interaction facilities have shown promising results. A lot of new results of experiments and numerical simulations in ultra-intense laser interactions have also been presented. The Megajoule Laser (LMJ), as one of two facilities being built to achieve target ignition, was a key attraction of IFSA 2005. About 200 participants toured the LMJ construction site and the LIL laser prototype during the conference. Before the tour, a special Facility Focus session examined progress on inertial fusion facilities around the world, including the soon-to-be-completed OMEGA-EP upgrade at Rochester, USA, and FIREX I, at Osaka, Japan. Recent progresses in hohlraum physics continue to give confidence in the ultimate achievement of ignition on the NIF Laser and the Megajoule Laser. The USA are pursuing a very focused program on ICF under the National Ignition Campaign (NIC). In China, a national project has been launched, the goal of which is fusion ignition and plasma burning in about 2020. Progress in direct drive has been notable over the past few years with the cryogenic implosions at LLE, polar direct-drive that may enable to switch rapidly from an indirect- to a direct-drive laser configuration, adiabat shaping of laser pulses, and even "Saturn targets", a short circuit topic from ICF to laboratory astrophysics. About this last topic, radiative shocks and plasma jets were among the most studied subjects. There were also sessions on the technologies of al1 types of drivers, including KrF and DPSSL lasers, particle beams, and Z-pinches. Advances in Z-pinch included double-hohlraum irradiation symmetry and the construction of a PW laser beam for the Z-facility. Advance in plasma diagnostics were dominated by proton imaging from ultra-intense interactions and precise imaging spectroscopy of core implosions. Of special interest, advanced target physics and reactor design studies have started to be more present during this IFSA edition. These Proceedings start with special chapters on the keynote speeches and the Teller lectures. The keynotes give an overview of progress in inertial fusion in North America, Europe and Asia. The Teller lectures show the contributions of this year's two winners: Joe Kilkenny of General Atomics and Max Tabak of LLNL. The remainder of the Proceedings is divided into three parts. Part A covers the physics of inertial fusion; Part B covers facilities, lasers, particle beams, Z-pinches, target fabrication and reactor design; Part C covers fundamental high-energy density science and other applications of inertial fusion VI technology such as plasma diagnostics, atomic physics and X-ray sources, laboratory astrophysics and laser particle acceleration. The readers should be aware that for some of the papers, only a short version is presented in this book: the extended version will be published in a topical issue of the European Physical Journal. The IFSA International Organizing Committee and Scientific Advisory Board appreciate the efforts of inertial fusion researchers worldwide in making IFSA 2005 an extremely successful conference. Jean-Claude Gauthier, technical committee co-chair Bruce Hammel, technical committee co-chair Hiroshi Azechi, technical committee co-chair Christine Labaune, proceedings co-editor
Panayotov, Dobromir; Poitevin, Yves; Grief, Andrew; ...
2016-09-23
'Fusion for Energy' (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). Safety demonstration is an essential element for the integration of these TBSs into ITER and accident analysis is one of its critical components. A systematic approach to accident analysis has been developed under the F4E contract on TBS safety analyses. F4E technical requirements, together with Amec Foster Wheeler and INL efforts, have resulted in a comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials,more » and phenomena while remaining consistent with the approach already applied to ITER accident analyses. Furthermore, the methodology phases are illustrated in the paper by its application to the EU HCLL TBS using both MELCOR and RELAP5 codes.« less
Close-out report with links to abstracts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marmar, Earl S.
This grant provided A/V support for two technical meetings of the Edge Coordinating Committee: (1) Nov 13, 2013 (co-located with the APS-DPP meeting in Denver, CO) https://ecc.mit.edu/fall-2013-technical-meeting#overlay-context=ecc-meetings; (2) April 28-May 1, 2015 (embedded sessions in the Transport Task Force Meeting, Salem, MA) http://www-internal.psfc.mit.edu/TTF2015/index.html. The ultimate goal of the U.S. Transport Task Force is to develop a physics-based understanding of particle, momentum and heat transport in magnetic fusion devices. This understanding should be of sufficient depth that it allows the development of predictive models of plasma transport that can be validated against experiment, and then used to anticipate the future performancemore » of burning plasmas in ITER, as well as to provide guidance for the design of next-step fusion nuclear science facilities. To achieve success in transport science, it is essential to characterize local fluctuations and transport in toroidal plasmas, to understand the basic mechanisms responsible for transport, and ultimately to control these transport processes. These goals must be pursued in multiple areas, and these topics evolve in order to reflect current interests.« less
Fusion for Space Propulsion and Plasma Liner Driven MTF
NASA Technical Reports Server (NTRS)
Thio, Y.C. Francis; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
The need for fusion propulsion for interplanetary flights is discussed. For a propulsion system, there are three important system attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion cannot meet the requirement in propellant exhaust velocity. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a low atomic weight propellant cannot overcome the problem. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. There are similarities as well as differences at the system level between applying fusion to propulsion and to terrestrial electrical power generation. The differences potentially provide a wider window of opportunities for applying fusion to propulsion. For example, pulsed approaches to fusion may be attractive for the propulsion application. This is particularly so in the light of significant development of the enabling pulsed power component technologies that have occurred in the last two decades because of defense and other energy requirements. The extreme states of matter required to produce fusion reactions may be more readily realizable in the pulsed states with less system mass than in steady states. Significant saving in system mass may result in pulsed fusion systems using plasmas in the appropriate density regimes. Magnetized target fusion, which attempts to combine the favorable attributes of magnetic confinement and inertial compression-containment into one single integrated fusion scheme, appears to have benefits that are worth exploring for propulsion application.
Parasol: An Architecture for Cross-Cloud Federated Graph Querying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lieberman, Michael; Choudhury, Sutanay; Hughes, Marisa
2014-06-22
Large scale data fusion of multiple datasets can often provide in- sights that examining datasets individually cannot. However, when these datasets reside in different data centers and cannot be collocated due to technical, administrative, or policy barriers, a unique set of problems arise that hamper querying and data fusion. To ad- dress these problems, a system and architecture named Parasol is presented that enables federated queries over graph databases residing in multiple clouds. Parasol’s design is flexible and requires only minimal assumptions for participant clouds. Query optimization techniques are also described that are compatible with Parasol’s lightweight architecture. Experiments onmore » a prototype implementation of Parasol indicate its suitability for cross-cloud federated graph queries.« less
BOOK REVIEW: Fusion: The Energy of the Universe
NASA Astrophysics Data System (ADS)
Lister, J.
2006-05-01
This book outlines the quest for fusion energy. It is presented in a form which is accessible to the interested layman, but which is precise and detailed for the specialist as well. The book contains 12 detailed chapters which cover the whole of the intended subject matter with copious illustrations and a balance between science and the scientific and political context. In addition, the book presents a useful glossary and a brief set of references for further non-specialist reading. Chapters 1 to 3 treat the underlying physics of nuclear energy and of the reactions in the sun and in the stars in considerable detail, including the creation of the matter in the universe. Chapter 4 presents the fusion reactions which can be harnessed on earth, and poses the fundamental problems of realising fusion energy as a source for our use, explaining the background to the Lawson criterion on the required quality of energy confinement, which 50 years later remains our fundamental milestone. Chapter 5 presents the basis for magnetic confinement, introducing some early attempts as well as some straightforward difficulties and treating linear and circular devices. The origins of the stellarator and of the tokamak are described. Chapter 6 is not essential to the mission of usefully harnessing fusion energy, but nonetheless explains to the layman the difference between fusion and fission in weapons, which should help the readers understand the differences as sources of peaceful energy as well, since this popular confusion remains a problem when proposing fusion with the `nuclear' label. Chapter 7 returns to energy sources with laser fusion, or inertial confinement fusion, which constitutes both military and civil research, depending on the country. The chapter provides a broad overview of the progress right up to today's hopes for fast ignition. The difficulty of harnessing fusion energy by magnetic or inertial confinement has created a breeding ground for what the authors call `false trails', since it is so tempting to produce a `backroom' solution to mankind's hunger for energy. Unfortunately, Chapter 8 can only regret that none of them has passed closer peer review. Chapters 9 and 10 concentrate on the `tokamak' concept for magnetic confinement, the basis for the JET and ITER projects, as well as for a wealth of smaller, national projects. The hopes and the disappointments are well and very frankly illustrated. The motivation for building a project of the size of ITER is made very clear. Present fusion research cannot forget that its mission is to develop an industrial reactor, not just a powerful research tool. Chapter 11 presents the major challenges between ITER and a reactor. Finally, Chapter 12 reminds us of why we need energy, why we do not have a credible solution at the mid-term (20 years) and why we have no solution in the longer term. The public awareness of this is growing, at last, even though the arguments were all on the table in the 1970's. This chapter therefore closes the book by bringing the reader back to earth rather suitably with the hard reality of energy needs and the absence of credible policies. This book has already received impressive approval among a wide range of people, since it so evidently succeeds in its goal to explain Fusion to many levels of reader. Gary McCracken and Peter Stott (one time editor of Plasma Physics and Controlled Fusion) both dedicated their careers to magnetic confinement fusion, mostly at Culham working on UKAEA projects and later on the JET project. They were both deeply involved with international collaborations and both were working abroad when they retired. The mixture between ideas, developments and people is most successfully developed. They clearly underline the importance of strong international collaboration on which this field depends. This open background is tangible in their recently published work, in which they have tried to communicate their love and understanding of this exciting field to the non-specialist. Their attempt has resulted in a remarkable success, filling a hole in the available literature. The format of this book, with boxed technical details, allows the casual reader to browse without being trapped by excessive detail, whereas the information is still there for the more assiduous reader. The only technical fault is the marring of the presentation by some unresolved production details in chapter 10. With the long-awaited decision to site ITER in Europe, there will inevitably be a strong demand for more information on fusion research for non-specialists, simply to understand what is behind this large project. This book fits the bill. It is written with technical accuracy but without resort to mathematics—a notably tricky target. The non-specialist wishing to find out about the field of fusion research, whether working as a journalist, administrator, secretary, politician, engineer or technician, will find a wealth of detail expressed in an accessible language. The specialist will be surprised by the precision of the text, and by the depth of the historical basis to this research. He will learn much, even if he is already familiar with the current state of art of fusion research. The younger researchers will find a clear history of their chosen field. The reviewer knows of no other book which has met this difficult goal with such ease, and strongly recommends it for the educated layman as well as for the ITER generation of younger physicists who did not live through the evolutionary period of fusion research, with its doubts, disappointments and successes.
Yagi, Mitsuru; Patel, Ravi; Lawhorne, Thomas W; Cunningham, Matthew E; Boachie-Adjei, Oheneba
2014-04-01
Combined anteroposterior spinal fusion with instrumentation has been used for many years to treat adult thoracolumbar/lumbar scoliosis. This surgery remains a technical challenge to spine surgeons, and current literature reports high complication rates. The purpose of this study is to validate a new hybrid technique (a combination of single-rod anterior instrumentation and a shorter posterior instrumentation to the sacrum) to treat adult thoracolumbar/lumbar scoliosis. This study is a retrospective consecutive case series of surgically treated patients with adult lumbar or thoracolumbar scoliosis. This is a retrospective study of 33 matched pairs of patients with adult scoliosis who underwent two different surgical procedures: a new hybrid technique versus a third-generation anteroposterior spinal fusion. Preoperative and postoperative outcome measures include self-report measures, physiological measures, and functional measures. In a retrospective case-control study, 33 patients treated with the hybrid technique were matched with 33 patients treated with traditional anteroposterior fusion based on preoperative radiographic parameters. Mean follow-up in the hybrid group was 5.3 years (range, 2-11 years), compared with 4.6 years (range, 2-10 years) in the control group. Operating room (OR) time, estimated blood loss, and levels fused were collected as surrogates for surgical morbidity. Radiographic parameters were collected preoperatively, postoperatively, and at final follow-up. The Scoliosis Research Society Patient Questionnaire (SRS-22r) and Oswestry Disability Index (ODI) scores were collected for clinical outcomes. Operating room time, EBL, and levels fused were significantly less in the hybrid group compared with the control group (p<.0001). The postoperative thoracic Cobb angle was similar between the hybrid and control techniques (p=.24); however, the hybrid technique showed significant improvement in the thoracolumbar/lumbar curves (p=.004) and the lumbosacral fractional curve (p<.0001). The major complication rate was less in the hybrid group compared with the control group (18% vs. 39%, p=.01). Clinical outcomes at final follow-up were not significantly different based on overall SRS-22r scores and ODI scores. The new hybrid technique demonstrates good long-term results, with less morbidity and fewer complications than traditional anteroposterior surgery select patients with thoracolumbar/lumbar scoliosis. This study received no funding. No potential conflict of interest-associated bias existed. Copyright © 2014 Elsevier Inc. All rights reserved.
Molloy, Sean; Butler, Joseph S; Benton, Adam; Malhotra, Karan; Selvadurai, Susanne; Agu, Obiekezie
2016-06-01
A variety of surgical approaches have been used for cage insertion in lumbar interbody fusion surgery. The direct anterior approach requires mobilization of the great vessels to access the intervertebral disc spaces cranial to L5/S1. With the lateral retroperitoneal transpsoas approach, it is difficult to access the L4/L5 intervertebral disc space due to the lumbar plexus and iliac crest, and L5/S1 is inaccessible. We describe a new anterolateral retroperitoneal approach, which is safe and reproducible to access the disc spaces from L1 to S1 inclusive, obviating the need for a separate direct anterior approach to access L5/S1. This paper had the following objectives: first, to report a reproducible novel single-incision, muscle-splitting, anterolateral pre-psoas surgical approach to the lumbar spine from L1 to S1; second, to highlight the technical challenges of this approach and highlight approach-related complications; and third, to evaluate clinical outcomes using this surgical technique in a prospective series of L1 to S1 anterior lumbar interbody fusions (ALIFs) performed as part of a 360-degree fusion for adult spinal deformity correction. This report used a prospective cohort study. A prospective series of patients (n=64) having ALIF using porous tantalum cages as part of a two-stage complex spinal reconstruction from L1 to S1 were studied. Data collected included blood loss, operative time, incision size, technical challenges, perioperative complications, and secondary procedures. Clinical outcome measures used included visual analogue scale (VAS) Back Pain, VAS Leg Pain, EuroQoL-5 Dimensions (EQ-5D), EQ-5D VAS, Oswestry Disability Index (ODI), and Scoliosis Research Society-22 (SRS-22). Pre- and postoperative radiographic parameters and clinical outcome measures were assessed. Mean follow-up time was 1.8 years. Mean blood loss was 68±9.6 mL. The mean VAS Back Pain score improved from 7.5±1.25 preoperatively to 2.5±1.7 at 3 months (p=.02), 1.2±0.5 at 6 months (p=.01), and 1.4±0.6 at 1 year (p=.02). The mean ODI improved from 64.3±31.8 preoperatively to 16.6±14.7 at 3 months (p>.05), 10.7±6.0 at 6 months (p=.02), and 6.7±6.1 at 1 year (p=.01). There were no permanent neurologic, vascular, or visceral injuries. One revision anterior procedure was required on a patient with rheumatoid arthritis and advanced systemic disease that sustained a sacral fracture and required revision ALIF at L5/S1. The technique described is a safe, new, muscle-splitting, psoas-preserving, one-incision approach to provide access from L1 to S1 for multilevel anterior or oblique lumbar interbody fusion surgery. Copyright © 2016 Elsevier Inc. All rights reserved.
Abbasi, Hamid; Abbasi, Ali
2017-01-14
Minimally invasive direct lateral interbody fusion (MIS-DLIF) is a novel approach for fusions of the lumbar spine. In this proof of concept study, we describe the surgical technique and report our experience and the perioperative outcomes of the first nine patients who underwent this procedure. In this study we establish the safety and efficacy of this approach. MIS-DLIF was performed on 15 spinal levels in nine patients who failed to respond to conservative therapy for the treatment of a re-herniated disk, spondylolisthesis, or other severe disk disease of the lumbar spine. We recorded surgery time, blood loss, fluoroscopy time, patient-reported pain, and complications. Throughout the MIS-DLIF procedure, the surgeon is aided by biplanar fluoroscopic imaging to place an interbody graft or cage into the disc space through the interpleural space. A discectomy is performed in the same minimally invasive fashion. The procedure is usually completed with posterior pedicle screw fixation. MIS-DLIF took 44/85 minutes, on average, for 1/2 levels, with 54/112 ml of blood loss, and 0.3/1.7 days of hospital stay. Four of nine patients did not require overnight hospitalization and were discharged two to four hours after surgery. We did not encounter any clinically significant complications. At more than ninety days post surgery, the patients reported a statistically significant reduction of 4.5 points on a 10-point sliding pain scale. MIS-DLIF with pedicle screw fixation is a safe and clinically effective procedure for fusions of the lumbar spine. The procedure overcomes many of the limitations of the current minimally invasive approaches to the lumbar spine and is technically straightforward. MIS-DLIF has the potential to improve patient outcomes and reduce costs relative to the current standard of care and therefore warrants further investigation. We are currently expanding this study to a larger cohort and documenting long-term outcome data.
Arya, Shobhit; Hadjievangelou, Nancy; Lei, Su; Kudo, Hiromi; Goldin, Robert D; Darzi, Ara W; Elson, Daniel S; Hanna, George B
2013-09-01
Bipolar radiofrequency (RF) induced tissue fusion is believed to have the potential to seal and anastomose intestinal tissue thereby providing an alternative to current techniques which are associated with technical and functional complications. This study examines the mechanical and cellular effects of RF energy and varying compressive pressures when applied to create ex vivo intestinal seals. A total of 299 mucosa-to-mucosa fusions were formed on ex vivo porcine small bowel segments using a prototype bipolar RF device powered by a closed-loop, feedback-controlled RF generator. Compressive pressures were increased at 0.05 MPa intervals from 0.00 to 0.49 MPa and RF energy was applied for a set time period to achieve bowel tissue fusion. Seal strength was subsequently assessed using burst pressure and tensile strength testing, whilst morphological changes were determined through light microscopy. To further identify the subcellular tissue changes that occur as a result of RF energy application, the collagen matrix in the fused area of a single bowel segment sealed at an optimal pressure was examined using transmission electron microscopy (TEM). An optimal applied compressive pressure range was observed between 0.10 and 0.25 MPa. Light microscopy demonstrated a step change between fused and unfused tissues but was ineffective in distinguishing between pressure levels once tissues were sealed. Non uniform collagen damage was observed in the sealed tissue area using TEM, with some areas showing complete collagen denaturation and others showing none, despite the seal being complete. This finding has not been described previously in RF-fused tissue and may have implications for in vivo healing. This study shows that both bipolar RF energy and optimal compressive pressures are needed to create strong intestinal seals. This finding suggests that RF fusion technology can be effectively applied for bowel sealing and may lead to the development of novel anastomosis tools.
Defense Small Business Innovation Research Program (SBIR) Abstracts of Phase 1 Awards 1983.
1984-04-06
STRATEGY, THE INTERPLAY BETWEEN ELECTROMAGNETIC EMISSION CON- TROL AND FLEET OPERATION. THE TECHNICAL APPROACH IS BASED ON AN ANALYSIS OF EMCON...THEM AND A BOTTOM UP APPROACH . THE REQUIREMENTS AND ARCHITECTURAL ASPECTS WILL BE EXPLORED FROM THE MORE ENCOMPASSING PERSPECTIVE OF THE TOTAL...AN AI APPROACH TO INFORMATION FUSION INCLUDING KNOW- LEDGE ORGANIZATION, HYPOTHESIS REPRESENTATIVES, DOMAIN KNOWLEDGE RE- PRESENTATION, HYPOTHESIS
Research and Application of Autodesk Fusion360 in Industrial Design
NASA Astrophysics Data System (ADS)
Song, P. P.; Qi, Y. M.; Cai, D. C.
2018-05-01
In 2016, Fusion 360, a productintroduced byAutodesk and integrating industrial design, structural design, mechanical simulation, and CAM, turns out a design platform supportingcollaboration and sharing both cross-platform and via the cloud. In previous products, design and manufacturing use to be isolated. In the course of design, research and development, the communication between designers and engineers used to go on through different software products, tool commands, and even industry terms. Moreover, difficulty also lies with the communication between design thoughts and machining strategies. Naturally, a difficult product design and R & D process would trigger a noticeable gap between the design model and the actual product. A complete product development process tends to cover several major areas, such as industrial design, mechanical design, rendering and animation, computer aided emulation (CAE), and computer aided manufacturing (CAM). Fusion 360, a perfect design solving the technical problems of cross-platform data exchange, realizes the effective control of cross-regional collaboration and presents an overview of collaboration and breaks the barriers between art and manufacturing, andblocks between design and processing. The “Eco-development of Fusion360 Industrial Chain” is both a significant means to and an inevitable trend forthe manufacturers and industrial designers to carry out innovation in China.
Scholkmann, Felix; Revol, Vincent; Kaufmann, Rolf; Baronowski, Heidrun; Kottler, Christian
2014-03-21
This paper introduces a new image denoising, fusion and enhancement framework for combining and optimal visualization of x-ray attenuation contrast (AC), differential phase contrast (DPC) and dark-field contrast (DFC) images retrieved from x-ray Talbot-Lau grating interferometry. The new image fusion framework comprises three steps: (i) denoising each input image (AC, DPC and DFC) through adaptive Wiener filtering, (ii) performing a two-step image fusion process based on the shift-invariant wavelet transform, i.e. first fusing the AC with the DPC image and then fusing the resulting image with the DFC image, and finally (iii) enhancing the fused image to obtain a final image using adaptive histogram equalization, adaptive sharpening and contrast optimization. Application examples are presented for two biological objects (a human tooth and a cherry) and the proposed method is compared to two recently published AC/DPC/DFC image processing techniques. In conclusion, the new framework for the processing of AC, DPC and DFC allows the most relevant features of all three images to be combined in one image while reducing the noise and enhancing adaptively the relevant image features. The newly developed framework may be used in technical and medical applications.
Krishnan, Kartik G; Müller, Adolf
2002-04-01
Reconstruction of the cervical spine using free vascularized bone flaps has been described in the literature. The reports involve either one level or, when multiple levels, they describe en bloc resection and reconstruction. Stabilization of different levels with a preserved intermediate segment with a single vascularized flap has not been described. We report on the case of a 55-year-old man, who had been operated several times using conventional techniques for cervical myelopathy and instability, who presented to us with severe neck pain. Diagnostic procedures showed pseudarthrosis of C3/4 and stress-overload of the C3/4 and C5/6 segments. The C4/5 fusion was adequately rigid, but avascular. We performed anterior cervical fusion at the C3/4 and C5/6 levels with a vascularized fibula flap modified as a double island. The rigidly fused C4/5 block was preserved and vascularized with the periosteum bridging the two fibular islands. The method and technique are described in detail. Fusion was adequate. Donor site morbidity was minimal and temporary. The patient is symptom free to date (25 months). The suggested method provides the possibility of vertebral fusion at different levels using a single vascularized flap. The indications for this procedure are (1) repeated failure of conventional methods, (2) established poor bone healing and bone non-union with avascular grafts and (3) a well-fused or preserved intermediate segment. The relevant literature is reviewed.
NASA Astrophysics Data System (ADS)
Kolesnichenko, Ya.
2010-08-01
The history of fusion research resembles the way in which one builds skyscrapers: laying the first foundation stone, one thinks about the top of the skyscraper. At the early stages of fusion, when it became clear that the thermonuclear reactor would operate with DT plasma confined by the magnetic field, the study of the `top item'—the physics of 3.5 MeV alpha particles produced by the DT fusion reaction—was initiated. The first publications on this topic appeared as long ago as the 1960s. At that time, because the physics of alpha particles was far from the experimental demand, investigations were carried out by small groups of theoreticians who hoped to discover important and interesting phenomena in this new research area. Soon after the beginning of the work, theoreticians discovered that alpha particles could excite various instabilities in fusion plasmas. In particular, at the end of the 1960s an Alfvén instability driven by alpha particles was predicted. Later it turned out that a variety of Alfvén instabilities with very different features does exist. Instabilities with perturbations of the Alfvénic type play an important role in current experiments; it is likely that they will affect plasma performance in ITER and future reactors. The first experimental manifestation of instabilities excited by superthermal particles in fusion devices was observed in the PDX tokamak in 1983. In this device a large-scale instability—the so called `fishbone instability'—associated with ions produced by the neutral beam injection resulted in a loss of a large fraction of the injected energy. Since then, the study of energetic-ion-driven instabilities and the effects produced by energetic ions in fusion plasmas has attracted the growing attention of both experimentalists and theorists. Recognizing the importance of this topic, the first conference on fusion alpha particles was held in 1989 in Kyiv under the auspices of the IAEA. The meeting in Kyiv and several subsequent meetings (Aspenäs (1991), Trieste (1993), Princeton (1995), and JET/Abingdon (1997)) were entitled `Alpha Particles in Fusion Research'. During the JET/Abingdon meeting in 1997 it was decided to extend the topic by including other suprathermal particles, in particular accelerated electrons, and rename the meetings accordingly. The subsequent meetings with the current name `Energetic Particles in Magnetic Confinement Systems' were held in Naka (1999), Gothenburg (2001), San Diego (2003), Takayama (2005) and Kloster Seeon (2007). The most recent meeting in this series was held in Kyiv, Ukraine, in September 2009. This was an anniversary meeting, 20 years after the first meeting. Like the first meeting, it was hosted by the Institute for Nuclear Research, National Academy of Sciences of Ukraine. It was attended by about 80 researchers from 18 countries, ITER, and EC. The program of the meeting consisted of 78 presentations, including 12 invited talks, 16 oral contributed talks, and 50 posters, which were selected by the International Advisory Committee (IAC). The IAC consisted of 11 people representing EC (L.-G. Eriksson), Germany (S. Günter), Italy (F. Zonca), Japan (K. Shinohara and K. Toi), Switzerland (A. Fasoli), UK (S. Sharapov), Ukraine (Ya. Kolesnichenko—IAC Chair), USA (H. Berk, W. Heidbrink, and R. Nazikian). The meeting program covered a wide range of physics issues concerning energetic ions in toroidal fusion facilities—tokamaks, stellarators, and spherical tori. Many new interesting and practically important results of both experimental and theoretical studies were reported. The research presented covered topics such as instabilities driven by energetic ions, transport of energetic ions caused by plasma microturbulence and destabilized eigenmodes, non-linear phenomena induced by the instabilities, classical transport processes, effects of runaway electrons, diagnostics of energetic ions and plasmas, and aspects of ITER physics. In addition to these topics, which were also covered at previous conferences in this series and have become conventional, experimental and theoretical results on the influence of energetic ions on bulk plasma transport properties were also reported. Some materials from the meeting are available on the web page http://www.kinr.kiev.ua/TCM/index.html. 24 of the works presented at the meeting are published in this special issue. These works were reviewed to the usual high standard of Nuclear Fusion. The guest editor of this special issue is grateful to the publishers for their cooperation.
Magnet Design Considerations for Fusion Nuclear Science Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Y.; Kessel, C.; El-Guebaly, L.
2016-06-01
The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility that provides a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between the International Thermonuclear Experimental Reactor (ITER) and the demonstration power plant (DEMO). Compared with ITER, the FNSF is smaller in size but generates much higher magnetic field, i.e., 30 times higher neutron fluence with three orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5more » T at the plasma center with a plasma major radius of 4.8 m and a minor radius of 1.2 m and a peak field of 15.5 T on the toroidal field (TF) coils for the FNSF. Both low-temperature superconductors (LTS) and high-temperature superconductors (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high-performance ternary restacked-rod process Nb3Sn strands for TF magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high-aspect-ratio rectangular CICC design are evaluated for FNSF magnets, but low-activation-jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. The material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less
Study of Tungsten effect on CFETR performance
NASA Astrophysics Data System (ADS)
Shi, Shengyu; Xiang Gao Collaboration; Guoqiang Li Collaboration; Nan Shi Collaboration; Vincent Chan Collaboration; Xiang Jian Collaboration
2017-10-01
An integrated modeling workflow using OMFIT/TGYRO is constructed to evaluate W impurity effects on China Fusion Engineering Test Reactor (CFETR) performance. Self-consistent modeling of tungsten(W) core density profile, accounting for turbulence and neoclassical transport, is performed based on the CFETR steady-state scenario developed by D.Zhao (ZhaoDeng, APS, 2016). It's found that the fusion performance degraded in a limited level with increasing W concentration. The main challenge arises in sustainment of H-mode with significant W radiation. Assuming the power threshold of H-L back transition is approximately the same as that of L-H transition, using the scaling law of Takizuka (Takizuka etc, Plasma Phys. Control. Fusion, 2004), it is found that the fractional W concentration should not exceed 3e-5 to stay in H-mode for CFETR phase I. A future step is to connect this requirement to W wall erosion modeling. We are grateful to Dr. Emiliano Fable and Dr. Thomas Pütterich and Ms. Emily Belli for very helpful discussions and comments. We also would like to express our thanks to all the members of the CFETR Physics Group, and we appreciate the General Atomic Theory Group for permission to use the OMFIT framework and GA code suite, and for their valuable technical support. Numerical computations were performed on the ShenMa High Performance Computing Cluster in the Institute of Plasma Physics, Chinese Academy of Sciences. This work was mainly supported by the National Magnetic Confinement Fusion Research Program of China (Grant Nos. 2014GB110001, 2014GB110002, 2014GB110003) and supported in part by the National ITER Plans Program of China (Grant Nos. 2013GB106001, 2013GB111002, 2015GB110001).
Spinal fusion for scoliosis in Rett syndrome with an emphasis on early postoperative complications.
Gabos, Peter G; Inan, Muharrem; Thacker, Mihir; Borkhu, Buttugs
2012-01-15
Retrospective case-control study. To examine the postoperative complications of posterior spinal fusion in a population of patients with Rett syndrome (RS). Scoliosis is a common feature of RS, a progressive neurologic disorder affecting almost exclusively females. Despite this, there is little published information regarding the surgical treatment of scoliosis in this disorder. Sixteen consecutive female patients with RS treated by posterior spinal fusion and unit rod instrumentation for progressive scoliosis between 1995 and 2003 were evaluated. Only patients with a minimum of 2-year follow-up were included. Preoperative medical conditions and postoperative complications were recorded. As a control group, we randomly selected 32 spastic quadriplegic patients who underwent the identical procedure during the same time period, selected from our database and matched according to age, level of neurologic impairment, and medical complexity. There was a high rate of early medical complications in the RS patients, with 28 major and 37 minor complications. Only 1 patient did not have a major medical complication, and every patient had at least 1 minor gastrointestinal and/or respiratory complication. Major respiratory complications occurred in 10 patients (63%) and comprised 61% of all major complications. Major gastrointestinal complications occurred in 6 patients (37%) and comprised 21% of all major complications. Other major complications included disseminated intravascular coagulopathy (1 patient), subacute bacterial endocarditis (1 patient), sacral decubiti requiring surgical debridement (2 patients), and extensive bilateral heterotopic ossification of the hips (1 patient). There were no cases of instrumentation failure, pseudarthrosis, deep infection, or need for rod revision. Postoperative complication scores were similar to those in patients with spastic quadriplegic pattern cerebral palsy. Spinal fusion for scoliosis in RS can give a satisfactory technical result, but a high rate of early postoperative medical problems should be anticipated.
Magnet design considerations for Fusion Nuclear Science Facility
Zhai, Yuhu; Kessel, Chuck; El-guebaly, Laila; ...
2016-02-25
The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility to provide a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between ITER and the demonstration power plant (DEMO). Compared to ITER, the FNSF is smaller in size but generates much higher magnetic field, 30 times higher neutron fluence with 3 orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center withmore » plasma major radius of 4.8 m and minor radius of 1.2 m, and a peak field of 15.5 T on the TF coils for FNSF. Both low temperature superconductor (LTS) and high temperature superconductor (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high performance ternary Restack Rod Process (RRP) Nb3Sn strands for toroidal field (TF) magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high aspect ratio rectangular CICC design are evaluated for FNSF magnets but low activation jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. As a result, the material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less
Greenwood, James; McGregor, Alison; Jones, Fiona; Hurley, Michael
2015-06-04
The rate of lumbar fusion surgery (LFS) is increasing. Clinical recovery often lags technical outcome. Approximately 40% of patients undergoing LFS rate themselves as symptomatically unchanged or worse following surgery. There is little research describing rehabilitation following LFS with no clear consensus as to what constitutes the optimum strategy. It is important to develop appropriate rehabilitation strategies to help patients manage pain and recover lost function following LFS. The study design is a randomised controlled feasibility trial exploring the feasibility of providing a complex multi-method rehabilitation intervention 3 months following LFS. The rehabilitation protocol that we have developed involves small participant groups of therapist led structured education utilising principles of cognitive behavioral therapy (CBT), progressive, individualised exercise and peer support. Participants will be randomly allocated to either usual care (UC) or the rehabilitation group (RG). We will recruit 50 subjects, planning to undergo LFS, over 30 months. Following LFS all participants will experience normal care for the first 3 months. Subsequent to a satisfactory 3 month surgical review they will commence their allocated post-operative treatment (RG or UC). Data collection will occur at baseline (pre-operatively), 3, 6 and 12 months post-operatively. Primary outcomes will include an assessment of feasibility factors (including recruitment and compliance). Secondary outcomes will evaluate the acceptability and characteristics of a limited cluster of quantitative measures including the Oswestry Disability Index (ODI) and an aggregated assessment of physical function (walking 50 yards, ascend/descend a flight of stairs). A nested qualitative study will evaluate participants' experiences. This study will evaluate the feasibility of providing complex, structured rehabilitation in small groups 3 months following technically successful LFS. We will identify strengths and weakness of the proposed protocol and the usefulness and characteristics of the planned outcome measures. This will help shape the development of rehabilitation strategies and inform future work aimed at evaluating clinical efficacy. ISRCTN60891364, 10/07/2014.
Control of autonomous ground vehicles: a brief technical review
NASA Astrophysics Data System (ADS)
Babak, Shahian-Jahromi; Hussain, Syed A.; Karakas, Burak; Cetin, Sabri
2017-07-01
This paper presents a brief review of the developments achieved in autonomous vehicle systems technology. A concise history of autonomous driver assistance systems is presented, followed by a review of current state of the art sensor technology used in autonomous vehicles. Standard sensor fusion method that has been recently explored is discussed. Finally, advances in embedded software methodologies that define the logic between sensory information and actuation decisions are reviewed.
U.S.-Russian Civilian Nuclear Cooperation Agreement: Issues for Congress
2010-07-09
for nuclear cooperation in 1973 to allow for cooperation in controlled thermonuclear fusion, fast breeder reactors , and fundamental research. The...that a 123 agreement is needed to implement this action plan—for example, full scale technical cooperation on fast reactors and demonstration of...superpowers convened a Joint Coordinating Committee for Civilian Reactor Safety starting in 1988.10 After the fall of the Soviet Union and prior to July
Mohamed, Mustafa; Gonzalez, David; Fritchie, Karen J; Swansbury, John; Wren, Dorte; Benson, Charlotte; Jones, Robin L; Fisher, Cyril; Thway, Khin
2017-11-01
Desmoplastic small round cell tumor (DSRCT) is a rare, biologically aggressive soft tissue neoplasm of uncertain differentiation, most often arising in the abdominal and pelvic cavities of adolescents and young adults with a striking male predominance. Histologically, it is characterized by islands of uniform small round cells in prominent desmoplastic stroma, and it has a polyimmunophenotypic profile, typically expressing WT1 and cytokeratin, desmin, and neural/neuroendocrine differentiation markers to varying degrees. Tumors at other sites and with variant morphology are more rarely described. DSRCT is associated with a recurrent t(11;22)(p13;q12) translocation, leading to the characteristic EWSR1-WT1 gene fusion. Fluorescence in situ hybridization (FISH), to detect EWSR1 rearrangement, and reverse transcription-polymerase chain reaction (RT-PCR) to assess for EWSR1-WT1 fusion transcripts are routine diagnostic ancillary tools. We present a large institutional comparative series of FISH and RT-PCR for DSRCT diagnosis. Twenty-six specimens (from 25 patients) histologically diagnosed as DSRCT were assessed for EWSR1 rearrangement and EWSR1-WT1 fusion transcripts. Of these 26 specimens, 24 yielded positive results with either FISH or RT-PCR or both. FISH was performed in 23 samples, with EWSR1 rearrangement seen in 21 (91.3%). RT-PCR was performed in 18 samples, of which 13 (72.2%) harbored EWSR1-WT1 fusion transcripts. The sensitivity of FISH in detecting DSRCT was 91.3%, and that of RT-PCR was 92.8% following omission of four technical failures. Therefore, both methods are comparable in terms of sensitivity. FISH is more sensitive if technical failures for RT-PCR are taken into account, and RT-PCR is more specific in confirming DSRCT. Both methods complement each other by confirming cases that the other method may not. In isolation, FISH is a relatively non-specific diagnostic adjunct due to the number of different neoplasms that can harbor EWSR1 rearrangement, such as Ewing sarcoma. However, in cases with appropriate morphology and a typical pattern of immunostaining, FISH is confirmatory of the diagnosis.
Shao, Feng; Lin, Weisi; Gu, Shanbo; Jiang, Gangyi; Srikanthan, Thambipillai
2013-05-01
Perceptual quality assessment is a challenging issue in 3D signal processing research. It is important to study 3D signal directly instead of studying simple extension of the 2D metrics directly to the 3D case as in some previous studies. In this paper, we propose a new perceptual full-reference quality assessment metric of stereoscopic images by considering the binocular visual characteristics. The major technical contribution of this paper is that the binocular perception and combination properties are considered in quality assessment. To be more specific, we first perform left-right consistency checks and compare matching error between the corresponding pixels in binocular disparity calculation, and classify the stereoscopic images into non-corresponding, binocular fusion, and binocular suppression regions. Also, local phase and local amplitude maps are extracted from the original and distorted stereoscopic images as features in quality assessment. Then, each region is evaluated independently by considering its binocular perception property, and all evaluation results are integrated into an overall score. Besides, a binocular just noticeable difference model is used to reflect the visual sensitivity for the binocular fusion and suppression regions. Experimental results show that compared with the relevant existing metrics, the proposed metric can achieve higher consistency with subjective assessment of stereoscopic images.
Song, Dongzhe; Zhang, Fugui; Reid, Russell R; Ye, Jixing; Wei, Qiang; Liao, Junyi; Zou, Yulong; Fan, Jiaming; Ma, Chao; Hu, Xue; Qu, Xiangyang; Chen, Liqun; Li, Li; Yu, Yichun; Yu, Xinyi; Zhang, Zhicai; Zhao, Chen; Zeng, Zongyue; Zhang, Ruyi; Yan, Shujuan; Wu, Tingting; Wu, Xingye; Shu, Yi; Lei, Jiayan; Li, Yasha; Zhang, Wenwen; Wang, Jia; Lee, Michael J; Wolf, Jennifer Moriatis; Huang, Dingming; He, Tong-Chuan
2017-11-01
The cranial suture complex is a heterogeneous tissue consisting of osteogenic progenitor cells and mesenchymal stem cells (MSCs) from bone marrow and suture mesenchyme. The fusion of cranial sutures is a highly coordinated and tightly regulated process during development. Craniosynostosis is a congenital malformation caused by premature fusion of cranial sutures. While the progenitor cells derived from the cranial suture complex should prove valuable for studying the molecular mechanisms underlying suture development and pathogenic premature suture fusion, primary human cranial suture progenitors (SuPs) have limited life span and gradually lose osteoblastic ability over passages. To overcome technical challenges in maintaining sufficient and long-term culture of SuPs for suture biology studies, we establish and characterize the reversibly immortalized human cranial suture progenitors (iSuPs). Using a reversible immortalization system expressing SV40 T flanked with FRT sites, we demonstrate that primary human suture progenitor cells derived from the patent sutures of craniosynostosis patients can be efficiently immortalized. The iSuPs maintain long-term proliferative activity, express most of the consensus MSC markers and can differentiate into osteogenic and adipogenic lineages upon BMP9 stimulation in vitro and in vivo. The removal of SV40 T antigen by FLP recombinase results in a decrease in cell proliferation and an increase in the endogenous osteogenic and adipogenic capability in the iSuPs. Therefore, the iSuPs should be a valuable resource to study suture development, intramembranous ossification and the pathogenesis of craniosynostosis, as well as to explore cranial bone tissue engineering. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
C2-C3 Anterior Cervical Fusion: Technical Report.
Finn, Michael A; MacDonald, Joel D
2016-12-01
Retrospective review of patients at a university hospital. To describe the anterior approach for cervical discectomy and fusion (ACDF) at C2-C3 level and evaluate its suitability for treatment of instability and degenerative disease in this region. The anterior approach is commonly used for ACDF in the lower cervical spine but is used less often in the high cervical spine. We retrospectively reviewed a database of consecutive cervical spine surgeries performed at our institution to identify patients who underwent ACDF at the C2-C3 level during a 10-year period. Demographic data, clinical indications, surgical technique, complications, and immediate results were evaluated. Of the 11 patients (7 female, 4 male; mean age 46 y) identified, 7 were treated for traumatic fractures and 4 for degenerative disk disease. Three patients treated for myelopathy showed improvement in mean Nurick grade from 3.6 to 1.3. Pain was significantly improved in all patients who had preoperative pain. Solid bony fusion was achieved in 5 of 7 patients at 3-month follow-up. Complications included dysphagia in 4 patients (which resolved in 3), aspiration pneumonia, mild persistent dysphonia, and construct failure at C2 requiring posterior fusion. One patient died of a pulmonary embolism 2 weeks postoperatively. ACDF at the C2-C3 level is an option for the treatment of high cervical disease or trauma but is associated with a higher rate of approach-related morbidity. Familiarity with local anatomy may help to reduce complications. ACDF at C2-C3 appears to have a fusion rate similar to ACDF performed at other levels.
EDITORIAL: ECRH physics and technology in ITER
NASA Astrophysics Data System (ADS)
Luce, T. C.
2008-05-01
It is a great pleasure to introduce you to this special issue containing papers from the 4th IAEA Technical Meeting on ECRH Physics and Technology in ITER, which was held 6-8 June 2007 at the IAEA Headquarters in Vienna, Austria. The meeting was attended by more than 40 ECRH experts representing 13 countries and the IAEA. Presentations given at the meeting were placed into five separate categories EC wave physics: current understanding and extrapolation to ITER Application of EC waves to confinement and stability studies, including active control techniques for ITER Transmission systems/launchers: state of the art and ITER relevant techniques Gyrotron development towards ITER needs System integration and optimisation for ITER. It is notable that the participants took seriously the focal point of ITER, rather than simply contributing presentations on general EC physics and technology. The application of EC waves to ITER presents new challenges not faced in the current generation of experiments from both the physics and technology viewpoints. High electron temperatures and the nuclear environment have a significant impact on the application of EC waves. The needs of ITER have also strongly motivated source and launcher development. Finally, the demonstrated ability for precision control of instabilities or non-inductive current drive in addition to bulk heating to fusion burn has secured a key role for EC wave systems in ITER. All of the participants were encouraged to submit their contributions to this special issue, subject to the normal publication and technical merit standards of Nuclear Fusion. Almost half of the participants chose to do so; many of the others had been published in other publications and therefore could not be included in this special issue. The papers included here are a representative sample of the meeting. The International Advisory Committee also asked the three summary speakers from the meeting to supply brief written summaries (O. Sauter: EC wave physics and applications, M. Thumm: Source and transmission line development, and S. Cirant: ITER specific system designs). These summaries are included in this issue to give a more complete view of the technical meeting. Finally, it is appropriate to mention the future of this meeting series. With the ratification of the ITER agreement and the formation of the ITER International Organization, it was recognized that meetings conducted by outside agencies with an exclusive focus on ITER would be somewhat unusual. However, the participants at this meeting felt that the gathering of international experts with diverse specialities within EC wave physics and technology to focus on using EC waves in future fusion devices like ITER was extremely valuable. It was therefore recommended that this series of meetings continue, but with the broader focus on the application of EC waves to steady-state and burning plasma experiments including demonstration power plants. As the papers in this special issue show, the EC community is already taking seriously the challenges of applying EC waves to fusion devices with high neutron fluence and continuous operation at high reliability.
NASA Astrophysics Data System (ADS)
Stork, D.; Agostini, P.; Boutard, J. L.; Buckthorpe, D.; Diegele, E.; Dudarev, S. L.; English, C.; Federici, G.; Gilbert, M. R.; Gonzalez, S.; Ibarra, A.; Linsmeier, Ch.; Li Puma, A.; Marbach, G.; Morris, P. F.; Packer, L. W.; Raj, B.; Rieth, M.; Tran, M. Q.; Ward, D. J.; Zinkle, S. J.
2014-12-01
The findings of the EU 'Materials Assessment Group' (MAG), within the 2012 EU Fusion Roadmap exercise, are discussed. MAG analysed the technological readiness of structural, plasma facing and high heat flux materials for a DEMO concept to be constructed in the early 2030s, proposing a coherent strategy for R&D up to a DEMO construction decision. A DEMO phase I with a 'Starter Blanket' and 'Starter Divertor' is foreseen: the blanket being capable of withstanding ⩾2 MW yr m-2 fusion neutron fluence (∼20 dpa in the front-wall steel). A second phase ensues for DEMO with ⩾5 MW yr m-2 first wall neutron fluence. Technical consequences for the materials required and the development, testing and modelling programmes, are analysed using: a systems engineering approach, considering reactor operational cycles, efficient maintenance and inspection requirements, and interaction with functional materials/coolants; and a project-based risk analysis, with R&D to mitigate risks from material shortcomings including development of specific risk mitigation materials. The DEMO balance of plant constrains the blanket and divertor coolants to remain unchanged between the two phases. The blanket coolant choices (He gas or pressurised water) put technical constraints on the blanket steels, either to have high strength at higher temperatures than current baseline variants (above 650 °C for high thermodynamic efficiency from He-gas coolant), or superior radiation-embrittlement properties at lower temperatures (∼290-320 °C), for construction of water-cooled blankets. Risk mitigation proposed would develop these options in parallel, and computational and modelling techniques to shorten the cycle-time of new steel development will be important to achieve tight R&D timescales. The superior power handling of a water-cooled divertor target suggests a substructure temperature operating window (∼200-350 °C) that could be realised, as a baseline-concept, using tungsten on a copper-alloy substructure. The difficulty of establishing design codes for brittle tungsten puts great urgency on the development of a range of advanced ductile or strengthened tungsten and copper compounds. Lessons learned from Fission reactor material development have been included, especially in safety and licensing, fabrication/joining techniques and designing for in-vessel inspection. The technical basis of using the ITER licensing experience to refine the issues in nuclear testing of materials is discussed. Testing with 14 MeV neutrons is essential to Fusion Materials development, and the Roadmap requires acquisition of ⩾30 dpa (steels) 14 MeV test data by 2026. The value and limits of pre-screening testing with fission neutrons on isotopically- or chemically-doped steels and with ion-beams are evaluated to help determine the minimum14 MeV testing programme requirements.
On the feasibility of a fiber-based inertial fusion laser driver
NASA Astrophysics Data System (ADS)
Labaune, C.; Hulin, D.; Galvanauskas, A.; Mourou, G. A.
2008-08-01
One critical issue for the realization of Inertial Fusion Energy (IFE) power plants is the driver efficiency. High driver efficiency will greatly relax the driver energy requested to produce a fusion gain, resulting in more compact and less costly facilities. Among lasers, systems based on guided wave such as diode pumped Yb:glass fiber-amplifiers with a demonstrated overall efficiency close to 70% as opposed to few percents for systems based on free propagation, offer some intriguing opportunities. Guided optics provides the enormous advantage to directly benefit from the telecommunication industry where components are made cheap, rugged, well tested, environmentally stable, with lifetimes measured in tens of years and compatible with massive manufacturing. In this paper, we are studying the possibility to design a laser driver solely based on guided wave optics. We call this concept FAN for Fiber Amplification Network. It represents a profound departure from already proposed laser drivers all based on free propagation optics. The system will use a large number of identical fibers to combines long (ns) and short (ps) pulses that are needed for the fast ignition scheme. Technical details are discussed relative to fiber type, pump, phasing, pulse shaping and timing as well as fiber distribution around the chamber. The proposed fiber driver provides maximum and independent control on the wavefront, pulse duration, pulse shape, timing, making possible reaching the highest gain. The massive manufacturing will be amenable to a cheaper facility with an easy upkeep.
NASA Astrophysics Data System (ADS)
Ma, Y.; Liu, S.
2017-12-01
Accurate estimation of surface evapotranspiration (ET) with high quality is one of the biggest obstacles for routine applications of remote sensing in eco-hydrological studies and water resource management at basin scale. However, many aspects urgently need to deeply research, such as the applicability of the ET models, the parameterization schemes optimization at the regional scale, the temporal upscaling, the selecting and developing of the spatiotemporal data fusion method and ground-based validation over heterogeneous land surfaces. This project is based on the theoretically robust surface energy balance system (SEBS) model, which the model mechanism need further investigation, including the applicability and the influencing factors, such as local environment, and heterogeneity of the landscape, for improving estimation accuracy. Due to technical and budget limitations, so far, optical remote sensing data is missing due to frequent cloud contamination and other poor atmospheric conditions in Southwest China. Here, a multi-source remote sensing data fusion method (ESTARFM: Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model) method will be proposed through blending multi-source remote sensing data acquired by optical, and passive microwave remote sensors on board polar satellite platforms. The accurate "all-weather" ET estimation will be carried out for daily ET of the River Source Region in Southwest China, and then the remotely sensed ET results are overlapped with the footprint-weighted images of EC (eddy correlation) for ground-based validation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The SPS Concept Development and Evaluation Program includes a comparative assessment. An early first step in the assessment process is the selection and characterization of alternative technologies. This document describes the cost and performance (i.e., technical and environmental) characteristics of six central station energy alternatives: (1) conventional coal-fired powerplant; (2) conventional light water reactor (LWR); (3) combined cycle powerplant with low-Btu gasifiers; (4) liquid metal fast breeder reactor (LMFBR); (5) photovoltaic system without storage; and (6) fusion reactor.
2009-07-01
Performance Analysis of the Probabilistic Multi- Hypothesis Tracking Algorithm On the SEABAR Data Sets Dr. Christian G . Hempel Naval...Hypothesis Tracking,” NUWC-NPT Technical Report 10,428, Naval Undersea Warfare Center Division, Newport, RI, 15 February 1995. [2] G . McLachlan, T...the 9th International Conference on Information Fusion, Florence Italy, July, 2006. [8] C. Hempel, “Track Initialization for Multi-Static Active Sonay
Final Technical Report -- Bridging the PSI Knowledge Gap: A Multiscale Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whyte, Dennis
2014-12-12
The Plasma Surface Interactions (PSI) Science Center formed by the grant undertook a multidisciplinary set of studies on the complex interface between the plasma and solid states of matter. The strategy of the center was to combine and integrate the experimental, diagnostic and modeling toolkits from multiple institutions towards specific PSI problems. In this way the Center could tackle integrated science issues which were not addressable by single institutions, as well as evolve the underlying science of the PSI in a more general way than just for fusion applications. The overall strategy proved very successful. The research result and highlightsmore » of the MIT portion of the Center are primarily described. A particular highlight is the study of tungsten nano-tendril growth in the presence of helium plasmas. The Center research provided valuable new insights to the mechanisms controlling the nano-tendrils by developing coupled modeling and in situ diagnostic methods which could be directly compared. For example, the role of helium accumulation in tungsten distortion in the surface was followed with unique in situ helium concentration diagnostics developed. These depth-profiled, time-resolved helium concentration measurements continue to challenge the numerical models of nano-tendrils. The Center team also combined its expertise on tungsten nano-tendrils to demonstrate for the first time the growth of the tendrils in a fusion environment on the Alcator C-Mod fusion experiment, thus having significant impact on the broader fusion research effort. A new form of isolated nano-tendril “columns” were identified which are now being used to understand the underlying mechanisms controlling the tendril growth. The Center also advanced PSI science on a broader front with a particular emphasis on developing a wide range of in situ PSI diagnostic tools at the DIONISOS facility at MIT. For example the strong suppression of sputtering by the certain combination of light-species plasmas and metals was experimentally studied with independent measurement methods across the Center. This surprising result challenges the universal use of the binary-collision approximation in sputtering predictions and continues to be the subject of study. In order to address this issue MIT developed a new in situ erosion measurement technique based on ion beam analysis which can be used at elevated material temperatures. This exciting new technique is now being used to study material erosion in high performance plasma thrusters for space exploration and is being adopted to fusion experimental devices. This is an indicator of the positive synergies that arise from such a Center, with the research having impact beyond the initial area of study. The Center also served successfully as an organizing force for communication to the science community. The MIT members of the Center provided many high-profile overview presentations at prestigious international conferences and national workshops. The research resulted in three student theses and 24 peer-reviewed publications. PSI research continues to be identified as a critical area for fusion energy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, R. W.; Petrov, Yu. V.
2013-12-03
Within the US Department of Energy/Office of Fusion Energy magnetic fusion research program, there is an important whole-plasma-modeling need for a radio-frequency/neutral-beam-injection (RF/NBI) transport-oriented finite-difference Fokker-Planck (FP) code with combined capabilities for 4D (2R2V) geometry near the fusion plasma periphery, and computationally less demanding 3D (1R2V) bounce-averaged capabilities for plasma in the core of fusion devices. Demonstration of proof-of-principle achievement of this goal has been carried out in research carried out under Phase I of the SBIR award. Two DOE-sponsored codes, the CQL3D bounce-average Fokker-Planck code in which CompX has specialized, and the COGENT 4D, plasma edge-oriented Fokker-Planck code whichmore » has been constructed by Lawrence Livermore National Laboratory and Lawrence Berkeley Laboratory scientists, where coupled. Coupling was achieved by using CQL3D calculated velocity distributions including an energetic tail resulting from NBI, as boundary conditions for the COGENT code over the two-dimensional velocity space on a spatial interface (flux) surface at a given radius near the plasma periphery. The finite-orbit-width fast ions from the CQL3D distributions penetrated into the peripheral plasma modeled by the COGENT code. This combined code demonstrates the feasibility of the proposed 3D/4D code. By combining these codes, the greatest computational efficiency is achieved subject to present modeling needs in toroidally symmetric magnetic fusion devices. The more efficient 3D code can be used in its regions of applicability, coupled to the more computationally demanding 4D code in higher collisionality edge plasma regions where that extended capability is necessary for accurate representation of the plasma. More efficient code leads to greater use and utility of the model. An ancillary aim of the project is to make the combined 3D/4D code user friendly. Achievement of full-coupling of these two Fokker-Planck codes will advance computational modeling of plasma devices important to the USDOE magnetic fusion energy program, in particular the DIII-D tokamak at General Atomics, San Diego, the NSTX spherical tokamak at Princeton, New Jersey, and the MST reversed-field-pinch Madison, Wisconsin. The validation studies of the code against the experiments will improve understanding of physics important for magnetic fusion, and will increase our design capabilities for achieving the goals of the International Tokamak Experimental Reactor (ITER) project in which the US is a participant and which seeks to demonstrate at least a factor of five in fusion power production divided by input power.« less
Servat, Juan J; Elia, Maxwell Dominic; Gong, Dan; Manes, R Peter; Black, Evan H; Levin, Flora
2014-12-01
To assess the feasibility of routine use of electromagnetic image guidance systems in orbital decompression. Six consecutive patients underwent stereotactic-guided three wall orbital decompression using the novel Fusion ENT Navigation System (Medtronic), a portable and expandable electromagnetic guidance system with multi-instrument tracking capabilities. The system consists of the Medtronic LandmarX System software-enabled computer station, signal generator, field-generating magnet, head-mounted marker coil, and surgical tracking instruments. In preparation for use of the LandmarX/Fusion protocol, all patients underwent preoperative non-contrast CT scan from the superior aspect of the frontal sinuses to the inferior aspect of the maxillary sinuses that includes the nasal tip. The Fusion ENT Navigation System (Medtronic™) was used in 6 patients undergoing maximal 3-wall orbital decompression for Graves' orbitopthy after a minimum of six months of disease inactivity. Preoperative Hertel exophthalmometry measured more than 27 mm in all patients. The navigation system proved to be no more difficult technically than the traditional orbital decompression approach. Electromagnetic image guidance is a stereotactic surgical navigation system that provides additional intraoperative flexibility in orbital surgery. Electromagnetic image-guidance offers the ability to perform more aggressive orbital decompressions with reduced risk.
Visualizing Herpesvirus Procapsids in Living Cells.
Maier, Oana; Sollars, Patricia J; Pickard, Gary E; Smith, Gregory A
2016-11-15
A complete understanding of herpesvirus morphogenesis requires studies of capsid assembly dynamics in living cells. Although fluorescent tags fused to the VP26 and pUL25 capsid proteins are available, neither of these components is present on the initial capsid assembly, the procapsid. To make procapsids accessible to live-cell imaging, we made a series of recombinant pseudorabies viruses that encoded green fluorescent protein (GFP) fused in frame to the internal capsid scaffold and maturation protease. One recombinant, a GFP-VP24 fusion, maintained wild-type propagation kinetics in vitro and approximated wild-type virulence in vivo The fusion also proved to be well tolerated in herpes simplex virus. Viruses encoding GFP-VP24, along with a traditional capsid reporter fusion (pUL25/mCherry), demonstrated that GFP-VP24 was a reliable capsid marker and revealed that the protein remained capsid associated following entry into cells and upon nuclear docking. These dual-fluorescent viruses made possible the discrimination of procapsids during infection and monitoring of capsid shell maturation kinetics. The results demonstrate the feasibility of imaging herpesvirus procapsids and their morphogenesis in living cells and indicate that the encapsidation machinery does not substantially help coordinate capsid shell maturation. The family Herpesviridae consists of human and veterinary pathogens that cause a wide range of diseases in their respective hosts. These viruses share structurally related icosahedral capsids that encase the double-stranded DNA (dsDNA) viral genome. The dynamics of capsid assembly and maturation have been inaccessible to examination in living cells. This study has overcome this technical hurdle and provides new insights into this fundamental stage of herpesvirus infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
NASA Technical Reports Server (NTRS)
Wolsko, T.; Buehring, W.; Cirillo, R.; Gasper, J.; Habegger, L.; Hub, K.; Newsom, D.; Samsa, M.; Stenehjem, E.; Whitfield, R.
1980-01-01
The energy systems concerned are the satellite power system, several coal technologies, geothermal energy, fission, fusion, terrestrial solar systems, and ocean thermal energy conversion. Guidelines are suggested for the characterization of these systems, side-by-side analysis, alternative futures analysis, and integration and aggregation of data. A description of the methods for assessing the technical, economic, environmental, societal, and institutional issues surrounding the development of the selected energy technologies is presented.
NASA Astrophysics Data System (ADS)
1990-09-01
The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the Max Planck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989 to 1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R and D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R and D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase.
Ball, P A; Benzel, E C; Baldwin, N G
1994-04-01
The use of bone plate instrumentation with screw fixation has proved to be a useful adjunctive measure in anterior cervical spine fusion surgery. Proper fitting, positioning, and attachment of this instrumentation have been shown to be frequently suboptimal if done without radiographic guidance. The most commonly used method of radiographic assistance for placement of this instrumentation is fluoroscopy. While this gives satisfactory technical results, it is expensive and time-consuming, and exposes the patient and the operating room personnel to ionizing radiation. The authors present a simple technique to ensure screw placement and plate fitting using Kirschner wires and a single lateral radiograph. This technique saves time, reduces exposure to radiation, and has led to satisfactory results in over 20 operative cases.
Wangdi, Kuenzang; Otsuki, Bungo; Fujibayashi, Shunsuke; Tanida, Shimei; Masamoto, Kazutaka; Matsuda, Shuichi
2018-02-07
To report on suggested technique with four screws in a single vertebra (two pedicle screws and two direct vertebral body screws) for enhanced fixation with just one level cranially to a pedicle subtraction osteotomy (PSO). A 60-year-old woman underwent L4/5 fusion surgery for degenerative spondylolisthesis. Two years later, she was unable to stand upright even for a short time because of lumbar kyphosis caused by subsidence of the fusion cage and of Baastrup syndrome in the upper lumbar spine [sagittal vertical axis (SVA) of 114 mm, pelvic incidence of 75°, and lumbar lordosis (LL) of 41°]. She underwent short-segment fusion from L4 to the sacrum with L5 pedicle subtraction osteotomy. We reinforced the construct with two vertebral screws at L4 in addition to the conventional L4 pedicle screws. After the surgery, her sagittal parameters were improved (SVA, 36 mm; LL, 54°). Two years after the corrective surgery, she maintained a low sagittal vertical axis though high residual pelvic tilt indicated that the patient was still compensating for residual sagittal misalignment. PSO surgery for sagittal imbalance usually requires a long fusion at least two levels above and below the osteotomy site to achieve adequate stability and better global alignment. However, longer fixation may decrease the patients' quality of life and cause a proximal junctional failure. Our novel technique may shorten the fixation area after osteotomy surgery. These slides can be retrieved under Electronic Supplementary Material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, Charles W.; Lam, Stephen; Carpenter, David M.
