Science.gov

Sample records for fusion techniques transforaminal

  1. Transforaminal Approach in Thoracal Disc Pathologies: Transforaminal Microdiscectomy Technique

    PubMed Central

    Dalbayrak, Sedat; Öztürk, Kadir; Yılmaz, Mesut; Gökdağ, Mahmut; Ayten, Murat

    2014-01-01

    Objective. Many surgical approaches have been defined and implemented in the last few decades for thoracic disc herniations. The endoscopic foraminal approach in foraminal, lateral, and far lateral disc hernias is a contemporary minimal invasive approach. This study was performed to show that the approach is possible using the microscope without an endoscope, and even the intervention on the discs within the spinal canal is possible by having access through the foramen. Methods. Forty-two cases with disc hernias in the medial of the pedicle were included in this study; surgeries were performed with transforaminal approach and microsurgically. Extraforaminal disc hernias were not included in the study. Access was made through the Kambin triangle, foramen was enlarged, and spinal canal was entered. Results. The procedure took 65 minutes in the average, and the mean bleeding amount was about 100cc. They were mobilized within the same day postoperatively. No complications were seen. Follow-up periods range between 5 and 84 months, and the mean follow-up period is 30.2 months. Conclusion. Transforaminal microdiscectomy is a method that can be performed in any clinic with standard spinal surgery equipment. It does not require additional equipment or high costs. PMID:24839557

  2. Modified Mini-open Transforaminal Lumbar Interbody Fusion

    PubMed Central

    Pakzaban, Peyman

    2016-01-01

    Study Design. Retrospective case series. Objective. To describe a modified technique for mini-open transforaminal lumbar interbody fusion (TLIF) that improves visualization for decompression, fusion, and freehand pedicle screw insertion. Accuracy of freehand pedicle screw placement with this technique was assessed. Summary of Background Data. Mini-open TLIF is a minimally invasive technique that allows limited visualization of the bone and neural anatomy via an expandable tubular retractor inserted through the Wiltse plane. No significant modification that of this technique has been described in detail. Methods. In this study, 92 consecutive patients underwent one-level modified mini-open TLIF (MOTLIF). MOTLIF modifications consisted of (i) transmuscular dissection through the multifidus muscle rather than intermuscular dissection in the Wiltse plane; (ii) microsurgical detachment of multifidus from the facet rather than muscle dilation; (iii) en bloc total facetectomy (unilateral or bilateral, as needed for decompression); (iv) facet autograft used for interbody fusion; and (v) solid pedicle screws placed bilaterally by a freehand technique under direct vision. Results. The mean age was 53 years. Mean follow-up was 35 months (minimum 2 yrs). By 6 months, mean Visual Analog Scale for back and leg pain had improved from 51 to 19 and from 58 to 17, respectively, and mean Oswestry Disability Index (ODI) improved from 53 to 16. These improvements persisted at 2 years. Solid fusion, defined by computed tomography at 1 year, was achieved in 88.1%, whereas satisfactory fusion was achieved in 95.2% of patients. Pedicle screws were accurately placed in 335 of 336 imaged pedicles (pedicle breach grades: 91.1% grade 1; 8.6% grade 2; and 0.3% grade 3). Mean fluoroscopy time was 29.3 seconds. Conclusion. MOTLIF is a safe and effective minimally invasive technique with a high fusion rate. It allows accurate pedicle screw placement by a freehand technique. By eliminating bi

  3. Transforaminal lumbar interbody fusion using unilateral pedicle screws and a translaminar screw

    PubMed Central

    Lee, Sandra; Vaidya, Rahul

    2008-01-01

    Lumbar spinal fusion is advancing with minimally invasive techniques, bone graft alternatives, and new implants. This has resulted in significant reductions of operative time, duration of hospitalization, and higher success in fusion rates. However, costs have increased as many new technologies are expensive. This study was carried out to investigate the clinical outcomes and fusion rates of a low implant load construct of unilateral pedicle screws and a translaminar screw in transforaminal lumbar interbody fusion (TLIF) which reduced the cost of the posterior implants by almost 50%. Nineteen consecutive patients who underwent single level TLIF with this construct were included in the study. Sixteen patients had a TLIF allograft interbody spacer placed, while in three a polyetheretherketone (PEEK) cage was used. Follow-up ranged from 15 to 54 months with a mean of 32 months. A clinical and radiographic evaluation was carried out preoperatively and at multiple time points following surgery. An overall improvement in Oswestry scores and visual analogue scales for leg and back pain (VAS) was observed. Three patients underwent revision surgery due to recurrence of back pain. All patients showed radiographic evidence of fusion from 9 to 26 months (mean 19) following surgery. This study suggests that unilateral pedicle screws and a contralateral translaminar screw are a cheaper and viable option for single level lumbar fusion. PMID:19015896

  4. Safety and Efficacy of Mini Open Transforaminal Lumbar Interbody Fusion

    PubMed Central

    Eissa, Ehab M.; Elmorsy, Haitham M.

    2016-01-01

    Objective Mini-transforaminal lumbar interbody fusion (Mini-TLIF) and other minimally invasive approaches introduced for the purpose of treating lumbar degenerative disc disease and instability are achieving high success and safety rates as the conventional approaches. Moreover, it has less soft tissue damage, minimal blood loss, and less hospital stay. Methods A prospective study was conducted from 2012 to 2014 on 28 patients who were subjected to Mini-open TLIF combined with transpedicular screw fixation for spondylolisthesis and degenerative disc disease. Two paramedian approaches were done, 4 cm for each, to insert the pedicular screws, along with inserting unilateral TLIF cage with autologous bone graft. Decompression was done either unilateral or bilateral according to the patient side of radiculopathy. Sixteen patients (57.2%) were diagnosed with degenerative spondylolisthesis, 7 patients (25%) were diagnosed with isthmic type spondylolisthesis, and 5 patients (17.8%) were diagnosed with degenerative disc disease, 2 of them(7.1%) had previous operations at the same level. Twenty patients (71.4%) were operated at the L4/5 level, and 8 patients (28.6%) at the L5/S1 level. Results All patients were able to ambulate the next day of surgery. The mean estimated blood loss was 251.79mL. The average hospital stay was 4.14 days. The average follow-up was 9 months. The mean visual analog scale was 1.86 at discharge, 1.68 after 3 months, and 1.38 after 6 months. After 6 months of the operation, MacNab's criteria were good in 23 patients and excellent in 5 patients. We had one case with transient weakness, 2 cases of screw malposition without clinical manifestations, and one case of infection. Conclusion Mini-TLIF approach is an efficient and safe approach for treating instability and degenerative diseases of the lumbar spine. The clinical outcome is encouraging and it may be an operation of choice for lumbar spinal fusion in selected patients. PMID:28127376

  5. Comparison between Minimally Invasive Transforaminal Lumbar Interbody Fusion and Conventional Open Transforaminal Lumbar Interbody Fusion: An Updated Meta-analysis

    PubMed Central

    Xie, Lei; Wu, Wen-Jian; Liang, Yu

    2016-01-01

    Background: The previous studies agree that minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) has better function outcomes, less blood loss, and shorter hospital stay, when compared to open-TLIF. However, there are no significance differences on operative time, complication, and reoperation rate between the two procedures. This could be from less relative literatures and lower grade evidence. The further meta-analysis is needed with more and higher grade evidences to compare the above two TLIF procedures. Methods: Prospective and retrospective studies that compared open-TLIF and MIS-TLIF were identified by searching the Medline, Embase, Web of Science, China National Knowledge Infrastructure, Wanfang, and VIP database (the literature search comprised Medical Subject Heading terms and key words or Emtree term). The retrieval time ranged from the date when the database was founded to January 2015. Pooled risk ratios (RRs) and weighted mean differences (WMDs) with 95% confidence intervals were calculated for the clinical outcomes and perioperative data. Results: Twenty-four studies (n = 1967 patients) were included in this review (n = 951, open-TLIF, n = 1016, MIS-TLIF). MIS-TLIF was associated with a significant decrease in the visual analog score (VAS)-back pain score (WMD = −0.44; P = 0.001), Oswestry Disabilities Index (WMD = −1.57; P = 0.005), early ambulation (WMD = −1.77; P = 0.0001), less blood loss (WMD = −265.59; P < 0.00001), and a shorter hospital stay (WMD = −1.89; P < 0.0001). However, there were no significant differences in the fusion rate (RR = 0.99; P = 0.34), VAS-leg pain (WMD = −0.10; P = 0.26), complication rate (RR = 0.84; P = 0.35), operation time (WMD = −5.23; P = 0.82), or reoperation rate (RR = 0.73; P = 0.32). Conclusions: MIS-TLIF resulted in a similar fusion rate with better functional outcome, less blood loss, shorter ambulation, and hospital stay; furthermore, it did not increase the complication or

  6. Transforaminal lumbar interbody fusion versus instrumented posterolateral fusion in Grade I/II spondylolisthesis

    PubMed Central

    Pooswamy, Shanmugasundaram; Muralidharagopalan, Niranjanan Raghavn; Subbaiah, Sivasubramaniam

    2017-01-01

    Background: Spondylolisthesis refers to slippage of one vertebra over the other, which may be caused by a variety of reasons such as degenerative, trauma, and isthmic. Surgical management forms the mainstay of treatment to prevent further slip and worsening. However, there is no consensus regarding the best surgical option to treat these patients. This study compares TLIF and instrumented PLF in patients with Grade I and II spondylolisthesis and analysis the outcome with respect to functional outcome, pain, fusion rate, adequacy of medial facetectomy for decompression, and complications. Materials and Methods: Forty patients operated for spondylolisthesis by instrumented posterolateral or transforaminal fusion between January 1, 2010, and June 30, 2012 were included in this retrospective study. They were followed up for 3 years. Twenty one cases were of instrumented posterolateral fusion (PLF) and 19 cases were of transforaminal lumbar interbody fusion (TLIF). The patients were asked to fill up the Oswestry disability index (ODI), Dallas Pain Questionnaire (DPQ), and low back pain rating scale (LBPRS) preoperatively, at 1-month postoperatively, and at 6, 12, 24, and 36 months postoperatively. Radiological parameters were assessed using radiographs. Results: No significant differences were found in DPQ, LBPRS, or ODI scores preoperative, 1-month postoperative, and at 6, 12, 24 and 36 months followup. No significant difference was found between the two groups in blood loss. The only significant difference between the two groups was in the operative time, in which the instrumented PLF group had a mean of 50 min lesser than the TLIF group (P = 0.02). Conclusions: TLIF and instrumented PLF are equally efficacious options in the treatment of Grade I and II spondylolisthesis, except lytic type.

  7. Failure of a carbon fiber-reinforced polymer implant used for transforaminal lumbar interbody fusion.

    PubMed

    Sardar, Zeeshan; Jarzem, Peter

    2013-12-01

    Lumbar interbody fusion is a common procedure owing to the high prevalence of degenerative spinal disorders. During such procedures, carbon fiber-reinforced polymer (CFRP) cages are frequently utilized to fill the void created between adjacent vertebral bodies, to provide mechanical stability, and to carry graft material. Failure of such implants can lead to significant morbidity. We discuss the possible causes leading to the failure of a CFRP cage in a patient with rheumatoid arthritis. Review of a 49-year-old woman who underwent revision anterior lumbar interbody fusion 2 years after posterior instrumentation and transforaminal lumbar interbody fusion at L4-L5 and L5-S1. The patient developed pseudarthrosis at the two previously fused levels with failure of the posterior instrumentation. Revision surgery reveled failure with fragmentation of the CFRP cage at the L5-S1 level. CFRP implants can break if mechanical instability or nonunion occurs in the spinal segments, thus emphasizing the need for optimizing medical management and meticulous surgical technique in achieving stability.

  8. Failure of a Carbon Fiber–Reinforced Polymer Implant Used for Transforaminal Lumbar Interbody Fusion

    PubMed Central

    Sardar, Zeeshan; Jarzem, Peter

    2013-01-01

    Lumbar interbody fusion is a common procedure owing to the high prevalence of degenerative spinal disorders. During such procedures, carbon fiber–reinforced polymer (CFRP) cages are frequently utilized to fill the void created between adjacent vertebral bodies, to provide mechanical stability, and to carry graft material. Failure of such implants can lead to significant morbidity. We discuss the possible causes leading to the failure of a CFRP cage in a patient with rheumatoid arthritis. Review of a 49-year-old woman who underwent revision anterior lumbar interbody fusion 2 years after posterior instrumentation and transforaminal lumbar interbody fusion at L4–L5 and L5–S1. The patient developed pseudarthrosis at the two previously fused levels with failure of the posterior instrumentation. Revision surgery reveled failure with fragmentation of the CFRP cage at the L5–S1 level. CFRP implants can break if mechanical instability or nonunion occurs in the spinal segments, thus emphasizing the need for optimizing medical management and meticulous surgical technique in achieving stability. PMID:24436878

  9. Bone Morphogenic Protein Is a Viable Adjunct for Fusion in Minimally Invasive Transforaminal Lumbar Interbody Fusion

    PubMed Central

    Siddiqui, M Mashfiqul Arafin; Sta.Ana, Ana Rosario P.; Yeo, William

    2016-01-01

    Study Design Comparison of prospectively collected data of patients undergoing minimally invasive surgery transforaminal lumbar interbody fusion (MIS-TLIF) with and without recombinant human bone morphogenic protein 2 (BMP). Purpose To compare the clinical, radiological outcome and complications of patients undergoing MIS-TLIF with and without BMP. Overview of Literature BMP is an effective fusion enhancer with potential complications. Direct comparison of MIS-TLIF with and without BMP is limited to retrospective studies with short follow-up. Methods From June 2005 to February 2011, consecutive cases of MIS-TLIF performed by a single surgeon were included. North American Spine Society (NASS) score, Oswestry disability index (ODI), Short Form-36 (SF-36), and visual analogue score (VAS) were assessed preoperatively and at 6 and 24 months postoperatively. Fusion rates and complications were noted. Results The 252 cases comprised 104 non-BMP and 148 BMP cases. The BMP group was significantly older (mean age, 60.2 vs. 53.9; p<0.01). Preoperative scores were similar. Immediate postoperative morphine usage was significantly lower in the BMP group (12.4 mg vs. 20.1 mg, p<0.01). At 6 months, the BMP group had lower VAS back and leg pain scores (p<0.01). At 2 years, the BMP group had better leg pain scores (p<0.01), ODI (15.4 vs. 20.3, p=0.04) and NASS scores (8.8 vs. 15.8, p<0.01). Both groups showed significant clinical improvement compared to their preoperative levels. The BMP group attained a significantly higher rate of fusion at 6 months follow-up (88.4% vs. 76.8%, p=0.016) with no difference at 2 years. The non-BMP and BMP group had 12 (11.5%) and 9 (6.1%) complications and 5 (4.8%) and 2 (1.4%) reoperations, respectively. Conclusions The use of BMP to augment fusion in MIS-TLIF is an acceptable alternative that has potential benefits of less pain in early and intermediate postoperative follow-up. PMID:27994786

  10. Effect of steerable cage placement during minimally invasive transforaminal lumbar interbody fusion on lumbar lordosis.

    PubMed

    Lindley, Timothy E; Viljoen, Stephanus V; Dahdaleh, Nader S

    2014-03-01

    Minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) is commonly used for the treatment of a variety of degenerative spine disorders. Recently, steerable interbody cages have been developed which potentially allow for greater restoration of lumbar lordosis. Here we describe a technique and radiographic results following minimally invasive placement of steerable cages through a bilateral approach. A retrospective review was conducted of the charts and radiographs of 15 consecutive patients who underwent 19 levels of bilateral MIS-TLIF with the placement of steerable cages. These were compared to 10 patients who underwent 16 levels of unilateral MIS-TLIF with the placement of bullet cages. The average age, body mass index, distribution of the levels operated and follow-up were similar in both groups. The average height of the steerable cage placed was 10.9 mm compared to 8.5mm for bullet cages. The preoperative focal Cobb's angle per level was similar between both groups with a mean of -5.3 degrees for the steerable cage group and -4.8 degrees for the bullet cage group. There was a significant improvement in postoperative Cobb's angle after placement of a steerable cage with a mean of -13.7 (p<0.01) and this persisted at the last follow-up with -13 degrees (p<0.01). There was no significant change in Cobb's angle after bullet cage placement with -5.7 degrees postoperatively and a return to the baseline preoperative Cobb's angle of -4.8 at the last follow-up. Steerable cage placement for MIS-TLIF improves focal lordosis compared to bullet cage placement.

  11. Comparison of the efficacy of transforaminal and interlaminar radicular block techniques for treating lumbar disk hernia☆

    PubMed Central

    Rezende, Rodrigo; Jacob Júnior, Charbel; da Silva, Camila Kill; de Barcellos Zanon, Igor; Cardoso, Igor Machado; Batista Júnior, José Lucas

    2015-01-01

    Objective To compare the interlaminar and transforaminal block techniques with regard to the state of pain and presence or absence of complications. Method This was a randomized double-blind prospective study of descriptive and comparative nature, on 40 patients of both sexes who presented lumbar sciatic pain due to central-lateral or foraminal disk hernias. The patients had failed to respond to 20 physiotherapy sessions, but did not present instability, as diagnosed in dynamic radiographic examinations. The type of block to be used was determined by means of a draw: transforaminal (group 1; 20 patients) or interlaminar (group 2; 20 patients). Results Forty patients were evaluated (17 males), with a mean age of 49 years. There was a significant improvement in the state of pain in all patients who underwent radicular block using both techniques, although the transforaminal technique presented better results than the interlaminar technique. Conclusion Both techniques were effective for pain relief and presented low complication rates, but the transforaminal technique was more effective than the interlaminar technique. PMID:26229920

  12. BMP-2-induced Neuroforaminal Bone Growth in the Setting of a Minimally Invasive Transforaminal Lumbar Interbody Fusion.

    PubMed

    Ahn, Junyoung; Tabaraee, Ehsan; Singh, Kern

    2015-06-01

    Minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) has become a popular alternative to traditional methods of lumbar decompression and fusion. When compared with the open technique, the minimally invasive approach can result in decreased pain and blood loss as well as a shorter length of hospitalization. However, the narrower working channel through the tubular retractor increases the difficulty of decortication and bone grafting. Therefore, recombinant human bone morphogenetic proteins (rhBMP-2) is often utilized (although this is off-label) to create a more favorable interbody fusion environment. Recently, the use of rhBMP-2 has been associated with excessive bone growth in an MIS-TLIF. If this bone growth compresses the neighboring neural structures, patients may present with either new or recurrent radicular pain. Computed tomographic (CT) imaging can demonstrate heterotopic bone growth extending from the disk space into either the ipsilateral neuroforamen or lateral recess, which may result in the compression of the exiting or traversing root, respectively. The purpose of this article and the accompanying video is to demonstrate a technique for defining and resecting rhBMP-2-induced heterotopic bone growth following a previous MIS-TLIF.

  13. Minimally invasive transforaminal lumbar interbody fusion with unilateral pedicle screw fixation: comparison between primary and revision surgery.

    PubMed

    Kang, Moo Sung; Park, Jeong Yoon; Kim, Kyung Hyun; Kuh, Sung Uk; Chin, Dong Kyu; Kim, Keun Su; Cho, Yong Eun

    2014-01-01

    Minimally invasive surgery with a transforaminal lumbar interbody fusion (MIS TLIF) is an important minimally invasive fusion technique for the lumbar spine. Lumbar spine reoperation is challenging and is thought to have greater complication risks. The purpose of this study was to compare MIS TLIF with unilateral screw fixation perioperative results between primary and revision surgeries. This was a prospective study that included 46 patients who underwent MIS TLIF with unilateral pedicle screw. The patients were divided into two groups, primary and revision MIS TLIF, to compare perioperative results and complications. The two groups were similar in age, sex, and level of operation, and were not significantly different in the length of follow-up or clinical results. Although dural tears were more common with the revision group (primary 1; revision 4), operation time, blood loss, total perioperative complication, and fusion rates were not significantly different between the two groups. Both groups showed substantial improvements in VAS and ODI scores one year after surgical treatment. Revision MIS TLIF performed by an experienced surgeon does not necessarily increase the risk of perioperative complication compared with primary surgery. MIS TLIF with unilateral pedicle screw fixation is a valuable option for revision lumbar surgery.

  14. Percutaneous Transforaminal Endoscopic Lumbar Interbody Fusion: Clinical and Radiological Results of Mean 46-Month Follow-Up

    PubMed Central

    Lee, Sang-Ho; Erken, H. Yener

    2017-01-01

    Background. Spinal fusion has been shown to be the preferred surgical option to reduce pain, recover function, and increase quality of life in the treatment of a variety of lumbar spinal disorders. The main goal of the present study is to report our clinical experience and results of percutaneous transforaminal endoscopic lumbar interbody fusion (PELIF) applications using the expandable spacer in a single institution. Methods. We performed a retrospective review of 18 patients with >12-month follow-up who had been operated on PELIF using expandable spacer from 2001 to 2007. Their clinical and radiological data were collected and analyzed. Results. The mean follow-up period was 46 months. The mean DH before the surgery was 8.3 mm which improved to 11.4 mm at the early postoperative period and regressed to 9.3 mm at the last follow-up visit. The VAS-B, VAS-L, and ODI scores at the last follow-up showed a 54%, 72%, and 69% improvement from the preoperative period, respectively. Conclusions. The presented PELIF technique with the expandable spacer seems to be a promising surgical technique for the treatment of a variety of lumbar spinal disorders. Conversely, radiological results including disc space subsidence make the stand-alone application of the expandable spacer debatable. PMID:28337448

  15. Percutaneous Transforaminal Endoscopic Lumbar Interbody Fusion: Clinical and Radiological Results of Mean 46-Month Follow-Up.

    PubMed

    Lee, Sang-Ho; Erken, H Yener; Bae, Junseok

    2017-01-01

    Background. Spinal fusion has been shown to be the preferred surgical option to reduce pain, recover function, and increase quality of life in the treatment of a variety of lumbar spinal disorders. The main goal of the present study is to report our clinical experience and results of percutaneous transforaminal endoscopic lumbar interbody fusion (PELIF) applications using the expandable spacer in a single institution. Methods. We performed a retrospective review of 18 patients with >12-month follow-up who had been operated on PELIF using expandable spacer from 2001 to 2007. Their clinical and radiological data were collected and analyzed. Results. The mean follow-up period was 46 months. The mean DH before the surgery was 8.3 mm which improved to 11.4 mm at the early postoperative period and regressed to 9.3 mm at the last follow-up visit. The VAS-B, VAS-L, and ODI scores at the last follow-up showed a 54%, 72%, and 69% improvement from the preoperative period, respectively. Conclusions. The presented PELIF technique with the expandable spacer seems to be a promising surgical technique for the treatment of a variety of lumbar spinal disorders. Conversely, radiological results including disc space subsidence make the stand-alone application of the expandable spacer debatable.

  16. Miniopen Transforaminal Lumbar Interbody Fusion with Unilateral Fixation: A Comparison between Ipsilateral and Contralateral Reherniation

    PubMed Central

    Liu, Fubing; Jiang, Chun

    2016-01-01

    The aim of this study was to evaluate the risk factors between ipsilateral and contralateral reherniation and to compare the effectiveness of miniopen transforaminal lumbar interbody fusion (TLIF) with unilateral fixation for each group. From November 2007 to December 2014, clinical and radiographic data of each group (ipsilateral or contralateral reherniation) were collected and compared. Functional assessment (Visual Analog Scale (VAS) score and Japanese Orthopaedic Association (JOA)) and radiographic evaluation (fusion status, disc height, lumbar lordosis (LL), and functional spine unit (FSU) angle) were applied to compare surgical effect for each group preoperatively and at final followup. MacNab questionnaire was applied to further evaluate the satisfactory rate after the discectomy and fusion. No difference except pain-free interval was found between ipsilateral and contralateral groups. There was a significant difference in operative time between two groups. No differences were found in clinical and radiographic data for assessment of surgical effect between two groups. The satisfactory rate was decreasing in both groups with time passing after discectomy. Difference in pain-free interval may be a distinction for ipsilateral and contralateral reherniation. Miniopen TLIF with unilateral pedicle screw fixation can be a recommendable way for single level reherniation regardless of ipsilateral or contralateral reherniation. PMID:27885358

  17. Clinical and radiological outcome of anterior–posterior fusion versus transforaminal lumbar interbody fusion for symptomatic disc degeneration: a retrospective comparative study of 133 patients

    PubMed Central

    Schwender, James D.; Safriel, Yair; Gilbert, Thomas J.; Mehbod, Amir A.; Denis, Francis; Transfeldt, Ensor E.; Wroblewski, Jill M.

    2009-01-01

    Abundant data are available for direct anterior/posterior spine fusion (APF) and some for transforaminal lumbar interbody fusion (TLIF), but only few studies from one institution compares the two techniques. One-hundred and thirty-three patients were retrospectively analyzed, 68 having APF and 65 having TLIF. All patients had symptomatic disc degeneration of the lumbar spine. Only those with one or two-level surgeries were included. Clinical chart and radiologic reviews were done, fusion solidity assessed, and functional outcomes determined by pre- and postoperative SF-36 and postoperative Oswestry Disability Index (ODI), and a satisfaction questionnaire. The minimum follow-up was 24 months. The mean operating room time and hospital length of stay were less in the TLIF group. The blood loss was slightly less in the TLIF group (409 vs. 480 cc.). Intra-operative complications were higher in the APF group, mostly due to vein lacerations in the anterior retroperitoneal approach. Postoperative complications were higher in the TLIF group due to graft material extruding against the nerve root or wound drainage. The pseudarthrosis rate was statistically equal (APF 17.6% and TLIF 23.1%) and was higher than most published reports. Significant improvements were noted in both groups for the SF-36 questionnaires. The mean ODI scores at follow-up were 33.5 for the APF and 39.5 for the TLIF group. The patient satisfaction rate was equal for the two groups. PMID:19125304

  18. The Multiple Benefits of Minimally Invasive Spinal Surgery: Results Comparing Transforaminal Lumbar Interbody Fusion and Posterior Lumbar Fusion

    PubMed Central

    Starkweather, Angela R.; Witek-Janusek, Linda; Nockels, Russ P.; Peterson, Jonna; Mathews, Herb L.

    2013-01-01

    Minimally invasive transforaminal lumbar interbody fusion (TLIF) offers equivalent postoperative fusion rates compared to posterior lumbar fusion (PLF) and minimizes the amount of iatrogenic injury to the spinal muscles. The objective of this study was to examine the difference in pain perception, stress, mood disturbance, quality of life, and immunological indices throughout the perioperative course among patients undergoing TLIF and PLF. A prospective, nonrandomized descriptive design was used to evaluate these measures among patients undergoing TLIF (n = 17) or PLF (n = 18) at 1 week prior to surgery (T1), the day of surgery (T2), 24 hours postoperatively (T3), and 6 weeks postoperatively (T4). Among TLIF patients, pain, stress, fatigue, and mood disturbance were significantly decreased at the 6-week follow-up visit (T4) compared to patients who underwent PLF. The TLIF group also demonstrated significantly higher levels (near baseline) of CD8 cells atT4 than the PLF group. Interleukin-6 levels were significantly higher in the TLIF group as well, which may be an indicator of ongoing nerve regeneration and healing. Knowledge concerning the effect of pain and the psychological experience on immunity among individuals undergoing spinal fusion can help nurses tailor interventions to improve outcomes, regardless of the approach used. PMID:18330408

  19. Total 3D Airo® Navigation for Minimally Invasive Transforaminal Lumbar Interbody Fusion

    PubMed Central

    Lian, Xiaofeng; Berlin, Connor; Moriguchi, Yu; Zhang, Qiwei; Härtl, Roger

    2016-01-01

    Introduction. A new generation of iCT scanner, Airo®, has been introduced. The purpose of this study is to describe how Airo facilitates minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF). Method. We used the latest generation of portable iCT in all cases without the assistance of K-wires. We recorded the operation time, number of scans, and pedicle screw accuracy. Results. From January 2015 to December 2015, 33 consecutive patients consisting of 17 men and 16 women underwent single-level or two-level MIS-TLIF operations in our institution. The ages ranged from 23 years to 86 years (mean, 66.6 years). We treated all the cases in MIS fashion. In four cases, a tubular laminectomy at L1/2 was performed at the same time. The average operation time was 192.8 minutes and average time of placement per screw was 2.6 minutes. No additional fluoroscopy was used. Our screw accuracy rate was 98.6%. No complications were encountered. Conclusions. Airo iCT MIS-TLIF can be used for initial planning of the skin incision, precise screw, and cage placement, without the need for fluoroscopy. “Total navigation” (complete intraoperative 3D navigation without fluoroscopy) can be achieved by combining Airo navigation with navigated guide tubes for screw placement. PMID:27529069

  20. Open and Minimally Invasive Transforaminal Lumbar Interbody Fusion: Comparison of Intermediate Results and Complications

    PubMed Central

    Hee, Hwan Tak

    2015-01-01

    Study Design Prospective study. Purpose To compare clinical and radiological outcomes of open vs. minimally invasive transforaminal lumbar interbody fusion (MI-TLIF). Overview of Literature MI-TLIF promises smaller incisions and less soft tissue dissection resulting in lower morbidity and faster recovery; however, it is technically challenging. Methods Twenty-five patients with MI-TLIF were compared with 25 matched open TLIF controls. A minimum 2 year follow-up and a statistical analysis of perioperative and long-term outcomes were performed. Potential complications were recorded. Results The mean ages for the open and MI-TLIF cases were 44.4 years (range, 19-69 years) and 43.6 years (range, 20-69 years), respectively. The male:female ratio was 13:12 for both groups. Average follow-up was 26.9 months for the MI-TLIF group and 29.3 months for the open group. Operative duration was significantly longer in the MI-TLIF group than that in the open group (p<0.05). No differences in estimated blood loss, duration to ambulation, or length of stay were found. Significant improvements in the Oswestry disability index and EQ-5D functional scores were observed at 6-, 12-, and 24-months in both groups, but no significant difference was detected between the groups. Fusion rates were comparable. Cage sizes were significantly smaller in the MI-TLIF group at the L5/S1 level (p<0.05). One patient had residual spinal stenosis at the MI-TLIF level, and one patient who underwent two-level MI-TLIF developed a deep vein thrombosis resulting in a pulmonary embolism. Conclusions MI-TLIF and open TLIF had comparable long-term benefits. Due to technical constraints, patients should be advised on the longer operative time and potential undersizing of cages at the L5S1 level. PMID:25901228

  1. Evaluation of a novel tool for bone graft delivery in minimally invasive transforaminal lumbar interbody fusion

    PubMed Central

    Kleiner, Jeffrey B; Kleiner, Hannah M; Grimberg, E John; Throlson, Stefanie J

    2016-01-01

    Study design Disk material removed (DMR) during L4-5 and L5-S1 transforaminal lumbar interbody fusion (T-LIF) surgery was compared to the corresponding bone graft (BG) volumes inserted at the time of fusion. A novel BG delivery tool (BGDT) was used to apply the BG. In order to establish the percentage of DMR during T-LIF, it was compared to DMR during anterior diskectomy (AD). This study was performed prospectively. Summary of background data Minimal information is available as to the volume of DMR during a T-LIF procedure, and the relationship between DMR and BG delivered is unknown. BG insertion has been empiric and technically challenging. Since the volume of BG applied to the prepared disk space likely impacts the probability of arthrodesis, an investigation is justified. Methods A total of 65 patients with pathology at L4-5 and/or L5-S1 necessitating fusion were treated with a minimally invasive T-LIF procedure. DMR was volumetrically measured during disk space preparation. BG material consisting of local autograft, BG extender, and bone marrow aspirate were mixed to form a slurry. BG slurry was injected into the disk space using a novel BGDT and measured volumetrically. An additional 29 patients who were treated with L5-S1 AD were compared to L5-S1 T-LIF DMR to determine the percent of T-LIF DMR relative to AD. Results DMR volumes averaged 3.6±2.2 mL. This represented 34% of the disk space relative to AD. The amount of BG delivered to the disk spaces was 9.3±3.2 mL, which is 2.6±2.2 times the amount of DMR. The BGDT allowed uncomplicated filling of the disk space in <1 minute. Conclusion The volume of DMR during T-LIF allows for a predictable volume of BG delivery. The BGDT allowed complete filling of the entire prepared disk space. The T-LIF diskectomy debrides 34% of the disk relative to AD. PMID:27274320

  2. Long-Term Objective Physical Activity Measurements using a Wireless Accelerometer Following Minimally Invasive Transforaminal Interbody Fusion Surgery.

    PubMed

    Phan, Kevin; Mobbs, Ralph J

    2016-04-01

    We report on a case of a patient who underwent minimally invasive transforaminal lumbar interbody fusion (mi-TLIF) with objective physical activity measurements performed preoperatively and postoperatively at up to 12-months using wireless accelerometer technology. In the first postoperative month following surgery, the patient had reduced mobility, taking 2,397 steps over a distance of 1.8 km per day. However, the number of steps taken and distance travelled per day had returned to baseline levels by the second postoperative month. At one-year follow-up, the patient averaged 5,095 steps per day in the month over a distance of 3.8 km; this was a 60% improvement in both steps taken and distance travelled compared to the preoperative status. The use of wireless accelerometers is feasible in obtaining objective physical activity measurements before and after lumbar interbody fusion and may be applicable to other related spinal surgeries as well.

  3. Posterolateral instrumented fusion with and without transforaminal lumbar interbody fusion for the treatment of adult isthmic spondylolisthesis: A randomized clinical trial with 2-year follow-up

    PubMed Central

    Etemadifar, Mohammad Reza; Hadi, Abdollah; Masouleh, Mehran Feizi

    2016-01-01

    Background: Spondylolisthesis is a common cause of surgery in patients with lower back pain. Although posterolateral fusion and pedicle screw fixation are a relatively common treatment method for the treatment of spondylolisthesis, controversy exists about the necessity of adding interbody fusion to posterolateral fusion. The aim of our study was to assess the functional disability, pain, and complications in patients with spondylolisthesis treated by posterolateral instrumented fusion (PLF) with and without transforaminal lumbar interbody fusion (TLIF) in a randomized clinical trial. Materials and Methods: From February 2007 to February 2011, 50 adult patients with spondylolisthesis were randomly assigned to be treated with PLF or PLF+TLIF techniques (25 patients in each group) by a single surgeon. Back pain, leg pain, and disability were assessed before treatment and until 2 years after surgical treatment using visual analog scale (VAS) and oswestry disability index (ODI). Patients were also evaluated for postoperative complications such as infection, neurological complications, and instrument failure. Results: All patients completed the 24 months of follow-up. Twenty patients were females and 30 were males. Average age of the patients was 53 ± 11 years for the PLF group and 51 ± 13 for the PLF + TLIF group. Back pain, leg pain, and disability score were significantly improved postoperatively compared to preoperative scores (P < 0.001). At 3 months of follow-up, there was no statistically significant difference in VAS score for back pain and leg pain in both groups; however, after 6 months and 1 year and 2 years follow-up, the reported scores for back pain and leg pain were significantly lower in the PLF+TLIF group (P < 0.05). The ODI score was also significantly lower in the PLF+TLIF group at 1 year and 2 years of follow-up (P < 0.05). One screw breakage and one superficial infection occurred in the PLF+TLIF group, which had no statistical significance (P = 0

  4. Outcome Measures of an Intracanal, Endoscopic Transforaminal Decompression Technique: Initial Findings from the MIS Prospective Registry

    PubMed Central

    Sclafani, Joseph A.; Raiszadeh, Kamshad; Laich, Dan; Shen, Jian; Bennett, Matthew; Blok, Robert; Liang, Kevin

    2015-01-01

    Background Minimally invasive transforaminal endoscopic procedures can achieve spinal decompression through either direct or indirect techniques. Subtle variations in trajectory of the surgical corridor can dictate access to the pathologic tissue. Two general strategies exist: the intradiscal “inside-out” technique and the extradiscal, intracanal (IC) technique. The IC technique utilizes a more lateral transforaminal approach than the intradiscal technique, which allows for a more direct decompression of the spinal canal. Objective This study is an assessment of IC patient outcome data obtained through analysis of a previously validated MIS Prospective Registry. Methods Post-hoc analysis was performed on the MIS Prospective Registry database containing 1032 patients. A subgroup of patients treated with the endoscopic IC technique was identified. Patient outcome measures after treatment of symptomatic disk herniation and neuroforaminal stenosis were evaluated. Results A total of 86 IC patients were analyzed. Overall, there was significant improvement in employment and walking tolerance as soon as 6 weeks post-op as well as significant one year VAS and ODI score improvement. Subanalysis of IC patients with two distinct primary diagnoses was performed. Group IC-1 (disc herniation) showed improvement in ODI and VAS back and leg outcomes at 1 year post-op. Group IC-2 (foraminal stenosis) showed VAS back and leg score improvement at one year post-op but did not demonstrate significant improvement in overall ODI outcome at any time point. The one year re-operation rate was 2% (1/40) for group IC-1 and 28% (5/18) for group IC-2. Conclusions The initial results of the MIS Registry IC subgroup show a significant clinical improvement when the technique is employed to treat patients with lumbar disc herniation. The treatment of foraminal stenosis can lead to improved short-term clinical outcome but is associated with a high re-operation rate at 1 year post-op. PMID

  5. Minimally Invasive Transforaminal Lumbar Interbody Fusion at L5-S1 through a Unilateral Approach: Technical Feasibility and Outcomes

    PubMed Central

    Choi, Won-Suh; Kim, Jin-Sung; Ryu, Kyeong-Sik; Hur, Jung-Woo; Seong, Ji-Hoon

    2016-01-01

    Background. Minimally invasive spinal transforaminal lumbar interbody fusion (MIS-TLIF) at L5-S1 is technically more demanding than it is at other levels because of the anatomical and biomechanical traits. Objective. To determine the clinical and radiological outcomes of MIS-TLIF for treatment of single-level spinal stenosis low-grade isthmic or degenerative spondylolisthesis at L5-S1. Methods. Radiological data and electronic medical records of patients who underwent MIS-TLIF between May 2012 and December 2014 were reviewed. Fusion rate, cage position, disc height (DH), disc angle (DA), disc slope angle, segmental lordotic angle (SLA), lumbar lordotic angle (LLA), and pelvic parameters were assessed. For functional assessment, the visual analogue scale (VAS), Oswestry disability index (ODI), and patient satisfaction rate (PSR) were utilized. Results. A total of 21 levels in 21 patients were studied. DH, DA, SLA, and LLA had increased from their preoperative measures at the final follow-up. Fusion rate was 86.7% (18/21) at 12 months' follow-up. The most common cage position was anteromedial (15/21). The mean VAS scores for back and leg pain mean ODI scores improved significantly at the final follow-up. PSR was 88%. Cage subsidence was observed in 33.3% (7/21). Conclusions. The clinical and radiologic outcomes after MIS-TLIF at L5-S1 in patients with spinal stenosis or spondylolisthesis are generally favorable. PMID:27433472

  6. Comparison of complication rates of minimally invasive transforaminal lumbar interbody fusion and lateral lumbar interbody fusion: a systematic review of the literature.

    PubMed

    Joseph, Jacob R; Smith, Brandon W; La Marca, Frank; Park, Paul

    2015-10-01

    OBJECT Minimally invasive transforaminal lumbar interbody fusion (MI-TLIF) and lateral lumbar interbody fusion (LLIF) are 2 currently popular techniques for lumbar arthrodesis. The authors compare the total risk of each procedure, along with other important complication outcomes. METHODS This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Relevant studies (up to May 2015) that reported complications of either MI-TLIF or LLIF were identified from a search in the PubMed database. The primary outcome was overall risk of complication per patient. Secondary outcomes included risks of sensory deficits, temporary neurological deficit, permanent neurological deficit, intraoperative complications, medical complications, wound complications, hardware failure, subsidence, and reoperation. RESULTS Fifty-four studies were included for analysis of MI-TLIF, and 42 studies were included for analysis of LLIF. Overall, there were 9714 patients (5454 in the MI-TLIF group and 4260 in the LLIF group) with 13,230 levels fused (6040 in the MI-TLIF group and 7190 in the LLIF group). A total of 1045 complications in the MI-TLIF group and 1339 complications in the LLIF group were reported. The total complication rate per patient was 19.2% in the MI-TLIF group and 31.4% in the LLIF group (p < 0.0001). The rate of sensory deficits and temporary neurological deficits, and permanent neurological deficits was 20.16%, 2.22%, and 1.01% for MI-TLIF versus 27.08%, 9.40%, and 2.46% for LLIF, respectively (p < 0.0001, p < 0.0001, p = 0.002, respectively). Rates of intraoperative and wound complications were 3.57% and 1.63% for MI-TLIF compared with 1.93% and 0.80% for LLIF, respectively (p = 0.0003 and p = 0.034, respectively). No significant differences were noted for medical complications or reoperation. CONCLUSIONS While there was a higher overall complication rate with LLIF, MI-TLIF and LLIF both have

  7. Clinical Outcomes of Posterior Lumbar Interbody Fusion versus Minimally Invasive Transforaminal Lumbar Interbody Fusion in Three-Level Degenerative Lumbar Spinal Stenosis

    PubMed Central

    Fan, Guoxin; Wu, Xinbo; Yu, Shunzhi; Sun, Qi; Zhang, Hailong; Gu, Xin

    2016-01-01

    The aim of this study was to directly compare the clinical outcomes of posterior lumbar interbody fusion (PLIF) and minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) in three-level lumbar spinal stenosis. This retrospective study involved a total of 60 patients with three-level degenerative lumbar spinal stenosis who underwent MIS-TLIF or PLIF from January 2010 to February 2012. Back and leg visual analog scale (VAS), Oswestry Disability Index (ODI), and Short Form-36 (SF-36) scale were used to assess the pain, disability, and health status before surgery and postoperatively. In addition, the operating time, estimated blood loss, and hospital stay were also recorded. There were no significant differences in back VAS, leg VAS, ODI, SF-36, fusion condition, and complications at 12-month follow-up between the two groups (P > 0.05). However, significantly less blood loss and shorter hospital stay were observed in MIS-TLIF group (P < 0.05). Moreover, patients undergoing MIS-TLIF had significantly lower back VAS than those in PLIF group at 6-month follow-up (P < 0.05). Compared with PLIF, MIS-TLIF might be a prior option because of noninferior efficacy as well as merits of less blood loss and quicker recovery in treating three-level lumbar spinal stenosis. PMID:27747244

  8. Short-Term Results of Transforaminal Lumbar Interbody Fusion Using Pedicle Screw with Cortical Bone Trajectory Compared with Conventional Trajectory

    PubMed Central

    Miyakoshi, Naohisa; Hongo, Michio; Ishikawa, Yoshinori; Kudo, Daisuke; Shimada, Yoichi

    2015-01-01

    Study Design Case-control study. Purpose To evaluate clinical and radiological results of transforaminal lumbar interbody fusion (TLIF) performed with cortical bone trajectory (CBT) pedicle screw insertion with those of TLIF using 'conventional' or percutaneous pedicle screw insertion. Overview of Literature CBT is a new trajectory for pedicle screw insertion in the lumbar spine; clinical and radiological results of TLIF using pedicle screws inserted with CBT are unclear. Methods In total, 26 patients (11 males, 15 females) were enrolled in this retrospective study and divided into three groups: TLIF with pedicle screw insertion by conventional minimally invasive methods via the Wiltse approach (M-TLIF, n=10), TLIF with percutaneous pedicle screw insertion (P-TLIF, n=6), and TLIF with pedicle screw insertion with CBT (CBT-TLIF, n=10). Surgical results and preand postoperative radiological findings were evaluated and compared. Results Intraoperative blood loss was significantly less with CBT-TLIF (p=0.03) than with M-TLIF. Postoperative lordotic angles did not differ significantly among the three groups. Complete fusions were obtained in 10 of 12 levels (83%) with M-TLIF, in seven levels (100%) with P-TLIF, and in 10 of 11 levels (91%) with CBT-TLIF. On postoperative computed tomography, correct positioning was seen in 84.1% of M-TLIF screws, 88.5% of P-TLIF screws, and 90% of CBT-TLIF screws. Conclusions CBT-TLIF resulted in less blood loss and a shorter operative duration than M-TLIF or P-TLIF. Postoperative rates of bone union, maintenance of lordotic angles, and accuracy of pedicle screw positions were similar among the three groups. PMID:26097661

  9. Comparison of outcomes between minimally invasive transforaminal lumbar interbody fusion and traditional posterior lumbar intervertebral fusion in obese patients with lumbar disk prolapse

    PubMed Central

    Wang, Ya-Peng; An, Ji-Long; Sun, Ya-Peng; Ding, Wen-Yuan; Shen, Yong; Zhang, Wei

    2017-01-01

    Objective The aim of this study was to compare the curative effect between minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) and the posterior lumbar interbody fusion (PLIF) in obese patients with lumbar disk prolapse. Patients and methods In this study, 72 patients who underwent lumbar disk prolapse therapy in the Third Hospital of Hebei Medical University between March 2011 and 2015 were retrospectively analyzed and were divided into two groups, MIS-TLIF group (n=35) and PLIF group (n=37), according to different surgical procedures. Several clinical parameters were compared between these two groups. Results Compared with PLIF, MIS-TLIF was associated with longer operative time, less blood loss, less postoperative drainage and shorter postoperative time in bed; moreover, patients in the MIS-TLIF group had lower levels of serum creatine kinase on 1, 3 and 5 postoperative days. At the 3- and 6-month follow-up, Visual Analog Scale (VAS) scores of low back pain of patients in the MIS-TLIF group were significantly reduced and Japanese Orthopaedic Association (JOA) scores were increased, whereas the Oswestry Disability Index (ODI) showed no significant difference between the two groups. Conclusion Obese patients can achieve good efficacy with MIS-TLIF or PLIF treatment, but MIS-TLIF surgery showed longer operative time, fewer traumas and bleeding volume, less incidence of short-term pain, low complication rate and faster postoperative recovery. PMID:28176906

  10. The use of RhBMP-2 in single-level transforaminal lumbar interbody fusion: a clinical and radiographic analysis

    PubMed Central

    Makda, Junaid; Hong, Joseph; Patel, Ravi; Hilibrand, Alan S.; Anderson, David G.; Vaccaro, Alexander R.; Albert, Todd J.

    2009-01-01

    The “off label” use of rhBMP-2 in the transforaminal lumbar interbody fusion (TLIF) procedure has become increasingly popular. Although several studies have demonstrated the successful use of rhBMP-2 for this indication, uncertainties remain regarding its safety and efficacy. The purpose of this study is to evaluate the clinical and radiographic outcomes of the single-level TLIF procedure using rhBMP-2. Patients who underwent a single-level TLIF between January 2004 and May 2006 with rhBMP-2 were identified. A retrospective evaluation of these patients included operative report(s), pre- and postoperative medical records, and dynamic and static lumbar radiographs. Patient-reported clinical outcome measures were obtained from a telephone questionnaire and included a modification of the Odom’s criteria, a patient satisfaction score, and back and leg pain numeric rating scale scores. Forty-eight patients met the study criteria and were available for follow-up (avg. radiographic and clinical follow-up of 19.4 and 27.4 months, respectively). Radiographic fusion was achieved in 95.8% of patients. Good to excellent results were achieved in 71% of patients. On most recent clinical follow-up, 83% of patients reported improvement in their symptoms and 84% reported satisfaction with their surgery. Twenty-nine patients (60.4%) reported that they still had some back pain, with an average back pain numeric rating score of 2.8. Twenty patients (41.7%) reported that they still had some leg pain, with an average leg pain numeric rating score was 2.4. Thirteen patients (27.1%) had one or more complications, including transient postoperative radiculitis (8/48), vertebral osteolysis (3/48), nonunion (2/48), and symptomatic ectopic bone formation (1/48). The use of rhBMP-2 in the TLIF procedure produces a high rate of fusion, symptomatic improvement and patient satisfaction. Although its use eliminates the risk of harvesting autograft, rhBMP-2 is associated with other

  11. Percutaneous Transforaminal Lumbar Interbody Fusion (pTLIF) with a Posterolateral Approach for the Treatment of Degenerative Disk Disease: Feasibility and Preliminary Results

    PubMed Central

    Morgenstern, Christian

    2015-01-01

    Background Interbody fusion by open discectomy is the usual treatment for degenerative disk disease but requires a relatively long recovery period. The transforaminal posterolateral approach is a well-known standard in endoscopic spine surgery that allows direct access to the disk with progressive tissue dilation. The aim of this study was to assess the feasibility of percutaneous transforaminal interbody fusion (pTLIF) with percutaneous insertion of an expandable or a standard rigid interbody implant for patients with degenerative disk disease with or without spondylolisthesis and for revision surgery with the endoscopic posterolateral approach. Methods Between 2009 and 2014, the pTLIF procedure was performed in 30 patients. Ten patients underwent insertion of a rigid implant (group A) and the remaining 20 underwent insertion of an expandable titanium interbody implant as the initial procedure (n = 10) (group B) or after failed back surgery (n = 10) (group C). Patient outcomes were scored with visual analogic scale (VAS), Oswestry disability index (ODI) and modified Macnab criteria. Results The mean follow-up period was 38 (17) (range 11 to 67) months. The outcome was excellent in 18, good in 10 and fair in 2. No poor results and no major complications were reported. No significant (p<0.05) differences in VAS and ODI scores according to the study group were found. Median postoperative time until hospital discharge was 26 hours (20 to 68 hours). Postoperative values for VAS and ODI scores improved significantly (p<0.05) compared to preoperative data in all study groups. Conclusions These preliminary results have shown the feasibility and efficacy of the pTLIF procedure using a percutaneous posterolateral approach for the treatment of degenerative disk disease with or without spondylolisthesis up to grade 2 and in revision surgery. No significant differences in outcome were observed between an expandable and a rigid cage. Median postoperative time until hospital

  12. Posterior corrective surgery with a multilevel transforaminal lumbar interbody fusion and a rod rotation maneuver for patients with degenerative lumbar kyphoscoliosis.

    PubMed

    Matsumura, Akira; Namikawa, Takashi; Kato, Minori; Ozaki, Tomonori; Hori, Yusuke; Hidaka, Noriaki; Nakamura, Hiroaki

    2017-02-01

    The purpose of this study was to assess the clinical results of posterior corrective surgery using a multilevel transforaminal lumbar interbody fusion (TLIF) with a rod rotation (RR) and to evaluate the segmental corrective effect of a TLIF using CT imaging. The medical records of 15 consecutive patients with degenerative lumbar kyphoscoliosis (DLKS) who had undergone posterior spinal corrective surgery using a multilevel TLIF with an RR technique and who had a minimum follow-up of 2 years were retrospectively reviewed. Radiographic parameters were evaluated using plain radiographs, and segmental correction was evaluated using CT imaging. Clinical outcomes were evaluated with the Scoliosis Research Society Patient Questionnaire-22 (SRS-22) and the SF-36. The mean follow-up period was 46.7 months, and the mean age at the time of surgery was 60.7 years. The mean total SRS-22 score was 2.9 before surgery and significantly improved to 4.0 at the latest follow-up. The physical functioning, role functioning (physical), and social functioning subcategories of the SF-36 were generally improved at the latest follow-up, although the changes in these scores were not statistically significant. The bodily pain, vitality, and mental health subcategories were significantly improved at the latest follow-up (p < 0.05). Three complications occurred in 3 patients (20%). The Cobb angle of the lumbar curve was reduced to 20.3° after surgery. The overall correction rate was 66.4%. The pelvic incidence-lumbar lordosis (preoperative/postoperative = 31.5°/4.3°), pelvic tilt (29.2°/18.9°), and sagittal vertical axis (78.3/27.6 mm) were improved after surgery and remained so throughout the follow-up. Computed tomography image analysis suggested that a 1-level TLIF can result in 10.9° of scoliosis correction and 6.8° of lordosis. Posterior corrective surgery using a multilevel TLIF with an RR on patients with DLKS can provide effective correction in the coronal plane but allows only

  13. Efficacy of Transforaminal Endoscopic Spine System (TESSYS) Technique in Treating Lumbar Disc Herniation.

    PubMed

    Pan, Zhimin; Ha, Yoon; Yi, Seong; Cao, Kai

    2016-02-18

    BACKGROUND To compare efficacy and safety of percutaneous transforaminal endoscopic spine system (TESSYS) and traditional fenestration discectomy (FD) in treatment of lumbar disc herniation (LDH). MATERIAL AND METHODS A total of 106 LDH patients were divided into TESSYS group (n=48) and FD group (n=58). Visual analogue scale (VAS), Oswestry disability index (ODI), Japanese Orthopedic Association (JOA), and modified MacNab criteria were used for efficacy evaluation. Post-operative responses were compared by enzyme-linked immunosorbent assay (ELISA) based on detection of serum IL-6, CRP, and CPK levels. RESULTS In the TESSYS group, compared with the FD group, we observed, shorter incision length, less blood loss, shorter hospital stay, lower hospitalization cost, shorter recovery time, lower complication rate (all P<0.001), and lower VAS scores of lumbago and skelalgia at 3 days and 1, 3, and 6 months postoperatively (all P<0.05). At 24 and 48 h postoperatively, CRP level was remarkably higher in the FD group compared to the TESSYS group (P<0.001). Further, comparison of IL-6 levels at 6, 12, 24, and 48 h postoperatively revealed significantly higher levels in the FD group than in the FESSYS group (all P<0.001). CONCLUSIONS TESSYS had clinical advantages over FD and entails less trauma and quicker postoperative recovery, suggesting that TESSYS is well tolerated by patients and is a better approach than FD in surgical treatment of LDH.

  14. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF

    PubMed Central

    Phan, Kevin; Malham, Greg; Seex, Kevin; Rao, Prashanth J.

    2015-01-01

    Degenerative disc and facet joint disease of the lumbar spine is common in the ageing population, and is one of the most frequent causes of disability. Lumbar spondylosis may result in mechanical back pain, radicular and claudicant symptoms, reduced mobility and poor quality of life. Surgical interbody fusion of degenerative levels is an effective treatment option to stabilize the painful motion segment, and may provide indirect decompression of the neural elements, restore lordosis and correct deformity. The surgical options for interbody fusion of the lumbar spine include: posterior lumbar interbody fusion (PLIF), transforaminal lumbar interbody fusion (TLIF), minimally invasive transforaminal lumbar interbody fusion (MI-TLIF), oblique lumbar interbody fusion/anterior to psoas (OLIF/ATP), lateral lumbar interbody fusion (LLIF) and anterior lumbar interbody fusion (ALIF). The indications may include: discogenic/facetogenic low back pain, neurogenic claudication, radiculopathy due to foraminal stenosis, lumbar degenerative spinal deformity including symptomatic spondylolisthesis and degenerative scoliosis. In general, traditional posterior approaches are frequently used with acceptable fusion rates and low complication rates, however they are limited by thecal sac and nerve root retraction, along with iatrogenic injury to the paraspinal musculature and disruption of the posterior tension band. Minimally invasive (MIS) posterior approaches have evolved in an attempt to reduce approach related complications. Anterior approaches avoid the spinal canal, cauda equina and nerve roots, however have issues with approach related abdominal and vascular complications. In addition, lateral and OLIF techniques have potential risks to the lumbar plexus and psoas muscle. The present study aims firstly to comprehensively review the available literature and evidence for different lumbar interbody fusion (LIF) techniques. Secondly, we propose a set of recommendations and guidelines

  15. Quality-of-Life Outcomes With Minimally Invasive Transforaminal Lumbar Interbody Fusion Based on Long-Term Analysis of 304 Consecutive Patients

    PubMed Central

    Hussain, Namath S.; White, G. Zachary; Begun, Evan M.; Collins, Robert A.; Fahim, Daniel K.; Hiremath, Girish K.; Adbi, Fadumo M.; Yacob, Sammy A.

    2014-01-01

    Study Design. This was a prospective clinical study that took place in an outpatient spine clinic. Objective. To demonstrate the short-/long-term outcomes from a large cohort of patients undergoing minimally invasive transforaminal lumbar interbody fusion (MITLIF). Summary of Background Data. Long-term prospective outcomes in patients undergoing minimally invasive spinal fusion for debilitating back pain has not been well studied. Methods. Presenting diagnosis was determined from clinical findings and radiographical (radiograph, magnetic resonance image, computed tomographic scan) evaluations preoperatively. Patients were assessed with outcome measures preoperatively, and postoperatively at 2 weeks, 3 months, 6 months, 12 months, 24 months, and annually 2 to 7 years (mean follow-up: 47 mo) final follow-up. The rate of postoperative complications and reoperations at the initial level of MITLIF and adjacent level(s) were followed. Fusion rates were assessed blinded and independently by radiograph. Results. Visual analogue scale scores decreased significantly from 7.0 preoperatively to 3.5 at mean 47-month follow-up. Oswestry Disability Index scores declined from 43.1 preoperatively to 28.2 at mean 47-month follow-up. Short-Form 36 mental component scores increased from 43.8 preoperatively to 49.7 at 47-month follow-up. Short-Form 36 physical component scores increased from 30.6 preoperatively to 39.6 at 47-month follow-up (P < 0.05). Conclusion. This prospectively collected outcomes study shows long-term statistically significant clinical outcomes improvement after MITLIF in patients with clinically symptomatic spondylolisthesis and degenerative disc disease with or without stenosis. MITLIF resulted in a high rate of spinal fusion and very low rate of interbody fusion failure and/or adjacent segment disease requiring reoperation while reducing postoperative complications. Level of Evidence: 3 PMID:24150437

  16. Microendoscopy-assisted minimally invasive transforaminal lumbar interbody fusion for lumbar degenerative disease: short-term and medium-term outcomes

    PubMed Central

    Yang, Yang; Liu, Bin; Rong, Li-Min; Chen, Rui-Qiang; Dong, Jian-Wen; Xie, Pei-Gen; Zhang, Liang-Ming; Feng, Feng

    2015-01-01

    Objective: To evaluate short-term and medium-term outcomes of microendoscopy-assisted minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) and open TLIF for lumbar degenerative disease. Methods: In this prospective, randomized control study, 50 cases received microendoscopy-assisted MIS-TLIF (MIS group), while another well-matched 50 cases accepted open TLIF (open group). Parameters between both groups, including surgical duration, intraoperative blood loss and radiologic exposure, postoperative analgesic usage and ambulatory time, visual analogue scale (VAS) for back and leg, functional scores, self-evaluation of surgical outcome (modified MacNab criteria), interbody fusion rate, adjacent segment degeneration (ASD) rate, as well as complication incidence were compared at 1 month and 24 months postoperatively. Results: Intraoperative blood loss and postoperative analgesic usage were significantly reduced in MIS group (P<0.05). Patients undergoing microendoscopy-assisted MIS-TLIF were able to ambulate earlier postoperatively than those receiving open TLIF (P<0.05). However, it showed prolonged surgical duration and enhanced radiologic exposure in MIS group (P<0.05). At 1 month postoperatively, MIS group was associated with more improvement of VAS and functional scores compared with open group (P<0.05). While at 24 months postoperatively, both groups revealed similar VAS and functional scores (P>0.05). Excellent and perfect scale rating by modified MacNab criteria, interbody fusion rate, ASD rate and complication incidence between both groups were nearly the same (P>0.05). Conclusions: Microendoscopy-assisted MIS-TLIF owns advantages of less iatrogenic injury, decreased blood loss, reduced analgesic usage and earlier rehabilitation, while it has drawbacks of more surgical duration and radiologic exposure. It is superior than open TLIF in terms of short-term clinical outcomes and has similar medium-term clinical outcomes. PMID:26885072

  17. Dynamic stabilization for L4-5 spondylolisthesis: comparison with minimally invasive transforaminal lumbar interbody fusion with more than 2 years of follow-up.

    PubMed

    Kuo, Chao-Hung; Chang, Peng-Yuan; Wu, Jau-Ching; Chang, Hsuan-Kan; Fay, Li-Yu; Tu, Tsung-Hsi; Cheng, Henrich; Huang, Wen-Cheng

    2016-01-01

    OBJECTIVE In the past decade, dynamic stabilization has been an emerging option of surgical treatment for lumbar spondylosis. However, the application of this dynamic construct for mild spondylolisthesis and its clinical outcomes remain uncertain. This study aimed to compare the outcomes of Dynesys dynamic stabilization (DDS) with minimally invasive transforaminal lumbar interbody fusion (MI-TLIF) for the management of single-level spondylolisthesis at L4-5. METHODS This study retrospectively reviewed 91 consecutive patients with Meyerding Grade I spondylolisthesis at L4-5 who were managed with surgery. Patients were divided into 2 groups: DDS and MI-TLIF. The DDS group was composed of patients who underwent standard laminectomy and the DDS system. The MI-TLIF group was composed of patients who underwent MI-TLIF. Clinical outcomes were evaluated by visual analog scale for back and leg pain, Oswestry Disability Index, and Japanese Orthopaedic Association scores at each time point of evaluation. Evaluations included radiographs and CT scans for every patient for 2 years after surgery. RESULTS A total of 86 patients with L4-5 spondylolisthesis completed the follow-up of more than 2 years and were included in the analysis (follow-up rate of 94.5%). There were 64 patients in the DDS group and 22 patients in the MI-TLIF group, and the overall mean follow-up was 32.7 months. Between the 2 groups, there were no differences in demographic data (e.g., age, sex, and body mass index) or preoperative clinical evaluations (e.g., visual analog scale back and leg pain, Oswestry Disability Index, and Japanese Orthopaedic Association scores). The mean estimated blood loss of the MI-TLIF group was lower, whereas the operation time was longer compared with the DDS group (both p < 0.001). For both groups, clinical outcomes were significantly improved at 6, 12, 18, and 24 months after surgery compared with preoperative clinical status. Moreover, there were no differences between the 2

  18. Combined transforaminal lumbar interbody fusion with posterolateral instrumented fusion for degenerative disc disease can be a safe and effective treatment for lower back pain

    PubMed Central

    Deukmedjian, Ara J; Cianciabella, Augusto J; Cutright, Jason; Deukmedjian, Arias

    2015-01-01

    Background: Lumbar fusion is a proven treatment for chronic lower back pain (LBP) in the setting of symptomatic spondylolisthesis and degenerative scoliosis; however, fusion is controversial when the primary diagnosis is degenerative disc disease (DDD). Our objective was to evaluate the safety and effectiveness of lumbar fusion in the treatment of LBP due to DDD. Materials and Methods: Two-hundred and five consecutive patients with single or multi-level DDD underwent lumbar decompression and instrumented fusion for the treatment of chronic LBP between the years of 2008 and 2011. The primary outcome measures in this study were back and leg pain visual analogue scale (VAS), patient reported % resolution of preoperative back pain and leg pain, reoperation rate, perioperative complications, blood loss and hospital length of stay (LOS). Results: The average resolution of preoperative back pain per patient was 84% (n = 205) while the average resolution of preoperative leg pain was 90% (n = 190) while a mean follow-up period of 528 days (1.5 years). Average VAS for combined back and leg pain significantly improved from a preoperative value of 9.0 to a postoperative value of 1.1 (P ≤ 0.0001), a change of 7.9 points for the cohort. The average number of lumbar disc levels fused per patient was 2.3 (range 1-4). Median postoperative LOS in the hospital was 1.2 days. Average blood loss was 108 ml perfused level. Complications occurred in 5% of patients (n = 11) and the rate of reoperation for symptomatic adjacent segment disease was 2% (n = 4). Complications included reoperation at index level for symptomatic pseudoarthrosis with hardware failure (n = 3); surgical site infection (n = 7); repair of cerebrospinal fluid leak (n = 1), and one patient death at home 3 days after discharge. Conclusion: Lumbar fusion for symptomatic DDD can be a safe and effective treatment for medically refractory LBP with or without leg pain. PMID:26692696

  19. Surgical techniques for lumbo-sacral fusion.

    PubMed

    Tropiano, P; Giorgi, H; Faure, A; Blondel, B

    2017-02-01

    Lumbo-sacral (L5-S1) fusion is a widely performed procedure that has become the reference standard treatment for refractory low back pain. L5-S1 is a complex transition zone between the mobile lordotic distal lumbar spine and the fixed sacral region. The goal is to immobilise the lumbo-sacral junction in order to relieve pain originating from this site. Apart from achieving inter-vertebral fusion, the main challenge lies in the preoperative determination of the fixed L5-S1 position that will be optimal for the patient. Many lumbo-sacral fusion techniques are available. Stabilisation can be achieved using various methods. An anterior, posterior, or combined approach may be used. Recently developed minimally invasive techniques are gaining in popularity based on their good clinical outcomes and high fusion rates. The objective of this conference is to resolve the main issues faced by spinal surgeons in their everyday practice.

  20. [Non fusion techniques in spinal surgery].

    PubMed

    Schizas, C; Duff, J M; Tessitore, E; Faundez, A

    2009-12-16

    In order to prevent adjacent segment degeneration following spinal fusion new techniques are being used. Lumbar disc arthroplasty yields mid term results equivalent to those of spinal fusion. Cervical disc arthroplasty is indicated in the treatment of cervicobrachialgia with encouraging initial results. The ability of arthroplasty to prevent adjacent segment degeneration has yet to be proven. Although dynamic stabilization had not been proven effective in treating chronic low back pain, it might be useful following decompression of lumbar spinal stenosis in degenerative spondylolisthesis. Interspinal devices are useful in mild lumbar spinal stenosis but their efficacy in treating low back pain is yet to be proven. Confronted with a growing number of new technologies clinicians should remain critical while awaiting long term results.

