2011-03-23
sensors (e.g., sensor fusion) or use different detector materials to increase spectral bands into the Near IR (NIR). 3. Holst2provides an...a. Detector type: Multi-element MCT SPRITE b. Wavelength: Long wave, 8-12 um c. Cooling system: Integrated Sterling cooler d. Cooldown...A-1 B. COLLIMATOR SYSTEM DESIGN AND EO/ IR TOPICS ................ B-1 C. ATTC FACILITIES AND INSTRUMENTATION
MFTF-. cap alpha. + T progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, W.D.
1985-04-01
Early in FY 1983, several upgrades of the Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory (LLNL) were proposed to the fusion community. The one most favorably received was designated MFTF-..cap alpha..+T. The engineering design of this device, guided by LLNL, has been a principal activity of the Fusion Engineering Design Center during FY 1983. This interim progress report represents a snapshot of the device design, which was begun in FY 1983 and will continue for several years. The report is organized as a complete design description. Because it is an interim report, some parts are incomplete; theymore » will be supplied as the design study proceeds. As described in this report, MFTF-..cap alpha..+T uses existing facilities, many MFTF-B components, and a number of innovations to improve on the physics parameters of MFTF-B. It burns deuterium-tritium and has a central-cell Q of 2, a wall loading GAMMA/sub n/ of 2 MW/m/sup 2/ (with a central-cell insert module), and an availability of 10%. The machine is fully shielded, allows hands-on maintenance of components outside the vacuum vessel 24 h after shutdown, and has provisions for repair of all operating components.« less
An Overview of INEL Fusion Safety R&D Facilities
NASA Astrophysics Data System (ADS)
McCarthy, K. A.; Smolik, G. R.; Anderl, R. A.; Carmack, W. J.; Longhurst, G. R.
1997-06-01
The Fusion Safety Program at the Idaho National Engineering Laboratory has the lead for fusion safety work in the United States. Over the years, we have developed several experimental facilities to provide data for fusion reactor safety analyses. We now have four major experimental facilities that provide data for use in safety assessments. The Steam-Reactivity Measurement System measures hydrogen generation rates and tritium mobilization rates in high-temperature (up to 1200°C) fusion relevant materials exposed to steam. The Volatilization of Activation Product Oxides Reactor Facility provides information on mobilization and transport and chemical reactivity of fusion relevant materials at high temperature (up to 1200°C) in an oxidizing environment (air or steam). The Fusion Aerosol Source Test Facility is a scaled-up version of VAPOR. The ion-implanta-tion/thermal-desorption system is dedicated to research into processes and phenomena associated with the interaction of hydrogen isotopes with fusion materials. In this paper we describe the capabilities of these facilities.
A Fusion Nuclear Science Facility for a fast-track path to DEMO
Garofalo, Andrea M.; Abdou, M.; Canik, John M.; ...
2014-10-01
An accelerated fusion energy development program, a “fast-track” approach, requires developing an understanding of fusion nuclear science (FNS) in parallel with research on ITER to study burning plasmas. A Fusion Nuclear Science Facility (FNSF) in parallel with ITER provides the capability to resolve FNS feasibility issues related to power extraction, tritium fuel sustainability, and reliability, and to begin construction of DEMO upon the achievement of Q~10 in ITER. Fusion nuclear components, including the first wall (FW)/blanket, divertor, heating/fueling systems, etc. are complex systems with many inter-related functions and different materials, fluids, and physical interfaces. These in-vessel nuclear components must operatemore » continuously and reliably with: (a) Plasma exposure, surface particle & radiation loads, (b) High energy 2 neutron fluxes and their interactions in materials (e.g. peaked volumetric heating with steep gradients, tritium production, activation, atomic displacements, gas production, etc.), (c) Strong magnetic fields with temporal and spatial variations (electromagnetic coupling to the plasma including off-normal events like disruptions), and (d) a High temperature, high vacuum, chemically active environment. While many of these conditions and effects are being studied with separate and multiple effect experimental test stands and modeling, fusion nuclear conditions cannot be completely simulated outside the fusion environment. This means there are many new multi-physics, multi-scale phenomena and synergistic effects yet to be discovered and accounted for in the understanding, design and operation of fusion as a self-sustaining, energy producing system, and significant experimentation and operational experience in a true fusion environment is an essential requirement. In the following sections we discuss the FNSF objectives, describe the facility requirements and a facility concept and operation approach that can accomplish those objectives, and assess the readiness to construct with respect to several key FNSF issues: materials, steady-state operation, disruptions, power exhaust, and breeding blanket. Finally we present our conclusions.« less
Test facility for the evaluation of microwave transmission components
NASA Astrophysics Data System (ADS)
Fong, C. G.; Poole, B. R.
1985-10-01
A Low Power Test Facility (LPTF) was developed to evaluate the performance of Electron Cyclotron Resonance Heating (ECRH) microwave transmission components for the Mirror Fusion Test Facility (MFTF-B). The facility generates 26 to 60 GHz in modes of TE01, TE02, or TE03 launched at power levels of 1/2 milliwatt. The propagation of the RF as it radiates from either transmitting or secondary reflecting microwave transmission components is recorded by a discriminating crystal detector mechanically manipulated at constant radius in spherical coordinates. The facility is used to test, calibrate, and verify the design of overmoded, circular waveguide components, quasi-optical reflecting elements before high power use. The test facility consists of microwave sources and metering components, such as VSWR, power and frequency meters, a rectangular TE10 to circular TE01 mode transducer, mode filter, circular TE01 to 2.5 in. diameter overmoded waveguide with mode converters for combination of TE01 to TE03 modes. This assembly then connects to a circular waveguide launcher or the waveguide component under test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shmatov, M. L., E-mail: M.Shmatov@mail.ioffe.ru
2016-09-15
It is shown that a rapid deceleration of alpha particles in matter of electron temperature up to 100 keV leads a strong suppression of the chain nuclear fusion reaction on the basis of the p+{sup 11}B reaction with the reproduction of fast protons in the α+{sup 11}B and n+{sup 10}B reactions. The statement that the chain nuclear fusion reaction based on the p+{sup 11}B reaction with an acceleration of {sup 11}B nuclei because of elastic alpha-particle scattering manifests itself in experiments at the PALS (Prague Asterix Laser System) facility is analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allain, Jean Paul
2014-08-08
This project consisted of fundamental and applied research of advanced in-situ particle-beam interactions with surfaces/interfaces to discover novel materials able to tolerate intense conditions at the plasma-material interface (PMI) in future fusion burning plasma devices. The project established a novel facility that is capable of not only characterizing new fusion nanomaterials but, more importantly probing and manipulating materials at the nanoscale while performing subsequent single-effect in-situ testing of their performance under simulated environments in fusion PMI.
El-Guebaly, Laila; Rowcliffe, Arthur; Menard, Jonathan; ...
2016-08-11
The qualification and validation of nuclear technologies are daunting tasks for fusion demonstration (DEMO) and power plants. This is particularly true for advanced designs that involve harsh radiation environment with 14 MeV neutrons and high-temperature operating regimes. This paper outlines the unique qualification and validation processes developed in the U.S., offering the only access to the complete fusion environment, focusing on the most prominent U.S. blanket concept (the dual cooled PbLi (DCLL)) along with testing new generations of structural and functional materials in dedicated test modules. The venue for such activities is the proposed Fusion Nuclear Science Facility (FNSF), whichmore » is viewed as an essential element of the U.S. fusion roadmap. A staged blanket testing strategy has been developed to test and enhance the DCLL blanket performance during each phase of FNSF D-T operation. A materials testing module (MTM) is critically important to include in the FNSF as well to test a broad range of specimens of future, more advanced generations of materials in a relevant fusion environment. Here, the most important attributes for MTM are the relevant He/dpa ratio (10–15) and the much larger specimen volumes compared to the 10–500 mL range available in the International Fusion Materials Irradiation Facility (IFMIF) and European DEMO-Oriented Neutron Source (DONES).« less
Fusion Safety Program annual report, fiscal year 1994
NASA Astrophysics Data System (ADS)
Longhurst, Glen R.; Cadwallader, Lee C.; Dolan, Thomas J.; Herring, J. Stephen; McCarthy, Kathryn A.; Merrill, Brad J.; Motloch, Chester C.; Petti, David A.
1995-03-01
This report summarizes the major activities of the Fusion Safety Program in fiscal year 1994. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions, including the University of Wisconsin. The technical areas covered in this report include tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate data base development, and thermalhydraulics code development and their application to fusion safety issues. Much of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and of the technical support for commercial fusion facility conceptual design studies. A major activity this year has been work to develop a DOE Technical Standard for the safety of fusion test facilities.
NASA Astrophysics Data System (ADS)
Pasztor, G.; Bruzzone, P.
2004-06-01
The dc performance of a recently produced internal tin route Nb3Sn strand with enhanced specification is studied extensively and compared with predecessor wires manufactured by the suppliers for the ITER Model Coils in 1996. The wire has been selected for use in a full size, developmental cable-in-conduit conductor sample, which is being tested in the SULTAN Test Facility. The critical current, Ic, and the index of the current/voltage characteristic, n, are measured over a broad range of field and temperature, using ITER standard sample holders, made of TiAlV grooved cylinders. The behavior of Ic versus applied tensile strain is also investigated at 4.2 K and 12 T, on straight specimens. Scaling law parameters are drawn from the fit of the experimental results. The implications of the test results to the design of the fusion conductors are discussed.
Development scenario for laser fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maniscalco, J.A.; Hovingh, J.; Buntzen, R.R.
1976-03-30
This scenario proposes establishment of test and engineering facilities to (1) investigate the technological problems associated with laser fusion, (2) demonstrate fissile fuel production, and (3) demonstrate competitive electrical power production. Such facilities would be major milestones along the road to a laser-fusion power economy. The relevant engineering and economic aspects of each of these research and development facilities are discussed. Pellet design and gain predictions corresponding to the most promising laser systems are presented for each plant. The results show that laser fusion has the potential to make a significant contribution to our energy needs. Beginning in the earlymore » 1990's, this new technology could be used to produce fissile fuel, and after the turn of the century it could be used to generate electrical power.« less
The development of a universal diagnostic probe system for Tokamak fusion test reactor
NASA Technical Reports Server (NTRS)
Mastronardi, R.; Cabral, R.; Manos, D.
1982-01-01
The Tokamak Fusion Test Reactor (TFTR), the largest such facility in the U.S., is discussed with respect to instrumentation in general and mechanisms in particular. The design philosophy and detailed implementation of a universal probe mechanism for TFTR is discussed.
A proposed search for dark-matter axions in the 0.6-16 micro-eV range
NASA Technical Reports Server (NTRS)
Vanbibber, Karl; Sikivie, P.; Sullivan, N. S.; Tanner, D. B.; Turner, Michael S.; Moltz, D. M.
1991-01-01
A proposed experiment is described to search for dark matter axions in the mass range 0.6 to 16 micro-eV. The method is based on the Primakoff conversion of axions into monochromatic microwave photons inside a tunable microwave cavity in a large volume high field magnet, as described by Sikivie. This proposal capitalizes on the availability of two Axicell magnets from the decommissioned Mirror Fusion Test Facility (MFTF-B) fusion machine at LLNL. Assuming a local dark matter density in axions of rho = 0.3 GeV/cu cm, the axion would be found or ruled out at the 97 pct. c.l. in the above mass range in 48 months.
NASA Astrophysics Data System (ADS)
Garkusha, I. E.; Chebotarev, V. V.; Herashchenko, S. S.; Makhlaj, V. A.; Kulik, N. V.; Ladygina, M. S.; Marchenko, A. K.; Petrov, Yu. V.; Staltsov, V. V.; Shevchuk, P. V.; Solyakov, D. G.; Yelisyeyev, D. V.
2017-11-01
In this report a concept of a new generation QSPA with external B-field up to 2 T has been discussed. A novel test-bed facility, which was recently constructed in Kharkov IPP NSC KIPT, has been described. It allows for a new level of plasma stream parameters and its wide variation in new QSPA-M device, as well as possible combination of steady-state and pulsed plasma loads to the materials during the exposures. First plasma is recently obtained. Careful optimization of the operational regimes of the plasma accelerator’s functional components and plasma dynamics in the magnetic system of QSPA-M device has started approaching step by step the necessary level of plasma parameters and their effective variation. The relevant results on plasma stream characterization are presented. Energy density distributions in plasma stream have been measured with calorimetry. Spectroscopy and probe technique have also been applied for plasma parameters measurements. The obtained results demonstrate the ability of QSPA-M to reproduce the ELM impacts in fusion reactor, both in terms of heat load and particle flux to the surface.
International strategy for fusion materials development
NASA Astrophysics Data System (ADS)
Ehrlich, Karl; Bloom, E. E.; Kondo, T.
2000-12-01
In this paper, the results of an IEA-Workshop on Strategy and Planning of Fusion Materials Research and Development (R&D), held in October 1998 in Risø Denmark are summarised and further developed. Essential performance targets for materials to be used in first wall/breeding blanket components have been defined for the major materials groups under discussion: ferritic-martensitic steels, vanadium alloys and ceramic composites of the SiC/SiC-type. R&D strategies are proposed for their further development and qualification as reactor-relevant materials. The important role of existing irradiation facilities (mainly fission reactors) for materials testing within the next decade is described, and the limits for the transfer of results from such simulation experiments to fusion-relevant conditions are addressed. The importance of a fusion-relevant high-intensity neutron source for the development of structural as well as breeding and special purpose materials is elaborated and the reasons for the selection of an accelerator-driven D-Li-neutron source - the International Fusion Materials Irradiation Facility (IFMIF) - as an appropriate test bed are explained. Finally the necessity to execute the materials programme for fusion in close international collaboration, presently promoted by the International Energy Agency, IEA is emphasised.
Critical need for MFE: the Alcator DX advanced divertor test facility
NASA Astrophysics Data System (ADS)
Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Wolf, S.; Bonoli, P.; Fiore, C.; Granetz, R.; Greenwald, M.; Hutchinson, I.; Hubbard, A.; Hughes, J.; Lin, Y.; Lipschultz, B.; Parker, R.; Porkolab, M.; Reinke, M.; Rice, J.; Shiraiwa, S.; Terry, J.; Theiler, C.; Wallace, G.; White, A.; Whyte, D.; Wukitch, S.
2013-10-01
Three critical challenges must be met before a steady-state, power-producing fusion reactor can be realized: how to (1) safely handle extreme plasma exhaust power, (2) completely suppress material erosion at divertor targets and (3) do this while maintaining a burning plasma core. Advanced divertors such as ``Super X'' and ``X-point target'' may allow a fully detached, low temperature plasma to be produced in the divertor while maintaining a hot boundary layer around a clean plasma core - a potential game-changer for magnetic fusion. No facility currently exists to test these ideas at the required parallel heat flux densities. Alcator DX will be a national facility, employing the high magnetic field technology of Alcator combined with high-power ICRH and LHCD to test advanced divertor concepts at FNSF/DEMO power exhaust densities and plasma pressures. Its extended vacuum vessel contains divertor cassettes with poloidal field coils for conventional, snowflake, super-X and X-point target geometries. Divertor and core plasma performance will be explored in regimes inaccessible in conventional devices. Reactor relevant ICRF and LH drivers will be developed, utilizing high-field side launch platforms for low PMI. Alcator DX will inform the conceptual development and accelerate the readiness-for-deployment of next-step fusion facilities.
The National Ignition Facility and Industry
NASA Astrophysics Data System (ADS)
Harri, J. G.; Paisner, J. A.; Lowdermilk, W. H.; Boyes, J. D.; Kumpan, S. A.; Sorem, M. S.
1994-09-01
The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. The National Ignition Facility construction project will require the best of our construction industries and its success will depend on the best products offered by hundreds of the nation's high technology companies. Three-fourths of the construction costs will be invested in industry. This article reviews the design, cost and schedule, and required industrial involvement associated with the construction project.
IFMIF: overview of the validation activities
NASA Astrophysics Data System (ADS)
Knaster, J.; Arbeiter, F.; Cara, P.; Favuzza, P.; Furukawa, T.; Groeschel, F.; Heidinger, R.; Ibarra, A.; Matsumoto, H.; Mosnier, A.; Serizawa, H.; Sugimoto, M.; Suzuki, H.; Wakai, E.
2013-11-01
The Engineering Validation and Engineering Design Activities (EVEDA) for the International Fusion Materials Irradiation Facility (IFMIF), an international collaboration under the Broader Approach Agreement between Japan Government and EURATOM, aims at allowing a rapid construction phase of IFMIF in due time with an understanding of the cost involved. The three main facilities of IFMIF (1) the Accelerator Facility, (2) the Target Facility and (3) the Test Facility are the subject of validation activities that include the construction of either full scale prototypes or smartly devised scaled down facilities that will allow a straightforward extrapolation to IFMIF needs. By July 2013, the engineering design activities of IFMIF matured with the delivery of an Intermediate IFMIF Engineering Design Report (IIEDR) supported by experimental results. The installation of a Linac of 1.125 MW (125 mA and 9 MeV) of deuterons started in March 2013 in Rokkasho (Japan). The world's largest liquid Li test loop is running in Oarai (Japan) with an ambitious experimental programme for the years ahead. A full scale high flux test module that will house ∼1000 small specimens developed jointly in Europe and Japan for the Fusion programme has been constructed by KIT (Karlsruhe) together with its He gas cooling loop. A full scale medium flux test module to carry out on-line creep measurement has been validated by CRPP (Villigen).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nora, R.; Betti, R.; Bose, A.