Three advanced nuclear power systems use liquid salt coolants that generate tritium and thus face the common challenges of containing and capturing tritium to prevent its release to the environment. The fluoride salt–cooled high-temperature reactor (FHR) uses clean fluoride salt coolants and the same graphite-matrix coated-particle fuel as high-temperature gas-cooled reactors. Molten salt reactors (MSRs) dissolve the fuel in a fluoride or chloride salt with release of fission product tritium into the salt. In most FHR and MSR systems, the baseline salts contain lithium where isotopically separated 7Li is proposed to minimize tritium production from neutron interactions with the salt.more » The Chinese Academy of Sciences plans to start operation of a 2-MW(thermal) molten salt test reactor by 2020. For high-magnetic-field fusion machines, the use of lithium enriched in 6Li is proposed to maximize tritium generation—the fuel for a fusion machine. Advances in superconductors that enable higher power densities may require the use of molten lithium salts for fusion blankets and as coolants. Recent technical advances in these three reactor classes have resulted in increased government and private interest and the beginning of a coordinated effort to address the tritium control challenges in 700°C liquid salt systems. In this paper, we describe characteristics of salt-cooled fission and fusion machines, the basis for growing interest in these technologies, tritium generation in molten salts, the environment for tritium capture, models for high-temperature tritium transport in salt systems, alternative strategies for tritium control, and ongoing experimental work. Several methods to control tritium appear viable. Finally, limited experimental data are the primary constraint for designing efficient cost-effective methods of tritium control.« less
Atlantoaxial Fusion Using C1 Sublaminar Cables and C2 Translaminar Screws.
Larsen, Alexandra M Giantini; Grannan, Benjamin L; Koffie, Robert M; Coumans, Jean-Valéry
2018-06-01
Atlantoaxial instability, which can arise in the setting of trauma, degenerative diseases, and neoplasm, is often managed surgically with C1-C2 arthrodesis. Classical C1-C2 fusion techniques require placement of instrumentation in close proximity to the vertebral artery and C2 nerve root. To report a novel C1-C2 fusion technique that utilizes C2 translaminar screws and C1 sublaminar cables to decrease the risk of injury to the vertebral artery and C2 nerve root. To facilitate fixation to the atlas, while minimizing the risk of injury to the vertebral artery and to the C2 nerve root, we sought to determine the feasibility of using a soft cable around the C1 arch and affixing it to a rod connected to C2 laminar screws. We reviewed our experience in 3 patients. We used this technique in patients in whom we anticipated difficult C1 screw placement. Three patients were identified through a review of the senior author's cases. Atlantoaxial instability was associated with trauma in 2 patients and chronic degenerative changes in 1 patient. Common symptoms on presentation included pain and limited range of motion. All patients underwent C1-C2 fusion with C2 translaminar screws with sublaminar cable harnessing of the posterior arch of C1. There were no reports of postoperative complications or hardware failure. We demonstrate a novel, technically straightforward approach for C1-C2 fusion that minimizes risk to the vertebral artery and to the C2 nerve root, while still allowing for semirigid fixation in instances of both traumatic and chronic degenerative atlantoaxial instability.
Forsberg, Charles W.; Lam, Stephen; Carpenter, David M.; ...
2017-02-26
Three advanced nuclear power systems use liquid salt coolants that generate tritium and thus face the common challenges of containing and capturing tritium to prevent its release to the environment. The fluoride salt–cooled high-temperature reactor (FHR) uses clean fluoride salt coolants and the same graphite-matrix coated-particle fuel as high-temperature gas-cooled reactors. Molten salt reactors (MSRs) dissolve the fuel in a fluoride or chloride salt with release of fission product tritium into the salt. In most FHR and MSR systems, the baseline salts contain lithium where isotopically separated 7Li is proposed to minimize tritium production from neutron interactions with the salt.more » The Chinese Academy of Sciences plans to start operation of a 2-MW(thermal) molten salt test reactor by 2020. For high-magnetic-field fusion machines, the use of lithium enriched in 6Li is proposed to maximize tritium generation—the fuel for a fusion machine. Advances in superconductors that enable higher power densities may require the use of molten lithium salts for fusion blankets and as coolants. Recent technical advances in these three reactor classes have resulted in increased government and private interest and the beginning of a coordinated effort to address the tritium control challenges in 700°C liquid salt systems. In this paper, we describe characteristics of salt-cooled fission and fusion machines, the basis for growing interest in these technologies, tritium generation in molten salts, the environment for tritium capture, models for high-temperature tritium transport in salt systems, alternative strategies for tritium control, and ongoing experimental work. Several methods to control tritium appear viable. Finally, limited experimental data are the primary constraint for designing efficient cost-effective methods of tritium control.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panayotov, Dobromir; Poitevin, Yves; Grief, Andrew
'Fusion for Energy' (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). Safety demonstration is an essential element for the integration of these TBSs into ITER and accident analysis is one of its critical components. A systematic approach to accident analysis has been developed under the F4E contract on TBS safety analyses. F4E technical requirements, together with Amec Foster Wheeler and INL efforts, have resulted in a comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials,more » and phenomena while remaining consistent with the approach already applied to ITER accident analyses. Furthermore, the methodology phases are illustrated in the paper by its application to the EU HCLL TBS using both MELCOR and RELAP5 codes.« less
Image Fusion and 3D Roadmapping in Endovascular Surgery.
Jones, Douglas W; Stangenberg, Lars; Swerdlow, Nicholas J; Alef, Matthew; Lo, Ruby; Shuja, Fahad; Schermerhorn, Marc L
2018-05-21
Practitioners of endovascular surgery have historically utilized two-dimensional (2D) intraoperative fluoroscopic imaging, with intra-vascular contrast opacification, to treat complex three-dimensional (3D) pathology. Recently, major technical developments in intraoperative imaging have made image fusion techniques possible: the creation of a 3D patient-specific vascular roadmap based on preoperative imaging which aligns with intraoperative fluoroscopy, with many potential benefits. First, a 3D model is segmented from preoperative imaging, typically a CT scan. The model is then used to plan for the procedure, with placement of specific markers and storing of C-arm angles that will be used for intra-operative guidance. At the time of the procedure, an intraoperative cone-beam CT is performed and the 3D model is registered to the patient's on-table anatomy. Finally, the system is used for live guidance where the 3D model is codisplayed overlying fluoroscopic images. Copyright © 2018. Published by Elsevier Inc.
Friction Stir Welding of ODS and RAFM Steels
Yu, Zhenzhen; Feng, Zhili; Hoelzer, David; ...
2015-09-14
Advanced structural materials such as oxide dispersion strengthened steels and reduced-activation ferritic/martensitic steels are desired in fusion reactors as primary candidate materials for first wall and blanket structures, due to their excellent radiation and high-temperature creep resistance. However, their poor fusion weldability has been the major technical challenge limiting practical applications. For this reason, solid-state friction stir welding (FSW) has been considered for such applications. In this paper, the effect of FSW parameters on joining similar and dissimilar advanced structural steels was investigated. Scanning electron microscopy and electron backscatter diffraction methods were used to reveal the effects of FSW onmore » grain size, micro-texture distribution, and phase stability. Hardness mapping was performed to evaluate mechanical properties. Finally, post weld heat treatment was also performed to tailor the microstructure in the welds in order to match the weld zone mechanical properties to the base material.« less
Development of aerogel-lined targets for inertial confinement fusion experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braun, Tom
2013-03-28
This thesis explores the formation of ICF compatible foam layers inside of an ablator shell used for inertial confinement fusion experiments at the National Ignition Facility. In particular, the capability of p- DCPD polymer aerogels to serve as a scaffold for the deuterium-tritium mix was analyzed. Four different factors were evaluated: the dependency of different factors such as thickness or composition of a precursor solution on the uniformity of the aerogel layer, how to bring the optimal composition inside of the ablator shell, the mechanical stability of ultra-low density p-DCPD aerogel bulk pieces during wetting and freezing with hydrogen, andmore » the wetting behavior of thin polymer foam layers in HDC carbon ablator shells with liquid deuterium. The research for thesis was done at Lawrence Livermore National Laboratory in cooperation with the Technical University Munich.« less
NASA Astrophysics Data System (ADS)
Kapychev, V.; Davydov, D.; Gorokhov, V.; Ioltukhovskiy, A.; Kazennov, Yu; Tebus, V.; Frolov, V.; Shikov, A.; Shishkov, N.; Kovalenko, V.; Shishkin, N.; Strebkov, Yu
2000-12-01
This paper surveys the modules and materials of blanket tritium-breeding zones developed in the Russian Federation for fusion reactors. Synthesis of lithium orthosilicate, metasilicate and aluminate, fabrication of ceramic pellets and pebbles and experimental reactor units are described. Results of tritium extraction kinetics under irradiation in a water-graphite reactor at a thermal neutron flux of 5×10 13 neutron/(s cm2) are considered. At the present time, development and fabrication of lithium orthosilicate-beryllium modules of the tritium-breeding zone (TBZ), have been carried out within the framework of the ITER and DEMO projects. Two modules containing orthosilicate pellets, porous beryllium and beryllium pebbles are suggested for irradiation tests in the temperature range of 350-700°C. Technical problems associated with manufacturing of the modules are discussed.
3D-printed tracheoesophageal puncture and prosthesis placement simulator.
Barber, Samuel R; Kozin, Elliott D; Naunheim, Matthew R; Sethi, Rosh; Remenschneider, Aaron K; Deschler, Daniel G
A tracheoesophageal prosthesis (TEP) allows for speech after total laryngectomy. However, TEP placement is technically challenging, requiring a coordinated series of steps. Surgical simulators improve technical skills and reduce operative time. We hypothesize that a reusable 3-dimensional (3D)-printed TEP simulator will facilitate comprehension and rehearsal prior to actual procedures. The simulator was designed using Fusion360 (Autodesk, San Rafael, CA). Components were 3D-printed in-house using an Ultimaker 2+ (Ultimaker, Netherlands). Squid simulated the common tracheoesophageal wall. A Blom-Singer TEP (InHealth Technologies, Carpinteria, CA) replicated placement. Subjects watched an instructional video and completed pre- and post-simulation surveys. The simulator comprised 3D-printed parts: the esophageal lumen and superficial stoma. Squid was placed between components. Ten trainees participated. Significant differences existed between junior and senior residents with surveys regarding anatomy knowledge(p<0.05), technical details(p<0.01), and equipment setup(p<0.01). Subjects agreed that simulation felt accurate, and rehearsal raised confidence in future procedures. A 3D-printed TEP simulator is feasible for surgical training. Simulation involving multiple steps may accelerate technical skills and improve education. Copyright © 2017 Elsevier Inc. All rights reserved.
Pfister, Karin; Schierling, Wilma; Jung, Ernst Michael; Apfelbeck, Hanna; Hennersperger, Christoph; Kasprzak, Piotr M
2016-01-01
To compare standardised 2D ultrasound (US) to the novel ultrasonographic imaging techniques 3D/4D US and image fusion (combined real-time display of B mode and CT scan) for routine measurement of aortic diameter in follow-up after endovascular aortic aneurysm repair (EVAR). 300 measurements were performed on 20 patients after EVAR by one experienced sonographer (3rd degree of the German society of ultrasound (DEGUM)) with a high-end ultrasound machine and a convex probe (1-5 MHz). An internally standardized scanning protocol of the aortic aneurysm diameter in B mode used a so called leading-edge method. In summary, five different US methods (2D, 3D free-hand, magnetic field tracked 3D - Curefab™, 4D volume sweep, image fusion), each including contrast-enhanced ultrasound (CEUS), were used for measurement of the maximum aortic aneurysm diameter. Standardized 2D sonography was the defined reference standard for statistical analysis. CEUS was used for endoleak detection. Technical success was 100%. In augmented transverse imaging the mean aortic anteroposterior (AP) diameter was 4.0±1.3 cm for 2D US, 4.0±1.2 cm for 3D Curefab™, and 3.9±1.3 cm for 4D US and 4.0±1.2 for image fusion. The mean differences were below 1 mm (0.2-0.9 mm). Concerning estimation of aneurysm growth, agreement was found between 2D, 3D and 4D US in 19 of the 20 patients (95%). Definitive decision could always be made by image fusion. CEUS was combined with all methods and detected two out of the 20 patients (10%) with an endoleak type II. In one case, endoleak feeding arteries remained unclear with 2D CEUS but could be clearly localized by 3D CEUS and image fusion. Standardized 2D US allows adequate routine follow-up of maximum aortic aneurysm diameter after EVAR. Image Fusion enables a definitive statement about aneurysm growth without the need for new CT imaging by combining the postoperative CT scan with real-time B mode in a dual image display. 3D/4D CEUS and image fusion can improve endoleak characterization in selected cases but are not mandatory for routine practice.
Koutouzi, G; Sandström, C; Roos, H; Henrikson, O; Leonhardt, H; Falkenberg, M
2016-11-01
Evaluation of orthogonal rings, fiducial markers, and overlay accuracy when image fusion is used for endovascular aortic repair (EVAR). This was a prospective single centre study. In 19 patients undergoing standard EVAR, 3D image fusion was used for intra-operative guidance. Renal arteries and targeted stent graft positions were marked with rings orthogonal to the respective centre lines from pre-operative computed tomography (CT). Radiopaque reference objects attached to the back of the patient were used as fiducial markers to detect patient movement intra-operatively. Automatic 3D-3D registration of the pre-operative CT with an intra-operative cone beam computed tomography (CBCT) as well as 3D-3D registration after manual alignment of nearby vertebrae were evaluated. Registration was defined as being sufficient for EVAR guidance if the deviation of the origin of the lower renal artery was less than 3 mm. For final overlay registration, the renal arteries were manually aligned using aortic calcification and vessel outlines. The accuracy of the overlay before stent graft deployment was evaluated using digital subtraction angiography (DSA) as direct comparison. Fiducial markers helped in detecting misalignment caused by patient movement during the procedure. Use of automatic intensity based registration alone was insufficient for EVAR guidance. Manual registration based on vertebrae L1-L2 was sufficient in 7/19 patients (37%). Using the final adjusted registration as overlay, the median alignment error of the lower renal artery marking at pre-deployment DSA was 2 mm (0-5) sideways and 2 mm (0-9) longitudinally, mostly in a caudal direction. 3D image fusion can facilitate intra-operative guidance during EVAR. Orthogonal rings and fiducial markers are useful for visualization and overlay correction. However, the accuracy of the overlaid 3D image is not always ideal and further technical development is needed. Copyright © 2016 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
[Metapneumovirus expands the understanding of Paramyxovirus cell fusion--a review].
Liu, Xiaoyu; Zhang, Xiaodong; Wei, Yongwei
2014-04-04
For most viruses in Paramyxoviridae, cell fusion requires both attachment protein and fusion protein. The attachment protein is responsible for the binding to its cognate receptors, while the interaction between fusion protein and attachment protein triggers the fusion protein which is responsible for the fusion. However, the Metapneumovirus fusion in Pneumovirinae subfamily displayed different mechanism where the attachment protein is not required. The cell fusion is accomplished by fusion protein alone without the help of the attachment protein. Recent studies indicate that low pH is required for cell fusion promoted by some hMPV strains. The fusion protein of aMPV type A is highly fusogenic, whereas that of type B is low. The original fusion models for Paramyxovirus cannot explain the phenomenon above. The mechanism to regulate the cell fusion of Metapneumovirus is poorly understood. It is becoming a hot spot for the study of cell fusion triggered by Paramyxovirus where it enlarged the traditional scope of Paramyxovirus fusion. In this review, we discuss the new achievements and advances in the understanding of cell fusion triggered by Metapneumovirus.
Razii, Nima; Abbas, Ammar M I; Kakar, Rahul; Agarwal, Sanjeev; Morgan-Jones, Rhidian
2016-12-01
Periprosthetic infection following total knee arthroplasty is a devastating complication, which is not always satisfactorily resolved by revision surgery. Arthrodesis is a salvage alternative to above-knee amputation or permanent resection arthroplasty. Fixation options include internal compression plating, external fixation, and intramedullary nails. We retrospectively reviewed twelve consecutive cases (9 males, 3 females; mean age, 67 years) of knee arthrodesis with a long intramedullary nail, performed at a single institution between 2003 and 2014. Desired outcomes were the ability to mobilize without pain, solid radiographic fusion, and the eradication of infection. Mean follow-up was 48.5 months (range, 9-120 months). Eleven patients (92 %) demonstrated stable fusion, ten patients (83 %) were ambulatory without pain, and ten patients (83 %) remained without infection at most recent follow-up. Eight patients (67 %) achieved union at an average of 12 months; three required repeat procedures, achieving union at an average of 9 months. There was a significant difference (P < 0.01) between the numbers of previous operations amongst the eight patients who initially achieved union (mean, 3.25) and three who subsequently required repeat procedures (mean, 8.33). In contrast to similar studies, we performed a single-stage exchange where possible, while comparable ambulatory and fusion rates were observed. Numerous previous attempts at revision arthroplasty, co-morbidities, and infections with highly resistant organisms have been associated with further complications. Although technically challenging, knee arthrodesis with a long intramedullary nail offers an acceptable limb salvage procedure for carefully selected patients with complex periprosthetic infections.
Lvov, Ivan; Grin, Andrey; Kaykov, Aleksandr; Smirnov, Vladimir; Krylov, Vladimir
2017-08-08
Anterior transarticular fixation of the C1-C2 vertebrae is a well-known technique that involves screw insertion through the body of the C2 vertebra into the lateral masses of the atlas through an anterior transcervical approach. Meanwhile, contralateral screw insertion has been previously described only in anatomical studies. We describe two case reports of the clinical application of this new technique. In Case 1, the patient was diagnosed with an unstable C1 fracture. The clinical features of the case did not allow for any type of posterior atlantoaxial fusion, Halo immobilization, or routine anterior fixation using the Reindl and Koller techniques. The possible manner of screw insertion into the anterior third of the right lateral mass was via a contralateral trajectory, which was performed in this case. Case 2 involved a patient with neglected posteriorly dislocated dens fracture who could not lie in the prone position due to concomitant cardiac pathology. Reduction of atlantoaxial dislocation was insufficient, even after scar tissue resection at the fracture, while transdental fusion was not possible. Considering the success of the previous case, atlantoaxial fixation was performed through the small approach, using the Reindl technique and contralateral screw insertion. These two cases demonstrate the potential of anterior transarticular fixation of C1-C2 vertebrae in cases where posterior atlantoaxial fusion is not achievable. This type of fixation can be performed through a single approach if one screw is inserted using the Reindl technique and another is inserted via a contralateral trajectory.
Shah, Nameeta; Lankerovich, Michael; Lee, Hwahyung; Yoon, Jae-Geun; Schroeder, Brett; Foltz, Greg
2013-11-22
RNA-seq has spurred important gene fusion discoveries in a number of different cancers, including lung, prostate, breast, brain, thyroid and bladder carcinomas. Gene fusion discovery can potentially lead to the development of novel treatments that target the underlying genetic abnormalities. In this study, we provide comprehensive view of gene fusion landscape in 185 glioblastoma multiforme patients from two independent cohorts. Fusions occur in approximately 30-50% of GBM patient samples. In the Ivy Center cohort of 24 patients, 33% of samples harbored fusions that were validated by qPCR and Sanger sequencing. We were able to identify high-confidence gene fusions from RNA-seq data in 53% of the samples in a TCGA cohort of 161 patients. We identified 13 cases (8%) with fusions retaining a tyrosine kinase domain in the TCGA cohort and one case in the Ivy Center cohort. Ours is the first study to describe recurrent fusions involving non-coding genes. Genomic locations 7p11 and 12q14-15 harbor majority of the fusions. Fusions on 7p11 are formed in focally amplified EGFR locus whereas 12q14-15 fusions are formed by complex genomic rearrangements. All the fusions detected in this study can be further visualized and analyzed using our website: http://ivygap.swedish.org/fusions. Our study highlights the prevalence of gene fusions as one of the major genomic abnormalities in GBM. The majority of the fusions are private fusions, and a minority of these recur with low frequency. A small subset of patients with fusions of receptor tyrosine kinases can benefit from existing FDA approved drugs and drugs available in various clinical trials. Due to the low frequency and rarity of clinically relevant fusions, RNA-seq of GBM patient samples will be a vital tool for the identification of patient-specific fusions that can drive personalized therapy.
NASA Astrophysics Data System (ADS)
1980-08-01
The technologies selected for the detailed characterization were: solar technology; terrestrial photovoltaic (200 MWe); coal technologies; conventional high sulfur coal combustion with advanced fine gas desulfurization (1250 MWe), and open cycle gas turbine combined cycle plant with low Btu gasifier (1250 MWe); and nuclear technologies: conventional light water reactor (1250 MWe), liquid metal fast breeder reactor (1250 MWe), and magnetic fusion reactor (1320 MWe). A brief technical summary of each power plant design is given.
Autonomous Sonar Classification Using Expert Systems
1992-06-01
34Multisensor Integration and Fusion in Intelligent System," ZEEE Tmnsactions on Systems, Man and Cybernetics, vol. 19 no. 5, September/Octciber...34 University of California Santa Barbara Department of Computer Science Technical Report TRCS89-06, February 1989. ZEEE , vol. 71 no. 7, July 1983, pp. 872...AutonomousUnderwater Vehicles" , Proceedingsof the ZEEE Oceanic Engineering Society Conference A W 92, Washington DC, June 1992. Corkill, Daniel, "BlackboardSystems," AIErpert, vol. 6 no. 9, September 1991, pp. 40-47. 559
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maingi, Rajesh; Zinkle, Steven J.; Foster, Mark S.
2015-05-01
The realization of controlled thermonuclear fusion as an energy source would transform society, providing a nearly limitless energy source with renewable fuel. Under the auspices of the U.S. Department of Energy, the Fusion Energy Sciences (FES) program management recently launched a series of technical workshops to “seek community engagement and input for future program planning activities” in the targeted areas of (1) Integrated Simulation for Magnetic Fusion Energy Sciences, (2) Control of Transients, (3) Plasma Science Frontiers, and (4) Plasma-Materials Interactions aka Plasma-Materials Interface (PMI). Over the past decade, a number of strategic planning activities1-6 have highlighted PMI and plasmamore » facing components as a major knowledge gap, which should be a priority for fusion research towards ITER and future demonstration fusion energy systems. There is a strong international consensus that new PMI solutions are required in order for fusion to advance beyond ITER. The goal of the 2015 PMI community workshop was to review recent innovations and improvements in understanding the challenging PMI issues, identify high-priority scientific challenges in PMI, and to discuss potential options to address those challenges. The community response to the PMI research assessment was enthusiastic, with over 80 participants involved in the open workshop held at Princeton Plasma Physics Laboratory on May 4-7, 2015. The workshop provided a useful forum for the scientific community to review progress in scientific understanding achieved during the past decade, and to openly discuss high-priority unresolved research questions. One of the key outcomes of the workshop was a focused set of community-initiated Priority Research Directions (PRDs) for PMI. Five PRDs were identified, labeled A-E, which represent community consensus on the most urgent near-term PMI scientific issues. For each PRD, an assessment was made of the scientific challenges, as well as a set of actions to address those challenges. No prioritization was attempted amongst these five PRDs. We note that ITER, an international collaborative project to substantially extend fusion science and technology, is implicitly a driver and beneficiary of the research described in these PRDs; specific ITER issues are discussed in the background and PRD chapters. For succinctness, we describe these PRDs directly below; a brief introduction to magnetic fusion and the workshop process/timeline is given in Chapter I, and panelists are listed in the Appendix.« less
Paramyxovirus fusion: Real-time measurement of parainfluenza virus 5 virus-cell fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connolly, Sarah A.; Lamb, Robert A.
2006-11-25
Although cell-cell fusion assays are useful surrogate methods for studying virus fusion, differences between cell-cell and virus-cell fusion exist. To examine paramyxovirus fusion in real time, we labeled viruses with fluorescent lipid probes and monitored virus-cell fusion by fluorimetry. Two parainfluenza virus 5 (PIV5) isolates (W3A and SER) and PIV5 containing mutations within the fusion protein (F) were studied. Fusion was specific and temperature-dependent. Compared to many low pH-dependent viruses, the kinetics of PIV5 fusion was slow, approaching completion within several minutes. As predicted from cell-cell fusion assays, virus containing an F protein with an extended cytoplasmic tail (rSV5 F551)more » had reduced fusion compared to wild-type virus (W3A). In contrast, virus-cell fusion for SER occurred at near wild-type levels, despite the fact that this isolate exhibits a severely reduced cell-cell fusion phenotype. These results support the notion that virus-cell and cell-cell fusion have significant differences.« less
Weirather, Jason L.; Afshar, Pegah Tootoonchi; Clark, Tyson A.; Tseng, Elizabeth; Powers, Linda S.; Underwood, Jason G.; Zabner, Joseph; Korlach, Jonas; Wong, Wing Hung; Au, Kin Fai
2015-01-01
We developed an innovative hybrid sequencing approach, IDP-fusion, to detect fusion genes, determine fusion sites and identify and quantify fusion isoforms. IDP-fusion is the first method to study gene fusion events by integrating Third Generation Sequencing long reads and Second Generation Sequencing short reads. We applied IDP-fusion to PacBio data and Illumina data from the MCF-7 breast cancer cells. Compared with the existing tools, IDP-fusion detects fusion genes at higher precision and a very low false positive rate. The results show that IDP-fusion will be useful for unraveling the complexity of multiple fusion splices and fusion isoforms within tumorigenesis-relevant fusion genes. PMID:26040699
Scaffold Translation: Barriers Between Concept and Clinic
Murphy, William L.
2011-01-01
Translation of scaffold-based bone tissue engineering (BTE) therapies to clinical use remains, bluntly, a failure. This dearth of translated tissue engineering therapies (including scaffolds) remains despite 25 years of research, research funding totaling hundreds of millions of dollars, over 12,000 papers on BTE and over 2000 papers on BTE scaffolds alone in the past 10 years (PubMed search). Enabling scaffold translation requires first an understanding of the challenges, and second, addressing the complete range of these challenges. There are the obvious technical challenges of designing, manufacturing, and functionalizing scaffolds to fill the Form, Fixation, Function, and Formation needs of bone defect repair. However, these technical solutions should be targeted to specific clinical indications (e.g., mandibular defects, spine fusion, long bone defects, etc.). Further, technical solutions should also address business challenges, including the need to obtain regulatory approval, meet specific market needs, and obtain private investment to develop products, again for specific clinical indications. Finally, these business and technical challenges present a much different model than the typical research paradigm, presenting the field with philosophical challenges in terms of publishing and funding priorities that should be addressed as well. In this article, we review in detail the technical, business, and philosophical barriers of translating scaffolds from Concept to Clinic. We argue that envisioning and engineering scaffolds as modular systems with a sliding scale of complexity offers the best path to addressing these translational challenges. PMID:21902613
Fusion and quality analysis for remote sensing images using contourlet transform
NASA Astrophysics Data System (ADS)
Choi, Yoonsuk; Sharifahmadian, Ershad; Latifi, Shahram
2013-05-01
Recent developments in remote sensing technologies have provided various images with high spatial and spectral resolutions. However, multispectral images have low spatial resolution and panchromatic images have low spectral resolution. Therefore, image fusion techniques are necessary to improve the spatial resolution of spectral images by injecting spatial details of high-resolution panchromatic images. The objective of image fusion is to provide useful information by improving the spatial resolution and the spectral information of the original images. The fusion results can be utilized in various applications, such as military, medical imaging, and remote sensing. This paper addresses two issues in image fusion: i) image fusion method and ii) quality analysis of fusion results. First, a new contourlet-based image fusion method is presented, which is an improvement over the wavelet-based fusion. This fusion method is then applied to a case study to demonstrate its fusion performance. Fusion framework and scheme used in the study are discussed in detail. Second, quality analysis for the fusion results is discussed. We employed various quality metrics in order to analyze the fusion results both spatially and spectrally. Our results indicate that the proposed contourlet-based fusion method performs better than the conventional wavelet-based fusion methods.
Multi-sensor radiation detection, imaging, and fusion
NASA Astrophysics Data System (ADS)
Vetter, Kai
2016-01-01
Glenn Knoll was one of the leaders in the field of radiation detection and measurements and shaped this field through his outstanding scientific and technical contributions, as a teacher, his personality, and his textbook. His Radiation Detection and Measurement book guided me in my studies and is now the textbook in my classes in the Department of Nuclear Engineering at UC Berkeley. In the spirit of Glenn, I will provide an overview of our activities at the Berkeley Applied Nuclear Physics program reflecting some of the breadth of radiation detection technologies and their applications ranging from fundamental studies in physics to biomedical imaging and to nuclear security. I will conclude with a discussion of our Berkeley Radwatch and Resilient Communities activities as a result of the events at the Dai-ichi nuclear power plant in Fukushima, Japan more than 4 years ago.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalaria, P. C., E-mail: parth.kalaria@partner.kit.edu; Avramidis, K. A.; Franck, J.
High frequency (>230 GHz) megawatt-class gyrotrons are planned as RF sources for electron cyclotron resonance heating and current drive in DEMOnstration fusion power plants (DEMOs). In this paper, for the first time, a feasibility study of a 236 GHz DEMO gyrotron is presented by considering all relevant design goals and the possible technical limitations. A mode-selection procedure is proposed in order to satisfy the multi-frequency and frequency-step tunability requirements. An effective systematic design approach for the optimal design of a gradually tapered cavity is presented. The RF-behavior of the proposed cavity is verified rigorously, supporting 920 kW of stable output power withmore » an interaction efficiency of 36% including the considerations of realistic beam parameters.« less
Trinh, Victoria T.; Duckworth, Edward A.M
2011-01-01
Background: Intradural filum terminale arteriovenous fistulas (AVFs) are uncommon. We report two cases of this rare entity in which we used indocyanine green (ICG) videoangiography to identify the fistulous connection of each lesion. Case Description: Two male patients presented with unresolved lower extremity weakness and paresthesias following lumbar fusion surgery. In each case, angiography showed an AVF between the filum terminale artery (FTA), the distal segment of the anterior spinal artery (ASA), and an accompanying vein of the filum terminale. A magnetic resonance image (MRI) obtained before lumbar fusion was available in one of these cases and demonstrated evidence of the preexisting vascular malformation. Surgical obliteration of each fistulous connection was facilitated by the use of ICG videoangiography. This emerging technology was instrumental in pinpointing fistula anatomy and in choosing the exact segment of the filum for disconnection. Conclusion: Our findings indicate that intradural filum terminale AVFs may have a congenital origin and that ICG is a useful tool in their successful surgical management. As these cases demonstrate, spine surgeons should remain vigilant in evaluating patients based on their clinical symptomatology, even in the presence of obvious lumbar pathology. PMID:21697980
Abd-El-Barr, Muhammad M; Snyder, Brian D; Emans, John B; Proctor, Mark R; Hedequist, Daniel
2016-12-01
Severe os odontoideum causing ventral brainstem compression is a rare and difficult entity to treat. It is generally accepted that severe os odontoideum causing ventral brainstem compression and neurological deficits warrants surgical treatment. This often requires both anterior and posterior procedures. Anterior approaches to the craniocervical junction are fraught with complications, including infection and risk of injury to neurovascular structures. External traction systems traditionally require long-term bedrest. The authors report 2 cases of severe ventral brainstem compression secondary to displaced os odontoideum and describe their use of extended preoperative halo vest traction to reduce the severe kyphosis and improve neurological function, followed by posterior occipitocervical fusion. Postoperatively both patients showed remarkable improvements in their neurological function and kyphotic deformity. Preoperative halo vest traction combined with posterior occipitocervical fusion appears to be a safe and effective method to treat brainstem compression by severe os odontoideum. It allows for adequate decompression of ventral neural structures and improvement of neurological function, but it is not hindered by the risks of anterior surgical approaches and does not restrict patients to strict bedrest as traditional traction systems. This method of halo vest traction and posterior-only approaches may be transferable to other cervical instability issues with both anterior and posterior pathologies.
Compact torus accelerator as a driver for ICF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobin, M.T.; Meier, W.R.; Morse, E.C.
1986-01-01
The authors have carried out further investigations of the technical issues associated with using a compact torus (CT) accelerator as a driver for inertial confinement fusion (ICF). In a CT accelerator, a magnetically confined, torus-shaped plasma is compressed, accelerated, and focused by two concentric electrodes. After its initial formation, the torus shape is maintained for lifetimes exceeding 1 ms by inherent poloidal and toroidal currents. Hartman suggests acceleration and focusing of such a plasma ring will not cause dissolution within certain constraints. In this study, we evaluated a point design based on an available capacitor bank energy of 9.2 MJ.more » This accelerator, which was modeled by a zero-dimensional code, produces a xenon plasma ring with a 0.73-cm radius, a velocity of 4.14 x 10/sup 9/ cm/s, and a mass of 4.42 ..mu..g. The energy of the plasma ring as it leaves the accelerator is 3.8 MJ, or 41% of the capacitor bank energy. Our studies confirm the feasibility of producing a plasma ring with the characteristics required to induce fusion in an ICF target with a gain greater than 50. The low cost and high efficiency of the CT accelerator are particularly attractive. Uncertainties concerning propagation, accelerator lifetime, and power supply must be resolved to establish the viability of the accelerator as an ICF driver.« less
Li, X Y; Liu, F; Hu, Y F; Xia, M; Cheng, B J; Zhu, S W; Ma, Q
2015-12-21
The ectopic expression of cellulase in biomass can reduce the cost of biofuel conversion. This trait modification technique is highly beneficial for biofuel production. In this study, we isolated an endo-1,4-beta-glucanase gene (EGV) from Trichoderma reesei and inserted this gene downstream of a fragment encoding the signal peptide Apo-SP in a modified pCAMBIA1301 vector to obtain an Apo-SP and AsRed fusion protein. Transient expression of this fusion protein in onion epidermal cells showed that the Apo-SP signal was localized to the plastids. EGV transgenic rice plants that did not carry screening marker genes were obtained through overexpression of the pDTB double T-DNA vector. Western blotting showed that EGV was expressed in the dry straw of T0 generation transgenic rice plants and in fresh leaves of the T1 generation. More importantly, our results also showed that the peptide product of EGV in the transgenic plants folded correctly and was capable of digesting the cellulase substrate CMC. Additionally, cellulase activity remained stable in the straw that had been dried at room temperature for three months. This study presents an important technical approach for the development of transgenic rice straw that has stable cellulase activity and can be used for biofuel conversion.
Arthrodesis of the knee with intramedullary nail fixation.
Puranen, J; Kortelainen, P; Jalovaara, P
1990-03-01
Thirty-three patients had an arthrodesis of the knee by means of an intramedullary nail introduced through the greater trochanter. Fifteen of the procedures were done for a failed knee arthroplasty; eight had failed because of infection and seven, because of aseptic loosening. Twenty-nine of the thirty-three knees united three to four months after the first attempt at arthrodesis and three united after technical errors were corrected. One knee had a broken nail and a non-union; this was still untreated at the time of writing. Four nails broke: three in the line of fusion and one in the line of an infected supracondylar pseudarthrosis of the femur. No new infections developed after the arthrodesis. Three patients had had an infection and a chronic fistula before the arthrodesis, and the fistulae healed six, fourteen, and eighteen months postoperatively. In another patient, who had had infection and necrosis of the skin preoperatively, the wound healed in six months. All of these knees healed without an additional major operation. The functional result was satisfactory in all patients. After the arthrodesis, seventeen of the thirty-three patients needed less aid when walking, and no patient needed more aid. Fusion of the knee with a long intramedullary nail can be safe and effective, even in the presence of infection, if the revision is performed properly and certain technical principles are followed. It is especially important to establish good contact between the resected bones.
Chung, Nam-Su; Jeon, Chang-Hoon; Lee, Han-Dong
2017-09-11
Technical report. To demonstrate the use of an alternative surgical corridor in oblique lateral interbody fusion (OLIF) at the L5-S1 segment. OLIF L5-S1 is essentially performed through the central disk space between the bifurcations of the iliac vessels, which is sometimes difficult due to the vascular structures that obstruct the surgical field. Another concern is retrograde ejaculation following superior hypogastric plexus injury in male patients. The alternative surgical corridor involves the lateral disk space external to the left iliac vessels. The patient position and the retroperitoneal approach are similar to those used in the conventional OLIF L5-S1. The left iliac vessels are identified and mobilized medially to the midline of the L5-S1 disk space. The vascular structures are then protected using the conventional OLIF 51 retractor system. Six patients underwent OLIF L5-S1 through the alternative lateral surgical corridor. The L5-S1 disk spaces were always exposed sufficiently for disk preparation and cage insertion. The postoperative radiographs showed a satisfactory L5-S1 reconstruction with good cage position. There were no perioperative complications during the surgical access and reconstruction procedures. When the central approach to the L5-S1 disk space poses a risk of vascular or superior hypogastric plexus injury, use of a lateral approach external to the left iliac vessels can be an alternative method to perform OLIF L5-S1.
Weirather, Jason L; Afshar, Pegah Tootoonchi; Clark, Tyson A; Tseng, Elizabeth; Powers, Linda S; Underwood, Jason G; Zabner, Joseph; Korlach, Jonas; Wong, Wing Hung; Au, Kin Fai
2015-10-15
We developed an innovative hybrid sequencing approach, IDP-fusion, to detect fusion genes, determine fusion sites and identify and quantify fusion isoforms. IDP-fusion is the first method to study gene fusion events by integrating Third Generation Sequencing long reads and Second Generation Sequencing short reads. We applied IDP-fusion to PacBio data and Illumina data from the MCF-7 breast cancer cells. Compared with the existing tools, IDP-fusion detects fusion genes at higher precision and a very low false positive rate. The results show that IDP-fusion will be useful for unraveling the complexity of multiple fusion splices and fusion isoforms within tumorigenesis-relevant fusion genes. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Federici, G.; Skinner, C.H.; Brooks, J.N.
2001-01-10
The major increase in discharge duration and plasma energy in a next-step DT [deuterium-tritium] fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of themore » important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D [Research and Development] avenues for their resolution are presented.« less
Wattjes, M P; Krauter, J; Nagel, S; Heidenreich, O; Ganser, A; Heil, G
2000-02-01
The chromosomal translocation t(8;21)(q22;q22) is one of the most frequent karyotypic aberrations in acute myeloid leukemia (AML) and results in a chimeric fusion transcript AML1/MTG8. Since AML1/MTG8 fusion transcripts remain detectable by RT-PCR in t(8;21) AML patients in long-term hematological remission, quantitative assessment of AML1/MTG8 transcripts is necessary for the monitoring of minimal residual disease (MRD) in these patients. Competitive RT-PCR and recently real-time RT-PCR are increasingly used for detection and quantification of leukemia specific fusion transcripts. For the direct comparison of both methods we cloned a 42 bp DNA fragment into the original AML1/MTG8 sequence. The resulting molecule was used as an internal competitor for our novel competitive nested RT-PCR for AML1/MTG8 and as an external standard for the generation of AML1/MTG8 standard curves in a real-time PCR assay. Using this standard molecule for both PCR techniques, we compared their sensitivity, linearity and reproducibility. Both methods were comparable with regard to all parameters tested irrespective of analyzing serial dilutions of plasmids, cell lines or samples from t(8;21) positive AML patients at different stages of the disease. Therefore, both techniques can be recommended for the monitoring of MRD in these particular AML patients. However, the automatization of the real-time PCR technique offers some technical advantages.
Scripes, Paola G; Yaparpalvi, Ravindra
2012-09-01
The usage of functional data in radiation therapy (RT) treatment planning (RTP) process is currently the focus of significant technical, scientific, and clinical development. Positron emission tomography (PET) using ((18)F) fluorodeoxyglucose is being increasingly used in RT planning in recent years. Fluorodeoxyglucose is the most commonly used radiotracer for diagnosis, staging, recurrent disease detection, and monitoring of tumor response to therapy (Lung Cancer 2012;76:344-349; Lung Cancer 2009;64:301-307; J Nucl Med 2008;49:532-540; J Nucl Med 2007;48:58S-67S). All the efforts to improve both PET and computed tomography (CT) image quality and, consequently, lesion detectability have a common objective to increase the accuracy in functional imaging and thus of coregistration into RT planning systems. In radiotherapy, improvement in target localization permits reduction of tumor margins, consequently reducing volume of normal tissue irradiated. Furthermore, smaller treated target volumes create the possibility of dose escalation, leading to increased chances of tumor cure and control. This article focuses on the technical aspects of PET/CT image acquisition, fusion, usage, and impact on the physics of RTP. The authors review the basic elements of RTP, modern radiation delivery, and the technical parameters of coregistration of PET/CT into RT computerized planning systems. Copyright © 2012 Elsevier Inc. All rights reserved.
Kiani, Ali Asghar; Shahsavar, Farhad; Gorji, Mojtaba; Ahmadi, Kolsoum; Nazarabad, Vahideh Heydari; Bahmani, Banafsheh
2016-01-01
Chronic myelogenous leukemia (CML) is a chronic malignancy of myeloid linage associated with a significant increase in granulocytes in bone marrow and peripheral blood. CML diagnosis is based on detection of Philadelphia chromosome and "Abelson murine leukemia viral oncogene homolog" (ABL)-"breakpoint cluster region protein" fusions (ABL-BCR fusions). In this study, patients with CML morphology were studied according to ABL-BCR fusions and the relationship between the fusions and peripheral blood cell changes was examined. All patients suspected to chronic myeloproliferative disorders in Lorestan Province visiting subspecialist hematology clinics who were confirmed by oncologist were studied over a period of 5 years. After completing basic data questionnaire, blood samples were obtained with informed consent from the patients. Blood cell count and morphology were investigated and RNA was extracted from blood samples. cDNA was synthesized from RNA and ABL-BCR fusions including b3a2 and b2a2 (protein 210 kd or p210), e1a2 (protein 190 kdor p190), and e19a2 (protein 230 kdor p230) were studied by multiplex reverse transcription polymerase chain reaction method. Coexistence of e1a2 and b2a2 (p210/p190) fusions was also studied. The prevalence of mutations and their correlation with the blood parameters were statistically analyzed. Of 58 patients positive for ABL-BCR fusion, 18 (30.5%) had b2a2 fusion, 37 (62.71%) had b3a2 fusion and three (3.08%) had e1a2 fusion. Coexistence of e1a2 and b2a2 (p210/p190) was not observed. There was no significant correlation between ABL-BCR fusions and white blood cell count, platelet count, and hemoglobin concentration. The ABL-BCR fusions in Lorestan Province were similar to other studies in Iran, and b3a2 fusion had the highest prevalence in the studied patients studied.
Murphy, Samantha; Martin, Sally; Parton, Robert G.
2010-01-01
Lipid droplets (LDs) are dynamic cytoplasmic organelles containing neutral lipids and bounded by a phospholipid monolayer. Previous studies have suggested that LDs can undergo constitutive homotypic fusion, a process linked to the inhibitory effects of fatty acids on glucose transporter trafficking. Using strict quantitative criteria for LD fusion together with refined light microscopic methods and real-time analysis, we now show that LDs in diverse cell types show low constitutive fusogenic activity under normal growth conditions. To investigate the possible modulation of LD fusion, we screened for agents that can trigger fusion. A number of pharmacological agents caused homotypic fusion of lipid droplets in a variety of cell types. This provided a novel cell system to study rapid regulated fusion between homotypic phospholipid monolayers. LD fusion involved an initial step in which the two adjacent membranes became continuous (<10 s), followed by the slower merging (100 s) of the neutral lipid cores to produce a single spherical LD. These fusion events were accompanied by changes to the LD surface organization. Measurements of LDs undergoing homotypic fusion showed that fused LDs maintained their initial volume, with a corresponding decrease in surface area suggesting rapid removal of membrane from the fused LD. This study provides estimates for the level of constitutive LD fusion in cells and questions the role of LD fusion in vivo. In addition, it highlights the extent of LD restructuring which occurs when homotypic LD fusion is triggered in a variety of cell types. PMID:21203462
IAEA activities on atomic, molecular and plasma-material interaction data for fusion
NASA Astrophysics Data System (ADS)
Braams, Bastiaan J.; Chung, Hyun-Kyung
2013-09-01
The IAEA Atomic and Molecular Data Unit (http://www-amdis.iaea.org/) aims to provide internationally evaluated and recommended data for atomic, molecular and plasma-material interaction (A+M+PMI) processes in fusion research. The Unit organizes technical meetings and coordinates an A+M Data Centre Network (DCN) and a Code Centre Network (CCN). In addition the Unit organizes Coordinated Research Projects (CRPs), for which the objectives are mixed between development of new data and evaluation and recommendation of existing data. In the area of A+M data we are placing new emphasis in our meeting schedule on data evaluation and especially on uncertainties in calculated cross section data and the propagation of uncertainties through structure data and fundamental cross sections to effective rate coefficients. Following a recent meeting of the CCN it is intended to use electron scattering on Be, Ne and N2 as exemplars for study of uncertainties and uncertainty propagation in calculated data; this will be discussed further at the presentation. Please see http://www-amdis.iaea.org/CRP/ for more on our active and planned CRPs, which are concerned with atomic processes in core and edge plasma and with plasma interaction with beryllium-based surfaces and with irradiated tungsten.
Overview of the IFMIF/EVEDA project
NASA Astrophysics Data System (ADS)
Knaster, J.; Garin, P.; Matsumoto, H.; Okumura, Y.; Sugimoto, M.; Arbeiter, F.; Cara, P.; Chel, S.; Facco, A.; Favuzza, P.; Furukawa, T.; Heidinger, R.; Ibarra, A.; Kanemura, T.; Kasugai, A.; Kondo, H.; Massaut, V.; Molla, J.; Micciche, G.; O'hira, S.; Sakamoto, K.; Yokomine, T.; Wakai, E.; the IFMIF/EVEDA Integrated Project Team
2017-10-01
IFMIF, the International Fusion Materials Irradiation Facility, is presently in its engineering validation and engineering design activities (EVEDA) phase under the Broader Approach Agreement. The engineering design activity (EDA) phase was successfully accomplished within the allocated time. The engineering validation activity (EVA) phase has focused on validating the Accelerator Facility (AF), the Target Facility and the Test Facility (TF) by constructing prototypes. The ELTL at JAEAc, Oarai successfully demonstrated the long-term stability of a Li flow under the IFMIF’s nominal operational conditions keeping the specified free-surface fluctuations below ±1 mm in a continuous manner for 25 d. A full-scale prototype of the high flux test module (HFTM) was successfully tested in the HELOKA loop (KIT, Karlsruhe), where it was demonstrated that the irradiation temperature can be set individually and kept uniform. LIPAc, designed and constructed in European labs under the coordination of F4E, presently under installation and commissioning in the Rokkasho Fusion Institute, aims at validating the concept of IFMIF accelerators with a D+ beam of 125 mA continuous wave (CW) and 9 MeV. The commissioning phases of the H+/D+ beams at 100 keV are progressing and should be concluded in 2017; in turn, the commissioning of the 5 MeV beam is due to start during 2017. The D+ beam through the superconducting cavities is expected to be achieved within the Broader Approach Agreement time frame with the superconducting cryomodule being assembled in Rokkasho. The realisation of a fusion-relevant neutron source is a necessary step for the successful development of fusion. The ongoing success of the IFMIF/EVEDA involves ruling out concerns about potential technical showstoppers which were raised in the past. Thus, a situation has emerged where soon steps towards constructing a Li(d,xn) fusion-relevant neutron source could be taken, which is also justified in the light of costs which are marginal to those of a fusion plant. In Memoriam Yoshikazu Okumura who passed away on 6 March 2017.
von Spiczak, Jochen; Mannil, Manoj; Kozerke, Sebastian; Alkadhi, Hatem; Manka, Robert
2018-03-30
Since patients with myocardial hypoperfusion due to coronary artery disease (CAD) with preserved viability are known to benefit from revascularization, accurate differentiation of hypoperfusion from scar is desirable. To develop a framework for 3D fusion of whole-heart dynamic cardiac MR perfusion and late gadolinium enhancement (LGE) to delineate stress-induced myocardial hypoperfusion and scar. Prospective feasibility study. Sixteen patients (61 ± 14 years, two females) with known/suspected CAD. 1.5T (nine patients); 3.0T (seven patients); whole-heart dynamic 3D cardiac MR perfusion (3D-PERF, under adenosine stress); 3D LGE inversion recovery sequences (3D-SCAR). A software framework was developed for 3D fusion of 3D-PERF and 3D-SCAR. Computation steps included: 1) segmentation of the left ventricle in 3D-PERF and 3D-SCAR; 2) semiautomatic thresholding of perfusion/scar data; 3) automatic calculation of ischemic/scar burden (ie, pathologic relative to total myocardium); 4) projection of perfusion/scar values onto artificial template of the left ventricle; 5) semiautomatic coregistration to an exemplary heart contour easing 3D orientation; and 6) 3D rendering of the combined datasets using automatically defined color tables. All tasks were performed by two independent, blinded readers (J.S. and R.M.). Intraclass correlation coefficients (ICC) for determining interreader agreement. Image acquisition, postprocessing, and 3D fusion were feasible in all cases. In all, 10/16 patients showed stress-induced hypoperfusion in 3D-PERF; 8/16 patients showed LGE in 3D-SCAR. For 3D-PERF, semiautomatic thresholding was possible in all patients. For 3D-SCAR, automatic thresholding was feasible where applicable. Average ischemic burden was 11 ± 7% (J.S.) and 12 ± 7% (R.M.). Average scar burden was 8 ± 5% (J.S.) and 7 ± 4% (R.M.). Interreader agreement was excellent (ICC for 3D-PERF = 0.993, for 3D-SCAR = 0.99). 3D fusion of 3D-PERF and 3D-SCAR facilitates intuitive delineation of stress-induced myocardial hypoperfusion and scar. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.
Pedicle screw versus hybrid posterior instrumentation for dystrophic neurofibromatosis scoliosis.
Wang, Jr-Yi; Lai, Po-Liang; Chen, Wen-Jer; Niu, Chi-Chien; Tsai, Tsung-Ting; Chen, Lih-Huei
2017-06-01
Surgical management of severe rigid dystrophic neurofibromatosis (NF) scoliosis is technically demanding and produces varying results. In the current study, we reviewed 9 patients who were treated with combined anterior and posterior fusion using different types of instrumentation (i.e., pedicle screw, hybrid, and all-hook constructs) at our institute.Between September 2001 and July 2010 at our institute, 9 patients received anterior release/fusion and posterior fusion with different types of instrumentation, including a pedicle screw construct (n = 5), a hybrid construct (n = 3), and an all-hook construct (n = 1). We compared the pedicle screw group with the hybrid group to analyze differences in preoperative curve angle, immediate postoperative curve reduction, and latest follow-up curve angle.The mean follow-up period was 9.5 ± 2.9 years. The average age at surgery was 10.3 ± 3.9 years. The average preoperative scoliosis curve was 61.3 ± 13.8°, and the average preoperative kyphosis curve was 39.8 ± 19.7°. The average postoperative scoliosis and kyphosis curves were 29.7 ± 10.7° and 21.0 ± 13.5°, respectively. The most recent follow-up scoliosis and kyphosis curves were 43.4 ± 17.3° and 29.4 ± 18.9°, respectively. There was no significant difference in the correction angle (either coronal or sagittal), and there was no significant difference in the loss of sagittal correction between the pedicle screw construct group and the hybrid construct group. However, the patients who received pedicle screw constructs had significantly less loss of coronal correction (P < .05). Two patients with posterior instrumentation, one with an all-hook construct and the other with a hybrid construct, required surgical revision because of progression of deformity.It is difficult to intraoperatively correct dystrophic deformity and to maintain this correction after surgery. Combined anterior release/fusion and posterior fusion using either a pedicle screw construct or a hybrid construct provide similar curve corrections both sagittally and coronally. After long-term follow-up, sagittal correction was maintained with both constructs. However, patients treated with posterior instrumentation using pedicle screw constructs had significantly less loss of coronal correction.
Pedicle screw versus hybrid posterior instrumentation for dystrophic neurofibromatosis scoliosis
Wang, Jr-Yi; Lai, Po-Liang; Chen, Wen-Jer; Niu, Chi-Chien; Tsai, Tsung-Ting; Chen, Lih-Huei
2017-01-01
Abstract Surgical management of severe rigid dystrophic neurofibromatosis (NF) scoliosis is technically demanding and produces varying results. In the current study, we reviewed 9 patients who were treated with combined anterior and posterior fusion using different types of instrumentation (i.e., pedicle screw, hybrid, and all-hook constructs) at our institute. Between September 2001 and July 2010 at our institute, 9 patients received anterior release/fusion and posterior fusion with different types of instrumentation, including a pedicle screw construct (n = 5), a hybrid construct (n = 3), and an all-hook construct (n = 1). We compared the pedicle screw group with the hybrid group to analyze differences in preoperative curve angle, immediate postoperative curve reduction, and latest follow-up curve angle. The mean follow-up period was 9.5 ± 2.9 years. The average age at surgery was 10.3 ± 3.9 years. The average preoperative scoliosis curve was 61.3 ± 13.8°, and the average preoperative kyphosis curve was 39.8 ± 19.7°. The average postoperative scoliosis and kyphosis curves were 29.7 ± 10.7° and 21.0 ± 13.5°, respectively. The most recent follow-up scoliosis and kyphosis curves were 43.4 ± 17.3° and 29.4 ± 18.9°, respectively. There was no significant difference in the correction angle (either coronal or sagittal), and there was no significant difference in the loss of sagittal correction between the pedicle screw construct group and the hybrid construct group. However, the patients who received pedicle screw constructs had significantly less loss of coronal correction (P < .05). Two patients with posterior instrumentation, one with an all-hook construct and the other with a hybrid construct, required surgical revision because of progression of deformity. It is difficult to intraoperatively correct dystrophic deformity and to maintain this correction after surgery. Combined anterior release/fusion and posterior fusion using either a pedicle screw construct or a hybrid construct provide similar curve corrections both sagittally and coronally. After long-term follow-up, sagittal correction was maintained with both constructs. However, patients treated with posterior instrumentation using pedicle screw constructs had significantly less loss of coronal correction. PMID:28562548
An overview of near-barrier fusion studies with stable beams
NASA Astrophysics Data System (ADS)
Trotta, M.; Stefanini, A. M.; Beghini, S.; Behera, B. R.; Corradi, L.; Fioretto, E.; Gadea, A.; Itkis, M. G.; Knyazheva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Mărginean, N.; Mason, P.; Montagnoli, G.; Pokrovsky, I. V.; Sagaidak, R. N.; Scarlassara, F.; Silvestri, R.; Szilner, S.
2007-05-01
An overview of results in fusion studies with stable beams spanning different mass regions and energy ranges is presented. The advantages offered by studying channel coupling effects, involving low-lying excited states of the colliding nuclei, as well as the difficulties in understanding the influence of transfer couplings on fusion, are firstly remarked. The competition of fusion with quasi-fission in heavy systems and the unexpected steep falloff of fusion cross sections at far sub-barrier energies are finally discussed.
First ERO2.0 modeling of Be erosion and non-local transport in JET ITER-like wall
NASA Astrophysics Data System (ADS)
Romazanov, J.; Borodin, D.; Kirschner, A.; Brezinsek, S.; Silburn, S.; Huber, A.; Huber, V.; Bufferand, H.; Firdaouss, M.; Brömmel, D.; Steinbusch, B.; Gibbon, P.; Lasa, A.; Borodkina, I.; Eksaeva, A.; Linsmeier, Ch; Contributors, JET
2017-12-01
ERO is a Monte-Carlo code for modeling plasma-wall interaction and 3D plasma impurity transport for applications in fusion research. The code has undergone a significant upgrade (ERO2.0) which allows increasing the simulation volume in order to cover the entire plasma edge of a fusion device, allowing a more self-consistent treatment of impurity transport and comparison with a larger number and variety of experimental diagnostics. In this contribution, the physics-relevant technical innovations of the new code version are described and discussed. The new capabilities of the code are demonstrated by modeling of beryllium (Be) erosion of the main wall during JET limiter discharges. Results for erosion patterns along the limiter surfaces and global Be transport including incident particle distributions are presented. A novel synthetic diagnostic, which mimics experimental wide-angle 2D camera images, is presented and used for validating various aspects of the code, including erosion, magnetic shadowing, non-local impurity transport, and light emission simulation.
Damage resistant optics for a mega-joule solid-state laser
NASA Astrophysics Data System (ADS)
Campbell, J. H.; Rainer, F.; Kozlowski, M. R.; Wolfe, C. R.; Thomas, I.; Milanovich, F.
1990-12-01
Research on Inertial Confinement Fusion (ICF) has progressed rapidly in the past several years. As a consequence, LLNL is developing plans to upgrade the current 120 kJ solid state (Nd3+ phosphate glass) Nova laser to a 1.5 to 2 megajoule system with the goal of achieving fusion ignition. The design of the planned Nova Upgrade is briefly discussed. Because of recent improvements in the damage resistance of optical materials it is now technically and economically feasible to build a megajoule-class solid state laser. Specifically, the damage threshold of Nd(+3)-doped phosphate laser glass, multilayer dielectric coatings, and non-linear optical crystals (e.g., KDP) have been dramatically improved. These materials now meet the fluence requirements for a 1.5 to 2 MJ Nd(+3)-glass laser operating at 1054 and 351 nm and at a pulse length of 3 ns. The recent improvements in damage thresholds are reviewed; threshold data at both 1064 and 355 nm and the measured pulse length scaling are presented.
Damage resistant optics for a megajoule solid state laser
NASA Astrophysics Data System (ADS)
Campbell, Jack H.; Rainer, Frank; Kozlowski, Mark R.; Wolfe, C. Robert; Thomas, Ian M.; Milanovich, Fred P.
1991-06-01
Research on Inertial Confinement Fusion (ICF) has progressed rapidly in the past several years. As a consequence LLNL is developing plans to upgrade the current 120 kJ solid state (Nd3-phosphate glass) Nova laser to a 1 . 5 to 2 megajoule system with the goal of achieving fusion ignition. The design of the planned Nova Upgrade is briefly discussed. Because of recent improvements in the damage resistance of optical materials it is now technically and economically feasible to build a megajoule-class solid state laser. Specifically the damage threshold of Nd3- doped phosphate laser glass muliilayer dielectric coatings and non-linear optical crystals (e. g. KDP) have been dramatically improved. These materials now meet the fluence requirements for a 1. 5-2 MJ Nd3-glass laser operating at 1054 and 351 nm and at a pulse length of 3 ns. The recent improvements in damage thresholds are reviewed threshold data at both 1064 and 355 nm and the measured pulse length scaling are presented. 1.
Soft computing-based terrain visual sensing and data fusion for unmanned ground robotic systems
NASA Astrophysics Data System (ADS)
Shirkhodaie, Amir
2006-05-01
In this paper, we have primarily discussed technical challenges and navigational skill requirements of mobile robots for traversability path planning in natural terrain environments similar to Mars surface terrains. We have described different methods for detection of salient terrain features based on imaging texture analysis techniques. We have also presented three competing techniques for terrain traversability assessment of mobile robots navigating in unstructured natural terrain environments. These three techniques include: a rule-based terrain classifier, a neural network-based terrain classifier, and a fuzzy-logic terrain classifier. Each proposed terrain classifier divides a region of natural terrain into finite sub-terrain regions and classifies terrain condition exclusively within each sub-terrain region based on terrain visual clues. The Kalman Filtering technique is applied for aggregative fusion of sub-terrain assessment results. The last two terrain classifiers are shown to have remarkable capability for terrain traversability assessment of natural terrains. We have conducted a comparative performance evaluation of all three terrain classifiers and presented the results in this paper.
Promoting Pre-college Science Education
NASA Astrophysics Data System (ADS)
Lee, R. L.
1999-11-01
The Fusion Education Program, with support from DOE, continues to promote pre-college science education for students and teachers using multiple approaches. An important part of our program is direct scientist-student interaction. Our ``Scientist in a Classroom'' program allows students to interact with scientists and engage in plasma science activities in the students' classroom. More than 1000 students from 11 schools have participated in this exciting program. Also, this year more than 800 students and teachers have visited the DIII--D facility and interacted with scientists to cover a broad range of technical and educational issues. Teacher-scientist interaction is imperative in professional development and each year more than 100 teachers attend workshops produced by the fusion education team. We also participate in unique learning opportunities. Members of the team, in collaboration with the San Diego County Office of Education, held a pioneering Internet-based Physics Olympiad for American and Siberian students. Our teamwork with educators helps shape material that is grade appropriate, relevant, and stimulates thinking in educators and students.