  1. Pneumocephalus during cervical transforaminal epidural steroid injections: a case report.

    PubMed

    Kim, Won-Joong; Park, Hae-Gyun; Park, Yong-Hee; Shin, Mee-Ran; Koo, Gill-Hoi; Shin, Hwa-Yong

    2015-01-01

    A cervical transforaminal epidural injection of anesthetic and corticosteroids (CTFESI) is a frequently used procedure for cervical radiculopathy. Most cases of pneumocephalus after an epidural block occur when using an interlaminar approach with the loss-of-resistance technique. The authors present the first case of pneumocephalus after cervical transforaminal epidural injection of anesthetic and corticosteroids. A 64-yr-old woman with left C7 radiculopathy was undergoing C6-7 transforaminal epidural injection of anesthetic and corticosteroids. The epidural spread of contrast was checked by fluoroscope, and 5 mg of dexamethasone in 4 ml of 0.1875% ropivacaine was injected. She lost consciousness 5 mins after the procedure and regained awareness after manual ventilation. She subsequently complained of nausea and headache, and a computed tomography brain scan revealed pneumocephalus. After carefully assessing the fluoroscopic images, the authors believe that the needle may have punctured the dura mater of the nerve root sleeve, allowing air to enter the subdural space. Thus, fluoroscopic images should be carefully examined to reduce dural puncture when performing cervical transforaminal epidural injection of anesthetic and corticosteroids, and air should be completely removed from the needle, extension tube, and syringe.

  2. Hybrid ultrasound imaging techniques (fusion imaging).

    PubMed

    Sandulescu, Daniela Larisa; Dumitrescu, Daniela; Rogoveanu, Ion; Saftoiu, Adrian

    2011-01-07

    Visualization of tumor angiogenesis can facilitate non-invasive evaluation of tumor vascular characteristics to supplement the conventional diagnostic imaging goals of depicting tumor location, size, and morphology. Hybrid imaging techniques combine anatomic [ultrasound, computed tomography (CT), and/or magnetic resonance imaging (MRI)] and molecular (single photon emission CT and positron emission tomography) imaging modalities. One example is real-time virtual sonography, which combines ultrasound (grayscale, colour Doppler, or dynamic contrast harmonic imaging) with contrast-enhanced CT/MRI. The benefits of fusion imaging include an increased diagnostic confidence, direct comparison of the lesions using different imaging modalities, more precise monitoring of interventional procedures, and reduced radiation exposure.

  3. A review of data fusion techniques.

    PubMed

    Castanedo, Federico

    2013-01-01

    The integration of data and knowledge from several sources is known as data fusion. This paper summarizes the state of the data fusion field and describes the most relevant studies. We first enumerate and explain different classification schemes for data fusion. Then, the most common algorithms are reviewed. These methods and algorithms are presented using three different categories: (i) data association, (ii) state estimation, and (iii) decision fusion.

  4. A Review of Data Fusion Techniques

    PubMed Central

    2013-01-01

    The integration of data and knowledge from several sources is known as data fusion. This paper summarizes the state of the data fusion field and describes the most relevant studies. We first enumerate and explain different classification schemes for data fusion. Then, the most common algorithms are reviewed. These methods and algorithms are presented using three different categories: (i) data association, (ii) state estimation, and (iii) decision fusion. PMID:24288502

  5. The “inside out” transforaminal technique to treat lumbar spinal pain in an awake and aware patient under local anesthesia: results and a review of the literature

    PubMed Central

    Gore, Satishchandra

    2014-01-01

    Surgical management of back and leg pain is evolving and changing due to a better understanding of the patho-anatomy well correlated with its pathophysiology. Pain is better understood with in vivo visualization and probing of the pain generators using an endoscopic access rather than just relying on symptoms diagram and image correlation. This has resulted in a shared decision making involving patient and surgeon, focused on a broader spectrum of surgical as well as non-surgical treatments, and not just masking the pain generator. It has moved away from decisions based on diagnostic images alone, that, while noting the image alterations, cannot explain the pain experienced by each individual as images do not always show variations in nerve supply and patho-anatomy. The ability to isolate and visualize “pain” generators in the foramen and treating persistent pain by visualizing inflammation and compression of nerves, serves as the basis for transforaminal endoscopic (TFE) surgery. This has also resulted in better pre surgical planning with more specific and defined goals in mind. The “Inside out” philosophy of TFE surgery is safe and precise. It provides basic access to the disc and foramen to cover a large spectrum of painful pathologies. PMID:25694940

  6. First fusion proton measurements in TEXTOR plasmas using activation technique

    SciTech Connect

    Bonheure, G.; Wassenhove, G. Van; Mlynar, J.; Hult, M.; Gonzalez de Orduna, R.; Lutter, G.; Vermaercke, P.; Huber, A.; Schweer, B.; Esser, G.; Biel, W.

    2012-10-15

    MeV particle loss measurements from fusion plasmas, in particular alpha particles, remain difficult in large fusion devices and further R and D is needed for ITER. This paper describes the first attempt to measure 3 MeV escaping fusion protons emitted from TEXTOR tokamak plasmas using activation technique. This technique was successfully demonstrated, initially, in 2006 on the JET tokamak. An ion camera equipped with a collimator and several types of activation detectors was installed inside the TEXTOR vacuum vessel to perform these measurements. After irradiation, the detectors were analyzed using ultra low level gamma-ray spectrometry at the HADES underground laboratory. 3 MeV escaping fusion protons were detected in larger number -{approx}6 times more - compared to earlier measurements using this technique on JET. Another major progress was the reduction of the cooling time by a factor of 50, which made possible to detect radionuclides with half-life of less than 90 min.

  7. First fusion proton measurements in TEXTOR plasmas using activation technique.

    PubMed

    Bonheure, G; Mlynar, J; Van Wassenhove, G; Hult, M; González de Orduña, R; Lutter, G; Vermaercke, P; Huber, A; Schweer, B; Esser, G; Biel, W

    2012-10-01

    MeV particle loss measurements from fusion plasmas, in particular alpha particles, remain difficult in large fusion devices and further R&D is needed for ITER. This paper describes the first attempt to measure 3 MeV escaping fusion protons emitted from TEXTOR tokamak plasmas using activation technique. This technique was successfully demonstrated, initially, in 2006 on the JET tokamak. An ion camera equipped with a collimator and several types of activation detectors was installed inside the TEXTOR vacuum vessel to perform these measurements. After irradiation, the detectors were analyzed using ultra low level gamma-ray spectrometry at the HADES underground laboratory. 3 MeV escaping fusion protons were detected in larger number -~6 times more--compared to earlier measurements using this technique on JET. Another major progress was the reduction of the cooling time by a factor of 50, which made possible to detect radionuclides with half-life of less than 90 min.

  8. Comparison of ALIF vs. XLIF for L4/5 interbody fusion: pros, cons, and literature review

    PubMed Central

    Gambhir, Shanu

    2016-01-01

    The incidence of lumbar fusion for the treatment of various degenerative lumbar spine diseases has increased dramatically over the last twenty years. Many lumbar fusion techniques have been developed and popularized, each with its own advantages and disadvantages. Anterior lumbar interbody fusion (ALIF) initially introduced in the 1930’s, has become a common and widely accepted technique for lumbar fusions over the last decade offering several advantages over standard posterior lumbar interbody fusion (PLIF) or transforaminal lumbar interbody fusion (TLIF). More recently, the lateral trans-psoas approach termed extreme, direct or lateral lumbar interbody fusion (XLIF, DLIF, LLIF) is gaining widespread popularity. The aim of this paper is to compare the approaches, advantages and disadvantages of ALIF and XLIF for L4/5 interbody fusion based on relevant literature. PMID:27683688

  9. Transforaminal full-endoscopic lumbar discectomy in obese patients

    PubMed Central

    Bae, Jun Seok

    2016-01-01

    Background Obese patients are at risk of complications such as slower wound healing and increased infection rates after spinal surgery. Transforaminal full-endoscopic lumbar discectomy (ELD) has advantages over conventional microdiscectomy because it decreases perioperative complications and increases favorable clinical outcomes. No clinical studies have reported ELD in obese patients. The purpose of this study is to evaluate the clinical outcomes of transforaminal ELD in obese patients Methods Obesity is defined as a body mass index (BMI) of more than 30 kg/m2. Our study included 21 obese patients and 27 normal BMI patients treated by posterolateral transforaminal ELD for radiating pain caused by a single-level lumbar disc herniation with more than 2 years of follow-up. Clinical chart reviews and telephone surveys were conducted. Clinical and functional outcomes using VAS and ODI, perioperative complications, and reherniation were evaluated. Results Overall clinical and functional outcomes were improved during postoperative follow-up evaluation. There were no immediate perioperative complications, such as infection or durotomy in both groups. In obese group, three patients had late reherniations. Of these, 2 patients had tolerable pain and showed good recovery with conservative treatment; 1 patient who had undergone ELD for recurrent disc herniation underwent open microdiscectomy. In control group, two patients had early reherniation and underwent open microdiscectomy and one patient with late reherniation showed good recovery with conservative treatment. Conclusion In select cases, ELD is an effective, safe, and minimally invasive technique for obese patients. It decreases perioperative morbidity and allows for both early mobilization and early return to work. Level of Evidence: level 3b. PMID:27441176

  10. Comparison of additive image fusion vs. feature-level image fusion techniques for enhanced night driving

    NASA Astrophysics Data System (ADS)

    Bender, Edward J.; Reese, Colin E.; Van Der Wal, Gooitzen S.

    2003-02-01

    The Night Vision & Electronic Sensors Directorate (NVESD) has conducted a series of image fusion evaluations under the Head-Tracked Vision System (HTVS) program. The HTVS is a driving system for both wheeled and tracked military vehicles, wherein dual-waveband sensors are directed in a more natural head-slewed imaging mode. The HTVS consists of thermal and image-intensified TV sensors, a high-speed gimbal, a head-mounted display, and a head tracker. A series of NVESD field tests over the past two years has investigated the degree to which additive (A+B) image fusion of these sensors enhances overall driving performance. Additive fusion employs a single (but user adjustable) fractional weighting for all the features of each sensor's image. More recently, NVESD and Sarnoff Corporation have begun a cooperative effort to evaluate and refine Sarnoff's "feature-level" multi-resolution (pyramid) algorithms for image fusion. This approach employs digital processing techniques to select at each image point only the sensor with the strongest features, and to utilize only those features to reconstruct the fused video image. This selection process is performed simultaneously at multiple scales of the image, which are combined to form the reconstructed fused image. All image fusion techniques attempt to combine the "best of both sensors" in a single image. Typically, thermal sensors are better for detecting military threats and targets, while image-intensified sensors provide more natural scene cues and detect cultural lighting. This investigation will address the differences between additive fusion and feature-level image fusion techniques for enhancing the driver's overall situational awareness.

  11. A novel technique using hydrophilic polymers to promote axonal fusion.

    PubMed

    Bamba, Ravinder; Riley, D Colton; Kelm, Nathaniel D; Does, Mark D; Dortch, Richard D; Thayer, Wesley P

    2016-04-01

    The management of traumatic peripheral nerve injury remains a considerable concern for clinicians. With minimal innovations in surgical technique and a limited number of specialists trained to treat peripheral nerve injury, outcomes of surgical intervention have been unpredictable. The inability to manipulate the pathophysiology of nerve injury (i.e., Wallerian degeneration) has left scientists and clinicians depending on the slow and lengthy process of axonal regeneration (~1 mm/day). When axons are severed, the endings undergo calcium-mediated plasmalemmal sealing, which limits the ability of the axon to be primarily repaired. Polythethylene glycol (PEG) in combination with a bioengineered process overcomes the inability to fuse axons. The mechanism for PEG axonal fusion is not clearly understood, but multiple studies have shown that a providing a calcium-free environment is essential to the process known as PEG fusion. The proposed mechanism is PEG-induced lipid bilayer fusion by removing the hydration barrier surrounding the axolemma and reducing the activation energy required for membrane fusion to occur. This review highlights PEG fusion, its past and current studies, and future directions in PEG fusion.

  12. Gabor-based fusion technique for Optical Coherence Microscopy.

    PubMed

    Rolland, Jannick P; Meemon, Panomsak; Murali, Supraja; Thompson, Kevin P; Lee, Kye-sung

    2010-02-15

    We recently reported on an Optical Coherence Microscopy technique, whose innovation intrinsically builds on a recently reported - 2 microm invariant lateral resolution by design throughout a 2 mm cubic full-field of view - liquid-lens-based dynamic focusing optical probe [Murali et al., Optics Letters 34, 145-147, 2009]. We shall report in this paper on the image acquisition enabled by this optical probe when combined with an automatic data fusion method developed and described here to produce an in-focus high resolution image throughout the imaging depth of the sample. An African frog tadpole (Xenopus laevis) was imaged with the novel probe and the Gabor-based fusion technique, demonstrating subcellular resolution in a 0.5 mm (lateral) x 0.5 mm (axial) without the need, for the first time, for x-y translation stages, depth scanning, high-cost adaptive optics, or manual intervention. In vivo images of human skin are also presented.

  13. Review of early clinical results and complications associated with oblique lumbar interbody fusion (OLIF).

    PubMed

    Phan, Kevin; Maharaj, Monish; Assem, Yusuf; Mobbs, Ralph J

    2016-09-01

    Lumbar interbody fusion represents an effective surgical intervention for patients with lumbar degenerative diseases, spondylolisthesis, disc herniation, pseudoarthrosis and spinal deformities. Traditionally, conventional open anterior lumbar interbody fusion and posterior/transforaminal lumbar interbody fusion techniques have been employed with excellent results, but each with their own advantages and caveats. Most recently, the antero-oblique trajectory has been introduced, providing yet another corridor to access the lumbar spine. Termed the oblique lumbar interbody fusion, this approach accesses the spine between the anterior vessels and psoas muscles, avoiding both sets of structures to allow efficient clearance of the disc space and application of a large interbody device to afford distraction for foraminal decompression and endplate preparation for rapid and thorough fusion. This review aims to summarize the early clinical results and complications of this new technique and discusses potential future directions of research.

  14. Multiexpandable cage for minimally invasive posterior lumbar interbody fusion

    PubMed Central

    Coe, Jeffrey D; Zucherman, James F; Kucharzyk, Donald W; Poelstra, Kornelis A; Miller, Larry E; Kunwar, Sandeep

    2016-01-01

    The increasing adoption of minimally invasive techniques for spine surgery in recent years has led to significant advancements in instrumentation for lumbar interbody fusion. Percutaneous pedicle screw fixation is now a mature technology, but the role of expandable cages is still evolving. The capability to deliver a multiexpandable interbody cage with a large footprint through a narrow surgical cannula represents a significant advancement in spinal surgery technology. The purpose of this report is to describe a multiexpandable lumbar interbody fusion cage, including implant characteristics, intended use, surgical technique, preclinical testing, and early clinical experience. Results to date suggest that the multiexpandable cage allows a less invasive approach to posterior/transforaminal lumbar interbody fusion surgery by minimizing iatrogenic risks associated with static or vertically expanding interbody prostheses while providing immediate vertebral height restoration, restoration of anatomic alignment, and excellent early-term clinical results. PMID:27729817

  15. The SIGN nail for knee fusion: technique and clinical results

    PubMed Central

    Anderson, Duane Ray; Anderson, Lucas Aaron; Haller, Justin M.; Feyissa, Abebe Chala

    2016-01-01

    Purpose: Evaluate the efficacy of using the SIGN nail for instrumented knee fusion. Methods: Six consecutive patients (seven knees, three males) with an average age of 30.5 years (range, 18–50 years) underwent a knee arthrodesis with SIGN nail (mean follow-up 10.7 months; range, 8–14 months). Diagnoses included tuberculosis (two knees), congenital knee dislocation in two knees (one patient), bacterial septic arthritis (one knee), malunited spontaneous fusion (one knee), and severe gout with 90° flexion contracture (one knee). The nail was inserted through an anteromedial entry point on the femur and full weightbearing was permitted immediately. Results: All knees had clinical and radiographic evidence of fusion at final follow-up and none required further surgery. Four of six patients ambulated without assistive device, and all patients reported improved overall physical function. There were no post-operative complications. Conclusion: The technique described utilizing the SIGN nail is both safe and effective for knee arthrodesis and useful for austere environments with limited fluoroscopy and implant options. PMID:27163095

  16. Verification of Ultrasonic Image Fusion Technique for Laparoscopic Surgery

    NASA Astrophysics Data System (ADS)

    Zenbutsu, Satoki; Igarashi, Tatsuo; Mamou, Jonathan; Yamaguchi, Tadashi

    2012-07-01

    Laparoscopic surgery is one of the most challenging surgical operations, because inside information about the target organ cannot be fully understood from the laparoscopic image. Therefore, a fusion technique of laparoscopic and ultrasonic images is proposed for guidance during laparoscopic surgery. The proposed technique can display the internal organ structure by overlaying a three-dimensional (3D) ultrasonic image over a 3D laparoscopic image, which is acquired using a stereo laparoscope. The registration of the 3D images is performed by registering the surface of the target organ, which is found in the two 3D images without requiring the use of an external position detecting device. The proposed technique was evaluated experimentally using a tissue-mimicking phantom. Results obtained led to registration accuracy better than 2 cm. The total computation time was 3.1 min on a personal computer (Xeon processor, 3 GHz CPU). The structural information permits the visualization of target organs during laparoscopic surgery.

  17. Effervescence Assisted Fusion Technique to Enhance the Solubility of Drugs.

    PubMed

    Alam, Mohd Aftab; Al-Jenoobi, Fahad I; Al-Mohizea, Abdullah M; Ali, Raisuddin

    2015-12-01

    The solubility of five poorly soluble drugs was enhanced by using an effervescence assisted solid dispersion (EASD) technique. EASDs were prepared by using modified fusion method. Drug and hydrophilic carrier were melted, and in this molten mixture, effervescence was generated by adding effervescence couple comprising organic acid (citric acid) and carbonic base (sodium bicarbonate). Solubility of drug powders, solid dispersions, and EASDs was determined at 25°C using shake flask method. Atorvastatin calcium, cefuroxime axetil, clotrimazole, ketoconazole, and metronidazole benzoate were estimated using a spectrophotometer at 246, 280, 260, 230, and 232 nm (λ max), respectively. Solubility of atorvastatin calcium (from 100 to 345 μg/ml), cefuroxime axetil (from 441 to 1948 μg/ml), clotrimazole (from 63 to 677 μg/ml), ketoconazole (from 16 to 500 μg/ml), and metronidazole benzoate (from 112 to 208 μg/ml) in EASDs was enhanced by 3.45-, 4.4-, 10.7-, 31.2-, and 1.8-fold, respectively. Scanning electron micrographs of drug powder, solid dispersion, and EASDs were compared. Scanning electron micrographs of EASDs showed a uniform distribution of drug particles in the carrier matrix. Morphology (size and shape) of cefuroxime axetil particles was altered in solid dispersion as well as in EASD. EASDs showed better solubility enhancement than conventional solid dispersions. The present technique is better suitable for drugs having a low melting point or melt without charring. Effervescence assisted fusion technique of preparing solid dispersions can be employed for enhancing solubility, dissolution, and bioavailability of poorly soluble drugs.

  18. Anaerobically expressed Escherichia coli genes identified by operon fusion techniques.

    PubMed Central

    Choe, M; Reznikoff, W S

    1991-01-01

    Genes that are expressed under anaerobic conditions were identified by operon fusion techniques with a hybrid bacteriophage of lambda and Mu, lambda placMu53, which creates transcriptional fusions to lacZY. Cells were screened for anaerobic expression on XG medium. Nine strains were selected, and the insertion point of the hybrid phage in each strain was mapped on the Escherichia coli chromosome linkage map. The anaerobic and aerobic expression levels of these genes were measured by beta-galactosidase assays in different medium conditions and in the presence of three regulatory mutations (fnr, narL, and rpoN). The anaerobically expressed genes (aeg) located at minute 99 (aeg-99) and 75 (aeg-75) appeared to be partially regulated by fnr, and aeg-93 is tightly regulated by fnr. aeg-60 requires a functional rpoN gene for its anaerobic expression. aeg-46.5 is repressed by narL. aeg-65A and aeg-65C are partially controlled by fnr but only in media containing nitrate or fumarate. aeg-47.5 and aeg-48.5 were found to be anaerobically induced only in rich media. The effects of a narL mutation on aeg-46.5 expression were observed in all medium conditions regardless of the presence or absence of nitrate. This suggests that narL has a regulatory function in the absence of exogenously added nitrate. PMID:1917846

  19. Occipitocervical Fusion Surgery: Review of Operative Techniques and Results

    PubMed Central

    Kukreja, Sunil; Ambekar, Sudheer; Sin, Anthony H.; Nanda, Anil

    2015-01-01

    Objective Varying types of clinicoradiologic presentations at the craniovertebral junction (CVJ) influence the decision process for occipitocervical fusion (OCF) surgery. We discuss the operative techniques and decision-making process in OCF surgery based on our clinical experience and a literature review. Material and Methods A total of 49 consecutive patients who underwent OCF participated in the study. Sagittal computed tomography images were used to illustrate and measure radiologic parameters. We measured Wackenheim clivus baseline (WCB), clivus-canal angle (CCA), atlantodental distance (ADD), and Powers ratio (PR) in all the patients. Results Clinical improvement on Nurick grading was recorded in 36 patients. Patients with better preoperative status (Nurick grades 1–3) had better functional outcomes after the surgery (p = 0.077). Restoration of WCB, CCA, ADD, and PR parameters following the surgery was noted in 39.2%, 34.6%, 77.4%, and 63.3% of the patients, respectively. Complications included deep wound infections (n = 2), pseudoarthrosis (n = 2), and deaths (n = 4). Conclusion Conventional wire-based constructs are superseded by more rigid screw-based designs. Odontoidectomy is associated with a high incidence of perioperative complications. The advent of newer implants and reduction techniques around the CVJ has obviated the need for this procedure in most patients. PMID:26401473

  20. Infrared and color visible image fusion system based on luminance-contrast transfer technique

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Gong, Wenfeng; Wang, Chensheng

    2012-12-01

    In this paper, an infrared and color image fusion algorithm based on luminance-contrast transfer technique is presented. This algorithm shall operate YCbCr transform on color visible image, and obtain the luminance component. Then, the grey-scale image fusion methods are utilized to fuse the luminance component of visible and infrared images to acquire grey-scale fusion image. After that, the grey-scale fusion image and visible image are fused to form color fusion image based on inversed YCbCr transform. To acquire better details appearance, a natural-sense color transfer fusion algorithm based on reference image is proposed. Furthermore, a real-time infrared/visible image fusion system based on FPGA is realized. Finally, this design and achievement is verified experimentally, and the experimental results show that the system can produce a color fusion image with good image quality and real-time performance.

  1. Midline Lumbar Fusion with Cortical Bone Trajectory Screw

    PubMed Central

    MIZUNO, Masaki; KURAISHI, Keita; UMEDA, Yasuyuki; SANO, Takanori; TSUJI, Masanori; SUZUKI, Hidenori

    2014-01-01

    A novel cortical bone trajectory (CBT) screw technique provides an alternative fixation technique for lumbar spine. Trajectory of CBT screw creates a caudo-cephalad path in sagittal plane and a medio-lateral path in axial plane, and engages cortical bone in the pedicle. The theoretical advantage is that it provides enhanced screw grip and interface strength. Midline lumbar fusion (MIDLF) is composed of posterior mid-line approach, microsurgical laminectomy, and CBT screw fixation. We adopted the MIDLF technique for lumbar spondylolisthesis. Advantages of this technique include that decompression and fusion are available in the same field, and it minimizes approach-related damages. To determine whether MIDLF with CBT screw is as effective as traditional approach and it is minimum invasive technique, we studied the clinical and radiological outcomes of MIDLF. Our results indicate that MIDLF is effective and minimum invasive technique. Evidence of effectiveness of MIDLF is that patients had good recovery score, and that CBT screw technique was safety in clinical and stable in radiological. MIDLF with CBT screw provides the surgeon with additional options for fixation. This technique is most likely to be useful for treating lumbar spondylolisthesis in combination with midline decompression and insertion of an interbody graft, such as the transforaminal lumbar interbody fusion or posterior lumbar interbody fusion techniques. PMID:25169139

  2. Multimodality medical image registration and fusion techniques using mutual information and genetic algorithm-based approaches.

    PubMed

    Bhattacharya, Mahua; Das, Arpita

    2011-01-01

    Medical image fusion has been used to derive the useful complimentary information from multimodal images. The prior step of fusion is registration or proper alignment of test images for accurate extraction of detail information. For this purpose, the images to be fused are geometrically aligned using mutual information (MI) as similarity measuring metric followed by genetic algorithm to maximize MI. The proposed fusion strategy incorporating multi-resolution approach extracts more fine details from the test images and improves the quality of composite fused image. The proposed fusion approach is independent of any manual marking or knowledge of fiducial points and starts the procedure automatically. The performance of proposed genetic-based fusion methodology is compared with fuzzy clustering algorithm-based fusion approach, and the experimental results show that genetic-based fusion technique improves the quality of the fused image significantly over the fuzzy approaches.

  3. Postoperative seizure following transforaminal percutaneous endoscopic lumbar discectomy

    PubMed Central

    Kertmen, Hayri; Gürer, Bora; Yilmaz, Erdal Resit; Sekerci, Zeki

    2016-01-01

    Endoscopic surgery for lumbar disc herniation has been available for more than 30 years. Transforaminal percutaneous endoscopic lumbar discectomy is a well-known, safe, and effective method used for the treatment of the lumbar disc herniation. The published complications of the transforaminal percutaneous endoscopic lumbar discectomy consist of infections, thrombophlebitis, dysesthesia, dural tear, vascular injury, and death. Seizure after transforaminal percutaneous endoscopic lumbar discectomy is an extremely rare complication. A 20-year-old patient applied at our department who had undergone transforaminal percutaneous endoscopic lumbar. During the procedure, while performing the discography, non-ionic contrast media was administered into the thecal sac inadvertently. Two hours after surgery, the patient developed generalized tonic-clonic seizure of 5-min duration. Diagnosis of iohexol-induced seizure was made and the patient was treated supportively without anti-epileptics. Here we present the first case of seizure after transforaminal percutaneous endoscopic lumbar discectomy, which was caused by inadvertent administration of the contrast media into the thecal sac. PMID:27695562

  4. Multimodality Image Fusion-Guided Procedures: Technique, Accuracy, and Applications

    SciTech Connect

    Abi-Jaoudeh, Nadine; Kruecker, Jochen; Kadoury, Samuel; Kobeiter, Hicham; Venkatesan, Aradhana M. Levy, Elliot Wood, Bradford J.

    2012-10-15

    Personalized therapies play an increasingly critical role in cancer care: Image guidance with multimodality image fusion facilitates the targeting of specific tissue for tissue characterization and plays a role in drug discovery and optimization of tailored therapies. Positron-emission tomography (PET), magnetic resonance imaging (MRI), and contrast-enhanced computed tomography (CT) may offer additional information not otherwise available to the operator during minimally invasive image-guided procedures, such as biopsy and ablation. With use of multimodality image fusion for image-guided interventions, navigation with advanced modalities does not require the physical presence of the PET, MRI, or CT imaging system. Several commercially available methods of image-fusion and device navigation are reviewed along with an explanation of common tracking hardware and software. An overview of current clinical applications for multimodality navigation is provided.

  5. Multi-intelligence critical rating assessment of fusion techniques (MiCRAFT)

    NASA Astrophysics Data System (ADS)

    Blasch, Erik

    2015-06-01

    Assessment of multi-intelligence fusion techniques includes credibility of algorithm performance, quality of results against mission needs, and usability in a work-domain context. Situation awareness (SAW) brings together low-level information fusion (tracking and identification), high-level information fusion (threat and scenario-based assessment), and information fusion level 5 user refinement (physical, cognitive, and information tasks). To measure SAW, we discuss the SAGAT (Situational Awareness Global Assessment Technique) technique for a multi-intelligence fusion (MIF) system assessment that focuses on the advantages of MIF against single intelligence sources. Building on the NASA TLX (Task Load Index), SAGAT probes, SART (Situational Awareness Rating Technique) questionnaires, and CDM (Critical Decision Method) decision points; we highlight these tools for use in a Multi-Intelligence Critical Rating Assessment of Fusion Techniques (MiCRAFT). The focus is to measure user refinement of a situation over the information fusion quality of service (QoS) metrics: timeliness, accuracy, confidence, workload (cost), and attention (throughput). A key component of any user analysis includes correlation, association, and summarization of data; so we also seek measures of product quality and QuEST of information. Building a notion of product quality from multi-intelligence tools is typically subjective which needs to be aligned with objective machine metrics.

  6. Navigation in Difficult Environments: Multi-Sensor Fusion Techniques

    DTIC Science & Technology

    2010-03-01

    data are applied to improve the robustness of secondary sensors’ signal processing. Applications of the multi-sensor fusion approach are illustrated...algorithms. 1.0 MOTIVATION Many existing and perspective applications of navigation systems would benefit notably from the ability to navigate...accurately and reliably in difficult environments. Examples of difficult navigation scenarios include urban canyons, indoor applications , radio

  7. Evaluating fusion techniques for multi-sensor satellite image data

    SciTech Connect

    Martin, Benjamin W; Vatsavai, Raju

    2013-01-01

    Satellite image data fusion is a topic of interest in many areas including environmental monitoring, emergency response, and defense. Typically any single satellite sensor cannot provide all of the benefits offered by a combination of different sensors (e.g., high-spatial but low spectral resolution vs. low-spatial but high spectral, optical vs. SAR). Given the respective strengths and weaknesses of the different types of image data, it is beneficial to fuse many types of image data to extract as much information as possible from the data. Our work focuses on the fusion of multi-sensor image data into a unified representation that incorporates the potential strengths of a sensor in order to minimize classification error. Of particular interest is the fusion of optical and synthetic aperture radar (SAR) images into a single, multispectral image of the best possible spatial resolution. We explore various methods to optimally fuse these images and evaluate the quality of the image fusion by using K-means clustering to categorize regions in the fused images and comparing the accuracies of the resulting categorization maps.

  8. Urban Classification Techniques Using the Fusion of LiDAR and Spectral Data

    DTIC Science & Technology

    2012-09-01

    TECHNIQUES USING THE FUSION OF LIDAR AND SPECTRAL DATA by Justin E. Mesina September 2012 Thesis Advisor: Richard C. Olsen Second...TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Urban Classification Techniques Using the Fusion of LiDAR and Spectral Data 5...the potential to be more accurate than a single sensor. This research fused airborne LiDAR data and WorldView-2 (WV-2) multispectral imagery (MSI) data

  9. A channel-based color fusion technique using multispectral images for night vision enhancement

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng

    2011-09-01

    A fused image using multispectral images can increase the reliability of interpretation because it combines the complimentary information apparent in multispectral images. While a color image can be easily interpreted by human users (for visual analysis), and thus improves observer performance and reaction times. We propose a fast color fusion method, termed as channel-based color fusion, which is efficient for real time applications. Notice that the term of "color fusion" means combing multispectral images into a color-version image with the purpose of resembling natural scenes. On the other hand, false coloring technique usually has no intention of resembling natural scenery. The framework of channel-based color fusion is as follows, (1) prepare for color fusion by preprocessing, image registration and fusion; (2) form a color fusion image by properly assigning multispectral images to red, green, and blue channels; (3) fuse multispectral images (gray fusion) using a wavelet-based fusion algorithm; and (4) replace the value component of color fusion in HSV color space with the gray-fusion image, and finally transform back to RGB space. In night vision imaging, there may be two or several bands of images available, for example, visible (RGB), image intensified (II), near infrared (NIR), medium wave infrared (MWIR), long wave infrared (LWIR). The proposed channel-wise color fusions were tested with two-band (e.g., NIR + LWIR, II + LWIR, RGB + LWIR) or three-band (e.g., RGB + NIR + LWIR) multispectral images. Experimental results show that the colors in the fused images by the proposed method are vivid and comparable with that of the segmentation-based colorization. The processing speed of new method is much faster than any segmentation-based method.

  10. Fusion Techniques for the Oxidation of Refractory Actinide Oxides

    SciTech Connect

    Rudisill, T.S.

    1999-04-15

    Small-scale experiments were performed to demonstrate the feasibility of fusing refractory actinide oxides with a series of materials commonly used to decompose minerals, glasses, and other refractories as a pretreatment to dissolution and subsequent recovery operations. In these experiments, 1-2 g of plutonium or neptunium oxide (PuO2 or NpO2) were calcined at 900 degrees Celsius, mixed and heated with the fusing reagent(s), and dissolved. For refractory PuO2, the most effective material tested was a lithium carbonate (Li2CO3)/sodium tetraborate (Na2B4O7) mixture which aided in the recovery of 90 percent of the plutonium. The fused product was identified as a lithium plutonate (Li3PuO4) by x-ray diffraction. The use of a Li2CO3/Na2B4O7 mixture to solubilize high-fired NpO2 was not as effective as demonstrated for refractory PuO2. In a small-scale experiment, 25 percent of the NpO2 was oxidized to a neptunium (VI) species that dissolved in nitric acid. The remaining neptunium was then easily recovered from the residue by fusing with sodium peroxide (Na2O2). Approximately 70 percent of the neptunium dissolved in water to yield a basic solution of neptunium (VII). The remainder was recovered as a neptunium (VI) solution by dissolving the residue in 8M nitric acid. In subsequent experiments with Na2O2, the ratio of neptunium (VII) to (VI) was shown to be a function of the fusion temperature, with higher temperatures (greater than approximately 400 degrees C) favoring the formation of neptunium (VII). The fusion of an actual plutonium-containing residue with Na2O2 and subsequent dissolution was performed to demonstrate the feasibility of a pretreatment process on a larger scale. Sodium peroxide was chosen due

  11. Analysis of polyethylene glycol (PEG) fusion in cultured neuroblastoma cells via flow cytometry: Techniques & optimization.

    PubMed

    Hoffman, Ashley N; Bamba, Ravinder; Pollins, Alonda C; Thayer, Wesley P

    2017-02-01

    Polyethylene glycol (PEG) has long been used as a membrane fusogen, but recently it has been adopted as a technique for peripheral nerve repair. Vertebrate models using PEG fusion have shown improved outcomes when PEG is applied during repair of severed peripheral nerves. The cellular mechanism of PEG fusion in the peripheral nerve repair model has not previously been assessed via flow cytometry. PEG fusion was assessed in this experiment by dying B35 rat neuroblastoma cells with different color fluorescent labels. The different color cells were combined and PEG was applied in concentrations of 50%, 75% and 100%. The amount of cell fusion was assessed via flow cytometry as the percentage of double positive cells. Results showed increasing fusion and decreasing viability with increasing concentrations of PEG.

  12. Combined endoscopic transforaminal-transchoroidal approach for the treatment of third ventricle colloid cysts.

    PubMed

    Iacoangeli, Maurizio; di Somma, Lucia Giovanna Maria; Di Rienzo, Alessandro; Alvaro, Lorenzo; Nasi, Davide; Scerrati, Massimo

    2014-06-01

    Colloid cysts are histologically benign lesions whose primary goal of treatment should be complete resection to avoid recurrence and sudden death. Open surgery is traditionally considered the standard approach, but, recently, the endoscopic technique has been recognized as a viable and safe alternative to microsurgery. The endoscopic approach to colloid cysts of the third ventricle is usually performed through the foramen of Monro. However, this route does not provide adequate visualization of the cyst attachment on the tela choroidea. The combined endoscopic transforaminal-transchoroidal approach (ETTA), providing exposure of the entire cyst and a better visualization of the tela choroidea, could increase the chances of achieving a complete cyst resection. Between April 2005 and February 2011, 19 patients with symptomatic colloid cyst of the third ventricle underwent an endoscopic transfrontal-transforaminal approach. Five of these patients, harboring a cyst firmly adherent to the tela choroidea or attached to the middle/posterior roof of the third ventricle, required a combined ETTA. Postoperative MRI documented a gross-total resection in all 5 cases. There were no major complications and only 1 patient experienced a transient worsening of the memory deficit. To date, no cyst recurrence has been observed. An ETTA is a minimally invasive procedure that can allow for a safe and complete resection of third ventricle colloid cysts, even in cases in which the lesions are firmly attached to the tela choroidea or located in the middle/posterior roof of the third ventricle.

  13. Comparison of a Modified Kjeldahl and vacuum Fusion Techniques for Determination of Nitrogen in Tantalum Alloys

    DTIC Science & Technology

    1970-07-01

    A MODIFIED KJELDAHL AND VACUUM FUSION TECHNIQUES FOR DETERMINATION OF NITROGEN IN TANTALUM ALLOYS by Warren F. Davis, Judson W. Graab, and EmeryJ...Abstract This report compares results obtained for the determination of nitrogen in the tantalum- base alloys T-111 and T-222 by Kjeldahl and vacuum fusion...unlimited Kjeldahl Tantalum alloys Nitrogen 19. Security Clossif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price

  14. Improving image classification in a complex wetland ecosystem through image fusion techniques

    NASA Astrophysics Data System (ADS)

    Kumar, Lalit; Sinha, Priyakant; Taylor, Subhashni

    2014-01-01

    The aim of this study was to evaluate the impact of image fusion techniques on vegetation classification accuracies in a complex wetland system. Fusion of panchromatic (PAN) and multispectral (MS) Quickbird satellite imagery was undertaken using four image fusion techniques: Brovey, hue-saturation-value (HSV), principal components (PC), and Gram-Schmidt (GS) spectral sharpening. These four fusion techniques were compared in terms of their mapping accuracy to a normal MS image using maximum-likelihood classification (MLC) and support vector machine (SVM) methods. Gram-Schmidt fusion technique yielded the highest overall accuracy and kappa value with both MLC (67.5% and 0.63, respectively) and SVM methods (73.3% and 0.68, respectively). This compared favorably with the accuracies achieved using the MS image. Overall, improvements of 4.1%, 3.6%, 5.8%, 5.4%, and 7.2% in overall accuracies were obtained in case of SVM over MLC for Brovey, HSV, GS, PC, and MS images, respectively. Visual and statistical analyses of the fused images showed that the Gram-Schmidt spectral sharpening technique preserved spectral quality much better than the principal component, Brovey, and HSV fused images. Other factors, such as the growth stage of species and the presence of extensive background water in many parts of the study area, had an impact on classification accuracies.

  15. Fusion

    NASA Astrophysics Data System (ADS)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  16. Optimized swimmer tracking system by a dynamic fusion of correlation and color histogram techniques

    NASA Astrophysics Data System (ADS)

    Benarab, D.; Napoléon, T.; Alfalou, A.; Verney, A.; Hellard, P.

    2015-12-01

    To design a robust swimmer tracking system, we took into account two well-known tracking techniques: the nonlinear joint transform correlation (NL-JTC) and the color histogram. The two techniques perform comparably well, yet they both have substantial limitations. Interestingly, they also seem to show some complementarity. The correlation technique yields accurate detection but is sensitive to rotation, scale and contour deformation, whereas the color histogram technique is robust for rotation and contour deformation but shows low accuracy and is highly sensitive to luminosity and confusing background colors. These observations suggested the possibility of a dynamic fusion of the correlation plane and the color scores map. Before this fusion, two steps are required. First is the extraction of a sub-plane of correlation that describes the similarity between the reference and target images. This sub-plane has the same size as the color scores map but they have different interval values. Thus, the second step is required which is the normalization of the planes in the same interval so they can be fused. In order to determine the benefits of this fusion technique, first, we tested it on a synthetic image containing different forms with different colors. We thus were able to optimize the correlation plane and color histogram techniques before applying our fusion technique to real videos of swimmers in international competitions. Last, a comparative study of the dynamic fusion technique and the two classical techniques was carried out to demonstrate the efficacy of the proposed technique. The criteria of comparison were the tracking percentage, the peak to correlation energy (PCE), which evaluated the sharpness of the peak (accuracy), and the local standard deviation (Local-STD), which assessed the noise in the planes (robustness).

  17. Does anterior plating maintain cervical lordosis versus conventional fusion techniques? A retrospective analysis of patients receiving single-level fusions.

    PubMed

    Troyanovich, Stephan J; Stroink, Ann R; Kattner, Keith A; Dornan, Wayne A; Gubina, Irina

    2002-02-01

    A retrospective review of medical records and radiographs of patients receiving anterior cervical discectomy and fusion (ACDF) without anterior plating and with anterior plating was performed. The objective of the study was to determine whether a difference exists in cervical lordotic alignment between subjects undergoing single-level ACDF with and without anterior cervical plating instrumentation for symptomatic cervical disc disease. Collapse or settling of grafted bone into the vertebral endplates with resulting kyphotic deformity of the cervical spine is a commonly described complication of anterior discectomy and fusion. Despite the increasing use of instrumentation for the treatment of cervical spine injuries and degenerative conditions, little is known regarding lordotic alignment of the cervical spine in patients who receive plating instrumentation compared with conventional fusion without plating. Accumulating evidence suggests that plating is superior to non-plating techniques in patients with multiple level cervical disc lesions in regard to fusion, return to work rates, and complication rates; however, little is known about maintenance of lordotic curve alignment in single- and multiple-level procedures. Neutral lateral cervical radiographs of 57 patients who underwent single-level ACDF between 1994 and 1999 with anterior screw plates (n = 26), and conventional single-level fusion without anterior screw plates (n = 21) were retrospectively assessed. Measurements were made on weight-bearing lateral cervical radiographs to assess overall sagittal spinal alignment and intersegmental sagittal alignment at the surgical site before surgery, immediately after surgery, 4 to 12 weeks after surgery, and 12+ months after surgery. The average magnitude of overall lordosis measured between C2 and C7 decreased 4.2 degrees in the non-plated group, while being preserved in the plated group. This finding did not reach statistical significance in the long-term follow

  18. Technique for image fusion based on nonsubsampled shearlet transform and improved pulse-coupled neural network

    NASA Astrophysics Data System (ADS)

    Kong, Weiwei; Liu, Jianping

    2013-01-01

    A new technique for image fusion based on nonsubsampled shearlet transform (NSST) and improved pulse-coupled neural network (PCNN) is proposed. NSST, as a novel multiscale geometric analysis tool, can be optimally efficient in representing images and capturing the geometric features of multidimensional data. As a result, NSST is introduced into the area of image fusion to complete the decompositions of source images in any scale and any direction. Then the basic PCNN model is improved to be improved PCNN (IPCNN), which is more concise and more effective. IPCNN adopts the contrast of each pixel in images as the linking strength β, and the time matrix T of subimages can be obtained via the synchronous pulse-burst property. By using IPCNN, the fused subimages can be achieved. Finally, the final fused image can be obtained by using inverse NSST. The numerical experiments demonstrate that the new technique presented in this paper is competitive in the field of image fusion in terms of both fusion performance and computational efficiency.

  19. A New Grid based Ionosphere Algorithm for GAGAN using Data Fusion Technique (ISRO GIVE Model-Multi Layer Data Fusion)

    NASA Astrophysics Data System (ADS)

    Srinivasan, Nirmala; Ganeshan, A. S.; Mishra, Saumyaketu

    2012-07-01

    A New Grid based Ionosphere Algorithm for GAGAN using Data Fusion Technique (ISRO GIVE Model-Multi Layer Data Fusion) Saumyaketu Mishra, Nirmala S, A S Ganeshan ISRO Satellite Centre, Bangalore and Timothy Schempp, Gregory Um, Hans Habereder Raytheon Company Development of a region-specific ionosphere model is the key element in providing precision approach services for civil aviation with GAGAN (GPS Aided GEO Augmented Navigation). GAGAN is an Indian SBAS (Space Based Augmentation System) comprising of three segments; space segment (GEO and GPS), ground segment (15 Indian reference stations (INRES), 2 master control centers and 3 ground uplink stations) and user segment. The GAGAN system is intended to provide air navigation services for APV 1/1.5 precision approach over the Indian land mass and RNP 0.1 navigation service over Indian Flight Information Region (FIR), conforming to the standards of GNSS ICAO-SARPS. Ionosphere being largest source of error is of prime concern for a SBAS. India is a low latitude country, posing challenges for grid based ionosphere algorithm development; large spatial and temporal gradients, Equatorial anomaly, Depletions (bubbles), Scintillations etc. To meet the required GAGAN performance, it is necessary to develop and implement a best suitable ionosphere model, applicable for the Indian region as thin shell models like planar does not meet the requirement. ISRO GIVE Model - Multi Layer Data Fusion (IGM-MLDF) employs an innovative approach for computing the ionosphere corrections and confidences at pre-defined grid points at 350 Km shell height. Ionosphere variations over the Geo-magnetic equatorial regions shows peak electron density shell height variations from 200 km to 500 km, so single thin shell assumption at 350 km is not valid over Indian region. Hence IGM-MLDF employs innovative scheme of modeling at two shell heights. Through empirical analysis the shell heights of 250 km and 450 km are chosen. The ionosphere measurement

  20. Plasma diagnostic techniques in thermal-barrier tandem-mirror fusion experiments

    SciTech Connect

    Silver, E.H.; Clauser, J.F.; Carter, M.R.; Failor, B.H.; Foote, J.H.; Hornady, R.S.; James, R.A.; Lasnier, C.J.; Perkins, D.E.

    1986-08-29

    We review two classes of plasma diagnostic techniques used in thermal-barrier tandem-mirror fusion experiments. The emphasis of the first class is to study mirror-trapped electrons at the thermal-barrier location. The focus of the second class is to measure the spatial and temporal behavior of the plasma space potential at various axial locations. The design and operation of the instruments in these two categories are discussed and data that are representative of their performance is presented.

  1. Speckle noise reduction in ultrasound images using a discrete wavelet transform-based image fusion technique.

    PubMed

    Choi, Hyun Ho; Lee, Ju Hwan; Kim, Sung Min; Park, Sung Yun

    2015-01-01

    Here, the speckle noise in ultrasonic images is removed using an image fusion-based denoising method. To optimize the denoising performance, each discrete wavelet transform (DWT) and filtering technique was analyzed and compared. In addition, the performances were compared in order to derive the optimal input conditions. To evaluate the speckle noise removal performance, an image fusion algorithm was applied to the ultrasound images, and comparatively analyzed with the original image without the algorithm. As a result, applying DWT and filtering techniques caused information loss and noise characteristics, and did not represent the most significant noise reduction performance. Conversely, an image fusion method applying SRAD-original conditions preserved the key information in the original image, and the speckle noise was removed. Based on such characteristics, the input conditions of SRAD-original had the best denoising performance with the ultrasound images. From this study, the best denoising technique proposed based on the results was confirmed to have a high potential for clinical application.

  2. Quality evaluation of different fusion techniques applied on Worldview-2 data

    NASA Astrophysics Data System (ADS)

    Vaiopoulos, Aristides; Nikolakopoulos, Konstantinos G.

    2015-10-01

    In the current study a Worldview-2 image was used for fusion quality assessment. The bundle image was collected on July 2014 over Araxos area in Western Peloponnese. Worldview-2 is the first satellite that collects at the same time a panchromatic (Pan) image and 8 band multispectral (MS) image. The Pan data have a spatial resolution of 0.46m while the MS data have a spatial resolution of 1.84m. In contrary to the respective Pan band of Ikonos and Quickbird that range between 0.45 and 0.90 micrometers the Worldview Pan band is narrower and ranges between 0.45 and 0.8 micrometers. The MS bands include four conventional visible and near-infrared bands common to multispectral satellites like Ikonos Quickbird, Geoeye Landsat-7 etc., and four new bands. Thus, it is quite interesting to investigate the assessment of commonly used fusion algorithms with Worldview-2 data. Twelve fusion techniques and more especially the Ehlers, Gram-Schmidt, Color Normalized, High Pass Filter, Hyperspherical Color Space, Local Mean Matching (LMM), Local Mean and Variance Matching (LMVM), Modified IHS (ModIHS), Pansharp, Pansharp2, PCA and Wavelet were used for the fusion of Worldview-2 panchromatic and multispectral data. The optical result, the statistical parameters and different quality indexes such as ERGAS, Q and entropy difference were examined and the results are presented. The quality control was evaluated both in spectral and spatial domain.

  3. Transforaminal 5% phenol neurolysis for the treatment of intractable cancer pain.

    PubMed

    Candido, Kenneth D; Philip, Cyril N; Ghaly, Ramsis F; Knezevic, Nebojsa Nick

    2010-01-01

    This is the first case report of using a transforaminal approach for phenol administration. A 76-yr-old patient with a history of leiomyosarcoma and multiple metastatic lesions had unremitting pain in the right thoracic and lumbar regions and had prohibitive opioid-induced side effects. The patient underwent phenol neurolysis using a transforaminal approach in 2 stages at 3 levels (L3-4, L1-2, and T12-L1). The patient had complete resolution of pain, without any complications, and opioid treatment was nearly discontinued. Transforaminal phenol neurolysis is a reasonable treatment option for patients suffering from intractable pain for whom conventional therapies have proven ineffective.

  4. A borax fusion technique for quantitative X-ray fluorescence analysis.

    PubMed

    Van Willigen, J H; Kruidhof, H; Dahmen, E A

    1971-04-01

    A borax fusion technique to cast glass discs for quantitative X-ray analysis is described in detail. The method is based on the "nonwetting" properties of a Pt/Au alloy towards molten borax, on the favourable composition of the flux and finally on the favourable form of the casting mould. The critical points of the technique are stressed, resulting in a method which could be carried out successfully by inexperienced workers. In general the method compares favourably in speed and accuracy with wet-chemical methods.

  5. No additional value of fusion techniques on anterior discectomy for neck pain: a systematic review.

    PubMed

    van Middelkoop, Marienke; Rubinstein, Sidney M; Ostelo, Raymond; van Tulder, Maurits W; Peul, Wilco; Koes, Bart W; Verhagen, Arianne P

    2012-11-01

    We aimed to assess the effects of additional fusion on surgical interventions to the cervical spine for patients with neck pain with or without radiculopathy or myelopathy by performing a systematic review. The search strategy outlined by the Cochrane Back Review Group (CBRG) was followed. The primary search was conducted in MEDLINE, EMBASE, CINAHL, CENTRAL and PEDro up to June 2011. Only randomised, controlled trials of adults with neck pain that evaluated at least one clinically relevant primary outcome measure (pain, functional status, recovery) were included. Two authors independently assessed the risk of bias by using the criteria recommended by the CBRG and extracted the data. Data were pooled using a random effects model. The quality of the evidence was rated using the GRADE method. In total, 10 randomised, controlled trials were identified comparing additional fusion upon anterior decompression techniques, including 2 studies with a low risk of bias. Results revealed no clinically relevant differences in recovery: the pooled risk difference in the short-term follow-up was -0.06 (95% confidence interval -0.22 to 0.10) and -0.07 (95% confidence interval -0.14 to 0.00) in the long-term follow-up. Pooled risk differences for pain and return to work all demonstrated no differences. There is no additional benefit of fusion techniques applied within an anterior discectomy procedure on pain, recovery and return to work.

  6. Enamel fusion using a carbon dioxide laser: A technique for sealing pits and fissures

    SciTech Connect

    Walsh, L.J.; Perham, S.J. )

    1991-05-01

    The well-established enhanced resistance of lased enamel to demineralization is the basis for clinical application of the carbon dioxide laser to caries prevention. This in vitro study examined the effect of focused infrared laser radiation on sound enamel and early pit and fissure caries. Low power levels (2-5 W) induced localized melting and resolidification of enamel with little surface destruction. For sound fissures, fusion of enamel from the lateral walls of the fissure eliminated the fissure space, providing a sealant effect; while in carious fissures, carious enamel was vaporized and adjacent sound enamel fused to partially eliminate the defect. The technique for enamel fusion using CO2 lasers has potential application for sealing pits and fissures and producing physicochemical alterations in enamel which may have preventive benefits.

  7. Efficacy of transforaminal versus interspinous corticosteroid injectionin discal radiculalgia - a prospective, randomised, double-blind study.

    PubMed

    Thomas, E; Cyteval, C; Abiad, L; Picot, M C; Taourel, P; Blotman, F

    2003-10-01

    A prospective, randomised, double-blind study was carried out to compare the respective efficacies of transforaminal and interspinous epidural corticosteroid injections in discal radiculalgia. Thirty-one patients (18 females, 13 males) with discal radicular pain of less than 3 months' duration were consecutively randomised to receive either radio-guided transforaminal or blindly performed interspinous epidural corticosteroid injections. Post-treatment outcome was evaluated clinically at 6 and 30 days, and then at 6 months, but only by mailed questionnaire. At day 6, the between-group difference was significantly in favour of the transforaminal group with respect to Schober's index, finger-to-floor distance, daily activities, and work and leisure activities on the Dallas pain scale. At day 30, pain relief was significantly better in the transforaminal group. At month 6, answers to the mailed questionnaire still showed significantly better results for transforaminal injection concerning pain, daily activities, work and leisure activities and anxiety and depression, with a decline in the Roland-Morris score. In recent discal radiculalgia, the efficacy of radio-guided transforaminal epidural corticosteroid injections was higher than that obtained with blindly-performed interspinous injections.

  8. Application of data fusion techniques and technologies for wearable health monitoring.

    PubMed

    King, Rachel C; Villeneuve, Emma; White, Ruth J; Sherratt, R Simon; Holderbaum, William; Harwin, William S

    2017-04-01

    Technological advances in sensors and communications have enabled discrete integration into everyday objects, both in the home and about the person. Information gathered by monitoring physiological, behavioural, and social aspects of our lives, can be used to achieve a positive impact on quality of life, health, and well-being. Wearable sensors are at the cusp of becoming truly pervasive, and could be woven into the clothes and accessories that we wear such that they become ubiquitous and transparent. To interpret the complex multidimensional information provided by these sensors, data fusion techniques are employed to provide a meaningful representation of the sensor outputs. This paper is intended to provide a short overview of data fusion techniques and algorithms that can be used to interpret wearable sensor data in the context of health monitoring applications. The application of these techniques are then described in the context of healthcare including activity and ambulatory monitoring, gait analysis, fall detection, and biometric monitoring. A snap-shot of current commercially available sensors is also provided, focusing on their sensing capability, and a commentary on the gaps that need to be bridged to bring research to market.

  9. Olive oil sensory defects classification with data fusion of instrumental techniques and multivariate analysis (PLS-DA).

    PubMed

    Borràs, Eva; Ferré, Joan; Boqué, Ricard; Mestres, Montserrat; Aceña, Laura; Calvo, Angels; Busto, Olga

    2016-07-15

    Three instrumental techniques, headspace-mass spectrometry (HS-MS), mid-infrared spectroscopy (MIR) and UV-visible spectrophotometry (UV-vis), have been combined to classify virgin olive oil samples based on the presence or absence of sensory defects. The reference sensory values were provided by an official taste panel. Different data fusion strategies were studied to improve the discrimination capability compared to using each instrumental technique individually. A general model was applied to discriminate high-quality non-defective olive oils (extra-virgin) and the lowest-quality olive oils considered non-edible (lampante). A specific identification of key off-flavours, such as musty, winey, fusty and rancid, was also studied. The data fusion of the three techniques improved the classification results in most of the cases. Low-level data fusion was the best strategy to discriminate musty, winey and fusty defects, using HS-MS, MIR and UV-vis, and the rancid defect using only HS-MS and MIR. The mid-level data fusion approach using partial least squares-discriminant analysis (PLS-DA) scores was found to be the best strategy for defective vs non-defective and edible vs non-edible oil discrimination. However, the data fusion did not sufficiently improve the results obtained by a single technique (HS-MS) to classify non-defective classes. These results indicate that instrumental data fusion can be useful for the identification of sensory defects in virgin olive oils.

  10. Applying data fusion techniques for benthic habitat mapping and monitoring in a coral reef ecosystem

    NASA Astrophysics Data System (ADS)

    Zhang, Caiyun

    2015-06-01

    Accurate mapping and effective monitoring of benthic habitat in the Florida Keys are critical in developing management strategies for this valuable coral reef ecosystem. For this study, a framework was designed for automated benthic habitat mapping by combining multiple data sources (hyperspectral, aerial photography, and bathymetry data) and four contemporary imagery processing techniques (data fusion, Object-based Image Analysis (OBIA), machine learning, and ensemble analysis). In the framework, 1-m digital aerial photograph was first merged with 17-m hyperspectral imagery and 10-m bathymetry data using a pixel/feature-level fusion strategy. The fused dataset was then preclassified by three machine learning algorithms (Random Forest, Support Vector Machines, and k-Nearest Neighbor). Final object-based habitat maps were produced through ensemble analysis of outcomes from three classifiers. The framework was tested for classifying a group-level (3-class) and code-level (9-class) habitats in a portion of the Florida Keys. Informative and accurate habitat maps were achieved with an overall accuracy of 88.5% and 83.5% for the group-level and code-level classifications, respectively.

  11. A technique for thick polymer coating of inertial-confinement-fusion targets

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Feng, I.-A.; Wang, T. G.; Kim, H.-G.

    1983-01-01

    A technique to coat a stalk-mounted inertial-confinement fusion (ICF) target with a thick polymer layer has been successfully demonstrated. The polymer solution is first atomized, allowed to coalesce into a droplet, and positioned in a stable acoustic levitating field. The stalk-mounted ICF target is then moved into the acoustic field by manipulating a 3-D positioner to penetrate the surface membrane of the droplet, thus immersing the target in the levitated coating solution. The target inside the droplet is maintained at the center of the levitated liquid using the 3-D positional information provided by two orthogonally placed TV cameras until the drying process is completed. The basic components of the experimental apparatus, including an acoustic levitator, liquid sample deployment device, image acquisition instrumentation, and 3-D positioner, are briefly described.

  12. Fusion techniques using distributed Kalman filtering for detecting changes in systems

    NASA Technical Reports Server (NTRS)

    Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe

    1991-01-01

    A comparison is made of the performances of two detection strategies that are based on different data fusion techniques. The strategies detect changes in a linear system. One detection strategy involves combining the estimates and error covariance matrices of distributed Kalman filters, generating a residual from the used estimates, comparing this residual to a threshold, and making a decision. The other detection strategy involves a distributed decision process in which estimates from distributed Kalman filters are used to generate distributed residuals which are compared locally to a threshold. Local decisions are made and these decisions are then fused into a global decision. The performances of each of these detection schemes are compared, and it is concluded that better performance is achieved when local decisions are made and then fused into a global decision.

  13. Radioscapholunate Fusions

    PubMed Central

    McGuire, Duncan Thomas; Bain, Gregory Ian

    2012-01-01

    Radiocarpal fusions are performed for a variety of indications, most commonly for debilitating painful arthritis. The goal of a wrist fusion is to fuse the painful, diseased joints and to preserve motion through the healthy joints. Depending on the extent of the disease process, radiocarpal fusions may take the form of radiolunate, radioscapholunate, or total wrist fusions. Surgical techniques and instrumentation have advanced over the last few decades, and consequently the functional outcomes have improved and complications decreased. Techniques for partial carpal fusions have improved and now include distal scaphoid and triquetrum excision, which improves range of motion and fusion rates. In this article we discuss the various surgical techniques and fixation methods available and review the corresponding evidence in the literature. The authors' preferred surgical technique of radioscapholunate fusion with distal scaphoid and triquetrum excision is outlined. New implants and new concepts are also discussed. PMID:24179717

  14. Non-neurological major complications of extreme lateral and related lumbar interbody fusion techniques

    PubMed Central

    Epstein, Nancy E.

    2016-01-01

    Background: Complications exclusive of new neurological deficits/injuries that follow extreme lateral interbody fusion (XLIF) and related lateral lumbar interbody techniques should be better recognized to determine the safety of these procedures. Unfortunately, a review of the XLIF literature did not accurately reflect the frequency of these “other complications” as few US surgeons publish such adverse events that may lead to medicolegal suits. Methods: Major complications occurring with XLIF included sympathectomy, major vascular injuries, bowel perforations, sterile seromas, and instrumentation failures. Results: The frequency of sympathectomy was 4% for XLIF vs. 15% for anterior lumbar interbody fusion (ALIF). There were three major vascular injuries for XLIF; one fatal intraoperative event, one life-threatening retroperitoneal hematoma, and one iatrogenic lumbar artery pseudoaneurysm that was successfully embolized. Two bowel perforations were reported, whereas a third was a “direct communication.” One patient developed a sterile recurrent seroma due to vancomycin powder utilized for an XLIF. One study cited malpositioning of an XLIF cage resulting in a lateral L3–L4 extrusion, whereas the second series looked at the 45% risk of cage-overhang when XLIF devices were placed in the anterior one-third of the vertebral body. Conclusion: Excluding new neurological deficits, XLIF techniques resulted in multiple other major complications. However, these small numbers likely reflect just the tip of the iceberg (e.g., 10%) and the remaining 90% may never be known as many US-based spine surgeons fail to publish such adverse events as they are discoverable in a court of law and may lead to medicolegal suits. PMID:27843680

  15. Endoscopic transchoroidal and transforaminal approaches for resection of third ventricular colloid cysts.

    PubMed

    Ibáñez-Botella, G; Domínguez, M; Ros, B; De Miguel, L; Márquez, B; Arráez, M A

    2014-04-01

    To review our experience over 10 years in endoscopic resection of third ventricular colloid cysts, describing the details of the transventricular-transchoroidal approach used in selected patients. This series included 24 patients with colloid cysts of the third ventricle treated in our department between October 2001 and January 2013 using an endoscopic approach. Clinical presentation, preoperative radiological findings, endoscopic technique employed, and complications were assessed in all patients. The mean length of patient follow-up was 5.16 years. The most common symptom was headache (75%). The average size of the resected colloid cysts was 16.25 mm, the maximum diameter measured in cranial magnetic resonance imaging. Resection was transforaminal in 16 cases (66.7%), transchoroidal in 7 (29.17%), and transseptal in 1; macroscopically complete resection was achieved in 23 of 24 procedures (95.8%). Complications included three intraventricular hemorrhages, four memory deficits (two of them transient), one case of temporary potomania, two soft tissue infections, and one meningitis. There were no statistically significant differences between the route of resection and number of complications. The Glasgow Outcome Scale at 1 year after surgery was 5 in 82.6% of the patients. A transventricular endoscopic approach allows macroscopically complete resection of third ventricle colloid cysts in most cases. The option of opening the choroidal fissure (transventricular-transchoroidal approach) during the procedure can address third ventricle colloid cysts that do not emerge sufficiently through the foramen of Monro without increasing procedure-related morbidity.

  16. The Effects of a Forceful Transforaminal Epidural Steroid Injection on Radicular Pain: A Preliminary Study

    PubMed Central

    Byun, Jong Min; Woo, Jae Hee; Kim, Jin

    2014-01-01

    Background Lumbar transforaminal epidural steroid injections (TFESIs) are performed to provide symptom relief in patients with radicular pain. Recent articles suggested that injected volume itself have analgesic effects and higher volumes are associated with better outcomes. To date, few studies have been conducted to investigate the effects of volume. Therefore, well-designed controlled studies were necessary to confirm the effect of volume itself on pain relief. The purpose of this study was to examine the effectiveness of a forceful saline injection on lumbar TFESI using non-particulate steroids. Methods Fifty consecutive patients with lumbar radicular pain were enrolled. The participants were allocated into one of two groups: dexamethasone with volume (Group DV) and dexamethasone alone (Group DO). The volume was delivered by a forceful injection of 5ml of normal saline. The primary end-point for this study was a VAS pain score and modified MacNab score indicating the rate of effectiveness at the four-week follow-up. Results There were no significant post-procedural VAS differences between two groups (P = .252). The effectiveness rate among the patients was 47.8% in DV group, 34.8% in DO group, measured by modified MacNab score. The difference was not statistically significant (P = .117). Conclusions A forceful saline injection did not have a significant effect during the treatment of radicular pain. Further studies with greater volumes and with additional techniques would offer a more conclusive perspective. PMID:25317282

  17. More nerve root injuries occur with minimally invasive lumbar surgery, especially extreme lateral interbody fusion: A review

    PubMed Central

    Epstein, Nancy E.

    2016-01-01

    Background: In the lumbar spine, do more nerve root injuries occur utilizing minimally invasive surgery (MIS) techniques versus open lumbar procedures? To answer this question, we compared the frequency of nerve root injuries for multiple open versus MIS operations including diskectomy, laminectomy with/without fusion addressing degenerative disc disease, stenosis, and/or degenerative spondylolisthesis. Methods: Several of Desai et al. large Spine Patient Outcomes Research Trial studies showed the frequency for nerve root injury following an open diskectomy ranged from 0.13% to 0.25%, for open laminectomy/stenosis with/without fusion it was 0%, and for open laminectomy/stenosis/degenerative spondylolisthesis with/without fusion it was 2%. Results: Alternatively, one study compared the incidence of root injuries utilizing MIS transforaminal lumbar interbody fusion (TLIF) versus posterior lumbar interbody fusion (PLIF) techniques; 7.8% of PLIF versus 2% of TLIF patients sustained root injuries. Furthermore, even higher frequencies of radiculitis and nerve root injuries occurred during anterior lumbar interbody fusions (ALIFs) versus extreme lateral interbody fusions (XLIFs). These high frequencies were far from acceptable; 15.8% following ALIF experienced postoperative radiculitis, while 23.8% undergoing XLIF sustained root/plexus deficits. Conclusions: This review indicates that MIS (TLIF/PLIF/ALIF/XLIF) lumbar surgery resulted in a higher incidence of root injuries, radiculitis, or plexopathy versus open lumbar surgical techniques. Furthermore, even a cursory look at the XLIF data demonstrated the greater danger posed to neural tissue by this newest addition to the MIS lumbar surgical armamentariu. The latter should prompt us as spine surgeons to question why the XLIF procedure is still being offered to our patients? PMID:26904372

  18. Technique for gray-scale visual light and infrared image fusion based on non-subsampled shearlet transform

    NASA Astrophysics Data System (ADS)

    Kong, Weiwei

    2014-03-01

    A novel image fusion technique based on NSST (non-subsampled shearlet transform) is presented, aiming at resolving the fusion problem of spatially gray-scale visual light and infrared images. NSST, as a new member of MGA (multi-scale geometric analysis) tools, possesses not only flexible direction features and optimal shift-invariance, but much better fusion performance and lower computational costs compared with several current popular MGA tools such as NSCT (non-subsampled contourlet transform). We specifically propose new rules for the fusion of low and high frequency sub-band coefficients of source images in the second step of the NSST-based image fusion algorithm. First, the source images are decomposed into different scales and directions using NSST. Then, the model of region average energy (RAE) is proposed and adopted to fuse the low frequency sub-band coefficients of the gray-scale visual light and infrared images. Third, the model of local directional contrast (LDC) is given and utilized to fuse the corresponding high frequency sub-band coefficients. Finally, the final fused image is obtained by using inverse NSST to all fused sub-images. In order to verify the effectiveness of the proposed technique, several current popular ones are compared over three different publicly available image sets using four evaluation metrics, and the experimental results demonstrate that the proposed technique performs better in both subjective and objective qualities.

