Science.gov

Sample records for fusion technology soft

  1. Fusion development and technology

    SciTech Connect

    Montgomery, D.B.

    1992-01-01

    This report discusses the following: superconducting magnet technology; high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies--aries; ITER physics: alpha physics and alcator R D for ITER; lower hybrid current drive and heating in the ITER device; ITER superconducting PF scenario and magnet analysis; ITER systems studies; and safety, environmental and economic factors in fusion development.

  2. Soft x-ray streak camera for laser fusion applications

    SciTech Connect

    Stradling, G.L.

    1981-04-01

    This thesis reviews the development and significance of the soft x-ray streak camera (SXRSC) in the context of inertial confinement fusion energy development. A brief introduction of laser fusion and laser fusion diagnostics is presented. The need for a soft x-ray streak camera as a laser fusion diagnostic is shown. Basic x-ray streak camera characteristics, design, and operation are reviewed. The SXRSC design criteria, the requirement for a subkilovolt x-ray transmitting window, and the resulting camera design are explained. Theory and design of reflector-filter pair combinations for three subkilovolt channels centered at 220 eV, 460 eV, and 620 eV are also presented. Calibration experiments are explained and data showing a dynamic range of 1000 and a sweep speed of 134 psec/mm are presented. Sensitivity modifications to the soft x-ray streak camera for a high-power target shot are described. A preliminary investigation, using a stepped cathode, of the thickness dependence of the gold photocathode response is discussed. Data from a typical Argus laser gold-disk target experiment are shown.

  3. Advances in data representation for hard/soft information fusion

    NASA Astrophysics Data System (ADS)

    Rimland, Jeffrey C.; Coughlin, Dan; Hall, David L.; Graham, Jacob L.

    2012-06-01

    Information fusion is becoming increasingly human-centric. While past systems typically relegated humans to the role of analyzing a finished fusion product, current systems are exploring the role of humans as integral elements in a modular and extensible distributed framework where many tasks can be accomplished by either human or machine performers. For example, "participatory sensing" campaigns give humans the role of "soft sensors" by uploading their direct observations or as "soft sensor platforms" by using mobile devices to record human-annotated, GPS-encoded high quality photographs, video, or audio. Additionally, the role of "human-in-the-loop", in which individuals or teams using advanced human computer interface (HCI) tools such as stereoscopic 3D visualization, haptic interfaces, or aural "sonification" interfaces can help to effectively engage the innate human capability to perform pattern matching, anomaly identification, and semantic-based contextual reasoning to interpret an evolving situation. The Pennsylvania State University is participating in a Multi-disciplinary University Research Initiative (MURI) program funded by the U.S. Army Research Office to investigate fusion of hard and soft data in counterinsurgency (COIN) situations. In addition to the importance of this research for Intelligence Preparation of the Battlefield (IPB), many of the same challenges and techniques apply to health and medical informatics, crisis management, crowd-sourced "citizen science", and monitoring environmental concerns. One of the key challenges that we have encountered is the development of data formats, protocols, and methodologies to establish an information architecture and framework for the effective capture, representation, transmission, and storage of the vastly heterogeneous data and accompanying metadata -- including capabilities and characteristics of human observers, uncertainty of human observations, "soft" contextual data, and information pedigree

  4. Mirror fusion vacuum technology developments

    SciTech Connect

    Batzer, T.H.; Call, W.R.

    1983-11-21

    Magnetic Mirror Fusion experiments, such as MFTF-B+T (Mirror Fusion Test Facility-B, Tritium Upgrade) and foreseeable follow-on devices, have operational and maintenance requirements that have not yet been fully demonstrated. Among those associated with vacuum technology are the very-high continuous-pumping speeds, 10/sup 7/ to 10/sup 8/ l/s for D/sub 2/, T/sub 2/ and, to a lesser extent, He; the early detection of water leaks from the very-high heat-flux neutral-beam dumps and the detection and location of leaks in the superconducting magnets not protected by guard vacuums. Possible solutions to these problems have been identified and considerable progress has been made toward successfully demonstrating their feasibility.

  5. Soft X-ray measurements in magnetic fusion plasma physics

    NASA Astrophysics Data System (ADS)

    Botrugno, A.; Gabellieri, L.; Mazon, D.; Pacella, D.; Romano, A.

    2010-11-01

    Soft X-ray diagnostic systems and their successful application in the field of magnetic fusion plasma physics are discussed. Radiation with wavelength in the region of Soft X-Ray (1-30 keV) is largely produced by high temperature plasmas, carrying important information on many processes during a plasma discharge. Soft X-ray diagnostics are largely used in various fusion devices all over the world. These diagnostic systems are able to obtain information on electron temperature, electron density, impurity transport, Magneto Hydro Dynamic instabilities. We will discuss the SXR diagnostic installed on FTU in Frascati (Italy) and on Tore Supra in Cadarache (France), with special emphasis on diagnostic performances. Moreover, we will discuss the two different inversion methods for tomographic reconstruction used in Frascati and in Cadarache, the first one is relied on a guessed topology of iso-emissivity surfaces, the second one on regularization techniques, like minimum Fisher or maximum entropy. Finally, a new and very fast 2D imaging system with energy discrimination and high time resolution will be summarized as an alternative approach of SXR detection system.

  6. Distributed data fusion across multiple hard and soft mobile sensor platforms

    NASA Astrophysics Data System (ADS)

    Sinsley, Gregory

    One of the biggest challenges currently facing the robotics field is sensor data fusion. Unmanned robots carry many sophisticated sensors including visual and infrared cameras, radar, laser range finders, chemical sensors, accelerometers, gyros, and global positioning systems. By effectively fusing the data from these sensors, a robot would be able to form a coherent view of its world that could then be used to facilitate both autonomous and intelligent operation. Another distinct fusion problem is that of fusing data from teammates with data from onboard sensors. If an entire team of vehicles has the same worldview they will be able to cooperate much more effectively. Sharing worldviews is made even more difficult if the teammates have different sensor types. The final fusion challenge the robotics field faces is that of fusing data gathered by robots with data gathered by human teammates (soft sensors). Humans sense the world completely differently from robots, which makes this problem particularly difficult. The advantage of fusing data from humans is that it makes more information available to the entire team, thus helping each agent to make the best possible decisions. This thesis presents a system for fusing data from multiple unmanned aerial vehicles, unmanned ground vehicles, and human observers. The first issue this thesis addresses is that of centralized data fusion. This is a foundational data fusion issue, which has been very well studied. Important issues in centralized fusion include data association, classification, tracking, and robotics problems. Because these problems are so well studied, this thesis does not make any major contributions in this area, but does review it for completeness. The chapter on centralized fusion concludes with an example unmanned aerial vehicle surveillance problem that demonstrates many of the traditional fusion methods. The second problem this thesis addresses is that of distributed data fusion. Distributed data fusion

  7. ITER project and fusion technology

    NASA Astrophysics Data System (ADS)

    Takatsu, H.

    2011-09-01

    In the sessions of ITR, FTP and SEE of the 23rd IAEA Fusion Energy Conference, 159 papers were presented in total, highlighted by the remarkable progress of the ITER project: ITER baseline has been established and procurement activities have been started as planned with a target of realizing the first plasma in 2019; ITER physics basis is sound and operation scenarios and operational issues have been extensively studied in close collaboration with the worldwide physics community; the test blanket module programme has been incorporated into the ITER programme and extensive R&D works are ongoing in the member countries with a view to delivering their own modules in a timely manner according to the ITER master schedule. Good progress was also reported in the areas of a variety of complementary activities to DEMO, including Broader Approach activities and long-term technology. This paper summarizes the highlights of the papers presented in the ITR, FTP and SEE sessions with a minimum set of background information.

  8. Application of the JDL data fusion process model to hard/soft information fusion in the condition monitoring of aircraft

    NASA Astrophysics Data System (ADS)

    Bernardo, Joseph T.

    2014-05-01

    Hard/soft information fusion has been proposed as a way to enhance diagnostic capability for the condition monitoring of machinery. However, there is a limited understanding of where hard/soft information fusion could and should be applied in the condition monitoring of aircraft. Condition-based maintenance refers to the philosophy of performing maintenance when the need arises, based upon indicators of deterioration in the condition of the machinery. The addition of the multisensory capability of human cognition to electronic sensors may create a fuller picture of machinery condition. Since 1988, the Joint Directors of Laboratories (JDL) data fusion process model has served as a framework for information fusion research. Advances are described in the application of hard/soft information fusion in condition monitoring using terms that condition-based maintenance professionals in aviation will recognize. Emerging literature on hard/soft information fusion in condition monitoring is organized into the levels of the JDL data fusion process model. Gaps in the literature are identified, and the author's ongoing research is discussed. Future efforts will focus on building domain-specific frameworks and experimental design, which may provide a foundation for improving flight safety, increasing mission readiness, and reducing the cost of maintenance operations.

  9. Ch. 37, Inertial Fusion Energy Technology

    SciTech Connect

    Moses, E

    2010-06-09

    Nuclear fission, nuclear fusion, and renewable energy (including biofuels) are the only energy sources capable of satisfying the Earth's need for power for the next century and beyond without the negative environmental impacts of fossil fuels. Substantially increasing the use of nuclear fission and renewable energy now could help reduce dependency on fossil fuels, but nuclear fusion has the potential of becoming the ultimate base-load energy source. Fusion is an attractive fuel source because it is virtually inexhaustible, widely available, and lacks proliferation concerns. It also has a greatly reduced waste impact, and no danger of runaway reactions or meltdowns. The substantial environmental, commercial, and security benefits of fusion continue to motivate the research needed to make fusion power a reality. Replicating the fusion reactions that power the sun and stars to meet Earth's energy needs has been a long-sought scientific and engineering challenge. In fact, this technological challenge is arguably the most difficult ever undertaken. Even after roughly 60 years of worldwide research, much more remains to be learned. the magnitude of the task has caused some to declare that fusion is 20 years away, and always will be. This glib criticism ignores the enormous progress that has occurred during those decades, progress inboth scientific understanding and essential technologies that has enabled experiments producing significant amounts of fusion energy. For example, more than 15 megawatts of fusion power was produced in a pulse of about half a second. Practical fusion power plants will need to produce higher powers averaged over much longer periods of time. In addition, the most efficient experiments to date have required using about 50% more energy than the resulting fusion reaction generated. That is, there was no net energy gain, which is essential if fusion energy is to be a viable source of electricity. The simplest fusion fuels, the heavy isotopes of

  10. Distributed data fusion across multiple hard and soft mobile sensor platforms

    NASA Astrophysics Data System (ADS)

    Sinsley, Gregory

    One of the biggest challenges currently facing the robotics field is sensor data fusion. Unmanned robots carry many sophisticated sensors including visual and infrared cameras, radar, laser range finders, chemical sensors, accelerometers, gyros, and global positioning systems. By effectively fusing the data from these sensors, a robot would be able to form a coherent view of its world that could then be used to facilitate both autonomous and intelligent operation. Another distinct fusion problem is that of fusing data from teammates with data from onboard sensors. If an entire team of vehicles has the same worldview they will be able to cooperate much more effectively. Sharing worldviews is made even more difficult if the teammates have different sensor types. The final fusion challenge the robotics field faces is that of fusing data gathered by robots with data gathered by human teammates (soft sensors). Humans sense the world completely differently from robots, which makes this problem particularly difficult. The advantage of fusing data from humans is that it makes more information available to the entire team, thus helping each agent to make the best possible decisions. This thesis presents a system for fusing data from multiple unmanned aerial vehicles, unmanned ground vehicles, and human observers. The first issue this thesis addresses is that of centralized data fusion. This is a foundational data fusion issue, which has been very well studied. Important issues in centralized fusion include data association, classification, tracking, and robotics problems. Because these problems are so well studied, this thesis does not make any major contributions in this area, but does review it for completeness. The chapter on centralized fusion concludes with an example unmanned aerial vehicle surveillance problem that demonstrates many of the traditional fusion methods. The second problem this thesis addresses is that of distributed data fusion. Distributed data fusion

  11. Embedded Empiricisms in Soft Soil Technology

    NASA Astrophysics Data System (ADS)

    Wijeyesekera, D. C.; John, L. M. S. Alvin; Adnan, Z.

    2016-07-01

    Civil engineers of today are continuously challenged by innovative projects that push further the knowledge boundaries with conceptual and/or ingenious solutions leading to the realization of that once was considered impossible in the realms of geotechnology. Some of the forward developments rely on empirical methods embedded within soft soil technology and the spectral realms of engineering in its entirety. Empiricisms unlike folklore are not always shrouded in mysticism but can find scientific reasoning to justify them being adopted in design and tangible construction projects. This lecture therefore is an outline exposition of how empiricism has been integrally embedded in total empirical beginnings in the evolution of soft soil technology from the Renaissance time, through the developments of soil mechanics in the 19th century which in turn has paved the way to the rise of computational soil mechanics. Developments in computational soil mechanics has always embraced and are founded on a wide backdrop of empirical geoenvironment simulations. However, it is imperative that a competent geotechnical engineer needs postgraduate training combined with empiricism that is based on years of well- winnowed practical experience to fathom the diverseness and complexity of nature. However, experience being regarded more highly than expertise can, perhaps inadvertently, inhibit development and innovation.

  12. Health-Enabled Smart Sensor Fusion Technology

    NASA Technical Reports Server (NTRS)

    Wang, Ray

    2012-01-01

    A process was designed to fuse data from multiple sensors in order to make a more accurate estimation of the environment and overall health in an intelligent rocket test facility (IRTF), to provide reliable, high-confidence measurements for a variety of propulsion test articles. The object of the technology is to provide sensor fusion based on a distributed architecture. Specifically, the fusion technology is intended to succeed in providing health condition monitoring capability at the intelligent transceiver, such as RF signal strength, battery reading, computing resource monitoring, and sensor data reading. The technology also provides analytic and diagnostic intelligence at the intelligent transceiver, enhancing the IEEE 1451.x-based standard for sensor data management and distributions, as well as providing appropriate communications protocols to enable complex interactions to support timely and high-quality flow of information among the system elements.

  13. Realizing Technologies for Magnetized Target Fusion

    SciTech Connect

    Wurden, Glen A.

    2012-08-24

    Researchers are making progress with a range of magneto-inertial fusion (MIF) concepts. All of these approaches use the addition of a magnetic field to a target plasma, and then compress the plasma to fusion conditions. The beauty of MIF is that driver power requirements are reduced, compared to classical inertial fusion approaches, and simultaneously the compression timescales can be longer, and required implosion velocities are slower. The presence of a sufficiently large Bfield expands the accessibility to ignition, even at lower values of the density-radius product, and can confine fusion alphas. A key constraint is that the lifetime of the MIF target plasma has to be matched to the timescale of the driver technology (whether liners, heavy ions, or lasers). To achieve sufficient burn-up fraction, scaling suggests that larger yields are more effective. To handle the larger yields (GJ level), thick liquid wall chambers are certainly desired (no plasma/neutron damage materials problem) and probably required. With larger yields, slower repetition rates ({approx}0.1-1 Hz) for this intrinsically pulsed approach to fusion are possible, which means that chamber clearing between pulses can be accomplished on timescales that are compatible with simple clearing techniques (flowing liquid droplet curtains). However, demonstration of the required reliable delivery of hundreds of MJ of energy, for millions of pulses per year, is an ongoing pulsed power technical challenge.

  14. Soft Robotics: from scientific challenges to technological applications

    NASA Astrophysics Data System (ADS)

    Laschi, C.

    2016-05-01

    Soft robotics is a recent and rapidly growing field of research, which aims at unveiling the principles for building robots that include soft materials and compliance in the interaction with the environment, so as to exploit so-called embodied intelligence and negotiate natural environment more effectively. Using soft materials for building robots poses new technological challenges: the technologies for actuating soft materials, for embedding sensors into soft robot parts, for controlling soft robots are among the main ones. This is stimulating research in many disciplines and many countries, such that a wide community is gathering around initiatives like the IEEE TAS TC on Soft Robotics and the RoboSoft CA - A Coordination Action for Soft Robotics, funded by the European Commission. Though still in its early stages of development, soft robotics is finding its way in a variety of applications, where safe contact is a main issue, in the biomedical field, as well as in exploration tasks and in the manufacturing industry. And though the development of the enabling technologies is still a priority, a fruitful loop is growing between basic research and application-oriented research in soft robotics.

  15. A methodology for hard/soft information fusion in the condition monitoring of aircraft

    NASA Astrophysics Data System (ADS)

    Bernardo, Joseph T.

    2013-05-01

    Condition-based maintenance (CBM) refers to the philosophy of performing maintenance when the need arises, based upon indicators of deterioration in the condition of the machinery. Traditionally, CBM involves equipping machinery with electronic sensors that continuously monitor components and collect data for analysis. The addition of the multisensory capability of human cognitive functions (i.e., sensemaking, problem detection, planning, adaptation, coordination, naturalistic decision making) to traditional CBM may create a fuller picture of machinery condition. Cognitive systems engineering techniques provide an opportunity to utilize a dynamic resource—people acting as soft sensors. The literature is extensive on techniques to fuse data from electronic sensors, but little work exists on fusing data from humans with that from electronic sensors (i.e., hard/soft fusion). The purpose of my research is to explore, observe, investigate, analyze, and evaluate the fusion of pilot and maintainer knowledge, experiences, and sensory perceptions with digital maintenance resources. Hard/soft information fusion has the potential to increase problem detection capability, improve flight safety, and increase mission readiness. This proposed project consists the creation of a methodology that is based upon the Living Laboratories framework, a research methodology that is built upon cognitive engineering principles1. This study performs a critical assessment of concept, which will support development of activities to demonstrate hard/soft information fusion in operationally relevant scenarios of aircraft maintenance. It consists of fieldwork, knowledge elicitation to inform a simulation and a prototype.

  16. Gene Fusions in Soft Tissue Tumors: Recurrent and Overlapping Pathogenetic Themes

    PubMed Central

    Mertens, Fredrik; Antonescu, Cristina R.; Mitelman, Felix

    2016-01-01

    Gene fusions have been described in approximately one-third of soft tissue tumors (STT); of the 142 different fusions that have been reported, more than half are recurrent in the same histologic subtype. These gene fusions constitute pivotal driver mutations, and detailed studies of their cellular effects have provided important knowledge about pathogenetic mechanisms in STT. Furthermore, most fusions are strongly associated with a particular histotype, serving as ideal molecular diagnostic markers. In recent years, it has also become apparent that some chimeric proteins, directly or indirectly, constitute excellent treatment targets, making the detection of gene fusions in STT ever more important. Indeed, pharmacological treatment of STT displaying fusions that activate protein kinases, such as ALK and ROS1, or growth factors, such as PDGFB, is already in clinical use. However, the vast majority (52/78) of recurrent gene fusions create structurally altered and/or deregulated transcription factors, and a small but growing subset develops through rearranged chromatin regulators. The present review provides an overview of the spectrum of currently recognized gene fusions in STT, and, on the basis of the protein class involved, the mechanisms by which they exert their oncogenic effect are discussed. PMID:26684580

  17. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    SciTech Connect

    Davidson, Ronald C.

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described. (MOW)

  18. Homeland security application of the Army Soft Target Exploitation and Fusion (STEF) system

    NASA Astrophysics Data System (ADS)

    Antony, Richard T.; Karakowski, Joseph A.

    2010-04-01

    A fusion system that accommodates both text-based extracted information along with more conventional sensor-derived input has been developed and demonstrated in a terrorist attack scenario as part of the Empire Challenge (EC) 09 Exercise. Although the fusion system was developed to support Army military analysts, the system, based on a set of foundational fusion principles, has direct applicability to department of homeland security (DHS) & defense, law enforcement, and other applications. Several novel fusion technologies and applications were demonstrated in EC09. One such technology is location normalization that accommodates both fuzzy semantic expressions such as behind Library A, across the street from the market place, as well as traditional spatial representations. Additionally, the fusion system provides a range of fusion products not supported by traditional fusion algorithms. Many of these additional capabilities have direct applicability to DHS. A formal test of the fusion system was performed during the EC09 exercise. The system demonstrated that it was able to (1) automatically form tracks, (2) help analysts visualize behavior of individuals over time, (3) link key individuals based on both explicit message-based information as well as discovered (fusion-derived) implicit relationships, and (4) suggest possible individuals of interest based on their association with High Value Individuals (HVI) and user-defined key locations.

  19. Advanced control strategies for HVAC&R systems—An overview: Part II: Soft and fusion control

    SciTech Connect

    D. Subbaram Naidu; Craig G. Rieger

    2011-04-01

    A chronological overview of the advanced control strategies for HVAC&R is presented. The overview focuses on hard-computing or control techniques, such as proportional-integral-derivative, optimal, nonlinear, adaptive, and robust; soft-computing or control techniques, such as neural networks, fuzzy logic, genetic algorithms; and the fusion or hybrid of hard and soft control techniques. Part I focused on hardcontrol strategies; Part II focuses on soft and fusion control and some future directions in HVA&R research. This overview is not intended to be an exhaustive survey on this topic, and any omissions of other works is purely unintentional.

  20. Analysis of human soft palate morphogenesis supports regional regulation of palatal fusion.

    PubMed

    Danescu, Adrian; Mattson, Melanie; Dool, Carly; Diewert, Virginia M; Richman, Joy M

    2015-10-01

    It is essential to complete palate closure at the correct time during fetal development, otherwise a serious malformation, cleft palate, will ensue. The steps in palate formation in humans take place between the 7th and 12th week and consist of outgrowth of palatal shelves from the paired maxillary prominences, reorientation of the shelves from vertical to horizontal, apposition of the medial surfaces, formation of a bilayered seam, degradation of the seam and bridging of mesenchyme. However, in the soft palate, the mechanism of closure is unclear. In previous studies it is possible to find support for both fusion and the alternative mechanism of merging. Here we densely sample the late embryonic-early fetal period between 54 and 74 days post-conception to determine the timing and mechanism of soft palate closure. We found the epithelial seam extends throughout the soft palates of 57-day specimens. Cytokeratin antibody staining detected the medial edge epithelium and distinguished clearly that cells in the midline retained their epithelial character. Compared with the hard palate, the epithelium is more rapidly degraded in the soft palate and only persists in the most posterior regions at 64 days. Our results are consistent with the soft palate following a developmentally more rapid program of fusion than the hard palate. Importantly, the two regions of the palate appear to be independently regulated and have their own internal clocks regulating the timing of seam removal. Considering data from human genetic and mouse studies, distinct anterior-posterior signaling mechanisms are likely to be at play in the human fetal palate.

  1. Analysis of human soft palate morphogenesis supports regional regulation of palatal fusion.

    PubMed

    Danescu, Adrian; Mattson, Melanie; Dool, Carly; Diewert, Virginia M; Richman, Joy M

    2015-10-01

    It is essential to complete palate closure at the correct time during fetal development, otherwise a serious malformation, cleft palate, will ensue. The steps in palate formation in humans take place between the 7th and 12th week and consist of outgrowth of palatal shelves from the paired maxillary prominences, reorientation of the shelves from vertical to horizontal, apposition of the medial surfaces, formation of a bilayered seam, degradation of the seam and bridging of mesenchyme. However, in the soft palate, the mechanism of closure is unclear. In previous studies it is possible to find support for both fusion and the alternative mechanism of merging. Here we densely sample the late embryonic-early fetal period between 54 and 74 days post-conception to determine the timing and mechanism of soft palate closure. We found the epithelial seam extends throughout the soft palates of 57-day specimens. Cytokeratin antibody staining detected the medial edge epithelium and distinguished clearly that cells in the midline retained their epithelial character. Compared with the hard palate, the epithelium is more rapidly degraded in the soft palate and only persists in the most posterior regions at 64 days. Our results are consistent with the soft palate following a developmentally more rapid program of fusion than the hard palate. Importantly, the two regions of the palate appear to be independently regulated and have their own internal clocks regulating the timing of seam removal. Considering data from human genetic and mouse studies, distinct anterior-posterior signaling mechanisms are likely to be at play in the human fetal palate. PMID:26299693

  2. Soft Technologies, Hard Choices. Worldwatch Paper 21.

    ERIC Educational Resources Information Center

    Norman, Colin

    The infusion of technology into society has created social and environmental problems as well as benefits. Four concerns linked with technology are discussed in this paper: rising unemployment, growing social inequalities, dwindling oil and gas reserves, and potential long-term ecological problems. Indiscriminate transfer of modern labor-saving…

  3. Scientific and technological advancements in inertial fusion energy

    DOE PAGESBeta

    Hinkel, D. E.

    2013-09-26

    Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well asmore » to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.« less

  4. Scientific and technological advancements in inertial fusion energy

    SciTech Connect

    Hinkel, D. E.

    2013-09-26

    Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well as to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.

  5. Implementing MEMS technology for soft, (bio)electronics interfaces

    NASA Astrophysics Data System (ADS)

    Romeo, Alessia; Hofmeister, Yannick; Lacour, Stéphanie P.

    2014-06-01

    Soft, bioelectronics interfaces are broadly defined as microfabricated devices with mechanical properties suited to comply with biological tissues. There are many challenges associated with the development of such technology platforms. Simultaneously one must achieve reliable electronic performance, thermal and environmental stability, mechanical compliance, and biocompatibility. Materials and system architecture must be designed such that mechanical integrity and electrical functionality is preserved during fabrication, implementation and use of the interface. Depositing and patterning conventional device materials, ranging from inorganic to organic thin films as well as nanomaterials, directly onto soft elastomeric substrates enable electronic devices with enhanced mechanical flexibility. Success in fabrication also relies on a careful design of the mechanical architecture of the soft interface to minimize mechanical stresses in the most fragile materials.

  6. Jamming as an enabling technology for soft robotics

    NASA Astrophysics Data System (ADS)

    Steltz, E.; Mozeika, A.; Rembisz, J.; Corson, N.; Jaeger, H. M.

    2010-04-01

    This paper presents a new architecture in soft robotics that utilizes particulate jamming technology. A novel concept of actuation is described that utilizes jamming technology to modulate the direction and magnitude of the work performed by a single central actuator. Jamming "activators" modulate work by jamming and unjamming (solidifying and liquifying) a granular medium coupled to a core actuator. These ideas are demonstrated in the Jamming Skin Enabled Locomotion (JSEL) prototype which can morph its shape and achieve locomotion. Next, a new actuator, denoted a Jamming Modulated Unimorph (JMU), is presented in addition to the JSEL topology. The JMU uses a single linear actuator and a discrete number of jamming cells to turn the 1 degree of freedom (DOF) linear actuator into a multi DOF bending actuator. Full characterization of the JMU actuator is presented, followed by a concluding argument for jamming as an enabling mechanism for soft robots in general, regardless of actuation technology.

  7. Remote maintenance for fusion: Requirements vs technology gap

    SciTech Connect

    Davis, F.C.; Kuban, D.P.

    1989-01-01

    Today's remote handling technology was developed in response to the remote maintenance (RM) requirements of the fission community's nuclear fuel recycle process. The needs of the fusion community present new challenges to the remote handling experts of the world. New difficulties are superimposed on the difficulties experienced in maintaining fission processes. Today's technology must be enhanced to respond to the RM needs of these future huge investments. This paper first discusses the current RM needs for fusion based on existing facilities and designs of future machines. It then exposes the gap between these requirements and existing RM technology and recommends ways to extend the state of the art to close this gap.

  8. The technology benefits of inertial confinement fusion research

    SciTech Connect

    Powell, H T

    1999-05-26

    The development and demonstration of inertial fusion is incredibly challenging because it requires simultaneously controlling and precisely measuring parameters at extreme values in energy, space, and time. The challenges range from building megajoule (10{sup 6} J) drivers that perform with percent-level precision to fabricating targets with submicron specifications to measuring target performance at micron scale (10{sup {minus}6} m) with picosecond (10{sup {minus}12} s) time resolution. Over the past 30 years in attempting to meet this challenge, the inertial fusion community around the world has invented new technologies in lasers, particle beams, pulse power drivers, diagnostics, target fabrication, and other areas. These technologies have found applications in diverse fields of industry and science. Moreover, simply assembling the teams with the background, experience, and personal drive to meet the challenging requirements of inertial fusion has led to spin-offs in unexpected directions, for example, in laser isotope separation, extreme ultraviolet lithography for microelectronics, compact and inexpensive radars, advanced laser materials processing, and medical technology. The experience of inertial fusion research and development of spinning off technologies has not been unique to any one laboratory or country but has been similar in main research centers in the US, Europe, and Japan. Strengthening and broadening the inertial fusion effort to focus on creating a new source of electrical power (inertial fusion energy [IFE]) that is economically competitive and environmentally benign will yield rich rewards in technology spin-offs. The additional challenges presented by IFE are to make drivers affordable, efficient, and long-lived while operating at a repetition rate of a few Hertz; to make fusion targets that perform consistently at high-fusion yield; and to create target chambers that can repetitively handle greater than 100-MJ yields while producing minimal

  9. Study on airborne multispectral imaging fusion detection technology

    NASA Astrophysics Data System (ADS)

    Ding, Na; Gao, Jiaobo; Wang, Jun; Cheng, Juan; Gao, Meng; Gao, Fei; Fan, Zhe; Sun, Kefeng; Wu, Jun; Li, Junna; Gao, Zedong; Cheng, Gang

    2014-11-01

    The airborne multispectral imaging fusion detection technology is proposed in this paper. In this design scheme, the airborne multispectral imaging system consists of the multispectral camera, the image processing unit, and the stabilized platform. The multispectral camera can operate in the spectral region from visible to near infrared waveband (0.4-1.0um), it has four same and independent imaging channels, and sixteen different typical wavelengths to be selected based on the different typical targets and background. The related experiments were tested by the airborne multispectral imaging system. In particularly, the camouflage targets were fused and detected in the different complex environment, such as the land vegetation background, the desert hot background and underwater. In the spectral region from 0.4 um to 1.0um, the three different characteristic wave from sixteen typical spectral are selected and combined according to different backgrounds and targets. The spectral image corresponding to the three characteristic wavelengths is resisted and fused by the image processing technology in real time, and the fusion video with typical target property is outputted. In these fusion images, the contrast of target and background is greatly increased. Experimental results confirm that the airborne multispectral imaging fusion detection technology can acquire multispectral fusion image with high contrast in real time, and has the ability of detecting and identification camouflage objects from complex background to targets underwater.

  10. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    SciTech Connect

    Wendt, Amy; Callis, Richard; Efthimion, Philip; Foster, John; Keane, Christopher; Onsager, Terry; O'Shea, Patrick

    2015-09-01

    Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality. However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density

  11. Superconductivity Engineering and Its Application for Fusion 3.Superconducting Technology as a Gateway to Future Technology

    NASA Astrophysics Data System (ADS)

    Asano, Katsuhiko

    Hopes for achieving a new source of energy through nuclear fusion rest on the development of superconducting technology that is needed to make future equipments more energy efficient as well as increase their performance. Superconducting technology has made progress in a wide variety of fields, such as energy, life science, electronics, industrial use and environmental improvement. It enables the actualization of equipment that was unachievable with conventional technology, and will sustain future “IT-Based Quality Life Style”, “Sustainable Environmental” and “Advanced Healthcare” society. Besides coil technology with high magnetic field performance, superconducting electoronics or device technology, such as SQUID and SFQ-circuit, high temperature superconducting material and advanced cryogenics technology might be great significance in the history of nuclear fusion which requires so many wide, high and ultra technology. Superconducting technology seems to be the catalyst for a changing future society with nuclear fusion. As society changes, so will superconducting technology.

  12. Critical Fusion--Technology and Equity in Secondary Education

    ERIC Educational Resources Information Center

    Magolda, Peter

    2006-01-01

    This manuscript reports on the first year of a formative, external program evaluation of the Critical Fusion Initiative (CFI), which involved a higher education institution, a public high school, a corporation, and two nonprofit organizations. The initiative fused technology and education to address the issue of equity by assisting 16 high school…

  13. Soft-Fault Detection Technologies Developed for Electrical Power Systems

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    2004-01-01

    The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.

  14. Fc fusion as a platform technology: potential for modulating immunogenicity.

    PubMed

    Levin, Ditza; Golding, Basil; Strome, Scott E; Sauna, Zuben E

    2015-01-01

    The platform technology of fragment crystallizable (Fc) fusion, in which the Fc region of an antibody is genetically linked to an active protein drug, is among the most successful of a new generation of bioengineering strategies. Immunogenicity is a critical safety concern in the development of any protein therapeutic. While the therapeutic goal of generating Fc-fusion proteins has been to extend half-life, there is a critical mass of literature from immunology indicating that appropriate design of the Fc component has the potential to engage the immune system for product-specific outcomes. In the context of Fc-fusion therapeutics, a review of progress in understanding Fc biology suggests the prospect of engineering products that have an extended half-life and are able to modulate the immune system.

  15. Mechanical-engineering aspects of mirror-fusion technology

    SciTech Connect

    Fisher, D.K.; Doggett, J.N.

    1982-07-15

    The mirror approach to magnetic fusion has evolved from the original simple mirror cell to today's mainline effort: the tandem-mirror machine with thermal barriers. Physics and engineering research is being conducted throughout the world, with major efforts in Japan, the USSR, and the US. At least one facility under construction (MFTF-B) will approach equivalent energy breakeven in physics performance. Significant mechanical engineering development is needed, however, before a demonstration reactor can be constructed. The principal areas crucial to mirror reactor development include large high-field superconducting magnets, high-speed continuous vacuum-pumping systems, long-pulse high-power neutral-beam and rf-plasma heating systems, and efficient high-voltage high-power direct converters. Other areas common to all fusion systems include tritium handling technology, first-wall materials development, and fusion blanket design.

  16. Fc fusion as a platform technology: potential for modulating immunogenicity.

    PubMed

    Levin, Ditza; Golding, Basil; Strome, Scott E; Sauna, Zuben E

    2015-01-01

    The platform technology of fragment crystallizable (Fc) fusion, in which the Fc region of an antibody is genetically linked to an active protein drug, is among the most successful of a new generation of bioengineering strategies. Immunogenicity is a critical safety concern in the development of any protein therapeutic. While the therapeutic goal of generating Fc-fusion proteins has been to extend half-life, there is a critical mass of literature from immunology indicating that appropriate design of the Fc component has the potential to engage the immune system for product-specific outcomes. In the context of Fc-fusion therapeutics, a review of progress in understanding Fc biology suggests the prospect of engineering products that have an extended half-life and are able to modulate the immune system. PMID:25488117

  17. The need for a fusion technology information program

    SciTech Connect

    Correll, D.L. Jr.

    1987-06-16

    In providing an adequate energy technology for the future, which new programs should be considered by the Department of Energy national laboratories to ensure that the US remains in the forefront of international science and technology is an important question. This paper suggests that the urgency for energy independence demands an active communication program that would increase awareness of energy as a critical national issue and would present fusion, with its benefits and risks, as one of the long-term alternative energy sources.

  18. Inertial fusion science and technology for the next century

    SciTech Connect

    Campbell, E M; Hogan, W J; Landes, S

    1999-09-10

    This paper reviews the leading edge of the basic and applied science and technology that use high-intensity facilities and looks at what opportunities lie ahead. The more than 15,000 experiments on the Nova laser since 1985 and many thousands more on other laser, particle beam, and pulsed power facilities around the world have established the new laboratory field of high-energy-density plasma physics and have furthered development of inertial fusion. New capabilities such as those provided by high-brightness femtosecond lasers have enabled the study of matter in conditions previously unachievable on earth. These experiments, along with advanced calculations now practical because of the progress in computing capability, have established the specifications for the National Ignition Facility and Laser MegaJoule and have enhanced new scientific fields such as laboratory astrophysics. Science and technology developed in inertial fusion have found near-term commercial use, have enabled steady progress toward the goal of fusion ignition and gain in the laboratory, and have opened up new fields of study for the 21st century.

  19. Chamber technology concepts for inertial fusion energy: Three recent examples

    SciTech Connect

    Meier, W.R.; Moir, R.W.; Abdou, M.A.

    1997-02-27

    The most serious challenges in the design of chambers for inertial fusion energy (IFE) are 1) protecting the first wall from fusion energy pulses on the order of several hundred megajoules released in the form of x rays, target debris, and high energy neutrons, and 2) operating the chamber at a pulse repetition rate of 5-10 Hz (i.e., re-establishing, the wall protection and chamber conditions needed for beam propagation to the target between pulses). In meeting these challenges, designers have capitalized on the ability to separate the fusion burn physics from the geometry and environment of the fusion chamber. Most recent conceptual designs use gases or flowing liquids inside the chamber. Thin liquid layers of molten salt or metal and low pressure, high-Z gases can protect the first wall from x rays and target debris, while thick liquid layers have the added benefit of protecting structures from fusion neutrons thereby significantly reducing the radiation damage and activation. The use of thick liquid walls is predicted to 1) reduce the cost of electricity by avoiding the cost and down time of changing damaged structures, and 2) reduce the cost of development by avoiding the cost of developing a new, low-activation material. Various schemes have been proposed to assure chamber clearing and renewal of the protective features at the required pulse rate. Representative chamber concepts are described, and key technical feasibility issues are identified for each class of chamber. Experimental activities (past, current, and proposed) to address these issues and technology research and development needs are discussed.

  20. Chamber and target technology development for inertial fusion energy

    SciTech Connect

    Abdou, M; Besenbruch, G; Duke, J; Forman, L; Goodin, D; Gulec, K; Hoffer, J; Khater, H; Kulcinsky, G; Latkowski, J F; Logan, B G; Margevicious, B; Meier, W R; Moir, R W; Morley, N; Nobile, A; Payne, S; Peterson, P F; Peterson, R; Petzoldt, R; Schultz, K; Steckle, W; Sviatoslavsky, L; Tillack, M; Ying, A

    1999-04-07

    Fusion chambers and high pulse-rate target systems for inertial fusion energy (IFE) must: regenerate chamber conditions suitable for target injection, laser propagation, and ignition at rates of 5 to 10 Hz; extract fusion energy at temperatures high enough for efficient conversion to electricity; breed tritium and fuel targets with minimum tritium inventory; manufacture targets at low cost; inject those targets with sufficient accuracy for high energy gain; assure adequate lifetime of the chamber and beam interface (final optics); minimize radioactive waste levels and annual volumes; and minimize radiation releases under normal operating and accident conditions. The primary goal of the US IFE program over the next four years (Phase I) is to develop the basis for a Proof-of-Performance-level driver and target chamber called the Integrated Research Experiment (IRE). The IRE will explore beam transport and focusing through prototypical chamber environment and will intercept surrogate targets at high pulse rep-rate. The IRE will not have enough driver energy to ignite targets, and it will be a non-nuclear facility. IRE options are being developed for both heavy ion and laser driven IFE. Fig. 1 shows that Phase I is prerequisite to an IRE, and the IRE plus NIF (Phase II) is prerequisite to a high-pulse rate. Engineering Test Facility and DEMO for IFE, leading to an attractive fusion power plant. This report deals with the Phase-I R&D needs for the chamber, driver/chamber interface (i.e., magnets for accelerators and optics for lasers), target fabrication, and target injection; it is meant to be part of a more comprehensive IFE development plan which will include driver technology and target design R&D. Because of limited R&D funds, especially in Phase I, it is not possible to address the critical issues for all possible chamber and target technology options for heavy ion or laser fusion. On the other hand, there is risk in addressing only one approach to each technology

  1. Fusion technology development annual report, October 1, 1995--September 30, 1996

    SciTech Connect

    1997-03-01

    In FY96, the General Atomics (GA) Fusion Group made significant contributions to the technology needs of the magnetic fusion program. The work is reported in the following sections on Fusion Power Plant Design Studies (Section 2), Plasma Interactive Materials (Section 3), SiC/SiC Composite Material Development (Section 4), Magnetic Diagnostic Probes (Section 5) and RF Technology (Section 6). Meetings attended and publications are listed in their respective sections. The overall objective of GA`s fusion technology research is to develop the technologies necessary for fusion to move successfully from present-day physics experiments to ITER and other next-generation fusion experiments, and ultimately to fusion power plants. To achieve this overall objective, the authors carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic knowledge about these technologies, including plasma technologies, fusion nuclear technologies, and fusion materials. They continue to be committed to the development of fusion power and its commercialization by US industry.

  2. Fusion technology development. Annual report, October 1, 1994--September 30, 1995

    SciTech Connect

    1996-08-01

    In FY95, the General Atomics (GA) Fusion Group made significant contributions to the technology needs of the magnetic fusion program. The work is reported in the following sections on Fusion Power Plant Studies (Section 2), DiMES (Section 3), SiC Composite Studies (Section 4), Magnetic Probe (Section 5) and RF Technology (Section 6). Meetings attended and publications are listed in their respective sections. The overall objective of GA`s fusion technology research is to develop the technologies necessary for fusion to move successfully from present-day physics experiments to ITER and other next-generation fusion experiments, and ultimately to fusion power plants. To achieve this overall objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic knowledge about these technologies, including plasma technologies, fusion nuclear technologies, and fusion materials. They continue to be committed to the development of fusion power and its commercialization by US industry.

  3. Soft Skills for Information Technology Professionals in Recruitment Advertisements: A Follow-up Study

    ERIC Educational Resources Information Center

    McMahon, Cynthia J. Moore

    2013-01-01

    The purpose of this research is to determine if the use of soft skills requirements in job posting advertisements for information technology professional positions has increased since the dissertation study by G. K. Tannnahill in 2007, titled "Study of Soft Skills for IT Workers in Recruitment Advertising," to support prior research…

  4. Technology development for soft X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Törmä, P. T.; Sipilä, H. J.; Koskinen, T.; Mattila, M.

    2016-05-01

    X-ray spectroscopy instruments lose part of their performance due to the lack of suitable components for soft X-ray region below 1 keV. Therefore, in the analysis of low atomic number elements including lithium, beryllium, boron and carbon instrument sensitivity is often limited. In this work we describe how the performance of the spectroscopy of soft X-rays is significantly improved when all devices integrated in the spectroscopic instrument are suitable for both soft and hard X-rays. This concept is based on utilizing ultra-thin SiN X-ray windows with proven performance not only as a detector window but also as an X-ray source window. By including a soft-X-ray-sensitive silicon drift detector with efficient surface charge collection in this concept the sensitivity and performance of the instrument is significantly increased.

  5. EWSR1-POU5F1 fusion in soft tissue myoepithelial tumors. A molecular analysis of sixty-six cases, including soft tissue, bone, and visceral lesions, showing common involvement of the EWSR1 gene.

    PubMed

    Antonescu, Cristina R; Zhang, Lei; Chang, Ning-En; Pawel, Bruce R; Travis, William; Katabi, Nora; Edelman, Morris; Rosenberg, Andrew E; Nielsen, G Petur; Dal Cin, Paola; Fletcher, Christopher D M

    2010-12-01

    The diagnosis of myoepithelial (ME) tumors outside salivary glands remains challenging, especially in unusual clinical presentations, such as bone or visceral locations. A few reports have indicated EWSR1 gene rearrangement in soft tissue ME tumors, and, in one case each, the fusion partner was identified as either PBX1 or ZNF444. However, larger studies to investigate whether these genetic abnormalities are recurrent or restricted to tumors in soft tissue locations are lacking. Sixty-six ME tumors mainly from soft tissue (71%), but also from skin, bone, and visceral locations, characterized by classic morphological features and supporting immunoprofile were studied. Gene rearrangements in EWSR1, FUS, PBX1, and ZNF444 were investigated by fluorescence in situ hybridization. EWSR1 gene rearrangement was detected in 45% of the cases. A EWSR1-POU5F1 fusion was identified in a pediatric soft tissue tumor by 3'Rapid Amplification of cDNA Euds (RACE) and subsequently confirmed in four additional soft tissue tumors in children and young adults. An EWSR1-PBX1 fusion was seen in five cases, whereas EWSR1-ZNF444 and FUS gene rearrangement was noted in one pulmonary tumor each. In conclusion, EWSR1 gene rearrangement is a common event in ME tumors arising outside salivary glands, irrespective of anatomical location. EWSR1-negative tumors were more often benign, superficially located, and showed ductal differentiation, suggesting the possibility of genetically distinct groups. A subset of soft tissue ME tumors with clear cell morphology harbor an EWSR1-POU5F1 fusion, which can be used as a molecular diagnostic test in difficult cases. These findings do not support a pathogenetic relationship between soft tissue ME tumors and their salivary gland counterparts.

  6. Inertial Confinement Fusion Target Component Fabrication and Technology Development Support

    SciTech Connect

    Steinman, D.

    1993-03-01

    On December 31, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities of the period January 1, 1991 through September 30, 1992. During this period, GA was assigned 15 tasks in support of the Inertial Confinement Fusion program and its laboratories. These tasks included Facilities Activation, Staff Development, and Capabilities Validation to establish facilities and equipment, and demonstrate capability to perform ICF target fabrication research, development and production activities. The capabilities developed and demonstrated are those needed for fabrication and precise characterization of polymer shells and polymer coatings. We made progress toward production capability for glass shells, barrier layer coatings, and gas idling of shells. We fabricated over 1000 beam diagnostic foil targets for Sandia National Laboratory Albuquerque and provided full-time on-site engineering support for target fabrication and characterization. We initiated development of methods to fabricate polymer shells by a controlled mass microencapsulation technique, and performed chemical syntheses of several chlorine- and silicon-doped polymer materials for the University of Rochester's Laboratory for Laser Energetics (UR/LLE). We performed the conceptual design of a cryogenic target handling system for UR/LLE that will fill, transport, layer, and characterize targets filled with cryogenic deuterium or deuterium-tritium fuel, and insert these cryogenic targets into the OMEGA-Upgrade target chamber for laser implosion experiments. This report summarizes and documents the technical progress made on these tasks.

  7. Fusion programs in applied plasma physics and development and technology at GA Technologies, Inc.

    NASA Astrophysics Data System (ADS)

    Overskei, D. O.

    1988-01-01

    Research carried out by GA for the Department of Energy Office of Fusion Energy provides key information and insight necessary for the development of fusion power systems. Highlights of the fusion theory effort described in this report include progress in numerical simulations of turbulent transport in tokamak plasmas, extension of novel theories of the H-mode, development and application of advanced codes for evaluating ECRF current drive efficiency, and new understanding and techniques for dealing with high beta tokamak equilibria. Experimental plasma research efforts are addresssing several important issues in fusion research. Neutron and alpha particle spectroscopy and triton confinement diagnostics are being developed to enable fusion researchers to understand alpha particle confinement and slowdown in burning plasmas. Development of Li beam diagnostic systems continued and has shown a capability for measuring both magnetic field pitch angle and relative current density profiles. Experiments on Ergodic Magnetic Divertor (EMD) phenomena on the Texas Experimental Tokamak (TEXT) continued to demonstrate low plasma edge temperatures and impurity reduction that make the concept attractive for reactor applications. GA led efforts continuing the Resonant Island Divertor (RID) experiments on TEXT using the EMD as a controlled magnetic perturbation. Research carried out in GA's Development and Technology programs included reactor systems design studies, and development of ferritic steels suitable for use as a structural material in fusion reactors. In the reactor systems design area, GA participated in the TITAN Reserved Field Pinch (RFP) Reactor Design Study. GA is responsible for project operation, safety design and analysis, and blanket shield neutronics calculations for this study.

  8. Soft Fusion Energy Path: Isotope Production in Energy Subcritical/Economy Hypercritical D +D Colliding-Beam Mini Fusion Reactor `Exyder'

    NASA Astrophysics Data System (ADS)

    Hester, Tim; Maglich, Bogdan; Calsec Collaboration

    2015-03-01

    Bethe1 and Sakharov2 argued for soft fusion energy path via isotope production, substantiated by Manheimer3. - Copious T and 3He production4 , 5 from D(d, p) T and D(d, n) 3He reactions in 725 KeV D +D colliding beams was measured in weak-focusing Self-Collider6 , 7 radius 0.15 m, in B = 3.12 T, non-linearly stabilized by electron cloud oscillations8 to confinement time = 24 s. Simulations6 predict that by switching to strong focusing9, 10 deuterons 0.75 MeV each, generate 1 3He +1T +1p + 1n at total input energy cost 10.72 MeV. Economic value of T and 3He is 65 and 120 MeV/atom, respectively. We obtain economic gain 205MeV/10.72 MeV ~ 2,000% i.e. 3He production funds cost of T. If first wall is made of Thorium n's will breed 233U releasing 200 MeV/fission, at neutron cost 5.36 MeV versus 160 MeV in beam on target, resulting in no cost 3He production, valued 75K/g. 1. Physics Today, May 1979, p.44; 2. Memoirs, Vintage Books, (1992); 3. Phys. Today, May 2012 p. 12; 4. Phys. Rev. Lett. 54, 796 (1985); 5. Bull. APS, 57, No. 3 (2012); 6. Part. Acc.1, (1970); 7. ANEUTRONIC FUSION NIM A 271 1-167 (1988); 8. Phys. Rev. Lett. 70, 1818 (1993); 9. Part. Acc. 34, 13 (1990).

  9. Commercial objectives, technology transfer, and systems analysis for fusion power development

    NASA Technical Reports Server (NTRS)

    Dean, Stephen O.

    1988-01-01

    Fusion is an inexhaustible source of energy that has the potential for economic commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion energy development program is the generation of central station electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high energy neutrons suggests potentially unique applications. In addition, fusion R and D will lead to new products and new markets. Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other, are the two primary criteria for setting long range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R and D program toward practical applications. The transfer of fusion technology and skills from the national labs and universities to industry is the key to achieving the long range objective of commercial fusion applications.

  10. Soft Skills in the Technology Education Classroom: What Do Students Need?

    ERIC Educational Resources Information Center

    Harris, Kara S.; Rogers, George E.

    2008-01-01

    In this article, the authors examine which nontechnical competencies or soft skills related to technology education should be developed by high school students. Results clearly indicate that university-level engineering and engineering technology professors rate students' interpersonal, communication, and work ethic competencies as desired…

  11. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume II

    SciTech Connect

    Abdou, M.

    1984-10-01

    The Nuclear Fusion Issues chapter contains a comprehensive list of engineering issues for fusion reactor nuclear components. The list explicitly defines the uncertainties associated with the engineering option of a fusion reactor and addresses the potential consequences resulting from each issue. The next chapter identifies the fusion nuclear technology testing needs up to the engineering demonstration stage. (MOW)

  12. Soft, cutting edge of environmentalism: why and how the appropriate-technology notion is changing the movement

    SciTech Connect

    Morrison, D.E.

    1980-04-01

    The central theme of hard, or centralized, technology versus soft, or small and disperse, technology is traced through two stages of development that the author terms enthusiasm and realism. The overlap between the environmental movement and the soft-technology movement has given the appropriate-technology movement a broad base of ideological support. Soft-technology thinking in environmentalism is broadening its concerns. This trend tends to increase what to date has been environmentalism's rather marginal relevance and legitimacy in the original and still-central domain of the soft-technolgoy movement, namely the developing countries. The small is beautiful concept will force environmentalists to question their commitments to political ideologies as well as environmentalism when faced with achieving environmental reform in the context of achieving greater social equity through redistribution. According to the author, the soft-technology vision of transformation to a soft society is the cutting edge of thought in environmentalism. 45 footnotes, 1 table. (SAC)

  13. Fusion

    NASA Astrophysics Data System (ADS)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  14. Review of the Strategic Plan for International Collaboration on Fusion Science and Technology Research. Fusion Energy Sciences Advisory Committee (FESAC)

    SciTech Connect

    none,

    1998-01-23

    The United States Government has employed international collaborations in magnetic fusion energy research since the program was declassified in 1958. These collaborations have been successful not only in producing high quality scientific results that have contributed to the advancement of fusion science and technology, they have also allowed us to highly leverage our funding. Thus, in the 1980s, when the funding situation made it necessary to reduce the technical breadth of the U.S. domestic program, these highly leveraged collaborations became key strategic elements of the U.S. program, allowing us to maintain some degree of technical breadth. With the recent, nearly complete declassification of inertial confinement fusion, the use of some international collaboration is expected to be introduced in the related inertial fusion energy research activities as well. The United States has been a leader in establishing and fostering collaborations that have involved scientific and technological exchanges, joint planning, and joint work at fusion facilities in the U.S. and worldwide. These collaborative efforts have proven mutually beneficial to the United States and our partners. International collaborations are a tool that allows us to meet fusion program goals in the most effective way possible. Working with highly qualified people from other countries and other cultures provides the collaborators with an opportunity to see problems from new and different perspectives, allows solutions to arise from the diversity of the participants, and promotes both collaboration and friendly competition. In short, it provides an exciting and stimulating environment resulting in a synergistic effect that is good for science and good for the people of the world.

  15. Absolutely calibrated soft-x-ray streak camera for laser-fusion applications

    SciTech Connect

    Kauffman, R.L.; Medecki, H.; Stradling, G.

    1982-01-01

    The intensity output of a soft-x-ray streak camera was calibrated (SXRSC) in order to make absolute flux measurements of x rays emitted from laser-produced plasmas. The SXRSC developed at LLNL is used to time-resolve x-ray pulses to better than 20 ps. The SXRSC uses a Au photocathode on a thin carbon substrate which is sensitive to x rays from 100 eV to greater than 10 keV. Calibrations are done in the dynamic mode using a small laser-produced x-ray source. The SXRSC is calibrated by comparing its integrated signal to the output of calibrated x-ray diodes monitoring the source strength. The measured SXRSC response is linear over greater than two orders of magnitude. Using these calibrations, absolute intensities can be measured to an accuracy of +-30%.

  16. Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions.

    PubMed

    Mazzolai, B; Margheri, L; Cianchetti, M; Dario, P; Laschi, C

    2012-06-01

    Soft robotics is a current focus in robotics research because of the expected capability of soft robots to better interact with real-world environments. As a point of inspiration in the development of innovative technologies in soft robotics, octopuses are particularly interesting 'animal models'. Octopus arms have unique biomechanical capabilities that combine significant pliability with the ability to exert a great deal of force, because they lack rigid structures but can change and control their degree of stiffness. The octopus arm motor capability is a result of the peculiar arrangement of its muscles and the properties of its tissues. These special abilities have been investigated by the authors in a specific study dedicated to identifying the key principles underlying these biological functions and deriving engineering requirements for robotics solutions. This paper, which is the second in a two-part series, presents how the identified requirements can be used to create innovative technological solutions, such as soft materials, mechanisms and actuators. Experiments indicate the ability of these proposed solutions to ensure the same performance as in the biological model in terms of compliance, elongation and force. These results represent useful and relevant components of innovative soft-robotic systems and suggest their potential use to create a new generation of highly dexterous, soft-bodied robots.

  17. Use of the 810 nm diode laser: soft tissue management and orthodontic applications of innovative technology.

    PubMed

    Sarver, David M

    2006-10-01

    Innovative technologies such as the diode laser have provided considerable benefit to dental patients and professionals. Facilitating efficient cutting of tissue and subsequent coagulation, the soft tissue laser enhances tissue healing and can reduce postsurgical complications. Due to the conservative nature of treatment accomplished with the laser this technology is very useful in orthodontic procedures. The diode laser is utilized in both esthetic enhancement of the smile, and treatment management of soft tissue issues that impede efficient orthodontic treatment. Its clinical application will be illustrated in a series of orthodontic cases.

  18. Critical soft landing technology issues for future US space missions

    NASA Technical Reports Server (NTRS)

    Macha, J. M.; Johnson, D. W.; Mcbride, D. D.