Educational Outreach at the MIT Plasma Science and Fusion Center
NASA Astrophysics Data System (ADS)
Thomas, P.; Rivenberg, P.; Censabella, V.
2002-11-01
At the MIT PSFC, student and staff volunteers work together to increase the public's knowledge of fusion science and plasma technology. Seeking to generate excitement in young people about science and engineering, the PSFC hosts a number of educational outreach activities throughout the year, including Middle and High School Outreach Days. The PSFC also has an in-school science-demonstration program on the theme of magnetism. As ``Mr. Magnet," Technical Supervisor Paul Thomas brings a truck-load of hands-on demonstrations to K-12 schools, challenging students to help him with experiments. While teaching fundamentals of magnetism and electricity he shows that science is fun for all, and that any student can have a career in science. This year he reached 82 schools -- 30,000 teachers and students. He has recently expanded his teaching to include an interactive demonstration of plasma, encouraging participants to investigate plasma properties with audiovisual, electromagnetic, and spectroscopic techniques. He has also developed a workshop for middle school on how to build an electromagnet.
Bigdeli, Amir Khosrow; Gazyakan, Emre; Schmidt, Volker Juergen; Hernekamp, Frederick Jochen; Harhaus, Leila; Henzler, Thomas; Kremer, Thomas; Kneser, Ulrich; Hirche, Christoph
2016-06-01
Near-infrared indocyanine green video angiography (ICG-NIR-VA) has been introduced for free-flap surgery and may provide intraoperative flap designing as well as postoperative monitoring. Nevertheless, the technique has not been established in clinical routine because of controversy over benefits. Improved technical features of the novel Visionsense ICG-NIR-VA surgery system are promising to revisit the field of application. It features a unique real-time fusion image of simultaneous NIR and white light visualization, with highlighted perfusion, including a color-coded perfusion flow scale for optimized anatomical understanding. In a feasibility study, the Visionsense ICG-NIR-VA system was applied during 10 free-flap surgeries in 8 patients at our center. Indications included anterior lateral thigh (ALT) flap (n = 4), latissimus dorsi muscle flap (n = 1), tensor fascia latae flap (n = 1), and two bilateral deep inferior epigastric artery perforator flaps (n = 4). The system was used intraoperatively and postoperatively to investigate its impact on surgical decision making and to observe perfusion patterns correlated to clinical monitoring. Visionsense ICG-NIR-VA aided assessing free-flap design and perfusion patterns in all cases and correlated with clinical observations. Additional interventions were performed in 2 cases (22%). One venous anastomosis was revised, and 1 flap was redesigned. Indicated by ICG-NIR-VA, 1 ALT flap developed partial flap necrosis (11%). The Visionsense ICG-NIR-VA system allowed a virtual view of flap perfusion anatomy by fusion imaging in real-time. The system improved decision making for flap design and surgical decisions. Clinical and ICG-NIR-VA parameters correlated. Its future implementation may aid in improving outcomes for free-flap surgery, but additional experience is needed to define its final role. © The Author(s) 2015.
[Carbon fiber-reinforced plastics as implant materials].
Bader, R; Steinhauser, E; Rechl, H; Siebels, W; Mittelmeier, W; Gradinger, R
2003-01-01
Carbon fiber-reinforced plastics have been used clinically as an implant material for different applications for over 20 years.A review of technical basics of the composite materials (carbon fibers and matrix systems), fields of application,advantages (e.g., postoperative visualization without distortion in computed and magnetic resonance tomography), and disadvantages with use as an implant material is given. The question of the biocompatibility of carbon fiber-reinforced plastics is discussed on the basis of experimental and clinical studies. Selected implant systems made of carbon composite materials for treatments in orthopedic surgery such as joint replacement, tumor surgery, and spinal operations are presented and assessed. Present applications for carbon fiber reinforced plastics are seen in the field of spinal surgery, both as cages for interbody fusion and vertebral body replacement.
Proceedings of condensed papers on alternate energy sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veziroglu, T.N.
1979-01-01
The conference covers the results of research and developments which have taken place during the last 2 years. It includes sessions on solar energy, ocean thermal energy, wind energy, hydro power, nuclear breeders and nuclear fusion, synthetic fuels from coal or waste, hydrogen production and uses. The volume of the Proceedings presents the papers and lectures in condensed format grouped by their subjects under 40 technical sessions. Condensed papers are presented for the 336 presentations; abstracts have previously appeared in the DOE Energy Data Base for 33 of the full-length papers.
Rapid Method for Sodium Hydroxide Fusion of Concrete and ...
Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in concrete and brick samples Method Selected for: SAM lists this method for qualitative analysis of americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.
A solar-hydrogen economy for U.S.A.
NASA Astrophysics Data System (ADS)
Bockris, J. Om.; Veziroglu, T. N.
The benefits, safety, production, distribution, storage, and uses, as well as the economics of a solar and hydrogen based U.S. energy system are described. Tropical and subtropical locations for the generation plants would provide power from photovoltaics, heliostat arrays, OTEC plants, or genetically engineered algae to produce hydrogen by electrolysis, direct thermal conversion, thermochemical reactions, photolysis, or hybrid systems. Either pipelines for gas transport or supertankers for liquefied hydrogen would distribute the fuel, with storage in underground reservoirs, aquifers, and pressurized bladders at sea. The fuel would be distributed to factories, houses, gas stations, and airports. It can be used in combustion engines, gas turbines, and jet engines, and produces water vapor as an exhaust gas. The necessary research effort to define and initiate construction of technically and economically viable solar-hydrogen plants is projected to be 3 yr, while the technical definition of fusion power plants, the other nondepletable energy system, is expected to take 25 yr.
Aghayev, Kamran; Vrionis, Frank D
2013-09-01
The main aim of this paper was to report reproducible method of lumbar spine access via a lateral retroperitoneal route. The authors conducted a retrospective analysis of the technical aspects and clinical outcomes of six patients who underwent lateral multilevel retroperitoneal interbody fusion with psoas muscle retraction technique. The main goal was to develop a simple and reproducible technique to avoid injury to the lumbar plexus. Six patients were operated at 15 levels using psoas muscle retraction technique. All patients reported improvement in back pain and radiculopathy after the surgery. The only procedure-related transient complication was weakness and pain on hip flexion that resolved by the first follow-up visit. Psoas retraction technique is a reliable technique for lateral access to the lumbar spine and may avoid some of the complications related to traditional minimally invasive transpsoas approach.
Technology Area Roadmap for In Space Propulsion Technologies
NASA Technical Reports Server (NTRS)
Johnson, Les; Meyer, Mike; Coote, David; Goebel, Dan; Palaszewski, Bryan; White, Sonny
2010-01-01
This slide presentation reviews the technology area (TA) roadmap to develop propulsion technologies that will be used to enable further exploration of the solar system, and beyond. It is hoped that development of the technologies within this TA will result in technical solutions that will improve thrust levels, specific impulse, power, specific mass, volume, system mass, system complexity, operational complexity, commonality with other spacecraft systems, manufacturability and durability. Some of the propulsion technologies that are reviewed include: chemical and non-chemical propulsion, and advanced propulsion (i.e., those with a Technology Readiness level of less than 3). Examples of these advanced technologies include: Beamed Energy, Electric Sail, Fusion, High Energy Density Materials, Antimatter, Advanced Fission and Breakthrough propulsion technologies. Timeframes for development of some of these propulsion technologies are reviewed, and top technical challenges are reviewed. This roadmap describes a portfolio of in-space propulsion technologies that can meet future space science and exploration needs.
Huang, Meng; Barber, Sean Michael; Steele, William James; Boghani, Zain; Desai, Viren Rajendrakumar; Britz, Gavin Wayne; West, George Alexander; Trask, Todd Wilson; Holman, Paul Joseph
2018-06-01
Image-guided approaches to spinal instrumentation and interbody fusion have been widely popularized in the last decade [1-5]. Navigated pedicle screws are significantly less likely to breach [2, 3, 5, 6]. Navigation otherwise remains a point reference tool because the projection is off-axis to the surgeon's inline loupe or microscope view. The Synaptive robotic brightmatter drive videoexoscope monitor system represents a new paradigm for off-axis high-definition (HD) surgical visualization. It has many advantages over the traditional microscope and loupes, which have already been demonstrated in a cadaveric study [7]. An auxiliary, but powerful capability of this system is projection of a second, modifiable image in a split-screen configuration. We hypothesized that integration of both Medtronic and Synaptive platforms could permit the visualization of reconstructed navigation and surgical field images simultaneously. By utilizing navigated instruments, this configuration has the ability to support live image-guided surgery or real-time navigation (RTN). Medtronic O-arm/Stealth S7 navigation, MetRx, NavLock, and SureTrak spinal systems were implemented on a prone cadaveric specimen with a stream output to the Synaptive Display. Surgical visualization was provided using a Storz Image S1 platform and camera mounted to the Synaptive robotic brightmatter drive. We were able to successfully technically co-adapt both platforms. A minimally invasive transforaminal lumbar interbody fusion (MIS TLIF) and an open pedicle subtraction osteotomy (PSO) were performed using a navigated high-speed drill under RTN. Disc Shaver and Trials under RTN were implemented on the MIS TLIF. The synergy of Synaptive HD videoexoscope robotic drive and Medtronic Stealth platforms allow for live image-guided surgery or real-time navigation (RTN). Off-axis projection also allows upright neutral cervical spine operative ergonomics for the surgeons and improved surgical team visualization and education compared to traditional means. This technique has the potential to augment existing minimally invasive and open approaches, but will require long-term outcome measurements for efficacy.
Scaffold translation: barriers between concept and clinic.
Hollister, Scott J; Murphy, William L
2011-12-01
Translation of scaffold-based bone tissue engineering (BTE) therapies to clinical use remains, bluntly, a failure. This dearth of translated tissue engineering therapies (including scaffolds) remains despite 25 years of research, research funding totaling hundreds of millions of dollars, over 12,000 papers on BTE and over 2000 papers on BTE scaffolds alone in the past 10 years (PubMed search). Enabling scaffold translation requires first an understanding of the challenges, and second, addressing the complete range of these challenges. There are the obvious technical challenges of designing, manufacturing, and functionalizing scaffolds to fill the Form, Fixation, Function, and Formation needs of bone defect repair. However, these technical solutions should be targeted to specific clinical indications (e.g., mandibular defects, spine fusion, long bone defects, etc.). Further, technical solutions should also address business challenges, including the need to obtain regulatory approval, meet specific market needs, and obtain private investment to develop products, again for specific clinical indications. Finally, these business and technical challenges present a much different model than the typical research paradigm, presenting the field with philosophical challenges in terms of publishing and funding priorities that should be addressed as well. In this article, we review in detail the technical, business, and philosophical barriers of translating scaffolds from Concept to Clinic. We argue that envisioning and engineering scaffolds as modular systems with a sliding scale of complexity offers the best path to addressing these translational challenges. © Mary Ann Liebert, Inc.
Faizan, Ahmad; Goel, Vijay K; Biyani, Ashok; Garfin, Steven R; Bono, Christopher M
2012-03-01
Studies delineating the adjacent level effect of single level disc replacement systems have been reported in literature. The aim of this study was to compare the adjacent level biomechanics of bi-level disc replacement, bi-level fusion and a construct having adjoining level disc replacement and fusion system. In total, biomechanics of four models- intact, bi level disc replacement, bi level fusion and fusion plus disc replacement at adjoining levels- was studied to gain insight into the effects of various instrumentation systems on cranial and caudal adjacent levels using finite element analysis (73.6N+varying moment). The bi-level fusion models are more than twice as stiff as compared to the intact model during flexion-extension, lateral bending and axial rotation. Bi-level disc replacement model required moments lower than intact model (1.5Nm). Fusion plus disc replacement model required moment 10-25% more than intact model, except in extension. Adjacent level motions, facet loads and endplate stresses increased substantially in the bi-level fusion model. On the other hand, adjacent level motions, facet loads and endplate stresses were similar to intact for the bi-level disc replacement model. For the fusion plus disc replacement model, adjacent level motions, facet loads and endplate stresses were closer to intact model rather than the bi-level fusion model, except in extension. Based on our finite element analysis, fusion plus disc replacement procedure has less severe biomechanical effects on adjacent levels when compared to bi-level fusion procedure. Bi-level disc replacement procedure did not have any adverse mechanical effects on adjacent levels. Copyright © 2011 Elsevier Ltd. All rights reserved.
Haudenschild, Dominik R.; Wegner, Adam M.; Klineberg, Eric O.
2017-01-01
Study Design: Review of literature. Objectives: This review of literature investigates the application of mesenchymal stem cells (MSCs) in spinal fusion, highlights potential uses in the development of bone grafts, and discusses limitations based on both preclinical and clinical models. Methods: A review of literature was conducted looking at current studies using stem cells for augmentation of spinal fusion in both animal and human models. Results: Eleven preclinical studies were found that used various animal models. Average fusion rates across studies were 59.8% for autograft and 73.7% for stem cell–based grafts. Outcomes included manual palpation and stressing of the fusion, radiography, micro–computed tomography (μCT), and histological analysis. Fifteen clinical studies, 7 prospective and 8 retrospective, were found. Fusion rates ranged from 60% to 100%, averaging 87.1% in experimental groups and 87.2% in autograft control groups. Conclusions: It appears that there is minimal clinical difference between commercially available stem cells and bone marrow aspirates indicating that MSCs may be a good choice in a patient with poor marrow quality. Overcoming morbidity and limitations of autograft for spinal fusion, remains a significant problem for spinal surgeons and further studies are needed to determine the efficacy of stem cells in augmenting spinal fusion. PMID:29238646
Bourantas, Christos V; Jaffer, Farouc A; Gijsen, Frank J; van Soest, Gijs; Madden, Sean P; Courtney, Brian K; Fard, Ali M; Tenekecioglu, Erhan; Zeng, Yaping; van der Steen, Antonius F W; Emelianov, Stanislav; Muller, James; Stone, Peter H; Marcu, Laura; Tearney, Guillermo J; Serruys, Patrick W
2017-02-07
Cumulative evidence from histology-based studies demonstrate that the currently available intravascular imaging techniques have fundamental limitations that do not allow complete and detailed evaluation of plaque morphology and pathobiology, limiting the ability to accurately identify high-risk plaques. To overcome these drawbacks, new efforts are developing for data fusion methodologies and the design of hybrid, dual-probe catheters to enable accurate assessment of plaque characteristics, and reliable identification of high-risk lesions. Today several dual-probe catheters have been introduced including combined near infrared spectroscopy-intravascular ultrasound (NIRS-IVUS), that is already commercially available, IVUS-optical coherence tomography (OCT), the OCT-NIRS, the OCT-near infrared fluorescence (NIRF) molecular imaging, IVUS-NIRF, IVUS intravascular photoacoustic imaging and combined fluorescence lifetime-IVUS imaging. These multimodal approaches appear able to overcome limitations of standalone imaging and provide comprehensive visualization of plaque composition and plaque biology. The aim of this review article is to summarize the advances in hybrid intravascular imaging, discuss the technical challenges that should be addressed in order to have a use in the clinical arena, and present the evidence from their first applications aiming to highlight their potential value in the study of atherosclerosis. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
a Comparative Analysis of Spatiotemporal Data Fusion Models for Landsat and Modis Data
NASA Astrophysics Data System (ADS)
Hazaymeh, K.; Almagbile, A.
2018-04-01
In this study, three documented spatiotemporal data fusion models were applied to Landsat-7 and MODIS surface reflectance, and NDVI. The algorithms included the spatial and temporal adaptive reflectance fusion model (STARFM), sparse representation based on a spatiotemporal reflectance fusion model (SPSTFM), and spatiotemporal image-fusion model (STI-FM). The objectives of this study were to (i) compare the performance of these three fusion models using a one Landsat-MODIS spectral reflectance image pairs using time-series datasets from the Coleambally irrigation area in Australia, and (ii) quantitatively evaluate the accuracy of the synthetic images generated from each fusion model using statistical measurements. Results showed that the three fusion models predicted the synthetic Landsat-7 image with adequate agreements. The STI-FM produced more accurate reconstructions of both Landsat-7 spectral bands and NDVI. Furthermore, it produced surface reflectance images having the highest correlation with the actual Landsat-7 images. This study indicated that STI-FM would be more suitable for spatiotemporal data fusion applications such as vegetation monitoring, drought monitoring, and evapotranspiration.
The Fusion Gain Analysis of the Inductively Driven Liner Compression Based Fusion
NASA Astrophysics Data System (ADS)
Shimazu, Akihisa; Slough, John
2016-10-01
An analytical analysis of the fusion gain expected in the inductively driven liner compression (IDLC) based fusion is conducted to identify the fusion gain scaling at various operating conditions. The fusion based on the IDLC is a magneto-inertial fusion concept, where a Field-Reversed Configuration (FRC) plasmoid is compressed via the inductively-driven metal liner to drive the FRC to fusion conditions. In the past, an approximate scaling law for the expected fusion gain for the IDLC based fusion was obtained under the key assumptions of (1) D-T fuel at 5-40 keV, (2) adiabatic scaling laws for the FRC dynamics, (3) FRC energy dominated by the pressure balance with the edge magnetic field at the peak compression, and (4) the liner dwell time being liner final diameter divided by the peak liner velocity. In this study, various assumptions made in the previous derivation is relaxed to study the change in the fusion gain scaling from the previous result of G ml1 / 2 El11 / 8 , where ml is the liner mass and El is the peak liner kinetic energy. The implication from the modified fusion gain scaling on the performance of the IDLC fusion reactor system is also explored.
The transition zone above a lumbosacral fusion.
Hambly, M F; Wiltse, L L; Raghavan, N; Schneiderman, G; Koenig, C
1998-08-15
The clinical and radiographic effect of a lumbar or lumbosacral fusion was studied in 42 patients who had undergone a posterolateral fusion with an average follow-up of 22.6 years. To examine the long-term effects of posterolateral lumbar or lumbosacral fusion on the cephalad two motion segments (transition zone). It is commonly held that accelerated degeneration occurs in the motion segments adjacent to a fusion. Most studies are of short-term, anecdotal, uncontrolled reports that pay particular attention only to the first motion segment immediately cephalad to the fusion. Forty-two patients who had previously undergone a posterolateral lumbar or lumbosacral fusion underwent radiographic and clinical evaluation. Rate of fusion, range of motion, osteophytes, degenerative spondylolisthesis, retrolisthesis, facet arthrosis, disc ossification, dynamic instability, and disc space height were all studied and statistically compared with an age- and gender-matched control group. The patient's self-reported clinical outcome was also recorded. Degenerative changes occurred at the second level above the fused levels with a frequency equal to those occurring in the first level. There was no statistical difference between the study group and the cohort group in the presence of radiographic changes within the transition zone. In those patients undergoing fusion for degenerative processes, 75% reported a good to excellent outcome, whereas 84% of those undergoing fusion for spondylolysis or spondylolisthesis reported a good to excellent outcome. Radiographic changes occur within the transition zone cephalad to a lumbar or lumbosacral fusion. However, these changes are also seen in control subjects who have had no surgery.
Laser-induced fusion of human embryonic stem cells with optical tweezers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Shuxun; Wang Xiaolin; Sun Dong
2013-07-15
We report a study on the laser-induced fusion of human embryonic stem cells (hESCs) at the single-cell level. Cells were manipulated by optical tweezers and fused under irradiation with pulsed UV laser at 355 nm. Successful fusion was indicated by green fluorescence protein transfer. The influence of laser pulse energy on the fusion efficiency was investigated. The fused products were viable as gauged by live cell staining. Successful fusion of hESCs with somatic cells was also demonstrated. The reported fusion outcome may facilitate studies of cell differentiation, maturation, and reprogramming.
Zhong, Shan; Zhang, Haiping; Bai, Dongyu; Gao, Dehong; Zheng, Jie; Ding, Yi
2015-09-01
To study the prevalence of ALK, ROS1 and RET fusion genes in non-small cell lung cancer (NSCLC), and its correlation with clinicopathologic features. Formalin-fixed and paraffin-embedded tissue sections from samples of 302 patients with NSCLC were screened for ALK, ROS1, RET fusions by real-time polymerase chain reaction (PCR). All of the cases were validated by Sanger DNA sequencing. The relationship between ALK, ROS1, RET fusion genes and clinicopathologic features were analyzed. In the cohort of 302 NSCLC samples, 3.97% (12/302) were found to contain ALK fusion genes, including 3 cases with E13; A20 gene fusion, 3 cases with E6; A20 gene fusion and 3 cases with E20; A20 gene fusion. There was no statistically significant difference in patient's gender, age, smoking history and histologic type. Moreover, in the 302 NSCLC samples studied, 3.97% (12/302) were found to contain ROS1 fusion genes, with CD74-ROS1 fusion identified in 9 cases. There was no statistically significant difference in patients' gender, age, smoking history and histologic type. One non-smoking elderly female patient with pulmonary adenocarcinoma had RET gene fusion. None of the cases studied had concurrent ALK, ROS1 and RET mutations. The ALK, ROS1 and RET fusion gene mutation rates in NSCLC are low, they represent some specific molecular subtypes of NSCLC. Genetic testing has significant meaning to guide clinical targeted therapy.
Sagl, Günther; Resch, Bernd; Blaschke, Thomas
2015-01-01
In this article we critically discuss the challenge of integrating contextual information, in particular spatiotemporal contextual information, with human and technical sensor information, which we approach from a geospatial perspective. We start by highlighting the significance of context in general and spatiotemporal context in particular and introduce a smart city model of interactions between humans, the environment, and technology, with context at the common interface. We then focus on both the intentional and the unintentional sensing capabilities of today’s technologies and discuss current technological trends that we consider have the ability to enrich human and technical geo-sensor information with contextual detail. The different types of sensors used to collect contextual information are analyzed and sorted into three groups on the basis of names considering frequently used related terms, and characteristic contextual parameters. These three groups, namely technical in situ sensors, technical remote sensors, and human sensors are analyzed and linked to three dimensions involved in sensing (data generation, geographic phenomena, and type of sensing). In contrast to other scientific publications, we found a large number of technologies and applications using in situ and mobile technical sensors within the context of smart cities, and surprisingly limited use of remote sensing approaches. In this article we further provide a critical discussion of possible impacts and influences of both technical and human sensing approaches on society, pointing out that a larger number of sensors, increased fusion of information, and the use of standardized data formats and interfaces will not necessarily result in any improvement in the quality of life of the citizens of a smart city. This article seeks to improve our understanding of technical and human geo-sensing capabilities, and to demonstrate that the use of such sensors can facilitate the integration of different types of contextual information, thus providing an additional, namely the geo-spatial perspective on the future development of smart cities. PMID:26184221
Sagl, Günther; Resch, Bernd; Blaschke, Thomas
2015-07-14
In this article we critically discuss the challenge of integrating contextual information, in particular spatiotemporal contextual information, with human and technical sensor information, which we approach from a geospatial perspective. We start by highlighting the significance of context in general and spatiotemporal context in particular and introduce a smart city model of interactions between humans, the environment, and technology, with context at the common interface. We then focus on both the intentional and the unintentional sensing capabilities of today's technologies and discuss current technological trends that we consider have the ability to enrich human and technical geo-sensor information with contextual detail. The different types of sensors used to collect contextual information are analyzed and sorted into three groups on the basis of names considering frequently used related terms, and characteristic contextual parameters. These three groups, namely technical in situ sensors, technical remote sensors, and human sensors are analyzed and linked to three dimensions involved in sensing (data generation, geographic phenomena, and type of sensing). In contrast to other scientific publications, we found a large number of technologies and applications using in situ and mobile technical sensors within the context of smart cities, and surprisingly limited use of remote sensing approaches. In this article we further provide a critical discussion of possible impacts and influences of both technical and human sensing approaches on society, pointing out that a larger number of sensors, increased fusion of information, and the use of standardized data formats and interfaces will not necessarily result in any improvement in the quality of life of the citizens of a smart city. This article seeks to improve our understanding of technical and human geo-sensing capabilities, and to demonstrate that the use of such sensors can facilitate the integration of different types of contextual information, thus providing an additional, namely the geo-spatial perspective on the future development of smart cities.
Myoblast fusion: lessons from flies and mice
Abmayr, Susan M.; Pavlath, Grace K.
2012-01-01
The fusion of myoblasts into multinucleate syncytia plays a fundamental role in muscle function, as it supports the formation of extended sarcomeric arrays, or myofibrils, within a large volume of cytoplasm. Principles learned from the study of myoblast fusion not only enhance our understanding of myogenesis, but also contribute to our perspectives on membrane fusion and cell-cell fusion in a wide array of model organisms and experimental systems. Recent studies have advanced our views of the cell biological processes and crucial proteins that drive myoblast fusion. Here, we provide an overview of myoblast fusion in three model systems that have contributed much to our understanding of these events: the Drosophila embryo; developing and regenerating mouse muscle; and cultured rodent muscle cells. PMID:22274696
Neutronics Comparison Analysis of the Water Cooled Ceramics Breeding Blanket for CFETR
NASA Astrophysics Data System (ADS)
Li, Jia; Zhang, Xiaokang; Gao, Fangfang; Pu, Yong
2016-02-01
China Fusion Engineering Test Reactor (CFETR) is an ITER-like fusion engineering test reactor that is intended to fill the scientific and technical gaps between ITER and DEMO. One of the main missions of CFETR is to achieve a tritium breeding ratio that is no less than 1.2 to ensure tritium self-sufficiency. A concept design for a water cooled ceramics breeding blanket (WCCB) is presented based on a scheme with the breeder and the multiplier located in separate panels for CFETR. Based on this concept, a one-dimensional (1D) radial built breeding blanket was first designed, and then several three-dimensional models were developed with various neutron source definitions and breeding blanket module arrangements based on the 1D radial build. A set of nuclear analyses have been carried out to compare the differences in neutronics characteristics given by different calculation models, addressing neutron wall loading (NWL), tritium breeding ratio (TBR), fast neutron flux on inboard side and nuclear heating deposition on main in-vessel components. The impact of differences in modeling on the nuclear performance has been analyzed and summarized regarding the WCCB concept design. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy (Nos. 2013GB108004, 2014GB122000, and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)
Large Energy Development Projects: Lessons Learned from Space and Politics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitt, Harrison H.
2005-04-15
The challenge to global energy future lies in meeting the needs and aspirations of the ten to twelve billion earthlings that will be on this planet by 2050. At least an eight-fold increase in annual production will be required by the middle of this century. The energy sources that can be considered developed and 'in the box' for consideration as sources for major increases in supply over the next half century are fossil fuels, nuclear fission, and, to a lesser degree, various forms of direct and stored solar energy and conservation. None of these near-term sources of energy will providemore » an eight-fold or more increase in energy supply for various technical, environmental and political reasons.Only a few potential energy sources that fall 'out of the box' appear worthy of additional consideration as possible contributors to energy demand in 2050 and beyond. These particular candidates are deuterium-tritium fusion, space solar energy, and lunar helium-3 fusion. The primary advantage that lunar helium-3 fusion will have over other 'out of the box' energy sources in the pre-2050 timeframe is a clear path into the private capital markets. The development and demonstration of new energy sources will require several development paths, each of Apollo-like complexity and each with sub-paths of parallel development for critical functions and components.« less
Rieger, Bernhard; Jiang, Hongzhen; Ruess, Daniel; Reinshagen, Clemens; Molcanyi, Marek; Zivcak, Jozef; Tong, Huaiyu; Schackert, Gabriele
2017-12-01
First description of MIS-VLIF, a minimally invasive lumbar stabilization, to evaluate its safety and feasibility in patients suffering from weak bony conditions (lumbar spondylodiscitis and/or osteoporosis). After informed consent, 12 patients suffering from lumbar spondylodiscitis underwent single level MIS-VLIF. Eight of them had a manifest osteoporosis, either. Pre- and postoperative clinical status was documented using numeric rating scale (NRS) for leg and back pain. In all cases, the optimal height for the cage was preoperatively determined using software-based range of motion and sagittal balance analysis. CT scans were obtained to evaluate correct placement of the construct and to verify fusion after 6 months. Since 2013, 12 patients with lumbar pyogenic spondylodiscitis underwent MIS-VLIF. Mean surgery time was 169 ± 28 min and average blood loss was less than 400 ml. Postoperative CT scans showed correct placement of the implants. Eleven patients showed considerable postoperative improvement in clinical scores. In one patient, we observed screw loosening. After documented bony fusion in the CT scan, the fixation system was removed in two cases to achieve lower material load. The load-bearing trajectories (vectors) of MIS-VLIF are different from those of conventional coaxial pedicle screw implantation. The dorsally converging construct combines the heads of the dorsoventral pedicle screws with laminar pedicle screws following cortical bone structures within a small approach. In case of lumbar spondylodiscitis and/or osteoporosis, MIS-VLIF relies on cortical bony structures for all screw vectors and the construct does not depend on conventional coaxial pedicle screws in the presence of inflamed, weak, cancellous or osteoporotic bone. MIS-VLIF allows full 360° lumbar fusion including cage implantation via a small, unilateral dorsal midline approach.
Shigematsu, Hideki; Cheung, Jason Pui Yin; Bruzzone, Mauro; Matsumori, Hiroaki; Mak, Kin-Cheung; Samartzis, Dino; Luk, Keith Dip Kei
2017-05-01
Surgery for adolescent idiopathic scoliosis (AIS) is only complete after achieving fusion to maintain the correction obtained intraoperatively. The instrumented or fused segments can be referred to as the "fusion mass". In patients with AIS, the ideal fusion mass strategy has been established based on fulcrum-bending radiographs for main thoracic curves. Ideally, the fusion mass should achieve parallel endplates of the upper and lower instrumented vertebra and correct any "shift" for truncal balance. Distal adding-on is an important element to consider in AIS surgery. This phenomenon represents a progressive increase in the number of vertebrae included distally in the primary curvature and it should be avoided as it is associated with unsatisfactory cosmesis and an increased risk of revision surgery. However, it remains unknown whether any fusion mass shift, or shift in the fusion mass or instrumented segments, affects global spinal balance and distal adding-on after curve correction surgery in patients with AIS. (1) To investigate the relationship among postoperative fusion mass shift, global balance, and distal adding-on phenomenon in patients with AIS; and (2) to identify a cutoff value of fusion mass shift that will lead to distal adding-on. This was a retrospective study of patients with AIS from a single institution. Between 2006 and 2011 we performed 69 selective thoracic fusions for patients with main thoracic AIS. All patients were evaluated preoperatively and at 2 years postoperatively. The Cobb angle between the cranial and caudal endplates of the fusion mass and the coronal shift between them, which was defined as "fusion mass shift", were measured. Patients with a fusion mass Cobb angle greater than 20° were excluded to specifically determine the effect of fusion mass shift on distal adding-on phenomenon. Fusion mass shift was empirically set as 20 mm for analysis. Therefore, of the 69 patients who underwent selective thoracic fusion, only 52 with a fusion mass Cobb angle of 20° or less were recruited for study. We defined patients with a fusion mass shift of 20 mm or less as the balanced group and those with a fusion mass shift greater than 20 mm as the unbalanced group. A receiver operating characteristic (ROC) curve was used to determine the cutoff point of fusion mass shift for adding-on. Of the 52 patients studied, fusion mass shift (> 20 mm) was noted in 11 (21%), and six of those patients had distal adding-on at final followup. Although global spinal balance did not differ significantly between patients with or without fusion mass shift, the occurrence of adding-on phenomenon was significantly higher in the unbalanced group (55% (six of 11 patients), odds ratio [OR], 8.6; 95% CI, 2-39; p < 0.002) than the balanced group (12% [five of 41 patients]). Based on the ROC curve analysis, a fusion mass shift more than 18 mm was observed as the cutoff point for distal adding-on phenomenon (area under the curve, 0.70; 95% CI, 0.5-0.9; likelihood ratio, 5.0; sensitivity, 0.64; specificity, 0.73; positive predictive value, 39% [seven of 18 patients]; negative predictive value, 88% [30 of 34 patients]; OR, 4.8; 95% CI, 1-20; p = 0.02). Our study illustrates the substantial utility of the fulcrum-bending radiograph in determining fusion levels that can avoid fusion mass shift; thereby, underlining its importance in designing personalized surgical strategies for patients with scoliosis. Preoperatively, determining fusion levels by fulcrum-bending radiographs to avoid residual fusion mass shift is imperative. Intraoperatively, any fusion mass shift should be corrected to avoid distal adding-on, reoperation, and elevated healthcare costs. Level II, prognostic study.
NASA Astrophysics Data System (ADS)
Gasior, P.
2014-11-01
Since the process of energy production in the stars has been identified as the thermonuclear fusion, this mechanism has been proclaimed as a future, extremely modern, reliable and safe for sustaining energetic needs of the humankind. However, the idea itself was rather straightforward and the first attempts to harness thermonuclear reactions have been taken yet in 40s of the twentieth century, it quickly appeared that physical and technical problems of domesticating exotic high temperature medium known as plasma are far from being trivial. Though technical developments as lasers, superconductors or advanced semiconductor electronics and computers gave significant contribution for the development of the thermonuclear fusion reactors, for a very long time their efficient performance was out of reach of technology. Years of the scientific progress brought the conclusions that for the development of the thermonuclear power plants an enormous interdisciplinary effort is needed in many fields of science covering not only plasma physics but also material research, superconductors, lasers, advanced diagnostic systems (e.g. spectroscopy, interferometry, scattering techniques, etc.) with huge amounts of data to be processed, cryogenics, measurement-control systems, automatics, robotics, nanotechnology, etc. Due to the sophistication of the problems with plasma control and plasma material interactions only such a combination of the research effort can give a positive output which can assure the energy needs of our civilization. In this paper the problems of thermonuclear technology are briefly outlined and it is shown why this domain can be a broad field for the experts dealing with electronics, optoelectronics, programming and numerical simulations, who at first glance can have nothing common with the plasma or nuclear physics.
Autograft versus Allograft for Cervical Spinal Fusion
Brodke, Darrel S.; Youssef, Jim A.; Meisel, Hans-Jörg; Dettori, Joseph R.; Park, Jong-Beom; Yoon, S. Tim; Wang, Jeffrey C.
2017-01-01
Study Design Systematic review. Objective To compare the effectiveness and safety between iliac crest bone graft (ICBG), non-ICBG autologous bone, and allograft in cervical spine fusion. To avoid problems at the donor site, various allograft materials have been used as a substitute for autograft. However, there are still questions as to the comparative effectiveness and safety of cadaver allograft compared with autologous ICBG. Methods A systematic search of multiple major medical reference databases was conducted to identify studies evaluating spinal fusion in patients with cervical degenerative disk disease using ICBG compared with non-ICBG autograft or allograft or non-ICBG autograft compared with allograft in the cervical spine. Radiographic fusion, patient-reported outcomes, and functional outcomes were the primary outcomes of interest. Adverse events were evaluated for safety. Results The search identified 13 comparative studies that met our inclusion criteria: 2 prospective cohort studies and 11 retrospective cohort studies. Twelve cohort studies compared allograft with ICBG autograft during anterior cervical fusion and demonstrated with a low evidence level of support that there are no differences in fusion percentages, pain scores, or functional results. There was insufficient evidence comparing patients receiving allograft with non-ICBG autograft for fusion, pain, revision, and functional and safety outcomes. No publications directly comparing non-ICBG autograft with ICBG were found. Conclusion Although the available literature suggests ICBG and allograft may have similar effectiveness in terms of fusion rates, pain scores, and functional outcomes following anterior cervical fusion, there are too many limitations in the available literature to draw any significant conclusions. No individual study provided greater than class III evidence, and when evaluating the overall body of literature, no conclusion had better than low evidence support. A prospective randomized trial with adequate sample size to compare fusion rates, efficacy measures, costs, and safety is warranted. PMID:28451511
Djan, Igor; Petrović, Borislava; Erak, Marko; Nikolić, Ivan; Lucić, Silvija
2013-08-01
Development of imaging techniques, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), made great impact on radiotherapy treatment planning by improving the localization of target volumes. Improved localization allows better local control of tumor volumes, but also minimizes geographical misses. Mutual information is obtained by registration and fusion of images achieved manually or automatically. The aim of this study was to validate the CT-MRI image fusion method and compare delineation obtained by CT versus CT-MRI image fusion. The image fusion software (XIO CMS 4.50.0) was applied to delineate 16 patients. The patients were scanned on CT and MRI in the treatment position within an immobilization device before the initial treatment. The gross tumor volume (GTV) and clinical target volume (CTV) were delineated on CT alone and on CT+MRI images consecutively and image fusion was obtained. Image fusion showed that CTV delineated on a CT image study set is mainly inadequate for treatment planning, in comparison with CTV delineated on CT-MRI fused image study set. Fusion of different modalities enables the most accurate target volume delineation. This study shows that registration and image fusion allows precise target localization in terms of GTV and CTV and local disease control.
A New Approach to Image Fusion Based on Cokriging
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; LeMoigne, Jacqueline; Mount, David M.; Morisette, Jeffrey T.
2005-01-01
We consider the image fusion problem involving remotely sensed data. We introduce cokriging as a method to perform fusion. We investigate the advantages of fusing Hyperion with ALI. The evaluation is performed by comparing the classification of the fused data with that of input images and by calculating well-chosen quantitative fusion quality metrics. We consider the Invasive Species Forecasting System (ISFS) project as our fusion application. The fusion of ALI with Hyperion data is studies using PCA and wavelet-based fusion. We then propose utilizing a geostatistical based interpolation method called cokriging as a new approach for image fusion.
Association of insurance status and spinal fusion usage in the United States during two decades.
John, Jason; Mirahmadizadeh, Alireza; Seifi, Ali
2018-05-01
This study examined the distribution of spinal fusion usage among payer groups in the United States. Using the National Inpatient Sample (NIS) database, total discharges, length of stay, and mean hospital charges of patients who underwent spinal fusion from 1997 to 2014 in the United States were determined and analyzed. 5,715,625 total discharges with spinal fusion were reported. Among them, 2,875,188 (50.3%) were covered by private insurance, 1,710,182 by Medicare (29.9%), 342,638 (6.0%) by Medicaid, and 91,990 (1.6%) were uninsured. A statistically significant increase in spinal fusion usage occurred within each payer group over the study period (P < 0.001). For every year of the study period, private insurance patients had the most number and uninsured patients had the least number of total discharges with spinal fusion. Furthermore, annual growth in spinal fusion usage was greatest among private insurance patients, and smallest among uninsured patients. Total discharges with spinal fusion increased significantly across all payer groups between 1997 and 2014, but not equally. Further inquiry is indicated to determine the etiology of spinal fusion usage discrepancies between payer groups. Copyright © 2018 Elsevier Ltd. All rights reserved.
Comprehensive characterization of RSPO fusions in colorectal traditional serrated adenomas.
Sekine, Shigeki; Ogawa, Reiko; Hashimoto, Taiki; Motohiro, Kojima; Yoshida, Hiroshi; Taniguchi, Hirokazu; Saito, Yutaka; Yasuhiro, Ohno; Ochiai, Atsushi; Hiraoka, Nobuyoshi
2017-10-01
Traditional serrated adenoma (TSA) is a rare but distinct type of colorectal polyp. Our previous study showed that PTPRK-RSPO3 fusions are frequent and characteristic genetic alterations in TSAs. This study aimed to characterize comprehensively the prevalence and variability of RSPO fusions in colorectal TSAs. We examined RSPO expression and explored novel RSPO fusions in 129 TSAs, including 66 lesions analysed previously for WNT pathway gene mutations. Quantitative polymerase chain reaction (qPCR) analyses identified three and 43 TSAs overexpressing RSPO2 and RSPO3, respectively, whereas the expression of RSPO1 and RSPO4 was marginal or undetectable in all cases. RSPO overexpression was always mutually exclusive with other WNT pathway gene mutations. Known PTPRK-RSPO3 fusions were detected in 37 TSAs, all but one of which overexpressed RSPO3. In addition, rapid amplification of cDNA ends revealed three novel RSPO fusion transcripts, an NRIP1-RSPO2 fusion and two PTPRK-RSPO3 fusion isoforms, in six TSAs. Overall, 43 TSAs had RSPO fusions (33%), whereas four TSAs (3%) overexpressed RSPO in the absence of RSPO fusions. TSAs with RSPO fusions showed several clinicopathological features, including distal localization (P = 0.0063), larger size (P = 0.0055), prominent ectopic crypt foci (P = 8.4 × 10 -4 ), association of a high-grade component (P = 1.1 × 10 -4 ), and the presence of KRAS mutations (P = 4.5 × 10 -5 ). The present study identified RSPO fusion transcripts, including three novel transcripts, in one-third of colorectal TSAs and showed that PTPRK-RSPO3 fusions were the predominant cause of RSPO overexpression in colorectal TSA. © 2017 John Wiley & Sons Ltd.
Bao, Zhao-Shi; Chen, Hui-Min; Yang, Ming-Yu; Zhang, Chuan-Bao; Yu, Kai; Ye, Wan-Lu; Hu, Bo-Qiang; Yan, Wei; Zhang, Wei; Akers, Johnny; Ramakrishnan, Valya; Li, Jie; Carter, Bob; Liu, Yan-Wei; Hu, Hui-Min; Wang, Zheng; Li, Ming-Yang; Yao, Kun; Qiu, Xiao-Guang; Kang, Chun-Sheng; You, Yong-Ping; Fan, Xiao-Long; Song, Wei Sonya; Li, Rui-Qiang; Su, Xiao-Dong; Chen, Clark C; Jiang, Tao
2014-11-01
Studies of gene rearrangements and the consequent oncogenic fusion proteins have laid the foundation for targeted cancer therapy. To identify oncogenic fusions associated with glioma progression, we catalogued fusion transcripts by RNA-seq of 272 gliomas. Fusion transcripts were more frequently found in high-grade gliomas, in the classical subtype of gliomas, and in gliomas treated with radiation/temozolomide. Sixty-seven in-frame fusion transcripts were identified, including three recurrent fusion transcripts: FGFR3-TACC3, RNF213-SLC26A11, and PTPRZ1-MET (ZM). Interestingly, the ZM fusion was found only in grade III astrocytomas (1/13; 7.7%) or secondary GBMs (sGBMs, 3/20; 15.0%). In an independent cohort of sGBMs, the ZM fusion was found in three of 20 (15%) specimens. Genomic analysis revealed that the fusion arose from translocation events involving introns 3 or 8 of PTPRZ and intron 1 of MET. ZM fusion transcripts were found in GBMs irrespective of isocitrate dehydrogenase 1 (IDH1) mutation status. sGBMs harboring ZM fusion showed higher expression of genes required for PIK3CA signaling and lowered expression of genes that suppressed RB1 or TP53 function. Expression of the ZM fusion was mutually exclusive with EGFR overexpression in sGBMs. Exogenous expression of the ZM fusion in the U87MG glioblastoma line enhanced cell migration and invasion. Clinically, patients afflicted with ZM fusion harboring glioblastomas survived poorly relative to those afflicted with non-ZM-harboring sGBMs (P < 0.001). Our study profiles the shifting RNA landscape of gliomas during progression and reveled ZM as a novel, recurrent fusion transcript in sGBMs. © 2014 Bao et al.; Published by Cold Spring Harbor Laboratory Press.
Bao, Zhao-Shi; Yang, Ming-Yu; Zhang, Chuan-Bao; Yu, Kai; Ye, Wan-Lu; Hu, Bo-Qiang; Yan, Wei; Zhang, Wei; Akers, Johnny; Ramakrishnan, Valya; Li, Jie; Carter, Bob; Liu, Yan-Wei; Hu, Hui-Min; Wang, Zheng; Li, Ming-Yang; Yao, Kun; Qiu, Xiao-Guang; Kang, Chun-Sheng; You, Yong-Ping; Fan, Xiao-Long; Song, Wei Sonya; Li, Rui-Qiang
2014-01-01
Studies of gene rearrangements and the consequent oncogenic fusion proteins have laid the foundation for targeted cancer therapy. To identify oncogenic fusions associated with glioma progression, we catalogued fusion transcripts by RNA-seq of 272 gliomas. Fusion transcripts were more frequently found in high-grade gliomas, in the classical subtype of gliomas, and in gliomas treated with radiation/temozolomide. Sixty-seven in-frame fusion transcripts were identified, including three recurrent fusion transcripts: FGFR3-TACC3, RNF213-SLC26A11, and PTPRZ1-MET (ZM). Interestingly, the ZM fusion was found only in grade III astrocytomas (1/13; 7.7%) or secondary GBMs (sGBMs, 3/20; 15.0%). In an independent cohort of sGBMs, the ZM fusion was found in three of 20 (15%) specimens. Genomic analysis revealed that the fusion arose from translocation events involving introns 3 or 8 of PTPRZ and intron 1 of MET. ZM fusion transcripts were found in GBMs irrespective of isocitrate dehydrogenase 1 (IDH1) mutation status. sGBMs harboring ZM fusion showed higher expression of genes required for PIK3CA signaling and lowered expression of genes that suppressed RB1 or TP53 function. Expression of the ZM fusion was mutually exclusive with EGFR overexpression in sGBMs. Exogenous expression of the ZM fusion in the U87MG glioblastoma line enhanced cell migration and invasion. Clinically, patients afflicted with ZM fusion harboring glioblastomas survived poorly relative to those afflicted with non-ZM-harboring sGBMs (P < 0.001). Our study profiles the shifting RNA landscape of gliomas during progression and reveled ZM as a novel, recurrent fusion transcript in sGBMs. PMID:25135958
Izumida, Mai; Kamiyama, Haruka; Suematsu, Takashi; Honda, Eri; Koizumi, Yosuke; Yasui, Kiyoshi; Hayashi, Hideki; Ariyoshi, Koya; Kubo, Yoshinao
2016-01-01
Retroviruses enter into host cells by fusion between viral and host cell membranes. Retroviral envelope glycoprotein (Env) induces the membrane fusion, and also mediates cell-cell fusion. There are two types of cell-cell fusions induced by the Env protein. Fusion-from-within is induced by fusion between viral fusogenic Env protein-expressing cells and susceptible cells, and virions induce fusion-from-without by fusion between adjacent cells. Although entry of ecotropic murine leukemia virus (E-MLV) requires host cell endocytosis, the involvement of endocytosis in cell fusion is unclear. By fluorescent microscopic analysis of the fusion-from-within, we found that fragments of target cells are internalized into Env-expressing cells. Treatment of the Env-expressing cells with an endocytosis inhibitor more significantly inhibited the cell fusion than that of the target cells, indicating that endocytosis in Env-expressing cells is required for the cell fusion. The endocytosis inhibitor also attenuated the fusion-from-without. Electron microscopic analysis suggested that the membrane fusion resulting in fusion-from-within initiates in endocytic membrane dents. This study shows that two types of the viral cell fusion both require endocytosis, and provides the cascade of fusion-from-within. PMID:26834711
Autograft versus Allograft for Cervical Spinal Fusion: A Systematic Review.
Tuchman, Alexander; Brodke, Darrel S; Youssef, Jim A; Meisel, Hans-Jörg; Dettori, Joseph R; Park, Jong-Beom; Yoon, S Tim; Wang, Jeffrey C
2017-02-01
Systematic review. To compare the effectiveness and safety between iliac crest bone graft (ICBG), non-ICBG autologous bone, and allograft in cervical spine fusion. To avoid problems at the donor site, various allograft materials have been used as a substitute for autograft. However, there are still questions as to the comparative effectiveness and safety of cadaver allograft compared with autologous ICBG. A systematic search of multiple major medical reference databases was conducted to identify studies evaluating spinal fusion in patients with cervical degenerative disk disease using ICBG compared with non-ICBG autograft or allograft or non-ICBG autograft compared with allograft in the cervical spine. Radiographic fusion, patient-reported outcomes, and functional outcomes were the primary outcomes of interest. Adverse events were evaluated for safety. The search identified 13 comparative studies that met our inclusion criteria: 2 prospective cohort studies and 11 retrospective cohort studies. Twelve cohort studies compared allograft with ICBG autograft during anterior cervical fusion and demonstrated with a low evidence level of support that there are no differences in fusion percentages, pain scores, or functional results. There was insufficient evidence comparing patients receiving allograft with non-ICBG autograft for fusion, pain, revision, and functional and safety outcomes. No publications directly comparing non-ICBG autograft with ICBG were found. Although the available literature suggests ICBG and allograft may have similar effectiveness in terms of fusion rates, pain scores, and functional outcomes following anterior cervical fusion, there are too many limitations in the available literature to draw any significant conclusions. No individual study provided greater than class III evidence, and when evaluating the overall body of literature, no conclusion had better than low evidence support. A prospective randomized trial with adequate sample size to compare fusion rates, efficacy measures, costs, and safety is warranted.
1992-02-01
Feasibility studies Of dense plasma focus (DPF) device as a fusion propulsion thruster have been performed. Both conventional and spin-polarized D...uncertainties remain in the validity of scaling laws on capacitor mass at high current beyond 1 MA. Fusion Propulsion, Dense Plasma Focus , Magnetoplasmadynamic Thruster, Advanced Fuel, D-3He Fusion, Spin-Polarized Fusion.
Helium Find Thaws the Cold Fusion Trail.
ERIC Educational Resources Information Center
Pennisi, E.
1991-01-01
Reported is a study of cold fusion in which trace amounts of helium, possible evidence of an actual fusion reaction, were found. Research methodology is detailed. The controversy over the validity of experimental results with cold fusion are reviewed. (CW)
Myomaker is a membrane activator of myoblast fusion and muscle formation.
Millay, Douglas P; O'Rourke, Jason R; Sutherland, Lillian B; Bezprozvannaya, Svetlana; Shelton, John M; Bassel-Duby, Rhonda; Olson, Eric N
2013-07-18
Fusion of myoblasts is essential for the formation of multi-nucleated muscle fibres. However, the identity of muscle-specific proteins that directly govern this fusion process in mammals has remained elusive. Here we identify a muscle-specific membrane protein, named myomaker, that controls myoblast fusion. Myomaker is expressed on the cell surface of myoblasts during fusion and is downregulated thereafter. Overexpression of myomaker in myoblasts markedly enhances fusion, and genetic disruption of myomaker in mice causes perinatal death due to an absence of multi-nucleated muscle fibres. Remarkably, forced expression of myomaker in fibroblasts promotes fusion with myoblasts, demonstrating the direct participation of this protein in the fusion process. Pharmacological perturbation of the actin cytoskeleton abolishes the activity of myomaker, consistent with previous studies implicating actin dynamics in myoblast fusion. These findings reveal a long-sought myogenic fusion protein that controls mammalian myoblast fusion and provide new insights into the molecular underpinnings of muscle formation.
Christensen, Finn Bjarke
2004-10-01
Chronic low back pain (CLBP) has become one of the most common causes of disability in adults under 45 years of age and is consequently one of the most common reasons for early retirement in industrialised societies. Accordingly, CLBP represents an expensive drain on society's resources and is a very challenging area for which a consensus for rational therapy is yet to be established. The spinal fusion procedure was introduced as a treatment option for CLBP more than 70 years ago. However, few areas of spinal surgery have caused so much controversy as spinal fusion. The literature reveals divergent opinions about when fusion is indicated and how it should be performed. Furthermore, the significance of the role of postoperative rehabilitation following spinal fusion may be underestimated. There exists no consensus on the design of a program specific for rehabilitation. Ideally, for any given surgical procedure, it should be possible to identify not only possible complications relative to a surgical procedure, but also what symptoms may be expected, and what pain behaviour may be expected of a particular patient. The overall aims of the current studies were: 1) to introduce patient-based functional outcome evaluation into spinal fusion treatment; 2) to evaluate radiological assessment of different spinal fusion procedures; 3) to investigate the effect of titanium versus stainless steel pedicle screws on mechanical fixation and bone ingrowth in lumbar spinal fusion; 4) to analyse the clinical and radiological outcome of different lumbar spinal fusion techniques; 5) to evaluate complications and re-operation rates following different surgical procedures; and 6) to analyse the effect of different rehabilitation strategies for lumbar spinal fusion patients. The present thesis comprises 9 studies: 2 clinical retrospective studies, 1 clinical prospective case/reference study, 5 clinical randomised prospective studies and 1 animal study (Mini-pigs). In total, 594 patients were included in the investigation from 1979 to 1999. Each had prior to inclusion at least 2 years of CLBP and had therefore been subjected to most of the conservative treatment leg pain, due to localized isthmic spondylolisthesis grades I-II or primary or secondary degeneration. PATIENT-BASED FUNCTIONAL OUTCOME: Patients' self-reported parameters should include the impact of CLBP on daily activity, work and leisure time activities, anxiety/depression, social interests and intensity of back and leg pain. Between 1993 and 2003 approximately 1400 lumbar spinal fusion patients completed the Dallas Pain Questionnaire under prospective design studies. In 1996, the Low Back Pain Rating scale was added to the standard questionnaire packet distributed among spinal fusion patients. In our experience, these tools are valid instruments for clinical assessment of candidates for spinal fusion procedures. It is extremely difficult to interpret radiographs of both lumbar posterolateral fusion and anterior interbody fusion. Plain radiographs are clearly not the perfect media for analysis of spinal fusion, but until new and better diagnostic methods are available for clinical use, radiographs will remain the golden standard. Therefore, the development of a detailed reliable radiographic classification system is highly desirable. The classification used in the present thesis for the evaluation of posteroalteral spinal fusion, both with and without instrumentation, demonstrated good interobserver and intraobserver agreement. The classification showed acceptable reliability and may be one way to improve interstudy and intrastudy correlation of radiologic outcomes after posterolateral spinal fusion. Radiology-based evaluation of anterior lumbar interbody fusion is further complicated when cages are employed. The use of different cage designs and materials makes it almost impossible to establish a standard radiological classification system for anterior fusions. BONE-SCREW INTERFACE: Mechanical binding at the bone-screw interface was significantly greater for titanium pedicle screws than it was for stainless steel. This could be explained by the fact that the titanium screws had superior bone on-growth. There was no correlation between screw removal torques and pull-out strength. Clinically, the use of titanium and titanium-alloy pedicle screws may be preferable for osteoporotic patients and those with decreased osteogenesis. The present series of studies observed significant long-term functional improvement for approximately 70% of patients who had undergone lumbar spinal fusion procedure. Solid fusion as determined from radiographs ranged from 52% to 92% depending on the choice of surgical procedure. The choice of surgical procedure should relate to the diagnosis, as patients with isthmic spondylolisthesis (Grades I and II) are best served with posterolateral fusion without instrumentation, and patients with disc degeneration seem to gain most from instrumented posterolateral fusion or circumferential fusion. The number of perioperative complications increased with the use of pedicle screw systems to support posterolateral fusions and increased further with the use of circumferential fusions. There was no significant association between outcome result and perioperative complications. The risk of reoperation within 2 years after the spinal fusion procedure was, however, significantly lower for those who had received circumferential fusion in comparison to posterolateral fusion with instrumentation. Furthermore, the risk of non-union was found to be significantly lower for patients who had received circumferential fusion as compared to posterolateral fusion with and without instrumentation. The complications of sexual dysfunction and fusion at non-intended levels were found to be significant but without influence on the overall outcome. The patients in the Back-café group performed a succession of many daily tasks significantly better and moreover had less pain compared with both the Video and Training groups 2 years after lumbar spinal fusion. The Video group had significantly greater treatment demands outside the hospital system. This study demonstrates the importance of the inclusion of coping schemes and questions the role of intensive exercises in a rehabilitation program for spinal fusion patients.
Endler, Peter; Ekman, Per; Möller, Hans; Gerdhem, Paul
2017-05-03
Various methods for the treatment of isthmic spondylolisthesis are available. The aim of this study was to compare outcomes after posterolateral fusion without instrumentation, posterolateral fusion with instrumentation, and interbody fusion. The Swedish Spine Register was used to identify 765 patients who had been operated on for isthmic spondylolisthesis and had at least preoperative and 2-year outcome data; 586 of them had longer follow-up (a mean of 6.9 years). The outcome measures were a global assessment of leg and back pain, the Oswestry Disability Index (ODI), the EuroQol-5 Dimensions (EQ-5D) Questionnaire, the Short Form-36 (SF-36), a visual analog scale (VAS) for back and leg pain, and satisfaction with treatment. Data on additional lumbar spine surgery was searched for in the register, with the mean duration of follow-up for this variable being 10.6 years after the index procedure. Statistical analyses were performed with analysis of covariance or competing-risks proportional hazards regression, adjusted for baseline differences in the studied variables, smoking, employment status, and level of fusion. Posterolateral fusion without instrumentation was performed in 102 patients; posterolateral fusion with instrumentation, in 452; and interbody fusion, in 211. At 1 year, improvement was reported in the global assessment for back pain by 54% of the patients who had posterolateral fusion without instrumentation, 68% of those treated with posterolateral fusion with instrumentation, and 70% of those treated with interbody fusion (p = 0.009). The VAS for back pain and reported satisfaction with treatment showed similar patterns (p = 0.003 and p = 0.017, respectively), whereas other outcomes did not differ among the treatment groups at 1 year. At 2 years, the global assessment for back pain indicated improvement in 57% of the patients who had undergone posterolateral fusion without instrumentation, 70% of those who had posterolateral fusion with instrumentation, and 71% of those treated with interbody fusion (p = 0.022). There were no significant outcome differences at the mean 6.9-year follow-up interval. There was an increased hazard ratio for additional lumbar spine surgery after interbody fusion (4.34; 95% confidence interval [CI] = 1.71 to 11.03) and posterolateral fusion with instrumentation (2.56; 95% CI = 1.02 to 6.42) compared with after posterolateral fusion without instrumentation (1.00; reference). Fusion with instrumentation, with or without interbody fusion, was associated with more improvement in back pain scores and higher satisfaction with treatment compared with fusion without instrumentation at 1 year, but the difference was attenuated with longer follow-up. Fusion with instrumentation was associated with a significantly higher risk of additional spine surgery. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.
Tracking fusion of human mesenchymal stem cells after transplantation to the heart.
Freeman, Brian T; Kouris, Nicholas A; Ogle, Brenda M
2015-06-01
Evidence suggests that transplanted mesenchymal stem cells (MSCs) can aid recovery of damaged myocardium caused by myocardial infarction. One possible mechanism for MSC-mediated recovery is reprogramming after cell fusion between transplanted MSCs and recipient cardiac cells. We used a Cre/LoxP-based luciferase reporter system coupled to biophotonic imaging to detect fusion of transplanted human pluripotent stem cell-derived MSCs to cells of organs of living mice. Human MSCs, with transient expression of a viral fusogen, were delivered to the murine heart via a collagen patch. At 2 days and 1 week later, living mice were probed for bioluminescence indicative of cell fusion. Cell fusion was detected at the site of delivery (heart) and in distal tissues (i.e., stomach, small intestine, liver). Fusion was confirmed at the cellular scale via fluorescence in situ hybridization for human-specific and mouse-specific centromeres. Human cells in organs distal to the heart were typically located near the vasculature, suggesting MSCs and perhaps MSC fusion products have the ability to migrate via the circulatory system to distal organs and engraft with local cells. The present study reveals previously unknown migratory patterns of delivered human MSCs and associated fusion products in the healthy murine heart. The study also sets the stage for follow-on studies to determine the functional effects of cell fusion in a model of myocardial damage or disease. Mesenchymal stem cells (MSCs) are transplanted to the heart, cartilage, and other tissues to recover lost function or at least limit overactive immune responses. Analysis of tissues after MSC transplantation shows evidence of fusion between MSCs and the cells of the recipient. To date, the biologic implications of cell fusion remain unclear. A newly developed in vivo tracking system was used to identify MSC fusion products in living mice. The migratory patterns of fusion products were determined both in the target organ (i.e., the heart) and in distal organs. This study shows, for the first time, evidence of fusion products at sites distal from the target organ and data to suggest that migration occurs via the vasculature. These results will inform and improve future, MSC-based therapeutics. ©AlphaMed Press.