  19. Treatment of neuromuscular scoliosis with posterior spinal fusion using the Galveston technique: a retrospective review and results of 62 patients.

    PubMed

    Edwards, Bryan T; Zura, Robert; Bertrand, Styles; Leonard, Sharon; Pellett, Jonathan

    2003-01-01

    Historically, the operative treatment of neuromuscular scoliosis has been associated with a high rate of complication. Recent literature has shown a decreased rate of complication (less 50%) in the management of neuromuscular scoliosis with spinal arthrodesis techniques. A retrospective chart and radiographic review of 62 spinal fusions for neuromuscular scoliosis was performed. There were 53 posterior spinal fusions and 9 anteroposterior spinal fusions. The Galveston technique was used in all patients. The average age at surgery was 13 years 7 months, with an average follow-up of 23 months (minimum 10 months). The mean preoperative and postoperative curve magnitudes were 66 degree and 31 degree, respectively. There were 20 minor complications and 5 major complications in 20 patients. There were no neurologic complications or deaths.

  20. Removal of discal cyst using percutaneous working channel endoscope via transforaminal route

    PubMed Central

    Kim, Jin-Sung; Choi, Gun; Lee, Choon Dae

    2008-01-01

    Discal cyst is a very rare lesion that can cause refractory low back pain and radiating leg pain. Although there are some reports to remove this lesion, there has been no report of discal cyst removed by percutaneous endoscopic transforaminal approach. Two young patients manifested left gluteal and leg pain due to a discal cyst at L5–S1 level and L4–5 level, respectively. Percutaneous endoscopic transforaminal approach was performed to remove the discal cyst, achieving complete decompression of the nerve root. The symptom was relieved and the patient was discharged the next day. Percutaneous endoscopic transforaminal approach could be a good alternative option in selected cases for the treatment of lumbar discal cyst. PMID:19034535

  1. Minimally Invasive Extraforaminal Lumbar Interbody Fusion for Revision Surgery: A Technique through Kambin's Triangle

    PubMed Central

    Lee, Jun Gue; Kim, Hyeun Sung

    2015-01-01

    Objective The purpose of this study was to evaluate the clinical outcomes of minimally invasive extraforaminal lumbar interbody fusion (ELIF) for revision surgery. Methods From January 2011 to December 2012, 12 patients who underwent minimally invasive ELIF through the Kambin's triangle for revision surgery were included in this study. All patients underwent the surgical procedure in the following sequence: (1) epidural anesthesia, (2) exposing the Kambin's triangle toward the lateral part of the dura (partial resection of the superior articular process), (3) bilateral cage insertion for reinforcement of stabilization and fusion, and (4) percutaneous transpedicular screwing. Clinical outcomes were assessed using the visual analogue scale (VAS), and Oswestry disability index (ODI). Imaging and clinical findings including surgical techniques, clinical outcomes, and related complications were depicted and analyzed. Results The mean age of the patients (5 men, 7 women) was 60.7±13.4 years, and the mean follow-up period was 27.1±4.9 months. The mean VAS (back and leg) score improved significantly at final follow-up. The mean ODI score decreased as follows: preoperative, 76.78±6.08; 3 months after the surgery, 37.74±6.67; and at final follow-up, 29.91±2.98. Two patients presented with transient nerve root irritation, but there were no cases of incidental dural tear or serious infection. No significant neurological deterioration or major complication was noted in any of the patients. Conclusion Minimally invasive ELIF for revision surgery is an effective surgical option with a low complication rate. PMID:26834815

  2. Gabor fusion technique in a Talbot bands optical coherence tomography system.

    PubMed

    Bouchal, Petr; Bradu, Adrian; Podoleanu, Adrian Gh

    2012-02-27

    In this paper we show how to advantageously combine two effects to enhance the sensitivity with depth in Fourier domain (FD) optical coherence tomography (OCT): Talbot bands (TB) and Gabor-based fusion (GF) technique. TB operation is achieved by routing the two beams, from the object arm and from the reference arm in the OCT interferometer, along parallel separate paths towards the spectrometer. By adjusting the lateral gap between the two beams in their way towards the spectrometer, the position for the maximum of contrast variation of spectral modulation versus the optical path difference in the interferometer is adjusted. For five values of the focus position, the gap between the two beams is readjusted to reach maximum sensitivity. Then, similar to the procedure employed in the GF technique, a compound image is formed by stitching together the parts of the five images that exhibited maximum brightness. The smaller the diameters of the two beams, the narrower the visibility profile versus depth in Talbot bands, which brings advantages in terms of mirror terms attenuation. However, this leads to a larger spot on the linear camera, which introduces losses, therefore the combined procedure, TB/GF is investigated for four different values of the beam diameters of the two beams. Future cameras with larger pixel size may take full advantage of the TB/GF procedure proposed here.

  3. Multi-sensor fusion techniques for state estimation of micro air vehicles

    NASA Astrophysics Data System (ADS)

    Donavanik, Daniel; Hardt-Stremayr, Alexander; Gremillion, Gregory; Weiss, Stephan; Nothwang, William

    2016-05-01

    Aggressive flight of micro air vehicles (MAVs) in unstructured, GPS-denied environments poses unique challenges for estimation of vehicle pose and velocity due to the noise, delay, and drift in individual sensor measurements. Maneuvering flight at speeds in excess of 5 m/s poses additional challenges even for active range sensors; in the case of LIDAR, an assembled scan of the vehicles environment will in most cases be obsolete by the time it is processed. Multi-sensor fusion techniques which combine inertial measurements with passive vision techniques and/or LIDAR have achieved breakthroughs in the ability to maintain accurate state estimates without the use of external positioning sensors. In this paper, we survey algorithmic approaches to exploiting sensors with a wide range of nonlinear dynamics using filter and bundle-adjustment based approaches for state estimation and optimal control. From this foundation, we propose a biologically-inspired framework for incorporating the human operator in the loop as a privileged sensor in a combined human/autonomy paradigm.

  4. Incidence of intradiscal injection during lumbar fluoroscopically guided transforaminal and interlaminar epidural steroid injections.

    PubMed

    Candido, Kenneth D; Katz, Jeffrey A; Chinthagada, Mariadas; McCarthy, Robert A; Knezevic, Nebojsa Nick

    2010-05-01

    Intradiscal injections during transforaminal epidural steroid injections and interlaminar lumbar epidural steroid injections have been reported rarely. In that regard, this retrospective observational report is the first attempt to quantify the overall rate of this complication. A retrospective analysis of 3 years of accrued data (2004-2007) showed that 2412 transforaminal epidural steroid injections were performed at the 2 training institutions (Loyola University Medical Center and Northwestern University/Feinberg School of Medicine). There were 6 intradiscal (annular) injections of contrast, for a rate of 1:402. Over the same interval, 4723 lumbar epidural steroid injections were performed, with 1 intradiscal injection, for a rate of 1:4723.

  5. Fusion of the Escherichia coli lac genes to the ara promoter: a general technique using bacteriophage Mu-1 insertions.

    PubMed

    Casadaban, M J

    1975-03-01

    The lac genes were fused to the ara promoter by means of phage phi 80 translocations of the lac and ara genes to att80. Homology for a crossover between the nonhomologous ara and lac operons was provided by mu insertions. Selection for recombinants within the mu insertions generated strains that had the ara promoter on one side of a mu insertion and the lac genes on the other side. ara-lac fusions were obtained from these strains by deleting the mu insertion. These fusions extend the techniques available for studies on the lac operon to studies on the ara operon. It should be possible to fuse other operons by this method.

  6. Fluoroscopy guided transforaminal epidural anesthesia in ankylosing spondylitis.

    PubMed

    Channabasappa, S M; Dharmappa, S; Pandurangi, R

    2016-01-01

    A 48-year-old male patient with a long-standing history of ankylosing spondylitis (AS) presented for ureteroscopic stone removal. On preoperative assessment, tracheal intubation was likely to be difficult due to decreased cervical spine mobility. Traditional neuraxial block was impossible due to the fusion of vertebral bodies. AS patients present the most serious array of intubation, which is secondary to decrease in cervical spine mobility and possible temporomandibular joint disease. Management of a case of AS can be very challenging when the airway and the central neuraxial blockade, both are difficult. Fluoroscopic assisted central neuraxial blockade may lead to predictable success in AS. We present a case report with severe AS where conventional techniques failed and C-arm assisted helped in successful epidural anesthesia for ureteroscopic stone removal.

  7. Comparison of inert-gas-fusion and modified Kjeldahl techniques for determination of nitrogen in niobium alloys

    NASA Technical Reports Server (NTRS)

    Merkle, E. J.; Graab, J. W.; Davis, W. F.

    1974-01-01

    This report compares results obtained for the determination of nitrogen in a selected group of niobium-base alloys by the inert-gas-fusion and the Kjeldahl procedures. In the inert-gas-fusion procedure the sample is heated to approximately 2700 C in a helium atmosphere in a single-use graphite crucible. A platinum flux is used to facilitate melting of the sample. The Kjeldahl method consisted of a rapid decomposition with a mixture of hydrofluoric acid, phosphoric acid, and potassium chromate; distillation in the presence of sodium hydroxide; and highly sensitive spectrophotometry with nitroprusside-catalyzed indophenol. In the 30- to 80-ppm range, the relative standard deviation was 5 to 7 percent for the inert-gas-fusion procedure and 2 to 8 percent for the Kjeldahl procedure. The agreement of the nitrogen results obtained by the two techniques is considered satisfactory.

  8. Extreme lateral lumbar interbody fusion: Do the cons outweigh the pros?

    PubMed Central

    Epstein, Nancy E.

    2016-01-01

    Background: Major factors prompted the development of minimally invasive (MIS) extreme lateral interbody fusion (XLIF; NuVasive Inc., San Diego, CA, USE) for the thoracic/lumbar spine. These include providing interbody stabilization and indirect neural decompression while avoiding major visceral/vessel injury as seen with anterior lumbar interbody fusion (ALIF), and to avert trauma to paraspinal muscles/facet joints found with transforaminal lumbar interbody fusion (TLIF), posterior lumbar interbody fusion (PLIF), and posterior-lateral fusion techniques (PLF). Although anticipated pros of MIS XLIF included reduced blood loss, operative time, and length of stay (LOS), they also included, higher fusion, and lower infection rates. Unanticipated cons, however, included increased morbidity/mortality rates. Methods: We assessed the pros and cons (e.g., risks, complications, comparable value/superiority/inferiority, morbidity/mortality) of MIS XLIF vs. ALIF, TLIF, PLIF, and PLF. Results: Pros of XLIF included various biomechanical and technical surgical advantages, along with multiple cons vs. ALIF, TLIF, PLIF, and PLF. For example, XLIF correlated with a considerably higher frequency of major neurological deficits vs. other constructs; plexus injuries 13.28%, sensory deficits 0–75% (permanent in 62.5%), motor deficits 0.7–33.6%, and anterior thigh pain 12.5–25%. XLIF also disproportionately contributed to other major morbidity/mortality; sympathectomy, major vascular injuries (some life-ending others life-threatening), bowel perforations, and seromas. Furthermore, multiple studies documented no superiority, and the potential inferiority of XLIF vs. ALIF, TLIF, PLIF, and PLF. Conclusion: Reviewing the pros of XLIF (e.g. radiographic, technical, biomechanical) vs. the cons (inferiority, increased morbidity/mortality) vs. ALIF, TLIF, PLIF, and PLF, we question whether XLIF should remain part of the lumbar spinal surgical armamentarium. PMID:27843688

  9. Technique for infrared and visible image fusion based on non-subsampled shearlet transform and spiking cortical model

    NASA Astrophysics Data System (ADS)

    Kong, Weiwei; Wang, Binghe; Lei, Yang

    2015-07-01

    Fusion of infrared and visible images is an active research area in image processing, and a variety of relevant algorithms have been developed. However, the existing techniques commonly cannot gain good fusion performance and acceptable computational complexity simultaneously. This paper proposes a novel image fusion approach that integrates the non-subsampled shearlet transform (NSST) with spiking cortical model (SCM) to overcome the above drawbacks. On the one hand, using NSST to conduct the decompositions and reconstruction not only consists with human vision characteristics, but also effectively decreases the computational complexity compared with the current popular multi-resolution analysis tools such as non-subsampled contourlet transform (NSCT). On the other hand, SCM, which has been considered to be an optimal neuron network model recently, is responsible for the fusion of sub-images from different scales and directions. Experimental results indicate that the proposed method is promising, and it does significantly improve the fusion quality in both aspects of subjective visual performance and objective comparisons compared with other current popular ones.

  10. Evaluation techniques and metrics for assessment of pan+MSI fusion (pansharpening)

    NASA Astrophysics Data System (ADS)

    Mercovich, Ryan A.

    2015-05-01

    Fusion of broadband panchromatic data with narrow band multispectral data - pansharpening - is a common and often studied problem in remote sensing. Many methods exist to produce data fusion results with the best possible spatial and spectral characteristics, and a number have been commercially implemented. This study examines the output products of 4 commercial implementations with regard to their relative strengths and weaknesses for a set of defined image characteristics and analyst use-cases. Image characteristics used are spatial detail, spatial quality, spectral integrity, and composite color quality (hue and saturation), and analyst use-cases included a variety of object detection and identification tasks. The imagery comes courtesy of the RIT SHARE 2012 collect. Two approaches are used to evaluate the pansharpening methods, analyst evaluation or qualitative measure and image quality metrics or quantitative measures. Visual analyst evaluation results are compared with metric results to determine which metrics best measure the defined image characteristics and product use-cases and to support future rigorous characterization the metrics' correlation with the analyst results. Because pansharpening represents a trade between adding spatial information from the panchromatic image, and retaining spectral information from the MSI channels, the metrics examined are grouped into spatial improvement metrics and spectral preservation metrics. A single metric to quantify the quality of a pansharpening method would necessarily be a combination of weighted spatial and spectral metrics based on the importance of various spatial and spectral characteristics for the primary task of interest. Appropriate metrics and weights for such a combined metric are proposed here, based on the conducted analyst evaluation. Additionally, during this work, a metric was developed specifically focused on assessment of spatial structure improvement relative to a reference image and

  11. Nonintrusive multibiometrics on a mobile device: a comparison of fusion techniques

    NASA Astrophysics Data System (ADS)

    Allano, Lorene; Morris, Andrew C.; Sellahewa, Harin; Garcia-Salicetti, Sonia; Koreman, Jacques; Jassim, Sabah; Ly-Van, Bao; Wu, Dalei; Dorizzi, Bernadette

    2006-04-01

    In this article we test a number of score fusion methods for the purpose of multimodal biometric authentication. These tests were made for the SecurePhone project, whose aim is to develop a prototype mobile communication system enabling biometrically authenticated users to deal legally binding m-contracts during a mobile phone call on a PDA. The three biometrics of voice, face and signature were selected because they are all traditional non-intrusive and easy to use means of authentication which can readily be captured on a PDA. By combining multiple biometrics of relatively low security it may be possible to obtain a combined level of security which is at least as high as that provided by a PIN or handwritten signature, traditionally used for user authentication. As the relative success of different fusion methods depends on the database used and tests made, the database we used was recorded on a suitable PDA (the Qtek2020) and the test protocol was designed to reflect the intended application scenario, which is expected to use short text prompts. Not all of the fusion methods tested are original. They were selected for their suitability for implementation within the constraints imposed by the application. All of the methods tested are based on fusion of the match scores output by each modality. Though computationally simple, the methods tested have shown very promising results. All of the 4 fusion methods tested obtain a significant performance increase.

  12. Clear Zone Formation around Screws in the Early Postoperative Stages after Posterior Lumbar Fusion Using the Cortical Bone Trajectory Technique

    PubMed Central

    Iwatsuki, Koichi; Ohnishi, Yu-Ichiro; Ohkawa, Toshika; Yoshimine, Toshiki

    2015-01-01

    Study Design Retrospective study. Purpose To evaluate the initial fixation using the cortical bone trajectory (CBT) technique for posterior lumbar fusion through assessment of the clear zones around the screws and the risk factors involved. Overview of Literature Postoperative radiolucent zones (clear zones) are an indicator of poor conventional pedicle screw fixation. Methods Between January 2013 and April 2014, 19 patients (8 men and 11 women) underwent posterior lumbar interbody fusion or posterior lumbar fusion using the CBT technique. A total of 109 screws were used for evaluation with measurement of the maximum insertional torque of last two screw rotations. Clear zone-positivity on plain radiographs was investigated 6 months after surgery. The relation between intraoperative insertional torque and clear zone-positivity was investigated by one-way analysis of variance. In addition, the correlation between clear zone-positivity and gender, age (<75 years old or >75 years old), or operative stabilization level (<2 or >3 vertebral levels) was evaluated using the chi-square test. Results Clear zones were observed around six screws (5.50%) in five patients (26.3%). The mean insertional torque (4.00±2.09 inlbs) of clear zone-positive screws was lower than that of clear zone-negative screws (8.12±0.50 in-lbs), but the difference was not significant. There was a significant correlation between clear zone-positivity and operative level of stabilization. Conclusions The low incidence of clear zone-positive screws indicates good initial fixation using the CBT technique. Multilevel fusions may be risk factors for clear zone generation. PMID:26713120

  13. Fusion of 3D models derived from TLS and image-based techniques for CH enhanced documentation

    NASA Astrophysics Data System (ADS)

    Bastonero, P.; Donadio, E.; Chiabrando, F.; Spanò, A.

    2014-05-01

    Recognizing the various advantages offered by 3D new metric survey technologies in the Cultural Heritage documentation phase, this paper presents some tests of 3D model generation, using different methods, and their possible fusion. With the aim to define potentialities and problems deriving from integration or fusion of metric data acquired with different survey techniques, the elected test case is an outstanding Cultural Heritage item, presenting both widespread and specific complexities connected to the conservation of historical buildings. The site is the Staffarda Abbey, the most relevant evidence of medieval architecture in Piedmont. This application faced one of the most topical architectural issues consisting in the opportunity to study and analyze an object as a whole, from twice location of acquisition sensors, both the terrestrial and the aerial one. In particular, the work consists in the evaluation of chances deriving from a simple union or from the fusion of different 3D cloudmodels of the abbey, achieved by multi-sensor techniques. The aerial survey is based on a photogrammetric RPAS (Remotely piloted aircraft system) flight while the terrestrial acquisition have been fulfilled by laser scanning survey. Both techniques allowed to extract and process different point clouds and to generate consequent 3D continuous models which are characterized by different scale, that is to say different resolutions and diverse contents of details and precisions. Starting from these models, the proposed process, applied to a sample area of the building, aimed to test the generation of a unique 3Dmodel thorough a fusion of different sensor point clouds. Surely, the describing potential and the metric and thematic gains feasible by the final model exceeded those offered by the two detached models.

  14. An investigation of density measurement method for yarn-dyed woven fabrics based on dual-side fusion technique

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Xin, Binjie

    2016-08-01

    Yarn density is always considered as the fundamental structural parameter used for the quality evaluation of woven fabrics. The conventional yarn density measurement method is based on one-side analysis. In this paper, a novel density measurement method is developed for yarn-dyed woven fabrics based on a dual-side fusion technique. Firstly, a lab-used dual-side imaging system is established to acquire both face-side and back-side images of woven fabric and the affine transform is used for the alignment and fusion of the dual-side images. Then, the color images of the woven fabrics are transferred from the RGB to the CIE-Lab color space, and the intensity information of the image extracted from the L component is used for texture fusion and analysis. Subsequently, three image fusion methods are developed and utilized to merge the dual-side images: the weighted average method, wavelet transform method and Laplacian pyramid blending method. The fusion efficacy of each method is evaluated by three evaluation indicators and the best of them is selected to do the reconstruction of the complete fabric texture. Finally, the yarn density of the fused image is measured based on the fast Fourier transform, and the yarn alignment image could be reconstructed using the inverse fast Fourier transform. Our experimental results show that the accuracy of density measurement by using the proposed method is close to 99.44% compared with the traditional method and the robustness of this new proposed method is better than that of conventional analysis methods.

  15. S3 Dorsal Root Ganglion/Nerve Root Stimulation for Refractory Postsurgical Perineal Pain: Technical Aspects of Anchorless Sacral Transforaminal Lead Placement

    PubMed Central

    Zuidema, X.; Breel, J.; Wille, F.

    2016-01-01

    Chronic perineal pain limits patients in physical and sexual activities, leading to social and psychological distress. In most cases, this pain develops after surgery in the urogenital area or as a consequence of trauma. Neuromodulation is one of the options in chronic postsurgical perineal pain treatment. We present a case of refractory perineal pain after right sided surgical resection of a Bartholin's cyst which was treated with third sacral nerve root/dorsal root ganglion stimulation using the transforaminal approach. We describe a new anchorless lead placement technique using a unique curved lead delivery sheath. We postulate that this new posterior foraminal technique of lead placement is simple, safe, and reversible and may lower the occurrence of lead related complications. PMID:27123351

  16. Full-endoscopic technique for anterior cervical discectomy and interbody fusion: 5-year follow-up results of 67 cases.

    PubMed

    Yao, Nuzhao; Wang, Cheng; Wang, Wenjun; Wang, Lushan

    2011-06-01

    With minimally invasive technique becoming more popular, endoscopic operations such as arthroscopy or laparoscopy have become the standard of care in several other areas. In this study, we evaluated the 5-year follow-up outcomes of anterior cervical (Ahn et al. in Photomed Laser Surg 23:362-368, 2005) discectomy and interbody fusion (ACDF) performed via endoscopic approach. Sixty-seven patients who underwent anterior cervical discectomy and cage fusion performed using endoscopic technique were followed for at least 5 years. We reviewed the clinical and radiographic records of these patients. The postoperative radiographic measures accessed were the anterior intervertebral height (AIH) and the lordosis angle (LDA). Clinical outcomes were determined using the previously validated Japanese Orthopaedic Association (JOA) and the pain visual analog scale (VAS). Patients included had a minimal follow-up period of 5 years and based on the outcomes criteria (JOA, VAS), 86.6% of patients reported excellent or good results. The AIH increased on average 18.7% of the original height (p < 0.01), and the LDA were more physiologic at final follow-up. Of the 67 cases, there was no segmental instability, and the bone fusion rate was 100%. One patient required revision open ACDF due to adjacent segment disc herniation 6 years postoperatively. There were no intraoperative complications, dysphasia or esophageal injury in this study group. It indicated endoscopic technique for ACDF can obtain satisfactory results in patients with cervical disc herniation, cervical myelopathy, or radiculopathy. Compared with a traditional approach, this technique may be associated with less morbidity while improving cosmesis and postoperative recovery. Prospective randomized control trials are needed to directly compare these two procedures.

  17. A systematic review of minimally invasive sacroiliac joint fusion utilizing a lateral transarticular technique

    PubMed Central

    Heiney, Jake; Cher, Daniel

    2015-01-01

    Background A number of studies have been published regarding minimally invasive surgical (MIS) fusion of the sacroiliac (SI) joint using a lateral transarticular approach. Herein we report a systematic review and meta-analysis to summarize operative measures and clinical outcomes reported in published studies of MIS SI joint fusion. Methods The systematic review was done according to PRISMA standards. PubMed and EMBASE were searched using the terms sacroiliac joint AND fusion. Original peer-reviewed articles in the English language that reported clinical outcomes on at least 5 cases of MIS SI joint fusion using a lateral transarticular approach were included. Random effects meta-analysis (RMA) was performed on selected variables using the DerSimonian and Laird method, including operative measures, VAS SI joint pain ratings (0-10 scale) and Oswestry Disability Index (ODI). Mean and 95% confidence intervals (CI) were calculated and heterogeneity was assessed. Other findings were summarized qualitatively. Results A total of 18 articles met the inclusion criteria. After accounting for overlapping cohorts, 12 unique cohorts from 4 countries were extracted for a total of 432 subjects. The RMA mean (range) was 59 minutes (27-78) for procedure time, 36.9cc (10-70) for estimated blood loss and 1.7 days (range 0-7) for length of stay (LOS). The RMA mean [95% CI] pain score dropped by 5.2 points at 6 months and 5.3 points at 12 months (baseline score of 8.1 [7.8-8.4], 12-month score of 2.7 [2.1-3.3]), and a 24-month score of 2.0(1.4-2.5). ODI decreased by 31 points at 12 months (baseline score of 56.2 [51.0-61.5], 6-month score of 30.7 [21.8-39.6], and 12-month score of 25.1 [12.3-37.9]). Some estimates showed significant variation across studies and between the types of implants used. Other reported outcomes were supportive of the positive effects of SI joint fusion. Conclusion Published studies of MIS SI joint fusion using a lateral transarticular approach confirm its

  18. The Applications of Decision-Level Data Fusion Techniques in the Field of Multiuser Detection for DS-UWB Systems.

    PubMed

    Gu, Yebo; Yang, Minglei; Shi, Zhenguo; Wu, Zhilu

    2015-09-25

    In this paper, the decision-level data fusion techniques are extended to the multiuser detection (MUD) field. Then two novel MUD algorithms, that is the chairman arbitrating decision-level fusion criterion (CA-DFC) based MUD algorithm and the veto logic decision-level fusion criterion (VL-DFC) based MUD algorithm, are proposed for DS-UWB communication systems. In CA-DFC based method, the chairman can make his arbitration among the preliminary decisions from sub-optimal detectors by his own rule. In the VL-DFC based method, the undetermined bits in these preliminary decisions are considered to construct a simplified solution space, and then the chairman can make his final decision within this space. Simulation results demonstrate that the performances of CA-DFC and VL-DFC based MUD algorithms are superior to those of other sub-optimal MUD algorithms, and even close to that of OMD. Moreover, both of these proposed algorithms have lower computational complexity than OMD, which reveals their efficiency. Compared with CA-DFC, VL-DFC based algorithm achieves a little improvement in its performance, at the cost of the increment in its computational complexity. Thus, they can be applied to different practical situations.

  19. [An alternative dorsal fusion technique after transoral dens resection in basilar impression with atlas assimilation].

    PubMed

    Kaden, B; Schramm, J; Koch, W; Solymosi, L

    1998-01-01

    Current therapy of basilar impression includes transoral dens resection. The essential disadvantage of this procedure is the instability of C1/C2 due to loss of the transverse ligament. We describe two patients in whom this instability was treated by modified screwing. Using MAGERL-screws between C0-C2 an interposition of an iliac graft between the occiput and the arc of C2 was made. Neurological symptoms improved in both patients postoperatively. In both cases stable fusion C0/C2 was achieved with an additional treatment with a HALO-fixateur for eight weeks. In our opinion the combined transoral/dorsal procedure is most suitable and efficient in treatment of basilar impressions. By this approach both, decompression of the myelon as well as stable fusion C0/C2, is achieved.

  20. Magnetic Resonance Imaging-Ultrasound Fusion-Guided Prostate Biopsy: Review of Technology, Techniques, and Outcomes

    PubMed Central

    Kongnyuy, Michael; George, Arvin K.; Rastinehad, Ardeshir R.; Pinto, Peter A.

    2016-01-01

    Transrectal ultrasound (TRUS)-guided (12–14 core) systematic biopsy of the prostate is the recommended standard for patients with suspicion of prostate cancer (PCa). Advances in imaging have led to the application of magnetic resonance imaging (MRI) for the detection of PCa with subsequent development of software-based co-registration allowing for the integration of MRI with real-time TRUS during prostate biopsy. A number of fusion-guided methods and platforms are now commercially available with common elements in image and analysis and planning. Implementation of fusion-guided prostate biopsy has now been proven to improve the detection of clinically significant PCa in appropriately selected patients. PMID:26902626

  1. Advanced data visualization and sensor fusion: Conversion of techniques from medical imaging to Earth science

    NASA Technical Reports Server (NTRS)

    Savage, Richard C.; Chen, Chin-Tu; Pelizzari, Charles; Ramanathan, Veerabhadran

    1993-01-01

    Hughes Aircraft Company and the University of Chicago propose to transfer existing medical imaging registration algorithms to the area of multi-sensor data fusion. The University of Chicago's algorithms have been successfully demonstrated to provide pixel by pixel comparison capability for medical sensors with different characteristics. The research will attempt to fuse GOES (Geostationary Operational Environmental Satellite), AVHRR (Advanced Very High Resolution Radiometer), and SSM/I (Special Sensor Microwave Imager) sensor data which will benefit a wide range of researchers. The algorithms will utilize data visualization and algorithm development tools created by Hughes in its EOSDIS (Earth Observation SystemData/Information System) prototyping. This will maximize the work on the fusion algorithms since support software (e.g. input/output routines) will already exist. The research will produce a portable software library with documentation for use by other researchers.

  2. Advanced data visualization and sensor fusion: Conversion of techniques from medical imaging to Earth science

    NASA Technical Reports Server (NTRS)

    Savage, Richard C.; Chen, Chin-Tu; Pelizzari, Charles; Ramanathan, Veerabhadran

    1992-01-01

    Hughes Aircraft Company and the University of Chicago propose to transfer existing medical imaging registration algorithms to the area of multi-sensor data fusion. The University of Chicago's algorithms have been successfully demonstrated to provide pixel by pixel comparison capability for medical sensors with different characteristics. The research will attempt to fuse GOES, AVHRR, and SSM/I sensor data which will benefit a wide range of researchers. The algorithms will utilize data visualization and algorithm development tools created by Hughes in its EOSDIS prototyping. This will maximize the work on the fusion algorithms since support software (e.g. input/output routines) will already exist. The research will produce a portable software library with documentation for use by other researchers.

  3. Wavelet and pyramid techniques for multisensor data fusion: a performance comparison varying with scale ratios

    NASA Astrophysics Data System (ADS)

    Aiazzi, Bruno; Alparone, Luciano; Argenti, Fabrizio; Baronti, Stefano

    1999-12-01

    Goal of this paper is to provide a quantitative performance evaluation of multiresolution schemes capable to carry out feature-based fusion of data collected by multispectral and panchromatic imaging sensors having different spectral and ground resolutions. To this aim a set of quantitative parameters has been recently proposed. Both visual quality, regarded as contrast, presence of fine details, and absence of impairments and artifacts (e.g., blur, ringing), and spectral fidelity (i.e., preservation of spectral signatures) are concerned and embodied in the measurements. Out of the three methods compared, respectively based on highpass filtering (HPF), wavelet transform (WT), and generalized Laplacian pyramid (GLP), the latter two are far more efficient than the former, thus establishing the advantages for data fusion of a formally multiresolution analysis.

  4. A new approach for surface water change detection: Integration of pixel level image fusion and image classification techniques

    NASA Astrophysics Data System (ADS)

    Rokni, Komeil; Ahmad, Anuar; Solaimani, Karim; Hazini, Sharifeh

    2015-02-01

    Normally, to detect surface water changes, water features are extracted individually using multi-temporal satellite data, and then analyzed and compared to detect their changes. This study introduced a new approach for surface water change detection, which is based on integration of pixel level image fusion and image classification techniques. The proposed approach has the advantages of producing a pansharpened multispectral image, simultaneously highlighting the changed areas, as well as providing a high accuracy result. In doing so, various fusion techniques including Modified IHS, High Pass Filter, Gram Schmidt, and Wavelet-PC were investigated to merge the multi-temporal Landsat ETM+ 2000 and TM 2010 images to highlight the changes. The suitability of the resulting fused images for change detection was evaluated using edge detection, visual interpretation, and quantitative analysis methods. Subsequently, artificial neural network (ANN), support vector machine (SVM), and maximum likelihood (ML) classification techniques were applied to extract and map the highlighted changes. Furthermore, the applicability of the proposed approach for surface water change detection was evaluated in comparison with some common change detection methods including image differencing, principal components analysis, and post classification comparison. The results indicate that Lake Urmia lost about one third of its surface area in the period 2000-2010. The results illustrate the effectiveness of the proposed approach, especially Gram Schmidt-ANN and Gram Schmidt-SVM for surface water change detection.

  5. Fabrication of cryogenic inertial-confinement-fusion targets using target free-fall technique. Report No. 2-82

    SciTech Connect

    Kim, K.; Murphy, M.J.

    1982-04-01

    Techniques for fabricating cryogenic inertial confinement fusion targets (i.e., spherical shells containing a uniform layer of DT ice) are investigated using target free-fall concept. Detection and characterization of the moving targets are effected by optoelectronic means, of which the principal is an RF ac-interferometer. This interferometer system demonstrates, for the first time, the speed capabilities of the phase-modulation ac-interferometry. New techiques developed for handling, holding, launching, and transporting targets are also described. Results obtained at both room and cryogenic temperatures are presented.

  6. Measuring fusion excitation functions with RIBs: A thorough analysis of the stacked target technique and the related problems

    SciTech Connect

    Fisichella, M. Di Pietro, A.; Figuera, P.; Marchetta, C.; Shotter, A. C.; Lattuada, M.; Torresi, D.; Privitera, V.; Romano, L.; Ruiz, C.; Zadro, M.

    2015-10-15

    The use of the stacked target technique to measure fusion cross-sections of reactions induced by low intensity radioactive beams offers considerable advantages since several reaction energies may be simultaneously measured. The main disadvantage of the method is the degradation of the beam quality as it passes through the stack due to statistical nature of energy loss processes and any non-uniformity of the stacked targets. This degradation can lead to ambiguities of associating effective beam energies to reaction product yields for the targets within the stack. A detailed investigation of these ambiguities has been performed and some of the obtained results are presented.

  7. Minimally Invasive Unilateral vs. Bilateral Pedicle Screw Fixation and Lumbar Interbody Fusion in Treatment of Multi-Segment Lumbar Degenerative Disorders

    PubMed Central

    Liu, Xiaoyang; Li, Guangrun; Wang, Jiefeng; Zhang, Heqing

    2015-01-01

    Background The choice for instrumentation with minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) in treatment of degenerative lumbar disorders (DLD) remains controversial. The goal of this study was to investigate clinical outcomes in consecutive patients with multi-segment DLD treated with unilateral pedicle screw (UPS) vs. bilateral pedicle screw (BPS) instrumented TLIF. Material/Methods Eighty-four consecutive patients who had multi-level MIS-TLIF were retrospectively reviewed. All data were collected to compare the clinical outcomes between the 2 groups. Results Both groups showed similar clinical function scores in VAS and ODI. The two groups differed significantly in operative time (P<0.001), blood loss (P<0.001), and fusion rate (P=0.043), respectively. Conclusions This study demonstrated similar clinical outcomes between UPS fixation and BPS procedure after MIS-TLIF for multi-level DLD. Moreover, UPS technique was superior in operative time and blood loss, but represented lower fusion rate than the BPS construct did. PMID:26603050

  8. Extreme lateral lumbar interbody fusion. Surgical technique, outcomes and complications after a minimum of one year follow-up.

    PubMed

    Domínguez, I; Luque, R; Noriega, M; Rey, J; Alia, J; Marco-Martínez, F

    «Minimally invasive» techniques have been recently been developed in order to achieve good clinical results with a low incidence of complications. The extralateral interbody fusion or direct transpsoas is a minimally invasive anterior arthrodesis. A total of 97 patients with 138 segments received surgery between May 2012 and May 2015. The follow-up was from 12-44 months. The mean age was 68 years (41-86). The most common cause of intervention was the adjacent segment (30%), deformity (22%), and lumbar disc disease (21%). The interbody cage was implanted as: Single (stand-alone) in 33%, and additional fixation was used in the others: Screws, percutaneous unilateral (11%), bilateral (27%), or with a lateral plate (62%). The mean stay was 3.2 days (2-6). The score on a lumbar visual analogue scale decreased from 9 to 4.1, and dropped to 3 after one year. The improvement in disc height was from 8.4mm to 13.8mm, and a larger increase in the foramen diameter from 10.5 to 13.1mm, which were statistically significant. The early major complications recorded were, three motor femoral nerve injuries and retroperitoneal haematoma (4%), and the early minor were: two fractures (2%). As major late complications there was an abdominal hernia, a mobilization of 10mm and three radiculopathy (5%), and as minor late, three fracture, two mobilisations greater than 10mm, four mobilisations of less than 10mm, and one mobilisation of a screw plate (10%). The extralateral interbody fusion technique is a safe and reliable when performing a lumbar fusion by an alternative minimally invasive route.

  9. Single and Dual Drug Release Patterns from Shellac Wax-Lutrol Matrix Tablets Fabricated with Fusion and Molding Techniques

    PubMed Central

    Phaechamud, T.; Choncheewa, C.

    2015-01-01

    The objective of this investigation was to prepare the shellac wax matrix tablets by fusion and molding technique incorporated with Lutrol in different ratios to modify the hydrophobicity of matrix tablet. The matrix tablets with single drug were loaded either with propranolol hydrochloride or hydrochlorothiazide as hydrophilic and hydrophobic model drugs, and a dual drug formula was also prepared. The single and dual drug release patterns were studied in a dissolution apparatus using distilled water as medium. Propranolol hydrochloride released from matrix was easier than hydrochlorothiazide. Drug release from shellac wax matrix could be enhanced by incorporation of Lutrol. However retardation of drug release from some matrix tablets was evident for the systems that could form dispersion in the dissolution medium. The gel network from high content of Lutrol was hexagonal which was a dense and more compact structure than the other structures found when low amounts of Lutrol were present in the formula. Therefore, the formulae with high content of Lutrol could prolong drug release more efficiently than those containing low content of Lutrol. Hence shellac wax matrix could modulate the drug release with the addition of Lutrol. Sustainable dual drug release was also obtained from these developed matrix tablets. Thus shellac wax-Lutrol component could be used as a potential matrix tablet prepared with fusion and molding technique with excellent controlled drug release. PMID:25767320

  10. A Clinical Investigation of Contralateral Neurological Symptom after Transforaminal Lumbar Interbody Fusion (TLIF)

    PubMed Central

    Bai, Jiayue; Zhang, Wei; Zhang, Xin; Sun, Yapeng; Ding, Wenyuan; Shen, Yong

    2015-01-01

    Background The aim of this study was to analyze treatment outcomes and morbidity of contralateral neurological symptom in patients after TLIF surgery and to explore its possible causes. Material/Methods A retrospective study was conducted involving a total of 476 patients who underwent TILF from 2009 to 2012 in our hospital. These cases were divided into a symptomatic group (Group S) and a non-symptomatic group. The differences in contralateral foramen area and disc-height index(DHI) before and after surgery were compared between Group S and a random sample of 40 cases of non-symptomatic group patients (group N). In addition, according to whether the patient underwent second surgery, Group S patients were further divided into a transient neurologic symptoms group (Group T) and an operations exploration group (Group O). The time of symptom appearance, duration, and symptomatic severity (JOA VAS score) were compared between Group T and O. Results Among the 476 patients, 18 had postoperative contralateral neurological symptoms; thus, the morbidity was 3.7815%. The indicators in Group S were lower than in Group N in the differences in contralateral foramen area and disc-height index(DHI) before and after surgery (p<0.05). Five patients (Group O) in Group S had second surgery because of invalid conservative treatment. The surgical exploration rate was 1.0504%. Compared with Group T, the symptoms of Group O patients appeared earlier, persisted longer, and were more serious (p<0.05). Conclusions Contralateral neurological symptom is a potential complication after TLIF, and its causes are diverse. Surgical explorations should be conducted early for those patients with the complication who present with obvious nerve damage. PMID:26109143

  11. Development of a diagnostic technique based on Cherenkov effect for measurements of fast electrons in fusion devices

    SciTech Connect

    Plyusnin, V. V.; Duarte, P.; Fernandes, H.; Silva, C.

    2012-08-15

    A diagnostic technique based on the Cherenkov effect is proposed for detection and characterization of fast (super-thermal and runaway) electrons in fusion devices. The detectors of Cherenkov radiation have been specially designed for measurements in the ISTTOK tokamak. Properties of several materials have been studied to determine the most appropriate one to be used as a radiator of Cherenkov emission in the detector. This technique has enabled the detection of energetic electrons (70 keV and higher) and the determination of their spatial and temporal variations in the ISTTOK discharges. Measurement of hard x-ray emission has also been carried out in experiments for validation of the measuring capabilities of the Cherenkov-type detector and a high correlation was found between the data of both diagnostics. A reasonable agreement was found between experimental data and the results of numerical modeling of the runaway electron generation in ISTTOK.

  12. Development of Field-Reversed Configuration Plasma Gun Formation Techniques for Magnetized Target Fusion

    NASA Astrophysics Data System (ADS)

    Lynn, Alan; Gilmore, Mark; Wynkoop, Tyler; Intrator, Thomas; Weber, Thomas

    2012-10-01

    Magnetized Target Fusion (MTF) is an innovative approach for a relatively fast and cheap path to the production of fusion energy that utilizes magnetic confinement to assist in the compression of a hot plasma to thermonuclear conditions by an external driver. Los Alamos National Laboratory (LANL) is currently pursing demonstration of the MTF concept via compression of an FRC (field-reversed configuration) plasma by a metal liner z-pinch in conjunction with the Air Force Research Laboratory in Albuquerque, NM. A key physics issue for the FRC as an MTF target lies in the initial pre-ionization (PI) stage. The PI formation process determines the amount of magnetic flux that can be trapped to form the FRC. This trapped flux plays an important role in the FRC's final equilibrium, transport, and stability properties. It also provides the route to greatest potential gains in FRC lifetime, which is essential to provide enough time to translate and compress the FRC effectively. In conjunction with LANL we plan to test and characterize a new system to improve the initial PI plasma formation. This system will use an array of plasma guns to form the initial plasma. Initial characterization of the plasma gun behavior will be presented.

  13. Joining techniques for a reduced activation 12Cr steel for inertial fusion energy

    SciTech Connect

    Hunt, R. M.; El-Dasher, B.; Choi, B. W.; Torres, S. G.

    2014-10-01

    At Lawrence Livermore National Laboratory, we are developing a reduced activation ferritic martensitic steel that is based on the ferritic martensitic steel HT-9. As a part of the development of this steel, we tested a series of welding processes for characterization, including conventional welds (electron beam, tungsten inert gas, and laser) as well as solid-state welds (hot isostatic pressing). We also heat treated the joints at various temperatures between 750 °C and 1050 °C to find a suitable normalization scheme. The modified HT-9 reduced activation ferritic martensitic steel appears highly suitable to welding and diffusion bonding. All welds showed good quality fusion zones with insignificant cracking or porosity. Additionally, a heat treatment schedule of 950 °C for one hour caused minimal grain growth while still converging the hardness of the base metal with that of the fusion and heat-affected zones. Also, modified HT-9 diffusion bonds that were created at temperatures of at least 950 °C for two hours at 103 MPa had interface tensile strengths of greater than 600 MPa. The diffusion bonds showed no evidence of increased hardness nor void formation at the diffusion bonded interface.

  14. Decisive factor in increase of loading at adjacent segments after lumbar fusion: operative technique, pedicle screws, or fusion itself: biomechanical analysis using finite element

    NASA Astrophysics Data System (ADS)

    Park, Joon-Hee; Kim, Ho-Joong; Kang, Kyoung-Tak; Kim, Ka-Yeon; Chun, Heoung-Jae; Moon, Seong-Hwan; Lee, Hwan-Mo

    2009-12-01

    The aim of this study is to investigate the change in biomechanical milieu following removal of pedicle screws or removal of spinous process with posterior ligament complex in instrumented single level lumbar arthrodesis. We developed and validated a finite element model (FEM) of the intact lumbar spine (L2-4). Four scenarios of L3-4 lumbar fusion were simulated: posterolateral fusion (PLF) at L3-4 using pedicle screw system with preservation of PLC (Pp WiP), L3-4 lumbar posterolateral fusion state after removal of pedicle screw system with preservation of PLC (Pp WoP), L3-4 using pedicle screw system without preservation PLC (Sp WiP), L3-4 lumbar posterolateral fusion state after removal of pedicle screw system without preservation of PLC (Sp WoP). For these models, we investigated the range of motion and maximal Von mises stress of disc in all segments under various moments. All fusion models demonstrated increase in range of motion at adjacent segments compared to the intact model.For the four fusion models, the WiP model s P had the largest increase in range of motion at each adjacent segment. This study demonstrated that removal of pedicle screw system and preservation of PLC after complete lumbar spinal fusion could reduce the stress of adjacent segments synergistically and might have beneficial effects in preventing ASD.

  15. Decisive factor in increase of loading at adjacent segments after lumbar fusion: operative technique, pedicle screws, or fusion itself: biomechanical analysis using finite element

    NASA Astrophysics Data System (ADS)

    Park, Joon-Hee; Kim, Ho-Joong; Kang, Kyoung-Tak; Kim, Ka-yeon; Chun, Heoung-Jae; Moon, Seong-Hwan; Lee, Hwan-Mo

    2010-03-01

    The aim of this study is to investigate the change in biomechanical milieu following removal of pedicle screws or removal of spinous process with posterior ligament complex in instrumented single level lumbar arthrodesis. We developed and validated a finite element model (FEM) of the intact lumbar spine (L2-4). Four scenarios of L3-4 lumbar fusion were simulated: posterolateral fusion (PLF) at L3-4 using pedicle screw system with preservation of PLC (Pp WiP), L3-4 lumbar posterolateral fusion state after removal of pedicle screw system with preservation of PLC (Pp WoP), L3-4 using pedicle screw system without preservation PLC (Sp WiP), L3-4 lumbar posterolateral fusion state after removal of pedicle screw system without preservation of PLC (Sp WoP). For these models, we investigated the range of motion and maximal Von mises stress of disc in all segments under various moments. All fusion models demonstrated increase in range of motion at adjacent segments compared to the intact model.For the four fusion models, the WiP model s P had the largest increase in range of motion at each adjacent segment. This study demonstrated that removal of pedicle screw system and preservation of PLC after complete lumbar spinal fusion could reduce the stress of adjacent segments synergistically and might have beneficial effects in preventing ASD.

  16. Could the Topping-Off Technique Be the Preventive Strategy against Adjacent Segment Disease after Pedicle Screw-Based Fusion in Lumbar Degenerative Diseases? A Systematic Review

    PubMed Central

    Chou, Po-Hsin; Lin, Hsi-Hsien; An, Howard S.; Liu, Kang-Ying

    2017-01-01

    The “topping-off” technique is a new concept applying dynamic or less rigid fixation such as hybrid stabilization device (HSD) or interspinous process device (IPD) for the purpose of avoiding adjacent segment disease (ASD) proximal to the fusion construct. A systematic review of the literature was performed on the effect of topping-off techniques to prevent or decrease the occurrence of ASD after lumbar fusion surgery. We searched through major online databases, PubMed and MEDLINE, using key words related to “topping-off” technique. We reviewed the surgical results of “topping-off” techniques with either HSD or IPD, including the incidence of ASD at two proximal adjacent levels (index and supra-adjacent level) as compared to the fusion alone group. The results showed that the fusion alone group had statistically higher incidence of radiographic (52.6%) and symptomatic (11.6%) ASD at the index level as well as higher incidence (8.1%) of revision surgery. Besides, the HSD (10.5%) and fusion groups (24.7%) had statistically higher incidences of radiographic ASD at supra-adjacent level than the IPD (1%). The findings suggest that the “topping-off” technique may potentially decrease the occurrence of ASD at the proximal motion segments. However, higher quality prospective randomized trials are required prior to wide clinical application. PMID:28321409

  17. A novel technique to evaluate the geometrical accuracy of CT-MR image fusion in Gamma Knife radiosurgery procedures

    NASA Astrophysics Data System (ADS)

    Thomas, Sajeev; Sampath, S.; Indiradevi, B.; Bhanumathy, G.; Supe, Sanjay S.; Musthafa, M. M.

    2010-01-01

    In order to optimize the accuracy of imaging in Gamma Knife radiosurgery using the image fusion options available in the Leksell gamma plan. Phantom images from 1.5 Tesla MRI Scan (Magnetom vision - Siemens) and Computed Tomography images from Philips Brilliance 16 CT scanner were used for image fusion in Gammaplan treatment planning system. The images were fused using co-registration technique using multiview and imagemerge modules. Stereotactic coordinates were then calculated for known targets. Vector distances from the centre of the Leksell coordinate system to five known targets were measured in CT, MR and CT-MR fused images and compared with geometrical measurements. The mean values of maximum absolute errors were 0.34 mm, 0.41 mm.0.38 mm (along x-axis), 0.43 mm, 1.53 mm, 0.62 mm (along y-axis) and 0.75 mm 2.02 mm, 0.93 mm (along z-axis) for CT, MR and CT-MR fused image data respectively. The mean error in calculating the vector distances from the center of the Leksell coordinate system (100, 100, 100) to the known target volumes are 0.22 mm, 0.8 mm and 0.43 mm for CT, MR and CT-MR fused images, respectively. Image fusion functions available in gamma plan are useful for combining the features of CT and MR imaging modalities. These methods are highly useful in clinical situations where the error associated with Magnetic Resonance Imaging is beyond acceptable levels.

  18. Using Geostatistical Data Fusion Techniques and MODIS Data to Upscale Simulated Wheat Yield

    NASA Astrophysics Data System (ADS)

    Castrignano, A.; Buttafuoco, G.; Matese, A.; Toscano, P.

    2014-12-01

    Population growth increases food request. Assessing food demand and predicting the actual supply for a given location are critical components of strategic food security planning at regional scale. Crop yield can be simulated using crop models because is site-specific and determined by weather, management, length of growing season and soil properties. Crop models require reliable location-specific data that are not generally available. Obtaining these data at a large number of locations is time-consuming, costly and sometimes simply not feasible. An upscaling method to extend coverage of sparse estimates of crop yield to an appropriate extrapolation domain is required. This work is aimed to investigate the applicability of a geostatistical data fusion approach for merging remote sensing data with the predictions of a simulation model of wheat growth and production using ground-based data. The study area is Capitanata plain (4000 km2) located in Apulia Region, mostly cropped with durum wheat. The MODIS EVI/NDVI data products for Capitanata plain were downloaded from the Land Processes Distributed Active Archive Center (LPDAAC) remote for the whole crop cycle of durum wheat. Phenological development, biomass growth and grain quantity of durum wheat were simulated by the Delphi system, based on a crop simulation model linked to a database including soil properties, agronomical and meteorological data. Multicollocated cokriging was used to integrate secondary exhaustive information (multi-spectral MODIS data) with primary variable (sparsely distributed biomass/yield model predictions of durum wheat). The model estimates looked strongly spatially correlated with the radiance data (red and NIR bands) and the fusion data approach proved to be quite suitable and flexible to integrate data of different type and support.

  19. In vitro biomechanical evaluation of four surgical techniques for fusion of equine centrodistal and tarsometatarsal joints.

    PubMed

    Biedrzycki, Adam H; Grant, Barrie G; Nemke, Brett; Morello, Samantha L; Markel, Mark D

    2016-10-01

    OBJECTIVE To evaluate the biomechanical properties of 4 methods for fusion of the centrodistal and tarsometatarsal joints in horses and compare them among each other and with control tarsi. SAMPLE 24 sets of paired tarsi without substantial signs of osteoarthritis harvested from equine cadavers. PROCEDURES Test constructs (n = 6/type) were prepared from 1 tarsus from each pair to represent surgical drilling; 2 medially to laterally placed kerf-cut cylinders (MLKCs); a single large, dorsally applied kerf-cut cylinder (DKC); and a dorsomedially applied locking compression plate (DMLCP). Constructs and their contralateral control tarsi were evaluated in 4-point bending in the dorsoplantar, lateromedial, and mediolateral directions; internal and external rotation; and axial compression. Bending, torsional, and axial stiffness values were calculated. RESULTS Mean stiffness values were consistently lower for surgical drilling constructs than for contralateral control tarsi. Over all biomechanical testing, surgical drilling significantly reduced joint stability. The MLKC constructs had superior biomechanical properties to those of control tarsi for 4-point bending but inferior properties for external and internal rotation. The DMLCP and DKC constructs were superior to control tarsi in dorsoplantar, rotational, and axial compression directions only; DMLCP constructs had no superior stiffness in lateromedial or mediolateral directions. Only the DKC constructs had greater stiffness in the mediolateral direction than did control tarsi. Over all biomechanical testing, DMLCP and DKC constructs were superior to the other constructs. CONCLUSIONS AND CLINICAL RELEVANCE These biomechanical results suggested that a surgical drilling approach to joint fusion may reduce tarsal stability in horses without clinical osteoarthritis, compared with stability with no intervention, whereas the DMLCP and DKC approaches may significantly enhance stability.

  20. Multimodality Inferring of Human Cognitive States Based on Integration of Neuro-Fuzzy Network and Information Fusion Techniques

    NASA Astrophysics Data System (ADS)

    Yang, G.; Lin, Y.; Bhattacharya, P.

    2007-12-01

    To achieve an effective and safe operation on the machine system where the human interacts with the machine mutually, there is a need for the machine to understand the human state, especially cognitive state, when the human's operation task demands an intensive cognitive activity. Due to a well-known fact with the human being, a highly uncertain cognitive state and behavior as well as expressions or cues, the recent trend to infer the human state is to consider multimodality features of the human operator. In this paper, we present a method for multimodality inferring of human cognitive states by integrating neuro-fuzzy network and information fusion techniques. To demonstrate the effectiveness of this method, we take the driver fatigue detection as an example. The proposed method has, in particular, the following new features. First, human expressions are classified into four categories: (i) casual or contextual feature, (ii) contact feature, (iii) contactless feature, and (iv) performance feature. Second, the fuzzy neural network technique, in particular Takagi-Sugeno-Kang (TSK) model, is employed to cope with uncertain behaviors. Third, the sensor fusion technique, in particular ordered weighted aggregation (OWA), is integrated with the TSK model in such a way that cues are taken as inputs to the TSK model, and then the outputs of the TSK are fused by the OWA which gives outputs corresponding to particular cognitive states under interest (e.g., fatigue). We call this method TSK-OWA. Validation of the TSK-OWA, performed in the Northeastern University vehicle drive simulator, has shown that the proposed method is promising to be a general tool for human cognitive state inferring and a special tool for the driver fatigue detection.

  1. Acquiring the Dialogue: Providing Input by Using a Fusion of Skills Technique.

    ERIC Educational Resources Information Center

    Rawley, Lee Ann; Smith, Alfred N.

    1983-01-01

    A technique for teaching dialog is outlined that provides considerable preproduction input and acquisition experiences through which students create dialog lines. The technique uses these steps: prenarrative activities, narrative, contextual expansion of new vocabulary, reading input, dialog construction from visual cues, dialog recreation, and…

  2. New model for cardiomyocyte sheet transplantation using a virus-cell fusion technique

    PubMed Central

    Takahashi, Yuto; Tomotsune, Daihachiro; Takizawa, Sakiko; Yue, Fengming; Nagai, Mika; Yokoyama, Tadayuki; Hirashima, Kanji; Sasaki, Katsunori

    2015-01-01

    AIM: To facilitate close contacts between transplanted cardiomyocytes and host skeletal muscle using cell fusion mediated by hemagglutinating virus of Japan envelope (HVJ-E) and tissue maceration. METHODS: Cardiomyocytes (1.5 × 106) from fetal rats were first cultured. After proliferation, some cells were used for fusion with adult muscle fibers using HVJ-E. Other cells were used to create cardiomyocyte sheets (area: about 3.5 cm2 including 2.1 × 106 cells), which were then treated with Nile blue, separated, and transplanted between the latissimus dorsi and intercostal muscles of adult rats with four combinations of HVJ-E and/or NaOH maceration: G1: HVJ-E(+), NaOH(+), Cardiomyocytes(+); G2: HVJ-E(-), NaOH(+), Cardiomyocytes(+); G3: HVJ-E(+), NaOH(-), Cardiomyocytes(+); G4: HVJ-E(-), NaOH(-), Cardiomyocytes(-). At 1 and 2 wk after transplantation, the four groups were compared by detection of beating domains, motion images using moving target analysis software, action potentials, gene expression of MLC-2v and Mesp1 by reverse transcription-polymerase chain reaction, hematoxylin-eosin staining, and immunostaining for cardiac troponin and skeletal myosin. RESULTS: In vitro cardiomyocytes were fused with skeletal muscle fibers using HVJ-E. Cardiomyocyte sheets remained in the primary transplanted sites for 2 wk. Although beating domains were detected in G1, G2, and G3 rats, G1 rats prevailed in the number, size, motion image amplitudes, and action potential compared with G2 and G3 rats. Close contacts were only found in G1 rats. At 1 wk after transplantation, the cardiomyocyte sheets showed adhesion at various points to the myoblast layer in the latissimus dorsi muscle. At 2 wk after transplantation, close contacts were seen over a broad area. Part of the skeletal muscle sarcoplasma seemed to project into the myocardiocyte plasma and some nuclei appeared to share both sarcoplasmas. CONCLUSION: The present results show that close contacts were acquired and facilitated

  3. Manual-Protocol Inspired Technique for Improving Automated MR Image Segmentation during Label Fusion

    PubMed Central

    Bhagwat, Nikhil; Pipitone, Jon; Winterburn, Julie L.; Guo, Ting; Duerden, Emma G.; Voineskos, Aristotle N.; Lepage, Martin; Miller, Steven P.; Pruessner, Jens C.; Chakravarty, M. Mallar

    2016-01-01

    Recent advances in multi-atlas based algorithms address many of the previous limitations in model-based and probabilistic segmentation methods. However, at the label fusion stage, a majority of algorithms focus primarily on optimizing weight-maps associated with the atlas library based on a theoretical objective function that approximates the segmentation error. In contrast, we propose a novel method—Autocorrecting Walks over Localized Markov Random Fields (AWoL-MRF)—that aims at mimicking the sequential process of manual segmentation, which is the gold-standard for virtually all the segmentation methods. AWoL-MRF begins with a set of candidate labels generated by a multi-atlas segmentation pipeline as an initial label distribution and refines low confidence regions based on a localized Markov random field (L-MRF) model using a novel sequential inference process (walks). We show that AWoL-MRF produces state-of-the-art results with superior accuracy and robustness with a small atlas library compared to existing methods. We validate the proposed approach by performing hippocampal segmentations on three independent datasets: (1) Alzheimer's Disease Neuroimaging Database (ADNI); (2) First Episode Psychosis patient cohort; and (3) A cohort of preterm neonates scanned early in life and at term-equivalent age. We assess the improvement in the performance qualitatively as well as quantitatively by comparing AWoL-MRF with majority vote, STAPLE, and Joint Label Fusion methods. AWoL-MRF reaches a maximum accuracy of 0.881 (dataset 1), 0.897 (dataset 2), and 0.807 (dataset 3) based on Dice similarity coefficient metric, offering significant performance improvements with a smaller atlas library (< 10) over compared methods. We also evaluate the diagnostic utility of AWoL-MRF by analyzing the volume differences per disease category in the ADNI1: Complete Screening dataset. We have made the source code for AWoL-MRF public at: https://github.com/CobraLab/AWoL-MRF. PMID

  4. Techniques For Injection Of Pre-Charaterized Dust Into The Scrape Off Layer Of Fusion Plasma

    SciTech Connect

    Roquemore, A. L.; John, B.; Friesen, F.; Hartzfeld, K.; Mansfield, D. K.

    2011-07-21

    Introduction of micron-sized dust into the scrape-off layer (SOL) of a plasma has recently found many applications aimed primarily at determining dust behavior in future fusion reactors. The dust particles are typically composed of materials intrinsic to a fusion reactor. On DIII-D and TEXTOR carbon dust has been introduced into the SOL using a probe inserted from below into the divertor region. On NSTX, both Li and tungsten dust have been dropped from the top of the machine into the SOL throughout the duration of a discharge, by utilizing a vibrating piezoelectric based particle dropper. The original particle dropper was developed to inject passivated Li powder {approx} 40 {mu}m in diameter into the SOL to enhance plasma performance. A simplified version of the dropper was developed to introduce trace amounts of tungsten powder for only a few discharges, thus not requiring a large powder reservoir. The particles emit visible light from plasma interactions and can be tracked by either spectroscopic means or by fast frame rate visible cameras. This data can then be compared with dust transport codes such as DUSTT to make predictions of dust behavior in next-step devices such as ITER. For complete modeling results, it is desired to be able to inject pre-characterized dust particles in the SOL at various known poloidal locations, including near the vessel midplane. Purely mechanical methods of injecting particles are presently being studied using a modified piezoelectric-based powder dropper as a particle source and one of several piezo-based transducers to deflect the particles into the SOL. Vibrating piezo fans operating at 60 Hz with a deflection of {+-}2.5 cm can impart a significant horizontal boost in velocity. The highest injection velocities are expected from rotating paddle wheels capable of injecting particles at 10's of meters per second depending primarily on the rotation velocity and diameter of the wheel. Several injection concepts have been tested and

  5. Improved prediction of drug-target interactions using regularized least squares integrating with kernel fusion technique.

    PubMed

    Hao, Ming; Wang, Yanli; Bryant, Stephen H

    2016-02-25

    Identification of drug-target interactions (DTI) is a central task in drug discovery processes. In this work, a simple but effective regularized least squares integrating with nonlinear kernel fusion (RLS-KF) algorithm is proposed to perform DTI predictions. Using benchmark DTI datasets, our proposed algorithm achieves the state-of-the-art results with area under precision-recall curve (AUPR) of 0.915, 0.925, 0.853 and 0.909 for enzymes, ion channels (IC), G protein-coupled receptors (GPCR) and nuclear receptors (NR) based on 10 fold cross-validation. The performance can further be improved by using a recalculated kernel matrix, especially for the small set of nuclear receptors with AUPR of 0.945. Importantly, most of the top ranked interaction predictions can be validated by experimental data reported in the literature, bioassay results in the PubChem BioAssay database, as well as other previous studies. Our analysis suggests that the proposed RLS-KF is helpful for studying DTI, drug repositioning as well as polypharmacology, and may help to accelerate drug discovery by identifying novel drug targets.

  6. High neurological complication rates for extreme lateral lumbar interbody fusion and related techniques: A review of safety concerns

    PubMed Central

    Epstein, Nancy E.

    2016-01-01

    Background: There are frequent reports of lumbosacral plexus and other neurological injuries occurring with extreme lateral interbody fusions (XLIF) and other related lateral lumbar techniques. Methods: This review focuses on the new neurological deficits (e.g. lumbosacral plexus, root injuries) that occur following minimally invasive surgery (MIS) XLIF and other related lateral lumbar techniques. Results: A review of multiple articles revealed the following ranges of new postoperative neurological complications for XLIF procedures: plexus injuries 13.28%; sensory deficits 0–75% (permanent in 62.5%); motor deficits 0.7–33.6%; anterior thigh pain 12.5–25%. Of interest, in a study by Lykissas et al., the frequency of long-term neural injury following lateral lumber interbody fusion (LLIF) with BMP-2 (72 patients) was much higher than for LLIF performed with autograft/allograft (72 patients). The addition of bone morphogenetic protein led to persistent sensory deficits in 29 vs. 20 without BMP; persistent motor deficits in 35 with vs. 17 without BMP; and persistent anterior thigh/groin pain in 8 with vs. 0 without BMP. They should also have noted the unacceptably high incidence of neural injury occurring with LLIF alone without BMP. Conclusion: This review highlights the high risk of neural injury (up to 75% for sensory, 33.6% for motor, and an overall plexus injury rate of 13.28%) utilizing the XLIF and other similar lateral lumbar approaches. With such extensive neurological injuries, is the XLIF really safe, and should it still be performed? PMID:27843679

  7. Sagittal Balance Correction in Lateral Interbody Fusion for Degenerative Scoliosis

    PubMed Central

    Gallizzi, Michael A.; Sheets, Charles; Smith, Benjamin T.; Isaacs, Robert E.; Eure, Megan; Brown, Christopher R.