    1992-01-01

    A programmatic need for research and development to support parachute-based landing systems has not existed since the end of the Apollo missions in the mid-1970s. Now, a number of planned space programs require advanced landing capabilities for which the experience and technology base does not currently exist. New requirements for landing on land with controllable, gliding decelerators and for more effective impact attenuation devices justify a renewal of the landing technology development effort that existed during the Mercury, Gemini, and Apollo programs. A study was performed to evaluate the current and projected national capability in landing systems and to identify critical deficiencies in the technology base required to support the Assured Crew Return Vehicle and the Two-Way Manned Transportation System. A technology development program covering eight landing system performance issues is recommended.

  19. Soft computing-based terrain visual sensing and data fusion for unmanned ground robotic systems

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir

    2006-05-01

    In this paper, we have primarily discussed technical challenges and navigational skill requirements of mobile robots for traversability path planning in natural terrain environments similar to Mars surface terrains. We have described different methods for detection of salient terrain features based on imaging texture analysis techniques. We have also presented three competing techniques for terrain traversability assessment of mobile robots navigating in unstructured natural terrain environments. These three techniques include: a rule-based terrain classifier, a neural network-based terrain classifier, and a fuzzy-logic terrain classifier. Each proposed terrain classifier divides a region of natural terrain into finite sub-terrain regions and classifies terrain condition exclusively within each sub-terrain region based on terrain visual clues. The Kalman Filtering technique is applied for aggregative fusion of sub-terrain assessment results. The last two terrain classifiers are shown to have remarkable capability for terrain traversability assessment of natural terrains. We have conducted a comparative performance evaluation of all three terrain classifiers and presented the results in this paper.

  20. Multi-energy soft-x-ray technique for impurity transport measurements in the fusion plasma edge

    NASA Astrophysics Data System (ADS)

    Clayton, D. J.; Tritz, K.; Stutman, D.; Finkenthal, M.; Kaye, S. M.; Kumar, D.; LeBlanc, B. P.; Paul, S.; Sabbagh, S. A.

    2012-10-01

    A new diagnostic technique was developed to produce high-resolution impurity transport measurements of the steep-gradient edge of fusion plasmas. Perturbative impurity transport measurements were performed for the first time in the NSTX plasma edge (r/a ˜ 0.6 to the SOL) with short neon gas puffs, and the resulting line and continuum emission was measured with the new edge multi-energy soft-x-ray (ME-SXR) diagnostic. Neon transport is modeled with the radial impurity transport code STRAHL and the resulting x-ray emission is computed using the ADAS atomic database. The radial transport coefficient profiles D(r) and v(r), and the particle flux from the gas puff Φ(t), are the free parameters in this model and are varied to find the best fit to experimental x-ray emissivity measurements, with bolometry used to constrain the impurity source. Initial experiments were successful and results were consistent with previous measurements of core impurity transport and neoclassical transport calculations. New diagnostic tools will be implemented on NSTX-U to further improve these transport measurements.

  1. Data processing for soft X-ray diagnostics based on GEM detector measurements for fusion plasma imaging

    NASA Astrophysics Data System (ADS)

    Czarski, T.; Chernyshova, M.; Pozniak, K. T.; Kasprowicz, G.; Byszuk, A.; Juszczyk, B.; Wojenski, A.; Zabolotny, W.; Zienkiewicz, P.

    2015-12-01

    The measurement system based on GEM - Gas Electron Multiplier detector is developed for X-ray diagnostics of magnetic confinement fusion plasmas. The Triple Gas Electron Multiplier (T-GEM) is presented as soft X-ray (SXR) energy and position sensitive detector. The paper is focused on the measurement subject and describes the fundamental data processing to obtain reliable characteristics (histograms) useful for physicists. So, it is the software part of the project between the electronic hardware and physics applications. The project is original and it was developed by the paper authors. Multi-channel measurement system and essential data processing for X-ray energy and position recognition are considered. Several modes of data acquisition determined by hardware and software processing are introduced. Typical measuring issues are deliberated for the enhancement of data quality. The primary version based on 1-D GEM detector was applied for the high-resolution X-ray crystal spectrometer KX1 in the JET tokamak. The current version considers 2-D detector structures initially for the investigation purpose. Two detector structures with single-pixel sensors and multi-pixel (directional) sensors are considered for two-dimensional X-ray imaging. Fundamental output characteristics are presented for one and two dimensional detector structure. Representative results for reference source and tokamak plasma are demonstrated.

  2. Fusion bonding of non-pressurized process piping: A new technology and a new approach

    SciTech Connect

    Cooper, R.J.; Pinder, R.

    1996-07-01

    Perhaps the best-known method of thermoplastic fusion bonding for process piping is hot-plate or heated-tool butt welding. Despite the age of this method and the considerable research available on the subject, in practice, this method of heat fusion relies largely on the skill and knowledge of the machine operator. Hence, the quality of the completed fusion bond is largely dependent on human factors. Another method for joining thermoplastic process piping with heat fusion has been through the use of electrofusion fittings or couplings. A sleeve with an embedded resistance wire is slipped onto mating pipe ends, and welding takes place by electrically heating the resistance wire and forming a molecular bond on the outside surface of the mated pipes. While butt welding tends to rely heavily on the knowledge and experience of the machine operator, electrofusion fittings tend to rely more on automated mechanisms such as the software in the computerized fusion box. An alternative form of thermoplastic welding that employs the features of both butt welding and electrofusion couplings has recently been developed. This unique method employs the principles of electrofusion for performing butt welding. The authors have successfully demonstrated this technology at a major US chemical manufacturer`s facility to produce reliable, leak-tight fusion joints in non-pressurized, process piping applications. Research and practical experience were blended to provide consistent fusion quality based on monitoring key fusion parameters, while still relying on the experience and training of a fusion operator.

  3. Softly, Softly

    ERIC Educational Resources Information Center

    Diamond, Abigail

    2008-01-01

    The term "soft skills" encompasses a cluster of personality traits, language abilities, personal habits and, ultimately, values and attitudes. Soft skills complement "harder", more technical, skills, such as being able to read or type a letter, but they also have a significant impact on the ability of people to do their jobs and on their…

  4. Transferring the Soft-Skills Technology of Workplace Learning and Performance to China.

    ERIC Educational Resources Information Center

    Yan, Jenny; Rothwell, William J.; Webster, Lois

    2001-01-01

    Discusses international business and workplace learning and performance (WLP), and describes a long-term strategic alliance between Motorola University China, Penn State University, Beijing University, and Nankai University. Highlights include a needs assessment of multinational corporations in China; transferring the soft-skills technology of WLP…

  5. Synthesizing Soft Systems Methodology and Human Performance Technology

    ERIC Educational Resources Information Center

    Scott, Glen; Winiecki, Donald J.

    2012-01-01

    Human performance technology (HPT), like other concepts, models, and frameworks that we use to describe the world in which we live and the way we organize ourselves to accomplish valuable activities, is built from paradigms that were fresh and relevant at the time it was conceived and from the fields of study from which it grew. However, when the…

  6. An oncogenic NTRK fusion in a soft tissue sarcoma patient with response to the tropomyosin-related kinase (TRK) inhibitor LOXO-101

    PubMed Central

    Doebele, Robert C.; Davis, Lara E.; Vaishnavi, Aria; Le, Anh T.; Estrada-Bernal, Adriana; Keysar, Stephen; Jimeno, Antonio; Varella-Garcia, Marileila; Aisner, Dara L.; Li, Yali; Stephens, Philip J.; Morosini, Deborah; Tuch, Brian B.; Fernandes, Michele; Nanda, Nisha; Low, Jennifer A.

    2015-01-01

    Oncogenic TRK fusions induce cancer cell proliferation and engage critical cancer-related downstream signaling pathways. These TRK fusions occur rarely, but in a diverse spectrum of tumor histologies. LOXO-101 is an orally administered inhibitor of the TRK kinase, and is highly selective only for the TRK family of receptors. Preclinical models of LOXO-101 using TRK-fusion bearing human-derived cancer cell lines demonstrate inhibition of the fusion oncoprotein and cellular proliferation in vitro, and tumor growth in vivo. The tumor of a 41-year old woman with soft tissue sarcoma metastatic to lung was found to harbor an LMNA-NTRK1 gene fusion encoding a functional LMNA-TRKA fusion oncoprotein as determined by an in situ proximity ligation assay. On a phase 1 study of LOXO-101 (ClinicalTrials.gov no. NCT02122913), this patient’s tumors underwent rapid and substantial tumor regression, with an accompanying improvement in pulmonary dyspnea, oxygen saturation and plasma tumor markers. PMID:26216294

  7. Review of progress on fusion materials technology, Harwell, December 1980. Irradiation effects in fusion reactor materials

    NASA Astrophysics Data System (ADS)

    Harries, D. R.

    1981-03-01

    The evolution of the radiation damage structure, void and gas bubble swelling, and surface blistering effects in both model and potential first wall materials for a D-T fusion reactor system of the TOKAMAK type was investigated along with radiation effects in inorganic insulator materials. In addition, investigations were carried out into the effects of irradiation on organic insulators and on the performance of rubber seals. The principal achievements are summarized and a list of 50 references is given.

  8. Argonne National Laboratory contributions to the International Symposium on Fusion Nuclear Technology (ISFNT)

    SciTech Connect

    Not Available

    1988-10-01

    A total of sixteen papers with authors from Argonne National Laboratory were presented at the First International Symposium on Fusion Nuclear Technology (ISFNT), held in Tokyo, Japan, in April 1988. The papers cover the results of recent investigations in blanket design and analysis, fusion neutronics, materials experiments in liquid metal corrosion and solid breeders, tritium recovery analysis, experiments and analysis for liquid metal MHD, reactor safety and economic analysis, and transient electromagnetic analysis.

  9. The Fusion of Learning Theory and Technology in an Online Music History Course Redesign

    ERIC Educational Resources Information Center

    Scarnati, Blase; Garcia, Paula

    2008-01-01

    Teaching today's students requires an integration of learner-centered pedagogy with innovative technological resources. In this article, Blase Scarnati and Paula Garcia describe the redesign of a junior-level music history course guided by learner-centered principles and driven by a fusion of stimulating technology-based learning tools and…

  10. Development of DEMO-FNS tokamak for fusion and hybrid technologies

    NASA Astrophysics Data System (ADS)

    Kuteev, B. V.; Azizov, E. A.; Alexeev, P. N.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.

    2015-07-01

    The history of fusion-fission hybrid systems based on a tokamak device as an extremely efficient DT-fusion neutron source has passed through several periods of ample research activity in the world since the very beginning of fusion research in the 1950s. Recently, a new roadmap of the hybrid program has been proposed with the goal to build a pilot hybrid plant (PHP) in Russia by 2030. Development of the DEMO-FNS tokamak for fusion and hybrid technologies, which is planned to be built by 2023, is the key milestone on the path to the PHP. This facility is in the phase of conceptual design aimed at providing feasibility studies for a full set of steady state tokamak technologies at a fusion energy gain factor Q ˜ 1, fusion power of ˜40 MW and opportunities for testing a wide range of hybrid technologies with the emphasis on continuous nuclide processing in molten salts. This paper describes the project motivations, its current status and the key issues of the design.

  11. Fusion protein technologies for biopharmaceuticals: Applications and challenges

    PubMed Central

    Berger, Sven; Lowe, Peter; Tesar, Michael

    2015-01-01

    Stefan R. Schmidt consolidates the hugely diverse field of fusion proteins and their application in the creation of biopharmaceuticals. The text is replete with case studies and clinical data that inform and intrigue the reader as to the myriad possibilities available when considering the creation of a fusion protein. This valuable text will serve the novice as a broad introduction or the seasoned professional as a thorough review of the state of the art. The first marketed therapeutic recombinant protein was human insulin (Humulin® R). Its approval in 1982 was followed by other such products, including erythropoietin (EPO), interferon (IFN), and tissue plasminogen activator (tPa). Since the 1980s, the number and general availability of recombinant products that replace natural proteins harvested from animal or human sources has increased considerably. Following the initial success, researchers started de novo designs of therapeutic proteins that do not occur in nature. The first of these new drugs to be approved was etanercept (Enbrel®), a fusion portion containing a section of the tumor necrosis factor (TNF) receptor fused to the Fc portion of human IgG1.

  12. Depth profiling of tritium in materials for fusion technology

    SciTech Connect

    Sawicki, J.A.

    1988-09-01

    The paper outlines recent progress in depth profiling of tritium distribution near the surface of materials by two ion beam techniques; elastic recoil detection (ERD) and T(d,/alpha/)n nuclear reaction analysis (NRA). The sensitivity and depth-resolution of both methods are examined for a series of tritiated titanium films. Calculated depth profiles and ranges of implanted tritium ions in selected candidate materials for thermonuclear fusion devices are also given. Depth profiles of tritium implanted into specimens of graphite and lithium oxides as a function of temperature are discussed as the examples of applications.

  13. Development of fusion blanket technology for the DEMO reactor.

    PubMed

    Colling, B R; Monk, S D

    2012-07-01

    The viability of various materials and blanket designs for use in nuclear fusion reactors can be tested using computer simulations and as parts of the test blanket modules within the International Thermonuclear Experimental Reactor (ITER) facility. The work presented here focuses on blanket model simulations using the Monte Carlo simulation package MCNPX (Computational Physics Division Los Alamos National Laboratory, 2010) and FISPACT (Forrest, 2007) to evaluate the tritium breeding capability of a number of solid and liquid breeding materials. The liquid/molten salt breeders are found to have the higher tritium breeding ratio (TBR) and are to be considered for further analysis of the self sufficiency timing.

  14. Development of fusion blanket technology for the DEMO reactor.

    PubMed

    Colling, B R; Monk, S D

    2012-07-01

    The viability of various materials and blanket designs for use in nuclear fusion reactors can be tested using computer simulations and as parts of the test blanket modules within the International Thermonuclear Experimental Reactor (ITER) facility. The work presented here focuses on blanket model simulations using the Monte Carlo simulation package MCNPX (Computational Physics Division Los Alamos National Laboratory, 2010) and FISPACT (Forrest, 2007) to evaluate the tritium breeding capability of a number of solid and liquid breeding materials. The liquid/molten salt breeders are found to have the higher tritium breeding ratio (TBR) and are to be considered for further analysis of the self sufficiency timing. PMID:22112596

  15. Phase 1 report on sensor technology, data fusion and data interpretation for site characterization

    SciTech Connect

    Beckerman, M.

    1991-10-01

    In this report we discuss sensor technology, data fusion and data interpretation approaches of possible maximal usefulness for subsurface imaging and characterization of land-fill waste sites. Two sensor technologies, terrain conductivity using electromagnetic induction and ground penetrating radar, are described and the literature on the subject is reviewed. We identify the maximum entropy stochastic method as one providing a rigorously justifiable framework for fusing the sensor data, briefly summarize work done by us in this area, and examine some of the outstanding issues with regard to data fusion and interpretation. 25 refs., 17 figs.

  16. A fusion-driven subcritical system concept based on viable technologies

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Jiang, J.; Wang, M.; Jin, M.; FDS Team

    2011-10-01

    A fusion-driven hybrid subcritical system (FDS) concept has been designed and proposed as spent fuel burner based on viable technologies. The plasma fusion driver can be designed based on relatively easily achieved plasma parameters extrapolated from the successful operation of existing fusion experimental devices such as the EAST tokamak in China and other tokamaks in the world, and the subcritical fission blanket can be designed based on the well-developed technologies of fission power plants. The simulation calculations and performance analyses of plasma physics, neutronics, thermal-hydraulics, thermomechanics and safety have shown that the proposed concept can meet the requirements of tritium self-sufficiency and sufficient energy gain as well as effective burning of nuclear waste from fission power plants and efficient breeding of nuclear fuel to feed fission power plants.

  17. The fourth international energy agency international workshop on beryllium technology for fusion

    SciTech Connect

    Scaffidi-Argentina, F.; Longhurst, G.R.

    2000-05-01

    The main objective of the workshop was to support the advancement of the international development of fusion power through communication and dissemination of information on progress made in beryllium technology. This has been accomplished through presentation of original research on issues of current interest to the fusion beryllium community. The workshop was divided into ten technical sessions that addressed the following general topics: production and characterization, health and safety, forming and joining, chemical compatibility, thermal-mechanical properties, pebble bed behavior, high-heat-flux performance, irradiation effects, plasma-tritium interaction, and molten beryllium-bearing salts.

  18. Transferrin Fusion Technology: A Novel Approach to Prolonging Biological Half-Life of Insulinotropic Peptides

    PubMed Central

    Kim, Byung-Joon; Zhou, Jie; Martin, Bronwen; Carlson, Olga D.; Maudsley, Stuart; Greig, Nigel H.; Mattson, Mark P.; Ladenheim, Ellen E.; Wustner, Jay; Turner, Andrew; Sadeghi, Homayoun

    2010-01-01

    Fusion proteins made up of glucagon-like peptide 1 (GLP-1) and exendin-4 (EX-4) fused to a nonglycosylated form of human transferrin (GLP-1-Tf or EX-4-Tf) were produced and characterized. GLP-1-Tf activated the GLP-1 receptor, was resistant to inactivation by peptidases, and had a half-life of approximately 2 days, compared with 1 to 2 min for native GLP-1. GLP-1-Tf retained the acute, glucose-dependent insulin-secretory properties of native GLP-1 in diabetic animals and had a profound effect on proliferation of pancreatic β-cells. In addition, Tf and the fusion proteins did not cross the blood-brain-barrier but still reduced food intake after peripheral administration. EX-4-Tf proved to be as effective as EX-4 but had longer lived effects on blood glucose and food intake. This novel transferrin fusion technology could improve the pharmacology of various peptides. PMID:20498254

  19. Findings of the NATO workshop on data fusion technologies for harbour protection

    NASA Astrophysics Data System (ADS)

    Shahbazian, Elisa; DeWeert, Michael J.; Rogova, Galina

    2006-05-01

    The NATO Security Through Science Program and the Defence Investment Division requested and sponsored the organization of a NATO Advanced Research Workshop (ARW) on the topic of Data Fusion Technologies for Harbour Protection, which was held June 27-July 1, 2005 in Tallinn, Estonia. The goal of the workshop was to help knowledge exchange between the technology experts and the security policy makers for a better understanding of goals, functions and information requirements of the decision makers as well as the way the data fusion technology can help enhancing security of harbours. In addition to presentations by experts from the research community on detection and fusion technologies as well as in practice and policy the workshop program included daily breakout sessions, in which the participants were given an opportunity to brainstorm on the topics of the workshop in interdisciplinary smaller teams. The working groups: (i) chose a scenario, including threat stages, threat types, threat methods and ranges, and response constraints due to the particular harbour environment; then (ii) identified: (a) requirements (objectives, functions and essential elements of information); (b) technologies (available and future); (c) information available and necessary through sensors and other sources, as agencies and jurisdiction; (d) methods: detection, identification, situation assessment, prediction. This paper describes the main issues and proposed approaches that were identified by the working groups.

  20. Inertial fusion technology spin-offs-history provides a glimpse of the future

    SciTech Connect

    Powell, H

    2000-03-07

    The development and demonstration of inertial fusion is incredibly challenging because it requires simultaneously controlling and precisely measuring parameters at extreme values in energy, space, and time. The challenges range from building megajoule (10{sup 6} J) drivers that perform with percent-level precision to fabricating targets with submicron specifications to measuring target performance at micron scale (10{sup -6} m) with picosecond (10{sup -12} s) time resolution. Over the past 30 years in attempting to meet this challenge, the inertial fusion community around the world has invented new technologies in lasers, particle beams, pulse power drivers, diagnostics, target fabrication, and other areas. These technologies have found applications in diverse fields of industry and science. Moreover, simply assembling the teams with the background, experience, and personal drive to meet the challenging requirements of inertial fusion has led to spin-offs in unexpected directions, for example, in laser isotope separation, extreme ultraviolet (EUV) lithography for microelectronics, compact and inexpensive radars, advanced laser materials processing, and medical technology. It is noteworthy that more than 40 R&D 100 awards, the ''Oscars of applied research'' have been received by members of the inertial fusion community over this period. Not surprisingly, the inertial fusion community has created many new companies based on these advances. The experience of inertial fusion research and development of spinning off technologies has not been unique to any one laboratory or country but has been similar in main research centers in the United States, Europe, and Japan. The capabilities of inertial fusion research have also been exploited in numerous and diverse specific lines of scientific research. Examples include laboratory simulation of astrophysical phenomena; studies of the equation of state (EOS) of matter under conditions relevant to the interior of planets and

  1. Non-fusion applications of RF and microwave technology

    SciTech Connect

    Caughman, J.B.O.; Baity, F.W.; Bigelow, T.S.; Gardner, W.L.; Hoffman, D.J.; Forrester, S.C.; White, T.L.

    1995-12-01

    The processing of materials using rf and/or microwave power is a broad area that has grown significantly in the past few years. The authors have applied rf and microwave technology in the areas of ceramic sintering, plasma processing, and waste processing. The sintering of ceramics in the frequency range of 50 MHz-28 GHz has lead to unique material characteristics compared to materials that have been sintered conventionally. It has been demonstrated that sintering can be achieved in a variety of materials, including alumina, zirconia, silicon carbide, and boron carbide. In the area of plasma processing, progress has been made in the development and understanding of high density plasma sources, including inductively coupled plasma (ICP) sources. The effects of processing conditions on the ion energy distribution at the substrate surface (a critical processing issue) have been determined for a variety of process gases. The relationship between modeling and experiment is being established. Microwave technology has also been applied to the treatment of radioactive and chemical waste. The application of microwaves to the removal of contaminated concrete has been demonstrated. Details of these programs and other potential application areas are discussed.

  2. Fusion materials science and technology research opportunities now and during the ITER era

    SciTech Connect

    S.J. Zinkle; J.P. Planchard; R.W. Callis; C.E. Kessel; P.J. Lee; K.A. McCarty; Various Others

    2014-10-01

    Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: (1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the singleeffects concept exploration stage, technology readiness levels >3), (2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and (3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

  3. Orbital transfer rocket engine technology program: Soft wear ring seal technology

    NASA Technical Reports Server (NTRS)

    Lariviere, Brian W.

    1992-01-01

    Liquid oxygen (LOX) compatibility tests, including autogenous ignition, promoted ignition, LOX impact tests, and friction and wear tests on different PV products were conducted for several polymer materials as verification for the implementation of soft wear ring seals in advanced rocket engine turbopumps. Thermoplastics, polyimide based materials, and polyimide-imide base materials were compared for oxygen compatibility, specific wear coefficient, wear debris production, and heat dissipation mechanisms. A thermal model was generated that simulated the frictional heating input and calculated the surface temperature and temperature distribution within the seal. The predictions were compared against measured values. Heat loads in the model were varied to better match the test data and determine the difference between the measured and the calculated coefficients of friction.

  4. Physics Guidelines and Technological Solutions for Meaningful Fusion Burning Experiments

    NASA Astrophysics Data System (ADS)

    Celentano, G.; Coppi, B.; Cucchiaro, A.

    2001-10-01

    The design of the Ignitor machine incorporates a series of solutions that allows it to produce plasma currents up to 11 MA with an adequate safety factor in a compact confinement configuration. The consequent record high poloidal magnetic pressures p_Mp=\\overline\\overlineB^2_p/(2μ_0) makes it possible to achieve ignition at low temperatures and to have a number of contained thermal particle orbits not inferior to that of much larger devices such as ITER-FEAT. In fact, the key parameter of merit for comparison among different machines(J.H. Schultz et al.,Advanced magnets and implications for BPX), BPS Workshop II (G.A. San Siego, CA, 2001) has been recognized to be of the type I_pAq_ψ/R_0, where Ip is the plasma current, A the aspect ratio, R0 the major radius and q_ψ the plasma safety factor. The combined technological solutions are the ''bucking and wedging" concept of the toroidal magnet, the adoption of compression rings, of a (horizontal) magnetic press, the He-subcooling of the (copper) coils and the splitting and grading of the central solenoid. Work sponsored in part by ENEA of Italy and by the US Department of Energy.

  5. Fusion development and technology. Technical progress report, October 15, 1990--October 14, 1993

    SciTech Connect

    Montgomery, D.B.

    1992-06-01

    This report discusses the following: superconducting magnet technology; high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies--aries; ITER physics: alpha physics and alcator R&D for ITER; lower hybrid current drive and heating in the ITER device; ITER superconducting PF scenario and magnet analysis; ITER systems studies; and safety, environmental and economic factors in fusion development.

  6. Ongoing applications of soft computing technologies to real-world problems at Physical Optics Corporation

    NASA Astrophysics Data System (ADS)

    Kostrzewski, Andrew A.; Kim, Dai Hyun; Jannson, Tomasz P.; Savant, Gajendra D.; Kim, Jeongdal; Chen, Judy

    1998-10-01

    Soft computing is a set of promising computational tools for solving problems that are inherently well solved by humans but not by standard computing means. This paper presents an overview of R and D activities at Physical Optics Corporation in the area of soft computing. The company has been involved in soft computing for over ten years, and has pioneered several soft-computing methodologies, including fuzzied genetic algorithms and neuro-fuzzy networks. Several practical implementations of soft computing are discussed.

  7. Use of Soft Computing Technologies for a Qualitative and Reliable Engine Control System for Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Trevino, Luis; Brown, Terry; Crumbley, R. T. (Technical Monitor)

    2001-01-01

    The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to improve overall vehicle system safety, reliability, and rocket engine performance by development of a qualitative and reliable engine control system (QRECS). Specifically, this will be addressed by enhancing rocket engine control using SCT, innovative data mining tools, and sound software engineering practices used in Marshall's Flight Software Group (FSG). The principle goals for addressing the issue of quality are to improve software management, software development time, software maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control methodologies, but to provide alternative design choices for control, implementation, performance, and sustaining engineering, all relative to addressing the issue of reliability. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion (system level), software engineering for embedded flight software systems, and soft computing technologies (i.e., neural networks, fuzzy logic, data mining, and Bayesian belief networks); some of which are briefed in this paper. For this effort, the targeted demonstration rocket engine testbed is the MC-1 engine (formerly FASTRAC) which is simulated with hardware and software in the Marshall Avionics & Software Testbed (MAST) laboratory that currently resides at NASA's Marshall Space Flight Center, building 4476, and is managed by the Avionics Department. A brief plan of action for design, development, implementation, and testing a Phase One effort for QRECS is given, along with expected results. Phase One will focus on development of a Smart Start Engine Module and a Mainstage Engine Module for proper engine start and mainstage engine operations. The overall intent is to demonstrate that by

  8. The curious ability of PEG-fusion technologies to restore lost behaviors after nerve severance

    PubMed Central

    Bittner, G.D.; Sengelaub, D.R.; Trevino, R.C.; Peduzzi, J.D.; Mikesh, M.; Ghergherehchi, C.L.; Schallert, T.; Thayer, W.P.

    2016-01-01

    Traumatic injuries to PNS and CNS axons are not uncommon. Restoration of lost behaviors following severance of mammalian peripheral nerve axons (PNAs) relies on regeneration by slow outgrowths and is typically poor or nonexistent if after ablation or injuries close to the soma. Behavioral recovery after severing spinal tract axons (STAs) is poor because STAs do not naturally regenerate. Current techniques to enhance PNA and/or STA regeneration have had limited success and do not prevent the onset of Wallerian degeneration of severed distal segments. This review describes the use of a recently-developed polyethylene glycol (PEG)-fusion technology combining concepts in biochemical engineering, cell biology and clinical microsurgery. Within minutes after micro-suturing carefully-trimmed cut ends and applying a well-specified sequence of solutions, PEG-fused axons exhibit morphological continuity (assessed by intra-axonal dye diffusion) and electrophysiological continuity (assessed by conduction of action potentials) across the lesion site. Wallerian degeneration of PEG-fused PNAs is greatly reduced as measured by counts of sensory and/or motor axons, and maintenance of axonal diameters and neuromuscular synapses. After PEG-fusion repair, cut- or crush-severed or ablated PNAs or crush-severed STAs rapidly (within days to weeks), more completely, and permanently restore PNA- or STA-mediated behaviors compared to non-treated or conventionally-treated animals. PEG-fusion success is enhanced or decreased by applying anti-oxidants or oxidants, trimming cut ends or stretching axons, exposure to Ca2+-free or - containing solutions, respectively. PEG-fusion technology employs surgical techniques and chemicals already used by clinicians and has the potential to produce a paradigm-shift in the treatment of traumatic injuries to PNAs and STAs. PMID:26525605

  9. The Science and Technology Challenges of the Plasma-Material Interface for Magnetic Fusion Energy

    NASA Astrophysics Data System (ADS)

    Whyte, Dennis

    2013-09-01

    The boundary plasma and plasma-material interactions of magnetic fusion devices are reviewed. The boundary of magnetic confinement devices, from the high-temperature, collisionless pedestal through to the surrounding surfaces and the nearby cold high-density collisional plasmas, encompasses an enormous range of plasma and material physics, and their integrated coupling. Due to fundamental limits of material response the boundary will largely define the viability of future large MFE experiments (ITER) and reactors (e.g. ARIES designs). The fusion community faces an enormous knowledge deficit in stepping from present devices, and even ITER, towards fusion devices typical of that required for efficient energy production. This deficit will be bridged by improving our fundamental science understanding of this complex interface region. The research activities and gaps are reviewed and organized to three major axes of challenges: power density, plasma duration, and material temperature. The boundary can also be considered a multi-scale system of coupled plasma and material science regulated through the non-linear interface of the sheath. Measurement, theory and modeling across these scales are reviewed, with a particular emphasis on establishing the use dimensionless parameters to understand this complex system. Proposed technology and science innovations towards solving the PMI/boundary challenges will be examined. Supported by US DOE award DE-SC00-02060 and cooperative agreement DE-FC02-99ER54512.

  10. High resolution neutron diffraction crystallographic investigation of Oxide Dispersion Strengthened steels of interest for fusion technology

    NASA Astrophysics Data System (ADS)

    Coppola, R.; Rodriguez-Carvajal, J.; Wang, M.; Zhang, G.; Zhou, Z.

    2014-12-01

    High resolution neutron diffraction measurements have been carried out to characterize the crystallographic phases present in different Oxide Dispersion Strengthened (ODS) steels of interest for fusion technology. The different lattice structures, Im3m for the ferritic ODS and Fm3m for the austenitic ODS, are resolved showing line anisotropy effects possibly correlated with differences in dislocation densities and texture. Many contributions from minority phases are detected well above the background noise; none of the expected crystallographic phases, such as M23C6 and including Y2O3, fits them, but the TiN phase is identified in accordance with results of other microstructural techniques.

  11. The cluster charge identification in the GEM detector for fusion plasma imaging by soft X-ray diagnostics

    NASA Astrophysics Data System (ADS)

    Czarski, T.; Chernyshova, M.; Malinowski, K.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zabolotny, W.

    2016-11-01

    The measurement system based on gas electron multiplier detector is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an X-ray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value, and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals, and cluster charge values corresponding to the energy spectra.

  12. FDG PET/CT and MR imaging of CD34-negative soft-tissue solitary fibrous tumor with NAB2-STAT6 fusion gene.

    PubMed

    Nishio, Jun; Iwasaki, Hiroshi; Aoki, Mikiko; Nabeshima, Kazuki; Naito, Masatoshi

    2015-02-01

    Extrapleural solitary fibrous tumor (SFT) is an uncommon mesenchymal neoplasm of intermediate biological potential. Herein, we describe the radiological, histological, immunohistochemical and molecular genetic features of an SFT arising in the left thigh of a 55-year-old woman. Magnetic resonance imaging exhibited a well-defined mass with intermediate signal intensity on T1-weighted sequences and heterogeneous high signal intensity on T2-weighted sequences. Contrast-enhanced T1-weighted sequences showed strong homogeneous enhancement of the mass. A prominent vascular pedicle was visible. Integrated positron-emission tomography (PET)/computed tomographic (CT) scan demonstrated a moderate 18F-fluorodeoxyglucose (FDG) uptake (maximum standardized uptake value, 4.45) in the mass. Following an open biopsy, wide excision of the tumor was performed. Histologically, the tumor was composed of a proliferation of spindle cells in a fibrous stroma with focal hyalinization. Thin-walled branching hemangiopericytoma-like vessels were observed. Immunohistochemically, the tumor cells were diffusely positive for signal transducer and activator of transcription 6 (STAT6) but negative for CD34. The MIB-1 labeling index was less than 5%. Subsequent reverse transcriptase-polymerase chain reaction analysis identified a nerve growth factor inducible-A binding protein 2-STAT6 gene fusion. Our case supports the utility of STAT6 immunohistochemistry as an adjunct in the diagnosis of soft-tissue SFT with loss of CD34 positivity. To the best of our knowledge, this is the first report showing the FDG PET/CT findings of soft-tissue SFT.

  13. FDG PET/CT and MR imaging of CD34-negative soft-tissue solitary fibrous tumor with NAB2-STAT6 fusion gene.

    PubMed

    Nishio, Jun; Iwasaki, Hiroshi; Aoki, Mikiko; Nabeshima, Kazuki; Naito, Masatoshi

    2015-02-01

    Extrapleural solitary fibrous tumor (SFT) is an uncommon mesenchymal neoplasm of intermediate biological potential. Herein, we describe the radiological, histological, immunohistochemical and molecular genetic features of an SFT arising in the left thigh of a 55-year-old woman. Magnetic resonance imaging exhibited a well-defined mass with intermediate signal intensity on T1-weighted sequences and heterogeneous high signal intensity on T2-weighted sequences. Contrast-enhanced T1-weighted sequences showed strong homogeneous enhancement of the mass. A prominent vascular pedicle was visible. Integrated positron-emission tomography (PET)/computed tomographic (CT) scan demonstrated a moderate 18F-fluorodeoxyglucose (FDG) uptake (maximum standardized uptake value, 4.45) in the mass. Following an open biopsy, wide excision of the tumor was performed. Histologically, the tumor was composed of a proliferation of spindle cells in a fibrous stroma with focal hyalinization. Thin-walled branching hemangiopericytoma-like vessels were observed. Immunohistochemically, the tumor cells were diffusely positive for signal transducer and activator of transcription 6 (STAT6) but negative for CD34. The MIB-1 labeling index was less than 5%. Subsequent reverse transcriptase-polymerase chain reaction analysis identified a nerve growth factor inducible-A binding protein 2-STAT6 gene fusion. Our case supports the utility of STAT6 immunohistochemistry as an adjunct in the diagnosis of soft-tissue SFT with loss of CD34 positivity. To the best of our knowledge, this is the first report showing the FDG PET/CT findings of soft-tissue SFT. PMID:25667482

  14. Classification of weld defect based on information fusion technology for radiographic testing system

    NASA Astrophysics Data System (ADS)

    Jiang, Hongquan; Liang, Zeming; Gao, Jianmin; Dang, Changying

    2016-03-01

    Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster-Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defect feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification.

  15. Classification of weld defect based on information fusion technology for radiographic testing system.

    PubMed

    Jiang, Hongquan; Liang, Zeming; Gao, Jianmin; Dang, Changying

    2016-03-01

    Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster-Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defect feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification. PMID:27036822

  16. Laser plasma sources of soft x-rays and extreme ultraviolet (EUV) for application in science and technology

    NASA Astrophysics Data System (ADS)

    Bartnik, Andrzej; Wachulak, Przemysław; Jarocki, Roman; Kostecki, Jerzy; Szczurek, Mirosław; Adjei, Daniel; Ahad, Inam Ul; Ayele, Mesfin G.; Fok, Tomasz; Szczurek, Anna; Torrisi, Alfio; Wegrzyński, Łukasz; Fiedorowicz, Henryk

    2015-05-01

    Laser plasma sources of soft x-rays and extreme ultraviolet (EUV) developed in our laboratory for application in various areas of technology and science are presented. The sources are based on a laser-irradiated gas puff target approach. The targets formed by pulsed injection of gas under high-pressure are irradiated with nanosecond laser pulses from Nd:YAG lasers. We use commercial lasers generating pulses with time duration from 1ns to 10ns and energies from 0.5J to 10J at 10Hz repetition rate. The gas puff targets are produced using a double valve system equipped with a special nozzle to form a double-stream gas puff target which secures high conversion efficiency without degradation of the nozzle. The use of a gas puff target instead of a solid target makes generation of laser plasmas emitting soft x-rays and EUV possible without target debris production. The sources are equipped with various optical systems, including grazing incidence axisymmetric ellipsoidal mirrors, a "lobster eye" type grazing incidence multi-foil mirror, and an ellipsoidal mirror with Mo/Si multilayer coating, to collect soft x-ray and EUV radiation and form the radiation beams. In this paper new applications of these sources in various fields, including soft x-ray and EUV imaging in nanoscale, EUV radiography and tomography, EUV materials processing and modification of polymer surfaces, EUV photoionization of gases, radiobiology and soft x-ray contact microscopy are reviewed.

  17. Approaching soft X-ray wavelengths in nanomagnet-based microwave technology.

    PubMed

    Yu, Haiming; d' Allivy Kelly, O; Cros, V; Bernard, R; Bortolotti, P; Anane, A; Brandl, F; Heimbach, F; Grundler, D

    2016-01-01

    Seven decades after the discovery of collective spin excitations in microwave-irradiated ferromagnets, there has been a rebirth of magnonics. However, magnetic nanodevices will enable smart GHz-to-THz devices at low power consumption only, if such spin waves (magnons) are generated and manipulated on the sub-100 nm scale. Here we show how magnons with a wavelength of a few 10 nm are exploited by combining the functionality of insulating yttrium iron garnet and nanodisks from different ferromagnets. We demonstrate magnonic devices at wavelengths of 88 nm written/read by conventional coplanar waveguides. Our microwave-to-magnon transducers are reconfigurable and thereby provide additional functionalities. The results pave the way for a multi-functional GHz technology with unprecedented miniaturization exploiting nanoscale wavelengths that are otherwise relevant for soft X-rays. Nanomagnonics integrated with broadband microwave circuitry offer applications that are wide ranging, from nanoscale microwave components to nonlinear data processing, image reconstruction and wave-based logic. PMID:27063401

  18. Approaching soft X-ray wavelengths in nanomagnet-based microwave technology

    NASA Astrophysics Data System (ADS)

    Yu, Haiming; D'Allivy Kelly, O.; Cros, V.; Bernard, R.; Bortolotti, P.; Anane, A.; Brandl, F.; Heimbach, F.; Grundler, D.

    2016-04-01

    Seven decades after the discovery of collective spin excitations in microwave-irradiated ferromagnets, there has been a rebirth of magnonics. However, magnetic nanodevices will enable smart GHz-to-THz devices at low power consumption only, if such spin waves (magnons) are generated and manipulated on the sub-100 nm scale. Here we show how magnons with a wavelength of a few 10 nm are exploited by combining the functionality of insulating yttrium iron garnet and nanodisks from different ferromagnets. We demonstrate magnonic devices at wavelengths of 88 nm written/read by conventional coplanar waveguides. Our microwave-to-magnon transducers are reconfigurable and thereby provide additional functionalities. The results pave the way for a multi-functional GHz technology with unprecedented miniaturization exploiting nanoscale wavelengths that are otherwise relevant for soft X-rays. Nanomagnonics integrated with broadband microwave circuitry offer applications that are wide ranging, from nanoscale microwave components to nonlinear data processing, image reconstruction and wave-based logic.

  19. Approaching soft X-ray wavelengths in nanomagnet-based microwave technology

    PubMed Central

    Yu, Haiming; d' Allivy Kelly, O.; Cros, V.; Bernard, R.; Bortolotti, P.; Anane, A.; Brandl, F.; Heimbach, F.; Grundler, D.

    2016-01-01

    Seven decades after the discovery of collective spin excitations in microwave-irradiated ferromagnets, there has been a rebirth of magnonics. However, magnetic nanodevices will enable smart GHz-to-THz devices at low power consumption only, if such spin waves (magnons) are generated and manipulated on the sub-100 nm scale. Here we show how magnons with a wavelength of a few 10 nm are exploited by combining the functionality of insulating yttrium iron garnet and nanodisks from different ferromagnets. We demonstrate magnonic devices at wavelengths of 88 nm written/read by conventional coplanar waveguides. Our microwave-to-magnon transducers are reconfigurable and thereby provide additional functionalities. The results pave the way for a multi-functional GHz technology with unprecedented miniaturization exploiting nanoscale wavelengths that are otherwise relevant for soft X-rays. Nanomagnonics integrated with broadband microwave circuitry offer applications that are wide ranging, from nanoscale microwave components to nonlinear data processing, image reconstruction and wave-based logic. PMID:27063401

  20. Absolute spectral characterization of silicon barrier diode: Application to soft X-ray fusion diagnostics at Tore Supra

    SciTech Connect

    Vezinet, D.; Mazon, D.; Malard, P.

    2013-07-14

    This paper presents an experimental protocol for absolute calibration of photo-detectors. Spectral characterization is achieved by a methodology that unlike the usual line emissions-based method, hinges on the Bremsstrahlung radiation of a Soft X-Ray (SXR) tube only. Although the proposed methodology can be applied virtually to any detector, the application presented in this paper is based on Tore Supra's SXR diagnostics, which uses Silicon Surface Barrier Diodes. The spectral response of these n-p junctions had previously been estimated on a purely empirical basis. This time, a series of second-order effects, like the spatial distribution of the source radiated power or multi-channel analyser non linearity, are taken into account to achieve accurate measurements. Consequently, a parameterised physical model is fitted to experimental results and the existence of an unexpected dead layer (at least 5 {mu}m thick) is evidenced. This contribution also echoes a more general on-going effort in favour of long-term quality of passive radiation measurements on Tokamaks.

  1. Fusion of cone-beam CT and 3D photographic images for soft tissue simulation in maxillofacial surgery

    NASA Astrophysics Data System (ADS)

    Chung, Soyoung; Kim, Joojin; Hong, Helen

    2016-03-01

    During maxillofacial surgery, prediction of the facial outcome after surgery is main concern for both surgeons and patients. However, registration of the facial CBCT images and 3D photographic images has some difficulties that regions around the eyes and mouth are affected by facial expressions or the registration speed is low due to their dense clouds of points on surfaces. Therefore, we propose a framework for the fusion of facial CBCT images and 3D photos with skin segmentation and two-stage surface registration. Our method is composed of three major steps. First, to obtain a CBCT skin surface for the registration with 3D photographic surface, skin is automatically segmented from CBCT images and the skin surface is generated by surface modeling. Second, to roughly align the scale and the orientation of the CBCT skin surface and 3D photographic surface, point-based registration with four corresponding landmarks which are located around the mouth is performed. Finally, to merge the CBCT skin surface and 3D photographic surface, Gaussian-weight-based surface registration is performed within narrow-band of 3D photographic surface.

  2. [Impact on evaluation of clinical efficacy of traditional Chinese medicine for level in soft targets of processing technology].

    PubMed

    Shao, Ming-Yi; Wei, Ming; Yan, Bo-Hua

    2014-04-01

    Traditional Chinese medicine (TCM) is a very practical subject, which has its unique theoretical system and clinical characteristics. In the course of clinical practice, the exact clinical efficacy is the key of existence and development. But the existing evaluation system is difficult to objectively evaluate the clinical efficacy of TCM. Therefore, how to objectively evaluate the clinical efficacy and get definitive evidence is the focus of the evaluation of clinical efficacy of TCM. Relative to modern medicine, TCM is more concerned about the changes of feelings and clinical symptoms of the patient in the course of the evolution of the disease. Soft targets mainly used for the evaluation of the clinical efficacy of symptoms and functional activity of the disease. The level in soft targets of processing technology is often used methods in clinical evaluation. But it has often produced the phenomenon which the results of the evaluation is mutual contradiction, which will ultimately affect the effect of evaluation of clinical efficacy of TCM. In order to better evaluate the clinical efficacy of TCM, in the process of adoption of soft targets, it clearly identify it's role, highlighting the characteristics of interventions on disease, and as much as possibly avoid the level in soft targets of processing technology to real assess clinical efficacy of TCM.

  3. Analysis and correction of defects within parts fabricated using powder bed fusion technology

    NASA Astrophysics Data System (ADS)

    Mireles, Jorge; Ridwan, Shakerur; Morton, Philip A.; Hinojos, Alejandro; Wicker, Ryan B.

    2015-09-01

    Quality assurance is an important topic for additive manufacturing (AM) and often seen as a requirement for the transition and adoption of the technology toward fabrication of end use applications. As AM technologies are used for production, it is necessary to ensure high quality, repeatable, and reproducible components are manufactured. Various nondestructive examination techniques have been used to evaluate AM-fabricated parts to determine part quality post-fabrication (e.g. scanning and/or microstructural characterization). In situ monitoring methods have been developed for AM technologies to enable defect detection and have potential to be used for in situ monitoring and correction of fabrication anomalies (e.g. undesired temperature gradients and porosity). In this research, defects (e.g. pores) were seeded into parts fabricated using the powder bed fusion AM process, electron beam melting, and monitored using in situ infrared (IR) thermography. Results from layerwise thermography were compared with results obtained using computer tomography (CT) scanning techniques. Although the measured geometry of the seeded defects between IR thermography and CT was substantially different (area difference of ∼60%), the thermographs did provide a good indication of defects present within a fabricated part. Furthermore, defect correction methods were evaluated including post-processing methods such as hot isostatic pressing as well as in situ correction methods such as layer re-melting. Re-melting a porous layer successfully corrected defects and demonstrates a potential method for in situ defect correction if implemented in future systems equipped with automatic feedback control of powder bed fusion processes.

  4. Transposon assisted gene insertion technology (TAGIT): a tool for generating fluorescent fusion proteins.

    PubMed

    Gregory, James A; Becker, Eric C; Jung, James; Tuwatananurak, Ida; Pogliano, Kit

    2010-01-01

    We constructed a transposon (transposon assisted gene insertion technology, or TAGIT) that allows the random insertion of gfp (or other genes) into chromosomal loci without disrupting operon structure or regulation. TAGIT is a modified Tn5 transposon that uses Kan(R) to select for insertions on the chromosome or plasmid, beta-galactosidase to identify in-frame gene fusions, and Cre recombinase to excise the kan and lacZ genes in vivo. The resulting gfp insertions maintain target gene reading frame (to the 5' and 3' of gfp) and are integrated at the native chromosomal locus, thereby maintaining native expression signals. Libraries can be screened to identify GFP insertions that maintain target protein function at native expression levels, allowing more trustworthy localization studies. We here use TAGIT to generate a library of GFP insertions in the Escherichia coli lactose repressor (LacI). We identified fully functional GFP insertions and partially functional insertions that bind DNA but fail to repress the lacZ operon. Several of these latter GFP insertions localize to lacO arrays integrated in the E. coli chromosome without producing the elongated cells frequently observed when functional LacI-GFP fusions are used in chromosome tagging experiments. TAGIT thereby faciliates the isolation of fully functional insertions of fluorescent proteins into target proteins expressed from the native chromosomal locus as well as potentially useful partially functional proteins. PMID:20090956

  5. Design the developed bus parking area management solution based on fusion technology of things

    NASA Astrophysics Data System (ADS)

    Ge, Ying-long

    2013-07-01

    Taking advantage of the fusion technology of things this paper constructed a combination of hardware and software application, hardware's major function was to collect the bus behavior data of system needed, including basic data of driver and fare bag stored in moving passive RFID tag, and the information of running status of bus on each stage perceived by all kinds of sensors in the parking area. The information which was handled by the middleware was sent to data center. The program solved the problem on the monitoring of the behavior of the bus in the parking area, meanwhile, achieved the data sharing, so as to tackle the defects of the traditional bus parking area management system's non-automated data collection, non-real-time data presenting and poor data sharing.

  6. Data Fusion Based on Optical Technology for Observation of Human Manipulation

    NASA Astrophysics Data System (ADS)

    Falco, Pietro; De Maria, Giuseppe; Natale, Ciro; Pirozzi, Salvatore

    2012-01-01

    The adoption of human observation is becoming more and more frequent within imitation learning and programming by demonstration approaches (PbD) to robot programming. For robotic systems equipped with anthropomorphic hands, the observation phase is very challenging and no ultimate solution exists. This work proposes a novel mechatronic approach to the observation of human hand motion during manipulation tasks. The strategy is based on the combined use of an optical motion capture system and a low-cost data glove equipped with novel joint angle sensors, based on optoelectronic technology. The combination of the two information sources is obtained through a sensor fusion algorithm based on the extended Kalman filter (EKF) suitably modified to tackle the problem of marker occlusions, typical of optical motion capture systems. This approach requires a kinematic model of the human hand. Another key contribution of this work is a new method to calibrate this model.

  7. APPLICATIONS OF NEW TECHNOLOGY FOR PRODUCTION OF HIGH POWER MILLIMETER WAVES TO MAGNETIC FUSION RESEARCH

    SciTech Connect

    J. LOHR

    2002-08-01

    Although research on magnetically confined fusion plasmas has been carried out for a half century, for most of this time control of the temperature, density and current density profiles has been limited and transient. Now, high power long pulse gyrotron systems with excellent reliability are coming on line, which can provide non-inductively driven currents and electron heating leading to higher plasma performance and continuous operation in reactor relevant regimes. The precision of the location at which heating and current drive are applied has also made it possible to suppress certain classes of plasma instabilities. Basic physics of electron cyclotron current drive and heating are understood and these new technological capabilities are being exploited in magnetic confinement devices worldwide.

  8. Current topics in the field of materials technology of soft ferrites

    SciTech Connect

    Nomura, Takeshi; Ochiai, Tatusshiro

    1995-09-01

    The present paper focuses on the recent progress of materials technology for high performance soft ferrites. The electromagnetic properties of ferrites depend on the producing process and micro- and nano-structures. MnZn ferrite is a principal ferrite for high permeability and power uses. Recently, spray roasting method of Mn-Zn-Fe ternary system has been developed. High initial permeability over 20000 at 10kHz was achieved by using highly pure spray roasted powder of Mn-Fe binary system. Low power loss is of prime importance for power application. Control of grain boundary chemistry and grain size by the adequate selection of additives and firing conditions is required for achieving low power loss at high frequencies. NiCuZn ferrites for multilayer-ferrite chip-components fired under controlled oxygen partial pressure showed high Q-value. This could be explained by nanostructure of grain boundary. MnMgZn ferrites for deflection yoke cores satisfy high cost-performance. Problems of MnMgZn ferrites are loss characteristics and instability of initial permeability. Relaxation of permeability could be depressed by the control of chemical composition and microstructure. Fine magnetite powders by thermal decomposition of iron chloride are under development. This method may be a promising way to low cost and high performance toner for copy machines. High performance such as low loss or high permeability can be achieved by controlling ferrite microstructure and grain boundary chemistry. These can be attained by a highly pure raw powder, a small amount of additives, and an adequate firing program.

  9. Proceedings of the third symposium on the physics and technology of compact toroids in the magnetic fusion energy program

    SciTech Connect

    Siemon, R.E.

    1981-03-01

    This document contains papers contributed by the participants of the Third Symposium on Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program. Subjects include reactor aspects of compact toroids, energetic particle rings, spheromak configurations (a mixture of toroidal and poloidal fields), and field-reversed configurations (FRC's that contain purely poloidal field).

  10. Impact of Spacecraft Shielding on Direct Ionization Soft Error Rates for sub-130 nm Technologies

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Michael M.; Sanders, Anthony B.; Ladbury, Raymond L.; Oldham, Timothy R.; Marshall, Paul W.; Heidel, David F.; Rodbell, Kenneth P.

    2010-01-01

    We use ray tracing software to model various levels of spacecraft shielding complexity and energy deposition pulse height analysis to study how it affects the direct ionization soft error rate of microelectronic components in space. The analysis incorporates the galactic cosmic ray background, trapped proton, and solar heavy ion environments as well as the October 1989 and July 2000 solar particle events.

  11. Fusion energy science: Clean, safe, and abundant energy through innovative science and technology

    SciTech Connect

    2001-01-01

    Fusion energy science combines the study of the behavior of plasmas--the state of matter that forms 99% of the visible universe--with a vision of using fusion--the energy source of the stars--to create an affordable, plentiful, and environmentally benign energy source for humankind. The dual nature of fusion energy science provides an unfolding panorama of exciting intellectual challenge and a promise of an attractive energy source for generations to come. The goal of this report is a comprehensive understanding of plasma behavior leading to an affordable and attractive fusion energy source.

  12. Tritium production potential of beam research and magnetic fusion program technologies

    SciTech Connect

    Lee, J.D.

    1989-03-01

    Regular replenishment of tritium in the nuclear weapons stockpile is essential to maintain our nuclear deterrent. Nuclear reactor facilities presently used for the production of tritium are aging, and their operation is being curtailed awaiting the repairs and upgrades needed to meet modern standards of safety and environment. To provide improved capability in the future, DOE plans to construct a new production reactor. Alternatives to nuclear reactor methods for the production of tritium, mainly electrically-driven accelerator or fusion systems, have been proposed many times in the past. Given the critical national security implications of maintaining adequate tritium production facilities, it is clearly worthwhile for political decision-makers to have a clear and accurate picture of the technical options that could be made available at various points in the future. The goal of this white paper is to summarize available technical information on a set of non-nuclear-reactor options for tritium production with a minimum of advocacy for any one system of implicit assumptions about politically desirable attributes. Indeed, these various options differ considerably in aspects such as the maturity of the technology, the development cost and timescales required, and the capital and operating costs of a typical ''optimized'' facility.

  13. Massachusetts Institute of Technology Plasma Fusion Center 1992--1993 report to the President

    SciTech Connect

    Not Available

    1993-07-01

    This report discusses research being conducted at MIT`s plasma fusion center. Some of the areas covered are: plasma diagnostics; rf plasma heating; gyrotron research; treatment of solid waste by arc plasma; divertor experiments; tokamak studies; and plasma and fusion theory.

  14. Fusion materials: Technical evaluation of the technology of vandium alloys for use as blanket structural materials in fusion power systems

    SciTech Connect

    Not Available

    1993-08-04

    The Committee`s evaluation of vanadium alloys as a structural material for fusion reactors was constrained by limited data and time. The design of the International Thermonuclear Experimental Reactor is still in the concept stage, so meaningful design requirements were not available. The data on the effect of environment and irradiation on vanadium alloys were sparse, and interpolation of these data were made to select the V-5Cr-5Ti alloy. With an aggressive, fully funded program it is possible to qualify a vanadium alloy as the principal structural material for the ITER blanket in the available 5 to 8-year window. However, the data base for V-5Cr-5Ti is United and will require an extensive development and test program. Because of the chemical reactivity of vanadium the alloy will be less tolerant of system failures, accidents, and off-normal events than most other candidate blanket structural materials and will require more careful handling during fabrication of hardware. Because of the cost of the material more stringent requirements on processes, and minimal historical worlding experience, it will cost an order of magnitude to qualify a vanadium alloy for ITER blanket structures than other candidate materials. The use of vanadium is difficult and uncertain; therefore, other options should be explored more thoroughly before a final selection of vanadium is confirmed. The Committee views the risk as being too high to rely solely on vanadium alloys. In viewing the state and nature of the design of the ITER blanket as presented to the Committee, h is obvious that there is a need to move toward integrating fabrication, welding, and materials engineers into the ITER design team. If the vanadium allay option is to be pursued, a large program needs to be started immediately. The commitment of funding and other resources needs to be firm and consistent with a realistic program plan.