Balasubramanian, Vijay Anand; Douraiswami, Balaji; Subramani, Suresh
2018-06-01
Lumbar spondylolisthesis is a common cause of morbidity in middle aged individuals. Spinal fusion with instrumentation has become the gold standard for lumbar segmental instability. Studies which correlate the improvement in radiology postoperatively with functional outcome show contrasting reports. This study is aimed at finding the correlation between clinical and radiological outcomes after surgery with transforaminal lumbar interbody fusion. A retrospective study in 35 patients who underwent transforaminal lumbar interbody fusion in a period of 1 year was done. Preoperative pain (VAS Score), functional ability (ODI), radiological parameters (slip angle, slip grade, disc height, foraminal height, lumbar lordosis) were compared with postoperative recordings at the last followup. Functional improvement (Macnab's criteria) and fusion (Lee's fusion criteria) were assessed. Statistical analysis was done with student's paired t -test and Pearson's correlation coefficient. VAS score, ODI improved from 8 to 2 and 70 to 15 respectively. Slip angle improved from 23°to 5° on an average. 80% patients showed fusion and 85% showed good clinical outcome at 1 year followup. Analyzing with Pearson correlation coefficient showed no significant relation between pain scores and radiological parameters. But there was statistically significant relation between radiological fusion and the final clinical outcome. TLIF produces spinal fusion in most individuals. Strong spinal fusion is essential for good clinical outcome in spondylolisthesis patients who undergo TLIF. Reduction in slip is not necessary for all patients with listhesis.
Failure analysis of knee arthrodesis with the WichitaFusion Nail.
Parcel, Ted W; Levering, Melissa; Polikandriotis, John A; Gustke, Kenneth A; Bernasek, Thomas L
2013-11-01
Arthrodesis is a salvage procedure for failed total knee arthroplasty with the intent to create a stable, pain-free limb on which to ambulate or transfer. For many patients, the alternative to arthrodesis may be an above-knee amputation. Available techniques for knee arthrodesis include compression plating, external fixators, and intramedullary fixation. The purpose of this study was to report the knee fusion rate of consecutive patients at 1 institution using an intramedullary fusion nail and to identify patient risk factors for fusion failure. Between November 1998 and November 2008, twenty-eight patients undergoing knee arthrodesis with an average follow-up of 18 months (range, 3-64 months) were retrospectively studied. Demographic information, presence of fusion, clinical function, pain level, and bone defect data were collected and analyzed. Eighty-two percent (23/28) of patients had radiographic evidence of successful fusion with an average time to fusion of 21 weeks (range, 10-58 weeks). When examining patient variables that could correlate with fusion rates, patients with an Anderson Orthopaedic Research Institute type 3 femoral or type 3 tibial defect had a statistically significant lower fusion rate. The intramedullary fusion nail is an effective device for knee arthrodesis that offers ease of insertion through the knee wound with the advantages of initial bone compression and rigid fixation. Although the use of intramedullary fusion nails leads to a high fusion rate, significant bone deficiency limits successful fusion. Copyright 2013, SLACK Incorporated.
Arujuna, Aruna V; Housden, R James; Ma, Yingliang; Rajani, Ronak; Gao, Gang; Nijhof, Niels; Cathier, Pascal; Bullens, Roland; Gijsbers, Geert; Parish, Victoria; Kapetanakis, Stamatis; Hancock, Jane; Rinaldi, C Aldo; Cooklin, Michael; Gill, Jaswinder; Thomas, Martyn; O'neill, Mark D; Razavi, Reza; Rhode, Kawal S
2014-01-01
Real-time imaging is required to guide minimally invasive catheter-based cardiac interventions. While transesophageal echocardiography allows for high-quality visualization of cardiac anatomy, X-ray fluoroscopy provides excellent visualization of devices. We have developed a novel image fusion system that allows real-time integration of 3-D echocardiography and the X-ray fluoroscopy. The system was validated in the following two stages: 1) preclinical to determine function and validate accuracy; and 2) in the clinical setting to assess clinical workflow feasibility and determine overall system accuracy. In the preclinical phase, the system was assessed using both phantom and porcine experimental studies. Median 2-D projection errors of 4.5 and 3.3 mm were found for the phantom and porcine studies, respectively. The clinical phase focused on extending the use of the system to interventions in patients undergoing either atrial fibrillation catheter ablation (CA) or transcatheter aortic valve implantation (TAVI). Eleven patients were studied with nine in the CA group and two in the TAVI group. Successful real-time view synchronization was achieved in all cases with a calculated median distance error of 2.2 mm in the CA group and 3.4 mm in the TAVI group. A standard clinical workflow was established using the image fusion system. These pilot data confirm the technical feasibility of accurate real-time echo-fluoroscopic image overlay in clinical practice, which may be a useful adjunct for real-time guidance during interventional cardiac procedures.
Umeta, Ricardo S G; Avanzi, Osmar
2011-07-01
Spine fusions can be performed through different techniques and are used to treat a number of vertebral pathologies. However, there seems to be no consensus regarding which technique of fusion is best suited to treat each distinct spinal disease or group of diseases. To study the effectiveness and complications of the different techniques used for spinal fusion in patients with lumbar spondylosis. Systematic literature review and meta-analysis. Randomized clinical studies comparing the most commonly performed surgical techniques for spine fusion in lumbar-sacral spondylosis, as well as those reporting patient outcome were selected. Identify which technique, if any, presents the best clinical, functional, and radiographic outcome. Systematic literature review and meta-analysis based on scientific articles published and indexed to the following databases: PubMed (1966-2009), Cochrane Collaboration-CENTRAL, EMBASE (1980-2009), and LILACS (1982-2009). The general search strategy focused on the surgical treatment of patients with lumbar-sacral spondylosis. Eight studies met the inclusion criteria and were selected with a total of 1,136 patients. Meta-analysis showed that patients who underwent interbody fusion presented a significantly smaller blood loss (p=.001) and a greater rate of bone fusion (p=.02). Patients submitted to fusion using the posterolateral approach had a significantly shorter operative time (p=.007) and less perioperative complications (p=.03). No statistically significant difference was found for the other studied variables (pain, functional impairment, and return to work). The most commonly used techniques for lumbar spine fusion in patients with spondylosis were interbody fusion and posterolateral approach. Both techniques were comparable in final outcome, but the former presented better rates of fusion and the latter the less complications. Copyright © 2011 Elsevier Inc. All rights reserved.
Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.
Gao, Qingsong; Liang, Wen-Wei; Foltz, Steven M; Mutharasu, Gnanavel; Jayasinghe, Reyka G; Cao, Song; Liao, Wen-Wei; Reynolds, Sheila M; Wyczalkowski, Matthew A; Yao, Lijun; Yu, Lihua; Sun, Sam Q; Chen, Ken; Lazar, Alexander J; Fields, Ryan C; Wendl, Michael C; Van Tine, Brian A; Vij, Ravi; Chen, Feng; Nykter, Matti; Shmulevich, Ilya; Ding, Li
2018-04-03
Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Characterization of the functional requirements of West Nile virus membrane fusion.
Moesker, Bastiaan; Rodenhuis-Zybert, Izabela A; Meijerhof, Tjarko; Wilschut, Jan; Smit, Jolanda M
2010-02-01
Flaviviruses infect their host cells by a membrane fusion reaction. In this study, we performed a functional analysis of the membrane fusion properties of West Nile virus (WNV) with liposomal target membranes. Membrane fusion was monitored continuously using a lipid mixing assay involving the fluorophore, pyrene. Fusion of WNV with liposomes occurred on the timescale of seconds and was strictly dependent on mildly acidic pH. Optimal fusion kinetics were observed at pH 6.3, the threshold for fusion being pH 6.9. Preincubation of the virus alone at pH 6.3 resulted in a rapid loss of fusion capacity. WNV fusion activity is strongly promoted by the presence of cholesterol in the target membrane. Furthermore, we provide direct evidence that cleavage of prM to M is a requirement for fusion activity of WNV.
Processes and energy costs for mining lunar Helium-3
NASA Technical Reports Server (NTRS)
Sviatoslavsky, I. N.
1988-01-01
Preliminary investigations show that obtaining He-3 from the moon is technically feasible and economically viable. With the exception of beneficiation, the proposed procedures are state of the art. Mass of equipment needed from earth is of some concern, but resupply will eventually be ameliorated by the use of titanium from indigenous ilmenite. A complete energy payback from a D/He-3 fusion reactor utilizing lunar He-3 is approx. 80, providing ample incentive for commercial investment is forthcoming. Byproducts will be of great value to the resupply of a permanent lunar base and enhancement of space exploration.
A Cyber-ITS Framework for Massive Traffic Data Analysis Using Cyber Infrastructure
Fontaine, Michael D.
2013-01-01
Traffic data is commonly collected from widely deployed sensors in urban areas. This brings up a new research topic, data-driven intelligent transportation systems (ITSs), which means to integrate heterogeneous traffic data from different kinds of sensors and apply it for ITS applications. This research, taking into consideration the significant increase in the amount of traffic data and the complexity of data analysis, focuses mainly on the challenge of solving data-intensive and computation-intensive problems. As a solution to the problems, this paper proposes a Cyber-ITS framework to perform data analysis on Cyber Infrastructure (CI), by nature parallel-computing hardware and software systems, in the context of ITS. The techniques of the framework include data representation, domain decomposition, resource allocation, and parallel processing. All these techniques are based on data-driven and application-oriented models and are organized as a component-and-workflow-based model in order to achieve technical interoperability and data reusability. A case study of the Cyber-ITS framework is presented later based on a traffic state estimation application that uses the fusion of massive Sydney Coordinated Adaptive Traffic System (SCATS) data and GPS data. The results prove that the Cyber-ITS-based implementation can achieve a high accuracy rate of traffic state estimation and provide a significant computational speedup for the data fusion by parallel computing. PMID:23766690
A Cyber-ITS framework for massive traffic data analysis using cyber infrastructure.
Xia, Yingjie; Hu, Jia; Fontaine, Michael D
2013-01-01
Traffic data is commonly collected from widely deployed sensors in urban areas. This brings up a new research topic, data-driven intelligent transportation systems (ITSs), which means to integrate heterogeneous traffic data from different kinds of sensors and apply it for ITS applications. This research, taking into consideration the significant increase in the amount of traffic data and the complexity of data analysis, focuses mainly on the challenge of solving data-intensive and computation-intensive problems. As a solution to the problems, this paper proposes a Cyber-ITS framework to perform data analysis on Cyber Infrastructure (CI), by nature parallel-computing hardware and software systems, in the context of ITS. The techniques of the framework include data representation, domain decomposition, resource allocation, and parallel processing. All these techniques are based on data-driven and application-oriented models and are organized as a component-and-workflow-based model in order to achieve technical interoperability and data reusability. A case study of the Cyber-ITS framework is presented later based on a traffic state estimation application that uses the fusion of massive Sydney Coordinated Adaptive Traffic System (SCATS) data and GPS data. The results prove that the Cyber-ITS-based implementation can achieve a high accuracy rate of traffic state estimation and provide a significant computational speedup for the data fusion by parallel computing.
Adamek, Bogdan; Karczewicz, Danuta
2006-01-01
This present study is the continuation of Part I of the research into the range of fusion in which the difference between both eyeballs as far as convergent fusion is concerned was described. The phenomenon was called "visual unevenness of the range of convergent fusion". This part of the study is devoted to the analysis of the relationship between the unevenness of the fusion, ocular dominance and accommodation. A lower range of convergent fusion was observed in the dominant eye with the higher accommodation, In contrast, a higher range of fusion was observed in the not dominant eye with lower accommodation. The authors think that the phenomenon of ocular unevenness of the range of convergent fusion does not depend on the peripheral part of visual organ. In fact, it does seem to point out to a cortical process. The authors suggest that quantitative tests on amplitude of fusion should be carried out first on the first eye and then on the other. The results obtained from both eyes should be compared with each other.
Laser-induced fast fusion of gold nanoparticle-modified polyelectrolyte microcapsules.
Wu, Yingjie; Frueh, Johannes; Si, Tieyan; Möhwald, Helmuth; He, Qiang
2015-02-07
In this study we investigated the effect of laser-induced membrane fusion of polyelectrolyte multilayer (PEM) based microcapsules bearing surface-attached gold nanoparticles (AuNPs) in aqueous media. We demonstrate that a dense coating of the capsules with AuNPs leads to enhanced light absorption, causing an increase of local temperature. This enhances the migration of polyelectrolytes within the PEMs and thus enables a complete fusion of two or more capsules. The encapsulated substances can achieve complete merging upon short-term laser irradiation (30 s, 30 mW @ 650 nm). The whole fusion process is followed by optical microscopy and scanning electron microscopy. In control experiments, microcapsules without AuNPs do not show a significant capsule fusion upon irradiation. It was also found that the duration of capsule fusion is affected by the density of AuNPs on the shell - the higher the density of AuNPs the shorter the fusion time. All these findings confirm that laser-induced microcapsule fusion is a new type of membrane fusion. This effect helps to study the interior exchange reactions of functional microcapsules, micro-reactors and drug transport across multilayers.
Kibsgård, Thomas J; Røise, Olav; Stuge, Britt
2014-03-15
The fusion of the pelvic joints in patients with severe pelvic girdle pain (PGP) is a controversial and insufficiently studied procedure. The aims of this study were to evaluate physical function and pain after sacroiliac joint (SIJ) fusion. A single-subject research design study with repeated measurements was conducted; pre-operatively and at 3, 6 and 12 months post-operatively. The outcome measures considered were the Oswestry disability index (ODI), visual analogue scale (VAS), and SF-36. Eight patients with severe PGP received open-accessed unilateral anterior SIJ fusion and fusion of the pubic symphysis. Seven patients reported positive results from the surgery. At 1 year post-operation, significant (p < 0.001) reductions in ODI (54 to 37) and VAS (82 to 57) were reported. The physical functioning, bodily pain, and social functioning scores in the SF-36 were also improved. Positive and significant changes in disability and pain at 1 year after SIJ fusion were observed. Despite these positive results, open accessed anterior fusion of the SIJ was associated with adverse events and complications such as infection and nerve damage.
Neutron diffraction studies of viral fusion peptides
NASA Astrophysics Data System (ADS)
Bradshaw, Jeremy P.; J. M. Darkes, Malcolm; Katsaras, John; Epand, Richard M.
2000-03-01
Membrane fusion plays a vital role in a large and diverse number of essential biological processes. Despite this fact, the precise molecular events that occur during fusion are still not known. We are currently engaged on a study of membrane fusion as mediated by viral fusion peptides. These peptides are the N-terminal regions of certain viral envelope proteins that mediate the process of fusion between the viral envelope and the membranes of the host cell during the infection process. As part of this study, we have carried out neutron diffraction measurements at the ILL, BeNSC and Chalk River, on a range of viral fusion peptides. The peptides, from simian immunodeficiency virus (SIV), influenza A and feline leukaemia virus (FeLV), were incorporated into stacked phospholipid bilayers. Some of the peptides had been specifically deuterated at key amino acids. Lamellar diffraction data were collected and analysed to yield information on the peptide conformation, location and orientation relative to the bilayer.
Tyrosine kinase fusion genes in pediatric BCR-ABL1-like acute lymphoblastic leukemia
Boer, Judith M.; Steeghs, Elisabeth M.P.; Marchante, João R.M.; Boeree, Aurélie; Beaudoin, James J.; Berna Beverloo, H.; Kuiper, Roland P.; Escherich, Gabriele; van der Velden, Vincent H.J.; van der Schoot, C. Ellen; de Groot-Kruseman, Hester A.; Pieters, Rob; den Boer, Monique L.
2017-01-01
Approximately 15% of pediatric B cell precursor acute lymphoblastic leukemia (BCP-ALL) is characterized by gene expression similar to that of BCR-ABL1-positive disease and unfavorable prognosis. This BCR-ABL1-like subtype shows a high frequency of B-cell development gene aberrations and tyrosine kinase-activating lesions. To evaluate the clinical significance of tyrosine kinase gene fusions in children with BCP-ALL, we studied the frequency of recently identified tyrosine kinase fusions, associated genetic features, and prognosis in a representative Dutch/German cohort. We identified 14 tyrosine kinase fusions among 77 BCR-ABL1-like cases (18%) and none among 76 non-BCR-ABL1-like B-other cases. Novel exon fusions were identified for RCSD1-ABL2 and TERF2-JAK2. JAK2 mutation was mutually exclusive with tyrosine kinase fusions and only occurred in cases with high CRLF2 expression. The non/late response rate and levels of minimal residual disease in the fusion-positive BCR-ABL1-like group were higher than in the non-BCR-ABL1-like B-others (p<0.01), and also higher, albeit not statistically significant, compared with the fusion-negative BCR-ABL1-like group. The 8-year cumulative incidence of relapse in the fusion-positive BCR-ABL1-like group (35%) was comparable with that in the fusion-negative BCR-ABL1-like group (35%), and worse than in the non-BCR-ABL1-like B-other group (17%, p=0.07). IKZF1 deletions, predominantly other than the dominant-negative isoform and full deletion, co-occurred with tyrosine kinase fusions. This study shows that tyrosine kinase fusion-positive cases are a high-risk subtype of BCP-ALL, which warrants further studies with specific kinase inhibitors to improve outcome. PMID:27894077
The Formin Diaphanous Regulates Myoblast Fusion through Actin Polymerization and Arp2/3 Regulation
Deng, Su; Bothe, Ingo; Baylies, Mary K.
2015-01-01
The formation of multinucleated muscle cells through cell-cell fusion is a conserved process from fruit flies to humans. Numerous studies have shown the importance of Arp2/3, its regulators, and branched actin for the formation of an actin structure, the F-actin focus, at the fusion site. This F-actin focus forms the core of an invasive podosome-like structure that is required for myoblast fusion. In this study, we find that the formin Diaphanous (Dia), which nucleates and facilitates the elongation of actin filaments, is essential for Drosophila myoblast fusion. Following cell recognition and adhesion, Dia is enriched at the myoblast fusion site, concomitant with, and having the same dynamics as, the F-actin focus. Through analysis of Dia loss-of-function conditions using mutant alleles but particularly a dominant negative Dia transgene, we demonstrate that reduction in Dia activity in myoblasts leads to a fusion block. Significantly, no actin focus is detected, and neither branched actin regulators, SCAR or WASp, accumulate at the fusion site when Dia levels are reduced. Expression of constitutively active Dia also causes a fusion block that is associated with an increase in highly dynamic filopodia, altered actin turnover rates and F-actin distribution, and mislocalization of SCAR and WASp at the fusion site. Together our data indicate that Dia plays two roles during invasive podosome formation at the fusion site: it dictates the level of linear F-actin polymerization, and it is required for appropriate branched actin polymerization via localization of SCAR and WASp. These studies provide new insight to the mechanisms of cell-cell fusion, the relationship between different regulators of actin polymerization, and invasive podosome formation that occurs in normal development and in disease. PMID:26295716
Yonezawa, Akihito; Cavrois, Marielle; Greene, Warner C.
2005-01-01
The Ebola filoviruses are aggressive pathogens that cause severe and often lethal hemorrhagic fever syndromes in humans and nonhuman primates. To date, no effective therapies have been identified. To analyze the entry and fusion properties of Ebola virus, we adapted a human immunodeficiency virus type 1 (HIV-1) virion-based fusion assay by substituting Ebola virus glycoprotein (GP) for the HIV-1 envelope. Fusion was detected by cleavage of the fluorogenic substrate CCF2 by β-lactamase-Vpr incorporated into virions and released as a result of virion fusion. Entry and fusion induced by the Ebola virus GP occurred with much slower kinetics than with vesicular stomatitis virus G protein (VSV-G) and were blocked by depletion of membrane cholesterol and by inhibition of vesicular acidification with bafilomycin A1. These properties confirmed earlier studies and validated the assay for exploring other properties of Ebola virus GP-mediated entry and fusion. Entry and fusion of Ebola virus GP pseudotypes, but not VSV-G or HIV-1 Env pseudotypes, were impaired in the presence of the microtubule-disrupting agent nocodazole but were enhanced in the presence of the microtubule-stabilizing agent paclitaxel (Taxol). Agents that impaired microfilament function, including cytochalasin B, cytochalasin D, latrunculin A, and jasplakinolide, also inhibited Ebola virus GP-mediated entry and fusion. Together, these findings suggest that both microtubules and microfilaments may play a role in the effective trafficking of vesicles containing Ebola virions from the cell surface to the appropriate acidified vesicular compartment where fusion occurs. In terms of Ebola virus GP-mediated entry and fusion to various target cells, primary macrophages proved highly sensitive, while monocytes from the same donors displayed greatly reduced levels of entry and fusion. We further observed that tumor necrosis factor alpha, which is released by Ebola virus-infected monocytes/macrophages, enhanced Ebola virus GP-mediated entry and fusion to human umbilical vein endothelial cells. Thus, Ebola virus infection of one target cell may induce biological changes that facilitate infection of secondary target cells that play a key role in filovirus pathogenesis. Finally, these studies indicate that pseudotyping in the HIV-1 virion-based fusion assay may be a valuable approach to the study of entry and fusion properties mediated through the envelopes of other viral pathogens. PMID:15613320
A novel framework of tissue membrane systems for image fusion.
Zhang, Zulin; Yi, Xinzhong; Peng, Hong
2014-01-01
This paper proposes a tissue membrane system-based framework to deal with the optimal image fusion problem. A spatial domain fusion algorithm is given, and a tissue membrane system of multiple cells is used as its computing framework. Based on the multicellular structure and inherent communication mechanism of the tissue membrane system, an improved velocity-position model is developed. The performance of the fusion framework is studied with comparison of several traditional fusion methods as well as genetic algorithm (GA)-based and differential evolution (DE)-based spatial domain fusion methods. Experimental results show that the proposed fusion framework is superior or comparable to the other methods and can be efficiently used for image fusion.
Faour, Mhamad; Anderson, Joshua T; Haas, Arnold R; Percy, Rick; Woods, Stephen T; Ahn, Uri M; Ahn, Nicholas U
2017-05-01
Retrospective cohort comparative study. To evaluate presurgical and surgical factors that affect return to work (RTW) status after multilevel cervical fusion, and to compare outcomes after multilevel cervical fusion for degenerative disc disease (DDD) versus radiculopathy. Cervical fusion provides more than 90% of symptomatic relief for radiculopathy and myelopathy. However, cervical fusion for DDD without radiculopathy is considered controversial. In addition, multilevel fusion is associated with poorer surgical outcomes with increased levels fused. Data of cervical comorbidities was collected from Ohio Bureau of Workers' Compensation for subjects with work-related injuries. The study population included subjects who underwent multilevel cervical fusion. Patients with radiculopathy or DDD were identified. Multivariate logistic regression was performed to identify factors that affect RTW status. Surgical and functional outcomes were compared between groups. Stable RTW status within 3 years after multilevel cervical fusion was negatively affected by: fusion for DDD, age > 55 years, preoperative opioid use, initial psychological evaluation before surgery, injury-to-surgery > 2 years and instrumentation.DDD group had lower rate of achieving stable RTW status (P= 0.0001) and RTW within 1 year of surgery (P= 0.0003) compared with radiculopathy group. DDD patients were less likely to have a stable RTW status [odds ratio, OR = 0.63 (0.50-0.79)] or RTW within 1 year after surgery [OR = 0.65 (0.52-0.82)].DDD group had higher rate of opioid use (P= 0.001), and higher rate of disability after surgery (P= 0.002). Multiple detriments affect stable RTW status after multilevel cervical fusion including DDD. DDD without radiculopathy was associated with lower RTW rates, less likelihood to return to work, higher disability, and higher opioid use after surgery. Multilevel cervical fusion for DDD may be counterproductive. Future studies should investigate further treatment options of DDD, and optimize patient selection criteria for surgical intervention. 3.
PREFACE: 11th IAEA Technical Meeting on H-mode Physics and Transport Barriers
NASA Astrophysics Data System (ADS)
Takizuka, Tomonori
2008-07-01
This volume of Journal of Physics: Conference Series contains papers based on invited talks and contributed posters presented at the 11th IAEA Technical Meeting on H-mode Physics and Transport Barriers. This meeting was held at the Tsukuba International Congress Center in Tsukuba, Japan, on 26-28 September 2007, and was organized jointly by the Japan Atomic Energy Agency and the University of Tsukuba. The previous ten meetings in this series were held in San Diego (USA) 1987, Gut Ising (Germany) 1989, Abingdon (UK) 1991, Naka (Japan) 1993, Princeton (USA) 1995, Kloster Seeon (Germany) 1997, Oxford (UK) 1999, Toki (Japan) 2001, San Diego (USA) 2003, and St Petersburg (Russia) 2005. The purpose of the eleventh meeting was to present and discuss new results on H-mode (edge transport barrier, ETB) and internal transport barrier, ITB, experiments, theory and modeling in magnetic fusion research. It was expected that contributions give new and improved insights into the physics mechanisms behind high confinement modes of H-mode and ITBs. Ultimately, this research should lead to improved projections for ITER. As has been the tradition at the recent meetings of this series, the program was subdivided into six topics. The topics selected for the eleventh meeting were: H-mode transition and the pedestal-width Dynamics in ETB: ELM threshold, non-linear evolution and suppression, etc Transport relations of various quantities including turbulence in plasmas with ITB: rotation physics is especially highlighted Transport barriers in non-axisymmetric magnetic fields Theory and simulation on transport barriers Projections of transport barrier physics to ITER For each topic there was an invited talk presenting an overview of the topic, based on contributions to the meeting and on recently published external results. The six invited talks were: A Leonard (GA, USA): Progress in characterization of the H-mode pedestal and L-H transition N Oyama (JAEA, Japan): Progress and issues in physics understanding of dynamics, mitigation and control of ELMs J Rice (MIT, USA): Spontaneous rotation and momentum transport in tokamak plasmas K Ida (NIFS, Japan): Transport barriers in non-axisymmetric magnetic fields F Jenko (IPP, Germany): Transport barriers: Recent progress in theory and simulation T Hoang (CEA, France): Internal transport barriers: Projection to ITER Every talk satisfied the objective of the meeting. A discussion period followed each invited talk in order to expand physics understandings, projection capabilities, and the direction of research around the topic. Short talks were presented by contributing speakers in addition to questions, answers, comments and discussion among the participants. For each topic there was an associated poster session for contributed papers, and lively discussion took place in front of every poster. Through the meeting six invited papers and 77 contributed papers were presented in total. The final session of the meeting was devoted to summaries; R Groebner, T S Hahm and K Ida of the IAC summarized the fruits of topics 1 and 2, 3 and 5, and 4 and 6, respectively. I would like to thank Dr A Malaquias, the IAEA Scientific Secretary, for his continuous support and useful suggestions on the arrangements of the meeting. I am very grateful to the IAC members for their cooperation in selecting topics and invited speakers, and for their important advices on the meeting strategy and proceedings publication. I also wish to express my gratitude to LOC colleagues for their hard work organizing the meeting. Young students of the University of Tsukuba helped us during the meeting. Financial and personel support from JAEA and the University of Tsukuba were essential. Finally I would like to acknowledge the participants of the meeting and the referees for the present proceedings. All of the above contributions contributed to the success of the meeting. Tomonori Takizuka Editor Group photograph International Advisory Committee T Takizuka (Japan Atomic Energy Agency, Japan: Chair) R J Groebner (General Atomics, USA) T S Hahm (Princeton Plasma Physics Laboratory, USA) A E Hubbard (MIT Plasma Science and Fusion Center, USA) K Ida (National Institute for Fusion Science, Japan) S V Lebedev (Ioffe Institute, Russia) G Saibene (EFDA CSU Garching, Germany) W Suttrop (Max-Plank-Institut für Plasmaphysik, Germany) Additional information about this meeting (H-mode-TM-11) is available in its homepage http://www-jt60.naka.jaea.go.jp/h-mode-tm-11/. List of Participants N Aiba (Japan Atomic Energy Agency, Japan) T Akiyama (National Institute for Fusion Science, Japan) N Asakura (Japan Atomic Energy Agency, Japan) L G Askinazi (Ioffe Institute, Russia) M N A Beurskens (EURATOM/UKAEA Fusion Association, UK) J D Callen (University of Wisconsin, USA) T Cho (University of Tsukuba, Japan) P C DeVries (EURATOM/UKAEA Fusion Association, UK) X T Ding (Southwestern Institute of Physics, China) E J Doyle (University of California, Los Angels, USA) A Fukuyama (Kyoto University, Japan) P Gohil (General Atomics, USA) R J Groebner (General Atomics, USA) T S Hahm (Princeton Plasma Physics Laboratory, USA) N Hayashi (Japan Atomic Energy Agency, Japan) Y Higashiyama (Nagoya University, Japan) Y Higashizono (University of Tsukuba, Japan) M Hirata (University of Tsukuba, Japan) G T Hoang (Association Euratom-CEA sur la Fusion Controle, France) G M D Hogeweij (FOM-Institute for Plasma Physics Rijnhuizen, The Netherlands) M Honda (Japan Atomic Energy Agency, Japan) L D Horton (Max-Plank-Institut für Plasmaphysik, Germany) W A Houlberg (ITER Organization) A E Hubbard (MIT Plasma Science and Fusion Center, USA) J W Hughes (MIT Plasma Science and Fusion Center, USA) M Ichimura (University of Tsukuba, Japan) K Ida (National Institute for Fusion Science, Japan) T Ido (National Institute for Fusion Science, Japan) T Imai (University of Tsukuba, Japan) F Imbeaux (Association Euratom-CEA sur la Fusion Controle, France) A Itakura (University of Tsukuba, Japan) K Itoh (National Institute for Fusion Science, Japan) S-I Itoh (Kyushu University, Japan) F Jenko (Max-Plank-Institut für Plasmaphysik, Germany) D Kalupin (Institut für Plasmaphysik, Forschungszentrum Jülich GmbH, Germany) Y Kamada (Japan Atomic Energy Agency, Japan) N Kasuya (National Institute for Fusion Science, Japan) I Katanuma (University of Tsukuba, Japan) M Kimura (Kyushu University, Japan) A Kirk (EURATOM/UKAEA Fusion Association, UK) S Kitajima (Tohoku University, Japan) S Kobayashi (Kyoto University, Japan) T Kobuchi (Tohoku University, Japan) J Kohagura (University of Tsukuba, Japan) P T Lang (Max-Plank-Institut für Plasmaphysik, Germany) S V Lebedev (Ioffe Institute, Russia) A W Leonard (General Atomics, USA) J Q Li (Kyoto University, Japan) A Malaquias (International Atomic Energy Agency) Y R Martin (Centre de Recherches en Physique des Plasmas, EPFL, Switzerland) C J McDevitt (University of California, San Diego, USA) D C McDonald (EURATOM/UKAEA Fusion Association, UK) H Meyer (EURATOM/UKAEA Fusion Association, UK) C A Michael (National Institute for Fusion Science, Japan) K Miki (Kyushu University, Japan) R Minami (University of Tsukuba, Japan) T Minami (National Institute for Fusion Science, Japan) Y Miyata (University of Tsukuba, Japan) N Miyato (Japan Atomic Energy Agency, Japan) Y Motegi (University of Tsukuba, Japan) V Mukhovatov (ITER Organization) S Murakami (Kyoto University, Japan) Y Nagashima (Kyushu University, Japan) Y Nakashima (University of Tsukuba, Japan) T Numakura (University of Tsukuba, Japan) S Ohshima (National Institute for Fusion Science, Japan) T Oishi (National Institute for Fusion Science, Japan) T Onjun (Sirindhorn International Institute of Technology, Thailand) T H Osborne (GENERAL Atomics, USA) N Oyama (Japan Atomic Energy Agency, Japan) T Ozeki (Japan Atomic Energy Agency, Japan) V Parail (EURATOM/UKAEA Fusion Association, UK) A Polevoi (ITER Organization, France) J E Rice (MIT Plasma Science and Fusion Center, USA) F Ryter (Max-Plank-Institut für Plasmaphysik, Germany) H Saimaru (University of Tsukuba, Japan) R Sakamoto (National Institute for Fusion Science, Japan) Y Sakamoto (Japan Atomic Energy Agency, Japan) M Sasaki (University of Tokyo, Japan) Y Shi (Institute of Plasma Physics, Chinese Academy of Science, China) A Shimizu (National Institute for Fusion Science, Japan) T Shimozuma (National Institute for Fusion Science, Japan) P B Snyder (General Atomics, USA) C Suzuki (National Institute for Fusion Science, Japan) H Takahashi (National Institute for Fusion Science, Japan) Y Takahashi (Nagoya University, Japan) Y Takeiri (National Institute for Fusion Science, Japan) H Takenaga (Japan Atomic Energy Agency, Japan) M Takeuchi (Nagoya University, Japan) T Takizuka (Japan Atomic Energy Agency, Japan) N Tamura (National Institute for Fusion Science, Japan) K Tanaka (National Institute for Fusion Science, Japan) S Tokuda (Japan Atomic Energy Agency, Japan) S Tokunaga (Kyushu University, Japan) G Turri (Centre de Recherches en Physique des Plasmas, EPFL, Switzerland) H Urano (Japan Atomic Energy Agency, Japan) H Utoh (Tohok University, Japan) K Uzawa (Kyoto University, Japan) M Valovic (EURATOM/UKAEA Fusion Association, UK) L Vermare (Max-Plank-Institut für Plasmaphysik, Germany) F Watanabe (Nagoya University, Japan) M Yagi (Kyushu University, Japan) Y Yamaguchi (University of Tsukuba, Japan) K Yamazaki (Nagoya University, Japan) M Yokoyama (National Institute for Fusion Science, Japan) M Yoshida (Japan Atomic Energy Agency, Japan) M Yoshinuma (National Institute for Fusion Science, Japan)
A sensitive HIV-1 envelope induced fusion assay identifies fusion enhancement of thrombin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, De-Chun; Zhong, Guo-Cai; Su, Ju-Xiang
2010-01-22
To evaluate the interaction between HIV-1 envelope glycoprotein (Env) and target cell receptors, various cell-cell-fusion assays have been developed. In the present study, we established a novel fusion system. In this system, the expression of the sensitive reporter gene, firefly luciferase (FL) gene, in the target cells was used to evaluate cell fusion event. Simultaneously, constitutively expressed Renilla luciferase (RL) gene was used to monitor effector cell number and viability. FL gave a wider dynamic range than other known reporters and the introduction of RL made the assay accurate and reproducible. This system is especially beneficial for investigation of potentialmore » entry-influencing agents, for its power of ruling out the false inhibition or enhancement caused by the artificial cell-number variation. As a case study, we applied this fusion system to observe the effect of a serine protease, thrombin, on HIV Env-mediated cell-cell fusion and have found the fusion enhancement activity of thrombin over two R5-tropic HIV strains.« less
Study on ( n,t) Reactions of Zr, Nb and Ta Nuclei
NASA Astrophysics Data System (ADS)
Tel, E.; Yiğit, M.; Tanır, G.
2012-04-01
The world faces serious energy shortages in the near future. To meet the world energy demand, the nuclear fusion with safety, environmentally acceptability and economic is the best suited. Fusion is attractive as an energy source because of the virtually inexhaustible supply of fuel, the promise of minimal adverse environmental impact, and its inherent safety. Fusion will not produce CO2 or SO2 and thus will not contribute to global warming or acid rain. Furthermore, there are not radioactive nuclear waste problems in the fusion reactors. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. Because, tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. And also, the success of fusion power system is dependent on performance of the first wall, blanket or divertor systems. So, the performance of structural materials for fusion power systems, understanding nuclear properties systematic and working out of ( n,t) reaction cross sections are very important. Zirconium (Zr), Niobium (Nb) and Tantal (Ta) containing alloys are important structural materials for fusion reactors, accelerator-driven systems, and many other fields. In this study, ( n,t) reactions for some structural fusion materials such as 88,90,92,94,96Zr, 93,94,95Nb and 179,181Ta have been investigated. The calculated results are discussed andcompared with the experimental data taken from the literature.
A review of data fusion techniques.
Castanedo, Federico
2013-01-01
The integration of data and knowledge from several sources is known as data fusion. This paper summarizes the state of the data fusion field and describes the most relevant studies. We first enumerate and explain different classification schemes for data fusion. Then, the most common algorithms are reviewed. These methods and algorithms are presented using three different categories: (i) data association, (ii) state estimation, and (iii) decision fusion.
Experimental study of nuclear fusion reactions in muonic molecular systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogdanova, L. N., E-mail: ludmila@itep.ru
2013-03-15
Since the pioneering discovery of the muon catalysis by Alvarez [L. W. Alvarez, K. Brander, F. S. Crawford, et al., Phys. Rev. 105, 1127 (1957)], considerable efforts were aimed at observation of various fusion processes. Results of these studies facilitated understanding the properties of lightest nuclei and dynamics of low-energy fusion reactions. There still remain unsolved theoretical and experimental problems, especially in case of pt fusion.
Alimi, Marjan; Navarro-Ramirez, Rodrigo; Parikh, Karishma; Njoku, Innocent; Hofstetter, Christoph P; Tsiouris, Apostolos J; Härtl, Roger
2017-07-01
Retrospective cohort study. To evaluate the radiographic and clinical outcome of silicate-substituted calcium phosphate (Si-CaP), utilized as a graft substance in spinal fusion procedures. Specific properties of Si-CaP provide the graft with negative surface charge that can result in a positive effect on the osteoblast activity and neovascularization of the bone. This study included those patients who underwent spinal fusion procedures between 2007 and 2011 in which Si-CaP was used as the only bone graft substance. Fusion was evaluated on follow-up CT scans. Clinical outcome was assessed using Oswestry Disability Index, Neck Disability Index, and the visual analogue scale (VAS) for back, leg, neck, and arm pain. A total of 234 patients (516 spinal fusion levels) were studied. Surgical procedures consisted of 57 transforaminal lumbar interbody fusion, 49 anterior cervical discectomy and fusion, 44 extreme lateral interbody fusion, 30 posterior cervical fusions, 19 thoracic fusion surgeries, 17 axial lumbar interbody fusions, 16 combined anterior and posterior cervical fusions, and 2 anterior lumbar interbody fusion. At a mean radiographic follow-up of 14.2±4.3 months, fusion was found to be present in 82.9% of patients and 86.8% of levels. The highest fusion rate was observed in the cervical region. At the latest clinical follow-up of 21.7±14.2 months, all clinical outcome parameters showed significant improvement. The Oswestry Disability Index improved from 45.6 to 13.3 points, Neck Disability Index from 40.6 to 29.3, VAS back from 6.1 to 3.5, VAS leg from 5.6 to 2.4, VAS neck from 4.7 to 2.7, and VAS arm from 4.1 to 1.7. Of 7 cases with secondary surgical procedure at the index level, the indication for surgery was nonunion in 3 patients. Si-CaP is an effective bone graft substitute. At the latest follow-up, favorable radiographic and clinical outcome was observed in the majority of patients. Level-III.
Rhee, Wootack; Ha, Seongil; Lim, Jae Hyeon; Jang, Il Tae
2014-01-01
Objective Using alendronate after spinal fusion is a controversial issue due to the inhibition of osteoclast mediated bone resorption. In addition, there are an increasing number of reports that the endplate degeneration influences the lumbar spinal fusion. The object of this retrospective controlled study was to evaluate how the endplate degeneration and the bisphosphonate medication influence the spinal fusion through radiographic evaluation. Methods In this study, 44 patients who underwent single-level posterior lumbar interbody fusion (PLIF) using cage were examined from April 2007 to March 2009. All patients had been diagnosed as osteoporosis and would be recommended for alendronate medication. Endplate degeneration is categorized by the Modic changes. The solid fusion is defined if there was bridging bone between the vertebral bodies, either within or external to the cage on the plain X-ray and if there is less than 5° of angular difference in dynamic X-ray. Results In alendronate group, fusion was achieved in 66.7% compared to 73.9% in control group (no medication). Alendronate did not influence the fusion rate of PLIF. However, there was the statistical difference of fusion rate between the endplate degeneration group and the group without endplate degeneration. A total of 52.4% of fusion rate was seen in the endplate degeneration group compared to 91.3% in the group without endplate degeneration. The endplate degeneration suppresses the fusion process of PLIF. Conclusion Alendronate does not influence the fusion process in osteoporotic patients. The endplate degeneration decreases the fusion rate. PMID:25620981
Surgery: Modified Pi with Triple-Bonnet Flap and Fronto-Orbital Advancement.
Singh Raswan, Uday; Singh Chhiber, Sarbjit; Ramzan, Altaf Umar
2017-01-01
Craniosynostosis is the premature fusion of one or more of the cranial sutures and can occur as part of a syndrome or as an isolated defect. Pansynostosis is a rare form of craniosynostosis that involves premature fusion of all the cranial sutures (coronal, sagittal, metopic, and occipital). Particularly in cases of late presentation, there are heightened clinical concerns, both functional and aesthetic. In untreated cases of pansynostosis and increased intracranial pressure, optic nerve damage progresses to optic atrophy and then blindness. Cranial vault reconstruction is the standard surgical treatment. We attempt to highlight the importance of modifying the osteotomies and reshaping of the cranial vault based on individual requirements in order to achieve the best possible result and to prevent catastrophic blood loss. We present a case of modified pi with triple-bonnet flap and fronto-orbital advancement, an individual modification of the techniques of cranial vault reconstruction, in a patient with pansynostosis with optic atrophy. The technical variation can be applied to any case of pansynostosis requiring cranial vault reconstruction. © 2017 S. Karger AG, Basel.
A Self-Synthesis Approach to Perceptual Learning for Multisensory Fusion in Robotics
Axenie, Cristian; Richter, Christoph; Conradt, Jörg
2016-01-01
Biological and technical systems operate in a rich multimodal environment. Due to the diversity of incoming sensory streams a system perceives and the variety of motor capabilities a system exhibits there is no single representation and no singular unambiguous interpretation of such a complex scene. In this work we propose a novel sensory processing architecture, inspired by the distributed macro-architecture of the mammalian cortex. The underlying computation is performed by a network of computational maps, each representing a different sensory quantity. All the different sensory streams enter the system through multiple parallel channels. The system autonomously associates and combines them into a coherent representation, given incoming observations. These processes are adaptive and involve learning. The proposed framework introduces mechanisms for self-creation and learning of the functional relations between the computational maps, encoding sensorimotor streams, directly from the data. Its intrinsic scalability, parallelisation, and automatic adaptation to unforeseen sensory perturbations make our approach a promising candidate for robust multisensory fusion in robotic systems. We demonstrate this by applying our model to a 3D motion estimation on a quadrotor. PMID:27775621
Muon reactivation in muon-catalyzed D-T fusion
NASA Astrophysics Data System (ADS)
Rafelski, H. E.; Müller, B.; Rafelski, J.; Trautmann, D.; Viollier, R. D.
We comprehensively reanalyze and search for the density dependence of the effective muon alpha sticking fraction ωsff observed experimentally in muon catalyzed deuterium-tritium fusion. In our work particular emphasis has been put on the density dependent dense hydrogen stopping power. The main technical details and improvements in this work are: The (αμ) + 2s and 2p states are treated independently and are assigned individual reaction rates. The essential muonic excitation rates have been recalculated taking into account finite nuclear mass effects. The stopping power for a charged projectile in liquid heavy hydrogen is modified to account for dynamic screening effects and a density dependent effective ionization potential. It is shown that the medium dependent stopping power for the (αμ) + ion is the crucial factor controlling the density dependence of the effective sticking fraction. It is also pointed out that the muonic helium K α X-ray yield and the sticking fraction at high density can not be simultaneously brought into agreement with the experimental results without invoking novel mechanisms suppressing Stark mixing in the (Heμ) L-shell.
Educational Outreach at the MIT Plasma Science and Fusion Center
NASA Astrophysics Data System (ADS)
Rivenberg, Paul; Thomas, Paul
2004-11-01
At the MIT PSFC student and staff volunteers work together to increase the public's knowledge of fusion science and plasma technology. Seeking to generate excitement in young people about science and engineering, the PSFC hosts a number of educational outreach activities and tours throughout the year, including Middle and High School Outreach Days. The PSFC also has an in-school science demonstration program on the theme of magnetism. As ''Mr. Magnet'' Technical Supervisor Paul Thomas brings a truck-load of hands-on demonstrations to K-12 schools, challenging students to help him with experiments. While teaching fundamentals of magnetism and electricity he shows that science is fun for all, and that any student can have a career in science. This year he taught at 75 schools and other events, reaching 30,000 teachers and students. He has expanded his teaching to include an interactive demonstration of plasma, encouraging participants to investigate plasma properties with audiovisual, electromagnetic, and spectroscopic techniques. The PSFC's continuing involvement with the MIT Museum and the Boston Museum of Science also helps familiarize the public with the fourth state of matter.
Case Study: Organotypic human in vitro models of embryonic morphogenetic fusion
Morphogenetic fusion of tissues is a common event in embryonic development and disruption of fusion is associated with birth defects of the eye, heart, neural tube, phallus, palate, and other organ systems. Embryonic tissue fusion requires precise regulation of cell-cell and cell...
Bomback, David A; Grauer, Jonathan N; Lugo, Roberto; Troiano, Nancy; Patel, Tushar Ch; Friedlaender, Gary E
2004-08-01
Posterolateral lumbar spine fusions in athymic rats. To compare spine fusion rates of two different osteoinductive products. Many osteoinductive bone graft alternatives are available. Grafton (a demineralized bone matrix [DBM]) and Osteogenic Protein-1 (OP-1, an individual recombinant bone morphogenetic protein) are two such alternatives. The relative efficacy of products from these two classes has not been previously studied. The athymic rat spine fusion model has been validated and demonstrated useful to minimize inflammatory responses to xenogeneic or differentially expressed proteins such as those presented by DBMs of human etiology. Single-level intertransverse process fusions were performed in 60 athymic nude rats with 2 cc/kg of Grafton or OP-1 Putty. Half of each study group was killed at 3 weeks and half at 6 weeks. Fusion masses were assessed by radiography, manual palpation, and histology. At 3 weeks, manual palpation revealed a 13% fusion rate with Grafton and a 100% fusion rate with OP-1 (P = 0.0001). At 6 weeks, manual palpation revealed a 39% fusion rate of with Grafton and a 100% fusion rate with OP-1 (P = 0.0007). Similar fusion rates were found by histology at 3 and 6 weeks. Of note, one or two adjacent levels were fused in all of the OP-1 animals and none of the Grafton animals. Significant differences between the ability of Grafton and OP-1 to induce bone formation in an athymic rat posterolateral lumbar spine fusion model were found.
The impact of preoperative epidural injections on postoperative infection in lumbar fusion surgery.
Singla, Anuj; Yang, Scott; Werner, Brian C; Cancienne, Jourdan M; Nourbakhsh, Ali; Shimer, Adam L; Hassanzadeh, Hamid; Shen, Francis H
2017-05-01
OBJECTIVE Lumbar epidural steroid injections (LESIs) are performed for both diagnostic and therapeutic purposes for a variety of indications, including low-back pain, the leading cause of disability and expense due to work-related conditions in the US. The steroid agent used in epidural injections is reported to relieve nerve root inflammation, local ischemia, and resultant pain, but the injection may also have an adverse impact on spinal surgery performed thereafter. In particular, the possibility that preoperative epidural injections may increase the risk of surgical site infection after lumbar spinal fusion has been reported but has not been studied in detail. The goal of the present study was to use a large national insurance database to analyze the association of preoperative LESIs with surgical site infection after lumbar spinal fusion. METHODS A nationwide insurance database of patient records was used for this retrospective analysis. Current Procedural Terminology codes were used to query the database for patients who had undergone LESI and 1- or 2-level lumbar posterior spinal fusion procedures. The rate of postoperative infection after 1- or 2-level posterior spinal fusion was analyzed. These study patients were then divided into 3 separate cohorts: 1) lumbar spinal fusion performed within 1 month after LESI, 2) fusion performed between 1 and 3 months after LESI, and 3) fusion performed between 3 and 6 months after LESI. The study patients were compared with a control cohort of patients who underwent lumbar fusion without previous LESI. RESULTS The overall 3-month infection rate after lumbar spinal fusion procedure was 1.6% (1411 of 88,540 patients). The infection risk increased in patients who received LESI within 1 month (OR 2.6, p < 0.0001) or 1-3 months (OR 1.4, p = 0.0002) prior to surgery compared with controls. The infection risk was not significantly different from controls in patients who underwent lumbar fusion more than 3 months after LESI. CONCLUSIONS Lumbar spinal fusion performed within 3 months after LESI may be associated with an increased rate of postoperative infection. This association was not found when lumbar fusion was performed more than 3 months after LESI.
Faust, James J.; Christenson, Wayne; Doudrick, Kyle; Ros, Robert
2017-01-01
Implantation of synthetic material, including vascular grafts, pacemakers, etc. results in the foreign body reaction and the formation of multinucleated giant cells (MGCs) at the exterior surface of the implant. Despite the long-standing premise that fusion of mononucleated macrophages results in the formation of MGCs, to date, no published study has shown fusion in context with living specimens. This is due to the fact that optical-quality glass, which is required for the majority of live imaging techniques, does not promote macrophage fusion. Consequently, the morphological changes that macrophages undergo during fusion as well as the mechanisms that govern this process remain ill-defined. In this study, we serendipitously identified a highly fusogenic glass surface and discovered that the capacity to promote fusion was due to oleamide contamination. When adsorbed on glass, oleamide and other molecules that contain long-chain hydrocarbons promoted high levels of macrophage fusion. Adhesion, an essential step for macrophage fusion, was apparently mediated by Mac-1 integrin (CD11b/CD18, αMβ2) as determined by single cell force spectroscopy and adhesion assays. Micropatterned glass further increased fusion and enabled a remarkable degree of spatiotemporal control over MGC formation. Using these surfaces, we reveal the kinetics that govern MGC formation in vitro. We anticipate that the spatiotemporal control afforded by these surfaces will expedite studies designed to identify the mechanism(s) of macrophage fusion and MGC formation with implication for the design of novel biomaterials. PMID:28340410
Myomaker: A membrane activator of myoblast fusion and muscle formation
Millay, Douglas P.; O’Rourke, Jason R.; Sutherland, Lillian B.; Bezprozvannaya, Svetlana; Shelton, John M.; Bassel-Duby, Rhonda; Olson, Eric N.
2013-01-01
Summary Fusion of myoblasts is essential for the formation of multi-nucleated muscle fibers. However, the identity of myogenic proteins that directly govern this fusion process has remained elusive. Here, we discovered a muscle-specific membrane protein, named Myomaker, that controls myoblast fusion. Myomaker is expressed on the cell surface of myoblasts during fusion and is down-regulated thereafter. Over-expression of Myomaker in myoblasts dramatically enhances fusion and genetic disruption of Myomaker in mice causes perinatal death due to an absence of multi-nucleated muscle fibers. Remarkably, forced expression of Myomaker in fibroblasts promotes fusion with myoblasts, demonstrating the direct participation of this protein in the fusion process. Pharmacologic perturbation of the actin cytoskeleton abolishes the activity of Myomaker, consistent with prior studies implicating actin dynamics in myoblast fusion. These findings reveal a long-sought myogenic fusion protein both necessary and sufficient for mammalian myoblast fusion and provide new insights into the molecular underpinnings of muscle formation. PMID:23868259
A Review of Data Fusion Techniques
2013-01-01
The integration of data and knowledge from several sources is known as data fusion. This paper summarizes the state of the data fusion field and describes the most relevant studies. We first enumerate and explain different classification schemes for data fusion. Then, the most common algorithms are reviewed. These methods and algorithms are presented using three different categories: (i) data association, (ii) state estimation, and (iii) decision fusion. PMID:24288502
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazeltine, Richard D.
The mission of the Institute for Fusion Studies has been to serve as a national center for theoretical fusion and plasma physics research. As an independent scientific group of critical size, its objectives were to conduct research on fundamental phenomena important to fusion; to serve as a center for fusion theory exchange activities with other countries; to exchange scientific developments with other academic disciplines; and to train students and postdoctoral fellows in fusion and plasma physics research.
A pharmacological study of Arabidopsis cell fusion between the persistent synergid and endosperm.
Motomura, Kazuki; Kawashima, Tomokazu; Berger, Frédéric; Kinoshita, Tetsu; Higashiyama, Tetsuya; Maruyama, Daisuke
2018-01-29
Cell fusion is a pivotal process in fertilization and multinucleate cell formation. A plant cell is ubiquitously surrounded by a hard cell wall, and very few cell fusions have been observed except for gamete fusions. We recently reported that the fertilized central cell (the endosperm) absorbs the persistent synergid, a highly differentiated cell necessary for pollen tube attraction. The synergid-endosperm fusion (SE fusion) appears to eliminate the persistent synergid from fertilized ovule in Arabidopsis thaliana Here, we analyzed the effects of various inhibitors on SE fusion in an in vitro culture system. Different from other cell fusions, neither disruption of actin polymerization nor protein secretion impaired SE fusion. However, transcriptional and translational inhibitors decreased the SE fusion success rate and also inhibited endosperm division. Failures of SE fusion and endosperm nuclear proliferation were also induced by roscovitine, an inhibitor of cyclin-dependent kinases (CDK). These data indicate unique aspects of SE fusion such as independence of filamentous actin support and the importance of CDK-mediated mitotic control. © 2018. Published by The Company of Biologists Ltd.
12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berk, Herbert L.; Breizman, Boris N.
2014-02-21
The 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems took place in Austin, Texas (7–11 September 2011). This meeting was organized jointly with the 5th IAEA Technical Meeting on Theory of Plasma Instabilities (5–7 September 2011). The two meetings shared one day (7 September 2011) with presentations relevant to both groups. Some of the work reported at these meetings was then published in a special issue of Nuclear Fusion [Nucl. Fusion 52 (2012)]. Summaries of the Energetic Particle Conference presentations were given by Kazuo Toi and Boris Breizman. They respectively discussed the experimental and theoretical progress presentedmore » at the meeting. Highlights of this meeting include the tremendous progress that has been achieved in the development of diagnostics that enables the ‘viewing’ of internal fluctuations and allows comparison with theoretical predictions, as demonstrated, for example, in the talks of P. Lauber and M. Osakabe. The need and development of hardened diagnostics in the severe radiation environment, such as those that will exist in ITER, was discussed in the talks of V. Kiptily and V.A. Kazakhov. In theoretical studies, much of the effort is focused on nonlinear phenomena. For example, detailed comparison of theory and experiment on D-III-D on the n = 0 geodesic mode was reported in separate papers by R. Nazikian and G. Fu. A large number of theoretical papers were presented on wave chirping including a paper by B.N. Breizman, which notes that wave chirping from a single frequency may emanate continuously once marginal stability conditions have been established. Another area of wide interest was the detailed study of alpha orbits in a burning plasma, where losses can come from symmetry breaking due to finite coil number or magnetic field imperfections introduced by diagnostic or test modules. An important area of development, covered by M.A. Hole and D.A. Spong, is concerned with the self-consistent treatment of the induced fields that accounts for toroidally asymmetric MHD response. In addition, a significant number of studies focused on understanding nonlinear behavior by means of computer simulation of energetic particle driven instability. An under-represented area of investigation was the study of electron runaway formation during major tokamak disruptions. It was noted in an overview by S. Putvinski that electron energies in the 10–20 MeV range is to be expected during projected major disruptions in ITER and that reliable methods for mitigation of the runaway process needs to be developed. Significant recent work in the field of the disruption induced electron runaway, which was reported by J. Riemann, had been submitted to Physics of Plasmas [3]. Overall it is clear that reliable mitigation of electron runaway is an extremely important topic that is in need of better understanding and solutions.« less
Application of elastic and elastic-plastic fracture mechanics methods to surface flaws
NASA Astrophysics Data System (ADS)
McCabe, Donald E.; Ernst, Hugo A.; Newman, James C., Jr.
Fuel tanks that are a part of the External Tank assembly for the Space Shuttle are made of relatively thin 2219-T87 aluminum plate. These tanks contain about 917 m of fusion weld seam, all of which is nondestructively inspected for flaws and all those found are repaired. The tanks are subsequently proof-tested to a pressure that is sufficiently severe to cause weld metal yielding in a few local regions of the weld seam. The work undertaken in the present project was to develop a capability to predict flaw growth from undetected surface flaws that are assumed to be located in the highly stressed regions. The technical challenge was to develop R-curve prediction capability for surface cracks in specimens that contain the flaws of unusual sizes and shapes deemed to be of interest. The test techniques developed and the elastic-plastic analysis concepts adopted are presented. The flaws of interest were quite small surface cracks that were narrow-deep ellipses that served to exacerbate the technical difficulties involved.
Nuclear Energy Present and Future
NASA Astrophysics Data System (ADS)
Hutchinson, I. H.
2006-10-01
Nuclear power plants currently generate about 20% of US and 17% of world electricity, which makes nuclear the largest non-emitting energy source in current use. Concerns about global climate change have led to a remarkable transformation of attitudes towards nuclear energy. There remain key challenges that must be faced when considering expansion of its contribution. In summary they are: Economics, Safety, Waste Disposal, and Proliferation. Electricity from legacy fission plants is highly competitive with fossil, but perceived financial risks make the large capital cost fraction a key hurdle to new-construction, and costs of 2 per installed Watt electrical are currently considered only just economically attractive. Proliferation of nuclear-weapons-enabling technology is a major concern for global stability, in which fusion may have significant technical advantages over fission. But proliferation control requires a combination of both technical and political initiatives. The feasibility of supplying process heat or hydrogen from nuclear energy inspires additional research into novel reactor concepts and associated technologies. The presentation will lay out this overall context of the nuclear energy renaissance.
Application of elastic and elastic-plastic fracture mechanics methods to surface flaws
NASA Technical Reports Server (NTRS)
Mccabe, Donald E.; Ernst, Hugo A.; Newman, James C., Jr.
1992-01-01
Fuel tanks that are a part of the External Tank assembly for the Space Shuttle are made of relatively thin 2219-T87 aluminum plate. These tanks contain about 917 m of fusion weld seam, all of which is nondestructively inspected for flaws and all those found are repaired. The tanks are subsequently proof-tested to a pressure that is sufficiently severe to cause weld metal yielding in a few local regions of the weld seam. The work undertaken in the present project was to develop a capability to predict flaw growth from undetected surface flaws that are assumed to be located in the highly stressed regions. The technical challenge was to develop R-curve prediction capability for surface cracks in specimens that contain the flaws of unusual sizes and shapes deemed to be of interest. The test techniques developed and the elastic-plastic analysis concepts adopted are presented. The flaws of interest were quite small surface cracks that were narrow-deep ellipses that served to exacerbate the technical difficulties involved.
Bridge, Julia A
2017-01-01
The introduction of molecular testing into cytopathology laboratory practice has expanded the types of samples considered feasible for identifying genetic alterations that play an essential role in cancer diagnosis and treatment. Reverse transcription-polymerase chain reaction (RT-PCR), a sensitive and specific technical approach for amplifying a defined segment of RNA after it has been reverse-transcribed into its DNA complement, is commonly used in clinical practice for the identification of recurrent or tumor-specific fusion gene events. Real-time RT-PCR (quantitative RT-PCR), a technical variation, also permits the quantitation of products generated during each cycle of the polymerase chain reaction process. This review addresses qualitative and quantitative pre-analytic and analytic considerations of RT-PCR as they relate to various cytologic specimens. An understanding of these aspects of genetic testing is central to attaining optimal results in the face of the challenges that cytology specimens may present. Cancer Cytopathol 2017;125:11-19. © 2016 American Cancer Society. © 2016 American Cancer Society.
A systematic review of clinical outcomes in surgical treatment of adult isthmic spondylolisthesis.
Noorian, Shaya; Sorensen, Karen; Cho, Woojin
2018-05-07
A variety of surgical methods are available for the treatment of adult isthmic spondylolisthesis, but there is no consensus regarding their relative effects on clinical outcomes. To compare the effects of different surgical techniques on clinical outcomes in adult isthmic spondylolisthesis. Systematic Review PATIENT SAMPLE: A total of 1,538 patients from six randomized clinical trials and nine observational studies comparing different surgical treatments in adult isthmic spondylolisthesis. Primary outcome measures of interest included differences in pre- versus post-surgical assessments of pain, functional disability, and overall health as assessed by validated pain rating scales and questionnaires. Secondary outcome measures of interest included intraoperative blood loss, length of hospital stay, surgery duration, reoperation rates, and complication rates. A search of the literature was performed in September, 2017 for relevant comparative studies published in the prior 10-year period in the following databases: PubMed, Embase, Web of Science, and ClinicalTrials.Gov. PRISMA guidelines were followed and studies were included/excluded based on strict predetermined criteria. Quality appraisal was conducted using the Newcastle-Ottawa Scale (NOS) for observational studies and the Cochrane Collaboration's risk of bias assessment tool for randomized clinical trials. The authors received no funding support to conduct this review. A total of 15 studies (6 randomized clinical trials and 9 observational studies) were included for full text review, a majority of which only included cases of low-grade isthmic spondylolisthesis. 1 study examined the effects of adding pedicle screw fixation (PS) to posterolateral fusion (PLF) and 2 studies examined the effects of adding reduction to interbody fusion (IF) + PS on clinical outcomes. 5 studies compared PLF, 4 with and 1 without PS, to IF + PS. Additionally, 3 studies compared circumferential fusion (IF + PS + PLF) to IF + PS and 1 study compared circumferential fusion to PLF + PS. 3 studies compared clinical outcomes among different IF + PS techniques (ALIF + PS vs. PLIF + PS vs TLIF + PS) without PLF. As per the Cochrane Collaboration's risk of bias assessment tool, 4 randomized clinical trials had an overall low risk of bias, 1 randomized clinical trial had an unclear risk of bias, and 1 randomized clinical trial had a high risk of bias. As per the Newcastle-Ottawa scale, 3 observational studies were of overall good quality, 4 observational studies were of fair quality, and 2 observational studies were of poor quality. Available studies provide strong evidence that the addition of reduction to fusion does not result in better clinical outcomes of pain and function in low-grade isthmic spondylolisthesis. Evidence also suggests that there is no significant difference between interbody fusion (IF + PS) and posterior fusion (PLF +/- PS) in outcomes of pain, function, and complication rates at follow-up points up to approximately 3 years in cases of low-grade slips. However, studies with longer follow-up points suggest that interbody fusion (IF + PS) may perform better in these same measures at later follow-up points. Available evidence also suggests no difference between circumferential fusion (IF + PS + PLF) and interbody fusion (IF + PS) in outcomes of pain and function in low-grade slips, but circumferential fusion has been associated with greater intraoperative blood loss, longer surgery duration, and longer hospital stays. In terms of clinical outcomes, insufficient evidence is available to assess the utility of adding PS to PLF, the relative efficacy of different interbody fusion (IF + PS) techniques (ALIF + PS vs. TLIF + PS vs. PLIF + PS), and the relative efficacy of circumferential fusion and posterior fusion (PLF + PS). Copyright © 2018. Published by Elsevier Inc.