The theory of ignition for inertial confinement fusion capsules [R. Betti et al., Phys. Plasmas 17, 058102 (2010)] is used to assess the performance requirements for cryogenic implosion experiments on the Omega Laser Facility. The theory of hydrodynamic similarity is developed in both one and two dimensions and tested using multimode hydrodynamic simulations with the hydrocode DRACO [P. B. Radha et al., Phys. Plasmas 12, 032702 (2005)] of hydro-equivalent implosions (implosions with the same implosion velocity, adiabat, and laser intensity). The theory is used to scale the performance of direct-drive OMEGA implosions to the National Ignition Facility (NIF) energy scalesmore » and determine the requirements for demonstrating hydro-equivalent ignition on OMEGA. Hydro-equivalent ignition on OMEGA is represented by a cryogenic implosion that would scale to ignition on the NIF at 1.8 MJ of laser energy symmetrically illuminating the target. It is found that a reasonable combination of neutron yield and areal density for OMEGA hydro-equivalent ignition is 3 to 6 × 10{sup 13} and ∼0.3 g/cm{sup 2}, respectively, depending on the level of laser imprinting. This performance has not yet been achieved on OMEGA.« less
NASA Astrophysics Data System (ADS)
Daum, Eric
2000-12-01
The accelerator-based intense D-Li neutron source International Fusion Materials Irradiation Facility (IFMIF) provides very suitable irradiation conditions for fusion materials development with the attractive option of accelerated irradiations. Investigations show that a neutron moderator made of tungsten and placed in the IFMIF test cell can further improve the irradiation conditions. The moderator softens the IFMIF neutron spectrum by enhancing the fraction of low energy neutrons. For displacement damage, the ratio of point defects to cascades is more DEMO relevant and for tritium production in Li-based breeding ceramic materials it leads to a preferred production via the 6Li(n,t) 4He channel as it occurs in a DEMO breeding blanket.
Progress in Mirror-Based Fusion Neutron Source Development.
Anikeev, A V; Bagryansky, P A; Beklemishev, A D; Ivanov, A A; Kolesnikov, E Yu; Korzhavina, M S; Korobeinikova, O A; Lizunov, A A; Maximov, V V; Murakhtin, S V; Pinzhenin, E I; Prikhodko, V V; Soldatkina, E I; Solomakhin, A L; Tsidulko, Yu A; Yakovlev, D V; Yurov, D V
2015-12-04
The Budker Institute of Nuclear Physics in worldwide collaboration has developed a project of a 14 MeV neutron source for fusion material studies and other applications. The projected neutron source of the plasma type is based on the gas dynamic trap (GDT), which is a special magnetic mirror system for plasma confinement. Essential progress in plasma parameters has been achieved in recent experiments at the GDT facility in the Budker Institute, which is a hydrogen (deuterium) prototype of the source. Stable confinement of hot-ion plasmas with the relative pressure exceeding 0.5 was demonstrated. The electron temperature was increased up to 0.9 keV in the regime with additional electron cyclotron resonance heating (ECRH) of a moderate power. These parameters are the record for axisymmetric open mirror traps. These achievements elevate the projects of a GDT-based neutron source on a higher level of competitive ability and make it possible to construct a source with parameters suitable for materials testing today. The paper presents the progress in experimental studies and numerical simulations of the mirror-based fusion neutron source and its possible applications including a fusion material test facility and a fusion-fission hybrid system.
NASA Astrophysics Data System (ADS)
Akiba, Masato; Jitsukawa, Shiroh; Muroga, Takeo
This paper describes the status of blanket technology and material development for fusion power demonstration plants and commercial fusion plants. In particular, the ITER Test Blanket Module, IFMIF, JAERI/DOE HFIR and JUPITER-II projects are highlighted, which have the important role to develop these technology. The ITER Test Blanket Module project has been conducted to demonstrate tritium breeding and power generation using test blanket modules, which will be installed into the ITER facility. For structural material development, the present research status is overviewed on reduced activation ferritic steel, vanadium alloys, and SiC/SiC composites.
Overview of the IFMIF/EVEDA project
NASA Astrophysics Data System (ADS)
Knaster, J.; Garin, P.; Matsumoto, H.; Okumura, Y.; Sugimoto, M.; Arbeiter, F.; Cara, P.; Chel, S.; Facco, A.; Favuzza, P.; Furukawa, T.; Heidinger, R.; Ibarra, A.; Kanemura, T.; Kasugai, A.; Kondo, H.; Massaut, V.; Molla, J.; Micciche, G.; O'hira, S.; Sakamoto, K.; Yokomine, T.; Wakai, E.; the IFMIF/EVEDA Integrated Project Team
2017-10-01
IFMIF, the International Fusion Materials Irradiation Facility, is presently in its engineering validation and engineering design activities (EVEDA) phase under the Broader Approach Agreement. The engineering design activity (EDA) phase was successfully accomplished within the allocated time. The engineering validation activity (EVA) phase has focused on validating the Accelerator Facility (AF), the Target Facility and the Test Facility (TF) by constructing prototypes. The ELTL at JAEAc, Oarai successfully demonstrated the long-term stability of a Li flow under the IFMIF’s nominal operational conditions keeping the specified free-surface fluctuations below ±1 mm in a continuous manner for 25 d. A full-scale prototype of the high flux test module (HFTM) was successfully tested in the HELOKA loop (KIT, Karlsruhe), where it was demonstrated that the irradiation temperature can be set individually and kept uniform. LIPAc, designed and constructed in European labs under the coordination of F4E, presently under installation and commissioning in the Rokkasho Fusion Institute, aims at validating the concept of IFMIF accelerators with a D+ beam of 125 mA continuous wave (CW) and 9 MeV. The commissioning phases of the H+/D+ beams at 100 keV are progressing and should be concluded in 2017; in turn, the commissioning of the 5 MeV beam is due to start during 2017. The D+ beam through the superconducting cavities is expected to be achieved within the Broader Approach Agreement time frame with the superconducting cryomodule being assembled in Rokkasho. The realisation of a fusion-relevant neutron source is a necessary step for the successful development of fusion. The ongoing success of the IFMIF/EVEDA involves ruling out concerns about potential technical showstoppers which were raised in the past. Thus, a situation has emerged where soon steps towards constructing a Li(d,xn) fusion-relevant neutron source could be taken, which is also justified in the light of costs which are marginal to those of a fusion plant. In Memoriam Yoshikazu Okumura who passed away on 6 March 2017.
EDITORIAL: Safety aspects of fusion power plants
NASA Astrophysics Data System (ADS)
Kolbasov, B. N.
2007-07-01
This special issue of Nuclear Fusion contains 13 informative papers that were initially presented at the 8th IAEA Technical Meeting on Fusion Power Plant Safety held in Vienna, Austria, 10-13 July 2006. Following recommendation from the International Fusion Research Council, the IAEA organizes Technical Meetings on Fusion Safety with the aim to bring together experts to discuss the ongoing work, share new ideas and outline general guidance and recommendations on different issues related to safety and environmental (S&E) aspects of fusion research and power facilities. Previous meetings in this series were held in Vienna, Austria (1980), Ispra, Italy (1983), Culham, UK (1986), Jackson Hole, USA (1989), Toronto, Canada (1993), Naka, Japan (1996) and Cannes, France (2000). The recognized progress in fusion research and technology over the last quarter of a century has boosted the awareness of the potential of fusion to be a practically inexhaustible and clean source of energy. The decision to construct the International Thermonuclear Experimental Reactor (ITER) represents a landmark in the path to fusion power engineering. Ongoing activities to license ITER in France look for an adequate balance between technological and scientific deliverables and complying with safety requirements. Actually, this is the first instance of licensing a representative fusion machine, and it will very likely shape the way in which a more common basis for establishing safety standards and policies for licensing future fusion power plants will be developed. Now that ITER licensing activities are underway, it is becoming clear that the international fusion community should strengthen its efforts in the area of designing the next generations of fusion power plants—demonstrational and commercial. Therefore, the 8th IAEA Technical Meeting on Fusion Safety focused on the safety aspects of power facilities. Some ITER-related safety issues were reported and discussed owing to their potential importance for the fusion power plant research programmes. The objective of this Technical Meeting was to examine in an integrated way all the safety aspects anticipated to be relevant to the first fusion power plant prototype expected to become operational by the middle of the century, leading to the first generation of economically viable fusion power plants with attractive S&E features. After screening by guest editors and consideration by referees, 13 (out of 28) papers were accepted for publication. They are devoted to the following safety topics: power plant safety; fusion specific operational safety approaches; test blanket modules; accident analysis; tritium safety and inventories; decommissioning and waste. The paper `Main safety issues at the transition from ITER to fusion power plants' by W. Gulden et al (EU) highlights the differences between ITER and future fusion power plants with magnetic confinement (off-site dose acceptance criteria, consequences of accidents inside and outside the design basis, occupational radiation exposure, and waste management, including recycling and/or final disposal in repositories) on the basis of the most recent European fusion power plant conceptual study. Ongoing S&E studies within the US inertial fusion energy (IFE) community are focusing on two design concepts. These are the high average power laser (HAPL) programme for development of a dry-wall, laser-driven IFE power plant, and the Z-pinch IFE programme for the production of an economically-attractive power plant using high-yield Z-pinch-driven targets. The main safety issues related to these programmes are reviewed in the paper `Status of IFE safety and environmental activities in the US' by S. Reyes et al (USA). The authors propose future directions of research in the IFE S&E area. In the paper `Recent accomplishments and future directions in the US Fusion Safety & Environmental Program' D. Petti et al (USA) state that the US fusion programme has long recognized that the S&E potential of fusion can be attained by prudent materials selection, judicious design choices, and integration of safety requirements into the design of the facility. To achieve this goal, S&E research is focused on understanding the behaviour of the largest sources of radioactive and hazardous materials in a fusion facility, understanding how energy sources in a fusion facility could mobilize those materials, developing integrated state-of-the-art S&E computer codes and risk tools for safety assessment, and evaluating and improving fusion facility design in terms of accident safety, worker safety, and waste disposal. There are three papers considering safety issues of the test blanket modules (TBM) producing tritium to be installed in ITER. These modules represent different concepts of demonstration fusion power facilities (DEMO). L. Boccaccini et al (Germany) analyses the possibility of jeopardizing the ITER safety under specific accidents in the European helium-cooled pebble-bed TBM, e.g. pressurization of the vacuum vessel (VV), hydrogen production from the Be-steam reaction, the possible interconnection between the port cell and VV causing air ingress. Safety analysis is also presented for Chinese TBM with a helium-cooled solid breeder to be tested in ITER by Z. Chen et al (China). Radiological inventories, afterheat, waste disposal ratings, electromagnetic characteristics, LOCA and tritium safety management are considered. An overview of a preliminary safety analysis performed for a US proposed TBM is presented by B. Merrill et al (USA). This DEMO relevant dual coolant liquid lead-lithium TBM has been explored both in the USA and EU. T. Pinna et al (Italy) summarize the six-year development of a failure rate database for fusion specific components on the basis of data coming from operating experience gained in various fusion laboratories. The activity began in 2001 with the study of the Joint European Torus vacuum and active gas handling systems. Two years later the neutral beam injectors and the power supply systems were considered. This year the ion cyclotron resonant heating system is under evaluation. I. Cristescu et al (Germany) present the paper `Tritium inventories and tritium safety design principles for the fuel cycle of ITER'. She and her colleagues developed the dynamic mathematical model (TRIMO) for tritium inventory evaluation within each system of the ITER fuel cycle in various operational scenarios. TRIMO is used as a tool for trade-off studies within the fuel cycle systems with the final goal of global tritium inventory minimization. M. Matsuyama et al (Japan) describes a new technique for in situ quantitative measurements of high-level tritium inventory and its distribution in the VV and tritium systems of ITER and future fusion reactors. This technique is based on utilization of x-rays induced by beta-rays emitting from tritium species. It was applied to three physical states of high-level tritium: to gaseous, aqueous and solid tritium retained on/in various materials. Finally, there are four papers devoted to safety issues in fusion reactor decommissioning and waste management. A paper by R. Pampin et al (UK) provides the revised radioactive waste analysis of two models in the PPCS. Another paper by M. Zucchetti (Italy), S.A. Bartenev (Russia) et al describes a radiochemical extraction technology for purification of V-Cr-Ti alloy components from activation products to the dose rate of 10 µSv/h allowing their clearance or hands-on recycling which has been developed and tested in laboratory stationary conditions. L. El-Guebaly (USA) and her colleagues submitted two papers. In the first paper she optimistically considers the possibility of replacing the disposal of fusion power reactor waste with recycling and clearance. Her second paper considers the implications of new clearance guidelines for nuclear applications, particularly for slightly irradiated fusion materials.
Sobrado, Pablo; Goren, Michael A.; James, Declan; Amundson, Carissa K.; Fox, Brian G.
2008-01-01
A specialized vector backbone from the Protein Structure Initiative was used to express full-length human cytochrome b5 as a C-terminal fusion to His8-maltose binding protein in Escherichia coli. The fusion protein could be completely cleaved by tobacco etch virus protease, and a yield of ~18 mg of purified full-length human cytochrome b5 per liter of culture medium was obtained (2.3 mg per]of wet weight bacterial cells). In situ proteolysis of the fusion protein in the presence of chemically defined synthetic liposomes allowed facile spontaneous delivery of the functional peripheral membrane protein into a defined membrane environment without prior exposure to detergents or other lipids. The utility of this approach as a delivery method for production and incorporation of monotopic (peripheral) membrane proteins is discussed. PMID:18226920
Sobrado, Pablo; Goren, Michael A; James, Declan; Amundson, Carissa K; Fox, Brian G
2008-04-01
A specialized vector backbone from the Protein Structure Initiative was used to express full-length human cytochrome b5 as a C-terminal fusion to His8-maltose binding protein in Escherichia coli. The fusion protein could be completely cleaved by tobacco etch virus protease, and a yield of approximately 18 mg of purified full-length human cytochrome b5 per liter of culture medium was obtained (2.3mg per g of wet weight bacterial cells). In situ proteolysis of the fusion protein in the presence of chemically defined synthetic liposomes allowed facile spontaneous delivery of the functional peripheral membrane protein into a defined membrane environment without prior exposure to detergents or other lipids. The utility of this approach as a delivery method for production and incorporation of monotopic (peripheral) membrane proteins is discussed.
NASA Astrophysics Data System (ADS)
Guler, Nevzat; Aragonez, Robert J.; Archuleta, Thomas N.; Batha, Steven H.; Clark, David D.; Clark, Deborah J.; Danly, Chris R.; Day, Robert D.; Fatherley, Valerie E.; Finch, Joshua P.; Gallegos, Robert A.; Garcia, Felix P.; Grim, Gary; Hsu, Albert H.; Jaramillo, Steven A.; Loomis, Eric N.; Mares, Danielle; Martinson, Drew D.; Merrill, Frank E.; Morgan, George L.; Munson, Carter; Murphy, Thomas J.; Oertel, John A.; Polk, Paul J.; Schmidt, Derek W.; Tregillis, Ian L.; Valdez, Adelaida C.; Volegov, Petr L.; Wang, Tai-Sen F.; Wilde, Carl H.; Wilke, Mark D.; Wilson, Douglas C.; Atkinson, Dennis P.; Bower, Dan E.; Drury, Owen B.; Dzenitis, John M.; Felker, Brian; Fittinghoff, David N.; Frank, Matthias; Liddick, Sean N.; Moran, Michael J.; Roberson, George P.; Weiss, Paul; Buckles, Robert A.; Cradick, Jerry R.; Kaufman, Morris I.; Lutz, Steve S.; Malone, Robert M.; Traille, Albert
2013-11-01
Inertial Confinement Fusion experiments at the National Ignition Facility (NIF) are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic (CH) capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI) diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13-15 MeV) and downscattered (10-12 MeV) neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.
Postirradiation thermocyclic loading of ferritic-martensitic structural materials
NASA Astrophysics Data System (ADS)
Belyaeva, L.; Orychtchenko, A.; Petersen, C.; Rybin, V.
Thermonuclear fusion reactors of the Tokamak-type will be unique power engineering plants to operate in thermocyclic mode only. Ferritic-martensitic stainless steels are prime candidate structural materials for test blankets of the ITER fusion reactor. Beyond the radiation damage, thermomechanical cyclic loading is considered as the most detrimental lifetime limiting phenomenon for the above structure. With a Russian and a German facility for thermal fatigue testing of neutron irradiated materials a cooperation has been undertaken. Ampule devices to irradiate specimens for postirradiation thermal fatigue tests have been developed by the Russian partner. The irradiation of these ampule devices loaded with specimens of ferritic-martensitic steels, like the European MANET-II, the Russian 05K12N2M and the Japanese Low Activation Material F82H-mod, in a WWR-M-type reactor just started. A description of the irradiation facility, the qualification of the ampule device and the modification of the German thermal fatigue facility will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maslenikov, O.R.; Mraz, M.J.; Johnson, J.J.
1986-03-01
This report documents the seismic analyses performed by SMA for the MFTF-B Axicell vacuum vessel. In the course of this study we performed response spectrum analyses, CLASSI fixed-base analyses, and SSI analyses that included interaction effects between the vessel and vault. The response spectrum analysis served to benchmark certain modeling differences between the LLNL and SMA versions of the vessel model. The fixed-base analysis benchmarked the differences between analysis techniques. The SSI analyses provided our best estimate of vessel response to the postulated seismic excitation for the MFTF-B facility, and included consideration of uncertainties in soil properties by calculating responsemore » for a range of soil shear moduli. Our results are presented in this report as tables of comparisons of specific member forces from our analyses and the analyses performed by LLNL. Also presented are tables of maximum accelerations and relative displacements and plots of response spectra at various selected locations.« less
Tokamak DEMO-FNS: Concept of magnet system and vacuum chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azizov, E. A., E-mail: Azizov-EA@nrcki.ru; Ananyev, S. S.; Belyakov, V. A.