    2016-01-01

    Background Sagittal balance restoration has been shown to be an important determinant of outcomes in corrective surgery for degenerative scoliosis. Lateral interbody fusion (LIF) is a less-invasive technique which permits the placement of a high lordosis interbody cage without risks associated with traditional anterior or transforaminal interbody techniques. Studies have shown improvement in lumbar lordosis following LIF, but only one other study has assessed sagittal balance in this population. The objective of this study is to evaluate the ability of LIF to restore sagittal balance in degenerative lumbar scoliosis. Methods Thirty-five patients who underwent LIF for degenerative thoracolumbar scoliosis from July 2013 to March 2014 by a single surgeon were included. Outcome measures included sagittal balance, lumbar lordosis, Cobb Angle, and segmental lordosis. Measures were evaluated pre-operative, immediately post-operatively, and at their last clinical follow-up. Repeated measures ANOVAs were used to assess the differences between pre-operative, first postoperative, and a follow-up visit. Results The average sagittal balance correction was not significantly different: 1.06cm from 5.79cm to 4.74cm forward. The average Cobb angle correction was 14.1 degrees from 21.6 to 5.5 degrees. The average change in global lumbar lordosis was found to be significantly different: 6.3 degrees from 28.9 to 35.2 degrees. Conclusions This study demonstrates that LIF reliably restores lordosis, but does not significantly improve sagittal balance. Despite this, patients had reliable improvement in pain and functionality suggesting that sagittal balance correction may not be as critical in scoliosis correction as previous studies have indicated. Clinical Relevance LIF does not significantly change sagittal balance; however, clinical improvement does not seem to be contingent upon sagittal balance correction in the degenerative scoliosis population. The DUHS IRB has determined this

  8. Experimental techniques for measuring Rayleigh-Taylor instability in inertial confinement fusion (ICF)

    SciTech Connect

    Smalyuk, V A

    2012-06-07

    Rayleigh-Taylor (RT) instability is one of the major concerns in inertial confinement fusion (ICF) because it amplifies target modulations in both acceleration and deceleration phases of implosion, which leads to shell disruption and performance degradation of imploding targets. This article reviews experimental results of the RT growth experiments performed on OMEGA laser system, where targets were driven directly with laser light. RT instability was studied in the linear and nonlinear regimes. The experiments were performed in acceleration phase, using planar and spherical targets, and in deceleration phase of spherical implosions, using spherical shells. Initial target modulations consisted of 2-D pre-imposed modulations, and 2-D and 3-D modulations imprinted on targets by the non-uniformities in laser drive. In planar geometry, the nonlinear regime was studied using 3-D modulations with broadband spectra near nonlinear saturation levels. In acceleration-phase, the measured modulation Fourier spectra and nonlinear growth velocities are in good agreement with those predicted by Haan's model [Haan S W 1989 Phys. Rev. A 39 5812]. In a real-space analysis, the bubble merger was quantified by a self-similar evolution of bubble size distributions [Oron D et al 2001 Phys. Plasmas 8, 2883]. The 3-D, inner-surface modulations were measured to grow throughout the deceleration phase of spherical implosions. RT growth rates are very sensitive to the drive conditions, therefore they can be used to test and validate drive physics in hydrodynamic codes used to design ICF implosions. Measured growth rates of pre-imposed 2-D target modulations below nonlinear saturation levels were used to validate non-local thermal electron transport model in laser-driven experiments.

  9. Alternative hot spot formation techniques using liquid deuterium-tritium layer inertial confinement fusion capsules

    SciTech Connect

    Olson, R. E.; Leeper, R. J.

    2013-09-15

    The baseline DT ice layer inertial confinement fusion (ICF) ignition capsule design requires a hot spot convergence ratio of ∼34 with a hot spot that is formed from DT mass originally residing in a very thin layer at the inner DT ice surface. In the present paper, we propose alternative ICF capsule designs in which the hot spot is formed mostly or entirely from mass originating within a spherical volume of DT vapor. Simulations of the implosion and hot spot formation in two DT liquid layer ICF capsule concepts—the DT wetted hydrocarbon (CH) foam concept and the “fast formed liquid” (FFL) concept—are described and compared to simulations of standard DT ice layer capsules. 1D simulations are used to compare the drive requirements, the optimal shock timing, the radial dependence of hot spot specific energy gain, and the hot spot convergence ratio in low vapor pressure (DT ice) and high vapor pressure (DT liquid) capsules. 2D simulations are used to compare the relative sensitivities to low-mode x-ray flux asymmetries in the DT ice and DT liquid capsules. It is found that the overall thermonuclear yields predicted for DT liquid layer capsules are less than yields predicted for DT ice layer capsules in simulations using comparable capsule size and absorbed energy. However, the wetted foam and FFL designs allow for flexibility in hot spot convergence ratio through the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density, with a potentially improved robustness to low-mode x-ray flux asymmetry.

  10. Alternative hot spot formation techniques using liquid deuterium-tritium layer inertial confinement fusion capsules

    SciTech Connect

    Olson, R. E.; Leeper, R. J.

    2013-09-27

    The baseline DT ice layer inertial confinement fusion (ICF) ignition capsule design requires a hot spot convergence ratio of ~34 with a hot spot that is formed from DT mass originally residing in a very thin layer at the inner DT ice surface. In the present paper, we propose alternative ICF capsule designs in which the hot spot is formed mostly or entirely from mass originating within a spherical volume of DT vapor. Simulations of the implosion and hot spot formation in two DT liquid layer ICF capsule concepts—the DT wetted hydrocarbon (CH) foam concept and the “fast formed liquid” (FFL) concept—are described and compared to simulations of standard DT ice layer capsules. 1D simulations are used to compare the drive requirements, the optimal shock timing, the radial dependence of hot spot specific energy gain, and the hot spot convergence ratio in low vapor pressure (DT ice) and high vapor pressure (DT liquid) capsules. 2D simulations are used to compare the relative sensitivities to low-mode x-ray flux asymmetries in the DT ice and DT liquid capsules. It is found that the overall thermonuclear yields predicted for DT liquid layer capsules are less than yields predicted for DT ice layer capsules in simulations using comparable capsule size and absorbed energy. However, the wetted foam and FFL designs allow for flexibility in hot spot convergence ratio through the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density, with a potentially improved robustness to low-mode x-ray flux asymmetry.

  11. The Role of Spectral Tissue Sensing During Lumbar Transforaminal Epidural Injection.

    PubMed

    Balthasar, Andrea J R; Lucassen, Gerald W; Sommer, Micha; van der Voort, Marjolein; Gijsbers, Geert; Arnoldussen, Carsten W K P; Kessel, Alfons; Roggeveen, Stefan; Lataster, Arno; van Kleef, Maarten

    2016-01-01

    Spectral tissue sensing (STS) exploits the scattering and absorption of light by tissue. The main objective of the present study was to determine whether STS can discriminate between correct and incorrect placement of the needle tip during lumbar transforaminal epidural injection. This was a single-blind prospective observational study in 30 patients with lumbar radicular pain scheduled for lumbar transforaminal epidural injection. Spectral tissue sensing data from the needle tip were acquired along the needle trajectory at 4 predefined measurement points and compared with ultrasound, fluoroscopy, and digital subtraction angiography images. Spectral tissue sensing data contained the full spectra. The lipid and hemoglobin content at the different measurement points was also calculated, and partial least-squares discriminant analysis was used to estimate the sensitivity and specificity of STS. Spectral tissue sensing identified correct needle placement with a sensitivity of 57% and a specificity of 82%, and intraforaminal versus extraforaminal locations were identified with a sensitivity of 80% and a specificity of 71%.

  12. Does Electrodiagnostic Confirmation of Radiculopathy Predict Pain Reduction after Transforaminal Epidural Steroid Injection? A Multicenter Study

    PubMed Central

    McCormick, Zachary; Cushman, Daniel; Caldwell, Mary; Marshall, Benjamin; Ghannad, Leda; Eng, Christine; Patel, Jaymin; Makovitch, Steven; Chu, Samuel K; Babu, Ashwin N.; Walega, David R.; Marciniak, Christina; Press, Joel; Kennedy, David J.; Plastaras, Christopher

    2015-01-01

    Objective Minimal definitive literature identifies patients with radicular pain who would benefit most from epidural steroid injection (ESI). This study investigated if electromyographic (EMG) confirmation of radiculopathy with active or chronic denervation predicts a positive treatment outcome following ESI. Design Longitudinal cohort study of adults who underwent EMG and subsequent transforaminal ESI within 6 months. The proportion of individuals who experienced >50% pain relief and mean change in daily morphine equivalents (DME) were calculated. Results 170 individuals with respective mean (Standard Deviation) age and duration of symptoms of 55 (15) years and 36 (56) months were included. Mean time to <30 day and >30 day follow-up post-injection were 18 (6) and 99 (130) days, respectively. At >30 day follow-up, a larger proportion of EMG-confirmed individuals (37.7%) reported >50% pain reduction compared to EMG-negative individuals (17.8%) (p=0.03). This was significant for lumbosacral (40% vs. 15%, p=0.01) but not cervical symptoms (p>0.05). Mean decrease in DME at long-term follow-up in EMG-confirmed compared to EMG-negative individuals trended toward significance (-4 vs. -1, p=0.11). There was no significant relationship between myotomal spontaneous activity and pain or opioid use. Conclusions Needle EMG predicts long-term pain reduction from transforaminal ESI in patients with lumbosacral radiculopathy, regardless of the presence of active denervation. PMID:26251843

  13. A scale space feature based registration technique for fusion of satellite imagery

    NASA Technical Reports Server (NTRS)

    Raghavan, Srini; Cromp, Robert F.; Campbell, William C.

    1997-01-01

    Feature based registration is one of the most reliable methods to register multi-sensor images (both active and passive imagery) since features are often more reliable than intensity or radiometric values. The only situation where a feature based approach will fail is when the scene is completely homogenous or densely textural in which case a combination of feature and intensity based methods may yield better results. In this paper, we present some preliminary results of testing our scale space feature based registration technique, a modified version of feature based method developed earlier for classification of multi-sensor imagery. The proposed approach removes the sensitivity in parameter selection experienced in the earlier version as explained later.

  14. Evaluating the role of large earthquakes on aquifer dynamics using data fusion and knowledge discovery techniques

    NASA Astrophysics Data System (ADS)

    Friedel, Michael; Cox, Simon; Williams, Charles; Holden, Caroline

    2016-04-01

    Artificial adaptive systems are evaluated for their usefulness in modeling earthquake hydrology of the Canterbury region, NZ. For example, an unsupervised machine-learning technique, self-organizing map, is used to fuse about 200 disparate and sparse data variables (such as, well pressure response, ground acceleration, intensity, shaking, stress and strain; aquifer and well characteristics) associated with the M7.1 Darfield earthquake in 2010 and the M6.3 Christchurch earthquake in 2011. The strength of correlations, determined using cross-component plots, varied between earthquakes with pressure changes more strongly related to dynamic- than static stress-related variables during the M7.1 earthquake, and vice versa during the M6.3. The method highlights the importance of data distribution and that driving mechanisms of earthquake-induced pressure change in the aquifers are not straight forward to interpret. In many cases, data mining revealed that confusion and reduction in correlations are associated with multiple trends in the same plot: one for confined and one for unconfined earthquake response. The autocontractive map and minimum spanning tree techniques are used for grouping variables of similar influence on earthquake hydrology. K-means clustering of neural information identified 5 primary regions influenced by the two earthquakes. The application of genetic doping to a genetic algorithm is used for identifying optimal subsets of variables in formulating predictions of well pressures. Predictions of well pressure changes are compared and contrasted using machine-learning network and symbolic regression models with prediction uncertainty quantified using a leave-one-out cross-validation strategy. These preliminary results provide impetus for subsequent analysis with information from another 100 earthquakes that occurred across the South Island.

  15. Estimation of water quality parameters applying satellite data fusion and mining techniques in the lake Albufera de Valencia (Spain)

    NASA Astrophysics Data System (ADS)

    Doña, Carolina; Chang, Ni-Bin; Vannah, Benjamin W.; Sánchez, Juan Manuel; Delegido, Jesús; Camacho, Antonio; Caselles, Vicente

    2014-05-01

    Linked to the enforcement of the European Water Framework Directive (2000) (WFD), which establishes that all countries of the European Union have to avoid deterioration, improve and retrieve the status of the water bodies, and maintain their good ecological status, several remote sensing studies have been carried out to monitor and understand the water quality variables trend. Lake Albufera de Valencia (Spain) is a hypereutrophic system that can present chrorophyll a concentrations over 200 mg·m-3 and transparency (Secchi disk) values below 20 cm, needing to retrieve and improve its water quality. The principal aim of our work was to develop algorithms to estimate water quality parameters such as chlorophyll a concentration and water transparency, which are informative of the eutrophication and ecological status, using remote sensing data. Remote sensing data from Terra/MODIS, Landsat 5-TM and Landsat 7-ETM+ images were used to carry out this study. Landsat images are useful to analyze the spatial variability of the water quality variables, as well as to monitor small to medium size water bodies due to its 30-m spatial resolution. But, the poor temporal resolution of Landsat, with a 16-day revisit time, is an issue. In this work we tried to solve this data gap by applying fusion techniques between Landsat and MODIS images. Although the lower spatial resolution of MODIS is 250/500-m, one image per day is available. Thus, synthetic Landsat images were created using data fusion for no data acquisition dates. Good correlation values were obtained when comparing original and synthetic Landsat images. Genetic programming was used to develop models for predicting water quality. Using the reflectance bands of the synthetic Landsat images as inputs to the model, values of R2 = 0.94 and RMSE = 8 mg·m-3 were obtained when comparing modeled and observed values of chlorophyll a, and values of R2= 0.91 and RMSE = 4 cm for the transparency (Secchi disk). Finally, concentration

  16. Anterior to psoas (ATP) fusion of the lumbar spine: evolution of a technique facilitated by changes in equipment

    PubMed Central

    Seex, Kevin

    2016-01-01

    Background Lateral interbody cages have been proven useful in spinal fusions. Spanning both lateral cortical rims while sparing the Anterior Longitudinal Ligament, the lateral interbody cages restore and maintain disc height while adding stability prior to supplemental fixation. The standard approach for their insertion is by a 90-degree lateral transpsoas method. This is relatively bloodless compared to other techniques although has its limitations, requiring neuro-monitoring and being, at times, very difficult at L4/5 due to iliac crest obstruction or an anterior plexus position. An oblique approach, with the patient in lateral decubitus, passes anterior to the iliac crest, retroperitoneal, and being anterior to psoas, eliminates the need for neuro-monitoring. Methods Twenty-one consecutive patients underwent surgery for a total of 32 levels instrumented with the ATP technique. Mean age at the time of surgery was 62.4±7.4 years. There was a 6 months minimum clinical follow up, with imaging to assess fusion, at 6 and 12 months. Indications included symptomatic degenerative lumbar spondylosis +/− spondylolisthesis, leg and back pain. All patients were assessed with the Oswestry Disability Index (ODI), Visual Analog Scale 100 mm for back pain (VASb) and for leg pain (VASl) preoperatively, at 3, 6 and 12 months. Last follow-up was at 12 months for 9 patients and the rest had 6 months follow up. Results Statistical analysis showed significance for the results in ODI, VASb and VASl with improvement in all components except for one patient with worsening VASl. Eight patients had complications related to surgery which were still present at last follow-up including moderate weakness of hip flexion and EHL weakness. Lateral cutaneous nerve (LCN) palsy on the side of the approach was also seen as well as sympathectomy effect related to the mobilization of the sympathetic trunk. One patient, who also suffered from multiple sclerosis, experienced psoas abscess 3 months

  17. Wastewater quality monitoring system using sensor fusion and machine learning techniques.

    PubMed

    Qin, Xusong; Gao, Furong; Chen, Guohua

    2012-03-15

    A multi-sensor water quality monitoring system incorporating an UV/Vis spectrometer and a turbidimeter was used to monitor the Chemical Oxygen Demand (COD), Total Suspended Solids (TSS) and Oil & Grease (O&G) concentrations of the effluents from the Chinese restaurant on campus and an electrocoagulation-electroflotation (EC-EF) pilot plant. In order to handle the noise and information unbalance in the fused UV/Vis spectra and turbidity measurements during the calibration model building, an improved boosting method, Boosting-Iterative Predictor Weighting-Partial Least Squares (Boosting-IPW-PLS), was developed in the present study. The Boosting-IPW-PLS method incorporates IPW into boosting scheme to suppress the quality-irrelevant variables by assigning small weights, and builds up the models for the wastewater quality predictions based on the weighted variables. The monitoring system was tested in the field with satisfactory results, underlying the potential of this technique for the online monitoring of water quality.

  18. Comparison of the resulting error in data fusion techniques when used with remote sensing, earth observation, and in-situ data sets for water quality applications

    NASA Astrophysics Data System (ADS)

    Ziemba, Alexander; El Serafy, Ghada

    2016-04-01

    Ecological modeling and water quality investigations are complex processes which can require a high level of parameterization and a multitude of varying data sets in order to properly execute the model in question. Since models are generally complex, their calibration and validation can benefit from the application of data and information fusion techniques. The data applied to ecological models comes from a wide range of sources such as remote sensing, earth observation, and in-situ measurements, resulting in a high variability in the temporal and spatial resolution of the various data sets available to water quality investigators. It is proposed that effective fusion into a comprehensive singular set will provide a more complete and robust data resource with which models can be calibrated, validated, and driven by. Each individual product contains a unique valuation of error resulting from the method of measurement and application of pre-processing techniques. The uncertainty and error is further compounded when the data being fused is of varying temporal and spatial resolution. In order to have a reliable fusion based model and data set, the uncertainty of the results and confidence interval of the data being reported must be effectively communicated to those who would utilize the data product or model outputs in a decision making process[2]. Here we review an array of data fusion techniques applied to various remote sensing, earth observation, and in-situ data sets whose domains' are varied in spatial and temporal resolution. The data sets examined are combined in a manner so that the various classifications, complementary, redundant, and cooperative, of data are all assessed to determine classification's impact on the propagation and compounding of error. In order to assess the error of the fused data products, a comparison is conducted with data sets containing a known confidence interval and quality rating. We conclude with a quantification of the performance

  19. Measurement of hydrodynamic growth near peak velocity in an inertial confinement fusion capsule implosion using a self-radiography technique

    SciTech Connect

    Pickworth, L. A.; Hammel, B. A.; Smalyuk, V. A.; MacPhee, A. G.; Scott, H. A.; Robey, H. F.; Landen, O. L.; Barrios, M. A.; Regan, S. P.; Schneider, M. B.; Hoppe, Jr., M.; Kohut, T.; Holunga, D.; Walters, C.; Haid, B.; Dayton, M.

    2016-07-11

    First measurements of hydrodynamic growth near peak implosion velocity in an inertial confinement fusion (ICF) implosion at the National Ignition Facility were obtained using a self-radiographing technique and a preimposed Legendre mode 40, λ = 140 μm, sinusoidal perturbation. These are the first measurements of the total growth at the most unstable mode from acceleration Rayleigh-Taylor achieved in any ICF experiment to date, showing growth of the areal density perturbation of ~7000×. Measurements were made at convergences of ~5 to ~10× at both the waist and pole of the capsule, demonstrating simultaneous measurements of the growth factors from both lines of sight. The areal density growth factors are an order of magnitude larger than prior experimental measurements and differed by ~2× between the waist and the pole, showing asymmetry in the measured growth factors. As a result, these new measurements significantly advance our ability to diagnose perturbations detrimental to ICF implosions, uniquely intersecting the change from an accelerating to decelerating shell, with multiple simultaneous angular views.

  20. Measurement of hydrodynamic growth near peak velocity in an inertial confinement fusion capsule implosion using a self-radiography technique

    DOE PAGES

    Pickworth, L. A.; Hammel, B. A.; Smalyuk, V. A.; ...

    2016-07-11

    First measurements of hydrodynamic growth near peak implosion velocity in an inertial confinement fusion (ICF) implosion at the National Ignition Facility were obtained using a self-radiographing technique and a preimposed Legendre mode 40, λ = 140 μm, sinusoidal perturbation. These are the first measurements of the total growth at the most unstable mode from acceleration Rayleigh-Taylor achieved in any ICF experiment to date, showing growth of the areal density perturbation of ~7000×. Measurements were made at convergences of ~5 to ~10× at both the waist and pole of the capsule, demonstrating simultaneous measurements of the growth factors from both linesmore » of sight. The areal density growth factors are an order of magnitude larger than prior experimental measurements and differed by ~2× between the waist and the pole, showing asymmetry in the measured growth factors. As a result, these new measurements significantly advance our ability to diagnose perturbations detrimental to ICF implosions, uniquely intersecting the change from an accelerating to decelerating shell, with multiple simultaneous angular views.« less

  1. Measurement of Hydrodynamic Growth near Peak Velocity in an Inertial Confinement Fusion Capsule Implosion using a Self-Radiography Technique

    NASA Astrophysics Data System (ADS)

    Pickworth, L. A.; Hammel, B. A.; Smalyuk, V. A.; MacPhee, A. G.; Scott, H. A.; Robey, H. F.; Landen, O. L.; Barrios, M. A.; Regan, S. P.; Schneider, M. B.; Hoppe, M.; Kohut, T.; Holunga, D.; Walters, C.; Haid, B.; Dayton, M.

    2016-07-01

    First measurements of hydrodynamic growth near peak implosion velocity in an inertial confinement fusion (ICF) implosion at the National Ignition Facility were obtained using a self-radiographing technique and a preimposed Legendre mode 40, λ =140 μ m , sinusoidal perturbation. These are the first measurements of the total growth at the most unstable mode from acceleration Rayleigh-Taylor achieved in any ICF experiment to date, showing growth of the areal density perturbation of ˜7000 × . Measurements were made at convergences of ˜5 to ˜10 × at both the waist and pole of the capsule, demonstrating simultaneous measurements of the growth factors from both lines of sight. The areal density growth factors are an order of magnitude larger than prior experimental measurements and differed by ˜2 × between the waist and the pole, showing asymmetry in the measured growth factors. These new measurements significantly advance our ability to diagnose perturbations detrimental to ICF implosions, uniquely intersecting the change from an accelerating to decelerating shell, with multiple simultaneous angular views.

  2. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion

    SciTech Connect

    Kojima, A. Hanada, M.; Tobari, H.; Nishikiori, R.; Hiratsuka, J.; Kashiwagi, M.; Umeda, N.; Yoshida, M.; Ichikawa, M.; Watanabe, K.; Yamano, Y.; Grisham, L. R.

    2016-02-15

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.

  3. Multi-energy soft-x-ray technique for impurity transport measurements in the fusion plasma edge

    NASA Astrophysics Data System (ADS)

    Clayton, D. J.; Tritz, K.; Stutman, D.; Finkenthal, M.; Kaye, S. M.; Kumar, D.; LeBlanc, B. P.; Paul, S.; Sabbagh, S. A.

    2012-10-01

    A new diagnostic technique was developed to produce high-resolution impurity transport measurements of the steep-gradient edge of fusion plasmas. Perturbative impurity transport measurements were performed for the first time in the NSTX plasma edge (r/a ˜ 0.6 to the SOL) with short neon gas puffs, and the resulting line and continuum emission was measured with the new edge multi-energy soft-x-ray (ME-SXR) diagnostic. Neon transport is modeled with the radial impurity transport code STRAHL and the resulting x-ray emission is computed using the ADAS atomic database. The radial transport coefficient profiles D(r) and v(r), and the particle flux from the gas puff Φ(t), are the free parameters in this model and are varied to find the best fit to experimental x-ray emissivity measurements, with bolometry used to constrain the impurity source. Initial experiments were successful and results were consistent with previous measurements of core impurity transport and neoclassical transport calculations. New diagnostic tools will be implemented on NSTX-U to further improve these transport measurements.

  4. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion.

    PubMed

    Kojima, A; Hanada, M; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.

  5. Development and Application of Non-Linear Image Enhancement and Multi-Sensor Fusion Techniques for Hazy and Dark Imaging

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-ur

    2005-01-01

    The purpose of this research was to develop enhancement and multi-sensor fusion algorithms and techniques to make it safer for the pilot to fly in what would normally be considered Instrument Flight Rules (IFR) conditions, where pilot visibility is severely restricted due to fog, haze or other weather phenomenon. We proposed to use the non-linear Multiscale Retinex (MSR) as the basic driver for developing an integrated enhancement and fusion engine. When we started this research, the MSR was being applied primarily to grayscale imagery such as medical images, or to three-band color imagery, such as that produced in consumer photography: it was not, however, being applied to other imagery such as that produced by infrared image sources. However, we felt that it was possible by using the MSR algorithm in conjunction with multiple imaging modalities such as long-wave infrared (LWIR), short-wave infrared (SWIR), and visible spectrum (VIS), we could substantially improve over the then state-of-the-art enhancement algorithms, especially in poor visibility conditions. We proposed the following tasks: 1) Investigate the effects of applying the MSR to LWIR and SWIR images. This consisted of optimizing the algorithm in terms of surround scales, and weights for these spectral bands; 2) Fusing the LWIR and SWIR images with the VIS images using the MSR framework to determine the best possible representation of the desired features; 3) Evaluating different mixes of LWIR, SWIR and VIS bands for maximum fog and haze reduction, and low light level compensation; 4) Modifying the existing algorithms to work with video sequences. Over the course of the 3 year research period, we were able to accomplish these tasks and report on them at various internal presentations at NASA Langley Research Center, and in presentations and publications elsewhere. A description of the work performed under the tasks is provided in Section 2. The complete list of relevant publications during the research

  6. True anteroposterior view pedicle screw insertion technique

    PubMed Central

    Bai, Jia-yue; Zhang, Wei; An, Ji-long; Sun, Ya-peng; Ding, Wen-yuan; Shen, Yong

    2016-01-01

    Background The wide use of minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) surgery in the treatment of degenerative disc disease of lumbar spine in spinal surgery highlights the gradual decrease in the use of traditional pedicle screw insertion technology. This study aims to analyze the accuracy of the true anteroposterior view pedicle screw insertion technique in MIS-TLIF surgery, compare it with conventional pedicle screw insertion technology, and discuss its clinical application value. Methods Fifty-two patients undergoing true anteroposterior view (group A) and 87 patients undergoing conventional pedicle screw insertion (group B) were diagnosed with lumbar disc herniation or lumbar spinal stenosis. Time for screw placement, intraoperative irradiation exposure, accuracy rate of pedicle screw insertion, and incidence of neurovascular injury were compared between the two groups. Results The time for screw placement and intraoperative irradiation exposure was significantly less in group A. Penetration rates of the paries lateralis of vertebral pedicle, medial wall of vertebral pedicle, and anterior vertebral wall were 1.44%, 0%, and 2.40%, respectively, all of which were significantly lower than that in group B. No additional serious complications caused by the placement of screw were observed during the follow-up period in patients in group A, but two patients with medial penetration underwent revision for unbearable radicular pain. Conclusion The application of true anteroposterior view pedicle screw insertion technique in MIS-TLIF surgery shortens time for screw placement and reduces the intraoperative irradiation exposure along with a higher accuracy rate of screw placement, which makes it a safe, accurate, and efficient technique. PMID:27418828

  7. Percutaneous endoscopic transforaminal lumbar spinal canal decompression for lumbar spinal stenosis

    PubMed Central

    Wen, Bingtao; Zhang, Xifeng; Zhang, Lin; Huang, Peng; Zheng, Guoquan

    2016-01-01

    Abstract This study aimed to evaluate the safety and curative effect of percutaneous endoscopic transforaminal lumbar spinal canal decompression in the treatment of lumbar spinal stenosis. This retrospective study recruited 64 patients with lumbar spinal stenosis who underwent percutaneous endoscopic lumbar spinal canal decompression via surgical approach of posterolateral intervertebral foramen. The postoperation neurological function and pain status were evaluated by the visual analog scale (VAS) score of pain and the Oswestry disability index (ODI), and the patient satisfaction was evaluated according to the MacNab outcome criteria. The data, including preoperative comorbidities, operation time, the quantity of bleeding, bed rest time, and intraoperative and postoperative complications, were recorded. The mean operation time was 78 min, the mean quantity of bleeding was 20 mL and bed rest time was 6 h to 3 days. All patients were followed-up for 4 months to 5 years. The mean preoperative VAS score was 7.7 ± 1.2, while postoperative 3 months, 6 months, and final follow-up VAS scores were 2.8 ± 0.7, 2.1 ± 0.6, and 0.8 ± 0.6, respectively (P < 0.001). The mean preoperative ODI score was 72.4 ± 1.2, while postoperative 3 months, 6 months, and final follow-up ODI scores were 29.7 ± 4.9, 23.9 ± 4.0, and 12.5 ± 3.9, respectively (P < 0.001). The excellent and good rate reached 73.4% at the final follow-up. The percutaneous endoscopic transforaminal lumbar spinal canal decompression is an easy, safe, and effective minimally invasive surgery for patients with lumbar spinal stenosis. PMID:27977571

  8. Extraforaminal needle tip position reduces risk of intravascular injection in CT-fluoroscopic lumbar transforaminal epidural steroid injections

    PubMed Central

    Yu, Robinson K.; Ghodadra, Anish; Agarwal, Vikas

    2016-01-01

    Background Lumbar transforaminal epidural steroid injection is a common and effective tool for managing lumbar radicular pain, although accidental intravascular injection can rarely result in paralysis. The purpose of this study is to determine the safest needle tip position for computed tomography (CT)-guided lumbar transforaminal epidural steroid injections as determined by incidence of intravascular injection. Methods Three radiologists, in consensus, reviewed procedural imaging for consecutive CT-fluoroscopic lumbar transforaminal epidural steroid injections performed during a 16-month period. Intravascular injections were identified and categorized by needle tip position, vessel type injected, intravascular injection volume and procedural phase containing the intravascular injection. Pearson chi-square and logistic regression testing were used to assess differences between groups, as appropriate. Results Intravascular injections occurred in 9% (52/606) of injections. The intravascular injection rate was significantly lower (P<0.001) for extraforaminal needle position (0%, 0/109) compared to junctional (8%, 27/319) and foraminal (14%, 25/178) needle tip positions. Of the intravascular injections, 4% (2/52) were likely arterial, 35% (18/52) were likely venous, and 62% (32/52) were indeterminate for vessel type injected. 46% (24/52) of intravascular injections were large volume, 33% (17/52) were small volume, and 21% (11/52) were trace volume. 56% (29/52) of intravascular injections occurred with the contrast trial dose, 29% (15/52) with the steroid/analgesic cocktail, and 15% (8/52) with both. Conclusions An extraforaminal needle position for CT-fluoroscopic lumbar transforaminal epidural steroid injections decreases the risk of intravascular injection and therefore may be safer than other needle tip positions. PMID:28097241

  9. Final Report on Development of Optimized Field-Reversed Configuration Plasma Formation Techniques for Magnetized Target Fusion

    SciTech Connect

    Lynn, Alan

    2013-11-01

    The University of New Mexico (UNM) proposed a collaboration with Los Alamos National Laboratory (LANL) to develop and test methods for improved formation of field-reversed configuration (FRC) plasmas relevant to magnetized target fusion (MTF) energy research. MTF is an innovative approach for a relatively fast and cheap path to the production of fusion energy that utilizes magnetic confinement to assist in the compression of a hot plasma to thermonuclear conditions by an external driver. LANL is currently pursing demonstration of the MTF concept via compression of an FRC plasma by a metal liner z-pinch in conjunction with the Air Force Research Laboratory in Albuquerque, NM. A key physics issue for the FRC's ultimate success as an MTF target lies in the initial pre-ionization (PI) stage. The PI plasma sets the initial conditions from which the FRC is created. In particular, the PI formation process determines the amount of magnetic flux that can be trapped to form the FRC. A ringing theta pinch ionization (RTPI) technique, such as currently used by the FRX-L device at LANL, has the advantages of high ionization fraction, simplicity (since no additional coils are required), and does not require internal electrodes which can introduce impurities into the plasma. However RTPI has been shown to only trap 50% of the initial bias flux at best and imposes additional engineering constraints on the capacitor banks. The amount of trapped flux plays an important role in the FRC's final equilibrium, transport, and stability properties, and provides increased ohmic heating of the FRC through induced currents as the magnetic field decays. Increasing the trapped flux also provides the route to greatest potential gains in FRC lifetime, which is essential to provide enough time to translate and compress the FRC effectively. In conjunction with LANL we initially planned to develop and test a microwave break- down system to improve the initial PI plasma formation. The UNM team would

  10. Multisensor data fusion algorithm development

    SciTech Connect

    Yocky, D.A.; Chadwick, M.D.; Goudy, S.P.; Johnson, D.K.

    1995-12-01

    This report presents a two-year LDRD research effort into multisensor data fusion. We approached the problem by addressing the available types of data, preprocessing that data, and developing fusion algorithms using that data. The report reflects these three distinct areas. First, the possible data sets for fusion are identified. Second, automated registration techniques for imagery data are analyzed. Third, two fusion techniques are presented. The first fusion algorithm is based on the two-dimensional discrete wavelet transform. Using test images, the wavelet algorithm is compared against intensity modulation and intensity-hue-saturation image fusion algorithms that are available in commercial software. The wavelet approach outperforms the other two fusion techniques by preserving spectral/spatial information more precisely. The wavelet fusion algorithm was also applied to Landsat Thematic Mapper and SPOT panchromatic imagery data. The second algorithm is based on a linear-regression technique. We analyzed the technique using the same Landsat and SPOT data.

  11. A decision support system for fusion of hard and soft sensor information based on probabilistic latent semantic analysis technique

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir; Elangovan, Vinayak; Alkilani, Amjad; Habibi, Mohammad

    2013-05-01

    This paper presents an ongoing effort towards development of an intelligent Decision-Support System (iDSS) for fusion of information from multiple sources consisting of data from hard (physical sensors) and soft (textural sources. Primarily, this paper defines taxonomy of decision support systems for latent semantic data mining from heterogeneous data sources. A Probabilistic Latent Semantic Analysis (PLSA) approach is proposed for latent semantic concepts search from heterogeneous data sources. An architectural model for generating semantic annotation of multi-modality sensors in a modified Transducer Markup Language (TML) is described. A method for TML messages fusion is discussed for alignment and integration of spatiotemporally correlated and associated physical sensory observations. Lastly, the experimental results which exploit fusion of soft/hard sensor sources with support of iDSS are discussed.

  12. Lumbar Scoliosis Combined Lumbar Spinal Stenosis and Herniation Diagnosed Patient Was Treated with “U” Route Transforaminal Percutaneous Endoscopic Lumbar Discectomy

    PubMed Central

    Zhang, Shaobo; Lian, Qingquan; Yan, Haibo; Lin, Xianfa

    2017-01-01

    The objective was to report a case of a 63-year-old man with a history of low back pain (LBP) and left leg pain for 2 years, and the symptom became more serious in the past 5 months. The patient was diagnosed with lumbar scoliosis combined with lumbar spinal stenosis (LSS) and lumbar disc herniation (LDH) at the level of L4-5 that was confirmed using Computerized Topography and Magnetic Resonance Imaging. The surgical team preformed a novel technique, “U” route transforaminal percutaneous endoscopic lumbar discectomy (PELD), which led to substantial, long-term success in reduction of pain intensity and disability. After removing the osteophyte mass posterior to the thecal sac at L4-5, the working channel direction was changed to the gap between posterior longitudinal ligament and thecal sac, and we also removed the herniation and osteophyte at L3-4 with “U” route PELD. The patient's symptoms were improved immediately after the surgical intervention; low back pain intensity decreased from preoperative 9 to postoperative 2 on a visual analog scale (VAS) recorded at 1 month postoperatively. The success of the intervention suggests that “U” route PELD may be a feasible alternative to treat lumbar scoliosis with LSS and LDH patients. PMID:28203471

  13. A simple, rapid, low-cost technique for naked-eye detection of urine-isolated TMPRSS2:ERG gene fusion RNA

    PubMed Central

    Koo, Kevin M.; Wee, Eugene J. H.; Mainwaring, Paul N.; Trau, Matt

    2016-01-01

    The TMPRSS2:ERG gene fusion is one of a series of highly promising prostate cancer (PCa) biomarker alternatives to the controversial serum PSA. Current methods for detecting TMPRSS2:ERG are limited in terms of long processing time, high cost and the need for specialized equipment. Thus, there is an unmet need for less complex, faster, and cheaper methods to enable gene fusion detection in the clinic. We describe herein a simple, rapid and inexpensive assay which combines robust isothermal amplification technique with a novel visualization method for evaluating urinary TMPRSS2:ERG status at less than USD 5 and with minimal equipment. The assay is sensitive, and rapidly detects as low as 105 copies of TMPRSS2:ERG transcripts while maintaining high levels of specificity. PMID:27470540

  14. Determination of tungsten in tantalum-tungsten alloy by X-ray fluorescence spectrometry using fusion, thin layer, and pressed powder pellet techniques

    NASA Astrophysics Data System (ADS)

    Tian, Lunfu; Zou, Deshuang; Dai, Yichun; Tang, Guangping

    2015-08-01

    A method is described for the X-ray fluorescence (XRF) determination of tungsten in tantalum-tungsten alloy over the range of 10.5%-13.5%. The sample was prepared by three methods, namely, borate fusion, filter paper disk, and pressed powder pellet, respectively. We compared the feature of the three methods of specimen preparation and found that filter paper disk method was the most suitable technique for specimen preparation. Furthermore, the results were compared with those given by inductively coupled plasma optical emission spectrometry (ICP-OES), and the relative standard deviation was less than 2%, which could meet the requirement of this application.

  15. Spinal Cord Infarction after Cervical Transforaminal Epidural Steroid Injection: Case Report and Literature Review

    PubMed Central

    Moon, Jangsup; Kwon, Hyung-Min

    2017-01-01

    Introduction Transforaminal epidural steroid injection (TFESI) is a widely used nonsurgical procedure in the treatment of patients with radiculopathy. It is efficacious in relieving pain, but a number of complications are being reported. Recently, increasing frequency of major complications, such as spinal cord infarction and cerebral infarction, has been reported with the use of a particulate steroid within fluoroscopic-guided procedures. Methods We report a 49-year-old man with a history of chronic cervical radiculopathy, who experienced a devastating complication after TFESI. Results After 2 min of regular TFESI, the patient abruptly experienced muscle weakness in both upper extremities and within 5 min the patient became quadriplegic. Despite active rehabilitation, the patient remained bed-ridden 4 years after the catastrophic event. To our knowledge, this is the first reported case of spinal cord infarction that occurred after TFESI in Korea. Conclusion Considering the risk of dreadful complications, which appear in an unpredictable manner, TFESI with fluoroscopic guidance should be done only with a nonparticulate steroid. PMID:28203184

  16. A Biomechanical Stability Study of Extraforaminal Lumbar Interbody Fusion on the Cadaveric Lumbar Spine Specimens

    PubMed Central

    Guo, Song; Yan, Meijun; Han, Yingchao; Xia, Dongdong; Sun, Guixin; Li, Lijun; Tan, Jun

    2016-01-01

    Background Transforaminal lumbar interbody fusion (TLIF) is an effective surgery for lumbar degenerative disease. However, this fusion technique requires resection of inferior facet joint to provide access for superior facet joint resection, which results in reduced lumbar spinal stability and unnecessary trauma. We have previously developed extraforaminal lumbar interbody fusion (ELIF) that can avoid back muscle injury with direct nerve root decompression. This study aims to show that ELIF enhances lumbar spinal stability in comparison to TLIF by comparing lumbar spinal stability of L4–L5 range of motion (ROM) on 12 cadaveric spine specimens after performing TLIF or ELIF. Methods 12 cadaveric spine specimens were randomly divided and treated in accordance with the different internal fixations, including ELIF with a unilateral pedicle screw (ELIF+UPS), TLIF with a unilateral pedicle screw (TLIF+UPS), TLIF with a bilateral pedicle screw (TLIF+BPS), ELIF with a unilateral pedicle screw and translaminar facet screw (ELIF+UPS+TLFS) and ELIF with a bilateral pedicle screw (ELIF+BPS). The treatment groups were exposed to a 400-N load and 6 N·m movement force to calculate the angular displacement of L4-L5 during anterior flexion, posterior extension, lateral flexion and rotation operation conditions. Results The ROM in ELIF+UPS group was smaller than that of TLIF+UPS group under all operating conditions, with the significant differences in left lateral flexion and right rotation by 36.15% and 25.97% respectively. The ROM in ELIF+UPS group was higher than that in TLIF+BPS group. The ROM in the ELIF+UPS+TLFS group was much smaller than that in the ELIF+UPS group, but was not significantly different than that in the TLIF+BPS group. Conclusions Despite that TLIF+BPS has great stability, which can be comparable by that of ELIF+UPS. Additionally, ELIF stability can be further improved by using translaminar facet screws without causing more tissue damage to patient. PMID

  17. Quantitative characterization of pulverized coal and biomass-coal blends in pneumatic conveying pipelines using electrostatic sensor arrays and data fusion techniques

    NASA Astrophysics Data System (ADS)

    Qian, Xiangchen; Yan, Yong; Shao, Jiaqing; Wang, Lijuan; Zhou, Hao; Wang, Chao

    2012-08-01

    Quantitative data about the dynamic behaviour of pulverized coal and biomass-coal blends in fuel injection pipelines allow power plant operators to detect variations in fuel supply and oscillations in the flow at an early stage, enable them to balance fuel distribution between fuel feeding pipes and ultimately to achieve higher combustion efficiency and lower greenhouse gas emissions. Electrostatic sensor arrays and data fusion algorithms are combined to provide a non-intrusive solution to the measurement of fuel particle velocity, relative solid concentration and flow stability under pneumatic conveying conditions. Electrostatic sensor arrays with circular and arc-shaped electrodes are integrated in the same sensing head to measure ‘averaged’ and ‘localized’ characteristics of pulverized fuel flow. Data fusion techniques are applied to optimize and integrate the results from the sensor arrays. Experimental tests were conducted on the horizontal section of a 150 mm bore pneumatic conveyor circulating pulverized coal and sawdust under various flow conditions. Test results suggest that pure coal particles travel faster and carry more electrostatic charge than biomass-coal blends. As more biomass particles are added to the flow, the overall velocity of the flow reduces, the electrostatic charge level on particles decreases and the flow becomes less stable compared to the pure coal flow.

  18. The role of transforaminal percutaneous endoscopic discectomy in lumbar disc herniations

    PubMed Central

    Gotecha, Sarang; Ranade, Deepak; Patil, Sujay Vikhe; Chugh, Ashish; Kotecha, Megha; Sharma, Shrikant; Punia, Prashant

    2016-01-01

    Objectives: To study 1)the efficacy of transforaminal percutaneous endoscopic lumbar discectomy in lumbar disc herniations.2) limitations and advantages of the surgical procedure. 3)morbidity and complications associated with the procedure. Materials and Methods: This study was carried out on 120 patients who had single level herniated disc Pre-operative assessment of VAS and MSS scoring systems were documented one day prior to surgery. Post operative results were determined by MacNab criteria and by modified Suezawa and Schreiber clinical scoring system (MSS score). Results: Maximum patients were in the age group of 31 to 40 years and 83.43% of the patients were males. 80% patients had lumbar disc herniation at L4-L5 level, The mean operative time of endoscopic discectomy was 52.28 minutes and the mean hospital stay was 2.1days.8 cases of L5-S I were abandoned due to high iliac bone and hence their disc could not be accessed. Out of 112 patients who underwent operation, 2 patients developed discitis and 1 was found to have dysesthesia. Also recurrent prolapsed intervertebral disc was seen in 6 cases The mean preoperative and 6 months follow-up VAS score was 8.4 and 1.89 respectively. Mean preoperative and 6 months follow-up Modified Suezawa And Schreiber Clinical Scoring System(MSS Score) was 3.47 and 7.92 respectively. MSS score showed excellent and good outcome in 82.12% patients and Modified Macnab Criteria showed excellent and good outcome in 89.3% patients at 6months follow-up. Conclusion: TPELD can be a reasonable alternative to conventional microscopic discectomy for the treatment of patients with LDH. We also conclude that TPELD is not an effective procedure for L5-S 1 disc and an open procedure should be opted for better outcomes. PMID:27891030

  19. Microstructural changes in compressed nerve roots treated by percutaneous transforaminal endoscopic discectomy in patients with lumbar disc herniation

    PubMed Central

    Wu, Weifei; Liang, Jie; Chen, Ying; Chen, Aihua; Wu, Bin; Yang, Zong

    2016-01-01

    Abstract To investigate the microstructural changes in compressed nerves using diffusion tensor imaging (DTI) of herniated disc treated with percutaneous transforaminal endoscopic discectomy. Diffusion tensor imaging has been widely used to visualize peripheral nerves, and the microstructure of compressed nerve roots can be assessed using DTI. However, the microstructural changes after surgery are not well-understood in patients with lumbar disc herniation. Thirty-four consecutive patients with foraminal disc herniation affecting unilateral sacral 1 (S1) nerve roots were enrolled in this study. DTI with tractography was performed on S1 nerve roots before and after surgery. The mean fractional anisotropy (FA) and apparent diffusion coefficient values were calculated from tractography images. In compressed nerve roots, the FA value before surgery was significantly lower than that after surgery (P = 0.000). A significant difference in FA values was found between the compressed and normal sides before surgery (P = 0.000). However, no significant difference was found between the compressed and normal sides after surgery (P = 0.057). A significant difference in apparent diffusion coefficient values was found before and after surgery at the compressed side (P = 0.023). However, no significant difference was found between the compressed and normal sides after surgery (P = 0.203). We show that the diffusion parameters of compressed nerve roots were not significantly different before and after percutaneous transforaminal endoscopic discectomy, indicating that the microstructure of the nerve root recovered after surgery. PMID:27749591

  20. Spinal Fusion

    MedlinePlus

    ... concept of fusion is similar to that of welding in industry. Spinal fusion surgery, however, does not ... bone taken from the patient has a long history of use and results in predictable healing. Autograft ...

  1. Clinical outcomes following spinal fusion using an intraoperative computed tomographic 3D imaging system.

    PubMed

    Xiao, Roy; Miller, Jacob A; Sabharwal, Navin C; Lubelski, Daniel; Alentado, Vincent J; Healy, Andrew T; Mroz, Thomas E; Benzel, Edward C

    2017-03-03

    OBJECTIVE Improvements in imaging technology have steadily advanced surgical approaches. Within the field of spine surgery, assistance from the O-arm Multidimensional Surgical Imaging System has been established to yield superior accuracy of pedicle screw insertion compared with freehand and fluoroscopic approaches. Despite this evidence, no studies have investigated the clinical relevance associated with increased accuracy. Accordingly, the objective of this study was to investigate the clinical outcomes following thoracolumbar spinal fusion associated with O-arm-assisted navigation. The authors hypothesized that increased accuracy achieved with O-arm-assisted navigation decreases the rate of reoperation secondary to reduced hardware failure and screw misplacement. METHODS A consecutive retrospective review of all patients who underwent open thoracolumbar spinal fusion at a single tertiary-care institution between December 2012 and December 2014 was conducted. Outcomes assessed included operative time, length of hospital stay, and rates of readmission and reoperation. Mixed-effects Cox proportional hazards modeling, with surgeon as a random effect, was used to investigate the association between O-arm-assisted navigation and postoperative outcomes. RESULTS Among 1208 procedures, 614 were performed with O-arm-assisted navigation, 356 using freehand techniques, and 238 using fluoroscopic guidance. The most common indication for surgery was spondylolisthesis (56.2%), and most patients underwent a posterolateral fusion only (59.4%). Although O-arm procedures involved more vertebral levels compared with the combined freehand/fluoroscopy cohort (4.79 vs 4.26 vertebral levels; p < 0.01), no significant differences in operative time were observed (4.40 vs 4.30 hours; p = 0.38). Patients who underwent an O-arm procedure experienced shorter hospital stays (4.72 vs 5.43 days; p < 0.01). O-arm-assisted navigation trended toward predicting decreased risk of spine

  2. Fundus image fusion in EYEPLAN software: An evaluation of a novel technique for ocular melanoma radiation treatment planning

    SciTech Connect

    Daftari, Inder K.; Mishra, Kavita K.; O'Brien, Joan M.; and others

    2010-10-15

    Purpose: The purpose of this study is to evaluate a novel approach for treatment planning using digital fundus image fusion in EYEPLAN for proton beam radiation therapy (PBRT) planning for ocular melanoma. The authors used a prototype version of EYEPLAN software, which allows for digital registration of high-resolution fundus photographs. The authors examined the improvement in tumor localization by replanning with the addition of fundus photo superimposition in patients with macular area tumors. Methods: The new version of EYEPLAN (v3.05) software allows for the registration of fundus photographs as a background image. This is then used in conjunction with clinical examination, tantalum marker clips, surgeon's mapping, and ultrasound to draw the tumor contour accurately. In order to determine if the fundus image superimposition helps in tumor delineation and treatment planning, the authors identified 79 patients with choroidal melanoma in the macular location that were treated with PBRT. All patients were treated to a dose of 56 GyE in four fractions. The authors reviewed and replanned all 79 macular melanoma cases with superimposition of pretreatment and post-treatment fundus imaging in the new EYEPLAN software. For patients with no local failure, the authors analyzed whether fundus photograph fusion accurately depicted and confirmed tumor volumes as outlined in the original treatment plan. For patients with local failure, the authors determined whether the addition of the fundus photograph might have benefited in terms of more accurate tumor volume delineation. Results: The mean follow-up of patients was 33.6{+-}23 months. Tumor growth was seen in six eyes of the 79 macular lesions. All six patients were marginal failures or tumor miss in the region of dose fall-off, including one patient with both in-field recurrence as well as marginal. Among the six recurrences, three were managed by enucleation and one underwent retreatment with proton therapy. Three

  3. New multispectral MRI data fusion technique for white matter lesion segmentation: method and comparison with thresholding in FLAIR images

    PubMed Central

    Ferguson, Karen J.; Chappell, Francesca M.; Wardlaw, Joanna M.

    2010-01-01

    Objective Brain tissue segmentation by conventional threshold-based techniques may have limited accuracy and repeatability in older subjects. We present a new multispectral magnetic resonance (MR) image analysis approach for segmenting normal and abnormal brain tissue, including white matter lesions (WMLs). Methods We modulated two 1.5T MR sequences in the red/green colour space and calculated the tissue volumes using minimum variance quantisation. We tested it on 14 subjects, mean age 73.3 ± 10 years, representing the full range of WMLs and atrophy. We compared the results of WML segmentation with those using FLAIR-derived thresholds, examined the effect of sampling location, WML amount and field inhomogeneities, and tested observer reliability and accuracy. Results FLAIR-derived thresholds were significantly affected by the location used to derive the threshold (P = 0.0004) and by WML volume (P = 0.0003), and had higher intra-rater variability than the multispectral technique (mean difference ± SD: 759 ± 733 versus 69 ± 326 voxels respectively). The multispectral technique misclassified 16 times fewer WMLs. Conclusion Initial testing suggests that the multispectral technique is highly reproducible and accurate with the potential to be applied to routinely collected clinical MRI data. Electronic supplementary material The online version of this article (doi:10.1007/s00330-010-1718-6) contains supplementary material, which is available to authorized users. PMID:20157814

  4. Image computing techniques to extrapolate data for dust tracking in case of an experimental accident simulation in a nuclear fusion plant

    NASA Astrophysics Data System (ADS)

    Camplani, M.; Malizia, A.; Gelfusa, M.; Barbato, F.; Antonelli, L.; Poggi, L. A.; Ciparisse, J. F.; Salgado, L.; Richetta, M.; Gaudio, P.

    2016-01-01

    In this paper, a preliminary shadowgraph-based analysis of dust particles re-suspension due to loss of vacuum accident (LOVA) in ITER-like nuclear fusion reactors has been presented. Dust particles are produced through different mechanisms in nuclear fusion devices, one of the main issues is that dust particles are capable of being re-suspended in case of events such as LOVA. Shadowgraph is based on an expanded collimated beam of light emitted by a laser or a lamp that emits light transversely compared to the flow field direction. In the STARDUST facility, the dust moves in the flow, and it causes variations of refractive index that can be detected by using a CCD camera. The STARDUST fast camera setup allows to detect and to track dust particles moving in the vessel and then to obtain information about the velocity field of dust mobilized. In particular, the acquired images are processed such that per each frame the moving dust particles are detected by applying a background subtraction technique based on the mixture of Gaussian algorithm. The obtained foreground masks are eventually filtered with morphological operations. Finally, a multi-object tracking algorithm is used to track the detected particles along the experiment. For each particle, a Kalman filter-based tracker is applied; the particles dynamic is described by taking into account position, velocity, and acceleration as state variable. The results demonstrate that it is possible to obtain dust particles' velocity field during LOVA by automatically processing the data obtained with the shadowgraph approach.

  5. On different techniques for the calculation of Bouguer gravity anomalies for joint inversion and model fusion of geophysical data in the Rio Grande Rift

    NASA Astrophysics Data System (ADS)

    Zamora, Azucena

    Density variations in the Earth result from different material properties, which reflect the tectonic processes attributed to a region. Density variations can be identified through measurable material properties, such as seismic velocities, gravity field, magnetic field, etc. Gravity anomaly inversions are particularly sensitive to density variations but suffer from significant non-uniqueness. However, using inverse models with gravity Bouguer anomalies and other geophysical data, we can determine three dimensional structural and geological properties of the given area. We explore different techniques for the calculation of Bouguer gravity anomalies for their use in joint inversion of multiple geophysical data sets and a model fusion scheme to integrate complementary geophysical models. Various 2- and 3- dimensional gravity profile forward modeling programs have been developed as variations of existing algorithms in the last decades. The purpose of this study is to determine the most effective gravity forward modeling method that can be used to combine the information provided by complementary datasets, such as gravity and seismic information, to improve the accuracy and resolution of Earth models obtained for the underlying structure of the Rio Grande Rift. In an effort to determine the most appropriate method to use in a joint inversion algorithm and a model fusion approach currently in development, we test each approach by using a model of the Rio Grande Rift obtained from seismic surface wave dispersion and receiver functions. We find that there are different uncertainties associated with each methodology that affect the accuracy achieved by including gravity profile forward modeling. Moreover, there exists an important amount of assumptions about the regions under study that must be taken into account in order to obtain an accurate model of the gravitational acceleration caused by changes in the density of the material in the substructure of the Earth.

  6. Image computing techniques to extrapolate data for dust tracking in case of an experimental accident simulation in a nuclear fusion plant

    SciTech Connect

    Camplani, M.; Malizia, A.; Gelfusa, M.; Poggi, L. A.; Ciparisse, J. F.; Richetta, M.; Gaudio, P.; Barbato, F.; Antonelli, L.; Salgado, L.

    2016-01-15

    In this paper, a preliminary shadowgraph-based analysis of dust particles re-suspension due to loss of vacuum accident (LOVA) in ITER-like nuclear fusion reactors has been presented. Dust particles are produced through different mechanisms in nuclear fusion devices, one of the main issues is that dust particles are capable of being re-suspended in case of events such as LOVA. Shadowgraph is based on an expanded collimated beam of light emitted by a laser or a lamp that emits light transversely compared to the flow field direction. In the STARDUST facility, the dust moves in the flow, and it causes variations of refractive index that can be detected by using a CCD camera. The STARDUST fast camera setup allows to detect and to track dust particles moving in the vessel and then to obtain information about the velocity field of dust mobilized. In particular, the acquired images are processed such that per each frame the moving dust particles are detected by applying a background subtraction technique based on the mixture of Gaussian algorithm. The obtained foreground masks are eventually filtered with morphological operations. Finally, a multi-object tracking algorithm is used to track the detected particles along the experiment. For each particle, a Kalman filter-based tracker is applied; the particles dynamic is described by taking into account position, velocity, and acceleration as state variable. The results demonstrate that it is possible to obtain dust particles’ velocity field during LOVA by automatically processing the data obtained with the shadowgraph approach.

  7. Image computing techniques to extrapolate data for dust tracking in case of an experimental accident simulation in a nuclear fusion plant.

    PubMed

    Camplani, M; Malizia, A; Gelfusa, M; Barbato, F; Antonelli, L; Poggi, L A; Ciparisse, J F; Salgado, L; Richetta, M; Gaudio, P

    2016-01-01

    In this paper, a preliminary shadowgraph-based analysis of dust particles re-suspension due to loss of vacuum accident (LOVA) in ITER-like nuclear fusion reactors has been presented. Dust particles are produced through different mechanisms in nuclear fusion devices, one of the main issues is that dust particles are capable of being re-suspended in case of events such as LOVA. Shadowgraph is based on an expanded collimated beam of light emitted by a laser or a lamp that emits light transversely compared to the flow field direction. In the STARDUST facility, the dust moves in the flow, and it causes variations of refractive index that can be detected by using a CCD camera. The STARDUST fast camera setup allows to detect and to track dust particles moving in the vessel and then to obtain information about the velocity field of dust mobilized. In particular, the acquired images are processed such that per each frame the moving dust particles are detected by applying a background subtraction technique based on the mixture of Gaussian algorithm. The obtained foreground masks are eventually filtered with morphological operations. Finally, a multi-object tracking algorithm is used to track the detected particles along the experiment. For each particle, a Kalman filter-based tracker is applied; the particles dynamic is described by taking into account position, velocity, and acceleration as state variable. The results demonstrate that it is possible to obtain dust particles' velocity field during LOVA by automatically processing the data obtained with the shadowgraph approach.

  8. Simultaneous determination of major to ultratrace elements in geological samples by fusion-dissolution and inductively coupled plasma mass spectrometry techniques.

    PubMed

    García de Madinabeitia, S; Sánchez Lorda, M E; Ibarguchi, J I Gil

    2008-09-12

    A method has been developed for the simultaneous quantification of major to ultratrace elements in geological samples using quadrupole ICP-MS techniques. The sample preparation involves fusion with LiBO2 and dilution in HNO3-HF which allows complete decomposition of refractory minerals and quantification of the elements of interest. The effects of high Total Dissolved Solids (TDS) and Li in the solution are minimized using a matrix-tolerant interface and conditioning the instrument with LiBO2 solution. The signal drift is moreover controlled using conventional internal standards and specific Drift Correction Standards (DCS). A key issue of the technique is the external calibration using selected Certified Reference Materials (CRM). Depending on the sample type and analytes of interest three optimized programmable modes are used sequentially: Standard, Collision Cell (CCT) and Kinetic Energy Discrimination (KED) mode. The method allows to quantify more than 40 elements in concentrations from tens-of-percent to <0.1 ppm levels during a single experiment. The method has been validated through the analysis of different CRMs with recovery factors of ca. 100% and typical 2sigma errors of <10%.

  9. Hemorrhagic lumbar synovial facet cyst secondary to transforaminal epidural injection: A case report and review of the literature

    PubMed Central

    Elgafy, Hossein; Peters, Nicholas; Lea, Justin E; Wetzel, Robert M

    2016-01-01

    A 64-year-old-female presented with progressive left foot weakness, low back and radicular pain after a left sided S1 transforaminal epidural steroid injection (ESI). Magnetic resonance imaging revealed left side L5-S1 large extradural heterogeneous mass with layering areas suggesting different stages of hematoma formation. Past medical history was significant for peripheral vascular disease and transient ischemic attacks, for which she took aspirin and clopidogrel (antiplatelet agent). These medications were discontinued one week prior to ESI. Although synovial cysts associated with facet arthropathy are common, hemorrhagic cyst is not. To the best of the authors’ knowledge, this is the first reported case of symptomatic hemorrhagic lumbar facet synovial cyst following ESI on a patient taking anti-platelet medications. PMID:27458557

  10. A Geostatistical Data Fusion Technique for Merging Remote Sensing and Ground-Based Observations of Aerosol Optical Thickness

    NASA Technical Reports Server (NTRS)

    Chatterjee, Abhishek; Michalak, Anna M.; Kahn, Ralph A.; Paradise, Susan R.; Braverman, Amy J.; Miller, Charles E.

    2010-01-01

    Particles in the atmosphere reflect incoming sunlight, tending to cool the Earth below. Some particles, such as soot, also absorb sunlight, which tens to warm the ambient atmosphere. Aerosol optical depth (AOD) is a measure of the amount of particulate matter in the atmosphere, and is a key input to computer models that simulate and predict Earth's changing climate. The global AOD products from the Multi-angle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS), both of which fly on the NASA Earth Observing System's Terra satellite, provide complementary views of the particles in the atmosphere. Whereas MODIS offers global coverage about four times as frequent as MISR, the multi-angle data makes it possible to separate the surface and atmospheric contributions to the observed top-of-atmosphere radiances, and also to more effectively discriminate particle type. Surface-based AERONET sun photometers retrieve AOD with smaller uncertainties than the satellite instruments, but only at a few fixed locations. So there are clear reasons to combine these data sets in a way that takes advantage of their respective strengths. This paper represents an effort at combining MISR, MODIS and AERONET AOD products over the continental US, using a common spatial statistical technique called kriging. The technique uses the correlation between the satellite data and the "ground-truth" sun photometer observations to assign uncertainty to the satellite data on a region-by-region basis. The larger fraction of the sun photometer variance that is duplicated by the satellite data, the higher the confidence assigned to the satellite data in that region. In the Western and Central US, MISR AOD correlation with AERONET are significantly higher than those with MODIS, likely due to bright surfaces in these regions, which pose greater challenges for the single-view MODIS retrievals. In the east, MODIS correlations are higher, due to more frequent sampling

  11. A fusion of top-down and bottom-up modeling techniques to constrain regional scale carbon budgets

    NASA Astrophysics Data System (ADS)

    Goeckede, M.; Turner, D. P.; Michalak, A. M.; Vickers, D.; Law, B. E.

    2009-12-01

    The effort to constrain regional scale carbon budgets benefits from assimilating as many high quality data sources as possible in order to reduce uncertainties. Two of the most common approaches used in this field, bottom-up and top-down techniques, both have their strengths and weaknesses, and partly build on very different sources of information to train, drive, and validate the models. Within the context of the ORCA2 project, we follow both bottom-up and top-down modeling strategies with the ultimate objective of reconciling their surface flux estimates. The ORCA2 top-down component builds on a coupled WRF-STILT transport module that resolves the footprint function of a CO2 concentration measurement in high temporal and spatial resolution. Datasets involved in the current setup comprise GDAS meteorology, remote sensing products, VULCAN fossil fuel inventories, boundary conditions from CarbonTracker, and high-accuracy time series of atmospheric CO2 concentrations. Surface fluxes of CO2 are normally provided through a simple diagnostic model which is optimized against atmospheric observations. For the present study, we replaced the simple model with fluxes generated by an advanced bottom-up process model, Biome-BGC, which uses state-of-the-art algorithms to resolve plant-physiological processes, and 'grow' a biosphere based on biogeochemical conditions and climate history. This approach provides a more realistic description of biomass and nutrient pools than is the case for the simple model. The process model ingests various remote sensing data sources as well as high-resolution reanalysis meteorology, and can be trained against biometric inventories and eddy-covariance data. Linking the bottom-up flux fields to the atmospheric CO2 concentrations through the transport module allows evaluating the spatial representativeness of the BGC flux fields, and in that way assimilates more of the available information than either of the individual modeling techniques alone

  12. [Image fusion in medical radiology].

    PubMed

    Burger, C

    1996-07-20

    Image fusion supports the correlation between images of two or more studies of the same organ. First, the effect of differing geometries during image acquisitions, such as a head tilt, is compensated for. As a consequence, congruent images can easily be obtained. Instead of merely putting them side by side in a static manner and burdening the radiologist with the whole correlation task, image fusion supports him with interactive visualization techniques. This is especially worthwhile for small lesions as they can be more precisely located. Image fusion is feasible today. Easy and robust techniques are readily available, and furthermore DICOM, a rapidly evolving data exchange standard, diminishes the once severe compatibility problems for image data originating from systems of different manufacturers. However, the current solutions for image fusion are not yet established enough for a high throughput of fusion studies. Thus, for the time being image fusion is most appropriately confined to clinical research studies.

  13. Clinical and radiological evaluation of Trabecular Metal and the Smith-Robinson technique in anterior cervical fusion for degenerative disease: a prospective, randomized, controlled study with 2-year follow-up.

    PubMed

    Löfgren, Håkan; Engquist, M; Hoffmann, P; Sigstedt, B; Vavruch, L

    2010-03-01

    ), respectively (P = 0.001). The patients' global assessments of their neck and arm symptoms 2 years postoperatively for the TM group were rated as 79% much better or better after fusion with TM and 75% using autograft. Pain scores and NDI scores were significantly improved in both groups when compared with baseline at all follow-ups, except for neck pain at 1 year for the TM group. There was no statistically significant difference in clinical outcomes between fusion techniques or between patients who appeared radiologically fused or non-fused. There was no difference in pelvic/hip pain between patients operated on with or without autograft. In our study, Trabecular Metal showed a lower fusion rate than the Smith-Robinson technique with autograft after single-level anterior cervical fusion without plating. There was no difference in clinical outcomes between the groups. The operative time was shorter with Trabecular Metal implants.

  14. Fusion breeder

    SciTech Connect

    Moir, R.W.

    1982-04-20

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.

  15. Fusion breeder

    SciTech Connect

    Moir, R.W.

    1982-02-22

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.

  16. Cellulose binding domain fusion proteins

    SciTech Connect

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  17. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  18. Image fusion

    NASA Technical Reports Server (NTRS)

    Pavel, M.

    1993-01-01

    The topics covered include the following: a system overview of the basic components of a system designed to improve the ability of a pilot to fly through low-visibility conditions such as fog; the role of visual sciences; fusion issues; sensor characterization; sources of information; image processing; and image fusion.

  19. A Preliminary Report on the CO2 Laser for Lumbar Fusion: Safety, Efficacy and Technical Considerations.

    PubMed

    Villavicencio, Alan T; Burneikiene, Sigita; Babuska, Jason M; Nelson, Ewell L; Mason, Alexander; Rajpal, Sharad

    2015-04-01

    The purpose of this study was to evaluate potential technical advantages of the CO2 laser technology in mini-open transforaminal lumbar interbody fusion (TLIF) surgeries and report our preliminary clinical data on the safety and clinical outcomes. There is currently no literature discussing the recently redeveloped CO2 laser technology application for lumbar fusion. Safety and clinical outcomes were compared between two groups: 24 patients that underwent CO2 laser-assisted one-level TLIF surgeries and 30 patients that underwent standard one-level TLIF surgeries without the laser. There were no neural thermal injuries or other intraoperative laser-related complications encountered in this cohort of patients. At a mean follow-up of 17.4 months, significantly reduced lower back pain scores (P=0.013) were reported in the laser-assisted patient group compared to a standard fusion patient group. Lower extremity radicular pain intensity scores were similar in both groups. Laser-assisted TLIF surgeries showed a tendency (P = 0.07) of shorter operative times that was not statistically significant. Based on this preliminary clinical report, the safety of the CO2 laser device for lumbar fusion surgeries was assessed. There were no neural thermal injuries or other intraoperative laser-related complications encountered in this cohort of patients. Further investigation of CO2 laser-assisted lumbar fusion procedures is warranted in order to evaluate its effect on clinical outcomes.