  15. Fusion of Hurricane Models and Observations: Developing the Technology to Improve the Forecasts

    NASA Astrophysics Data System (ADS)

    Hristova-Veleva, S. M.; Li, P.; Knosp, B.; Turk, F. J.; Vu, Q. A.; Lambrigtsen, B.; Tanelli, S.; Niamsuwan, N.; Haddad, Z.; Poulsen, W. L.

    2012-12-01

    Recognizing an urgent need for more accurate hurricane forecasts, the National Oceanic and Atmospheric Administration (NOAA) recently established the multi-agency 10-year Hurricane Forecast Improvement Project (HFIP). The two critical pathways to hurricane forecast improvement are: validation and improvement of hurricane models through the use of satellite data; development and implementation of advanced techniques for assimilation of satellite observations inside the hurricane precipitating core. Despite the significant amount of satellite observations today, they are still underutilized in hurricane research and operations. This talk will describe our efforts in developing new technology to bring models and observations into a common information system. We will begin by briefly describing two previous very successful NASA-funded projects, the JPL Tropical Cyclone Information System -TCIS - (http://tropicalcyclone.jpl.nasa.gov and http://grip.jpl.nasa.gov) and the NASA Earth Observing System Simulator Suite (NEOS3). These two efforts resulted in building the critical components for our current work, aimed at providing fusion of hurricane models and observations with the goal to improve hurricane forecast. The talk will outline the three areas of on-going research: - the coupling of the instrument simulator with operational hurricane forecast models and incorporation of simulated satellite observables into the existing database of satellite and air-borne observations (TCIS). As part of this integration we will develop tools for model-observations fusion (e.g. data mining to determine when and what satellite observations are available inside the model domain; model sub-sampling in accordance with the time and space coverage of the satellite/airborne overpasses) - the development of a set of analysis tools that will enable users to calculate joint statistics, produce composites, compare modeled and observed quantities, and apply advanced strategies to assimilate

  16. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume III

    SciTech Connect

    Abdou, M.

    1984-10-01

    This chapter deals with the analysis and engineering scaling of solid breeded blankets. The limits under which full component behavior can be achieved under changed test conditions are explored. The characterization of these test requirements for integrated testing contributes to the overall test matrix and test plan for the understanding and development of fusion nuclear technology. The second chapter covers the analysis and engineering scaling of liquid metal blankets. The testing goals for a complete blanket program are described. (MOW)

  17. Enhancement display of veins distribution based on binocular vision and image fusion technology

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Di, Si; Jin, Jian; Bai, Liping

    2014-11-01

    The capture and display of veins distribution is an important issue for some applications, such as medical diagnosis and identification. Therefore, it has become a popular topic in the field of biomedical imaging. Usually, people capture the veins distribution by infrared imaging, but the display result is similar with that of a gray picture and the color and details of skin cannot be remained. To some degree, it is unreal for doctors. In this paper, we develop a binocular vision system to carry out the enhancement display of veins under the condition of keeping actual skin color. The binocular system is consisted of two adjacent cameras. A visible band filter and an infrared band filter are placed in front of the two lenses, respectively. Therefore, the pictures of visible band and infrared band can be captured simultaneously. After that, a new fusion process is applied to the two pictures, which related to histogram mapping, principal component analysis (PCA) and modified bilateral filter fusion. The final results show that both the veins distribution and the actual skin color of the back of the hand can be clearly displayed. Besides, correlation coefficient, average gradient and average distortion are selected as the parameters to evaluate the image quality. By comparing the parameters, it is evident that our novel fusion method is prior to some popular fusion methods such as Gauss filter fusion, Intensity-hue-saturation (HIS) fusion and bilateral filter fusion.

  18. Physical and technological issues of KrF laser drivers for inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Zvorykin, V. D.; Arlantsev, S. V.; Bakaev, V. G.; Gaynutdinov, R. V.; Levchenko, A. O.; Molchanov, A. G.; Sagitov, S. I.; Sergeev, A. P.; Sergeev, P. B.; Stavrovskii, D. B.; Ustinovskii, N. N.; Zayarnyi, D. A.

    2006-06-01

    Physics and technology of Krypton Fluoride (KrF) laser have been studied experimentally and theoretically to improve its efficiency and to increase a lifetime, and thus to verify the challenge of KrF laser for Inertial Fusion Energy (IFE). Experiments were performed with e-beam-pumped multistage 100-J output energy GARPUN KrF laser facility and 200-A/cm2 current density EL-1 electron gun, both operating at P.N. Lebedev Physical Institute. They formed the database for verification of numerical codes capable to predict IFE-scale KrF drivers. Monte Carlo code was developed to calculate e-beam energy deposition inside GARPUN laser chamber while a quasistationary numerical KrF laser code based on generalized “forward back” multi-direction approximation for radiation transfer equation was used to describe amplification of nanosecond pulses and amplified spontaneous emission (ASE). Long-lived absorption in UV optical materials induced by fast electrons and bremsstrahlung X-ray radiation was measured at EL-1 electron gun with total fluence of ionizing radiation up to 20.6 kJ/cm2. Using these data together with measurements and scaling of bremsstrahlung X-ray yield, we can predict that the most stable windows of IFE-scale KrF laser driver would be able to withstand no less than 2× 106 shots. Fluorine-resistant coatings onto fused silica windows of KrF laser were developed and demonstrated damage thresholds as high as 29 J/cm2 in test experiments with large 13× 13-mm uniformly irradiated spot.

  19. CHALLENGES IN DEVELOPING MATERIALS FOR FUSION TECHNOLOGY PAST, PRESENT AND FUTURE

    SciTech Connect

    Zinkle, Steven J

    2013-01-01

    A brief historical review of the evolution in structural materials options for fusion energy systems is presented, along with the author s perspective on emerging trends in advanced manufacturing techniques and new high-performance materials.

  20. Fusion interfaces for tactical environments: An application of virtual reality technology

    NASA Technical Reports Server (NTRS)

    Haas, Michael W.

    1994-01-01

    The term Fusion Interface is defined as a class of interface which integrally incorporates both virtual and nonvirtual concepts and devices across the visual, auditory, and haptic sensory modalities. A fusion interface is a multisensory virtually-augmented synthetic environment. A new facility has been developed within the Human Engineering Division of the Armstrong Laboratory dedicated to exploratory development of fusion interface concepts. This new facility, the Fusion Interfaces for Tactical Environments (FITE) Facility is a specialized flight simulator enabling efficient concept development through rapid prototyping and direct experience of new fusion concepts. The FITE Facility also supports evaluation of fusion concepts by operation fighter pilots in an air combat environment. The facility is utilized by a multidisciplinary design team composed of human factors engineers, electronics engineers, computer scientists, experimental psychologists, and oeprational pilots. The FITE computational architecture is composed of twenty-five 80486-based microcomputers operating in real-time. The microcomputers generate out-the-window visuals, in-cockpit and head-mounted visuals, localized auditory presentations, haptic displays on the stick and rudder pedals, as well as executing weapons models, aerodynamic models, and threat models.

  1. Expression of biologically recombinant human acidic fibroblast growth factor in Arabidopsis thaliana seeds via oleosin fusion technology.

    PubMed

    Yang, Jing; Guan, Lili; Guo, Yongxin; Du, Linna; Wang, Fawei; Wang, Yanfang; Zhen, Lu; Wang, Qingman; Zou, Deyi; Chen, Wei; Yu, Lei; Li, Haiyan; Li, Xiaokun

    2015-07-15

    The potential of oleosins to act as carriers for recombinant foreign proteins in plant cells has been established. Using the oleosin fusion technology, the protein can be targeted to oil bodies in oilseeds by fusing it to the N- or C-terminus of oleosin. In this study, aFGF was expressed in Arabidopsis thaliana seeds via oleosin fusion technology. A plant-preferred aFGF gene was synthesized by optimizing codon usage and was fused to the C-terminus of the A. thaliana 18.5kDa oleosin gene. The fusion gene was driven by the phaseolin promoter to confer seed-specific expression of the human acidic fibroblast growth factor in A. thaliana. The T-DNA region of the recombinant plasmid pKO-aFGF was introduced into the genome of Arabidopsis thaliana by the floral dip method. The aFGF protein expression was confirmed by SDS-PAGE and western blotting. The biological activity showed that oil bodies fused to aFGF stimulated NIH/3T3 cell proliferation activity.

  2. Recurrent BCOR Internal Tandem Duplication and YWHAE-NUTM2B Fusions in Soft Tissue Undifferentiated Round Cell Sarcoma of Infancy: Overlapping Genetic Features With Clear Cell Sarcoma of Kidney.

    PubMed

    Kao, Yu-Chien; Sung, Yun-Shao; Zhang, Lei; Huang, Shih-Chiang; Argani, Pedram; Chung, Catherine T; Graf, Nicole S; Wright, Dale C; Kellie, Stewart J; Agaram, Narasimhan P; Ludwig, Kathrin; Zin, Angelica; Alaggio, Rita; Antonescu, Cristina R

    2016-08-01

    Soft tissue undifferentiated round cell sarcoma (URCS) occurring in infants is a heterogenous group of tumors, often lacking known genetic abnormalities. On the basis of a t(10;17;14) karyotype in a pelvic URCS of a 4-month-old boy showing similar breakpoints with clear cell sarcoma of kidney (CCSK), we have investigated the possibility of shared genetic abnormalities in CCSK and soft tissue URCS. Most CCSKs are characterized by BCOR exon 16 internal tandem duplications (ITDs), whereas a smaller subset shows YWHAE-NUTM2B/E fusions. Because of overlapping clinicopathologic features, we have also investigated these genetic alterations in the so-called primitive myxoid mesenchymal tumor of infancy (PMMTI). Among the 22 infantile URCSs and 7 PMMTIs selected, RNA sequencing was performed in 5 and 2 cases, with frozen tissue, respectively. The remaining cases with archival material were tested for YWHAE-NUTM2B/E by fluorescence in situ hybridization (FISH) or reverse transcription-polymerase chain reaction (RT-PCR), and BCOR ITD by PCR. A control group of 4 CCSKs and 14 URCSs in older children or adults without known gene fusion and 20 other sarcomas with similar histomorphology or age at presentation were also tested. A YWHAE-NUTM2B fusion was confirmed in the index case by FISH and RT-PCR, whereas BCOR ITD was lacking. An identical YWHAE-NUTM2B fusion was found in another URCS case of a 5-month-old girl with a back lesion. The remaining cases and control group lacked YWHAE gene rearrangements; instead, consistent BCOR ITDs, similar to CCSK, were found in 15/29 (52%) infantile sarcoma cases (9/22 infantile URCS and 6/7 PMMTI). In the control cohort, BCOR ITD was found only in 3 CCSK cases but not in the other sarcomas. Histologically, URCS with both genotypes and PMMTI shared significant histologic overlap, with uniform small blue round cells with fine chromatin and indistinct nucleoli. A prominent capillary network similar to CCSK, rosette structures, and varying

  3. Application of microgravity and containerless environments to the investigation of fusion target fabrication technology

    NASA Astrophysics Data System (ADS)

    Lee, M. C.; Kendall, J. M.; Elleman, D. D.; Rhim, W.-K.; Helizon, R. S.; Youngberg, C. L.; Feng, I.-A.; Wang, T. G.

    After the first observation of the core-centering force within a liquid shell in the KC-135 flight experiment, this force was successfully reproduced in terrestrial laboratories using two experimental techniques. The core-centering force generated for a compound drop system in the neutral buoyancy tank provides the first correlation between theoretical and experimental results. When this force was generated in a more realistic fusion-pellet system using the focusing-radiator levitating system, it was shown that this is a very strong force indeed in view of the fact that the ratio of specific gravities between the water and the core is approximately five. It is believed that this centering force will contribute significantly to an overall understanding of the fabrication physics of a fusion target system. Results from experiments in a vertical drag-free wind tunnel and in a 16-ft low pressure drop furnace suggest that eliminating or reducing the aerodynamic drag on fusion pellets during their formation stage will prevent the decentering of the bubble. Metallic and metallic glass fusion targets are seen as holding promise for improving and simplifying the fabrication process for ablative-type fusion targets.

  4. Novel Applications of Ultrasound Technology to Visualize and Characterize Myofascial Trigger Points and Surrounding Soft Tissue

    PubMed Central

    Sikdar, Siddhartha; Shah, Jay P.; Gebreab, Tadesse; Yen, Ru-Huey; Gilliams, Elizabeth; Danoff, Jerome; Gerber, Lynn H.

    2009-01-01

    Objective Apply ultrasound (US) imaging techniques to better describe the characteristics of myofascial trigger points (MTrPs) and the immediately adjacent soft tissue. Design Descriptive (exploratory) study. Setting Biomedical research center. Participants 9 subjects meeting Travell and Simons’s criteria for MTrPs in a taut band in the upper trapezius. Interventions (None) Main Outcome Measures MTrPs were evaluated by 1) physical examination, 2) pressure algometry, and 3) three types of ultrasound imaging including grayscale (2D US), vibration sonoelastography (VSE), and Doppler. Methods Four sites in each patient were labeled based on physical examination as either active MTrP (spontaneously-painful, A-MTrP), latent MTrP (non-painful, L-MTrP), or normal myofascial tissue. US examination was performed on each subject by a team blinded to the physical findings. A 12-5 MHz US transducer was used. VSE was performed by color Doppler variance imaging while simultaneously inducing vibrations (~92Hz) with a handheld massage vibrator. Each site was assigned a tissue imaging score (TIS) as follows: 0 = uniform echogenicity and stiffness; 1 = focal hypoechoic region with stiff nodule; 2 = multiple hypoechoic regions with stiff nodules. Blood flow in the neighborhood of MTrPs was assessed using Doppler imaging. Each site was assigned a blood flow waveform score (BFS) as follows: 0 = normal arterial flow in muscle; 1 = elevated diastolic flow; 2 = high-resistance flow waveform with retrograde diastolic flow. Results MTrPs appeared as focal, hypoechoic regions on 2D US, indicating local changes in tissue echogenicity, and as focal regions of reduced vibration amplitude on VSE, indicating a localized stiff nodule. MTrPs were elliptical in shape, with a size of 0.16 ± 0.11 cm2. There were no significant differences in size between A-MTrPs and L-MTrPs. Sites containing MTrPs were more likely to have higher TIS compared to normal myofascial tissue (p<0.002). Small arteries (or

  5. Teaching Soft Skills Employers Need

    ERIC Educational Resources Information Center

    Ellis, Maureen; Kisling, Eric; Hackworth, Robbie G.

    2014-01-01

    This study identifies the soft skills community colleges teach in an office technology course and determines whether the skills taught are congruent with the soft skills employers require in today's entry-level office work. A qualitative content analysis of a community college office technology soft skills course was performed using 23 soft…

  6. Soft X-Ray (1-7 nm) Solar Spectrometer based on novel Nanowriter Electron-Beam Nanofabrication Technology

    NASA Astrophysics Data System (ADS)

    Didkovsky, L. V.; Wieman, S. R.; Chao, W.

    2015-12-01

    A new soft X-ray (SXR) spectrometer combines proven detector technology demonstrated on the SOHO Solar EUV Monitor (SOHO/SEM) and SDO EUV SpectroPhotometer (SDO/EVE/ESP) instruments with novel technology for X-ray optics nanofabrication developed at the Lawrence Berkeley National Laboratory. The new spectrometer will provide solar SXR measurements of absolute irradiance in the 1.0 to 7.0 nm range spectrally resolved into bands narrower than 1 nm - measurements that are not available from existing solar-observing instruments but are important for studying and modeling coronal dynamics and the Sun-Earth's connection, e.g. the Earth's Ionosphere. For the proposed SXR spectrometer we will introduce a transmission grating based on novel Nanowriter Electron-Beam Nanofabrication technology developed at the Center for X-ray Optics (CXRO) at the Lawrence Berkeley National Laboratory. The CXRO technology has been used in the fabrication of X-ray zone plates with feature sizes as small as 25 nm in optical elements with overall sizes on the order of 1 cm. The CXRO technology has significant flexibility in terms of pattern geometry, and is thus capable of producing linear transmission gratings with aperture sizes similar to SEM and ESP but with four times the dispersion. With such dispersion, reasonable spectral resolution (< 1nm) can be obtained using commercial off-the shelf (COTS) X-ray sensitive AXUV type silicon photodiodes from the Optodiode Corp. in an instrument with overall size and mass similar to that of SEM or ESP.

  7. Pinch me - I'm fusing! Fusion Power - what is it? What is a z pinch? And why are z-pinches a promising fusion power technology?

    SciTech Connect

    DERZON,MARK S.

    2000-03-01

    The process of combining nuclei (the protons and neutrons inside an atomic nucleus) together with a release of kinetic energy is called fusion. This process powers the Sun, it contributes to the world stockpile of weapons of mass destruction and may one day generate safe, clean electrical power. Understanding the intricacies of fusion power, promised for 50 years, is sometimes difficult because there are a number of ways of doing it. There is hot fusion, cold fusion and con-fusion. Hot fusion is what powers suns through the conversion of mass energy to kinetic energy. Cold fusion generates con-fusion and nobody really knows what it is. Even so, no one is generating electrical power for you and me with either method. In this article the author points out some basic features of the mainstream approaches taken to hot fusion power, as well as describe why z pinches are worth pursuing as a driver for a power reactor and how it may one day generate electrical power for mankind.

  8. Driver Technology for Inertial Fusion Research 1.Status of High Power Solid State Laser for Laser Fusion Experiments and the Prospect of Future Reactor Drivers

    NASA Astrophysics Data System (ADS)

    Fujita, Hisanori

    The progress in development of high-power glass laser systems during the past 30 years is remarkable NIF (National Ignition Facility), which will deliver 1.8 MJ at 0.35 μm is now construction in the United States. Recently, technology that smoothes out the focal pattern has been developed to a great extent. RPP (Random Phase Plate) and PCL (Partially Coherent Laser) both gave an excellent focal pattern with standard deviation of 3% in the Gekko XII laser system. In the US, Japan and Europe, several ultra-short pulse lasers were developed for research on “fast ignition”. “Fast ignition” is a method which will reduce the total required laser energy for ignition. Because a diode-pumped, solid state laser can operate at a repetition rate of over 10 Hz with an efficiency of about 10% research area of high-power systems at the 1 kW level started to focus on the development of a driver for a commercial laser fusion reactor.

  9. Hydrogeologic Data Fusion. Industry Programs/Characterization, Monitoring, and Sensor Technology Crosscut Program. OST Reference #2944

    SciTech Connect

    None, None

    1999-09-01

    Problem: The fate and transport of contaminants in the subsurface requires knowledge of the hydrogeologic system. Site characterization typically involves the collection of various data sets needed to create a conceptual model that represents what’s known about contaminant migration in the subsurface at a particular site. How Hydrogeologic Data Fusion Works Hydrogeologic Data Fusion is a mathematical tool that can be used to combine various types of geophysical, geologic, and hydrologic data from different types of sensors to estimate geologic and hydrogeologic properties. It can be especially useful at hazardous waste sites where the hydrology, geology, or contaminant distribution is significantly complex such that groundwater modeling is required to enable a reasonable and accurate prediction of subsurface conditions.

  10. [Use of plasma technology in treatment of patients with pyo-inflammatory diseases of soft tissues].

    PubMed

    Khasanov, A G; Nikmatsianov, S S; Nurtdinov, M A; Bakiev, I M; Men'shikov, A M; Shaĭbakov, D G

    2007-01-01

    The authors substantiated the method of treatment of pyo-inflammatory diseases based on experiments in white rats, using plasma flow at different stages of the process. The plasma technology was used in the clinic in 130 patients that allowed shortening the period of preparing the wounds to operative treatment and reducing the period of hospital stay from 15.3 to 9.2 days, improving results of treatment by 20% and saving on expensive bandaging materials and medicines.

  11. Spinal fusion

    MedlinePlus

    ... Anterior spinal fusion; Spine surgery - spinal fusion; Low back pain - fusion; Herniated disk - fusion ... If you had chronic back pain before surgery, you will likely still have some pain afterward. Spinal fusion is unlikely to take away all your pain ...

  12. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume I

    SciTech Connect

    Abdou, M.

    1984-10-01

    The following chapters are included in this study: (1) fusion nuclear issues, (2) survey of experimental needs, (3) requirements of the experiments, (4) non-fusion facilities, (5) fusion facilities for nuclear experiments, and (6) fusion research and development scenarios. (MOW)

  13. Soft robotics: a bioinspired evolution in robotics.

    PubMed

    Kim, Sangbae; Laschi, Cecilia; Trimmer, Barry

    2013-05-01

    Animals exploit soft structures to move effectively in complex natural environments. These capabilities have inspired robotic engineers to incorporate soft technologies into their designs. The goal is to endow robots with new, bioinspired capabilities that permit adaptive, flexible interactions with unpredictable environments. Here, we review emerging soft-bodied robotic systems, and in particular recent developments inspired by soft-bodied animals. Incorporating soft technologies can potentially reduce the mechanical and algorithmic complexity involved in robot design. Incorporating soft technologies will also expedite the evolution of robots that can safely interact with humans and natural environments. Finally, soft robotics technology can be combined with tissue engineering to create hybrid systems for medical applications.

  14. The Sustainable Nuclear Future: Fission and Fusion E.M. Campbell Logos Technologies

    NASA Astrophysics Data System (ADS)

    Campbell, E. Michael

    2010-02-01

    Global industrialization, the concern over rising CO2 levels in the atmosphere and other negative environmental effects due to the burning of hydrocarbon fuels and the need to insulate the cost of energy from fuel price volatility have led to a renewed interest in nuclear power. Many of the plants under construction are similar to the existing light water reactors but incorporate modern engineering and enhanced safety features. These reactors, while mature, safe and reliable sources of electrical power have limited efficiency in converting fission power to useful work, require significant amounts of water, and must deal with the issues of nuclear waste (spent fuel), safety, and weapons proliferation. If nuclear power is to sustain its present share of the world's growing energy needs let alone displace carbon based fuels, more than 1000 reactors will be needed by mid century. For this to occur new reactors that are more efficient, versatile in their energy markets, require minimal or no water, produce less waste and more robust waste forms, are inherently safe and minimize proliferation concerns will be necessary. Graphite moderated, ceramic coated fuel, and He cooled designs are reactors that can satisfy these requirements. Along with other generation IV fast reactors that can further reduce the amounts of spent fuel and extend fuel resources, such a nuclear expansion is possible. Furthermore, facilities either in early operations or under construction should demonstrate the next step in fusion energy development in which energy gain is produced. This demonstration will catalyze fusion energy development and lead to the ultimate development of the next generation of nuclear reactors. In this presentation the role of advanced fission reactors and future fusion reactors in the expansion of nuclear power will be discussed including synergies with the existing worldwide nuclear fleet. )

  15. Status of fusion maintenance

    SciTech Connect

    Fuller, G.M.

    1984-01-01

    Effective maintenance will be an essential ingredient in determining fusion system productivity. This level of productivity will result only after close attention is paid to the entire system as an entity and appropriate integration of the elements is made. The status of fusion maintenance is reviewed in the context of the entire system. While there are many challenging developmental tasks ahead in fusion maintenance, the required technologies are available in several high-technology industries, including nuclear fission.

  16. Combination of ERG9 Repression and Enzyme Fusion Technology for Improved Production of Amorphadiene in Saccharomyces cerevisiae

    PubMed Central

    Baadhe, Rama Raju; Mekala, Naveen Kumar; Parcha, Sreenivasa Rao; Prameela Devi, Yalavarthy

    2013-01-01

    The yeast strain (Saccharomyces cerevisiae) MTCC 3157 was selected for combinatorial biosynthesis of plant sesquiterpene amorpha-4,11-diene. Our main objective was to overproduce amorpha 4-11-diene, which is a key precursor molecule of artemisinin (antimalarial drug) produced naturally in plant Artemisia annua through mevalonate pathway. Farnesyl diphosphate (FPP) is a common intermediate metabolite of a variety of compounds in the mevalonate pathway of yeast and leads to the production of ergosterols, dolichol and ubiquinone, and so forth. In our studies, FPP converted to amorphadiene (AD) by expressing heterologous amorphadiene synthase (ADS) in yeast. First, ERG9 (squalane synthase) promoter of yeast was replaced with repressible methionine (MET3) promoter by using bipartite gene fusion method. Further to overcome the loss of the intermediate FPP through competitive pathways in yeast, fusion protein technology was adopted and farnesyldiphosphate synthase (FPPS) of yeast has been coupled with amorphadiene synthase (ADS) of plant origin (Artemisia annua L.) where amorphadiene production was improved by 2-fold (11.2 mg/L) and 4-fold (25.02 mg/L) in yeast strains YCF-002 and YCF-005 compared with control strain YCF-AD (5.5 mg/L), respectively. PMID:24282652

  17. Inertial confinement fusion target component fabrication and technology development support. Annual report, October 1, 1994--September 30, 1995

    SciTech Connect

    Hoppe, M.

    1996-05-01

    On December 30, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities of the period October 1, 1994 through September 30, 1995. During this period, GA was assigned 15 tasks in support of the Inertial Confinement Fusion program and its laboratories. A portion of the effort on these tasks included providing direct ``Onsite Support`` at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). The ICF program is anticipating experiments at the National Ignition Facility (NIF) and the OMEGA Upgrade. Both facilities will require capsules containing layered D{sub 2} or deuterium-tritium (D-T) fuel. The authors are part of the National Cryogenic Target Program to create and demonstrate viable ways to generate and characterize cryogenic layers. Progress has been made on ways to both create viable layers and to characterize them. They continued engineering, assembly and testing of equipment for a cryogenic target handling system for University of Rochester`s Laboratory for Laser Energetics (UR/LLE) that will fill, transport, layer, and characterize targets filled with cryogenic fuel, and insert these cryogenic targets into the OMEGA Upgrade target chamber for laser implosion experiments. This report summarizes and documents the technical progress made on these tasks.

  18. The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification

    SciTech Connect

    Ivanov, A; Kulcinski, J; Molvik, A; Ryutov, D; Santarius, J; Simonen, T; Wirth, B D; Ying, A

    2009-11-23

    The successful operation (with {beta} {le} 60%, classical ions and electrons with Te = 250 eV) of the Gas Dynamic Trap (GDT) device at the Budker Institute of Nuclear Physics (BINP) in Novosibirsk, Russia, extrapolates to a 2 MW/m{sup 2} Dynamic Trap Neutron Source (DTNS), which burns only {approx}100 g of tritium per full power year. The DTNS has no serious physics, engineering, or technology obstacles; the extension of neutral beam lines to steady state can use demonstrated engineering; and it supports near-term tokamaks and volume neutron sources. The DTNS provides a neutron spectrum similar to that of ITER and satisfies the missions specified by the materials community to test fusion materials (listed as one of the top grand challenges for engineering in the 21st century by the U.S. National Academy of Engineering) and subcomponents (including tritium-breeding blankets) needed to construct DEMO. The DTNS could serve as the first Fusion Nuclear Science Facility (FNSF), called for by ReNeW, and could provide the data necessary for licensing subsequent FSNFs.

  19. The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification

    SciTech Connect

    Molvik, A W; Simonen, T C

    2009-07-17

    This report summarizes discussions and conclusions of the workshop to 'Assess The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification'. The workshop was held at LBNL, Berkeley, CA on March 12, 2009. Most workshop attendees have worked on magnetic mirror systems, several have worked on similar neutron source designs, and others are knowledgeable of materials, fusion component, and neutral beams The workshop focused on the gas dynamic trap DT Neutron Source (DTNS) concept being developed at the Budker Institute of Nuclear Physics (BINP) in Novosibirsk, Russia. The DTNS may be described as a line source of neutrons, in contrast to a spallation or a D-Lithium source with neutrons beaming from a point, or a tokamak volume source. The DTNS is a neutral beam driven linear plasma system with magnetic mirrors to confine the energetic deuterium and tritium beam injected ions, which produce the 14 MeV neutrons. The hot ions are imbedded in warm-background plasma, which traps the neutral atoms and provides both MHD and micro stability to the plasma. The 14 MeV neutron flux ranges typically at the level of 1 to 4 MW/m2.

  20. Lenr and "cold Fusion" Excess Heat:. Their Relation to Other Anomalous Microphysical Energy Experiments and Emerging New Energy Technologies

    NASA Astrophysics Data System (ADS)

    Mallove, Eugene F.

    2005-12-01

    During the past 15 years, indisputable experimental evidence has built up for substantial excess heat (far beyond ordinary chemical energy) and low-energy nuclear reaction phenomena in specialized heavy hydrogen and ordinary hydrogen-containing systems.1 The primary theorists in the field that is properly designated Cold Fusion/LENR have generally assumed that the excess heat phenomena is commensurate with nuclear ash (such as helium), whether already identified or presumed to be present but not yet found. That was an excellent initial hypothesis. However, the commensurate nuclear ash hypothesis has not been proved, and appears to be approximately correct in only a few experiments. During this same period, compelling evidence although not as broadly verified as data from cold fusion/LENR has also emerged for other microphysical sources of energy that were previously unexpected by accepted physics. The exemplar of this has been the "hydrino" physics work of Dr. Randall Mills and his colleagues at Black-Light Power Corporation, which was a radical outgrowth from the cold fusion field that emerged publicly in May 1991.2 Even more far-reaching is the work in vacuum energy extraction pioneered by Dr. Paulo and Alexandra Correa, which first became public in 1996.3 This vacuum energy experimentation began in the early 1980s and has been reduced to prototype technological devices, such as the patented PAGDTM (pulsed abnormal glow discharge) electric power generator, as well as many published experiments that can be performed in table-top fashion to verify the Correa Aetherometry (non-luminiferous or non-electromagnetic aether measurement science).4 In an era when mainstream science and its media is all agog about dark matter and dark energy composing the vast bulk of the universe, there is a great need to reconcile, if possible, the significant bodies of evidence from these three major experimental and theoretical streams: cold fusion/LENR, hydrino physics, and

  1. An Overview of High Energy Short Pulse Technology for Advanced Radiography of Laser Fusion Experiments

    SciTech Connect

    Barty, C J; Key, M; Britten, J; Beach, R; Beer, G; Brown, C; Bryan, S; Caird, J; Carlson, T; Crane, J; Dawson, J; Erlandson, A C; Fittinghoff, D; Hermann, M; Hoaglan, C; Iyer, A; Jones, L; Jovanovic, I; Komashko, A; Landen, O; Liao, Z; Molander, W; Mitchell, A; Moses, E; Nielsen, N; Nguyen, H; Nissen, J; Payne, S; Pennington, D; Risinger, L; Rushford, M; Skulina, K; Spaeth, M; Stuart, B; Tietbohl, G; Wattellier, B

    2004-06-18

    The technical challenges and motivations for high-energy, short-pulse generation with NIF-class, Nd:glass laser systems are reviewed. High energy short pulse generation (multi-kilojoule, picosecond pulses) will be possible via the adaptation of chirped pulse amplification laser techniques on the NIF. Development of meter-scale, high efficiency, high-damage-threshold final optics is a key technical challenge. In addition, deployment of HEPW pulses on NIF is constrained by existing laser infrastructure and requires new, compact compressor designs and short-pulse, fiber-based, seed-laser systems. The key motivations for high energy petawatt pulses on NIF is briefly outlined and includes high-energy, x-ray radiography, proton beam radiography, proton isochoric heating and tests of the fast ignitor concept for inertial confinement fusion.

  2. Inertial confinement fusion target component fabrication and technology development support: Annual report, October 1, 1995--September 30, 1996

    SciTech Connect

    Hoppe, M.

    1997-02-01

    On December 30, 1990, the U.S. Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. In September 1995 this contract ended and a second contract was issued for us to continue this ICF target support work. This report documents the technical activities of the period October 1, 1995 through September 30, 1996. During this period, GA and our partners WJ Schafer Associates (WJSA) and Soane Technologies, Inc. (STI) were assigned 14 formal tasks in support of the Inertial Confinement Fusion program and its five laboratories. A portion of the effort on these tasks included providing direct {open_quotes}Onsite Support{close_quotes} at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). We fabricated and delivered over 800 gold-plated hohlraum mandrels to LLNL, LANL and SNLA. We produced nearly 1,200 glass and plastic target capsules for LLNL, LANL, SNLA and University of Rochester/Laboratory for Laser Energetics (UR/LLE). We also delivered over 100 flat foil targets for Naval Research Lab (NRL) and SNLA in FY96. This report describes these target fabrication activities and the target fabrication and characterization development activities that made the deliveries possible. The ICF program is anticipating experiments at the OMEGA laser and the National Ignition Facility (NIF) which will require capsules containing cryogenic layered D{sub 2} or deuterium-tritium (DT) fuel. We are part of the National Cryogenic Target Program to create and demonstrate viable ways to generate and characterize cryogenic layers. Substantial progress has been made on ways to both create and characterize viable layers. During FY96, significant progress was made in the design of the OMEGA Cryogenic Target System that will field cryogenic targets on OMEGA.

  3. TBM/MTM for HTS-FNSF: An innovative testing strategy to qualify/validate fusion technologies for U.S. DEMO

    DOE PAGESBeta

    El-Guebaly, Laila; Rowcliffe, Arthur; Menard, Jonathan; Brown, Thomas

    2016-08-11

    The qualification and validation of nuclear technologies are daunting tasks for fusion demonstration (DEMO) and power plants. This is particularly true for advanced designs that involve harsh radiation environment with 14 MeV neutrons and high-temperature operating regimes. This paper outlines the unique qualification and validation processes developed in the U.S., offering the only access to the complete fusion environment, focusing on the most prominent U.S. blanket concept (the dual cooled PbLi (DCLL)) along with testing new generations of structural and functional materials in dedicated test modules. The venue for such activities is the proposed Fusion Nuclear Science Facility (FNSF), whichmore » is viewed as an essential element of the U.S. fusion roadmap. A staged blanket testing strategy has been developed to test and enhance the DCLL blanket performance during each phase of FNSF D-T operation. A materials testing module (MTM) is critically important to include in the FNSF as well to test a broad range of specimens of future, more advanced generations of materials in a relevant fusion environment. Here, the most important attributes for MTM are the relevant He/dpa ratio (10–15) and the much larger specimen volumes compared to the 10–500 mL range available in the International Fusion Materials Irradiation Facility (IFMIF) and European DEMO-Oriented Neutron Source (DONES).« less

  4. Based on Weibull Information Fusion Analysis Semiconductors Quality the Key Technology of Manufacturing Execution Systems Reliability

    NASA Astrophysics Data System (ADS)

    Huang, Zhi-Hui; Tang, Ying-Chun; Dai, Kai

    2016-05-01

    Semiconductor materials and Product qualified rate are directly related to the manufacturing costs and survival of the enterprise. Application a dynamic reliability growth analysis method studies manufacturing execution system reliability growth to improve product quality. Refer to classical Duane model assumptions and tracking growth forecasts the TGP programming model, through the failure data, established the Weibull distribution model. Combining with the median rank of average rank method, through linear regression and least squares estimation method, match respectively weibull information fusion reliability growth curve. This assumption model overcome Duane model a weakness which is MTBF point estimation accuracy is not high, through the analysis of the failure data show that the method is an instance of the test and evaluation modeling process are basically identical. Median rank in the statistics is used to determine the method of random variable distribution function, which is a good way to solve the problem of complex systems such as the limited sample size. Therefore this method has great engineering application value.

  5. Inertial Confinement Fusion Target Component Fabrication and Technology Development report. Annual report, October 1, 1992--September 30, 1993

    SciTech Connect

    Steinman, D.

    1994-03-01

    On December 30, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities which took place under this contract during the period of October 1, 1992 through September 30, 1993. During this period, GA was assigned 18 tasks in support of the Inertial Confinement Fusion program and its laboratories. These tasks included ``Capabilities Activation`` and ``Capabilities Demonstration`` to enable us to begin production of glass and composite polymer capsules. Capsule delivery tasks included ``Small Glass Shell Deliveries`` and ``Composite Polymer Capsules`` for Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL). We also were asked to provide direct ``Onsite Support`` at LLNL and LANL. We continued planning for the transfer of ``Micromachining Equipment from Rocky Flats`` and established ``Target Component Micromachining and Electroplating Facilities`` at GA. We fabricated over 1100 films and filters of 11 types for Sandia National Laboratory and provided full-time onsite engineering support for target fabrication and characterization. We initiated development of methods to make targets for the Naval Research Laboratory. We investigated spherical interferometry, built an automated capsule sorter, and developed an apparatus for calorimetric measurement of fuel fill for LLNL. We assisted LANL in the ``Characterization of Opaque b-Layered Targets.`` We developed deuterated and UV-opaque polymers for use by the University of Rochester`s Laboratory for Laser Energetics (UR/LLE) and devised a triple-orifice droplet generator to demonstrate the controlled-mass nature of the microencapsulation process.

  6. Inertial Confinement Fusion Target Component Fabrication and Technology Development Support. Annual report, January 1, 1991--September 30, 1992

    SciTech Connect

    Steinman, D.

    1993-03-01

    On December 31, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities of the period January 1, 1991 through September 30, 1992. During this period, GA was assigned 15 tasks in support of the Inertial Confinement Fusion program and its laboratories. These tasks included Facilities Activation, Staff Development, and Capabilities Validation to establish facilities and equipment, and demonstrate capability to perform ICF target fabrication research, development and production activities. The capabilities developed and demonstrated are those needed for fabrication and precise characterization of polymer shells and polymer coatings. We made progress toward production capability for glass shells, barrier layer coatings, and gas idling of shells. We fabricated over 1000 beam diagnostic foil targets for Sandia National Laboratory Albuquerque and provided full-time on-site engineering support for target fabrication and characterization. We initiated development of methods to fabricate polymer shells by a controlled mass microencapsulation technique, and performed chemical syntheses of several chlorine- and silicon-doped polymer materials for the University of Rochester`s Laboratory for Laser Energetics (UR/LLE). We performed the conceptual design of a cryogenic target handling system for UR/LLE that will fill, transport, layer, and characterize targets filled with cryogenic deuterium or deuterium-tritium fuel, and insert these cryogenic targets into the OMEGA-Upgrade target chamber for laser implosion experiments. This report summarizes and documents the technical progress made on these tasks.

  7. Inertial confinement fusion target component fabrication and technology development support: Annual report, October 1, 1993--September 30, 1994

    SciTech Connect

    Hoppe, M.

    1995-04-01

    On December 30, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. During the period, GA was assigned 17 tasks in support of the Inertial Confinement Fusion program and its laboratories. This year they achieved full production capabilities for the micromachining, dimensional characterization and gold plating of hohlraums. They fabricated and delivered 726 gold-plated mandrels of 27 different types to LLNL and 48 gold-plated mandrels of two different types to LANL. They achieved full production capabilities in composite capsule production ad delivered in excess of 240 composite capsules. They continuously work to improve performance and capabilities. They were also directed to dismantle, remove, and disposition all equipment at the previous contractor (KMSF) that had radioactive contamination levels low enough that they could be exposed to the general public without radiological constraints. GA was also directed to receive and store the tritium fill equipment. They assisted LANL in the development of techniques for characterization of opaque targets. They developed deuterated and UV-opaque polymers for use by the University of Rochester`s Laboratory for Laser Energetics (UR/LLE) and devised a triple-orifice droplet generator to demonstrate the controlled-mass nature of the microencapsulation process. The ICF program is anticipating experiments at NIF and the Omega Upgrade. Both facilities will require capsules containing layered D{sub 2} or D-T fuel. They continued engineering and assembly of equipment for a cryogenic target handling system for UR/LLE that will fill, transport, layer, and characterize targets filled with cryogenic deuterium or deuterium-tritium fuel, and insert these cryogenic targets into the OMEGA Upgrade target chamber for laser implosion experiments.

  8. Half-life extension of the HIV-fusion inhibitor peptide TRI-1144 using a novel linker technology.

    PubMed

    Schneider, Eric L; Ashley, Gary W; Dillen, Lieve; Stoops, Bart; Austin, Nigel E; Malcolm, Bruce A; Santi, Daniel V

    2015-06-01

    We have previously developed a linker technology for half-life extension of peptides, proteins and small molecule drugs (1). The linkers undergo β-elimination reactions with predictable cleavage rates to release the native drug. Here we utilize this technology for half-life extension of the 38 amino acid HIV-1 fusion inhibitor TRI-1144. Conjugation of TRI-1144 to 40 kDa PEG by an appropriate β-eliminative linker and i.v. administration of the conjugate increased the in vivo half-life of the released peptide from 4 to 34 h in the rat, and the pharmacokinetic parameters were in excellent accord with a one-compartment model. From these data we simulated the pharmacokinetics of the PEG-TRI-1144 conjugate in humans, predicting a t1/2,β of 70 h for the released peptide, and that a serum concentration of 25 nM could be maintained by weekly doses of 8 μmol of the conjugate. Using a non-circulating carrier (2) similar simulations indicated a t1/2,β of 150 h for the peptide released from the conjugate and that dosing of only 1.8 μmol/week could maintain serum concentrations of TRI-1144 above 25 nM. Hence, releasable β-eliminative linkers provide significant half-life extension to TRI-1144 and would be expected to do likewise for related peptides.

  9. Solid state laser technology for inertial confinement fusion: A collection of articles from ''Energy and Technology Review''

    SciTech Connect

    Not Available

    1988-06-01

    This paper contains reprinted articles that record several milestones in laser research at LLNL. ''Neodymium-Glass Laser Research and Development at LLNL'' recounts the history of the Laser Program and our work on neodymium-glass lasers. ''Nova Laser Technology'' describes the capabilities of the Nova laser and some of its uses. ''Building Nova: Industry Relations and Technology Transfer'' illustrates the Laboratory's commitment to work with US industry in technology development. ''Managing the Nova Laser Project'' details the organization and close monitoring of costs and schedules during the construction of the Nova laser facility. The article ''Optical Coatings by the Sol-Gel Process,'' describes our chemical process for making the damage-resistant, antireflective silica coatings used on the Nova laser glass. The technical challenges in designing and fabricating the KDP crystal arrays used to convert the light wave frequency of the Nova lasers are reported in ''Frequency Conversion of the Nova Laser.'' Two articles, ''Eliminating Platinum Inclusions in Laser Glass'' and ''Detecting Microscopic Inclusions in Optical Glass,'' describe how we dealt with the problem of damaging metal inclusions in the Nova laser glass. The last article reprinted here, ''Auxilliary Target Chamber for Nova,'' discusses the diversion of two of Nova's ten beamlines into a secondary chamber for the purpose of increasing our capacity for experimentation.

  10. Massachusetts Institute of Technology, Plasma Fusion Center FY97--FY98 work proposal

    SciTech Connect

    1996-03-01

    Alcator C-Mod is the high-field, high-density divertor tokamak in the world fusion program. It is one of five divertor experiments capable of plasma currents exceeding one megamp. Because of its compact dimensions, Alcator C-Mod investigates an essential area in parameter space, which complements the world`s larger experiments, in establishing the tokamak physics database. Three key areas of investigation have been called out in which Alcator C-Mod has a vital role to play: (1) divertor research on C-Mod takes advantage of the advanced divertor shaping, the very high scrap-off-layer power density, unique abilities in impurity diagnosis, and the High-Z metal wall, to advance the physics understanding of this critical topic; (2) in transport studies, C-Mod is making critical tests of both empirical scalings and theoretically based interpretations of tokamak transport, at dimensional parameters that are unique but dimensionless parameters often comparable to those in much larger experiments; (3) in the area of Advanced Tokamak research, so important to concept optimization, the high-field design of the device also provides long pulse length, compared to resistive skin time, which provides an outstanding opportunity to investigate the extent to which enhanced confinement and stability can be sustained in steady-state, using active profile control. In addition to these main programmatic emphasis, important enabling research is being performed in MHD stability and control, which has great significance for the immediate design of ITER, and in the physics and engineering of ICRF, which is the main auxiliary heating method on C-Mod.

  11. Grid Computing and Collaboration Technology in Support of Fusion Energy Sciences

    NASA Astrophysics Data System (ADS)

    Schissel, D. P.

    2004-11-01

    The SciDAC Initiative is creating a computational grid designed to advance scientific understanding in fusion research by facilitating collaborations, enabling more effective integration of experiments, theory and modeling, and allowing more efficient use of experimental facilities. The philosophy is that data, codes, analysis routines, visualization tools, and communication tools should be thought of as easy to use network available services. Access to services is stressed rather than portability. Services share the same basic security infrastructure so that stakeholders can control their own resources and helps ensure fair use of resources. The collaborative control room is being developed using the open-source Access Grid software that enables secure group-to-group collaboration with capabilities beyond teleconferencing including application sharing and control. The ability to effectively integrate off-site scientists into a dynamic control room will be critical to the success of future international projects like ITER. Grid computing, the secure integration of computer systems over high-speed networks to provide on-demand access to data analysis capabilities and related functions, is being deployed as an alternative to traditional resource sharing among institutions. The first grid computational service deployed was the transport code TRANSP and included tools for run preparation, submission, monitoring and management. This approach saves user sites from the laborious effort of maintaining a complex code while at the same time reducing the burden on developers by avoiding the support of a large number of heterogeneous installations. This tutorial will present the philosophy behind an advanced collaborative environment, give specific examples, and discuss its usage beyond FES.

  12. A review of nuclear data needs and their status for fusion reactor technology with some suggestions on a strategy to satisfy the requirements

    SciTech Connect

    Smith, D.L.; Cheng, E.T.

    1991-09-01

    A review was performed on the needs and status of nuclear data for fusion-reactor technology. Generally, the status of nuclear data for fusion has been improved during the past two decades due to the dedicated effort of the nuclear data developers. However, there are still deficiencies in the nuclear data base, particularly in the areas of activation and neutron scattering cross sections. Activation cross sections were found to be unsatisfactory in 83 of the 153 reactions reviewed. The scattering cross sections for fluorine and boron will need to be improved at energies above 1 MeV. Suggestions concerning a strategy to address the specific fusion nuclear data needs for dosimetry and activation are also provided.

  13. A Laser Technology Test Facility for Laser Inertial Fusion Energy (LIFE)

    SciTech Connect

    Bayramian, A J; Campbell, R W; Ebbers, C A; Freitas, B L; Latkowski, J; Molander, W A; Sutton, S B; Telford, S; Caird, J A

    2009-10-06

    A LIFE laser driver needs to be designed and operated which meets the rigorous requirements of the NIF laser system while operating at high average power, and operate for a lifetime of >30 years. Ignition on NIF will serve to demonstrate laser driver functionality, operation of the Mercury laser system at LLNL demonstrates the ability of a diode-pumped solid-state laser to run at high average power, but the operational lifetime >30 yrs remains to be proven. A Laser Technology test Facility (LTF) has been designed to specifically address this issue. The LTF is a 100-Hz diode-pumped solid-state laser system intended for accelerated testing of the diodes, gain media, optics, frequency converters and final optics, providing system statistics for billion shot class tests. These statistics will be utilized for material and technology development as well as economic and reliability models for LIFE laser drivers.

  14. Development of tokamak experiment technology: A study on the nuclear fusion reactor

    NASA Astrophysics Data System (ADS)

    Lee, Kwang Won; Hwang, Chul Kew; In, Sang Ryul; Kim, Sung Kyu; Oh, Byung Hoon; Jeong, Seung Ho; Hong, Bong Guen; Yoon, Jae Sung; Yoon, Byung Joo; Song, Woo Sup

    1994-07-01

    Overall test operation of KT-1 tokamak has been done with the modified power supplies and constructed plasma position feedback control system. The achieved plasma parameters of KT-1 are Ip (plasma current) greater than 15 kA (9ms) and Td (plasma current sustaining time) greater than 12 ms (7.5 kA) until now. Instrumentations for the carbonization/boronization are also equipped and applied to the first boronization of invessel components of KT-1 tokamak. As a preliminary treatment of the 1st wall of tokamak vacuum torus, RG discharge cleaning has been done. Plasma qualities have been improved by discharge cleaning. In addition, helicon plasma device is designed succeeding exploitation of the first wall conditioning program which are all for the development of conditioning technology of 1st wall facing the plasma. As a part of the development program on the plasma monitoring technologies, conceptual design study on the FIR interferometer- polarimeter is accomplished. Parallel to these experimental activities, an effort has been made in designing the operating scenario of poloidal field system of KT-2 tokamak.

  15. Coatings for laser fusion

    SciTech Connect

    Lowdermilk, W.H.

    1981-12-18

    Optical coatings are used in lasers systems for fusion research to control beam propagation and reduce surface reflection losses. The performance of coatings is important in the design, reliability, energy output, and cost of the laser systems. Significant developments in coating technology are required for future lasers for fusion research and eventual power reactors.

  16. Big fusion, little fusion

    NASA Astrophysics Data System (ADS)

    Chen, Frank; ddtuttle

    2016-08-01

    In reply to correspondence from George Scott and Adam Costley about the Physics World focus issue on nuclear energy, and to news of construction delays at ITER, the fusion reactor being built in France.

  17. Metal shell technology based upon hollow jet instability. [for inertial confinement fusion

    NASA Technical Reports Server (NTRS)

    Kendall, J. M.; Lee, M. C.; Wang, T. G.

    1982-01-01

    Spherical shells of submillimeter size are sought as ICF targets. Such shells must be dimensionally precise, smooth, of high strength, and composed of a high atomic number material. A technology for the production of shells based upon the hydrodynamic instability of an annular jet of molten metal is described. Shells in the 0.7-2.0 mm size range have been produced using tin as a test material. Specimens exhibit good sphericity, fair concentricity, and excellent finish over most of the surface. Work involving a gold-lead-antimony alloy is in progress. Droplets of this are amorphous and possess superior surface finish. The flow of tin models that of the alloy well; experiments on both metals show that the technique holds considerable promise.

  18. Materials research for fusion

    NASA Astrophysics Data System (ADS)

    Knaster, J.; Moeslang, A.; Muroga, T.

    2016-05-01

    Fusion materials research started in the early 1970s following the observation of the degradation of irradiated materials used in the first commercial fission reactors. The technological challenges of fusion energy are intimately linked with the availability of suitable materials capable of reliably withstanding the extremely severe operational conditions of fusion reactors. Although fission and fusion materials exhibit common features, fusion materials research is broader. The harder mono-energetic spectrum associated with the deuterium-tritium fusion neutrons (14.1 MeV compared to <2 MeV on average for fission neutrons) releases significant amounts of hydrogen and helium as transmutation products that might lead to a (at present undetermined) degradation of structural materials after a few years of operation. Overcoming the historical lack of a fusion-relevant neutron source for materials testing is an essential pending step in fusion roadmaps. Structural materials development, together with research on functional materials capable of sustaining unprecedented power densities during plasma operation in a fusion reactor, have been the subject of decades of worldwide research efforts underpinning the present maturity of the fusion materials research programme.

  19. Experiments in predictive sensor fusion

    NASA Astrophysics Data System (ADS)

    Keller, James M.; Auephanwiriyakul, Sansanee; Gader, Paul D.

    2001-10-01

    Data fusion is a process of combining evidence from different information sources in order to make a better judgement. However, multiple sources can provide complementary information that can be used to increase the performance in detection and recognition. There are many frameworks within which to combine these pieces into a more meaningful answer. However, new information added might be redundant or even conflicting with the existing information. These questions arise: can we predict the value added by fusing their outputs together, if we know the general characteristics of a set of sensors. Can we specify the needed characteristics of a new sensor/algorithm to add to an existing suite to gain a desired improvement performance. The characteristic of a new sensor can be in any forms, e.g., the ratio of a target's signal to the clutter's signal, the position resolution etc. In this paper, we consider these questions in the context of fuzzy set theory and in particular, a soft decision level fusion scheme we developed for land mine detection scenarios. Here, we primarily consider the ratio of a target's signal. We develop a tool to estimate a final d-metric when the information form several sensor is fused through the linguistic Choquet fuzzy integral. We utilize this tool in the examination of the performance of d-metrics in a simulation environment. The approach is demonstrated for data obtained from an Advanced Technology Demonstration in vehicle-based mine detection.

  20. Multisensor fusion remote sensing technology for assessing multitemporal responses in ecohydrological systems

    NASA Astrophysics Data System (ADS)

    Makkeasorn, Ammarin

    ) satellite imagery as previously developed was used. Eight commonly used vegetation indices were calculated from the reflectance obtained from Landsat 5 TM satellite images. The vegetation indices were individually used to classify vegetation cover in association with genetic programming algorithm. The soil moisture and vegetation indices were integrated into Landsat TM images based on a pre-pixel channel approach for riparian classification. Two different classification algorithms were used including genetic programming, and a combination of ISODATA and maximum likelihood supervised classification. The white box feature of genetic programming revealed the comparative advantage of all input parameters. The GP algorithm yielded more than 90% accuracy, based on unseen ground data, using vegetation index and Landsat reflectance band 1, 2, 3, and 4. The detection of changes in the buffer zone was proved to be technically feasible with high accuracy. Overall, the development of the RICAL algorithm may lead to the formulation of more effective management strategies for the handling of non-point source pollution control, bird habitat monitoring, and grazing and live stock management in the future. Geo-environmental information amassed in this study includes soil permeability, surface temperature, soil moisture, precipitation, leaf area index (LAI) and normalized difference vegetation index (NDVI). With the aid of a remote sensing-based GIP analysis, only five locations out of more than 800 candidate sites were selected by the spatial analysis, and then confirmed by a field investigation. The methodology developed in this remote sensing-based GIP analysis will significantly advance the state-of-the-art technology in optimum arrangement/distribution of water sensor platforms for maximum sensing coverage and information-extraction capacity. To more efficiently use the limited amount of water or to resourcefully provide adequate time for flood warning, the results have led us to seek

  1. Multisensor fusion remote sensing technology for assessing multitemporal responses in ecohydrological systems

    NASA Astrophysics Data System (ADS)

    Makkeasorn, Ammarin

    ) satellite imagery as previously developed was used. Eight commonly used vegetation indices were calculated from the reflectance obtained from Landsat 5 TM satellite images. The vegetation indices were individually used to classify vegetation cover in association with genetic programming algorithm. The soil moisture and vegetation indices were integrated into Landsat TM images based on a pre-pixel channel approach for riparian classification. Two different classification algorithms were used including genetic programming, and a combination of ISODATA and maximum likelihood supervised classification. The white box feature of genetic programming revealed the comparative advantage of all input parameters. The GP algorithm yielded more than 90% accuracy, based on unseen ground data, using vegetation index and Landsat reflectance band 1, 2, 3, and 4. The detection of changes in the buffer zone was proved to be technically feasible with high accuracy. Overall, the development of the RICAL algorithm may lead to the formulation of more effective management strategies for the handling of non-point source pollution control, bird habitat monitoring, and grazing and live stock management in the future. Geo-environmental information amassed in this study includes soil permeability, surface temperature, soil moisture, precipitation, leaf area index (LAI) and normalized difference vegetation index (NDVI). With the aid of a remote sensing-based GIP analysis, only five locations out of more than 800 candidate sites were selected by the spatial analysis, and then confirmed by a field investigation. The methodology developed in this remote sensing-based GIP analysis will significantly advance the state-of-the-art technology in optimum arrangement/distribution of water sensor platforms for maximum sensing coverage and information-extraction capacity. To more efficiently use the limited amount of water or to resourcefully provide adequate time for flood warning, the results have led us to seek

  2. Detection of ASPL/TFE3 fusion transcripts and the TFE3 antigen in formalin-fixed, paraffin-embedded tissue in a series of 18 cases of alveolar soft part sarcoma: useful diagnostic tools in cases with unusual histological features.