The level of knowledge accumulated to date in the physics and technologies of controlled thermonuclear fusion (CTF) makes it possible to begin designing fusion—fission hybrid systems that would involve a fusion neutron source (FNS) and which would admit employment for the production of fissile materials and for the transmutation of spent nuclear fuel. Modern Russian strategies for CTF development plan the construction to 2023 of tokamak-based demonstration hybrid FNS for implementing steady-state plasma burning, testing hybrid blankets, and evolving nuclear technologies. Work on designing the DEMO-FNS facility is still in its infancy. The Efremov Institute began designing its magnet systemmore » and vacuum chamber, while the Kurchatov Institute developed plasma-physics design aspects and determined basic parameters of the facility. The major radius of the plasma in the DEMO-FNS facility is R = 2.75 m, while its minor radius is a = 1 m; the plasma elongation is k{sub 95} = 2. The fusion power is P{sub FUS} = 40 MW. The toroidal magnetic field on the plasma-filament axis is B{sub t0} = 5 T. The plasma current is I{sub p} = 5 MA. The application of superconductors in the magnet system permits drastically reducing the power consumed by its magnets but requires arranging a thick radiation shield between the plasma and magnet system. The central solenoid, toroidal-field coils, and poloidal-field coils are manufactured from, respectively, Nb{sub 3}Sn, NbTi and Nb{sub 3}Sn, and NbTi. The vacuum chamber is a double-wall vessel. The space between the walls manufactured from 316L austenitic steel is filled with an iron—water radiation shield (70% of stainless steel and 30% of water).« less
The Nova Upgrade Facility for ICF ignition and gain
NASA Astrophysics Data System (ADS)
Lowdermilk, W. H.; Campbell, E. M.; Hunt, J. T.; Murray, J. R.; Storm, E.; Tobin, M. T.; Trenholme, J. B.
1992-01-01
Research on Inertial Confinement Fusion (ICF) is motivated by its potential defense and civilian applications, including ultimately the generation of electric power. The U.S. ICF Program was reviewed recently by the National Academy of Science (NAS) and the Fusion Policy Advisory Committee (FPAC). Both committees issued final reports in 1991 which recommended that first priority in the ICF program be placed on demonstrating fusion ignition and modest gain (G less than 10). The U.S. Department of Energy and Lawrence Livermore National Laboratory (LLNL) have proposed an upgrade of the existing Nova Laser Facility at LLNL to accomplish these goals. Both the NAS and FPAC have endorsed the upgrade of Nova as the optimal path to achieving ignition and gain. Results from Nova Upgrade Experiments will be used to define requirements for driver and target technology both for future high-yield military applications, such as the Laboratory Microfusion Facility (LMF) proposed by the Department of Energy, and for high-gain energy applications leading to an ICF engineering test facility. The central role and modifications which Nova Upgrade would play in the national ICF strategy are described.
Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; ...
2014-11-01
Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m 2 over areas of 9×12 and 1×10 cm 2, respectively. This paper will present the overallmore » design and implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36×36×18 cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.« less
Capsule review of the DOE research and development and field facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1980-09-01
A description is given of the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Technology Centers, and other government-owned, contractor-operated facilities, which are located in all regions of the US. Descriptions of DOE facilities are given for multiprogram laboratories (12); program-dedicated facilities (biomedical and environmental facilities-12, fossil energy facilities-7, fusion energy facility-1, nuclear development facilities-3, physical research facilities-4, safeguards facility-1, and solar facilities-2); and Production, Testing, and Fabrication Facilities (nuclear materials production facilities-5, weapon testing and fabrication complex-8). Three appendices list DOE field and project offices; DOE field facilities by state or territory, names, addresses,more » and telephone numbers; DOE R and D field facilities by type, contractor names, and names of directors. (MCW)« less
Inertial Fusion and High-Energy-Density Science in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarter, C B
2001-09-06
Inertial fusion and high-energy density science worldwide is poised to take a great leap forward. In the US, programs at the University of Rochester, Sandia National Laboratories, Los Alamos National Laboratory, Lawrence Livermore National Laboratory (LLNL), the Naval Research Laboratory, and many smaller laboratories have laid the groundwork for building a facility in which fusion ignition can be studied in the laboratory for the first time. The National Ignition Facility (NIF) is being built by the Department of Energy's National Nuclear Security Agency to provide an experimental test bed for the US Stockpile Stewardship Program (SSP) to ensure the dependabilitymore » of the country's nuclear deterrent without underground nuclear testing. NIF and other large laser systems being planned such as the Laser MegaJoule (LMJ) in France will also make important contributions to basic science, the development of inertial fusion energy, and other scientific and technological endeavors. NIF will be able to produce extreme temperatures and pressures in matter. This will allow simulating astrophysical phenomena (on a tiny scale) and measuring the equation of state of material under conditions that exist in planetary cores.« less
Managing NIF safety equipment in a high neutron and gamma radiation environment.
Datte, Philip; Eckart, Mark; Jackson, Mark; Khater, Hesham; Manuel, Stacie; Newton, Mark
2013-06-01
The National Ignition Facility (NIF) is a 192 laser beam facility that supports the Inertial Confinement Fusion program. During the ignition experimental campaign, the NIF is expected to perform shots with varying fusion yield producing 14 MeV neutrons up to 20 MJ or 7.1 × 10(18) neutrons per shot and a maximum annual yield of 1,200 MJ. Several infrastructure support systems will be exposed to varying high yield shots over the facility's 30-y life span. In response to this potential exposure, analysis and testing of several facility safety systems have been conducted. A detailed MCNP (Monte Carlo N-Particle Transport Code) model has been developed for the NIF facility, and it includes most of the major structures inside the Target Bay. The model has been used in the simulation of expected neutron and gamma fluences throughout the Target Bay. Radiation susceptible components were identified and tested to fluences greater than 10(13) (n cm(-2)) for 14 MeV neutrons and γ-ray equivalent. The testing includes component irradiation using a 60Co gamma source and accelerator-based irradiation using 4- and 14- MeV neutron sources. The subsystem implementation in the facility is based on the fluence estimates after shielding and survivability guidelines derived from the dose maps and component tests results. This paper reports on the evaluation and implementation of mitigations for several infrastructure safety support systems, including video, oxygen monitoring, pressure monitors, water sensing systems, and access control interfaces found at the NIF.
NASA Astrophysics Data System (ADS)
Calderoni, P.; Sharpe, J.; Shimada, M.; Denny, B.; Pawelko, B.; Schuetz, S.; Longhurst, G.; Hatano, Y.; Hara, M.; Oya, Y.; Otsuka, T.; Katayama, K.; Konishi, S.; Noborio, K.; Yamamoto, Y.
2011-10-01
The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.
Conductor and joint test results of JT-60SA CS and EF coils using the NIFS test facility
NASA Astrophysics Data System (ADS)
Obana, Tetsuhiro; Takahata, Kazuya; Hamaguchi, Shinji; Kizu, Kaname; Murakami, Haruyuki; Chikaraishi, Hirotaka; Noguchi, Hiroki; Kobuchi, Takashi; Moriuchi, Sadatomo; Imagawa, Shinsaku; Mito, Toshiyuki; Tsuchiya, Katsuhiko; Natsume, Kyohei; Yoshida, Kiyoshi; Nomoto, Kazuhiro; Kim, Tae-hyun
2016-01-01
In 2007, JAEA and NIFS launched the test project to evaluate the performance of cable-in-conduit (CIC) conductors and conductor joints for the JT-60SA CS and EF coils. In this project, conductor tests for four types of coil conductor and joint tests for seven types of conductor joint have been conducted for the past eight years using the NIFS test facility. As a result, the test project indicated that the CIC conductors and conductor joints fulfill the design requirement for the CS and EF coils. In addition, the NIFS test facility is expected to be utilized as the test facility for the development of a conductor and conductor joint for the purpose of the DEMO nuclear fusion power plant, provided that the required magnetic field strength is within 9 T.
Lunar Swirls: Plasma Magnetic Field Interaction and Dust Transport
NASA Astrophysics Data System (ADS)
Dropmann, Michael; Laufer, Rene; Herdrich, Georg; Matthews, Lorin; Hyde, Truell
2013-10-01
In close collaboration between the Center for Astrophysics, Space Physics and Engineering Research (CASPER) at Baylor University, Texas, and the Institute of Space Systems (IRS) at the University of Stuttgart, Germany, two plasma facilities have been established using the Inductively heated Plasma Generator 6 (IPG6), based on proven IRS designs. A wide range of applications is currently under consideration for both test and research facilities. Basic investigations in the area of plasma radiation and catalysis, simulation of certain parameters of fusion divertors and space applications are planned. In this paper, the facility at Baylor University (IPG6-B) will be used for simulation of mini-magnetospheres on the Moon. The interaction of the solar wind with magnetic fields leads to the formation of electric fields, which can influence the incoming solar wind ion flux and affect dust transport processes on the lunar surface. Both effects may be partially responsible for the occurrence of lunar swirls. Interactions of the solar wind with such mini-magnetospheres will be simulated in the IPG6-B by observing the interaction between a plasma jet and a permanent magnet. The resulting data should lead to better models of dust transport processes and solar wind deflection on the moon.
Nam, Woo Dong; Cho, Jae Hwan
2015-03-01
There are few studies about risk factors for poor outcomes from multi-level lumbar posterolateral fusion limited to three or four level lumbar posterolateral fusions. The purpose of this study was to analyze the outcomes of multi-level lumbar posterolateral fusion and to search for possible risk factors for poor surgical outcomes. We retrospectively analyzed 37 consecutive patients who underwent multi-level lumbar or lumbosacral posterolateral fusion with posterior instrumentation. The outcomes were deemed either 'good' or 'bad' based on clinical and radiological results. Many demographic and radiological factors were analyzed to examine potential risk factors for poor outcomes. Student t-test, Fisher exact test, and the chi-square test were used based on the nature of the variables. Multiple logistic regression analysis was used to exclude confounding factors. Twenty cases showed a good outcome (group A, 54.1%) and 17 cases showed a bad outcome (group B, 45.9%). The overall fusion rate was 70.3%. The revision procedures (group A: 1/20, 5.0%; group B: 4/17, 23.5%), proximal fusion to L2 (group A: 5/20, 25.0%; group B: 10/17, 58.8%), and severity of stenosis (group A: 12/19, 63.3%; group B: 3/11, 27.3%) were adopted as possible related factors to the outcome in univariate analysis. Multiple logistic regression analysis revealed that only the proximal fusion level (superior instrumented vertebra, SIV) was a significant risk factor. The cases in which SIV was L2 showed inferior outcomes than those in which SIV was L3. The odds ratio was 6.562 (95% confidence interval, 1.259 to 34.203). The overall outcome of multi-level lumbar or lumbosacral posterolateral fusion was not as high as we had hoped it would be. Whether the SIV was L2 or L3 was the only significant risk factor identified for poor outcomes in multi-level lumbar or lumbosacral posterolateral fusion in the current study. Thus, the authors recommend that proximal fusion levels be carefully determined when multi-level lumbar fusions are considered.
Nam, Woo Dong
2015-01-01
Background There are few studies about risk factors for poor outcomes from multi-level lumbar posterolateral fusion limited to three or four level lumbar posterolateral fusions. The purpose of this study was to analyze the outcomes of multi-level lumbar posterolateral fusion and to search for possible risk factors for poor surgical outcomes. Methods We retrospectively analyzed 37 consecutive patients who underwent multi-level lumbar or lumbosacral posterolateral fusion with posterior instrumentation. The outcomes were deemed either 'good' or 'bad' based on clinical and radiological results. Many demographic and radiological factors were analyzed to examine potential risk factors for poor outcomes. Student t-test, Fisher exact test, and the chi-square test were used based on the nature of the variables. Multiple logistic regression analysis was used to exclude confounding factors. Results Twenty cases showed a good outcome (group A, 54.1%) and 17 cases showed a bad outcome (group B, 45.9%). The overall fusion rate was 70.3%. The revision procedures (group A: 1/20, 5.0%; group B: 4/17, 23.5%), proximal fusion to L2 (group A: 5/20, 25.0%; group B: 10/17, 58.8%), and severity of stenosis (group A: 12/19, 63.3%; group B: 3/11, 27.3%) were adopted as possible related factors to the outcome in univariate analysis. Multiple logistic regression analysis revealed that only the proximal fusion level (superior instrumented vertebra, SIV) was a significant risk factor. The cases in which SIV was L2 showed inferior outcomes than those in which SIV was L3. The odds ratio was 6.562 (95% confidence interval, 1.259 to 34.203). Conclusions The overall outcome of multi-level lumbar or lumbosacral posterolateral fusion was not as high as we had hoped it would be. Whether the SIV was L2 or L3 was the only significant risk factor identified for poor outcomes in multi-level lumbar or lumbosacral posterolateral fusion in the current study. Thus, the authors recommend that proximal fusion levels be carefully determined when multi-level lumbar fusions are considered. PMID:25729522
Atomic Scale Mixing for Inertial Confinement Fusion Associated Hydro Instabilities
2013-01-26
observe that the obvious step of RT validation using NIF or Omega laser data does not address themultimode, mode coupling RTgrowth stage, as the...ignition facility, Phys. Plasmas 18 (2011) 051001. [2] W. Goldstein, R. Rosner, Workshop on the Science of Fusion Ignition on NIF , Technical Report LLNL-TR...11 (2004) 339e491. [6] S.P. Regan, R. Epstein, B.A. Hammel, L.J. Suter, J. Ralph, et al., Hot-spot mix in ignition-scale implosions on the NIF , Phys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paguio, R. R.; Smith, G. E.; Taylor, J. L.
Z-Beamlet (ZBL) experiments conducted at the PECOS test facility at Sandia National Laboratories (SNL) investigated the nonlinear processes in laser plasma interaction (or laserplasma instabilities LPI) that complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray that can occur in large-scale laser-heated gas cell targets. These targets and experiments were designed to provide better insight into the physics of the laser preheat stage of the Magnetized Liner Inertial Fusion (MagLIF) scheme being tested on the SNL Z-machine. The experiments aim to understand the tradeoffs between laser spot size, laser pulse shape, laser entrance hole (LEH) windowmore » thickness, and fuel density for laser preheat. Gas cell target design evolution and fabrication adaptations to accommodate the evolving experiment and scientific requirements are also described in this paper.« less
Paguio, R. R.; Smith, G. E.; Taylor, J. L.; ...
2017-12-04
Z-Beamlet (ZBL) experiments conducted at the PECOS test facility at Sandia National Laboratories (SNL) investigated the nonlinear processes in laser plasma interaction (or laserplasma instabilities LPI) that complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray that can occur in large-scale laser-heated gas cell targets. These targets and experiments were designed to provide better insight into the physics of the laser preheat stage of the Magnetized Liner Inertial Fusion (MagLIF) scheme being tested on the SNL Z-machine. The experiments aim to understand the tradeoffs between laser spot size, laser pulse shape, laser entrance hole (LEH) windowmore » thickness, and fuel density for laser preheat. Gas cell target design evolution and fabrication adaptations to accommodate the evolving experiment and scientific requirements are also described in this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGoldrick, P.R.
1981-01-01
The Mirror Fusion Test Facility (MFTF) is a complex facility requiring a highly-computerized Supervisory Control and Diagnostics System (SCDS) to monitor and provide control over ten subsystems; three of which require true process control. SCDS will provide physicists with a method of studying machine and plasma behavior by acquiring and processing up to four megabytes of plasma diagnostic information every five minutes. A high degree of availability and throughput is provided by a distributed computer system (nine 32-bit minicomputers on shared memory). Data, distributed across SCDS, is managed by a high-bandwidth Distributed Database Management System. The MFTF operators' control roommore » consoles use color television monitors with touch sensitive screens; this is a totally new approach. The method of handling deviations to normal machine operation and how the operator should be notified and assisted in the resolution of problems has been studied and a system designed.« less
Laser-Plasma Interactions on NIKE and the Fusion Test Facility
NASA Astrophysics Data System (ADS)
Phillips, Lee; Weaver, James
2008-11-01
Recent proposed designs for a Fusion Test Facility (FTF) (Obenchain et al., Phys. Plasmas 13 056320 (2006)) for direct-drive ICF targets for energy applications involve high implosion velocities combined with higher laser irradiances. The use of high irradiances increases the likelihood of deleterious laser plasma instabilities (LPI) but the proposed use of a 248 nm KrF laser to drive these targets is expected to minimize the LPI risk. We examine, using simulation results from NRL's FAST hydrocode, the proposed operational regimes of the FTF in relation to the thresholds for the SRS, SBS, and 2-plasmon instabilities. Simulations are also used to help design and interpret ongoing experiments being conducted at NRL's NIKE facility for the purpose of generating and studying LPI. Target geometries and laser pulseshapes were devised in order to create plasma conditions with long scalelengths and low electron temperatures that allow the growth of parametric instabilities. These simulations include the effects of finite beam angles through the use of raytracing.
Assessment of the MHD capability in the ATHENA code using data from the ALEX facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, P.A.
1989-03-01
The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code is a system transient analysis code with multi-loop, multi-fluid capabilities, which is available to the fusion community at the National Magnetic Fusion Energy Computing Center (NMFECC). The work reported here assesses the ATHENA magnetohydrodynamic (MHD) pressure drop model for liquid metals flowing through a strong magnetic field. An ATHENA model was developed for two simple geometry, adiabatic test sections used in the Argonne Liquid Metal Experiment (ALEX) at Argonne National Laboratory (ANL). The pressure drops calculated by ATHENA agreed well with the experimental results from the ALEX facility.
Fusion interfaces for tactical environments: An application of virtual reality technology
NASA Technical Reports Server (NTRS)
Haas, Michael W.