Single-molecule studies of the neuronal SNARE fusion machinery.
Brunger, Axel T; Weninger, Keith; Bowen, Mark; Chu, Steven
2009-01-01
SNAREs are essential components of the machinery for Ca(2+)-triggered fusion of synaptic vesicles with the plasma membrane, resulting in neurotransmitter release into the synaptic cleft. Although much is known about their biophysical and structural properties and their interactions with accessory proteins such as the Ca(2+) sensor synaptotagmin, their precise role in membrane fusion remains an enigma. Ensemble studies of liposomes with reconstituted SNAREs have demonstrated that SNAREs and accessory proteins can trigger lipid mixing/fusion, but the inability to study individual fusion events has precluded molecular insights into the fusion process. Thus, this field is ripe for studies with single-molecule methodology. In this review, we discuss applications of single-molecule approaches to observe reconstituted SNAREs, their complexes, associated proteins, and their effect on biological membranes. Some of the findings are provocative, such as the possibility of parallel and antiparallel SNARE complexes or of vesicle docking with only syntaxin and synaptobrevin, but have been confirmed by other experiments.
Ahsan, M K; Hossain, M A; Sakeb, N; Khan, S I; Zaman, N
2013-10-01
This prospective interventional study carried out at Bangabandhu Sheikh Mujib Medical University and a private hospital in Dhaka, Bangladesh during the period from October 2003 to September 2011. Surgical treatment of degenerative disc disease (DDD) should aim to re-expand the interbody space and stabilize until fusion is complete. The present study conducted to find out the efficacy of using interbody fusion device (Cage) to achieve interbody space re-expansion and fusion in surgical management of DDD. We have performed the interventional study on 53 patients, 42 female and 11 male, with age between 40 to 67 years. All the patients were followed up for 36 to 60 months (average 48 months). Forty seven patients were with spondylolisthesis and 06 with desiccated disc. All subjects were evaluated with regard to immediate and long term complications, radiological fusion and interbody space re-expansion and maintenance. The clinical outcome (pain and disability) was scored by standard pre and postoperative questionnaires. Intrusion, extrusion and migration of the interbody fusion cage were also assessed. Forty seven patients were considered to have satisfactory outcome in at least 36 months follow up. Pseudoarthrosis developed in 04 cases and 06 patients developed complications. In this series posterior lumbar interbody fusion (PLIF) with interbody cage and instrumentation in DDD showed significant fusion rate and maintenance of interbody space. Satisfactory outcome observed in 88.68% cases.
Rudzinski, Erin R; Anderson, James R; Lyden, Elizabeth R; Bridge, Julia A; Barr, Frederic G; Gastier-Foster, Julie M; Bachmeyer, Karen; Skapek, Stephen X; Hawkins, Douglas S; Teot, Lisa A; Parham, David M
2014-05-01
Pediatric rhabdomyosarcoma (RMS) is traditionally classified on the basis of the histologic appearance into alveolar (ARMS) and embryonal (ERMS) subtypes. The majority of ARMS contain a PAX3-FOXO1 or PAX7-FOXO1 gene fusion, but about 20% do not. Intergroup Rhabdomyosarcoma Study stage-matched and group-matched ARMS typically behaves more aggressively than ERMS, but recent studies have shown that it is, in fact, the fusion status that drives the outcome for RMS. Gene expression microarray data indicate that several genes discriminate between fusion-positive and fusion-negative RMS with high specificity. Using tissue microarrays containing a series of both ARMS and ERMS, we identified a panel of 4 immunohistochemical markers-myogenin, AP2β, NOS-1, and HMGA2-which can be used as surrogate markers of fusion status in RMS. These antibodies provide an alternative to molecular methods for identification of fusion-positive RMS, particularly in cases in which there is scant or poor-quality material. In addition, these antibodies may be useful in fusion-negative ARMS as an indicator that a variant gene fusion may be present.
2014-01-01
Background The fusion of the pelvic joints in patients with severe pelvic girdle pain (PGP) is a controversial and insufficiently studied procedure. The aims of this study were to evaluate physical function and pain after sacroiliac joint (SIJ) fusion. Methods A single-subject research design study with repeated measurements was conducted; pre-operatively and at 3, 6 and 12 months post-operatively. The outcome measures considered were the Oswestry disability index (ODI), visual analogue scale (VAS), and SF-36. Eight patients with severe PGP received open-accessed unilateral anterior SIJ fusion and fusion of the pubic symphysis. Results Seven patients reported positive results from the surgery. At 1 year post-operation, significant (p < 0.001) reductions in ODI (54 to 37) and VAS (82 to 57) were reported. The physical functioning, bodily pain, and social functioning scores in the SF-36 were also improved. Conclusion Positive and significant changes in disability and pain at 1 year after SIJ fusion were observed. Despite these positive results, open accessed anterior fusion of the SIJ was associated with adverse events and complications such as infection and nerve damage. PMID:24629145
Parajón, Avelino; Alimi, Marjan; Navarro-Ramirez, Rodrigo; Christos, Paul; Torres-Campa, Jose M; Moriguchi, Yu; Lang, Gernot; Härtl, Roger
2017-12-01
Minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) is an increasingly popular procedure with several potential advantages over traditional open TLIF. The current study aimed to compare fusion rates of different graft materials used in MIS-TLIF, via meta-analysis of the published literature. A Medline search was performed and a database was created including patient's type of graft, clinical outcome, fusion rate, fusion assessment modality, and duration of follow-up. Meta-analysis of the fusion rate was performed using StatsDirect software (StatsDirect Ltd, Cheshire, United Kingdom). A total of 1533 patients from 40 series were included. Fusion rates were high, ranging from 91.8% to 99%. The imaging modalities used to assess fusion were computed tomography scans (30%) and X-rays (70%). Comparison of all recombinant human bone morphogenetic protein (rhBMP) series with all non-rhBMP series showed fusion rates of 96.6% and 92.5%, respectively. The lowest fusion rate was seen with isolated use of autologous local bone (91.8%). The highest fusion rate was observed with combination of autologous local bone with bone extender and rhBMP (99.1%). The highest fusion rate without the use of BMP was seen with autologous local bone + bone extender (93.1%). The reported complication rate ranged from 0% to 35.71%. Clinical improvement was observed in all studies. Fusion rates are generally high with MIS-TLIF regardless of the graft material used. Given the potential complications of iliac bone harvesting and rhBMP, use of other bone graft options for MIS-TLIF is reasonable. The highest fusion rate without the use of rhBMP was seen with autologous local bone plus bone extender (93.1%). Published by Oxford University Press on behalf of Congress of Neurological Surgeons 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Fusion Rates of Different Anterior Grafts in Thoracolumbar Fractures.
Antoni, Maxime; Charles, Yann Philippe; Walter, Axel; Schuller, Sébastien; Steib, Jean-Paul
2015-11-01
Retrospective CT analysis of anterior fusion in thoracolumbar trauma. The aim of this study was to compare fusion rates of different bone grafts and to analyze risk factors for pseudarthrosis. Interbody fusion is indicated in anterior column defects. Different grafts are used: autologous iliac crest, titanium mesh cages filled with cancellous bone, and autologous ribs. It is not clear which graft offers the most reliable fusion. Radiologic data of 116 patients (71 men, 45 women) operated for type A2, A3, B, or C fractures were analyzed. The average age was 44.6 years (range, 16-75 y) and follow-up was 2.7 years (range, 1-9 y). All patients were treated by posterior instrumentation followed by an anterior graft: 53 cases with iliac crest, 43 cases with mesh cages, and 20 with rib grafts. Fusion was evaluated on CT and classified into complete fusion, partial fusion, unipolar pseudarthrosis, and bipolar pseudarthrosis. Iliac crest fused in 66%, cages in 98%, and rib grafts in 90%. The fusion rate of cages filled with bone was significantly higher as the iliac graft fusion rate (P=0.002). The same was applied to rib grafts compared with iliac crest (P=0.041). Additional bone formation around the main graft, bridging both vertebral bodies, was observed in 31 of the 53 iliac crests grafts. Pseudarthrosis occurred more often in smokers (P=0.042). A relationship between fracture or instrumentation types, sex, age, BMI, and fusion could not be determined. Tricortical iliac crest grafts showed an unexpected high pseudarthrosis rate in thoracolumbar injuries. Their cortical bone is dense and their fusion surface is small. Rib grafts led to a better fusion when used in combination with the cancellous bone from the fractured vertebral body. Titanium mesh cages filled with cancellous bone led to the highest fusion rate and built a complete bony bridge between vertebral bodies. Smoking seemed to influence fusion. Case control study, Level III.
Directed Energy HPM, PP, & PPS Efforts: Magnetized Target Fusion - Field Reversed Configuration
2006-08-04
interior. 15. SUBJECT TERMS Magnetized Target Fusion (MTF), Field-Reversed Configuration (FRC), Alternative Confinement Concepts, Fusion Energy 16...research, the Department of Energy’s Office of Fusion Energy Studies (DOE OFES). Sections 2 through 4, which follow, describe in detail SAIC’s, FabTek’s...the plasma physics areas (FRCs and fusion energy ) in which we are working. The conference paper was submitted at this time, as well, and will
NASA Astrophysics Data System (ADS)
Chen, Xiang Ming
1993-01-01
Researchers have studied the different aspects of commercial fusion energy for several decades. A variety of inertial confinement fusion (ICF) reactors have been proposed. Different from the magnetic confinement fusion concept, inertial confinement fusion does not need long-term confinement of the fusion fuel but achieves fusion reaction in a short microexplosion under a high density, high temperature condition. The HYLIFE-2 reactor design started in 1987 is based on the study of a previous concept called HYLIFE (High Yield Lithium Injection Fusion Energy). Similar to the old concept, the HYLIFE-2 design uses a vacuum chamber in which D-T fusion pellets are injected and ignited by high energy beams shot into the reactor through different ports. The reactor vessel is protected from explosion radiations by a liquid fall (blanket) that also breeds tritium through the (n, alpha) reaction of lithium and conveys the fusion energy to the power cycle. In addition to some geometric chances, the new design replaces liquid metal lithium with the molten salt Flibe (Li2BeF4) as the protective blanket material. The objective was to remove the possibility of fire hazard. The important thermal hydraulic issues in the design are (1) equation of state of Flibe; (2) liquid relaxation after isochoric (constant volume) heating; (3) ablation and gas dynamics; (4) interaction of the vapor and liquid; and (5) condensation of the vaporized material. The first four issues have to do with the internal relaxation after the fusion microexplosion in the chamber. Vaporized material, as well as liquid, may assert strong impulses on the chamber wall during the process of relaxing after absorbing the energy from the microexplosion. Item (5) is related to the rapid vacuum recovery between the ignitions. Some aspects of the first four issues are studied.
Hamm, Klaus D; Surber, Gunnar; Schmücking, Michael; Wurm, Reinhard E; Aschenbach, Rene; Kleinert, Gabriele; Niesen, A; Baum, Richard P
2004-11-01
Innovative new software solutions may enable image fusion to produce the desired data superposition for precise target definition and follow-up studies in radiosurgery/stereotactic radiotherapy in patients with intracranial lesions. The aim is to integrate the anatomical and functional information completely into the radiation treatment planning and to achieve an exact comparison for follow-up examinations. Special conditions and advantages of BrainLAB's fully automatic image fusion system are evaluated and described for this purpose. In 458 patients, the radiation treatment planning and some follow-up studies were performed using an automatic image fusion technique involving the use of different imaging modalities. Each fusion was visually checked and corrected as necessary. The computerized tomography (CT) scans for radiation treatment planning (slice thickness 1.25 mm), as well as stereotactic angiography for arteriovenous malformations, were acquired using head fixation with stereotactic arc or, in the case of stereotactic radiotherapy, with a relocatable stereotactic mask. Different magnetic resonance (MR) imaging sequences (T1, T2, and fluid-attenuated inversion-recovery images) and positron emission tomography (PET) scans were obtained without head fixation. Fusion results and the effects on radiation treatment planning and follow-up studies were analyzed. The precision level of the results of the automatic fusion depended primarily on the image quality, especially the slice thickness and the field homogeneity when using MR images, as well as on patient movement during data acquisition. Fully automated image fusion of different MR, CT, and PET studies was performed for each patient. Only in a few cases was it necessary to correct the fusion manually after visual evaluation. These corrections were minor and did not materially affect treatment planning. High-quality fusion of thin slices of a region of interest with a complete head data set could be performed easily. The target volume for radiation treatment planning could be accurately delineated using multimodal information provided by CT, MR, angiography, and PET studies. The fusion of follow-up image data sets yielded results that could be successfully compared and quantitatively evaluated. Depending on the quality of the originally acquired image, automated image fusion can be a very valuable tool, allowing for fast (approximately 1-2 minute) and precise fusion of all relevant data sets. Fused multimodality imaging improves the target volume definition for radiation treatment planning. High-quality follow-up image data sets should be acquired for image fusion to provide exactly comparable slices and volumetric results that will contribute to quality contol.
Scott, Trevor P.; Phan, Kevin H.; Tian, Haijun; Suzuki, Akinobu; Montgomery, Scott R.; Johnson, Jared S.; Atti, Elisa; Tetratis, Sotirios; Pereira, Renata C.; Wang, Jeffrey C.; Daubs, Michael D.; Stappenbeck, Frank; Parhami, Farhad
2015-01-01
Background Context The non-union rate following lumbar spinal fusion is as high as 25%. Bone morphogenetic protein-2 (rhBMP2) has been used as a biological adjunct to promote bony fusion. However, recently there have been concerns about BMP2. Oxysterol 133 (Oxy133) has been shown to promote excellent fusion rates in rodent lumbar spine models and offers a potential alternative to rhBMP2. Purpose The purpose of this study was to compare the fusion rate of rhBMP2 and Oxy133 in a randomized controlled trial using a posterolateral lumbar rabbit spinal fusion model. Study Design This was a randomized control animal study. Methods Twenty-four male adult white New Zealand rabbits (3–3.5kg) underwent bilateral posterolateral lumbar spinal fusion at L4–L5. Rabbits were divided into 4 groups: control (A), 30 µg rhBMP2 (B), 20 mg Oxy133 (C), and 60 mg Oxy133 (D). At 4 weeks, fusion was evaluated by fluoroscopy, and at 8 weeks the rabbits were sacrificed and fusion was evaluated radiographically, by manual palpation, and with microCT. Dr. Parhami is a founder and Dr. Stappenbeck is the Director of Chemistry at MAX BioPharma, which has licensed the rights to Oxy133 from UCLA, both have financial interests in the technology presented here. UCLA holds equity in MAX BioPharma. All other authors have no conflicts of interest. Studies reported here were supported in part by the NIH/NIAMS grant RO1AR059794 and in part by MAX BioPharma that purchased the rabbits and provided Oxy133. Results Fusion rates by radiographic analysis at 8 weeks were: group A 40.0%, group B 91.7%, group C 91.7%, and group D 100%. Evaluation of fusion masses by manual palpation of excised spines after sacrifice showed the following fusion rates: group A 0%, group B 83.3%, group C 83.3%, and group D 90%. MicroCT scanning confirmed these findings. Conclusions These findings in a rabbit model demonstrate that both 20 mg dose and 60 mg dose Oxy133 promote fusion that is equivalent to fusion induced by 30 µg rhBMP2 and significantly greater than the control group. The present findings confirm that Oxy133 is a promising candidate for therapeutic development as an alternative to rhBMP2 to promote spinal fusion. PMID:25450659
3D Neutronic Analysis in MHD Calculations at ARIES-ST Fusion Reactors Systems
NASA Astrophysics Data System (ADS)
Hançerliogulları, Aybaba; Cini, Mesut
2013-10-01
In this study, we developed new models for liquid wall (FW) state at ARIES-ST fusion reactor systems. ARIES-ST is a 1,000 MWe fusion reactor system based on a low aspect ratio ST plasma. In this article, we analyzed the characteristic properties of magnetohydrodynamics (MHD) and heat transfer conditions by using Monte-Carlo simulation methods (ARIES Team et al. in Fusion Eng Des 49-50:689-695, 2000; Tillack et al. in Fusion Eng Des 65:215-261, 2003) . In fusion applications, liquid metals are traditionally considered to be the best working fluids. The working liquid must be a lithium-containing medium in order to provide adequate tritium that the plasma is self-sustained and that the fusion is a renewable energy source. As for Flibe free surface flows, the MHD effects caused by interaction with the mean flow is negligible, while a fairly uniform flow of thick can be maintained throughout the reactor based on 3-D MHD calculations. In this study, neutronic parameters, that is to say, energy multiplication factor radiation, heat flux and fissile fuel breeding were researched for fusion reactor with various thorium and uranium molten salts. Sufficient tritium amount is needed for the reactor to work itself. In the tritium breeding ratio (TBR) >1.05 ARIES-ST fusion model TBR is >1.1 so that tritium self-sufficiency is maintained for DT fusion systems (Starke et al. in Fusion Energ Des 84:1794-1798, 2009; Najmabadi et al. in Fusion Energ Des 80:3-23, 2006).
Liao, Jen-Chung; Chen, Wen-Jer; Chen, Lih-Hui; Lai, Po-Liang; Keorochana, Gun
2011-04-01
Laminectomy-derived chip bone graft was usually used in spinal fusion; however, the result of this kind of local bone used in lumbar posterolateral fusion is uncertain. This study tested the hypotheses that low-intensity pulsed ultrasound (LIPU) can accelerate the healing process of laminectomy bone chips in a spinal fusion and enhance the union rate. Forty-eight rabbits were randomly divided into three groups for the spinal unilateral uninstrumented posterolateral fusion of L5-L6: autologous iliac bone graft (AIBG), laminectomy chip bone graft (LCBG), LCBG plus LIPU (LCBG + LIPU). Each group was subdivided into 6-week and 12-week subgroups. All rabbits were subjected to radiographic examination and manual testing. All successful spinal fusion specimens received biomechanical testing and a histologic examination. The LCBG + LIPU group had the highest successful fusion rate at 6-week and 12-week examination (75% and 100%, respectively). At 6 weeks, the average maximum toque at failure values of the fusion masses for the LCBG + LIPU group was significantly higher than that for the LCBG group (p = 0.034). The average maximum torque of the 12-week LCBG + LIPU group was significantly higher than those of the 12-week AIBG and 12-week LCBG groups (p = 0.040 and p = 0.026, respectively). This study suggested that LIPU can enhance bone healing. With augmentation by LIPU, laminectomy chip bone used in lumbar posterolateral fusion can achieve a similar fusion rate and stronger fusion mass than those of an AIBG.
NASA Astrophysics Data System (ADS)
Erickson, Kyle J.; Ross, Timothy D.
2007-04-01
Decision-level fusion is an appealing extension to automatic/assisted target recognition (ATR) as it is a low-bandwidth technique bolstered by a strong theoretical foundation that requires no modification of the source algorithms. Despite the relative simplicity of decision-level fusion, there are many options for fusion application and fusion algorithm specifications. This paper describes a tool that allows trade studies and optimizations across these many options, by feeding an actual fusion algorithm via models of the system environment. Models and fusion algorithms can be specified and then exercised many times, with accumulated results used to compute performance metrics such as probability of correct identification. Performance differences between the best of the contributing sources and the fused result constitute examples of "gain." The tool, constructed as part of the Fusion for Identifying Targets Experiment (FITE) within the Air Force Research Laboratory (AFRL) Sensors Directorate ATR Thrust, finds its main use in examining the relationships among conditions affecting the target, prior information, fusion algorithm complexity, and fusion gain. ATR as an unsolved problem provides the main challenges to fusion in its high cost and relative scarcity of training data, its variability in application, the inability to produce truly random samples, and its sensitivity to context. This paper summarizes the mathematics underlying decision-level fusion in the ATR domain and describes a MATLAB-based architecture for exploring the trade space thus defined. Specific dimensions within this trade space are delineated, providing the raw material necessary to define experiments suitable for multi-look and multi-sensor ATR systems.
Multimerized CHR-derived peptides as HIV-1 fusion inhibitors.
Nomura, Wataru; Hashimoto, Chie; Suzuki, Takaharu; Ohashi, Nami; Fujino, Masayuki; Murakami, Tsutomu; Yamamoto, Naoki; Tamamura, Hirokazu
2013-08-01
To date, several HIV-1 fusion inhibitors based on the carboxy-terminal leucine/isoleucine heptad repeat (CHR) region of an HIV-1 envelope protein gp41 have been discovered. We have shown that a synthetic peptide mimetic of a trimer form of the CHR-derived peptide C34 has potent inhibitory activity against the HIV-1 fusion mechanism, compared to a monomer C34 peptide. The present study revealed that a dimeric form of C34 is evidently structurally critical for fusion inhibitors, and that the activity of multimerized CHR-derived peptides in fusion inhibition is affected by the properties of the unit peptides C34, SC34EK, and T20. The fluorescence-based study suggested that the N36-interactive sites of the C34 trimer, including hydrophobic residues, are exposed outside the trimer and that trimerization of C34 caused a remarkable increase in fusion inhibitory activity. The present results could be useful in the design of fusion inhibitors against viral infections which proceed via membrane fusion with host cells. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Beyond ALK-RET, ROS1 and other oncogene fusions in lung cancer
Nakaoku, Takashi; Tsuta, Koji; Tsuchihara, Katsuya; Matsumoto, Shingo; Yoh, Kiyotaka; Goto, Koichi
2015-01-01
Fusions of the RET and ROS1 protein tyrosine kinase oncogenes with several partner genes were recently identified as new targetable genetic aberrations in cases of non-small cell lung cancer (NSCLC) lacking activating EGFR, KRAS, ALK, BRAF, or HER2 oncogene aberrations. RET and ROS1 fusion-positive tumors are mainly observed in young, female, and/or never smoking patients. Studies based on in vitro and in vivo (i.e., mouse) models and studies of several fusion-positive patients indicate that inhibiting the kinase activity of the RET and ROS1 fusion proteins is a promising therapeutic strategy. Accordingly, there are several ongoing clinical trials aimed at examining the efficacy of tyrosine kinase inhibitors (TKIs) against RET and ROS1 proteins in patients with fusion-positive lung cancer. Other gene fusions (NTRK1, NRG1, and FGFR1/2/3) that are targetable by existing TKIs have also been identified in NSCLCs. Options for personalized lung cancer therapy will be increased with the help of multiplex diagnosis systems able to detect multiple druggable gene fusions. PMID:25870798
Faust, James J; Christenson, Wayne; Doudrick, Kyle; Ros, Robert; Ugarova, Tatiana P
2017-06-01
Implantation of synthetic material, including vascular grafts, pacemakers, etc. results in the foreign body reaction and the formation of multinucleated giant cells (MGCs) at the exterior surface of the implant. Despite the long-standing premise that fusion of mononucleated macrophages results in the formation of MGCs, to date, no published study has shown fusion in context with living specimens. This is due to the fact that optical-quality glass, which is required for the majority of live imaging techniques, does not promote macrophage fusion. Consequently, the morphological changes that macrophages undergo during fusion as well as the mechanisms that govern this process remain ill-defined. In this study, we serendipitously identified a highly fusogenic glass surface and discovered that the capacity to promote fusion was due to oleamide contamination. When adsorbed on glass, oleamide and other molecules that contain long-chain hydrocarbons promoted high levels of macrophage fusion. Adhesion, an essential step for macrophage fusion, was apparently mediated by Mac-1 integrin (CD11b/CD18, α M β 2 ) as determined by single cell force spectroscopy and adhesion assays. Micropatterned glass further increased fusion and enabled a remarkable degree of spatiotemporal control over MGC formation. Using these surfaces, we reveal the kinetics that govern MGC formation in vitro. We anticipate that the spatiotemporal control afforded by these surfaces will expedite studies designed to identify the mechanism(s) of macrophage fusion and MGC formation with implication for the design of novel biomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.
Induction of cell-cell fusion by ectromelia virus is not inhibited by its fusion inhibitory complex.
Erez, Noam; Paran, Nir; Maik-Rachline, Galia; Politi, Boaz; Israely, Tomer; Schnider, Paula; Fuchs, Pinhas; Melamed, Sharon; Lustig, Shlomo
2009-09-29
Ectromelia virus, a member of the Orthopox genus, is the causative agent of the highly infectious mousepox disease. Previous studies have shown that different poxviruses induce cell-cell fusion which is manifested by the formation of multinucleated-giant cells (polykaryocytes). This phenomenon has been widely studied with vaccinia virus in conditions which require artificial acidification of the medium. We show that Ectromelia virus induces cell-cell fusion under neutral pH conditions and requires the presence of a sufficient amount of viral particles on the plasma membrane of infected cells. This could be achieved by infection with a replicating virus and its propagation in infected cells (fusion "from within") or by infection with a high amount of virus particles per cell (fusion "from without"). Inhibition of virus maturation or inhibition of virus transport on microtubules towards the plasma membrane resulted in a complete inhibition of syncytia formation. We show that in contrast to vaccinia virus, Ectromelia virus induces cell-cell fusion irrespectively of its hemagglutination properties and cell-surface expression of the orthologs of the fusion inhibitory complex, A56 and K2. Additionally, cell-cell fusion was also detected in mice lungs following lethal respiratory infection. Ectromelia virus induces spontaneous cell-cell fusion in-vitro and in-vivo although expressing an A56/K2 fusion inhibitory complex. This syncytia formation property cannot be attributed to the 37 amino acid deletion in ECTV A56.
Feasibility study on sensor data fusion for the CP-140 aircraft: fusion architecture analyses
NASA Astrophysics Data System (ADS)
Shahbazian, Elisa
1995-09-01
Loral Canada completed (May 1995) a Department of National Defense (DND) Chief of Research and Development (CRAD) contract, to study the feasibility of implementing a multi- sensor data fusion (MSDF) system onboard the CP-140 Aurora aircraft. This system is expected to fuse data from: (a) attributed measurement oriented sensors (ESM, IFF, etc.); (b) imaging sensors (FLIR, SAR, etc.); (c) tracking sensors (radar, acoustics, etc.); (d) data from remote platforms (data links); and (e) non-sensor data (intelligence reports, environmental data, visual sightings, encyclopedic data, etc.). Based on purely theoretical considerations a central-level fusion architecture will lead to a higher performance fusion system. However, there are a number of systems and fusion architecture issues involving fusion of such dissimilar data: (1) the currently existing sensors are not designed to provide the type of data required by a fusion system; (2) the different types (attribute, imaging, tracking, etc.) of data may require different degree of processing, before they can be used within a fusion system efficiently; (3) the data quality from different sensors, and more importantly from remote platforms via the data links must be taken into account before fusing; and (4) the non-sensor data may impose specific requirements on the fusion architecture (e.g. variable weight/priority for the data from different sensors). This paper presents the analyses performed for the selection of the fusion architecture for the enhanced sensor suite planned for the CP-140 aircraft in the context of the mission requirements and environmental conditions.
Seaman, Scott; Kerezoudis, Panagiotis; Bydon, Mohamad; Torner, James C; Hitchon, Patrick W
2017-10-01
Spinal interbody fusion is a standard and accepted method for spinal fusion. Interbody fusion devices include titanium (Ti) and polyetheretherketone (PEEK) cages with distinct biomechanical properties. Titanium and PEEK cages have been evaluated in the cervical and lumbar spine, with conflicting results in bony fusion and subsidence. Using Preferred Reporting Items for Systematic reviews and Meta-analyses (PRISMA) guidelines, we reviewed the available literature evaluating Ti and PEEK cages to assess subsidence and fusion rates. Six studies were included in the analysis, 3 of which were class IV evidence, 2 were class III, and 1 was class II. A total of 410 patients (Ti-228, PEEK-182) and 587 levels (Ti-327, PEEK-260) were studied. Pooled mean age was 50.8years in the Ti group, and 53.1years in the PEEK group. Anterior cervical discectomy was performed in 4 studies (395 levels) and transforaminal interbody fusion in 2 studies (192 levels). No statistically significant difference was found between groups with fusion (OR 1.16, 95% C.I 0.59-2.89, p=0.686, I 2 =49.7%) but there was a statistically significant the rate of subsidence with titanium (OR 3.59, 95% C.I 1.28-10.07, p=0.015, I 2 =56.9%) at last follow-up. Titanium and PEEK cages are associated with a similar rate of fusion, but there is an increased rate of subsidence with titanium cage. Future prospective randomized controlled trials are needed to further evaluate these cages using surgical and patient-reported outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Direct observation of intermediate states in model membrane fusion
Keidel, Andrea; Bartsch, Tobias F.; Florin, Ernst-Ludwig
2016-01-01
We introduce a novel assay for membrane fusion of solid supported membranes on silica beads and on coverslips. Fusion of the lipid bilayers is induced by bringing an optically trapped bead in contact with the coverslip surface while observing the bead’s thermal motion with microsecond temporal and nanometer spatial resolution using a three-dimensional position detector. The probability of fusion is controlled by the membrane tension on the particle. We show that the progression of fusion can be monitored by changes in the three-dimensional position histograms of the bead and in its rate of diffusion. We were able to observe all fusion intermediates including transient fusion, formation of a stalk, hemifusion and the completion of a fusion pore. Fusion intermediates are characterized by axial but not lateral confinement of the motion of the bead and independently by the change of its rate of diffusion due to the additional drag from the stalk-like connection between the two membranes. The detailed information provided by this assay makes it ideally suited for studies of early events in pure lipid bilayer fusion or fusion assisted by fusogenic molecules. PMID:27029285
Multiscale Medical Image Fusion in Wavelet Domain
Khare, Ashish
2013-01-01
Wavelet transforms have emerged as a powerful tool in image fusion. However, the study and analysis of medical image fusion is still a challenging area of research. Therefore, in this paper, we propose a multiscale fusion of multimodal medical images in wavelet domain. Fusion of medical images has been performed at multiple scales varying from minimum to maximum level using maximum selection rule which provides more flexibility and choice to select the relevant fused images. The experimental analysis of the proposed method has been performed with several sets of medical images. Fusion results have been evaluated subjectively and objectively with existing state-of-the-art fusion methods which include several pyramid- and wavelet-transform-based fusion methods and principal component analysis (PCA) fusion method. The comparative analysis of the fusion results has been performed with edge strength (Q), mutual information (MI), entropy (E), standard deviation (SD), blind structural similarity index metric (BSSIM), spatial frequency (SF), and average gradient (AG) metrics. The combined subjective and objective evaluations of the proposed fusion method at multiple scales showed the effectiveness and goodness of the proposed approach. PMID:24453868
Direct observation of intermediate states in model membrane fusion.
Keidel, Andrea; Bartsch, Tobias F; Florin, Ernst-Ludwig
2016-03-31
We introduce a novel assay for membrane fusion of solid supported membranes on silica beads and on coverslips. Fusion of the lipid bilayers is induced by bringing an optically trapped bead in contact with the coverslip surface while observing the bead's thermal motion with microsecond temporal and nanometer spatial resolution using a three-dimensional position detector. The probability of fusion is controlled by the membrane tension on the particle. We show that the progression of fusion can be monitored by changes in the three-dimensional position histograms of the bead and in its rate of diffusion. We were able to observe all fusion intermediates including transient fusion, formation of a stalk, hemifusion and the completion of a fusion pore. Fusion intermediates are characterized by axial but not lateral confinement of the motion of the bead and independently by the change of its rate of diffusion due to the additional drag from the stalk-like connection between the two membranes. The detailed information provided by this assay makes it ideally suited for studies of early events in pure lipid bilayer fusion or fusion assisted by fusogenic molecules.
Opioids delay healing of spinal fusion: a rabbit posterolateral lumbar fusion model.
Jain, Nikhil; Himed, Khaled; Toth, Jeffrey M; Briley, Karen C; Phillips, Frank M; Khan, Safdar N
2018-04-19
Opioid use is prevalent for management of pre- and post-operative pain in patients undergoing spinal fusion. There is evidence that opioids downregulate osteoblasts in-vitro, and one previous study found that morphine delays the maturation and remodeling of callus in a rat femur fracture model. However, the effect of opioids on healing of spinal fusion has not been investigated before. Isolating the effect of opioid exposure in humans would be limited by the numerous confounding factors that affect fusion healing. Therefore, we have used a well-established rabbit model to study the process of spinal fusion healing that closely mimics humans. To study the effect of systemic opioids on the process of healing of spinal fusion in a rabbit posterolateral spinal fusion model. Pre-clinical animal study. 24 adult New Zealand white rabbits were studied in two groups after approval from the Institutional Animal Care and Use Committee (IACUC). The opioid group (n=12) received four-weeks pre-operative and six-weeks post-operative transdermal fentanyl. Serum fentanyl levels were measured just before surgery and four-weeks post-operatively to ensure adequate levels. The control group (n=12) received only peri-operative pain control as necessary. All animals received a bilateral L5-L6 posterolateral spinal fusion using iliac crest autograft. Animals were euthanized at the six-week post-operative time point, and assessment of fusion was done by manual palpation, plain radiographs, micro-computed tomography (microCT), and histology. 12 animals in control group and 11 animals in the opioid group were available for analysis at the end of six weeks. The fusion scores on manual palpation, radiographs, and microCT were not statistically different. Three-dimensional microCT morphometry found that the fusion mass in the opioid group had a lower bone volume (p=0.09), lower trabecular number (p=0.02) and higher trabecular separation (p=0.02) as compared to control. Histological analysis found areas of incorporation of autograft, and unincorporated graft fragments in both groups. In the control group, there was remodeling of de-novo woven bone to lamellar organization with incorporation of osteocytes, formation of mature marrow, and relative paucity of hypertrophied osteoblasts lining new bone. Sections from the opioid group showed formation of de-novo woven bone, and hypertrophied osteoblasts seen lining the new bone. There were no sections showing lamellar organization and development of mature marrow elements in the opioid group. Less dense trabeculae on microCT correlated with histological findings of relatively immature fusion mass in the opioid group. Systemic opioids led to an inferior quality fusion mass with delay in maturation and remodeling at six-weeks in this rabbit spinal fusion model. These preliminary results lay foundation for further research to investigate underlying cellular mechanisms, temporal fusion process, and dose-duration relationship of opioids responsible for our findings. Copyright © 2018 Elsevier Inc. All rights reserved.
Moving toward a standard for spinal fusion outcomes assessment.
Blount, Kevin J; Krompinger, W Jay; Maljanian, Rose; Browner, Bruce D
2002-02-01
Previous spinal fusion outcomes assessment studies have been complicated by inconsistencies in evaluative criteria and consequent variations in results. As a result, a general consensus is lacking on how to achieve comprehensive outcomes assessment for spinal fusion surgeries. The purpose of this article is to report the most validated and frequently used assessment measures to facilitate comparable outcomes studies in the future. Twenty-seven spinal fusion outcomes studies published between 1990 and 2000 were retrospectively reviewed. Study characteristics such as design, evaluative measures, and assessment tools were recorded and analyzed. Based on the reviewed literature, an outcomes assessment model is proposed including the Short Form-36 Health Survey, the Oswestry Disability Questionnaire, the North American Spine Society Patient Satisfaction Index, the Prolo Economic Scale, a 0-10 analog pain scale, medication use, radiographically assessed fusion status, and a generalized complication rate.
Active inhibition of herpes simplex virus type 1-induced cell fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bzik, D.J.; Person, S.; Read, G.S.
1982-01-01
Previous studies have demonstrated that syn mutant-infected cells fuse less well with nonsyncytial virus-infected cells than with uninfected cells, a phenomenon defined as function inhibition. The present study characterizes the kinetics as well as the requirements for expression of fusion inhibition. Initially, the capacity of sparse syn mutant-infected cells to fuse with uninfected surrounding cells was determined throughout infection. Of seven syn mutants examined, including representatives with alterations in two different viral genes that affect cell fusion, all showed an increase in fusion capacity up to 12 hr after infection and a decrease at later times. Fusion inhibition was examinedmore » in experiments employing sparse syn20-infected cells which had been incubated to a maximum fusion capacity; it was shown that surrounding cells infected with KOS, the parent of syn20, began to inhibit fusion by the syn20-infected cells at about 4 hr after infection, and that the maximum ability to inhibit fusion was attained at about 6 hr after infection. The metabolic blocking agents actinomycin D (RNA), cycloheximide (protein), 2-deoxyglucose, and tunicamycin (glycoslyation of glycoproteins) all showed the ability to inhibit the expression of fusion inhibition by KOS-infected cells if added shortly after infection. It is concluded that fusion inhibition is an active process that requires the synthesis of RNA, proteins, and glycoproteins. 17 references, 3 figures, 2 tables.« less
Deyo, Richard A.; Lurie, Jon D.; Carey, Timothy S.; Tosteson, Anna N.A.; Mirza, Sohail K.
2015-01-01
Study design Analysis of the State Inpatient Database of North Carolina, 2005–2012, and the Nationwide Inpatient Sample, including all inpatient lumbar fusion admissions from non-federal hospitals. Objective To examine the influence of a major commercial policy change that restricted lumbar fusion for certain indications, and to forecast the potential impact if the policy were adopted nationally. Summary of Background Data Few studies have examined the effects of recent changes in commercial coverage policies that restrict the use of lumbar fusion. Methods We included adults undergoing elective lumbar fusion or re-fusion operations in North Carolina. We aggregated data into a monthly time series to report changes in the rates and volume of lumbar fusion operations for disc herniation or degeneration, spinal stenosis, spondylolisthesis, or revision fusions. Time series regression models were used to test for significant changes in the use of fusion operation following a major commercial coverage policy change initiated on January 1st, 2011. Results There was a substantial decline in the use of lumbar fusion for disc herniation or degeneration following the policy change on January 1st, 2011. Overall rates of elective lumbar fusion operations in North Carolina (per 100,000 residents) increased from 103.2 in 2005 to 120.4 in 2009, before declining to 101.9 by 2012. The population rate (per 100,000 residents) of fusion among those under age 65 increased from 89.5 in 2005 to 101.2 in 2009, followed by a sharp decline to 76.8 by 2012. There was no acceleration in the already increasing rate of fusion for spinal stenosis, spondylolisthesis or revision procedures, but there was a coincident increase in decompression without fusion. Conclusions This commercial insurance policy change had its intended effect of reducing fusion operations for indications with less evidence of effectiveness without changing rates for other indications or resulting in an overall reduction in spine surgery. Nevertheless, broader adoption of the policy could significantly reduce the national rates of fusion operations and associated costs. PMID:26679877
Andrade, Nicholas S; Flynn, John P; Bartanusz, Viktor
2013-11-01
After decades of clinical research, the role of surgery for chronic nonspecific low back pain (CNLBP) remains equivocal. Despite significant intellectual, human, and economic investments into randomized controlled trials (RCTs) in the past two decades, the role of surgery in the treatment for CNLBP has not been clarified. To delineate the historical research agenda of surgical RCTs for CNLBP performed between 1993 and 2012 investigating whether conclusions from earlier published trials influenced the choice of research questions of subsequent RCTs on elucidating the role of surgery in the management of CNLBP. Literature review. We searched the literature for all RCTs involving surgery for CNLBP. We reviewed relevant studies to identify the study question, comparator arms, and sample size. Randomized controlled trials were classified as "indication" trials if they evaluated the effectiveness of surgical therapy versus nonoperative care or as "technical" if they compared different surgical techniques, adjuncts, or procedures. We used citation analysis to determine the impact of trials on subsequent research in the field. Altogether 33 technical RCTs (3,790 patients) and 6 indication RCTs (981 patients) have been performed. Since 2007, despite the unclear benefits of surgery reported by the first four indication trials published in 2001 to 2006, technical trials have continued to predominate (16 vs. 2). Of the technical trials, types of instrumentation (13 trials, 1,332 patients), bone graft materials and substitutes (11 trials, 833 patients), and disc arthroplasty versus fusion (5 trials, 1,337 patients) were the most common comparisons made. Surgeon authors have predominantly cited one of the indication trials that reported more favorable results for surgery, despite a lack of superior methodology or sample size. Trials evaluating bone morphogenic protein, instrumentation, and disc arthroplasty were all cited more frequently than the largest trial of surgical versus nonsurgical therapy. The research agenda of RCTs for surgery of CNLBP has not changed substantially in the last 20 years. Technical trials evaluating nuances of surgical techniques significantly predominate. Despite the publication of four RCTs reporting equivocal benefits of surgery for CNLBP between 2001 and 2006, there was no change in the research agenda of subsequent RCTs, and technical trials continued to outnumber indication trials. Rather than clarifying what, if any, indications for surgery exist, investigators in the field continue to analyze variations in surgical technique, which will probably have relatively little impact on patient outcomes. As a result, clinicians unfortunately have little evidence to advise patients regarding surgical intervention for CNLBP. Copyright © 2013 Elsevier Inc. All rights reserved.
The NASA-Lewis program on fusion energy for space power and propulsion, 1958-1978
NASA Technical Reports Server (NTRS)
Schulze, Norman R.; Roth, J. Reece
1990-01-01
An historical synopsis is provided of the NASA-Lewis research program on fusion energy for space power and propulsion systems. It was initiated to explore the potential applications of fusion energy to space power and propulsion systems. Some fusion related accomplishments and program areas covered include: basic research on the Electric Field Bumpy Torus (EFBT) magnetoelectric fusion containment concept, including identification of its radial transport mechanism and confinement time scaling; operation of the Pilot Rig mirror machine, the first superconducting magnet facility to be used in plasma physics or fusion research; operation of the Superconducting Bumpy Torus magnet facility, first used to generate a toroidal magnetic field; steady state production of neutrons from DD reactions; studies of the direct conversion of plasma enthalpy to thrust by a direct fusion rocket via propellant addition and magnetic nozzles; power and propulsion system studies, including D(3)He power balance, neutron shielding, and refrigeration requirements; and development of large volume, high field superconducting and cryogenic magnet technology.
Influence of incomplete fusion on complete fusion at energies above the Coulomb barrier
NASA Astrophysics Data System (ADS)
Shuaib, Mohd; Sharma, Vijay R.; Yadav, Abhishek; Sharma, Manoj Kumar; Singh, Pushpendra P.; Singh, Devendra P.; Kumar, R.; Singh, R. P.; Muralithar, S.; Singh, B. P.; Prasad, R.
2017-10-01
In the present work, excitation functions of several reaction residues in the system 19F+169Tm, populated via the complete and incomplete fusion processes, have been measured using off-line γ-ray spectroscopy. The analysis of excitation functions has been done within the framework of statistical model code pace4. The excitation functions of residues populated via xn and pxn channels are found to be in good agreement with those estimated by the theoretical model code, which confirms the production of these residues solely via complete fusion process. However, a significant enhancement has been observed in the cross-sections of residues involving α-emitting channels as compared to the theoretical predictions. The observed enhancement in the cross-sections has been attributed to the incomplete fusion processes. In order to have a better insight into the onset and strength of incomplete fusion, the incomplete fusion strength function has been deduced. At present, there is no theoretical model available which can satisfactorily explain the incomplete fusion reaction data at energies ≈4-6 MeV/nucleon. In the present work, the influence of incomplete fusion on complete fusion in the 19F+169Tm system has also been studied. The measured cross-section data may be important for the development of reactor technology as well. It has been found that the incomplete fusion strength function strongly depends on the α-Q value of the projectile, which is found to be in good agreement with the existing literature data. The analysis strongly supports the projectile-dependent mass-asymmetry systematics. In order to study the influence of Coulomb effect ({Z}{{P}}{Z}{{T}}) on incomplete fusion, the deduced strength function for the present work is compared with the nearby projectile-target combinations. The incomplete fusion strength function is found to increase linearly with {Z}{{P}}{Z}{{T}}, indicating a strong influence of Coulomb effect in the incomplete fusion reactions.
Accelerator & Fusion Research Division 1991 summary of activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-01
This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.
Accelerator Fusion Research Division 1991 summary of activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berkner, Klaus H.
1991-12-01
This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.
Fusion barrier characteristics of actinides
NASA Astrophysics Data System (ADS)
Manjunatha, H. C.; Sridhar, K. N.
2018-03-01
We have studied fusion barrier characteristics of actinide compound nuclei with atomic number range 89 ≤ Z ≤ 103 for all projectile target combinations. After the calculation of fusion barrier heights and positions, we have searched for their parameterization. We have achieved the empirical formula for fusion barrier heights (VB), positions (RB), curvature of the inverted parabola (ħω) of actinide compound nuclei with atomic number range 89 ≤ Z ≤ 103 for all projectile target combinations (6
NASA Technical Reports Server (NTRS)
Orth, Charles D.; Klein, Gail; Sercel, Joel; Hoffman, Nate; Murray, Kathy; Chang-Diaz, Franklin
1987-01-01
Inertial Confinement Fusion (ICF) is an attractive engine power source for interplanetary manned spacecraft, especially for near-term missions requiring minimum flight duration, because ICF has inherent high power-to-mass ratios and high specific impulses. We have developed a new vehicle concept called VISTA that uses ICF and is capable of round-trip manned missions to Mars in 100 days using A.D. 2020 technology. We describe VISTA's engine operation, discuss associated plasma issues, and describe the advantages of DT fuel for near-term applications. Although ICF is potentially superior to non-fusion technologies for near-term interplanetary transport, the performance capabilities of VISTA cannot be meaningfully compared with those of magnetic-fusion systems because of the lack of a comparable study of the magnetic-fusion systems. We urge that such a study be conducted.
Gene Fusion Markup Language: a prototype for exchanging gene fusion data.
Kalyana-Sundaram, Shanker; Shanmugam, Achiraman; Chinnaiyan, Arul M
2012-10-16
An avalanche of next generation sequencing (NGS) studies has generated an unprecedented amount of genomic structural variation data. These studies have also identified many novel gene fusion candidates with more detailed resolution than previously achieved. However, in the excitement and necessity of publishing the observations from this recently developed cutting-edge technology, no community standardization approach has arisen to organize and represent the data with the essential attributes in an interchangeable manner. As transcriptome studies have been widely used for gene fusion discoveries, the current non-standard mode of data representation could potentially impede data accessibility, critical analyses, and further discoveries in the near future. Here we propose a prototype, Gene Fusion Markup Language (GFML) as an initiative to provide a standard format for organizing and representing the significant features of gene fusion data. GFML will offer the advantage of representing the data in a machine-readable format to enable data exchange, automated analysis interpretation, and independent verification. As this database-independent exchange initiative evolves it will further facilitate the formation of related databases, repositories, and analysis tools. The GFML prototype is made available at http://code.google.com/p/gfml-prototype/. The Gene Fusion Markup Language (GFML) presented here could facilitate the development of a standard format for organizing, integrating and representing the significant features of gene fusion data in an inter-operable and query-able fashion that will enable biologically intuitive access to gene fusion findings and expedite functional characterization. A similar model is envisaged for other NGS data analyses.
Elder, Benjamin D; Ishida, Wataru; Goodwin, C Rory; Bydon, Ali; Gokaslan, Ziya L; Sciubba, Daniel M; Wolinsky, Jean-Paul; Witham, Timothy F
2017-01-01
OBJECTIVE With the advent of new adjunctive therapy, the overall survival of patients harboring spinal column tumors has improved. However, there is limited knowledge regarding the optimal bone graft options following resection of spinal column tumors, due to their relative rarity and because fusion outcomes in this cohort are affected by various factors, such as radiation therapy (RT) and chemotherapy. Furthermore, bone graft options are often limited following tumor resection because the use of local bone grafts and bone morphogenetic proteins (BMPs) are usually avoided in light of microscopic infiltration of tumors into local bone and potential carcinogenicity of BMP. The objective of this study was to review and meta-analyze the relevant clinical literature to provide further clinical insight regarding bone graft options. METHODS A web-based MEDLINE search was conducted in accordance with preferred reporting items for systematic review and meta-analysis (PRISMA) guidelines, which yielded 27 articles with 383 patients. Information on baseline characteristics, tumor histology, adjunctive treatments, reconstruction methods, bone graft options, fusion rates, and time to fusion were collected. Pooled fusion rates (PFRs) and I 2 values were calculated in meta-analysis. Meta-regression analyses were also performed if each variable appeared to affect fusion outcomes. Furthermore, data on 272 individual patients were available, which were additionally reviewed and statistically analyzed. RESULTS Overall, fusion rates varied widely from 36.0% to 100.0% due to both inter- and intrastudy heterogeneity, with a PFR of 85.7% (I 2 = 36.4). The studies in which cages were filled with morselized iliac crest autogenic bone graft (ICABG) and/or other bone graft options were used for anterior fusion showed a significantly higher PFR of 92.8, compared with the other studies (83.3%, p = 0.04). In per-patient analysis, anterior plus posterior fusion resulted in a higher fusion rate than anterior fusion only (98.8% vs 86.4%, p < 0.001). Although unmodifiable, RT (90.3% vs 98.6%, p = 0.03) and lumbosacral tumors (74.6% vs 97.9%, p < 0.001) were associated with lower fusion rates in univariate analysis. The mean time to fusion was 5.4 ± 1.4 months (range 3-9 months), whereas 16 of 272 patients died before the confirmation of solid fusion with a mean survival of 3.1 ± 2.1 months (range 0.5-6 months). The average time to fusion of patients who received RT and chemotherapy were significantly longer than those who did not receive these adjunctive treatments (RT: 6.1 months vs 4.3 months, p < 0.001; chemotherapy: 6.0 months vs 4.3 months, p = 0.02). CONCLUSIONS Due to inter- and intrastudy heterogeneity in patient, disease, fusion criteria, and treatment characteristics, the optimal surgical techniques and factors predictive of fusion remain unclear. Clearly, future prospective, randomized studies will be necessary to better understand the issues surrounding bone graft selection following resection of spinal column tumors.
Landowski, Matthew; Dabundo, Jeffrey; Liu, Qian; Nicola, Anthony V; Aguilar, Hector C
2014-12-01
Virus-cell membrane fusion is essential for enveloped virus infections. However, mechanistic viral membrane fusion studies have predominantly focused on cell-cell fusion models, largely due to the low availability of technologies capable of characterizing actual virus-cell membrane fusion. Although cell-cell fusion assays are valuable, they do not fully recapitulate all the variables of virus-cell membrane fusion. Drastic differences between viral and cellular membrane lipid and protein compositions and curvatures exist. For biosafety level 4 (BSL4) pathogens such as the deadly Nipah virus (NiV), virus-cell fusion mechanistic studies are notably cumbersome. To circumvent these limitations, we used enzymatic Nipah virus-like-particles (NiVLPs) and developed new flow virometric tools. NiV's attachment (G) and fusion (F) envelope glycoproteins mediate viral binding to the ephrinB2/ephrinB3 cell receptors and virus-cell membrane fusion, respectively. The NiV matrix protein (M) can autonomously induce NiV assembly and budding. Using a β-lactamase (βLa) reporter/NiV-M chimeric protein, we produced NiVLPs expressing NiV-G and wild-type or mutant NiV-F on their surfaces. By preloading target cells with the βLa fluorescent substrate CCF2-AM, we obtained viral entry kinetic curves that correlated with the NiV-F fusogenic phenotypes, validating NiVLPs as suitable viral entry kinetic tools and suggesting overall relatively slower viral entry than cell-cell fusion kinetics. Additionally, the proportions of F and G on individual NiVLPs and the extent of receptor-induced conformational changes in NiV-G were measured via flow virometry, allowing the proper interpretation of the viral entry kinetic phenotypes. The significance of these findings in the viral entry field extends beyond NiV to other paramyxoviruses and enveloped viruses. Virus-cell membrane fusion is essential for enveloped virus infections. However, mechanistic viral membrane fusion studies have predominantly focused on cell-cell fusion models, largely due to the low availability of technologies capable of characterizing actual virus-cell membrane fusion. Although cell-cell fusion assays are valuable, they do not fully recapitulate all the variables of virus-cell membrane fusion. For example, drastic differences between viral and cellular membrane lipid and protein compositions and curvatures exist. For biosafety level 4 (BSL4) pathogens such as the deadly Nipah virus (NiV), virus-cell fusion mechanistic studies are especially cumbersome. To circumvent these limitations, we used enzymatic Nipah virus-like-particles (NiVLPs) and developed new flow virometric tools. Our new tools allowed us the high-throughput measurement of viral entry kinetics, glycoprotein proportions on individual viral particles, and receptor-induced conformational changes in viral glycoproteins on viral surfaces. The significance of these findings extends beyond NiV to other paramyxoviruses and enveloped viruses. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Nam, Woo Dong; Cho, Jae Hwan
2015-03-01
There are few studies about risk factors for poor outcomes from multi-level lumbar posterolateral fusion limited to three or four level lumbar posterolateral fusions. The purpose of this study was to analyze the outcomes of multi-level lumbar posterolateral fusion and to search for possible risk factors for poor surgical outcomes. We retrospectively analyzed 37 consecutive patients who underwent multi-level lumbar or lumbosacral posterolateral fusion with posterior instrumentation. The outcomes were deemed either 'good' or 'bad' based on clinical and radiological results. Many demographic and radiological factors were analyzed to examine potential risk factors for poor outcomes. Student t-test, Fisher exact test, and the chi-square test were used based on the nature of the variables. Multiple logistic regression analysis was used to exclude confounding factors. Twenty cases showed a good outcome (group A, 54.1%) and 17 cases showed a bad outcome (group B, 45.9%). The overall fusion rate was 70.3%. The revision procedures (group A: 1/20, 5.0%; group B: 4/17, 23.5%), proximal fusion to L2 (group A: 5/20, 25.0%; group B: 10/17, 58.8%), and severity of stenosis (group A: 12/19, 63.3%; group B: 3/11, 27.3%) were adopted as possible related factors to the outcome in univariate analysis. Multiple logistic regression analysis revealed that only the proximal fusion level (superior instrumented vertebra, SIV) was a significant risk factor. The cases in which SIV was L2 showed inferior outcomes than those in which SIV was L3. The odds ratio was 6.562 (95% confidence interval, 1.259 to 34.203). The overall outcome of multi-level lumbar or lumbosacral posterolateral fusion was not as high as we had hoped it would be. Whether the SIV was L2 or L3 was the only significant risk factor identified for poor outcomes in multi-level lumbar or lumbosacral posterolateral fusion in the current study. Thus, the authors recommend that proximal fusion levels be carefully determined when multi-level lumbar fusions are considered.
Nam, Woo Dong
2015-01-01
Background There are few studies about risk factors for poor outcomes from multi-level lumbar posterolateral fusion limited to three or four level lumbar posterolateral fusions. The purpose of this study was to analyze the outcomes of multi-level lumbar posterolateral fusion and to search for possible risk factors for poor surgical outcomes. Methods We retrospectively analyzed 37 consecutive patients who underwent multi-level lumbar or lumbosacral posterolateral fusion with posterior instrumentation. The outcomes were deemed either 'good' or 'bad' based on clinical and radiological results. Many demographic and radiological factors were analyzed to examine potential risk factors for poor outcomes. Student t-test, Fisher exact test, and the chi-square test were used based on the nature of the variables. Multiple logistic regression analysis was used to exclude confounding factors. Results Twenty cases showed a good outcome (group A, 54.1%) and 17 cases showed a bad outcome (group B, 45.9%). The overall fusion rate was 70.3%. The revision procedures (group A: 1/20, 5.0%; group B: 4/17, 23.5%), proximal fusion to L2 (group A: 5/20, 25.0%; group B: 10/17, 58.8%), and severity of stenosis (group A: 12/19, 63.3%; group B: 3/11, 27.3%) were adopted as possible related factors to the outcome in univariate analysis. Multiple logistic regression analysis revealed that only the proximal fusion level (superior instrumented vertebra, SIV) was a significant risk factor. The cases in which SIV was L2 showed inferior outcomes than those in which SIV was L3. The odds ratio was 6.562 (95% confidence interval, 1.259 to 34.203). Conclusions The overall outcome of multi-level lumbar or lumbosacral posterolateral fusion was not as high as we had hoped it would be. Whether the SIV was L2 or L3 was the only significant risk factor identified for poor outcomes in multi-level lumbar or lumbosacral posterolateral fusion in the current study. Thus, the authors recommend that proximal fusion levels be carefully determined when multi-level lumbar fusions are considered. PMID:25729522
Femtosecond laser-induced fusion of nonadherent cells and two-cell porcine embryos.
Kuetemeyer, Kai; Lucas-Hahn, Andrea; Petersen, Bjoern; Niemann, Heiner; Heisterkamp, Alexander
2011-08-01
Cell fusion is a fundamental biological process that can be artificially induced by different methods. Although femtosecond (fs) lasers have been successfully employed for cell fusion over the past few years, the underlying mechanisms are still unknown. In our experimental study, we investigated the correlation between fs laser-induced cell fusion and membrane perforation, and the influence of laser parameters on the fusion efficiency of nonadherent HL-60 cells. We found that shorter exposure times resulted in higher fusion efficiencies with a maximum of 21% at 10 ms and 100 mJ/cm(2) (190 mW). Successful cell fusion was indicated by the formation of a long-lasting vapor bubble in the irradiated area with an average diameter much larger than in cell perforation experiments. With this knowledge, we demonstrated, for the first time, the fusion of very large parthenogenetic two-cell porcine embryos with high efficiencies of 55% at 20 ms and 360 mJ/cm(2) (670 mW). Long-term viability of fused embryos was proven by successful development up to the blastocyst stage in 70% of cases with no significant difference to controls. In contrast to previous studies, our results indicate that fs laser-induced cell fusion occurs when the membrane pore size exceeds a critical value, preventing immediate membrane resealing.
Study on Latent Heat of Fusion of Ice in Aqueous Solutions
NASA Astrophysics Data System (ADS)
Kumano, Hiroyuki; Asaoka, Tatsunori; Saito, Akio; Okawa, Seiji
In this study, latent heat of fusion of ice in aqueous solutions was measured to understand latent heat of fusion of ice slurries. Propylene glycol, ethylene glycol, ethanol, NaCl and NaNO3 solutions were examined as the aqueous solutions. In the measurement, pure ice was put into the solution, and the temperature variation of the solution due to the melting of the ice was measured. Then, the effective latent heat of fusion was calculated from energy balance equation. When ice melts in solution, the concentration of the solution varies due to the melting of the ice, and dilution heat must be considered. Therefore, the latent heat of fusion of ice in aqueous solutions was predicted by considering the effects of dilution and freezing-point depression. The latent heat of fusion was also measured by differential scanning calorimetry(DSC) to compare the results obtained from the experiments with that obtained by DSC. As the result, it was found that the effective latent heat of fusion of ice decreased with the increase of the concentration of solution, and the effective latent heat of fusion was calculated from latent heat of fusion of pure ice and the effects of freezing-point depression and the dilution heat.