    PubMed

    Williams, Ann; Bartle, Gillian; Sumathi, Vaiyapuri P; Meis, Jeanne M; Mangham, D Chas; Grimer, Rob J; Kindblom, Lars-Gunnar

    2011-03-01

    Alveolar soft part sarcoma (ASPS) is a rare malignancy; diagnostic problems may occur when cases present as a metastasis or with unusual morphologic features. In this study, a series of 18 cases with follow-up information were analysed with regard to the ASPL/TFE3 fusion transcripts and immuno-detection of TFE3 using archival formalin-fixed, paraffin-embedded tissues. Novel primers to detect ASPL/TFE3 fusion transcripts, type 1 and 2, were designed. The patients, ten female and eight male, ranged in age from 3 to 46 years; 16 involved soft tissues of the extremities (nine, lower; seven, upper), one involved the uterine cervix and one was a primary bone tumour of the foot. Seven ASPS had unusual morphologic features lacking the typical alveolar pattern. Seven had lung metastases at the time of diagnosis, and three developed lung and brain metastases later. Four patients died of disease (after 1-5 years); four are alive with metastases (after 2-15 years), and ten are alive and well (after 1-10 years). Vascular invasion correlated with metastatic disease. All 18 ASPS, four granular cell tumours (one of which was malignant) and one adrenal cortical carcinoma showed TFE3 immuno-positivity. The 18/18 ASPS showed ASPL/TFE3 fusion transcripts (nine, type 1; nine, type 2), four of which had a balanced translocation. ASPL/TFE3 fusion transcripts were not detected in 25 controls. We conclude that immuno-detection of TFE3 and RT-PCR-based identification of ASPL/TFE3 fusion transcripts in formalin-fixed, paraffin-embedded tissues are powerful tools in the diagnosis of ASPS, particularly in cases with unusual morphologic features.

  3. Magnetic-confinement fusion

    NASA Astrophysics Data System (ADS)

    Ongena, J.; Koch, R.; Wolf, R.; Zohm, H.

    2016-05-01

    Our modern society requires environmentally friendly solutions for energy production. Energy can be released not only from the fission of heavy nuclei but also from the fusion of light nuclei. Nuclear fusion is an important option for a clean and safe solution for our long-term energy needs. The extremely high temperatures required for the fusion reaction are routinely realized in several magnetic-fusion machines. Since the early 1990s, up to 16 MW of fusion power has been released in pulses of a few seconds, corresponding to a power multiplication close to break-even. Our understanding of the very complex behaviour of a magnetized plasma at temperatures between 150 and 200 million °C surrounded by cold walls has also advanced substantially. This steady progress has resulted in the construction of ITER, a fusion device with a planned fusion power output of 500 MW in pulses of 400 s. ITER should provide answers to remaining important questions on the integration of physics and technology, through a full-size demonstration of a tenfold power multiplication, and on nuclear safety aspects. Here we review the basic physics underlying magnetic fusion: past achievements, present efforts and the prospects for future production of electrical energy. We also discuss questions related to the safety, waste management and decommissioning of a future fusion power plant.

  4. Investigating the degree of "stigma" associated with nuclear energy technologies: A cross-cultural examination of the case of fusion power.

    PubMed

    Horlick-Jones, Tom; Prades, Ana; Espluga, Josep

    2012-07-01

    The extent to which nuclear energy technologies are, in some sense, "stigmatised" by historical environmental and military associations is of particular interest in contemporary debates about sustainable energy policy. Recent claims in the literature suggest that despite such stigmatisation, lay views on such technologies may be shifting towards a "reluctant acceptance," in the light of concerns about issues like anthropogenic climate change. In this paper, we report on research into learning and reasoning processes concerned with a largely unknown nuclear energy technology; namely fusion power. We focus on the role of the nuclear label, or "brand," in informing how lay citizens make sense of the nature of this technology. Our findings derive from a comparative analysis of data generated in Spain and Britain, using the same methodology.

  5. Prospects for fusion: The winds of change

    NASA Astrophysics Data System (ADS)

    Davidson, R. C.

    This paper addresses the following topics: (1) national energy circumstances and policy, and the implications for fusion; (2) the intrinsic merit of fusion research and development as it contributes to the national science and technology base; (3) the research opportunities and priorities in inertial confinement fusion; and (4) the research opportunities and priorities in magnetic fusion.

  6. Soft robotics: a bioinspired evolution in robotics.

    PubMed

    Kim, Sangbae; Laschi, Cecilia; Trimmer, Barry

    2013-05-01

    Animals exploit soft structures to move effectively in complex natural environments. These capabilities have inspired robotic engineers to incorporate soft technologies into their designs. The goal is to endow robots with new, bioinspired capabilities that permit adaptive, flexible interactions with unpredictable environments. Here, we review emerging soft-bodied robotic systems, and in particular recent developments inspired by soft-bodied animals. Incorporating soft technologies can potentially reduce the mechanical and algorithmic complexity involved in robot design. Incorporating soft technologies will also expedite the evolution of robots that can safely interact with humans and natural environments. Finally, soft robotics technology can be combined with tissue engineering to create hybrid systems for medical applications. PMID:23582470

  7. Fusion Physics Toward ITER

    NASA Astrophysics Data System (ADS)

    Stambaugh, R. D.

    2006-04-01

    Stars are powered by fusion, the energy released by fusing together light nuclei, using gravitational confinement of plasma. Fusion on earth will be done in a 100 million degree plasma made of deuterium and tritium and confined by magnetic fields or inertia. The worldwide fusion research community will construct ITER, the first experiment that will burn a DT plasma by copious fusion reactions. ITER's nominal goal is to create 500 MW of fusion power. An energy gain of 10 will mean the plasma is dominantly self-heated by the fusion-produced alpha particles. ITER's all superconducting magnet technology and steady-state heat removal technology will enable nominal 400 s pulses to allow the study of burning plasmas on the longest intrinsic timescale of the confined plasma - diffusive redistribution of the electrical currents in the plasma. The advances in magnetic confinement physics that have led to this opportunity will be described, as well as the research opportunities afforded by ITER. The physics of confining stable plasmas and heating them will produce the high gain state in ITER. Sustained burn will come from the physics of controlling currents in plasmas and how the hot plasma is interfaced to its room temperature surroundings. ITER will provide our first experience with how fusion plasma self-heating will profoundly affect the complex, interlinked physical processes that occur in confined plasmas.

  8. Nuclear Fusion

    NASA Astrophysics Data System (ADS)

    Veres, G.

    This chapter is devoted to the fundamental concepts of nuclear fusion. To be more precise, it is devoted to the theoretical basics of fusion reactions between light nuclei such as hydrogen, helium, boron, and lithium. The discussion is limited because our purpose is to focus on laboratory-scale fusion experiments that aim at gaining energy from the fusion process. After discussing the methods of calculating the fusion cross section, it will be shown that sustained fusion reactions with energy gain must happen in a thermal medium because, in beam-target experiments, the energy of the beam is randomized faster than the fusion rate. Following a brief introduction to the elements of plasma physics, the chapter is concluded with the introduction of the most prominent fusion reactions ongoing in the Sun.

  9. Summary of progress in laser fusion; advanced technology developments: National Laser Users Facility news; and a laser system report

    NASA Astrophysics Data System (ADS)

    1993-01-01

    This is an annual report covering research progress on laser fusion and the OMEGA Upgrade design and development. In laser fusion, line-spectroscopy methods were demonstrated to be useful in diagnosing the core temperature and densities of polymer-shell targets; a theoretical analysis of nonlocal heat transport effects on filamentation of light in plasmas confirms that the principle mechanism driving filamentation is kinetic thermal rather than ponderomotive; a new method (spatial beam deflection) to produce laser pulses of arbitrary shape was developed; laser-plasma x-ray emission was measured using photodiode arrays; experiments on long-scale-length plasmas have shown that smoothing by spectral dispersion has proven effective in reducing Raman scattering; a method for increasing the gas-retention time of polymer shell targets was developed by overcoating them with aluminum. Experiments relating to the OMEGA Upgrade are described.

  10. The Need for Fusion Propulsion

    NASA Technical Reports Server (NTRS)

    Cassibry, Jason

    2005-01-01

    Fusion propulsion is inevitable if the human race remains dedicated to exploration of the solar system. There are fundamental reasons why fusion surpasses more traditional approaches to routine crewed missions to Mars, crewed missions to the outer planets, and deep space high speed robotic missions, assuming that reduced trip times, increased payloads, and higher available power are desired. A recent series of informal discussions were held among members from government, academia, and industry concerning fusion propulsion. We compiled a sufficient set of arguments for utilizing fusion in space. If the U.S. is to lead the effort and produce a working system in a reasonable amount of time, NASA must take the initiative, relying on, but not waiting for, DOE guidance. In this talk those arguments for fusion propulsion are presented, along with fusion enabled mission examples, fusion technology trade space, and a proposed outline for future efforts.

  11. Soft electronics for soft robotics

    NASA Astrophysics Data System (ADS)

    Kramer, Rebecca K.

    2015-05-01

    As advanced as modern machines are, the building blocks have changed little since the industrial revolution, leading to rigid, bulky, and complex devices. Future machines will include electromechanical systems that are soft and elastically deformable, lending them to applications such as soft robotics, wearable/implantable devices, sensory skins, and energy storage and transport systems. One key step toward the realization of soft systems is the development of stretchable electronics that remain functional even when subject to high strains. Liquid-metal traces embedded in elastic polymers present a unique opportunity to retain the function of rigid metal conductors while leveraging the deformable properties of liquid-elastomer composites. However, in order to achieve the potential benefits of liquid-metal, scalable processing and manufacturing methods must be identified.

  12. Inertial fusion research in China

    NASA Astrophysics Data System (ADS)

    He, X. T.; Zhang, W. Y.

    2007-08-01

    The goal of the first milestone of the inertial fusion program in China is to reach fusion ignition and plasma burning in about 2020. Under the program, in the past years, the inertial fusion physics research achieved great progress; the laser facilities and the support technologies for laser drivers are advanced; the advanced diagnostic techniques are developed and the relatively integrated system is set up; the precise target fabrications are coordinately developed.

  13. The magic of mid-face three-dimensional contour alterations combining alloplastic and soft tissue suspension technologies.

    PubMed

    Terino, Edward O; Edward, Michael

    2008-07-01

    Recent advances in the technology of implant designs and shapes, as well as improved understanding of the principles of facial aesthetics, give the plastic surgeon, for the first time, tools to precisely and permanently change faces in specific areas and with minimum morbidity. Cosmetic facial surgeons must learn and understand the zonal anatomy of the malar-midface region to be prepared for growing patient demands regarding analysis and alteration of facial cheek contours. This article describes and illustrates contemporary technology that uses alloplastic implants throughout the face. Three-dimensional changes in facial form and shape using alloplastic augmentation techniques are essential for creating aesthetic beauty and are the "final chapter" of the development of cosmetic facial surgery.

  14. The path to fusion power.

    PubMed

    Llewellyn Smith, Chris; Ward, David

    2007-04-15

    Fusion is potentially an environmentally responsible and intrinsically safe source of essentially limitless power. It should be possible to build viable fusion power stations, and it looks as if the cost of fusion power will be reasonable. But time is needed to further develop the technology and to test in power station conditions the materials that would be used in their construction. Assuming no major adverse surprises, an orderly fusion development programme could lead to a prototype fusion power station putting electricity into the grid within 30 years, with commercial fusion power following some 10 or more years later. In the second half of the century, fusion could therefore be an important part of the portfolio of measures that are needed to cope with rising demand for energy in an environmentally responsible manner. In this paper, we describe the basics of fusion, its potential attractions, the status of fusion R&D, the remaining challenges and how they will be tackled at the International Tokamak Experimental Reactor and the proposed International Fusion Materials Irradiation Facility, and the timetable for the subsequent commercialization of fusion power. PMID:17272246

  15. Recombinant enterokinase light chain with affinity tag: expression from Saccharomyces cerevisiae and its utilities in fusion protein technology.

    PubMed

    Choi, S I; Song, H W; Moon, J W; Seong, B L

    2001-12-20

    Enterokinase and recombinant enterokinase light chain (rEK(L)) have been used widely to cleave fusion proteins with the target sequence of (Asp)(4)-Lys. In this work, we show that their utility as a site-specific cleavage agent is compromised by sporadic cleavage at other sites, albeit at low levels. Further degradation of the fusion protein in cleavage reaction is due to an intrinsic broad specificity of the enzyme rather than to the presence of contaminating proteases. To offer facilitated purification from fermentation broth and efficient removal of rEK(L) after cleavage reaction, thus minimizing unwanted cleavage of target protein, histidine affinity tag was introduced into rEK(L). Utilizing the secretion enhancer peptide derived from the human interleukin 1 beta, the recombinant EK(L) was expressed in Saccharomyces cerevisiae and efficiently secreted into culture medium. The C-terminal His-tagged EK(L) was purified in a single-step procedure on nickel affinity chromatography. It retained full enzymatic activity similar to that of EK(L), whereas the N-terminal His-tagged EK(L) was neither efficiently purified nor had any enzymatic activity. After cleavage reaction of fusion protein, the C-terminal His-tagged EK(L) was efficiently removed from the reaction mixture by a single passage through nickel-NTA spin column. The simple affinity tag renders rEK(L) extremely useful for purification, post-cleavage removal, recovery, and recycling and will broaden the utility and the versatility of the enterokinase for the production of recombinant proteins. PMID:11745150

  16. Soft-sphere soft glasses

    NASA Astrophysics Data System (ADS)

    Heyes, D. M.; Clarke, S. M.; Brańka, A. C.

    2009-11-01

    Molecular dynamics simulations have been used to compute physical properties of model fluids in which the particles interacted via the soft-sphere pair potential (SSP) ϕ(r )=ɛ(σ /r)n, where ɛ and σ are the characteristic energy and distance, respectively. The emphasis is on small values of n, tending to the lower theromodynamically allowed bound of 3+. An accurate equation of state for the SSP fluid is obtained, consisting of two terms, and as n→3+, the compressibility factor, Z tends to Z =B2ζn /3 for ζ >0, where B2 is the second virial coefficient, and ζ =πNσ3/6V is a nominal packing fraction for N particles in volume V. A simple formula for the position of the first peak in the radial distribution function in the soft particle limit is proposed and shown to agree with the simulation data. The fluid phase velocity autocorrelation function at fluid-solid coexistence becomes more oscillatory as n decreases. Values for the self-diffusion coefficient D and shear viscosity η were calculated as a function of n and density, and these were used to estimate the n-dependence of an ideal glass transition. The glass transition shifts relatively further into the solid part of the phase diagram as softness (˜1/n) increases. D decreases by ca. 75% and η increases by about a factor of 3 along the fluid-solid coexistence line from n =∞ to 3.25. Non-Gaussian behavior was calculated from the particle displacements as a function of particle softness. A screened soft-sphere potential, SSSP, was introduced to explore the effects for small n of the long range part of the potential in relation to the scale of the local structure. The SSSP with suitable analytic form and parameters can give statistically indistinguishable results from the full SSP for the static properties, D and η.

  17. Fusion Implementation

    SciTech Connect

    J.A. Schmidt

    2002-02-20

    If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans.

  18. CRYOGENICS FOR FUSION

    SciTech Connect

    Dauguet, P.; Bonneton, M.; Fauve, E.; Bernhardt, J. M.; Beauvisage, J.; Andrieu, F.; Gistau-Baguer, G. M.; Boissin, J. C.

    2008-03-16

    Fusion of Hydrogen to produce energy is one of the technologies under study to meet the mankind raising need in energy and as a substitute to fossil fuels for the future. This technology is under investigation for more than 30 years already, with, for example, the former construction of the experimental reactors Tore Supra, DIII-D and JET. With the construction of ITER to start, the next step to 'fusion for energy' will be done. In these projects, an extensive use of cryogenic systems is requested. Air Liquide has been involved as cryogenic partner in most of former and presently constructed fusion reactors. In the present paper, a review of the cryogenic systems we delivered to Tore Supra, JET, IPR and KSTAR will be presented.

  19. The Innovations, Technology and Waste Management Approaches to Safely Package and Transport the World's First Radioactive Fusion Research Reactor for Burial

    SciTech Connect

    Keith Rule; Erik Perry; Jim Chrzanowski; Mike Viola; Ron Strykowsky

    2003-09-15

    Original estimates stated that the amount of radioactive waste that will be generated during the dismantling of the Tokamak Fusion Test Reactor will approach two million kilograms with an associated volume of 2,500 cubic meters. The materials were activated by 14 MeV neutrons and were highly contaminated with tritium, which present unique challenges to maintain integrity during packaging and transportation. In addition, the majority of this material is stainless steel and copper structural metal that were specifically designed and manufactured for this one-of-a-kind fusion research reactor. This provided further complexity in planning and managing the waste. We will discuss the engineering concepts, innovative practices, and technologies that were utilized to size reduce, stabilize, and package the many unique and complex components of this reactor. This waste was packaged and shipped in many different configurations and methods according to the transportation regulations and disposal facility requirements. For this particular project, we were able to utilize two separate disposal facilities for burial. This paper will conclude with a complete summary of the actual results of the waste management costs, volumes, and best practices that were developed from this groundbreaking and successful project.

  20. Fusion energy

    NASA Astrophysics Data System (ADS)

    1990-09-01

    The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the Max Planck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989 to 1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R and D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R and D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase.

  1. Fusion energy

    SciTech Connect

    Not Available

    1990-09-01

    The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the MaxPlanck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989--1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase.

  2. ITER Fusion Energy

    ScienceCinema

    Dr. Norbert Holtkamp

    2016-07-12

    ITER (in Latin “the way”) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen – deuterium and tritium – fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project – China, the European Union, India, Japan, Korea, Russia and the United States – represent more than half the world’s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  3. Image fusion

    NASA Technical Reports Server (NTRS)

    Pavel, M.

    1993-01-01

    The topics covered include the following: a system overview of the basic components of a system designed to improve the ability of a pilot to fly through low-visibility conditions such as fog; the role of visual sciences; fusion issues; sensor characterization; sources of information; image processing; and image fusion.

  4. Fire-protection research for energy technology: FY 80 year-end report. [For fusion energy experiments and other energy research

    SciTech Connect

    Hasegawa, H.K.; Alvares, N.J.; Lipska, A.E.; Ford, H.; Priante, S.; Beason, D.G.

    1981-05-26

    This continuing research program was initiated in 1977 in order to advance fire protection strategies for Fusion Energy Experiments (FEE). The program has since been expanded to encompass other forms of energy research. Accomplishments for fiscal year 1980 were: finalization of the fault-tree analysis of the Shiva fire management system; development of a second-generation, fire-growth analysis using an alternate moel and new LLNL combustion dynamics data; improvements of techniques for chemical smoke aerosol analysis; development and test of a simple method to assess the corrosive potential of smoke aerosols; development of an initial aerosol dilution system; completion of primary small-scale tests for measurements of the dynamics of cable fires; finalization of primary survey format for non-LLNL energy technology facilities; and studies of fire dynamics and aerosol production from electrical insulation and computer tape cassettes.

  5. Robotic radiosurgery vs. brachytherapy as a boost to intensity modulated radiotherapy for tonsillar fossa and soft palate tumors: the clinical and economic impact of an emerging technology.

    PubMed

    Nijdam, W; Levendag, P; Fuller, D; Schulz, R; Prevost, J-B; Noever, I; Uyl-de Groot, C

    2007-12-01

    As a basis for making decisions regarding optimal treatment for patients with tonsillar fossa and soft palate tumors, we conducted a preliminary investigation of costs and quality of life (QoL) for two modalities [brachytherapy (BT) and robotic radiosurgery] used to boost radiation to the primary tumors following external beam radiotherapy. BT was well established in our center; a boost by robotic radiosurgery was begun more recently in patients for whom BT was not technically feasible. Robotic radiosurgery boost treatment has the advantage of being non-invasive and is able to reach tumors in cases where there is deep parapharyngeal tumor extension. A neck dissection was performed for patients with nodal-positive disease. Quality of life (pain and difficulty swallowing) was established in long-term follow-up for patients undergoing BT and over a one-year follow-up in robotic radiosurgery patients. Total hospital costs for both groups were computed. Our results show that efficacy and quality of life at one year are comparable for BT and robotic radiosurgery. Total cost for robotic radiosurgery was found to be less than BT primarily due to the elimination of hospital admission and operating room expenses. Confirmation of robotic radiosurgery treatment efficacy and reduced morbidity in the long term requires further study. Quality of life and cost analyses are critical to Health Technology Assessments (HTA). The present study shows how a preliminary HTA of a new medical technology such as robotic radiosurgery with its typical hypofractionation characteristics might be based on short-term clinical outcomes and assumptions of equivalence.

  6. Adjacent Segment Pathology after Anterior Cervical Fusion.

    PubMed

    Chung, Jae Yoon; Park, Jong-Beom; Seo, Hyoung-Yeon; Kim, Sung Kyu

    2016-06-01

    Anterior cervical fusion has become a standard of care for numerous pathologic conditions of the cervical spine. However, subsequent development of clinically significant disc disease at levels adjacent to fused discs is a serious long-term complication of this procedure. As more patients live longer after surgery, it is foreseeable that adjacent segment pathology (ASP) will develop in increasing numbers of patients. Also, ASP has been studied more intensively with the recent popularity of motion preservation technologies like total disc arthroplasty. The true nature and scope of ASP remains poorly understood. The etiology of ASP is most likely multifactorial. Various factors including altered biomechanical stresses, surgical disruption of soft tissue and the natural history of cervical disc disease contribute to the development of ASP. General factors associated with disc degeneration including gender, age, smoking and sports may play a role in the development of ASP. Postoperative sagittal alignment and type of surgery are also considered potential causes of ASP. Therefore, a spine surgeon must be particularly careful to avoid unnecessary disruption of the musculoligamentous structures, reduced risk of direct injury to the disc during dissection and maintain a safe margin between the plate edge and adjacent vertebrae during anterior cervical fusion.

  7. Adjacent Segment Pathology after Anterior Cervical Fusion

    PubMed Central

    Chung, Jae Yoon; Park, Jong-Beom; Seo, Hyoung-Yeon

    2016-01-01

    Anterior cervical fusion has become a standard of care for numerous pathologic conditions of the cervical spine. However, subsequent development of clinically significant disc disease at levels adjacent to fused discs is a serious long-term complication of this procedure. As more patients live longer after surgery, it is foreseeable that adjacent segment pathology (ASP) will develop in increasing numbers of patients. Also, ASP has been studied more intensively with the recent popularity of motion preservation technologies like total disc arthroplasty. The true nature and scope of ASP remains poorly understood. The etiology of ASP is most likely multifactorial. Various factors including altered biomechanical stresses, surgical disruption of soft tissue and the natural history of cervical disc disease contribute to the development of ASP. General factors associated with disc degeneration including gender, age, smoking and sports may play a role in the development of ASP. Postoperative sagittal alignment and type of surgery are also considered potential causes of ASP. Therefore, a spine surgeon must be particularly careful to avoid unnecessary disruption of the musculoligamentous structures, reduced risk of direct injury to the disc during dissection and maintain a safe margin between the plate edge and adjacent vertebrae during anterior cervical fusion. PMID:27340541

  8. Gene fusions AHRR-NCOA2, NCOA2-ETV4, ETV4-AHRR, P4HA2-TBCK, and TBCK-P4HA2 resulting from the translocations t(5;8;17)(p15;q13;q21) and t(4;5)(q24;q31) in a soft tissue angiofibroma

    PubMed Central

    Panagopoulos, Ioannis; Gorunova, Ludmila; Viset, Trond; Heim, Sverre

    2016-01-01

    We present an angiofibroma of soft tissue with the karyotype 46,XY,t(4;5)(q24;q31),t(5;8;17)(p15;q13;q21) [8]/46,XY,t(1;14)(p31;q32)[2]/46,XY[3]. RNA-sequencing showed that the t(4;5)(q24;q31) resulted in recombination of the genes TBCK on 4q24 and P4HA2 on 5q31.1 with generation of an in-frame TBCK-P4HA2 and the reciprocal but out-of-frame P4HA2-TBCK fusion transcripts. The putative TBCK-P4HA2 protein would contain the kinase, the rhodanese-like domain, and the Tre-2/Bub2/Cdc16 (TBC) domains of TBCK together with the P4HA2 protein which is a component of the prolyl 4-hydroxylase. The t(5;8;17)(p15;q13;q21) three-way chromosomal translocation targeted AHRR (on 5p15), NCOA2 (on 8q13), and ETV4 (on 17q21) generating the in-frame fusions AHRR-NCOA2 and NCOA2-ETV4 as well as an out-of-frame ETV4-AHRR transcript. In the AHRR-NCOA2 protein, the C-terminal part of AHRR is replaced by the C-terminal part of NCOA2 which contains two activation domains. The NCOA2-ETV4 protein would contain the helix-loop-helix, PAS_9 and PAS_11, CITED domains, the SRC-1 domain of NCOA2 and the ETS DNA-binding domain of ETV4. No fusion gene corresponding to t(1;14)(p31;q32) was found. Our findings indicate that, in spite of the recurrence of AHRR-NCOA2 in angiofibroma of soft tissue, additional genetic events (or fusion genes) might be required for the development of this tumor. PMID:27633981

  9. Digital three-dimensional image fusion processes for planning and evaluating orthodontics and orthognathic surgery. A systematic review.

    PubMed

    Plooij, Joanneke M; Maal, Thomas J J; Haers, Piet; Borstlap, Wilfred A; Kuijpers-Jagtman, Anne Marie; Bergé, Stefaan J

    2011-04-01

    The three important tissue groups in orthognathic surgery (facial soft tissues, facial skeleton and dentition) can be referred to as a triad. This triad plays a decisive role in planning orthognathic surgery. Technological developments have led to the development of different three-dimensional (3D) technologies such as multiplanar CT and MRI scanning, 3D photography modalities and surface scanning. An objective method to predict surgical and orthodontic outcome should be established based on the integration of structural (soft tissue envelope, facial skeleton and dentition) and photographic 3D images. None of the craniofacial imaging techniques can capture the complete triad with optimal quality. This can only be achieved by 'image fusion' of different imaging techniques to create a 3D virtual head that can display all triad elements. A systematic search of current literature on image fusion in the craniofacial area was performed. 15 articles were found describing 3D digital image fusion models of two or more different imaging techniques for orthodontics and orthognathic surgery. From these articles it is concluded, that image fusion and especially the 3D virtual head are accurate and realistic tools for documentation, analysis, treatment planning and long term follow up. This may provide an accurate and realistic prediction model.

  10. Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development.

    PubMed

    Thapa, Rajesh; Gattass, Rafael R; Nguyen, Vinh; Chin, Geoff; Gibson, Dan; Kim, Woohong; Shaw, L Brandon; Sanghera, Jasbinder S

    2015-11-01

    We demonstrate a low-loss, repeatable, and robust splice between single-mode silica fiber and single-mode chalcogenide (CHG) fiber. These splices are particularly difficult to create because of the significant difference in the two fibers' glass transition temperatures (∼1000°C) as well as the large difference in the coefficients of thermal expansion between the fibers (∼20×10(-6)/°C). With 90% light coupled through the silica-CHG fiber splice, predominantly in the fundamental circular-symmetric mode, into the core of the CHG fiber and with 0.5 dB of splice loss measured around the wavelength of 2.5 μm, after correcting only for the Fresnel loss, the silica-CHG splice offers excellent beam quality and coupling efficiency. The tensile strength of the splice is greater than 12 kpsi, and the laser damage threshold is greater than 2 W (CW) and was limited by the available laser pump power. We also utilized this splicing technique to demonstrate 2 to 4.5 μm ultrabroadband supercontinuum generation in a monolithic all-fiber system comprising a CHG fiber and a high peak power 2 μm pulsed Raman-shifted thulium fiber laser. This is a major development toward compact form factor commercial applications of soft-glass mid-IR fibers. PMID:26512522

  11. Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development.

    PubMed

    Thapa, Rajesh; Gattass, Rafael R; Nguyen, Vinh; Chin, Geoff; Gibson, Dan; Kim, Woohong; Shaw, L Brandon; Sanghera, Jasbinder S

    2015-11-01

    We demonstrate a low-loss, repeatable, and robust splice between single-mode silica fiber and single-mode chalcogenide (CHG) fiber. These splices are particularly difficult to create because of the significant difference in the two fibers' glass transition temperatures (∼1000°C) as well as the large difference in the coefficients of thermal expansion between the fibers (∼20×10(-6)/°C). With 90% light coupled through the silica-CHG fiber splice, predominantly in the fundamental circular-symmetric mode, into the core of the CHG fiber and with 0.5 dB of splice loss measured around the wavelength of 2.5 μm, after correcting only for the Fresnel loss, the silica-CHG splice offers excellent beam quality and coupling efficiency. The tensile strength of the splice is greater than 12 kpsi, and the laser damage threshold is greater than 2 W (CW) and was limited by the available laser pump power. We also utilized this splicing technique to demonstrate 2 to 4.5 μm ultrabroadband supercontinuum generation in a monolithic all-fiber system comprising a CHG fiber and a high peak power 2 μm pulsed Raman-shifted thulium fiber laser. This is a major development toward compact form factor commercial applications of soft-glass mid-IR fibers.

  12. Soft Interfaces

    NASA Astrophysics Data System (ADS)

    Gilles de Gennes, Pierre; Edwards, Introduction By Sam

    1997-04-01

    Paul Adrien Maurice Dirac, one of the greatest physicists of the twentieth century, died in 1984. Dirac's college, St. John's of Cambridge, generously endowed annual lectures to be held at Cambridge University in his memory. This volume contains a much expanded version of the 1994 Dirac Lecture by Nobel Laureate Pierre Gilles de Gennes. The book presents an impressionistic tour of the physics of soft interfaces. Full of insight and interesting asides, it not only provides an accessible introduction to this topic, but also lays down many markers and signposts that will be of interest to researchers in physics or chemistry. Features discussions of wetting and dewetting, the dynamics of different types of interface and adhesion and polymer/polymer welding.

  13. Fusion Power.

    ERIC Educational Resources Information Center

    Dingee, David A.

    1979-01-01

    Discusses the extraordinary potential, the technical difficulties, and the financial problems that are associated with research and development of fusion power plants as a major source of energy. (GA)

  14. Soft nanotechnology: "structure" vs. "function".

    PubMed

    Whitesides, George M; Lipomi, Darren J

    2009-01-01

    This paper offers a perspective on "soft nanotechnology"; that is, the branch of nanotechnology concerned with the synthesis and properties of organic and organometallic nanostructures, and with nanofabrication using techniques in which soft components play key roles. It begins with a brief history of soft nanotechnology. This history has followed a path involving a gradual shift from the promise of revolutionary electronics, nanorobotics, and other futuristic concepts, to the realization of evolutionary improvements in the technology for current challenges in information technology, medicine, and sustainability. Soft nanoscience is an area that is occupied principally by chemists, and is in many ways indistinguishable from "nanochemistry". The paper identifies the natural tendency of its practitioners--exemplified by the speakers at this Faraday Discussion--to focus on synthesis and structure, rather than on function and application, of nanostructures. Soft nanotechnology has the potential to apply to a wide variety of large-scale applied (information technology, healthcare cost reduction, sustainability, energy) and fundamental (molecular biochemistry, cell biology, charge transport in organic matter) problems. PMID:20334113

  15. Soft nanotechnology: "structure" vs. "function".

    PubMed

    Whitesides, George M; Lipomi, Darren J

    2009-01-01

    This paper offers a perspective on "soft nanotechnology"; that is, the branch of nanotechnology concerned with the synthesis and properties of organic and organometallic nanostructures, and with nanofabrication using techniques in which soft components play key roles. It begins with a brief history of soft nanotechnology. This history has followed a path involving a gradual shift from the promise of revolutionary electronics, nanorobotics, and other futuristic concepts, to the realization of evolutionary improvements in the technology for current challenges in information technology, medicine, and sustainability. Soft nanoscience is an area that is occupied principally by chemists, and is in many ways indistinguishable from "nanochemistry". The paper identifies the natural tendency of its practitioners--exemplified by the speakers at this Faraday Discussion--to focus on synthesis and structure, rather than on function and application, of nanostructures. Soft nanotechnology has the potential to apply to a wide variety of large-scale applied (information technology, healthcare cost reduction, sustainability, energy) and fundamental (molecular biochemistry, cell biology, charge transport in organic matter) problems.

  16. Production of aggregation prone human interferon gamma and its mutant in highly soluble and biologically active form by SUMO fusion technology.

    PubMed

    Tileva, M; Krachmarova, E; Ivanov, I; Maskos, K; Nacheva, G

    2016-01-01

    The Escherichia coli expression system is a preferable choice for production of recombinant proteins. A disadvantage of this system is the target protein aggregation in "inclusion bodies" (IBs) that further requires solubilisation and refolding, which is crucial for the properties and the yield of the final product. In order to prevent aggregation, SUMO fusion tag technology has been successfully applied for expression of eukaryotic proteins, including human interferon gamma (hIFNγ) that was reported, however, with no satisfactory biological activity. We modified this methodology for expression and purification of both the wild type hIFNγ and an extremely prone to aggregation mutant hIFNγ-K88Q, whose recovery from IBs showed to be ineffective upon numerous conditions. By expression of the N-terminal His-SUMO fusion proteins in the E. coli strain BL21(DE3)pG-KJE8, co-expressing two chaperone systems, at 24 °C a significant increase in solubility of both target proteins (1.5-fold for hIFNγ and 8-fold for K88Q) was achieved. Two-step chromatography (affinity and ion-exchange) with on-dialysis His-SUMO-tag cleavage was applied for protein purification that yielded 6.0-7.0mg/g wet biomass for both proteins with >95% purity and native N-termini. The optimised protocol led to increased yields from 5.5 times for hIFNγ up to 100 times for K88Q in comparison to their isolation from IBs. Purified hIFNγ showed preserved thermal stability and antiproliferative activity corresponding to that of the native reference sample (3 × 10(7)IU/mg). The developed methodology represents an optimised procedure that can be successfully applied for large scale expression and purification of aggregation-prone proteins in soluble native form.

  17. Fusion energy workshop. Joint hearing before the Subcommittee on Energy Research and Production of the Committee on Science and Technology, US House of Representatives and the Subcommittee on Energy Research and Development of the Committee on Energy and Natural Resources, United States Senate, Ninety-Seventh Congress, Second Session, September 8, 1982

    SciTech Connect

    Not Available

    1983-01-01

    Representatives of fusion energy research laboratories, including spokesmen from Japan and Europe, and DOE spoke at a workshop on the status of fusion energy programs and their funding needs. John Clarke of DOE's Office of Fusion Energy gave an overview of the programs and efforts to comply with the administration's requirement that federal research funding be supplied only for long-term, high-risk research that has a high commercial potential. Fusion projects will be geared toward identifying feasible technologies. Arguments for proceeding with parallel engineering technology development were presented by Frank Graham of the Atomic Industrial Forum. (DCK)

  18. Intense fusion neutron sources

    NASA Astrophysics Data System (ADS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  19. Necrotizing soft tissue infection

    MedlinePlus

    Necrotizing fasciitis; Fasciitis - necrotizing; Flesh-eating bacteria; Soft tissue gangrene; Gangrene - soft tissue ... Many different types of bacteria can cause this infection. A very severe and usually deadly form of necrotizing soft tissue infection is due to the ...

  20. Inertial confinement fusion target component fabrication and technology development support: Annual report, October 1, 1997--September 30, 1998

    SciTech Connect

    Gibson, J.

    1998-12-01

    During this period, General Atomics (GA) and their partner Schafer Corporation were assigned 17 formal tasks in support of the Inertial Confinement Fusion (ICF) program and its five laboratories. A portion of the effort on these tasks included providing direct ``On-site Support`` at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). They fabricated and delivered over 1,200 hohlraum mandrels and numerous other micromachined components to LLNL, LANL, and SNLA. They produced more than 1,300 glass and plastic target capsules for LLNL, LANL, SNLA, and the University of Rochester/Laboratory for Laser Energetics (UR/LLE). They also delivered nearly 2,000 various target foils and films for Naval Research Lab (NRL) and UR/LLE in FY98. This report describes these target fabrication activities and the target fabrication and characterization development activities that made the deliveries possible. During FY98, great progress was made by the GA/Schafer-UR/LLE-LANL team in the design, procurement, installation, and testing of the OMEGA Cryogenic Target System (OCTS) that will field cryogenic targets on OMEGA. The design phase was concluded for all components of the OCTS and all major components were procured and nearly all were fabricated. Many of the components were assembled and tested, and some have been shipped to UR/LLE. The ICF program is anticipating experiments at the OMEGA laser and the National Ignition Facility (NIF) which will require targets containing cryogenic layered D{sub 2} or deuterium-tritium (DT) fuel. They are part of the National Cryogenic Target Program and support experiments at LLNL and LANL to generate and characterize cryogenic layers for these targets. They also contributed cryogenic support and developed concepts for NIF cryogenic targets. This report summarizes and documents the technical progress made on these tasks.

  1. Fusion, magnetic confinement

    SciTech Connect

    Berk, H.L.

    1992-08-06

    An overview is presented of the principles of magnetic confinement of plasmas for the purpose of achieving controlled fusion conditions. Sec. 1 discusses the different nuclear fusion reactions which can be exploited in prospective fusion reactors and explains why special technologies need to be developed for the supply of tritium or {sup 3}He, the probable fuels. In Sec. 2 the Lawson condition, a criterion that is a measure of the quality of confinement relative to achieving fusion conditions, is explained. In Sec. 3 fluid equations are used to describe plasma confinement. Specific confinement configurations are considered. In Sec. 4 the orbits of particle sin magneti and electric fields are discussed. In Sec. 5 stability considerations are discussed. It is noted that confinement systems usually need to satisfy stability constraints imposed by ideal magnetohydrodynamic (MHD) theory. The paper culminates with a summary of experimental progress in magnetic confinement. Present experiments in tokamaks have reached the point that the conditions necessary to achieve fusion are being satisfied.

  2. Design and Implementation of Technology Enabled Affective Learning Using Fusion of Bio-Physical and Facial Expression

    ERIC Educational Resources Information Center

    Ray, Arindam; Chakrabarti, Amlan

    2016-01-01

    Technology Enabled Learning is a cognitive, constructive, systematic, collaborative learning procedure, which transforms teaching-learning pedagogy where role of emotion is very often neglected. Emotion plays significant role in the cognitive process of human being, so the transformation is incomplete without capturing the learner's emotional…

  3. The Research on The Fusion Technology of Wireless LANs and Personal Area Networks for Emergency Secure in Coal Mine

    NASA Astrophysics Data System (ADS)

    Chiyuan, Li

    The author has provided craft brother with predictive wireless communication modality and imaginative solutions, and discussed the applied mode of amalgamation technology of wireless LANs and personal area networks for emergency secure in coal mine. The fire protection jobs of emergency secure will become more scientific, more efficient and more flexible in this circumstance. The study can supply bailout team with the situation of a disaster and the location of miner, enhance the efficiency of emergency secure in coal mine.

  4. Security on the US Fusion Grid

    SciTech Connect

    Burruss, Justin R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  5. Data security on the national fusion grid

    SciTech Connect

    Burruss, Justine R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  6. Outlook: Scientific obstacles. [Scientific obstacles to commercial nuclear fusion

    SciTech Connect

    Not Available

    1993-01-22

    There is no question that fusion technology has come a long way. And yet commercial fusion energy seems as distant as ever. Numerous questions remain unanswered: Is magnetic fusion more promising than inertial fusion Which physical concept for a reactor is the best one Will the fully developed technology be economically competitive with other sources of energy Will fusion be as clean as promised And most fundamentally, can scientists make it work at all This article summarizes some of technological issues and hurdles facing fusion programs. Also, potential considerations are examined.

  7. West European magnetic confinement fusion research

    SciTech Connect

    McKenney, B.L.; McGrain, M. . Foreign Applied Sciences Assessment Center); Hazeltine, R.D. . Inst. for Fusion Studies); Gentle, K.W. ); Hogan, J.T. ); Porkolab, M. . Dept. of Physics); Sigmar

    1990-01-01

    This report presents a technical assessment and review of the West European program in magnetic confinement fusion by a panel of US scientists and engineers active in fusion research. Findings are based on the scientific and technical literature, on laboratory reports and preprints, and on the personal experiences and collaborations of the panel members. Concerned primarily with developments during the past 10 years, from 1979 to 1989, the report assesses West European fusion research in seven technical areas: tokamak experiments; magnetic confinement technology and engineering; fusion nuclear technology; alternate concepts; theory; fusion computations; and program organization. The main conclusion emerging from the analysis is that West European fusion research has attained a position of leadership in the international fusion program. This distinction reflects in large measure the remarkable achievements of the Joint European Torus (JET). However, West European fusion prominence extends beyond tokamak experimental physics: the program has demonstrated a breadth of skill in fusion science and technology that is not excelled in the international effort. It is expected that the West European primacy in central areas of confinement physics will be maintained or even increased during the early 1990s. The program's maturity and commitment kindle expectations of dramatic West European advances toward the fusion energy goal. For example, achievement of fusion breakeven is expected first in JET, before 1995.

  8. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    somewhat different from those for terrestrial electrical power generation. Thus fusion schemes that are initially attractive for electrical power generation might not necessarily be attractive also for propulsion and vice versa, though the underlying fusion science and engineering enjoy much overlap. Parallel efforts to develop these qualitatively differently fusion schemes for the two applications could benefit greatly from each other due to the synergy in the underlying physics and engineering. Pulsed approaches to fusion have not been explored to the same degree as steady-state or long-pulse approaches to fusion in the fusion power research program. The concerns early on were several. One was that the pulsed power components might not have the service lifetimes meeting the requirements of a practical power generating plant. Another was that, for many pulsed fusion schemes, it was not clear whether the destruction of hardware per pulse could be minimized or eliminated or recycled to such an extent as to make economical electrical power generation feasible, Significant development of the underlying pulsed power component technologies have occurred in the last two decades because of defense and other energy requirements. The state of development of the pulsed power technologies are sufficiently advanced now to make it compelling to visit or re-visit pulsed fusion approaches for application to propulsion where the cost of energy is not so demanding a factor as in the case of terrestrial power application. For propulsion application, the overall mass of the fusion system is the critical factor. Producing fusion reactions require extreme states of matter. Conceptually, these extreme states of matter are more readily realizable in the pulsed states, at least within appropriate bounds, than in the steady states. Significant saving in system mass may result in such systems. Magnetic fields are effective in confining plasma energy, whereas inertial compression is an effective way

  9. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schmidt, George R.; Santarius, John F.; Turchi, Peter J.; Siemon, Richard E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The need for fusion propulsion for interplanetary flights is discussed. For a propulsion system, there are three important system attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For efficient and affordable human exploration of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion obviously cannot meet the requirement in propellant exhaust velocity. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the fission energy to heat a low atomic weight propellant produces propellant velocity of the order of 10 kinds. Alternatively the fission energy can be converted into electricity that is used to accelerate particles to high exhaust velocity. However, the necessary power conversion and conditioning equipment greatly increases the mass of the propulsion system. Fundamental considerations in waste heat rejection and power conditioning in a fission electric propulsion system place a limit on its jet specific power to the order of about 0.2 kW/kg. If fusion can be developed for propulsion, it appears to have the best of all worlds - it can provide the largest absolute amount of energy, the propellant exhaust velocity (> 100 km/s), and the high specific jet power (> 10 kW/kg). An intermediate step towards fusion propulsion might be a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. There are similarities as well as differences between applying fusion to propulsion and to terrestrial electrical power generation. The similarities are the underlying plasma and fusion physics, the enabling component technologies, the computational and the diagnostics capabilities. These physics and

  10. Laser fusion

    SciTech Connect

    Smit, W.A.; Boskma, P.

    1980-12-01

    Unrestricted laser fusion offers nations an opportunity to circumvent arms control agreements and develop thermonuclear weapons. Early laser weapons research sought a clean radiation-free bomb to replace the fission bomb, but this was deceptive because a fission bomb was needed to trigger the fusion reaction and additional radioactivity was induced by generating fast neutrons. As laser-implosion experiments focused on weapons physics, simulating weapons effects, and applications for new weapons, the military interest shifted from developing a laser-ignited hydrogen bomb to more sophisticated weapons and civilian applications for power generation. Civilian and military research now overlap, making it possible for several countries to continue weapons activities and permitting proliferation of nuclear weapons. These countries are reluctant to include inertial confinement fusion research in the Non-Proliferation Treaty. 16 references. (DCK)

  11. The fusion of gerontology and technology in nursing education: History and demonstration of the Gerontological Informatics Reasoning Project--GRIP.

    PubMed

    Dreher, H Michael; Cornelius, Fran; Draper, Judy; Pitkar, Harshad; Manco, Janet; Song, Il-Yeol

    2006-01-01

    Phase I of our Gerontological Reasoning Informatics Project (GRIP) began in the summer of 2002 when all 37 senior undergraduate nursing students in our accelerated BSN nursing program were given PDAs. These students were oriented to use a digitalized geriatric nursing assessment tool embedded into their PDA in a variety of geriatric clinical agencies. This informatics project was developed to make geriatric nursing more technology oriented and focused on seven modules of geriatric assessment: intellect (I), nutrition (N), self-concept (S), physical activity (P), interpersonal functioning (I), restful sleep (R), and elimination (E)--INSPIRE. Through phase II and now phase III, the GRIP Project has become a major collaboration between the College of Nursing & Health Professions and College of Information Science and Technology at Drexel University. The digitalized geriatric nursing health assessment tool has undergone a second round of reliability and validity testing and is now used to conduct a 20 minute comprehensive geriatric health assessment on the PDA, making our undergraduate gerontology course the most high tech clinical course in our nursing curriculum.

  12. An introduction to multisensor data fusion

    SciTech Connect

    Hall, D.L.; Llinas, J.

    1997-01-01

    Multisensor data fusion is an emerging technology applied to Department of Defense (DoD) areas such as automated target recognition, battlefield surveillance, and guidance and control of autonomous vehicles, and to non-DoD applications such as monitoring of complex machinery, medical diagnosis, and smart buildings. Techniques for multisensor data fusion are drawn from a wide range of areas including artificial intelligence, pattern recognition, statistical estimation, and other areas. This paper provides a tutorial on data fusion, introducing data fusion applications, process models, and identification of applicable techniques. Comments are made on the state-of-the-art in data fusion.

  13. Fusion Data Grid Service

    NASA Astrophysics Data System (ADS)

    Shasharina, Svetlana; Wang, Nanbor

    2004-11-01

    Simulations and experiments in the fusion and plasma physics community generate large datasets at remote sites. Visualization and analysis of these datasets are difficult because of the incompatibility among the various data formats adopted by simulation, experiments, and analysis tools, and the large sizes of analyzed data. Grids and Web Services technologies are capable of providing solutions for such heterogeneous settings, but need to be customized to the field-specific needs and merged with distributed technologies currently used by the community. This paper describes how we are addressing these issues in the Fusion Grid Service under development. We also present performance results of relevant data transfer mechanisms including binary SOAP, DIME, GridFTP and MDSplus and CORBA. We will describe the status of data converters (between HDF5 and MDSplus data types), developed in collaboration with MIT (J. Stillerman). Finally, we will analyze bottlenecks of MDSplus data transfer mechanism (work performed in collaboration with General Atomics (D. Schissel and M. Qian).

  14. Multi-sensor fusion development

    NASA Astrophysics Data System (ADS)

    Bish, Sheldon; Rohrer, Matthew; Scheffel, Peter; Bennett, Kelly

    2016-05-01

    The U.S. Army Research Laboratory (ARL) and McQ Inc. are developing a generic sensor fusion architecture that involves several diverse processes working in combination to create a dynamic task-oriented, real-time informational capability. Processes include sensor data collection, persistent and observational data storage, and multimodal and multisensor fusion that includes the flexibility to modify the fusion program rules for each mission. Such a fusion engine lends itself to a diverse set of sensing applications and architectures while using open-source software technologies. In this paper, we describe a fusion engine architecture that combines multimodal and multi-sensor fusion within an Open Standard for Unattended Sensors (OSUS) framework. The modular, plug-and-play architecture of OSUS allows future fusion plugin methodologies to have seamless integration into the fusion architecture at the conceptual and implementation level. Although beyond the scope of this paper, this architecture allows for data and information manipulation and filtering for an array of applications.

  15. (Fusion energy research)

    SciTech Connect

    Phillips, C.A.

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

  16. Fusion of current technologies with real-time 3D MEMS ladar for novel security and defense applications

    NASA Astrophysics Data System (ADS)

    Siepmann, James P.

    2006-05-01

    Through the utilization of scanning MEMS mirrors in ladar devices, a whole new range of potential military, Homeland Security, law enforcement, and civilian applications is now possible. Currently, ladar devices are typically large (>15,000 cc), heavy (>15 kg), and expensive (>$100,000) while current MEMS ladar designs are more than a magnitude less, opening up a myriad of potential new applications. One such application with current technology is a GPS integrated MEMS ladar unit, which could be used for real-time border monitoring or the creation of virtual 3D battlefields after being dropped or propelled into hostile territory. Another current technology that can be integrated into a MEMS ladar unit is digital video that can give high resolution and true color to a picture that is then enhanced with range information in a real-time display format that is easier for the user to understand and assimilate than typical gray-scale or false color images. The problem with using 2-axis MEMS mirrors in ladar devices is that in order to have a resonance frequency capable of practical real-time scanning, they must either be quite small and/or have a low maximum tilt angle. Typically, this value has been less than (< or = to 10 mg-mm2-kHz2)-degrees. We have been able to solve this problem by using angle amplification techniques that utilize a series of MEMS mirrors and/or a specialized set of optics to achieve a broad field of view. These techniques and some of their novel applications mentioned will be explained and discussed herein.

  17. Soft x-ray lasers

    SciTech Connect

    Matthews, D.L.; Rosen, M.D.

    1988-12-01

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widely known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs.

  18. Editorially Speaking - Fusion Power: Reasons for Higher Priority

    ERIC Educational Resources Information Center

    Lippincott, William T.

    1973-01-01

    Discusses current research trends in the use of laser-fusion technology in combustion chambers to eradicate energy shortages. Indicates that fusion power could be made available at a relatively low expense. (CC)

  19. Information integration for data fusion

    SciTech Connect

    Bray, O.H.

    1997-01-01

    Data fusion has been identified by the Department of Defense as a critical technology for the U.S. defense industry. Data fusion requires combining expertise in two areas - sensors and information integration. Although data fusion is a rapidly growing area, there is little synergy and use of common, reusable, and/or tailorable objects and models, especially across different disciplines. The Laboratory-Directed Research and Development project had two purposes: to see if a natural language-based information modeling methodology could be used for data fusion problems, and if so, to determine whether this methodology would help identify commonalities across areas and achieve greater synergy. The project confirmed both of the initial hypotheses: that the natural language-based information modeling methodology could be used effectively in data fusion areas and that commonalities could be found that would allow synergy across various data fusion areas. The project found five common objects that are the basis for all of the data fusion areas examined: targets, behaviors, environments, signatures, and sensors. Many of the objects and the specific facts related to these objects were common across several areas and could easily be reused. In some cases, even the terminology remained the same. In other cases, different areas had their own terminology, but the concepts were the same. This commonality is important with the growing use of multisensor data fusion. Data fusion is much more difficult if each type of sensor uses its own objects and models rather than building on a common set. This report introduces data fusion, discusses how the synergy generated by this LDRD would have benefited an earlier successful project and contains a summary information model from that project, describes a preliminary management information model, and explains how information integration can facilitate cross-treaty synergy for various arms control treaties.

  20. Cold fusion, Alchemist's dream

    SciTech Connect

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  1. Immediate postextraction implant placement using plasma rich in growth factors technology in maxillary premolar region: a new strategy for soft tissue management.

    PubMed

    Rosano, Gabriele; Taschieri, Silvio; Del Fabbro, Massimo

    2013-02-01

    Achieving an excellent aesthetic outcome in postextraction dental implant placement in the anterior maxilla is a challenging procedure for clinicians. In fact, there is an increased risk for soft tissue recession at the facial aspect which may require supplementary connective tissue grafts to accomplish the final aesthetic result. The aim of this case report is to describe a regenerative technique using autologous plasma rich in growth factors fibrin plug for preservation of soft tissue architecture around an implant immediately placed into an extraction site in the anterior maxilla. Such a procedure allowed for guided bone regeneration without the need for vertical releasing incisions and primary healing, thus showing a pleasant gingival contour at the facial aspect after a single stage surgery. Integrating this technique into common practice could provide important benefits for the patients regarding aesthetics, without any risk of infection or transmission of diseases.

  2. Soft X-ray optics and technology; Proceedings of the Meeting, Berlin, Federal Republic of Germany, Dec. 8-11, 1986

    SciTech Connect

    Koch, E.E.; Schmahl, G.

    1987-01-01

    Recent advances in the design, construction, and application of soft X-ray (SX) sources and optics are discussed in reviews and reports. Topics addressed include VUV and SX sources, high-brightness synchrotron radiation sources, SX mirrors, instruments for X-ray astronomy satellites, and SX instrumentation for synchrotron sources. Consideration is given to VUV and SX optics, multilayers, SX scanning microscopy, microfabrication and zone plates, and SX radiometry and detectors. Diagrams, drawings, graphs, spectra, and sample images are provided.

  3. Prospects for Tokamak Fusion Reactors

    SciTech Connect

    Sheffield, J.; Galambos, J.

    1995-04-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant.

  4. Pulsed Power Driven Fusion Energy

    SciTech Connect

    SLUTZ,STEPHEN A.

    1999-11-22

    Pulsed power is a robust and inexpensive technology for obtaining high powers. Considerable progress has been made on developing light ion beams as a means of transporting this power to inertial fusion capsules. However, further progress is hampered by the lack of an adequate ion source. Alternatively, z-pinches can efficiently convert pulsed power into thermal radiation, which can be used to drive an inertial fusion capsule. However, a z-pinch driven fusion explosion will destroy a portion of the transmission line that delivers the electrical power to the z-pinch. They investigate several options for providing standoff for z-pinch driven fusion. Recyclable Transmission Lines (RTLs) appear to be the most promising approach.

  5. Overview of fusion reactor safety

    NASA Astrophysics Data System (ADS)

    Cohen, S.; Crocker, J. G.

    Use of deuterium-tritium fusion reactors requires examination of several major safety and environmental issues: (1) tritium inventory control; (2) neutron activation of structural materials, fluid streams and reactor hall environment; (3) release of radioactivity from energy sources including lithium spill reactions, superconducting magnet stored energy release, and plasma disruptions; (4) high magnetic and electromagnetic fields associated with fusion reactor superconducting magnets and radio frequency heating devices; and (5) handling and disposal of radioactive waste. Early recognition of potential safety problems with fusion reactors provides the opportunity for improvement in design and materials to eliminate or greatly reduce these problems. With an early start in this endeavor, fusion should be among the lower risk technologies for generation of commercial electrical power.