1994-01-01
The term Fusion Interface is defined as a class of interface which integrally incorporates both virtual and nonvirtual concepts and devices across the visual, auditory, and haptic sensory modalities. A fusion interface is a multisensory virtually-augmented synthetic environment. A new facility has been developed within the Human Engineering Division of the Armstrong Laboratory dedicated to exploratory development of fusion interface concepts. This new facility, the Fusion Interfaces for Tactical Environments (FITE) Facility is a specialized flight simulator enabling efficient concept development through rapid prototyping and direct experience of new fusion concepts. The FITE Facility also supports evaluation of fusion concepts by operation fighter pilots in an air combat environment. The facility is utilized by a multidisciplinary design team composed of human factors engineers, electronics engineers, computer scientists, experimental psychologists, and oeprational pilots. The FITE computational architecture is composed of twenty-five 80486-based microcomputers operating in real-time. The microcomputers generate out-the-window visuals, in-cockpit and head-mounted visuals, localized auditory presentations, haptic displays on the stick and rudder pedals, as well as executing weapons models, aerodynamic models, and threat models.
NASA Astrophysics Data System (ADS)
Gobin, Raphael; Bogard, Daniel; Bolzon, Benoit; Bourdelle, Gilles; Chauvin, Nicolas; Chel, Stéphane; Girardot, Patrick; Gomes, Adelino; Guiho, Patrice; Harrault, Francis; Loiseau, Denis; Lussignol, Yves; Misiara, Nicolas; Roger, Arnaud; Senée, Franck; Valette, Matthieu; Cara, Philippe; Duglué, Daniel; Gex, Dominique; Okumura, Yoshikazu; Marcos Ayala, Juan; Knaster, Juan; Marqueta, Alvaro; Kasugai, Atsushi; O'Hira, Shigeru; Shinto, Katsuhiro; Takahashi, Hiroki
2016-02-01
The International Fusion Materials Irradiation Facility (IFMIF) linear IFMIF prototype accelerator injector dedicated to high intensity deuteron beam production has been designed, built, and tested at CEA/Saclay between 2008 and 2012. After the completion of the acceptance tests at Saclay, the injector has been fully sent to Japan. The re-assembly of the injector has been performed between March and May 2014. Then after the check-out phase, the production of the first proton beam occurred in November 2014. Hydrogen and deuteron beam commissioning is now in progress after having proceeded with the final tests on the entire injector equipment including high power diagnostics. This article reports the different phases of the injector installation pointing out the safety and security needs, as well as the first beam production results in Japan and chopper tests. Detailed operation and commissioning results (with H+ and D+ 100 keV beams) are reported in a second article.
Feasibility study of a magnetic fusion production reactor
NASA Astrophysics Data System (ADS)
Moir, R. W.
1986-12-01
A magnetic fusion reactor can produce 10.8 kg of tritium at a fusion power of only 400 MW —an order of magnitude lower power than that of a fission production reactor. Alternatively, the same fusion reactor can produce 995 kg of plutonium. Either a tokamak or a tandem mirror production plant can be used for this purpose; the cost is estimated at about 1.4 billion (1982 dollars) in either case. (The direct costs are estimated at 1.1 billion.) The production cost is calculated to be 22,000/g for tritium and 260/g for plutonium of quite high purity (1%240Pu). Because of the lack of demonstrated technology, such a plant could not be constructed today without significant risk. However, good progress is being made in fusion technology and, although success in magnetic fusion science and engineering is hard to predict with assurance, it seems possible that the physics basis and much of the needed technology could be demonstrated in facilities now under construction. Most of the remaining technology could be demonstrated in the early 1990s in a fusion test reactor of a few tens of megawatts. If the Magnetic Fusion Energy Program constructs a fusion test reactor of approximately 400 MW of fusion power as a next step in fusion power development, such a facility could be used later as a production reactor in a spinoff application. A construction decision in the late 1980s could result in an operating production reactor in the late 1990s. A magnetic fusion production reactor (MFPR) has four potential advantages over a fission production reactor: (1) no fissile material input is needed; (2) no fissioning exists in the tritium mode and very low fissioning exists in the plutonium mode thus avoiding the meltdown hazard; (3) the cost will probably be lower because of the smaller thermal power required; (4) and no reprocessing plant is needed in the tritium mode. The MFPR also has two disadvantages: (1) it will be more costly to operate because it consumes rather than sells electricity, and (2) there is a risk of not meeting the design goals.
NASA Astrophysics Data System (ADS)
Akiba, Masato; Matsui, Hideki; Takatsu, Hideyuki; Konishi, Satoshi
Technical issues regarding the fusion power plant that are required to be developed in the period of ITER construction and operation, both with ITER and with other facilities that complement ITER are described in this section. Three major fields are considered to be important in fusion technology. Section 4.1 summarizes blanket study, and ITER Test Blanket Module (TBM) development that focuses its effort on the first generation power blanket to be installed in DEMO. ITER will be equipped with 6 TBMs which are developed under each party's fusion program. In Japan, the solid breeder using water as a coolant is the primary candidate, and He-cooled pebble bed is the alternative. Other liquid options such as LiPb, Li or molten salt are developed by other parties' initiatives. The Test Blanket Working Group (TBWG) is coordinating these efforts. Japanese universities are investigating advanced concepts and fundamental crosscutting technologies. Section 4.2 introduces material development and particularly, the international irradiation facility, IFMIF. Reduced activation ferritic/martensitic steels are identified as promising candidates for the structural material of the first generation fusion blanket, while and vanadium alloy and SiC/SiC composite are pursued as advanced options. The IFMIF is currently planning the next phase of joint activity, EVEDA (Engineering Validation and Engineering Design Activity) that encompasses construction. Material studies together with the ITER TBM will provide essential technical information for development of the fusion power plant. Other technical issues to be addressed regarding the first generation fusion power plant are summarized in section 4.3. Development of components for ITER made remarkable progress for the major essential technology also necessary for future fusion plants, however many still need further improvements toward power plant. Such areas includes; the divertor, plasma heating/current drive, magnets, tritium, and remote handling. There remain many other technical issues for power plant which require integrated efforts.
The Quest for Fusion at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Hartouni, Edward
2017-01-01
Arthur Eddington speculated in 1920 on the internal constitution of stars and described the possibility of nuclear fusion based on the then new results from special relativity and measurements of light nuclei masses. By 1929 Atkinson and Houtermans worked out the calculations for nuclear fusion in stars and initiating nuclear astrophysics. All of these sciences were pressed into service during the World War II, and the applications developed, particularly under the auspices of the Manhattan Project provided both weapons with which to wage and win that conflict, but also the possibilities to harness these applications of the nuclear processes of fission and fusion for peaceful purposes. 32 years after Eddington's speculation the United States demonstrated the application of fusion in a famous nuclear weapons test. In the following years many ideas for producing ``controlled'' fusion through inertial confinement were pursued. The invention of the laser opened up new avenues which have culminated in the National Ignition Facility, NIF. I will attempt to cover the ground between Eddington, through the Manhattan Project and provide a current status of this quest at NIF. LLNL-ABS-704367-DRAFT. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Neumeyer; M. Ono; S.M. Kaye
1999-11-01
The NSTX (National Spherical Torus Experiment) facility located at Princeton Plasma Physics Laboratory is the newest national fusion science experimental facility for the restructured US Fusion Energy Science Program. The NSTX project was approved in FY 97 as the first proof-of-principle national fusion facility dedicated to the spherical torus research. On Feb. 15, 1999, the first plasma was achieved 10 weeks ahead of schedule. The project was completed on budget and with an outstanding safety record. This paper gives an overview of the NSTX facility construction and the initial plasma operations.
Martinez-Becerra, Francisco J.; Chen, Xiaotong; Dickenson, Nicholas E.; Choudhari, Shyamal P.; Harrison, Kelly; Clements, John D.; Picking, William D.; Van De Verg, Lillian L.; Walker, Richard I.
2013-01-01
Shigellosis is an important disease in the developing world, where about 90 million people become infected with Shigella spp. each year. We previously demonstrated that the type three secretion apparatus (T3SA) proteins IpaB and IpaD are protective antigens in the mouse lethal pulmonary model. In order to simplify vaccine formulation and process development, we have evaluated a vaccine design that incorporates both of these previously tested Shigella antigens into a single polypeptide chain. To determine if this fusion protein (DB fusion) retains the antigenic and protective capacities of IpaB and IpaD, we immunized mice with the DB fusion and compared the immune response to that elicited by the IpaB/IpaD combination vaccine. Purification of the DB fusion required coexpression with IpgC, the IpaB chaperone, and after purification it maintained the highly α-helical characteristics of IpaB and IpaD. The DB fusion also induced comparable immune responses and retained the ability to protect mice against Shigella flexneri and S. sonnei in the lethal pulmonary challenge. It also offered limited protection against S. dysenteriae challenge. Our results show the feasibility of generating a protective Shigella vaccine comprised of the DB fusion. PMID:24060976
Low energy measurements of the 10B(p ,α )7Be reaction
NASA Astrophysics Data System (ADS)
Wiescher, M.; deBoer, R. J.; Görres, J.; Azuma, R. E.
2017-04-01
Background: The 11B(p,2 α ) 4He reaction is being discussed as a prime candidate for advanced aneutronic fusion fuel systems. Particular interest in this reaction has recently emerged for laser driven plasma systems for energy generation and jet-propulsion systems. The lack of long-lived radioactive reaction products has been suggested as the main advantage of proton-boron fusion fuel. However, 19% of natural boron is 10B, with the 10B(p ,α )7Be fusion reaction producing long-lived 7Be as a side product. Purpose: A detailed measurement of the 10B(p ,α )7Be reaction over the critical energy range of hot fusion plasma environments will help to determine the amount of 7Be radioactivity being produced. This information can be used in turn to monitor the actual fusion temperature by offline measurement of the extracted 7Be activity. The goal of the here presented experiment is to expand on the results of earlier experiments, covering a wider energy range of interest for aneutronic plasma fusion applications, including also both 10B(p ,α0)7Be and the 10B(p ,α1)7Be reaction channels. Method: The reaction cross section was measured over a wide energy range from Ep=400 to 1000 keV using particle detection and from Ep=80 to 1440 keV using γ -ray spectroscopic techniques. Reaction α particles were measured at different angles to obtain angular distribution information. The results are discussed in terms of an R -matrix analysis. Results: The cross section data cover a wider energy range than previously investigated and bridge a gap in the previously available data sets. The cross sections show good agreement with previous results in the low energy region and show that the 10B(p ,α0)7Be channel is considerably larger than that of the 10B(p ,α1)7Be channel up to Ep≈1 MeV . Conclusions: The new reaction data provides important new information about the reaction cross section over the entire energy range of plasma fusion facilities. This data, when coupled with previous measurement of the competing 10B(p ,γ )11C reaction, will provide the opportunity for an extensive R -matrix analysis of the rather complex level structure in the 11C compound nucleus system.
Cryosorption Pumps for a Neutral Beam Injector Test Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dremel, M.; Mack, A.; Day, C.
2006-04-27
We present the experiences of the manufacturing and the operating of a system of two identical cryosorption pumps used in a neutral beam injector test facility for fusion reactors. Calculated and measured heat loads of the cryogenic liquid helium and liquid nitrogen circuits of the cryosorption pumps are discussed. The design calculations concerning the thermo-hydraulics of the helium circuit are compared with experiences from the operation of the cryosorption pumps. Both cryopumps are integrated in a test facility of a neutral beam injector that will be used to heat the plasma of a nuclear fusion reactor with a beam ofmore » deuterium or hydrogen molecules. The huge gas throughput into the vessel of the test facility results in challenging needs on the cryopumping system.The developed cryosorption pumps are foreseen to pump a hydrogen throughput of 20 - 30 mbar{center_dot}l/s. To establish a mean pressure of several 10-5 mbar in the test vessel a pumping speed of about 350 m3/s per pump is needed. The pressure conditions must be maintained over several hours pumping without regeneration of the cryopanels, which necessitates a very high pumping capacity. A possibility to fulfill these requirements is the use of charcoal coated cryopanels to pump the gasloads by adsorption. For the cooling of the cryopanels, liquid helium at saturation pressure is used and therefore a two-phase forced flow in the cryopump system must be controlled.« less
Recent Accomplishments and Future Directions in US Fusion Safety & Environmental Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
David A. Petti; Brad J. Merrill; Phillip Sharpe
2006-07-01
The US fusion program has long recognized that the safety and environmental (S&E) potential of fusion can be attained by prudent materials selection, judicious design choices, and integration of safety requirements into the design of the facility. To achieve this goal, S&E research is focused on understanding the behavior of the largest sources of radioactive and hazardous materials in a fusion facility, understanding how energy sources in a fusion facility could mobilize those materials, developing integrated state of the art S&E computer codes and risk tools for safety assessment, and evaluating S&E issues associated with current fusion designs. In thismore » paper, recent accomplishments are reviewed and future directions outlined.« less
The national ignition facility and atomic data
NASA Astrophysics Data System (ADS)
Crandall, David H.
1998-07-01
The National Ignition Facility (NIF) is under construction, capping over 25 years of development of the inertial confinement fusion concept by providing the facility to obtain fusion ignition in the laboratory for the first time. The NIF is a 192 beam glass laser to provide energy controlled in space and time so that a millimeter-scale capsule containing deuterium and tritium can be compressed to fusion conditions. Light transport, conversion of light in frequency, interaction of light with matter in solid and plasma forms, and diagnostics of extreme material conditions on small scale all use atomic data in preparing for use of the NIF. The NIF will provide opportunity to make measurements of atomic data in extreme physical environments related to fusion energy, nuclear weapon detonation, and astrophysics. The first laser beams of NIF should be operational in 2001 and the full facility completed at the end of 2003. NIF is to provide 1.8 megajoule of blue light on fusion targets and is intended to achieve fusion ignition by about the end of 2007. Today's inertial fusion development activities use atomic data to design and predict fusion capsule performance and in non-fusion applications to analyze radiation transport and radiation effects on matter. Conditions investigated involve radiation temperature of hundreds of eV, pressures up to gigabars and time scales of femptoseconds.
DOSE PROFILE MODELING OF IDAHO NATIONAL LABORATORY’S ACTIVE NEUTRON INTERROGATION TEST FACILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. L. Chichester; E. H. Seabury; J. M. Zabriskie
2009-06-01
A new research and development laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for DT fusion (14.1 MeV) neutron generators (2 x 108 neutrons per second), DD fusion (2.5 MeV) neutron generators (up to 2 x 106 neutrons per second), and 252Cf spontaneous fission neutron sources (6.7 x 107 neutrons per second, 30 micrograms). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault.more » The larger vault is designed to allow operation of the DT generator and has walls 3.8 m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for 252Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield wall and entrance maze and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.« less
A Laser Based Fusion Test Facility
2008-10-01
Nike laser have explored the intensities employed by these Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...and best beam smoothing with KrF makes it the most resistant to such instability. As discussed above, recent experiments using the Nike facility...support this expectation. There is ongoing experimental and theoretical work on Nike , Omega, and eventually NIF to determine these intensity limits
Holland, Chris [UC San Diego, San Diego, California, United States
2017-12-09
The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the âburning plasmaâ regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.
MW Spallation Neutron Sources for Fusion Materials Testing
Dr. Donald Rej
2018-04-18
Dr. Donald Rej of Los Alamos National Laboratory presents an overview of issues, needs, and performance gaps related to materials testing and how they are being addressed at their facility. Current projects such as the Los Alamos Neutron Science Center (LANSCE) and Matter-Radiation Interactions in Extremes (MaRIE) are also discussed.
Thermal-hydraulic analysis of the coil test facility for CFETR.
Ren, Yong; Liu, Xiaogang; Li, Junjun; Wang, Zhaoliang; Qiu, Lilong; Du, Shijun; Li, Guoqiang; Gao, Xiang
2016-01-01
Performance test of the China Fusion Engineering Test Reactor (CFETR) central solenoid (CS) and toroidal field (TF) insert coils is of great importance to evaluate the CFETR magnet performance in relevant operation conditions. The superconducting magnet of the coil test facility for CFETR is being designed with the aim of providing a background magnetic field to test the CFETR CS insert and TF insert coils. The superconducting magnet consists of the inner module with Nb 3 Sn coil and the outer module with NbTi coil. The superconducting magnet is designed to have a maximum magnetic field of 12.59 T and a stored energy of 436.6 MJ. An active quench protection circuit and the positive temperature coefficient dump resistor were adopted to transfer the stored magnetic energy. The temperature margin behavior of the test facility for CFETR satisfies the design criteria. The quench analysis of the test facility shows that the cable temperature and the helium pressure inside the jacket are within the design criteria.
Development of DEMO-FNS tokamak for fusion and hybrid technologies
NASA Astrophysics Data System (ADS)
Kuteev, B. V.; Azizov, E. A.; Alexeev, P. N.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.
2015-07-01
The history of fusion-fission hybrid systems based on a tokamak device as an extremely efficient DT-fusion neutron source has passed through several periods of ample research activity in the world since the very beginning of fusion research in the 1950s. Recently, a new roadmap of the hybrid program has been proposed with the goal to build a pilot hybrid plant (PHP) in Russia by 2030. Development of the DEMO-FNS tokamak for fusion and hybrid technologies, which is planned to be built by 2023, is the key milestone on the path to the PHP. This facility is in the phase of conceptual design aimed at providing feasibility studies for a full set of steady state tokamak technologies at a fusion energy gain factor Q ˜ 1, fusion power of ˜40 MW and opportunities for testing a wide range of hybrid technologies with the emphasis on continuous nuclide processing in molten salts. This paper describes the project motivations, its current status and the key issues of the design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, P.A.