The Fusion of Membranes and Vesicles: Pathway and Energy Barriers from Dissipative Particle Dynamics
Grafmüller, Andrea; Shillcock, Julian; Lipowsky, Reinhard
2009-01-01
The fusion of lipid bilayers is studied with dissipative particle dynamics simulations. First, to achieve control over membrane properties, the effects of individual simulation parameters are studied and optimized. Then, a large number of fusion events for a vesicle and a planar bilayer are simulated using the optimized parameter set. In the observed fusion pathway, configurations of individual lipids play an important role. Fusion starts with individual lipids assuming a splayed tail configuration with one tail inserted in each membrane. To determine the corresponding energy barrier, we measure the average work for interbilayer flips of a lipid tail, i.e., the average work to displace one lipid tail from one bilayer to the other. This energy barrier is found to depend strongly on a certain dissipative particle dynamics parameter, and, thus, can be adjusted in the simulations. Overall, three subprocesses have been identified in the fusion pathway. Their energy barriers are estimated to lie in the range 8–15 kBT. The fusion probability is found to possess a maximum at intermediate tension values. As one decreases the tension, the fusion probability seems to vanish before the tensionless membrane state is attained. This would imply that the tension has to exceed a certain threshold value to induce fusion. PMID:19348749
Yang, Zhiwei; Gou, Lu; Chen, Shuyu; Li, Na; Zhang, Shengli; Zhang, Lei
2017-01-01
Membrane fusion is one of the most fundamental physiological processes in eukaryotes for triggering the fusion of lipid and content, as well as the neurotransmission. However, the architecture features of neurotransmitter release machinery and interdependent mechanism of synaptic membrane fusion have not been extensively studied. This review article expounds the neuronal membrane fusion processes, discusses the fundamental steps in all fusion reactions (membrane aggregation, membrane association, lipid rearrangement and lipid and content mixing) and the probable mechanism coupling to the delivery of neurotransmitters. Subsequently, this work summarizes the research on the fusion process in synaptic transmission, using electron microscopy (EM) and molecular simulation approaches. Finally, we propose the future outlook for more exciting applications of membrane fusion involved in synaptic transmission, with the aid of stochastic optical reconstruction microscopy (STORM), cryo-EM (cryo-EM), and molecular simulations. PMID:28638320
Liao, Yi-Hung; Chou, Jung-Chuan; Lin, Chin-Yi
2013-01-01
Fault diagnosis (FD) and data fusion (DF) technologies implemented in the LabVIEW program were used for a ruthenium dioxide pH sensor array. The purpose of the fault diagnosis and data fusion technologies is to increase the reliability of measured data. Data fusion is a very useful statistical method used for sensor arrays in many fields. Fault diagnosis is used to avoid sensor faults and to measure errors in the electrochemical measurement system, therefore, in this study, we use fault diagnosis to remove any faulty sensors in advance, and then proceed with data fusion in the sensor array. The average, self-adaptive and coefficient of variance data fusion methods are used in this study. The pH electrode is fabricated with ruthenium dioxide (RuO2) sensing membrane using a sputtering system to deposit it onto a silicon substrate, and eight RuO2 pH electrodes are fabricated to form a sensor array for this study. PMID:24351636
Liao, Yi-Hung; Chou, Jung-Chuan; Lin, Chin-Yi
2013-12-13
Fault diagnosis (FD) and data fusion (DF) technologies implemented in the LabVIEW program were used for a ruthenium dioxide pH sensor array. The purpose of the fault diagnosis and data fusion technologies is to increase the reliability of measured data. Data fusion is a very useful statistical method used for sensor arrays in many fields. Fault diagnosis is used to avoid sensor faults and to measure errors in the electrochemical measurement system, therefore, in this study, we use fault diagnosis to remove any faulty sensors in advance, and then proceed with data fusion in the sensor array. The average, self-adaptive and coefficient of variance data fusion methods are used in this study. The pH electrode is fabricated with ruthenium dioxide (RuO2) sensing membrane using a sputtering system to deposit it onto a silicon substrate, and eight RuO2 pH electrodes are fabricated to form a sensor array for this study.
Phase I/II study of alectinib in lung cancer with RET fusion gene: study protocol.
Takeuchi, Shinji; Murayama, Toshinori; Yoshimura, Kenichi; Kawakami, Takahiro; Takahara, Shizuko; Imai, Yasuhito; Kuribayashi, Yoshikazu; Nagase, Katsuhiko; Goto, Koichi; Nishio, Makoto; Hasegawa, Yoshinori; Satouchi, Miyako; Kiura, Katsuyuki; Seto, Takashi; Yano, Seiji
2017-01-01
The rearranged during transfection (RET) fusion gene was discovered as a driver oncogene in 1-2% of non-small cell lung cancers (NSCLCs). Alectinib is an approved anaplastic lymphoma kinase (ALK) inhibitor that may also be effective for RET fusion-positive NSCLC. RET fusion-positive NSCLC patients treated with at least one regimen of chemotherapy are being recruited. In step 1, alectinib (600 or 450 mg, twice daily) will be administered following a 3+3 design. The primary endpoint is safety. In step 2, alectinib will be administered at the recommended dose (RD) defined by step 1. The primary endpoint is the response rate of RET inhibitor treatment-naïve patients. This is the first study to investigate the safety and preliminary efficacy of alectinib in RET fusion-positive NSCLC patients. If successful, alectinib treatment may lead to substantial and important changes in the management of NSCLC with RET fusion genes. J. Med. Invest. 64: 317-320, August, 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Ian M.; Collins, Aaron M.; Quintana, Hope A.
In this study, we develop a quantitative dye dequenching technique for the measurement of polymersome fusion, using it to characterize the salt mediated, mechanically-induced fusion of polymersomes with polymer, lipid, and so-called stealth lipid vesicles. While dye dequenching has been used to quantitatively explore liposome fusion in the past, this is the first use of dye dequenching to measure polymersome fusion of which we are aware. In addition to providing quantitative results, dye dequenching is ideal for detecting fusion in instances where DLS results would be ambiguous, such as low yield levels and size ranges outside the capabilities of DLS.more » The dye chosen for this study was a cyanine derivative, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR), which proved to provide excellent data on the extent of polymersome fusion. Using this technique, we have shown the limited fusion capabilities of polymersome/liposome heterofusion, notably DOPC vesicles fusing with polymersomes at half the efficiency of polymersome homofusion and DPPC vesicles showing virtually no fusion. In addition to these key heterofusion experiments, we determined the broad applicability of dye dequenching in measuring kinetic rates of polymersome fusion; and showed that even at elevated temperatures or over multiple weeks' time, no polymersome fusion occurred without agitation. Stealth liposomes formed from DPPC and PEO-functionalized lipid, however, fused with polymersomes and stealth liposomes with relatively high efficiency, lending support to our hypothesis that the response of the PEO corona to salt is a key factor in the fusion process. This last finding suggests that although the conjugation of PEO to lipids increases vesicle biocompatibility and enables their longer circulation times, it also renders the vesicles subject to destabilization under high salt and shear (e.g. in the circulatory system) that may lead to, in this case, fusion.« less
Heavy ion fusion reactions in stars
NASA Astrophysics Data System (ADS)
Tang, X. D.
2018-04-01
Heavy ion fusion reactions play important roles in a wide variety of stellar burning scenarios. 12C+12C, 12C+16O and 16O+16O are the principle reactions during the advance burning stages of massive star. 12C+12C also triggers the happening of superburst and Type Ia supernovae. The heavy ion fusion reactions of the neutron-rich isotopes such as 24O are the major heating source in the crust of neutron star. In this talk, I will review the challenges and the recent progress in the study of these heavy ion fusion reactions at stellar energies. The outlook for the studies of the astrophysical heavy-ion fusion reactions will also be presented.
Raman spectroscopic evidence of tissue restructuring in heat-induced tissue fusion.
Su, Lei; Cloyd, Kristy L; Arya, Shobhit; Hedegaard, Martin A B; Steele, Joseph A M; Elson, Daniel S; Stevens, Molly M; Hanna, George B
2014-09-01
Heat-induced tissue fusion via radio-frequency (RF) energy has gained wide acceptance clinically and here we present the first optical-Raman-spectroscopy study on tissue fusion samples in vitro. This study provides direct insights into tissue constituent and structural changes on the molecular level, exposing spectroscopic evidence for the loss of distinct collagen fibre rich tissue layers as well as the denaturing and restructuring of collagen crosslinks post RF fusion. These findings open the door for more advanced optical feedback-control methods and characterization during heat-induced tissue fusion, which will lead to new clinical applications of this promising technology. Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Lai, Alex L; Tamm, Lukas K
2010-11-26
Our previous studies showed that an angled boomerang-shaped structure of the influenza hemagglutinin (HA) fusion domain is critical for virus entry into host cells by membrane fusion. Because the acute angle of ∼105° of the wild-type fusion domain promotes efficient non-leaky membrane fusion, we asked whether different angles would still support fusion and thus facilitate virus entry. Here, we show that the G13A fusion domain mutant produces a new leaky fusion phenotype. The mutant fusion domain structure was solved by NMR spectroscopy in a lipid environment at fusion pH. The mutant adopted a boomerang structure similar to that of wild type but with a shallower kink angle of ∼150°. G13A perturbed the structure of model membranes to a lesser degree than wild type but to a greater degree than non-fusogenic fusion domain mutants. The strength of G13A binding to lipid bilayers was also intermediate between that of wild type and non-fusogenic mutants. These membrane interactions provide a clear link between structure and function of influenza fusion domains: an acute angle is required to promote clean non-leaky fusion suitable for virus entry presumably by interaction of the fusion domain with the transmembrane domain deep in the lipid bilayer. A shallower angle perturbs the bilayer of the target membrane so that it becomes leaky and unable to form a clean fusion pore. Mutants with no fixed boomerang angle interacted with bilayers weakly and did not promote any fusion or membrane perturbation.
Lai, Alex L.; Tamm, Lukas K.
2010-01-01
Our previous studies showed that an angled boomerang-shaped structure of the influenza hemagglutinin (HA) fusion domain is critical for virus entry into host cells by membrane fusion. Because the acute angle of ∼105° of the wild-type fusion domain promotes efficient non-leaky membrane fusion, we asked whether different angles would still support fusion and thus facilitate virus entry. Here, we show that the G13A fusion domain mutant produces a new leaky fusion phenotype. The mutant fusion domain structure was solved by NMR spectroscopy in a lipid environment at fusion pH. The mutant adopted a boomerang structure similar to that of wild type but with a shallower kink angle of ∼150°. G13A perturbed the structure of model membranes to a lesser degree than wild type but to a greater degree than non-fusogenic fusion domain mutants. The strength of G13A binding to lipid bilayers was also intermediate between that of wild type and non-fusogenic mutants. These membrane interactions provide a clear link between structure and function of influenza fusion domains: an acute angle is required to promote clean non-leaky fusion suitable for virus entry presumably by interaction of the fusion domain with the transmembrane domain deep in the lipid bilayer. A shallower angle perturbs the bilayer of the target membrane so that it becomes leaky and unable to form a clean fusion pore. Mutants with no fixed boomerang angle interacted with bilayers weakly and did not promote any fusion or membrane perturbation. PMID:20826788
Telfeian, Albert E; Oyelese, Adetokunbo; Fridley, Jared; Gokaslan, Ziya L
2018-05-19
Lumbar total disc replacement (LTDR) is considered for the treatment of lumbar degenerative disc disease with the hope that by preserving motion the long-term fusion complication of adjacent segment disease can be avoided. The complications of LTDR can be divided into approach-related and long-term complications. Very little has been described about the complications and treatment for complications more than 10 years after the device has been implanted. Here we describe a tranforaminal endoscopic discectomy procedure for a patient presenting with foot drop twelve years after a L5-S1 total disc replacement. Copyright © 2018. Published by Elsevier Inc.
The NDCX-II engineering design
NASA Astrophysics Data System (ADS)
Waldron, W. L.; Abraham, W. J.; Arbelaez, D.; Friedman, A.; Galvin, J. E.; Gilson, E. P.; Greenway, W. G.; Grote, D. P.; Jung, J.-Y.; Kwan, J. W.; Leitner, M.; Lidia, S. M.; Lipton, T. M.; Reginato, L. L.; Regis, M. J.; Roy, P. K.; Sharp, W. M.; Stettler, M. W.; Takakuwa, J. H.; Volmering, J.; Vytla, V. K.
2014-01-01
The Neutralized Drift Compression Experiment (NDCX-II) is a user facility located at Lawrence Berkeley National Laboratory which is uniquely designed for ion-beam-driven high energy density laboratory physics and heavy ion fusion research. Construction was completed in March 2012 and the facility is now in the commissioning phase. A significant amount of engineering was carried out in order to meet the performance parameters required for a wide range of target heating experiments while making the most cost-effective use of high-value hardware available from a decommissioned high current electron induction accelerator. The technical challenges and design of this new ion induction accelerator facility are described.
[Construction and expression of the targeting super-antigen EGF-SEA fusion gene].
Xie, Yang; Peng, Shaoping; Liao, Zhiying; Liu, Jiafeng; Liu, Xuemei; Chen, Weifeng
2014-05-01
To construct expression vector for the SEA-EGF fusion gene. Clone the SEA gene and the EGF gene segment with PCR and RT-PCR independently, and connect this two genes by the bridge PCR. Insert the fusion gene EGF-SEA into the expression vector PET-44. Induced the secretion of the fusion protein SEA-EGF by the antileptic. The gene fragment encoding EGF and SEA mature peptide was successfully cloned. The fusion gene EGF-SEA was successfully constructed and was inserted into expression vector. The new recombinant expression vector for fusion gene EGF-SEA is specific for head and neck cancer, laid the foundation for the further study of fusion protein SEA-EGF targeting immune therapy in head and neck tumors.
Records for conversion of laser energy to nuclear energy in exploding nanostructures
NASA Astrophysics Data System (ADS)
Jortner, Joshua; Last, Isidore
2017-09-01
Table-top nuclear fusion reactions in the chemical physics laboratory can be driven by high-energy dynamics of Coulomb exploding, multicharged, deuterium containing nanostructures generated by ultraintense, femtosecond, near-infrared laser pulses. Theoretical-computational studies of table-top laser-driven nuclear fusion of high-energy (up to 15 MeV) deuterons with 7Li, 6Li and D nuclei demonstrate the attainment of high fusion yields within a source-target reaction design, which constitutes the highest table-top fusion efficiencies obtained up to date. The conversion efficiency of laser energy to nuclear energy (0.1-1.0%) for table-top fusion is comparable to that for DT fusion currently accomplished for 'big science' inertial fusion setups.
Scientific and technological advancements in inertial fusion energy
Hinkel, D. E.
2013-09-26
Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well asmore » to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.« less
Identification of Protein-Protein Interactions with Glutathione-S-Transferase (GST) Fusion Proteins.
Einarson, Margret B; Pugacheva, Elena N; Orlinick, Jason R
2007-08-01
INTRODUCTIONGlutathione-S-transferase (GST) fusion proteins have had a wide range of applications since their introduction as tools for synthesis of recombinant proteins in bacteria. GST was originally selected as a fusion moiety because of several desirable properties. First and foremost, when expressed in bacteria alone, or as a fusion, GST is not sequestered in inclusion bodies (in contrast to previous fusion protein systems). Second, GST can be affinity-purified without denaturation because it binds to immobilized glutathione, which provides the basis for simple purification. Consequently, GST fusion proteins are routinely used for antibody generation and purification, protein-protein interaction studies, and biochemical analysis. This article describes the use of GST fusion proteins as probes for the identification of protein-protein interactions.
System study of a diode-pumped solid-state-laser driver for inertial fusion energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orth, C.D.; Payne, S.A.
The present a conceptual design of a diode-pumped solid-state-laser (DPSSL) driver for an inertial fusion energy (IFE) power plant based on the maximized cost of electricity (COE) as determined in a comprehensive systems study. This study contained extensive detail for all significant DPSSL physics and costs, plus published scaling relationships for the costs of the target chamber and the balance of plant (BOP). Our DPSSL design offers low development cost because it is modular, can be fully tested functionally at reduced scale, and is based on mature solid-state-laser technology. Most of the parameter values that we used are being verifiedmore » by experiments now in progress. Future experiments will address the few issues that remain. As a consequence, the economic and technical risk of our DPSSL driver concept is becoming rather low. Baseline performance at 1 GW{sub e} using a new gain medium [Yb{sup 3+}-doped Sr{sub 5}(PO{sub 4}){sub 3}F or Yb:S-FAP] includes a product of laser efficiency and target gain of {eta}G = 7, and a COE of 8.6 cents/kW{center_dot}h, although values of {eta}G {ge} 11 and COEs {le}6.6 cents/kW{center_dot}h are possible at double the assumed target gain of 76 at 3.7 MJ. We present a summary of our results, discuss why other more-common types of laser media do not perform as well as Yb:S-FAP, and present a simple model that shows where DPSSL development should proceed to reduce projected COEs.« less
Suess, Olaf; Schomaker, Martin; Cabraja, Mario; Danne, Marco; Kombos, Theodoros; Hanna, Michael
2017-01-01
Anterior cervical diskectomy and fusion (ACDF) is a well-established surgical treatment for radiculopathy and myelopathy. Previous studies showed that empty PEEK cages have lower radiographic fusion rates, but the clinical relevance remains unclear. This paper's aim is to provide high-quality evidence on the outcomes of ACDF with empty PEEK cages and on the relevance of radiographic fusion for clinical outcomes. This large prospective multicenter clinical trial performed single-level ACDF with empty PEEK cages on patients with cervical radiculopathy or myelopathy. The main clinical outcomes were VAS (0-10) for pain and NDI (0-100) for functioning. Radiographic fusion was evaluated by two investigators for three different aspects. The median (range) improvement of the VAS pain score was: 3 (1-6) at 6 months, 3 (2-8) at 12 months, and 4 (2-8) at 18 months. The median (range) improvement of the NDI score was: 12 (2-34) at 6 months, 18 (4-46) at 12 months, and 22 (2-44) at 18 months. Complete radiographic fusion was reached by 126 patients (43%) at 6 months, 214 patients (73%) at 12 months, and 241 patients (83%) at 18 months. Radiographic fusion was a highly significant ( p < 0.001) predictor of the improvement of VAS and NDI scores. This study provides strong evidence that ACDF is effective treatment, but the overall rate of radiographic fusion with empty PEEK cages is slow and insufficient. Lack of complete radiographic fusion leads to less improvement of pain and disability. We recommend against using empty uncoated pure PEEK cages in ACDF. ISRCTN42774128. Retrospectively registered 14 April 2009.
Visualization and Sequencing of Membrane Remodeling Leading to Influenza Virus Fusion
Gui, Long; Ebner, Jamie L.; Mileant, Alexander; Williams, James A.
2016-01-01
ABSTRACT Protein-mediated membrane fusion is an essential step in many fundamental biological events, including enveloped virus infection. The nature of protein and membrane intermediates and the sequence of membrane remodeling during these essential processes remain poorly understood. Here we used cryo-electron tomography (cryo-ET) to image the interplay between influenza virus and vesicles with a range of lipid compositions. By following the population kinetics of membrane fusion intermediates imaged by cryo-ET, we found that membrane remodeling commenced with the hemagglutinin fusion protein spikes grappling onto the target membrane, followed by localized target membrane dimpling as local clusters of hemagglutinin started to undergo conformational refolding. The local dimples then transitioned to extended, tightly apposed contact zones where the two proximal membrane leaflets were in most cases indistinguishable from each other, suggesting significant dehydration and possible intermingling of the lipid head groups. Increasing the content of fusion-enhancing cholesterol or bis-monoacylglycerophosphate in the target membrane led to an increase in extended contact zone formation. Interestingly, hemifused intermediates were found to be extremely rare in the influenza virus fusion system studied here, most likely reflecting the instability of this state and its rapid conversion to postfusion complexes, which increased in population over time. By tracking the populations of fusion complexes over time, the architecture and sequence of membrane reorganization leading to efficient enveloped virus fusion were thus resolved. IMPORTANCE Enveloped viruses employ specialized surface proteins to mediate fusion of cellular and viral membranes that results in the formation of pores through which the viral genetic material is delivered to the cell. For influenza virus, the trimeric hemagglutinin (HA) glycoprotein spike mediates host cell attachment and membrane fusion. While structures of a subset of conformations and parts of the fusion machinery have been characterized, the nature and sequence of membrane deformations during fusion have largely eluded characterization. Building upon studies that focused on early stages of HA-mediated membrane remodeling, here cryo-electron tomography (cryo-ET) was used to image the three-dimensional organization of intact influenza virions at different stages of fusion with liposomes, leading all the way to completion of the fusion reaction. By monitoring the evolution of fusion intermediate populations over the course of acid-induced fusion, we identified the progression of membrane reorganization that leads to efficient fusion by an enveloped virus. PMID:27226364
Comparison of interbody fusion approaches for disabling low back pain.
Hacker, R J
1997-03-15
This is a study comparing two groups of patients surgically treated for disabling low back pain. One group was treated with lumbar anteroposterior fusion (360 degrees fusion), the other with posterior lumbar interbody fusion and an interbody fixation device. To determine which approach provided the best and most cost-effective outcome using similar patient selection criteria. Others have shown that certain patients with disabling low back pain benefit from lumbar fusion. Although rarely reported, the costs of different surgical treatments appear to vary significantly, whereas the patient outcome may vary little. Since 1991, 75 patients have been treated Starting in 1993, posterior lumbar interbody fusion BAK was offered to patients as an alternative to 360 degrees fusion. The treating surgeon reviewed the cases. The interbody fixation device used (BAK; Spine-Tech, Inc., Minneapolis, MN) was part of a Food and Drug Administration study. Patient selection criteria included examination, response to conservative therapy, imaging, psychological profile, and discography. North American Spine Society outcome questionnaires, BAK investigation data radiographs, chart entries, billing records and patient interviews were the basis for assessment. Age, sex compensable injury history and history of previous surgery were similar. Operative time; blood loss, hospitalization time, and total costs were significantly different. There was a quicker return to work and closure of workers compensation claims for the posterior lumbar interbody fusion-BAK group. Patient satisfaction was comparable at last follow-up. Posterior lumbar interbody fusion-BAK achieves equal patient satisfaction but fiscally surpasses the 360 degrees fusion approach. Today's environment of regulated medical practice requires the surgeon to consider cost effectiveness when performing fusion for low back pain.
Epidural Abscess: A Propensity Analysis of Surgical Treatment Strategies.
Chaker, Anisse N; Bhimani, Abhiraj D; Esfahani, Darian R; Rosinski, Clayton L; Geever, Brett W; Patel, Akash S; Hobbs, Jonathan G; Burch, Taylor G; Patel, Saavan; Mehta, Ankit I
2018-06-18
Observational analysis of retrospectively collected data. A retrospective study was performed in order to compare the surgical profile of risk factors and perioperative complications for laminectomy and laminectomy with fusion procedures in the treatment of SEA. Spinal epidural abscess (SEA) is a highly morbid condition typically presenting with back pain, fever, and neurologic deficits. Posterior fusion has been used to supplement traditional laminectomy of SEA to improve spinal stability. At present, the ideal surgical strategy - laminectomy with or without fusion - remains elusive. 30-day outcomes such as reoperation and readmission following laminectomy and laminectomy with fusion in patients with SEA were investigated utilizing the American College of Surgeons National Quality Improvement Program database. Demographics and clinical risk factors were collected, and propensity matching was performed to account for differences in risk profiles between the groups. 738 patients were studied (608 laminectomy alone, 130 fusion). The fusion population was in worse health. The fusion population experienced significantly greater rate of return to the operating room (odds ratio (OR) 1.892), with the difference primarily accounted for by cervical spine operations. Additionally, fusion patients had significantly greater rates of blood transfusion. Infection was the most common reason for reoperation in both populations. Both laminectomy and laminectomy with fusion effectively treat SEA, but addition of fusion is associated with significantly higher rates of transfusion and perioperative return to the operating room. In operative situations where either procedure is reasonable, surgeons should consider that fusion nearly doubles the odds of reoperation in the short-term, and weigh this risk against the benefit of added stability. 3.
Abrams, Michael S; Duncan, Candace L; McMurtrey, Ryan
2011-04-01
To document the development of motor fusion when patients with a history of strabismic amblyopia are treated part-time with Bangerter foils. This was a prospective interventional outcome study of consecutive patients with a history of strabismic amblyopia, horizontal strabismus (only) ≤20(∆), visual acuity of 20/60 or better in the nonfixating eye, and no motor fusion (as indicated by the absence of prism vergence) for 1 year before entry into the study. Subjects wore a 0.1 density Bangerter foil for 3-4 hours daily. Data on visual acuity, alignment, and motor fusion status were collected for a minimum of 2 years. Patients with motor fusion were then followed for a minimum of 18 months to assess the stability of their motor fusion status after the Bangerter foil was discontinued. Of the 46 patients meeting entry criteria (mean age, 5.3 ± 1.7 years) who completed follow-up, 28 (61%) developed motor fusion. Motor fusion was retained in all 17 patients who were followed after their foils were discontinued for a mean of 13.3 months. A child's motor fusion status is generally believed to be established during an early formative period of visual development. The development of motor fusion in many of our patients during the course of part-time Bangerter foil treatment suggests that improvements in motor fusion status can occur at a later age than previously believed. Copyright © 2011 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.
Direct current stimulation of titanium interbody fusion devices in primates.
Cook, Stephen D; Patron, Laura P; Christakis, Petros M; Bailey, Kirk J; Banta, Charles; Glazer, Paul A
2004-01-01
The fusion rate for anterior lumbar interbody fusion (ALIF) varies widely with the use of different interbody devices and bone graft options. Adjunctive techniques such as electrical stimulation may improve the rate of bony fusion. To determine if direct current (DC) electrical stimulation of a metallic interbody fusion device enhanced the incidence or extent of anterior bony fusion. ALIF was performed using titanium alloy interbody fusion devices with and without adjunctive DC electrical stimulation in nonhuman primates. ALIF was performed through an anterolateral approach in 35 macaques with autogenous bone graft and either a titanium alloy (Ti-6Al-4V) fusion device or femoral allograft ring. The fusion devices of 19 animals received high (current density 19.6 microA/cm2) or low (current density 5.4 microA/cm2) DC electrical stimulation using an implanted generator for a 12- or 26-week evaluation period. Fusion sites were studied using serial radiographs, computed tomography imaging, nondestructive mechanical testing and qualitative and semiquantitative histology. Fusion was achieved with the titanium fusion device and autogenous bone graft. At 12 weeks, the graft was consolidating and early to moderate bridging callus was observed in and around the device. By 26 weeks, the anterior callus formation was more advanced with increased evidence of bridging trabeculations and early bone remodeling. The callus formation was not as advanced or abundant for the allograft ring group. Histology revealed the spinal fusion device had an 86% incidence of bony fusion at 26 weeks compared with a 50% fusion rate for the allograft rings. DC electrical stimulation of the fusion device had a positive effect on anterior interbody fusion by increasing both the presence and extent of bony fusion in a current density-dependent manner. Adjunctive DC electrical stimulation of the fusion device improved the rate and extent of bony fusion compared with a nonstimulated device. The fusion device was equivalent to or better than the femoral allograft ring in all evaluations. The use of adjunctive direct current electrical stimulation may provide a means of improving anterior interbody fusion.
Fusion of disubstituted benzenes.
Martin, E; Yalkowsky, S H; Wells, J E
1979-05-01
The entropy of fusion of 84 disubstituted benzenes was essentially constant and independent of the participation of the compounds in intramolecular or intermolecular hydrogen bonding. It was also independent of the shapes, sizes, and dipole moments of the rigid molecules studied. While the entropy of fusion was independent of these parameters, the melting point and the heat of fusion showed a direct dependence on molecular properties.
Preparation of GST Fusion Proteins.
Einarson, Margret B; Pugacheva, Elena N; Orlinick, Jason R
2007-04-01
INTRODUCTIONThis protocol describes the preparation of glutathione-S-transferase (GST) fusion proteins, which have had a wide range of applications since their introduction as tools for synthesis of recombinant proteins in bacteria. GST was originally selected as a fusion moiety because of several desirable properties. First and foremost, when expressed in bacteria alone, or as a fusion, GST is not sequestered in inclusion bodies (in contrast to previous fusion protein systems). Second, GST can be affinity-purified without denaturation because it binds to immobilized glutathione, which provides the basis for simple purification. Consequently, GST fusion proteins are routinely used for antibody generation and purification, protein-protein interaction studies, and biochemical analysis.
Arabidopsis HAP2/GCS1 is a gamete fusion protein homologous to somatic and viral fusogens
Valansi, Clari; Moi, David; Leikina, Evgenia; Matveev, Elena; Chernomordik, Leonid V.
2017-01-01
Cell–cell fusion is inherent to sexual reproduction. Loss of HAPLESS 2/GENERATIVE CELL SPECIFIC 1 (HAP2/GCS1) proteins results in gamete fusion failure in diverse organisms, but their exact role is unclear. In this study, we show that Arabidopsis thaliana HAP2/GCS1 is sufficient to promote mammalian cell–cell fusion. Hemifusion and complete fusion depend on HAP2/GCS1 presence in both fusing cells. Furthermore, expression of HAP2 on the surface of pseudotyped vesicular stomatitis virus results in homotypic virus–cell fusion. We demonstrate that the Caenorhabditis elegans Epithelial Fusion Failure 1 (EFF-1) somatic cell fusogen can replace HAP2/GCS1 in one of the fusing membranes, indicating that HAP2/GCS1 and EFF-1 share a similar fusion mechanism. Structural modeling of the HAP2/GCS1 protein family predicts that they are homologous to EFF-1 and viral class II fusion proteins (e.g., Zika virus). We name this superfamily Fusexins: fusion proteins essential for sexual reproduction and exoplasmic merger of plasma membranes. We suggest a common origin and evolution of sexual reproduction, enveloped virus entry into cells, and somatic cell fusion. PMID:28137780
The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma.
Parker, Brittany C; Annala, Matti J; Cogdell, David E; Granberg, Kirsi J; Sun, Yan; Ji, Ping; Li, Xia; Gumin, Joy; Zheng, Hong; Hu, Limei; Yli-Harja, Olli; Haapasalo, Hannu; Visakorpi, Tapio; Liu, Xiuping; Liu, Chang-Gong; Sawaya, Raymond; Fuller, Gregory N; Chen, Kexin; Lang, Frederick F; Nykter, Matti; Zhang, Wei
2013-02-01
Fusion genes are chromosomal aberrations that are found in many cancers and can be used as prognostic markers and drug targets in clinical practice. Fusions can lead to production of oncogenic fusion proteins or to enhanced expression of oncogenes. Several recent studies have reported that some fusion genes can escape microRNA regulation via 3'-untranslated region (3'-UTR) deletion. We performed whole transcriptome sequencing to identify fusion genes in glioma and discovered FGFR3-TACC3 fusions in 4 of 48 glioblastoma samples from patients both of mixed European and of Asian descent, but not in any of 43 low-grade glioma samples tested. The fusion, caused by tandem duplication on 4p16.3, led to the loss of the 3'-UTR of FGFR3, blocking gene regulation of miR-99a and enhancing expression of the fusion gene. The fusion gene was mutually exclusive with EGFR, PDGFR, or MET amplification. Using cultured glioblastoma cells and a mouse xenograft model, we found that fusion protein expression promoted cell proliferation and tumor progression, while WT FGFR3 protein was not tumorigenic, even under forced overexpression. These results demonstrated that the FGFR3-TACC3 gene fusion is expressed in human cancer and generates an oncogenic protein that promotes tumorigenesis in glioblastoma.
Feature level fusion of hand and face biometrics
NASA Astrophysics Data System (ADS)
Ross, Arun A.; Govindarajan, Rohin
2005-03-01
Multibiometric systems utilize the evidence presented by multiple biometric sources (e.g., face and fingerprint, multiple fingers of a user, multiple matchers, etc.) in order to determine or verify the identity of an individual. Information from multiple sources can be consolidated in several distinct levels, including the feature extraction level, match score level and decision level. While fusion at the match score and decision levels have been extensively studied in the literature, fusion at the feature level is a relatively understudied problem. In this paper we discuss fusion at the feature level in 3 different scenarios: (i) fusion of PCA and LDA coefficients of face; (ii) fusion of LDA coefficients corresponding to the R,G,B channels of a face image; (iii) fusion of face and hand modalities. Preliminary results are encouraging and help in highlighting the pros and cons of performing fusion at this level. The primary motivation of this work is to demonstrate the viability of such a fusion and to underscore the importance of pursuing further research in this direction.
Fusion peptides from oncogenic chimeric proteins as putative specific biomarkers of cancer.
Conlon, Kevin P; Basrur, Venkatesha; Rolland, Delphine; Wolfe, Thomas; Nesvizhskii, Alexey I; MacCoss, Michael J; Lim, Megan S; Elenitoba-Johnson, Kojo S J
2013-10-01
Chromosomal translocations encoding chimeric fusion proteins constitute one of the most common mechanisms underlying oncogenic transformation in human cancer. Fusion peptides resulting from such oncogenic chimeric fusions, though unique to specific cancer subtypes, are unexplored as cancer biomarkers. Here we show, using an approach termed fusion peptide multiple reaction monitoring mass spectrometry, the direct identification of different cancer-specific fusion peptides arising from protein chimeras that are generated from the juxtaposition of heterologous genes fused by recurrent chromosomal translocations. Using fusion peptide multiple reaction monitoring mass spectrometry in a clinically relevant scenario, we demonstrate the specific, sensitive, and unambiguous detection of a specific diagnostic fusion peptide in clinical samples of anaplastic large cell lymphoma, but not in a diverse array of benign lymph nodes or other forms of primary malignant lymphomas and cancer-derived cell lines. Our studies highlight the utility of fusion peptides as cancer biomarkers and carry broad implications for the use of protein biomarkers in cancer detection and monitoring.
[A study on medical image fusion].
Zhang, Er-hu; Bian, Zheng-zhong
2002-09-01
Five algorithms with its advantages and disadvantage for medical image fusion are analyzed. Four kinds of quantitative evaluation criteria for the quality of image fusion algorithms are proposed and these will give us some guidance for future research.
Lilljebjörn, Henrik; Henningsson, Rasmus; Hyrenius-Wittsten, Axel; Olsson, Linda; Orsmark-Pietras, Christina; von Palffy, Sofia; Askmyr, Maria; Rissler, Marianne; Schrappe, Martin; Cario, Gunnar; Castor, Anders; Pronk, Cornelis J H; Behrendtz, Mikael; Mitelman, Felix; Johansson, Bertil; Paulsson, Kajsa; Andersson, Anna K; Fontes, Magnus; Fioretos, Thoas
2016-06-06
Fusion genes are potent driver mutations in cancer. In this study, we delineate the fusion gene landscape in a consecutive series of 195 paediatric B-cell precursor acute lymphoblastic leukaemia (BCP ALL). Using RNA sequencing, we find in-frame fusion genes in 127 (65%) cases, including 27 novel fusions. We describe a subtype characterized by recurrent IGH-DUX4 or ERG-DUX4 fusions, representing 4% of cases, leading to overexpression of DUX4 and frequently co-occurring with intragenic ERG deletions. Furthermore, we identify a subtype characterized by an ETV6-RUNX1-like gene-expression profile and coexisting ETV6 and IKZF1 alterations. Thus, this study provides a detailed overview of fusion genes in paediatric BCP ALL and adds new pathogenetic insights, which may improve risk stratification and provide therapeutic options for this disease.
NASA Astrophysics Data System (ADS)
Kaur, Gurpreet; Hagino, K.; Rowley, N.
2018-06-01
The vast knowledge regarding the strong influence of quadrupole deformation β2 of colliding nuclei in heavy-ion sub-barrier fusion reactions inspires a desire to quest the sensitivity of fusion dynamics to higher order deformations, such as β4 and β6 deformations. However, such studies have rarely been carried out, especially for deformation of projectile nuclei. In this article, we investigated the role of β4 of the projectile nucleus in the fusion of the 28Si+92Zr system. We demonstrated that the fusion barrier distribution is sensitive to the sign and value of the β4 parameter of the projectile, 28Si, and confirmed that the 28Si nucleus has a large positive β4. This study opens an indirect way to estimate deformation parameters of radioactive nuclei using fusion reactions, which is otherwise difficult because of experimental constraints.
Control of mechanically activated polymersome fusion: Factors affecting fusion
Henderson, Ian M.; Paxton, Walter F.
2014-12-15
Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the sizemore » of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.« less
Yang, Yongbi; Zhang, Teng; Cao, Hongxue; Yu, Dan; Zhang, Tong; Zhao, Shaojuan; Jing, Xiaohui; Song, Liying; Liu, Yunye; Che, Ruixiang; Liu, Xin; Li, Deshan; Ren, Guiping
2017-08-01
Acute lung injury (ALI) is still a leading cause of morbidity and mortality in critically ill patients. Recently, our study found that a bispecific fusion protein treatment can ameliorate the lung injury induced by LPS. However, the molecular mechanisms which bispecific fusion protein ameliorates acute lung injury remain unclear. In this study, we found that the bispecific fusion protein treatment inhibited the nuclear transcription of NF-κB in confocal laser scanning fluorescence microscopy, the bispecific fusion protein exert protective effects in the cell model of ALI induced by lipopolysaccharide (LPS) via inhibiting the nuclear factor κB (NF-κB) signaling pathway and mediate inflammation. Moreover, the treatment of the bispecific fusion protein show its efficacy in animal models stimulated by LPS, the results of real-time PCR and ELISA demonstrate that bispecific fusion protein treatment effectively inhibited the over-expression of inflammatory cytokines(tumor necrosis factor α, interleukin 1β and interleukin 17). In addition, LPS-challenged mice exhibited significant lung injury characterized by the deterioration of histopathology, which was meliorated by bispecific fusion protein treatment. Collectively, these results demonstrate that bispecific fusion protein treatment ameliorates LPS-induced ALI through reducing inflammatory cytokines and lung inflammation, which may be associated with the decreased the nuclear transcription of NF-κB. The bispecific fusion protein may be useful as a novel therapy to treat ALI. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Lights on: Dye dequenching reveals polymersome fusion with polymer, lipid and stealth lipid vesicles
Henderson, Ian M.; Collins, Aaron M.; Quintana, Hope A.; ...
2015-12-13
In this study, we develop a quantitative dye dequenching technique for the measurement of polymersome fusion, using it to characterize the salt mediated, mechanically-induced fusion of polymersomes with polymer, lipid, and so-called stealth lipid vesicles. While dye dequenching has been used to quantitatively explore liposome fusion in the past, this is the first use of dye dequenching to measure polymersome fusion of which we are aware. In addition to providing quantitative results, dye dequenching is ideal for detecting fusion in instances where DLS results would be ambiguous, such as low yield levels and size ranges outside the capabilities of DLS.more » The dye chosen for this study was a cyanine derivative, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR), which proved to provide excellent data on the extent of polymersome fusion. Using this technique, we have shown the limited fusion capabilities of polymersome/liposome heterofusion, notably DOPC vesicles fusing with polymersomes at half the efficiency of polymersome homofusion and DPPC vesicles showing virtually no fusion. In addition to these key heterofusion experiments, we determined the broad applicability of dye dequenching in measuring kinetic rates of polymersome fusion; and showed that even at elevated temperatures or over multiple weeks' time, no polymersome fusion occurred without agitation. Stealth liposomes formed from DPPC and PEO-functionalized lipid, however, fused with polymersomes and stealth liposomes with relatively high efficiency, lending support to our hypothesis that the response of the PEO corona to salt is a key factor in the fusion process. This last finding suggests that although the conjugation of PEO to lipids increases vesicle biocompatibility and enables their longer circulation times, it also renders the vesicles subject to destabilization under high salt and shear (e.g. in the circulatory system) that may lead to, in this case, fusion.« less
Yishake, Mumingjiang; Yasen, Miersalijiang; Jiang, Libo; Liu, Wangmi; Xing, Rong; Chen, Qian; Lin, Hong; Dong, Jian
2018-03-01
There has been no study regarding the effect of a combination of teriparatide (TPTD) and zoledronic acid (ZA) on vertebral fusion. In this study, we investigate the effect of single and combined TPTD and ZA treatment on lumbar vertebral fusion in aged ovariectomized (OVX) rats. Sixty two-month-old female Sprague-Dawley rats were ovariectomized and underwent bilateral L4-L5 posterolateral intertransverse fusion after 10 months. The OVX rats received vehicle (control) treatment, or ZA (100 µg/kg, once), or TPTD (60 µg/kg/2 d for 42 d), or ZA + TPTD until they were euthanized at 6 weeks following lumbar vertebral fusion. The lumbar spine was harvested. Bone mineral density (BMD), bone fusion, bone volume (BV), and bone formation rate (BFR)were analyzed by dual-energy X-ray absorptiometry (DXA), radiography, micro-computed tomography, and histomorphometry. Compared with vehicle (control) treatment, ZA and TPTD monotherapy increased bone volume (BV) at fusion site, and ZA + TPTD combined therapy had an additive effect. Treatment with TPTD and ZA + TPTD increased the bone fusion rate when compared with the control group. ZA monotherapy did not alter the rate of bone fusion. The TPTD and ZA + TPTD treatment groups had increased mineral apposition rate (MAR), mineralizing surfaces/bone surface ((MS/BS), and BFR/BS compared with the OVX group. Our experiment confirm that the monotherapy with TPTD and combination therapy with ZA + TPTD in an OVX rat model of osteopenia following lumbar vertebral fusion surgery increased bone fusion mass and bone fusion rate, and ZA + TPTD combined therapy had an additive effect on bone fusion mass. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:937-944, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Lee, Andy C H; Feger, Mark A; Singla, Anuj; Abel, Mark F
2016-11-15
Systemic review and meta-analysis. To analyze the effect of spinal fusion and instrumentation for adolescent idiopathic scoliosis (AIS) on absolute pulmonary function test (PFTs). Pulmonary function is correlated with severity of deformity in AIS patients and studies that have analyzed the effect of spinal fusion and instrumentation on PFTs for AIS have reported inconsistent results. There is a need to analyze the effect of spinal fusion on PFTs with stratification by surgical approach. Our analysis included 22 studies. Cohen's d effect sizes were calculated for absolute PFT outcome measures with 95% confidence intervals (CI). Meta-analyses were performed at each postoperative time frame for six homogeneous surgical approaches: (i) combined anterior release and posterior fusion with instrumentation; (ii) combined video assisted anterior release and posterior fusion with instrumentation without thoracoplasty; (iii) posterior fusion with instrumentation without thoracoplasty; (iv) anterior fusion with instrumentation and without thoracoplasty; (v) video assisted anterior fusion with instrumentation without thoracoplasty; and (vi) any scoliosis surgery with additional thoracoplasty. Anterior spinal fusion with instrumentation, any scoliosis surgery with concomitant thoracoplasty, or video-assisted anterior fusion with instrumentation for AIS had similar absolute PFTs at their 2 year postoperative follow up compared with their preoperative PFTs (effect sizes ranging from -0.2-0.2 with all CI crossing "0"). Posterior spinal fusion with instrumentation (with or without an anterior release) demonstrated small to moderate increases in PFTs 2 years postoperatively (effect sizes ranging from 0.35-0.65 with all CI not crossing "0"). Anterior fusion with instrumentation, regardless of the approach, and any scoliosis surgery with concomitant thoracoplasty do not lead to significant change in pulmonary functions 2 year after surgery. Posterior spinal fusion with instrumentation (with or without an anterior release) resulted in small to moderate increases in PFTs. N/A.
Sayama, Christina; Hadley, Caroline; Monaco, Gina N; Sen, Anish; Brayton, Alison; Briceño, Valentina; Tran, Brandon H; Ryan, Sheila L; Luerssen, Thomas G; Fulkerson, Daniel; Jea, Andrew
2015-07-01
OBJECT The purpose of this study focusing on fusion rate was to determine the efficacy of recombinant human bone morphogenetic protein-2 (rhBMP-2) use in posterior instrumented fusions of the craniocervical junction in the pediatric population. The authors previously reported the short-term (mean follow-up 11 months) safety and efficacy of rhBMP-2 use in the pediatric age group. The present study reports on their long-term results (minimum of 12 months' follow-up) and focuses on efficacy. METHODS The authors performed a retrospective review of 83 consecutive pediatric patients who had undergone posterior occipitocervical or atlantoaxial spine fusion at Texas Children's Hospital or Riley Children's Hospital during the period from October 2007 to October 2012. Forty-nine patients were excluded from further analysis because of death, loss to follow-up, or lack of CT evaluation of fusion at 12 or more months after surgery. Fusion was determined by postoperative CT scan at a minimum of 12 months after surgery. The fusion was graded and classified by a board-certified fellowship-trained pediatric neuroradiologist. Other factors, such as patient age, diagnosis, number of vertebral levels fused, use of allograft or autograft, dosage of bone morphogenetic protein (BMP), and use of postoperative orthosis, were recorded. RESULTS Thirty-four patients had a CT scan at least 12 months after surgery. The average age of the patients at surgery was 8 years, 1 month (range 10 months-17 years). The mean follow-up was 27.7 months (range 12-81 months). There were 37 fusion procedures in 34 patients. Solid fusion (CT Grade 4 or 4-) was achieved in 89.2% of attempts (33 of 37), while incomplete fusion or failure of fusion was seen in 10.8%. Based on logistic regression analysis, there was no significant association between solid fusion and age, sex, BMP dose, type of graft material, use of postoperative orthosis, or number of levels fused. Three of 34 patients (8.8%) required revision surgery. CONCLUSIONS Despite the large number of adult studies reporting positive effects of BMP on bone fusion, our long-term outcomes using rhBMP-2 in the pediatric population suggest that rates of fusion failure are higher than observed in contemporary adult and pediatric reports of occipitocervical and atlantoaxial spine fusions.
Wang, Shan-Jin; Han, Ying-Chao; Pan, Fu-Min; Ma, Bin; Tan, Jun
2015-01-01
Single transverse cage placed in the anterior vertebral column can better maintain lumbar lordosis and sagittal alignment and is frequently used via the lateral transpsoas approach. However, there is no clear description in the literature of the steps required to place the single transverse cage during the instrumented transforaminal lumbar interbody fusion (TLIF) procedure for the treatment of degenerative lumbar disease. The objective of this study is to describe the technique using single transverse-orientation cage when performing TLIF procedures. We present 18 illustrative cases in which single transverse-orientation cage was placed according to a step-by-step technique that can be used during the TLIF procedure. Information acquired included procedure time, intraoperative blood loss and postoperative complications. The preoperative and postoperative Oswestry Disability Index (ODI) and the visual analogue scale (VAS) scores were recorded. Changes in disc height and segmental lordosis were measured at radiographs. The single transverse-orientation cage was successfully placed in 18 patients in a stepwise technique to achieve lumbar fusion. Using this technique, the patients significantly improved clinically and radiographically at postoperative visits. This is the first report demonstrating the safety and efficacy of instrumented TLIF with single transverse-orientation cage for the treatment of degenerative lumbar disease. Single transverse-orientation cage via MIS-TLIF approach can maintain greater lumbar lordosis and avoid the unique complications of lateral transpsoas approach. Understanding the options for cage placement is important for surgeons considering the use of this technique.
Lian, Hua-Yu; Jiao, Guang-Zhong; Wang, Hui-Li; Tan, Xiu-Wen; Wang, Tian-Yang; Zheng, Liang-Liang; Kong, Qiao-Qiao; Tan, Jing-He
2014-09-01
Although fusion of nucleoli was observed during pronuclear development of zygotes and the behavior of nucleoli in pronuclei has been suggested as an indicator of embryonic developmental potential, the mechanism for nucleolar fusion is unclear. Although both cytoskeleton and the nucleolus are important cellular entities, there are no special reports on the relationship between the two. Role of cytoskeleton in regulating fusion of nucleoli was studied using the activated mouse oocyte model. Mouse oocytes were cultured for 6 h in activating medium (Ca²⁺-free CZB medium containing 10 mM SrCl₂) supplemented with or without inhibitors for cytoskeleton or protein synthesis before pronuclear formation, nucleolar fusion, and the activity of maturation-promoting factor (MPF) were examined. Whereas treatment with microfilament inhibitor cytochalasin D or B or intermediate filament inhibitor acrylamide suppressed nucleolar fusion efficiently, treatment with microtubule inhibitor demecolcine or nocodazole or protein synthesis inhibitor cycloheximide had no effect. The cytochalasin D- or acrylamide-sensitive temporal window coincided well with the reported temporal window for nucleolar fusion in activated oocytes. Whereas a continuous incubation with demecolcine prevented pronuclear formation, pronuclei formed normally when demecolcine was excluded during the first hour of activation treatment when the MPF activity dropped dramatically. The results suggest that 1) microfilaments and intermediate filaments but not microtubules support nucleolar fusion, 2) proteins required for nucleolar fusion including microfilaments and intermediate filaments are not de novo synthesized, and 3) microtubule disruption prevents pronuclear formation by activating MPF. © 2014 by the Society for the Study of Reproduction, Inc.
Gene Fusion Markup Language: a prototype for exchanging gene fusion data
2012-01-01
Background An avalanche of next generation sequencing (NGS) studies has generated an unprecedented amount of genomic structural variation data. These studies have also identified many novel gene fusion candidates with more detailed resolution than previously achieved. However, in the excitement and necessity of publishing the observations from this recently developed cutting-edge technology, no community standardization approach has arisen to organize and represent the data with the essential attributes in an interchangeable manner. As transcriptome studies have been widely used for gene fusion discoveries, the current non-standard mode of data representation could potentially impede data accessibility, critical analyses, and further discoveries in the near future. Results Here we propose a prototype, Gene Fusion Markup Language (GFML) as an initiative to provide a standard format for organizing and representing the significant features of gene fusion data. GFML will offer the advantage of representing the data in a machine-readable format to enable data exchange, automated analysis interpretation, and independent verification. As this database-independent exchange initiative evolves it will further facilitate the formation of related databases, repositories, and analysis tools. The GFML prototype is made available at http://code.google.com/p/gfml-prototype/. Conclusion The Gene Fusion Markup Language (GFML) presented here could facilitate the development of a standard format for organizing, integrating and representing the significant features of gene fusion data in an inter-operable and query-able fashion that will enable biologically intuitive access to gene fusion findings and expedite functional characterization. A similar model is envisaged for other NGS data analyses. PMID:23072312
Zhong, Zhao-Ming; Zhu, Shi-Yuan; Zhuang, Jing-Shen; Wu, Qian; Chen, Jian-Ting
2016-05-01
Anterior cervical discectomy and fusion is a standard surgical treatment for cervical radiculopathy and myelopathy, but reoperations sometimes are performed to treat complications of fusion such as pseudarthrosis and adjacent-segment degeneration. A cervical disc arthroplasty is designed to preserve motion and avoid the shortcomings of fusion. Available evidence suggests that a cervical disc arthroplasty can provide pain relief and functional improvements similar or superior to an anterior cervical discectomy and fusion. However, there is controversy regarding whether a cervical disc arthroplasty can reduce the frequency of reoperations. We performed a meta-analysis of randomized controlled trials (RCTs) to compare cervical disc arthroplasty with anterior cervical discectomy and fusion regarding (1) the overall frequency of reoperation at the index and adjacent levels; (2) the frequency of reoperation at the index level; and (3) the frequency of reoperation at the adjacent levels. PubMed, EMBASE, and the Cochrane Register of Controlled Trials databases were searched to identify RCTs comparing cervical disc arthroplasty with anterior cervical discectomy and fusion and reporting the frequency of reoperation. We also manually searched the reference lists of articles and reviews for possible relevant studies. Twelve RCTs with a total of 3234 randomized patients were included. Eight types of disc prostheses were used in the included studies. In the anterior cervical discectomy and fusion group, autograft was used in one study and allograft in 11 studies. Nine of 12 studies were industry sponsored. Pooled risk ratio (RR) and associated 95% CI were calculated for the frequency of reoperation using random-effects or fixed-effects models depending on the heterogeneity of the included studies. A funnel plot suggested the possible presence of publication bias in the available pool of studies; that is, the shape of the plot suggests that smaller negative or no-difference studies may have been performed but have not been published, and so were not identified and included in this meta-analysis. The overall frequency of reoperation at the index and adjacent levels was lower in the cervical disc arthroplasty group (6%; 108/1762) than in the anterior cervical discectomy and fusion group (12%; 171/1472) (RR, 0.54; 95% CI, 0.36-0.80; p = 0.002). Subgroup analyses were performed according to secondary surgical level. Compared with anterior cervical discectomy and fusion, cervical disc arthroplasty was associated with fewer reoperations at the index level (RR, 0.50; 95% CI, 0.37-0.68; p < 0.001) and adjacent levels (RR, 0.52; 95% CI, 0.37-0.74; p < 0.001). Cervical disc arthroplasty is associated with fewer reoperations than anterior cervical discectomy and fusion, indicating that it is a safe and effective alternative to fusion for cervical radiculopathy and myelopathy. However, because of some limitations, these findings should be interpreted with caution. Additional studies are needed. Level I, therapeutic study.
NASA-NIAC 2001 Phase I Research Grant on Aneutronic Fusion Spacecraft Architecture
NASA Technical Reports Server (NTRS)
Tarditi, Alfonso G. (Principal Investigator); Scott, John H.; Miley, George H.
2012-01-01
This study was developed because the recognized need of defining of a new spacecraft architecture suitable for aneutronic fusion and featuring game-changing space travel capabilities. The core of this architecture is the definition of a new kind of fusion-based space propulsion system. This research is not about exploring a new fusion energy concept, it actually assumes the availability of an aneutronic fusion energy reactor. The focus is on providing the best (most efficient) utilization of fusion energy for propulsion purposes. The rationale is that without a proper architecture design even the utilization of a fusion reactor as a prime energy source for spacecraft propulsion is not going to provide the required performances for achieving a substantial change of current space travel capabilities.
Laparoscopic bone dowel fusions of the lumbar spine.
Silcox, D H
1998-10-01
Studies that show laparoscopic lumbar fusion to decrease cost or time of hospitalization or to increase the speed or incidence of return to activities are not currently available. Laparoscopic fusion of the lumbar spine appears to be a potentially attractive approach to treating axial back pain secondary to different causes. Although the technique is attractive because of its minimally invasive nature and marketing allure, it has yet to be established as to what the true clinical efficacy of this procedure will be. Further clinical study of these techniques with longer follow-up, and case-controlled studies should help clinicians to know the best fusion technique to offer patients.
Shared Negative Experiences Lead to Identity Fusion via Personal Reflection.
Jong, Jonathan; Whitehouse, Harvey; Kavanagh, Christopher; Lane, Justin
2015-01-01
Across three studies, we examined the role of shared negative experiences in the formation of strong social bonds--identity fusion--previously associated with individuals' willingness to self-sacrifice for the sake of their groups. Studies 1 and 2 were correlational studies conducted on two different populations. In Study 1, we found that the extent to which Northern Irish Republicans and Unionists experienced shared negative experiences was associated with levels of identity fusion, and that this relationship was mediated by their reflection on these experiences. In Study 2, we replicated this finding among Bostonians, looking at their experiences of the 2013 Boston Marathon Bombings. These correlational studies provide initial evidence for the plausibility of our causal model; however, an experiment was required for a more direct test. Thus, in Study 3, we experimentally manipulated the salience of the Boston Marathon Bombings, and found that this increased state levels of identity fusion among those who experienced it negatively. Taken together, these three studies provide evidence that shared negative experience leads to identity fusion, and that this process involves personal reflection.
Zhao, Fengzhi; Xu, Meng; Lei, Honcho; Zhou, Ziqi; Wang, Liang; Li, Ping; Zhao, Jianfu; Hu, Penghui
2015-01-01
Background A novel fusion gene of echinoderm microtubule-associated protein-like 4 (EML4) and anaplastic lymphoma kinase (ALK) has been recently identified in non-small-cell lung cancers (NSCLCs). Patients with the EML4-ALK fusion gene demonstrate unique clinicopathological and physiological characteristics. Here we present a meta-analysis of large-scale studies to evaluate the clinicopathological characteristics of NSCLC patients harboring the EML4-ALK fusion gene. Methods Both English and Chinese databases were systematically used to search the materials of the clinicopathological characteristics of patients with NSCLC harboring the EML4-ALK fusion gene. Pooled relative risk (RR) estimates and the 95% confidence intervals (95% CI) were calculated with the fixed or random effect model. Publication bias and chi-square test were also calculated. Results 27 retrospective studies were included in our meta-analysis. These studies included a total of 6950 patients. The incidence rate of EML4-ALK fusion in NSCLC patients was found to be 6.8% (472/6950). The correlation of the EML4-ALK fusion gene and clinicopathological characteristics of NSCLC patients demonstrated a significant difference in smoking status, histological types, stage, and ethnic characteristics. The positive rate of the EML4-ALK fusion gene expression in females were slightly higher than that in males, but not significantly (P = 0.52). In addition, the EML4-ALK fusion gene was mutually exclusive of the EGFR and KRAS mutation genes (P = 0.00). Conclusion Our pooled analysis revealed that the EML4-ALK fusion gene was observed predominantly in adenocarcinoma, non-smoking and NSCLC patients, especially those diagnosed in the advanced clinical stage of NSCLC. Additionally, the EML4-ALK fusion gene was exclusive of the EGFR and KRAS mutation genes. We surmise that IHC assay is a valuable tool for the prescreening of patients with ALK fusion gene in clinical practice, and FISH assay can be performed as a confirmation method. These insights might be helpful in guiding the appropriate molecular target therapy for NSCLC. PMID:25706305
Zhao, Fengzhi; Xu, Meng; Lei, Honcho; Zhou, Ziqi; Wang, Liang; Li, Ping; Zhao, Jianfu; Hu, Penghui
2015-01-01
A novel fusion gene of echinoderm microtubule-associated protein-like 4 (EML4) and anaplastic lymphoma kinase (ALK) has been recently identified in non-small-cell lung cancers (NSCLCs). Patients with the EML4-ALK fusion gene demonstrate unique clinicopathological and physiological characteristics. Here we present a meta-analysis of large-scale studies to evaluate the clinicopathological characteristics of NSCLC patients harboring the EML4-ALK fusion gene. Both English and Chinese databases were systematically used to search the materials of the clinicopathological characteristics of patients with NSCLC harboring the EML4-ALK fusion gene. Pooled relative risk (RR) estimates and the 95% confidence intervals (95% CI) were calculated with the fixed or random effect model. Publication bias and chi-square test were also calculated. 27 retrospective studies were included in our meta-analysis. These studies included a total of 6950 patients. The incidence rate of EML4-ALK fusion in NSCLC patients was found to be 6.8% (472/6950). The correlation of the EML4-ALK fusion gene and clinicopathological characteristics of NSCLC patients demonstrated a significant difference in smoking status, histological types, stage, and ethnic characteristics. The positive rate of the EML4-ALK fusion gene expression in females were slightly higher than that in males, but not significantly (P = 0.52). In addition, the EML4-ALK fusion gene was mutually exclusive of the EGFR and KRAS mutation genes (P = 0.00). Our pooled analysis revealed that the EML4-ALK fusion gene was observed predominantly in adenocarcinoma, non-smoking and NSCLC patients, especially those diagnosed in the advanced clinical stage of NSCLC. Additionally, the EML4-ALK fusion gene was exclusive of the EGFR and KRAS mutation genes. We surmise that IHC assay is a valuable tool for the prescreening of patients with ALK fusion gene in clinical practice, and FISH assay can be performed as a confirmation method. These insights might be helpful in guiding the appropriate molecular target therapy for NSCLC.
Atomic Force Microscope Studies of the Fusion of Floating Lipid Bilayers
Abdulreda, Midhat H.; Moy, Vincent T.
2007-01-01
This study investigated the fusion of apposing floating bilayers of egg L-α-phosphatidylcholine (egg PC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine. Atomic force microscope measurements of fusion forces under different compression rates were acquired to reveal the energy landscape of the fusion process under varied lipid composition and temperature. Between compression rates of ∼1000 and ∼100,000 pN/s, applied forces in the range from ∼100 to ∼500 pN resulted in fusion of floating bilayers. Our atomic force microscope measurements indicated that one main energy barrier dominated the fusion process. The acquired dynamic force spectra were fit with a simple model based on the transition state theory with the assumption that the fusion activation potential is linear. A significant shift in the energy landscape was observed when bilayer fluidity and composition were modified, respectively, by temperature and different cholesterol concentrations (15% ≤ chol ≤ 25%). Such modifications resulted in a more than twofold increase in the width of the fusion energy barrier for egg PC and 1,2-dimyristoyl-sn-glycero-3-phosphocholine floating bilayers. The addition of 25% cholesterol to egg PC bilayers increased the activation energy by ∼1.0 kBT compared with that of bilayers with egg PC alone. These results reveal that widening of the energy barrier and consequently reduction in its slope facilitated membrane fusion. PMID:17400691
Atomic force microscope studies of the fusion of floating lipid bilayers.