  6. Extreme Mechanics in Soft Pneumatic Robots and Soft Microfluidic Electronics and Sensors

    NASA Astrophysics Data System (ADS)

    Majidi, Carmel

    2012-02-01

    In the near future, machines and robots will be completely soft, stretchable, impact resistance, and capable of adapting their shape and functionality to changes in mission and environment. Similar to biological tissue and soft-body organisms, these next-generation technologies will contain no rigid parts and instead be composed entirely of soft elastomers, gels, fluids, and other non-rigid matter. Using a combination of rapid prototyping tools, microfabrication methods, and emerging techniques in so-called ``soft lithography,'' scientists and engineers are currently introducing exciting new families of soft pneumatic robots, soft microfluidic sensors, and hyperelastic electronics that can be stretched to as much as 10x their natural length. Progress has been guided by an interdisciplinary collection of insights from chemistry, life sciences, robotics, microelectronics, and solid mechanics. In virtually every technology and application domain, mechanics and elasticity have a central role in governing functionality and design. Moreover, in contrast to conventional machines and electronics, soft pneumatic systems and microfluidics typically operate in the finite deformation regime, with materials stretching to several times their natural length. In this talk, I will review emerging paradigms in soft pneumatic robotics and soft microfluidic electronics and highlight modeling and design challenges that arise from the extreme mechanics of inflation, locomotion, sensor operation, and human interaction. I will also discuss perceived challenges and opportunities in a broad range of potential application, from medicine to wearable computing.

  7. Study on fission blanket fuel cycling of a fusion-fission hybrid energy generation system

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Yang, Y.; Xu, H.

    2011-10-01

    This paper presents a preliminary study on neutron physics characteristics of a light water cooled fission blanket for a new type subcritical fusion-fission hybrid reactor aiming at electric power generation with low technical limits of fission fuel. The major objective is to study the fission fuel cycling performance in the blanket, which may possess significant impacts on the feasibility of the new concept of fusion-fission hybrid reactor with a high energy gain (M) and tritium breeding ratio (TBR). The COUPLE2 code developed by the Institute of Nuclear and New Energy Technology of Tsinghua University is employed to simulate the neutronic behaviour in the blanket. COUPLE2 combines the particle transport code MCNPX with the fuel depletion code ORIGEN2. The code calculation results show that soft neutron spectrum can yield M > 20 while maintaining TBR >1.15 and the conversion ratio of fissile materials CR > 1 in a reasonably long refuelling cycle (>five years). The preliminary results also indicate that it is rather promising to design a high-performance light water cooled fission blanket of fusion-fission hybrid reactor for electric power generation by directly loading natural or depleted uranium if an ITER-scale tokamak fusion neutron source is achievable.

  8. Developing a multimodal biometric authentication system using soft computing methods.

    PubMed

    Malcangi, Mario

    2015-01-01

    Robust personal authentication is becoming ever more important in computer-based applications. Among a variety of methods, biometric offers several advantages, mainly in embedded system applications. Hard and soft multi-biometric, combined with hard and soft computing methods, can be applied to improve the personal authentication process and to generalize the applicability. This chapter describes the embedded implementation of a multi-biometric (voiceprint and fingerprint) multimodal identification system based on hard computing methods (DSP) for feature extraction and matching, an artificial neural network (ANN) for soft feature pattern matching, and a fuzzy logic engine (FLE) for data fusion and decision.

  9. Developing a multimodal biometric authentication system using soft computing methods.

    PubMed

    Malcangi, Mario

    2015-01-01

    Robust personal authentication is becoming ever more important in computer-based applications. Among a variety of methods, biometric offers several advantages, mainly in embedded system applications. Hard and soft multi-biometric, combined with hard and soft computing methods, can be applied to improve the personal authentication process and to generalize the applicability. This chapter describes the embedded implementation of a multi-biometric (voiceprint and fingerprint) multimodal identification system based on hard computing methods (DSP) for feature extraction and matching, an artificial neural network (ANN) for soft feature pattern matching, and a fuzzy logic engine (FLE) for data fusion and decision. PMID:25502384

  10. Controlled Nuclear Fusion: Status and Outlook

    ERIC Educational Resources Information Center

    Rose, David J.

    1971-01-01

    Presents the history, current concerns and potential developments of nuclear fusion as a major energy source. Controlled fusion research is summarized, technological feasibility is discussed and environmental factors are examined. Relationships of alternative energy sources as well as energy utilization are considered. (JM)

  11. Injectable tissue-engineered soft tissue for tissue augmentation.

    PubMed

    Rhee, Sung-Mi; You, Hi-Jin; Han, Seung-Kyu

    2014-11-01

    Soft tissue augmentation is a process of implanting tissues or materials to treat wrinkles or soft tissue defects in the body. Over the years, various materials have evolved to correct soft tissue defects, including a number of tissues and polymers. Autogenous dermis, autogenous fat, autogenous dermis-fat, allogenic dermis, synthetic implants, and fillers have been widely accepted for soft tissue augmentations. Tissue engineering technology has also been introduced and opened a new venue of opportunities in this field. In particular, a long-lasting filler consisting of hyaluronic acid filler and living human mesenchymal cells called "injectable tissue-engineered soft tissue" has been created and applied clinically, as this strategy has many advantages over conventional methods. Fibroblasts and adipose-derived stromal vascular fraction cells can be clinically used as injectable tissue-engineered soft tissue at present. In this review, information on the soft tissue augmentation method using the injectable tissue-engineered soft tissue is provided.

  12. Protoplast Fusion

    PubMed Central

    Yamada, Yasuyuki; Hara, Yasuhiro; Katagi, Hiroaki; Senda, Mitsugi

    1980-01-01

    The relation between the composition of the phospholipid molecular species in a cell membrane and the velocity of protoplast fusion was studied using cells cultured at a low temperature (10 C). Cells cultured at a low temperature contained larger proportions of phospholipids of low phase transition point, the 1,2-dilinoleoyl-type, than those cultured at a normal temperature (25 C). When treated with polyethylene glycol 6000, protoplasts from cells cultured at 10 C fused and progressed to the fused sphere stage more rapidly than did those from cells cultured at 25 C. PMID:16661339

  13. Splenogonadal fusion.

    PubMed

    Tsingoglou, S; Wilkinson, A W

    1976-04-01

    The fusion between splenic tissue and the left gonad or the derivatives of the left mesonephros is a rare congenital anomaly first described in detail by Pommer in 1887/9 and divided into two forms by Putschar and Manion in 1956. In the first or continuous type a cord of splenic or fibrous tissue connects the spleen and the gonadalmesonephric structures. In the second type the fused splenomesonephric structures have lost continuity with the main spleen. An example of the continuous form is presented and the previous reports are briefly reviewed.

  14. Soft Congruence Relations over Rings

    PubMed Central

    Xin, Xiaolong; Li, Wenting

    2014-01-01

    Molodtsov introduced the concept of soft sets, which can be seen as a new mathematical tool for dealing with uncertainty. In this paper, we initiate the study of soft congruence relations by using the soft set theory. The notions of soft quotient rings, generalized soft ideals and generalized soft quotient rings, are introduced, and several related properties are investigated. Also, we obtain a one-to-one correspondence between soft congruence relations and idealistic soft rings and a one-to-one correspondence between soft congruence relations and soft ideals. In particular, the first, second, and third soft isomorphism theorems are established, respectively. PMID:24949493

  15. Peer Assessment of Soft Skills and Hard Skills

    ERIC Educational Resources Information Center

    Zhang, Aimao

    2012-01-01

    Both the information technology (IT) industry and the Accreditation Board for Engineering and Technology (ABET) demand soft-skill training in higher education and require IT graduates to demonstrate competence in interpersonal communication, teamwork, and conflict management. Group projects provide teamwork environment for soft-skill training, but…

  16. Novel Hydrophobin Fusion Tags for Plant-Produced Fusion Proteins

    PubMed Central

    Ritala, Anneli; Linder, Markus; Joensuu, Jussi

    2016-01-01

    Hydrophobin fusion technology has been applied in the expression of several recombinant proteins in plants. Until now, the technology has relied exclusively on the Trichoderma reesei hydrophobin HFBI. We screened eight novel hydrophobin tags, T. reesei HFBII, HFBIII, HFBIV, HFBV, HFBVI and Fusarium verticillioides derived HYD3, HYD4 and HYD5, for production of fusion proteins in plants and purification by two-phase separation. To study the properties of the hydrophobins, we used N-terminal and C-terminal GFP as a fusion partner. Transient expression of the hydrophobin fusions in Nicotiana benthamiana revealed large variability in accumulation levels, which was also reflected in formation of protein bodies. In two-phase separations, only HFBII and HFBIV were able to concentrate GFP into the surfactant phase from a plant extract. The separation efficiency of both tags was comparable to HFBI. When the accumulation was tested side by side, HFBII-GFP gave a better yield than HFBI-GFP, while the yield of HFBIV-GFP remained lower. Thus we present here two alternatives for HFBI as functional fusion tags for plant-based protein production and first step purification. PMID:27706254

  17. Program plan for the DOE Office of Fusion Energy First Wall/Blanket/Shield Engineering Technology Program. Volume I. Summary, objectives and management. Revision 2

    SciTech Connect

    Not Available

    1982-08-01

    This document defines a plan for conducting selected aspects of the engineering testing required for magnetic fusion reactor FWBS components and systems. The ultimate product of this program is an established data base that contributes to a functional, reliable, maintainable, economically attractive, and environmentally acceptable commercial fusion reactor first wall, blanket, and shield system. This program plan updates the initial plan issued in November of 1980 by the DOE/Office of Fusion Energy (unnumbered report). The plan consists of two parts. Part I is a summary of activities, responsibilities and program management including reporting and interfaces with other programs. Part II is a compilation of the Detailed Technical Plans for Phase I (1982 to 1984) developed by the participants during Phase 0 of the program (July to December 1981).

  18. Lunar Helium-3 and Fusion Power

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The NASA Office of Exploration sponsored the NASA Lunar Helium-3 and Fusion Power Workshop. The meeting was held to understand the potential of using He-3 from the moon for terrestrial fusion power production. It provided an overview, two parallel working sessions, a review of sessions, and discussions. The lunar mining session concluded that mining, beneficiation, separation, and return of He-3 from the moon would be possible but that a large scale operation and improved technology is required. The fusion power session concluded that: (1) that He-3 offers significant, possibly compelling, advantages over fusion of tritium, principally increased reactor life, reduced radioactive wastes, and high efficiency conversion, (2) that detailed assessment of the potential of the D/He-3 fuel cycle requires more information, and (3) D/He-3 fusion may be best for commercial purposes, although D/T fusion is more near term.

  19. History of Nuclear Fusion Research in Japan

    NASA Astrophysics Data System (ADS)

    Iguchi, Harukazu; Matsuoka, Keisuke; Kimura, Kazue; Namba, Chusei; Matsuda, Shinzaburo

    In the late 1950s just after the atomic energy research was opened worldwide, there was a lively discussion among scientists on the strategy of nuclear fusion research in Japan. Finally, decision was made that fusion research should be started from the basic, namely, research on plasma physics and from cultivation of human resources at universities under the Ministry of Education, Science and Culture (MOE). However, an endorsement was given that construction of an experimental device for fusion research would be approved sooner or later. Studies on toroidal plasma confinement started at Japan Atomic Energy Research Institute (JAERI) under the Science and Technology Agency (STA) in the mid-1960s. Dualistic fusion research framework in Japan was established. This structure has lasted until now. Fusion research activities over the last 50 years are described by the use of a flowchart, which is convenient to glance the historical development of fusion research in Japan.

  20. Accelerator and Fusion Research Division 1989 summary of activities

    SciTech Connect

    Not Available

    1990-06-01

    This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations.

  1. Development of a Green Soft Chemical Method for the Synthesis of Cathode Materials Utilized in Lithium-ion Energy Storage Technologies

    NASA Astrophysics Data System (ADS)

    Wicker, Scott Ambrose

    The statement of the problem is to develop an environmental friendly, cost effective cathode material with the technical requirements to withstand the energy demand of directly storing electricity for the uses in today society. The author solved the problem by designing a water soluble, thermally stable organic moiety that is used as fuel and a template in the low temperature solution combustion synthesis of cathode materials utilized in lithium-ion energy storage devices. The Green Soft Chemical method (MADHAMS) is a useful alternative solution-combustion method for the synthesis of highly pure, fine-sized, spherical & cubic cathode powders. With the global demand pushing industrial applications toward green chemistry, we developed this technique with environmental friendly solvents. This MADHAMS method would fall within the "Self-Propagation Combustion Synthesis (SPCS)" family. SPCS is a family of methods that utilize metal nitrates as conventional oxidants and organic compounds as fuels. As the nitrate decomposes and the fuel is oxidized, energy is released into the local system as heat energy. The energy can be controlled by the metal-ion-to-fuel ratio. As part of this study, the properties and characteristics of the cathode powders prepared by a green soft chemical method are extensively investigated. This report also describes the non-isothermal investigation of the dependence of the activation energy on the extent of conversion of lithium cobalt dioxide using the iso-conversional method of Friedman. Lithium cobalt dioxide was prepared by the direct reaction of lithium carbonate and cobalt oxide. Cobalt oxide was prepared from the thermal decomposition of Cobalt (II) propenoate so that the starting materials used in the kinetic investigation would closely resemble or represent the natural decomposition products that are produced during the green soft chemical synthetic methods. The kinetic analysis of the variation in Ealpha with alpha revealed that this

  2. Concave soft sets, critical soft points, and union-soft ideals of ordered semigroups.

    PubMed

    Jun, Young Bae; Song, Seok Zun; Muhiuddin, G

    2014-01-01

    The notions of union-soft semigroups, union-soft l-ideals, and union-soft r-ideals are introduced, and related properties are investigated. Characterizations of a union-soft semigroup, a union-soft l-ideal, and a union-soft r-ideal are provided. The concepts of union-soft products and union-soft semiprime soft sets are introduced, and their properties related to union-soft l-ideals and union-soft r-ideals are investigated. Using the notions of union-soft l-ideals and union-soft r-ideals, conditions for an ordered semigroup to be regular are considered. The concepts of concave soft sets and critical soft points are introduced, and their properties are discussed. PMID:25405223

  3. Prospects for fusion applications of reversed-field pinches

    NASA Astrophysics Data System (ADS)

    Bathke, C. G.; Krakowski, R. A.; Hagenson, R. L.

    1985-11-01

    The applicability of the Reversed-Field Pinch (RFP) as a source of fusion neutrons for use in developing key fusion nuclear technologies is examined. This Fusion Test Facility (FTF) would emphasize high neutron wall loading, small plasma volume, low fusion and driver powers, and steady-state operation. Both parametric tradeoffs based on present-day physics understanding and a conceptual design based on an approx. 1-MW/m (neutron) driven operation are reported.

  4. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes > 1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa ("displacement-per-atom", the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  5. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  6. Arthroscopic Subtalar, Double, and Triple Fusion.

    PubMed

    Walter, Richard; Parsons, Stephen; Winson, Ian

    2016-09-01

    Arthroscopic approaches to subtalar, double, and triple arthrodesis allow relative preservation of the soft tissue envelope compared with traditional open approaches. The surgical technique involving the use of a 4.5-mm 30° arthroscope via sinus tarsi portals is described. All 3 joints of the triple joint can be prepared for fusion with motorized burrs. Rigid fixation is achieved with cannulated screws. High union rates and low complication rates have been reported. PMID:27524712

  7. Carbon nanotubes and graphene towards soft electronics

    NASA Astrophysics Data System (ADS)

    Chae, Sang Hoon; Lee, Young Hee

    2014-04-01

    Although silicon technology has been the main driving force for miniaturizing device dimensions to improve cost and performance, the current application of Si to soft electronics (flexible and stretchable electronics) is limited due to material rigidity. As a result, various prospective materials have been proposed to overcome the rigidity of conventional Si technology. In particular, nano-carbon materials such as carbon nanotubes (CNTs) and graphene are promising due to outstanding elastic properties as well as an excellent combination of electronic, optoelectronic, and thermal properties compared to conventional rigid silicon. The uniqueness of these nano-carbon materials has opened new possibilities for soft electronics, which is another technological trend in the market. This review covers the recent progress of soft electronics research based on CNTs and graphene. We discuss the strategies for soft electronics with nano-carbon materials and their preparation methods (growth and transfer techniques) to devices as well as the electrical characteristics of transparent conducting films (transparency and sheet resistance) and device performances in field effect transistor (FET) (structure, carrier type, on/off ratio, and mobility). In addition to discussing state of the art performance metrics, we also attempt to clarify trade-off issues and methods to control the trade-off on/off versus mobility). We further demonstrate accomplishments of the CNT network in flexible integrated circuits on plastic substrates that have attractive characteristics. A future research direction is also proposed to overcome current technological obstacles necessary to realize commercially feasible soft electronics.

  8. Simple Ontology Format (SOFT)

    SciTech Connect

    Sorokine, Alexandre

    2011-10-01

    Simple Ontology Format (SOFT) library and file format specification provides a set of simple tools for developing and maintaining ontologies. The library, implemented as a perl module, supports parsing and verification of the files in SOFt format, operations with ontologies (adding, removing, or filtering of entities), and converting of ontologies into other formats. SOFT allows users to quickly create ontologies using only a basic text editor, verify it, and portray it in a graph layout system using customized styles.

  9. Magnetic fusion and project ITER

    SciTech Connect

    Park, H.K.

    1992-01-01

    It has already been demonstrated that our economics and international relationship are impacted by an energy crisis. For the continuing prosperity of the human race, a new and viable energy source must be developed within the next century. It is evident that the cost will be high and will require a long term commitment to achieve this goal due to a high degree of technological and scientific knowledge. Energy from the controlled nuclear fusion is a safe, competitive, and environmentally attractive but has not yet been completely conquered. Magnetic fusion is one of the most difficult technological challenges. In modem magnetic fusion devices, temperatures that are significantly higher than the temperatures of the sun have been achieved routinely and the successful generation of tens of million watts as a result of scientific break-even is expected from the deuterium and tritium experiment within the next few years. For the practical future fusion reactor, we need to develop reactor relevant materials and technologies. The international project called International Thermonuclear Experimental Reactor (ITER)'' will fulfill this need and the success of this project will provide the most attractive long-term energy source for mankind.

  10. Magnetic fusion and project ITER

    SciTech Connect

    Park, H.K.

    1992-09-01

    It has already been demonstrated that our economics and international relationship are impacted by an energy crisis. For the continuing prosperity of the human race, a new and viable energy source must be developed within the next century. It is evident that the cost will be high and will require a long term commitment to achieve this goal due to a high degree of technological and scientific knowledge. Energy from the controlled nuclear fusion is a safe, competitive, and environmentally attractive but has not yet been completely conquered. Magnetic fusion is one of the most difficult technological challenges. In modem magnetic fusion devices, temperatures that are significantly higher than the temperatures of the sun have been achieved routinely and the successful generation of tens of million watts as a result of scientific break-even is expected from the deuterium and tritium experiment within the next few years. For the practical future fusion reactor, we need to develop reactor relevant materials and technologies. The international project called ``International Thermonuclear Experimental Reactor (ITER)`` will fulfill this need and the success of this project will provide the most attractive long-term energy source for mankind.

  11. EDITORIAL: Safety aspects of fusion power plants

    NASA Astrophysics Data System (ADS)

    Kolbasov, B. N.

    2007-07-01

    This special issue of Nuclear Fusion contains 13 informative papers that were initially presented at the 8th IAEA Technical Meeting on Fusion Power Plant Safety held in Vienna, Austria, 10-13 July 2006. Following recommendation from the International Fusion Research Council, the IAEA organizes Technical Meetings on Fusion Safety with the aim to bring together experts to discuss the ongoing work, share new ideas and outline general guidance and recommendations on different issues related to safety and environmental (S&E) aspects of fusion research and power facilities. Previous meetings in this series were held in Vienna, Austria (1980), Ispra, Italy (1983), Culham, UK (1986), Jackson Hole, USA (1989), Toronto, Canada (1993), Naka, Japan (1996) and Cannes, France (2000). The recognized progress in fusion research and technology over the last quarter of a century has boosted the awareness of the potential of fusion to be a practically inexhaustible and clean source of energy. The decision to construct the International Thermonuclear Experimental Reactor (ITER) represents a landmark in the path to fusion power engineering. Ongoing activities to license ITER in France look for an adequate balance between technological and scientific deliverables and complying with safety requirements. Actually, this is the first instance of licensing a representative fusion machine, and it will very likely shape the way in which a more common basis for establishing safety standards and policies for licensing future fusion power plants will be developed. Now that ITER licensing activities are underway, it is becoming clear that the international fusion community should strengthen its efforts in the area of designing the next generations of fusion power plants—demonstrational and commercial. Therefore, the 8th IAEA Technical Meeting on Fusion Safety focused on the safety aspects of power facilities. Some ITER-related safety issues were reported and discussed owing to their potential

  12. (Meeting on fusion reactor materials)

    SciTech Connect

    Jones, R.H. ); Klueh, R.L.; Rowcliffe, A.F.; Wiffen, F.W. ); Loomis, B.A. )

    1990-11-01

    During his visit to the KfK, Karlsruhe, F. W. Wiffen attended the IEA 12th Working Group Meeting on Fusion Reactor Materials. Plans were made for a low-activation materials workshop at Culham, UK, for April 1991, a data base workshop in Europe for June 1991, and a molecular dynamics workshop in the United States in 1991. At the 11th IEA Executive Committee on Fusion Materials, discussions centered on the recent FPAC and Colombo panel review in the United States and EC, respectively. The Committee also reviewed recent progress toward a neutron source in the United States (CWDD) and in Japan (ESNIT). A meeting with D. R. Harries (consultant to J. Darvas) yielded a useful overview of the EC technology program for fusion. Of particular interest to the US program is a strong effort on a conventional ferritic/martensitic steel for fist wall/blanket operation beyond NET/ITER.

  13. Superconducting magnets for fusion applications

    SciTech Connect

    Henning, C.D.

    1987-07-02

    Fusion magnet technology has made spectacular advances in the past decade; to wit, the Mirror Fusion Test Facility and the Large Coil Project. However, further advances are still required for advanced economical fusion reactors. Higher fields to 14 T and radiation-hardened superconductors and insulators will be necessary. Coupled with high rates of nuclear heating and pulsed losses, the next-generation magnets will need still higher current density, better stability and quench protection. Cable-in-conduit conductors coupled with polyimide insulations and better steels seem to be the appropriate path. Neutron fluences up to 10/sup 19/ neutrons/cm/sup 2/ in niobium tin are achievable. In the future, other amorphous superconductors could raise these limits further to extend reactor life or decrease the neutron shielding and corresponding reactor size.

  14. Fusion Plasma Theory project summaries

    SciTech Connect

    Not Available

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program.

  15. Congenital Bilateral Zygomatico-Maxillo-Mandibular Fusion Associated With Gum Fusion.

    PubMed

    Al-Mahdi, Akmam H; Koppel, David A; Al-Jumaily, Hassanien A; Mohammed, Ali Abdul Hameed; Boyd, Deborah

    2016-01-01

    A congenial syngnathia is very rare condition. It can be simple mucosal fusion (synechiae), or complete bony fusion (synostosis) between the maxilla or zygoma and the mandible. Fusion of the ascending ramus of mandible to maxilla and zygoma is less common than fusions of the alveolar ridges of the mandible to the maxilla. Bony syngnathia is either isolated or complex in form. There are 59 cases of congenital bony syngnathia reported in the literature: the first report was by Burket in 1936. There are 16 reported cases of zygomatico-maxillo-mandibular fusion. In the reported cases, women expressed the isolated form more commonly whereas men demonstrated a more complex pattern of disease. The authors present another patient of bony syngnathia involving bilateral fusion of the ascending ramus and body of the mandible with the maxillary complex in a young man. Early surgery was performed to release the bony and soft tissue fusion on the eighth day from the baby's birth. A second operation was performed for recurrence when the baby was 2.5 months old. A customized splint, an intense postoperative program of mouth exercises, and close follow-up aims to prevent further refusion.

  16. [Grading of soft tissue and bone sarcomas].

    PubMed

    Petersen, I; Wardelmann, E

    2016-07-01

    Malignancy grading is an essential element in the classification of sarcomas. It correlates with the prognosis of the disease and the risk of metastasis. This article presents the grading schemes for soft tissue, bone and pediatric sarcomas. It summarizes the histological criteria of the Federation Nationale des Centres de Lutte Contre le Cancer (FNCLCC) system and the Pediatric Oncology Group as well as the grading of bone tumors by the College of American Pathologists (CAP). Furthermore, the potential relevance of gene expression signatures, the complexity index in sarcoma (CINSARC) and single genetic alterations (p53, MDM2, p16, SWI/SNF, EWSR1 fusions and PAX3/PAX7-FOXO1 fusions) for the prognosis of sarcomas are discussed.

  17. [Grading of soft tissue and bone sarcomas].

    PubMed

    Petersen, I; Wardelmann, E

    2016-07-01

    Malignancy grading is an essential element in the classification of sarcomas. It correlates with the prognosis of the disease and the risk of metastasis. This article presents the grading schemes for soft tissue, bone and pediatric sarcomas. It summarizes the histological criteria of the Federation Nationale des Centres de Lutte Contre le Cancer (FNCLCC) system and the Pediatric Oncology Group as well as the grading of bone tumors by the College of American Pathologists (CAP). Furthermore, the potential relevance of gene expression signatures, the complexity index in sarcoma (CINSARC) and single genetic alterations (p53, MDM2, p16, SWI/SNF, EWSR1 fusions and PAX3/PAX7-FOXO1 fusions) for the prognosis of sarcomas are discussed. PMID:27384333

  18. Robotics: Generation soft

    NASA Astrophysics Data System (ADS)

    Mazzolai, Barbara; Mattoli, Virgilio

    2016-08-01

    Meet the octobot, the first robot to be made entirely from soft materials. Powered by a chemical reaction and controlled by a fluidic logic circuit, it heralds a generation of soft robots that might surpass conventional machines. See Letter p.451

  19. Soft Pion Processes

    DOE R&D Accomplishments Database

    Nambu, Y.

    1968-01-01

    My talk is concerned with a review, not necessarily of the latest theoretical developments, but rather of an old idea which has contributed to recent theoretical activities. By soft pion processes I mean processes in which low energy pions are emitted or absorbed or scattered, just as we use the word soft photon in a similar context. Speaking more quantitatively, we may call a pion soft if its energy is small compared to a natural scale in the reaction. This scale is determined by the particular dynamics of pion interaction, and one may roughly say that a pion is soft if its energy is small compared to the energies of the other individual particles that participate in the reaction. It is important to note at this point that pion is by far the lightest member of all the hadrons, and much of the success of the soft pion formulas depends on this fact.

  20. Technology.

    ERIC Educational Resources Information Center

    Callison, Daniel

    2002-01-01

    Discussion of technology focuses on instructional technology. Topics include inquiry and technology; curriculum development; reflection and curriculum evaluation; criteria for technological innovations that will increase student motivation; standards; impact of new technologies on library media centers; software; and future trends. (LRW)

  1. Advanced fission and fossil plant economics-implications for fusion

    SciTech Connect

    Delene, J.G.

    1994-09-01

    In order for fusion energy to be a viable option for electric power generation, it must either directly compete with future alternatives or serve as a reasonable backup if the alternatives become unacceptable. This paper discusses projected costs for the most likely competitors with fusion power for baseload electric capacity and what these costs imply for fusion economics. The competitors examined include advanced nuclear fission and advanced fossil-fired plants. The projected costs and their basis are discussed. The estimates for these technologies are compared with cost estimates for magnetic and inertial confinement fusion plants. The conclusion of the analysis is that fusion faces formidable economic competition. Although the cost level for fusion appears greater than that for fission or fossil, the costs are not so high as to preclude fusion`s potential competitiveness.

  2. Fusion-protein-assisted protein crystallization.

    PubMed

    Kobe, Bostjan; Ve, Thomas; Williams, Simon J

    2015-07-01

    Fusion proteins can be used directly in protein crystallization to assist crystallization in at least two different ways. In one approach, the `heterologous fusion-protein approach', the fusion partner can provide additional surface area to promote crystal contact formation. In another approach, the `fusion of interacting proteins approach', protein assemblies can be stabilized by covalently linking the interacting partners. The linker connecting the proteins plays different roles in the two applications: in the first approach a rigid linker is required to reduce conformational heterogeneity; in the second, conversely, a flexible linker is required that allows the native interaction between the fused proteins. The two approaches can also be combined. The recent applications of fusion-protein technology in protein crystallization from the work of our own and other laboratories are briefly reviewed.

  3. Inertial confinement fusion. Quarterly report, July--September 1993: Volume 3, No. 4

    SciTech Connect

    Sacks, R.A.; Murphy, P.W.; Schleich, D.P.

    1993-12-31

    This report discusses the following research: Diode-pumped solid- state-laser driver for inertial fusion energy power plants; Longitudinal beam dynamics in heavy ion fusion accelerators; Design of the ion sources for heavy ion fusion; Measurement of electron density in laser-produced plasma with a soft x-ray moire deflectometer; and Analysis of weakly nonlinear three-dimensional Rayleigh-Taylor instability growth.

  4. Accuracy Verification of Magnetic Resonance Imaging (MRI) Technology for Lower-Limb Prosthetic Research: Utilising Animal Soft Tissue Specimen and Common Socket Casting Materials

    PubMed Central

    Safari, Mohammad Reza; Rowe, Philip; Buis, Arjan

    2012-01-01

    Lower limb prosthetic socket shape and volume consistency can be quantified using MRI technology. Additionally, MRI images of the residual limb could be used as an input data for CAD-CAM technology and finite element studies. However, the accuracy of MRI when socket casting materials are used has to be defined. A number of six, 46 mm thick, cross-sections of an animal leg were used. Three specimens were wrapped with Plaster of Paris (POP) and the other three with commercially available silicone interface liner. Data was obtained by utilising MRI technology and then the segmented images compared to corresponding calliper measurement, photographic imaging, and water suspension techniques. The MRI measurement results were strongly correlated with actual diameter, surface area, and volume measurements. The results show that the selected scanning parameters and the semiautomatic segmentation method are adequate enough, considering the limit of clinical meaningful shape and volume fluctuation, for residual limb volume and the cross-sectional surface area measurements. PMID:22619599

  5. Accuracy verification of magnetic resonance imaging (MRI) technology for lower-limb prosthetic research: utilising animal soft tissue specimen and common socket casting materials.

    PubMed

    Safari, Mohammad Reza; Rowe, Philip; Buis, Arjan

    2012-01-01

    Lower limb prosthetic socket shape and volume consistency can be quantified using MRI technology. Additionally, MRI images of the residual limb could be used as an input data for CAD-CAM technology and finite element studies. However, the accuracy of MRI when socket casting materials are used has to be defined. A number of six, 46 mm thick, cross-sections of an animal leg were used. Three specimens were wrapped with Plaster of Paris (POP) and the other three with commercially available silicone interface liner. Data was obtained by utilising MRI technology and then the segmented images compared to corresponding calliper measurement, photographic imaging, and water suspension techniques. The MRI measurement results were strongly correlated with actual diameter, surface area, and volume measurements. The results show that the selected scanning parameters and the semiautomatic segmentation method are adequate enough, considering the limit of clinical meaningful shape and volume fluctuation, for residual limb volume and the cross-sectional surface area measurements.

  6. Sensor fusion for hand-held multisensor landmine detection

    NASA Astrophysics Data System (ADS)

    Agarwal, Sanjeev; Chander, Venkat S.; Palit, Partha P.; Stanley, Joe; Mitchell, O. Robert

    2001-10-01

    Sensor fusion issues in a streamlined assimilation of multi-sensor information for landmine detection are discussed. In particular multi-sensor fusion in hand-held landmine detection system with ground penetrating radar (GPR) and metal detector sensors is investigated. The fusion architecture consists of feature extraction for individual sensors followed by a feed-forward neural network training to learn the feature space representation of the mine/no-mine classification. A correlation feature from GPR, and slope and energy feature from metal detector are used for discrimination. Various fusion strategies are discussed and results compared against each other and against individual sensors using ROC curves for the available multi-sensor data. Both feature level and decision level fusion have been investigated. Simple decision level fusion scheme based on Dempster-Shafer evidence accumulation, soft AND, MIN and MAX are compared. Feature level fusion using neural network training is shown to provide best results. However comparable performance is achieved using decision level sensor fusion based on Dempster-Shafer accumulation. It is noted that, the above simple feed-forward fusion scheme lacks a means to verify detections after a decision has been made. New detection algorithms that are more than anomaly detectors are needed. Preliminary results with features based on independent component analysis (ICA) show promising results towards this end.

  7. Simple Ontology Format (SOFT)

    2011-10-01

    Simple Ontology Format (SOFT) library and file format specification provides a set of simple tools for developing and maintaining ontologies. The library, implemented as a perl module, supports parsing and verification of the files in SOFt format, operations with ontologies (adding, removing, or filtering of entities), and converting of ontologies into other formats. SOFT allows users to quickly create ontologies using only a basic text editor, verify it, and portray it in a graph layoutmore » system using customized styles.« less

  8. Fusion research: the past is prologue

    SciTech Connect

    Post, R F

    1998-10-14

    At this juncture fusion research can be viewed as being at a turning point, a time to review its past and to imagine its future. Today, almost 50 years since the first serious attempts to address the daunting problem of achieving controlled fusion, we have both an opportunity and a challenge. Some predictions place fusion research today at a point midway between its first inception and its eventual maturation - in the middle of the 21st century - when fusion would become a major source of energy. Our opportunity therefore is to assess what we have learned from 50 years of hard work and use that knowledge as a starting point for new and better approaches to solving the fusion problem. Our challenge is to prove the "50 more years" prophesy wrong, by finding ways to shorten the time when fusion power becomes a reality. The thesis will be advanced that in the magnetic confinement approach to fusion open-ended magnetic confinement geometries offer much in responding to the challenge. A major advantage of open systems is that, owing to their theoretically and experimentally demonstrated ability to suppress plasma instabilities of both the MHD and the high-frequency wave-particle variety, the confinement becomes predictable from "classical," i.e., Fokker-Planck-type analysis. In a time of straitened budgetary circumstances for magnetic fusion research now being faced in the United States, the theoretical tractability of mirror-based systems is a substantial asset. In pursuing this avenue it is also necessary to keep an open mind as to the forms that mirror-based fusion power plants might take. For example, one can look to the high-energy physics community for a possible model: This community has shown the feasibility of constructing large and complex particle accelerators using superconducting magnets, vacuum chambers and complicated particle-handling technology, housed in underground tunnels that are 20 or more kilometers long. In the paper examples of mirror

  9. INTRODUCTION: Status report on fusion research

    NASA Astrophysics Data System (ADS)

    Burkart, Werner

    2005-10-01

    members' personal views on the latest achievements in fusion research, including magnetic and inertial confinement scenarios. The report describes fusion fundamentals and progress in fusion science and technology, with ITER as a possible partner in the realization of self-sustainable burning plasma. The importance of the socio-economic aspects of energy production using fusion power plants is also covered. Noting that applications of plasma science are of broad interest to the Member States, the report addresses the topic of plasma physics to assist in understanding the achievements of better coatings, cheaper light sources, improved heat-resistant materials and other high-technology materials. Nuclear fusion energy production is intrinsically safe, but for ITER the full range of hazards will need to be addressed, including minimising radiation exposure, to accomplish the goal of a sustainable and environmentally acceptable production of energy. We anticipate that the role of the Agency will in future evolve from supporting scientific projects and fostering information exchange to the preparation of safety principles and guidelines for the operation of burning fusion plasmas with a Q > 1. Technical progress in inertial and magnetic confinement, as well as in alternative concepts, will lead to a further increase in international cooperation. New means of communication will be needed, utilizing the best resources of modern information technology to advance interest in fusion. However, today the basis of scientific progress is still through journal publications and, with this in mind, we trust that this report will find an interested readership. We acknowledge with thanks the support of the members of the IFRC as an advisory body to the Agency. Seven chairmen have presided over the IFRC since its first meeting in 1971 in Madison, USA, ensuring that the IAEA fusion efforts were based on the best professional advice possible, and that information on fusion developments has

  10. Status and problems of fusion reactor development.

    PubMed

    Schumacher, U

    2001-03-01

    Thermonuclear fusion of deuterium and tritium constitutes an enormous potential for a safe, environmentally compatible and sustainable energy supply. The fuel source is practically inexhaustible. Further, the safety prospects of a fusion reactor are quite favourable due to the inherently self-limiting fusion process, the limited radiologic toxicity and the passive cooling property. Among a small number of approaches, the concept of toroidal magnetic confinement of fusion plasmas has achieved most impressive scientific and technical progress towards energy release by thermonuclear burn of deuterium-tritium fuels. The status of thermonuclear fusion research activity world-wide is reviewed and present solutions to the complicated physical and technological problems are presented. These problems comprise plasma heating, confinement and exhaust of energy and particles, plasma stability, alpha particle heating, fusion reactor materials, reactor safety and environmental compatibility. The results and the high scientific level of this international research activity provide a sound basis for the realisation of the International Thermonuclear Experimental Reactor (ITER), whose goal is to demonstrate the scientific and technological feasibility of a fusion energy source for peaceful purposes.

  11. [Genetic Aberration and Pathological Diagnosis in Bone and Soft-Tissue Tumors].

    PubMed

    Iura, Kunio; Oda, Yoshinao

    2016-03-01

    Bone and soft-tissue sarcomas comprise a rare, complex, and heterogeneous group of tumors for which it is difficult for even experienced pathologists to provide a conclusive diagnosis. The number of diagnoses made using genetic analysis has increased since the detection of fusion genes in several soft-tissue tumors in the 1990s. Moreover, other specific genetic aberrations have been reported in various bone and soft-tissue tumors. In addition, molecular therapeutic targets have been sought in advanced cases of soft-tissue and bone tumors similar to other organ malignancies. To enable the pathological diagnosis of bone and soft-tissue tumors, it is necessary to combine histological diagnosis with immunohistochemistry and gene analysis findings including fusion gene or other genetic aberrations. In this review, we describe the fusion genes recently reported in bone and soft-tissue tumors such as solitary fibrous tumor, aneurysmal bone cyst, nodular fasciitis, CIC-DUX4 fusion gene-positive small round cell tumors, or BCOR-CCNB3-positive sarcoma as well as other genetic aberrations in dedifferentiated liposarcoma, malignant rhabdoid tumor, cartilaginous tumor, Langerhans cell histiocytosis chondroblastoma, or giant cell tumor of the bone. We also demonstrate their association with pathological diagnosis. PMID:27067846

  12. Heavy Ion Fusion Injector Program

    SciTech Connect

    Yu, S.; Eylon, S.; Chupp, W.W.

    1993-05-01

    A program is underway to construct a 2 MV, 800 mA, K{sup +} injector for heavy ion fusion. The Electrostatic Quadrupole (ESQ) injector configuration consists of a zeolite source, a diode of up to 1 MV, together with several electrostatic quadrupole units to simultaneously focus and accelerate the beam to 2 MV. The key issues of source technology, high voltage breakdown, beam aberrations, and transient effects will be discussed. Results from ongoing experiments and simulations will be presented.

  13. Viral membrane fusion.

    PubMed

    Harrison, Stephen C

    2015-05-01

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a "fusion loop" or "fusion peptide") engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics.

  14. Very Soft Sculpture.

    ERIC Educational Resources Information Center

    deGrassi, Jennifer

    1979-01-01

    Instructions are provided for making dolls, or soft people sculptures, by stuffing nylons with cotton and shaping the result with stitching and decoration. This article is one of seven in this issue on fiber arts. (SJL)

  15. Multigait soft robot

    PubMed Central

    Shepherd, Robert F.; Ilievski, Filip; Choi, Wonjae; Morin, Stephen A.; Stokes, Adam A.; Mazzeo, Aaron D.; Chen, Xin; Wang, Michael; Whitesides, George M.

    2011-01-01

    This manuscript describes a unique class of locomotive robot: A soft robot, composed exclusively of soft materials (elastomeric polymers), which is inspired by animals (e.g., squid, starfish, worms) that do not have hard internal skeletons. Soft lithography was used to fabricate a pneumatically actuated robot capable of sophisticated locomotion (e.g., fluid movement of limbs and multiple gaits). This robot is quadrupedal; it uses no sensors, only five actuators, and a simple pneumatic valving system that operates at low pressures (< 10 psi). A combination of crawling and undulation gaits allowed this robot to navigate a difficult obstacle. This demonstration illustrates an advantage of soft robotics: They are systems in which simple types of actuation produce complex motion. PMID:22123978

  16. Multigait soft robot.

    PubMed

    Shepherd, Robert F; Ilievski, Filip; Choi, Wonjae; Morin, Stephen A; Stokes, Adam A; Mazzeo, Aaron D; Chen, Xin; Wang, Michael; Whitesides, George M

    2011-12-20

    This manuscript describes a unique class of locomotive robot: A soft robot, composed exclusively of soft materials (elastomeric polymers), which is inspired by animals (e.g., squid, starfish, worms) that do not have hard internal skeletons. Soft lithography was used to fabricate a pneumatically actuated robot capable of sophisticated locomotion (e.g., fluid movement of limbs and multiple gaits). This robot is quadrupedal; it uses no sensors, only five actuators, and a simple pneumatic valving system that operates at low pressures (< 10 psi). A combination of crawling and undulation gaits allowed this robot to navigate a difficult obstacle. This demonstration illustrates an advantage of soft robotics: They are systems in which simple types of actuation produce complex motion.

  17. Facial Soft Tissue Trauma

    PubMed Central

    Kretlow, James D.; McKnight, Aisha J.; Izaddoost, Shayan A.

    2010-01-01

    Traumatic facial soft tissue injuries are commonly encountered in the emergency department by plastic surgeons and other providers. Although rarely life-threatening, the treatment of these injuries can be complex and may have significant impact on the patient's facial function and aesthetics. This article provides a review of the relevant literature related to this topic and describes the authors' approach to the evaluation and management of the patient with facial soft tissue injuries. PMID:22550459

  18. Magneto-Inertial Fusion

    DOE PAGESBeta

    Wurden, G. A.; Hsu, S. C.; Intrator, T. P.; Grabowski, T. C.; Degnan, J. H.; Domonkos, M.; Turchi, P. J.; Campbell, E. M.; Sinars, D. B.; Herrmann, M. C.; et al

    2015-11-17

    In this community white paper, we describe an approach to achieving fusion which employs a hybrid of elements from the traditional magnetic and inertial fusion concepts, called magneto-inertial fusion (MIF). The status of MIF research in North America at multiple institutions is summarized including recent progress, research opportunities, and future plans.

  19. Hot and cold fusion

    SciTech Connect

    Not Available

    1990-08-01

    This article presents an overview of research in cold fusion research and development in cold fusion at the Tokomak Fusion Test Reactor at the Princeton Plasma Physics Lab, and at the inertial containment facility at Lawrence Livermore National Lab. is described.

  20. Necrotizing soft tissue infections

    PubMed Central

    Urschel, J.

    1999-01-01

    Necrotizing soft tissue infections are a group of highly lethal infections that typically occur after trauma or surgery. Many individual infectious entities have been described, but they all have similar pathophysiologies, clinical features, and treatment approaches. The essentials of successful treatment include early diagnosis, aggressive surgical debridement, antibiotics, and supportive intensive treatment unit care. The two commonest pitfalls in management are failure of early diagnosis and inadequate surgical debridement. These life-threatening infections are often mistaken for cellulitis or innocent wound infections, and this is responsible for diagnostic delay. Tissue gas is not a universal finding in necrotizing soft tissue infections. This misconception also contributes to diagnostic errors. Incision and drainage is an inappropriate surgical strategy for necrotizing soft tissue infections; excisional debridement is needed. Hyperbaric oxygen therapy may be useful, but it is not as important as aggressive surgical therapy. Despite advances in antibiotic therapy and intensive treatment unit medicine, the mortality of necrotizing soft tissue infections is still high. This article emphasizes common treatment principles for all of these infections, and reviews some of the more important individual necrotizing soft tissue infectious entities.


Keywords: fasciitis; gas gangrene; clostridium infections; streptococcal infections; necrosis; debridement; surgical infections; soft tissue infections PMID:10621873

  1. Mechanochemically Active Soft Robots.

    PubMed

    Gossweiler, Gregory R; Brown, Cameron L; Hewage, Gihan B; Sapiro-Gheiler, Eitan; Trautman, William J; Welshofer, Garrett W; Craig, Stephen L

    2015-10-14

    The functions of soft robotics are intimately tied to their form-channels and voids defined by an elastomeric superstructure that reversibly stores and releases mechanical energy to change shape, grip objects, and achieve complex motions. Here, we demonstrate that covalent polymer mechanochemistry provides a viable mechanism to convert the same mechanical potential energy used for actuation in soft robots into a mechanochromic, covalent chemical response. A bis-alkene functionalized spiropyran (SP) mechanophore is cured into a molded poly(dimethylsiloxane) (PDMS) soft robot walker and gripper. The stresses and strains necessary for SP activation are compatible with soft robot function. The color change associated with actuation suggests opportunities for not only new color changing or camouflaging strategies, but also the possibility for simultaneous activation of latent chemistry (e.g., release of small molecules, change in mechanical properties, activation of catalysts, etc.) in soft robots. In addition, mechanochromic stress mapping in a functional robotic device might provide a useful design and optimization tool, revealing spatial and temporal force evolution within the robot in a way that might be coupled to autonomous feedback loops that allow the robot to regulate its own activity. The demonstration motivates the simultaneous development of new combinations of mechanophores, materials, and soft, active devices for enhanced functionality.

  2. Mechanochemically Active Soft Robots.

    PubMed

    Gossweiler, Gregory R; Brown, Cameron L; Hewage, Gihan B; Sapiro-Gheiler, Eitan; Trautman, William J; Welshofer, Garrett W; Craig, Stephen L

    2015-10-14

    The functions of soft robotics are intimately tied to their form-channels and voids defined by an elastomeric superstructure that reversibly stores and releases mechanical energy to change shape, grip objects, and achieve complex motions. Here, we demonstrate that covalent polymer mechanochemistry provides a viable mechanism to convert the same mechanical potential energy used for actuation in soft robots into a mechanochromic, covalent chemical response. A bis-alkene functionalized spiropyran (SP) mechanophore is cured into a molded poly(dimethylsiloxane) (PDMS) soft robot walker and gripper. The stresses and strains necessary for SP activation are compatible with soft robot function. The color change associated with actuation suggests opportunities for not only new color changing or camouflaging strategies, but also the possibility for simultaneous activation of latent chemistry (e.g., release of small molecules, change in mechanical properties, activation of catalysts, etc.) in soft robots. In addition, mechanochromic stress mapping in a functional robotic device might provide a useful design and optimization tool, revealing spatial and temporal force evolution within the robot in a way that might be coupled to autonomous feedback loops that allow the robot to regulate its own activity. The demonstration motivates the simultaneous development of new combinations of mechanophores, materials, and soft, active devices for enhanced functionality. PMID:26390078

  3. INTRODUCTION: Status report on fusion research

    NASA Astrophysics Data System (ADS)

    Burkart, Werner

    2005-10-01

    members' personal views on the latest achievements in fusion research, including magnetic and inertial confinement scenarios. The report describes fusion fundamentals and progress in fusion science and technology, with ITER as a possible partner in the realization of self-sustainable burning plasma. The importance of the socio-economic aspects of energy production using fusion power plants is also covered. Noting that applications of plasma science are of broad interest to the Member States, the report addresses the topic of plasma physics to assist in understanding the achievements of better coatings, cheaper light sources, improved heat-resistant materials and other high-technology materials. Nuclear fusion energy production is intrinsically safe, but for ITER the full range of hazards will need to be addressed, including minimising radiation exposure, to accomplish the goal of a sustainable and environmentally acceptable production of energy. We anticipate that the role of the Agency will in future evolve from supporting scientific projects and fostering information exchange to the preparation of safety principles and guidelines for the operation of burning fusion plasmas with a Q > 1. Technical progress in inertial and magnetic confinement, as well as in alternative concepts, will lead to a further increase in international cooperation. New means of communication will be needed, utilizing the best resources of modern information technology to advance interest in fusion. However, today the basis of scientific progress is still through journal publications and, with this in mind, we trust that this report will find an interested readership. We acknowledge with thanks the support of the members of the IFRC as an advisory body to the Agency. Seven chairmen have presided over the IFRC since its first meeting in 1971 in Madison, USA, ensuring that the IAEA fusion efforts were based on the best professional advice possible, and that information on fusion developments has

  4. Soft Magnetic Materials for Improved Energy Performance

    NASA Astrophysics Data System (ADS)

    Willard, Matthew

    2012-02-01

    A main focus of sustainable energy research has been development of renewable energy technologies (e.g. from wind, solar, hydro, geothermal, etc.) to decrease our dependence on non-renewable energy resources (e.g. fossil fuels). By focusing on renewable energy sources now, we hope to provide enough energy resources for future generations. In parallel with this focus, it is essential to develop technologies that improve the efficiency of energy production, distribution, and consumption, to get the most from these renewable resources. Soft magnetic materials play a central role in power generation, conditioning, and conversion technologies and therefore promoting improvements in the efficiency of these materials is essential for our future energy needs. The losses generated by the magnetic core materials by hysteretic, acoustic, and/or eddy currents have a great impact on efficiency. A survey of soft magnetic materials for energy applications will be discussed with a focus on improvement in performance using novel soft magnetic materials designed for these power applications. A group of premiere soft magnetic materials -- nanocrystalline soft magnetic alloys -- will be highlighted for their potential in addressing energy efficiency. These materials are made up of nanocrystalline magnetic transition metal-rich grains embedded within an intergranular amorphous matrix, obtained by partial devitrification of melt-spun amorphous ribbons. The nanoscale grain size results in a desirable combination of large saturation induction, low coercivity, and moderate resistivity unobtainable in conventional soft magnetic alloys. The random distribution of these fine grains causes a reduction in the net magnetocrystalline anisotropy, contributing to the excellent magnetic properties. Recently developed (Fe,Co,Ni)88Zr7B4Cu1 alloys will be discussed with a focus on the microstructure/magnetic property relationship and their effects on the energy efficiency of these materials for AC

  5. Construction and analysis of high-ethanol-producing fusants with co-fermentation ability through protoplast fusion and double labeling technology.

    PubMed

    Ge, Jingping; Zhao, Jingwen; Zhang, Luyan; Zhang, Mengyun; Ping, Wenxiang

    2014-01-01

    Double labeling of resistance markers and report genes can be used to breed engineered Saccharomyces cerevisiae strains that can assimilate xylose and glucose as a mixed carbon source for ethanol fermentation and increased ethanol production. In this study Saccharomyces cerevisiae W5 and Candida shehatae 20335 were used as parent strains to conduct protoplast fusion and the resulting fusants were screened by double labeling. High performance liquid chromatography (HPLC) was used to assess the ethanol yield following the fermentation of xylose and glucose, as both single and mixed carbon sources, by the fusants. Interestingly, one fusant (ZLYRHZ7) was demonstrated to have an excellent fermentation performance, with an ethanol yield using the mixed carbon source of 0.424 g g-1, which compares with 0.240 g g-1 (W5) and 0.353 g g-1 (20335) for the parent strains. This indicates an improvement in the ethanol yield of 43.4% and 16.7%, respectively.

  6. Incidental bronchial injury by soft coagulation.

    PubMed

    Shibano, Tomoki; Endo, Shunsuke; Otani, Shinichi; Nakano, Tomoyuki

    2015-08-01

    Soft coagulation is a hemostat system of electrosurgical units, which automatically regulates its output voltage below 200 V, to avoid excessive output that causes carbonization of the target tissue. However, this new minimally invasive technology still has the potential risk of tissue damage during surgery. We encountered three patients with bronchial injury caused by the above system; one of whom had bronchopleural fistula. This is believed to be the first report emphasizing the adverse effects of the soft coagulation system in thoracic surgery, giving a warning to the application of this convenient device. PMID:26380775

  7. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    DOEpatents

    Gambhir, Sanjiv; Pritha, Ray

    2011-06-07

    Novel double and triple fusion reporter gene constructs harboring distinct imagable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  8. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    DOEpatents

    Gambhir; Sanjiv , Pritha; Ray

    2009-04-28

    Novel double and triple fusion reporter gene constructs harboring distinct imageable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  9. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    DOEpatents

    Gambhir, Sanjiv; Pritha, Ray

    2015-07-14

    Novel double and triple fusion reporter gene constructs harboring distinct imagable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  10. Diode laser soft-tissue surgery: advancements aimed at consistent cutting, improved clinical outcomes.

    PubMed

    Romanos, Georgios E

    2013-01-01

    Laser dentistry and soft-tissue surgery, in particular, have become widely adopted in recent years. Significant cost reductions for dental lasers and the increasing popularity of CADCAM, among other factors, have contributed to a substantial increase in the installed base of dental lasers, especially soft-tissue lasers. New development in soft-tissue surgery, based on the modern understanding of laser-tissue interactions and contact soft-tissue surgery mechanisms, will bring a higher quality and consistency level to laser soft-tissue surgery. Recently introduced diode-laser technology enables enhanced control of side effects that result from tissue overheating and may improve soft-tissue surgical outcomes.

  11. Viral membrane fusion

    SciTech Connect

    Harrison, Stephen C.

    2015-05-15

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism.

  12. Future Directions for Fusion Propulsion Research at NASA

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.; Cassibry, Jason T.

    2005-01-01

    Fusion propulsion is inevitable if the human race remains dedicated to exploration of the solar system. There are fundamental reasons why fusion surpasses more traditional approaches to routine crewed missions to Mars, crewed missions to the outer planets, and deep space high speed robotic missions, assuming that reduced trip times, increased payloads, and higher available power are desired. A recent series of informal discussions were held among members from government, academia, and industry concerning fusion propulsion. We compiled a sufficient set of arguments for utilizing fusion in space. .If the U.S. is to lead the effort and produce a working system in a reasonable amount of time, NASA must take the initiative, relying on, but not waiting for, DOE guidance. Arguments for fusion propulsion are presented, along with fusion enabled mission examples, fusion technology trade space, and a proposed outline for future efforts.

  13. The fusion breeder

    NASA Astrophysics Data System (ADS)

    Moir, Ralph W.

    1982-10-01

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the U.S. fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the U.S. fusion program and the U.S. nuclear energy program. There is wide agreement that many approaches will work and will produce fuel for five equal-sized LWRs, and some approach as many as 20 LWRs at electricity costs within 20% of those at today's price of uranium (30/lb of U3O8). The blankets designed to suppress fissioning, called symbiotes, fusion fuel factories, or just fusion breeders, will have safety characteristics more like pure fusion reactors and will support as many as 15 equal power LWRs. The blankets designed to maximize fast fission of fertile material will have safety characteristics more like fission reactors and will support 5 LWRs. This author strongly recommends development of the fission suppressed blanket type, a point of view not agreed upon by everyone. There is, however, wide agreement that, to meet the market price for uranium which would result in LWR electricity within 20% of today's cost with either blanket type, fusion components can cost severalfold more than would be allowed for pure fusion to meet the goal of making electricity alone at 20% over today's fission costs. Also widely agreed is that the critical-path-item for the fusion breeder is fusion development itself; however, development of fusion breeder specific items (blankets, fuel cycle) should be started now in order to have the fusion breeder by the time the rise in uranium prices forces other more costly choices.

  14. Fusion-fission hybrids for nuclear waste transmutation : a synergistic step between Gen-IV fission and fusion reactors.