1988-10-28
The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code is a system transient analysis code with multi-loop, multi-fluid capabilities, which is available to the fusion community at the National Magnetic Fusion Energy Computing Center (NMFECC). The work reported here assesses the ATHENA magnetohydrodynamic (MHD) pressure drop model for liquid metals flowing through a strong magnetic field. An ATHENA model was developed for two simple geometry, adiabatic test sections used in the Argonne Liquid Metal Experiment (ALEX) at Argonne National Laboratory (ANL). The pressure drops calculated by ATHENA agreed well with the experimental results from the ALEX facility. 13 refs., 4more » figs., 2 tabs.« less
Advanced Scintillator Detectors for Neutron Imaging in Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Geppert-Kleinrath, Verena; Danly, Christopher; Merrill, Frank; Simpson, Raspberry; Volegov, Petr; Wilde, Carl
2016-10-01
The neutron imaging team at Los Alamos National Laboratory (LANL) has been providing two-dimensional neutron imaging of the inertial confinement fusion process at the National Ignition Facility (NIF) for over five years. Neutron imaging is a powerful tool in which position-sensitive detectors register neutrons emitted in the fusion reactions, producing a picture of the burning fuel. Recent images have revealed possible multi-dimensional asymmetries, calling for additional views to facilitate three-dimensional imaging. These will be along shorter lines of sight to stay within the existing facility at NIF. In order to field imaging capabilities equivalent to the existing system several technological challenges have to be met: high spatial resolution, high light output, and fast scintillator response to capture lower-energy neutrons, which have scattered from non-burning regions of fuel. Deuterated scintillators are a promising candidate to achieve the timing and resolution required; a systematic study of deuterated and non-deuterated polystyrene and liquid samples is currently ongoing. A test stand has been implemented to measure the response function, and preliminary data on resolution and light output have been obtained at the LANL Weapons Neutrons Research facility.
Critical Science Issues for Direct Drive Inertial Fusion Energy
NASA Astrophysics Data System (ADS)
Dahlburg, Jill P.; Gardner, John H.; Schmitt, Andrew J.; Obenschain, S. P.
1998-09-01
There are several topics that require resolution prior to the construction of an Inertial Fusion Energy [IFE] laboratory Engineering Test Facility [ETF]: a pellet that produces high gain; a pellet fabrication system that cost-effectively and rapidly manufactures these pellets; a sufficiently uniform and durable high repetition-rate laser pellet driver; a practical target injection system that provides accurate pellet aiming; and, a target chamber that will survive the debris and radiation of repeated high-gain pellet implosions. In this summary we describe the science issues and opportunities that are involved in the design of a successful high gain direct drive Inertial Confinement Fusion [ICF] pellet.
NASA Astrophysics Data System (ADS)
Arbeiter, Frederik; Baluc, Nadine; Favuzza, Paolo; Gröschel, Friedrich; Heidinger, Roland; Ibarra, Angel; Knaster, Juan; Kanemura, Takuji; Kondo, Hiroo; Massaut, Vincent; Saverio Nitti, Francesco; Miccichè, Gioacchino; O'hira, Shigeru; Rapisarda, David; Sugimoto, Masayoshi; Wakai, Eiichi; Yokomine, Takehiko
2018-01-01
As part of the engineering validation and engineering design activities (EVEDA) phase for the international fusion materials irradiation facility IFMIF, major elements of a lithium target facility and the test facility were designed, prototyped and validated. For the lithium target facility, the EVEDA lithium test loop was built at JAEA and used to test the stability (waves and long term) of the lithium flow in the target, work out the startup procedures, and test lithium purification and analysis. It was confirmed by experiments in the Lifus 6 plant at ENEA that lithium corrosion on ferritic martensitic steels is acceptably low. Furthermore, complex remote handling procedures for the remote maintenance of the target in the test cell environment were successfully practiced. For the test facility, two variants of a high flux test module were prototyped and tested in helium loops, demonstrating their good capabilities of maintaining the material specimens at the desired temperature with a low temperature spread. Irradiation tests were performed for heated specimen capsules and irradiation instrumentation in the BR2 reactor at SCK-CEN. The small specimen test technique, essential for obtaining material test results with limited irradiation volume, was advanced by evaluating specimen shape and test technique influences.
The High Field Path to Practical Fusion Energy
NASA Astrophysics Data System (ADS)
Mumgaard, Robert; Whyte, D.; Greenwald, M.; Hartwig, Z.; Brunner, D.; Sorbom, B.; Marmar, E.; Minervini, J.; Bonoli, P.; Irby, J.; Labombard, B.; Terry, J.; Vieira, R.; Wukitch, S.
2017-10-01
We propose a faster, lower cost development path for fusion energy enabled by high temperature superconductors, devices at high magnetic field, innovative technologies and modern approaches to technology development. Timeliness, scale, and economic-viability are the drivers for fusion energy to combat climate change and aid economic development. The opportunities provided by high-temperature superconductors, innovative engineering and physics, and new organizational structures identified over the last few years open new possibilities for realizing practical fusion energy that could meet mid-century de-carbonization needs. We discuss re-factoring the fusion energy development path with an emphasis on concrete risk retirement strategies utilizing a modular approach based on the high-field tokamak that leverages the broader tokamak physics understanding of confinement, stability, and operational limits. Elements of this plan include development of high-temperature superconductor magnets, simplified immersion blankets, advanced long-leg divertors, a compact divertor test tokamak, efficient current drive, modular construction, and demountable magnet joints. An R&D plan culminating in the construction of an integrated pilot plant and test facility modeled on the ARC concept is presented.
Progress in magnet design activities for the material plasma exposure experiment
Duckworth, Robert; Lumsdaine, Arnold; Rapp, Juergen; ...
2017-07-01
One of the critical challenges for the development of next generation fusion facilities, such as a Fusion Nuclear Science Facility (FNSF) or DEMO, is the understanding of plasma material interactions (PMI). Making progress in PMI research will require integrated facilities that can provide the types of conditions that will be seen in the first wall and divertor regions of future fusion facilities. In order to meet this need, a new linear plasma facility, the Materials Plasma Exposure Experiment (MPEX), is proposed. In order to generate high ion fluence to simulate fusion divertor conditions, a steady-state plasma will be generated andmore » confined with superconducting magnets. Finally, the on-axis fields will range from 1 to 2.5 T in order to meet the requirements of the various plasma source and heating systems. Details on the pre-conceptual design of the magnets and cryogenic system are presented.« less
Virtually-augmented interfaces for tactical aircraft.
Haas, M W
1995-05-01
The term Fusion Interface is defined as a class of interface which integrally incorporates both virtual and non-virtual concepts and devices across the visual, auditory and haptic sensory modalities. A fusion interface is a multi-sensory virtually-augmented synthetic environment. A new facility has been developed within the Human Engineering Division of the Armstrong Laboratory dedicated to exploratory development of fusion-interface concepts. One of the virtual concepts to be investigated in the Fusion Interfaces for Tactical Environments facility (FITE) is the application of EEG and other physiological measures for virtual control of functions within the flight environment. FITE is a specialized flight simulator which allows efficient concept development through the use of rapid prototyping followed by direct experience of new fusion concepts. The FITE facility also supports evaluation of fusion concepts by operational fighter pilots in a high fidelity simulated air combat environment. The facility was utilized by a multi-disciplinary team composed of operational pilots, human-factors engineers, electronics engineers, computer scientists, and experimental psychologists to prototype and evaluate the first multi-sensory, virtually-augmented cockpit. The cockpit employed LCD-based head-down displays, a helmet-mounted display, three-dimensionally localized audio displays, and a haptic display. This paper will endeavor to describe the FITE facility architecture, some of the characteristics of the FITE virtual display and control devices, and the potential application of EEG and other physiological measures within the FITE facility.
Shao, Longjiang; Zhou, Zhansong; Cai, Yi; Castro, Patricia; Dakhov, Olga; Shi, Ping; Bai, Yaoxia; Ji, Huixiang; Shen, Wenhao; Wang, Jianghua
2013-01-01
The TMPRSS2/ERG (T/E) fusion gene is present in the majority of all prostate cancers (PCa). We have shown previously that NF-kB signaling is highly activated in these T/E fusion expressing cells via phosphorylation of NF-kB p65 Ser536 (p536). We therefore hypothesize that targeting NF-kB signaling may be an efficacious approach for the subgroup of PCas that carry T/E fusions. Celastrol is a well known NF-kB inhibitor, and thus may inhibit T/E fusion expressing PCa cell growth. We therefore evaluated Celastrol's effects in vitro and in vivo in VCaP cells, which express the T/E fusion gene. VCaP cells were treated with different concentrations of Celastrol and growth inhibition and target expression were evaluated. To test its ability to inhibit growth in vivo, 0.5 mg/kg Celastrol was used to treat mice bearing subcutaneous VCaP xenograft tumors. Our results show Celastrol can significantly inhibit the growth of T/E fusion expressing PCa cells both in vitro and in vivo through targeting three critical signaling pathways: AR, ERG and NF-kB in these cells. When mice received 0.5 mg/kg Celastrol for 4 times/week, significant growth inhibition was seen with no obvious toxicity or significant weight loss. Therefore, Celastrol is a promising candidate drug for T/E fusion expressing PCa. Our findings provide a novel strategy for the targeted therapy which may benefit the more than half of PCa patients who have T/E fusion expressing PCas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGoldrick, P.R.
1980-12-11
The Interprocess Communications System (IPCS) was written to provide a virtual machine upon which the Supervisory Control and Diagnostic System (SCDS) for the Mirror Fusion Test Facility (MFTF) could be built. The hardware upon which the IPCS runs consists of nine minicomputers sharing some common memory.
NASA Astrophysics Data System (ADS)
Garofalo, A. M.; Chan, V. S.; Prater, R.; Smith, S. P.; St. John, H. E.; Meneghini, O.
2013-10-01
A Fusion National Science Facility (FNSF) would complement ITER in addressing the community identified science and technology gaps to a commercially attractive DEMO, including breeding tritium and completing the fuel cycle, qualifying nuclear materials for high fluence, developing suitable materials for the plasma-boundary interface, and demonstrating power extraction. Steady-state plasma operation is highly desirable to address the requirements for fusion nuclear technology testing [1]. The Advanced Tokamak (AT) is a strong candidate for an FNSF as a consequence of its mature physics base, capability to address the key issues with a more compact device, and the direct relevance to an attractive target power plant. Key features of AT are fully noninductive current drive, strong plasma cross section shaping, internal profiles consistent with high bootstrap fraction, and operation at high beta, typically above the free boundary limit, βN > 3 . Work supported by GA IR&D funding, DE-FC02-04ER54698, and DE-FG02-95ER43309.
ETF Mission Statement document. ETF Design Center team
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-04-01
The Mission Statement document describes the results, activities, and processes used in preparing the Mission Statement, facility characteristics, and operating goals for the Engineering Test Facility (ETF). Approximately 100 engineers and scientists from throughout the US fusion program spent three days at the Knoxville Mission Workshop defining the requirements that should be met by the ETF during its operating life. Seven groups were selected to consider one major category each of design and operation concerns. Each group prepared the findings of the assigned area as described in the major sections of this document. The results of the operations discussed mustmore » provide the data, knowledge, experience, and confidence to continue to the next steps beyond the ETF in making fusion power a viable energy option. The results from the ETF mission (operations are assumed to start early in the 1990's) are to bridge the gap between the base of magnetic fusion knowledge at the start of operations and that required to design the EPR/DEMO devices.« less
Neutron-Irradiated Samples as Test Materials for MPEX
Ellis, Ronald James; Rapp, Juergen
2015-10-09
Plasma Material Interaction (PMI) is a major concern in fusion reactor design and analysis. The Material-Plasma Exposure eXperiment (MPEX) will explore PMI under fusion reactor plasma conditions. Samples with accumulated displacements per atom (DPA) damage produced by fast neutron irradiations in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) will be studied in the MPEX facility. This paper presents assessments of the calculated induced radioactivity and resulting radiation dose rates of a variety of potential fusion reactor plasma-facing materials (such as tungsten). The scientific code packages MCNP and SCALE were used to simulate irradiation of themore » samples in HFIR including the generation and depletion of nuclides in the material and the subsequent composition, activity levels, gamma radiation fields, and resultant dose rates as a function of cooling time. A challenge of the MPEX project is to minimize the radioactive inventory in the preparation of the samples and the sample dose rates for inclusion in the MPEX facility.« less
NASA Astrophysics Data System (ADS)
Larson, Robert Sherman
An Unmanned Aerial Vehicle (UAV) and a manned aircraft are tracked using ADS-B transponders and the Local Area Multilateration System (LAMS) in simulated GPS-degraded and GPS-denied environments. Several position estimation and fusion algorithms are developed for use with the Autonomous Flight Systems Laboratory (AFSL) TRansponder based Position Information System (TRAPIS) software. At the lowest level, these estimation and fusion algorithms use raw information from ADS-B and LAMS data streams to provide aircraft position estimates to the ground station user. At the highest level, aircraft position is estimated using a discrete time Kalman filter with real-time covariance updates and fusion involving weighted averaging of ADS-B and LAMS positions. Simulation and flight test results are provided, demonstrating the feasibility of incorporating an ADS-B transponder on a commercially-available UAS and maintaining situational awareness of aircraft positions in GPS-degraded and GPS-denied environments.
Health-Enabled Smart Sensor Fusion Technology
NASA Technical Reports Server (NTRS)
Wang, Ray
2012-01-01
A process was designed to fuse data from multiple sensors in order to make a more accurate estimation of the environment and overall health in an intelligent rocket test facility (IRTF), to provide reliable, high-confidence measurements for a variety of propulsion test articles. The object of the technology is to provide sensor fusion based on a distributed architecture. Specifically, the fusion technology is intended to succeed in providing health condition monitoring capability at the intelligent transceiver, such as RF signal strength, battery reading, computing resource monitoring, and sensor data reading. The technology also provides analytic and diagnostic intelligence at the intelligent transceiver, enhancing the IEEE 1451.x-based standard for sensor data management and distributions, as well as providing appropriate communications protocols to enable complex interactions to support timely and high-quality flow of information among the system elements.
New seismic array solution for earthquake observations and hydropower plant health monitoring
NASA Astrophysics Data System (ADS)
Antonovskaya, Galina N.; Kapustian, Natalya K.; Moshkunov, Alexander I.; Danilov, Alexey V.; Moshkunov, Konstantin A.
2017-09-01
We present the novel fusion of seismic safety monitoring data of the hydropower plant in Chirkey (Caucasus Mountains, Russia). This includes new hardware solutions and observation methods, along with technical limitations for three types of applications: (a) seismic monitoring of the Chirkey reservoir area, (b) structure monitoring of the dam, and (c) monitoring of turbine vibrations. Previous observations and data processing for health monitoring do not include complex data analysis, while the new system is more rational and less expensive. The key new feature of the new system is remote monitoring of turbine vibration. A comparison of the data obtained at the test facilities and by hydropower plant inspection with remote sensors enables early detection of hazardous hydrodynamic phenomena.
In vitro fusion of endocytic vesicles is inhibited by cyclin A-cdc2 kinase.
Woodman, P G; Adamczewski, J P; Hunt, T; Warren, G
1993-05-01
Receptor-mediated endocytosis and recycling are inhibited in mitotic mammalian cells, and previous studies have shown that inhibition of endocytic vesicle fusion in vitro occurs via cyclin B-cdc2 kinase. To test for the ability of cyclin A-cdc2 kinase to inhibit endocytic vesicle fusion, we employed recombinant cyclin A proteins. Addition of cyclin A to interphase extracts activated a histone kinase and markedly reduced the efficiency of endocytic vesicle fusion. By a number of criteria, inhibition of fusion was shown to be due to the action of cyclin A, via the mitosis-specific cdc2 kinase, and not an indirect effect through cyclin B. Two-stage incubations were used to demonstrate that at least one target of cyclin A-cdc2 kinase is a cytosolic component of the fusion apparatus. Reconstitution experiments showed that this component was also modified in mitotic cytosols and was unaffected by N-ethyl maleimide treatment.
NASA Astrophysics Data System (ADS)
Lee, Dong Won; Shin, Kyu In; Kim, Suk Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Choi, Bo Guen; Moon, Se Youn; Hong, Bong Guen
2014-10-01
Tungsten (W) and ferritic-martensitic steel (FMS) as armor and structural materials, respectively, are the major candidates for plasma-facing components (PFCs) such as the blanket first wall (BFW) and the divertor, in a fusion reactor. In the present study, three W/FMS mockups were successfully fabricated using a hot isostatic pressing (HIP, 900 °C, 100 MPa, 1.5 hrs) with a following post-HIP heat treatment (PHHT, tempering, 750 °C, 70 MPa, 2 hrs), and the W/FMS joining method was developed based on the ITER BFW and the test blanket module (TBM) development project from 2004 to the present. Using a 10-MHz-frequency flat-type probe to ultrasonically test of the joint, we found no defects in the fabricated mockups. For confirmation of the joint integrity, a high heat flux test will be performed up to the thermal lifetime of the mockup under the proper test conditions. These conditions were determined through a preliminary analysis with conventional codes such as ANSYS-CFX for thermal-hydraulic conditions considering the test facility, the Korea heat load test facility with an electron beam (KoHLT-EB), and its water coolant system at the Korea Atomic Energy Research Institute (KAERI).
NASA Astrophysics Data System (ADS)
de Angelis, E.; di Lellis, A. M.; Orsini, S.; Zanza, V.; Maggi, M.; Vertolli, N.; D'Amicis, R.; Tilia, B.; Sibio, A.
2003-04-01
An Energetic Neutral Atoms facility to test and calibrate Neutral Atoms Analyzers has been developed in the Scientific Technical Unit of Fusion at the ENEA Research Center in Frascati (Rome-Italy). In the last years a collaboration with IFSI (Interplanetary Space and Physics Institute, CNR-Rome-Italy) has allowed to use this facility for space sensors and for characterization of crucial instruments elements. The ENA beam is realized with an ion source and a neutralization cell, and allows to test any instrument in the energy range 300eV-110keV with the available masses of Hydrogen, Deuterium or Helium. At the moment, the critical elements of ELENA (Emitted Low Energy Neutral Atoms) instrument proposed for BepiColombo ESA cornerstone mission to Mercury is under development testing. The facility, its potentiality and the instrument characterization progresses are presented.