  20. Ultrastructural Analysis of Myoblast Fusion in Drosophila

    PubMed Central

    Zhang, Shiliang; Chen, Elizabeth H.

    2015-01-01

    Summary Myoblast fusion in Drosophila has become a powerful genetic system with which to unravel the mechanisms underlying cell fusion. The identification of important components of myoblast fusion by genetic analysis has led to a molecular pathway toward our understanding of this cellular process. In addition to the application of immunohistochemistry and live imaging techniques to visualize myoblast fusion at the light microscopic level, ultrastructural analysis using electron microscopy remains an indispensable tool to reveal fusion intermediates and specific membrane events at sites of fusion. In this chapter, we describe conventional chemical fixation and high-pressure freezing/freeze substitution methods for visualizing fusion intermediates during Drosophila myoblast fusion. Furthermore, we describe an immunoelectron microscopic method for localizing specific proteins relative to the fusion apparatus. PMID:18979250

  1. Kinetic advantage of controlled intermediate nuclear fusion

    SciTech Connect

    Guo Xiaoming

    2012-09-26

    The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

  2. Fusion Power.

    ERIC Educational Resources Information Center

    Dingee, David A.

    1979-01-01

    Discusses the extraordinary potential, the technical difficulties, and the financial problems that are associated with research and development of fusion power plants as a major source of energy. (GA)

  3. Physics of Fusion Welding

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    1986-01-01

    Applicabilities and limitations of three techniques analyzed. NASA technical memorandum discusses physics of electron-beam, gas/ tungsten-arc, and laser-beam welding. From comparison of capabilities and limitations of each technique with regard to various welding conditions and materials, possible to develop criteria for selecting best welding technique in specific application. All three techniques classified as fusion welding; small volume of workpiece melted by intense heat source. Heat source moved along seam, leaving in wake solid metal that joins seam edges together.

  4. Laser fusion

    SciTech Connect

    Smit, W.A.; Boskma, P.

    1980-12-01

    Unrestricted laser fusion offers nations an opportunity to circumvent arms control agreements and develop thermonuclear weapons. Early laser weapons research sought a clean radiation-free bomb to replace the fission bomb, but this was deceptive because a fission bomb was needed to trigger the fusion reaction and additional radioactivity was induced by generating fast neutrons. As laser-implosion experiments focused on weapons physics, simulating weapons effects, and applications for new weapons, the military interest shifted from developing a laser-ignited hydrogen bomb to more sophisticated weapons and civilian applications for power generation. Civilian and military research now overlap, making it possible for several countries to continue weapons activities and permitting proliferation of nuclear weapons. These countries are reluctant to include inertial confinement fusion research in the Non-Proliferation Treaty. 16 references. (DCK)

  5. Observations of membrane fusion in a liposome dispersion: the missing fusion intermediate?

    PubMed Central

    Foldvari, Marianna

    2015-01-01

    Early intermediate structures of liposome-liposome fusion events were captured by freeze-fracture electron microscopic (EM) technique. The images show the morphology of the fusion interface at several different stages of the fusion event. One of the intermediates was captured at a serendipitous stage of two vesicles’ membranes (both leaflets) merging and their contents starting to intermix clearly showing the fusion interface with a previously unseen fusion rim. From the morphological information a hypothetical sequence of the fusion event and corresponding lipid structural arrangements are described. PMID:26069726

  6. Generalized Chernoff Fusion Approximation for Practical Distributed Data Fusion

    DTIC Science & Technology

    2009-07-01

    Generalized Chernoff Fusion Approximation for Practical Distributed Data Fusion William J. Farrell III R&D Department Adaptive Methods , Inc...independence or modify legacy systems with pedigree tagging techniques . Leveraging the well- known Covariance Intersection algorithm, its generalization...Adaptive Methods , Inc.,Centreville, VA , , 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR

  7. Spinal fusion

    MedlinePlus

    Liu G, Wong HK. Laminectomy and fusion. In: Shen FH, Samartzis D, Fessler RG, eds. Textbook of the Cervical Spine . Philadelphia, PA: Elsevier Saunders; 2015:chap 34. Wood GW. Arthrodesis of the spine. In: Canale ST, Beaty JH, eds. Campbell's Operative ...

  8. Anterior Fusion Technique for Multilevel Cervical Spondylotic Myelopathy: A Retrospective Analysis of Surgical Outcome of Patients with Different Number of Levels Fused

    PubMed Central

    Yu, Shunzhi; Li, Fengning; Yan, Ning; Yuan, Chaoqun; He, Shisheng; Hou, Tiesheng

    2014-01-01

    Objective The anterior approach for multilevel CSM has been developed and obtained favorable outcomes. However, the operation difficulty, invasiveness and operative risks increase when multi-level involved. This study was to assess surgical parameters, complications, clinical and radiological outcomes in the treatment of 2-, 3- and 4-level CSM. Methods A total of 248 patients with 2-, 3- or 4-level CSM who underwent anterior decompression and fusion procedures between October 2005 and June 2011 were divided into three groups, the 2-level group (106 patients), the 3-level group (98 patients) and the 4-level group (44 patients). The clinical and Radiographic outcomes including Japanese Orthopedic Association (JOA) score, Neck Disability Index (NDI) score, Odom's Scale, hospital stay, blood loss, operation time, fusion rate, cervical lordosis, cervical range of motion (ROM), and complications were compared. Results At a minimum of 2-year follow-up, no statistical differences in JOA score, NDI score, Odom's Scale, hospital stay, fusion rate and cervical lordosis were found among the 3 groups. However, the mean postoperative NDI score of the 4-level group was significantly higher than that in the other two groups (P<0.05), and in terms of postoperative total ROM, the 3-level group was superior to the 4-level group and inferior to 2-level group (P<0.05). The decrease rate of ROM in the 3-level group was significantly higher than that in the 2-level group, and lower than that in the 4-level group (P<0.05). Conclusions As the number of involved levels increased, surgical results become worse in terms of operative time, blood loss, NDI score, cervical ROM and complication rates postoperatively. An appropriate surgical procedure for multilevel CSM should be chosen according to comprehensive clinical evaluation before operation, thus reducing fusion and decompression levels if possible. PMID:24618678

  9. Significant Improvement of Puncture Accuracy and Fluoroscopy Reduction in Percutaneous Transforaminal Endoscopic Discectomy With Novel Lumbar Location System

    PubMed Central

    Fan, Guoxin; Guan, Xiaofei; Zhang, Hailong; Wu, Xinbo; Gu, Xin; Gu, Guangfei; Fan, Yunshan; He, Shisheng

    2015-01-01

    Abstract Prospective nonrandomized control study. The study aimed to investigate the implication of the HE's Lumbar LOcation (HELLO) system in improving the puncture accuracy and reducing fluoroscopy in percutaneous transforaminal endoscopic discectomy (PTED). Percutaneous transforaminal endoscopic discectomy is one of the most popular minimally invasive spine surgeries that heavily depend on repeated fluoroscopy. Increased fluoroscopy will induce higher radiation exposure to surgeons and patients. Accurate puncture in PTED can be achieved by accurate preoperative location and definite trajectory. The HELLO system mainly consists of self-made surface locator and puncture-assisted device. The surface locator was used to identify the exact puncture target and the puncture-assisted device was used to optimize the puncture trajectory. Patients who had single L4/5 or L5/S1 lumbar intervertebral disc herniation and underwent PTED were included the study. Patients receiving the HELLO system were assigned in Group A, and those taking conventional method were assigned in Group B. Study primary endpoint was puncture times and fluoroscopic time, and the secondary endpoint was location time and operation time. A total of 62 patients who received PTED were included in this study. The average age was 45.35 ± 8.70 years in Group A and 46.61 ± 7.84 years in Group B (P = 0.552). There were no significant differences in gender, body mass index, conservative time, and surgical segment between the 2 groups (P > 0.05). The puncture time(s) were 1.19 ± 0.48 in Group A and 6.03 ± 1.87 in Group B (P < 0.001). The fluoroscopic times were 14.03 ± 2.54 in Group A and 25.19 ± 4.28 in Group B (P < 0.001). The preoperative location time was 4.67 ± 1.41 minutes in Group A and 6.98 ± 0.94 minutes in Group B (P < 0.001). The operation time was 79.42 ± 10.15 minutes in Group A and 89.65 ± 14.06 minutes in Group B (P

  10. Inertial-confinement-fusion targets

    SciTech Connect

    Hendricks, C.D.

    1981-11-16

    Inertial confinement fusion (ICF) targets are made as simple flat discs, as hollow shells or as complicated multilayer structures. Many techniques have been devised for producing the targets. Glass and metal shells are made by using drop and bubble techniques. Solid hydrogen shells are also produced by adapting old methods to the solution of modern problems. Some of these techniques, problems and solutions are discussed. In addition, the applications of many of the techniques to fabrication of ICF targets is presented.

  11. The risks of epidural and transforaminal steroid injections in the Spine: Commentary and a comprehensive review of the literature

    PubMed Central

    Epstein, Nancy E.

    2013-01-01

    Background: Multiple type of spinal injections, whether epidural/translaminar or transforaminal, facet injections, are offered to patients with/without surgical spinal lesions by pain management specialists (radiologists, physiatrists, and anesthesiologists). Although not approved by the Food and Drug Administration (FDA), injections are being performed with an increased frequency (160%), are typically short-acting and ineffective over the longer-term, while exposing patients to major risks/complications. Methods: For many patients with spinal pain alone and no surgical lesions, the “success” of epidural injections may simply reflect the self-limited course of the disease. Alternatively, although those with surgical pathology may experience transient or no pain relief, undergoing these injections (typically administered in a series of three) unnecessarily exposes them to the inherent risks, while also delaying surgery and potentially exposing them to more severe/permanent neurological deficits. Results: Multiple recent reports cite contaminated epidural steroid injections resulting in meningitis, stroke, paralysis, and death. The Center for Disease Control (CDC) specifically identified 25 deaths (many due to Aspergillosis), 337 patients sickened, and 14,000 exposed to contaminated steroids. Nevertheless, many other patients develop other complications that go unreported/underreported: Other life-threatening infections, spinal fluid leaks (0.4-6%), positional headaches (28%), adhesive arachnoiditis (6-16%), hydrocephalus, air embolism, urinary retention, allergic reactions, intravascular injections (7.9-11.6%), stroke, blindness, neurological deficits/paralysis, hematomas, seizures, and death. Conclusions: Although the benefits for epidural steroid injections may include transient pain relief for those with/without surgical disease, the multitude of risks attributed to these injections outweighs the benefits. PMID:23646278

  12. Health-related quality of life after transforaminal percutaneous endoscopic discectomy: An analysis according to the level of operation

    PubMed Central

    Kapetanakis, Stylianos; Charitoudis, Georgios; Thomaidis, Tryfon; Theodosiadis, Panagiotis; Papathanasiou, Jannis; Giatroudakis, Konstantinos

    2017-01-01

    Background: Many patients suffer from radiculopathy and low back pain due to lumbar disc hernia. Transforaminal percutaneous endoscopic discectomy (TPED) is a minimally invasive method that accesses the disc pathology through the intervertebral foramen. Health-related quality of life (HRQoL) has been previously assessed for this method. However, a possible effect of the level of operation on the postoperative progress of HRQoL remains undefined. Purpose: The purpose of this study was to evaluate the impact of the level of operation on HRQoL, following TPED. Patients and Methods: A total of 76 patients diagnosed with lumbar disc hernia were enrolled in the study. According to the level of operation, they were divided into three groups: Group A (21 patients) for L3–L4, Group B (40 patients) for L4–L5, and Group C (15 patients) for L5–S1 intervertebral level. All patients underwent TPED. Their HRQoL was evaluated by the short-form-36 (SF-36) health survey questionnaire before the operation and at 6 weeks, 3, 6, and 12 months postsurgery. The progress of SF-36 was analyzed in relation to the operated level. Results: All aspects of SF-36 showed statistical significant improvement, at every given time interval (P ≤ 0.05) in the total of patients and in each group separately. Group A had a significantly higher increase in physical functioning (PF) score at 3 and 12 months postsurgery (P = 0.046 and P = 0.056, respectively). On the other hand, Group B had a significant lower increase in mental health (MH) score at 6 months (P = 0.009) postoperatively. Conclusion: Our study concludes that the level of operation in patients who undergo TPED for lumbar disc herniation affects the HRQoL 1 year after surgery, with Group A having a significantly greater improvement of PF in comparison with Groups B and C. PMID:28250636

  13. Transforaminal epidural steroid injections prevent the need for surgery in patients with sciatica secondary to lumbar disc herniation: a retrospective case series

    PubMed Central

    Manson, Neil A.; McKeon, Melissa D.; Abraham, Edward P.

    2013-01-01

    Background The median orthopedic surgery wait time in Canada is 33.7 weeks, thus alternative treatments for pathologies such as lumbar disc herniations (LDH) are needed. We sought to determine whether transforaminal epidural steroid injections (TFESIs) alleviate or merely delay the need for surgery. Methods We retrospectively reviewed the charts of patients with LDH who received TFESIs between September 2006 and July 2008. Patient demographics, level and side of pathology, workers’ compensation status, levels injected, treatment outcome and time from referral to treatment were evaluated. The primary outcome measure was the need for versus the avoidance of surgery. Results We included 91 patients in our analysis. Time from family physician referral to injection was 123 (standard deviation [SD] 88) days; no significant differences in wait times were found between TFESI patients and those requiring surgery. In all, 51 patients (22 women, 29 men) with a mean age of 45.8 (SD 10.2) years avoided surgery following TFESI, whereas 40 patients (16 women, 24 mean) with a mean age of 43.1 (SD 12.0) years proceeded to surgery within 189 (SD 125) days postinjection. In all, 15 patients received multiple injections, and of these, 9 did not require surgical intervention. Age, sex and level/side of pathology did not influence the treatment outcome. Workers’ compensation status influenced outcome significantly; these patients demonstrated less benefit from TFESI. Conclusion Transforaminal epidural steroid injections are an important treatment tool, preventing the need for surgery in 56% of patients with LDH. PMID:23351495

  14. Cold fusion, Alchemist's dream

    SciTech Connect

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  15. An Innovative Use of Cortoss Bone Cement to Stabilize a Nonunion after Interbody Fusion

    PubMed Central

    Jacobson, Robert E

    2017-01-01

    A 65-year-old male originally had surgery for spondylolisthesis at L5-S1 in 2008 and then went on to have an L4-5 transforaminal lumbar interbody fusion (TLIF) with pedicle screw fixation from L4 to S1 and interbody graft in 2010. Despite having two surgical procedures, he continued with intractable back pain and was told he had a failed lumbar fusion. When he was evaluated with a computerized tomography (CT) scan from April 2015, it demonstrated an erosive nonunion of the L4-5 interbody fusion without incorporation of the polyetheretherketone (PEEK) cage. In an attempt to perform a minimally invasive stabilization of the L4-5 nonunion, he underwent a percutaneous lateral foraminal approach with an injection of Cortoss® cement (Stryker®, Malvern, PA) into the L4-5 interspace and around the graft. The objective was to stabilize the nonunion, resulting in intermediate relief of pain. PMID:28229033

  16. An Innovative Use of Cortoss Bone Cement to Stabilize a Nonunion after Interbody Fusion.

    PubMed

    Granville, Michelle; Jacobson, Robert E

    2017-01-20

    A 65-year-old male originally had surgery for spondylolisthesis at L5-S1 in 2008 and then went on to have an L4-5 transforaminal lumbar interbody fusion (TLIF) with pedicle screw fixation from L4 to S1 and interbody graft in 2010. Despite having two surgical procedures, he continued with intractable back pain and was told he had a failed lumbar fusion. When he was evaluated with a computerized tomography (CT) scan from April 2015, it demonstrated an erosive nonunion of the L4-5 interbody fusion without incorporation of the polyetheretherketone (PEEK) cage. In an attempt to perform a minimally invasive stabilization of the L4-5 nonunion, he underwent a percutaneous lateral foraminal approach with an injection of Cortoss® cement (Stryker®, Malvern, PA) into the L4-5 interspace and around the graft. The objective was to stabilize the nonunion, resulting in intermediate relief of pain.

  17. Photoinduced Fusion of Lipid Bilayer Membranes.

    PubMed

    Suzuki, Yui; Nagai, Ken H; Zinchenko, Anatoly; Hamada, Tsutomu

    2017-03-14

    We have developed a novel system for photocontrol of the fusion of lipid vesicles through the use of a photosensitive surfactant containing an azobenzene moiety (AzoTAB). Real-time microscopic observations clarified a change in both the surface area and internal volume of vesicles during fusion. We also determined the optimal cholesterol concentrations and temperature for inducing fusion. The mechanism of fusion can be attributed to a change in membrane tension, which is caused by the solubilization of lipids through the isomerization of AzoTAB. We used a micropipet technique to estimate membrane tension and discuss the mechanism of fusion in terms of membrane elastic energy. The obtained results regarding this novel photoinduced fusion could lead to a better understanding of the mechanism of membrane fusion in living cells and may also see wider applications, such as in drug delivery and biomimetic material design.

  18. Clinical Evaluation of Spatial Accuracy of a Fusion Imaging Technique Combining Previously Acquired Computed Tomography and Real-Time Ultrasound for Imaging of Liver Metastases

    SciTech Connect

    Hakime, Antoine Deschamps, Frederic; Garcia Marques de Carvalho, Enio; Teriitehau, Christophe; Auperin, Anne; De Baere, Thierry

    2011-04-15

    Purpose: This study was designed to evaluate the spatial accuracy of matching volumetric computed tomography (CT) data of hepatic metastases with real-time ultrasound (US) using a fusion imaging system (VNav) according to different clinical settings. Methods: Twenty-four patients with one hepatic tumor identified on enhanced CT and US were prospectively enrolled. A set of three landmarks markers was chosen on CT and US for image registration. US and CT images were then superimposed using the fusion imaging display mode. The difference in spatial location between the tumor visible on the CT and the US on the overlay images (reviewer no. 1, comment no. 2) was measured in the lateral, anterior-posterior, and vertical axis. The maximum difference (Dmax) was evaluated for different predictive factors.CT performed 1-30 days before registration versus immediately before. Use of general anesthesia for CT and US versus no anesthesia.Anatomic landmarks versus landmarks that include at least one nonanatomic structure, such as a cyst or a calcificationResultsOverall, Dmax was 11.53 {+-} 8.38 mm. Dmax was 6.55 {+-} 7.31 mm with CT performed immediately before VNav versus 17.4 {+-} 5.18 with CT performed 1-30 days before (p < 0.0001). Dmax was 7.05 {+-} 6.95 under general anesthesia and 16.81 {+-} 6.77 without anesthesia (p < 0.0015). Landmarks including at least one nonanatomic structure increase Dmax of 5.2 mm (p < 0.0001). The lowest Dmax (1.9 {+-} 1.4 mm) was obtained when CT and VNav were performed under general anesthesia, one immediately after the other. Conclusions: VNav is accurate when adequate clinical setup is carefully selected. Only under these conditions (reviewer no. 2), liver tumors not identified on US can be accurately targeted for biopsy or radiofrequency ablation using fusion imaging.

  19. A novel technique for single-shot energy-resolved 2D x-ray imaging of plasmas relevant for the inertial confinement fusion.

    PubMed

    Labate, L; Köster, P; Levato, T; Gizzi, L A

    2012-10-01

    A novel x-ray diagnostic of laser-fusion plasmas is described, allowing 2D monochromatic images of hot, dense plasmas to be obtained in any x-ray photon energy range, over a large domain, on a single-shot basis. The device (named energy-encoded pinhole camera) is based upon the use of an array of many pinholes coupled to a large area CCD camera operating in the single-photon mode. The available x-ray spectral domain is only limited by the quantum efficiency of scientific-grade x-ray CCD cameras, thus extending from a few keV up to a few tens of keV. Spectral 2D images of the emitting plasma can be obtained at any x-ray photon energy provided that a sufficient number of photons had been collected at the desired energy. Results from recent inertial confinement fusion related experiments will be reported in order to detail the new diagnostic.

  20. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices.

    PubMed

    Pilan, N; Antoni, V; De Lorenzi, A; Chitarin, G; Veltri, P; Sartori, E

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  1. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    SciTech Connect

    Pilan, N. Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E.

    2016-02-15

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF{sub 6} instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  2. Percutaneous Hindfoot and Midfoot Fusion.

    PubMed

    Bauer, Thomas

    2016-09-01

    Hindfoot and midfoot fusions can be performed with percutaneous techniques. Preliminary results of these procedures are encouraging because they provide similar results than those obtained with open techniques with less morbidity and quick recovery. The best indications are probably fusions for mild-to-moderate reducible hindfoot and midfoot deformities in fragile patients with general or local bad conditions. The main limit is linked to the surgeon's experience in percutaneous foot surgery because a learning curve with the specific tools is necessary before doing these procedures.

  3. Learning curves of percutaneous endoscopic lumbar discectomy in transforaminal approach at the L4/5 and L5/S1 levels: a comparative study

    PubMed Central

    Wu, Xin-bo; Fan, Guo-xin; Gu, Xin; Shen, Tu-gang; Guan, Xiao-fei; Hu, An-nan; Zhang, Hai-long; He, Shi-sheng

    2016-01-01

    Objectives: This study aimed to compare the learning curves of percutaneous endoscopic lumbar discectomy (PELD) in a transforaminal approach at the L4/5 and L5/S1 levels. Methods: We retrospectively reviewed the first 60 cases at the L4/5 level (Group I) and the first 60 cases at the L5/S1 level (Group II) of PELD performed by one spine surgeon. The patients were divided into subgroups A, B, and C (Group I: A cases 1–20, B cases 21–40, C cases 41–60; Group II: A cases 1–20, B cases 21–40, C cases 41–60). Operation time was thoroughly analyzed. Results: Compared with the L4/5 level, the learning curve of transforaminal PELD at the L5/S1 level was flatter. The mean operation times of Groups IA, IB, and IC were (88.75±17.02), (67.75±6.16), and (64.85±7.82) min, respectively. There was a significant difference between Groups A and B (P<0.05), but no significant difference between Groups B and C (P=0.20). The mean operation times of Groups IIA, IIB, and IIC were (117.25±13.62), (109.50±11.20), and (92.15±11.94) min, respectively. There was no significant difference between Groups A and B (P=0.06), but there was a significant difference between Groups B and C (P<0.05). There were 6 cases of postoperative dysesthesia (POD) in Group I and 2 cases in Group IIA (P=0.27). There were 2 cases of residual disc in Group I, and 4 cases in Group II (P=0.67). There were 3 cases of recurrence in Group I, and 2 cases in Group II (P>0.05). Conclusions: Compared with the L5/S1 level, the learning curve of PELD in a transforaminal approach at the L4/5 level was steeper, suggesting that the L4/5 level might be easier to master after short-term professional training. PMID:27381732

  4. Comparison of Clinical Efficacy Between Interlaminar and Transforaminal Epidural Injection in Patients With Axial Pain due to Cervical Disc Herniation

    PubMed Central

    Lee, Jung Hwan; Lee, Sang-Ho

    2016-01-01

    Abstract Transforaminal (TF) approach is preferred by physician to interlaminar (IL) approach because it can deliver injectates directly around nerve root and dorsal root ganglion, which is regarded as main pain sources. Axial neck pain is originated from sinuvertebral nerve located in ventral epidural spaces, which has been described to be related to central or paramedian disc herniation. It is very questionable that TF injection is also more effective than IL injection in the patients with axial neck or interscapular pain. This study was to evaluate clinical efficacy of cervical epidural injection in patients with axial pain due to cervical disc herniation and to compare the clinical outcomes between TF and IL approaches. Fifty-six and 52 patients who underwent IL and TF epidural injections, respectively, for axial neck/interscapular pain due to central or paramedian cervical disc herniation were included. Numeric Rating Scale (NRS) and Neck Disability Index (NDI) were compared between both groups at 2 and 8 weeks after treatment. Successful pain relief was defined if a 50% or more reduction of NRS score was achieved in comparison with pretreatment one. Successful functional improvement was defined if at least a 40% reduction of NDI was obtained. Overall, 79 (73.1%) and 57 (52.8%) among 108 patients showed successful pain relief at 2 and 8 weeks, respectively. Seventy-six (70.4%) and 52 (48.1%) had successful functional improvement at 2 and 8 weeks, respectively. The IL and TF groups showed no significant difference in proportion of successful results of NRS 2 weeks (73.2% vs 67.3%) and 8 weeks (48.2% vs 48.1%). Also, no significant difference was obtained in proportion of successful NDI between 2 groups at 2 weeks (75.0% vs 71.2%) and 8 weeks (53.6% vs 51.9%). Cervical epidural injection showed favorable results in 2 weeks and moderate results in 8 weeks in patients with axial pain due to cervical disc herniation. IL and TF showed no significant difference in

  5. Mass Producing Targets for Nuclear Fusion

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Elleman, D. D.; Kendall, J. M.

    1983-01-01

    Metal-encapsulating technique advances prospects of controlling nuclear fusion. Prefilled fusion targets form at nozzle as molten metal such as tin flows through outer channel and pressurized deuterium/tritium gas flows through inner channel. Molten metal completely encloses gas charge as it drops off nozzle.

  6. The Fusion Energy Option

    NASA Astrophysics Data System (ADS)

    Dean, Stephen O.

    2004-06-01

    Presentations from a Fusion Power Associates symposium, The Fusion Energy Option, are summarized. The topics include perspectives on fossil fuel reserves, fusion as a source for hydrogen production, status and plans for the development of inertial fusion, planning for the construction of the International Thermonuclear Experimental Reactor, status and promise of alternate approaches to fusion and the need for R&D now on fusion technologies.

  7. Revitalizing Fusion via Fission Fusion

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace

    2001-10-01

    Existing tokamaks could generate significant nuclear fuel. TFTR, operating steady state with DT might generate enough fuel for a 300 MW nuclear reactor. The immediate goals of the magnetic fusion program would necessarily shift from a study of advanced plasma regimes in larger sized devices, to mostly known plasmas regimes, but at steady state or high duty cycle operation in DT plasmas. The science and engineering of breeding blankets would be equally important. Follow on projects could possibly produce nuclear fuel in large quantity at low price. Although today there is strong opposition to nuclear power in the United States, in a 21st century world of 10 billion people, all of whom will demand a middle class life style, nuclear energy will be important. Concern over greenhouse gases will also drive the world toward nuclear power. There are studies indicating that the world will need 10 TW of carbon free energy by 2050. It is difficult to see how this can be achieved without the breeding of nuclear fuel. By using the thorium cycle, proliferation risks are minimized. [1], [2]. 1 W. Manheimer, Fusion Technology, 36, 1, 1999, 2.W. Manheimer, Physics and Society, v 29, #3, p5, July, 2000

  8. Magnetic fusion 1985: what next

    SciTech Connect

    Fowler, T.K.

    1985-03-01

    Recent budget reductions for magnetic fusion have led to a re-examination of program schedules and objectives. Faced with delays and postponement of major facilities as previously planned, some have called for a near-term focus on science, others have stressed technology. This talk will suggest a different focus as the keynote for this conference, namely, the applications of fusion. There is no doubt that plasma science is by now mature and fusion technology is at the forefront. This has and will continue to benefit many fields of endeavor, both in actual new discoveries and techniques and in attracting and training scientists and engineers who move on to make significant contributions in science, defense and industry. Nonetheless, however superb the science or how challenging the technology, these are means, not ends. To maintain its support, the magnetic fusion program must also offer the promise of power reactors that could be competitive in the future. At this conference, several new reactor designs will be described that claim to be smaller and economically competitive with fission reactors while retaining the environmental and safety characteristics that are the hallmark of fusion. The American Nuclear Society is an appropriate forum in which to examine these new designs critically, and to stimulate better ideas and improvements. As a preview, this talk will include brief discussions of new tokamak, tandem mirror and reversed field pinch reactor designs to be presented in later sessions. Finally, as a preview of the session on fusion breeders, the talk will explore once again the economic implications of a new nuclear age, beginning with improved fission reactors fueled by fusion breeders, then ultimately evolving to reactors based solely on fusion.

  9. Application of Fisher fusion techniques to improve the individual performance of sonar computer-aided detection/computer-aided classification (CAD/CAC) algorithms

    NASA Astrophysics Data System (ADS)

    Ciany, Charles M.; Zurawski, William C.

    2009-05-01

    Raytheon has extensively processed high-resolution sidescan sonar images with its CAD/CAC algorithms to provide classification of targets in a variety of shallow underwater environments. The Raytheon CAD/CAC algorithm is based on non-linear image segmentation into highlight, shadow, and background regions, followed by extraction, association, and scoring of features from candidate highlight and shadow regions of interest (ROIs). The targets are classified by thresholding an overall classification score, which is formed by summing the individual feature scores. The algorithm performance is measured in terms of probability of correct classification as a function of false alarm rate, and is determined by both the choice of classification features and the manner in which the classifier rates and combines these features to form its overall score. In general, the algorithm performs very reliably against targets that exhibit "strong" highlight and shadow regions in the sonar image- i.e., both the highlight echo and its associated shadow region from the target are distinct relative to the ambient background. However, many real-world undersea environments can produce sonar images in which a significant percentage of the targets exhibit either "weak" highlight or shadow regions in the sonar image. The challenge of achieving robust performance in these environments has traditionally been addressed by modifying the individual feature scoring algorithms to optimize the separation between the corresponding highlight or shadow feature scores of targets and non-targets. This study examines an alternate approach that employs principles of Fisher fusion to determine a set of optimal weighting coefficients that are applied to the individual feature scores before summing to form the overall classification score. The results demonstrate improved performance of the CAD/CAC algorithm on at-sea data sets.

  10. Fusion energy

    NASA Astrophysics Data System (ADS)

    1990-09-01

    The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the Max Planck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989 to 1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R and D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R and D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase.

  11. Fusion energy

    SciTech Connect

    Not Available

    1990-09-01

    The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the MaxPlanck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989--1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase.

  12. Puncture Reduction in Percutaneous Transforaminal Endoscopic Discectomy with HE’s Lumbar LOcation (HELLO) System: A Cadaver Study

    PubMed Central

    Sun, Qi; Hu, Annan; Zhu, Yanjie; Gu, Guangfei; Zhang, Hailong; He, Shisheng

    2015-01-01

    Background Percutaneous transforaminal endoscopic discectomy (PTED) usually requires numerous punctures under X-ray fluoroscopy. Repeated puncture will lead to more radiation exposure and reduce the beginners' confidence. Objective This cadaver study aimed to investigate the efficacy of HE’s Lumbar Location (HELLO) system in puncture reduction of PTED. Study design Cadaver study. Setting Comparative groups. Methods HELLO system consists of self-made surface locator and puncture locator. One senior surgeon conducted the puncture procedure of PTED on the left side of 20 cadavers at L4/L5 and L5/S1 level with the assistance of HELLO system (Group A). Additionally, the senior surgeon conducted the puncture procedure of PTED on the right side of the cadavers at L4/L5 and L5/S1 level with traditional methods (Group B). On the other hand, an inexperienced surgeon conducted the puncture procedure of PTED on the left side of the cadavers at L4/L5 and L5/S1 level with the assistance of our HELLO system (Group C). Results At L4/L5 level, there was significant difference in puncture times between Group A and Group B (P<0.001), but no significant difference was observed between Group A and Group C (P = 0.811). Similarly at L5/S1 level, there was significant difference in puncture times between Group A and Group B (P<0.001), but no significant difference was observed between Group A and Group C (P = 0.981). At L4/L5 level, there was significant difference in fluoroscopy time between Group A and Group B (P<0.001), but no significant difference was observed between Group A and Group C (P = 0.290). Similarly at L5/S1 level, there was significant difference in fluoroscopy time between Group A and Group B (P<0.001), but no significant difference was observed between Group A and Group C (P = 0.523). As for radiation exposure, HELLO system reduced 39%-45% radiation dosage when comparing Group A and Group B, but there was no significant difference in radiation exposure between Group A

  13. Seismic data fusion anomaly detection

    NASA Astrophysics Data System (ADS)

    Harrity, Kyle; Blasch, Erik; Alford, Mark; Ezekiel, Soundararajan; Ferris, David

    2014-06-01

    Detecting anomalies in non-stationary signals has valuable applications in many fields including medicine and meteorology. These include uses such as identifying possible heart conditions from an Electrocardiography (ECG) signals or predicting earthquakes via seismographic data. Over the many choices of anomaly detection algorithms, it is important to compare possible methods. In this paper, we examine and compare two approaches to anomaly detection and see how data fusion methods may improve performance. The first approach involves using an artificial neural network (ANN) to detect anomalies in a wavelet de-noised signal. The other method uses a perspective neural network (PNN) to analyze an arbitrary number of "perspectives" or transformations of the observed signal for anomalies. Possible perspectives may include wavelet de-noising, Fourier transform, peak-filtering, etc.. In order to evaluate these techniques via signal fusion metrics, we must apply signal preprocessing techniques such as de-noising methods to the original signal and then use a neural network to find anomalies in the generated signal. From this secondary result it is possible to use data fusion techniques that can be evaluated via existing data fusion metrics for single and multiple perspectives. The result will show which anomaly detection method, according to the metrics, is better suited overall for anomaly detection applications. The method used in this study could be applied to compare other signal processing algorithms.

  14. Fusion Plasma Theory project summaries

    SciTech Connect

    Not Available

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program.

  15. Review of fusion synfuels

    SciTech Connect

    Fillo, J.A.

    1980-01-01

    Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high-temperature electrolysis of approx. 50 to 65% are projected for fusion reactors using high-temperatures blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  16. Data fusion for the detection of buried land mines

    SciTech Connect

    Clark, G.A.; Sengupta, S.K.; Schaich, P.C.; Sherwood, R.J.; Buhl, M.R.; Hernandez, J.E.; Kane, R.J.; Barth, M.J.; Fields, D.J.; Carter, M.R.

    1993-10-01

    The authors conducted experiments to demonstrate the enhanced delectability of buried land mines using sensor fusion techniques. Multiple sensors, including imagery, infrared imagery, and ground penetrating radar, have been used to acquire data on a number of buried mines and mine surrogates. The authors present this data along with a discussion of the application of sensor fusion techniques for this particular detection problem. The authors describe the data fusion architecture and discuss some relevant results of these classification methods.

  17. Comparison of Semidistributed Multinode TOA-DOA Fusion Localization and GPS-Aided TOA (DOA) Fusion Localization for MANETs

    NASA Astrophysics Data System (ADS)

    Wang, Zhonghai; Zekavat, Seyed

    2008-12-01

    This paper evaluates the performance of a semidistributed multinode time-of-arrival (TOA) and direction-of-arrival (DOA) fusion localization technique in terms of localization circular error probability (CEP). The localization technique is applicable in mobile ad hoc networks (MANETs) when global positioning system (GPS) is not available (GPS denied environments). The localization CEP of the technique is derived theoretically and verified via simulations. In addition, we theoretically derive the localization CEP of GPS-aided TOA fusion and GPS-aided DOA fusion techniques, which are also applicable in MANETs. Finally, we compare these three localization techniques theoretically and via simulations. The comparison confirms that in moderate scale MANETs, the multinode TOA-DOA fusion localization technique achieves the best performance; while in large scale MANETs, GPS-aided TOA fusion leads to the best performance.

  18. Viral membrane fusion.

    PubMed

    Harrison, Stephen C

    2015-05-01

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a "fusion loop" or "fusion peptide") engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics.

  19. Viral membrane fusion

    PubMed Central

    Harrison, Stephen C.

    2015-01-01

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. PMID:25866377

  20. Magnetized Target Fusion in Advanced Propulsion Research

    NASA Technical Reports Server (NTRS)

    Cylar, Rashad

    2003-01-01

    The Magnetized Target Fusion (MTF) Propulsion lab at NASA Marshall Space Flight Center in Huntsville, Alabama has a program in place that has adopted to attempt to create a faster, lower cost and more reliable deep space transportation system. In this deep space travel the physics and development of high velocity plasma jets must be understood. The MTF Propulsion lab is also in attempt to open up the solar system for human exploration and commercial use. Fusion, as compared to fission, is just the opposite. Fusion involves the light atomic nuclei combination to produce denser nuclei. In the process, the energy is created by destroying the mass according to the distinguished equation: E = mc2 . Fusion energy development is being pursued worldwide as a very sustainable form of energy that is environmentally friendly. For the purposes of space exploration fusion reactions considered include the isotopes of hydrogen-deuterium (D2) and tritium (T3). Nuclei have an electrostatic repulsion between them and in order for the nuclei to fuse this repulsion must be overcome. One technique to bypass repulsion is to heat the nuclei to very high temperatures. The temperatures vary according to the type of reactions. For D-D reactions, one billion degrees Celsius is required, and for D-T reactions, one hundred million degrees is sufficient. There has to be energy input for useful output to be obtained form the fusion To make fusion propulsion practical, the mass, the volume, and the cost of the equipment to produce the reactions (generally called the reactor) need to be reduced by an order of magnitude or two from the state-of-the-art fusion machines. Innovations in fusion schemes are therefore required, especially for obtaining thrust for propulsive applications. Magnetized target fusion (MTF) is one of the innovative fusion concepts that have emerged over the last several years. MSFC is working with Los Alamos National Laboratory and other research groups in studying the

  1. Cold fusion research

    SciTech Connect

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy.

  2. Magneto-Inertial Fusion

    SciTech Connect

    Wurden, G. A.; Hsu, S. C.; Intrator, T. P.; Grabowski, T. C.; Degnan, J. H.; Domonkos, M.; Turchi, P. J.; Campbell, E. M.; Sinars, D. B.; Herrmann, M. C.; Betti, R.; Bauer, B. S.; Lindemuth, I. R.; Siemon, R. E.; Miller, R. L.; Laberge, M.; Delage, M.

    2015-11-17

    In this community white paper, we describe an approach to achieving fusion which employs a hybrid of elements from the traditional magnetic and inertial fusion concepts, called magneto-inertial fusion (MIF). The status of MIF research in North America at multiple institutions is summarized including recent progress, research opportunities, and future plans.

  3. Magnetized target fusion and fusion propulsion

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Ronald C.

    2002-01-01

    Magnetized target fusion (MTF) is a thermonuclear fusion concept that is intermediate between the two mainline approaches, magnetic confinement and inertial confinement fusion (MCF and ICF). MTF incorporates some aspects of each and offers advantages over each of the mainline approaches. First, it provides a means of reducing the driver power requirements, thereby admitting a wider range of drivers than ICF. Second, the magnetic field is only used for insulation, not confinement, and the plasma is wall confined, so that plasma instabilities are traded in for hydrodynamic instabilities. However, the degree of compression required to reach fusion condition is lower than for ICF, so that hydrodynamic instabilities are much less threatening. The standoff driver innovation proposes to dynamically form the target plasma and a gaseous shell that compresses and confines the target plasma. Therefore, fusion target fabrication is traded in for a multiplicity of plasma guns, which must work in synchrony. The standoff driver embodiment of MTF leads to a fusion propulsion system concept that is potentially compact and lightweight. We will discuss the underlying physics of MTF and some of the details of the fusion propulsion concept using the standoff driver approach. We discuss here the optimization of an MTF target design for space propulsion. .

  4. Comparison of fluoroscopic Guided Transforaminal Epidural Injections of Steroid and Local Anaesthetic with Conservative Management in Patients with Chronic Lumbar Radiculopathies

    PubMed Central

    Mehta, Nandita; Salaria, Misbah; Salaria, A. Q.

    2017-01-01

    Background: Chronic lumbar radiculopathy is a common medical problem and the treatment modalities used over years have been many ranging from conservative or symptomatic management to open decompression surgery. This study was aimed at to compare two modalities of treatment, i.e., conservative and lumbar transforaminal epidural steroid injections (TFESIs). Materials and Methods: A total of 120 patients of American Society of Anesthesiology class - (a healthy patient or a patient with mild systemic disease) were randomized to two groups. Group C (n = 60) were managed conservatively with bed rest, analgesics, and physiotherapy. Group T (n = 60) received lumbar TFESIs with methylprednisolone 40 mg with 2 ml bupivacaine (0.5%). Measurements using visual analog scale (VAS) were taken before treatment and at various time intervals after the start of treatment. Results: There was no statistically significant difference regarding the demographic characteristics of both groups. The VAS scores were less and statistically significant in Group T after 30 min postinjection, at the 2nd week and after 1 month. Recovery rate of straight leg raise test was found to be 98% in those treated with TFESI. The Group T had significantly better patient satisfaction score and additionally there was drug dose intake reduction before and after the treatment. Conclusion: Patients treated with fluoroscopic-guided TFESI have better pain relief, quality-of-life, and less analgesic requirement than those managed conservatively. PMID:28298750

  5. The Prognostic Value of Enhanced-MRI and Fluoroscopic Factors for Predicting the Effects of Transforaminal Steroid Injections on Lumbosacral Radiating Pain

    PubMed Central

    2016-01-01

    Objective To investigate the predictive value of enhanced-magnetic resonance imaging (MRI) and fluoroscopic factors regarding the effects of transforaminal epidural steroid injections (TFESIs) in low back pain (LBP) patients with lumbosacral radiating pain. Methods A total of 51 patients who had LBP with radiating pain were recruited between January 2011 and December 2012. The patient data were classified into the two groups ‘favorable group’ and ‘non-favorable group’ after 2 weeks of follow-up results. The favorable group was defined as those with a 50%, or more, reduction of pain severity according to the visual analogue scale (VAS) for back or leg pain. The clinical and radiological data were collected for univariate and multivariate analyses to determine the predictors of the effectiveness of TFESIs between the two groups. Results According to the back or the leg favorable-VAS group, the univariate analysis revealed that the corticosteroid approach for the enhanced nerve root, the proportion of the proximal flow, and the contrast dispersion of epidurography are respectively statistically significant relative to the other factors. Lastly, the multiple logistic regression analysis showed a significant association between the corticosteroid approach and the enhanced nerve root in the favorable VAS group. Conclusion Among the variables, MRI showed that the corticosteroid approach for the enhanced target root is the most important prognostic factor in the predicting of the clinical parameters of the favorable TFESIs group. PMID:28119838

  6. Percutaneous Adhesiolysis Versus Transforaminal Epidural Steroid Injection for the Treatment of Chronic Radicular Pain Caused by Lumbar Foraminal Spinal Stenosis: A Retrospective Comparative Study

    PubMed Central

    Park, Yongbum; Lee, Woo Yong; Ahn, Jae Ki; Nam, Hee-Seung

    2015-01-01

    Objective To investigate the efficacy of percutaneous adhesiolysis (PA) compared to fluoroscopy (FL)-guided transforaminal epidural steroid injection (TFESI) in patients with radicular pain caused by lumbar foraminal spinal stenosis (LFSS) by assessing pain relief and functional improvement at 4 and 12 weeks post-procedure. Methods This retrospective study included 45 patients who underwent PA or FL-guided TFSEI for radicular pain caused by LFSS of at least 3 months' duration. Outcomes were assessed with the Oswestry Disability Index (ODI) and Verbal Numeric Pain Scale (VNS) before the procedure and at 4 and 12 weeks post-procedure. A successful outcome was defined by >50% improvement in the VNS score and >40% improvement in the ODI score. Results ODI and VNS scores improved 4 and 12 weeks post-procedure in both groups. Statistically significant differences between groups were observed in ODI and VNS at 12 weeks (p<0.05). The proportion of patients with successful outcomes was significantly different between the two groups only at the 12-week time point. Conclusion Our study suggests that PA is effective for pain reduction and functional improvement in patients with chronic radicular pain caused by LFSS. Therefore, PA can be considered for patients with previous ineffective responses to conservative treatment. Although PA seems to be more effective than TFEFI according to the results of our study, in order to fully elucidate the difference in effectiveness, a prospective study with a larger sample size is necessary. PMID:26798608

  7. Viral membrane fusion

    SciTech Connect

    Harrison, Stephen C.

    2015-05-15

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism.

  8. Nuclear diagnostics for inertial confinement fusion implosions

    SciTech Connect

    Murphy, T.J.

    1997-11-01

    This abstract contains viewgraphs on nuclear diagnostic techniques for inertial confinement fusion implosions. The viewgraphs contain information on: reactions of interest in ICF; advantages and disadvantages of these methods; the properties nuclear techniques can measure; and some specifics on the detectors used.

  9. A survey of multi-sensor data fusion systems

    NASA Astrophysics Data System (ADS)

    Linn, R. J.; Hall, D. L.; Llinas, J.

    1991-08-01

    Multisensor data fusion integrates data from multiple sensors (and types of sensors) to perform inferences which are more accurate and specific than those from processing single-sensor data. Levels of inference range from target detection and identification to higher level situation assessment and threat assessment. This paper provides a survey of more than 50 data fusion systems and summarizes their application, development environment, system status and key techniques. The techniques are mapped to a taxonomy previously developed by Hall and Linn (1990); these include positional fusion techniques, such as association and estimation, and identity fusion methods, including statistical methods, nonparametric methods, and cognitive techniques (e.g. templating, knowledge-based systems, and fuzzy reasoning). An assessment of the state of fusion system development is provided.

  10. Current Status of Lumbar Interbody Fusion for Degenerative Spondylolisthesis

    PubMed Central

    TAKAHASHI, Toshiyuki; HANAKITA, Junya; OHTAKE, Yasufumi; FUNAKOSHI, Yusuke; OICHI, Yuki; KAWAOKA, Taigo; WATANABE, Mizuki

    2016-01-01

    Instrumented lumbar fusion can provide immediate stability and assist in satisfactory arthrodesis in patients who have pain or instability of the lumbar spine. Lumbar adjunctive fusion with decompression is often a good procedure for surgical management of degenerative spondylolisthesis (DS). Among various lumbar fusion techniques, lumbar interbody fusion (LIF) has an advantage in that it maintains favorable lumbar alignment and provides successful fusion with the added effect of indirect decompression. This technique has been widely used and represents an advancement in spinal instrumentation, although the rationale and optimal type of LIF for DS remains controversial. We evaluated the current status and role of LIF in DS treatment, mainly as a means to augment instrumentation. We addressed the basic concept of LIF, its indications, and various types including minimally invasive techniques. It also has acceptable biomechanical features, and offers reconstruction with ideal lumbar alignment. Postsurgical adverse events related to each LIF technique are also addressed. PMID:27169496

  11. Materials research for fusion

    NASA Astrophysics Data System (ADS)

    Knaster, J.; Moeslang, A.; Muroga, T.

    2016-05-01

    Fusion materials research started in the early 1970s following the observation of the degradation of irradiated materials used in the first commercial fission reactors. The technological challenges of fusion energy are intimately linked with the availability of suitable materials capable of reliably withstanding the extremely severe operational conditions of fusion reactors. Although fission and fusion materials exhibit common features, fusion materials research is broader. The harder mono-energetic spectrum associated with the deuterium-tritium fusion neutrons (14.1 MeV compared to <2 MeV on average for fission neutrons) releases significant amounts of hydrogen and helium as transmutation products that might lead to a (at present undetermined) degradation of structural materials after a few years of operation. Overcoming the historical lack of a fusion-relevant neutron source for materials testing is an essential pending step in fusion roadmaps. Structural materials development, together with research on functional materials capable of sustaining unprecedented power densities during plasma operation in a fusion reactor, have been the subject of decades of worldwide research efforts underpinning the present maturity of the fusion materials research programme.

  12. Parameterizing loop fusion for automated empirical tuning

    SciTech Connect

    Zhao, Y; Yi, Q; Kennedy, K; Quinlan, D; Vuduc, R

    2005-12-15

    Traditional compilers are limited in their ability to optimize applications for different architectures because statically modeling the effect of specific optimizations on different hardware implementations is difficult. Recent research has been addressing this issue through the use of empirical tuning, which uses trial executions to determine the optimization parameters that are most effective on a particular hardware platform. In this paper, we investigate empirical tuning of loop fusion, an important transformation for optimizing a significant class of real-world applications. In spite of its usefulness, fusion has attracted little attention from previous empirical tuning research, partially because it is much harder to configure than transformations like loop blocking and unrolling. This paper presents novel compiler techniques that extend conventional fusion algorithms to parameterize their output when optimizing a computation, thus allowing the compiler to formulate the entire configuration space for loop fusion using a sequence of integer parameters. The compiler can then employ an external empirical search engine to find the optimal operating point within the space of legal fusion configurations and generate the final optimized code using a simple code transformation system. We have implemented our approach within our compiler infrastructure and conducted preliminary experiments using a simple empirical search strategy. Our results convey new insights on the interaction of loop fusion with limited hardware resources, such as available registers, while confirming conventional wisdom about the effectiveness of loop fusion in improving application performance.

  13. Establishment of an Institute for Fusion Studies

    SciTech Connect

    Hazeltine, R.D.

    1992-07-01

    The Institute for Fusion Studies is a national center for theoretical fusion plasma physics research. Its purposes are: (1) to conduct research on theoretical questions concerning the achievement of controlled fusion energy by means of magnetic confinement--including both fundamental problems of long-range significance, as well as shorter-term issues; (2) to serve as a center for information exchange, nationally and internationally, by hosting exchange visits, conferences, and workshops; (3) and to train students and postdoctoral research personnel for the fusion energy program and plasma physics research areas. The theoretical research results that are obtained by the Institute contribute mainly to the progress of national and international efforts in nuclear fusion research, whose goal is the development of fusion power.as a basic energy source. In addition to its primary focus on fusion physics, the Institute is also involved with research in related fields, such as advanced computing techniques, nonlinear dynamics, plasma astrophysics, and accelerator physics. The work of EFS scientists continued to receive national and international recognition. Numerous invited papers were given during the past year at workshops, conferences, and scientific meetings. Last year IFS scientists published 95 scientific articles in technical journals and monographs.

  14. Sensor fusion for mobile robot navigation

    SciTech Connect

    Kam, M.; Zhu, X.; Kalata, P.

    1997-01-01

    The authors review techniques for sensor fusion in robot navigation, emphasizing algorithms for self-location. These find use when the sensor suite of a mobile robot comprises several different sensors, some complementary and some redundant. Integrating the sensor readings, the robot seeks to accomplish tasks such as constructing a map of its environment, locating itself in that map, and recognizing objects that should be avoided or sought. The review describes integration techniques in two categories: low-level fusion is used for direct integration of sensory data, resulting in parameter and state estimates; high-level fusion is used for indirect integration of sensory data in hierarchical architectures, through command arbitration and integration of control signals suggested by different modules. The review provides an arsenal of tools for addressing this (rather ill-posed) problem in machine intelligence, including Kalman filtering, rule-based techniques, behavior based algorithms and approaches that borrow from information theory, Dempster-Shafer reasoning, fuzzy logic and neural networks. It points to several further-research needs, including: robustness of decision rules; simultaneous consideration of self-location, motion planning, motion control and vehicle dynamics; the effect of sensor placement and attention focusing on sensor fusion; and adaptation of techniques from biological sensor fusion.

  15. Information fusion techniques applied to eruption forecasting

    NASA Astrophysics Data System (ADS)

    Bursik, M.; Rogova, G.; Deming, J.

    2002-12-01

    We are assembling a relational database of information on past eruptions of the Mono-Inyo volcanic chain, eastern California. The most fundamental tables within the database contain information on locations at which pits were dug through the volcanic stratigraphy, or at which data were collected on a dome or lava flow. The locations include both those at which new data were collected as well as those in the literature. Our working hypothesis is that the database will prove useful for unraveling the complex recent volcanic history of the Mono-Inyo chain. The chain consists of an assortment of domes, craters and flows that stretches for 50 km north-south, subparallel to the Sierran range front fault system. Almost all eruptions within the chain probably occurred less than 50,000 years ago. Because of the variety of magma and eruption types, and the migration of source regions in time and space, it is nontrivial to discern patterns of behaviour. The database allows us to extract the features diagnostic of particular tephra layers, domes or flows. The diagnostic features include depth in the section, layer thickness and internal stratigraphy, mineral assemblage, major and trace element composition, tephra componentry and granulometry, and radiocarbon age. At the present time, the database can be queried to show all layers of a particular depth, composition, age, etc., using standard statements of the Structured Query Language (SQL). Our goal is to automate the query and report process so that all location data can be queried simultaneously to produce derived tables containing maximum likelihood estimates of vent location, eruption type and eruption age. By statistical analysis of the information in the derived tables, we may be able to produce estimates of future vent locations and times of eruption.

  16. On the path to fusion energy

    NASA Astrophysics Data System (ADS)

    Tabak, M.

    2006-06-01

    There is a need to develop alternate energy sources in the coming century because fossil fuels will become depleted and their use may lead to global climate change. Inertial fusion can become such an energy source, but significant progress must be made before its promise is realized. The high-density approach to inertial fusion suggested by Nuckolls, et al., leads to reactors compatible with civilian power production. Methods to achieve the good control of hydrodynamic stability (adiabat shaping) and implosion symmetry required to achieve these high fuel densities will be discussed. Examples of symmetry control for targets driven by Z-pinches or heavy ion beams are given. Fast Ignition, a technique that achieves fusion ignition by igniting fusion fuel after it is assembled, will be described along with its gain curves. Fusion costs of energy for conventional hotspot ignition will be compared with those of Fast Ignition and their capital costs compared with advanced fission plants. Finally, techniques that may improve possible Fast Ignition gains by an order of magnitude and reduce driver scales by an order of magnitude below conventional ignition requirements are described. If these innovations are successful, the fusion specific capital costs can be reduced below 10% of the balance of plant.

  17. Rapid automatic segmentation of the human cerebellum and its lobules (RASCAL)--implementation and application of the patch-based label-fusion technique with a template library to segment the human cerebellum.

    PubMed

    Weier, Katrin; Fonov, Vladimir; Lavoie, Karyne; Doyon, Julien; Collins, D Louis

    2014-10-01

    Reliable and fast segmentation of the human cerebellum with its complex architecture of lobes and lobules has been a challenge for the past decades. Emerging knowledge of the functional integration of the cerebellum in various sensori-motor and cognitive-behavioral circuits demands new automatic segmentation techniques, with accuracies similar to manual segmentations, but applicable to large subject numbers in a reasonable time frame. This article presents the development and application of a novel pipeline for rapid automatic segmentation of the human cerebellum and its lobules (RASCAL) combining patch-based label-fusion and a template library of manually labeled cerebella of 16 healthy controls from the International Consortium for Brain Mapping (ICBM) database. Leave-one-out experiments revealed a good agreement between manual and automatic segmentations (Dice kappa = 0.82). Intraclass correlation coefficients (ICC) were calculated to test reliability of segmented volumes and were highest (ICC > 0.9) for global measures (total and hemispherical grey and white matter) followed by larger lobules of the posterior lobe (ICC > 0.8). Further we applied the pipeline to all 152 young healthy controls of the ICBM database to look for hemispheric and gender differences. The results demonstrated larger native space volumes in men then women (mean (± SD) total cerebellar volume in women = 217 cm(3) (± 26), men = 259 cm(3) (± 29); P < 0.001). Significant gender-by-hemisphere interaction was only found in stereotaxic space volumes for white matter core (men > women) and anterior lobe volume (women > men). This new method shows great potential for the precise and efficient analysis of the cerebellum in large patient cohorts.

  18. Muon Catalyzed Fusion

    NASA Technical Reports Server (NTRS)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  19. Magnetic fusion reactor economics

    SciTech Connect

    Krakowski, R.A.

    1995-12-01

    An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission {yields} fusion. The present projections of the latter indicate that capital costs of the fusion ``burner`` far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ``implementation-by-default`` plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant.

  20. Magnetic-confinement fusion

    NASA Astrophysics Data System (ADS)

    Ongena, J.; Koch, R.; Wolf, R.; Zohm, H.

    2016-05-01

    Our modern society requires environmentally friendly solutions for energy production. Energy can be released not only from the fission of heavy nuclei but also from the fusion of light nuclei. Nuclear fusion is an important option for a clean and safe solution for our long-term energy needs. The extremely high temperatures required for the fusion reaction are routinely realized in several magnetic-fusion machines. Since the early 1990s, up to 16 MW of fusion power has been released in pulses of a few seconds, corresponding to a power multiplication close to break-even. Our understanding of the very complex behaviour of a magnetized plasma at temperatures between 150 and 200 million °C surrounded by cold walls has also advanced substantially. This steady progress has resulted in the construction of ITER, a fusion device with a planned fusion power output of 500 MW in pulses of 400 s. ITER should provide answers to remaining important questions on the integration of physics and technology, through a full-size demonstration of a tenfold power multiplication, and on nuclear safety aspects. Here we review the basic physics underlying magnetic fusion: past achievements, present efforts and the prospects for future production of electrical energy. We also discuss questions related to the safety, waste management and decommissioning of a future fusion power plant.

  1. The Galveston technique using Luque or Cotrel-Dubousset rods.

    PubMed

    Lonstein, J E

    1994-04-01

    The Galveston technique for pelvic fixation in long fusions to the sacrum in neuromuscular and adult scoliosis is an effective technique to help obtain a solid fusion. With careful technique and accurate rod bending, rod insertion, rod contouring, and wire tightening, excellent fixation is obtained that maximizes the fusion rate.

  2. Significant Improvement of Puncture Accuracy and Fluoroscopy Reduction in Percutaneous Transforaminal Endoscopic Discectomy With Novel Lumbar Location System: Preliminary Report of Prospective Hello Study.

    PubMed

    Fan, Guoxin; Guan, Xiaofei; Zhang, Hailong; Wu, Xinbo; Gu, Xin; Gu, Guangfei; Fan, Yunshan; He, Shisheng

    2015-12-01

    Prospective nonrandomized control study.The study aimed to investigate the implication of the HE's Lumbar LOcation (HELLO) system in improving the puncture accuracy and reducing fluoroscopy in percutaneous transforaminal endoscopic discectomy (PTED).Percutaneous transforaminal endoscopic discectomy is one of the most popular minimally invasive spine surgeries that heavily depend on repeated fluoroscopy. Increased fluoroscopy will induce higher radiation exposure to surgeons and patients. Accurate puncture in PTED can be achieved by accurate preoperative location and definite trajectory.The HELLO system mainly consists of self-made surface locator and puncture-assisted device. The surface locator was used to identify the exact puncture target and the puncture-assisted device was used to optimize the puncture trajectory. Patients who had single L4/5 or L5/S1 lumbar intervertebral disc herniation and underwent PTED were included the study. Patients receiving the HELLO system were assigned in Group A, and those taking conventional method were assigned in Group B. Study primary endpoint was puncture times and fluoroscopic times, and the secondary endpoint was location time and operation time.A total of 62 patients who received PTED were included in this study. The average age was 45.35 ± 8.70 years in Group A and 46.61 ± 7.84 years in Group B (P = 0.552). There were no significant differences in gender, body mass index, conservative time, and surgical segment between the 2 groups (P > 0.05). The puncture times were 1.19 ± 0.48 in Group A and 6.03 ± 1.87 in Group B (P < 0.001). The fluoroscopic times were 14.03 ± 2.54 in Group A and 25.19 ± 4.28 in Group B (P < 0.001). The preoperative location time was 4.67 ± 1.41 minutes in Group A and 6.98 ± 0.94 minutes in Group B (P < 0.001). The operation time was 79.42 ± 10.15 minutes in Group A and 89.65 ± 14.06 minutes in Group B (P = 0.002). The

  3. Benchmarking of data fusion algorithms in support of earth observation based Antarctic wildlife monitoring

    NASA Astrophysics Data System (ADS)

    Witharana, Chandi; LaRue, Michelle A.; Lynch, Heather J.

    2016-03-01

    Remote sensing is a rapidly developing tool for mapping the abundance and distribution of Antarctic wildlife. While both panchromatic and multispectral imagery have been used in this context, image fusion techniques have received little attention. We tasked seven widely-used fusion algorithms: Ehlers fusion, hyperspherical color space fusion, high-pass fusion, principal component analysis (PCA) fusion, University of New Brunswick fusion, and wavelet-PCA fusion to resolution enhance a series of single-date QuickBird-2 and Worldview-2 image scenes comprising penguin guano, seals, and vegetation. Fused images were assessed for spectral and spatial fidelity using a variety of quantitative quality indicators and visual inspection methods. Our visual evaluation elected the high-pass fusion algorithm and the University of New Brunswick fusion algorithm as best for manual wildlife detection while the quantitative assessment suggested the Gram-Schmidt fusion algorithm and the University of New Brunswick fusion algorithm as best for automated classification. The hyperspherical color space fusion algorithm exhibited mediocre results in terms of spectral and spatial fidelities. The PCA fusion algorithm showed spatial superiority at the expense of spectral inconsistencies. The Ehlers fusion algorithm and the wavelet-PCA algorithm showed the weakest performances. As remote sensing becomes a more routine method of surveying Antarctic wildlife, these benchmarks will provide guidance for image fusion and pave the way for more standardized products for specific types of wildlife surveys.

  4. Cell fusion and nuclear fusion in plants.

    PubMed

    Maruyama, Daisuke; Ohtsu, Mina; Higashiyama, Tetsuya

    2016-12-01

    Eukaryotic cells are surrounded by a plasma membrane and have a large nucleus containing the genomic DNA, which is enclosed by a nuclear envelope consisting of the outer and inner nuclear membranes. Although these membranes maintain the identity of cells, they sometimes fuse to each other, such as to produce a zygote during sexual reproduction or to give rise to other characteristically polyploid tissues. Recent studies have demonstrated that the mechanisms of plasma membrane or nuclear membrane fusion in plants are shared to some extent with those of yeasts and animals, despite the unique features of plant cells including thick cell walls and intercellular connections. Here, we summarize the key factors in the fusion of these membranes during plant reproduction, and also focus on "non-gametic cell fusion," which was thought to be rare in plant tissue, in which each cell is separated by a cell wall.

  5. Simultaneous Segmentation and Statistical Label Fusion.

    PubMed

    Asman, Andrew J; Landmana, Bennett A

    2012-02-23

    Labeling or segmentation of structures of interest in medical imaging plays an essential role in both clinical and scientific understanding. Two of the common techniques to obtain these labels are through either fully automated segmentation or through multi-atlas based segmentation and label fusion. Fully automated techniques often result in highly accurate segmentations but lack the robustness to be viable in many cases. On the other hand, label fusion techniques are often extremely robust, but lack the accuracy of automated algorithms for specific classes of problems. Herein, we propose to perform simultaneous automated segmentation and statistical label fusion through the reformulation of a generative model to include a linkage structure that explicitly estimates the complex global relationships between labels and intensities. These relationships are inferred from the atlas labels and intensities and applied to the target using a non-parametric approach. The novelty of this approach lies in the combination of previously exclusive techniques and attempts to combine the accuracy benefits of automated segmentation with the robustness of a multi-atlas based approach. The accuracy benefits of this simultaneous approach are assessed using a multi-label multi- atlas whole-brain segmentation experiment and the segmentation of the highly variable thyroid on computed tomography images. The results demonstrate that this technique has major benefits for certain types of problems and has the potential to provide a paradigm shift in which the lines between statistical label fusion and automated segmentation are dramatically blurred.

  6. Methods of detection using a cellulose binding domain fusion product

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1999-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  7. Measurements of fusion product emission profiles in tokamaks

    SciTech Connect

    Strachan, J.D.; Heidbrink, W.W.; Hendel, H.W.; Lovberg, J.; Murphy, T.J.; Nieschmidt, E.B.; Tait, G.D.; Zweben, S.J.

    1986-11-01

    The techniques and results of fusion product emission profile measurements are reviewed. While neutron source strength profile measurements have been attempted by several methods, neutron scattering is a limitation to the results. Profile measurements using charged fusion products have recently provided an alternative since collimation is much easier for the charged particles.

  8. Methods of detection using a cellulose binding domain fusion product

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1999-01-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 34 figs.

  9. Controlled Nuclear Fusion.

    ERIC Educational Resources Information Center

    Glasstone, Samuel

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…

  10. Antiproton catalyzed fusion

    SciTech Connect

    Morgan, D.L. Jr.; Perkins, L.J.; Haney, S.W.

    1995-05-15

    Because of the potential application to power production, it is important to investigate a wide range of possible means to achieve nuclear fusion, even those that may appear initially to be infeasible. In antiproton catalyzed fusion, the negative antiproton shields the repulsion between the positively charged nuclei of hydrogen isotopes, thus allowing a much higher level of penetration through the repulsive Coulomb barrier, and thereby greatly enhancing the fusion cross section. Because of their more compact wave function, the more massive antiprotons offer considerably more shielding than do negative muons. The effects of the shielding on fusion cross sections are most predominate, at low energies. If the antiproton could exist in the ground state with a nucleus for a sufficient time without annihilating, the fusion cross sections are so enhanced that at room temperature energies, values up to about 1,000 barns (that for d+t) would be possible. Unfortunately, the cross section for antiproton annihilation with the incoming nucleus is even higher. A model that provides an upper bound for the fusion to annihilation cross section for all relevant energies indicates that each antiproton will catalyze no more than about one fusion. Because the energy required to make one antiproton greatly exceeds the fusion energy that is released, this level of catalysis is far from adequate for power production.