    SciTech Connect

    Olson, Craig Lee; Mehlhorn, Thomas Alan; Cipiti, Benjamin B.; Rochau, Gary Eugene

    2007-09-01

    Energy demand and GDP per capita are strongly correlated, while public concern over the role of energy in climate change is growing. Nuclear power plants produce 16% of world electricity demands without greenhouse gases. Generation-IV advanced nuclear energy systems are being designed to be safe and economical. Minimizing the handling and storage of nuclear waste is important. NIF and ITER are bringing sustainable fusion energy closer, but a significant gap in fusion technology development remains. Fusion-fission hybrids could be a synergistic step to a pure fusion economy and act as a technology bridge. We discuss how a pulsed power-driven Z-pinch hybrid system producing only 20 MW of fusion yield can drive a sub-critical transuranic blanket that transmutes 1280 kg of actinide wastes per year and produces 3000 MW. These results are applicable to other inertial and magnetic fusion energy systems. A hybrid system could be introduced somewhat sooner because of the modest fusion yield requirements and can provide both a safe alternative to fast reactors for nuclear waste transmutation and a maturation path for fusion technology. The development and demonstration of advanced materials that withstand high-temperature, high-irradiation environments is a fundamental technology issue that is common to both fusion-fission hybrids and Generation-IV reactors.

  15. Use of data fusion to optimize contaminant transport predictions

    SciTech Connect

    Eeckhout, E. van

    1997-10-01

    The original data fusion workstation, as envisioned by Coleman Research Corp., was constructed under funding from DOE (EM-50) in the early 1990s. The intent was to demonstrate the viability of fusion and analysis of data from various types of sensors for waste site characterization, but primarily geophysical. This overall concept changed over time and evolved more towards hydrogeological (groundwater) data fusion after some initial geophysical fusion work focused at Coleman. This initial geophysical fusion platform was tested at Hanford and Fernald, and the later hydrogeological fusion work has been demonstrated at Pantex, Savannah River, the US Army Letterkenny Depot, a DoD Massachusetts site and a DoD California site. The hydrogeologic data fusion package has been spun off to a company named Fusion and Control Technology, Inc. This package is called the Hydrological Fusion And Control Tool (Hydro-FACT) and is being sold as a product that links with the software package, MS-VMS (MODFLOW-SURFACT Visual Modeling System), sold by HydroGeoLogic, Inc. MODFLOW is a USGS development, and is in the public domain. Since the government paid for the data fusion development at Coleman, the government and their contractors have access to the data fusion technology in this hydrogeologic package for certain computer platforms, but would probably have to hire FACT (Fusion and Control Technology, Inc.,) and/or HydroGeoLogic for some level of software and services. Further discussion in this report will concentrate on the hydrogeologic fusion module that is being sold as Hydro-FACT, which can be linked with MS-VMS.

  16. Soldier systems sensor fusion

    NASA Astrophysics Data System (ADS)

    Brubaker, Kathryne M.

    1998-08-01

    This paper addresses sensor fusion and its applications in emerging Soldier Systems integration and the unique challenges associated with the human platform. Technology that,provides the highest operational payoff in a lightweight warrior system must not only have enhanced capabilities, but have low power components resulting in order of magnitude reductions coupled with significant cost reductions. These reductions in power and cost will be achieved through partnership with industry and leveraging of commercial state of the art advancements in microelectronics and power sources. As new generation of full solution fire control systems (to include temperature, wind and range sensors) and target acquisition systems will accompany a new generation of individual combat weapons and upgrade existing weapon systems. Advanced lightweight thermal, IR, laser and video senors will be used for surveillance, target acquisition, imaging and combat identification applications. Multifunctional sensors will provide embedded training features in combat configurations allowing the soldier to 'train as he fights' without the traditional cost and weight penalties associated with separate systems. Personal status monitors (detecting pulse, respiration rate, muscle fatigue, core temperature, etc.) will provide commanders and highest echelons instantaneous medical data. Seamless integration of GPS and dead reckoning (compass and pedometer) and/or inertial sensors will aid navigation and increase position accuracy. Improved sensors and processing capability will provide earlier detection of battlefield hazards such as mines, enemy lasers and NBC (nuclear, biological, chemical) agents. Via the digitized network the situational awareness database will automatically be updated with weapon, medical, position and battlefield hazard data. Soldier Systems Sensor Fusion will ultimately establish each individual soldier as an individual sensor on the battlefield.

  17. Soft and Ultra-soft Elastomers

    NASA Astrophysics Data System (ADS)

    Daniel, William; Burdynska, Joanna; Kirby, Sam; Zhou, Yang; Matyjaszewski, Krzysztof; Rubinstein, Michael; Sheiko, Sergei; UNC-MIRT Team

    2014-03-01

    Polymeric networks are attractive engineering materials utilized for various mechanically demanding applications. As such, much attention has been paid to reinforcement of polymer mechanical properties with little interest in how to make softer elastomers to address numerous biomedical applications including implants and cell differentiation. Without swelling in a solvent, it is challenging to obtain materials with a modulus below ca.105 Pa, which is dictated by chain entanglements. Here we present two methodologies for the creation of soft and ultra-soft dry elastomeric compounds. The first method utilizes polymer capsules as temperature responsive filler. Depending on volume fraction of microcapsules this method is capable of fine tuning modulus within an order of magnitude. The second technique uses the densely grafted molecular brush architecture to create solvent-free polymer melts and elastomers with plateau moduli in the range one hundred to ten hundred Pa. Such compounds may find uses in biomedical applications including reconstructive surgery and cell differentiation. National Science Foundation DMR-1122483.

  18. Strategy for D/He-3 fusion development

    NASA Technical Reports Server (NTRS)

    Santarius, John F.

    1988-01-01

    It is concluded that Deuterium/Helium-3 fusion faces a more difficult physics development path but an easier technology development path than does Deuterium/Tritium. Early D/He-3 tests in next generation D/T fusion experiments might provide a valuable D/He-3 proof-of-principle at modest cost. At least one high leverage alternate concept should be vigorously pursued. Space applications of D/He-3 fusion are critically important to large scale development.

  19. Accelerator and Fusion Research Division: Summary of activities, 1986

    SciTech Connect

    Not Available

    1987-04-15

    This report contains a summary of activities at the Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division for the year 1986. Topics and facilities investigated in individual papers are: 1-2 GeV Synchrotron Radiation Source, the Center for X-Ray Optics, Accelerator Operations, High-Energy Physics Technology, Heavy-Ion Fusion Accelerator Research and Magnetic Fusion Energy. Six individual papers have been indexed separately. (LSP)

  20. Injectable silk foams for soft tissue regeneration.

    PubMed

    Bellas, Evangelia; Lo, Tim J; Fournier, Eric P; Brown, Joseph E; Abbott, Rosalyn D; Gil, Eun S; Marra, Kacey G; Rubin, J Peter; Leisk, Gary G; Kaplan, David L

    2015-02-18

    Soft tissue fillers are needed for restoration of a defect or augmentation of existing tissues. Autografts and lipotransfer have been under study for soft tissue reconstruction but yield inconsistent results, often with considerable resorption of the grafted tissue. A minimally invasive procedure would reduce scarring and recovery time as well as allow the implant and/or grafted tissue to be placed closer to existing vasculature. Here, the feasibility of an injectable silk foam for soft tissue regeneration is demonstrated. Adipose-derived stem cells survive and migrate through the foam over a 10-d period in vitro. The silk foams are also successfully injected into the subcutaneous space in a rat and over a 3-month period integrating with the surrounding native tissue. The injected foams are palpable and soft to the touch through the skin and returning to their original dimensions after pressure is applied and then released. The foams readily absorb lipoaspirate making the foams useful as a scaffold or template for existing soft tissue filler technologies, useful either as a biomaterial alone or in combination with the lipoaspirate.

  1. The mechanics of soft biological composites.

    SciTech Connect

    Nguyen, Thao D.; Grazier, John Mark; Boyce, Brad Lee; Jones, Reese E.

    2007-10-01

    Biological tissues are uniquely structured materials with technologically appealing properties. Soft tissues such as skin, are constructed from a composite of strong fibrils and fluid-like matrix components. This was the first coordinated experimental/modeling project at Sandia or in the open literature to consider the mechanics of micromechanically-based anisotropy and viscoelasticity of soft biological tissues. We have exploited and applied Sandia's expertise in experimentation and mechanics modeling to better elucidate the behavior of collagen fibril-reinforced soft tissues. The purpose of this project was to provide a detailed understanding of the deformation of ocular tissues, specifically the highly structured skin-like tissue in the cornea. This discovery improved our knowledge of soft/complex materials testing and modeling. It also provided insight into the way that cornea tissue is bio-engineered such that under physiologically-relevant conditions it has a unique set of properties which enhance functionality. These results also provide insight into how non-physiologic loading conditions, such as corrective surgeries, may push the cornea outside of its natural design window, resulting in unexpected non-linear responses. Furthermore, this project created a clearer understanding of the mechanics of soft tissues that could lead to bio-inspired materials, such as highly supple and impact resistant body armor, and improve our design of human-machine interfaces, such as micro-electrical-mechanical (MEMS) based prosthetics.

  2. Injectable Silk Foams for Soft Tissue Regeneration

    PubMed Central

    Bellas, E.; Lo, T.J.; Fournier, E.P.; Brown, J.E.; Abbott, R.D.; Gil, E.S.; Marra, K.G.; Rubin, J.P.; Leisk, G.G.; Kaplan, D.L.

    2015-01-01

    Soft tissue fillers are needed for restoration of a defect or augmentation of existing tissues. Autografts and lipotransfer have been under study for soft tissue reconstruction but yield inconsistent results, often with considerable resorption of the grafted tissue. A minimally invasive procedure would reduce scarring and recovery time as well as allow for the implant and/or grafted tissue to be placed closer to existing vasculature. Here, we demonstrate the feasibility of an injectable silk foam for soft tissue regeneration. Adipose derived stem cells survive and migrate through the foam over a 10 day period in vitro. The silk foams are also successfully injected into the subcutaneous space in a rat and over a 3 month period integrating with the surrounding native tissue. The injected foams are palpable and soft to the touch through the skin and returning to their original dimensions after pressure was applied and then released. The foams readily absorb lipoaspirate making the foams useful as a scaffold or template for existing soft tissue filler technologies, useful either as a biomaterial alone or in combination with the lipoaspirate. PMID:25323438

  3. Developing inertial fusion energy - Where do we go from here?

    SciTech Connect

    Meier, W.R.; Logan, G.

    1996-06-11

    Development of inertial fusion energy (IFE) will require continued R&D in target physics, driver technology, target production and delivery systems, and chamber technologies. It will also require the integration of these technologies in tests and engineering demonstrations of increasing capability and complexity. Development needs in each of these areas are discussed. It is shown how IFE development will leverage off the DOE Defense Programs funded inertial confinement fusion (ICF) work.

  4. Tensional acoustomechanical soft metamaterials

    NASA Astrophysics Data System (ADS)

    Xin, Fengxian; Lu, Tianjian

    2016-06-01

    We create acoustomechanical soft metamaterials whose response to uniaxial tensile stressing can be easily tailored by programming acoustic wave inputs, resulting in force versus stretch curves that exhibit distinct monotonic, s-shape, plateau and non-monotonic snapping behaviors. We theoretically demonstrate this unique metamaterial by considering a thin soft material sheet impinged by two counter-propagating ultrasonic wave inputs across its thickness and stretched by an in-plane uniaxial tensile force. We establish a theoretical acoustomechanical model to describe the programmable mechanics of such soft metamaterial, and introduce the first- and second-order tangential stiffness of its force versus stretch curve to boundary different behaviors that appear during deformation. The proposed phase diagrams for the underlying nonlinear mechanics show promising prospects for designing tunable and switchable photonic/phononic crystals and microfluidic devices that harness snap-through instability.

  5. Introductory physics going soft

    NASA Astrophysics Data System (ADS)

    Langbeheim, Elon; Livne, Shelly; Safran, Samuel A.; Yerushalmi, Edit

    2012-01-01

    We describe an elective course on soft matter at the level of introductory physics. Soft matter physics serves as a context that motivates the presentation of basic ideas in statistical thermodynamics and their applications. It also is an example of a contemporary field that is interdisciplinary and touches on chemistry, biology, and physics. We outline a curriculum that uses the lattice gas model as a quantitative and visual tool, initially to introduce entropy, and later to facilitate the calculation of interactions. We demonstrate how free energy minimization can be used to teach students to understand the properties of soft matter systems such as the phases of fluid mixtures, wetting of interfaces, self-assembly of surfactants, and polymers. We discuss several suggested activities in the form of inquiry projects which allow students to apply the concepts they have learned to experimental systems.

  6. Tensional acoustomechanical soft metamaterials.

    PubMed

    Xin, Fengxian; Lu, Tianjian

    2016-01-01

    We create acoustomechanical soft metamaterials whose response to uniaxial tensile stressing can be easily tailored by programming acoustic wave inputs, resulting in force versus stretch curves that exhibit distinct monotonic, s-shape, plateau and non-monotonic snapping behaviors. We theoretically demonstrate this unique metamaterial by considering a thin soft material sheet impinged by two counter-propagating ultrasonic wave inputs across its thickness and stretched by an in-plane uniaxial tensile force. We establish a theoretical acoustomechanical model to describe the programmable mechanics of such soft metamaterial, and introduce the first- and second-order tangential stiffness of its force versus stretch curve to boundary different behaviors that appear during deformation. The proposed phase diagrams for the underlying nonlinear mechanics show promising prospects for designing tunable and switchable photonic/phononic crystals and microfluidic devices that harness snap-through instability. PMID:27264106

  7. Soft drinks in schools.

    PubMed

    2004-01-01

    This statement is intended to inform pediatricians and other health care professionals, parents, superintendents, and school board members about nutritional concerns regarding soft drink consumption in schools. Potential health problems associated with high intake of sweetened drinks are 1) overweight or obesity attributable to additional calories in the diet; 2) displacement of milk consumption, resulting in calcium deficiency with an attendant risk of osteoporosis and fractures; and 3) dental caries and potential enamel erosion. Contracts with school districts for exclusive soft drink rights encourage consumption directly and indirectly. School officials and parents need to become well informed about the health implications of vended drinks in school before making a decision about student access to them. A clearly defined, district-wide policy that restricts the sale of soft drinks will safeguard against health problems as a result of overconsumption.

  8. Tensional acoustomechanical soft metamaterials

    PubMed Central

    Xin, Fengxian; Lu, Tianjian

    2016-01-01

    We create acoustomechanical soft metamaterials whose response to uniaxial tensile stressing can be easily tailored by programming acoustic wave inputs, resulting in force versus stretch curves that exhibit distinct monotonic, s-shape, plateau and non-monotonic snapping behaviors. We theoretically demonstrate this unique metamaterial by considering a thin soft material sheet impinged by two counter-propagating ultrasonic wave inputs across its thickness and stretched by an in-plane uniaxial tensile force. We establish a theoretical acoustomechanical model to describe the programmable mechanics of such soft metamaterial, and introduce the first- and second-order tangential stiffness of its force versus stretch curve to boundary different behaviors that appear during deformation. The proposed phase diagrams for the underlying nonlinear mechanics show promising prospects for designing tunable and switchable photonic/phononic crystals and microfluidic devices that harness snap-through instability. PMID:27264106

  9. Construction and analysis of high-ethanol-producing fusants with co-fermentation ability through protoplast fusion and double labeling technology.

    PubMed

    Ge, Jingping; Zhao, Jingwen; Zhang, Luyan; Zhang, Mengyun; Ping, Wenxiang

    2014-01-01

    Double labeling of resistance markers and report genes can be used to breed engineered Saccharomyces cerevisiae strains that can assimilate xylose and glucose as a mixed carbon source for ethanol fermentation and increased ethanol production. In this study Saccharomyces cerevisiae W5 and Candida shehatae 20335 were used as parent strains to conduct protoplast fusion and the resulting fusants were screened by double labeling. High performance liquid chromatography (HPLC) was used to assess the ethanol yield following the fermentation of xylose and glucose, as both single and mixed carbon sources, by the fusants. Interestingly, one fusant (ZLYRHZ7) was demonstrated to have an excellent fermentation performance, with an ethanol yield using the mixed carbon source of 0.424 g g-1, which compares with 0.240 g g-1 (W5) and 0.353 g g-1 (20335) for the parent strains. This indicates an improvement in the ethanol yield of 43.4% and 16.7%, respectively. PMID:25268957

  10. Gasdynamic Mirror (GDM) Fusion Propulsion Engine Experiment

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Gasdynamic Mirror, or GDM, is an example of a magnetic mirror-based fusion propulsion system. Its design is primarily consisting of a long slender solenoid surrounding a vacuum chamber that contains plasma. The bulk of the fusion plasma is confined by magnetic field generated by a series of toroidal-shaped magnets in the center section of the device. the purpose of the GDM Fusion Propulsion Experiment is to confirm the feasibility of the concept and to demonstrate many of the operational characteristics of a full-size plasma can be confined within the desired physical configuration and still reman stable. This image shows an engineer from Propulsion Research Technologies Division at Marshall Space Flight Center inspecting solenoid magnets-A, an integrate part of the Gasdynamic Mirror Fusion Propulsion Engine Experiment.

  11. Magnetic mirror fusion: status and prospects

    SciTech Connect

    Post, R.F.

    1980-02-11

    Two improved mirror systems, the tandem mirror (TM) and the field-reversed mirror (FRM) are being intensively studied. The twin practical aims of these studies: to improve the economic prospects for mirror fusion power plants and to reduce the size and/or complexity of such plants relative to earlier approaches to magnetic fusion. While at the present time the program emphasis is still strongly oriented toward answering scientific questions, the emphasis is shifting as the data accumulates and as larger facilities - ones with a heavy technological and engineering orientation - are being prepared. The experimental and theoretical progress that led to the new look in mirror fusion research is briefly reviewed, the new TM and the FRM ideas are outlined, and the projected future course of mirror fusion research is discussed.

  12. National mirror fusion program plan

    NASA Astrophysics Data System (ADS)

    Borchers, R. R.; Vanatta, C. M.

    1980-01-01

    Experiments are under way in the Tandem Mirror Experiment (TMX) facility at Livermore. Recently this idea was greatly improved by incorporating a new element called the thermal barrier, a concept that promises a higher power gain factor (Q = 10 to 20) with much less demanding neutral beam and magnet technology and a higher fusion power density in the reactor. In addition to the tandem-mirror experiments in TMX, a new attempt will be made in the Beta 2 facility during FY 1980 to create and sustain a field-reversed mirror configuration, which is a different mirror fusion approach that could lead to early commercialization of small reactors. The plan presented here is designed to exploit the results of these and other mirror experiments and theoretical developments toward a variety of applications. The main objective is electric power generation.

  13. Prospects for toroidal fusion reactors

    SciTech Connect

    Sheffield, J.; Galambos, J.D.

    1994-06-01

    Work on the International Thermonuclear Experimental Reactor (ITER) tokamak has refined understanding of the realities of a deuterium-tritium (D-T) burning magnetic fusion reactor. An ITER-like tokamak reactor using ITER costs and performance would lead to a cost of electricity (COE) of about 130 mills/kWh. Advanced tokamak physics to be tested in the Toroidal Physics Experiment (TPX), coupled with moderate components in engineering, technology, and unit costs, should lead to a COE comparable with best existing fission systems around 60 mills/kWh. However, a larger unit size, {approximately}2000 MW(e), is favored for the fusion system. Alternative toroidal configurations to the conventional tokamak, such as the stellarator, reversed-field pinch, and field-reversed configuration, offer some potential advantage, but are less well developed, and have their own challenges.

  14. Interplanetary propulsion using inertial fusion

    NASA Technical Reports Server (NTRS)

    Orth, C. D.; Hogan, W. J.; Hoffman, N.; Murray, K.; Klein, G.; Diaz, F. C.

    1987-01-01

    Inertial fusion can be used to power spacecraft within the solar system and beyond. Such spacecraft have the potential for short-duration manned-mission performance exceeding other technologies. We are conducting a study to assess the systems aspects of inertial fusion as applied to such missions, based on the conceptual engine design of Hyde (1983) we describe the required systems for an entirely new spacecraft design called VISTA that is based on the use of DT fuel. We give preliminary design details for the power conversion and power conditioning systems for manned missions to Mars of total duration of about 100 days. Specific mission performance results will be published elsewhere, after the study has been completed.

  15. Permanent soft tissue fillers.

    PubMed

    Wilson, YuShan L; Ellis, David A F

    2011-12-01

    As our youth-oriented society ages, interest in nonsurgical aesthetic techniques has generated a dramatic rise in the use of filling agents for facial rejuvenation. Backed by multiple published studies documenting safety and efficacy, soft tissue fillers are often viewed as treatments with minimal recovery time and limited risk of complications when compared with traditional surgical interventions. This has led to a genuine demand for fillers with similar safety profiles but ever increasing longevity in their aesthetic corrections. This review addresses many of the permanent soft tissue fillers that are commercially available worldwide as well as important concerns regarding their complications.

  16. Some Properties of Fuzzy Soft Proximity Spaces

    PubMed Central

    Demir, İzzettin; Özbakır, Oya Bedre

    2015-01-01

    We study the fuzzy soft proximity spaces in Katsaras's sense. First, we show how a fuzzy soft topology is derived from a fuzzy soft proximity. Also, we define the notion of fuzzy soft δ-neighborhood in the fuzzy soft proximity space which offers an alternative approach to the study of fuzzy soft proximity spaces. Later, we obtain the initial fuzzy soft proximity determined by a family of fuzzy soft proximities. Finally, we investigate relationship between fuzzy soft proximities and proximities. PMID:25793224

  17. The VISTA spacecraft: Advantages of ICF (Inertial Confinement Fusion) for interplanetary fusion propulsion applications

    SciTech Connect

    Orth, C.D.; Klein, G.; Sercel, J.; Hoffman, N.; Murray, K.; Chang-Diaz, F.

    1987-10-02

    Inertial Confinement Fusion (ICF) is an attractive engine power source for interplanetary manned spacecraft, especially for near-term missions requiring minimum flight duration, because ICF has inherent high power-to-mass ratios and high specific impulses. We have developed a new vehicle concept called VISTA that uses ICF and is capable of round-trip manned missions to Mars in 100 days using A.D. 2020 technology. We describe VISTA's engine operation, discuss associated plasma issues, and describe the advantages of DT fuel for near-term applications. Although ICF is potentially superior to non-fusion technologies for near-term interplanetary transport, the performance capabilities of VISTA cannot be meaningfully compared with those of magnetic-fusion systems because of the lack of a comparable study of the magnetic-fusion systems. We urge that such a study be conducted.

  18. The VISTA spacecraft: Advantages of ICF (Inertial Confinement Fusion) for interplanetary fusions propulsion applications

    NASA Technical Reports Server (NTRS)

    Orth, Charles D.; Klein, Gail; Sercel, Joel; Hoffman, Nate; Murray, Kathy; Chang-Diaz, Franklin

    1987-01-01

    Inertial Confinement Fusion (ICF) is an attractive engine power source for interplanetary manned spacecraft, especially for near-term missions requiring minimum flight duration, because ICF has inherent high power-to-mass ratios and high specific impulses. We have developed a new vehicle concept called VISTA that uses ICF and is capable of round-trip manned missions to Mars in 100 days using A.D. 2020 technology. We describe VISTA's engine operation, discuss associated plasma issues, and describe the advantages of DT fuel for near-term applications. Although ICF is potentially superior to non-fusion technologies for near-term interplanetary transport, the performance capabilities of VISTA cannot be meaningfully compared with those of magnetic-fusion systems because of the lack of a comparable study of the magnetic-fusion systems. We urge that such a study be conducted.

  19. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2014

    SciTech Connect

    Wiffen, Frederick W.; Noe, Susan P.; Snead, Lance Lewis

    2014-10-01

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the ORNL fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing DOE Office of Science fusion energy program while developing materials for fusion power systems. In doing so the program continues to be integrated both with the larger U.S. and international fusion materials communities, and with the international fusion design and technology communities.

  20. Minimally Invasive Transforaminal Lumbar Interbody Fusion.

    PubMed

    Ahn, Junyoung; Tabaraee, Ehsan; Singh, Kern

    2015-07-01

    Minimally invasive transforaminal lumbar interbody fusion (MIS TLIF) is performed via tubular dilators thereby preserving the integrity of the paraspinal musculature. The decreased soft tissue disruption in the MIS technique has been associated with significantly decreased blood loss, shorter length of hospitalization, and an expedited return to work while maintaining comparable arthrodesis rates when compared with the open technique particularly in the setting of spondylolisthesis (isthmic and degenerative), recurrent symptomatic disk herniation, spinal stenosis, pseudoarthrosis, iatrogenic instability, and spinal trauma. The purpose of this article and the accompanying video wass to demonstrate the techniques for a primary, single-level MIS TLIF. PMID:26079840

  1. Picosecond resolution soft x-ray laser plasma interferometry

    SciTech Connect

    Moon, S; Nilsen, J; Ng, A; Shlyaptsev, V; Dunn, J; Hunter, J; Keenan, R; Marconi, M; Filevich, J; Rocca, J; Smith, R

    2003-12-01

    We describe a soft x-ray laser interferometry technique that allows two-dimensional diagnosis of plasma electron density with picosecond time resolution. It consists of the combination of a robust high throughput amplitude division interferometer and a 14.7 nm transient inversion soft x-ray laser that produces {approx} 5 ps pulses. Due to its picosecond resolution and short wavelength scalability, this technique has potential for extending the high inherent precision of soft x-ray laser interferometry to the study of very dense plasmas of significant fundamental and practical interest, such as those investigated for inertial confined fusion. Results of its use in the diagnostics of dense large scale laser-created plasmas are presented.

  2. Inertial Fusion Sciences and Applications 2003: State of the Art 2003, Published by the American Nuclear Society

    SciTech Connect

    Editors: B. A. Hammel; D. D. Meyerhofer; J. Meyer-ter-Vehn; H. Azechi. Organizing Chair: W. J. Hogan

    2004-06-01

    Collection of all papers presented and submitted at the IFSA2003 conference. Topics included target design and performance, fast ignition, plasma instabilities, laser technology, fusion reactor technology

  3. Fusion excitation functions involving transitional nuclei

    SciTech Connect

    Rehm, K.E.; Jiang, C.L.; Esbensen, H.

    1995-08-01

    Measurements of fusion excitation functions involving transitional nuclei {sup 78}Kr and {sup 100}Mo showed a different behavior at low energies, if compared to measurements with {sup 86}Kr and {sup 92}Mo. This points to a possible influence of nuclear structure on the fusion process. One way to characterize the structure of vibrational nuclei is via their restoring force parameters C{sub 2} which can be calculated from the energy of the lowest 2{sup +} state and the corresponding B(E2) value. A survey of the even-even nuclei between A = 28-150 shows strong variations in C{sub 2} values spanning two orders of magnitude. The lowest values for C{sub 2} are observed for {sup 78}Kr, {sup 104}Ru and {sup 124}Xe followed by {sup 74,76}Ge, {sup 74,76}Se, {sup 100}Mo and {sup 110}Pd. In order to learn more about the influence of {open_quotes}softness{close_quotes} on the sub-barrier fusion enhancement, we measured cross sections for evaporation residue production for the systems {sup 78}Kr + {sup 104}Ru and {sup 78}Kr + {sup 76}Ge with the gas-filled magnet technique. For both systems, fusion excitation functions involving the closed neutron shell nucleus {sup 86}Kr were measured previously. The data are presently being analyzed.

  4. Technology.

    ERIC Educational Resources Information Center

    Giorgis, Cyndi; Johnson, Nancy J.

    2002-01-01

    Presents annotations of 30 works of children's literature that support the topic of technology and its influences on readers' daily lives. Notes some stories tell about a time when simple tools enabled individuals to accomplish tasks, and others feature visionaries who used technology to create buildings, bridges, roads, and inventions. Considers…

  5. Soft, flexible micromanipulators comprising polypyrrole trilayer microactuators

    NASA Astrophysics Data System (ADS)

    Khaldi, Alexandre; Maziz, Ali; Alici, Gursel; Spinks, Geoffrey M.; Jager, Edwin W. H.

    2015-04-01

    Within the areas of cell biology, biomedicine and minimal invasive surgery, there is a need for soft, flexible and dextrous biocompatible manipulators for handling biological objects, such as single cells and tissues. Present day technologies are based on simple suction using micropipettes for grasping objects. The micropipettes lack the possibility of accurate force control, nor are they soft and compliant and may thus cause damage to the cells or tissue. Other micromanipulators use conventional electric motors however the further miniaturization of electrical motors and their associated gear boxes and/or push/pull wires has reached its limits. Therefore there is an urgent need for new technologies for micromanipulation of soft biological matter. We are developing soft, flexible micromanipulators such as micro- tweezers for the handling and manipulation of biological species including cells and surgical tools for minimal invasive surgery. Our aim is to produce tools with minimal dimensions of 100 μm to 1 mm in size, which is 1-2 orders of magnitude smaller than existing technology. We present newly developed patterning and microfabrication methods for polymer microactuators as well as the latest results to integrate these microactuators into easy to use manipulation tools. The outcomes of this study contribute to the realisation of low-foot print devices articulated with electroactive polymer actuators for which the physical interface with the power source has been a significant challenge limiting their application. Here, we present a new bottom-up microfabrication process. We show for the first time that such a bottom-up fabricated actuator performs a movement in air. This is a significant step towards widening the application areas of the soft microactuators.

  6. Muon Catalyzed Fusion

    NASA Technical Reports Server (NTRS)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  7. Fusion facility siting considerations

    NASA Astrophysics Data System (ADS)

    Bussell, G. T.

    1985-02-01

    Inherent in the fusion program's transition from hydrogen devices to commercial power machines is a general increase in the size and scope of succeeding projects. This growth will lead to increased emphasis on safety, environmental impact, and the external effects of fusion in general, and of each new device in particular. An important consideration in this regard is site selection. Major siting issues that may affect the economics, safety, and environmental impact of fusion are examined.

  8. Fusion: The controversy continues

    SciTech Connect

    1989-07-01

    Nuclear fusion-the power of the stars that promises mankind an inexhaustible supply of energy-seems concurrently much closer and still distant this month. The recent flurry of announcements concerning the achievement of a cold fusion reaction has-if nothing else-underscored the historic importance of the basic fusion reaction which uses hydrogen ions to fuel an energy-producing reaction.

  9. Soft, thermally conductive material

    NASA Technical Reports Server (NTRS)

    Anderson, A. J.

    1974-01-01

    Silicon rubber filled with high percentage of silver-plated copper microspheres provides soft, thermally conductive seat for thermal switch. Material also could be used in thin sheet form to prevent corrosion between dissimilar metals while maintaining good thermal communication. It could be used as thermal gasketing.

  10. Soft tissue augmentation.

    PubMed

    Hirsch, Ranella J; Cohen, Joel L

    2006-09-01

    Recent additions to the soft tissue augmentation armamentarium have greatly increased the dermatologic surgeon's choices in optimizing facial contouring and the treatment of acne scars. In this article, we review the science of fillers and look at the future of dermal fillers.

  11. [Soft-tissue fillers].

    PubMed

    Dallara, J-M

    2008-02-01

    Injections of soft-tissue fillers have rapidly become accessible and essential. When dealing with facial aging, it is logical to compensate for the loss of volume, but the optimisation of a younger face involves a 3D strategy as well.

  12. Forms of Soft Sculpture

    ERIC Educational Resources Information Center

    Tucker, Dorothy

    1978-01-01

    For the past several years, students at Madison Senior High School in San Diego have responded to the tactile texture and draping quality of soft materials. They experimented enthusiastically with three-dimensional forms made out of foam rubber. Here is the result of their efforts and experimentation. (Author/RK)

  13. Soft matrices on soft multisets in an optimal decision process

    NASA Astrophysics Data System (ADS)

    Coskun, Arzu Erdem; Aras, Cigdem Gunduz; Cakalli, Huseyin; Sonmez, Ayse

    2016-08-01

    In this paper, we introduce a concept of a soft matrix on a soft multiset, and investigate how to use soft matrices to solve decision making problems. An algorithm for a multiple choose selection problem is also provided. Finally, we demonstrate an illustrative example to show the decision making steps.

  14. Meteorite fusion crust variability.

    NASA Astrophysics Data System (ADS)

    Thaisen, Kevin G.; Taylor, Lawrence A.

    2009-06-01

    Two assumptions commonly employed in meteorite interpretation are that fusion crust compositions represent the bulk-rock chemistry of the interior meteorite and that the vesicles within the fusion crust result from the release of implanted solar wind volatiles. Electron microprobe analyses of thin sections from lunar meteorite Miller Range (MIL) 05035 and eucrite Bates Nunataks (BTN) 00300 were performed to determine if the chemical compositions of the fusion crust varied and/or represented the published bulk rock composition. It was determined that fusion crust compositions are significantly influenced by the incorporation of fragments from the substrate, and by the composition and grain size of those minerals. Because of compositional heterogeneities throughout the meteorite, one cannot assume that fusion crust composition represents the bulk rock composition. If the compositional variability within the fusion crust and mineralogical differences among thin sections goes unnoticed, then the perceived composition and petrogenetic models of formation will be incorrect. The formation of vesicles within these fusion crusts were also compared to current theories attributing vesicles to a solar wind origin. Previous work from the STONE-5 experiment, where terrestrial rocks were exposed on the exterior of a spacecraft heatshield, produced a vesicular fusion crust without prolonged exposure to solar wind suggesting that the high temperatures experienced by a meteorite during passage through the Earth's atmosphere are sufficient to cause boiling of the melt. Therefore, the assumption that all vesicles found within a fusion crust are due to the release of implanted volatiles of solar wind may not be justified.

  15. Soft Decision Analyzer and Method

    NASA Technical Reports Server (NTRS)

    Steele, Glen F. (Inventor); Lansdowne, Chatwin (Inventor); Zucha, Joan P. (Inventor); Schlesinger, Adam M. (Inventor)

    2016-01-01

    A soft decision analyzer system is operable to interconnect soft decision communication equipment and analyze the operation thereof to detect symbol wise alignment between a test data stream and a reference data stream in a variety of operating conditions.

  16. Soft Decision Analyzer and Method

    NASA Technical Reports Server (NTRS)

    Steele, Glen F. (Inventor); Lansdowne, Chatwin (Inventor); Zucha, Joan P. (Inventor); Schlesinger, Adam M. (Inventor)

    2015-01-01

    A soft decision analyzer system is operable to interconnect soft decision communication equipment and analyze the operation thereof to detect symbol wise alignment between a test data stream and a reference data stream in a variety of operating conditions.

  17. Magnetized Target Fusion: Prospects for Low-Cost Fusion Energy

    NASA Technical Reports Server (NTRS)

    Siemon, Richard E.; Turchi, Peter J.; Barnes, Daniel C.; Degnan, James; Parks, Paul; Ryutov, Dmitri D.; Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    Magnetized Target Fusion (MTF) has attracted renewed interest in recent years because it has the potential to resolve one of the major problems with conventional fusion energy research - the high cost of facilities to do experiments and in general develop practical fusion energy. The requirement for costly facilities can be traced to fundamental constraints. The Lawson condition implies large system size in the case of conventional magnetic confinement, or large heating power in the case of conventional inertial confinement. The MTF approach is to use much higher fuel density than with conventional magnetic confinement (corresponding to megabar pressures), which results in a much-reduced system size to achieve Lawson conditions. Intrinsically the system must be pulsed because the pressures exceed the strength of any known material. To facilitate heating the fuel (or "target") to thermonuclear conditions with a high-power high-intensity source of energy, magnetic fields are used to insulate the high-pressure fuel from material surroundings (thus "magnetized target"). Because of magnetic insulation, the required heating power intensity is reduced by many orders of magnitude compared to conventional inertial fusion, even with relatively poor energy confinement in the magnetic field, such as that characterized by Bohm diffusion. In this paper we show semi-quantitatively why MTF-should allow fusion energy production without costly facilities within the same generally accepted physical constraints used for conventional magnetic and inertial fusion. We also briefly discuss potential applications of this technology ranging from nuclear rockets for space propulsion to a practical commercial energy system. Finally, we report on the exploratory research underway, and the interesting physics issues that arise in the MTF regime of parameters. Experiments at Los Alamos are focused on formation of a suitable plasma target for compression, utilizing the knowledge base for compact

  18. Soft Robotic Grippers for Biological Sampling on Deep Reefs

    PubMed Central

    Galloway, Kevin C.; Becker, Kaitlyn P.; Phillips, Brennan; Kirby, Jordan; Licht, Stephen; Tchernov, Dan; Gruber, David F.

    2016-01-01

    Abstract This article presents the development of an underwater gripper that utilizes soft robotics technology to delicately manipulate and sample fragile species on the deep reef. Existing solutions for deep sea robotic manipulation have historically been driven by the oil industry, resulting in destructive interactions with undersea life. Soft material robotics relies on compliant materials that are inherently impedance matched to natural environments and to soft or fragile organisms. We demonstrate design principles for soft robot end effectors, bench-top characterization of their grasping performance, and conclude by describing in situ testing at mesophotic depths. The result is the first use of soft robotics in the deep sea for the nondestructive sampling of benthic fauna. PMID:27625917

  19. Soft Robotic Grippers for Biological Sampling on Deep Reefs

    PubMed Central

    Galloway, Kevin C.; Becker, Kaitlyn P.; Phillips, Brennan; Kirby, Jordan; Licht, Stephen; Tchernov, Dan; Gruber, David F.

    2016-01-01

    Abstract This article presents the development of an underwater gripper that utilizes soft robotics technology to delicately manipulate and sample fragile species on the deep reef. Existing solutions for deep sea robotic manipulation have historically been driven by the oil industry, resulting in destructive interactions with undersea life. Soft material robotics relies on compliant materials that are inherently impedance matched to natural environments and to soft or fragile organisms. We demonstrate design principles for soft robot end effectors, bench-top characterization of their grasping performance, and conclude by describing in situ testing at mesophotic depths. The result is the first use of soft robotics in the deep sea for the nondestructive sampling of benthic fauna.

  20. Progress toward fusion with light ions

    SciTech Connect

    1980-01-01

    New results in target design, beam generation and transport, and pulse power technology have led to a program shift stressing light ion-driven inertial confinement fusion. According to present estimates, a gain ten fusion pellet will require at least one megajoule and approx. 100 TW power input. Progress in ion sources has resulted in beam power density of approx. 1 TW/cm/sup 2/, a factor of ten increase over the last year, and cylindrical implosion experiments have been performed. Other experiments have demonstrated the ability to transport ion and electron beams with high efficiency and have confirmed numerical predictions on the properties of beam transport channels converging at a target. These developments together with improvements in pulse power technology allow us to project that the 72 beam, 100 TW Particle Beam Fusion Accelerator, PBFA-II will attain target output energy equal to stored energy in the accelerator.

  1. Hyperspectral and broadband FLIR data fusion

    NASA Astrophysics Data System (ADS)

    Nicholas, Mike; James, Matt; Nothard, Jo

    2005-10-01

    Future targeting systems aim to extend the range of air-ground target search, acquisition, temporal tracking and identification exceeding those currently afforded by forward looking infrared sensors. One technology option that has the potential to fulfil this requirement is hyperspectral imaging. Therefore a solution to detection and identification at longer ranges is the fusion of data from broadband and hyperspectral sensors. QinetiQ, under the Data & Information Fusion Defense Technology Centre, aims to develop a fully integrated spatial/spectral and temporal target detection/ identification air- ground tracking environment. This will build upon current capabilities in target tracking, synthetic scene generation, sensor modelling, hyperspectral and broadband target detection and identification algorithms into a tool that can be used to evaluate data fusion architectures.

  2. Generic Stellarator-like Magnetic Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Sheffield, John; Spong, Donald

    2015-11-01

    The Generic Magnetic Fusion Reactor paper, published in 1985, has been updated, reflecting the improved science and technology base in the magnetic fusion program. Key changes beyond inflation are driven by important benchmark numbers for technologies and costs from ITER construction, and the use of a more conservative neutron wall flux and fluence in modern fusion reactor designs. In this paper the generic approach is applied to a catalyzed D-D stellarator-like reactor. It is shown that an interesting power plant might be possible if the following parameters could be achieved for a reference reactor: R/ < a > ~ 4 , confinement factor, fren = 0.9-1.15, < β > ~ 8 . 0 -11.5 %, Zeff ~ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ~ 0.07, Bm ~ 14-16 T, and R ~ 18-24 m. J. Sheffield was supported under ORNL subcontract 4000088999 with the University of Tennessee.

  3. Materials and technologies for soft implantable neuroprostheses

    NASA Astrophysics Data System (ADS)

    Lacour, Stéphanie P.; Courtine, Grégoire; Guck, Jochen

    2016-10-01

    Implantable neuroprostheses are engineered systems designed to restore or substitute function for individuals with neurological deficits or disabilities. These systems involve at least one uni- or bidirectional interface between a living neural tissue and a synthetic structure, through which information in the form of electrons, ions or photons flows. Despite a few notable exceptions, the clinical dissemination of implantable neuroprostheses remains limited, because many implants display inconsistent long-term stability and performance, and are ultimately rejected by the body. Intensive research is currently being conducted to untangle the complex interplay of failure mechanisms. In this Review, we emphasize the importance of minimizing the physical and mechanical mismatch between neural tissues and implantable interfaces. We explore possible materials solutions to design and manufacture neurointegrated prostheses, and outline their immense therapeutic potential.

  4. SoftWare Automated Workflow Technology

    2009-05-27

    SWAWT is a workflow management system designed to streamline team-oriented software development activities. Combining widely used tools (make, Subversion, CVS, RPM, XML, etc.), SWAWT creates an open environment that actually bridges software development phases with project management tasks. The design and implementation of SWAWT is based on roles, conventions, and procedures that will work with any software life cycle process (Waterfall, XP, etc.). This practical approach integrates, automates, and even eliminates many activities associated withmore » development, testing, configuration management, packaging, and delivery of software.« less

  5. SoftWare Automated Workflow Technology

    SciTech Connect

    Darren Curtis, Chance Younkin

    2009-05-27

    SWAWT is a workflow management system designed to streamline team-oriented software development activities. Combining widely used tools (make, Subversion, CVS, RPM, XML, etc.), SWAWT creates an open environment that actually bridges software development phases with project management tasks. The design and implementation of SWAWT is based on roles, conventions, and procedures that will work with any software life cycle process (Waterfall, XP, etc.). This practical approach integrates, automates, and even eliminates many activities associated with development, testing, configuration management, packaging, and delivery of software.

  6. A bioinspired soft actuated material.

    PubMed

    Roche, Ellen T; Wohlfarth, Robert; Overvelde, Johannes T B; Vasilyev, Nikolay V; Pigula, Frank A; Mooney, David J; Bertoldi, Katia; Walsh, Conor J

    2014-02-26

    A class of soft actuated materials that can achieve lifelike motion is presented. By embedding pneumatic actuators in a soft material inspired by a biological muscle fibril architecture, and developing a simple finite element simulation of the same, tunable biomimetic motion can be achieved with fully soft structures, exemplified here by an active left ventricle simulator.

  7. Cavitation and Fusion

    NASA Astrophysics Data System (ADS)

    Stringham, Roger S.

    2005-12-01

    Natural cavitation phenomena in D2O using piezo devices, is now amplified initiating DD fusion events that produce heat and helium. The transient cavitation bubble produces micro accelerators in the form of jets containing high densities of deuterons, 1024-25/cc from the cavitating D2O. An electrically driven piezo device in a reactor filled with D2O produces jets that implant deuterons into a target foil producing 4He and T plus heat. There is no long range radiation associated with this process. We are moving in the direction of utilizing smaller systems by gaining faster and less expensive technology growth moving from successes at 0.2 and 0.4 MHz to 1.7 MHz. One of the results of our low frequency studies is a 1 to 3 MHz induced standing wave in our target foils. We are using sonoluminescence intensity as a tool to guide us in finding highest plasma density in the adiabatic bubble collapse process in the jet plasma formation. The generation of these sonoluminescence photons relates to conditions for the target implantation process. These experiments and the analytical methods have concentrated on the mass spectroscopy of reactor gases, calorimetry of the reactor and power supply, and the scanning electron microscope photographs of target foils. This work provides a path for an ecological and hydrocarbon-free energy source for all energy applications.

  8. Interplanetary propulsion using inertial fusion

    NASA Technical Reports Server (NTRS)

    Orth, Charles D.; Hoffman, Nate; Murray, Kathy; Klein, Gail; Diaz, Franklin Chang

    1987-01-01

    Inertial fusion can be used to power spacecraft within the solar system and beyond. Such spacecraft have the potential for short duration manned mission performance exceeding other technologies. A study was conducted to assess the systems aspects of inertial as applied to such missions, based on the conceptual engine design of Hyde (1983). The required systems for an entirely new spacecraft design called VISTA that is based on the use of DT fuel is described. Preliminary design details are given for the power conversion and power conditioning systems for manned missions to Mars of total duration of about 100 days.

  9. EDITORIAL: Safety aspects of fusion power plants

    NASA Astrophysics Data System (ADS)

    Kolbasov, B. N.

    2007-07-01

    This special issue of Nuclear Fusion contains 13 informative papers that were initially presented at the 8th IAEA Technical Meeting on Fusion Power Plant Safety held in Vienna, Austria, 10-13 July 2006. Following recommendation from the International Fusion Research Council, the IAEA organizes Technical Meetings on Fusion Safety with the aim to bring together experts to discuss the ongoing work, share new ideas and outline general guidance and recommendations on different issues related to safety and environmental (S&E) aspects of fusion research and power facilities. Previous meetings in this series were held in Vienna, Austria (1980), Ispra, Italy (1983), Culham, UK (1986), Jackson Hole, USA (1989), Toronto, Canada (1993), Naka, Japan (1996) and Cannes, France (2000). The recognized progress in fusion research and technology over the last quarter of a century has boosted the awareness of the potential of fusion to be a practically inexhaustible and clean source of energy. The decision to construct the International Thermonuclear Experimental Reactor (ITER) represents a landmark in the path to fusion power engineering. Ongoing activities to license ITER in France look for an adequate balance between technological and scientific deliverables and complying with safety requirements. Actually, this is the first instance of licensing a representative fusion machine, and it will very likely shape the way in which a more common basis for establishing safety standards and policies for licensing future fusion power plants will be developed. Now that ITER licensing activities are underway, it is becoming clear that the international fusion community should strengthen its efforts in the area of designing the next generations of fusion power plants—demonstrational and commercial. Therefore, the 8th IAEA Technical Meeting on Fusion Safety focused on the safety aspects of power facilities. Some ITER-related safety issues were reported and discussed owing to their potential

  10. Fusion Science Education Outreach

    NASA Astrophysics Data System (ADS)

    Danielson, C. A.; DIII-D Education Group

    1996-11-01

    This presentation will focus on education outreach activities at General Atomics that have been expanded to include the general population on science education with a focus on fusion energy. Outreach materials are distributed upon request both nationally and internationally. These materials include a notebook containing copies of DIII--D tour panels, fusion poster, new fusion energy video, new fusion energy brochure, and the electromagnetic spectrum curriculum. The 1996 Fusion Forum (held in the House Caucus Room) included a student/ teacher lunch with Energy Secretary Hazel O'Leary and a private visit to the Forum exhibits. The continuing partnership with Kearny High School includes lectures, job shadowing, internship, equipment donations and an award-winning electric car-racing program. Development of distribution by CD of the existing interactive fusion energy kiosk and a virtual reality tour of the DIII--D facility are underway. The DIII--D fusion education WWW site includes e-mail addresses to ``Ask the Wizard,'' and/or receive GA's outreach materials. Steve Rodecker, a local science teacher, aided by DIII--D fusion staff, won his second Tapestry Award; he also was named the ``1995 National Science Teacher of the Year'' and will be present to share his experiences with the DIII--D educational outreach program.

  11. Controlled Nuclear Fusion.

    ERIC Educational Resources Information Center

    Glasstone, Samuel

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…

  12. Two Horizons of Fusion

    ERIC Educational Resources Information Center

    Lo, Mun Ling; Chik, Pakey Pui Man

    2016-01-01

    In this paper, we aim to differentiate the internal and external horizons of "fusion." "Fusion" in the internal horizon relates to the structure and meaning of the object of learning as experienced by the learner. It clarifies the interrelationships among an object's critical features and aspects. It also illuminates the…

  13. On the economic prospects of nuclear fusion with tokamaks

    NASA Astrophysics Data System (ADS)

    Pfirsch, D.; Schmitter, K. H.

    1987-12-01

    A method of cost and construction energy estimation for tokamak fusion power stations conforming to the present stage of fusion development is described. The method is based on first-wall heat load constraints rather than Beta limitations, which, however, might eventually be the more critical of the two. It is used to discuss the economic efficiency of pure fusion, with particular reference to the European study entitled Environmental Impact and Economic Prospects of Nuclear Fusion (1986). It is shown that the claims made therein for the economic prospects of pure fusion with tokamaks, when discussed on the basis of the present-day technology, do not stand up to critical examination. A fusion-fission hybrid, however, could afford more positive prospects. Support for the stated method is derived when it is properly applied for cost estimation of advanced gas-cooled and Magnox reactors, the two examples presented by the European study to disprove it.

  14. Program plan for the DOE Office of Fusion Energy First Wall/Blanket/Shield Engineering Technology Program. Volume II. Detailed technical plan. Revision 2

    SciTech Connect

    Not Available

    1982-08-01

    The four sections which comprise Part II describe in detail the technical basis for each of the four Program Elements (PE's) of the FWBS Engineering Technology Program (ETP). Each PE is planned to be executed in a number of phases. The purpose of the DTP's is to delineate detailed near-term research, development, and testing required to establish a FWBS engineering data base. Optimum testing strategies and construction of test facilities where needed are identified. The DTP's are based on guidelines given by Argonne National Laboratory which included the basic programmatic goals and the requirements for the types of tests and test conditions.

  15. Fusion Nuclear Science Pathways Assessment

    SciTech Connect

    C.E. Kessel, et. al.

    2012-02-23

    With the strong commitment of the US to the success of the ITER burning plasma mission, and the project overall, it is prudent to consider how to take the most advantage of this investment. The production of energy from fusion has been a long sought goal, and the subject of several programmatic investigations and time line proposals [1]. The nuclear aspects of fusion research have largely been avoided experimentally for practical reasons, resulting in a strong emphasis on plasma science. Meanwhile, ITER has brought into focus how the interface between the plasma and engineering/technology, presents the most challenging problems for design. In fact, this situation is becoming the rule and no longer the exception. ITER will demonstrate the deposition of 0.5 GW of neutron heating to the blanket, deliver a heat load of 10-20 MW/m2 or more on the divertor, inject 50-100 MW of heating power to the plasma, all at the expected size scale of a power plant. However, in spite of this, and a number of other technologies relevant power plant, ITER will provide a low neutron exposure compared to the levels expected to a fusion power plant, and will purchase its tritium entirely from world reserves accumulated from decades of CANDU reactor operations. Such a decision for ITER is technically well founded, allowing the use of conventional materials and water coolant, avoiding the thick tritium breeding blankets required for tritium self-sufficiency, and allowing the concentration on burning plasma and plasma-engineering interface issues. The neutron fluence experienced in ITER over its entire lifetime will be ~ 0.3 MW-yr/m2, while a fusion power plant is expected to experience 120-180 MW-yr/m2 over its lifetime. ITER utilizes shielding blanket modules, with no tritium breeding, except in test blanket modules (TBM) located in 3 ports on the midplane [2], which will provide early tests of the fusion nuclear environment with very low tritium production (a few g per year).

  16. Fusion Energy Division annual progress report, period ending December 31, 1988

    SciTech Connect

    Sheffield, J.; Berry, L.A.; Saltmarsh, M.J.

    1990-02-01

    This report discusses the following topics on fusion research: toroidal confinement activities; atomic physics and plasma diagnostics development; fusion theory and computation; plasma technology; superconducting magnet development; advanced systems program; fusion materials research; neutron transport; and management services, quality assurance, and safety.

  17. Sensor fusion method for machine performance enhancement

    SciTech Connect

    Mou, J.I.; King, C.; Hillaire, R.; Jones, S.; Furness, R.

    1998-03-01

    A sensor fusion methodology was developed to uniquely integrate pre-process, process-intermittent, and post-process measurement and analysis technology to cost-effectively enhance the accuracy and capability of computer-controlled manufacturing equipment. Empirical models and computational algorithms were also developed to model, assess, and then enhance the machine performance.

  18. Hohlraum manufacture for inertial confinement fusion

    SciTech Connect

    Foreman, L.R.; Gobby, P.; Bartos, J.

    1994-07-01

    Hohlraums are an integral part of indirect drive targets for Inertial Confinement Fusion (ICF) research. Hohlraums are made by an electroforming process that combines elements of micromachining and coating technology. The authors describe how these target element are made and extension of the method that allow fabrication of other, more complex target components.

  19. Using Online Project-Based Capstone Experiences to Enhance Soft Skills Development

    ERIC Educational Resources Information Center

    Britton, Gwendolyn Suzanne

    2013-01-01

    Employers of newly minted information technology graduates are concerned that students graduating with information technology degrees offered in online environments are lacking critical noncomputing skills (soft skills). Further, it is unclear whether online environments have the capacity to foster the "soft skills" necessary for…

  20. Alignment control and softness creation in hair with glycylglycine.

    PubMed

    Breakspear, Steven; Fukuhara, Masaki; Itou, Takashi; Hirano, Yuji; Nojiri, Masayoshi; Kiyomine, Akira; Inoue, Shigeto

    2013-01-01

    Thick and coarse hair, as typically found among the Japanese population, frequently lacks softness that consumers are acutely aware of. Such poor feeling is accentuated by daily grooming, weathering, and chemical treatments, in particular, which can cause changes in the hair shape and the creation of frizzy or irregularly shaped hair. Existing technologies to improve the soft feel of hair, though effective, usually concentrate on the surface of the fiber and often leave the hair feeling either overconditioned or sometimes even sticky from product buildup. Hair softness is said to be governed by a number of factors, but primarily hair diameter and surface condition. In this study, we have also identified hair alignment as playing a critical role in hair softness. In addition, by studying how Japanese women perceive hair softness when touching their hair, we have identified that the strain on the hair fiber associated with these manipulations is far smaller than previously considered. With these factors in mind, we have studied the mechanisms behind a new softening technology containing glycylglycine (GG). It has been found that treatment with GG can give a tangible feeling of hair softness by dramatically improving alignment in unruly hair and by lowering the modulus of the fiber. Moreover, using the atomic force microscope, it has been revealed that the properties of the cell membrane complex of the hair cortex may be modified after GG treatment; the role of this additive in modifying the internal properties of the hair to create softness will thus be discussed. PMID:23449128

  1. Soft-sediment mullions

    NASA Astrophysics Data System (ADS)

    Ortner, Hugo

    2015-04-01

    In this contribution I describe the appearance, formation and significance of soft-sediment mullions. I use several examples from synorogenic turbidites of the Alps and the Pyrenees to show their appearance in the field. Soft-sediment mullions are elongate, slightly irregular bulges at the base of coarse-grained clastic beds (sand to conglomerate), separated by narrow, elongate flames of fine-grained material (mud) protruding into the coarse-grained bed. Various processes may lead to the formation of such structures: (1) longitudinal furrows parallel to the sediment transport direction may form by spiral motion in flow rolls during sediment transport (Dzulinski, 1966; Dzulinski & Simpson, 1966). (2) Loading combined with downslope movement can produce elongate structures parallelling the dowslope direction (Anketell et al., 1970). (3) Soft-sediment mullions are oriented perpendicular or oblique to the downslope direction, and show evidence of bedding-parallel shortening. Thus, they resemble cuspate-lobate folds or mullions, which are well-known in ductile structural geology (e.g. Urai et al., 2001). Soft-sediment mullions have been observed in two cases: Either bedding-parallel shortening can be achieved by slump processes, or by active tectonic shortening. Slumping is characterized by an alternation of stretching and shortening (e.g. Ortner, 2007; Alsop & Marco 2014), and therefore mullions do overprint or are overprinted by normal faults. In active depositional systems that are subject to tectonic shortening growth strata will form, but sediments already deposited will be shortened during lithification. In some cases, the formation of soft-sediment mullions predates folding, but the most widespread expression of syn-lithification shortening seems to be soft-sediment mullions, that form in the inner arcs of fold hinges. In the examples documented so far, the size of soft-sediment mullions is dependent on the grain-size of the coarse-grained layer, in which the

  2. Biological Soft Robotics.

    PubMed

    Feinberg, Adam W

    2015-01-01

    In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed. PMID:26643022

  3. Genital soft tissue tumors.

    PubMed

    Schoolmeester, John K; Fritchie, Karen J

    2015-07-01

    Mesenchymal neoplasms of the vulvovaginal and inguinoscrotal regions are among the most diagnostically challenging specimens in the pathology laboratory owing largely to their unique intersection between general soft tissue tumors and relatively genital-specific mesenchymal tumors. Genital stromal tumors are a unique subset of soft tissue tumors encountered at this location, and this group includes fibroepithelial stromal polyp, superficial (cervicovaginal) myofibroblastoma, cellular angiofibroma, mammary-type myofibroblastoma, angiomyofibroblastoma and aggressive angiomyxoma. Aside from the striking morphologic and immunophenotypic similarity that is seen with these entities, there is evidence that a subset of genital stromal tumors may be linked genetically. This review will focus on simplifying this group of tumors and provide the pathologist or dermatopathologist with practical management information. Smooth muscle tumors of the external genitalia will also be discussed.