Program user's manual: cryogen system for the analysis for the Mirror Fusion Test Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-04-01
The Mirror Fusion Test Facility being designed and constructed at the Lawrence Livermore Laboratory requires a liquid helium liquefaction, storage, distribution, and recovery system and a liquid nitrogen storage and distribution system. To provide a powerful analytical tool to aid in the design evolution of this system through hardware, a thermodynamic fluid flow model was developed. This model allows the Lawrence Livermore Laboratory to verify that the design meets desired goals and to play what if games during the design evolution. For example, what if the helium flow rate is changed in the magnet liquid helium flow loop; how doesmore » this affect the temperature, fluid quality, and pressure. This manual provides all the information required to run all or portions of this program as desired. In addition, the program is constructed in a modular fashion so changes or modifications can be made easily to keep up with the evolving design.« less
The Terra Data Fusion Project: An Update
NASA Astrophysics Data System (ADS)
Di Girolamo, L.; Bansal, S.; Butler, M.; Fu, D.; Gao, Y.; Lee, H. J.; Liu, Y.; Lo, Y. L.; Raila, D.; Turner, K.; Towns, J.; Wang, S. W.; Yang, K.; Zhao, G.
2017-12-01
Terra is the flagship of NASA's Earth Observing System. Launched in 1999, Terra's five instruments continue to gather data that enable scientists to address fundamental Earth science questions. By design, the strength of the Terra mission has always been rooted in its five instruments and the ability to fuse the instrument data together for obtaining greater quality of information for Earth Science compared to individual instruments alone. As the data volume grows and the central Earth Science questions move towards problems requiring decadal-scale data records, the need for data fusion and the ability for scientists to perform large-scale analytics with long records have never been greater. The challenge is particularly acute for Terra, given its growing volume of data (> 1 petabyte), the storage of different instrument data at different archive centers, the different file formats and projection systems employed for different instrument data, and the inadequate cyberinfrastructure for scientists to access and process whole-mission fusion data (including Level 1 data). Sharing newly derived Terra products with the rest of the world also poses challenges. As such, the Terra Data Fusion Project aims to resolve two long-standing problems: 1) How do we efficiently generate and deliver Terra data fusion products? 2) How do we facilitate the use of Terra data fusion products by the community in generating new products and knowledge through national computing facilities, and disseminate these new products and knowledge through national data sharing services? Here, we will provide an update on significant progress made in addressing these problems by working with NASA and leveraging national facilities managed by the National Center for Supercomputing Applications (NCSA). The problems that we faced in deriving and delivering Terra L1B2 basic, reprojected and cloud-element fusion products, such as data transfer, data fusion, processing on different computer architectures, science, and sharing, will be presented with quantitative specifics. Results from several science-specific drivers for Terra fusion products will also be presented. We demonstrate that the Terra Data Fusion Project itself provides an excellent use-case for the community addressing Big Data and cyberinfrastructure problems.
Performance testing of a prototype Pd-Ag diffuser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, G. A.; Hodge, B. J.
The fusion fuel cycle has gained significant attention over the last decade as interest in fusion programs has increased. One of the critical components of the fusion process is the tritium fuel cycle. The tritium fuel cycle is designed to supply and recycle process tritium at a specific throughput rate. One of the most important processes within the tritium fuel cycle is the clean-up of the of the process tritium. This step will initially separate the hydrogen isotopes (H2, D2, and T2) from the rest of the process gas using Pd-Ag diffusers or permeators. The Pd-Ag diffuser is an integralmore » component for any tritium purification system; whether part of the United States’ defense mission or fusion programs. Domestic manufacturers of Pd-Ag diffusers are extremely limited and only a few manufacturers exist. Johnson-Matthey (JM) Pd-Ag diffusers (permeators) have previously been evaluated for the separation of hydrogen isotopes from non-hydrogen gas species in the process. JM is no longer manufacturing Pd-Ag diffusers and a replacement vendor needs to be identified to support future needs. A prototype Pd-Ag diffuser has been manufactured by Power and Energy, and is considered a potential replacement for the JM diffuser for tritium service. New diffuser designs for a tritium facility for any fusion energy applications must be characterized by evaluating their operating envelope prior to installation in a tritium processing facility. The prototype Pd-Ag diffuser was characterized to determine the overall performance as a function of the permeation of hydrogen through the membrane. The tests described in this report consider the effects of feed gas compositions, feed flow rates, pump configuration and internal tube pressure on the permeation of H2 through the Pd-Ag tubes.« less
A U.S. Strategy for Timely Fusion Energy Development
NASA Astrophysics Data System (ADS)
Wade, Mickey
2017-10-01
Worldwide energy demand is expected to explode in the latter half of this century. In anticipation of this demand, the U.S. DOE recently asked the National Academy of Science to provide guidance on a long-term strategic plan assuming that ``economical fusion energy within the next several decades is a U.S. strategic interest. ``Delivering on such a plan will require an R&D program that delivers key data and understanding on the building blocks of a) burning plasma physics, b) optimization of the coupled core-edge solution, and c) fusion nuclear science to inform the design of a cost-attractive DEMO reactor in this time frame. Such a program should leverage existing facilities in the U.S. program including ITER, provide substantive motivation for an expanding R&D scope (and funding), and enable timely redirection of resources within the program as appropriate (and endorsed by DOE and the fusion community). This paper will outline a potential strategy that provides world-leading opportunities for the research community in a range of areas while delivering on key milestones required for timely fusion energy development. Supported by General Atomics internal funding.
NASA Astrophysics Data System (ADS)
Wuest, Craig R.
2001-03-01
The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory is 192-beam, 1.8 Megajoule, 500 Terawatt, 351 nm laser for inertial confinement fusion and high energy density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency to provide an experimental test bed for the US Stockpile Stewardship Program to ensure the country’s nuclear deterrent without underground nuclear testing. The experimental program for NIF will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% of the shots will be dedicated to basic science research. Additionally, most of the shots on NIF will be conducted in unclassified configurations that will allow participation from the greater scientific community in planned applied physics experiments. This presentation will provide a look at the status of the construction project as well as a description of the scientific uses of NIF. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Measurement of the beryllium-7 plus proton fusion cross section
NASA Astrophysics Data System (ADS)
Fitzgerald, Ryan P.
2005-11-01
The fusion of protons with radioactive nuclei plays an important role in a wide variety of astrophysical scenarios ranging from high-temperature environments like novae and X-ray bursts to the production of neutrinos in the sun. For example, the 8 B neutrino flux measured in neutrino detectors on earth is directly proportional to the cross section for the fusion of protons with radioactive 7 Be. An experimental program has been established to study proton-fusion experiments in inverse kinematics at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL) using a windowless gas target and the Daresbury Recoil Separator (DRS). The performance of the target and separator have been well characterized using a variety of experiments with stable beams including 12 C, 19 F, and 24 Mg. For instance, the areal density of hydrogen in the target was determined to 3% accuracy. This well-characterized system was used to measure accurate stopping powers for many elements in hydrogen gas for the first time. The first measurement of a proton-fusion cross section with a radioactive ion beam at ORNL, the fusion of protons with 7 Be, was performed using the hydrogen gas target and the DRS. The 7 Be was produced at the Triangle Universities Nuclear Laboratory (TUNL) and chemically isolated at ORNL. An average 7 Be beam current of 2.5 ppA bombarded the windowless gas target for a period of 3 days. Recoiling B-8 nuclei were efficiently collected using the DRS and were clearly identified in a gas-filled ion detector. The cross section at a center-of-mass energy of 1.502 MeV was determined to be 1.12 mb with 24% uncertainty. The zero-energy S-factor was determined to be 26.8 eV-b with 25% uncertainty. The technique has been clearly demonstrated, and a precise measurement of the fusion cross section will be possible with the development of a somewhat more intense 7 Be radioactive ion beam.
Performance evolution of 60 kA HTS cable prototypes in the EDIPO test facility
NASA Astrophysics Data System (ADS)
Bykovsky, N.; Uglietti, D.; Sedlak, K.; Stepanov, B.; Wesche, R.; Bruzzone, P.
2016-08-01
During the first test campaign of the 60 kA HTS cable prototypes in the EDIPO test facility, the feasibility of a novel HTS fusion cable concept proposed at the EPFL Swiss Plasma Center (SPC) was successfully demonstrated. While the measured DC performance of the prototypes at magnetic fields from 8 T to 12 T and for currents from 30 kA to 70 kA was close to the expected one, an initial electromagnetic cycling test (1000 cycles) revealed progressive degradation of the performance in both the SuperPower and SuperOx conductors. Aiming to understand the reasons for the degradation, additional cycling (1000 cycles) and warm up-cool down tests were performed during the second test campaign. I c performance degradation of the SuperOx conductor reached ∼20% after about 2000 cycles, which was reason to continue with a visual inspection of the conductor and further tests at 77 K. AC tests were carried out at 0 and 2 T background fields without transport current and at 10 T/50 kA operating conditions. Results obtained in DC and AC tests of the second test campaign are presented and compared with appropriate data published recently. Concluding the first iteration of the HTS cable development program at SPC, a summary and recommendations for the next activity within the HTS fusion cable project are also reported.
Next generation gamma-ray Cherenkov detectors for the National Ignition Facility.
Herrmann, H W; Kim, Y H; McEvoy, A M; Zylstra, A B; Young, C S; Lopez, F E; Griego, J R; Fatherley, V E; Oertel, J A; Stoeffl, W; Khater, H; Hernandez, J E; Carpenter, A; Rubery, M S; Horsfield, C J; Gales, S; Leatherland, A; Hilsabeck, T; Kilkenny, J D; Malone, R M; Hares, J D; Milnes, J; Shmayda, W T; Stoeckl, C; Batha, S H
2016-11-01
The newest generation of Gas Cherenkov Detector (GCD-3) employed in Inertial Confinement Fusion experiments at the Omega Laser Facility has provided improved performance over previous generations. Comparison of reaction histories measured using two different deuterium-tritium fusion products, namely gamma rays using GCD and neutrons using Neutron Temporal Diagnostic (NTD), have provided added credibility to both techniques. GCD-3 is now being brought to the National Ignition Facility (NIF) to supplement the existing Gamma Reaction History (GRH-6m) located 6 m from target chamber center (TCC). Initially it will be located in a reentrant well located 3.9 m from TCC. Data from GCD-3 will inform the design of a heavily-shielded "Super" GCD to be located as close as 20 cm from TCC. It will also provide a test-bed for faster optical detectors, potentially lowering the temporal resolution from the current ∼100 ps state-of-the-art photomultiplier tubes (PMT) to ∼10 ps Pulse Dilation PMT technology currently under development.
Maximal design basis accident of fusion neutron source DEMO-TIN
NASA Astrophysics Data System (ADS)
Kolbasov, B. N.
2015-12-01
When analyzing the safety of nuclear (including fusion) facilities, the maximal design basis accident at which the largest release of activity is expected must certainly be considered. Such an accident is usually the failure of cooling systems of the most thermally stressed components of a reactor (for a fusion facility, it is the divertor or the first wall). The analysis of safety of the ITER reactor and fusion power facilities (including hybrid fission-fusion facilities) shows that the initial event of such a design basis accident is a large-scale break of a pipe in the cooling system of divertor or the first wall outside the vacuum vessel of the facility. The greatest concern is caused by the possibility of hydrogen formation and the inrush of air into the vacuum chamber (VC) with the formation of a detonating mixture and a subsequent detonation explosion. To prevent such an explosion, the emergency forced termination of the fusion reaction, the mounting of shutoff valves in the cooling systems of the divertor and the first wall or blanket for reducing to a minimum the amount of water and air rushing into the VC, the injection of nitrogen or inert gas into the VC for decreasing the hydrogen and oxygen concentration, and other measures are recommended. Owing to a continuous feed-out of the molten-salt fuel mixture from the DEMO-TIN blanket with the removal period of 10 days, the radioactivity release at the accident will mainly be determined by tritium (up to 360 PBq). The activity of fission products in the facility will be up to 50 PBq.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, S.; Chang, J.; Amin, S.
1981-01-01
Teste were conducted to determine the moisture retention for the 0.5 wt% borated concrete under three curing conditions. The three curing conditions are (1) curing at 100% relative humidity for a 28-day period at 21/degree/C, (2) curing at 100% relative humidity for a 7-day period, then at air-dry 50% relative humidity for the remaining 28-day curing period at 21/degree/C, and (3) curing at 100% relative humidity for a period of 7 days and then curing at air-dry 20% relative humidity for the remaining curing period at 21/degree/C. The concrete shielding curves are presented for several mositure contents. The results shouldmore » be helpful to assist the design of a cost effective concrete shield for fusion facilities.« less
Carter, Jane; Zhang, Jue; Dang, Thien-Lan; Hasegawa, Haruki; Cheng, Janet D; Gianan, Irene; O'Neill, Jason W; Wolfson, Martin; Siu, Sophia; Qu, Sheldon; Meininger, David; Kim, Helen; Delaney, John; Mehlin, Christopher
2010-01-01
The expression levels of five secreted target interleukins (IL-11, 15, 17B, 32, and IL23 p19 subunit) were tested with three different fusion partners in 2936E cells. When fused to the N-terminus, human serum albumin (HSA) was found to enhance the expression of both IL-17B and IL-15, cytokines which did not express at measurable levels on their own. Although the crystallizable fragment of an antibody (Fc) was also an effective fusion partner for IL-17B, Fc did not increase expression of IL-15. Fc was superior to HSA for the expression of the p19 subunit of IL-23, but no partner led to measurable levels of IL-32γ secretion. Glutathione S-transferase (GST) did not enhance the expression of any target and suppressed the production of IL-11, a cytokine which expressed robustly both on its own and when fused to HSA or Fc. Cleavage of the fusion partner was not always possible. The use of HSA or Fc as N-terminal fusions can be an effective technique to express difficult proteins, especially for applications in which the fusion partner need not be removed. PMID:20014434
ICF quarterly report January - March 1997 volume 7, number 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, J
The National Ignition Facility Project The mission of the National Ignition Facility (NIF) is to produce ignition and modest energy gain in inertial confinement fusion (ICF) targets. Achieving these goals will maintain U.S. world leadership in ICF and will directly benefit the U.S. Department of Energy (DOE) missions in national security, science and technology, energy resources, and industrial competitiveness. Development and operation of the NIF are consistent with DOE goals for environmental quality, openness to the community, and nuclear nonproliferation and arms control. Although the primary mission of inertial fusion is for defense applications, inertial fusion research will provide criticalmore » information for the development of inertial fusion energy. The NIF, under construction at Lawrence Livermore National Laboratory (LLNL), is a cornerstone of the DOE's science-based Stockpile Stewardship Program for addressing high-energy-density physics issues in the absence of nuclear weapons testing. In pursuit of this mission, the DOE's Defense Programs has developed a state-of-the-art capability with the NIF to investigate high-energy-density physics in the laboratory with a microfusion capability for defense and energy applications. As a Strategic System Acquisition, the NIF Project has a separate and disciplined reporting chain to DOE as shown below.« less
In vitro fusion of endocytic vesicles is inhibited by cyclin A-cdc2 kinase.
Woodman, P G; Adamczewski, J P; Hunt, T; Warren, G
1993-01-01
Receptor-mediated endocytosis and recycling are inhibited in mitotic mammalian cells, and previous studies have shown that inhibition of endocytic vesicle fusion in vitro occurs via cyclin B-cdc2 kinase. To test for the ability of cyclin A-cdc2 kinase to inhibit endocytic vesicle fusion, we employed recombinant cyclin A proteins. Addition of cyclin A to interphase extracts activated a histone kinase and markedly reduced the efficiency of endocytic vesicle fusion. By a number of criteria, inhibition of fusion was shown to be due to the action of cyclin A, via the mitosis-specific cdc2 kinase, and not an indirect effect through cyclin B. Two-stage incubations were used to demonstrate that at least one target of cyclin A-cdc2 kinase is a cytosolic component of the fusion apparatus. Reconstitution experiments showed that this component was also modified in mitotic cytosols and was unaffected by N-ethyl maleimide treatment. Images PMID:8334308
Will fusion be ready to meet the energy challenge for the 21st century?
NASA Astrophysics Data System (ADS)
Bréchet, Yves; Massard, Thierry
2016-05-01
Finite amount of fossil fuel, global warming, increasing demand of energies in emerging countries tend to promote new sources of energies to meet the needs of the coming centuries. Despite their attractiveness, renewable energies will not be sufficient both because of intermittency but also because of the pressure they would put on conventional materials. Thus nuclear energy with both fission and fusion reactors remain the main potential source of clean energy for the coming centuries. France has made a strong commitment to fusion reactor through ITER program. But following and sharing Euratom vision on fusion, France supports the academic program on Inertial Fusion Confinement with direct drive and especially the shock ignition scheme which is heavily studied among the French academic community. LMJ a defense facility for nuclear deterrence is also open to academic community along with a unique PW class laser PETAL. Research on fusion at LMJ-PETAL is one of the designated topics for experiments on the facility. Pairing with other smaller European facilities such as Orion, PALS or LULI2000, LMJ-PETAL will bring new and exciting results and contribution in fusion science in the coming years.