Abdulreda, Midhat H; Moy, Vincent T
2007-06-15
This study investigated the fusion of apposing floating bilayers of egg L-alpha-phosphatidylcholine (egg PC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine. Atomic force microscope measurements of fusion forces under different compression rates were acquired to reveal the energy landscape of the fusion process under varied lipid composition and temperature. Between compression rates of approximately 1000 and approximately 100,000 pN/s, applied forces in the range from approximately 100 to approximately 500 pN resulted in fusion of floating bilayers. Our atomic force microscope measurements indicated that one main energy barrier dominated the fusion process. The acquired dynamic force spectra were fit with a simple model based on the transition state theory with the assumption that the fusion activation potential is linear. A significant shift in the energy landscape was observed when bilayer fluidity and composition were modified, respectively, by temperature and different cholesterol concentrations (15% < or = chol < or = 25%). Such modifications resulted in a more than twofold increase in the width of the fusion energy barrier for egg PC and 1,2-dimyristoyl-sn-glycero-3-phosphocholine floating bilayers. The addition of 25% cholesterol to egg PC bilayers increased the activation energy by approximately 1.0 k(B)T compared with that of bilayers with egg PC alone. These results reveal that widening of the energy barrier and consequently reduction in its slope facilitated membrane fusion.
Fusions within the mandible of the domestic fowl (Gallus gallus domesticus).
Hogg, D A
1983-01-01
The articulations formed within the mandible of the domestic fowl by its constituent elements have been described and illustrated. The sutures identified were suturae angulosplenialis, angulosupra-angularis, articulare/pre-articulo-angularis, articulare/pre-articulosupra-angularis, dento-angularis, dentosplenialis, dentosupra-angularis and supra-angulosplenialis. Some degree of fusion was found to occur in all sutures except sutura supra-angulosplenialis. The range of fusion time and mean fusion time for each site was studied in a flock of Golden Comet pullets. Mean fusion times varied from 45-119 days post-hatching. PMID:6885616
Fusions within the mandible of the domestic fowl (Gallus gallus domesticus).
Hogg, D A
1983-05-01
The articulations formed within the mandible of the domestic fowl by its constituent elements have been described and illustrated. The sutures identified were suturae angulosplenialis, angulosupra-angularis, articulare/pre-articulo-angularis, articulare/pre-articulosupra-angularis, dento-angularis, dentosplenialis, dentosupra-angularis and supra-angulosplenialis. Some degree of fusion was found to occur in all sutures except sutura supra-angulosplenialis. The range of fusion time and mean fusion time for each site was studied in a flock of Golden Comet pullets. Mean fusion times varied from 45-119 days post-hatching.
Sensitivity of the fusion cross section to the density dependence of the symmetry energy
NASA Astrophysics Data System (ADS)
Reinhard, P.-G.; Umar, A. S.; Stevenson, P. D.; Piekarewicz, J.; Oberacker, V. E.; Maruhn, J. A.
2016-04-01
Background: The study of the nuclear equation of state (EOS) and the behavior of nuclear matter under extreme conditions is crucial to our understanding of many nuclear and astrophysical phenomena. Nuclear reactions serve as one of the means for studying the EOS. Purpose: It is the aim of this paper to discuss the impact of nuclear fusion on the EOS. This is a timely subject given the expected availability of increasingly exotic beams at rare isotope facilities [A. B. Balantekin et al., Mod. Phys. Lett. A 29, 1430010 (2014), 10.1142/S0217732314300109]. In practice, we focus on 48Ca+48Ca fusion. Method: We employ three different approaches to calculate fusion cross sections for a set of energy density functionals with systematically varying nuclear matter properties. Fusion calculations are performed using frozen densities, using a dynamic microscopic method based on density-constrained time-dependent Hartree-Fock (DC-TDHF) approach, as well as direct TDHF study of above barrier cross sections. For these studies, we employ a family of Skyrme parametrizations with systematically varied nuclear matter properties. Results: The folding-potential model provides a reasonable first estimate of cross sections. DC-TDHF, which includes dynamical polarization, reduces the fusion barriers and delivers much better cross sections. Full TDHF near the barrier agrees nicely with DC-TDHF. Most of the Skyrme forces which we used deliver, on the average, fusion cross sections in good agreement with the data. Trying to read off a trend in the results, we find a slight preference for forces which deliver a slope of symmetry energy of L ≈50 MeV that corresponds to a neutron-skin thickness of 48Ca of Rskin=(0.180 -0.210 ) fm. Conclusions: Fusion reactions in the barrier and sub-barrier region can be a tool to study the EOS and the neutron skin of nuclei. The success of the approach will depend on reduced experimental uncertainties of fusion data as well as the development of fusion theories that closely couple to the microscopic structure and dynamics.
Investigation of fusion gene expression in HCT116 cells.
Zhang, Yanmei; Ren, Juan; Fang, Mengdie; Wang, Xiaoju
2017-12-01
Colon cancer is the most common type of gastrointestinal cancer. A number of specific and sensitive biomarkers facilitate the diagnosis and monitoring of patients with colon cancer. Fusion genes are typically identified in cancer and a majority of the newly identified fusion genes are oncogenic in nature. Therefore, fusion genes are potential biomarkers and/or therapy targets in cancer. In the present study, the regulation of specific candidate fusion genes were investigated using Brother of the Regulator of Imprinted Sites (BORIS) in the HCT116 colon cancer cell line, which is a paralog of the fusion gene regulator CCCTC-binding factor (CTCF). The copy number of BORIS increased correspondingly to the progression of colorectal carcinoma from the M0 to the M1a stage. It was identified that EIF3E(e1)-RSPO2(e2) , EIF3E(e1)-RSPO2(e3) , PTPRK(e1)-RSPO3(e2) , PTPRK(e7)-RSPO3(e2), TADA2A-MEF2B and MED13L-CD4 are fusion transcripts present in the transcriptome of the HCT116 colon cancer cell line. CDC42SE2-KIAAO146 is a genomic fusion transcript, which originates from DNA arrangement in HCT116 cells. BORIS suppresses the expression of EIF3E , RSPO2 , PTPRK , RSPO3 , TADA2A and CD4 to inhibit the expression of fusion transcripts in HCT116 cells. It was hypothesized that the fusion transcripts investigated in the present study may not be oncogenic in HCT116 cells. As BORIS is not colorectal carcinoma-specific, the fusion genes investigated may be a biomarker assemblage for monitoring the progression of colorectal carcinoma.
Investigation of fusion gene expression in HCT116 cells
Zhang, Yanmei; Ren, Juan; Fang, Mengdie; Wang, Xiaoju
2017-01-01
Colon cancer is the most common type of gastrointestinal cancer. A number of specific and sensitive biomarkers facilitate the diagnosis and monitoring of patients with colon cancer. Fusion genes are typically identified in cancer and a majority of the newly identified fusion genes are oncogenic in nature. Therefore, fusion genes are potential biomarkers and/or therapy targets in cancer. In the present study, the regulation of specific candidate fusion genes were investigated using Brother of the Regulator of Imprinted Sites (BORIS) in the HCT116 colon cancer cell line, which is a paralog of the fusion gene regulator CCCTC-binding factor (CTCF). The copy number of BORIS increased correspondingly to the progression of colorectal carcinoma from the M0 to the M1a stage. It was identified that EIF3E(e1)-RSPO2(e2), EIF3E(e1)-RSPO2(e3), PTPRK(e1)-RSPO3(e2), PTPRK(e7)-RSPO3(e2), TADA2A-MEF2B and MED13L-CD4 are fusion transcripts present in the transcriptome of the HCT116 colon cancer cell line. CDC42SE2-KIAAO146 is a genomic fusion transcript, which originates from DNA arrangement in HCT116 cells. BORIS suppresses the expression of EIF3E, RSPO2, PTPRK, RSPO3, TADA2A and CD4 to inhibit the expression of fusion transcripts in HCT116 cells. It was hypothesized that the fusion transcripts investigated in the present study may not be oncogenic in HCT116 cells. As BORIS is not colorectal carcinoma-specific, the fusion genes investigated may be a biomarker assemblage for monitoring the progression of colorectal carcinoma. PMID:29181107
Fusion Rate and Clinical Outcomes in Two-Level Posterior Lumbar Interbody Fusion.
Aono, Hiroyuki; Takenaka, Shota; Nagamoto, Yukitaka; Tobimatsu, Hidekazu; Yamashita, Tomoya; Furuya, Masayuki; Iwasaki, Motoki
2018-04-01
Posterior lumbar interbody fusion (PLIF) has become a general surgical method for degenerative lumbar diseases. Although many reports have focused on single-level PLIF, few have focused on 2-level PLIF, and no report has covered the fusion status of 2-level PLIF. The purpose of this study is to investigate clinical outcomes and fusion for 2-level PLIF by using a combination of dynamic radiographs and multiplanar-reconstruction computed tomography scans. This study consisted of 48 consecutive patients who underwent 2-level PLIF for degenerative lumbar diseases. We assessed surgery duration, estimated blood loss, complications, clinical outcomes as measured by the Japanese Orthopaedic Association score, lumbar sagittal alignment as measured on standing lateral radiographs, and fusion status as measured by dynamic radiographs and multiplanar-reconstruction computed tomography. Patients were examined at a follow-up point of 4.8 ± 2.2 years after surgery. Thirty-eight patients who did not undergo lumbosacral fusion comprised the lumbolumbar group, and 10 patients who underwent lumbosacral fusion comprised the lumbosacral group. The mean Japanese Orthopaedic Association score improved from 12.1 to 22.4 points by the final follow-up examination. Sagittal alignment also was improved. All patients had fusion in the cranial level. Seven patients had nonunion in the caudal level, and the lumbosacral group (40%) had a significantly poorer fusion rate than the lumbolumbar group (97%) did. Surgical outcomes of 2-level PLIF were satisfactory. The fusion rate at both levels was 85%. All nonunion was observed at the caudal level and concentrated at L5-S level in L4-5-S PLIF. Copyright © 2018 Elsevier Inc. All rights reserved.
Kömürcü, Erkam; Özyalvaçlı, Gülzade; Kaymaz, Burak; Gölge, Umut Hatay; Göksel, Ferdi; Cevizci, Sibel; Adam, Gürhan; Ozden, Raif
2015-09-01
Spinal fusion is among the most frequently applied spinal surgical procedures. The goal of the present study was to evaluate whether the local administration of boric acid (BA) improves spinal fusion in an experimental spinal fusion model in rats. Currently, there is no published data that evaluates the possible positive effects if the local administration of BA on posterolateral spinal fusion. Thirty-two rats were randomly divided into four independent groups: no material was added at the fusion area for group 1; an autogenous morselized corticocancellous bone graft was used for group 2; an autogenous morselized corticocancellous bone graft with boric acid (8.7 mg/kg) for group 3; and only boric acid was placed into the fusion area for group 4. The L4-L6 spinal segments were collected at week 6, and the assessments included radiography, manual palpation, and histomorphometry. A statistically significant difference was determined between the groups with regard to the mean histopathological scores (p = 0.002), and a paired comparison was made with the Mann-Whitney U test to detect the group/groups from which the difference originated. It was determined that only the graft + BA practice increased the histopathological score significantly with regard to the control group (p = 0.002). Whereas, there was no statistically significant difference between the groups in terms of the manual assessment of fusion and radiographic analysis (respectively p = 0.328 and p = 0.196). This preliminary study suggests that BA may clearly be useful as a therapeutic agent in spinal fusion. However, further research is required to show the most effective dosage of BA on spinal fusion, and should indicate whether BA effects spinal fusion in the human body.
The Effects of Ketorolac Injected via Patient Controlled Analgesia Postoperatively on Spinal Fusion
Park, Si-Young; Moon, Seong-Hwan; Park, Moon-Soo; Oh, Kyung-Soo
2005-01-01
Lumbar spinal fusions have been performed for spinal stability, pain relief and improved function in spinal stenosis, scoliosis, spinal fractures, infectious conditions and other lumbar spinal problems. The success of lumbar spinal fusion depends on multifactors, such as types of bone graft materials, levels and numbers of fusion, spinal instrumentation, electrical stimulation, smoking and some drugs such as nonsteroidal anti-inflammatory drugs (NSAIDs). From January 2000 to December 2001, 88 consecutive patients, who were diagnosed with spinal stenosis or spondylolisthesis, were retrospectively enrolled in this study. One surgeon performed all 88 posterolateral spinal fusions with instrumentation and autoiliac bone graft. The patients were divided into two groups. The first group (n=30) was infused with ketorolac and fentanyl intravenously via patient controlled analgesia (PCA) postoperatively and the second group (n=58) was infused only with fentanyl. The spinal fusion rates and clinical outcomes of the two groups were compared. The incidence of incomplete union or nonunion was much higher in the ketorolac group, and the relative risk was approximately 6 times higher than control group (odds ratio: 5.64). The clinical outcomes, which were checked at least 1 year after surgery, showed strong correlations with the spinal fusion status. The control group (93.1%) showed significantly better clinical results than the ketorolac group (77.6%). Smoking had no effect on the spinal fusion outcome in this study. Even though the use of ketorolac after spinal fusion can reduce the need for morphine, thereby decreasing morphine related complications, ketorolac used via PCA at the immediate postoperative state inhibits spinal fusion resulting in a poorer clinical outcome. Therefore, NSAIDs such as ketorolac, should be avoided after posterolateral spinal fusion. PMID:15861498
High Cholesterol Obviates a Prolonged Hemifusion Intermediate in Fast SNARE-Mediated Membrane Fusion
Kreutzberger, Alex J.B.; Kiessling, Volker; Tamm, Lukas K.
2015-01-01
Cholesterol is essential for exocytosis in secretory cells, but the exact molecular mechanism by which it facilitates exocytosis is largely unknown. Distinguishing contributions from the lateral organization and dynamics of membrane proteins to vesicle docking and fusion and the promotion of fusion pores by negative intrinsic spontaneous curvature and other mechanical effects of cholesterol have been elusive. To shed more light on this process, we examined the effect of cholesterol on SNARE-mediated membrane fusion in a single-vesicle assay that is capable of resolving docking and elementary steps of fusion with millisecond time resolution. The effect of cholesterol on fusion pore formation between synaptobrevin-2 (VAMP-2)-containing proteoliposomes and acceptor t-SNARE complex-containing planar supported bilayers was examined using both membrane and content fluorescent markers. This approach revealed that increasing cholesterol in either the t-SNARE or the v-SNARE membrane favors a mechanism of direct fusion pore opening, whereas low cholesterol favors a mechanism leading to a long-lived (>5 s) hemifusion state. The amount of cholesterol in the target membrane had no significant effect on docking of synaptobrevin vesicles. Comparative studies with α-tocopherol (vitamin E) show that the negative intrinsic spontaneous curvature of cholesterol and its presumed promotion of a very short-lived (<50 ms) lipid stalk intermediate is the main factor that favors rapid fusion pore opening at high cholesterol. This study also shows that this single-vesicle fusion assay can distinguish between hemifusion and full fusion with only a single lipid dye, thereby freeing up a fluorescence channel for the simultaneous measurement of another parameter in fast time-resolved fusion assays. PMID:26200867
Effect of TheraCyte-encapsulated parathyroid cells on lumbar fusion in a rat model.
Chen, Sung-Hsiung; Huang, Shun-Chen; Lui, Chun-Chung; Lin, Tzu-Ping; Chou, Fong-Fu; Ko, Jih-Yang
2012-09-01
Implantation of TheraCyte 4 × 10(6) live parathyroid cells can increase the bone marrow density of the spine of ovariectomized rats. There has been no published study examining the effect of such implantation on spinal fusion outcomes. The purpose of this study was to examine the effect of TheraCyte-encapsulated parathyroid cells on posterolateral lumbar fusions in a rat model. Forty Sprague-Dawley rats underwent single-level, intertransverse process spinal fusions using iliac crest autograft. The rats were randomly assigned to two groups: Group 1 rats received sham operations on their necks (control; N = 20); Group 2 rats were implanted with TheraCyte-encapsulated 4 × 10(6) live parathyroid cells into the subcutis of their necks (TheraCyte; N = 20). Six weeks after surgery the rats were killed. Fusion was assessed by inspection, manual palpation, radiography, and histology. Blood was drawn to measure the serum levels of calcium, phosphorus, and intact parathyroid hormone (iPTH). Based on manual palpation, the control group had a fusion rate of 33 % (6/18) and the TheraCyte group had a fusion rate of 72 % (13/18) (P = 0.044). Histology confirmed the manual palpation results. Serum iPTH levels were significantly higher in the TheraCyte group compared with the control group (P < 0.05); neither serum calcium nor phosphorus levels were significantly different between the two groups. This pilot animal study revealed that there were more fusions in rats that received TheraCyte-encapsulated 4 × 10(6) live parathyroid cells than in control rats without significant change in serum calcium or phosphorus concentrations. As with any animal study, the results may not extrapolate to a higher species. Further studies are needed to determine if these effects are clinically significant.
Su, Shu-Fen; Wu, Meng-Shan; Yeh, Wen-Ting; Liao, Ying-Chin
2018-06-01
Purpose/Aim: Lumbar degenerative diseases (LDDs) cause pain and disability and are treated with lumbar fusion surgery. The aim of this study was to evaluate the efficacy of lumbar fusion surgery with ISOBAR devices versus posterior lumbar interbody fusion (PLIF) surgery for alleviating LDD-associated pain and disability. We performed a literature review and meta-analysis conducted in accordance with Cochrane methodology. The analysis included Group Reading Assessment and Diagnostic Evaluation assessments, Jadad Quality Score evaluations, and Risk of Bias in Non-randomized Studies of Interventions assessments. We searched PubMed, MEDLINE, the Cumulative Index to Nursing and Allied Health Literature, the Cochrane Library, ProQuest, the Airiti Library, and the China Academic Journals Full-text Database for relevant randomized controlled trials and cohort studies published in English or Chinese between 1997 and 2017. Outcome measures of interest included general pain, lower back pain, and disability. Of the 18 studies that met the inclusion criteria, 16 examined general pain (802 patients), 5 examined lower back pain (274 patients), and 15 examined disability (734 patients). General pain, lower back pain, and disability scores were significantly lower after lumbar fusion surgery with ISOBAR devices compared to presurgery. Moreover, lumbar fusion surgery with ISOBAR devices was more effective than PLIF for decreasing postoperative disability, although it did not provide any benefit in terms of general pain or lower back pain. Lumbar fusion surgery with ISOBAR devices alleviates general pain, lower back pain, and disability in LDD patients and is superior to PLIF for reducing postoperative disability. Given possible publication bias, we recommend further large-scale studies.
Live cell imaging of in vitro human trophoblast syncytialization.
Wang, Rui; Dang, Yan-Li; Zheng, Ru; Li, Yue; Li, Weiwei; Lu, Xiaoyin; Wang, Li-Juan; Zhu, Cheng; Lin, Hai-Yan; Wang, Hongmei
2014-06-01
Human trophoblast syncytialization, a process of cell-cell fusion, is one of the most important yet least understood events during placental development. Investigating the fusion process in a placenta in vivo is very challenging given the complexity of this process. Application of primary cultured cytotrophoblast cells isolated from term placentas and BeWo cells derived from human choriocarcinoma formulates a biphasic strategy to achieve the mechanism of trophoblast cell fusion, as the former can spontaneously fuse to form the multinucleated syncytium and the latter is capable of fusing under the treatment of forskolin (FSK). Live-cell imaging is a powerful tool that is widely used to investigate many physiological or pathological processes in various animal models or humans; however, to our knowledge, the mechanism of trophoblast cell fusion has not been reported using a live- cell imaging manner. In this study, a live-cell imaging system was used to delineate the fusion process of primary term cytotrophoblast cells and BeWo cells. By using live staining with Hoechst 33342 or cytoplasmic dyes or by stably transfecting enhanced green fluorescent protein (EGFP) and DsRed2-Nuc reporter plasmids, we observed finger-like protrusions on the cell membranes of fusion partners before fusion and the exchange of cytoplasmic contents during fusion. In summary, this study provides the first video recording of the process of trophoblast syncytialization. Furthermore, the various live-cell imaging systems used in this study will help to yield molecular insights into the syncytialization process during placental development. © 2014 by the Society for the Study of Reproduction, Inc.
Classifying four-category visual objects using multiple ERP components in single-trial ERP.
Qin, Yu; Zhan, Yu; Wang, Changming; Zhang, Jiacai; Yao, Li; Guo, Xiaojuan; Wu, Xia; Hu, Bin
2016-08-01
Object categorization using single-trial electroencephalography (EEG) data measured while participants view images has been studied intensively. In previous studies, multiple event-related potential (ERP) components (e.g., P1, N1, P2, and P3) were used to improve the performance of object categorization of visual stimuli. In this study, we introduce a novel method that uses multiple-kernel support vector machine to fuse multiple ERP component features. We investigate whether fusing the potential complementary information of different ERP components (e.g., P1, N1, P2a, and P2b) can improve the performance of four-category visual object classification in single-trial EEGs. We also compare the classification accuracy of different ERP component fusion methods. Our experimental results indicate that the classification accuracy increases through multiple ERP fusion. Additional comparative analyses indicate that the multiple-kernel fusion method can achieve a mean classification accuracy higher than 72 %, which is substantially better than that achieved with any single ERP component feature (55.07 % for the best single ERP component, N1). We compare the classification results with those of other fusion methods and determine that the accuracy of the multiple-kernel fusion method is 5.47, 4.06, and 16.90 % higher than those of feature concatenation, feature extraction, and decision fusion, respectively. Our study shows that our multiple-kernel fusion method outperforms other fusion methods and thus provides a means to improve the classification performance of single-trial ERPs in brain-computer interface research.
Effect of serum nicotine level on posterior spinal fusion in an in vivo rabbit model.
Daffner, Scott D; Waugh, Stacey; Norman, Timothy L; Mukherjee, Nilay; France, John C
2015-06-01
Cigarette smoking has a deleterious effect on spinal fusion. Although some studies have implied that nicotine is primarily responsible for poor fusion outcomes, other studies suggest that nicotine may actually stimulate bone growth. Hence, there may be a dose-dependent effect of nicotine on posterior spinal fusion outcomes. The purpose of this study was to determine if such a relationship could be shown in an in vivo rabbit model. This is a prospective in vivo animal study. Twenty-four adult male New Zealand white rabbits were randomly divided into four groups. All groups received a single-level posterolateral, intertransverse process fusion at L5-L6 with autologous iliac crest bone. One group served as controls and only underwent the spine fusion surgery. Three groups received 5.25-, 10.5-, and 21-mg nicotine patches, respectively, for 5 weeks. Serum nicotine levels were recorded for each group. All animals were euthanized 5 weeks postoperatively, and spinal fusions were evaluated radiographically, by manual palpation, and biomechanically. Statistical analysis evaluated the dose response effect of outcomes variables and nicotine dosage. This study was supported by a portion of a $100,000 grant from the Orthopaedic Research and Education Foundation. Author financial disclosures were completed in accordance with the journal's guidelines; there were no conflicts of interests disclosed that would have led to bias in this work. The average serum levels of nicotine from the different patches were 7.8±1.9 ng/mL for the 5.25-mg patch group; 99.7±17.7 ng/mL for the 10.5-mg patch group; and 149.1±24.6 ng/mL for the 21-mg patch group. The doses positively correlated with serum concentrations of nicotine (correlation coefficient=0.8410, p<.001). The 5.25-mg group provided the best fusion rate, trabeculation, and stiffness. On the basis of the palpation tests, the fusion rates were control (50%), 5.25 mg (80%), 10.5 mg (50%), and 21 mg (42.8%). Radiographic assessment of trabeculation and bone incorporation and biomechanical analysis of bending stiffness ratio were also greatest in the 5.25-mg group. Radiographic evaluation showed a significant (p=.0446) quadratic effect of nicotine dose on spinal fusion. The effects of nicotine on spinal fusion are complex, may be dose dependent, and may not always be detrimental. The uniformly negative effects of smoking reported in patients undergoing spinal fusion may possibly be attributed to the other components of cigarette smoke. Copyright © 2015 Elsevier Inc. All rights reserved.
Dahl, Michael C; Ellingson, Arin M; Mehta, Hitesh P; Huelman, Justin H; Nuckley, David J
2013-02-01
Degenerative disc disease is commonly a multilevel pathology with varying deterioration severity. The use of fusion on multiple levels can significantly affect functionality and has been linked to persistent adjacent disc degeneration. A hybrid approach of fusion and nucleus replacement (NR) has been suggested as a solution for mildly degenerated yet painful levels adjacent to fusion. To compare the biomechanical metrics of different hybrid implant constructs, hypothesizing that an NR+fusion hybrid would be similar to a single-level fusion and perform more naturally compared with a two-level fusion. A cadaveric in vitro repeated-measures study was performed to evaluate a multilevel lumbar NR+fusion hybrid. Eight cadaveric spines (L3-S1) were tested in a Spine Kinetic Simulator (Instron, Norwood, MA, USA). Pure moments of 8 Nm were applied in flexion/extension, lateral bending, and axial rotation as well as compression loading. Specimens were tested intact; fused (using transforaminal lumbar interbody fusion instrumentation with posterior rods) at L5-S1; with a nuclectomy at L4-L5 including fusion at L5-S1; with NR at L4-L5 including fusion at L5-S1; and finally with a two-level fusion spanning L4-S1. Repeated-measures analysis of variance and corrected t tests were used to statistically compare outcomes. The NR+fusion hybrid and single-level fusion exhibited no statistical differences for range of motion (ROM), stiffness, neutral zone, and intradiscal pressure in all loading directions. Compared with two-level fusion, the hybrid affords the construct 41.9% more ROM on average. Two-level fusion stiffness was statistically higher than all other constructs and resulted in significantly lower ROM in flexion, extension, and lateral bending. The hybrid construct produced approximately half of the L3-L4 adjacent-level pressures as the two-level fusion case while generating similar pressures to the single-level fusion case. These data portend more natural functional outcomes and fewer adjacent disc complications for a multilevel NR+fusion hybrid compared with the classical two-level fusion. Copyright © 2013 Elsevier Inc. All rights reserved.
Yang, Wencheng; Dong, Youhai; Hong, Yang; Guang, Qian; Chen, Xujun
2016-05-01
The study used a rabbit model to achieve anterior vertebral interbody fusion using osteogenic mesenchymal stem cells (OMSCs) transplanted in collagen sponge. We investigated the effectiveness of graft material for anterior vertebral interbody fusion using a rabbit model by examining the OMSCs transplanted in collagen sponge. Anterior vertebral interbody fusion is commonly performed. Although autogenous bone graft remains the gold-standard fusion material, it requires a separate surgical procedure and is associated with significant short-term and long-term morbidity. Recently, mesenchymal stem cells from bone marrow have been studied in various fields, including posterolateral spinal fusion. Thus, we hypothesized that cultured OMSCs transplanted in porous collagen sponge could be used successfully even in anterior vertebral interbody fusion. Forty mature male White Zealand rabbits (weight, 3.5-4.5 kg) were randomly allocated to receive one of the following graft materials: porous collagen sponge plus cultured OMSCs (group I); porous collagen sponge alone (group II); autogenous bone graft (group III); and nothing (group IV). All animals underwent anterior vertebral interbody fusion at the L4/L5 level. The lumbar spine was harvested en bloc, and the new bone formation and spinal fusion was evaluated using radiographic analysis, microcomputed tomography, manual palpation test, and histologic examination at 8 and 12 weeks after surgery. New bone formation and bony fusion was evident as early as 8 weeks in groups I and III. And there was no statistically significant difference between 8 and 12 weeks. At both time points, by microcomputed tomography and histologic analysis, new bone formation was observed in both groups I and III, fibrous tissue was observed and there was no new bone in both groups II and IV; by manual palpation test, bony fusion was observed in 40% (4/10) of rabbits in group I, 70% (7/10) of rabbits in group III, and 0% (0/10) of rabbits in both groups II and IV. These findings suggest that mesenchymal stem cells that have been cultured with osteogenic differentiation medium and loaded with collagen sponge could induce bone formation and anterior vertebral interbody fusion. And the rabbit model we developed will be useful in evaluating the effects of graft materials for anterior vertebral interbody fusion. Further study is needed to determine the most appropriate carrier for OMSCs and the feasibility in the clinical setting.
Metabolic Stress and Disorders Related to Alterations in Mitochondrial Fission or Fusion
Babbar, Mansi; Sheikh, M. Saeed
2014-01-01
Mitochondrial morphology and metabolism play an important role in cellular homeostasis. Recent studies have shown that the fidelity of mitochondrial morphology is important in maintaining mitochondrial shape, number, size, membrane potential, ATP synthesis, mtDNA, motility, signaling, quality control, response to cellular stress, mitophagy and apoptosis. This article provides an overview of the current state of knowledge of the fission and fusion machinery with a focus on the mechanisms underlying the regulation of the mitochondrial morphology and cellular energy state. Several lines of evidence indicate that dysregulation of mitochondrial fission or fusion is associated with mitochondrial dysfunction, which in turn impacts mitophagy and apoptosis. Metabolic disorders are also associated with dysregulation of fission or fusion and the available lines of evidence point to a bidirectional interplay between the mitochondrial fission or fusion reactions and bioenergetics. Clearly, more in-depth studies are needed to fully elucidate the mechanisms that control mitochondrial fission and fusion. It is envisioned that the outcome of such studies will improve the understanding of the molecular basis of related metabolic disorders and also facilitate the development of better therapeutics. PMID:24533171
Ghogawala, Zoher; Whitmore, Robert G; Watters, William C; Sharan, Alok; Mummaneni, Praveen V; Dailey, Andrew T; Choudhri, Tanvir F; Eck, Jason C; Groff, Michael W; Wang, Jeffrey C; Resnick, Daniel K; Dhall, Sanjay S; Kaiser, Michael G
2014-07-01
A comprehensive economic analysis generally involves the calculation of indirect and direct health costs from a societal perspective as opposed to simply reporting costs from a hospital or payer perspective. Hospital charges for a surgical procedure must be converted to cost data when performing a cost-effectiveness analysis. Once cost data has been calculated, quality-adjusted life year data from a surgical treatment are calculated by using a preference-based health-related quality-of-life instrument such as the EQ-5D. A recent cost-utility analysis from a single study has demonstrated the long-term (over an 8-year time period) benefits of circumferential fusions over stand-alone posterolateral fusions. In addition, economic analysis from a single study has found that lumbar fusion for selected patients with low-back pain can be recommended from an economic perspective. Recent economic analysis, from a single study, finds that femoral ring allograft might be more cost-effective compared with a specific titanium cage when performing an anterior lumbar interbody fusion plus posterolateral fusion.
Park, JungEun; Oh, HyunJu; Hong, SoGun; Kim, MinJung; Kim, GeonA; Koo, OkJae; Kang, SungKeun; Jang, Goo; Lee, ByeongChun
2011-03-01
As shown by the birth of the first cloned dog 'Snuppy', a protocol to produce viable cloned dogs has been reported. In order to evaluate optimum fusion conditions for improving dog cloning efficiency, in vivo matured oocytes were reconstructed with adult somatic cells from a female Pekingese using different fusion conditions. Fusion with needle vs chamber methods, and with low vs high pulse strength was compared by evaluating fusion rate and in vivo development of canine cloned embryos. The fusion rates in the high voltage groups were significantly higher than in the low voltage groups regardless of fusion method (83.5 vs 66.1% for the needle fusion method, 67.4 vs 37.9% for the fusion chamber method). After embryo transfer, one each pregnancy was detected after using the needle fusion method with high and low voltage and in the chamber fusion method with high voltage, whereas no pregnancy was detected using the chamber method with low voltage. However, only the pregnancy from the needle fusion method with high voltage was maintained to term and one healthy puppy was delivered. The results of the present study demonstrated that two DC pulses of 3.8 to 4.0 kV/cm for 15 μsec using the needle fusion method were the most effective method for the production of cloned dogs under the conditions of this experiment. Copyright © 2011 Elsevier Inc. All rights reserved.
Binaural pitch fusion: Comparison of normal-hearing and hearing-impaired listenersa)
Reiss, Lina A. J.; Shayman, Corey S.; Walker, Emily P.; Bennett, Keri O.; Fowler, Jennifer R.; Hartling, Curtis L.; Glickman, Bess; Lasarev, Michael R.; Oh, Yonghee
2017-01-01
Binaural pitch fusion is the fusion of dichotically presented tones that evoke different pitches between the ears. In normal-hearing (NH) listeners, the frequency range over which binaural pitch fusion occurs is usually <0.2 octaves. Recently, broad fusion ranges of 1–4 octaves were demonstrated in bimodal cochlear implant users. In the current study, it was hypothesized that hearing aid (HA) users would also exhibit broad fusion. Fusion ranges were measured in both NH and hearing-impaired (HI) listeners with hearing losses ranging from mild-moderate to severe-profound, and relationships of fusion range with demographic factors and with diplacusis were examined. Fusion ranges of NH and HI listeners averaged 0.17 ± 0.13 octaves and 1.7 ± 1.5 octaves, respectively. In HI listeners, fusion ranges were positively correlated with a principal component measure of the covarying factors of young age, early age of hearing loss onset, and long durations of hearing loss and HA use, but not with hearing threshold, amplification level, or diplacusis. In NH listeners, no correlations were observed with age, hearing threshold, or diplacusis. The association of broad fusion with early onset, long duration of hearing loss suggests a possible role of long-term experience with hearing loss and amplification in the development of broad fusion. PMID:28372056
The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma
Parker, Brittany C.; Annala, Matti J.; Cogdell, David E.; Granberg, Kirsi J.; Sun, Yan; Ji, Ping; Li, Xia; Gumin, Joy; Zheng, Hong; Hu, Limei; Yli-Harja, Olli; Haapasalo, Hannu; Visakorpi, Tapio; Liu, Xiuping; Liu, Chang-gong; Sawaya, Raymond; Fuller, Gregory N.; Chen, Kexin; Lang, Frederick F.; Nykter, Matti; Zhang, Wei
2013-01-01
Fusion genes are chromosomal aberrations that are found in many cancers and can be used as prognostic markers and drug targets in clinical practice. Fusions can lead to production of oncogenic fusion proteins or to enhanced expression of oncogenes. Several recent studies have reported that some fusion genes can escape microRNA regulation via 3′–untranslated region (3′-UTR) deletion. We performed whole transcriptome sequencing to identify fusion genes in glioma and discovered FGFR3-TACC3 fusions in 4 of 48 glioblastoma samples from patients both of mixed European and of Asian descent, but not in any of 43 low-grade glioma samples tested. The fusion, caused by tandem duplication on 4p16.3, led to the loss of the 3′-UTR of FGFR3, blocking gene regulation of miR-99a and enhancing expression of the fusion gene. The fusion gene was mutually exclusive with EGFR, PDGFR, or MET amplification. Using cultured glioblastoma cells and a mouse xenograft model, we found that fusion protein expression promoted cell proliferation and tumor progression, while WT FGFR3 protein was not tumorigenic, even under forced overexpression. These results demonstrated that the FGFR3-TACC3 gene fusion is expressed in human cancer and generates an oncogenic protein that promotes tumorigenesis in glioblastoma. PMID:23298836
Design of a multisensor data fusion system for target detection
NASA Astrophysics Data System (ADS)
Thomopoulos, Stelios C.; Okello, Nickens N.; Kadar, Ivan; Lovas, Louis A.
1993-09-01
The objective of this paper is to discuss the issues that are involved in the design of a multisensor fusion system and provide a systematic analysis and synthesis methodology for the design of the fusion system. The system under consideration consists of multifrequency (similar) radar sensors. However, the fusion design must be flexible to accommodate additional dissimilar sensors such as IR, EO, ESM, and Ladar. The motivation for the system design is the proof of the fusion concept for enhancing the detectability of small targets in clutter. In the context of down-selecting the proper configuration for multisensor (similar and dissimilar, and centralized vs. distributed) data fusion, the issues of data modeling, fusion approaches, and fusion architectures need to be addressed for the particular application being considered. Although the study of different approaches may proceed in parallel, the interplay among them is crucial in selecting a fusion configuration for a given application. The natural sequence for addressing the three different issues is to begin from the data modeling, in order to determine the information content of the data. This information will dictate the appropriate fusion approach. This, in turn, will lead to a global fusion architecture. Both distributed and centralized fusion architectures are used to illustrate the design issues along with Monte-Carlo simulation performance comparison of a single sensor versus a multisensor centrally fused system.
Long constructs in the thoracic and lumbar spine with a minimally invasive technique.
Roldan, H; Perez-Orribo, L; Spreafico, M; Ginoves-Sierra, M
2011-04-01
Literature about long implants used together with a minimally invasive spine surgery (MISS) technique is scarce. Our objective is to contribute our surgical experience in this field and to specifically focus on several technical details. A digitally-dissected canal along the paravertebral muscles was created linking the stab wounds on each side in relation with the pedicles to be cannulated. Screws were inserted following the percutaneous technique. Long rods were modelled, threaded through the extender sleeves along the paravertebral canal and pushed into the screw heads with the reduction forceps. When fusion was needed, the facet complex was decorticated with a drill. To insert a cross-link, a canal between the 2 rods was digitally created and the spinous process was drilled. 8 patients underwent surgery (age range: 25-77 years). Indications were postosteomyelitis kyphosis in 3 patients, bone tumor in 3, and spine fracture in 2. No blood transfusions were necessary during or after surgery. A cross-link was inserted in 2 patients. Posterolateral bone fusion was attempted in 4, but radiologically identifiable in none. In one patient a cantilever manoeuvre was done to correct kyphosis. Mean duration of surgery was 4 h. There were no clinical complications related to the operation or the hardware (mean follow-up of 7.14 months, range: 1-15 months). The application of MISS techniques can be broadened to long spinal constructs to assess fractures, tumors or deformity, especially in elderly or debilitated patients. Nevertheless, posterolateral fusion is still a challenge through these limited exposures. © Georg Thieme Verlag KG Stuttgart · New York.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C.P.C. Wong; B. Merrill
2014-10-01
ITER is under construction and will begin operation in 2020. This is the first 500 MWfusion class DT device, and since it is not going to breed tritium, it will consume most of the limited supply of tritium resources in the world. Yet, in parallel, DT fusion nuclear component testing machines will be needed to provide technical data for the design of DEMO. It becomes necessary to estimate the tritium burn-up fraction and corresponding initial tritium inventory and the doubling time of these machines for the planning of future supply and utilization of tritium. With the use of a systemmore » code, tritium burn-up fraction and initial tritium inventory for steady state DT machines can be estimated. Estimated tritium burn-up fractions of FNSF-AT, CFETR-R and ARIES-AT are in the range of 1–2.8%. Corresponding total equilibrium tritium inventories of the plasma flow and tritium processing system, and with the DCLL blanket option are 7.6 kg, 6.1 kg, and 5.2 kg for ARIES-AT, CFETR-R and FNSF-AT, respectively.« less
Enhanced technologies for unattended ground sensor systems
NASA Astrophysics Data System (ADS)
Hartup, David C.
2010-04-01
Progress in several technical areas is being leveraged to advantage in Unattended Ground Sensor (UGS) systems. This paper discusses advanced technologies that are appropriate for use in UGS systems. While some technologies provide evolutionary improvements, other technologies result in revolutionary performance advancements for UGS systems. Some specific technologies discussed include wireless cameras and viewers, commercial PDA-based system programmers and monitors, new materials and techniques for packaging improvements, low power cueing sensor radios, advanced long-haul terrestrial and SATCOM radios, and networked communications. Other technologies covered include advanced target detection algorithms, high pixel count cameras for license plate and facial recognition, small cameras that provide large stand-off distances, video transmissions of target activity instead of still images, sensor fusion algorithms, and control center hardware. The impact of each technology on the overall UGS system architecture is discussed, along with the advantages provided to UGS system users. Areas of analysis include required camera parameters as a function of stand-off distance for license plate and facial recognition applications, power consumption for wireless cameras and viewers, sensor fusion communication requirements, and requirements to practically implement video transmission through UGS systems. Examples of devices that have already been fielded using technology from several of these areas are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faulconer, D.W
2004-03-15
Certain devices aimed at magnetic confinement of thermonuclear plasma rely on the steady flow of an electric current in the plasma. In view of the dominant place it occupies in both the world magnetic-confinement fusion effort and the author's own activity, the tokamak toroidal configuration is selected as prototype for discussing the question of how such a current can be maintained. Tokamaks require a stationary toroidal plasma current, this being traditionally provided by a pulsed magnetic induction which drives the plasma ring as the secondary of a transformer. Since this mechanism is essentially transient, and steady-state fusion reactor operation hasmore » manifold advantages, significant effort is now devoted to developing alternate steady-state means of generating toroidal current. These methods are classed under the global heading of 'noninductive current drive' or simply 'current drive', generally, though not exclusively, employing the injection of waves and/or toroidally directed particle beams. In what follows we highlight the physical mechanisms underlying surprisingly various approaches to driving current in a tokamak, downplaying a number of practical and technical issues. When a significant data base exists for a given method, its experimental current drive efficiency and future prospects are detailed.« less
Thermal management in inertial fusion energy slab amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, S.B.; Albrecht, G.F.
As the technology associated with the development of solid-state drivers for inertial fusion energy (IFE) has evolved, increased emphasis has been placed on the development of an efficient approach for managing the waste heat generated in the laser media. This paper addresses the technical issues associated with the gas cooling of large aperture slabs, where the laser beam propagates through the cooling fluid. It is shown that the major consequence of proper thermal management is the introduction of simple wedge, or beam steering, into the system. Achieving proper thermal management requires careful consideration of the geometry, cooling fluid characteristics, coolingmore » flow characteristics, as well as the thermal/mechanical/optical characteristics of the laser media. Particularly important are the effects of cooling rate variation and turbulent scattering on the system optical performance. Helium is shown to have an overwhelming advantage with respect to turbulent scattering losses. To mitigate cooling rate variations, the authors introduce the concept of flow conditioning. Finally, optical path length variations across the aperture are calculated. A comparison of two laser materials (S-FAP and YAG) shows the benefit of a nearly a-thermal material on optical variations in the system.« less
Walter, Uwe; Niendorf, Thoralf; Graessl, Andreas; Rieger, Jan; Krüger, Paul-Christian; Langner, Sönke; Guthoff, Rudolf F; Stachs, Oliver
2014-05-01
A combination of magnetic resonance images with real-time high-resolution ultrasound known as fusion imaging may improve ophthalmologic examination. This study was undertaken to evaluate the feasibility of orbital high-field magnetic resonance and real-time colour Doppler ultrasound image fusion and navigation. This case study, performed between April and June 2013, included one healthy man (age, 47 years) and two patients (one woman, 57 years; one man, 67 years) with choroidal melanomas. All cases underwent 7.0-T magnetic resonance imaging using a custom-made ocular imaging surface coil. The Digital Imaging and Communications in Medicine volume data set was then loaded into the ultrasound system for manual registration of the live ultrasound image and fusion imaging examination. Data registration, matching and then volume navigation were feasible in all cases. Fusion imaging provided real-time imaging capabilities and high tissue contrast of choroidal tumour and optic nerve. It also allowed adding a real-time colour Doppler signal on magnetic resonance images for assessment of vasculature of tumour and retrobulbar structures. The combination of orbital high-field magnetic resonance and colour Doppler ultrasound image fusion and navigation is feasible. Multimodal fusion imaging promises to foster assessment and monitoring of choroidal melanoma and optic nerve disorders. • Orbital magnetic resonance and colour Doppler ultrasound real-time fusion imaging is feasible • Fusion imaging combines the spatial and temporal resolution advantages of each modality • Magnetic resonance and ultrasound fusion imaging improves assessment of choroidal melanoma vascularisation.
Live imaging of mouse secondary palate fusion
Kim, Seungil; Prochazka, Jan; Bush, Jeffrey O.
2017-01-01
LONG ABSTRACT The fusion of the secondary palatal shelves to form the intact secondary palate is a key process in mammalian development and its disruption can lead to cleft secondary palate, a common congenital anomaly in humans. Secondary palate fusion has been extensively studied leading to several proposed cellular mechanisms that may mediate this process. However, these studies have been mostly performed on fixed embryonic tissues at progressive timepoints during development or in fixed explant cultures analyzed at static timepoints. Static analysis is limited for the analysis of dynamic morphogenetic processes such a palate fusion and what types of dynamic cellular behaviors mediate palatal fusion is incompletely understood. Here we describe a protocol for live imaging of ex vivo secondary palate fusion in mouse embryos. To examine cellular behaviors of palate fusion, epithelial-specific Keratin14-cre was used to label palate epithelial cells in ROSA26-mTmGflox reporter embryos. To visualize filamentous actin, Lifeact-mRFPruby reporter mice were used. Live imaging of secondary palate fusion was performed by dissecting recently-adhered secondary palatal shelves of embryonic day (E) 14.5 stage embryos and culturing in agarose-containing media on a glass bottom dish to enable imaging with an inverted confocal microscope. Using this method, we have detected a variety of novel cellular behaviors during secondary palate fusion. An appreciation of how distinct cell behaviors are coordinated in space and time greatly contributes to our understanding of this dynamic morphogenetic process. This protocol can be applied to mutant mouse lines, or cultures treated with pharmacological inhibitors to further advance understanding of how secondary palate fusion is controlled. PMID:28784960
NASA Astrophysics Data System (ADS)
Singh, D.; Linda, Sneha B.; Giri, Pankaj K.; Mahato, Amritraj; Tripathi, R.; Kumar, Harish; Afzal Ansari, M.; Sathik, N. P. M.; Ali, Rahbar; Kumar, Rakesh; Muralithar, S.; Singh, R. P.
2017-11-01
Spin distributions for several evaporation residues populated in the 16O+154Sm system have been measured at projectile energy ≈ 6.2 MeV/A by using the charged particle-γ-coincidence technique. The measured spin distributions of the evaporation residues populated through incomplete fusion associated with 'fast' α and 2α-emission channels are found to be entirely different from fusion-evaporation channels. It is observed that the mean input angular momentum for the evaporation residues formed in incomplete fusion channel is relatively higher than that observed for evaporation residues in complete fusion channels. The feeding intensity profile of evaporation residues populated through complete fusion and incomplete fusion have also been studied. The incomplete fusion channels are found to have narrow range feeding only for high spin states, while complete fusion channels are strongly fed over a broad spin range and widely populated. Comparison of present results with earlier data suggests that the mean input angular momentum values are relatively smaller for spherical target than that of deformed target using the same projectile and incident energy highlighting the role of target deformation in incomplete fusion dynamics.
Multiplexed transcriptome analysis to detect ALK, ROS1 and RET rearrangements in lung cancer
Rogers, Toni-Maree; Arnau, Gisela Mir; Ryland, Georgina L.; Huang, Stephen; Lira, Maruja E.; Emmanuel, Yvette; Perez, Omar D.; Irwin, Darryl; Fellowes, Andrew P.; Wong, Stephen Q.; Fox, Stephen B.
2017-01-01
ALK, ROS1 and RET gene fusions are important predictive biomarkers for tyrosine kinase inhibitors in lung cancer. Currently, the gold standard method for gene fusion detection is Fluorescence In Situ Hybridization (FISH) and while highly sensitive and specific, it is also labour intensive, subjective in analysis, and unable to screen a large numbers of gene fusions. Recent developments in high-throughput transcriptome-based methods may provide a suitable alternative to FISH as they are compatible with multiplexing and diagnostic workflows. However, the concordance between these different methods compared with FISH has not been evaluated. In this study we compared the results from three transcriptome-based platforms (Nanostring Elements, Agena LungFusion panel and ThermoFisher NGS fusion panel) to those obtained from ALK, ROS1 and RET FISH on 51 clinical specimens. Overall agreement of results ranged from 86–96% depending on the platform used. While all platforms were highly sensitive, both the Agena panel and Thermo Fisher NGS fusion panel reported minor fusions that were not detectable by FISH. Our proof–of–principle study illustrates that transcriptome-based analyses are sensitive and robust methods for detecting actionable gene fusions in lung cancer and could provide a robust alternative to FISH testing in the diagnostic setting. PMID:28181564
Impact of monaural frequency compression on binaural fusion at the brainstem level.
Klauke, Isabelle; Kohl, Manuel C; Hannemann, Ronny; Kornagel, Ulrich; Strauss, Daniel J; Corona-Strauss, Farah I
2015-08-01
A classical objective measure for binaural fusion at the brainstem level is the so-called β-wave of the binaural interaction component (BIC) in the auditory brainstem response (ABR). However, in some cases it appeared that a reliable detection of this component still remains a challenge. In this study, we investigate the wavelet phase synchronization stability (WPSS) of ABR data for the analysis of binaural fusion and compare it to the BIC. In particular, we examine the impact of monaural nonlinear frequency compression on binaural fusion. As the auditory system is tonotopically organized, an interaural frequency mismatch caused by monaural frequency compression could negatively effect binaural fusion. In this study, only few subjects showed a detectable β-wave and in most cases only for low ITDs. However, we present a novel objective measure for binaural fusion that outperforms the current state-of-the-art technique (BIC): the WPSS analysis showed a significant difference between the phase stability of the sum of the monaurally evoked responses and the phase stability of the binaurally evoked ABR. This difference could be an indicator for binaural fusion in the brainstem. Furthermore, we observed that monaural frequency compression could indeed effect binaural fusion, as the WPSS results for this condition vary strongly from the results obtained without frequency compression.
Positional effects of fusion partners on the yield and solubility of MBP fusion proteins.
Raran-Kurussi, Sreejith; Keefe, Karina; Waugh, David S
2015-06-01
Escherichia coli maltose-binding protein (MBP) is exceptionally effective at promoting the solubility of its fusion partners. However, there are conflicting reports in the literature claiming that (1) MBP is an effective solubility enhancer only when it is joined to the N-terminus of an aggregation-prone passenger protein, and (2) MBP is equally effective when fused to either end of the passenger. Here, we endeavor to resolve this controversy by comparing the solubility of a diverse set of MBP fusion proteins that, unlike those analyzed in previous studies, are identical in every way except for the order of the two domains. The results indicate that fusion proteins with an N-terminal MBP provide an excellent solubility advantage along with more robust expression when compared to analogous fusions in which MBP is the C-terminal fusion partner. We find that only intrinsically soluble passenger proteins (i.e., those not requiring a solubility enhancer) are produced as soluble fusions when they precede MBP. We also report that even subtle differences in inter-domain linker sequences can influence the solubility of fusion proteins. Published by Elsevier Inc.
Positional effects of fusion partners on the yield and solubility of MBP fusion proteins
Raran-Kurussi, Sreejith; Keefe, Karina; Waugh, David S.
2015-01-01
Escherichia coli maltose-binding protein (MBP) is exceptionally effective at promoting the solubility of its fusion partners. However, there are conflicting reports in the literature claiming that 1) MBP is an effective solubility enhancer only when it is joined to the N-terminus of an aggregation-prone passenger protein, and 2) MBP is equally effective when fused to either end of the passenger. Here, we endeavor to resolve this controversy by comparing the solubility of a diverse set of MBP fusion proteins that, unlike those analyzed in previous studies, are identical in every way except for the order of the two domains. The results indicate that fusion proteins with an N-terminal MBP provide an excellent solubility advantage along with more robust expression when compared to analogous fusions in which MBP is the C-terminal fusion partner. We find that only intrinsically soluble passenger proteins (i.e., those not requiring a solubility enhancer) are produced as soluble fusions when they precede MBP. We also report that even subtle differences in inter-domain linker sequences can influence the solubility of fusion proteins. PMID:25782741
Fusion peptide of influenza hemagglutinin requires a fixed angle boomerang structure for activity.
Lai, Alex L; Park, Heather; White, Judith M; Tamm, Lukas K
2006-03-03
The fusion peptide of influenza hemagglutinin is crucial for cell entry of this virus. Previous studies showed that this peptide adopts a boomerang-shaped structure in lipid model membranes at the pH of membrane fusion. To examine the role of the boomerang in fusion, we changed several residues proposed to stabilize the kink in this structure and measured fusion. Among these, mutants E11A and W14A expressed hemagglutinins with hemifusion and no fusion activities, and F9A and N12A had no effect on fusion, respectively. Binding enthalpies and free energies of mutant peptides to model membranes and their ability to perturb lipid bilayer structures correlated well with the fusion activities of the parent full-length molecules. The structure of W14A determined by NMR and site-directed spin labeling features a flexible kink that points out of the membrane, in sharp contrast to the more ordered boomerang of the wild-type, which points into the membrane. A specific fixed angle boomerang structure is thus required to support membrane fusion.
Telomeres and mechanisms of Robertsonian fusion.
Slijepcevic, P
1998-05-01
The Robertsonian (Rb) fusion, a chromosome rearrangement involving centric fusion of two acro-(telo)centric chromosomes to form a single metacentric, is one of the most frequent events in mammalian karyotype evolution. Since one of the functions of telomeres is to preserve chromosome integrity, a prerequisite for the formation of Rb fusions should be either telomere loss or telomere inactivation. Possible mechanisms underlying the formation of various types of Rb fusion are discussed here. For example, Rb fusion in wild mice involves complete loss of p-arm telomeres by chromosome breakage within minor satellite sequences. By contrast, interstitial telomeric sites are found in the pericentromeric regions of chromosomes originating from a number of vertebrate species, suggesting the occurrence of Rb-like fusion without loss of telomeres, a possibility consistent with some form of telomere inactivation. Finally, a recent study suggests that telomere shortening induced by the deletion of the telomerase RNA gene in the mouse germ-line leads to telomere loss and high frequencies of Rb fusion in mouse somatic cells. Thus, at least three mechanisms in mammalian cells lead to the formation of Rb fusions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Kai; Zhu, Fei; Zhang, Han-zhong
Fusion between cancer cells and host cells, including endothelial cells, may strongly modulate the biological behavior of tumors. However, no one is sure about the driving factors and underlying mechanism involved in such fusion. We hypothesized in this study that inflammation, one of the main characteristics in tumor microenvironment, serves as a prominent catalyst for fusion events. Our results showed that oral cancer cells can fuse spontaneously with endothelial cells in co-culture and inflammatory cytokine tumor necrosis factor-{alpha} (TNF-{alpha}) increased fusion of human umbilical vein endothelium cells and oral cancer cells by up to 3-fold in vitro. Additionally, human oralmore » squamous cell carcinoma cell lines and 35 out of 50 (70%) oral squamous carcinoma specimens express VLA-4, an integrin, previously implicated in fusions between human peripheral blood CD34-positive cells and murine cardiomyocytes. Expression of VCAM-1, a ligand for VLA-4, was evident on vascular endothelium of oral squamous cell carcinoma. Moreover, immunocytochemistry and flow cytometry analysis revealed that expression of VCAM-1 increased obviously in TNF-{alpha}-stimulated endothelial cells. Anti-VLA-4 or anti-VCAM-1 treatment can decrease significantly cancer-endothelial adhesion and block such fusion. Collectively, our results suggested that TNF-{alpha} could enhance cancer-endothelial cell adhesion and fusion through VCAM-1/VLA-4 pathway. This study provides insights into regulatory mechanism of cancer-endothelial cell fusion, and has important implications for the development of novel therapeutic strategies for prevention of metastasis. -- Highlights: Black-Right-Pointing-Pointer Spontaneous oral cancer-endothelial cell fusion. Black-Right-Pointing-Pointer TNF-{alpha} enhanced cell fusions. Black-Right-Pointing-Pointer VCAM-1/VLA-4 expressed in oral cancer. Black-Right-Pointing-Pointer TNF-{alpha} increased expression of VCAM-1 on endothelial cells. Black-Right-Pointing-Pointer VCAM-1/VLA-4 mediated TNF-{alpha}-enhanced cell fusions.« less
The Relationship between Serum Vitamin D Levels and Spinal Fusion Success: A Quantitative Analysis
Metzger, Melodie F.; Kanim, Linda E.; Zhao, Li; Robinson, Samuel T.; Delamarter, Rick B.
2015-01-01
Study Design An in vivo dosing study of vitamin D in a rat posterolateral spinal fusion model with autogenous bone grafting. Rats randomized to four levels of Vitamin D adjusted rat chow, longitudinal serum validation, surgeons/observers blinded to dietary conditions, and rats followed prospectively for fusion endpoint. Objective To assess the impact of dietary and serum levels of Vitamin D on fusion success, consolidation of fusion mass, and biomechanical stiffness after posterolateral spinal fusion procedure. Summary of Background Data Metabolic risk factors, including vitamin D insufficiency, are often overlooked by spine surgeons. Currently there are no published data on the causal effect of insufficient or deficient vitamin D levels on the success of establishing solid bony union after a spinal fusion procedure. Methods 50 rats were randomized to four experimentally controlled rat chow diets: normal control, vitamin D-deficient, vitamin-D insufficient, and a non-toxic high dose of vitamin D, four weeks prior to surgery and maintained post-surgery until sacrifice. Serum levels of 25(OH)D were determined at surgery and sacrifice using radioimmunoassay. Posterolateral fusion surgery with tail autograft was performed. Rats were sacrificed 12 weeks post-operatively and fusion was evaluated via manual palpation, high resolution radiographs, μCT, and biomechanical testing. Results Serum 25(OH)D and calcium levels were significantly correlated with vitamin-D adjusted chow (p<0.001). There was a dose dependent relationship between vitamin D adjusted chow and manual palpation fusion with greatest differences found in measures of radiographic density between high and deficient vitamin D (p<0.05). Adequate levels of vitamin D (high and normal control) yielded stiffer fusion than inadequate levels (insufficient and deficient) (p<0.05). Conclusions Manual palpation fusion rates increased with supplementation of dietary vitamin D. Biomechanical stiffness, bone volume and density were also positively-related to vitamin D, and calcium. PMID:25627287
Field-Reversed Configuration Power Plant Critical-Issue Scoping Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santarius, J. F.; Mogahed, E. A.; Emmert, G. A.
A team from the Universities of Wisconsin, Washington, and Illinois performed an engineering scoping study of critical issues for field-reversed configuration (FRC) power plants. The key tasks for this research were (1) systems analysis for deuterium-tritium (D-T) FRC fusion power plants, and (2) conceptual design of the blanket and shield module for an FRC fusion core. For the engineering conceptual design of the fusion core, the project team focused on intermediate-term technology. For example, one decision was to use steele structure. The FRC systems analysis led to a fusion power plant with attractive features including modest size, cylindrical symmetry, goodmore » thermal efficiency (52%), relatively easy maintenance, and a high ratio of electric power to fusion core mass, indicating that it would have favorable economics.« less
Systematic study of 16O-induced fusion with the improved quantum molecular dynamics model
NASA Astrophysics Data System (ADS)
Wang, Ning; Zhao, Kai; Li, Zhuxia
2014-11-01
The heavy-ion fusion reactions with 16O bombarding on 62Ni,65Cu,74Ge,148Nd,180Hf,186W,208Pb,238U are systematically investigated with the improved quantum molecular dynamics model. The fusion cross sections at energies near and above the Coulomb barriers can be reasonably well reproduced by using this semiclassical microscopic transport model with the parameter sets SkP* and IQ3a. The dynamical nucleus-nucleus potentials and the influence of Fermi constraint on the fusion process are also studied simultaneously. In addition to the mean field, the Fermi constraint also plays a key role for the reliable description of the fusion process and for improving the stability of fragments in heavy-ion collisions.
Tuchman, Alexander; Brodke, Darrel S.; Youssef, Jim A.; Meisel, Hans-Jörg; Dettori, Joseph R.; Park, Jong-Beom; Yoon, S. Tim; Wang, Jeffrey C.
2016-01-01
Study Design Systematic review. Objective To compare the effectiveness and safety between iliac crest bone graft (ICBG) and local autologous bone and allograft in the lumbar spine. Methods A systematic search of multiple major medical reference databases identified studies evaluating spinal fusion in patients with degenerative joint disease using ICBG, local autograft, or allograft in the thoracolumbar spine. Results Six comparative studies met our inclusion criteria. A “low” strength of the overall body of evidence suggested no difference in fusion percentages in the lumbar spine between local autograft and ICBG. We found no difference in fusion percentages based on low evidence comparing allograft with ICBG autograft. There were no differences in pain or functional results comparing local autograft or allograft with ICBG autograft. Donor site pain and hematoma/seroma occurred more frequently in ICBG autograft group for lumbar fusion procedures. There was low evidence around the estimate of patients with donor site pain following ICBG harvesting, ranging from 16.7 to 20%. With respect to revision, low evidence demonstrated no difference between allograft and ICBG autograft. There was no evidence comparing patients receiving allograft with local autograft for fusion, pain, functional, and safety outcomes. Conclusion In the lumbar spine, ICBG, local autograft, and allograft have similar effectiveness in terms of fusion rates, pain scores, and functional outcomes. However, ICBG is associated with an increased risk for donor site-related complications. Significant limitations exist in the available literature when comparing ICBG, local autograft, and allograft for lumbar fusion, and thus ICBG versus other fusion methods necessitates further investigation. PMID:27556001
Pilehchian Langroudi, Reza; Shamsara, Mehdi; Aghaiypour, Khosrow
2013-07-11
Clostridium perfringens is an anaerobic spore-forming, pathogenic bacterium that is responsible for severe diseases in humans and livestock. In the present study, an epsilon-beta fusion toxin was expressed as a soluble protein in E. coli and the recombinant cell lysate was used for immunization studies in mouse. Potency of the toxin (as an antigen) induced 6 and 10IU/ml of epsilon and beta anti-toxin in rabbit, respectively. These titers were higher than the minimum level required by the European Pharmacopoeia for epsilon and beta toxins. Experimental challenge with the recombinant fusion toxoid revealed that it could protect mice against C. perfringens epsilon and beta toxins. Toxicity of the fusion toxin was studied by histopathological findings, which were the same as the native toxins. In conclusion, E. coli is a suitable expression host for immunogenic epsilon-beta fusion toxin of C. perfringens. Copyright © 2013 Elsevier Ltd. All rights reserved.