  11. Fusion Science Education Outreach

    NASA Astrophysics Data System (ADS)

    Danielson, C. A.; DIII-D Education Group

    1996-11-01

    This presentation will focus on education outreach activities at General Atomics that have been expanded to include the general population on science education with a focus on fusion energy. Outreach materials are distributed upon request both nationally and internationally. These materials include a notebook containing copies of DIII--D tour panels, fusion poster, new fusion energy video, new fusion energy brochure, and the electromagnetic spectrum curriculum. The 1996 Fusion Forum (held in the House Caucus Room) included a student/ teacher lunch with Energy Secretary Hazel O'Leary and a private visit to the Forum exhibits. The continuing partnership with Kearny High School includes lectures, job shadowing, internship, equipment donations and an award-winning electric car-racing program. Development of distribution by CD of the existing interactive fusion energy kiosk and a virtual reality tour of the DIII--D facility are underway. The DIII--D fusion education WWW site includes e-mail addresses to ``Ask the Wizard,'' and/or receive GA's outreach materials. Steve Rodecker, a local science teacher, aided by DIII--D fusion staff, won his second Tapestry Award; he also was named the ``1995 National Science Teacher of the Year'' and will be present to share his experiences with the DIII--D educational outreach program.

  12. Two Horizons of Fusion

    ERIC Educational Resources Information Center

    Lo, Mun Ling; Chik, Pakey Pui Man

    2016-01-01

    In this paper, we aim to differentiate the internal and external horizons of "fusion." "Fusion" in the internal horizon relates to the structure and meaning of the object of learning as experienced by the learner. It clarifies the interrelationships among an object's critical features and aspects. It also illuminates the…

  13. Fusion Power Deployment

    SciTech Connect

    J.A. Schmidt; J.M. Ogden

    2002-02-06

    Fusion power plants could be part of a future portfolio of non-carbon dioxide producing energy supplies such as wind, solar, biomass, advanced fission power, and fossil energy with carbon dioxide sequestration. In this paper, we discuss key issues that could impact fusion energy deployment during the last half of this century. These include geographic issues such as resource availability, scale issues, energy storage requirements, and waste issues. The resource needs and waste production associated with fusion deployment in the U.S. should not pose serious problems. One important feature of fusion power is the fact that a fusion power plant should be locatable within most local or regional electrical distribution systems. For this reason, fusion power plants should not increase the burden of long distance power transmission to our distribution system. In contrast to fusion power, regional factors could play an important role in the deployment of renewable resources such as wind, solar and biomass or fossil energy with CO2 sequestration. We examine the role of these regional factors and their implications for fusion power deployment.

  14. Horizontal model fusion paradigm

    NASA Astrophysics Data System (ADS)

    Julier, Simon J.; Durrant-Whyte, Hugh F.

    1996-05-01

    In navigation and tracking problems, the identification of an appropriate model of vehicular or target motion is vital to most practical data fusion algorithms. The true system dynamics are rarely known, and approximations are usually employed. Since systems can exhibit strikingly different behaviors, multiple models may be needed to describe each of these behaviors. Current methods either use model switching (a single process model is chosen from the set using a decision rule) or consider the models as a set of competing hypothesis, only one of which is 'correct'. However, these methods fail to exploit the fact that all models are of the same system and that all of them are, to some degree, 'correct'. In this paper we present a new paradigm for fusing information from a set of multiple process models. The predictions from each process model are regarded as observations which are corrupted by correlated noise. By employing the standard Kalman filter equations we combine data from multiple sensors and multiple process models optimally. There are a number of significant practical advantages to this technique. First, the performance of the system always equals or betters that of the best estimator in the set of models being used. Second, the same decision theoretic machinery can be used to select the process models as well as the sensor suites.

  15. [Mechanical studies of lumbar interbody fusion implants].

    PubMed

    Bader, R J; Steinhauser, E; Rechl, H; Mittelmeier, W; Bertagnoli, R; Gradinger, R

    2002-05-01

    In addition to autogenous or allogeneic bone grafts, fusion cages composed of metal or plastic are being used increasingly as spacers for interbody fusion of spinal segments. The goal of this study was the mechanical testing of carbon fiber reinforced plastic (CFRP) fusion cages used for anterior lumbar interbody fusion. With a special testing device according to American Society for Testing and Materials (ASTM) standards, the mechanical properties of the implants were determined under four different loading conditions. The implants (UNION cages, Medtronic Sofamor Danek) provide sufficient axial compression, shear, and torsional strength of the implant body. Ultimate axial compression load of the fins is less than the physiological compression loads at the lumbar spine. Therefore by means of an appropriate surgical technique parallel grooves have to be reamed into the endplates of the vertebral bodies according to the fin geometry. Thereby axial compression forces affect the implants body and the fins are protected from damaging loading. Using a supplementary anterior or posterior instrumentation, in vivo failure of the fins as a result of physiological shear and torsional spinal loads is unlikely. Due to specific complications related to autogenous or allogeneic bone grafts, fusion cages made of metal or carbon fiber reinforced plastic are an important alternative implant in interbody fusion.

  16. Semiotic foundation for multisensor-multilook fusion

    NASA Astrophysics Data System (ADS)

    Myler, Harley R.

    1998-07-01

    This paper explores the concept of an application of semiotic principles to the design of a multisensor-multilook fusion system. Semiotics is an approach to analysis that attempts to process media in a united way using qualitative methods as opposed to quantitative. The term semiotic refers to signs, or signatory data that encapsulates information. Semiotic analysis involves the extraction of signs from information sources and the subsequent processing of the signs into meaningful interpretations of the information content of the source. The multisensor fusion problem predicated on a semiotic system structure and incorporating semiotic analysis techniques is explored and the design for a multisensor system as an information fusion system is explored. Semiotic analysis opens the possibility of using non-traditional sensor sources and modalities in the fusion process, such as verbal and textual intelligence derived from human observers. Examples of how multisensor/multimodality data might be analyzed semiotically is shown and discussion on how a semiotic system for multisensor fusion could be realized is outlined. The architecture of a semiotic multisensor fusion processor that can accept situational awareness data is described, although an implementation has not as yet been constructed.

  17. Instrumented Posterior Lumbar Interbody Fusion in Adult Spondylolisthesis

    PubMed Central

    Yu, Ching-Hsiao; Wang, Chen-Ti

    2008-01-01

    It is unclear whether using artificial cages increases fusion rates compared with use of bone chips alone in posterior lumbar interbody fusion for patients with lumbar spondylolisthesis. We hypothesized artificial cages for posterior lumbar interbody fusion would provide better clinical and radiographic outcomes than bone chips alone. We assumed solid fusion would provide good clinical outcomes. We clinically and radiographically followed 34 patients with spondylolisthesis having posterior lumbar interbody fusion with mixed autogenous and allogeneic bone chips alone and 42 patients having posterior lumbar interbody fusion with implantation of artificial cages packed with morselized bone graft. Patients with the artificial cage had better functional improvement in the Oswestry disability index than those with bone chips alone, whereas pain score, patient satisfaction, and fusion rate were similar in the two groups. Postoperative disc height ratio, slip ratio, and segmental lordosis all decreased at final followup in the patients with bone chips alone but remained unchanged in the artificial cage group. The functional outcome correlated with radiographic fusion status. We conclude artificial cages provide better functional outcomes and radiographic improvement than bone chips alone in posterior lumbar interbody fusion for lumbar spondylolisthesis, although both techniques achieved comparable fusion rates. Level of Evidence: Level III, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18846411

  18. Quality assessment for multitemporal and multisensor image fusion

    NASA Astrophysics Data System (ADS)

    Ehlers, Manfred; Klonus, Sascha

    2008-10-01

    Generally, image fusion methods are classified into three levels: pixel level (iconic), feature level (symbolic) and knowledge or decision level. In this paper we focus on iconic techniques for image fusion. There exist a number of established fusion techniques that can be used to merge high spatial resolution panchromatic and lower spatial resolution multispectral images that are simultaneously recorded by one sensor. This is done to create high resolution multispectral image datasets (pansharpening). In most cases, these techniques provide very good results, i.e. they retain the high spatial resolution of the panchromatic image and the spectral information from the multispectral image. These techniques, when applied to multitemporal and/or multisensoral image data, still create spatially enhanced datasets but usually at the expense of the spectral consistency. In this study, a series of nine multitemporal multispectral remote sensing images (seven SPOT scenes and one FORMOSAT scene) is fused with one panchromatic Ikonos image. A number of techniques are employed to analyze the quality of the fusion process. The images are visually and quantitatively evaluated for spectral characteristics preservation and for spatial resolution improvement. Overall, the Ehlers fusion which was developed for spectral characteristics preservation for multi-date and multi-sensor fusion showed the best results. It could not only be proven that the Ehlers fusion is superior to all other tested algorithms but also the only one that guarantees an excellent color preservation for all dates and sensors.

  19. Multispectral multisensor image fusion using wavelet transforms

    USGS Publications Warehouse

    Lemeshewsky, George P.

    1999-01-01

    Fusion techniques can be applied to multispectral and higher spatial resolution panchromatic images to create a composite image that is easier to interpret than the individual images. Wavelet transform-based multisensor, multiresolution fusion (a type of band sharpening) was applied to Landsat thematic mapper (TM) multispectral and coregistered higher resolution SPOT panchromatic images. The objective was to obtain increased spatial resolution, false color composite products to support the interpretation of land cover types wherein the spectral characteristics of the imagery are preserved to provide the spectral clues needed for interpretation. Since the fusion process should not introduce artifacts, a shift invariant implementation of the discrete wavelet transform (SIDWT) was used. These results were compared with those using the shift variant, discrete wavelet transform (DWT). Overall, the process includes a hue, saturation, and value color space transform to minimize color changes, and a reported point-wise maximum selection rule to combine transform coefficients. The performance of fusion based on the SIDWT and DWT was evaluated with a simulated TM 30-m spatial resolution test image and a higher resolution reference. Simulated imagery was made by blurring higher resolution color-infrared photography with the TM sensors' point spread function. The SIDWT based technique produced imagery with fewer artifacts and lower error between fused images and the full resolution reference. Image examples with TM and SPOT 10-m panchromatic illustrate the reduction in artifacts due to the SIDWT based fusion.

  20. On the path to fusion energy

    NASA Astrophysics Data System (ADS)

    Tabak, M.

    2016-10-01

    There is a need to develop alternate energy sources in the coming century because fossil fuels will become depleted and their use may lead to global climate change. Inertial fusion can become such an energy source, but significant progress must be made before its promise is realized. The high-density approach to inertial fusion suggested by Nuckolls et al. leads reaction chambers compatible with civilian power production. Methods to achieve the good control of hydrodynamic stability and implosion symmetry required to achieve these high fuel densities will be discussed. Fast Ignition, a technique that achieves fusion ignition by igniting fusion fuel after it is assembled, will be described along with its gain curves. Fusion costs of energy for conventional hotspot ignition will be compared with those of Fast Ignition and their capital costs compared with advanced fission plants. Finally, techniques that may improve possible Fast Ignition gains by an order of magnitude and reduce driver scales by an order of magnitude below conventional ignition requirements are described.

  1. EDITORIAL: Safety aspects of fusion power plants

    NASA Astrophysics Data System (ADS)

    Kolbasov, B. N.

    2007-07-01

    neutral beam injectors and the power supply systems were considered. This year the ion cyclotron resonant heating system is under evaluation. I. Cristescu et al (Germany) present the paper `Tritium inventories and tritium safety design principles for the fuel cycle of ITER'. She and her colleagues developed the dynamic mathematical model (TRIMO) for tritium inventory evaluation within each system of the ITER fuel cycle in various operational scenarios. TRIMO is used as a tool for trade-off studies within the fuel cycle systems with the final goal of global tritium inventory minimization. M. Matsuyama et al (Japan) describes a new technique for in situ quantitative measurements of high-level tritium inventory and its distribution in the VV and tritium systems of ITER and future fusion reactors. This technique is based on utilization of x-rays induced by beta-rays emitting from tritium species. It was applied to three physical states of high-level tritium: to gaseous, aqueous and solid tritium retained on/in various materials. Finally, there are four papers devoted to safety issues in fusion reactor decommissioning and waste management. A paper by R. Pampin et al (UK) provides the revised radioactive waste analysis of two models in the PPCS. Another paper by M. Zucchetti (Italy), S.A. Bartenev (Russia) et al describes a radiochemical extraction technology for purification of V-Cr-Ti alloy components from activation products to the dose rate of 10 µSv/h allowing their clearance or hands-on recycling which has been developed and tested in laboratory stationary conditions. L. El-Guebaly (USA) and her colleagues submitted two papers. In the first paper she optimistically considers the possibility of replacing the disposal of fusion power reactor waste with recycling and clearance. Her second paper considers the implications of new clearance guidelines for nuclear applications, particularly for slightly irradiated fusion materials.

  2. Fusion Studies in Japan

    NASA Astrophysics Data System (ADS)

    Ogawa, Yuichi

    2016-05-01

    A new strategic energy plan decided by the Japanese Cabinet in 2014 strongly supports the steady promotion of nuclear fusion development activities, including the ITER project and the Broader Approach activities from the long-term viewpoint. Atomic Energy Commission (AEC) in Japan formulated the Third Phase Basic Program so as to promote an experimental fusion reactor project. In 2005 AEC has reviewed this Program, and discussed on selection and concentration among many projects of fusion reactor development. In addition to the promotion of ITER project, advanced tokamak research by JT-60SA, helical plasma experiment by LHD, FIREX project in laser fusion research and fusion engineering by IFMIF were highly prioritized. Although the basic concept is quite different between tokamak, helical and laser fusion researches, there exist a lot of common features such as plasma physics on 3-D magnetic geometry, high power heat load on plasma facing component and so on. Therefore, a synergetic scenario on fusion reactor development among various plasma confinement concepts would be important.

  3. Particle beam fusion

    SciTech Connect

    1980-12-31

    Today, in keeping with Sandia Laboratories` designation by the Department of Energy as the lead laboratory for the pulsed power approach to fusion, its efforts include major research activities and the construction of new facilities at its Albuquerque site. Additionally, in its capacity as lead laboratory, Sandia coordinates DOE-supported pulsed power fusion work at other government operated laboratories, with industrial contractors, and universities. The beginning of Sandia`s involvement in developing fusion power was an outgrowth of its contributions to the nation`s nuclear weapon program. The Laboratories` work in the early 1960`s emphasized the use of pulsed radiation environments to test the resistance of US nuclear weapons to enemy nuclear bursts. A careful study of options for fusion power indicated that Sandia`s expertise in the pulsed power field could provide a powerful match to ignite fusion fuel. Although creating test environments is an achieved goal of Sandia`s overall program, this work and other military tasks protected by appropriate security regulations will continue, making full use of the same pulsed power technology and accelerators as the fusion-for-energy program. Major goals of Sandia`s fusion program including the following: (1) complete a particle accelerator to deliver sufficient beam energy for igniting fusion targets; (2) obtain net energy gain, this goal would provide fusion energy output in excess of energy stored in the accelerator; (3) develop a technology base for the repetitive ignition of pellets in a power reactor. After accomplishing these goals, the technology will be introduced to the nation`s commercial sector.

  4. Spherical torus fusion reactor

    DOEpatents

    Martin Peng, Y.K.M.

    1985-10-03

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  5. Qubit-loss-free fusion of W states

    NASA Astrophysics Data System (ADS)

    Li, Ke; Kong, Fan-Zhen; Yang, Ming; Yang, Qing; Cao, Zhuo-Liang

    2016-12-01

    Fusion technique plays a key role in the preparation of large-scale W states, but the currently existing fusion schemes are suffering from the qubit loss problem, i.e., the number of the output entangled qubits is smaller than the sum of numbers of the input entangled qubits, which will inevitably decrease the fusion efficiency and increase the number of fusion steps as well as the requirement of quantum memories. In this paper, we design a fusion mechanism to fuse two small-size W states into a large-scale W state without qubit loss, and thus we call it qubit-loss-free (QLF) fusion mechanism. This QLF fusion mechanism is based on a two-outcome positive-operator valued measurement on two qubits extracting from two small-size W states, and works for both pure and mixed W states. The QLF nature of this fusion mechanism clearly increases the final size of the obtained W state, and greatly reduces the number of fusion steps as well as the requirement of quantum memories required to achieve a W state of a target size, so it is more efficient and feasible than the currently existing fusion schemes. There is no complete failure output in our QLF fusion scheme, and all the garbage states are recyclable. Two example schemes are proposed to realize this QLF fusion mechanism in a cavity quantum electrodynamics system and three-qubit Heisenberg XYZ model, respectively, which demonstrates the possibility of the physical realization of this QLF fusion mechanism.

  6. Ultrasonic detection of flaws in fusion butt welds

    NASA Technical Reports Server (NTRS)

    Cross, B. T.; Hanna, K. J.; Tooley, W. M.

    1970-01-01

    Reliable and accurate Delta technique, a nondestructive ultrasonics method, uses redirection of energy to detect randomly oriented imperfections in fusion butt welds. Data on flaws can be read from either an oscilloscope or a printout.

  7. Fusion product studies via fast ion D-D and D-3He fusion on JET

    NASA Astrophysics Data System (ADS)

    Sharapov, S. E.; Hellsten, T.; Kiptily, V. G.; Craciunescu, T.; Eriksson, J.; Fitzgerald, M.; Girardo, J.-B.; Goloborod'ko, V.; Hellesen, C.; Hjalmarsson, A.; Johnson, T.; Kazakov, Y.; Koskela, T.; Mantsinen, M.; Monakhov, I.; Nabais, F.; Nocente, M.; Perez von Thun, C.; Rimini, F.; Santala, M.; Schneider, M.; Tardocchi, M.; Tsalas, M.; Yavorskij, V.; Zoita, V.; Contributors, JET

    2016-11-01

    Dedicated fast ion D-D and D-3He fusion experiments were performed on JET with carbon wall (2008) and ITER-like wall (2014) for testing the upgraded neutron and energetic ion diagnostics of fusion products. Energy spectrum of D-D neutrons was the focus of the studies in pure deuterium plasmas. A significant broadening of the energy spectrum of neutrons born in D-D fast fusion was observed, and dependence of the maximum D and D-D neutron energies on plasma density was established. Diagnostics of charged products of aneutronic D-3He fusion reactions, 3.7 MeV alpha-particles similar to those in D-T fusion, and 14.6 MeV protons, were the focus of the studies in D-3He plasmas. Measurements of 16.4 MeV gamma-rays born in the weak secondary branch of D(3He, γ)5Li reaction were used for assessing D-3He fusion power. For achieving high yield of D-D and D-3He reactions at relatively low levels of input heating power, an acceleration of D beam up to the MeV energy range was used employing 3rd harmonic (f=3{{f}CD} ) ICRH technique. These results were compared to the techniques of D beam injection into D-3He mixture, and 3He-minority ICRH in D plasmas.

  8. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    There is little doubt that humans will attempt to explore and develop the solar system in this century. A large amount of energy will be required for accomplishing this. The need for fusion propulsion is discussed. For a propulsion system, there are three important thermodynamical attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion can produce exhaust velocity up to about 5 km/s. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a hydrogen propellant increases the exhaust velocity by only a factor of about two. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. The principal advantage of the fission process is that its development is relatively mature and is available right now. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. The technical priorities for developing and applying fusion for propulsion are

  9. Current Status of MRI and Ultrasound Fusion Software Platforms for Guidance of Prostate Biopsies

    PubMed Central

    Logan, Jennifer K; Rais-Bahrami, Soroush; Turkbey, Baris; Gomella, Andrew; Amalou, Hayet; Choyke, Peter L; Wood, Bradford J; Pinto, Peter A

    2015-01-01

    • Prostate MRI is currently the best diagnostic imaging method for detecting prostate cancer • Magnetic Resonance Imaging-Ultrasound (MRI/US) fusion allows the sensitivity and specificity of MRI to be combined with real time capabilities of transrectal ultrasound (TRUS). • Multiple approaches and techniques exist for MRI/US fusion and include (1) direct “in bore” MR biopsies, (2) cognitive fusion, and (3) MRI/US fusion via software-based image co-registration platforms. PMID:24298917

  10. Laser-Driven Fusion.

    ERIC Educational Resources Information Center

    Gibson, A. F.

    1980-01-01

    Discusses the present status and future prospects of laser-driven fusion. Current research (which is classified under three main headings: laser-matter interaction processes, compression, and laser development) is also presented. (HM)

  11. Viral membrane fusion

    PubMed Central

    Harrison, Stephen C

    2008-01-01

    Infection by viruses having lipid-bilayer envelopes proceeds through fusion of the viral membrane with a membrane of the target cell. Viral ‘fusion proteins’ facilitate this process. They vary greatly in structure, but all seem to have a common mechanism of action, in which a ligand-triggered, large-scale conformational change in the fusion protein is coupled to apposition and merger of the two bilayers. We describe three examples—the influenza virus hemagglutinin, the flavivirus E protein and the vesicular stomatitis virus G protein—in some detail, to illustrate the ways in which different structures have evolved to implement this common mechanism. Fusion inhibitors can be effective antiviral agents. PMID:18596815

  12. Fusion-breeder program

    SciTech Connect

    Moir, R.W.

    1982-11-19

    The various approaches to a combined fusion-fission reactor for the purpose of breeding /sup 239/Pu and /sup 233/U are described. Design aspects and cost estimates for fuel production and electricity generation are discussed. (MOW)

  13. Glossary of fusion energy

    NASA Astrophysics Data System (ADS)

    Whitson, M. O.

    1985-02-01

    The Glossary of Fusion Energy is an attempt to present a concise, yet comprehensive collection of terms that may be beneficial to scientists and laymen who are directly or tangentially concerned with this burgeoning energy enterprise. Included are definitions of terms in theoretical plasma physics, controlled thermonuclear fusion, and some related physics concepts. Also, short descriptions of some of the major thermonuclear experiments currently under way in the world today are included.

  14. Cold nuclear fusion

    SciTech Connect

    Tsyganov, E. N.

    2012-02-15

    Recent accelerator experiments on fusion of various elements have clearly demonstrated that the effective cross-sections of these reactions depend on what material the target particle is placed in. In these experiments, there was a significant increase in the probability of interaction when target nuclei are imbedded in a conducting crystal or are a part of it. These experiments open a new perspective on the problem of so-called cold nuclear fusion.

  15. Fusion ignition research experiment

    SciTech Connect

    Dale Meade

    2000-07-18

    Understanding the properties of high gain (alpha-dominated) fusion plasmas in an advanced toroidal configuration is the largest remaining open issue that must be addressed to provide the scientific foundation for an attractive magnetic fusion reactor. The critical parts of this science can be obtained in a compact high field tokamak which is also likely to provide the fastest and least expensive path to understanding alpha-dominated plasmas in advanced toroidal systems.

  16. Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Griffin, Steven T.

    2002-01-01

    Magnetized target fusion (MTF) is under consideration as a means of building a low mass, high specific impulse, and high thrust propulsion system for interplanetary travel. This unique combination is the result of the generation of a high temperature plasma by the nuclear fusion process. This plasma can then be deflected by magnetic fields to provide thrust. Fusion is initiated by a small traction of the energy generated in the magnetic coils due to the plasma's compression of the magnetic field. The power gain from a fusion reaction is such that inefficiencies due to thermal neutrons and coil losses can be overcome. Since the fusion reaction products are directly used for propulsion and the power to initiate the reaction is directly obtained from the thrust generation, no massive power supply for energy conversion is required. The result should be a low engine mass, high specific impulse and high thrust system. The key is to successfully initiate fusion as a proof-of-principle for this application. Currently MSFC is implementing MTF proof-of-principle experiments. This involves many technical details and ancillary investigations. Of these, selected pertinent issues include the properties, orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the target plasma's behavior under compression and the convergence and mixing of the gun plasma are under investigation. This work is to focus on the gun characterization and development as it relates to plasma initiation and repeatability.

  17. ITER Fusion Energy

    ScienceCinema

    Dr. Norbert Holtkamp

    2016-07-12

    ITER (in Latin “the way”) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen – deuterium and tritium – fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project – China, the European Union, India, Japan, Korea, Russia and the United States – represent more than half the world’s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  18. Methods of evaluating lumbar and cervical fusion.

    PubMed

    Gruskay, Jordan A; Webb, Matthew L; Grauer, Jonathan N

    2014-03-01

    Introduced in 1911, spinal fusion is now widely used to stabilize the cervical, thoracic, and lumbar spine. Despite advancements in surgical techniques, including the use of instrumentation and optimizing bone graft options, pseudarthrosis remains one of the most significant causes of clinical failure following attempted fusion. Diagnosis of this common complication is based on a focused clinical assessment and imaging studies. Pseudarthrosis classically presents with the onset of or return of axial or radicular symptoms during the first postoperative year. However, this diagnosis is complicated because other diagnoses can mimic these symptoms (such as infection or adjacent segment degeneration) and because many cases of pseudarthrosis are asymptomatic. Computed tomography and assessment of motion on flexion/extension radiographs are the two preferred imaging modalities for establishing the diagnosis of pseudarthrosis. The purpose of this article was to review the current status of imaging and clinical practices for assessing fusion following spinal arthrodesis.

  19. Adaptive fusion of infrared and visible images in dynamic scene

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Yin, Yafeng; Man, Hong; Desai, Sachi

    2011-11-01

    Multiple modalities sensor fusion has been widely employed in various surveillance and military applications. A variety of image fusion techniques including PCA, wavelet, curvelet and HSV has been proposed in recent years to improve human visual perception for object detection. One of the main challenges for visible and infrared image fusion is to automatically determine an optimal fusion strategy for different input scenes along with an acceptable computational cost. This paper, we propose a fast and adaptive feature selection based image fusion method to obtain high a contrast image from visible and infrared sensors for targets detection. At first, fuzzy c-means clustering is applied on the infrared image to highlight possible hotspot regions, which will be considered as potential targets' locations. After that, the region surrounding the target area is segmented as the background regions. Then image fusion is locally applied on the selected target and background regions by computing different linear combination of color components from registered visible and infrared images. After obtaining different fused images, histogram distributions are computed on these local fusion images as the fusion feature set. The variance ratio which is based on Linear Discriminative Analysis (LDA) measure is employed to sort the feature set and the most discriminative one is selected for the whole image fusion. As the feature selection is performed over time, the process will dynamically determine the most suitable feature for the image fusion in different scenes. Experiment is conducted on the OSU Color-Thermal database, and TNO Human Factor dataset. The fusion results indicate that our proposed method achieved a competitive performance compared with other fusion algorithms at a relatively low computational cost.

  20. Magnetized Target Fusion: Principles and Status

    NASA Astrophysics Data System (ADS)

    Siemon, Richard; Lindemuth, Irvin; Ekdahl, Carl; Reinovsky, Robert; Schoenberg, Kurt

    1997-11-01

    Magnetized Target Fusion (MTF) is a relatively unexplored, low-cost approach that is intermediate in time and density scales between MFE and ICF and can be considered a marriage of the two. In contrast to ICF, MTF involves two steps: (a) formation of a warm (e.g., 100 eV or higher), magnetized (e.g., 100 kG), wall-confined plasma within a fusion target prior to implosion; (b) subsequent quasi-adiabatic compression and heating of the plasma by imploding the confining wall, or liner. Although the possible benefit of a magnetic field in a fusion target was recognized in the 40's by Fermi at Los Alamos and at approximately the same time by Sakharov in the former Soviet Union, it is only because of recent advancements in plasma formation techniques, implosion system drivers, plasma diagnostics, and large-scale numerical simulation capabilities that MTF can potentially achieve fusion ignition and substantial fuel burn-up without a major capital investment in a next-generation facility. Because MTF is qualitatively different from inertial or magnetic confinement fusion--different time, length, and density scales--MTF reactors will have different characteristics and trade-offs.

  1. New applications of Spectral Edge image fusion

    NASA Astrophysics Data System (ADS)

    Hayes, Alex E.; Montagna, Roberto; Finlayson, Graham D.

    2016-05-01

    In this paper, we present new applications of the Spectral Edge image fusion method. The Spectral Edge image fusion algorithm creates a result which combines details from any number of multispectral input images with natural color information from a visible spectrum image. Spectral Edge image fusion is a derivative-based technique, which creates an output fused image with gradients which are an ideal combination of those of the multispectral input images and the input visible color image. This produces both maximum detail and natural colors. We present two new applications of Spectral Edge image fusion. Firstly, we fuse RGB-NIR information from a sensor with a modified Bayer pattern, which captures visible and near-infrared image information on a single CCD. We also present an example of RGB-thermal image fusion, using a thermal camera attached to a smartphone, which captures both visible and low-resolution thermal images. These new results may be useful for computational photography and surveillance applications.

  2. Realizing Technologies for Magnetized Target Fusion

    SciTech Connect

    Wurden, Glen A.

    2012-08-24

    Researchers are making progress with a range of magneto-inertial fusion (MIF) concepts. All of these approaches use the addition of a magnetic field to a target plasma, and then compress the plasma to fusion conditions. The beauty of MIF is that driver power requirements are reduced, compared to classical inertial fusion approaches, and simultaneously the compression timescales can be longer, and required implosion velocities are slower. The presence of a sufficiently large Bfield expands the accessibility to ignition, even at lower values of the density-radius product, and can confine fusion alphas. A key constraint is that the lifetime of the MIF target plasma has to be matched to the timescale of the driver technology (whether liners, heavy ions, or lasers). To achieve sufficient burn-up fraction, scaling suggests that larger yields are more effective. To handle the larger yields (GJ level), thick liquid wall chambers are certainly desired (no plasma/neutron damage materials problem) and probably required. With larger yields, slower repetition rates ({approx}0.1-1 Hz) for this intrinsically pulsed approach to fusion are possible, which means that chamber clearing between pulses can be accomplished on timescales that are compatible with simple clearing techniques (flowing liquid droplet curtains). However, demonstration of the required reliable delivery of hundreds of MJ of energy, for millions of pulses per year, is an ongoing pulsed power technical challenge.

  3. First fusion proton measurements in TEXTOR plasmas using activation techniquea)

    NASA Astrophysics Data System (ADS)

    Bonheure, G.; Mlynar, J.; Wassenhove, G. Van; Hult, M.; González de Orduña, R.; Lutter, G.; Vermaercke, P.; Huber, A.; Schweer, B.; Esser, G.; Biel, W.

    2012-10-01

    MeV particle loss measurements from fusion plasmas, in particular alpha particles, remain difficult in large fusion devices and further R&D is needed for ITER. This paper describes the first attempt to measure 3 MeV escaping fusion protons emitted from TEXTOR tokamak plasmas using activation technique. This technique was successfully demonstrated, initially, in 2006 on the JET tokamak. An ion camera equipped with a collimator and several types of activation detectors was installed inside the TEXTOR vacuum vessel to perform these measurements. After irradiation, the detectors were analyzed using ultra low level gamma-ray spectrometry at the HADES underground laboratory. 3 MeV escaping fusion protons were detected in larger number -˜6 times more - compared to earlier measurements using this technique on JET. Another major progress was the reduction of the cooling time by a factor of 50, which made possible to detect radionuclides with half-life of less than 90 min.

  4. Integrated Data Analysis for Fusion: A Bayesian Tutorial for Fusion Diagnosticians

    SciTech Connect

    Dinklage, Andreas; Dreier, Heiko; Preuss, Roland; Fischer, Rainer; Gori, Silvio; Toussaint, Udo von

    2008-03-12

    Integrated Data Analysis (IDA) offers a unified way of combining information relevant to fusion experiments. Thereby, IDA meets with typical issues arising in fusion data analysis. In IDA, all information is consistently formulated as probability density functions quantifying uncertainties in the analysis within the Bayesian probability theory. For a single diagnostic, IDA allows the identification of faulty measurements and improvements in the setup. For a set of diagnostics, IDA gives joint error distributions allowing the comparison and integration of different diagnostics results. Validation of physics models can be performed by model comparison techniques. Typical data analysis applications benefit from IDA capabilities of nonlinear error propagation, the inclusion of systematic effects and the comparison of different physics models. Applications range from outlier detection, background discrimination, model assessment and design of diagnostics. In order to cope with next step fusion device requirements, appropriate techniques are explored for fast analysis applications.

  5. Integrated Data Analysis for Fusion: A Bayesian Tutorial for Fusion Diagnosticians

    NASA Astrophysics Data System (ADS)

    Dinklage, Andreas; Dreier, Heiko; Fischer, Rainer; Gori, Silvio; Preuss, Roland; Toussaint, Udo von

    2008-03-01

    Integrated Data Analysis (IDA) offers a unified way of combining information relevant to fusion experiments. Thereby, IDA meets with typical issues arising in fusion data analysis. In IDA, all information is consistently formulated as probability density functions quantifying uncertainties in the analysis within the Bayesian probability theory. For a single diagnostic, IDA allows the identification of faulty measurements and improvements in the setup. For a set of diagnostics, IDA gives joint error distributions allowing the comparison and integration of different diagnostics results. Validation of physics models can be performed by model comparison techniques. Typical data analysis applications benefit from IDA capabilities of nonlinear error propagation, the inclusion of systematic effects and the comparison of different physics models. Applications range from outlier detection, background discrimination, model assessment and design of diagnostics. In order to cope with next step fusion device requirements, appropriate techniques are explored for fast analysis applications.

  6. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    There is little doubt that humans will attempt to explore and develop the solar system in this century. A large amount of energy will be required for accomplishing this. The need for fusion propulsion is discussed. For a propulsion system, there are three important thermodynamical attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion can produce exhaust velocity up to about 5 km/s. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a hydrogen propellant increases the exhaust velocity by only a factor of about two. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. The principal advantage of the fission process is that its development is relatively mature and is available right now. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. The technical priorities for developing and applying fusion for propulsion are

  7. Myoblast fusion in Drosophila

    SciTech Connect

    Haralalka, Shruti; Abmayr, Susan M.

    2010-11-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  8. Fusion, magnetic confinement

    SciTech Connect

    Berk, H.L.

    1992-08-06

    An overview is presented of the principles of magnetic confinement of plasmas for the purpose of achieving controlled fusion conditions. Sec. 1 discusses the different nuclear fusion reactions which can be exploited in prospective fusion reactors and explains why special technologies need to be developed for the supply of tritium or {sup 3}He, the probable fuels. In Sec. 2 the Lawson condition, a criterion that is a measure of the quality of confinement relative to achieving fusion conditions, is explained. In Sec. 3 fluid equations are used to describe plasma confinement. Specific confinement configurations are considered. In Sec. 4 the orbits of particle sin magneti and electric fields are discussed. In Sec. 5 stability considerations are discussed. It is noted that confinement systems usually need to satisfy stability constraints imposed by ideal magnetohydrodynamic (MHD) theory. The paper culminates with a summary of experimental progress in magnetic confinement. Present experiments in tokamaks have reached the point that the conditions necessary to achieve fusion are being satisfied.

  9. Advances in Multi-Sensor Data Fusion: Algorithms and Applications

    PubMed Central

    Dong, Jiang; Zhuang, Dafang; Huang, Yaohuan; Fu, Jingying

    2009-01-01

    With the development of satellite and remote sensing techniques, more and more image data from airborne/satellite sensors have become available. Multi-sensor image fusion seeks to combine information from different images to obtain more inferences than can be derived from a single sensor. In image-based application fields, image fusion has emerged as a promising research area since the end of the last century. The paper presents an overview of recent advances in multi-sensor satellite image fusion. Firstly, the most popular existing fusion algorithms are introduced, with emphasis on their recent improvements. Advances in main applications fields in remote sensing, including object identification, classification, change detection and maneuvering targets tracking, are described. Both advantages and limitations of those applications are then discussed. Recommendations are addressed, including: (1) Improvements of fusion algorithms; (2) Development of “algorithm fusion” methods; (3) Establishment of an automatic quality assessment scheme. PMID:22408479

  10. Integrated systems for pulsed-power driven inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Cuneo, M. E.; Slutz, S. A.; Stygar, W. A.; Herrmann, M. C.; Sinars, D. B.; McBride, R. D.; Vesey, R. A.; Sefkow, A. B.; Mazarakis, M. G.; Vandevender, J. P.; Waisman, E. M.; Hansen, D. L.; Owen, A. C.; Jones, J. F.; Romero, J. A.; McKenney, J.

    2011-10-01

    Pulsed power fusion concepts integrate: (i) directly-magnetically-driven fusion targets that absorb large energies (10 MJ), (ii) efficient, rep-rated driver modules, (iii) compact, scalable, integrated driver architectures, (iv) driver-to-target coupling techniques with standoff and driver protection, and (v) long lifetime fusion chambers shielded by vaporizing blankets and thick liquid walls. Large fusion yields (3-30 GJ) and low rep-rates (0.1-1 Hz) may be an attractive path for IFE. Experiments on the ZR facility are validating physics issues for magnetically driven targets. Scientific breakeven (fusion energy = fuel energy) may be possible in the next few years. Plans for system development and integration will be discussed. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Optical sensed image fusion with dynamic neural networks

    NASA Astrophysics Data System (ADS)

    Shkvarko, Yuri V.; Ibarra-Manzano, Oscar G.; Jaime-Rivas, Rene; Andrade-Lucio, Jose A.; Alvarado-Mendez, Edgar; Rojas-Laguna, R.; Torres-Cisneros, Miguel; Alvarez-Jaime, J. A.

    2001-08-01

    The neural network-based technique for improving the quality of the image fusion is proposed as required for the remote sensing (RS) imagery. We prose to exit information about the point spread functions of the corresponding RS imaging systems combining it with prior realistic knowledge about the properties of the scene contained in the maximum entropy (ME) a priori image model. Applying the aggregate regularization method to solve the fusion tasks aimed to achieve the best resolution and noise suppression performances of the overall resulting image solves the problem. The proposed fusion method assumes the availability to control the design parameters, which influence the overall restoration performances. Computationally, the fusion method is implemented using the maximum entropy Hopfield-type neural network with adjustable parameters. Simulations illustrate the improved performances of the developed MENN-based image fusion method.

  12. Image fusion in open-architecture PACS-environment.

    PubMed

    Pohjonen, H

    2001-07-01

    Multimodal digital imaging is common in many fields of diagnosis and therapy planning - there is great interest in matching globally, fusing or registering data from the same part of the body. In practice, there are still difficulties in customizing image fusion in hospitals. Efficient routine use of image fusion requires, among others, an image management infrastructure - a picture archiving and communication system (PACS) - to provide storage of image data in a standard digital format, intelligent image management and fault-tolerant high-speed image networking. In order to customize image fusion, advances in both fusion software and hardware are also needed. The algorithms should be automatic, fast and accurate enough. Registration of multimodal data also creates a need for different display techniques and user-friendly interfaces. Image fusion has been impractical and too tedious to be performed in routine work, but in the future, fused images will be used in clinical practice - even in teleradiological consultation.

  13. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    SciTech Connect

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

  14. Fusion Energy Division annual progress report, period ending December 31, 1989

    SciTech Connect

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  15. Assessment of NDE Methods to Detect Lack of Fusion in HDPE Butt Fusion Joints

    SciTech Connect

    Crawford, Susan L.; Doctor, Steven R.; Cinson, Anthony D.; Watts, Michael W.; Moran, Traci L.; Anderson, Michael T.

    2011-07-31

    Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, were conducted to evaluate nondestructive examinations (NDE) coupled with mechanical testing of butt fusion joints in high-density polyethylene (HDPE) pipe for assessing lack of fusion. The work provided information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques of HDPE butt fusion joints in Section III, Division 1, Class 3, buried piping systems in nuclear power plants. This paper describes results from assessments using ultrasonic and microwave nondestructive techniques and mechanical testing with the high-speed tensile impact test and the side-bend test for determining joint integrity. A series of butt joints were fabricated in 3408, 12-inch (30.5-cm) IPS DR-11 HDPE material by varying the fusion parameters to create good joints and joints containing a range of lack-of-fusion conditions. Six of these butt joints were volumetrically examined with time-of-flight diffraction (TOFD), phased-array (PA) ultrasound, and the Evisive microwave system. The outer diameter (OD) weld beads were removed for microwave evaluation and the pipes ultrasonically re-evaluated. In two of the six pipes, both the outer and inner diameter (ID) weld beads were removed and the pipe joints re-evaluated. Some of the pipes were sectioned and the joints destructively evaluated with the high-speed tensile test and the side-bend test. The fusion parameters, nondestructive and destructive evaluation results have been correlated to validate the effectiveness of what each NDE technology detects and what each does not detect. There was no single NDE method that detected all of the lack-of-fusion flaws but a combination of NDE methods did detect most of the flaws.

  16. Peaceful Uses of Fusion

    DOE R&D Accomplishments Database

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.

  17. Spherical torus fusion reactor

    DOEpatents

    Peng, Yueng-Kay M.

    1989-01-01

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  18. Spherical torus fusion reactor

    DOEpatents

    Peng, Yueng-Kay M.

    1989-04-04

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  19. Ceramics for fusion applications

    SciTech Connect

    Clinard, F.W. Jr.

    1986-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al/sub 2/O/sub 3/, MgAl/sub 2/O/sub 4/, BeO, Si/sub 3/N/sub 4/ and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications.

  20. Fusion research at ORNL

    SciTech Connect

    Not Available

    1982-03-01

    The ORNL Fusion Program includes the experimental and theoretical study of two different classes of magnetic confinement schemes - systems with helical magnetic fields, such as the tokamak and stellarator, and the ELMO Bumpy Torus (EBT) class of toroidally linked mirror systems; the development of technologies, including superconducting magnets, neutral atomic beam and radio frequency (rf) heating systems, fueling systems, materials, and diagnostics; the development of databases for atomic physics and radiation effects; the assessment of the environmental impact of magnetic fusion; and the design of advanced demonstration fusion devices. The program involves wide collaboration, both within ORNL and with other institutions. The elements of this program are shown. This document illustrates the program's scope; and aims by reviewing recent progress.

  1. Simulation of Fusion Plasmas

    ScienceCinema

    Holland, Chris [UC San Diego, San Diego, California, United States

    2016-07-12

    The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the “burning plasma” regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.

  2. Intense fusion neutron sources

    NASA Astrophysics Data System (ADS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  3. Atomic data for fusion

    SciTech Connect

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A.; Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  4. Fusion welding process

    DOEpatents

    Thomas, Kenneth C.; Jones, Eric D.; McBride, Marvin A.

    1983-01-01

    A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

  5. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schmidt, George R.; Santarius, John F.; Turchi, Peter J.; Siemon, Richard E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The need for fusion propulsion for interplanetary flights is discussed. For a propulsion system, there are three important system attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For efficient and affordable human exploration of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion obviously cannot meet the requirement in propellant exhaust velocity. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the fission energy to heat a low atomic weight propellant produces propellant velocity of the order of 10 kinds. Alternatively the fission energy can be converted into electricity that is used to accelerate particles to high exhaust velocity. However, the necessary power conversion and conditioning equipment greatly increases the mass of the propulsion system. Fundamental considerations in waste heat rejection and power conditioning in a fission electric propulsion system place a limit on its jet specific power to the order of about 0.2 kW/kg. If fusion can be developed for propulsion, it appears to have the best of all worlds - it can provide the largest absolute amount of energy, the propellant exhaust velocity (> 100 km/s), and the high specific jet power (> 10 kW/kg). An intermediate step towards fusion propulsion might be a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. There are similarities as well as differences between applying fusion to propulsion and to terrestrial electrical power generation. The similarities are the underlying plasma and fusion physics, the enabling component technologies, the computational and the diagnostics capabilities. These physics and

  6. Workmanship standards for fusion welding

    NASA Technical Reports Server (NTRS)

    Phillips, M. D.

    1967-01-01

    Workmanship standards manual defines practices, that adhere to rigid codes and specifications, for fusion welding of component piping, assemblies, and systems. With written and pictorial presentations, it is part of the operating procedure for fusion welding.

  7. Off-label innovation: characterization through a case study of rhBMP-2 for spinal fusion.

    PubMed

    Schnurman, Zane; Smith, Michael L; Kondziolka, Douglas

    2016-09-01

    OBJECTIVE Off-label therapies are widely used in clinical practice by spinal surgeons. Some patients and practitioners have advocated for increased regulation of their use, and payers have increasingly questioned reimbursment for off-label therapies. In this study, the authors applied a model that quantifies publication data to analyze the developmental process from initial on-label use to off-label innovation, using as an example recombinant human bone morphogenetic protein 2 (rhBMP-2) because of its wide off-label use. METHODS As a case study of off-label innovation, the developmental patterns of rhBMP-2 from FDA-approved use for anterior lumbar interbody fusion to several of its off-label uses, including posterolateral lumbar fusion, anterior cervical discectomy and fusion, and posterior lumbar interbody fusion/transforaminal lumbar interbody fusion, were evaluated using the "progressive scholarly acceptance" (PSA) model. In this model, PSA is used as an end point indicating acceptance of a therapy or procedure by the relevant scientific community and is reached when the total number of peer-reviewed studies devoted to refinement or improvement of a therapy surpasses the total number assessing initial efficacy. Report characteristics, including the number of patients studied and study design, were assessed in addition to the time to and pattern of community acceptance, and results compared with previous developmental study findings. Disclosures and reported conflicts of interest for all articles were reviewed, and these data were also used in the analysis. RESULTS Publication data indicated that the acceptance of rhBMP-2 off-label therapies occurred more rapidly and with less evidence than previously studied on-label therapies. Additionally, the community appeared to respond more robustly (by rapidly changing publication patterns) to reports of adverse events than to new questions of efficacy. CONCLUSIONS The development of off-label therapies, including the

  8. A Summary of the NASA Fusion Propulsion Workshop 2000

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Turchi, Peter J.; Santarius, John F.; Schafer, Charles (Technical Monitor)

    2001-01-01

    A NASA Fusion Propulsion Workshop was held on Nov. 8 and 9, 2000 at Marshall Space Flight Center (MSFC) in Huntsville, Alabama. A total of 43 papers were presented at the Workshop orally or by posters, covering a broad spectrum of issues related to applying fusion to propulsion. The status of fusion research was reported at the Workshop showing the outstanding scientific research that has been accomplished worldwide in the fusion energy research program. The international fusion research community has demonstrated the scientific principles of fusion creating plasmas with conditions for fusion burn with a gain of order unity: 0.25 in Princeton TFTR, 0.65 in the Joint European Torus, and a Q-equivalent of 1.25 in Japan's JT-60. This research has developed an impressive range of physics and technological capabilities that may be applied effectively to the research of possibly new propulsion-oriented fusion schemes. The pertinent physics capabilities include the plasma computational tools, the experimental plasma facilities, the diagnostics techniques, and the theoretical understanding. The enabling technologies include the various plasma heating, acceleration, and the pulsed power technologies.

  9. Fusion Engineering Device design description

    SciTech Connect

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  10. Fusion engineering device design description

    SciTech Connect

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  11. Fusion of laser and image sensory data for 3-D modeling of the free navigation space

    NASA Technical Reports Server (NTRS)

    Mass, M.; Moghaddamzadeh, A.; Bourbakis, N.

    1994-01-01

    A fusion technique which combines two different types of sensory data for 3-D modeling of a navigation space is presented. The sensory data is generated by a vision camera and a laser scanner. The problem of different resolutions for these sensory data was solved by reduced image resolution, fusion of different data, and use of a fuzzy image segmentation technique.

  12. Desensitized Optimal Filtering and Sensor Fusion Toolkit

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.

    2015-01-01

    Analytical Mechanics Associates, Inc., has developed a software toolkit that filters and processes navigational data from multiple sensor sources. A key component of the toolkit is a trajectory optimization technique that reduces the sensitivity of Kalman filters with respect to model parameter uncertainties. The sensor fusion toolkit also integrates recent advances in adaptive Kalman and sigma-point filters for non-Gaussian problems with error statistics. This Phase II effort provides new filtering and sensor fusion techniques in a convenient package that can be used as a stand-alone application for ground support and/or onboard use. Its modular architecture enables ready integration with existing tools. A suite of sensor models and noise distribution as well as Monte Carlo analysis capability are included to enable statistical performance evaluations.

  13. Mars manned fusion spaceship

    SciTech Connect

    Hedrick, J.; Buchholtz, B.; Ward, P.; Freuh, J.; Jensen, E.

    1991-01-01

    Fusion Propulsion has an enormous potential for space exploration in the near future. In the twenty-first century, a usable and efficient fusion rocket will be developed and in use. Because of the great distance between other planets and Earth, efficient use of time, fuel, and payload is essential. A nuclear spaceship would provide greater fuel efficiency, less travel time, and a larger payload. Extended missions would give more time for research, experiments, and data acquisition. With the extended mission time, a need for an artificial environment exists. The topics of magnetic fusion propulsion, living modules, artificial gravity, mass distribution, space connection, and orbital transfer to Mars are discussed. The propulsion system is a magnetic fusion reactor based on a tandem mirror design. This allows a faster, shorter trip time and a large thrust to weight ratio. The fuel proposed is a mixture of deuterium and helium. Helium can be obtained from lunar mining. There will be minimal external radiation from the reactor resulting in a safe, efficient propulsion system.

  14. Mars manned fusion spaceship

    NASA Technical Reports Server (NTRS)

    Hedrick, James; Buchholtz, Brent; Ward, Paul; Freuh, Jim; Jensen, Eric

    1991-01-01

    Fusion Propulsion has an enormous potential for space exploration in the near future. In the twenty-first century, a usable and efficient fusion rocket will be developed and in use. Because of the great distance between other planets and Earth, efficient use of time, fuel, and payload is essential. A nuclear spaceship would provide greater fuel efficiency, less travel time, and a larger payload. Extended missions would give more time for research, experiments, and data acquisition. With the extended mission time, a need for an artificial environment exists. The topics of magnetic fusion propulsion, living modules, artificial gravity, mass distribution, space connection, and orbital transfer to Mars are discussed. The propulsion system is a magnetic fusion reactor based on a tandem mirror design. This allows a faster, shorter trip time and a large thrust to weight ratio. The fuel proposed is a mixture of deuterium and helium-3. Helium-3 can be obtained from lunar mining. There will be minimal external radiation from the reactor resulting in a safe, efficient propulsion system.

  15. Auditory Fusion in Children.

    ERIC Educational Resources Information Center

    Davis, Sylvia M.; McCroskey, Robert L.

    1980-01-01

    Focuses on auditory fusion (defined in terms of a listerner's ability to distinguish paired acoustic events from single acoustic events) in 3- to 12-year-old children. The subjects listened to 270 pairs of tones controlled for frequency, intensity, and duration. (CM)

  16. A fusion of minds

    NASA Astrophysics Data System (ADS)

    Corfield, Richard

    2013-02-01

    Mystery still surrounds the visit of the astronomer Sir Bernard Lovell to the Soviet Union in 1963. But his collaboration - and that of other British scientists - eased geopolitical tensions at the height of the Cold War and paved the way for today's global ITER fusion project, as Richard Corfield explains.

  17. Synergetic Multisensor Fusion

    DTIC Science & Technology

    1990-11-30

    technology have led to increased interest in using DEMs for navigation and other applications. In particular, DEMs are attractive for use in aircraft...Multisensor Fusion for Computer Vision [67]. 30 6. POSI!IONAL zSTIM&TION TECEnIQUzs FOR AN OUTDOOR MOBLE ROBOT The autonomous navigation of mobile robots is

  18. Fusion reactor materials

    SciTech Connect

    none,

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  19. Human-Centered Fusion Framework

    SciTech Connect

    Posse, Christian; White, Amanda M.; Beagley, Nathaniel

    2007-05-16

    In recent years the benefits of fusing signatures extracted from large amounts of distributed and/or heterogeneous data sources have been largely documented in various problems ranging from biological protein function prediction to cyberspace monitoring. In spite of significant progress in information fusion research, there is still no formal theoretical framework for defining various types of information fusion systems, defining and analyzing relations among such types, and designing information fusion systems using a formal method approach. Consequently, fusion systems are often poorly understood, are less than optimal, and/or do not suit user needs. To start addressing these issues, we outline a formal humancentered fusion framework for reasoning about fusion strategies. Our approach relies on a new taxonomy for fusion strategies, an alternative definition of information fusion in terms of parameterized paths in signature related spaces, an algorithmic formalization of fusion strategies and a library of numeric and dynamic visual tools measuring the impact as well as the impact behavior of fusion strategies. Using a real case of intelligence analysis we demonstrate that the proposed framework enables end users to rapidly 1) develop and implement alternative fusion strategies, 2) understand the impact of each strategy, 3) compare the various strategies, and 4) perform the above steps without having to know the mathematical foundations of the framework. We also demonstrate that the human impact on a fusion system is critical in the sense that small changes in strategies do not necessarily correspond to small changes in results.

  20. Graphite for fusion energy applications

    SciTech Connect

    Eatherly, W.P.; Clausing, R.E.; Strehlow, R.A.; Kennedy, C.R.; Mioduszewski, P.K.

    1987-03-01

    Graphite is in widespread and beneficial use in present fusion energy devices. This report reflects the view of graphite materials scientists on using graphite in fusion devices. Graphite properties are discussed with emphasis on application to fusion reactors. This report is intended to be introductory and descriptive and is not intended to serve as a definitive information source. (JDH)

  1. Environmental and safety issues of the fusion fuel cycle

    SciTech Connect

    Crocker, J.G.

    1980-01-01

    This paper discusses the environmental and safety concerns inherent in the development of fusion energy, and the current Department of Energy programs seeking to: (1) develop safe and reliable techniques for tritium control; (2) reduce the quantity of activation products produced; and (3) provide designs to limit the potential for accidents that could result in release of radioactive materials. Because of the inherent safety features of fusion and the early start that has been made in safety problem recognition and solution, fusion should be among the lower risk technologies for generation of commercial power.

  2. Spatial Statistical Data Fusion for Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Nguyen, Hai

    2010-01-01

    Data fusion is the process of combining information from heterogeneous sources into a single composite picture of the relevant process, such that the composite picture is generally more accurate and complete than that derived from any single source alone. Data collection is often incomplete, sparse, and yields incompatible information. Fusion techniques can make optimal use of such data. When investment in data collection is high, fusion gives the best return. Our study uses data from two satellites: (1) Multiangle Imaging SpectroRadiometer (MISR), (2) Moderate Resolution Imaging Spectroradiometer (MODIS).

  3. Accelerator and Fusion Research Division: summary of activities, 1983

    SciTech Connect

    Not Available

    1984-08-01

    The activities described in this summary of the Accelerator and Fusion Research Division are diverse, yet united by a common theme: it is our purpose to explore technologically advanced techniques for the production, acceleration, or transport of high-energy beams. These beams may be the heavy ions of interest in nuclear science, medical research, and heavy-ion inertial-confinement fusion; they may be beams of deuterium and hydrogen atoms, used to heat and confine plasmas in magnetic fusion experiments; they may be ultrahigh-energy protons for the next high-energy hadron collider; or they may be high-brilliance, highly coherent, picosecond pulses of synchrotron radiation.

  4. Management of adjacent segment disease after cervical spinal fusion.

    PubMed

    Kepler, Christopher K; Hilibrand, Alan S

    2012-01-01

    Adjacent segment disease (ASD) was described after long-term follow-up of patients treated with cervical fusion. The term describes new-onset radiculopathy or myelopathy referable to a motion segment adjacent to previous arthrodesis and often attributed to alterations in the biomechanical environment after fusion. Evidence suggests that ASD affects between 2% and 3% of patients per year. Although prevention of ASD was one major impetus behind the development of motion-sparing surgery, the literature does not yet clearly distinguish a difference in the rate of ASD between fusion and disk replacement. Surgical techniques during index surgery may reduce the rate of ASD.

  5. Evaluation of Landsat-7 ETM+ Panchromatic Band for Image Fusion with Multispectral Bands

    SciTech Connect

    Liu Jianguo

    2000-12-15

    The Landsat-7 ETM+ panchromatic band is taken simultaneously with multispectral bands using the same sensor system. The two data sets, therefore, are coregistered accurately and the solar illumination and other environmental conditions are identical. This makes ETM+ Pan advantageous to SPOT Pan for resolution fusion. A spectral preserve image fusion technique, Smoothing Filter-Based Intensity Modulation (SFIM), can produce optimal fusion data without altering the spectral properties of the original image if the coregistration error is minimal. With TM/SPOT Pan fusion, the technique is superior to HSI and Brovey transform fusion techniques in spectral fidelity, but has slightly degraded edge sharpness as a result of TM/SPOT Pan coregistration error because SFIM is sensitive to coregistration accuracy and temporal changes of edges. The problem is self-resolved for ETM+ because there is virtually no coregistration error between the panchromatic band and the multispectral bands. Quality fusion imagery data thus can be produced.

  6. Multisensensor Multitemporal Data Fusion Using Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Ghannam, S.; Awadallah, M.; Abbott, A. L.; Wynne, R. H.

    2014-11-01

    Interest in data fusion, for remote-sensing applications, continues to grow due to the increasing importance of obtaining data in high resolution both spatially and temporally. Applications that will benefit from data fusion include ecosystem disturbance and recovery assessment, ecological forecasting, and others. This paper introduces a novel spatiotemporal fusion approach, the wavelet-based Spatiotemporal Adaptive Data Fusion Model (WSAD-FM). This new technique is motivated by the popular STARFM tool, which utilizes lower-resolution MODIS imagery to supplement Landsat scenes using a linear model. The novelty of WSAD-FM is twofold. First, unlike STARFM, this technique does not predict an entire new image in one linear step, but instead decomposes input images into separate "approximation" and "detail" parts. The different portions are fed into a prediction model that limits the effects of linear interpolation among images. Low-spatial-frequency components are predicted by a weighted mixture of MODIS images and low-spatial-frequency components of Landsat images that are neighbors in the temporal domain. Meanwhile, high-spatialfrequency components are predicted by a weighted average of high-spatial-frequency components of Landsat images alone. The second novelty is that the method has demonstrated good performance using only one input Landsat image and a pair of MODIS images. The technique has been tested using several Landsat and MODIS images for a study area from Central North Carolina (WRS-2 path/row 16/35 in Landsat and H/V11/5 in MODIS), acquired in 2001. NDVI images that were calculated from the study area were used as input to the algorithm. The technique was tested experimentally by predicting existing Landsat images, and we obtained R2 values in the range 0.70 to 0.92 for estimated Landsat images in the red band, and 0.62 to 0.89 for estimated NDVI images.

  7. Decomposition techniques

    USGS Publications Warehouse

    Chao, T.T.; Sanzolone, R.F.

    1992-01-01

    Sample decomposition is a fundamental and integral step in the procedure of geochemical analysis. It is often the limiting factor to sample throughput, especially with the recent application of the fast and modern multi-element measurement instrumentation. The complexity of geological materials makes it necessary to choose the sample decomposition technique that is compatible with the specific objective of the analysis. When selecting a decomposition technique, consideration should be given to the chemical and mineralogical characteristics of the sample, elements to be determined, precision and accuracy requirements, sample throughput, technical capability of personnel, and time constraints. This paper addresses these concerns and discusses the attributes and limitations of many techniques of sample decomposition along with examples of their application to geochemical analysis. The chemical properties of reagents as to their function as decomposition agents are also reviewed. The section on acid dissolution techniques addresses the various inorganic acids that are used individually or in combination in both open and closed systems. Fluxes used in sample fusion are discussed. The promising microwave-oven technology and the emerging field of automation are also examined. A section on applications highlights the use of decomposition techniques for the determination of Au, platinum group elements (PGEs), Hg, U, hydride-forming elements, rare earth elements (REEs), and multi-elements in geological materials. Partial dissolution techniques used for geochemical exploration which have been treated in detail elsewhere are not discussed here; nor are fire-assaying for noble metals and decomposition techniques for X-ray fluorescence or nuclear methods be discussed. ?? 1992.

  8. Accelerators for heavy ion fusion

    SciTech Connect

    Bangerter, R.O.

    1985-10-01

    Large fusion devices will almost certainly produce net energy. However, a successful commercial fusion energy system must also satisfy important engineering and economic constraints. Inertial confinement fusion power plants driven by multi-stage, heavy-ion accelerators appear capable of meeting these constraints. The reasons behind this promising outlook for heavy-ion fusion are given in this report. This report is based on the transcript of a talk presented at the Symposium on Lasers and Particle Beams for Fusion and Strategic Defense at the University of Rochester on April 17-19, 1985.

  9. Surgical fusion in childhood spondylolisthesis.

    PubMed

    Stanton, R P; Meehan, P; Lovell, W W

    1985-01-01

    Twenty cases of surgical fusion for spondylolisthesis were reviewed at the Scottish Rite Hospital (Atlanta, GA, U.S.A.) to determine whether a procedure other than a simple posterolateral fusion is necessary for most patients. The patients were treated postoperatively with pantaloon spica cast immobilization. The fusion rate was high (90%), and patient satisfaction was high. One patient developed neurologic loss postoperatively. Two patients' slips progressed greater than 10% before solid fusion occurred. Thus, bilateral posterolateral fusion, followed by pantaloon spica cast immobilization, is effective for patients with symptomatic spondylolisthesis or asymptomatic children with grade 3 or greater slips. Reduction was not performed in this series.

  10. Sacroiliac Joint Fusion: One Year Clinical and Radiographic Results Following Minimally Invasive Sacroiliac Joint Fusion Surgery

    PubMed Central

    Kube, Richard A.; Muir, Jeffrey M.

    2016-01-01

    Background: Recalcitrant sacroiliac joint pain responds well to minimally-invasive surgical (MIS) techniques, although long-term radiographic and fusion data are limited. Objective: To evaluate the one-year clinical results from a cohort of patients with chronic sacroiliac (SI) joint pain unresponsive to conservative therapies who have undergone minimally invasive SI joint fusion. Methods: SI joint fusion was performed between May 2011 and January 2014. Outcomes included radiographic assessment of fusion status, leg and back pain severity via visual analog scale (VAS), disability via Oswestry Disability Index (ODI) and complication rate. Outcomes were measured at baseline and at follow-up appointments 6 months and 12 months post-procedure. Results: Twenty minimally invasive SI joint fusion procedures were performed on 18 patients (mean age: 47.2 (14.2), mean BMI: 29.4 (5.3), 56% female). At 12 months, the overall fusion rate was 88%. Back and leg pain improved from 81.7 to 44.1 points (p<0.001) and from 63.6 to 27.7 points (p=0.001), respectively. Disability scores improved from 61.0 to 40.5 (p=0.009). Despite a cohort containing patients with multiple comorbidities and work-related injuries, eight patients (50%) achieved the minimal clinically important difference (MCID) in back pain at 12 months, with 9 (69%) patients realizing this improvement in leg pain and 8 (57%) realizing the MCID in ODI scores at 12 months. No major complications were reported. Conclusion: Minimally invasive SI joint surgery is a safe and effective procedure, with a high fusion rate, a satisfactory safety profile and significant improvements in pain severity and disability reported through 12 months post-procedure. PMID:28144378

  11. Secondary fusion coupled deuteron/triton transport simulation and thermal-to-fusion neutron convertor measurement

    SciTech Connect

    Wang, G. B.; Wang, K.; Liu, H. G.; Li, R. D.

    2013-07-01

    A Monte Carlo tool RSMC (Reaction Sequence Monte Carlo) was developed to simulate deuteron/triton transportation and reaction coupled problem. The 'Forced particle production' variance reduction technique was used to improve the simulation speed, which made the secondary product play a major role. The mono-energy 14 MeV fusion neutron source was employed as a validation. Then the thermal-to-fusion neutron convertor was studied with our tool. Moreover, an in-core conversion efficiency measurement experiment was performed with {sup 6}LiD and {sup 6}LiH converters. Threshold activation foils was used to indicate the fast and fusion neutron flux. Besides, two other pivotal parameters were calculated theoretically. Finally, the conversion efficiency of {sup 6}LiD is obtained as 1.97x10{sup -4}, which matches well with the theoretical result. (authors)

  12. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    SciTech Connect

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

    1995-09-01

    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

  13. Decision Making for Partial Carpal Fusions

    PubMed Central

    Bain, Gregory Ian; McGuire, Duncan Thomas

    2012-01-01

    Limited wrist fusions are effective surgical procedures for providing pain relief while preserving motion of the wrist in patients with localized arthritis of the carpus. In deciding which motion-preserving procedure to perform, the etiology of the arthritis, which joints are involved, and which are spared should be determined. The main principle is to fuse the involved joints and to allow motion through the uninvolved joints. In this article, we discuss the various traumatic and nontraumatic conditions causing arthritis of the wrist and the treatment options for those conditions. Common indications for limited wrist fusions include scapholunate advanced collapse and scaphoid nonunion advanced collapse. Options for treating these conditions include three- and four-corner fusions as well as a proximal row carpectomy. This paper discusses which procedures are the most appropriate as well as the outcomes of these procedures. If the basic principles of limited wrist fusions are adhered to, a good outcome can be obtained. The authors' surgical technique and decision-making processes are discussed. PMID:24179713

  14. Fusion excitation functions involving transitional nuclei

    SciTech Connect

    Rehm, K.E.; Jiang, C.L.; Esbensen, H.

    1995-08-01

    Measurements of fusion excitation functions involving transitional nuclei {sup 78}Kr and {sup 100}Mo showed a different behavior at low energies, if compared to measurements with {sup 86}Kr and {sup 92}Mo. This points to a possible influence of nuclear structure on the fusion process. One way to characterize the structure of vibrational nuclei is via their restoring force parameters C{sub 2} which can be calculated from the energy of the lowest 2{sup +} state and the corresponding B(E2) value. A survey of the even-even nuclei between A = 28-150 shows strong variations in C{sub 2} values spanning two orders of magnitude. The lowest values for C{sub 2} are observed for {sup 78}Kr, {sup 104}Ru and {sup 124}Xe followed by {sup 74,76}Ge, {sup 74,76}Se, {sup 100}Mo and {sup 110}Pd. In order to learn more about the influence of {open_quotes}softness{close_quotes} on the sub-barrier fusion enhancement, we measured cross sections for evaporation residue production for the systems {sup 78}Kr + {sup 104}Ru and {sup 78}Kr + {sup 76}Ge with the gas-filled magnet technique. For both systems, fusion excitation functions involving the closed neutron shell nucleus {sup 86}Kr were measured previously. The data are presently being analyzed.