A Burning Plasma Experiment: the role of international collaboration
NASA Astrophysics Data System (ADS)
Prager, Stewart
2003-04-01
The world effort to develop fusion energy is at the threshold of a new stage in its research: the investigation of burning plasmas. A burning plasma is self-heated. The 100 million degree temperature of the plasma is maintained by the heat generated by the fusion reactions themselves, as occurs in burning stars. The fusion-generated alpha particles produce new physical phenomena that are strongly coupled together as a nonlinear complex system, posing a major plasma physics challenge. Two attractive options are being considered by the US fusion community as burning plasma facilities: the international ITER experiment and the US-based FIRE experiment. ITER (the International Thermonuclear Experimental Reactor) is a large, power-plant scale facility. It was conceived and designed by a partnership of the European Union, Japan, the Soviet Union, and the United States. At the completion of the first engineering design in 1998, the US discontinued its participation. FIRE (the Fusion Ignition Research Experiment) is a smaller, domestic facility that is at an advanced pre-conceptual design stage. Each facility has different scientific, programmatic and political implications. Selecting the optimal path for burning plasma science is itself a challenge. Recently, the Fusion Energy Sciences Advisory Committee recommended a dual path strategy in which the US seek to rejoin ITER, but be prepared to move forward with FIRE if the ITER negotiations do not reach fruition by July, 2004. Either the ITER or FIRE experiment would reveal the behavior of burning plasmas, generate large amounts of fusion power, and be a huge step in establishing the potential of fusion energy to contribute to the world's energy security.
Numerically Simulating Collisions of Plastic and Foam Laser-Driven Foils
NASA Astrophysics Data System (ADS)
Zalesak, S. T.; Velikovich, A. L.; Schmitt, A. J.; Aglitskiy, Y.; Metzler, N.
2007-11-01
Interest in experiments on colliding planar foils has recently been stimulated by (a) the Impact Fast Ignition approach to laser fusion [1], and (b) the approach to a high-repetition rate ignition facility based on direct drive with the KrF laser [2]. Simulating the evolution of perturbations to such foils can be a numerical challenge, especially if the initial perturbation amplitudes are small. We discuss the numerical issues involved in such simulations, describe their benchmarking against recently-developed analytic results, and present simulations of such experiments on NRL's Nike laser. [1] M. Murakami et al., Nucl. Fusion 46, 99 (2006) [2] S. P. Obenschain et al., Phys. Plasmas 13, 056320 (2006).
Maximal design basis accident of fusion neutron source DEMO-TIN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolbasov, B. N., E-mail: Kolbasov-BN@nrcki.ru
2015-12-15
When analyzing the safety of nuclear (including fusion) facilities, the maximal design basis accident at which the largest release of activity is expected must certainly be considered. Such an accident is usually the failure of cooling systems of the most thermally stressed components of a reactor (for a fusion facility, it is the divertor or the first wall). The analysis of safety of the ITER reactor and fusion power facilities (including hybrid fission–fusion facilities) shows that the initial event of such a design basis accident is a large-scale break of a pipe in the cooling system of divertor or themore » first wall outside the vacuum vessel of the facility. The greatest concern is caused by the possibility of hydrogen formation and the inrush of air into the vacuum chamber (VC) with the formation of a detonating mixture and a subsequent detonation explosion. To prevent such an explosion, the emergency forced termination of the fusion reaction, the mounting of shutoff valves in the cooling systems of the divertor and the first wall or blanket for reducing to a minimum the amount of water and air rushing into the VC, the injection of nitrogen or inert gas into the VC for decreasing the hydrogen and oxygen concentration, and other measures are recommended. Owing to a continuous feed-out of the molten-salt fuel mixture from the DEMO-TIN blanket with the removal period of 10 days, the radioactivity release at the accident will mainly be determined by tritium (up to 360 PBq). The activity of fission products in the facility will be up to 50 PBq.« less
Multiple beam induction accelerators for heavy ion fusion
NASA Astrophysics Data System (ADS)
Seidl, Peter A.; Barnard, John J.; Faltens, Andris; Friedman, Alex; Waldron, William L.
2014-01-01
Induction accelerators are appealing for heavy-ion driven inertial fusion energy (HIF) because of their high efficiency and their demonstrated capability to accelerate high beam current (≥10 kA in some applications). For the HIF application, accomplishments and challenges are summarized. HIF research and development has demonstrated the production of single ion beams with the required emittance, current, and energy suitable for injection into an induction linear accelerator. Driver scale beams have been transported in quadrupole channels of the order of 10% of the number of quadrupoles of a driver. We review the design and operation of induction accelerators and the relevant aspects of their use as drivers for HIF. We describe intermediate research steps that would provide the basis for a heavy-ion research facility capable of heating matter to fusion relevant temperatures and densities, and also to test and demonstrate an accelerator architecture that scales well to a fusion power plant.
Characterization of the Inductively Heated Plasma Source IPG6-B
NASA Astrophysics Data System (ADS)
Dropmann, Michael; Laufer, Rene; Herdrich, Georg; Matthews, Lorin; Hyde, Truell
2014-10-01
In close collaboration between the Center for Astrophysics, Space Physics and Engineering Research (CASPER) at Baylor University, Texas, and the Institute of Space Systems (IRS) at the University of Stuttgart, Germany, two plasma facilities have been established using the Inductively heated Plasma Generator 6 (IPG6). The facility at Baylor University (IPG6-B) works at a frequency of 13.56 MHz and a maximum power of 15 kW. A vacuum pump of 160 m3/h in combination with a butterfly valve allows pressure control over a wide range. Intended fields of research include basic investigation into thermo-chemistry and plasma radiation, space plasma environments and high heat fluxes e.g. those found in fusion devices or during atmospheric re-entry of spacecraft. After moving the IPG6-B facility to the Baylor Research and Innovation Collaborative (BRIC) it was placed back into operation during the summer of 2014. Initial characterization in the new lab, using a heat flux probe, Pitot probe and cavity calorimeter, has been conducted for Air, Argon and Helium. The results of this characterization are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Kezhao; Ni, Longchang; Lei, Zhenglong, E-ma
The tensile deformation behavior of laser welded Ti{sub 2}AlNb joints was investigated using in situ analysis methods. The fracture mode of the single-B2-phase fusion zone was quasi-cleavage at room temperature and intergranular at 650 °C, while that of base metal was microvoid coalescence at both room temperature and 650 °C. Tensile deformation at room temperature was observed using in situ SEM tensile testing. In base metal, microcracks nucleated and propagated mainly within the O phase or along O/B2 phase boundaries. While both the cross- and multi-slips were found in the single-B2-phase fusion zone, a confocal laser scanning microscopy was usedmore » to observe the crack initiation and propagation process in situ at 650 °C. Cracks mainly formed along the B2/O phase boundaries in base metal, along the fragile grain boundaries of B2 phase in the fusion zone. The thermal simulation experiment and following TEM analysis indicated that the precipitation of continuous O-phase films along the B2 grain boundaries resulted in the high temperature brittleness of laser welded Ti{sub 2}AlNb joints. - Highlights: •Cracks formed within O phase or along B2/O boundaries in the base metal. •Cross- and multi-slips relieved stress in the fusion zone at room temperature. •Cracks mainly formed along the B2/O boundaries at 650 °C. •In the fusion zone, intergranular cracks were in situ observed at 650 °C. •O-phase films along B2 grain boundaries caused the high temperature brittleness.« less
Aluminum Lithium Alloy 2195 Fusion Welding Improvements with New Filler Wire
NASA Technical Reports Server (NTRS)
Russell, Carolyn; Bjorkman, Gerry; McCool, Carolyn (Technical Monitor)
2000-01-01
A viewgraph presentation outlines NASA Marshall Space Flight Center, Lockheed Martin Michoud Space Systems, and McCook Metals' development an aluminum-copper weld filler wire for fusion welding 2195 aluminum lithium. The aluminum-copper based weld filler wire has been identified as B218, which is the result of six years of weld filler wire development funded by NASA, Lockheed Martin, and McCook Metals. The Super Lightweight External Tank for the NASA Space Shuttle Program consists of 2195 welded with 4043 aluminum-silicon weld filler wire. The B218 filler wire chemistry was developed to produce enhanced 2195 weld and repair weld mechanical properties. An initial characterization of the B218 weld filler wire was performed consisting of initial weld and repair weld evaluation comparing B218 and 4043. The testing involved room temperature and cryogenic tensile testing along with fracture toughness testing. B218 weld filler wire proved to produce enhanced initial and repair weld tensile and fracture properties over 4043. B218 weld filler wire has proved to be a superior weld filler wire for welding 2195 and other aluminum lithium alloys over 4043.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gobin, R., E-mail: rjgobin@cea.fr; Bogard, D.; Chauvin, N.
In the framework of the ITER broader approach, the International Fusion Materials Irradiation Facility (IFMIF) deuteron accelerator (2 × 125 mA at 40 MeV) is an irradiation tool dedicated to high neutron flux production for future nuclear plant material studies. During the validation phase, the Linear IFMIF Prototype Accelerator (LIPAc) machine will be tested on the Rokkasho site in Japan. This demonstrator aims to produce 125 mA/9 MeV deuteron beam. Involved in the LIPAc project for several years, specialists from CEA/Saclay designed the injector based on a SILHI type ECR source operating at 2.45 GHz and a 2 solenoid lowmore » energy beam line to produce such high intensity beam. The whole injector, equipped with its dedicated diagnostics, has been then installed and tested on the Saclay site. Before shipment from Europe to Japan, acceptance tests have been performed in November 2012 with 100 keV deuteron beam and intensity as high as 140 mA in continuous and pulsed mode. In this paper, the emittance measurements done for different duty cycles and different beam intensities will be presented as well as beam species fraction analysis. Then the reinstallation in Japan and commissioning plan on site will be reported.« less
Dose profile modeling of Idaho National Laboratory's active neutron interrogation laboratory.
Chichester, D L; Seabury, E H; Zabriskie, J M; Wharton, J; Caffrey, A J
2009-06-01
A new laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for deuterium-tritium (DT) fusion (14.1 MeV) neutron generators (2 x 10(8) n/s), deuterium-deuterium (DD) fusion (2.5 MeV) neutron generators (1 x 10(7) n/s), and (252)Cf spontaneous fission neutron sources (6.96 x 10(7) n/s, 30 microg). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault. The larger vault is designed to allow operation of the DT generator and has walls 3.8m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for (252)Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield walls and entrance mazes and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.
B-1 and B-3 Test Stands at NASA’s Plum Brook Station
1966-09-21
Operation of the High Energy Rocket Engine Research Facility (B-1), left, and Nuclear Rocket Dynamics and Control Facility (B-3) at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station in Sandusky, Ohio. The test stands were constructed in the early 1960s to test full-scale liquid hydrogen fuel systems in simulated altitude conditions. Over the next decade each stand was used for two major series of liquid hydrogen rocket tests: the Nuclear Engine for Rocket Vehicle Application (NERVA) and the Centaur second-stage rocket program. The different components of these rocket engines could be studied under flight conditions and adjusted without having to fire the engine. Once the preliminary studies were complete, the entire engine could be fired in larger facilities. The test stands were vertical towers with cryogenic fuel and steam ejector systems. B-1 was 135 feet tall, and B-3 was 210 feet tall. Each test stand had several levels, a test section, and ground floor shop areas. The test stands relied on an array of support buildings to conduct their tests, including a control building, steam exhaust system, and fuel storage and pumping facilities. A large steam-powered altitude exhaust system reduced the pressure at the exhaust nozzle exit of each test stand. This allowed B-1 and B-3 to test turbopump performance in conditions that matched the altitudes of space.
Next Generation Gamma-Ray Cherenkov Detectors for the National Ignition Facility
Herrmann, Hans W.; Kim, Yong Ho; McEvoy, Aaron Matthew; ...
2016-10-19
The newest generation of Gas Cherenkov Detector (GCD-3) employed in Inertial Confinement Fusion experiments at the Omega Laser Facility has provided improved performance over previous generations. Comparison of reaction histories measured using two different deuterium-tritium fusion products, namely gamma rays using GCD and neutrons using Neutron Temporal Diagnostic (NTD), have provided added credibility to both techniques. GCD-3 is now being brought to the National Ignition Facility (NIF) to supplement the existing Gamma Reaction History (GRH-6m) located 6 m from target chamber center (TCC). Initially it will be located in a reentrant well located 3.9 m from TCC. Data from GCD-3more » will inform the design of a heavily-shielded “Super” GCD to be located as close as 20 cm from TCC. In conclusion, it will also provide a test-bed for faster optical detectors, potentially lowering the temporal resolution from the current ~100 ps state-of-the-art photomultiplier tubes (PMT) to ~10 ps Pulse Dilation PMT technology currently under development.« less
Lee, Jae Hyup; Ryu, Hyun-Seung; Seo, Jun-Hyuk; Lee, Do-Yoon; Chang, Bong-Soon; Lee, Choon-Ki
2014-03-01
Bioactive glass-ceramics have the ability to directly bind to bones and have been widely used as bone graft substitutes due to their high osteoconductivity and biocompatibility. CaO-SiO2-P2O5-B2O3 glass-ceramics are known to have good osteoconductivity and are used as bone graft extenders. This study aimed to evaluate the effects of the resorbing properties of glass-ceramics in bone fusion after producing and analyzing three types of CaO-SiO2-P2O5-B2O3 glass-ceramics with high osteoconductivity that had enhanced resorption by having an increased B2O3 content. The three types of CaO-SiO2-P2O5-B2O3 glass-ceramics with B2O3 contents of 8.0, 9.0, and 9.5 weight % were designated and grouped as P20B80, P10B90, and P5B95, respectively. Glass-ceramic types were tested for fusion rates and bone formation by employing the lumbar 5-6 intertransverse process fusion model in 51 New Zealand male rabbits. Bioactivity was assessed by soaking in simulated body fluid (SBF). In vitro study results showed sufficient hydroxycarbonate apatite layer formation occurred for P20B80 in1 day, for P10B90 in 3 days, and for P5B95 in 5 days after soaking in SBF. For the rabbit lumbar spine posterolateral fusion model, the autograft group recorded a 100% fusion rate with levels significantly higher than those of P20B80 (29.4%), P10B90 (0%), and P5B95 (14.3%), with high resorbing properties. Resorbing property differences among the three glass-ceramic groups were not significant. Histological results showed new bone formation confirming osteoconductivity in all three types of glass-ceramics. Radiomorphometric results also confirmed the resorbing properties of the three glass-ceramic types. The high resorbing properties and osteoconductivity of porous glass-ceramics can be advantageous as no glass-ceramics remain in the body. However, their relatively fast rate of resorption in the body negatively affects their role as an osteoconductive scaffold as glass-ceramics are resorbed before bony fusion.
Lee, Jae Hyup; Ryu, Hyun-Seung; Seo, Jun-Hyuk; Lee, Do-Yoon; Chang, Bong-Soon
2014-01-01
Background Bioactive glass-ceramics have the ability to directly bind to bones and have been widely used as bone graft substitutes due to their high osteoconductivity and biocompatibility. CaO-SiO2-P2O5-B2O3 glass-ceramics are known to have good osteoconductivity and are used as bone graft extenders. Methods This study aimed to evaluate the effects of the resorbing properties of glass-ceramics in bone fusion after producing and analyzing three types of CaO-SiO2-P2O5-B2O3 glass-ceramics with high osteoconductivity that had enhanced resorption by having an increased B2O3 content. The three types of CaO-SiO2-P2O5-B2O3 glass-ceramics with B2O3 contents of 8.0, 9.0, and 9.5 weight % were designated and grouped as P20B80, P10B90, and P5B95, respectively. Glass-ceramic types were tested for fusion rates and bone formation by employing the lumbar 5-6 intertransverse process fusion model in 51 New Zealand male rabbits. Bioactivity was assessed by soaking in simulated body fluid (SBF). Results In vitro study results showed sufficient hydroxycarbonate apatite layer formation occurred for P20B80 in1 day, for P10B90 in 3 days, and for P5B95 in 5 days after soaking in SBF. For the rabbit lumbar spine posterolateral fusion model, the autograft group recorded a 100% fusion rate with levels significantly higher than those of P20B80 (29.4%), P10B90 (0%), and P5B95 (14.3%), with high resorbing properties. Resorbing property differences among the three glass-ceramic groups were not significant. Histological results showed new bone formation confirming osteoconductivity in all three types of glass-ceramics. Radiomorphometric results also confirmed the resorbing properties of the three glass-ceramic types. Conclusions The high resorbing properties and osteoconductivity of porous glass-ceramics can be advantageous as no glass-ceramics remain in the body. However, their relatively fast rate of resorption in the body negatively affects their role as an osteoconductive scaffold as glass-ceramics are resorbed before bony fusion. PMID:24605194
Ouyang, Qin; Zhao, Jiewen; Chen, Quansheng
2014-09-02
Instrumental test of food quality using perception sensors instead of human panel test is attracting massive attention recently. A novel cross-perception multi-sensors data fusion imitating multiple mammal perception was proposed for the instrumental test in this work. First, three mimic sensors of electronic eye, electronic nose and electronic tongue were used in sequence for data acquisition of rice wine samples. Then all data from the three different sensors were preprocessed and merged. Next, three cross-perception variables i.e., color, aroma and taste, were constructed using principal components analysis (PCA) and multiple linear regression (MLR) which were used as the input of models. MLR, back-propagation artificial neural network (BPANN) and support vector machine (SVM) were comparatively used for modeling, and the instrumental test was achieved for the comprehensive quality of samples. Results showed the proposed cross-perception multi-sensors data fusion presented obvious superiority to the traditional data fusion methodologies, also achieved a high correlation coefficient (>90%) with the human panel test results. This work demonstrated that the instrumental test based on the cross-perception multi-sensors data fusion can actually mimic the human test behavior, therefore is of great significance to ensure the quality of products and decrease the loss of the manufacturers. Copyright © 2014 Elsevier B.V. All rights reserved.
Inertial Fusion Power Plant Concept of Operations and Maintenance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anklam, T.; Knutson, B.; Dunne, A. M.