Inertial-Electrostatic Confinement (IEC) Fusion for Space Propulsion
NASA Technical Reports Server (NTRS)
Nadler, Jon
1999-01-01
An Inertial-Electrostatic Confinement (IEC) device was assembled at the Marshall Space Flight Center (MSFC) Propulsion Research Center (PRC) to study the possibility of using EEC technology for deep space propulsion and power. Inertial-Electrostatic Confinement is capable of containing a nuclear fusion plasma in a series of virtual potential wells. These wells would substantially increase plasma confinement, possibly leading towards a high-gain, breakthrough fusion device. A one-foot in diameter IEC vessel was borrowed from the Fusion Studies Laboratory at the University of Illinois@Urbana-Champaign for the summer. This device was used in initial parameterization studies in order to design a larger, actively cooled device for permanent use at the PRC.
Inertial-Electrostatic Confinement (IEC) Fusion For Space Propulsion
NASA Technical Reports Server (NTRS)
Nadler, Jon
1999-01-01
An Inertial-Electrostatic Confinement (IEC) device was assembled at the Marshall Space Flight Center (MSFC) Propulsion Research Center (PRC) to study the possibility of using IEC technology for deep space propulsion and power. Inertial-Electrostatic Confinement is capable of containing a nuclear fusion plasma in a series of virtual potential wells. These wells would substantially increase plasma confinement, possibly leading towards a high-gain, breakthrough fusion device. A one-foot in diameter IEC vessel was borrowed from the Fusion Studies Laboratory at the University of Illinois @ Urbana-Champaign for the summer. This device was used in initial parameterization studies in order to design a larger, actively cooled device for permanent use at the PRC.
NASA Astrophysics Data System (ADS)
Ogawa, Yuichi
2016-05-01
A new strategic energy plan decided by the Japanese Cabinet in 2014 strongly supports the steady promotion of nuclear fusion development activities, including the ITER project and the Broader Approach activities from the long-term viewpoint. Atomic Energy Commission (AEC) in Japan formulated the Third Phase Basic Program so as to promote an experimental fusion reactor project. In 2005 AEC has reviewed this Program, and discussed on selection and concentration among many projects of fusion reactor development. In addition to the promotion of ITER project, advanced tokamak research by JT-60SA, helical plasma experiment by LHD, FIREX project in laser fusion research and fusion engineering by IFMIF were highly prioritized. Although the basic concept is quite different between tokamak, helical and laser fusion researches, there exist a lot of common features such as plasma physics on 3-D magnetic geometry, high power heat load on plasma facing component and so on. Therefore, a synergetic scenario on fusion reactor development among various plasma confinement concepts would be important.
Structure of the Newcastle disease virus F protein in the post-fusion conformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, Kurt; Wen, Xiaolin; Leser, George P.
2010-11-17
The paramyxovirus F protein is a class I viral membrane fusion protein which undergoes a significant refolding transition during virus entry. Previous studies of the Newcastle disease virus, human parainfluenza virus 3 and parainfluenza virus 5 F proteins revealed differences in the pre- and post-fusion structures. The NDV Queensland (Q) F structure lacked structural elements observed in the other two structures, which are key to the refolding and fusogenic activity of F. Here we present the NDV Australia-Victoria (AV) F protein post-fusion structure and provide EM evidence for its folding to a pre-fusion form. The NDV AV F structure containsmore » heptad repeat elements missing in the previous NDV Q F structure, forming a post-fusion six-helix bundle (6HB) similar to the post-fusion hPIV3 F structure. Electrostatic and temperature factor analysis of the F structures points to regions of these proteins that may be functionally important in their membrane fusion activity.« less
Integrative Multi-Spectral Sensor Device for Far-Infrared and Visible Light Fusion
NASA Astrophysics Data System (ADS)
Qiao, Tiezhu; Chen, Lulu; Pang, Yusong; Yan, Gaowei
2018-06-01
Infrared and visible light image fusion technology is a hot spot in the research of multi-sensor fusion technology in recent years. Existing infrared and visible light fusion technologies need to register before fusion because of using two cameras. However, the application effect of the registration technology has yet to be improved. Hence, a novel integrative multi-spectral sensor device is proposed for infrared and visible light fusion, and by using the beam splitter prism, the coaxial light incident from the same lens is projected to the infrared charge coupled device (CCD) and visible light CCD, respectively. In this paper, the imaging mechanism of the proposed sensor device is studied with the process of the signals acquisition and fusion. The simulation experiment, which involves the entire process of the optic system, signal acquisition, and signal fusion, is constructed based on imaging effect model. Additionally, the quality evaluation index is adopted to analyze the simulation result. The experimental results demonstrate that the proposed sensor device is effective and feasible.
[An improved medical image fusion algorithm and quality evaluation].
Chen, Meiling; Tao, Ling; Qian, Zhiyu
2009-08-01
Medical image fusion is of very important value for application in medical image analysis and diagnosis. In this paper, the conventional method of wavelet fusion is improved,so a new algorithm of medical image fusion is presented and the high frequency and low frequency coefficients are studied respectively. When high frequency coefficients are chosen, the regional edge intensities of each sub-image are calculated to realize adaptive fusion. The choice of low frequency coefficient is based on the edges of images, so that the fused image preserves all useful information and appears more distinctly. We apply the conventional and the improved fusion algorithms based on wavelet transform to fuse two images of human body and also evaluate the fusion results through a quality evaluation method. Experimental results show that this algorithm can effectively retain the details of information on original images and enhance their edge and texture features. This new algorithm is better than the conventional fusion algorithm based on wavelet transform.
Lee, Michael J; Dumonski, Mark; Phillips, Frank M; Voronov, Leonard I; Renner, Susan M; Carandang, Gerard; Havey, Robert M; Patwardhan, Avinash G
2011-11-01
A cadaveric biomechanical study. To investigate the biomechanical behavior of the cervical spine after cervical total disc replacement (TDR) adjacent to a fusion as compared to a two-level fusion. There are concerns regarding the biomechanical effects of cervical fusion on the mobile motion segments. Although previous biomechanical studies have demonstrated that cervical disc replacement normalizes adjacent segment motion, there is a little information regarding the function of a cervical disc replacement adjacent to an anterior cervical decompression and fusion, a potentially common clinical application. Nine cadaveric cervical spines (C3-T1, age: 60.2 ± 3.5 years) were tested under load- and displacement-control testing. After intact testing, a simulated fusion was performed at C4-C5, followed by C6-C7. The simulated fusion was then reversed, and the response of TDR at C5-C6 was measured. A hybrid construct was then tested with the TDR either below or above a single-level fusion and contrasted with a simulated two-level fusion (C4-C6 and C5-C7). The external fixator device used to simulate fusion significantly reduced range of motion (ROM) at C4-C5 and C6-C7 by 74.7 ± 8.1% and 78.1 ± 11.5%, respectively (P < 0.05). Removal of the fusion construct restored the motion response of the spinal segments to their intact state. Arthroplasty performed at C5-C6 using the porous-coated motion disc prosthesis maintained the total flexion-extension ROM to the level of the intact controls when used as a stand-alone procedure or when implanted adjacent to a single-level fusion (P > 0.05). The location of the single-level fusion, whether above or below the arthroplasty, did not significantly affect the motion response of the arthroplasty in the hybrid construct. Performing a two-level fusion significantly increased the motion demands on the nonoperated segments as compared to a hybrid TDR-plus fusion construct when the spine was required to reach the same motion end points. The spine with a hybrid construct required significantly less extension moment than the spine with a two-level fusion to reach the same extension end point. The porous-coated motion cervical prosthesis restored the ROM of the treated level to the intact state. When the porous-coated motion prosthesis was used in a hybrid construct, the TDR response was not adversely affected. A hybrid construct seems to offer significant biomechanical advantages over two-level fusion in terms of reducing compensatory adjacent-level hypermobility and also loads required to achieve a predetermined ROM.
Wichita fusion nail for patients with failed total knee arthroplasty and active infection.
Barsoum, Wael K; Hogg, Christopher; Krebs, Viktor; Klika, Alison K
2008-01-01
In the study reported here, we retrospectively evaluated short-term results of knee arthrodesis using the Wichita fusion nail (WFN) in patients with active infection. Clinical examinations, x-rays, time to union, knee pain after fusion, and ambulatory status were compared in 7 patients who received the WFN. Mean fusion rate was 86%, mean time to fusion was 9.8 months, and mean complication rate was 57%. Complication rates were high, but clinical outcomes were acceptable, supporting use of WFN as a reasonable way to salvage failed total knee arthroplasty in patients with active infection.
Modes of Paramyxovirus Fusion: a Henipavirus perspective
Lee, Benhur; Akyol-Ataman, Zeynep
2011-01-01
Henipavirus is a new genus of paramyxovirus that uses protein-based receptors (EphrinB2 and EphrinB3) for virus entry. Paramyxovirus entry requires the coordinated action of the fusion (F) and attachment viral envelope glycoproteins. Receptor binding to the attachment protein triggers F to undergo a conformational cascade that results in membrane fusion. The accumulation of structural and functional studies on many paramyxoviral fusion and attachment proteins, including recent structures of Nipah and Hendra virus G bound and unbound to cognate ephrinB receptors, indicate that henipavirus entry and fusion differs mechanistically from paramyxoviruses that use glycan-based receptors. PMID:21511478
Fusion genes in solid tumors: an emerging target for cancer diagnosis and treatment.
Parker, Brittany C; Zhang, Wei
2013-11-01
Studies over the past decades have uncovered fusion genes, a class of oncogenes that provide immense diagnostic and therapeutic advantages because of their tumor-specific expression. Originally associated with hemotologic cancers, fusion genes have recently been discovered in a wide array of solid tumors, including sarcomas, carcinomas, and tumors of the central nervous system. Fusion genes are attractive as both therapeutic targets and diagnostic tools due to their inherent expression in tumor tissue alone. Therefore, the discovery and elucidation of fusion genes in various cancer types may provide more effective therapies in the future for cancer patients.
Fusion energy science: Clean, safe, and abundant energy through innovative science and technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Fusion energy science combines the study of the behavior of plasmas--the state of matter that forms 99% of the visible universe--with a vision of using fusion--the energy source of the stars--to create an affordable, plentiful, and environmentally benign energy source for humankind. The dual nature of fusion energy science provides an unfolding panorama of exciting intellectual challenge and a promise of an attractive energy source for generations to come. The goal of this report is a comprehensive understanding of plasma behavior leading to an affordable and attractive fusion energy source.
Luedeke, Manuel; Rinckleb, Antje E.; FitzGerald, Liesel M.; Geybels, Milan S.; Schleutker, Johanna; Eeles, Rosalind A.; Teixeira, Manuel R.; Cannon-Albright, Lisa; Ostrander, Elaine A.; Weikert, Steffen; Herkommer, Kathleen; Wahlfors, Tiina; Visakorpi, Tapio; Leinonen, Katri A.; Tammela, Teuvo L.J.; Cooper, Colin S.; Kote-Jarai, Zsofia; Edwards, Sandra; Goh, Chee L.; McCarthy, Frank; Parker, Chris; Flohr, Penny; Paulo, Paula; Jerónimo, Carmen; Henrique, Rui; Krause, Hans; Wach, Sven; Lieb, Verena; Rau, Tilman T.; Vogel, Walther; Kuefer, Rainer; Hofer, Matthias D.; Perner, Sven; Rubin, Mark A.; Agarwal, Archana M.; Easton, Doug F.; Al Olama, Ali Amin; Benlloch, Sara; Hoegel, Josef; Stanford, Janet L.
2016-01-01
Abstract Molecular and epidemiological differences have been described between TMPRSS2:ERG fusion-positive and fusion-negative prostate cancer (PrCa). Assuming two molecularly distinct subtypes, we have examined 27 common PrCa risk variants, previously identified in genome-wide association studies, for subtype specific associations in a total of 1221 TMPRSS2:ERG phenotyped PrCa cases. In meta-analyses of a discovery set of 552 cases with TMPRSS2:ERG data and 7650 unaffected men from five centers we have found support for the hypothesis that several common risk variants are associated with one particular subtype rather than with PrCa in general. Risk variants were analyzed in case-case comparisons (296 TMPRSS2:ERG fusion-positive versus 256 fusion-negative cases) and an independent set of 669 cases with TMPRSS2:ERG data was established to replicate the top five candidates. Significant differences (P < 0.00185) between the two subtypes were observed for rs16901979 (8q24) and rs1859962 (17q24), which were enriched in TMPRSS2:ERG fusion-negative (OR = 0.53, P = 0.0007) and TMPRSS2:ERG fusion-positive PrCa (OR = 1.30, P = 0.0016), respectively. Expression quantitative trait locus analysis was performed to investigate mechanistic links between risk variants, fusion status and target gene mRNA levels. For rs1859962 at 17q24, genotype dependent expression was observed for the candidate target gene SOX9 in TMPRSS2:ERG fusion-positive PrCa, which was not evident in TMPRSS2:ERG negative tumors. The present study established evidence for the first two common PrCa risk variants differentially associated with TMPRSS2:ERG fusion status. TMPRSS2:ERG phenotyping of larger studies is required to determine comprehensive sets of variants with subtype-specific roles in PrCa. PMID:27798103
Saw, Wan Ting; Matsuda, Zene; Eisenberg, Roselyn J; Cohen, Gary H; Atanasiu, Doina
2015-11-15
Herpes simplex virus (HSV) entry and cell-cell fusion require the envelope proteins gD, gH/gL and gB. We propose that receptor-activated conformational changes to gD activate gH/gL, which then triggers gB (the fusogen) into an active form. To study this dynamic process, we have adapted a dual split protein assay originally developed to study the kinetics of human immunodeficiency virus (HIV) mediated fusion. This assay uses a chimera of split forms of renilla luciferase (RL) and green fluorescent protein (GFP). Effector cells are co-transfected with the glycoproteins and one of the split reporters. Receptor-bearing target cells are transfected with the second reporter. Co-culture results in fusion and restoration of RL, which can convert a membrane permeable substrate into a luminescent product, thereby enabling one to monitor initiation and extent of fusion in live cells in real time. Restoration of GFP can also be studied by fluorescence microscopy. Two sets of split reporters have been developed: the original one allows one to measure fusion kinetics over hours whereas the more recent version was designed to enhance the sensitivity of RL activity allowing one to monitor both initiation and rates of fusion in minutes. Here, we provide a detailed, step-by-step protocol for the optimization of the assay (which we call the SLA for split luciferase assay) using the HSV system. We also show several examples of the power of this assay to examine both the initiation and kinetics of cell-cell fusion by wild type forms of gD, gB, gH/gL of both serotypes of HSV as well as the effect of mutations and antibodies that alter the kinetics of fusion. The SLA can be applied to other viral systems that carry out membrane fusion. Copyright © 2015 Elsevier Inc. All rights reserved.
Saw, Wan Ting; Matsuda, Zene; Eisenberg, Roselyn J; Cohen, Gary H; Atanasiu, Doina
2015-01-01
Herpes simplex virus (HSV) entry and cell-cell fusion require the envelope proteins gD, gH/gL and gB. We propose that receptor-activated conformational changes to gD activate gH/gL, which then triggers gB (the fusogen) into an active form. To study this dynamic process, we have adapted a dual split protein assay originally developed to study the kinetics of human immunodeficiency virus (HIV) mediated fusion. This assay uses a chimera of split forms of renilla luciferase (RL) and green fluorescent protein (GFP). Effector cells are co-transfected with the glycoproteins and one of the split reporters. Receptor-bearing target cells are transfected with the second reporter. Co-culture results in fusion and restoration of RL, which can convert a membrane permeable substrate into a luminescent product, thereby enabling one to monitor initiation and extent of fusion in live cells in real time. Restoration of GFP can also be studied by fluorescence microscopy. Two sets of split reporters have been developed: the original one allows one to measure fusion kinetics over hours whereas the more recent version was designed to enhance the sensitivity of RL activity allowing one to monitor both initiation and rates of fusion in minutes. Here, we provide a detailed, step-by-step protocol for the optimization of the assay (which we call the SLA for split luciferase assay) using the HSV system. We also show several examples of the power of this assay to examine both the initiation and kinetics of cell-cell fusion by wild type forms of gD, gB, gH/gL of both serotypes of HSV as well as the effect of mutations and antibodies that alter the kinetics of fusion. The SLA can be applied to other viral systems that carry out membrane fusion. PMID:26022509
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follis, Kathryn E.; York, Joanne; Nunberg, Jack H.
The fusion subunit of the SARS-CoV S glycoprotein contains two regions of hydrophobic heptad-repeat amino acid sequences that have been shown in biophysical studies to form a six-helix bundle structure typical of the fusion-active core found in Class I viral fusion proteins. Here, we have applied serine-scanning mutagenesis to the C-terminal-most heptad-repeat region in the SARS-CoV S glycoprotein to investigate the functional role of this region in membrane fusion. We show that hydrophobic sidechains at a and d positions only within the short helical segment of the C-terminal heptad-repeat region (I1161, I1165, L1168, A1172, and L1175) are critical for cell-cellmore » fusion. Serine mutations at outlying heptad-repeat residues that form an extended chain in the core structure (V1158, L1179, and L1182) do not affect fusogenicity. Our study provides genetic evidence for the important role of {alpha}-helical packing in promoting S glycoprotein-mediated membrane fusion.« less
NASA Astrophysics Data System (ADS)
Ghodsi, O. N.; Khalaj, M.
By changing the neutron and nuclear matter incompressibility constant K, we investigate the isotopic behavior of the fusion barriers for the collision of large number of different isotopes with condition of 0.7 ≤ N/Z ≤ 1.36. Here, the double folding (DF) model which is accompanied by density-dependent (DD) versions of M3Y interactions is adopted as a basic heavy ion-ion potential. We show that the selected DD potentials predict a linear behavior for the calculated fusion barrier heights as a function of (N/Z - 1) for both proton- and neutron-rich systems. Moreover, the results indicate that the isotopic behavior of these values depend linearly on the change in the K constant. The isotopic studies conducted on the fusion cross-section also shows that the properties of the nuclear matter in the range of energy which is below the fusion barrier will quite affect the fusion process.
Cholesterol suppresses membrane leakage by decreasing water penetrability.
Bu, Bing; Crowe, Michael; Diao, Jiajie; Ji, Baohua; Li, Dechang
2018-06-13
Membrane fusion is a fundamental biological process that lies at the heart of enveloped virus infection, synaptic signaling, intracellular vesicle trafficking, gamete fertilization, and cell-cell fusion. Membrane fusion is initiated as two apposed membranes merge to a single bilayer called a hemifusion diaphragm. It is believed that the contents of the two fusing membranes are released through a fusion pore formed at the hemifusion diaphragm, and yet another possible pathway has been proposed in which an undefined pore may form outside the hemifusion diaphragm at the apposed membranes, leading to the so-called leaky fusion. Here, we performed all-atom molecular dynamics simulations to study the evolution of the hemifusion diaphragm structure with various lipid compositions. We found that the lipid cholesterol decreased water penetrability to inhibit leakage pore formation. Biochemical leakage experiments support these simulation results. This study may shed light on the underlying mechanism of the evolution pathways of the hemifusion structure, especially the understanding of content leakage during membrane fusion.
The Physics of Advanced High-Gain Targets for Inertial Fusion Energy
NASA Astrophysics Data System (ADS)
Perkins, L. John
2010-11-01
In ca. 2011-2012, the National Ignition Facility is poised to demonstrate fusion ignition and gain in the laboratory for the first time. This key milestone in the development of inertial confinement fusion (ICF) can be expected to engender interest in the development of inertial fusion energy (IFE) and expanded efforts on a number of advanced targets that may achieve high fusion energy gain at lower driver energies. In this tutorial talk, we will discuss the physics underlying ICF ignition and thermonuclear burn, examine the requirements for high gain, and outline candidate R&D programs that will be required to assess the performance of these target concepts under various driver systems including lasers, heavy-ions and pulsed power. Such target concepts include those operating by fast ignition, shock ignition, impact ignition, dual-density, magnetically-insulated, one- and two-sided drive, etc., some of which may have potential to burn advanced, non-DT fusion fuels. We will then delineate the role of such targets in their application to the production of high average fusion power. Here, systems studies of IFE economics suggest that we should strive for target fusion gains of around 100 at drive energies of 1MJ, together with corresponding rep-rates of up to 10Hz and driver electrical efficiencies around 15%. In future years, there may be exciting opportunities to study such ``innovative confinement concepts'' with prospects of fielding them on facilities such as NIF to obtain high fusion energy gains on a single shot basis.
The dissimilar effect of diacylglycerols on Ca(2+)-induced phosphatidylserine vesicle fusion.
Sánchez-Migallón, M P; Aranda, F J; Gómez-Fernández, J C
1995-01-01
We have studied the effect of physiological concentrations of different diacylglycerols on Ca(2+)-induced fusion between phosphatidylserine vesicles. We monitored vesicle fusion as mixing of membrane lipids under conditions where the limiting factor was the aggregation and also in conditions where this aggregation was not the limiting factor. We found that diacylglycerols have a different modulating effect on the Ca(2+)-induced fusion: i) depending on their interfacial conformation, so that 1,2-isomers of diacylglycerols containing unsaturated or short saturated acyl chains stimulated fusion and their 1,3-isomers did not, and ii) depending on their specific type of bilayer interior perturbation, so that diacylglycerols containing unsaturated or short chain saturated acyl chains stimulated fusion but those containing long-chain saturated acyl chains did not. These requirements resembled those required for the diacylglycerol activation of protein kinase C, suggesting that diacylglycerol acts in both the specific activation of this enzyme and the induction of membrane fusion through the same perturbation of lipid structure. We found that polylysine affected the stimulatory role of 1,2-dioleoylglycerol differently, depending on whether aggregation was the limiting factor of fusion. When we studied the effect of very low concentrations of diacylglycerols on the bulk structural properties of phosphatidylserine, we found that they neither significantly perturbed the thermotropic transitions of phosphatidylserine nor affected the interaction of Ca2+ with the phosphate group of phosphatidylserine. The underlying mechanism of fusion between phosphatidylserine vesicles is discussed. PMID:7696508
NASA Astrophysics Data System (ADS)
Majeed, Raad H.; Oudah, Osamah N.
2018-05-01
Thermonuclear fusion reaction plays an important role in developing and construction any power plant system. Studying the physical behavior for the possible mechanism governed energies released by the fusion products to precise understanding the related kinematics. In this work a theoretical formula controlled the general applied thermonuclear fusion reactions is achieved to calculating the fusion products energy depending upon the reactants physical properties and therefore, one can calculate other parameters governed a given reaction. By using this formula, the energy spectrum of 4He produced from T-3He fusion reaction has been sketched with respect to reaction angle and incident energy ranged from (0.08-0.6) MeV.
2013-10-01
AD_________________ Award Number: W81XWH-12-1-0597 TITLE: Parametric PET /MR Fusion Imaging to...Parametric PET /MR Fusion Imaging to Differentiate Aggressive from Indolent Primary Prostate Cancer with Application for Image-Guided Prostate Cancer Biopsies...The study investigates whether fusion PET /MRI imaging with 18F-choline PET /CT and diffusion-weighted MRI can be successfully applied to target prostate
A Unique Opportunity to Test Whether Cell Fusion is a Mechanism of Breast Cancer Metastasis
2013-07-01
populations. Last cycle we optimized electroporation conditions for T47D and human mesenchymal stem cell populations and this cycle we have improved our...specific receptor-ligand interactions necessary for cell fusion, to produce a target for drug therapy. Post-fusion events might also be investigated...new tools for the study of the complex processes of cell fusion. The inducible bipartite nature of these strategies assures the accurate
Z-Pinch Pulsed Plasma Propulsion Technology Development
NASA Technical Reports Server (NTRS)
Polsgrove, Tara; Adams, Robert B.; Fabisinski, Leo; Fincher, Sharon; Maples, C. Dauphne; Miernik, Janie; Percy, Tom; Statham, Geoff; Turner, Matt; Cassibry, Jason;
2010-01-01
Fusion-based propulsion can enable fast interplanetary transportation. Magneto-inertial fusion (MIF) is an approach which has been shown to potentially lead to a low cost, small reactor for fusion break even. The Z-Pinch/dense plasma focus method is an MIF concept in which a column of gas is compressed to thermonuclear conditions by an axial current (I approximates 100 MA). Recent advancements in experiments and the theoretical understanding of this concept suggest favorable scaling of fusion power output yield as I(sup 4). This document presents a conceptual design of a Z-Pinch fusion propulsion system and a vehicle for human exploration. The purpose of this study is to apply Z-Pinch fusion principles to the design of a propulsion system for an interplanetary spacecraft. This study took four steps in service of that objective; these steps are identified below. 1. Z-Pinch Modeling and Analysis: There is a wealth of literature characterizing Z-Pinch physics and existing Z-Pinch physics models. In order to be useful in engineering analysis, simplified Z-Pinch fusion thermodynamic models are required to give propulsion engineers the quantity of plasma, plasma temperature, rate of expansion, etc. The study team developed these models in this study. 2. Propulsion Modeling and Analysis: While the Z-Pinch models characterize the fusion process itself, propulsion models calculate the parameters that characterize the propulsion system (thrust, specific impulse, etc.) The study team developed a Z-Pinch propulsion model and used it to determine the best values for pulse rate, amount of propellant per pulse, and mixture ratio of the D-T and liner materials as well as the resulting thrust and specific impulse of the system. 3. Mission Analysis: Several potential missions were studied. Trajectory analysis using data from the propulsion model was used to determine the duration of the propulsion burns, the amount of propellant expended to complete each mission considered. 4. Vehicle Design: To understand the applicability of Z-Pinch propulsion to interplanetary travel, it is necessary to design a concept vehicle that uses it -- the propulsion system significantly impacts the design of the electrical, thermal control, avionics and structural subsystems of a vehicle. The study team developed a conceptual design of an interplanetary vehicle that transports crew and cargo to Mars and back and can be reused for other missions. Several aspects of this vehicle are based on a previous crewed fusion vehicle study -- the Human Outer Planet Exploration (HOPE) Magnetized Target Fusion (MTF) vehicle. Portions of the vehicle design were used outright and others were modified from the MTF design in order to maintain comparability.
Werle, Stephan; AbuNahleh, Kais; Boehm, Heinrich
2016-08-01
Potential adverse and unknown long-term effects as well as additional costs limit the use of BMPs (Bone morphogenetic proteins) in primary fusion procedures. However, the proven osteoinductive properties render BMPs attractive for the attempt to reach fusion of symptomatic non-unions. The aim of this study is to evaluate the fusion rate and potential disadvantages of eptotermin alfa (rhBMP-7) used with autologous bone graft in revision procedures for lumbar pseudoarthrosis. At our institution, rhBMP-7 has been used to improve fusion rates in revision surgery for symptomatic pseudoarthrosis during the past 10 years. Eighty-four fusion procedures using rhBMP-7 between 08/2003 and 07/2011 were revisions due to symptomatic lumbar pseudoarthrosis. The surgical approach was posterior in three and combined anterior-posterior in 71 patients. Of those, 74 patients had either reached fusion or had follow-up of at least 39.5 months (range 21-80 months) in the case of pseudoarthrosis. These 74 patients have been included in a retrospective follow-up study. In 60 patients (81.1 %) the rhBMP-7 procedure was successful. In 14 patients, pseudoarthrosis persisted or fusion was questionable. Of those patients 12 accounted for persisting L5-S1 non-union. Persisting non-unions were found in 26.7 % of the study after four or more segment instrumentations compared to the 16.9 % after mono-, bi-, or three-segment instrumentation, and in four of 14 patients with spondylodesis of three or more levels above a pseudoarthrotic lumbosacral junction. Adverse effects related to the use of eptotermin alfa were rare in this group with symptomatic ectopic bone formation in one patient. Using rhBMP-7 with autologous bone graft in revisions for lumbar pseudoarthrosis via an anterior approach is safe and can lead to fusion even under unfavorable biomechanical conditions. However, successful outcome depends on the individual constellation. Treatment of non-unions of the lumbosacral junction remains especially difficult in cases with solid fusions above those pseudoarthrotic levels. 4; retrospective follow-up study.
Safety and Environment aspects of Tokamak- type Fusion Power Reactor- An Overview
NASA Astrophysics Data System (ADS)
Doshi, Bharat; Reddy, D. Chenna
2017-04-01
Naturally occurring thermonuclear fusion reaction (of light atoms to form a heavier nucleus) in the sun and every star in the universe, releases incredible amounts of energy. Demonstrating the controlled and sustained reaction of deuterium-tritium plasma should enable the development of fusion as an energy source here on Earth. The promising fusion power reactors could be operated on the deuterium-tritium fuel cycle with fuel self-sufficiency. The potential impact of fusion power on the environment and the possible risks associated with operating large-scale fusion power plants is being studied by different countries. The results show that fusion can be a very safe and sustainable energy source. A fusion power plant possesses not only intrinsic advantages with respect to safety compared to other sources of energy, but also a negligible long term impact on the environment provided certain precautions are taken in its design. One of the important considerations is in the selection of low activation structural materials for reactor vessel. Selection of the materials for first wall and breeding blanket components is also important from safety issues. It is possible to fully benefit from the advantages of fusion energy if safety and environmental concerns are taken into account when considering the conceptual studies of a reactor design. The significant safety hazards are due to the tritium inventory and energetic neutron fluence induced activity in the reactor vessel, first wall components, blanket system etc. The potential of release of radioactivity under operational and accident conditions needs attention while designing the fusion reactor. Appropriate safety analysis for the quantification of the risk shall be done following different methods such as FFMEA (Functional Failure Modes and Effects Analysis) and HAZOP (Hazards and operability). Level of safety and safety classification such as nuclear safety and non-nuclear safety is very important for the FPR (Fusion Power Reactor). This paper describes an overview of safety and environmental merits of fusion power reactor, issues and design considerations and need for R&D on safety and environmental aspects of Tokamak type fusion reactor.
Yang, Minglei; Ding, Hui; Zhu, Lei; Wang, Guangzhi
2016-12-01
Ultrasound fusion imaging is an emerging tool and benefits a variety of clinical applications, such as image-guided diagnosis and treatment of hepatocellular carcinoma and unresectable liver metastases. However, respiratory liver motion-induced misalignment of multimodal images (i.e., fusion error) compromises the effectiveness and practicability of this method. The purpose of this paper is to develop a subject-specific liver motion model and automatic registration-based method to correct the fusion error. An online-built subject-specific motion model and automatic image registration method for 2D ultrasound-3D magnetic resonance (MR) images were combined to compensate for the respiratory liver motion. The key steps included: 1) Build a subject-specific liver motion model for current subject online and perform the initial registration of pre-acquired 3D MR and intra-operative ultrasound images; 2) During fusion imaging, compensate for liver motion first using the motion model, and then using an automatic registration method to further correct the respiratory fusion error. Evaluation experiments were conducted on liver phantom and five subjects. In the phantom study, the fusion error (superior-inferior axis) was reduced from 13.90±2.38mm to 4.26±0.78mm by using the motion model only. The fusion error further decreased to 0.63±0.53mm by using the registration method. The registration method also decreased the rotation error from 7.06±0.21° to 1.18±0.66°. In the clinical study, the fusion error was reduced from 12.90±9.58mm to 6.12±2.90mm by using the motion model alone. Moreover, the fusion error decreased to 1.96±0.33mm by using the registration method. The proposed method can effectively correct the respiration-induced fusion error to improve the fusion image quality. This method can also reduce the error correction dependency on the initial registration of ultrasound and MR images. Overall, the proposed method can improve the clinical practicability of ultrasound fusion imaging. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Spherical Tokamak MEDUSA for Mexico
NASA Astrophysics Data System (ADS)
Ribeiro, C.; Salvador, M.; Gonzalez, J.; Munoz, O.; Tapia, A.; Arredondo, V.; Chavez, R.; Nieto, A.; Gonzalez, J.; Garza, A.; Estrada, I.; Jasso, E.; Acosta, C.; Briones, C.; Cavazos, G.; Martinez, J.; Morones, J.; Almaguer, J.; Fonck, R.
2011-10-01
The former spherical tokamak MEDUSA (Madison EDUcation Small Aspect.ratio tokamak, R < 0.14m, a < 0.10m, BT < 0.5T, Ip < 40kA, 3ms pulse) is currently being recomissioned at the Universidad Autónoma de Nuevo León, Mexico, as part of an agreement between the Faculties of Mech.-Elect. Eng. and Phy. Sci.-Maths. The main objective for having MEDUSA is to train students in plasma physics & technical related issues, aiming a full design of a medium size device (e.g. Tokamak-T). Details of technical modifications and a preliminary scientific programme will be presented. MEDUSA-MX will also benefit any developments in the existing Mexican Fusion Network. Strong liaison within national and international plasma physics communities is expected. New activities on plasma & engineering modeling are expected to be developed in parallel by using the existing facilities such as a multi-platform computer (Silicon Graphics Altix XE250, 128G RAM, 3.7TB HD, 2.7GHz, quad-core processor), ancillary graph system (NVIDIA Quadro FE 2000/1GB GDDR-5 PCI X16 128, 3.2GHz), and COMSOL Multiphysics-Solid Works programs.
Caballero Perea, Begoña; Villegas, Antonio Cabrera; Rodríguez, José Miguel Delgado; Velloso, María José García; Vicente, Ana María García; Cabrerizo, Carlos Huerga; López, Rosa Morera; Romasanta, Luis Alberto Pérez; Beltrán, Moisés Sáez
2012-01-01
Positron emission tomography (PET) with (18)F-fluorodeoxyglucose (FDG) is a valuable tool for diagnosing and staging malignant lesions. The fusion of PET and computed tomography (CT) yields images that contain both metabolic and morphological information, which, taken together, have improved the diagnostic precision of PET in oncology. The main imaging modality for planning radiotherapy treatment is CT. However, PET-CT is an emerging modality for use in planning treatments because it allows for more accurate treatment volume definition. The use of PET-CT for treatment planning is highly complex, and protocols and standards for its use are still being developed. It seems probable that PET-CT will eventually replace current CT-based planning methods, but this will require a full understanding of the relevant technical aspects of PET-CT planning. The aim of the present document is to review these technical aspects and to provide recommendations for clinical use of this imaging modality in the radiotherapy planning process.
Caballero Perea, Begoña; Villegas, Antonio Cabrera; Rodríguez, José Miguel Delgado; Velloso, María José García; Vicente, Ana María García; Cabrerizo, Carlos Huerga; López, Rosa Morera; Romasanta, Luis Alberto Pérez; Beltrán, Moisés Sáez
2012-01-01
Positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) is a valuable tool for diagnosing and staging malignant lesions. The fusion of PET and computed tomography (CT) yields images that contain both metabolic and morphological information, which, taken together, have improved the diagnostic precision of PET in oncology. The main imaging modality for planning radiotherapy treatment is CT. However, PET-CT is an emerging modality for use in planning treatments because it allows for more accurate treatment volume definition. The use of PET-CT for treatment planning is highly complex, and protocols and standards for its use are still being developed. It seems probable that PET-CT will eventually replace current CT-based planning methods, but this will require a full understanding of the relevant technical aspects of PET-CT planning. The aim of the present document is to review these technical aspects and to provide recommendations for clinical use of this imaging modality in the radiotherapy planning process. PMID:24377032
Mazur, Marcus D; Ravindra, Vijay M; Dailey, Andrew T; McEvoy, Sara; Schmidt, Meic H
2015-01-01
Pelvic fixation with S2-alar-iliac (S2AI) screws can increase the rigidity of a lumbosacral construct, which may promote bone healing, improve antibiotic delivery to infected tissues, and avoid L5-S1 pseudarthrosis. To describe the use of single-stage posterior fixation without debridement for the treatment of pyogenic vertebral diskitis and osteomyelitis (PVDO) at the lumbosacral junction. Technical report. We describe the management of PVDO at the lumbosacral junction in which the infection invaded the endplates, disk space, vertebrae, prevertebral soft tissues, and epidural space. Pedicle involvement precluded screw fixation at L5. Surgical management consisted of a single-stage posterior operation with rigid lumbopelvic fixation augmented with S2-alar-iliac screws and without formal debridement of the infected area, followed by long-term antibiotic treatment. At 2-year follow-up, successful fusion and eradication of the infection were achieved. PVDO at the lumbosacral junction may be treated successfully using rigid posterior-only fixation without formal debridement combined with antibiotic therapy.
Nandre, Rahul; Ruan, Xiaosai; Duan, Qiangde; Zhang, Weiping
2016-11-02
Enterotoxigenic Escherichia coli (ETEC) bacteria producing heat-stable toxin (STa) and/or heat-labile toxin (LT) are among top causes of children's diarrhea and travelers' diarrhea. Currently no vaccines are available for ETEC associated diarrhea. A major challenge in developing ETEC vaccines is the inability to stimulate protective antibodies against the key STa toxin which is potently toxic and also poorly immunogenic. A recent study suggested toxoid fusion 3xSTa N12S -dmLT, which consists of a monomer LT toxoid (LT R192G/L211A ) and three copies of STa toxoid STa N12S , may represent an optimal immunogen inducing neutralizing antibodies against STa toxin [IAI 2014, 82(5):1823-32]. In this study, we immunized mice with this fusion protein following a different parenteral route and using different adjuvants to further characterize immunogenicity of this toxoid fusion. Data from this study showed that 3xSTa N12S -dmLT toxoid fusion induced neutralizing anti-STa antibodies in the mice following subcutaneous immunization, as effectively as in the mice under intraperitoneal route. Data also indicated that double mutant LT (dmLT) can be an effective adjuvant for this toxoid fusion in mice subcutaneous immunization. Results from this study affirmed that toxoid fusion 3xSTa N12S -dmLT induces neutralizing antibodies against STa toxin, suggesting this toxoid fusion is potentially a promising immunogen for ETEC vaccine development. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Wang, Ying; Wang, Shumin; Xu, Shiguang; Qu, Jiaqi; Liu, Bo
2014-01-01
The frequencies of EML4-ALK fusion gene in non-small cell lung cancer (NSCLC) with different clinicopathologic features described by previous studies are inconsistent. The key demographic and pathologic features associated with EML4-ALK fusion gene have not been definitively established. This meta-analysis was conducted to compare the frequency of the EML4-ALK fusion gene in patients with different clinicopathologic features and to identify an enriched population of patients with NSCLC harboring EML4-ALK fusion gene. The Pubmed and Embase databases for all studies on EML4-ALK fusion gene in NSCLC patients were searched up to July 2014. A criteria list and exclusion criteria were established to screen the studies. The frequency of the EML4-ALK fusion gene and the clinicopathologic features, including smoking status, pathologic type, gender, and EGFR status were abstracted. Seventeen articles consisting of 4511 NSCLC cases were included in this meta-analysis. A significant lower EML4-ALK fusion gene positive rate was associated with smokers (pooled OR = 0.40, 95% CI = 0.30-0.54, P<0.00001). A significantly higher EML4-ALK fusion gene positivity rate was associated with adenocarcinomas (pooled OR = 2.53, 95% CI = 1.66-3.86, P<0.0001) and female (pooled OR = 0.61, 95% CI = 0.41-0.90, P = 0.01). We found that a significantly lower EML4-ALK fusion gene positivity rate was associated with EGFR mutation (pooled OR = 0.07, 95% CI = 0.03-0.19, P<0.00001). No publication bias was observed in any meta-analysis (all P value of Egger's test >0.05); however, because of the small sample size, no results were in the meta-analysis regarding EGFR gene status. This meta-analysis revealed that the EML4-ALK fusion gene is highly correlated with a never/light smoking history, female and the pathologic type of adenocarcinoma, and is largely mutually exclusive of EGFR.
Wang, Shumin; Xu, Shiguang; Qu, Jiaqi
2014-01-01
Background The frequencies of EML4-ALK fusion gene in non-small cell lung cancer (NSCLC) with different clinicopathologic features described by previous studies are inconsistent. The key demographic and pathologic features associated with EML4-ALK fusion gene have not been definitively established. This meta-analysis was conducted to compare the frequency of the EML4-ALK fusion gene in patients with different clinicopathologic features and to identify an enriched population of patients with NSCLC harboring EML4-ALK fusion gene. Methods The Pubmed and Embase databases for all studies on EML4-ALK fusion gene in NSCLC patients were searched up to July 2014. A criteria list and exclusion criteria were established to screen the studies. The frequency of the EML4-ALK fusion gene and the clinicopathologic features, including smoking status, pathologic type, gender, and EGFR status were abstracted. Results Seventeen articles consisting of 4511 NSCLC cases were included in this meta-analysis. A significant lower EML4-ALK fusion gene positive rate was associated with smokers (pooled OR = 0.40, 95% CI = 0.30–0.54, P<0.00001). A significantly higher EML4-ALK fusion gene positivity rate was associated with adenocarcinomas (pooled OR = 2.53, 95% CI = 1.66–3.86, P<0.0001) and female (pooled OR = 0.61, 95% CI = 0.41–0.90, P = 0.01). We found that a significantly lower EML4-ALK fusion gene positivity rate was associated with EGFR mutation (pooled OR = 0.07, 95% CI = 0.03–0.19, P<0.00001). No publication bias was observed in any meta-analysis (all P value of Egger's test >0.05); however, because of the small sample size, no results were in the meta-analysis regarding EGFR gene status. Conclusion This meta-analysis revealed that the EML4-ALK fusion gene is highly correlated with a never/light smoking history, female and the pathologic type of adenocarcinoma, and is largely mutually exclusive of EGFR. PMID:25360721
A Narrative Review of Lumbar Fusion Surgery With Relevance to Chiropractic Practice.
Daniels, Clinton J; Wakefield, Pamela J; Bub, Glenn A; Toombs, James D
2016-12-01
The purpose of this narrative review was to describe the most common spinal fusion surgical procedures, address the clinical indications for lumbar fusion in degeneration cases, identify potential complications, and discuss their relevance to chiropractic management of patients after surgical fusion. The PubMed database was searched from the beginning of the record through March 31, 2015, for English language articles related to lumbar fusion or arthrodesis or both and their incidence, procedures, complications, and postoperative chiropractic cases. Articles were retrieved and evaluated for relevance. The bibliographies of selected articles were also reviewed. The most typical lumbar fusion procedures are posterior lumbar interbody fusion, anterior lumbar interbody fusion, transforaminal interbody fusion, and lateral lumbar interbody fusion. Fair level evidence supports lumbar fusion procedures for degenerative spondylolisthesis with instability and for intractable low back pain that has failed conservative care. Complications and development of chronic pain after surgery is common, and these patients frequently present to chiropractic physicians. Several reports describe the potential benefit of chiropractic management with spinal manipulation, flexion-distraction manipulation, and manipulation under anesthesia for postfusion low back pain. There are no published experimental studies related specifically to chiropractic care of postfusion low back pain. This article describes the indications for fusion, common surgical practice, potential complications, and relevant published chiropractic literature. This review includes 10 cases that showed positive benefits from chiropractic manipulation, flexion-distraction, and/or manipulation under anesthesia for postfusion lumbar pain. Chiropractic care may have a role in helping patients in pain who have undergone lumbar fusion surgery.
Huang, H; Nightingale, R W; Dang, A B C
2018-01-01
Loss of motion following spine segment fusion results in increased strain in the adjacent motion segments. However, to date, studies on the biomechanics of the cervical spine have not assessed the role of coupled motions in the lumbar spine. Accordingly, we investigated the biomechanics of the cervical spine following cervical fusion and lumbar fusion during simulated whiplash using a whole-human finite element (FE) model to simulate coupled motions of the spine. A previously validated FE model of the human body in the driver-occupant position was used to investigate cervical hyperextension injury. The cervical spine was subjected to simulated whiplash exposure in accordance with Euro NCAP (the European New Car Assessment Programme) testing using the whole human FE model. The coupled motions between the cervical spine and lumbar spine were assessed by evaluating the biomechanical effects of simulated cervical fusion and lumbar fusion. Peak anterior longitudinal ligament (ALL) strain ranged from 0.106 to 0.382 in a normal spine, and from 0.116 to 0.399 in a fused cervical spine. Strain increased from cranial to caudal levels. The mean strain increase in the motion segment immediately adjacent to the site of fusion from C2-C3 through C5-C6 was 26.1% and 50.8% following single- and two-level cervical fusion, respectively (p = 0.03, unpaired two-way t -test). Peak cervical strains following various lumbar-fusion procedures were 1.0% less than those seen in a healthy spine (p = 0.61, two-way ANOVA). Cervical arthrodesis increases peak ALL strain in the adjacent motion segments. C3-4 experiences greater changes in strain than C6-7. Lumbar fusion did not have a significant effect on cervical spine strain. Cite this article : H. Huang, R. W. Nightingale, A. B. C. Dang. Biomechanics of coupled motion in the cervical spine during simulated whiplash in patients with pre-existing cervical or lumbar spinal fusion: A Finite Element Study. Bone Joint Res 2018;7:28-35. DOI: 10.1302/2046-3758.71.BJR-2017-0100.R1. © 2018 Huang et al.
Four-corner fusion of the wrist: clinical and radiographic outcome of 31 patients.
Mavrogenis, Andreas F; Flevas, Dimitrios A; Raptis, Konstantinos; Megaloikonomos, Panayiotis D; Igoumenou, Vasilios G; Antoniadou, Thekla; Dimopoulos, Leonidas; Antonopoulos, Dimitrios; Spyridonos, Sarantis G
2016-12-01
Four-corner fusion is a rational surgical option for the management of degenerative conditions of the wrist. Most related studies have compared four-corner fusion with scaphoid excision or proximal row carpectomy, with a variety of reported results. To enhance the literature, we performed this study to evaluate a series of patients with degenerative conditions of the wrist treated with four-corner fusion using 3 surgical techniques and to discuss the clinical and radiographic outcome of the patients. We retrospectively studied 31 patients (24 men, 7 women; mean age, 43 years; 9 heavy manual laborers) who underwent four-corner fusion of their wrists for degenerative conditions from 2005 to 2015. Internal fixation was done using multiple Kirschner wires (14 patients), headless compressive screws (8 patients), or a circular plate (9 patients). Mean follow-up was 4 years (1-11 years). We evaluated the clinical outcome with the Patient-Rated Wrist Evaluation (PRWE) score and fusion with radiographs. All patients experienced improvement of their pain, function, range of motion and grip strength (p < 0.05). Twenty-three patients (74 %) reported no pain, and eight patients reported mild, occasional pain. Twenty-one patients (68 %) were able to do usual and specific activities. Mean wrist motion improved to 70 % and mean grip strength improved to 85 % of opposite wrist. Two heavy manual labor patients requested a job modification because of wrist impairment. Radiographs of the wrist showed fusion of all fused joints in 28 (90.3 %) patients and partial fusion in three patients (9.7 %). No patient with partial fusion required a reoperation for symptomatic nonunion until the period of this study. Three patients experienced complications (10 %). Two patients treated with a circular plate experienced complex regional pain syndrome and painful implant impingement; another patient treated with Kirschner wires and headless compression screws experienced radiolunate arthritis from impingement of the lunate screw to the radius. Four-corner fusion is a reliable limited wrist fusion technique that provides pain relief, grip strength and satisfactory range of motion in patients with degenerative conditions of the wrist. Partial union is more common with Kirschner wire fixation and complications are more common with circular plate fixation.
AxiaLIF system: minimally invasive device for presacral lumbar interbody spinal fusion
Rapp, Steven M; Miller, Larry E; Block, Jon E
2011-01-01
Lumbar fusion is commonly performed to alleviate chronic low back and leg pain secondary to disc degeneration, spondylolisthesis with or without concomitant lumbar spinal stenosis, or chronic lumbar instability. However, the risk of iatrogenic injury during traditional anterior, posterior, and transforaminal open fusion surgery is significant. The axial lumbar interbody fusion (AxiaLIF) system is a minimally invasive fusion device that accesses the lumbar (L4–S1) intervertebral disc spaces via a reproducible presacral approach that avoids critical neurovascular and musculoligamentous structures. Since the AxiaLIF system received marketing clearance from the US Food and Drug Administration in 2004, clinical studies of this device have reported high fusion rates without implant subsidence, significant improvements in pain and function, and low complication rates. This paper describes the design and approach of this lumbar fusion system, details the indications for use, and summarizes the clinical experience with the AxiaLIF system to date. PMID:22915939
AxiaLIF system: minimally invasive device for presacral lumbar interbody spinal fusion.
Rapp, Steven M; Miller, Larry E; Block, Jon E
2011-01-01
Lumbar fusion is commonly performed to alleviate chronic low back and leg pain secondary to disc degeneration, spondylolisthesis with or without concomitant lumbar spinal stenosis, or chronic lumbar instability. However, the risk of iatrogenic injury during traditional anterior, posterior, and transforaminal open fusion surgery is significant. The axial lumbar interbody fusion (AxiaLIF) system is a minimally invasive fusion device that accesses the lumbar (L4-S1) intervertebral disc spaces via a reproducible presacral approach that avoids critical neurovascular and musculoligamentous structures. Since the AxiaLIF system received marketing clearance from the US Food and Drug Administration in 2004, clinical studies of this device have reported high fusion rates without implant subsidence, significant improvements in pain and function, and low complication rates. This paper describes the design and approach of this lumbar fusion system, details the indications for use, and summarizes the clinical experience with the AxiaLIF system to date.
History of Nuclear Fusion Research in Japan
NASA Astrophysics Data System (ADS)
Iguchi, Harukazu; Matsuoka, Keisuke; Kimura, Kazue; Namba, Chusei; Matsuda, Shinzaburo
In the late 1950s just after the atomic energy research was opened worldwide, there was a lively discussion among scientists on the strategy of nuclear fusion research in Japan. Finally, decision was made that fusion research should be started from the basic, namely, research on plasma physics and from cultivation of human resources at universities under the Ministry of Education, Science and Culture (MOE). However, an endorsement was given that construction of an experimental device for fusion research would be approved sooner or later. Studies on toroidal plasma confinement started at Japan Atomic Energy Research Institute (JAERI) under the Science and Technology Agency (STA) in the mid-1960s. Dualistic fusion research framework in Japan was established. This structure has lasted until now. Fusion research activities over the last 50 years are described by the use of a flowchart, which is convenient to glance the historical development of fusion research in Japan.
Multispectral image fusion for target detection
NASA Astrophysics Data System (ADS)
Leviner, Marom; Maltz, Masha
2009-09-01
Various different methods to perform multi-spectral image fusion have been suggested, mostly on the pixel level. However, the jury is still out on the benefits of a fused image compared to its source images. We present here a new multi-spectral image fusion method, multi-spectral segmentation fusion (MSSF), which uses a feature level processing paradigm. To test our method, we compared human observer performance in an experiment using MSSF against two established methods: Averaging and Principle Components Analysis (PCA), and against its two source bands, visible and infrared. The task that we studied was: target detection in the cluttered environment. MSSF proved superior to the other fusion methods. Based on these findings, current speculation about the circumstances in which multi-spectral image fusion in general and specific fusion methods in particular would be superior to using the original image sources can be further addressed.
Versatile fusion source integrator AFSI for fast ion and neutron studies in fusion devices
NASA Astrophysics Data System (ADS)
Sirén, Paula; Varje, Jari; Äkäslompolo, Simppa; Asunta, Otto; Giroud, Carine; Kurki-Suonio, Taina; Weisen, Henri; JET Contributors, The
2018-01-01
ASCOT Fusion Source Integrator AFSI, an efficient tool for calculating fusion reaction rates and characterizing the fusion products, based on arbitrary reactant distributions, has been developed and is reported in this paper. Calculation of reactor-relevant D-D, D-T and D-3He fusion reactions has been implemented based on the Bosch-Hale fusion cross sections. The reactions can be calculated between arbitrary particle populations, including Maxwellian thermal particles and minority energetic particles. Reaction rate profiles, energy spectra and full 4D phase space distributions can be calculated for the non-isotropic reaction products. The code is especially suitable for integrated modelling in self-consistent plasma physics simulations as well as in the Serpent neutronics calculation chain. Validation of the model has been performed for neutron measurements at the JET tokamak and the code has been applied to predictive simulations in ITER.
The exocytotic fusion pore modeled as a lipidic pore.
Nanavati, C; Markin, V S; Oberhauser, A F; Fernandez, J M
1992-01-01
Freeze-fracture electron micrographs from degranulating cells show that the lumen of the secretory granule is connected to the extracellular compartment via large (20 to 150 nm diameter) aqueous pores. These exocytotic fusion pores appear to be made up of a highly curved bilayer that spans the plasma and granule membranes. Conductance measurements, using the patch-clamp technique, have been used to study the fusion pore from the instant it conducts ions. These measurements reveal the presence of early fusion pores that are much smaller than those observed in electron micrographs. Early fusion pores open abruptly, fluctuate, and then either expand irreversibly or close. The molecular structure of these early fusion pores is unknown. In the simplest extremes, these early fusion pores could be either ion channel like protein pores or lipidic pores. Here, we explored the latter possibility, namely that of the early exocytotic fusion pore modeled as a lipid-lined pore whose free energy was composed of curvature elastic energy and work done by tension. Like early exocytotic fusion pores, we found that these lipidic pores could open abruptly, fluctuate, and expand irreversibly. Closure of these lipidic pores could be caused by slight changes in lipid composition. Conductance distributions for stable lipidic pores matched those of exocytotic fusion pores. These findings demonstrate that lipidic pores can exhibit the properties of exocytotic fusion pores, thus providing an alternate framework with which to understand and interpret exocytotic fusion pore data. PMID:1420930
Zheng, Difan; Wang, Rui; Zhang, Yang; Pan, Yunjian; Cheng, Xinghua; Cheng, Chao; Zheng, Shanbo; Li, Hang; Gong, Ranxia; Li, Yuan; Shen, Xuxia; Sun, Yihua; Chen, Haiquan
2016-04-01
We performed this retrospective study to have a comprehensive investigation of the clinicopathological characteristics of ALK fusion-positive lung adenocarcinoma in Chinese populations. We screened 1407 patients with primary lung adenocarcinoma from October 2007 to May 2013. Quantitative real-time PCR (qRT-PCR), reverse transcriptase PCR (RT-PCR), and fluorescence in situ hybridization were performed to detect ALK fusion genes, with validation of positive results using immunohistochemistry. Clinicopathological characteristics were collected to assess prognosis in ALK fusion-positive patients. Of 1407 patients with lung adenocarcinoma, there were 74 (5.3 %) ALK fusion-positive patients. Patients harboring ALK fusion were significantly younger (56.0 years vs. 59.8 years p = 0.002) and were more likely to have advanced stages (stage III or stage IV) (OR 1.761; 95 % CI 1.10-2.82, p = 0.017). Lepidic predominant adenocarcinoma was rarely found in ALK fusion patients (2.7 vs. 13.5 % p = 0.025), while IMA (invasive mucinous adenocarcinoma) predominant adenocarcinoma was more frequently found (21.6 vs. 5.0 % p < 0.001). ALK fusion was neither a risk factor nor protective factor in relapse-free survival and overall survival. Male, current smoker, and EML4-ALK variant 3 indicated poor prognosis among ALK fusion-positive lung adenocarcinomas. ALK fusion was detected in 5.3 % (74/1407) of the Chinese patients with lung adenocarcinoma. ALK fusion defines a molecular subset of lung adenocarcinoma with unique clinicopathological characteristics. Different ALK fusion variants determine distinct prognoses.
NASA Astrophysics Data System (ADS)
Hanson, Jeffrey A.; McLaughlin, Keith L.; Sereno, Thomas J.
2011-06-01
We have developed a flexible, target-driven, multi-modal, physics-based fusion architecture that efficiently searches sensor detections for targets and rejects clutter while controlling the combinatoric problems that commonly arise in datadriven fusion systems. The informational constraints imposed by long lifetime requirements make systems vulnerable to false alarms. We demonstrate that our data fusion system significantly reduces false alarms while maintaining high sensitivity to threats. In addition, mission goals can vary substantially in terms of targets-of-interest, required characterization, acceptable latency, and false alarm rates. Our fusion architecture provides the flexibility to match these trade-offs with mission requirements unlike many conventional systems that require significant modifications for each new mission. We illustrate our data fusion performance with case studies that span many of the potential mission scenarios including border surveillance, base security, and infrastructure protection. In these studies, we deployed multi-modal sensor nodes - including geophones, magnetometers, accelerometers and PIR sensors - with low-power processing algorithms and low-bandwidth wireless mesh networking to create networks capable of multi-year operation. The results show our data fusion architecture maintains high sensitivities while suppressing most false alarms for a variety of environments and targets.
Examining the role of transfer coupling in sub-barrier fusion of Ti 46 , 50 + Sn 124
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, J. Felix; Allmond, J. M.; Gross, C. J.
2016-08-24
In this study, the presence of neutron transfer channels with positive Q values can enhance sub-barrier fusion cross sections. Recent measurements of the fusion excitation functions for 58Ni+ 132,124Sn found that the fusion enhancement due to the influence of neutron transfer is smaller than that in 40Ca + 132,124Sn although the Q values for multineutron transfer are comparable. The purpose of this study is to investigate the differences observed between the fusion of Sn + Ni and Sn + Ca. Methods: Fusion excitation functions for 46,50Ti + 124Sn have been measured at energies near the Coulomb barrier. As a result,more » a comparison of the barrier distributions for 46Ti+ 124Sn and 40Ca+ 124Sn shows that the 40Ca+ 124Sn system has a barrier strength resulting from the coupling to the very collective octupole state in 40Ca at an energy significantly lower than the uncoupled barrier. In conclusion, the large sub-barrier fusion enhancement in 40Ca induced reactions is attributed to both couplings to neutron transfer and inelastic excitation, with the octupole vibration of 40Ca playing a major role.« less
Effect of zoledronic acid in an L6-L7 rabbit spine fusion model.
Bransford, Rick; Goergens, Elisabeth; Briody, Julie; Amanat, Negin; Cree, Andrew; Little, David
2007-04-01
Previous studies have shown that zoledronic acid administration can increase mineral content and strength in distraction osteogenesis. Of the few studies that have examined the use of bisphosphonates in spinal arthrodesis, none have assessed the effect of single dose treatment. The objective of this study was to evaluate the feasibility of enhancing spinal fusion rate using single dose zoledronic acid (ZA) to increase fusion-mass size and mineral density. Forty-eight New Zealand white rabbits underwent an L6-L7 intertransverse process fusion. The L6-L7 model is more challenging than the more commonly used level of L5-L6. Animals were randomly allocated to one of three groups, one received iliac crest bone graft alone, one group received iliac crest bone graft with locally administered zoledronic acid, 20 microg, and one group received iliac crest bone graft with a single dose of systemically administered zoledronic acid, 0.1 mg/kg. ZA doses were administered at the time of surgery. Twenty-four rabbits were culled at 6 weeks and 24 rabbits were culled at 12 weeks. Success of spinal fusion was determined by manual palpation. Specimens were evaluated radiographically, underwent quantitative computerised tomography analysis and were tested biomechanically in flexion and extension. In the six-week group, only five of the 24 spines fused with no noticeable trend with respect to treatment. In the 12-week group there was a trend toward increased fusion in the systemically administered ZA group (63%) versus the other two groups (25%) but was not statistically significant (p = 0.15). Radiographically, the local ZA treatment group showed a delay in remodelling with the presence of unremodelled bone chips. The 12-week systemic ZA group exhibited an 86% increase in BMC, a 31% increase in vBMD and a 41% increase in the volume of the fusion-mass (p < 0.05). The 12-week local ZA group also showed significant increases in BMC (69%), vBMD (31%) and total fusion-mass volume (29%) (p < 0.05). Biomechanical testing showed that the range of motion in flexion decreased to 4.5 (+/-2.5) degrees and 4.8 (+/-4.7) degrees for the local and systemic groups respectively compared to 9.6 (+/-4.9) degrees for the control group (p < 0.05). This study has shown that zoledronic acid increased fusion-mass size and bone mineral content. Systemic ZA led to an increased fusion rate; however the fusion rate remained below 100%. We suggest that bisphosphonate treatment may require an anabolic conjunctive therapy to ensure enhanced successful fusion.