  15. The path to fusion power.

    PubMed

    Llewellyn Smith, Chris; Ward, David

    2007-04-15

    Fusion is potentially an environmentally responsible and intrinsically safe source of essentially limitless power. It should be possible to build viable fusion power stations, and it looks as if the cost of fusion power will be reasonable. But time is needed to further develop the technology and to test in power station conditions the materials that would be used in their construction. Assuming no major adverse surprises, an orderly fusion development programme could lead to a prototype fusion power station putting electricity into the grid within 30 years, with commercial fusion power following some 10 or more years later. In the second half of the century, fusion could therefore be an important part of the portfolio of measures that are needed to cope with rising demand for energy in an environmentally responsible manner. In this paper, we describe the basics of fusion, its potential attractions, the status of fusion R&D, the remaining challenges and how they will be tackled at the International Tokamak Experimental Reactor and the proposed International Fusion Materials Irradiation Facility, and the timetable for the subsequent commercialization of fusion power.

  16. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    SciTech Connect

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  17. The Need for Fusion Propulsion

    NASA Technical Reports Server (NTRS)

    Cassibry, Jason

    2005-01-01

    Fusion propulsion is inevitable if the human race remains dedicated to exploration of the solar system. There are fundamental reasons why fusion surpasses more traditional approaches to routine crewed missions to Mars, crewed missions to the outer planets, and deep space high speed robotic missions, assuming that reduced trip times, increased payloads, and higher available power are desired. A recent series of informal discussions were held among members from government, academia, and industry concerning fusion propulsion. We compiled a sufficient set of arguments for utilizing fusion in space. If the U.S. is to lead the effort and produce a working system in a reasonable amount of time, NASA must take the initiative, relying on, but not waiting for, DOE guidance. In this talk those arguments for fusion propulsion are presented, along with fusion enabled mission examples, fusion technology trade space, and a proposed outline for future efforts.

  18. Optical imaging of cell fusion and fusion proteins in Caenorhabditis elegans.

    PubMed

    Ems, Star; Mohler, William A

    2008-01-01

    Cell fusion is a very dynamic process in which the entire membrane and cellular contents of two or more cells merge into one. Strategies developed to understand the component processes that make up a full fusion event require imaging to be performed over a range of space and time scales. These strategies must cover detection of nanometer-sized pores, monitoring cytoplasmic diffusion and the dynamic localization of proteins that induce fusion competence, and three-dimensional reconstruction of multinucleated cells. Caenorhabditis elegans' small size, predictable development, and transparent body make this organism optimal for microscopic investigations. In this chapter, focus is placed on light microscopy techniques that have been used thus far to study developmental fusion events in C. elegans and the insights that have been gained from them. There is also a general overview of the developmental timing of the cell fusion events. Additionally, several protocols are described for preparing both fixed and live specimens at various developmental stages of C. elegans for examination via optical microscopy.

  19. Evaluation of autologous platelet concentrate for intertransverse process lumbar fusion.

    PubMed

    Sethi, Paul M; Miranda, Jose J; Kadiyala, Sudha; Patel, Tushar Ch; Panjabi, Manohar; Troiano, Nancy; Friedlaender, Gary E

    2008-04-01

    Data on the role of platelet concentrate (PC) in spinal fusion are limited. Using the New Zealand white rabbit model, we compared fusion rates at L5-L6 using 2 different volumes (1.5 cm(3), 3.0 cm(3)) of iliac crest autograft with and without PC (4 groups total, 10 animals in each). PC was collected from donor rabbits and adjusted to a concentration of 1 x 10(6) platelets/mL. Bone growth and fusion were evaluated using biomechanical, radiographic, and histologic testing. At 1.5 cm(3), autograft alone had a 29% fusion rate, compared with autograft plus PC, which had a 57% fusion rate (P = .06). At 3.0 cm(3), the fusion rate approached 90% in both groups. Radiologic fusion had a 70% correlation with biomechanical test results. Huo/Friedlaender scores were 4.3 (SD, 2.9) for 1.5-cm(3) autograft alone; 5.0 (SD, 3.5) for 1.5-cm(3) autograft plus PC; 4.7 (SD, 2.5) for 3.0-cm(3) autograft alone; and 7.7 (SD, 0.6) for 3.0-cm(3) autograft plus PC. For 1.5-cm(3) autograft, a trend toward improvement in biomechanically defined fusion was found when PC was added, which suggests that, when the amount of bone graft is limited, PC may function as a graft extender in posterolateral fusion. At higher volumes of bone graft, no appreciable difference was noted between groups. Although radiography revealed fusion masses, the technique was not useful in identifying pseudarthrosis. On histologic analysis, adding PC seemed to result in more mature bone at both volumes, with the most mature bone in the group with 3.0-cm(3) autograft plus PC.

  20. Current status of magnetic resonance imaging (MRI) and ultrasonography fusion software platforms for guidance of prostate biopsies.

    PubMed

    Logan, Jennifer K; Rais-Bahrami, Soroush; Turkbey, Baris; Gomella, Andrew; Amalou, Hayet; Choyke, Peter L; Wood, Bradford J; Pinto, Peter A

    2014-11-01

    Prostate MRI is currently the best diagnostic imaging method for detecting PCa. Magnetic resonance imaging (MRI)/ultrasonography (US) fusion allows the sensitivity and specificity of MRI to be combined with the real-time capabilities of transrectal ultrasonography (TRUS). Multiple approaches and techniques exist for MRI/US fusion and include direct 'in bore' MRI biopsies, cognitive fusion, and MRI/US fusion via software-based image coregistration platforms.

  1. Fusion Data Grid Service

    NASA Astrophysics Data System (ADS)

    Shasharina, Svetlana; Wang, Nanbor

    2004-11-01

    Simulations and experiments in the fusion and plasma physics community generate large datasets at remote sites. Visualization and analysis of these datasets are difficult because of the incompatibility among the various data formats adopted by simulation, experiments, and analysis tools, and the large sizes of analyzed data. Grids and Web Services technologies are capable of providing solutions for such heterogeneous settings, but need to be customized to the field-specific needs and merged with distributed technologies currently used by the community. This paper describes how we are addressing these issues in the Fusion Grid Service under development. We also present performance results of relevant data transfer mechanisms including binary SOAP, DIME, GridFTP and MDSplus and CORBA. We will describe the status of data converters (between HDF5 and MDSplus data types), developed in collaboration with MIT (J. Stillerman). Finally, we will analyze bottlenecks of MDSplus data transfer mechanism (work performed in collaboration with General Atomics (D. Schissel and M. Qian).

  2. Experiments in cold fusion

    SciTech Connect

    Palmer, E.P.

    1986-03-28

    The work of Steve Jones and others in muon-catalyzed cold fusion of deuterium and hydrogen suggests the possibility of such fusion catalyzed by ions, or combinations of atoms, or more-or-less free electrons in solid and liquid materials. A hint that this might occur naturally comes from the heat generated in volcanic action in subduction zones on the earth. It is questionable whether the potential energy of material raised to the height of a midocean ridge and falling to the depth of an ocean trench can produce the geothermal effects seen in the volcanoes of subduction zones. If the ridge, the trench, the plates, and the asthenosphere are merely visible effects of deeper density-gradient driven circulations, it is still uncertain that observed energy-concentration effects fit the models.

  3. Fusion pumped laser

    DOEpatents

    Pappas, D.S.

    1987-07-31

    The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.

  4. Unconventional approaches to fusion

    SciTech Connect

    Brunelli, B.; Leotta, G.G.

    1982-01-01

    This volume is dedicated to unconventional approaches to fusionthose thermonuclear reactors that, in comparison with Tokamak and other main lines, have received little attention in the worldwide scientific community. Many of the approaches considered are still in the embryonic stages. The authors-an international group of active nuclear scientists and engineers-focus on the parameters achieved in the use of these reactors and on the meaning of the most recent physical studies and their implications for the future. They also compare these approaches with conventional ones, the Tokamak in particular, stressing the non-plasma-physics requirements of fusion reactors. Unconventional compact toroids, linear systems, and multipoles are considered, as are the ''almost conventional'' fusion machines: stellarators, mirrors, reversed-field pinches, and EBT.

  5. Maximum Likelihood Fusion Model

    DTIC Science & Technology

    2014-08-09

    data fusion, hypothesis testing,maximum likelihood estimation, mobile robot navigation REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT...61 vi 9 Bibliography 62 vii 10 LIST OF FIGURES 1.1 Illustration of mobile robotic agents. Land rovers such as (left) Pioneer robots ...simultaneous localization and mapping 1 15 Figure 1.1: Illustration of mobile robotic agents. Land rovers such as (left) Pioneer robots , (center) Segways

  6. Fusion development and technology

    SciTech Connect

    Montgomery, D.B.

    1992-01-01

    This report discusses the following: superconducting magnet technology; high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies--aries; ITER physics: alpha physics and alcator R D for ITER; lower hybrid current drive and heating in the ITER device; ITER superconducting PF scenario and magnet analysis; ITER systems studies; and safety, environmental and economic factors in fusion development.

  7. (Fusion energy research)

    SciTech Connect

    Phillips, C.A.

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

  8. Modular Aneutronic Fusion Engine

    SciTech Connect

    Gary Pajer, Yosef Razin, Michael Paluszek, A.H. Glasser and Samuel Cohen

    2012-05-11

    NASA's JUNO mission will arrive at Jupiter in July 2016, after nearly five years in space. Since operational costs tend to rise with mission time, minimizing such times becomes a top priority. We present the conceptual design for a 10MW aneutronic fusion engine with high exhaust velocities that would reduce transit time for a Jupiter mission to eighteen months and enable more challenging exploration missions in the solar system and beyond. __________________________________________________

  9. Learned fusion operators based on matrix completion

    NASA Astrophysics Data System (ADS)

    Risko, Kelly K. D.; Hester, Charles F.

    2011-05-01

    The efficient and timely management of imagery captured in the battlefield requires methods capable of searching the voluminous databases and extracting highly symbolic concepts. When processing images, a semantic and definition gap exists between machine representations and the user's language. Based on matrix completion techniques, we present a fusion operator that fuses imagery and expert knowledge provided by user inputs during post analysis. Specifically, an information matrix is formed from imagery and a class map as labeled by an expert. From this matrix an image operator is derived for the extraction/prediction of information from future imagery. We will present results using this technique on single mode data.

  10. Cold fusion studies

    NASA Astrophysics Data System (ADS)

    Hembree, D. M.; Burchfield, L. A.; Fuller, E. L., Jr.; Perey, F. G.; Mamantov, G.

    1990-06-01

    A series of experiments designed to detect the by-products expected from deuterium fusion occurring in the palladium and titanium cathodes of heavy water, D2O, electrolysis cells is reported. The primary purpose of this account is to outline the integrated experimental design developed to test the cold fusion hypothesis and to report preliminary results that support continuing the investigation. Apparent positive indicators of deuterium fusion were observed, but could not be repeated or proved to originate from the electrochemical cells. In one instance, two large increases in the neutron count rate, the largest of which exceeded the background by 27 standard deviations, were observed. In a separate experiment, one of the calorimetry cells appeared to be producing approximately 18 percent more power that the input value, but thermistor failure prevented an accurate recording of the event as a function of time. In general, the tritium levels in most cells followed the slow enrichment expected from the electrolysis of D2O containing a small amount of tritium. However, after 576 hours of electrolysis, one cell developed a tritium concentration approximately seven times greater than expected level.

  11. Stabilized Spheromak Fusion Reactors

    SciTech Connect

    Fowler, T

    2007-04-03

    The U.S. fusion energy program is focused on research with the potential for studying plasmas at thermonuclear temperatures, currently epitomized by the tokamak-based International Thermonuclear Experimental Reactor (ITER) but also continuing exploratory work on other plasma confinement concepts. Among the latter is the spheromak pursued on the SSPX facility at LLNL. Experiments in SSPX using electrostatic current drive by coaxial guns have now demonstrated stable spheromaks with good heat confinement, if the plasma is maintained near a Taylor state, but the anticipated high current amplification by gun injection has not yet been achieved. In future experiments and reactors, creating and maintaining a stable spheromak configuration at high magnetic field strength may require auxiliary current drive using neutral beams or RF power. Here we show that neutral beam current drive soon to be explored on SSPX could yield a compact spheromak reactor with current drive efficiency comparable to that of steady state tokamaks. Thus, while more will be learned about electrostatic current drive in coming months, results already achieved in SSPX could point to a productive parallel development path pursuing auxiliary current drive, consistent with plans to install neutral beams on SSPX in the near future. Among possible outcomes, spheromak research could also yield pulsed fusion reactors at lower capital cost than any fusion concept yet proposed.

  12. Inner membrane fusion mediates spatial distribution of axonal mitochondria

    PubMed Central

    Yu, Yiyi; Lee, Hao-Chih; Chen, Kuan-Chieh; Suhan, Joseph; Qiu, Minhua; Ba, Qinle; Yang, Ge

    2016-01-01

    In eukaryotic cells, mitochondria form a dynamic interconnected network to respond to changing needs at different subcellular locations. A fundamental yet unanswered question regarding this network is whether, and if so how, local fusion and fission of individual mitochondria affect their global distribution. To address this question, we developed high-resolution computational image analysis techniques to examine the relations between mitochondrial fusion/fission and spatial distribution within the axon of Drosophila larval neurons. We found that stationary and moving mitochondria underwent fusion and fission regularly but followed different spatial distribution patterns and exhibited different morphology. Disruption of inner membrane fusion by knockdown of dOpa1, Drosophila Optic Atrophy 1, not only increased the spatial density of stationary and moving mitochondria but also changed their spatial distributions and morphology differentially. Knockdown of dOpa1 also impaired axonal transport of mitochondria. But the changed spatial distributions of mitochondria resulted primarily from disruption of inner membrane fusion because knockdown of Milton, a mitochondrial kinesin-1 adapter, caused similar transport velocity impairment but different spatial distributions. Together, our data reveals that stationary mitochondria within the axon interconnect with moving mitochondria through fusion and fission and that local inner membrane fusion between individual mitochondria mediates their global distribution. PMID:26742817

  13. Inner membrane fusion mediates spatial distribution of axonal mitochondria.

    PubMed

    Yu, Yiyi; Lee, Hao-Chih; Chen, Kuan-Chieh; Suhan, Joseph; Qiu, Minhua; Ba, Qinle; Yang, Ge

    2016-01-08

    In eukaryotic cells, mitochondria form a dynamic interconnected network to respond to changing needs at different subcellular locations. A fundamental yet unanswered question regarding this network is whether, and if so how, local fusion and fission of individual mitochondria affect their global distribution. To address this question, we developed high-resolution computational image analysis techniques to examine the relations between mitochondrial fusion/fission and spatial distribution within the axon of Drosophila larval neurons. We found that stationary and moving mitochondria underwent fusion and fission regularly but followed different spatial distribution patterns and exhibited different morphology. Disruption of inner membrane fusion by knockdown of dOpa1, Drosophila Optic Atrophy 1, not only increased the spatial density of stationary and moving mitochondria but also changed their spatial distributions and morphology differentially. Knockdown of dOpa1 also impaired axonal transport of mitochondria. But the changed spatial distributions of mitochondria resulted primarily from disruption of inner membrane fusion because knockdown of Milton, a mitochondrial kinesin-1 adapter, caused similar transport velocity impairment but different spatial distributions. Together, our data reveals that stationary mitochondria within the axon interconnect with moving mitochondria through fusion and fission and that local inner membrane fusion between individual mitochondria mediates their global distribution.

  14. Inner membrane fusion mediates spatial distribution of axonal mitochondria

    NASA Astrophysics Data System (ADS)

    Yu, Yiyi; Lee, Hao-Chih; Chen, Kuan-Chieh; Suhan, Joseph; Qiu, Minhua; Ba, Qinle; Yang, Ge

    2016-01-01

    In eukaryotic cells, mitochondria form a dynamic interconnected network to respond to changing needs at different subcellular locations. A fundamental yet unanswered question regarding this network is whether, and if so how, local fusion and fission of individual mitochondria affect their global distribution. To address this question, we developed high-resolution computational image analysis techniques to examine the relations between mitochondrial fusion/fission and spatial distribution within the axon of Drosophila larval neurons. We found that stationary and moving mitochondria underwent fusion and fission regularly but followed different spatial distribution patterns and exhibited different morphology. Disruption of inner membrane fusion by knockdown of dOpa1, Drosophila Optic Atrophy 1, not only increased the spatial density of stationary and moving mitochondria but also changed their spatial distributions and morphology differentially. Knockdown of dOpa1 also impaired axonal transport of mitochondria. But the changed spatial distributions of mitochondria resulted primarily from disruption of inner membrane fusion because knockdown of Milton, a mitochondrial kinesin-1 adapter, caused similar transport velocity impairment but different spatial distributions. Together, our data reveals that stationary mitochondria within the axon interconnect with moving mitochondria through fusion and fission and that local inner membrane fusion between individual mitochondria mediates their global distribution.

  15. Total knee arthroplasty in patients with prior ipsilateral hip fusion.

    PubMed

    Romness, D W; Morrey, B F

    1992-03-01

    Sixteen total knee arthroplasties performed between 1977 and 1985 in 13 patients with prior ipsilateral hip arthrodesis or ankylosis were studied to determine the preferred sequence and long-term follow-up of procedures in this clinical setting. Twelve of 16 underwent fusion takedown and total hip arthroplasty prior to knee replacement. The average age at total knee arthroplasty was 52.7 years and the average time from hip fusion to total knee arthroplasty was 36.3 years. Mean follow-up after total knee arthroplasty was 5.5 years (range, 2.3 to 10 years). The Hospital for Special Surgery knee score increased from a mean of 31.8 preoperatively to 72.2 after surgery. In patients who had conversion of the hip fusion prior to knee replacement, knee scores were 28 before and 72.5 after both procedures. Patients who retained their hip fusion had mean scores of 43.5 and 72.1, respectively. None of the knees has been removed and 14 of 16 had no pain at last follow-up. One had mild pain and one had moderate pain attributed to pes anserine bursitis. Although the numbers are small, this experience reveals that takedown of the fusion with total hip arthroplasty is an effective technique before performing the knee replacement. Though successful in some instances, the experience is too small to show that if hip fusion is in good position, knee replacement without fusion takedown is acceptable.

  16. Hybrid manufacturing processes for fusion welding and friction stir welding of aerospace grade aluminum alloys

    NASA Astrophysics Data System (ADS)

    Gegesky, Megan Alexandra

    Friction stir welding and processing can provide for joints in aerospace grade aluminum alloys that have preferable material properties as compared to fusion welding techniques. Aerospace grade aluminum alloys such as AA2024-T3 and AA7075-T6 are considered non-weldable by traditional fusion welding techniques. Improved mechanical properties over previously used techniques are usually preferable for aerospace applications. Therefore, by combining traditional fusion welding and friction stir processing techniques, it could be plausible to create more difficult geometries in manufactured parts instead of using traditional techniques. While this combination of fusion welding and friction stir processing is not a new technology, its introduction to aerospace grade aluminum alloys as well as non-weldable alloys, is new. This is brought about by a lowered required clamping force required by adding a fusion weld before a friction stir processing technique. The changes in properties associated with joining techniques include: microstructural changes, changes in hardness, tensile strength, and corrosion resistance. This thesis illustrates these changes for the non-weldable AA2024-T351 and AA7075-T651 as well as the weldable alloy AA5052-H32. The microhardness, tensile strength and corrosion resistance of the four processing states: base material, fusion welded material, friction stir welded material, and friction stir processed fusion welded material is studied. The plausibility of this hybrid process for the three different materials is characterized, as well as plausible applications for this joining technique.

  17. Trainable fusion rules. II. Small sample-size effects.

    PubMed

    Raudys, Sarunas

    2006-12-01

    Profound theoretical analysis is performed of small-sample properties of trainable fusion rules to determine in which situations neural network ensembles can improve or degrade classification results. We consider small sample effects, specific only to multiple classifiers system design in the two-category case of two important fusion rules: (1) linear weighted average (weighted voting), realized either by the standard Fisher classifier or by the single-layer perceptron, and (2) the non-linear Behavior-Knowledge-Space method. The small sample effects include: (i) training bias, i.e. learning sample size influence on generalization error of the base experts or of the fusion rule, (ii) optimistic biased outputs of the experts (self-boasting effect) and (iii) sample size impact on determining optimal complexity of the fusion rule. Correction terms developed to reduce the self-boasting effect are studied. It is shown that small learning sets increase classification error of the expert classifiers and damage correlation structure between their outputs. If the sizes of learning sets used to develop the expert classifiers are too small, non-trainable fusion rules can outperform more sophisticated trainable ones. A practical technique to fight sample size problems is a noise injection technique. The noise injection reduces the fusion rule's complexity and diminishes the expert's boasting bias.

  18. Multi-agent decision fusion for motor fault diagnosis

    NASA Astrophysics Data System (ADS)

    Niu, Gang; Han, Tian; Yang, Bo-Suk; Tan, Andy Chit Chiow

    2007-04-01

    Improvement of recognition rate is ultimate aim for fault diagnosis researchers using pattern recognition techniques. However, the unique recognition method can only recognise a limited classification capability which is insufficient for real-life application. An ongoing strategy is the decision fusion techniques. In order to avoid the shortage of single information source coupled with unique decision method, a new approach is required to obtain better results. This paper proposes a decision fusion system for fault diagnosis, which integrates data sources from different types of sensors and decisions of multiple classifiers. First, non-commensurate sensor data sets are combined using an improved sensor fusion method at a decision level by using relativity theory. The generated decision vectors are then selected based on correlation measure of classifiers in order to find an optimal sequence of classifiers fusion, which can lead to the best fusion performance. Finally, multi-agent classifiers fusion algorithm is employed as the core of the whole fault diagnosis system. The efficiency of the proposed system was demonstrated through fault diagnosis of induction motors. The experimental results show that this system can lead to super performance when compared with the best individual classifier with single-source data.

  19. Evaluation of taste solutions by sensor fusion

    SciTech Connect

    Kojima, Yohichiro; Sato, Eriko; Atobe, Masahiko; Nakashima, Miki; Kato, Yukihisa; Nonoue, Koichi; Yamano, Yoshimasa

    2009-05-23

    In our previous studies, properties of taste solutions were discriminated based on sound velocity and amplitude of ultrasonic waves propagating through the solutions. However, to make this method applicable to beverages which contain many taste substances, further studies are required. In this study, the waveform of an ultrasonic wave with frequency of approximately 5 MHz propagating through a solution was measured and subjected to frequency analysis. Further, taste sensors require various techniques of sensor fusion to effectively obtain chemical and physical parameter of taste solutions. A sensor fusion method of ultrasonic wave sensor and various sensors, such as the surface plasmon resonance (SPR) sensor, to estimate tastes were proposed and examined in this report. As a result, differences among pure water and two basic taste solutions were clearly observed as differences in their properties. Furthermore, a self-organizing neural network was applied to obtained data which were used to clarify the differences among solutions.

  20. From nucleons to nuclei to fusion reactions

    NASA Astrophysics Data System (ADS)

    Quaglioni, S.; Navrátil, P.; Roth, R.; Horiuchi, W.

    2012-12-01

    Nuclei are prototypes of many-body open quantum systems. Complex aggregates of protons and neutrons that interact through forces arising from quantum chromo-dynamics, nuclei exhibit both bound and unbound states, which can be strongly coupled. In this respect, one of the major challenges for computational nuclear physics, is to provide a unified description of structural and reaction properties of nuclei that is based on the fundamental underlying physics: the constituent nucleons and the realistic interactions among them. This requires a combination of innovative theoretical approaches and high-performance computing. In this contribution, we present one of such promising techniques, the ab initio no-core shell model/resonating-group method, and discuss applications to light nuclei scattering and fusion reactions that power stars and Earth-base fusion facilities.

  1. Target production for inertial fusion energy

    SciTech Connect

    Woodworth, J.G.; Meier, W.

    1995-03-01

    Inertial fusion energy (IFE) power plants will require the ignition and burn of 5-10 fusion fuel targets every second. The technology to economically mass produce high-quality, precision targets at this rate is beyond the current state of the art. Techniques that are scalable to high production rates, however, have been identified for all the necessary process steps, and many have been tested in laboratory experiments or are similar to current commercial manufacturing processes. In this paper, we describe a baseline target factory conceptual design and estimate its capital and operating costs. The result is a total production cost of {approximately}16{cents} per target. At this level, target production represents about 6% of the estimated cost of electricity from a 1-GW{sub e} IFE power plant. Cost scaling relationships are presented and used to show the variation in target cost with production rate and plant power level.

  2. From Nucleons To Nuclei To Fusion Reactions

    SciTech Connect

    Quaglioni, S; Navratil, P; Roth, R; Horiuchi, W

    2012-02-15

    Nuclei are prototypes of many-body open quantum systems. Complex aggregates of protons and neutrons that interact through forces arising from quantum chromo-dynamics, nuclei exhibit both bound and unbound states, which can be strongly coupled. In this respect, one of the major challenges for computational nuclear physics, is to provide a unified description of structural and reaction properties of nuclei that is based on the fundamental underlying physics: the constituent nucleons and the realistic interactions among them. This requires a combination of innovative theoretical approaches and high-performance computing. In this contribution, we present one of such promising techniques, the ab initio no-core shell model/resonating-group method, and discuss applications to light nuclei scattering and fusion reactions that power stars and Earth-base fusion facilities.

  3. A Matrix Pencil Algorithm Based Multiband Iterative Fusion Imaging Method

    NASA Astrophysics Data System (ADS)

    Zou, Yong Qiang; Gao, Xun Zhang; Li, Xiang; Liu, Yong Xiang

    2016-01-01

    Multiband signal fusion technique is a practicable and efficient way to improve the range resolution of ISAR image. The classical fusion method estimates the poles of each subband signal by the root-MUSIC method, and some good results were get in several experiments. However, this method is fragile in noise for the proper poles could not easy to get in low signal to noise ratio (SNR). In order to eliminate the influence of noise, this paper propose a matrix pencil algorithm based method to estimate the multiband signal poles. And to deal with mutual incoherent between subband signals, the incoherent parameters (ICP) are predicted through the relation of corresponding poles of each subband. Then, an iterative algorithm which aimed to minimize the 2-norm of signal difference is introduced to reduce signal fusion error. Applications to simulate dada verify that the proposed method get better fusion results at low SNR.

  4. The emissivities of liquid metals at their fusion temperatures

    NASA Technical Reports Server (NTRS)

    Bonnell, D. W.; Treverton, J. A.; Valerga, A. J.; Margrave, J. L.

    1972-01-01

    A survey of the literature through 1969 shows an almost total lack of experimental emissivity data for metals in the liquid state. The emissivities for several transition metals and various other metals and compounds in the liquid state at their fusion temperatures have been determined. The technique used involves electromagnetic levitation-induction heating of the materials in an inert atmosphere. The brightness temperature of the liquid phase of the material is measured as the material is heated through fusion. Given a reliable value of the fusion temperature, which is available for most pure substances, one may readily calculate an emissivity for the liquid phase at the fusion temperatures. Even in cases where melting points are poorly known, the brightness temperatures are unique parameters, independent of the temperature scale and measured for a chemically defined system at a fixed point. Better emissivities may be recalculated as better melting point data become available.

  5. A Matrix Pencil Algorithm Based Multiband Iterative Fusion Imaging Method

    PubMed Central

    Zou, Yong Qiang; Gao, Xun Zhang; Li, Xiang; Liu, Yong Xiang

    2016-01-01

    Multiband signal fusion technique is a practicable and efficient way to improve the range resolution of ISAR image. The classical fusion method estimates the poles of each subband signal by the root-MUSIC method, and some good results were get in several experiments. However, this method is fragile in noise for the proper poles could not easy to get in low signal to noise ratio (SNR). In order to eliminate the influence of noise, this paper propose a matrix pencil algorithm based method to estimate the multiband signal poles. And to deal with mutual incoherent between subband signals, the incoherent parameters (ICP) are predicted through the relation of corresponding poles of each subband. Then, an iterative algorithm which aimed to minimize the 2-norm of signal difference is introduced to reduce signal fusion error. Applications to simulate dada verify that the proposed method get better fusion results at low SNR. PMID:26781194

  6. Data fusion in neutron and X-ray computed tomography

    SciTech Connect

    Schrapp, Michael J.; Goldammer, Matthias; Schulz, Michael; Issani, Siraj; Bhamidipati, Suryanarayana; Böni, Peter

    2014-10-28

    We present a fusion methodology between neutron and X-ray computed tomography (CT). On the one hand, the inspection by X-ray CT of a wide class of multimaterials in non-destructive testing applications suffers from limited information of object features. On the other hand, neutron imaging can provide complementary data in such a way that the combination of both data sets fully characterizes the object. In this contribution, a novel data fusion procedure, called Fusion Regularized Simultaneous Algebraic Reconstruction Technique, is developed where the X-ray reconstruction is modified to fulfill the available data from the imaging with neutrons. The experiments, which were obtained from an aluminum profile containing a steel screw, and attached carbon fiber plates demonstrate that the image quality in CT can be significantly improved when the proposed fusion method is used.

  7. Influence of incomplete fusion on complete fusion: Observation of a large incomplete fusion fraction at E {approx_equal}5-7 MeV/nucleon

    SciTech Connect

    Singh, Pushpendra P.; Singh, B. P.; Sharma, Manoj Kumar; Unnati,; Singh, Devendra P.; Prasad, R.; Kumar, Rakesh; Golda, K. S.

    2008-01-15

    Experiments have been carried out to explore the reaction dynamics leading to incomplete fusion of heavy ions at moderate excitation energies. Excitation functions for {sup 168}Lu{sup m}, {sup 167}Lu, {sup 167}Yb, {sup 166}Tm, {sup 179}Re, {sup 177}Re, {sup 177}W, {sup 178}Ta, and {sup 177}Hf radio-nuclides populated via complete and/or incomplete fusion of {sup 16}O with {sup 159}Tb and {sup 169}Tm have been studied over the wide projectile energy range E{sub proj}{approx_equal}75-95 MeV. Recoil-catcher technique followed by off-line {gamma}-spectrometry has been employed in the present measurements. Experimental data have been compared with the predictions of theoretical model code PACE2. The experimentally measured production cross sections of {alpha}-emitting channels were found to be larger as compared to the theoretical model predictions and may be attributed to incomplete fusion at these energies. During the analysis of experimental data, incomplete fusion has been found to be competing with complete fusion. As such, an attempt has been made to estimate the incomplete fusion fraction for both the systems, and has been found to be sensitive for projectile energy and mass asymmetry of interacting partners.

  8. Decommissioning of the Tokamak Fusion Test Reactor

    SciTech Connect

    E. Perry; J. Chrzanowski; C. Gentile; R. Parsells; K. Rule; R. Strykowsky; M. Viola

    2003-10-28

    The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D&D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D&D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D&D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget.

  9. High Level Information Fusion (HLIF) with nested fusion loops

    NASA Astrophysics Data System (ADS)

    Woodley, Robert; Gosnell, Michael; Fischer, Amber

    2013-05-01

    Situation modeling and threat prediction require higher levels of data fusion in order to provide actionable information. Beyond the sensor data and sources the analyst has access to, the use of out-sourced and re-sourced data is becoming common. Through the years, some common frameworks have emerged for dealing with information fusion—perhaps the most ubiquitous being the JDL Data Fusion Group and their initial 4-level data fusion model. Since these initial developments, numerous models of information fusion have emerged, hoping to better capture the human-centric process of data analyses within a machine-centric framework. 21st Century Systems, Inc. has developed Fusion with Uncertainty Reasoning using Nested Assessment Characterizer Elements (FURNACE) to address challenges of high level information fusion and handle bias, ambiguity, and uncertainty (BAU) for Situation Modeling, Threat Modeling, and Threat Prediction. It combines JDL fusion levels with nested fusion loops and state-of-the-art data reasoning. Initial research has shown that FURNACE is able to reduce BAU and improve the fusion process by allowing high level information fusion (HLIF) to affect lower levels without the double counting of information or other biasing issues. The initial FURNACE project was focused on the underlying algorithms to produce a fusion system able to handle BAU and repurposed data in a cohesive manner. FURNACE supports analyst's efforts to develop situation models, threat models, and threat predictions to increase situational awareness of the battlespace. FURNACE will not only revolutionize the military intelligence realm, but also benefit the larger homeland defense, law enforcement, and business intelligence markets.

  10. Network-centric data fusion

    NASA Astrophysics Data System (ADS)

    Nicholson, David; Lloyd, C. M.; Collins, Peter R. C.

    2002-08-01

    The performance of three distributed sensor fusion network architectures is investigated: a fully-connected and a partially-connected measurement fusion system and a partially-connected track fusion system. The investigation employs an advanced military scenario generator, FLAMES, which was customised for exercising a range of distributed data fusion experiments. Specifically, it includes a representative model of the delays in a communication system (such as JTIDS or Link 16). Here the delays were used to modify communication bandwidth and to evaluate how this affected the performance of the fusion architectures/algorithms. Under certain specific scenario conditions, it was found that decentralised measurement fusion system was severely affected by reduced bandwidth. This is because each node loads its communication buffer with every measurement and consequently some measurements are never transmitted. The decentralised track fusion system exhibits improved performance because it lumps measurements into tracks and thereby it makes much more effective use of the bandwidth. Moreover, it was found that the performance of the partially connected decentralised track fusion system was very close to the optimal performance achieved by the fully-connected decentralised measurement fusion system.

  11. OCULUS Sea Track Fusion Service

    NASA Astrophysics Data System (ADS)

    Panagiotou, Stylianos C.; Rizogiannis, Constantinos; Katsoulis, Stavros; Lampropoulos, Vassilis; Kanellopoulos, Sotirios; Thomopoulos, Stelios C. A.

    2015-06-01

    Oculus Sea is a complete solution regarding maritime surveillance and communications at Local as well as Central Command and Control level. It includes a robust and independent track fusion service whose main functions include: 1) Interaction with the User to suggest the fusion of two or more tracks, confirm Track ID and Vessel Metadata creation for the fused track, and suggest de-association of two tracks 2) Fusion of same vessel tracks arriving simultaneously from multiple radar sensors featuring track Association, track Fusion of associated tracks to produce a more accurate track, and Multiple tracking filters and fusion algorithms 3) Unique Track ID Generator for each fused track 4) Track Dissemination Service. Oculus Sea Track Fusion Service adopts a system architecture where each sensor is associated with a Kalman estimator/tracker that obtains an estimate of the state vector and its respective error covariance matrix. Finally, at the fusion center, association and track state estimation fusion are carried out. The expected benefits of this system include multi-sensor information fusion, enhanced spatial resolution, and improved target detection.

  12. Economic potential of inertial fusion

    SciTech Connect

    Nuckolls, J.H.

    1984-04-01

    Beyond the achievement of scientific feasibility, the key question for fusion energy is: does it have the economic potential to be significantly cheaper than fission and coal energy. If fusion has this high economic potential then there are compelling commercial and geopolitical incentives to accelerate the pace of the fusion program in the near term, and to install a global fusion energy system in the long term. Without this high economic potential, fusion's success depends on the failure of all alternatives, and there is no real incentive to accelerate the program. If my conjectures on the economic potential of inertial fusion are approximately correct, then inertial fusion energy's ultimate costs may be only half to two-thirds those of advanced fission and coal energy systems. Relative cost escalation is not assumed and could increase this advantage. Both magnetic and inertial approaches to fusion potentially have a two-fold economic advantage which derives from two fundamental properties: negligible fuel costs and high quality energy which makes possible more efficient generation of electricity. The wining approach to fusion may excel in three areas: electrical generating efficiency, minimum material costs, and adaptability to manufacture in automated factories. The winning approach must also rate highly in environmental potential, safety, availability factor, lifetime, small 0 and M costs, and no possibility of utility-disabling accidents.

  13. Direct-drive laser fusion: status and prospects

    SciTech Connect

    Afeyan, B B; Bodner, S E; Gardner, J H; Knauer, J P; Lee, P; Lehmberg, R H; McCrory, R L; Obenschain, S P; Powell, H T; Schmitt, A J; Seka, W; Sethian, J D; Verdon, C P

    1998-01-14

    Techniques have been developed to improve the uniformity of the laser focal profile, to reduce the ablative Rayleigh-Taylor instability, and to suppress the various laser-plasma instabilities. There are now three direct-drive ignition target designs that utilize these techniques. Evaluation of these designs is still ongoing. Some of them may achieve the gains above 100 that are necessary for a fusion reactor. Two laser systems have been proposed that may meet all of the requirements for a fusion reactor.

  14. Cold nuclear fusion

    NASA Astrophysics Data System (ADS)

    Tsyganov, E. N.; Bavizhev, M. D.; Buryakov, M. G.; Dabagov, S. B.; Golovatyuk, V. M.; Lobastov, S. P.

    2015-07-01

    If target deuterium atoms were implanted in a metal crystal in accelerator experiments, a sharp increase in the probability of DD-fusion reaction was clearly observed when compared with the reaction's theoretical value. The electronic screening potential, which for a collision of free deuterium atoms is about 27 eV, reached 300-700 eV in the case of the DD-fusion in metallic crystals. These data leads to the conclusion that a ban must exist for deuterium atoms to be in the ground state 1s in a niche filled with free conduction electrons. At the same time, the state 2p whose energy level is only 10 eV above that of state 1s is allowed in these conditions. With anisotropy of 2p, 3p or above orbitals, their spatial positions are strictly determined in the lattice coordinate system. When filling out the same potential niches with two deuterium atoms in the states 2p, 3p or higher, the nuclei of these atoms can be permanently positioned without creating much Coulomb repulsion at a very short distance from each other. In this case, the transparency of the potential barrier increases dramatically compared to the ground state 1s for these atoms. The probability of the deuterium nuclei penetrating the Coulomb barrier by zero quantum vibration of the DD-system also increases dramatically. The so-called cold nuclear DD-fusion for a number of years was registered in many experiments, however, was still rejected by mainstream science for allegedly having no consistent scientific explanation. Finally, it received the validation. Below, we outline the concept of this explanation and give the necessary calculations. This paper also considers the further destiny of the formed intermediate state of 4He∗.

  15. Cold Fusion Verification.

    DTIC Science & Technology

    1991-03-01

    published work, talking with others in the field, and attending conferences, that CNF probably is chimera and will go the way of N-rays and polywater ...way of N-rays and polywater . To date, no one, including Pons and Fleischmann, has been able to construct a so-called CNF electrochemical cell that...Cold Nuclear Fusion (CNF), as originally reported in 1989. The conclusion is that CNF probably is chimera and will go the way of N-rays and polywater

  16. Fusion reactor pumped laser

    DOEpatents

    Jassby, Daniel L.

    1988-01-01

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  17. Improving cerebellar segmentation with statistical fusion

    NASA Astrophysics Data System (ADS)

    Plassard, Andrew J.; Yang, Zhen; Prince, Jerry L.; Claassen, Daniel O.; Landman, Bennett A.

    2016-03-01

    The cerebellum is a somatotopically organized central component of the central nervous system well known to be involved with motor coordination and increasingly recognized roles in cognition and planning. Recent work in multiatlas labeling has created methods that offer the potential for fully automated 3-D parcellation of the cerebellar lobules and vermis (which are organizationally equivalent to cortical gray matter areas). This work explores the trade offs of using different statistical fusion techniques and post hoc optimizations in two datasets with distinct imaging protocols. We offer a novel fusion technique by extending the ideas of the Selective and Iterative Method for Performance Level Estimation (SIMPLE) to a patch-based performance model. We demonstrate the effectiveness of our algorithm, Non- Local SIMPLE, for segmentation of a mixed population of healthy subjects and patients with severe cerebellar anatomy. Under the first imaging protocol, we show that Non-Local SIMPLE outperforms previous gold-standard segmentation techniques. In the second imaging protocol, we show that Non-Local SIMPLE outperforms previous gold standard techniques but is outperformed by a non-locally weighted vote with the deeper population of atlases available. This work advances the state of the art in open source cerebellar segmentation algorithms and offers the opportunity for routinely including cerebellar segmentation in magnetic resonance imaging studies that acquire whole brain T1-weighted volumes with approximately 1 mm isotropic resolution.

  18. Improving Cerebellar Segmentation with Statistical Fusion

    PubMed Central

    Plassard, Andrew J.; Yang, Zhen; Prince, Jerry L.; Claassen, Daniel O.; Landman, Bennett A.

    2016-01-01

    The cerebellum is a somatotopically organized central component of the central nervous system well known to be involved with motor coordination and increasingly recognized roles in cognition and planning. Recent work in multi-atlas labeling has created methods that offer the potential for fully automated 3-D parcellation of the cerebellar lobules and vermis (which are organizationally equivalent to cortical gray matter areas). This work explores the trade offs of using different statistical fusion techniques and post hoc optimizations in two datasets with distinct imaging protocols. We offer a novel fusion technique by extending the ideas of the Selective and Iterative Method for Performance Level Estimation (SIMPLE) to a patch-based performance model. We demonstrate the effectiveness of our algorithm, Non-Local SIMPLE, for segmentation of a mixed population of healthy subjects and patients with severe cerebellar anatomy. Under the first imaging protocol, we show that Non-Local SIMPLE outperforms previous gold-standard segmentation techniques. In the second imaging protocol, we show that Non-Local SIMPLE outperforms previous gold standard techniques but is outperformed by a non-locally weighted vote with the deeper population of atlases available. This work advances the state of the art in open source cerebellar segmentation algorithms and offers the opportunity for routinely including cerebellar segmentation in magnetic resonance imaging studies that acquire whole brain T1-weighted volumes with approximately 1 mm isotropic resolution. PMID:27127334

  19. Improving Cerebellar Segmentation with Statistical Fusion.

    PubMed

    Plassard, Andrew J; Yang, Zhen; Prince, Jerry L; Claassen, Daniel O; Landman, Bennett A

    2016-02-27

    The cerebellum is a somatotopically organized central component of the central nervous system well known to be involved with motor coordination and increasingly recognized roles in cognition and planning. Recent work in multi-atlas labeling has created methods that offer the potential for fully automated 3-D parcellation of the cerebellar lobules and vermis (which are organizationally equivalent to cortical gray matter areas). This work explores the trade offs of using different statistical fusion techniques and post hoc optimizations in two datasets with distinct imaging protocols. We offer a novel fusion technique by extending the ideas of the Selective and Iterative Method for Performance Level Estimation (SIMPLE) to a patch-based performance model. We demonstrate the effectiveness of our algorithm, Non-Local SIMPLE, for segmentation of a mixed population of healthy subjects and patients with severe cerebellar anatomy. Under the first imaging protocol, we show that Non-Local SIMPLE outperforms previous gold-standard segmentation techniques. In the second imaging protocol, we show that Non-Local SIMPLE outperforms previous gold standard techniques but is outperformed by a non-locally weighted vote with the deeper population of atlases available. This work advances the state of the art in open source cerebellar segmentation algorithms and offers the opportunity for routinely including cerebellar segmentation in magnetic resonance imaging studies that acquire whole brain T1-weighted volumes with approximately 1 mm isotropic resolution.

  20. The VariLift® Interbody Fusion System: expandable, standalone interbody fusion

    PubMed Central

    Emstad, Erik; del Monaco, Diana Cardenas; Fielding, Louis C; Block, Jon E

    2015-01-01

    Intervertebral fusion cages have been in clinical use since the 1990s. Cages offer the benefits of bone graft containment, restored intervertebral and foraminal height, and a more repeatable, stable procedure compared to interbody fusion with graft material alone. Due to concerns regarding postoperative stability, loss of lordosis, and subsidence or migration of the implant, interbody cages are commonly used with supplemental fixation such as pedicle screw systems or anterior plates. While providing additional stability, supplemental fixation techniques increase operative time, exposure, cost, and morbidity. The VariLift® Interbody Fusion System (VariLift® system) has been developed as a standalone solution to provide the benefits of intervertebral fusion cages without the requirement of supplemental fixation. The VariLift® system, FDA-cleared for standalone use in both the cervical and lumbar spine, is implanted in a minimal profile and then expanded in situ to provide segmental stability, restored lordosis, and a large graft chamber. Preclinical testing and analyses have found that the VariLift® System is durable, and reduces stresses that may contribute to subsidence and migration of other standalone interbody cages. Fifteen years of clinical development with the VariLift® system have demonstrated positive clinical outcomes, continued patient maintenance of segmental stability and lordosis, and no evidence of implant migration. The purpose of this report is to describe the VariLift® system, including implant characteristics, principles of operation, indications for use, patient selection criteria, surgical technique, postoperative care, preclinical testing, and clinical experience. The VariLift® System represents an improved surgical option for a stable interbody fusion without requiring supplemental fixation. PMID:26060414

  1. Inertial confinement fusion

    SciTech Connect

    Powers, L.; Condouris, R.; Kotowski, M.; Murphy, P.W.

    1992-01-01

    This issue of the ICF Quarterly contains seven articles that describe recent progress in Lawrence Livermore National Laboratory's ICF program. The Department of Energy recently initiated an effort to design a 1--2 MJ glass laser, the proposed National Ignition Facility (NIF). These articles span various aspects of a program which is aimed at moving forward toward such a facility by continuing to use the Nova laser to gain understanding of NIF-relevant target physics, by developing concepts for an NIF laser driver, and by envisioning a variety of applications for larger ICF facilities. This report discusses research on the following topics: Stimulated Rotational Raman Scattering in Nitrogen; A Maxwell Equation Solver in LASNEX for the Simulation of Moderately Intense Ultrashort Pulse Experiments; Measurements of Radial Heat-Wave Propagation in Laser-Produced Plasmas; Laser-Seeded Modulation Growth on Directly Driven Foils; Stimulated Raman Scattering in Large-Aperture, High-Fluence Frequency-Conversion Crystals; Fission Product Hazard Reduction Using Inertial Fusion Energy; Use of Inertial Confinement Fusion for Nuclear Weapons Effects Simulations.

  2. Statistics in fusion experiments

    NASA Astrophysics Data System (ADS)

    McNeill, D. H.

    1997-11-01

    Since the reasons for the variability in data from plasma experiments are often unknown or uncontrollable, statistical methods must be applied. Reliable interpretation and public accountability require full data sets. Two examples of data misrepresentation at PPPL are analyzed: Te >100 eV on S-1 spheromak.(M. Yamada, Nucl. Fusion 25, 1327 (1985); reports to DoE; etc.) The reported high values (statistical artifacts of Thomson scattering measurements) were selected from a mass of data with an average of 40 eV or less. ``Correlated'' spectroscopic data were meaningless. (2) Extrapolation to Q >=0.5 for DT in TFTR.(D. Meade et al., IAEA Baltimore (1990), V. 1, p. 9; H. P. Furth, Statements to U. S. Congress (1989).) The DD yield used there was the highest through 1990 (>= 50% above average) and the DT to DD power ratio used was about twice any published value. Average DD yields and published yield ratios scale to Q<0.15 for DT, in accord with the observed performance over the last 3 1/2 years. Press reports of outlier data from TFTR have obscured the fact that the DT behavior follows from trivial scaling of the DD data. Good practice in future fusion research would have confidence intervals and other descriptive statistics accompanying reported numerical values (cf. JAMA).

  3. Helium Find Thaws the Cold Fusion Trail.

    ERIC Educational Resources Information Center

    Pennisi, E.

    1991-01-01

    Reported is a study of cold fusion in which trace amounts of helium, possible evidence of an actual fusion reaction, were found. Research methodology is detailed. The controversy over the validity of experimental results with cold fusion are reviewed. (CW)

  4. Tools and Methods for the Registration and Fusion of Remotely Sensed Data

    NASA Technical Reports Server (NTRS)

    Goshtasby, Arthur Ardeshir; LeMoigne, Jacqueline

    2010-01-01

    Tools and methods for image registration were reviewed. Methods for the registration of remotely sensed data at NASA were discussed. Image fusion techniques were reviewed. Challenges in registration of remotely sensed data were discussed. Examples of image registration and image fusion were given.

  5. Kits and methods of detection using cellulose binding domain fusion proteins

    SciTech Connect

    Shoseyov, O.; Yosef, K.

    1998-04-14

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  6. Kits and methods of detection using cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, Oded

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  7. Fusion Power measurement at ITER

    SciTech Connect

    Bertalot, L.; Barnsley, R.; Krasilnikov, V.; Stott, P.; Suarez, A.; Vayakis, G.; Walsh, M.

    2015-07-01

    Nuclear fusion research aims to provide energy for the future in a sustainable way and the ITER project scope is to demonstrate the feasibility of nuclear fusion energy. ITER is a nuclear experimental reactor based on a large scale fusion plasma (tokamak type) device generating Deuterium - Tritium (DT) fusion reactions with emission of 14 MeV neutrons producing up to 700 MW fusion power. The measurement of fusion power, i.e. total neutron emissivity, will play an important role for achieving ITER goals, in particular the fusion gain factor Q related to the reactor performance. Particular attention is given also to the development of the neutron calibration strategy whose main scope is to achieve the required accuracy of 10% for the measurement of fusion power. Neutron Flux Monitors located in diagnostic ports and inside the vacuum vessel will measure ITER total neutron emissivity, expected to range from 1014 n/s in Deuterium - Deuterium (DD) plasmas up to almost 10{sup 21} n/s in DT plasmas. The neutron detection systems as well all other ITER diagnostics have to withstand high nuclear radiation and electromagnetic fields as well ultrahigh vacuum and thermal loads. (authors)

  8. Multi-sensor fusion development

    NASA Astrophysics Data System (ADS)

    Bish, Sheldon; Rohrer, Matthew; Scheffel, Peter; Bennett, Kelly

    2016-05-01

    The U.S. Army Research Laboratory (ARL) and McQ Inc. are developing a generic sensor fusion architecture that involves several diverse processes working in combination to create a dynamic task-oriented, real-time informational capability. Processes include sensor data collection, persistent and observational data storage, and multimodal and multisensor fusion that includes the flexibility to modify the fusion program rules for each mission. Such a fusion engine lends itself to a diverse set of sensing applications and architectures while using open-source software technologies. In this paper, we describe a fusion engine architecture that combines multimodal and multi-sensor fusion within an Open Standard for Unattended Sensors (OSUS) framework. The modular, plug-and-play architecture of OSUS allows future fusion plugin methodologies to have seamless integration into the fusion architecture at the conceptual and implementation level. Although beyond the scope of this paper, this architecture allows for data and information manipulation and filtering for an array of applications.

  9. Cold fusion; Myth versus reality

    SciTech Connect

    Rabinowitz, M. )

    1990-01-01

    Experiments indicate that several different nuclear reactions are taking place. Some of the experiments point to D-D fusion with a cominant tritium channel as one of the reactions. The article notes a similarity between Prometheus and the discoveries of cold fusion.

  10. Fusion Policy Advisory Committee (FPAC)

    SciTech Connect

    Not Available

    1990-09-01

    This document is the final report of the Fusion Policy Advisory Committee. The report conveys the Committee's views on the matters specified by the Secretary in his charge and subsequent letters to the Committee, and also satisfies the provisions of Section 7 of the Magnetic Fusion Energy Engineering Act of 1980, Public Law 96-386, which require a triennial review of the conduct of the national Magnetic Fusion Energy program. Three sub-Committee's were established to address the large number of topics associated with fusion research and development. One considered magnetic fusion energy, a second considered inertial fusion energy, and the third considered issues common to both. For many reasons, the promise of nuclear fusion as a safe, environmentally benign, and affordable source of energy is bright. At the present state of knowledge, however, it is uncertain that this promise will become reality. Only a vigorous, well planned and well executed program of research and development will yield the needed information. The Committee recommends that the US commit to a plan that will resolve this critically important issue. It also outlines the first steps in a development process that will lead to a fusion Demonstration Power Plant by 2025. The recommended program is aggressive, but we believe the goal is reasonable and attainable. International collaboration at a significant level is an important element in the plan.

  11. Cold Fusion, A Journalistic Investigation

    NASA Astrophysics Data System (ADS)

    Krivit, Steven B.

    2005-03-01

    Author of the recent book, The Rebirth of Cold Fusion, and founder of New Energy Times, Steven B. Krivit presents a summary of cold fusion's, past, present and possible future. This talk will briefly review five highlights of the recent New Energy Times investigation into cold fusion research:1. Analysis of early studies that supposedly disproved cold fusion.2. Key early corroborations that supported the claims of Fleischmann and Pons.3. The evolving understanding of cold fusion reaction paths and by-products.4. A look at volumetric power density.5. Brief comparison of the progress in hot fusion research as compared to cold fusion research.New Energy Times, founded in 2000, is an independent communications company which currently specializes in reporting on cold fusion researchootnotetextReferences and copies of the presentation are available at www.newenergytimes.com/reports/aps2005.htmhttp://www.newenergytimes.com/reports/aps2005.htm. It has no affiliations with any organization, entity or party which invests in these technologies, nor any individual researcher or research facility.

  12. Membrane fusion during poxvirus entry.

    PubMed

    Moss, Bernard

    2016-12-01

    Poxviruses comprise a large family of enveloped DNA viruses that infect vertebrates and invertebrates. Poxviruses, unlike most DNA viruses, replicate in the cytoplasm and encode enzymes and other proteins that enable entry, gene expression, genome replication, virion assembly and resistance to host defenses. Entry of vaccinia virus, the prototype member of the family, can occur at the plasma membrane or following endocytosis. Whereas many viruses encode one or two proteins for attachment and membrane fusion, vaccinia virus encodes four proteins for attachment and eleven more for membrane fusion and core entry. The entry-fusion proteins are conserved in all poxviruses and form a complex, known as the Entry Fusion Complex (EFC), which is embedded in the membrane of the mature virion. An additional membrane that encloses the mature virion and is discarded prior to entry is present on an extracellular form of the virus. The EFC is held together by multiple interactions that depend on nine of the eleven proteins. The entry process can be divided into attachment, hemifusion and core entry. All eleven EFC proteins are required for core entry and at least eight for hemifusion. To mediate fusion the virus particle is activated by low pH, which removes one or more fusion repressors that interact with EFC components. Additional EFC-interacting fusion repressors insert into cell membranes and prevent secondary infection. The absence of detailed structural information, except for two attachment proteins and one EFC protein, is delaying efforts to determine the fusion mechanism.

  13. Polarization image fusion algorithm based on improved PCNN

    NASA Astrophysics Data System (ADS)

    Zhang, Siyuan; Yuan, Yan; Su, Lijuan; Hu, Liang; Liu, Hui

    2013-12-01

    The polarization detection technique provides polarization information of objects which conventional detection techniques are unable to obtain. In order to fully utilize of obtained polarization information, various polarization imagery fusion algorithms have been developed. In this research, we proposed a polarization image fusion algorithm based on the improved pulse coupled neural network (PCNN). The improved PCNN algorithm uses polarization parameter images to generate the fused polarization image with object details for polarization information analysis and uses the matching degree M as the fusion rule. The improved PCNN fused image is compared with fused images based on Laplacian pyramid (LP) algorithm, Wavelet algorithm and PCNN algorithm. Several performance indicators are introduced to evaluate the fused images. The comparison showed the presented algorithm yields image with much higher quality and preserves more detail information of the objects.

  14. Is there hope for fusion

    SciTech Connect

    Fowler, T.K. . Dept. of Nuclear Engineering)

    1990-04-12

    From the outset in the 1950's, fusion research has been motivated by environmental concerns as well as long-term fuel supply issues. Compared to fossil fuels both fusion and fission would produce essentially zero emissions to the atmosphere. Compared to fission, fusion reactors should offer high demonstrability of public protection from accidents and a substantial amelioration of the radioactive waste problem. Fusion still requires lengthy development, the earliest commercial deployment being likely to occur around 2025--2050. However, steady scientific progress is being made and there is a wide consensus that it is time to plan large-scale engineering development. A major international effort, called the International Thermonuclear Experimental Reactor (ITER), is being carried out under IAEA auspices to design the world's first fusion engineering test reactor, which could be constructed in the 1990's. 4 figs., 3 tabs.

  15. Adjoint affine fusion and tadpoles

    NASA Astrophysics Data System (ADS)

    Urichuk, Andrew; Walton, Mark A.

    2016-06-01

    We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are written for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.

  16. Friction Buttering: A New Technique for Dissimilar Welding

    NASA Astrophysics Data System (ADS)

    Karthik, G. M.; Mastanaiah, P.; Janaki Ram, G. D.; Kottada, Ravi Sankar

    2017-02-01

    This work offers a fresh perspective on buttering, a technique often considered for fusion welding of dissimilar metals. For the first time, buttering was attempted in solid state using friction deposition. Using this new "friction buttering" technique, fusion welding of two different dissimilar metal pairs (austenitic stainless steel/borated stainless steel and Al-Cu-Mg/Al-Zn-Mg-Cu) was successfully demonstrated. The results show that friction buttering can simplify a tough dissimilar welding problem into a routine fusion welding task.

  17. Information integration for data fusion

    SciTech Connect

    Bray, O.H.

    1997-01-01

    Data fusion has been identified by the Department of Defense as a critical technology for the U.S. defense industry. Data fusion requires combining expertise in two areas - sensors and information integration. Although data fusion is a rapidly growing area, there is little synergy and use of common, reusable, and/or tailorable objects and models, especially across different disciplines. The Laboratory-Directed Research and Development project had two purposes: to see if a natural language-based information modeling methodology could be used for data fusion problems, and if so, to determine whether this methodology would help identify commonalities across areas and achieve greater synergy. The project confirmed both of the initial hypotheses: that the natural language-based information modeling methodology could be used effectively in data fusion areas and that commonalities could be found that would allow synergy across various data fusion areas. The project found five common objects that are the basis for all of the data fusion areas examined: targets, behaviors, environments, signatures, and sensors. Many of the objects and the specific facts related to these objects were common across several areas and could easily be reused. In some cases, even the terminology remained the same. In other cases, different areas had their own terminology, but the concepts were the same. This commonality is important with the growing use of multisensor data fusion. Data fusion is much more difficult if each type of sensor uses its own objects and models rather than building on a common set. This report introduces data fusion, discusses how the synergy generated by this LDRD would have benefited an earlier successful project and contains a summary information model from that project, describes a preliminary management information model, and explains how information integration can facilitate cross-treaty synergy for various arms control treaties.

  18. Image fusion via nonlocal sparse K-SVD dictionary learning.

    PubMed

    Li, Ying; Li, Fangyi; Bai, Bendu; Shen, Qiang

    2016-03-01

    Image fusion aims to merge two or more images captured via various sensors of the same scene to construct a more informative image by integrating their details. Generally, such integration is achieved through the manipulation of the representations of the images concerned. Sparse representation plays an important role in the effective description of images, offering a great potential in a variety of image processing tasks, including image fusion. Supported by sparse representation, in this paper, an approach for image fusion by the use of a novel dictionary learning scheme is proposed. The nonlocal self-similarity property of the images is exploited, not only at the stage of learning the underlying description dictionary but during the process of image fusion. In particular, the property of nonlocal self-similarity is combined with the traditional sparse dictionary. This results in an improved learned dictionary, hereafter referred to as the nonlocal sparse K-SVD dictionary (where K-SVD stands for the K times singular value decomposition that is commonly used in the literature), and abbreviated to NL_SK_SVD. The performance of the NL_SK_SVD dictionary is applied for image fusion using simultaneous orthogonal matching pursuit. The proposed approach is evaluated with different types of images, and compared with a number of alternative image fusion techniques. The resultant superior fused images using the present approach demonstrates the efficacy of the NL_SK_SVD dictionary in sparse image representation.

  19. A graph theoretical approach to data fusion

    PubMed Central

    Žurauskienė, Justina; Kirk, Paul D.W.; Stumpf, Michael P.H.

    2016-01-01

    The rapid development of high throughput experimental techniques has resulted in a growing diversity of genomic datasets being produced and requiring analysis. Therefore, it is increasingly being recognized that we can gain deeper understanding about underlying biology by combining the insights obtained from multiple, diverse datasets. Thus we propose a novel scalable computational approach to unsupervised data fusion. Our technique exploits network representations of the data to identify similarities among the datasets. We may work within the Bayesian formalism, using Bayesian nonparametric approaches to model each dataset; or (for fast, approximate, and massive scale data fusion) can naturally switch to more heuristic modeling techniques. An advantage of the proposed approach is that each dataset can initially be modeled independently (in parallel), before applying a fast post-processing step to perform data integration. This allows us to incorporate new experimental data in an online fashion, without having to rerun all of the analysis. We first demonstrate the applicability of our tool on artificial data, and then on examples from the literature, which include yeast cell cycle, breast cancer and sporadic inclusion body myositis datasets. PMID:26992203

  20. A graph theoretical approach to data fusion.

    PubMed

    Žurauskienė, Justina; Kirk, Paul D W; Stumpf, Michael P H

    2016-04-01

    The rapid development of high throughput experimental techniques has resulted in a growing diversity of genomic datasets being produced and requiring analysis. Therefore, it is increasingly being recognized that we can gain deeper understanding about underlying biology by combining the insights obtained from multiple, diverse datasets. Thus we propose a novel scalable computational approach to unsupervised data fusion. Our technique exploits network representations of the data to identify similarities among the datasets. We may work within the Bayesian formalism, using Bayesian nonparametric approaches to model each dataset; or (for fast, approximate, and massive scale data fusion) can naturally switch to more heuristic modeling techniques. An advantage of the proposed approach is that each dataset can initially be modeled independently (in parallel), before applying a fast post-processing step to perform data integration. This allows us to incorporate new experimental data in an online fashion, without having to rerun all of the analysis. We first demonstrate the applicability of our tool on artificial data, and then on examples from the literature, which include yeast cell cycle, breast cancer and sporadic inclusion body myositis datasets.

  1. Physical measurements of inertial-fusion targets

    SciTech Connect

    Weinstein, B.W.

    1981-09-24

    Measurement of inertial-fusion targets has stimulated the development of many new techniques and instruments. This paper reviews the basis for selected target measurement requirements and the development of optical interferometry, optical scattering, microradiography and scanning electron microscopy as applied to target measurement. We summarize the resolution and speed which have been achieved to date, and describe several systems in which these are traded off to fill specific measurement applications. We point out the extent to which present capabilities meet the requirements for target measurement and the key problems which remain to be solved.

  2. Fusion following failed total ankle replacement.

    PubMed

    Wünschel, Markus; Leichtle, Ulf G; Leichtle, Carmen I; Walter, Christian; Mittag, Falk; Arlt, Eva; Suckel, Andreas

    2013-04-01

    Although mid- to long-term results after total ankle replacement have improved because of available second- and third-generation devices, failure of total ankle replacement is still more common compared with total hip replacement and total knee replacement. The portfolio of available total ankle replacement revision component options is small. Furthermore, the bone stock of the tibiotalar region is scarce making it difficult and in some situations impossible to perform revision total ankle replacement. In these cases tibiotalar and tibiotalocalcaneal fusions are valuable options. This article describes which surgical procedures should be performed depending on the initial situation and gives detailed advice on surgical technique, postoperative care, and clinical results.

  3. Wavelet analysis of fusion plasma transients

    SciTech Connect

    Dose, V.; Venus, G.; Zohm, H.

    1997-02-01

    Analysis of transient signals in the diagnostic of fusion plasmas often requires the simultaneous consideration of their time and frequency information. The newly emerging technique of wavelet analysis contains both time and frequency domains. Therefore it can be a valuable tool for the analysis of transients. In this paper the basic method of wavelet analysis is described. As an example, wavelet analysis is applied to the well-known phenomena of mode locking and fishbone instability. The results quantify the current qualitative understanding of these events in terms of instantaneous frequencies and amplitudes and encourage applications of the method to other problems. {copyright} {ital 1997 American Institute of Physics.}

  4. Fusion heating technology

    SciTech Connect

    Cole, A.J.

    1982-06-01

    John Lawson established the criterion that in order to produce more energy from fusion than is necessary to heat the plasma and replenish the radiation losses, a minimum value for both the product of plasma density and confinement time t, and the temperature must be achieved. There are two types of plasma heating: neutral beam and electromagnetic wave heating. A neutral beam system is shown. Main development work on negative ion beamlines has focused on the difficult problem of the production of high current sources. The development of a 30 keV-1 ampere multisecond source module is close to being accomplished. In electromagnetic heating, the launcher, which provides the means of coupling the power to the plasma, is most important. The status of heating development is reviewed. Electron cyclotron resonance heating (ECRH), lower hybrid heating (HHH), and ion cyclotron resonance heating (ICRH) are reviewed.

  5. Fusion Power Demonstration III

    SciTech Connect

    Lee, J.D.

    1985-07-01

    This is the third in the series of reports covering the Fusion Power Demonstration (FPD) design study. This volume considers the FPD-III configuration that incorporates an octopole end plug. As compared with the quadrupole end-plugged designs of FPD-I and FPD-II, this octopole configuration reduces the number of end cell magnets and shortens the minimum ignition length of the central cell. The end-cell plasma length is also reduced, which in turn reduces the size and cost of the end cell magnets and shielding. As a contiuation in the series of documents covering the FPD, this report does not stand alone as a design description of FPD-III. Design details of FPD-III subsystems that do not differ significantly from those of the FPD-II configuration are not duplicated in this report.