  4. Biological Soft Robotics.

    PubMed

    Feinberg, Adam W

    2015-01-01

    In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed.

  5. Fusion and quality analysis for remote sensing images using contourlet transform

    NASA Astrophysics Data System (ADS)

    Choi, Yoonsuk; Sharifahmadian, Ershad; Latifi, Shahram

    2013-05-01

    Recent developments in remote sensing technologies have provided various images with high spatial and spectral resolutions. However, multispectral images have low spatial resolution and panchromatic images have low spectral resolution. Therefore, image fusion techniques are necessary to improve the spatial resolution of spectral images by injecting spatial details of high-resolution panchromatic images. The objective of image fusion is to provide useful information by improving the spatial resolution and the spectral information of the original images. The fusion results can be utilized in various applications, such as military, medical imaging, and remote sensing. This paper addresses two issues in image fusion: i) image fusion method and ii) quality analysis of fusion results. First, a new contourlet-based image fusion method is presented, which is an improvement over the wavelet-based fusion. This fusion method is then applied to a case study to demonstrate its fusion performance. Fusion framework and scheme used in the study are discussed in detail. Second, quality analysis for the fusion results is discussed. We employed various quality metrics in order to analyze the fusion results both spatially and spectrally. Our results indicate that the proposed contourlet-based fusion method performs better than the conventional wavelet-based fusion methods.

  6. Reptile Soft Tissue Surgery.

    PubMed

    Di Girolamo, Nicola; Mans, Christoph

    2016-01-01

    The surgical approach to reptiles can be challenging. Reptiles have unique physiologic, anatomic, and pathologic differences. This may result in frustrating surgical experiences. However, recent investigations provided novel, less invasive, surgical techniques. The purpose of this review was to describe the technical aspects behind soft tissue surgical techniques that have been used in reptiles, so as to provide a general guideline for veterinarians working with reptiles.

  7. Hypoelastic Soft Tissues

    PubMed Central

    Freed, Alan D.; Einstein, Daniel R.; Sacks, Michael S.

    2010-01-01

    In Part I, a novel hypoelastic framework for soft-tissues was presented. One of the hallmarks of this new theory is that the well-known exponential behavior of soft-tissues arises consistently and spontaneously from the integration of a rate based formulation. In Part II, we examine the application of this framework to the problem of biaxial kinematics, which are common in experimental soft-tissue characterization. We confine our attention to an isotropic formulation in order to highlight the distinction between non-linearity and anisotropy. In order to provide a sound foundation for the membrane extension of our earlier hypoelastic framework, the kinematics and kinetics of in-plane biaxial extension are revisited, and some enhancements are provided. Specifically, the conventional stress-to-traction mapping for this boundary value problem is shown to violate the conservation of angular momentum. In response, we provide a corrected mapping. In addition, a novel means for applying loads to in-plane biaxial experiments is proposed. An isotropic, isochoric, hypoelastic, constitutive model is applied to an in-plane biaxial experiment done on glutaraldehyde treated bovine pericardium. The experiment is comprised of eight protocols that radially probe the biaxial plane. Considering its simplicity (two adjustable parameters) the model does a reasonably good job of describing the non-linear normal responses observed in these experimental data, which are more prevalent than are the anisotropic responses exhibited by this tissue. PMID:21394222

  8. Technology.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  9. Investigation of the generation of several long-lived radionuclides of importance in fusion reactor technology: Report on a Coordinated Research Program sponsored by the International Atomic Energy Agency

    SciTech Connect

    Smith, D.L.; Pashchenko, A.B.

    1994-05-01

    The IAEA initiated a Coordinated Research Program (CRP) in 1988 to obtain reliable information for 16 long-lived activation reactions of special importance to fusion reactor technology: {sup 27}Al (n, 2n){sup 26}Al, {sup 63}Cu(n,p){sup 63}Ni, {sup 94}Mo(n,p) {sup 94}Nb, {sup 109}Ag(n,2n){sup 108m}Ag, {sup 179}Hf(n,2n) {sup 178m2}Hf, {sup 182}W(n,n{sup `}a){sup 178m2}Hf, {sup 151}Eu(n,2n) {sup 150}gEu, {sup 153}Eu(n,2n){sup 152+m2}Eu, {sup 159}Tb(n, 2n){sup 158}Tb, {sup 158}Dy(n,p){sup 158}Tb, {sup 193}Ir(n,2n) {sup 192m2}Ir, {sup 187}Re(n,2n){sup 186m}Re, {sup 62}Ni(n{gamma}) {sup 63}Ni, {sup 98}Mo(n,{gamma}){sup 99}Mo({beta}-){sup 99}Tc, {sup 165}Ho(n,{gamma}) {sup 166m}Ho and {sup 191}Ir(n,{gamma}){sup 192m2}Ir. this paper documents progress achieved from the start of the program through mid- 1993.

  10. New technologies to improve laboratory testing

    NASA Astrophysics Data System (ADS)

    Burtis, C. A.

    Several core technologies that are having, or will have, an impact on the clinical laboratory are discussed. These include instrument-related technologies such as computer technology, chemometrics, robotics, sensors, and biological technologies such as cell fusion and recombinant DNA.

  11. Cooperative Learning and Soft Skills Training in an IT Course

    ERIC Educational Resources Information Center

    Zhang, Aimao

    2012-01-01

    Pedagogy of higher education is shifting from passive to active and deep learning. At the same time, the information technology (IT) industry and the Accreditation Board for Engineering and Technology (ABET) are demanding soft skills training. Thus, in designing an IT course, we devised group teaching projects where students learn to work with…

  12. Selection of a toroidal fusion reactor concept for a magnetic fusion production reactor

    NASA Astrophysics Data System (ADS)

    Jassby, D. L.

    1987-03-01

    The basic fusion driver requirements of a toroidal materials production reactor are considered. The tokamak, stellarator, bumpy torus, and reversed-field pinch are compared with regard to their demonstrated performance, probable near-term development, and potential advantages and disadvantages if used as reactors for materials production. Of the candidate fusion drivers, the tokamak is determined to be the most viable for a near-term production reactor. Four tokamak reactor concepts (TORFA/FED-R, AFTR/ZEPHYR, Riggatron, and Superconducting Coil) of approximately 500-MW fusion power are compared with regard to their demands on plasma performance, required fusion technology development, and blanket configuration characteristics. Because of its relatively moderate requirements on fusion plasma physics and technology development, as well as its superior configuration of production blankets, the TORFA/FED-R type of reactor operating with a fusion power gain of about 3 is found to be the most suitable tokamak candidate for implementation as a near-term production reactor.

  13. Soft Lithography Using Nectar Droplets.

    PubMed

    Biswas, Saheli; Chakrabarti, Aditi; Chateauminois, Antoine; Wandersman, Elie; Prevost, Alexis M; Chaudhury, Manoj K

    2015-12-01

    In spite of significant advances in replication technologies, methods to produce well-defined three-dimensional structures are still at its infancy. Such a limitation would be evident if we were to produce a large array of simple and, especially, compound convex lenses, also guaranteeing that their surfaces would be molecularly smooth. Here, we report a novel method to produce such structures by cloning the 3D shape of nectar drops, found widely in nature, using conventional soft lithography.The elementary process involves transfer of a thin patch of the sugar solution coated on a glass slide onto a hydrophobic substrate on which this patch evolves into a microdroplet. Upon the absorption of water vapor, such a microdroplet grows linearly with time, and its final size can be controlled by varying its exposure time to water vapor. At any stage of the evolution of the size of the drop, its shape can be cloned onto a soft elastomer by following the well-known methods of molding and cross-linking the same. A unique new science that emerges in our attempt to understand the transfer of the sugar patch and its evolution to a spherical drop is the elucidation of the mechanics underlying the contact of a deformable sphere against a solid support intervening a thin liquid film. A unique aspect of this work is to demonstrate that higher level structures can also be generated by transferring even smaller nucleation sites on the surface of the primary lenses and then allowing them to grow by absorption of water vapor. What results at the end is either a well-controlled distribution of smooth hemispherical lenses or compound structures that could have potential applications in the fundamental studies of contact mechanics, wettability, and even in optics. PMID:26563988

  14. Fusion Studies in Japan

    NASA Astrophysics Data System (ADS)

    Ogawa, Yuichi

    2016-05-01

    A new strategic energy plan decided by the Japanese Cabinet in 2014 strongly supports the steady promotion of nuclear fusion development activities, including the ITER project and the Broader Approach activities from the long-term viewpoint. Atomic Energy Commission (AEC) in Japan formulated the Third Phase Basic Program so as to promote an experimental fusion reactor project. In 2005 AEC has reviewed this Program, and discussed on selection and concentration among many projects of fusion reactor development. In addition to the promotion of ITER project, advanced tokamak research by JT-60SA, helical plasma experiment by LHD, FIREX project in laser fusion research and fusion engineering by IFMIF were highly prioritized. Although the basic concept is quite different between tokamak, helical and laser fusion researches, there exist a lot of common features such as plasma physics on 3-D magnetic geometry, high power heat load on plasma facing component and so on. Therefore, a synergetic scenario on fusion reactor development among various plasma confinement concepts would be important.

  15. Superconductivity and fusion energy—the inseparable companions

    NASA Astrophysics Data System (ADS)

    Bruzzone, Pierluigi

    2015-02-01

    Although superconductivity will never produce energy by itself, it plays an important role in energy-related applications both because of its saving potential (e.g., power transmission lines and generators), and its role as an enabling technology (e.g., for nuclear fusion energy). The superconducting magnet’s need for plasma confinement has been recognized since the early development of fusion devices. As long as the research and development of plasma burning was carried out on pulsed devices, the technology of superconducting fusion magnets was aimed at demonstrations of feasibility. In the latest generation of plasma devices, which are larger and have longer confinement times, the superconducting coils are a key enabling technology. The cost of a superconducting magnet system is a major portion of the overall cost of a fusion plant and deserves significant attention in the long-term planning of electricity supply; only cheap superconducting magnets will help fusion get to the energy market. In this paper, the technology challenges and design approaches for fusion magnets are briefly reviewed for past, present, and future projects, from the early superconducting tokamaks in the 1970s, to the current ITER (International Thermonuclear Experimental Reactor) and W7-X projects and future DEMO (Demonstration Reactor) projects. The associated cryogenic technology is also reviewed: 4.2 K helium baths, superfluid baths, forced-flow supercritical helium, and helium-free designs. Open issues and risk mitigation are discussed in terms of reliability, technology, and cost.

  16. New developments in heavy ion fusion

    SciTech Connect

    Herrmannsfeldt, W.B.

    1983-04-01

    Beginning in 1984, the US Department of Energy plans a program aimed at determining the feasibility of using heavy ion accelerators as pellet drivers for Inertial Confinement Fusion (ICF). This paper will describe the events in the field of Heavy Ion Fusion (HIF) that have occurred in the three years since the Lausanne conference in this series. The emphasis will be on the events leading towards the new energy oriented program. in addition to providing an overview of progress in HIF, such a discussion may prove useful for promoters of any emerging energy technology.

  17. Spherical torus fusion reactor

    DOEpatents

    Martin Peng, Y.K.M.

    1985-10-03

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  18. Some new inequalities for continuous fusion frames and fusion pairs.

    PubMed

    Zhang, Wei; Li, Yun-Zhang

    2016-01-01

    This paper addresses continuous fusion frames and fusion pairs which are extensions of discrete fusion frames and continuous frames. The study of equalities and inequalities for various frames has seen great achievements. In this paper, using operator methods we establish some new inequalities for continuous fusion frames and fusion pairs. Our results extend and improve ones obtained by Balan, Casazza and Găvruţa. PMID:27652173

  19. Inertial fusion commercial power plants

    NASA Astrophysics Data System (ADS)

    Logan, B. Grant

    1994-09-01

    This presentation discusses the motivation for inertial fusion energy, a brief synopsis of five recently-completed inertial fusion power plant designs, some general conclusions drawn from these studies, and an exmaple of an IEE hydrogen synfuel plant to suggest that future fusion studies consider broadening fusion use to low-emission fuels production as well as electricity.

  20. SKIDS data fusion project

    NASA Astrophysics Data System (ADS)

    Greenway, Phil

    1992-04-01

    The European Community's strategic research initiative in information technology (ESPRIT) has been in place for nearly five years. An early example of the pan-European collaborative projects being conducted under this initiative is 'SKIDS': Signal and Knowledge Integration with Decisional Control for Multisensory Systems. This four year project, which is approaching completion, aims to build a real-time multisensor perception machine. This machine will be capable of performing data fusion, interpretation, situation assessment, and resource allocation tasks, under the constraints of both time and resource availability, and in the presence of uncertain data. Of the many possible applications, the surveillance and monitoring of a semi-automated 'factory environment' has been chosen as a challenging and representative test scenario. This paper presents an overview of the goals and objectives of the project, the makeup of the consortium, and roles of the members within it, and the main technical achievements to data. In particular, the following are discussed: relevant application domains, and the generic requirements that can be inferred from them; sensor configuration, including choice, placement, etc.; control paradigms, including the possible trade-offs between centralized, hierarchical, and decentralized approaches; the corresponding hardware architectural choices, including the need for parallel processing; and the appropriate software architecture and infra-structure required to support the chosen task oriented approach. Specific attention is paid to the functional decomposition of the system and how the requirements for control impact the organization of the identified interpretation tasks. Future work and outstanding problems are considered in some concluding remarks. By virtue of limited space, this paper is descriptive rather than explanatory.

  1. The soft side.

    PubMed

    Small, Bruce W

    2005-01-01

    For true communication between dentist and patient, a dentist must develop behavioral skills (or "soft" skills) in addition to clinical skills. These skills should be utilized at all times but particularly during a patient's initial visit. Educating the patient is mandatory and the dentist should never offer solutions to problems that the patient cannot see, feel, or understand. If these ideas are kept paramount at all times they will become normal operating procedure and not seem artificial. Caring about the patient and remaining committed to technical excellence will go a long way toward the delivery of quality care. PMID:15779215

  2. Soft palate schwannoma.

    PubMed

    Venkatachala, Sandhya; Krishnakumar, R; Rubby, Sheik Afzal

    2013-06-01

    Schwannomas are relatively uncommon, slow-growing benign neoplasms that can arise from any cranial, peripheral or autonomic nerves. These neoplasms are derived from Schwann cells. The involvement of the palate is a rare presentation although there have been a few reported cases of schwannomas arising in the tongue. This is a case report of one such rare presentation-a case of Schwannoma in a 43-year-old man at a rare site, soft palate. At this location, the clinical diagnosis is confounded by other tumours such as minor salivary gland tumour, pyogenic granuloma and lipoma.

  3. Label fusion strategy selection.

    PubMed

    Robitaille, Nicolas; Duchesne, Simon

    2012-01-01

    Label fusion is used in medical image segmentation to combine several different labels of the same entity into a single discrete label, potentially more accurate, with respect to the exact, sought segmentation, than the best input element. Using simulated data, we compared three existing label fusion techniques-STAPLE, Voting, and Shape-Based Averaging (SBA)-and observed that none could be considered superior depending on the dissimilarity between the input elements. We thus developed an empirical, hybrid technique called SVS, which selects the most appropriate technique to apply based on this dissimilarity. We evaluated the label fusion strategies on two- and three-dimensional simulated data and showed that SVS is superior to any of the three existing methods examined. On real data, we used SVS to perform fusions of 10 segmentations of the hippocampus and amygdala in 78 subjects from the ICBM dataset. SVS selected SBA in almost all cases, which was the most appropriate method overall. PMID:22518113

  4. Fusion-power demonstration

    NASA Astrophysics Data System (ADS)

    Henning, C. D.; Logan, B. G.; Carlson, G. A.; Neef, W. S.; Moir, R. W.; Campbell, R. B.; Botwin, R.; Clarkson, I. R.; Carpenter, T. J.

    1983-03-01

    As a satellite to the MARS (Mirror Advanced Reactor Study) a smaller, near-term device has been scoped, called the FPD (Fusion Power Demonstration). Envisioned as the next logical step toward a power reactor, it would advance the mirror fusion program beyond MFTF-B and provide an intermediate step toward commercial fusion power. Breakeven net electric power capability would be the goal such that no net utility power would be required to sustain the operation. A phased implementation is envisioned, with a deuterium checkout first to verify the plasma systems before significant neutron activation has occurred. Major tritium-related facilities would be installed with the second phase to produce sufficient fusion power to supply the recirculating power to maintain the neutral beams, ECRH, magnets and other auxiliary equipment.

  5. Spinal fusion - series (image)

    MedlinePlus

    ... muscles hold the graft in place until it fuses with the vertebrae. A fusion will setup within ... hollow threaded titanium or carbon fiber cylinder to fuse two vertebrae together. The diseased disk is removed ...

  6. Magnetized Target Fusion collaboration

    NASA Astrophysics Data System (ADS)

    Intrator, Thomas

    2004-11-01

    Magnetized Target Fusion (MTF) may be a low cost path to fusion, in a regime that is intermediate between magnetic and inertial fusion energy. It requires compression of a magnetized target plasma and consequent heating to fusion relevant conditions inside a converging flux conserver. We hope to demonstrate the physics basis for MTF, with a Field Reversed Configuration (FRC) target plasma to be translated axially to a compression region. We show recent and improved FRC formation data, example deformable liner implosions, and a conceptual design for the upcoming translation experiments, and describe a multi institution collaboration. The FRC is an elongated, compact toroid equilibrium that is extreme among magnetic configurations, and relaxed to a non force free state. There is high plasma beta, small toroidal field, cross-field diamagnetic current and flows, vanishing rotational transform, magnetic shear, helicity and anomalously large resistivity. Scientific issues include MTF with and without FRC's, and fundamental plasma physics beyond MHD, relevant to geophysical and astrophysical phenomena.

  7. Soft skills and dental education.

    PubMed

    Gonzalez, M A G; Abu Kasim, N H; Naimie, Z

    2013-05-01

    Soft skills and hard skills are essential in the practice of dentistry. While hard skills deal with technical proficiency, soft skills relate to a personal values and interpersonal skills that determine a person's ability to fit in a particular situation. These skills contribute to the success of organisations that deal face-to-face with clients. Effective soft skills benefit the dental practice. However, the teaching of soft skills remains a challenge to dental schools. This paper discusses the different soft skills, how they are taught and assessed and the issues that need to be addressed in their teaching and assessment. The use of the module by the Faculty of Dentistry, University of Malaya for development of soft skills for institutions of higher learning introduced by the Ministry of Higher Education, Malaysia.

  8. Soft skills and dental education.

    PubMed

    Gonzalez, M A G; Abu Kasim, N H; Naimie, Z

    2013-05-01

    Soft skills and hard skills are essential in the practice of dentistry. While hard skills deal with technical proficiency, soft skills relate to a personal values and interpersonal skills that determine a person's ability to fit in a particular situation. These skills contribute to the success of organisations that deal face-to-face with clients. Effective soft skills benefit the dental practice. However, the teaching of soft skills remains a challenge to dental schools. This paper discusses the different soft skills, how they are taught and assessed and the issues that need to be addressed in their teaching and assessment. The use of the module by the Faculty of Dentistry, University of Malaya for development of soft skills for institutions of higher learning introduced by the Ministry of Higher Education, Malaysia. PMID:23574183

  9. Cold nuclear fusion

    SciTech Connect

    Tsyganov, E. N.

    2012-02-15

    Recent accelerator experiments on fusion of various elements have clearly demonstrated that the effective cross-sections of these reactions depend on what material the target particle is placed in. In these experiments, there was a significant increase in the probability of interaction when target nuclei are imbedded in a conducting crystal or are a part of it. These experiments open a new perspective on the problem of so-called cold nuclear fusion.

  10. Use of a Proximal Humeral Locking Plate for Complex Ankle and Hindfoot Fusion.

    PubMed

    Shearman, Alexander D; Eleftheriou, Kyriacos Iordanis; Patel, Akash; Pradhan, Rajib; Rosenfeld, Peter Francis

    2016-01-01

    Arthrodesis of the ankle and hindfoot in the setting of major deformity is challenging and associated with substantial risks. Patients often have significant comorbidities that lead to unforgiving soft tissues, poor vascularity, and poor bone quality. This creates the high-risk scenario of poor wound healing and poor implant fixation. Complications can be devastating, leading to loss of the limb and sepsis. The use of locking plate technology might provide biomechanical and operative technique advantages in such patients. We retrospectively assessed the results of the modified use of the PHILOS(™) (Synthes(®), Zuchwil, Switzerland) proximal humeral locking plate in 21 patients (11 males, 10 females; mean age 56.1 years, range 25 to 74 years) who had undergone complex fusions, including tibiotalar (n = 4), tibiocalcaneal (n = 7), or tibiotalocalcaneal (n =10) fusions. The average follow-up period was 14.6 (median 10, range 6 to 49) months. Of the 21 fusions, 18 achieved union (85.7%) at an average period of 4.8 (median 4.3, range 3 to 12) months. The overall deep infection rate was 14.3%. Overall, 17 of the 21 patients (81%) were satisfied with the result (good to excellent), 1 reported the result was fair (4.8%), and 3 patients developed nonunion and were dissatisfied with the procedure (14.3%). The present study is the largest series to date of patients undergoing complex ankle and hindfoot arthrodesis with the use of a proximal humeral locking plate and confirms previous findings that the technique is reliable with union, satisfaction, and complication rates comparable to those of other techniques.

  11. A. Sakharov and Fusion Research

    NASA Astrophysics Data System (ADS)

    Coppi, Bruno

    2012-02-01

    In the landmark paper by Tamm and Sakharov [1], a controlled nuclear fusion reactor based on an axisymmetric magnetic confinement configuration whose principles remain valid to this day, was proposed. In the light of present understanding of plasma physics the virtues (e.g. that of considering the D-D reaction) and the shortcomings of this paper are pointed out. In fact, relatively recent results of theoretical plasma physics (e.g. discovery of the so called second stability region) and advances in high field magnet technology have made it possible to identify the parameters of meaningful experiments capable of exploring D-D and D-^3He burn conditions. At the same time an experimental program (IGNIR) has been undertaken through a (funded) collaboration between Italy and Russia to investigate D-T plasmas close to ignition conditions based on an advanced high field toroidal confinement configuration. A. Sakharov envisioned a bolder approach to fusion research than that advocated by some of his contemporaries. The time taken to design and decide to fabricate the first experiment capable of reaching ignition conditions is due in part to the problem of gaining an adequate understanding the expected physics of fusion burning plasmas. However, most of the relevant financial effort has gone in the pursuit of slow and indirect enterprises complying with the ``playing it safe'' tendencies of large organizations or motivated by the purpose to develop technologies or maintain a high level of expertise in plasma physics to the expected benefit of other kinds of endeavors. The creativity demonstrated by A. Sakharov in dealing with civil rights and disarmament issues is needed, while maintaining our concerns for energy and the environment on a global scale, to orient the funding for fusion research toward a direct and well based scientific effort on concepts for which a variety of developments can be envisioned. These can span from uncovering new physics relevant, for instance

  12. Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Griffin, Steven T.

    2002-01-01

    Magnetized target fusion (MTF) is under consideration as a means of building a low mass, high specific impulse, and high thrust propulsion system for interplanetary travel. This unique combination is the result of the generation of a high temperature plasma by the nuclear fusion process. This plasma can then be deflected by magnetic fields to provide thrust. Fusion is initiated by a small traction of the energy generated in the magnetic coils due to the plasma's compression of the magnetic field. The power gain from a fusion reaction is such that inefficiencies due to thermal neutrons and coil losses can be overcome. Since the fusion reaction products are directly used for propulsion and the power to initiate the reaction is directly obtained from the thrust generation, no massive power supply for energy conversion is required. The result should be a low engine mass, high specific impulse and high thrust system. The key is to successfully initiate fusion as a proof-of-principle for this application. Currently MSFC is implementing MTF proof-of-principle experiments. This involves many technical details and ancillary investigations. Of these, selected pertinent issues include the properties, orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the target plasma's behavior under compression and the convergence and mixing of the gun plasma are under investigation. This work is to focus on the gun characterization and development as it relates to plasma initiation and repeatability.

  13. Microfluidic Applications of Soft Lithography

    SciTech Connect

    Rose, K A; Krulevitch, P; Hamilton, J

    2001-04-10

    The soft lithography fabrication technique was applied to three microfluidic devices. The method was used to create an original micropump design and retrofit to existing designs for a DNA manipulation device and a counter biological warfare sample preparation device. Each device presented unique and original challenges to the soft lithography application. AI1 design constraints of the retrofit devices were satisfied using PDMS devices created through variation of soft lithography methods. The micropump utilized the versatility of PDMS, creating design options not available with other materials. In all cases, the rapid processing of soft lithography reduced the fabrication time, creating faster turnaround for design modifications.

  14. Modeling Soft Matter

    NASA Astrophysics Data System (ADS)

    Kremer, Kurt

    Soft matter science or soft materials science is a relatively new term for the science of a huge class of rather different materials such as colloids, polymers (of synthetic or biological origin), membranes, complex molecular assemblies, complex fluids, etc. and combinations thereof. While many of these systems are contained in or are even the essential part of everyday products ("simple" plastics such as yoghurt cups, plastic bags, CDs, many car parts; gels and networks such as rubber, many low fat foods, "gummi" bears; colloidal systems such as milk, mayonnaise, paints, almost all cosmetics or body care products, the border lines between the different applications and systems are of course not sharp) or as biological molecules or assemblies (DNA, proteins, membranes and cytoskeleton, etc.) are central to our existence, others are basic ingredients of current and future high tech products (polymers with specific optical or electronic properties, conducting macromolecules, functional materials). Though the motivation is different in life science rather than in materials science biomolecular simulations, the basic structure of the problems faced in the two fields is very similar.

  15. Deployable Soft Composite Structures.

    PubMed

    Wang, Wei; Rodrigue, Hugo; Ahn, Sung-Hoon

    2016-01-01

    Deployable structure composed of smart materials based actuators can reconcile its inherently conflicting requirements of low mass, good shape adaptability, and high load-bearing capability. This work describes the fabrication of deployable structures using smart soft composite actuators combining a soft matrix with variable stiffness properties and hinge-like movement through a rigid skeleton. The hinge actuator has the advantage of being simple to fabricate, inexpensive, lightweight and simple to actuate. This basic actuator can then be used to form modules capable of different types of deformations, which can then be assembled into deployable structures. The design of deployable structures is based on three principles: design of basic hinge actuators, assembly of modules and assembly of modules into large-scale deployable structures. Various deployable structures such as a segmented triangular mast, a planar structure comprised of single-loop hexagonal modules and a ring structure comprised of single-loop quadrilateral modules were designed and fabricated to verify this approach. Finally, a prototype for a deployable mirror was developed by attaching a foldable reflective membrane to the designed ring structure and its functionality was tested by using it to reflect sunlight onto to a small-scale solar panel. PMID:26892762

  16. Deployable Soft Composite Structures

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Rodrigue, Hugo; Ahn, Sung-Hoon

    2016-02-01

    Deployable structure composed of smart materials based actuators can reconcile its inherently conflicting requirements of low mass, good shape adaptability, and high load-bearing capability. This work describes the fabrication of deployable structures using smart soft composite actuators combining a soft matrix with variable stiffness properties and hinge-like movement through a rigid skeleton. The hinge actuator has the advantage of being simple to fabricate, inexpensive, lightweight and simple to actuate. This basic actuator can then be used to form modules capable of different types of deformations, which can then be assembled into deployable structures. The design of deployable structures is based on three principles: design of basic hinge actuators, assembly of modules and assembly of modules into large-scale deployable structures. Various deployable structures such as a segmented triangular mast, a planar structure comprised of single-loop hexagonal modules and a ring structure comprised of single-loop quadrilateral modules were designed and fabricated to verify this approach. Finally, a prototype for a deployable mirror was developed by attaching a foldable reflective membrane to the designed ring structure and its functionality was tested by using it to reflect sunlight onto to a small-scale solar panel.

  17. Deployable Soft Composite Structures

    PubMed Central

    Wang, Wei; Rodrigue, Hugo; Ahn, Sung-Hoon

    2016-01-01

    Deployable structure composed of smart materials based actuators can reconcile its inherently conflicting requirements of low mass, good shape adaptability, and high load-bearing capability. This work describes the fabrication of deployable structures using smart soft composite actuators combining a soft matrix with variable stiffness properties and hinge-like movement through a rigid skeleton. The hinge actuator has the advantage of being simple to fabricate, inexpensive, lightweight and simple to actuate. This basic actuator can then be used to form modules capable of different types of deformations, which can then be assembled into deployable structures. The design of deployable structures is based on three principles: design of basic hinge actuators, assembly of modules and assembly of modules into large-scale deployable structures. Various deployable structures such as a segmented triangular mast, a planar structure comprised of single-loop hexagonal modules and a ring structure comprised of single-loop quadrilateral modules were designed and fabricated to verify this approach. Finally, a prototype for a deployable mirror was developed by attaching a foldable reflective membrane to the designed ring structure and its functionality was tested by using it to reflect sunlight onto to a small-scale solar panel. PMID:26892762

  18. Deployable Soft Composite Structures.

    PubMed

    Wang, Wei; Rodrigue, Hugo; Ahn, Sung-Hoon

    2016-02-19

    Deployable structure composed of smart materials based actuators can reconcile its inherently conflicting requirements of low mass, good shape adaptability, and high load-bearing capability. This work describes the fabrication of deployable structures using smart soft composite actuators combining a soft matrix with variable stiffness properties and hinge-like movement through a rigid skeleton. The hinge actuator has the advantage of being simple to fabricate, inexpensive, lightweight and simple to actuate. This basic actuator can then be used to form modules capable of different types of deformations, which can then be assembled into deployable structures. The design of deployable structures is based on three principles: design of basic hinge actuators, assembly of modules and assembly of modules into large-scale deployable structures. Various deployable structures such as a segmented triangular mast, a planar structure comprised of single-loop hexagonal modules and a ring structure comprised of single-loop quadrilateral modules were designed and fabricated to verify this approach. Finally, a prototype for a deployable mirror was developed by attaching a foldable reflective membrane to the designed ring structure and its functionality was tested by using it to reflect sunlight onto to a small-scale solar panel.

  19. Enhanced chemical weapon warning via sensor fusion

    NASA Astrophysics Data System (ADS)

    Flaherty, Michael; Pritchett, Daniel; Cothren, Brian; Schwaiger, James

    2011-05-01

    Torch Technologies Inc., is actively involved in chemical sensor networking and data fusion via multi-year efforts with Dugway Proving Ground (DPG) and the Defense Threat Reduction Agency (DTRA). The objective of these efforts is to develop innovative concepts and advanced algorithms that enhance our national Chemical Warfare (CW) test and warning capabilities via the fusion of traditional and non-traditional CW sensor data. Under Phase I, II, and III Small Business Innovative Research (SBIR) contracts with DPG, Torch developed the Advanced Chemical Release Evaluation System (ACRES) software to support non real-time CW sensor data fusion. Under Phase I and II SBIRs with DTRA in conjunction with the Edgewood Chemical Biological Center (ECBC), Torch is using the DPG ACRES CW sensor data fuser as a framework from which to develop the Cloud state Estimation in a Networked Sensor Environment (CENSE) data fusion system. Torch is currently developing CENSE to implement and test innovative real-time sensor network based data fusion concepts using CW and non-CW ancillary sensor data to improve CW warning and detection in tactical scenarios.

  20. HEDP and new directions for fusion energy

    SciTech Connect

    Kirkpatrick, Ronald C

    2009-01-01

    The Quest for fusion energy has a long history and the demonstration of thermonuclear energy release in 1951 represented a record achievement for high energy density. While this first demonstration was in response to the extreme fears of mankind, it also marked the beginning of a great hope that it would usher in an era of boundless cheap energy. In fact, fusion still promises to be an enabling technology that can be compared to the prehistoric utilization of fire. Why has the quest for fusion energy been so long on promises and so short in fulfillment? This paper briefly reviews past approaches to fusion energy and suggests new directions. By putting aside the old thinking and vigorously applying our experimental, computational and theoretical tools developed over the past decades we should be able to make rapid progress toward satisfying an urgent need. Fusion not only holds the key to abundant green energy, but also promises to enable deep space missions and the creation of rare elements and isotopes for wide-ranging industrial applications and medical diagnostics.

  1. Sensor fusion for intelligent alarm analysis

    SciTech Connect

    Nelson, C.L.; Fitzgerald, D.S.

    1995-03-01

    The purpose of an intelligent alarm analysis system is to provide complete and manageable information to a central alarm station operator by applying alarm processing and fusion techniques to sensor information. This paper discusses the sensor fusion approach taken to perform intelligent alarm analysis for the Advanced Exterior Sensor (AES). The AES is an intrusion detection and assessment system designed for wide-area coverage, quick deployment, low false/nuisance alarm operation, and immediate visual assessment. It combines three sensor technologies (visible, infrared, and millimeter wave radar) collocated on a compact and portable remote sensor module. The remote sensor module rotates at a rate of 1 revolution per second to detect and track motion and provide assessment in a continuous 360` field-of-regard. Sensor fusion techniques are used to correlate and integrate the track data from these three sensors into a single track for operator observation. Additional inputs to the fusion process include environmental data, knowledge of sensor performance under certain weather conditions, sensor priority, and recent operator feedback. A confidence value is assigned to the track as a result of the fusion process. This helps to reduce nuisance alarms and to increase operator confidence in the system while reducing the workload of the operator.

  2. Materials issues in fusion reactors

    NASA Astrophysics Data System (ADS)

    Suri, A. K.; Krishnamurthy, N.; Batra, I. S.

    2010-02-01

    The world scientific community is presently engaged in one of the toughest technological tasks of the current century, namely, exploitation of nuclear fusion in a controlled manner for the benefit of mankind. Scientific feasibility of controlled fusion of the light elements in plasma under magnetic confinement has already been proven. International efforts in a coordinated and co-operative manner are presently being made to build ITER - the International Thermonuclear Experimental Reactor - to test, in this first step, the concept of 'Tokamak' for net fusion energy production. To exploit this new developing option of making energy available through the route of fusion, India too embarked on a robust fusion programme under which we now have a working tokamak - the Aditya and a steady state tokamak (SST-1), which is on the verge of functioning. The programme envisages further development in terms of making SST-2 followed by a DEMO and finally the fusion power reactor. Further, with the participation of India in the ITER program in 2005, and recent allocation of half - a - port in ITER for placing our Lead - Lithium Ceramic Breeder (LLCB) based Test Blanket Module (TBM), meant basically for breeding tritium and extracting high grade heat, the need to understand and address issues related to materials for these complex systems has become all the more necessary. Also, it is obvious that with increasing power from the SST stages to DEMO and further to PROTOTYPE, the increasing demands on performance of materials would necessitate discovery and development of new materials. Because of the 14.1 MeV neutrons that are generated in the D+T reaction exploited in a tokamak, the materials, especially those employed for the construction of the first wall, the diverter and the blanket segments, suffer crippling damage due to the high He/dpa ratios that result due to the high energy of the neutrons. To meet this challenge, the materials that need to be developed for the tokamaks

  3. Underground storage tanks soft waste dislodging and conveyance

    SciTech Connect

    Wellner, A.F.

    1993-10-01

    Currently 140 million liters (37 million gallons) of waste are stored in the single shell underground storage tanks (SSTs) at Hanford. The wastes contain both hazardous and radioactive constituents. This paper focuses on the Westinghouse Hanford Company`s testing program for soft waste dislodging and conveyance technology. This program was initialized to investigate methods of dislodging and conveying soft waste. The main focus was on using air jets, water jets, and/or mechanical blades to dislodge the waste and air conveyance to convey the dislodged waste. These waste dislodging and conveyance technologies would be used in conjunction with a manipulator based retrieval system.

  4. Frequent PLAG1 gene rearrangements in skin and soft tissue myoepithelioma with ductal differentiation.

    PubMed

    Antonescu, Cristina R; Zhang, Lei; Shao, Sung Yun; Mosquera, Juan-Miguel; Weinreb, Ilan; Katabi, Nora; Fletcher, Christopher D M

    2013-07-01

    A subset of cutaneous and superficial soft tissue myoepithelial (ME) tumors displays a distinct ductal component and closely resembles mixed tumors/pleomorphic adenomas of salivary gland. As PLAG1 and HMGA2 rearrangements are the most common genetic events in pleomorphic adenomas, we sought to investigate if these abnormalities are also present in the skin/soft tissue ME lesions. In contrast, half of the deep-seated soft tissue ME tumors lacking ductal differentiation are known to be genetically unrelated, showing EWSR1 rearrangements. FISH analysis to detect PLAG1 and HMGA2 abnormalities was performed in 35 ME tumors, nine skin and 26 soft tissue, lacking EWSR1 and FUS rearrangements. For the PLAG1-rearranged tumors, FISH and RACE were performed to identify potential fusion partners, including CTNNB1 (beta-catenin) on 3p21 and LIFR (leukemia inhibitory factor receptor) on 5p13. Recurrent PLAG1 rearrangement by FISH was detected in 13 (37%) lesions, including three (33%) in the skin and 10 (38%) in the soft tissue. All were classified as benign and all except one showed abundant tubulo-ductal differentiation (comprising 12/24 [50%] of all tumors with ductal structures). A LIFR-PLAG1 fusion was detected by RACE and then confirmed by FISH in one soft tissue ME tumor with tubular formation. No CTNNB1 or LIFR abnormalities were detected in any of the remaining PLAG1-rearranged tumors. No structural HMGA2 abnormalities were detected in any of the 22 ME lesions tested. A subset of cutaneous and soft tissue ME tumors appears genetically linked to their salivary gland counterparts, displaying frequent PLAG1 gene rearrangements and occasionally LIFR-PLAG1 fusion.

  5. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    SciTech Connect

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

  6. Fusion Energy Division annual progress report, period ending December 31, 1989

    SciTech Connect

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  7. Improvements of image fusion methods

    NASA Astrophysics Data System (ADS)

    Ben-Shoshan, Yotam; Yitzhaky, Yitzhak

    2014-03-01

    Fusion of images from different imaging modalities, obtained by conventional fusion methods, may cause artifacts, including destructive superposition and brightness irregularities, in certain cases. This paper proposes two methods for improving image multimodal fusion quality. Based on the finding that a better fusion can be achieved when the images have a more positive correlation, the first method is a decision algorithm that runs at the preprocessing fusion stage and determines whether a complementary gray level of one of the input images should be used instead of the original one. The second method is suitable for multiresolution fusion, and it suggests choosing only one image from the lowest-frequency sub-bands in the pyramids, instead of combining values from both sub-bands. Experimental results indicate that the proposed fusion enhancement can reduce fusion artifacts. Quantitative fusion quality measures that support this conclusion are shown.

  8. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    SciTech Connect

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

    1995-09-01

    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

  9. Soft matter approaches to structured foods: from "cook-and-look" to rational food design?

    PubMed

    Ubbink, Job

    2012-01-01

    Developments in soft matter physics are discussed within the context of food structuring. An overview is given of soft matter-based approaches used in food, and a relation is established between soft matter approaches and food technology, food creation, product development and nutrition. Advances in food complexity and food sustainability are discussed from a physical perspective, and the potential for future developments is highlighted.

  10. Fabric softeners and softness perception.

    PubMed

    Ali, S I; Begum, S

    1994-05-01

    In order to evaluate the efficiency of various commercial chemical fabric softeners, a technique of obtaining subjective assessment known as 'magnitude estimation' was used to estimate the fabric softness. Particular emphasis was given to subjective scaling and limits of human perception. Comparison between softness and compression (a physical measure) was demonstrated. PMID:8206048

  11. Not-so-Soft Skills

    ERIC Educational Resources Information Center

    Curran, Mary

    2010-01-01

    Much recent discussion about the skills needed to secure Britain's economic recovery has focused on skills for employability. However, too often, these fundamental skills are understood in narrow functional or vocational terms. So-called "soft skills", what Penelope Tobin, in her 2008 paper "Soft Skills: the hard facts", terms "traits and…

  12. Softness perceptive texture method

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuichi; Suzuki, Masami; Ohya, Jun

    2004-06-01

    We have been studying about people's visual impression and image features for texture images in order to clarify the human subjective interpretation mechanism for images[1]. In corresponding image features of human impressions for the images, we found that the impressions for material were bottle-necked. We have studied a new analysis method which gives the impression for material from texture images. Especially, we mainly focused on the properties of visual targets which people can feel tactile sense. In this paper, we propose a new texture analysis method which is based on frequency analysis with 3D texture which is designed for photorealistic rendering. We found that our new method can estimate not only the surface roughness but also the surface softness.

  13. Soft Systems Methodology

    NASA Astrophysics Data System (ADS)

    Checkland, Peter; Poulter, John

    Soft systems methodology (SSM) is an approach for tackling problematical, messy situations of all kinds. It is an action-oriented process of inquiry into problematic situations in which users learn their way from finding out about the situation, to taking action to improve it. The learning emerges via an organised process in which the situation is explored using a set of models of purposeful action (each built to encapsulate a single worldview) as intellectual devices, or tools, to inform and structure discussion about a situation and how it might be improved. This paper, written by the original developer Peter Checkland and practitioner John Poulter, gives a clear and concise account of the approach that covers SSM's specific techniques, the learning cycle process of the methodology and the craft skills which practitioners develop. This concise but theoretically robust account nevertheless includes the fundamental concepts, techniques, core tenets described through a wide range of settings.

  14. The soft keratoprosthesis.

    PubMed Central

    Caldwell, D R

    1997-01-01

    PURPOSE: The purpose of this work was to develop a keratoprosthesis which utilizes a biocolonizable skirt attached to a soft, elastomeric optic for world-wide application. METHODS: Over a period of 20 years, using in vivo animal implantation studies, a series of experiments was conducted testing materials for biocompatibility and durability which resulted in the development of an improved design. A new surgical technique was developed, using porous, biocolonizable haptics embedded within the sclera and combined with the established techniques of resection of Descemet's membrane and a conjunctival flap. RESULTS: Animal implantation studies indicated that 6 haptics, equidistantly placed, was the optimal shape. Two clinical trials resulted in the selection of an aliphatic polyether-based urethane for the optic and 60 mu pore polytetrafluoroethylene for the porous ingrowth material. Heated, pressurized injection moulding proved to be the optimal bonding method between the skirt and the optic. Sclerally embedded haptics achieved excellent integration with the tissue. CONCLUSIONS: This keratoprosthesis is a significant improvement over previous models with a rigid optic in that: 1. The porous ingrowth haptic is sclerally anchored, preventing extrusion. 2. It has a soft elastomeric optic which more successfully defuses the shearing forces of the keratoprosthesis/tissue interface secondary to blinking. 3. The optic is less massive and of greater circumference at the optic/tissue interface, thereby imparting less energy per area with a given movement. 4. The optic does not project posteriorly thereby decreasing anterior chamber irritation and reducing the possibility of glaucoma, uveitis, endophthalmitis, and retinal detachment. 5. This keratoprosthesis allows a normal field of view for the patient and an effective funduscopic view for the surgeon. 6. The large optical diameter eliminates problems with decentralization of the image. 7. It has a significantly better cosmetic

  15. Lateral Lumbar Interbody Fusion.

    PubMed

    Pawar, Abhijit; Hughes, Alexander; Girardi, Federico; Sama, Andrew; Lebl, Darren; Cammisa, Frank

    2015-12-01

    The lateral lumbar interbody fusion (LLIF) is a relatively new technique that allows the surgeon to access the intervertebral space from a direct lateral approach either anterior to or through the psoas muscle. This approach provides an alternative to anterior lumbar interbody fusion with instrumentation, posterior lumbar interbody fusion, and transforaminal lumbar interbody fusion for anterior column support. LLIF is minimally invasive, safe, better structural support from the apophyseal ring, potential for coronal plane deformity correction, and indirect decompression, which have has made this technique popular. LLIF is currently being utilized for a variety of pathologies including but not limited to adult de novo lumbar scoliosis, central and foraminal stenosis, spondylolisthesis, and adjacent segment degeneration. Although early clinical outcomes have been good, the potential for significant neurological and vascular vertebral endplate complications exists. Nevertheless, LLIF is a promising technique with the potential to more effectively treat complex adult de novo scoliosis and achieve predictable fusion while avoiding the complications of traditional anterior surgery and posterior interbody techniques. PMID:26713134

  16. Myoblast fusion in Drosophila

    SciTech Connect

    Haralalka, Shruti; Abmayr, Susan M.

    2010-11-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  17. Lateral Lumbar Interbody Fusion

    PubMed Central

    Hughes, Alexander; Girardi, Federico; Sama, Andrew; Lebl, Darren; Cammisa, Frank

    2015-01-01

    The lateral lumbar interbody fusion (LLIF) is a relatively new technique that allows the surgeon to access the intervertebral space from a direct lateral approach either anterior to or through the psoas muscle. This approach provides an alternative to anterior lumbar interbody fusion with instrumentation, posterior lumbar interbody fusion, and transforaminal lumbar interbody fusion for anterior column support. LLIF is minimally invasive, safe, better structural support from the apophyseal ring, potential for coronal plane deformity correction, and indirect decompression, which have has made this technique popular. LLIF is currently being utilized for a variety of pathologies including but not limited to adult de novo lumbar scoliosis, central and foraminal stenosis, spondylolisthesis, and adjacent segment degeneration. Although early clinical outcomes have been good, the potential for significant neurological and vascular vertebral endplate complications exists. Nevertheless, LLIF is a promising technique with the potential to more effectively treat complex adult de novo scoliosis and achieve predictable fusion while avoiding the complications of traditional anterior surgery and posterior interbody techniques. PMID:26713134

  18. New double soft emission theorems

    NASA Astrophysics Data System (ADS)

    Cachazo, Freddy; He, Song; Yuan, Ellis Ye

    2015-09-01

    We study the behavior of the tree-level S-matrix of a variety of theories as two particles become soft. By analogy with the recently found subleading soft theorems for gravitons and gluons, we explore subleading terms in double soft emissions. We first consider double soft scalar emissions and find subleading terms that are controlled by the angular momentum operator acting on hard particles. The order of the subleading theorems depends on the presence or not of color structures. Next we obtain a compact formula for the leading term in a double soft photon emission. The theories studied are a special Galileon, Dirac-Born-Infeld, Einstein-Maxwell-Scalar, nonlinear sigma model and Yang-Mills-Scalar. We use the recently found Cachazo-He-Yuan representation of these theories in order to give a simple proof of the leading order part of all these theorems.

  19. Dental laser technology.

    PubMed

    Fasbinder, Dennis J

    2008-10-01

    Dental technology is rapidly affecting the treatment options available to patients. Dental lasers are an innovative technology for both hard- and soft-tissue treatment applications. The ability to recontour soft tissues efficiently and predictably with immediate hemostatsis and minimal postoperative sequelae is of value to both the dentist and the patient. This article reviews the principles of dental lasers, criteria to consider when selecting a dental laser, and some of their clinical applications.

  20. Drugs Approved for Soft Tissue Sarcoma

    MedlinePlus

    ... Professionals Questions to Ask about Your Treatment Research Drugs Approved for Soft Tissue Sarcoma This page lists ... soft tissue sarcoma that are not listed here. Drugs Approved for Soft Tissue Sarcoma Cosmegen (Dactinomycin) Dactinomycin ...

  1. Active Surfaces and Interfaces of Soft Materials

    NASA Astrophysics Data System (ADS)

    Wang, Qiming

    A variety of intriguing surface patterns have been observed on developing natural systems, ranging from corrugated surface of white blood cells at nanometer scales to wrinkled dog skins at millimeter scales. To mimetically harness functionalities of natural morphologies, artificial transformative skin systems by using soft active materials have been rationally designed to generate versatile patterns for a variety of engineering applications. The study of the mechanics and design of these dynamic surface patterns on soft active materials are both physically interesting and technologically important. This dissertation starts with studying abundant surface patterns in Nature by constructing a unified phase diagram of surface instabilities on soft materials with minimum numbers of physical parameters. Guided by this integrated phase diagram, an electroactive system is designed to investigate a variety of electrically-induced surface instabilities of elastomers, including electro-creasing, electro-cratering, electro-wrinkling and electro-cavitation. Combing experimental, theoretical and computational methods, the initiation, evolution and transition of these instabilities are analyzed. To apply these dynamic surface instabilities to serving engineering and biology, new techniques of Dynamic Electrostatic Lithography and electroactive anti-biofouling are demonstrated.

  2. Complex Spectra in Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    von Hellermann, M. G.; Bertschinger, G.; Biel, W.; Giroud, C.; Jaspers, R.; Jupen, C.; Marchuk, O.; O'Mullane, M.; Summers, H. P.; Whiteford, A.; Zastrow, K.-D.

    2005-01-01

    The need for quantitative evaluation of complex line emission spectra as observed in hot fusion plasmas initiated a challenging development of sophisticated interpretation tools based on integrating advanced atomic modelling with detailed treatment of the plasma environment. The successful merging of the two worlds has led to routine diagnostic procedures which have contributed enormously to the understanding of underlying plasma processes and also to a wide acceptance of spectroscopy as a reliable diagnostic method. In this paper three characteristic types of spectra of current and continuing interest are presented. The first is that of medium/heavy species with many ionisation stages revealed in survey VUV and XUV spectra. Such species occur as control gases, as wall materials, as ablated heavy species and possible as layered wall dopants for monitoring erosion. The spectra are complex with line-like and quasi-continuum regions and are amenable to advanced `pattern recognition' methods. The second type is of few electron, highly ionised systems observed as line-of-sight integrated passive emission spectra in the soft x-ray region. They are analysed successfully in terms of plasma parameters through matching of observation with predicted synthetic spectra. Examples used here include highly resolved helium-like emission spectra of argon, iron and titanium observed on the tokamaks TEXTOR and Tore Supra. The third type, and the emphasis of this work, comprises spectra linked to active beam spectroscopy, that is, charge exchange recombination spectroscopy (CXRS) and beam emission spectroscopy (BES). In this case, a complex spectrum is again composed of a (usually) dominating active spectrum and an underlying passive emission spectrum. Its analysis requires modelling of both active and passive features. Examples used here are from the CXRS diagnostic at JET and TEXTOR. They display characteristic features of the main light impurity ions (C+6, He+2, N+7, Ne+10 and Ar+18

  3. Ceramics for fusion applications

    SciTech Connect

    Clinard, F.W. Jr.

    1986-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al/sub 2/O/sub 3/, MgAl/sub 2/O/sub 4/, BeO, Si/sub 3/N/sub 4/ and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications.

  4. Peaceful Uses of Fusion

    DOE R&D Accomplishments Database

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.

  5. Simulation of Fusion Plasmas

    ScienceCinema

    Holland, Chris [UC San Diego, San Diego, California, United States

    2016-07-12

    The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the “burning plasma” regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.

  6. Spherical torus fusion reactor

    DOEpatents

    Peng, Yueng-Kay M.

    1989-04-04

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  7. Spherical torus fusion reactor

    DOEpatents

    Peng, Yueng-Kay M.

    1989-01-01

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  8. Fusion safety program Annual report, Fiscal year 1995

    SciTech Connect

    Longhurst, G.R.; Cadwallader, L.C.; Carmack, W.J.

    1995-12-01

    This report summarizes the major activities of the Fusion Safety Program in FY-95. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory, and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions. Among the technical areas covered in this report are tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and the technical support for commercial fusion facility conceptual design studies. A final activity described is work to develop DOE Technical Standards for Safety of Fusion Test Facilities.

  9. Fusion Safety Program annual report, fiscal year 1994

    SciTech Connect

    Longhurst, G.R.; Cadwallader, L.C.; Dolan, T.J.; Herring, J.S.; McCarthy, K.A.; Merrill, B.J.; Motloch, C.G.; Petti, D.A.

    1995-03-01

    This report summarizes the major activities of the Fusion Safety Program in fiscal year 1994. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions, including the University of Wisconsin. The technical areas covered in this report include tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate data base development, and thermalhydraulics code development and their application to fusion safety issues. Much of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and of the technical support for commercial fusion facility conceptual design studies. A major activity this year has been work to develop a DOE Technical Standard for the safety of fusion test facilities.

  10. Soft Robotics: New Perspectives for Robot Bodyware and Control

    PubMed Central

    Laschi, Cecilia; Cianchetti, Matteo

    2014-01-01

    The remarkable advances of robotics in the last 50 years, which represent an incredible wealth of knowledge, are based on the fundamental assumption that robots are chains of rigid links. The use of soft materials in robotics, driven not only by new scientific paradigms (biomimetics, morphological computation, and others), but also by many applications (biomedical, service, rescue robots, and many more), is going to overcome these basic assumptions and makes the well-known theories and techniques poorly applicable, opening new perspectives for robot design and control. The current examples of soft robots represent a variety of solutions for actuation and control. Though very first steps, they have the potential for a radical technological change. Soft robotics is not just a new direction of technological development, but a novel approach to robotics, unhinging its fundamentals, with the potential to produce a new generation of robots, in the support of humans in our natural environments. PMID:25022259

  11. Fusion welding process

    DOEpatents

    Thomas, Kenneth C.; Jones, Eric D.; McBride, Marvin A.

    1983-01-01

    A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

  12. Atomic data for fusion

    SciTech Connect

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A.; Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  13. Fusion fuel cycle: material requirements and potential effluents

    SciTech Connect

    Teofilo, V.L.; Bickford, W.E.; Long, L.W.; Price, B.A.; Mellinger, P.J.; Willingham, C.E.; Young, J.K.