  6. Fusion pumped light source

    DOEpatents

    Pappas, Daniel S.

    1989-01-01

    Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

  7. Fusion pumped laser

    DOEpatents

    Pappas, Daniel S.

    1989-01-01

    Apparatus is provided for generating energy in the form of laser radiation. A tokamak fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The tokamak design provides a temperature and a magnetic field which is effective to generate a neutron flux of at least 10.sup.15 neutrons/cm.sup.2.s. A conversion medium receives neutrons from the tokamak and converts the high-energy neutrons to an energy source with an intensity and an energy effective to excite a preselected lasing medium. The energy source typically comprises fission fragments, alpha particles, and radiation from a fission event. A lasing medium is provided which is responsive to the energy source to generate a population inversion which is effective to support laser oscillations for generating output radiation.

  8. Multiple shell fusion targets

    DOEpatents

    Lindl, J.D.; Bangerter, R.O.

    1975-10-31

    Multiple shell fusion targets for use with electron beam and ion beam implosion systems are described. The multiple shell targets are of the low-power type and use a separate relatively low Z, low density ablator at large radius for the outer shell, which reduces the focusing and power requirements of the implosion system while maintaining reasonable aspect ratios. The targets use a high Z, high density pusher shell placed at a much smaller radius in order to obtain an aspect ratio small enough to protect against fluid instability. Velocity multiplication between these shells further lowers the power requirements. Careful tuning of the power profile and intershell density results in a low entropy implosion which allows breakeven at low powers. For example, with ion beams as a power source, breakeven at 10-20 Terrawatts with 10 MeV alpha particles for imploding a multiple shell target can be accomplished.

  9. Fusion reactor pumped laser

    DOEpatents

    Jassby, D.L.

    1987-09-04

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

  10. Microwave superheaters for fusion

    SciTech Connect

    Campbell, R.B.; Hoffman, M.A.; Logan, B.G.

    1987-10-16

    The microwave superheater uses the synchrotron radiation from a thermonuclear plasma to heat gas seeded with an alkali metal to temperatures far above the temperature of material walls. It can improve the efficiency of the Compact Fusion Advanced Rankine (CFAR) cycle described elsewhere in these proceedings. For a proof-of-principle experiment using helium, calculations show that a gas superheat ..delta..T of 2000/sup 0/K is possible when the wall temperature is maintained at 1000/sup 0/K. The concept can be scaled to reactor grade systems. Because of the need for synchrotron radiation, the microwave superheater is best suited for use with plasmas burning an advanced fuel such as D-/sup 3/He. 5 refs.

  11. Prospects for bubble fusion

    SciTech Connect

    Nigmatulin, R.I.; Lahey, R.T. Jr.

    1995-09-01

    In this paper a new method for the realization of fusion energy is presented. This method is based on the superhigh compression of a gas bubble (deuterium or deuterium/thritium) in heavy water or another liquid. The superhigh compression of a gas bubble in a liquid is achieved through forced non-linear, non-periodic resonance oscillations using moderate amplitudes of forcing pressure. The key feature of this new method is a coordination of the forced liquid pressure change with the change of bubble volume. The corresponding regime of the bubble oscillation has been called {open_quotes}basketball dribbling (BD) regime{close_quotes}. The analytical solution describing this process for spherically symmetric bubble oscillations, neglecting dissipation and compressibility of the liquid, has been obtained. This solution shown no limitation on the supercompression of the bubble and the corresponding maximum temperature. The various dissipation mechanisms, including viscous, conductive and radiation heat losses have been considered. It is shown that in spite of these losses it is possible to achieve very high gas bubble temperatures. This because the time duration of the gas bubble supercompression becomes very short when increasing the intensity of compression, thus limiting the energy losses. Significantly, the calculated maximum gas temperatures have shown that nuclear fusion may be possible. First estimations of the affect of liquid compressibility have been made to determine possible limitations on gas bubble compression. The next step will be to investigate the role of interfacial instability and breaking down of the bubble, shock wave phenomena around and in the bubble and mutual diffusion of the gas and the liquid.

  12. Soldier systems sensor fusion

    NASA Astrophysics Data System (ADS)

    Brubaker, Kathryne M.

    1998-08-01

    This paper addresses sensor fusion and its applications in emerging Soldier Systems integration and the unique challenges associated with the human platform. Technology that,provides the highest operational payoff in a lightweight warrior system must not only have enhanced capabilities, but have low power components resulting in order of magnitude reductions coupled with significant cost reductions. These reductions in power and cost will be achieved through partnership with industry and leveraging of commercial state of the art advancements in microelectronics and power sources. As new generation of full solution fire control systems (to include temperature, wind and range sensors) and target acquisition systems will accompany a new generation of individual combat weapons and upgrade existing weapon systems. Advanced lightweight thermal, IR, laser and video senors will be used for surveillance, target acquisition, imaging and combat identification applications. Multifunctional sensors will provide embedded training features in combat configurations allowing the soldier to 'train as he fights' without the traditional cost and weight penalties associated with separate systems. Personal status monitors (detecting pulse, respiration rate, muscle fatigue, core temperature, etc.) will provide commanders and highest echelons instantaneous medical data. Seamless integration of GPS and dead reckoning (compass and pedometer) and/or inertial sensors will aid navigation and increase position accuracy. Improved sensors and processing capability will provide earlier detection of battlefield hazards such as mines, enemy lasers and NBC (nuclear, biological, chemical) agents. Via the digitized network the situational awareness database will automatically be updated with weapon, medical, position and battlefield hazard data. Soldier Systems Sensor Fusion will ultimately establish each individual soldier as an individual sensor on the battlefield.

  13. Embedding the results of focussed Bayesian fusion into a global context

    NASA Astrophysics Data System (ADS)

    Sander, Jennifer; Heizmann, Michael

    2014-05-01

    Bayesian statistics offers a well-founded and powerful fusion methodology also for the fusion of heterogeneous information sources. However, except in special cases, the needed posterior distribution is not analytically derivable. As consequence, Bayesian fusion may cause unacceptably high computational and storage costs in practice. Local Bayesian fusion approaches aim at reducing the complexity of the Bayesian fusion methodology significantly. This is done by concentrating the actual Bayesian fusion on the potentially most task relevant parts of the domain of the Properties of Interest. Our research on these approaches is motivated by an analogy to criminal investigations where criminalists pursue clues also only locally. This publication follows previous publications on a special local Bayesian fusion technique called focussed Bayesian fusion. Here, the actual calculation of the posterior distribution gets completely restricted to a suitably chosen local context. By this, the global posterior distribution is not completely determined. Strategies for using the results of a focussed Bayesian analysis appropriately are needed. In this publication, we primarily contrast different ways of embedding the results of focussed Bayesian fusion explicitly into a global context. To obtain a unique global posterior distribution, we analyze the application of the Maximum Entropy Principle that has been shown to be successfully applicable in metrology and in different other areas. To address the special need for making further decisions subsequently to the actual fusion task, we further analyze criteria for decision making under partial information.

  14. Gene fusions with lacZ by duplication insertion in the radioresistant bacterium Deinococcus radiodurans

    SciTech Connect

    Lennon, E.; Minton, K.W. )

    1990-06-01

    Deinococcus radiodurans is the most-studied species of a eubacterial family characterized by extreme resistance to DNA damage. We have focused on developing molecular biological techniques to investigate the genetics of this organism. We report construction of lacZ gene fusions by a method involving both in vitro splicing and the natural transformation of D. radiodurans. Numerous fusion strains were identified by expression of beta-galactosidase. Among these fusion strains, several were inducible by exposure to the DNA-damaging agent mitomycin C, and four of the inducible fusion constructs were cloned in Escherichia coli. Hybridization studies indicate that one of the damage-inducible genes contains a sequence reiterated throughout the D. radiodurans chromosome. Survival measurements show that two of the fusion strains have increased sensitivity to mitomycin C, suggesting that the fusions within these strains inactivate repair functions.

  15. Feature and score fusion based multiple classifier selection for iris recognition.

    PubMed

    Islam, Md Rabiul

    2014-01-01

    The aim of this work is to propose a new feature and score fusion based iris recognition approach where voting method on Multiple Classifier Selection technique has been applied. Four Discrete Hidden Markov Model classifiers output, that is, left iris based unimodal system, right iris based unimodal system, left-right iris feature fusion based multimodal system, and left-right iris likelihood ratio score fusion based multimodal system, is combined using voting method to achieve the final recognition result. CASIA-IrisV4 database has been used to measure the performance of the proposed system with various dimensions. Experimental results show the versatility of the proposed system of four different classifiers with various dimensions. Finally, recognition accuracy of the proposed system has been compared with existing N hamming distance score fusion approach proposed by Ma et al., log-likelihood ratio score fusion approach proposed by Schmid et al., and single level feature fusion approach proposed by Hollingsworth et al.

  16. Feature-based multiexposure image-sequence fusion with guided filter and image alignment

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Du, Junping; Zhang, Zhenhong

    2015-01-01

    Multiexposure fusion images have a higher dynamic range and reveal more details than a single captured image of a real-world scene. A clear and intuitive feature-based fusion technique for multiexposure image sequences is conceptually proposed. The main idea of the proposed method is to combine three image features [phase congruency (PC), local contrast, and color saturation] to obtain weight maps of the images. Then, the weight maps are further refined using a guided filter which can improve their accuracy. The final fusion result is constructed using the weighted sum of the source image sequence. In addition, for multiexposure image-sequence fusion involving dynamic scenes containing moving objects, ghost artifacts can easily occur if fusion is directly performed. Therefore, an image-alignment method is first used to adjust the input images to correspond to a reference image, after which fusion is performed. Experimental results demonstrate that the proposed method has a superior performance compared to the existing methods.

  17. LiWall Fusion - The New Concept of Magnetic Fusion

    SciTech Connect

    L.E. Zakharov

    2011-01-12

    Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.

  18. Image fusion for dynamic contrast enhanced magnetic resonance imaging

    PubMed Central

    Twellmann, Thorsten; Saalbach, Axel; Gerstung, Olaf; Leach, Martin O; Nattkemper, Tim W

    2004-01-01

    Background Multivariate imaging techniques such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) have been shown to provide valuable information for medical diagnosis. Even though these techniques provide new information, integrating and evaluating the much wider range of information is a challenging task for the human observer. This task may be assisted with the use of image fusion algorithms. Methods In this paper, image fusion based on Kernel Principal Component Analysis (KPCA) is proposed for the first time. It is demonstrated that a priori knowledge about the data domain can be easily incorporated into the parametrisation of the KPCA, leading to task-oriented visualisations of the multivariate data. The results of the fusion process are compared with those of the well-known and established standard linear Principal Component Analysis (PCA) by means of temporal sequences of 3D MRI volumes from six patients who took part in a breast cancer screening study. Results The PCA and KPCA algorithms are able to integrate information from a sequence of MRI volumes into informative gray value or colour images. By incorporating a priori knowledge, the fusion process can be automated and optimised in order to visualise suspicious lesions with high contrast to normal tissue. Conclusion Our machine learning based image fusion approach maps the full signal space of a temporal DCE-MRI sequence to a single meaningful visualisation with good tissue/lesion contrast and thus supports the radiologist during manual image evaluation. PMID:15494072

  19. Review of LIBS application in nuclear fusion technology

    NASA Astrophysics Data System (ADS)

    Li, Cong; Feng, Chun-Lei; Oderji, Hassan Yousefi; Luo, Guang-Nan; Ding, Hong-Bin

    2016-12-01

    Nuclear fusion has enormous potential to greatly affect global energy production. The next-generation tokamak ITER, which is aimed at demonstrating the feasibility of energy production from fusion on a commercial scale, is under construction. Wall erosion, material transport, and fuel retention are known factors that shorten the lifetime of ITER during tokamak operation and give rise to safety issues. These factors, which must be understood and solved early in the process of fusion reactor design and development, are among the most important concerns for the community of plasma-wall interaction researchers. To date, laser techniques are among the most promising methods that can solve these open ITER issues, and laser-induced breakdown spectroscopy (LIBS) is an ideal candidate for online monitoring of the walls of current and next-generation (such as ITER) fusion devices. LIBS is a widely used technique for various applications. It has been considered recently as a promising tool for analyzing plasma-facing components in fusion devices in situ. This article reviews the experiments that have been performed by many research groups to assess the feasibility of LIBS for this purpose.

  20. On the path to fusion energy. Teller lecture 2005

    NASA Astrophysics Data System (ADS)

    Tabak, M.

    2007-08-01

    There is a need to develop alternate energy sources in the coming century because fossil fuels will become depleted and their use may lead to global climate change. Inertial fusion can become such an energy source, but significant progress must be made before its promise is realized. The high-density approach to inertial fusion suggested by Nuckolls et al. leads reaction chambers compatible with civilian power production. Methods to achieve the good control of hydrodynamic stability and implosion symmetry required to achieve these high fuel densities will be discussed. Fast Ignition, a technique that achieves fusion ignition by igniting fusion fuel after it is assembled, will be described along with its gain curves. Fusion costs of energy for conventional hotspot ignition will be compared with those of Fast Ignition and their capital costs compared with advanced fission plants. Finally, techniques that may improve possible Fast Ignition gains by an order of magnitude and reduce driver scales by an order of magnitude below conventional ignition requirements are described.

  1. Oxyhydrogen burner for low-temperature flame fusion

    NASA Astrophysics Data System (ADS)

    Ueltzen, M.; Brüggenkamp, T.; Franke, M.; Altenburg, H.

    1993-04-01

    An oxyhydrogen burner as described in this article enables the growth of crystals by Verneuil's technique at temperatures of about 1000 °C. The powder fed to the crystal passes along a low-temperature pathway through the flame, so that evaporation of volatile components is prevented. Low-temperature flame fusion of superconducting Y-Ba-cuprate is reported.

  2. Analytical performance evaluation for autonomous sensor fusion

    NASA Astrophysics Data System (ADS)

    Chang, K. C.

    2008-04-01

    A distributed data fusion system consists of a network of sensors, each capable of local processing and fusion of sensor data. There has been a great deal of work in developing distributed fusion algorithms applicable to a network centric architecture. Currently there are at least a few approaches including naive fusion, cross-correlation fusion, information graph fusion, maximum a posteriori (MAP) fusion, channel filter fusion, and covariance intersection fusion. However, in general, in a distributed system such as the ad hoc sensor networks, the communication architecture is not fixed. Each node has knowledge of only its local connectivity but not the global network topology. In those cases, the distributed fusion algorithm based on information graph type of approach may not scale due to its requirements to carry long pedigree information for decorrelation. In this paper, we focus on scalable fusion algorithms and conduct analytical performance evaluation to compare their performance. The goal is to understand the performance of those algorithms under different operating conditions. Specifically, we evaluate the performance of channel filter fusion, Chernoff fusion, Shannon Fusion, and Battachayya fusion algorithms. We also compare their results to NaÃve fusion and "optimal" centralized fusion algorithms under a specific communication pattern.

  3. Fusion Simulation Project Workshop Report

    NASA Astrophysics Data System (ADS)

    Kritz, Arnold; Keyes, David

    2009-03-01

    The mission of the Fusion Simulation Project is to develop a predictive capability for the integrated modeling of magnetically confined plasmas. This FSP report adds to the previous activities that defined an approach to integrated modeling in magnetic fusion. These previous activities included a Fusion Energy Sciences Advisory Committee panel that was charged to study integrated simulation in 2002. The report of that panel [Journal of Fusion Energy 20, 135 (2001)] recommended the prompt initiation of a Fusion Simulation Project. In 2003, the Office of Fusion Energy Sciences formed a steering committee that developed a project vision, roadmap, and governance concepts [Journal of Fusion Energy 23, 1 (2004)]. The current FSP planning effort involved 46 physicists, applied mathematicians and computer scientists, from 21 institutions, formed into four panels and a coordinating committee. These panels were constituted to consider: Status of Physics Components, Required Computational and Applied Mathematics Tools, Integration and Management of Code Components, and Project Structure and Management. The ideas, reported here, are the products of these panels, working together over several months and culminating in a 3-day workshop in May 2007.

  4. Lights on: Dye dequenching reveals polymersome fusion with polymer, lipid and stealth lipid vesicles

    DOE PAGES

    Henderson, Ian M.; Collins, Aaron M.; Quintana, Hope A.; ...

    2015-12-13

    In this study, we develop a quantitative dye dequenching technique for the measurement of polymersome fusion, using it to characterize the salt mediated, mechanically-induced fusion of polymersomes with polymer, lipid, and so-called stealth lipid vesicles. While dye dequenching has been used to quantitatively explore liposome fusion in the past, this is the first use of dye dequenching to measure polymersome fusion of which we are aware. In addition to providing quantitative results, dye dequenching is ideal for detecting fusion in instances where DLS results would be ambiguous, such as low yield levels and size ranges outside the capabilities of DLS.more » The dye chosen for this study was a cyanine derivative, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR), which proved to provide excellent data on the extent of polymersome fusion. Using this technique, we have shown the limited fusion capabilities of polymersome/liposome heterofusion, notably DOPC vesicles fusing with polymersomes at half the efficiency of polymersome homofusion and DPPC vesicles showing virtually no fusion. In addition to these key heterofusion experiments, we determined the broad applicability of dye dequenching in measuring kinetic rates of polymersome fusion; and showed that even at elevated temperatures or over multiple weeks' time, no polymersome fusion occurred without agitation. Stealth liposomes formed from DPPC and PEO-functionalized lipid, however, fused with polymersomes and stealth liposomes with relatively high efficiency, lending support to our hypothesis that the response of the PEO corona to salt is a key factor in the fusion process. This last finding suggests that although the conjugation of PEO to lipids increases vesicle biocompatibility and enables their longer circulation times, it also renders the vesicles subject to destabilization under high salt and shear (e.g. in the circulatory system) that may lead to, in this case, fusion.« less

  5. Lights on: Dye dequenching reveals polymersome fusion with polymer, lipid and stealth lipid vesicles

    SciTech Connect

    Henderson, Ian M.; Collins, Aaron M.; Quintana, Hope A.; Montaño, Gabriel A.; Martinez, Julio A.; Paxton, Walter F.

    2015-12-13

    In this study, we develop a quantitative dye dequenching technique for the measurement of polymersome fusion, using it to characterize the salt mediated, mechanically-induced fusion of polymersomes with polymer, lipid, and so-called stealth lipid vesicles. While dye dequenching has been used to quantitatively explore liposome fusion in the past, this is the first use of dye dequenching to measure polymersome fusion of which we are aware. In addition to providing quantitative results, dye dequenching is ideal for detecting fusion in instances where DLS results would be ambiguous, such as low yield levels and size ranges outside the capabilities of DLS. The dye chosen for this study was a cyanine derivative, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR), which proved to provide excellent data on the extent of polymersome fusion. Using this technique, we have shown the limited fusion capabilities of polymersome/liposome heterofusion, notably DOPC vesicles fusing with polymersomes at half the efficiency of polymersome homofusion and DPPC vesicles showing virtually no fusion. In addition to these key heterofusion experiments, we determined the broad applicability of dye dequenching in measuring kinetic rates of polymersome fusion; and showed that even at elevated temperatures or over multiple weeks' time, no polymersome fusion occurred without agitation. Stealth liposomes formed from DPPC and PEO-functionalized lipid, however, fused with polymersomes and stealth liposomes with relatively high efficiency, lending support to our hypothesis that the response of the PEO corona to salt is a key factor in the fusion process. This last finding suggests that although the conjugation of PEO to lipids increases vesicle biocompatibility and enables their longer circulation times, it also renders the vesicles subject to destabilization under high salt and shear (e.g. in the circulatory system) that may lead to, in this case, fusion.

  6. Control of mechanically activated polymersome fusion: Factors affecting fusion

    DOE PAGES

    Henderson, Ian M.; Paxton, Walter F.

    2014-12-15

    Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the sizemore » of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.« less

  7. Control of mechanically activated polymersome fusion: Factors affecting fusion

    SciTech Connect

    Henderson, Ian M.; Paxton, Walter F.

    2014-12-15

    Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the size of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.

  8. Advanced fusion concepts: project summaries

    SciTech Connect

    1980-12-01

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. Information is given for each of the following programs: (1) reverse-field pinch, (2) compact toroid, (3) alternate fuel/multipoles, (4) stellarator/torsatron, (5) linear magnetic fusion, (6) liners, and (7) Tormac. (MOW)

  9. Effect of aniseikonia on fusion.

    PubMed

    Sharma, P; Prakash, P

    1991-01-01

    Physiological aniseikonia is the basis of stereopsis but beyond certain limits it becomes an obstacle to fusion. It is not well established as to how much aniseikonia can be tolerated by the fusional mechanism. Different tests under different testing conditions have given a wide range of variation. On the synoptophore we had observed tolerance upto 35% aniseikonia in some cases. Under more physiological conditions on a polaroid dissociation stereoprojector we observed lesser baseline fusional vergences but tolerance in about 70% of the cases upto 30% aniseikonia while 25% could tolerate even 35% aniseikonia. However we realise that these indicate the maximal potential and not the symptom free tolerable limits.

  10. The path to fusion power†

    PubMed Central

    Smith, Chris Llewellyn; Cowley, Steve

    2010-01-01

    The promise, status and challenges of developing fusion power are outlined. The key physics and engineering principles are described and recent progress quantified. As the successful demonstration of 16 MW of fusion in 1997 in the Joint European Torus showed, fusion works. The central issue is therefore to make it work reliably and economically on the scale of a power station. We argue that to meet this challenge in 30 years we must follow the aggressive programme known as the ‘Fast Track to Fusion’. This programme is described in some detail. PMID:20123748

  11. A curvelet transform approach for the fusion of MR and CT images

    NASA Astrophysics Data System (ADS)

    Ali, F. E.; El-Dokany, I. M.; Saad, A. A.; Abd El-Samie, F. E.

    2010-02-01

    There are several medical imaging techniques such as the magnetic resonance (MR) and the computed tomography (CT) techniques. Both techniques give sophisticated characteristics of the region to be imaged. This paper proposes a curvelet based approach for fusing MR and CT images to obtain images with as much detail as possible, for the sake of medical diagnosis. This approach is based on the application of the additive wavelet transform (AWT) on both images and the segmentation of their detail planes into small overlapping tiles. The ridgelet transform is then applied on each of these tiles, and the fusion process is performed on the ridgelet transforms of the tiles. Simulation results show the superiority of the proposed curvelet fusion approach to the traditional fusion techniques like the multiresolution discrete wavelet transform (DWT) technique and the principal component analysis (PCA) technique. The fusion of MR and CT images in the presence of noise is also studied and the results reveal that unlike the DWT fusion technique, the proposed curvelet fusion approach doesn't require denoising.

  12. Multimodality Image Fusion and Planning and Dose Delivery for Radiation Therapy

    SciTech Connect

    Saw, Cheng B. Chen Hungcheng; Beatty, Ron E.; Wagner, Henry

    2008-07-01

    Image-guided radiation therapy (IGRT) relies on the quality of fused images to yield accurate and reproducible patient setup prior to dose delivery. The registration of 2 image datasets can be characterized as hardware-based or software-based image fusion. Hardware-based image fusion is performed by hybrid scanners that combine 2 distinct medical imaging modalities such as positron emission tomography (PET) and computed tomography (CT) into a single device. In hybrid scanners, the patient maintains the same position during both studies making the fusion of image data sets simple. However, it cannot perform temporal image registration where image datasets are acquired at different times. On the other hand, software-based image fusion technique can merge image datasets taken at different times or with different medical imaging modalities. Software-based image fusion can be performed either manually, using landmarks, or automatically. In the automatic image fusion method, the best fit is evaluated using mutual information coefficient. Manual image fusion is typically performed at dose planning and for patient setup prior to dose delivery for IGRT. The fusion of orthogonal live radiographic images taken prior to dose delivery to digitally reconstructed radiographs will be presented. Although manual image fusion has been routinely used, the use of fiducial markers has shortened the fusion time. Automated image fusion should be possible for IGRT because the image datasets are derived basically from the same imaging modality, resulting in further shortening the fusion time. The advantages and limitations of both hardware-based and software-based image fusion methodologies are discussed.

  13. Fusion of Geophysical Images in the Study of Archaeological Sites

    NASA Astrophysics Data System (ADS)

    Karamitrou, A. A.; Petrou, M.; Tsokas, G. N.

    2011-12-01

    This paper presents results from different fusion techniques between geophysical images from different modalities in order to combine them into one image with higher information content than the two original images independently. The resultant image will be useful for the detection and mapping of buried archaeological relics. The examined archaeological area is situated in Kampana site (NE Greece) near the ancient theater of Maronia city. Archaeological excavations revealed an ancient theater, an aristocratic house and the temple of the ancient Greek God Dionysus. Numerous ceramic objects found in the broader area indicated the probability of the existence of buried urban structure. In order to accurately locate and map the latter, geophysical measurements performed with the use of the magnetic method (vertical gradient of the magnetic field) and of the electrical method (apparent resistivity). We performed a semi-stochastic pixel based registration method between the geophysical images in order to fine register them by correcting their local spatial offsets produced by the use of hand held devices. After this procedure we applied to the registered images three different fusion approaches. Image fusion is a relatively new technique that not only allows integration of different information sources, but also takes advantage of the spatial and spectral resolution as well as the orientation characteristics of each image. We have used three different fusion techniques, fusion with mean values, with wavelets by enhancing selected frequency bands and curvelets giving emphasis at specific bands and angles (according the expecting orientation of the relics). In all three cases the fused images gave significantly better results than each of the original geophysical images separately. The comparison of the results of the three different approaches showed that the fusion with the use of curvelets, giving emphasis at the features' orientation, seems to give the best fused image

  14. Towards the detection of magnetohydrodynamics instabilities in a fusion reactor

    NASA Astrophysics Data System (ADS)

    Sozzi, Carlo; Alessi, E.; Figini, L.; Galperti, G.; Lazzaro, E.; Marchetto, C.; Mosconi, M.; Nowak, S.

    2014-08-01

    Various active control strategies of the Neoclassical tearing modes are being studied in present tokamaks using established detection techniques which exploit the measurements of the fluctuations of the magnetic field and of the electron temperature. The extrapolation of such techniques to the fusion reactor scale is made problematic by the neutron fluence and by the physics conditions related to the high plasma temperature and density which degrade the spatial resolution of such measurements.

  15. Characterization of fusion genes and the significantly expressed fusion isoforms in breast cancer by hybrid sequencing.

    PubMed

    Weirather, Jason L; Afshar, Pegah Tootoonchi; Clark, Tyson A; Tseng, Elizabeth; Powers, Linda S; Underwood, Jason G; Zabner, Joseph; Korlach, Jonas; Wong, Wing Hung; Au, Kin Fai

    2015-10-15

    We developed an innovative hybrid sequencing approach, IDP-fusion, to detect fusion genes, determine fusion sites and identify and quantify fusion isoforms. IDP-fusion is the first method to study gene fusion events by integrating Third Generation Sequencing long reads and Second Generation Sequencing short reads. We applied IDP-fusion to PacBio data and Illumina data from the MCF-7 breast cancer cells. Compared with the existing tools, IDP-fusion detects fusion genes at higher precision and a very low false positive rate. The results show that IDP-fusion will be useful for unraveling the complexity of multiple fusion splices and fusion isoforms within tumorigenesis-relevant fusion genes.

  16. Wrist arthrodesis in rheumatoid arthritis. A comparison of two methods of fusion.

    PubMed

    Howard, A C; Stanley, D; Getty, C J

    1993-06-01

    17 wrists were arthrodesed in 13 patients with severe wrist disease due to rheumatoid arthritis. Eight fusions in seven patients were carried out using a radial sliding bone graft technique whilst nine fusions in nine patients were undertaken using a third tubular AO plate. Subjective, objective and radiological assessments confirmed the efficacy of both methods but indicated a shorter period of post-operative immobilization for patients treated using the AO plate fixation technique. The importance of this is discussed.

  17. Osmotic control of bilayer fusion.

    PubMed Central

    Fisher, L R; Parker, N S

    1984-01-01

    We have used photography and capacitance measurement to monitor the steps in the interaction and eventual fusion of optically black lipid bilayers (BLMs), hydrostatically bulged to approximately hemispherical shape and pushed together mechanically. A necessary first step is drainage of aqueous solution from between the bilayers to allow close contact of the bilayers. The drainage can be controlled by varying the osmotic difference across the bilayers. If the differences are such as to remove water from between the bilayers, fusion occurs after a time that depends on the net osmotic difference and the area of contact. If there is an osmotic flow of water into the space between the bilayers, fusion never occurs. In the fusion process, a single central bilayer forms from the original apposed pair of bilayers. The central bilayer may later burst to allow mixing of the two volumes originally bounded by the separate bilayer; the topological equivalent of exocytosis. Images FIGURE 2 PMID:6541065

  18. Overview of fusion reactor safety

    SciTech Connect

    Cohen, S.; Crocker, J.G.

    1981-01-01

    Use of deuterium-tritium burning fusion reactors requires examination of several major safety and environmental issues: (1) tritium inventory control, (2) neutron activation of structural materials, fluid streams and reactor hall environment, (3) release of radioactivity from energy sources including lithium spill reactions, superconducting magnet stored energy release, and plasma disruptions, (4) high magnetic and electromagnetic fields associated with fusion reactor superconducting magnets and radio frequency heating devices, and (5) handling and disposal of radioactive waste. Early recognition of potential safety problems with fusion reactors provides the opportunity for improvement in design and materials to eliminate or greatly reduce these problems. With an early start in this endeavor, fusion should be among the lower risk technologies for generation of commercial electrical power.

  19. Pulsed Power Driven Fusion Energy

    SciTech Connect

    SLUTZ,STEPHEN A.

    1999-11-22

    Pulsed power is a robust and inexpensive technology for obtaining high powers. Considerable progress has been made on developing light ion beams as a means of transporting this power to inertial fusion capsules. However, further progress is hampered by the lack of an adequate ion source. Alternatively, z-pinches can efficiently convert pulsed power into thermal radiation, which can be used to drive an inertial fusion capsule. However, a z-pinch driven fusion explosion will destroy a portion of the transmission line that delivers the electrical power to the z-pinch. They investigate several options for providing standoff for z-pinch driven fusion. Recyclable Transmission Lines (RTLs) appear to be the most promising approach.

  20. Radionuclide imaging of rare congenital renal fusion anomalies.

    PubMed

    Volkan, Bilge; Ceylan, Emel; Kiratli, Pinar Ozgen

    2003-03-01

    Demonstration of a congenital renal anomaly plays an important role in the treatment of patients with renal infection. These patients are prone to infections because of coexisting urinary tract anomalies such as duplicated ureter, ureter opening anomalies, and urinary stasis. Assessment of renal parenchymal damage resulting from acute or chronic renal infection is the primary indication for radionuclide imaging with Tc-99m DMSA. In addition, this technique allows congenital anomalies to be identified. The authors review congenital renal fusion anomalies identified in children through Tc-99m DMSA imaging. They conclude that Tc-99m DMSA imaging can reveal important diagnostic information about various congenital anomalies, including fusion anomalies.

  1. World progress toward fusion energy

    NASA Astrophysics Data System (ADS)

    Clarke, J. F.

    1989-09-01

    This paper will describe the progress in fusion science and technology from a world perspective. The paper will cover the current technical status, including the understanding of fusion's economic, environmental, and safety characteristics. Fusion experiments are approaching the energy breakeven condition. An energy gain (Q) of 30 percent has been achieved in magnetic confinement experiments. In addition, temperatures required for an ignited plasma (Ti = 32 KeV) and energy confinements (about 75 percent of that required for ignition) have been achieved in separate experiments. Two major facilities have started the experimental campaign to extend these results and achieve or exceed Q = 1 plasma conditions by 1990. Inertial confinement fusion experiments are also approaching thermonuclear conditions and have achieved a compression factor 100-200 times liquid D-T. Because of this progress, the emphasis in fusion research is turning toward questions of engineering feasibility. Leaders of the major fusion R and D programs in the European Community (EC), Japan, the United States, and the U.S.S.R. have agreed on the major steps that are needed to reach the point at which a practical fusion system can be designed. The United States is preparing for an experiment to address the last unexplored scientific issue, the physics of an ignited plasma, during the late 1990's. The EC, Japan, U.S.S.R., and the United States have joined together under the auspices of the International Atomic Energy Agency (IAEA) to jointly design and prepare the validating R&D for an international facility, the International Thermonuclear Experimental Reactor (ITER), to address all the remaining scientific issues and to explore the engineering technology of fusion around the turn of the century.

  2. Cold fusion verification

    NASA Astrophysics Data System (ADS)

    North, M. H.; Mastny, G. F.; Wesley, E. J.

    1991-03-01

    The objective of this work to verify and reproduce experimental observations of Cold Nuclear Fusion (CNF), as originally reported in 1989. The method was to start with the original report and add such additional information as became available to build a set of operational electrolytic CNF cells. Verification was to be achieved by first observing cells for neutron production, and for those cells that demonstrated a nuclear effect, careful calorimetric measurements were planned. The authors concluded, after laboratory experience, reading published work, talking with others in the field, and attending conferences, that CNF probably is chimera and will go the way of N-rays and polywater. The neutron detector used for these tests was a completely packaged unit built into a metal suitcase that afforded electrostatic shielding for the detectors and self-contained electronics. It was battery-powered, although it was on charge for most of the long tests. The sensor element consists of He detectors arranged in three independent layers in a solid moderating block. The count from each of the three layers as well as the sum of all the detectors were brought out and recorded separately. The neutron measurements were made with both the neutron detector and the sample tested in a cave made of thick moderating material that surrounded the two units on the sides and bottom.

  3. Prospects for Tokamak Fusion Reactors

    SciTech Connect

    Sheffield, J.; Galambos, J.

    1995-04-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant.

  4. Tritium accountancy in fusion systems

    SciTech Connect

    Klein, J.E.; Clark, E.A.; Harvel, C.D.; Farmer, D.A.; Tovo, L.L.; Poore, A.S.; Moore, M.L.

    2015-03-15

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MCA) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MCA requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBA) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material sub-accounts (MSA) are established along with key measurement points (KMP) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSA. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breeding, burn-up, and retention of tritium in the fusion device. The concept of 'net' tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines. (authors)

  5. TRITIUM ACCOUNTANCY IN FUSION SYSTEMS

    SciTech Connect

    Klein, J. E.; Farmer, D. A.; Moore, M. L.; Tovo, L. L.; Poore, A. S.; Clark, E. A.; Harvel, C. D.

    2014-03-06

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MC&A) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MC&A requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBAs) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material subaccounts (MSAs) are established along with key measurement points (KMPs) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSAs. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breading, burn-up, and retention of tritium in the fusion device. The concept of “net” tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines.

  6. Multiview fusion for activity recognition using deep neural networks

    NASA Astrophysics Data System (ADS)

    Kavi, Rahul; Kulathumani, Vinod; Rohit, Fnu; Kecojevic, Vlad

    2016-07-01

    Convolutional neural networks (ConvNets) coupled with long short term memory (LSTM) networks have been recently shown to be effective for video classification as they combine the automatic feature extraction capabilities of a neural network with additional memory in the temporal domain. This paper shows how multiview fusion can be applied to such a ConvNet LSTM architecture. Two different fusion techniques are presented. The system is first evaluated in the context of a driver activity recognition system using data collected in a multicamera driving simulator. These results show significant improvement in accuracy with multiview fusion and also show that deep learning performs better than a traditional approach using spatiotemporal features even without requiring any background subtraction. The system is also validated on another publicly available multiview action recognition dataset that has 12 action classes and 8 camera views.

  7. Study on Information Fusion Based Check Recognition System

    NASA Astrophysics Data System (ADS)

    Wang, Dong

    Automatic check recognition techniques play an important role in financial systems, especially in risk management. This paper presents a novel check recognition system based on multi-cue information fusion theory. For Chinese bank check, the amount can be independently determined by legal amount, courtesy amount, or E13B code. The check recognition algorithm consists of four steps: preprocessing, check layout analysis, segmentation and recognition, and information fusion. For layout analysis, an adaptive template matching algorithm is presented to locate the target recognition regions on the check. The hidden markov model is used to segment and recognize legal amount. Courtesy and E13B code are recognized by artificial neural network method, respectively. Finally, D-S evidence theory is then introduced to fuse above three recognition results for better recognition performance. Experimental results demonstrate that the system can robustly recognize checks and the information fusion based algorithm improves the recognition rate by 5~10 percent.

  8. Advances in U.S. Heavy Ion Fusion Science

    SciTech Connect

    Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Cohen, R.H.; Coleman, J.E.; Davidson, R.C.; Efthimion, P.C.; Friedman, A.; Gilson, E.P.; Grisham, L.R.; Grote, D.P.; Henestroza, E.; Kaganovich, I.D.; Kireeff-Covo, M.; Lee, E.P.; Leitner, M.A.; Lund, S.M.; Molvik, A.W.; Ni, P.; Perkins, L. J.; Qin, H.; Roy, P.K.; Sefkow, A.B.; Seidl, P.A.; Startsev, E.A.; Waldron, W.L.

    2007-09-01

    During the past two years, the US heavy ion fusion science program has made significant experimental and theoretical progress in simultaneous transverse and longitudinal beam compression, ion-beam-driven warm dense matter targets, high-brightness beam transport, advanced theory and numerical simulations, and heavy ion target physics for fusion. First experiments combining radial and longitudinal compression {pi} of intense ion beams propagating through background plasma resulted in on-axis beam densities increased by 700X at the focal plane. With further improvements planned in 2008, these results enable initial ion beam target experiments in warm dense matter to begin next year. They are assessing how these new techniques apply to higher-gain direct-drive targets for inertial fusion energy.

  9. Advances in U.S. Heavy Ion Fusion Science

    SciTech Connect

    Barnard, JJ; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Cohen, R.H.; Coleman, J.E.; Davidson, R.C.; Efthimion, P.C.; Friedman, A.; Gilson, E.P.; Grisham, L.R.; Grote, D.P.; Henestroza, E.; Kaganovich, I.D.; Kireeff-Covo, M.; Lee, E.P.; Leitner, M.A.; Lund, S.M.; Molvik, A.W.; Ni, P.; Perkins, L.J.; Qin, H.; Roy, P.K.; Sefkow, A.B.; Seidl, P.A.; Startsev, E.A.; Waldron, W.L.

    2007-09-03

    During the past two years, the US heavy ion fusion science program has made significant experimental and theoretical progress in simultaneous transverse and longitudinal beam compression, ion-beam-driven warm dense matter targets, high-brightness beam transport, advanced theory and numerical simulations, and heavy ion target physics for fusion. First experiments combining radial and longitudinal compression {pi} of intense ion beams propagating through background plasma resulted in on-axis beam densities increased by 700X at the focal plane. With further improvements planned in 2008, these results enable initial ion beam target experiments in warm dense matter to begin next year. They are assessing how these new techniques apply to higher-gain direct-drive targets for inertial fusion energy.

  10. Affordable non-traditional source data mining for context assessment to improve distributed fusion system robustness

    NASA Astrophysics Data System (ADS)

    Bowman, Christopher; Haith, Gary; Steinberg, Alan; Morefield, Charles; Morefield, Michael

    2013-05-01

    This paper describes methods to affordably improve the robustness of distributed fusion systems by opportunistically leveraging non-traditional data sources. Adaptive methods help find relevant data, create models, and characterize the model quality. These methods also can measure the conformity of this non-traditional data with fusion system products including situation modeling and mission impact prediction. Non-traditional data can improve the quantity, quality, availability, timeliness, and diversity of the baseline fusion system sources and therefore can improve prediction and estimation accuracy and robustness at all levels of fusion. Techniques are described that automatically learn to characterize and search non-traditional contextual data to enable operators integrate the data with the high-level fusion systems and ontologies. These techniques apply the extension of the Data Fusion & Resource Management Dual Node Network (DNN) technical architecture at Level 4. The DNN architecture supports effectively assessment and management of the expanded portfolio of data sources, entities of interest, models, and algorithms including data pattern discovery and context conformity. Affordable model-driven and data-driven data mining methods to discover unknown models from non-traditional and `big data' sources are used to automatically learn entity behaviors and correlations with fusion products, [14 and 15]. This paper describes our context assessment software development, and the demonstration of context assessment of non-traditional data to compare to an intelligence surveillance and reconnaissance fusion product based upon an IED POIs workflow.

  11. Successful anterior fusion following posterior cervical fusion for revision of anterior cervical discectomy and fusion pseudarthrosis.

    PubMed

    Elder, Benjamin D; Sankey, Eric W; Theodros, Debebe; Bydon, Mohamad; Goodwin, C Rory; Lo, Sheng-Fu; Kosztowski, Thomas A; Belzberg, Allen J; Wolinsky, Jean-Paul; Sciubba, Daniel M; Gokaslan, Ziya L; Bydon, Ali; Witham, Timothy F

    2016-02-01

    Pseudarthrosis occurs after approximately 2-20% of anterior cervical discectomy and fusion (ACDF) procedures; it is unclear if posterior or anterior revision should be pursued. In this study, we retrospectively evaluate the outcomes in 22 patients with pseudarthrosis following ACDF and revision via posterior cervical fusion (PCF). Baseline demographics, preoperative symptoms, operative data, time to fusion failure, symptoms of pseudarthrosis, and revision method were assessed. Fusion outcome and clinical outcome were determined at last follow-up (LFU). Thirteen females (59%) and 9 (41%) males experienced pseudarthrosis at a median of 11 (range: 3-151)months after ACDF. Median age at index surgery was 51 (range: 33-67)years. All patients with pseudarthrosis presented with progressive neck pain, with median visual analog scale (VAS) score of 8 (range: 0-10), and/or myeloradiculopathy. Patients with pseudarthrosis <12 months compared to >12 months after index surgery were older (p=0.013), had more frequent preoperative neurological deficits (p=0.064), and lower baseline VAS scores (p=0.006). Fusion was successful after PCF in all patients, with median time to fusion of 10 (range: 2-14)months. Eighteen patients fused both anteriorly and posteriorly, two patients fused anteriorly only, and two patients fused posteriorly only. Median VAS neck score at LFU significantly improved from the time of pseudarthrosis (p=0.012). While uncommon, pseudarthrosis may occur after ACDF. All patients achieved successful fusion after subsequent posterior cervical fusion, with 91% fusing a previous anterior pseudarthrosis after posterior stabilization. Neck pain significantly improved by LFU in the majority of patients in this study.

  12. Novel Hydrophobin Fusion Tags for Plant-Produced Fusion Proteins

    PubMed Central

    Ritala, Anneli; Linder, Markus; Joensuu, Jussi

    2016-01-01

    Hydrophobin fusion technology has been applied in the expression of several recombinant proteins in plants. Until now, the technology has relied exclusively on the Trichoderma reesei hydrophobin HFBI. We screened eight novel hydrophobin tags, T. reesei HFBII, HFBIII, HFBIV, HFBV, HFBVI and Fusarium verticillioides derived HYD3, HYD4 and HYD5, for production of fusion proteins in plants and purification by two-phase separation. To study the properties of the hydrophobins, we used N-terminal and C-terminal GFP as a fusion partner. Transient expression of the hydrophobin fusions in Nicotiana benthamiana revealed large variability in accumulation levels, which was also reflected in formation of protein bodies. In two-phase separations, only HFBII and HFBIV were able to concentrate GFP into the surfactant phase from a plant extract. The separation efficiency of both tags was comparable to HFBI. When the accumulation was tested side by side, HFBII-GFP gave a better yield than HFBI-GFP, while the yield of HFBIV-GFP remained lower. Thus we present here two alternatives for HFBI as functional fusion tags for plant-based protein production and first step purification. PMID:27706254

  13. Besoins operationnels en fusion en matiere d’information et de renseignement (Operational Requirements for Fusion in the Fields of Information and Intelligence)

    DTIC Science & Technology

    2004-03-01

    implications opérationnelles et techniques. La sémantique est prise en défaut ici en noyant dans le terme flou d ’ « information » des notions...l’OTAN comme celle du groupe RTGonIF/ D sur la fusion de l’information. Le terme « information » sera généralement utilisé ici comme générique pour...Réflexion Current ops Composantes Prospective Décisionnelle suivi current ops Fusion de Données Fusion d  ’Information renseignement senseurs Temps quasi

  14. Facility Monitoring: A Qualitative Theory for Sensor Fusion

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando

    2001-01-01

    Data fusion and sensor management approaches have largely been implemented with centralized and hierarchical architectures. Numerical and statistical methods are the most common data fusion methods found in these systems. Given the proliferation and low cost of processing power, there is now an emphasis on designing distributed and decentralized systems. These systems use analytical/quantitative techniques or qualitative reasoning methods for date fusion.Based on other work by the author, a sensor may be treated as a highly autonomous (decentralized) unit. Each highly autonomous sensor (HAS) is capable of extracting qualitative behaviours from its data. For example, it detects spikes, disturbances, noise levels, off-limit excursions, step changes, drift, and other typical measured trends. In this context, this paper describes a distributed sensor fusion paradigm and theory where each sensor in the system is a HAS. Hence, given the reach qualitative information from each HAS, a paradigm and formal definitions are given so that sensors and processes can reason and make decisions at the qualitative level. This approach to sensor fusion makes it possible the implementation of intuitive (effective) methods to monitor, diagnose, and compensate processes/systems and their sensors. This paradigm facilitates a balanced distribution of intelligence (code and/or hardware) to the sensor level, the process/system level, and a higher controller level. The primary application of interest is in intelligent health management of rocket engine test stands.

  15. Radar image and data fusion for natural hazards characterisation

    USGS Publications Warehouse

    Lu, Zhong; Dzurisin, Daniel; Jung, Hyung-Sup; Zhang, Jixian; Zhang, Yonghong

    2010-01-01

    Fusion of synthetic aperture radar (SAR) images through interferometric, polarimetric and tomographic processing provides an all - weather imaging capability to characterise and monitor various natural hazards. This article outlines interferometric synthetic aperture radar (InSAR) processing and products and their utility for natural hazards characterisation, provides an overview of the techniques and applications related to fusion of SAR/InSAR images with optical and other images and highlights the emerging SAR fusion technologies. In addition to providing precise land - surface digital elevation maps, SAR - derived imaging products can map millimetre - scale elevation changes driven by volcanic, seismic and hydrogeologic processes, by landslides and wildfires and other natural hazards. With products derived from the fusion of SAR and other images, scientists can monitor the progress of flooding, estimate water storage changes in wetlands for improved hydrological modelling predictions and assessments of future flood impacts and map vegetation structure on a global scale and monitor its changes due to such processes as fire, volcanic eruption and deforestation. With the availability of SAR images in near real - time from multiple satellites in the near future, the fusion of SAR images with other images and data is playing an increasingly important role in understanding and forecasting natural hazards.

  16. Infrared and visible image fusion with spectral graph wavelet transform.

    PubMed

    Yan, Xiang; Qin, Hanlin; Li, Jia; Zhou, Huixin; Zong, Jing-guo

    2015-09-01

    Infrared and visible image fusion technique is a popular topic in image analysis because it can integrate complementary information and obtain reliable and accurate description of scenes. Multiscale transform theory as a signal representation method is widely used in image fusion. In this paper, a novel infrared and visible image fusion method is proposed based on spectral graph wavelet transform (SGWT) and bilateral filter. The main novelty of this study is that SGWT is used for image fusion. On the one hand, source images are decomposed by SGWT in its transform domain. The proposed approach not only effectively preserves the details of different source images, but also excellently represents the irregular areas of the source images. On the other hand, a novel weighted average method based on bilateral filter is proposed to fuse low- and high-frequency subbands by taking advantage of spatial consistency of natural images. Experimental results demonstrate that the proposed method outperforms seven recently proposed image fusion methods in terms of both visual effect and objective evaluation metrics.

  17. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  18. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes > 1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa ("displacement-per-atom", the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  19. Data fusion for CD metrology: heterogeneous hybridization of scatterometry, CDSEM, and AFM data

    NASA Astrophysics Data System (ADS)

    Hazart, J.; Chesneau, N.; Evin, G.; Largent, A.; Derville, A.; Thérèse, R.; Bos, S.; Bouyssou, R.; Dezauzier, C.; Foucher, J.

    2014-04-01

    The manufacturing of next generation semiconductor devices forces metrology tool providers for an exceptional effort in order to meet the requirements for precision, accuracy and throughput stated in the ITRS. In the past years hybrid metrology (based on data fusion theories) has been investigated as a new methodology for advanced metrology [1][2][3]. This paper provides a new point of view of data fusion for metrology through some experiments and simulations. The techniques are presented concretely in terms of equations to be solved. The first point of view is High Level Fusion which is the use of simple numbers with their associated uncertainty postprocessed by tools. In this paper, it is divided into two stages: one for calibration to reach accuracy, the second to reach precision thanks to Bayesian Fusion. From our perspective, the first stage is mandatory before applying the second stage which is commonly presented [1]. However a reference metrology system is necessary for this fusion. So, precision can be improved if and only if the tools to be fused are perfectly matched at least for some parameters. We provide a methodology similar to a multidimensional TMU able to perform this matching exercise. It is demonstrated on a 28 nm node backend lithography case. The second point of view is Deep Level Fusion which works on the contrary with raw data and their combination. In the approach presented here, the analysis of each raw data is based on a parametric model and connections between the parameters of each tool. In order to allow OCD/SEM Deep Level Fusion, a SEM Compact Model derived from [4] has been developed and compared to AFM. As far as we know, this is the first time such techniques have been coupled at Deep Level. A numerical study on the case of a simple stack for lithography is performed. We show strict equivalence of Deep Level Fusion and High Level Fusion when tools are sensitive and models are perfect. When one of the tools can be considered as a

  20. Fusion reactions at low energy

    SciTech Connect

    Beckerman, M.

    1985-01-01

    Fusion measurement methods at low energies are briefly described, and experimental and theoretical fusion cross sections for /sup 58/Ni + /sup 58/Ni, /sup 58/Ni + /sup 64/Ni and /sup 64/Ni + /sup 64/Ni reactions are discussed. It is shown that quantal tunneling calculations do not describe the near- and sub-barrier behavior of the fusion data. Instead, the WKB predictions fall progressively further blow the experimental results as the energy is lowered. At far subbarrier energies the measured cross sections exceed the WKB predictions by more than three orders of magnitude. The unexpectedly strong dependence of the fusion probability upon the nuclear valence structure is illustrated and discussed. The relationship of channel coupling and quantal tunneling is discussed. In conclusion, it was established that atomic nuclei fuse far more readily at low energies that would be expected from quantal tunneling considerations alone. It was found that the behavior of the cross sections for fusion depends strongly upon the valence structure of the collision partners. This structural dependence extends from light 1p-shell systems to systems involving nearly 200 nucleons. These new phenomena may be viewed as characterizing the tunneling of a quantal system with many degrees of freedom. The failure of standard tunneling models may be understood as resulting from the ability of the dinuclear system to tunnel into the classically forbidden region by means of couplings to intrinsic degrees of freedom. 38 refs. (WHK)

  1. A Model for Membrane Fusion

    NASA Astrophysics Data System (ADS)

    Ngatchou, Annita

    2010-01-01

    Pheochromocytoma is a tumor of the adrenal gland which originates from chromaffin cells and is characterized by the secretion of excessive amounts of neurotransmitter which lead to high blood pressure and palpitations. Pheochromocytoma contain membrane bound granules that store neurotransmitter. The release of these stored molecules into the extracellular space occurs by fusion of the granule membrane with the cell plasma membrane, a process called exocytosis. The molecular mechanism of this membrane fusion is not well understood. It is proposed that the so called SNARE proteins [1] are the pillar of vesicle fusion as their cleavage by clostridial toxin notably, Botulinum neurotoxin and Tetanus toxin abrogate the secretion of neurotransmitter [2]. Here, I describe how physical principles are applied to a biological cell to explore the role of the vesicle SNARE protein synaptobrevin-2 in easing granule fusion. The data presented here suggest a paradigm according to which the movement of the C-terminal of synaptobrevin-2 disrupts the lipid bilayer to form a fusion pore through which molecules can exit.

  2. Nuclear Fusion prize laudation Nuclear Fusion prize laudation

    NASA Astrophysics Data System (ADS)

    Burkart, W.

    2011-01-01

    Clean energy in abundance will be of critical importance to the pursuit of world peace and development. As part of the IAEA's activities to facilitate the dissemination of fusion related science and technology, the journal Nuclear Fusion is intended to contribute to the realization of such energy from fusion. In 2010, we celebrated the 50th anniversary of the IAEA journal. The excellence of research published in the journal is attested to by its high citation index. The IAEA recognizes excellence by means of an annual prize awarded to the authors of papers judged to have made the greatest impact. On the occasion of the 2010 IAEA Fusion Energy Conference in Daejeon, Republic of Korea at the welcome dinner hosted by the city of Daejeon, we celebrated the achievements of the 2009 and 2010 Nuclear Fusion prize winners. Steve Sabbagh, from the Department of Applied Physics and Applied Mathematics, Columbia University, New York is the winner of the 2009 award for his paper: 'Resistive wall stabilized operation in rotating high beta NSTX plasmas' [1]. This is a landmark paper which reports record parameters of beta in a large spherical torus plasma and presents a thorough investigation of the physics of resistive wall mode (RWM) instability. The paper makes a significant contribution to the critical topic of RWM stabilization. John Rice, from the Plasma Science and Fusion Center, MIT, Cambridge is the winner of the 2010 award for his paper: 'Inter-machine comparison of intrinsic toroidal rotation in tokamaks' [2]. The 2010 award is for a seminal paper that analyzes results across a range of machines in order to develop a universal scaling that can be used to predict intrinsic rotation. This paper has already triggered a wealth of experimental and theoretical work. I congratulate both authors and their colleagues on these exceptional papers. W. Burkart Deputy Director General Department of Nuclear Sciences and Applications International Atomic Energy Agency, Vienna

  3. Membrane fusion in muscle development and repair

    PubMed Central

    Demonbreun, Alexis R.; Biersmith, Bridget H.

    2015-01-01

    Mature skeletal muscle forms from the fusion of skeletal muscle precursor cells, myoblasts. Myoblasts fuse to other myoblasts to generate multinucleate myotubes during myogenesis, and myoblasts also fuse to other myotubes during muscle growth and repair. Proteins within myoblasts and myotubes regulate complex processes such as elongation, migration, cell adherence, cytoskeletal reorganization, membrane coalescence, and ultimately fusion. Recent studies have identified cell surface proteins, intracellular proteins, and extracellular signaling molecules required for the proper fusion of muscle. Many proteins that actively participate in myoblast fusion also coordinate membrane repair. Here we will review mammalian membrane fusion with specific attention to proteins that mediate myoblast fusion and muscle repair. PMID:26537430

  4. The Path to Magnetic Fusion Energy

    SciTech Connect

    Prager, Stewart

    2011-05-04

    When the possibility of fusion as an energy source for electricity generation was realized in the 1950s, understanding of the plasma state was primitive. The fusion goal has been paced by, and has stimulated, the development of plasma physics. Our understanding of complex, nonlinear processes in plasmas is now mature. We can routinely produce and manipulate 100 million degree plasmas with remarkable finesse, and we can identify a path to commercial fusion power. The international experiment, ITER, will create a burning (self-sustained) plasma and produce 500 MW of thermal fusion power. This talk will summarize the progress in fusion research to date, and the remaining steps to fusion power.

  5. Boosting Information Fusion

    DTIC Science & Technology

    2010-07-01

    Vaidyanathan, Multirate Systems and Filter Banks . Prentice Hall, 1993. [23] J. Friedman, “On bias, variance, 0/1-loss, and the curse-of-dimensionality...only one pose of an individual, namely (1) eigenfaces, (2) Canny filter detected edges [21], and (3) wavelet coefficients [22]. Each dataset has 101...scenarios the system is anticipated to encounter. In Tables 3, 4 and 5 we compared the robustness of BSSD and the competing techniques against noise (average

  6. (Meeting on fusion reactor materials)

    SciTech Connect

    Jones, R.H. ); Klueh, R.L.; Rowcliffe, A.F.; Wiffen, F.W. ); Loomis, B.A. )

    1990-11-01

    During his visit to the KfK, Karlsruhe, F. W. Wiffen attended the IEA 12th Working Group Meeting on Fusion Reactor Materials. Plans were made for a low-activation materials workshop at Culham, UK, for April 1991, a data base workshop in Europe for June 1991, and a molecular dynamics workshop in the United States in 1991. At the 11th IEA Executive Committee on Fusion Materials, discussions centered on the recent FPAC and Colombo panel review in the United States and EC, respectively. The Committee also reviewed recent progress toward a neutron source in the United States (CWDD) and in Japan (ESNIT). A meeting with D. R. Harries (consultant to J. Darvas) yielded a useful overview of the EC technology program for fusion. Of particular interest to the US program is a strong effort on a conventional ferritic/martensitic steel for fist wall/blanket operation beyond NET/ITER.

  7. Fusion power for space propulsion.

    NASA Technical Reports Server (NTRS)

    Roth, R.; Rayle, W.; Reinmann, J.

    1972-01-01

    Principles of operation, interplanetary orbit-to-orbit mission capabilities, technical problems, and environmental safeguards are examined for thermonuclear fusion propulsion systems. Two systems examined include (1) a fusion-electric concept in which kinetic energy of charged particles from the plasma is converted into electric power (for accelerating the propellant in an electrostatic thrustor) by the van de Graaf generator principle and (2) the direct fusion rocket in which energetic plasma lost from the reactor has a suitable amount of added propellant to obtain the optimum exhaust velocity. The deuterium-tritium and the deuterium/helium-3 reactions are considered as suitable candidates, and attention is given to problems of cryogenic refrigeration systems, magnet shielding, and high-energy particle extraction and guidance.

  8. Superconducting magnets for fusion applications

    SciTech Connect

    Henning, C.D.

    1987-07-02

    Fusion magnet technology has made spectacular advances in the past decade; to wit, the Mirror Fusion Test Facility and the Large Coil Project. However, further advances are still required for advanced economical fusion reactors. Higher fields to 14 T and radiation-hardened superconductors and insulators will be necessary. Coupled with high rates of nuclear heating and pulsed losses, the next-generation magnets will need still higher current density, better stability and quench protection. Cable-in-conduit conductors coupled with polyimide insulations and better steels seem to be the appropriate path. Neutron fluences up to 10/sup 19/ neutrons/cm/sup 2/ in niobium tin are achievable. In the future, other amorphous superconductors could raise these limits further to extend reactor life or decrease the neutron shielding and corresponding reactor size.

  9. Tissue fusion over nonadhering surfaces

    PubMed Central

    Nier, Vincent; Deforet, Maxime; Duclos, Guillaume; Yevick, Hannah G.; Cochet-Escartin, Olivier; Marcq, Philippe; Silberzan, Pascal

    2015-01-01

    Tissue fusion eliminates physical voids in a tissue to form a continuous structure and is central to many processes in development and repair. Fusion events in vivo, particularly in embryonic development, often involve the purse-string contraction of a pluricellular actomyosin cable at the free edge. However, in vitro, adhesion of the cells to their substrate favors a closure mechanism mediated by lamellipodial protrusions, which has prevented a systematic study of the purse-string mechanism. Here, we show that monolayers can cover well-controlled mesoscopic nonadherent areas much larger than a cell size by purse-string closure and that active epithelial fluctuations are required for this process. We have formulated a simple stochastic model that includes purse-string contractility, tissue fluctuations, and effective friction to qualitatively and quantitatively account for the dynamics of closure. Our data suggest that, in vivo, tissue fusion adapts to the local environment by coordinating lamellipodial protrusions and purse-string contractions. PMID:26199417

  10. Laser fusion experiments at LLL

    SciTech Connect

    Ahlstrom, H.G.

    1980-06-16

    These notes present the experimental basis and status for laser fusion as developed at LLL. Two other chapters, one authored by K.A. Brueckner and the other by C. Max, present the theoretical implosion physics and laser plasma interaction physics. The notes consist of six sections. The first is an introductory section which provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future.

  11. Fusion of radar and satellite target measurements

    NASA Astrophysics Data System (ADS)

    Moy, Gabriel; Blaty, Donald; Farber, Morton; Nealy, Carlton

    2011-06-01

    A potentially high payoff for the ballistic missile defense system (BMDS) is the ability to fuse the information gathered by various sensor systems. In particular, it may be valuable in the future to fuse measurements made using ground based radars with passive measurements obtained from satellite-based EO/IR sensors. This task can be challenging in a multitarget environment in view of the widely differing resolution between active ground-based radar and an observation made by a sensor at long range from a satellite platform. Additionally, each sensor system could have a residual pointing bias which has not been calibrated out. The problem is further compounded by the possibility that an EO/IR sensor may not see exactly the same set of targets as a microwave radar. In order to better understand the problems involved in performing the fusion of metric information from EO/IR satellite measurements with active microwave radar measurements, we have undertaken a study of this data fusion issue and of the associated data processing techniques. To carry out this analysis, we have made use of high fidelity simulations to model the radar observations from a missile target and the observations of the same simulated target, as gathered by a constellation of satellites. In the paper, we discuss the improvements seen in our tests when fusing the state vectors, along with the improvements in sensor bias estimation. The limitations in performance due to the differing phenomenology between IR and microwave radar are discussed as well.

  12. Rapid Method for Sodium Hydroxide/Sodium Peroxide Fusion ...

    EPA Pesticide Factsheets

    Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Plutonium-238 and plutonium-239 in water and air filters Method Selected for: SAM lists this method as a pre-treatment technique supporting analysis of refractory radioisotopic forms of plutonium in drinking water and air filters using the following qualitative techniques: • Rapid methods for acid or fusion digestion • Rapid Radiochemical Method for Plutonium-238 and Plutonium 239/240 in Building Materials for Environmental Remediation Following Radiological Incidents. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.

  13. Fusion Breeder Program interim report

    SciTech Connect

    Moir, R.; Lee, J.D.; Neef, W.

    1982-06-11

    This interim report for the FY82 Fusion Breeder Program covers work performed during the scoping phase of the study, December, 1981-February 1982. The goals for the FY82 study are the identification and development of a reference blanket concept using the fission suppression concept and the definition of a development plan to further the fusion breeder application. The context of the study is the tandem mirror reactor, but emphasis is placed upon blanket engineering. A tokamak driver and blanket concept will be selected and studied in more detail during FY83.

  14. Method for vacuum fusion bonding

    DOEpatents

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2001-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  15. Z-Pinch Fusion Propulsion

    NASA Technical Reports Server (NTRS)

    Miernik, Janie

    2011-01-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Shorter trips are better for humans in the harmful radiation environment of deep space. Nuclear propulsion and power plants can enable high Ispand payload mass fractions because they require less fuel mass. Fusion energy research has characterized the Z-Pinch dense plasma focus method. (1) Lightning is form of pinched plasma electrical discharge phenomena. (2) Wire array Z-Pinch experiments are commonly studied and nuclear power plant configurations have been proposed. (3) Used in the field of Nuclear Weapons Effects (NWE) testing in the defense industry, nuclear weapon x-rays are simulated through Z-Pinch phenomena.

  16. The first fusion reactor: ITER

    NASA Astrophysics Data System (ADS)

    Campbell, D. J.

    2016-11-01

    Established by the signature of the ITER Agreement in November 2006 and currently under construction at St Paul-lez-Durance in southern France, the ITER project [1,2] involves the European Union (including Switzerland), China, India, Japan, the Russian Federation, South Korea and the United States. ITER (`the way' in Latin) is a critical step in the development of fusion energy. Its role is to provide an integrated demonstration of the physics and technology required for a fusion power plant based on magnetic confinement.

  17. Fusion bonding and alignment fixture

    DOEpatents

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2000-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  18. Plasma physics goes beyond fusion

    NASA Astrophysics Data System (ADS)

    Franklin, Raoul

    2008-11-01

    I was interested to read the fusion supplement published with the October issue of Physics World. However, in asserting that fusion created the need to recognize plasma physics as a separate branch of the subject, Stephen Cowley, the new director of the United Kingdom Atomic Energy Authority, was not quite correct. In fact, the word "plasma" was appropriated from the Greek by the chemical physicist (and later Nobel laureate) Irving Langmuir in 1928. It was used to describe the positive column of a gas discharge, which was then the subject of research into better lighting sources and advertising displays, as well as the underlying science.

  19. Equivalence of measurement space solution data fusion and complete fusion

    NASA Astrophysics Data System (ADS)

    Ceccherini, Simone

    2016-10-01

    Many observation systems are operating on space-borne and airborne platforms, as well as from ground-based stations, providing measurements of vertical profiles of atmospheric parameters. When independent measurements of the same profile are available data fusion methods can be used to combine them and exploit all the available information for a more comprehensive and accurate description of the atmospheric state. Several data fusion methods can be used. Among the others, both the measurement space solution data fusion method and the complete fusion method have the remarkable properties of using all the acquired information and of providing results that are independent from a priori information used in the individual retrievals. For this reason, though the two methods use two completely different procedures, it is reasonable to expect that they give the same results and in this paper the rigorous proof of the equivalence of the two methods is given. Therefore, the choice between them is only driven by the advantages of the different implementations.

  20. Machinery Diagnostic Feature Extraction and Fusion Techniques Using Diverse Sources

    DTIC Science & Technology

    2001-04-05

    helicopter, which is a necessary requisite of fault diagnosis . This nominal/anomalous diagnosis initiates with discrimination analysis that produces...discrimination to diagnose rolling element bearing faults . While vibration data analysis provides detailed gearbox components signature, non...commensurate chip detector data gives overall operating conditions of the gearbox that 354 can be characterized as fault or nominal. The gearbox operating