    1980-10-01

    Environmental effluents that may be associated with the fusion fuel cycle are identified. Existing standards for controlling their release are summarized and anticipated regulatory changes are identified. The ability of existing and planned environmental control technology to limit effluent releases to acceptable levels is evaluated. Reference tokamak fusion system concepts are described and the principal materials required of the associated fuel cycle are analyzed. These materials include the fusion fuels deuterium and tritium; helium, which is used as a coolant for both the blanket and superconducting magnets; lithium and beryllium used in the blanket; and niobium used in the magnets. The chemical and physical processes used to prepare these materials are also described.

  14. Accelerator and Fusion Research Division: summary of activities, 1983

    SciTech Connect

    Not Available

    1984-08-01

    The activities described in this summary of the Accelerator and Fusion Research Division are diverse, yet united by a common theme: it is our purpose to explore technologically advanced techniques for the production, acceleration, or transport of high-energy beams. These beams may be the heavy ions of interest in nuclear science, medical research, and heavy-ion inertial-confinement fusion; they may be beams of deuterium and hydrogen atoms, used to heat and confine plasmas in magnetic fusion experiments; they may be ultrahigh-energy protons for the next high-energy hadron collider; or they may be high-brilliance, highly coherent, picosecond pulses of synchrotron radiation.

  15. Project Icarus: Fission-Fusion Hybrid Fuel for Interstellar Propulsion

    NASA Astrophysics Data System (ADS)

    Freeland, R. M., III

    Project Icarus is a theoretical design study for an interstellar probe. The Icarus Terms of Reference [1] specify that the design must use "current or near future technology", and that the propulsion must be "mainly fusion based". The latter allows room for a propulsion system that uses hybrid fission-fusion technology. This paper explains the motivation and science behind hybrid fuel and examines the applicability of this technology to deep space propulsion. This paper is a submission of the Project Icarus Study Group.

  16. Information fusion based optimal control for large civil aircraft system.

    PubMed

    Zhen, Ziyang; Jiang, Ju; Wang, Xinhua; Gao, Chen

    2015-03-01

    Wind disturbance has a great influence on landing security of Large Civil Aircraft. Through simulation research and engineering experience, it can be found that PID control is not good enough to solve the problem of restraining the wind disturbance. This paper focuses on anti-wind attitude control for Large Civil Aircraft in landing phase. In order to improve the riding comfort and the flight security, an information fusion based optimal control strategy is presented to restrain the wind in landing phase for maintaining attitudes and airspeed. Data of Boeing707 is used to establish a nonlinear mode with total variables of Large Civil Aircraft, and then two linear models are obtained which are divided into longitudinal and lateral equations. Based on engineering experience, the longitudinal channel adopts PID control and C inner control to keep longitudinal attitude constant, and applies autothrottle system for keeping airspeed constant, while an information fusion based optimal regulator in the lateral control channel is designed to achieve lateral attitude holding. According to information fusion estimation, by fusing hard constraint information of system dynamic equations and the soft constraint information of performance index function, optimal estimation of the control sequence is derived. Based on this, an information fusion state regulator is deduced for discrete time linear system with disturbance. The simulation results of nonlinear model of aircraft indicate that the information fusion optimal control is better than traditional PID control, LQR control and LQR control with integral action, in anti-wind disturbance performance in the landing phase.

  17. Demountable vacuum seals for fusion reactor applications

    SciTech Connect

    Batzer, T.H.; Call, W.R.

    1987-10-16

    Demountable vacuum seals for fusion reactor applications must be compatible with the reactor environment, easily scalable, very reliable and readily maintained by remote handling methods. We are investigating gate valves as well as flanges in our efforts to provide such seals. They are all metal and scalable without becoming massive and require no axial fasteners. Preliminary tests on an initial 30 cm aluminum flange using no soft metal coatings or gaskets have given several vacuum tight closures. Weld fatigue of this preliminary design caused degradation of the seal with further cycling to leakage levels of 10/sup -6/ Tl/sec, which is acceptable with differential pumping for either valves or flanges. Additional flange pairs using slightly altered geometry, fabrication techniques, and seal plating materials will be tested and reported on.

  18. Magnet operating experience review for fusion applications

    SciTech Connect

    Cadwallader, L.C.

    1991-11-01

    This report presents a review of magnet operating experiences for normal-conducting and superconducting magnets from fusion, particle accelerator, medical technology, and magnetohydrodynamics research areas. Safety relevant magnet operating experiences are presented to provide feedback on field performance of existing designs and to point out the operational safety concerns. Quantitative estimates of magnet component failure rates and accident event frequencies are also presented, based on field experience and on performance of similar components in other industries.

  19. The role and status of magnetic fusion

    NASA Astrophysics Data System (ADS)

    Frieman, E. A.

    1981-05-01

    A brief assessment is presented of the physical principles and technological development requirements of magnetic fusion devices such as the tokamak and magnetic mirror. Among the problems to be solved are: (1) MHD equilibrium and stability, (2) perpendicular ion and electron confinement, (3) parallel electron energy confinement, (4) heating by external means, (5) self-heating, (6) electric potential, (7) impurity influx and (8) refueling.

  20. Multisensor data fusion algorithm development

    SciTech Connect

    Yocky, D.A.; Chadwick, M.D.; Goudy, S.P.; Johnson, D.K.

    1995-12-01

    This report presents a two-year LDRD research effort into multisensor data fusion. We approached the problem by addressing the available types of data, preprocessing that data, and developing fusion algorithms using that data. The report reflects these three distinct areas. First, the possible data sets for fusion are identified. Second, automated registration techniques for imagery data are analyzed. Third, two fusion techniques are presented. The first fusion algorithm is based on the two-dimensional discrete wavelet transform. Using test images, the wavelet algorithm is compared against intensity modulation and intensity-hue-saturation image fusion algorithms that are available in commercial software. The wavelet approach outperforms the other two fusion techniques by preserving spectral/spatial information more precisely. The wavelet fusion algorithm was also applied to Landsat Thematic Mapper and SPOT panchromatic imagery data. The second algorithm is based on a linear-regression technique. We analyzed the technique using the same Landsat and SPOT data.

  1. Soft Hair on Black Holes.

    PubMed

    Hawking, Stephen W; Perry, Malcolm J; Strominger, Andrew

    2016-06-10

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.

  2. Soft Hair on Black Holes.

    PubMed

    Hawking, Stephen W; Perry, Malcolm J; Strominger, Andrew

    2016-06-10

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units. PMID:27341223

  3. Soft Hair on Black Holes

    NASA Astrophysics Data System (ADS)

    Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew

    2016-06-01

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.

  4. The Soft-Skills Learning Triangle: A Learning Model for Supporting Online Management & Leadership Development

    ERIC Educational Resources Information Center

    Adams, Jean

    2010-01-01

    The purpose of this paper is to present the Soft-skills Learning Triangle (SLT)--a model created to help coaches, mentors, and educators understand how web-technologies can be used to support management learning and soft-skills development. SLT emerged as part of a larger action-learning research project--the NewMindsets Management Education…

  5. Soft Decision Analyzer

    NASA Technical Reports Server (NTRS)

    Steele, Glen; Lansdowne, Chatwin; Zucha, Joan; Schlensinger, Adam

    2013-01-01

    The Soft Decision Analyzer (SDA) is an instrument that combines hardware, firmware, and software to perform realtime closed-loop end-to-end statistical analysis of single- or dual- channel serial digital RF communications systems operating in very low signal-to-noise conditions. As an innovation, the unique SDA capabilities allow it to perform analysis of situations where the receiving communication system slips bits due to low signal-to-noise conditions or experiences constellation rotations resulting in channel polarity in versions or channel assignment swaps. SDA s closed-loop detection allows it to instrument a live system and correlate observations with frame, codeword, and packet losses, as well as Quality of Service (QoS) and Quality of Experience (QoE) events. The SDA s abilities are not confined to performing analysis in low signal-to-noise conditions. Its analysis provides in-depth insight of a communication system s receiver performance in a variety of operating conditions. The SDA incorporates two techniques for identifying slips. The first is an examination of content of the received data stream s relation to the transmitted data content and the second is a direct examination of the receiver s recovered clock signals relative to a reference. Both techniques provide benefits in different ways and allow the communication engineer evaluating test results increased confidence and understanding of receiver performance. Direct examination of data contents is performed by two different data techniques, power correlation or a modified Massey correlation, and can be applied to soft decision data widths 1 to 12 bits wide over a correlation depth ranging from 16 to 512 samples. The SDA detects receiver bit slips within a 4 bits window and can handle systems with up to four quadrants (QPSK, SQPSK, and BPSK systems). The SDA continuously monitors correlation results to characterize slips and quadrant change and is capable of performing analysis even when the

  6. Fusion engineering device design description

    SciTech Connect

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  7. Fusion Engineering Device design description

    SciTech Connect

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  8. Hard evidence on soft skills.

    PubMed

    Heckman, James J; Kautz, Tim

    2012-08-01

    This paper summarizes recent evidence on what achievement tests measure; how achievement tests relate to other measures of "cognitive ability" like IQ and grades; the important skills that achievement tests miss or mismeasure, and how much these skills matter in life. Achievement tests miss, or perhaps more accurately, do not adequately capture, soft skills-personality traits, goals, motivations, and preferences that are valued in the labor market, in school, and in many other domains. The larger message of this paper is that soft skills predict success in life, that they causally produce that success, and that programs that enhance soft skills have an important place in an effective portfolio of public policies.

  9. Soft magnetic wires

    NASA Astrophysics Data System (ADS)

    Vázquez, M.

    2001-06-01

    An overview of the present state of the art on the preparation techniques, outstanding magnetic properties and applications of soft magnetic micro and nanowires is presented. Rapid solidification techniques (in-rotating-water quenching and drawing methods) to fabricate amorphous microwires with diameter in the range from 100 down to 1 μm are first described. Electrodeposition is also employed to prepare composite microtubes (magnetic coatings) and to fill porous membranes (diameter of the order of 0.1 μm). Magnetic behaviours of interest are related to the different hysteresis loops of samples: square-shaped loops typical of bistable behaviour, and nearly non-hysteretic loop with well-defined transverse anisotropy field. The role played by magnetic dipolar interactions in the magnetic behaviour of arrays of micro and nanowires is described. A particular analysis is done on the giant magnetoimpedance (GMI) effect in the radio and microwave frequency ranges exhibited by ultrasoft microwires. Finally, a few examples of applications are introduced for magnetostrictive and non-magnetostrictive wires, they are: “magnetoelastic pens”, micromotors; DC current-sensors based on GMI, and sharpened amorphous wire tips in spin polarised scanning tunneling microscopy.

  10. Human-Centered Fusion Framework

    SciTech Connect

    Posse, Christian; White, Amanda M.; Beagley, Nathaniel

    2007-05-16

    In recent years the benefits of fusing signatures extracted from large amounts of distributed and/or heterogeneous data sources have been largely documented in various problems ranging from biological protein function prediction to cyberspace monitoring. In spite of significant progress in information fusion research, there is still no formal theoretical framework for defining various types of information fusion systems, defining and analyzing relations among such types, and designing information fusion systems using a formal method approach. Consequently, fusion systems are often poorly understood, are less than optimal, and/or do not suit user needs. To start addressing these issues, we outline a formal humancentered fusion framework for reasoning about fusion strategies. Our approach relies on a new taxonomy for fusion strategies, an alternative definition of information fusion in terms of parameterized paths in signature related spaces, an algorithmic formalization of fusion strategies and a library of numeric and dynamic visual tools measuring the impact as well as the impact behavior of fusion strategies. Using a real case of intelligence analysis we demonstrate that the proposed framework enables end users to rapidly 1) develop and implement alternative fusion strategies, 2) understand the impact of each strategy, 3) compare the various strategies, and 4) perform the above steps without having to know the mathematical foundations of the framework. We also demonstrate that the human impact on a fusion system is critical in the sense that small changes in strategies do not necessarily correspond to small changes in results.

  11. A fusion of minds

    NASA Astrophysics Data System (ADS)

    Corfield, Richard

    2013-02-01

    Mystery still surrounds the visit of the astronomer Sir Bernard Lovell to the Soviet Union in 1963. But his collaboration - and that of other British scientists - eased geopolitical tensions at the height of the Cold War and paved the way for today's global ITER fusion project, as Richard Corfield explains.

  12. Bubble fusion: Preliminary estimates

    SciTech Connect

    Krakowski, R.A.

    1995-02-01

    The collapse of a gas-filled bubble in disequilibrium (i.e., internal pressure {much_lt} external pressure) can occur with a significant focusing of energy onto the entrapped gas in the form of pressure-volume work and/or acoustical shocks; the resulting heating can be sufficient to cause ionization and the emission of atomic radiations. The suggestion that extreme conditions necessary for thermonuclear fusion to occur may be possible has been examined parametrically in terms of the ratio of initial bubble pressure relative to that required for equilibrium. In this sense, the disequilibrium bubble is viewed as a three-dimensional ``sling shot`` that is ``loaded`` to an extent allowed by the maximum level of disequilibrium that can stably be achieved. Values of this disequilibrium ratio in the range 10{sup {minus}5}--10{sup {minus}6} are predicted by an idealized bubble-dynamics model as necessary to achieve conditions where nuclear fusion of deuterium-tritium might be observed. Harmonic and aharmonic pressurizations/decompressions are examined as means to achieve the required levels of disequilibrium required to create fusion conditions. A number of phenomena not included in the analysis reported herein could enhance or reduce the small levels of nuclear fusions predicted.

  13. Mars manned fusion spaceship

    SciTech Connect

    Hedrick, J.; Buchholtz, B.; Ward, P.; Freuh, J.; Jensen, E.

    1991-01-01

    Fusion Propulsion has an enormous potential for space exploration in the near future. In the twenty-first century, a usable and efficient fusion rocket will be developed and in use. Because of the great distance between other planets and Earth, efficient use of time, fuel, and payload is essential. A nuclear spaceship would provide greater fuel efficiency, less travel time, and a larger payload. Extended missions would give more time for research, experiments, and data acquisition. With the extended mission time, a need for an artificial environment exists. The topics of magnetic fusion propulsion, living modules, artificial gravity, mass distribution, space connection, and orbital transfer to Mars are discussed. The propulsion system is a magnetic fusion reactor based on a tandem mirror design. This allows a faster, shorter trip time and a large thrust to weight ratio. The fuel proposed is a mixture of deuterium and helium. Helium can be obtained from lunar mining. There will be minimal external radiation from the reactor resulting in a safe, efficient propulsion system.

  14. Multilevel fusion exploitation

    NASA Astrophysics Data System (ADS)

    Lindberg, Perry C.; Dasarathy, Belur V.; McCullough, Claire L.

    1996-06-01

    This paper describes a project that was sponsored by the U.S. Army Space and Strategic Defense Command (USASSDC) to develop, test, and demonstrate sensor fusion algorithms for target recognition. The purpose of the project was to exploit the use of sensor fusion at all levels (signal, feature, and decision levels) and all combinations to improve target recognition capability against tactical ballistic missile (TBM) targets. These algorithms were trained with simulated radar signatures to accurately recognize selected TBM targets. The simulated signatures represent measurements made by two radars (S-band and X- band) with the targets at a variety of aspect and roll angles. Two tests were conducted: one with simulated signatures collected at angles different from those in the training database and one using actual test data. The test results demonstrate a high degree of recognition accuracy. This paper describes the training and testing techniques used; shows the fusion strategy employed; and illustrates the advantages of exploiting multi-level fusion.

  15. Mars manned fusion spaceship

    NASA Technical Reports Server (NTRS)

    Hedrick, James; Buchholtz, Brent; Ward, Paul; Freuh, Jim; Jensen, Eric

    1991-01-01

    Fusion Propulsion has an enormous potential for space exploration in the near future. In the twenty-first century, a usable and efficient fusion rocket will be developed and in use. Because of the great distance between other planets and Earth, efficient use of time, fuel, and payload is essential. A nuclear spaceship would provide greater fuel efficiency, less travel time, and a larger payload. Extended missions would give more time for research, experiments, and data acquisition. With the extended mission time, a need for an artificial environment exists. The topics of magnetic fusion propulsion, living modules, artificial gravity, mass distribution, space connection, and orbital transfer to Mars are discussed. The propulsion system is a magnetic fusion reactor based on a tandem mirror design. This allows a faster, shorter trip time and a large thrust to weight ratio. The fuel proposed is a mixture of deuterium and helium-3. Helium-3 can be obtained from lunar mining. There will be minimal external radiation from the reactor resulting in a safe, efficient propulsion system.

  16. Fusion reactor materials

    SciTech Connect

    none,

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  17. Resonant Soft X-ray Scattering for Soft Materials

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Young, Athony; Hexemer, Alexander; Padmore, Howard

    2015-03-01

    Over the past a few years, we have developed Resonant Soft X-ray Scattering (RSoXS) and constructed the first dedicated resonant soft x-ray scattering beamline at the Advanced Light Source, LBNL. RSoXS combines soft x-ray spectroscopy with x-ray scattering thus offers statistical information for 3D chemical morphology over a large length scale range from nanometers to micrometers. Its unique chemical sensitivity, large accessible size scale, molecular bond orientation sensitivity with polarized x-rays and high coherence have shown great potential for chemical/morphological structure characterization for many classes of materials. Some recent development of in-situ soft x-ray scattering with in-vacuum sample environment will be discussed. In order to study sciences in naturally occurring conditions, we need to overcome the sample limitations set by the low penetration depth of soft x-rays and requirement of high vacuum. Adapting to the evolving environmental cell designs utilized increasingly in the Electron Microscopy community, customized designed liquid/gas environmental cells will enable soft x-ray scattering experiments on biological, electro-chemical, self-assembly, and hierarchical functional systems in both static and dynamic fashion. Recent RSoXS results on organic electronics, block copolymer thin films, and membrane structure will be presented.

  18. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2015

    SciTech Connect

    Wiffen, F. W.; Katoh, Yutai; Melton, Stephanie G.

    2015-12-01

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the Oak Ridge National Laboratory (ORNL) fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing Department of Energy (DOE) Office of Science fusion energy program while developing materials for fusion power systems. In doing so the program continues to be integrated both with the larger United States (US) and international fusion materials communities, and with the international fusion design and technology communities.This document provides a summary of Fiscal Year (FY) 2015 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for Magnetic Fusion Energy (AT-60-20-10-0) carried out by ORNL. The organization of this report is mainly by material type, with sections on specific technical activities. Four projects selected in the Funding Opportunity Announcement (FOA) solicitation of late 2011 and funded in FY2012-FY2014 are identified by “FOA” in the titles. This report includes the final funded work of these projects, although ORNL plans to continue some of this work within the base program.

  19. Assessment of NDE Methods to Detect Lack of Fusion in HDPE Butt Fusion Joints

    SciTech Connect

    Crawford, Susan L.; Doctor, Steven R.; Cinson, Anthony D.; Watts, Michael W.; Moran, Traci L.; Anderson, Michael T.

    2011-07-31

    Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, were conducted to evaluate nondestructive examinations (NDE) coupled with mechanical testing of butt fusion joints in high-density polyethylene (HDPE) pipe for assessing lack of fusion. The work provided information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques of HDPE butt fusion joints in Section III, Division 1, Class 3, buried piping systems in nuclear power plants. This paper describes results from assessments using ultrasonic and microwave nondestructive techniques and mechanical testing with the high-speed tensile impact test and the side-bend test for determining joint integrity. A series of butt joints were fabricated in 3408, 12-inch (30.5-cm) IPS DR-11 HDPE material by varying the fusion parameters to create good joints and joints containing a range of lack-of-fusion conditions. Six of these butt joints were volumetrically examined with time-of-flight diffraction (TOFD), phased-array (PA) ultrasound, and the Evisive microwave system. The outer diameter (OD) weld beads were removed for microwave evaluation and the pipes ultrasonically re-evaluated. In two of the six pipes, both the outer and inner diameter (ID) weld beads were removed and the pipe joints re-evaluated. Some of the pipes were sectioned and the joints destructively evaluated with the high-speed tensile test and the side-bend test. The fusion parameters, nondestructive and destructive evaluation results have been correlated to validate the effectiveness of what each NDE technology detects and what each does not detect. There was no single NDE method that detected all of the lack-of-fusion flaws but a combination of NDE methods did detect most of the flaws.

  20. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    SciTech Connect

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  1. Fusion/Astrophysics Teacher Research Academy

    NASA Astrophysics Data System (ADS)

    Correll, Donald

    2005-10-01

    In order to engage California high school science teachers in the area of plasma physics and fusion research, LLNL's Fusion Energy Program has partnered with the UC Davis Edward Teller Education Center, ETEC (http://etec.ucdavis.edu), the Stanford University Solar Center (http://solar-center.stanford.edu) and LLNL's Science / Technology Education Program, STEP (http://education.llnl.gov). A four-level ``Fusion & Astrophysics Research Academy'' has been designed to give teachers experience in conducting research using spectroscopy with their students. Spectroscopy, and its relationship to atomic physics and electromagnetism, provides for an ideal plasma `bridge' to the CA Science Education Standards (http://www.cde.ca.gov/be/st/ss/scphysics.asp). Teachers attend multiple-day professional development workshops to explore new research activities for use in the high school science classroom. A Level I, 3-day program consists of two days where teachers learn how plasma researchers use spectrometers followed by instructions on how to use a research grade spectrometer for their own investigations. A 3rd day includes touring LLNL's SSPX (http://www.mfescience.org/sspx/) facility to see spectrometry being used to measure plasma properties. Spectrometry classroom kits are made available for loaning to participating teachers. Level I workshop results (http://education.llnl.gov/fusion&_slash;astro/) will be presented along with plans being developed for Level II (one week advanced SKA's), Level III (pre-internship), and Level IV (summer internship) research academies.

  2. Inertial Fusion Power Plant Concept of Operations and Maintenance

    SciTech Connect

    Anklam, T.; Knutson, B.; Dunne, A. M.; Kasper, J.; Sheehan, T.; Lang, D.; Roberts, V.; Mau, D.

    2015-01-15

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  3. Inertial fusion power plant concept of operations and maintenance

    NASA Astrophysics Data System (ADS)

    Knutson, Brad; Dunne, Mike; Kasper, Jack; Sheehan, Timothy; Lang, Dwight; Anklam, Tom; Roberts, Valerie; Mau, Derek

    2015-02-01

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  4. Softness Correlations Across Length Scales

    NASA Astrophysics Data System (ADS)

    Ivancic, Robert; Shavit, Amit; Rieser, Jennifer; Schoenholz, Samuel; Cubuk, Ekin; Durian, Douglas; Liu, Andrea; Riggleman, Robert

    In disordered systems, it is believed that mechanical failure begins with localized particle rearrangements. Recently, a machine learning method has been introduced to identify how likely a particle is to rearrange given its local structural environment, quantified by softness. We calculate the softness of particles in simulations of atomic Lennard-Jones mixtures, molecular Lennard-Jones oligomers, colloidal systems and granular systems. In each case, we find that the length scale characterizing spatial correlations of softness is approximately a particle diameter. These results provide a rationale for why localized rearrangements--whose size is presumably set by the scale of softness correlations--might occur in disordered systems across many length scales. Supported by DOE DE-FG02-05ER46199.

  5. EWSR1-ATF1 chimeric transcript in a myoepithelial tumor of soft tissue: a case report.

    PubMed

    Flucke, Uta; Mentzel, Thomas; Verdijk, Marian A; Slootweg, Pieter J; Creytens, David H; Suurmeijer, Albert J H; Tops, Bastiaan B J

    2012-05-01

    Soft tissue myoepithelial tumors, a recently defined entity, include benign and malignant lesions showing a considerable morphological and immunohistochemical heterogeneity. EWSR1 rearrangements are well recognized in this tumor type, and some of the partner genes have been identified. Herein we describe a soft tissue myoepithelioma arising in the pelvis with an EWSR1-ATF1 fusion, therefore extending the spectrum of partner genes of EWSR1. In addition, this case indicates that there are overlapping genetic features of myoepithelial tumors, clear cell sarcoma, angiomatoid fibrous histiocytoma, and hyalinizing clear-cell carcinoma of the salivary gland.

  6. Fusion FISH Imaging: Single-Molecule Detection of Gene Fusion Transcripts In Situ

    PubMed Central

    Markey, Fatu Badiane; Ruezinsky, William; Tyagi, Sanjay; Batish, Mona

    2014-01-01

    Double-stranded DNA breaks occur on a regular basis in the human genome as a consequence of genotoxic stress and errors during replication. Usually these breaks are rapidly and faithfully repaired, but occasionally different chromosomes, or different regions of the same chromosome, are fused to each other. Some of these aberrant chromosomal translocations yield functional recombinant genes, which have been implicated as the cause of a number of lymphomas, leukemias, sarcomas, and solid tumors. Reliable methods are needed for the in situ detection of the transcripts encoded by these recombinant genes. We have developed just such a method, utilizing single-molecule fluorescence in situ hybridization (sm-FISH), in which approximately 50 short fluorescent probes bind to adjacent sites on the same mRNA molecule, rendering each target mRNA molecule visible as a diffraction-limited spot in a fluorescence microscope. Utilizing this method, gene fusion transcripts are detected with two differently colored probe sets, each specific for one of the two recombinant segments of a target mRNA; enabling the fusion transcripts to be seen in the microscope as distinct spots that fluoresce in both colors. We demonstrate this method by detecting the BCR-ABL fusion transcripts that occur in chronic myeloid leukemia cells, and by detecting the EWSR1-FLI1 fusion transcripts that occur in Ewing's sarcoma cells. This technology should pave the way for accurate in situ typing of many cancers that are associated with, or caused by, fusion transcripts. PMID:24675777

  7. INTEGRATE: gene fusion discovery using whole genome and transcriptome data

    PubMed Central

    Zhang, Jin; White, Nicole M.; Schmidt, Heather K.; Fulton, Robert S.; Tomlinson, Chad; Warren, Wesley C.; Wilson, Richard K.; Maher, Christopher A.

    2016-01-01

    While next-generation sequencing (NGS) has become the primary technology for discovering gene fusions, we are still faced with the challenge of ensuring that causative mutations are not missed while minimizing false positives. Currently, there are many computational tools that predict structural variations (SV) and gene fusions using whole genome (WGS) and transcriptome sequencing (RNA-seq) data separately. However, as both WGS and RNA-seq have their limitations when used independently, we hypothesize that the orthogonal validation from integrating both data could generate a sensitive and specific approach for detecting high-confidence gene fusion predictions. Fortunately, decreasing NGS costs have resulted in a growing quantity of patients with both data available. Therefore, we developed a gene fusion discovery tool, INTEGRATE, that leverages both RNA-seq and WGS data to reconstruct gene fusion junctions and genomic breakpoints by split-read mapping. To evaluate INTEGRATE, we compared it with eight additional gene fusion discovery tools using the well-characterized breast cell line HCC1395 and peripheral blood lymphocytes derived from the same patient (HCC1395BL). The predictions subsequently underwent a targeted validation leading to the discovery of 131 novel fusions in addition to the seven previously reported fusions. Overall, INTEGRATE only missed six out of the 138 validated fusions and had the highest accuracy of the nine tools evaluated. Additionally, we applied INTEGRATE to 62 breast cancer patients from The Cancer Genome Atlas (TCGA) and found multiple recurrent gene fusions including a subset involving estrogen receptor. Taken together, INTEGRATE is a highly sensitive and accurate tool that is freely available for academic use. PMID:26556708

  8. A soft and dexterous motor

    NASA Astrophysics Data System (ADS)

    Anderson, Iain A.; Tse, Tony Chun Hin; Inamura, Tokushu; O'Brien, Benjamin M.; McKay, Thomas; Gisby, Todd

    2011-03-01

    We present a soft, bearing-free artificial muscle motor that cannot only turn a shaft but also grip and reposition it through a flexible gear. The bearing-free operation provides a foundation for low complexity soft machines, with multiple degree-of-freedom actuation, that can act simultaneously as motors and manipulators. The mechanism also enables an artificial muscle controlled gear change. Future work will include self-sensing feedback for precision, multidegree-of-freedom operation.

  9. Soft tissue augmentation using Restylane.

    PubMed

    Biesman, Brian

    2004-05-01

    Soft tissue augmentation plays an important role in facial rejuvenation. To accomplish this goal, numerous materials have been used. Hyaluronic acids represent the latest family of products to become available in the United States. This article provides an introduction to the proper use of Restylane, the first hyaluronic acid product to be approved by the United States Food and Drug Administration for soft tissue augmentation.

  10. Enhanced image capture through fusion

    NASA Technical Reports Server (NTRS)

    Burt, Peter J.; Hanna, Keith; Kolczynski, Raymond J.

    1993-01-01

    Image fusion may be used to combine images from different sensors, such as IR and visible cameras, to obtain a single composite with extended information content. Fusion may also be used to combine multiple images from a given sensor to form a composite image in which information of interest is enhanced. We present a general method for performing image fusion and show that this method is effective for diverse fusion applications. We suggest that fusion may provide a powerful tool for enhanced image capture with broad utility in image processing and computer vision.

  11. Accelerators for heavy ion fusion

    SciTech Connect

    Bangerter, R.O.

    1985-10-01

    Large fusion devices will almost certainly produce net energy. However, a successful commercial fusion energy system must also satisfy important engineering and economic constraints. Inertial confinement fusion power plants driven by multi-stage, heavy-ion accelerators appear capable of meeting these constraints. The reasons behind this promising outlook for heavy-ion fusion are given in this report. This report is based on the transcript of a talk presented at the Symposium on Lasers and Particle Beams for Fusion and Strategic Defense at the University of Rochester on April 17-19, 1985.

  12. An accelerated fusion power development plan

    NASA Astrophysics Data System (ADS)

    Dean, Stephen O.; Baker, Charles C.; Cohn, Daniel R.; Kinkead, Susan D.

    1991-06-01

    Energy for electricity and transportation is a national issue with worldwide environmental and political implications. The world must have energy options for the next century that are not vulnerable to possible disruption for technical, environmental, public confidence, or other reasons. Growing concerns about the greenhouse effect and the safety of transporting oil may lead to reduced burning of coal and other fossil fuels, and the incidents at Three Mile Island and Chernobyl, as well as nuclear waste storage problems, have eroded public acceptance of nuclear fission. Meeting future world energy needs will require improvements in energy efficiency and conservation. However, the world will soon need new central station power plants and increasing amounts of fuel for the transportation sector. The use of fossil fuels, and possibly even fission power, will very likely be restricted because of environmental, safety, and, eventually, supply considerations. Time is running out for policymakers. New energy technologies cannot be brought to the marketplace overnight. Decades are required to bring a new energy production technology from conception to full market penetration. With the added urgency to mitigate deleterious environmental effects of energy use, policymakers must act decisively now to establish and support vigorous energy technology development programs. The U.S. has invested 8 billion over the past 40 years in fusion research and development. If the U.S. fusion program proceeds according to its present strategy, an additional 40 years, and more money, will be expended before fusion will provide commercial electricity. Such an extended schedule is neither cost-effective nor technically necessary. It is time to launch a national venture to construct and operate a fusion power pilot plant. Such a plant could be operational within 15 years of a national commitment to proceed.

  13. [Soft tissue rheumatism in erderly].

    PubMed

    Szczepański, Leszek

    2008-01-01

    Disorders of soft, peri-articular tissues are a common cause of musculoskeletal pain in elderly patients. Nevertheless, most physicians underestimate the role of soft tissue rheumatism in the pathomechanism of the pain. The impairments of soft tissue can not be diagnosed by X-rays examinations, whereas degenerative lesions of joints are easy diagnosed using this method even despite of their uncertain role in producing the symptoms. The incidence of pain syndromes originated from soft tissues differ regarding to the age of patients. In young subjects the incidence of all of them is generally low. Syndromes provoked by overloading during work: repetitive strain syndrome, canal tunnel syndrome, tennis elbow, golfers elbow, shoulder tendon coin disorders and myofascial pain syndrome are common in middle-aged patients. The morbidity of fibromialgia syndrome is also lower in old people probably as the result of diminished numbers and degenerative changes in nociceptive fibers. The syndromes prevailing in elderly patients include trochanteric syndrome and the pain syndromes provoked by muscle spasm depended on posture abnormalities. In the soft tissue pain syndrome prevention adapted to old age kinesitherapy and avoiding muscle overloading are recommended. Soft tissue pain syndromes are usually treated with non steroidal anti inflammatory drugs. In local pain syndromes better results can be obtained by local treatment. Local injections of glikocorticosteroids are usually very effective and safe.

  14. Electrical stimulation therapies for spinal fusions: current concepts.

    PubMed

    Gan, Jean C; Glazer, Paul A

    2006-09-01

    Electrical stimulation therapies have been used for more than 30 years to enhance spinal fusions. Although their positive effects on spinal fusions have been widely reported, the mechanisms of action of the technologies were only recently identified. Three types of technologies are available clinically: direct current, capacitive coupling, and inductive coupling. The latter is the basis of pulsed electromagnetic fields and combined magnetic fields. This review summarizes the current concepts on the mechanisms of action, animal and clinical studies, and cost justification for the use of electrical stimulation for spinal fusions. Scientific studies support the validity of electrical stimulation treatments. The mechanisms of action of each of the three electrical stimulation therapies are different. New data demonstrates that the upregulation of several growth factors may be responsible for the clinical success seen with the use of such technologies.

  15. Tuning Soft Ionization Strength for Organic Mass Spectrometry.

    PubMed

    Schütz, Alexander; Klute, Felix David; Brandt, Sebastian; Liedtke, Sascha; Jestel, Günter; Franzke, Joachim

    2016-05-17

    Besides the progress of new mass spectrometer technologies, the investigation and development of soft ionization sources play an important key role for analytical sciences. Since the dielectric barrier discharge ionization (DBDI) is identified as two temporally separated events, a selective prevention of the coincident plasma can lead to improved ionization strength. Although a DBDI is known as a soft ionization source, a modulation of the high-voltage amplitude and duty cycle can lead to optimized ionization strength. This is an advantage to cover different types of analytes.

  16. Soft metal constructs for large strain sensor membrane

    NASA Astrophysics Data System (ADS)

    Michaud, Hadrien O.; Teixidor, Joan; Lacour, Stéphanie P.

    2015-03-01

    Thin gold films on silicone display large reversible change in electrical resistance upon stretching. Eutectic liquid metal conductors maintain bulk metal conductivity, even upon extensive elongation. When integrated together, the soft metals enable multidirectional, large strain sensor skin. Their fabrication process combines thermal evaporation of thin gold film patterns through stencil mask with microplotting of eutectic gallium indium microwires, and packaging in silicone rubber. Using three-element rectangular rosettes, we demonstrate a sensor skin that can reliably and locally quantify the plane strain vector in surfaces subject to stretch (up to 50% strain) and indentation. This hybrid technology will find applications in soft robotics, prosthetics and wearable health monitoring systems.

  17. Ion Rings for Magnetic Fusion

    SciTech Connect

    Greenly, John, B.

    2005-07-31

    This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation of a

  18. On the fusion triple product and fusion power gain of tokamak pilot plants and reactors

    NASA Astrophysics Data System (ADS)

    Costley, A. E.

    2016-06-01

    The energy confinement time of tokamak plasmas scales positively with plasma size and so it is generally expected that the fusion triple product, nTτ E, will also increase with size, and this has been part of the motivation for building devices of increasing size including ITER. Here n, T, and τ E are the ion density, ion temperature and energy confinement time respectively. However, tokamak plasmas are subject to operational limits and two important limits are a density limit and a beta limit. We show that when these limits are taken into account, nTτ E becomes almost independent of size; rather it depends mainly on the fusion power, P fus. In consequence, the fusion power gain, Q fus, a parameter closely linked to nTτ E is also independent of size. Hence, P fus and Q fus, two parameters of critical importance in reactor design, are actually tightly coupled. Further, we find that nTτ E is inversely dependent on the normalised beta, β N; an unexpected result that tends to favour lower power reactors. Our findings imply that the minimum power to achieve fusion reactor conditions is driven mainly by physics considerations, especially energy confinement, while the minimum device size is driven by technology and engineering considerations. Through dedicated R&D and parallel developments in other fields, the technology and engineering aspects are evolving in a direction to make smaller devices feasible.

  19. Observation of nuclear fusion driven by a pyroelectric crystal.

    PubMed

    Naranjo, B; Gimzewski, J K; Putterman, S

    2005-04-28

    While progress in fusion research continues with magnetic and inertial confinement, alternative approaches--such as Coulomb explosions of deuterium clusters and ultrafast laser-plasma interactions--also provide insight into basic processes and technological applications. However, attempts to produce fusion in a room temperature solid-state setting, including 'cold' fusion and 'bubble' fusion, have met with deep scepticism. Here we report that gently heating a pyroelectric crystal in a deuterated atmosphere can generate fusion under desktop conditions. The electrostatic field of the crystal is used to generate and accelerate a deuteron beam (> 100 keV and >4 nA), which, upon striking a deuterated target, produces a neutron flux over 400 times the background level. The presence of neutrons from the reaction D + D --> 3He (820 keV) + n (2.45 MeV) within the target is confirmed by pulse shape analysis and proton recoil spectroscopy. As further evidence for this fusion reaction, we use a novel time-of-flight technique to demonstrate the delayed coincidence between the outgoing alpha-particle and the neutron. Although the reported fusion is not useful in the power-producing sense, we anticipate that the system will find application as a simple palm-sized neutron generator. PMID:15858570

  20. Unconventional approaches to fusion

    SciTech Connect

    Brunelli, B.; Leotta, G.G.

    1982-01-01

    This volume is dedicated to unconventional approaches to fusionthose thermonuclear reactors that, in comparison with Tokamak and other main lines, have received little attention in the worldwide scientific community. Many of the approaches considered are still in the embryonic stages. The authors-an international group of active nuclear scientists and engineers-focus on the parameters achieved in the use of these reactors and on the meaning of the most recent physical studies and their implications for the future. They also compare these approaches with conventional ones, the Tokamak in particular, stressing the non-plasma-physics requirements of fusion reactors. Unconventional compact toroids, linear systems, and multipoles are considered, as are the ''almost conventional'' fusion machines: stellarators, mirrors, reversed-field pinches, and EBT.

  1. Fusion pumped laser

    DOEpatents

    Pappas, D.S.

    1987-07-31

    The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.

  2. Experiments in cold fusion

    SciTech Connect

    Palmer, E.P.

    1986-03-28

    The work of Steve Jones and others in muon-catalyzed cold fusion of deuterium and hydrogen suggests the possibility of such fusion catalyzed by ions, or combinations of atoms, or more-or-less free electrons in solid and liquid materials. A hint that this might occur naturally comes from the heat generated in volcanic action in subduction zones on the earth. It is questionable whether the potential energy of material raised to the height of a midocean ridge and falling to the depth of an ocean trench can produce the geothermal effects seen in the volcanoes of subduction zones. If the ridge, the trench, the plates, and the asthenosphere are merely visible effects of deeper density-gradient driven circulations, it is still uncertain that observed energy-concentration effects fit the models.

  3. Understanding and accepting fusion as an alternative energy source

    SciTech Connect

    Goerz, D.A.

    1987-12-10

    Fusion, the process that powers our sun, has long promised to be a virtually inexhaustible source of energy for mankind. No other alternative energy source holds such bright promise, and none has ever presentd such formidable scientific and engineering challenges. Serious research efforts have continued for over 30 years in an attempt to harness and control fusion here on earth. Scientists have made considerable progress in the last decade toward achieving the conditions required for fusion power, and recent experimental results and technological progress have made the scientific feasibility of fusion a virtual certainty. With this knowledge and confidence, the emphasis can now shift toward developing power plants that are practical and economical. Although the necessary technology is not in hand today, the extension to an energy producing system in 20 years is just as attainable as was putting a man on the moon. In the next few decades, the world's population will likely double while the demand for energy will nearly quadruple. Realistic projections show that within the next generation a significant fraction of our electric power must come from alternative energy sources. Increasing environmental concerns may further accelerate this timetable in which new energy sources must be introduced. The continued development of fusion systems to help meet the energy needs of the future will require greater public understanding and support of this technology. The fusion community must do more to make the public aware of the fact that energy is a critical international issue and that fusion is a viable and necessary energy technology that will be safe and economical. 12 refs., 8 figs.

  4. Microfabrication using soft lithography

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-Mei

    Soft Lithography is a group of non-photolithographic techniques currently being explored in our group. Four such techniques-microcontact printing (μCP), replica molding (REM), micromolding in capillaries (MIMIC), and microtransfer molding (μTM)-have been demonstrated for fabricating micro- and nanostructures of a variety of materials with dimension >=30 nm. Part I (Chapters 1-5) reviews several aspects of the three molding techniques REM, MIMIC, and μTM. Chapters 1-3 describe μTM and MIMIC, and the use of these techniques in the fabrication of functional devices. μTM is capable of generating μm-scale structures over large areas, on both planar and contoured surfaces, and is able to make 3-dimensional structures layer by layer. The capability of μTM and MIMIC has been demonstrated in the fabrication of single-mode waveguides, waveguide couplers and interferometers. The coupling between waveguides can be tailored by waveguide spacing or the differential in curing time between the waveguides and the cladding. Chapters 4-5 demonstrate the combination of REM and shrinkable polystyrene (PS) films to reduce the feature size of microstructures and to generate microstructures with high aspect ratios on both planar and curved surfaces. A shrinkable PS film is patterned with relief structures, and then heated and shrinks. Thermal shrinkage results in a 100-fold increase in the aspect ratio of the patterned microstructures in the PS film. The microstructures in the shrunken PS films can be transferred to many other materials by REM. Part II (Chapters 6-7) focuses on two issues in the microfabrication using self-assembled monolayers (SAMs) as ultrathin resists. Chapter 6 describes a selective etching solution for transferring patterns of SAMs of alkanethiolates into the underlying layers (e.g., gold, silver, and copper). This etching solution uses thiosulfate as the ligand that coordinates to the metal ions, and ferricyanide as the oxidant. It has been demonstrated to be

  5. Modular Aneutronic Fusion Engine

    SciTech Connect

    Gary Pajer, Yosef Razin, Michael Paluszek, A.H. Glasser and Samuel Cohen

    2012-05-11

    NASA's JUNO mission will arrive at Jupiter in July 2016, after nearly five years in space. Since operational costs tend to rise with mission time, minimizing such times becomes a top priority. We present the conceptual design for a 10MW aneutronic fusion engine with high exhaust velocities that would reduce transit time for a Jupiter mission to eighteen months and enable more challenging exploration missions in the solar system and beyond. __________________________________________________

  6. Inertial Confinement fusion targets

    NASA Technical Reports Server (NTRS)

    Hendricks, C. D.

    1982-01-01

    Inertial confinement fusion (ICF) targets are made as simple flat discs, as hollow shells or as complicated multilayer structures. Many techniques were devised for producing the targets. Glass and metal shells are made by using drop and bubble techniques. Solid hydrogen shells are also produced by adapting old methods to the solution of modern problems. Some of these techniques, problems, and solutions are discussed. In addition, the applications of many of the techniques to fabrication of ICF targets is presented.

  7. A realistic, gradual and economical approach to fusion power

    NASA Astrophysics Data System (ADS)

    Szoeke, A.; Moir, R. W.

    1991-06-01

    This article describes, in broad outline, a nuclear power plant that generates power by means of repetitive, low-yield explosions in an underground chamber. Such a plant can be built in the near future by using modest extensions of existing technology, and it could be economically competitive if certain parts of the cost are controlled. This is in contrast to magnetic and inertial confinement fusion, of which the technical and economic feasibility will remain highly uncertain for the foreseeable future. Technical improvements of the envisioned plant can be introduced gradually with corresponding reductions in cost of power production. With advancing technology, an increasingly larger fraction of the power can be extracted from fusion reactions, thus providing a smooth transition to a fusion-based economy. Eventually, pure (inertial) fusion schemes could be incorporated into the power plant in a natural way, thereby shortening the time required to achieve large-scale use of fusion power, possibly by decades. This article considers both the technical aspects of this route to fusion power and the relevant issues of public policy.

  8. Cold fusion studies

    NASA Astrophysics Data System (ADS)

    Hembree, D. M.; Burchfield, L. A.; Fuller, E. L., Jr.; Perey, F. G.; Mamantov, G.

    1990-06-01

    A series of experiments designed to detect the by-products expected from deuterium fusion occurring in the palladium and titanium cathodes of heavy water, D2O, electrolysis cells is reported. The primary purpose of this account is to outline the integrated experimental design developed to test the cold fusion hypothesis and to report preliminary results that support continuing the investigation. Apparent positive indicators of deuterium fusion were observed, but could not be repeated or proved to originate from the electrochemical cells. In one instance, two large increases in the neutron count rate, the largest of which exceeded the background by 27 standard deviations, were observed. In a separate experiment, one of the calorimetry cells appeared to be producing approximately 18 percent more power that the input value, but thermistor failure prevented an accurate recording of the event as a function of time. In general, the tritium levels in most cells followed the slow enrichment expected from the electrolysis of D2O containing a small amount of tritium. However, after 576 hours of electrolysis, one cell developed a tritium concentration approximately seven times greater than expected level.

  9. Principles and rationale of the Fusion-Fission Hybrid burner reactor

    NASA Astrophysics Data System (ADS)

    Stacey, Weston M.

    2012-06-01

    The potential advantages of Fusion-Fission Hybrid (FFH) reactors (relative to critical fast reactors) for closing the back end of the nuclear fuel cycle are discussed. The choices of fission and fusion technologies for FFH burner reactors that would fission the transuranics remaining in spent fuel discharged from nuclear power reactors are summarized. The conceptual design and fuel cycle performance of the SABR FFH burner reactor are presented, and a fusion power development schedule with a symbiotic dual FFH path is outlined.

  10. Soft x-ray diagnostics for pulsed power machines

    SciTech Connect

    Idzorek, G.C.; Coulter, W.L.; Walsh, P.J.; Montoya, R.R.

    1995-08-01

    A variety of soft x-ray diagnostics are being fielded on the Los Alamos National Laboratory Pegasus and Procyon pulsed power systems and also being fielded on joint US/Russian magnetized target fusion experiments known as MAGO (Magnitoye Obzhatiye). The authors have designed a low-cost modular photoemissive detector designated the XRD-96 that uses commercial 1100 series aluminum for the photocathode. In addition to photocathode detectors a number of designs using solid state silicon photodiodes have been designed and fielded. They also present a soft x-ray time-integrated pinhole camera system that uses standard type TMAX-400 photographic film that obviates the need for expensive and no longer produced zero-overcoat soft x-ray emulsion film. In a typical experiment the desired spectral energy cuts, signal intensity levels, and desired field of view will determine diagnostic geometry and x-ray filters selected. The authors have developed several computer codes to assist in the diagnostic design process and data deconvolution. Examples of the diagnostic design process and data analysis for a typical pulsed power experiment are presented.

  11. The effect of albumin fusion structure on the production and bioactivity of the somatostatin-28 fusion protein in Pichia pastoris.

    PubMed

    Ding, Yuedi; Fan, Jun; Li, Wenxin; Peng, Ying; Yang, Runlin; Deng, Lili; Fu, Qiang

    2014-06-01

    Somatostatin, a natural inhibitor of growth hormone (GH), and its analogs have been used in clinical settings for the treatment of acromegaly, gigantism, thyrotropinoma, and other carcinoid syndromes. However, natural somatostatin is limited for clinical usage because of its short half-life in vivo. Albumin fusion technology was used to construct long-acting fusion proteins and Pichia pastoris was used as an expression system. Three fusion proteins (SS28)(2)-HSA, (SS28)(3)-HSA, and HSA-(SS28)(2), were constructed with different fusion copies of somatostatin-28 and fusion orientations. The expression level of (SS28)(3)-HSA was much lower than (SS28)(2)-HSA and HSA-(SS28)(2) due to the additional fusion of the somatostatin-28 molecule. MALDI-TOF mass spectrometry revealed that severe degradation occurred in the fermentation process. Similar to the standard, somatostatin-14, all three fusion proteins were able to inhibit GH secretion in blood, with (SS28)(2)-HSA being the most effective one. A pharmacokinetics study showed that (SS28)(2)-HSA had a prolonged half-life of 2 h. These results showed that increasing the number of small protein copies fused to HSA may not be a suitable method for improving protein bioactivity.

  12. The effect of albumin fusion structure on the production and bioactivity of the somatostatin-28 fusion protein in Pichia pastoris.

    PubMed

    Ding, Yuedi; Fan, Jun; Li, Wenxin; Peng, Ying; Yang, Runlin; Deng, Lili; Fu, Qiang

    2014-06-01

    Somatostatin, a natural inhibitor of growth hormone (GH), and its analogs have been used in clinical settings for the treatment of acromegaly, gigantism, thyrotropinoma, and other carcinoid syndromes. However, natural somatostatin is limited for clinical usage because of its short half-life in vivo. Albumin fusion technology was used to construct long-acting fusion proteins and Pichia pastoris was used as an expression system. Three fusion proteins (SS28)(2)-HSA, (SS28)(3)-HSA, and HSA-(SS28)(2), were constructed with different fusion copies of somatostatin-28 and fusion orientations. The expression level of (SS28)(3)-HSA was much lower than (SS28)(2)-HSA and HSA-(SS28)(2) due to the additional fusion of the somatostatin-28 molecule. MALDI-TOF mass spectrometry revealed that severe degradation occurred in the fermentation process. Similar to the standard, somatostatin-14, all three fusion proteins were able to inhibit GH secretion in blood, with (SS28)(2)-HSA being the most effective one. A pharmacokinetics study showed that (SS28)(2)-HSA had a prolonged half-life of 2 h. These results showed that increasing the number of small protein copies fused to HSA may not be a suitable method for improving protein bioactivity. PMID:24752560

  13. The effect of albumin fusion patterns on the production and bioactivity of the somatostatin-14 fusion protein in Pichia pastoris.

    PubMed

    Ding, Yuedi; Fan, Jun; Li, Wenxin; Yang, Runlin; Peng, Ying; Deng, Lili; Wu, Yu; Fu, Qiang

    2013-08-01

    Somatostatin is a natural inhibitor of growth hormone, and its analogues are clinically used for the therapy of acromegaly, gigantism, thyrotropinoma, and other carcinoid syndrome. However, natural somatostatin is limited for clinical usage because of its short half-life in vivo. Albumin fusion technology was used to construct long-acting fusion proteins, and Pichia pastoris was used as an expression system. Three fusion proteins, (somatostatin (SS)14)2-human serum albumin (HSA), (SS14)3-HSA, and HSA-(SS14)3, were constructed with different fusion copies of somatostatin-14 and fusion orientations. The expression level of (SS14)3-HSA and HSA-(SS14)3 was much lower than (SS14)2-HSA due to the additional fusion of the somatostatin-14 molecule. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry revealed that severe degradation occurred in the fermentation process. Similar to the standard of somatostatin-14, all three fusion proteins were able to inhibit growth hormone secretion in the blood, with (SS14)2-HSA being the most effective one. On the whole, (SS14)2-HSA was the most effective protein in both production level and bioactivity, and increasing the number of small protein copies fused to HSA may not be a suitable method to improve the protein bioactivity. PMID:23712794

  14. Fusion safety program annual report fiscal year 1997

    SciTech Connect

    Longhurst, G.R.; Anderl, R.A.; Cadwallader, L.C.

    1998-01-01

    This report summarizes the major activities of the Fusion Safety Program in FY 1997. The Idaho National Engineering and Environmental Laboratory (INEEL) is the designated lead laboratory, and Lockheed Martin Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in FY 1979 to perform research and develop data needed to ensure safety in fusion facilities. Activities include experiments, analysis, code development and application, and other forms of research. These activities are conducted at the INEEL, different DOE laboratories, and other institutions. The technical areas covered in this report include chemical reactions and activation product release, tritium safety, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER) project. Work done for ITER this year has focused on developing the needed information for the Non-site Specific Safety Report (NSSR-2).

  15. Pulsed power accelerators for particle beam fusion

    SciTech Connect

    Martin, T.H.; Barr, G.W.; VanDevender, J.P.; White, R.A.; Johnson, D.L.

    1980-01-01

    Sandia National Laboratories is completing the construction phase of the Particle Beam Fusion Accelerator-I (PBFA-I). Testing of the 36 module, 30 TW, 1 MJ output accelerator is in the initial stages. The 4 MJ, PBFA Marx generator has provided 3.6 MA into water-copper sulfate load resistors with a spread from first to last Marx firing between 15 to 25 ns and an output power of 5.7 TW. This accelerator is a modular, lower voltage, pulsed power device that is capable of scaling to power levels exceeding 100 TW. The elements of the PBFA technology and their integration into an accelerator system for particle beam fusion will be discussed.

  16. Status and Prospects of the Fast Ignition Inertial Fusion Concept

    SciTech Connect

    Key, M H

    2006-11-15

    Fast ignition is an alternate concept in inertial confinement fusion, which has the potential for easier ignition and greater energy multiplication. If realized it could improve the prospects for inertial fusion energy. It poses stimulating challenges in science and technology and the research is approaching a key stage in which the feasibility of fast ignition will be determined. This review covers the concepts, the state of the science and technology, the near term prospects and the challenges and risks involved in demonstrating high gain fast ignition.

  17. Density and glass forming ability in amorphous atomic alloys: The role of the particle softness.

    PubMed

    Douglass, Ian; Hudson, Toby; Harrowell, Peter

    2016-04-14

    A key property of glass forming alloys, the anomalously small volume difference with respect to the crystal, is shown to arise as a direct consequence of the soft repulsive potentials between metals. This feature of the inter-atomic potential is demonstrated to be responsible for a significant component of the glass forming ability of alloys due to the decrease in the enthalpy of fusion and the associated depression of the freezing point. PMID:27083733

  18. Density and glass forming ability in amorphous atomic alloys: The role of the particle softness

    NASA Astrophysics Data System (ADS)

    Douglass, Ian; Hudson, Toby; Harrowell, Peter

    2016-04-01

    A key property of glass forming alloys, the anomalously small volume difference with respect to the crystal, is shown to arise as a direct consequence of the soft repulsive potentials between metals. This feature of the inter-atomic potential is demonstrated to be responsible for a significant component of the glass forming ability of alloys due to the decrease in the enthalpy of fusion and the associated depression of the freezing point.

  19. Fusion for Space Propulsion and Plasma Liner Driven MTF

    NASA Technical Reports Server (NTRS)

    Thio, Y.C. Francis; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    in the light of significant development of the enabling pulsed power component technologies that have occurred in the last two decades because of defense and other energy requirements. The extreme states of matter required to produce fusion reactions may be more readily realizable in the pulsed states with less system mass than in steady states. Significant saving in system mass may result in pulsed fusion systems using plasmas in the appropriate density regimes. Magnetized target fusion, which attempts to combine the favorable attributes of magnetic confinement and inertial compression-containment into one single integrated fusion scheme, appears to have benefits that are worth exploring for propulsion application.

  20. Recent advances and challenges for diode-pumped solid-state lasers as an inertial fusion energy driver candidate

    SciTech Connect

    Payne, S.A.; Beach, R.J.; Bibeau, C.

    1997-12-23

    We discuss how solid-state laser technology can serve in the interests of fusion energy beyond the goals of the National Ignition Facility (NIF), which is now being constructed to ignite a deuterium-tritium target to fusion conditions in the laboratory for the first time. We think that advanced solid-state laser technology can offer the repetition-rate and efficiency needed to drive a fusion power plant, in contrast to the single-shot character of NIF. As discuss below, we propose that a gas-cooled, diode-pumped Yb:S-FAP laser can provide a new paradigm for fusion laser technology leading into the next century.