2015-01-15
Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oilmore » refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.« less
Inertial fusion power plant concept of operations and maintenance
NASA Astrophysics Data System (ADS)
Knutson, Brad; Dunne, Mike; Kasper, Jack; Sheehan, Timothy; Lang, Dwight; Anklam, Tom; Roberts, Valerie; Mau, Derek
2015-02-01
Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.
Chamber B Thermal/Vacuum Chamber: User Test Planning Guide
NASA Technical Reports Server (NTRS)
Montz, Mike E.
2012-01-01
Test process, milestones and inputs are unknowns to first-time users of Chamber B. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
Status of DEMO-FNS development
NASA Astrophysics Data System (ADS)
Kuteev, B. V.; Shpanskiy, Yu. S.; DEMO-FNS Team
2017-07-01
Fusion-fission hybrid facility based on superconducting tokamak DEMO-FNS is developed in Russia for integrated commissioning of steady-state and nuclear fusion technologies at the power level up to 40 MW for fusion and 400 MW for fission reactions. The project status corresponds to the transition from a conceptual design to an engineering one. This facility is considered, in RF, as the main source of technological and nuclear science information, which should complement the ITER research results in the fields of burning plasma physics and control.
Magnet Design Considerations for Fusion Nuclear Science Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Y.; Kessel, C.; El-Guebaly, L.
2016-06-01
The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility that provides a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between the International Thermonuclear Experimental Reactor (ITER) and the demonstration power plant (DEMO). Compared with ITER, the FNSF is smaller in size but generates much higher magnetic field, i.e., 30 times higher neutron fluence with three orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5more » T at the plasma center with a plasma major radius of 4.8 m and a minor radius of 1.2 m and a peak field of 15.5 T on the toroidal field (TF) coils for the FNSF. Both low-temperature superconductors (LTS) and high-temperature superconductors (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high-performance ternary restacked-rod process Nb3Sn strands for TF magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high-aspect-ratio rectangular CICC design are evaluated for FNSF magnets, but low-activation-jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. The material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less
Magnet design considerations for Fusion Nuclear Science Facility
Zhai, Yuhu; Kessel, Chuck; El-guebaly, Laila; ...
2016-02-25
The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility to provide a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between ITER and the demonstration power plant (DEMO). Compared to ITER, the FNSF is smaller in size but generates much higher magnetic field, 30 times higher neutron fluence with 3 orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center withmore » plasma major radius of 4.8 m and minor radius of 1.2 m, and a peak field of 15.5 T on the TF coils for FNSF. Both low temperature superconductor (LTS) and high temperature superconductor (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high performance ternary Restack Rod Process (RRP) Nb3Sn strands for toroidal field (TF) magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high aspect ratio rectangular CICC design are evaluated for FNSF magnets but low activation jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. As a result, the material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less
Final Environmental Assessment: Base-Wide Building Demolition Arnold Air Force Base, Tennessee
2006-02-01
Building • Engine Test Facility ( ETF )-B Exhauster • ETF -A Airside • ETF -A Exhauster • ETF -A Reefer • CE Facility • Rocket Storage • Von Karman Gas...Executive Order ESA Endangered Species Act ETF Engine Test Facility FamCamp Family Camping Area P:\\ARNOLDAFB\\333402DO42COMPLIANCE\\DEMOLITION...Fabrication Shop • Natural Resources Building • Salt Storage Building • Administration Building • Engine Test Facility ( ETF )-B Exhauster • ETF -A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donovan, D. C.; Boris, D. R.; Kulcinski, G. L.
2013-03-15
A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies inmore » a high voltage ({approx}100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.« less
ADX: a high field, high power density, advanced divertor and RF tokamak
NASA Astrophysics Data System (ADS)
LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.
2015-05-01
The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept (affordable, robust, compact) (Sorbom et al 2015 Fusion Eng. Des. submitted (arXiv:1409.3540)) that makes use of high-temperature superconductor technology—a high-field (9.25 T) tokamak the size of the Joint European Torus that produces 270 MW of net electricity.
LLNL electro-optical mine detection program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, C.; Aimonetti, W.; Barth, M.
1994-09-30
Under funding from the Advanced Research Projects Agency (ARPA) and the US Marine Corps (USMC), Lawrence Livermore National Laboratory (LLNL) has directed a program aimed at improving detection capabilities against buried mines and munitions. The program has provided a national test facility for buried mines in arid environments, compiled and distributed an extensive data base of infrared (IR), ground penetrating radar (GPR), and other measurements made at that site, served as a host for other organizations wishing to make measurements, made considerable progress in the use of ground penetrating radar for mine detection, and worked on the difficult problem ofmore » sensor fusion as applied to buried mine detection. While the majority of our effort has been concentrated on the buried mine problem, LLNL has worked with the U.S.M.C. on surface mine problems as well, providing data and analysis to support the COBRA (Coastal Battlefield Reconnaissance and Analysis) program. The original aim of the experimental aspect of the program was the utilization of multiband infrared approaches for the detection of buried mines. Later the work was extended to a multisensor investigation, including sensors other than infrared imagers. After an early series of measurements, it was determined that further progress would require a larger test facility in a natural environment, so the Buried Object Test Facility (BOTF) was constructed at the Nevada Test Site. After extensive testing, with sensors spanning the electromagnetic spectrum from the near ultraviolet to radio frequencies, possible paths for improvement were: improved spatial resolution providing better ground texture discrimination; analysis which involves more complicated spatial queueing and filtering; additional IR bands using imaging spectroscopy; the use of additional sensors other than IR and the use of data fusion techniques with multi-sensor data; and utilizing time dependent observables like temperature.« less
NASA Astrophysics Data System (ADS)
Wu, Xiangyang; Tan, Yunfei; Fang, Zhen; Jiang, Donghui; Chen, Zhiyou; Chen, Wenge; Kuang, Guangli
2017-10-01
A large cable-in-conduit-conductor (CICC) test facility has been designed and fabricated at the High Magnetic Field Laboratory of the Chinese Academy of Sciences (CHMFL) in order to meet the test requirement of the conductors which are applied to the future fusion reactor. The critical component of the test facility is an 80 kA superconducting transformer which consists of a multi-turn primary coil and a minor-turn secondary coil. As the current source of the conductor samples, the electromagnetic performance of the superconducting transformer determines the stability and safety of the test facility. In this paper, the key factors and parameters, which have much impact on the performance of the transformer, are analyzed in detail. The conceptual design and optimizing principles of the transformer are discussed. An Electromagnetic-Circuit coupled model built in ANSYS Multiphysics is successfully used to investigate the electromagnetic characterization of the transformer under the dynamic operation condition.
Inertial Confinement Fusion and the National Ignition Facility (NIF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, P.
2012-08-29
Inertial confinement fusion (ICF) seeks to provide sustainable fusion energy by compressing frozen deuterium and tritium fuel to extremely high densities. The advantages of fusion vs. fission are discussed, including total energy per reaction and energy per nucleon. The Lawson Criterion, defining the requirements for ignition, is derived and explained. Different confinement methods and their implications are discussed. The feasibility of creating a power plant using ICF is analyzed using realistic and feasible numbers. The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is shown as a significant step forward toward making a fusion power plant based on ICF.more » NIF is the world’s largest laser, delivering 1.8 MJ of energy, with a peak power greater than 500 TW. NIF is actively striving toward the goal of fusion energy. Other uses for NIF are discussed.« less
TOP 01-1-011B Vehicle Test Facilities at Aberdeen Test Center and Yuma Test Center
2017-12-12
TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Test Operations Procedure (TOP) 01-1-011B Vehicle Test Facilities at Aberdeen... Test Center and Yuma Test Center 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHORS 5d. PROJECT NUMBER 5e... Test Center 400 Colleran Road Aberdeen Proving Ground, MD 21005-5059 U.S. Army Yuma Proving Ground Yuma Test Center 301 C. Street Yuma, AZ
Space Propulsion Research Facility (B-2): An Innovative, Multi-Purpose Test Facility
NASA Technical Reports Server (NTRS)
Hill, Gerald M.; Weaver, Harold F.; Kudlac, Maureen T.; Maloney, Christian T.; Evans, Richard K.
2011-01-01
The Space Propulsion Research Facility, commonly referred to as B-2, is designed to hot fire rocket engines or upper stage launch vehicles with up to 890,000 N force (200,000 lb force), after environmental conditioning of the test article in simulated thermal vacuum space environment. As NASA s third largest thermal vacuum facility, and the largest designed to store and transfer large quantities of propellant, it is uniquely suited to support developmental testing associated with large lightweight structures and Cryogenic Fluid Management (CFM) systems, as well as non-traditional propulsion test programs such as Electric and In-Space propulsion. B-2 has undergone refurbishment of key subsystems to support the NASA s future test needs, including data acquisition and controls, vacuum, and propellant systems. This paper details the modernization efforts at B-2 to support the Nation s thermal vacuum/propellant test capabilities, the unique design considerations implemented for efficient operations and maintenance, and ultimately to reduce test costs.
Niechwiej-Szwedo, Ewa; Alramis, Fatimah; Christian, Lisa W
2017-12-01
Performance of fine motor skills (FMS) assessed by a clinical test battery has been associated with reading achievement in school-age children. However, the nature of this association remains to be established. The aim of this study was to assess FMS in children with reading difficulties using two experimental tasks, and to determine if performance is associated with reduced binocular function. We hypothesized that in comparison to an age- and sex-matched control group, children identified with reading difficulties will perform worse only on a motor task that has been shown to rely on binocular input. To test this hypothesis, motor performance was assessed using two tasks: bead-threading and peg-board in 19 children who were reading below expected grade and age-level. Binocular vision assessment included tests for stereoacuity, fusional vergence, amplitude of accommodation, and accommodative facility. In comparison to the control group, children with reading difficulties performed significantly worse on the bead-threading task. In contrast, performance on the peg-board task was similar in both groups. Accommodative facility was the only measure of binocular function significantly associated with motor performance. Findings from our exploratory study suggest that normal binocular vision may provide an important sensory input for the optimal development of FMS and reading. Given the small sample size tested in the current study, further investigation to assess the contribution of binocular vision to the development and performance of FMS and reading is warranted. Copyright © 2017 Elsevier B.V. All rights reserved.
Walmsley, A M; Alvarez, M L; Jin, Y; Kirk, D D; Lee, S M; Pinkhasov, J; Rigano, M M; Arntzen, C J; Mason, H S
2003-06-01
Epitopes often require co-delivery with an adjuvant or targeting protein to enable recognition by the immune system. This paper reports the ability of transgenic tomato plants to express a fusion protein consisting of the B subunit of the Escherichia coli heat-labile enterotoxin (LTB) and an immunocontraceptive epitope. The fusion protein was found to assemble into pentamers, as evidenced by its ability to bind to gangliosides, and had an average expression level of 37.8 microg g(-1) in freeze-dried transgenic tissues. Processing of selected transgenic fruit resulted in a 16-fold increase in concentration of the antigen with minimal loss in detectable antigen. The species-specific nature of this epitope was shown by the inability of antibodies raised against non-target species to detect the LTB fusion protein. The immunocontraceptive ability of this vaccine will be tested in future pilot mice studies.
The NASA-Lewis program on fusion energy for space power and propulsion, 1958-1978
NASA Technical Reports Server (NTRS)
Schulze, Norman R.; Roth, J. Reece
1990-01-01
An historical synopsis is provided of the NASA-Lewis research program on fusion energy for space power and propulsion systems. It was initiated to explore the potential applications of fusion energy to space power and propulsion systems. Some fusion related accomplishments and program areas covered include: basic research on the Electric Field Bumpy Torus (EFBT) magnetoelectric fusion containment concept, including identification of its radial transport mechanism and confinement time scaling; operation of the Pilot Rig mirror machine, the first superconducting magnet facility to be used in plasma physics or fusion research; operation of the Superconducting Bumpy Torus magnet facility, first used to generate a toroidal magnetic field; steady state production of neutrons from DD reactions; studies of the direct conversion of plasma enthalpy to thrust by a direct fusion rocket via propellant addition and magnetic nozzles; power and propulsion system studies, including D(3)He power balance, neutron shielding, and refrigeration requirements; and development of large volume, high field superconducting and cryogenic magnet technology.
Scientific and technical challenges on the road towards fusion electricity
NASA Astrophysics Data System (ADS)
Donné, A. J. H.; Federici, G.; Litaudon, X.; McDonald, D. C.
2017-10-01
The goal of the European Fusion Roadmap is to deliver fusion electricity to the grid early in the second half of this century. It breaks the quest for fusion energy into eight missions, and for each of them it describes a research and development programme to address all the open technical gaps in physics and technology and estimates the required resources. It points out the needs to intensify industrial involvement and to seek all opportunities for collaboration outside Europe. The roadmap covers three periods: the short term, which runs parallel to the European Research Framework Programme Horizon 2020, the medium term and the long term. ITER is the key facility of the roadmap as it is expected to achieve most of the important milestones on the path to fusion power. Thus, the vast majority of present resources are dedicated to ITER and its accompanying experiments. The medium term is focussed on taking ITER into operation and bringing it to full power, as well as on preparing the construction of a demonstration power plant DEMO, which will for the first time demonstrate fusion electricity to the grid around the middle of this century. Building and operating DEMO is the subject of the last roadmap phase: the long term. Clearly, the Fusion Roadmap is tightly connected to the ITER schedule. Three key milestones are the first operation of ITER, the start of the DT operation in ITER and reaching the full performance at which the thermal fusion power is 10 times the power put in to the plasma. The Engineering Design Activity of DEMO needs to start a few years after the first ITER plasma, while the start of the construction phase will be a few years after ITER reaches full performance. In this way ITER can give viable input to the design and development of DEMO. Because the neutron fluence in DEMO will be much higher than in ITER, it is important to develop and validate materials that can handle these very high neutron loads. For the testing of the materials, a dedicated 14 MeV neutron source is needed. This DEMO Oriented Neutron Source (DONES) is therefore an important facility to support the fusion roadmap.
Imposed magnetic field and hot electron propagation in inertial fusion hohlraums
Strozzi, David J.; Perkins, L. J.; Marinak, M. M.; ...
2015-12-02
The effects of an imposed, axial magnetic fieldmore » $$B_{z0}$$ on hydrodynamics and energetic electrons in inertial confinement fusion indirect-drive hohlraums are studied. We present simulations from the radiation-hydrodynamics code HYDRA of a low-adiabat ignition design for the National Ignition Facility, with and without $$B_{z0}=70~\\text{T}$$. The field’s main hydrodynamic effect is to significantly reduce electron thermal conduction perpendicular to the field. This results in hotter and less dense plasma on the equator between the capsule and hohlraum wall. The inner laser beams experience less inverse bremsstrahlung absorption before reaching the wall. The X-ray drive is thus stronger from the equator with the imposed field. We study superthermal, or ‘hot’, electron dynamics with the particle-in-cell code ZUMA, using plasma conditions from HYDRA. During the early-time laser picket, hot electrons based on two-plasmon decay in the laser entrance hole (Regan et al., Phys. Plasmas, vol. 17(2), 2010, 020703) are guided to the capsule by a 70 T field. Twelve times more energy deposits in the deuterium–tritium fuel. For plasma conditions early in peak laser power, we present mono-energetic test-case studies with ZUMA as well as sources based on inner-beam stimulated Raman scattering. Furthermore, the effect of the field on deuterium–tritium deposition depends strongly on the source location, namely whether hot electrons are generated on field lines that connect to the capsule.« less
Multidirectional testing of one- and two-level ProDisc-L versus simulated fusions.
Panjabi, Manohar; Henderson, Gweneth; Abjornson, Celeste; Yue, James
2007-05-20
An in vitro human cadaveric biomechanical study. To evaluate intervertebral rotation changes due to lumbar ProDisc-L compared with simulated fusion, using follower load and multidirectional testing. Artificial discs, as opposed to the fusions, are thought to decrease the long-term accelerated degeneration at adjacent levels. A biomechanical assessment can be helpful, as the long-term clinical evaluation is impractical. Six fresh human cadaveric lumbar specimens (T12-S1) underwent multidirectional testing in flexion-extension, bilateral lateral bending, and bilateral torsion using the Hybrid test method. First, intact specimen total range of rotation (T12-S1) was determined. Second, using pure moments again, this range of rotation was achieved in each of the 5 constructs: A) ProDisc-L at L5-S1; B) fusion at L5-S1; C) ProDisc-L at L4-L5 and fusion at L5-S1; D) ProDisc-L at L4-L5 and L5-S1; and E) 2-level fusion at L4-L5 to L5-S1. Significant changes in the intervertebral rotations due to each construct were determined at the operated and nonoperated levels using repeated measures single factor ANOVA and Bonferroni statistical tests (P < 0.05). Adjacent-level effects (ALEs) were defined as the percentage changes in intervertebral rotations at the nonoperated levels due to the constructs. One- and 2-level ProDisc-L constructs showed only small ALE in any of the 3 rotations. In contrast, 1- and 2-level fusions showed increased ALE in all 3 directions (average, 7.8% and 35.3%, respectively, for 1 and 2 levels). In the disc plus fusion combination (construct C), the ALEs were similar to the 1-level fusion alone. In general, ProDisc-L preserved physiologic motions at all spinal levels, while the fusion simulations resulted in significant ALE.
van Lettow, Monique; Bedell, Richard; Mayuni, Isabell; Mateyu, Gabriel; Landes, Megan; Chan, Adrienne K; van Schoor, Vanessa; Beyene, Teferi; Harries, Anthony D; Chu, Stephen; Mganga, Andrew; van Oosterhout, Joep J
2014-01-01
Malawi introduced a new strategy to improve the effectiveness of prevention of mother-to-child HIV transmission (PMTCT), the Option B+ strategy. We aimed to (i) describe how Option B+ is provided in health facilities in the South East Zone in Malawi, identifying the diverse approaches to service organization (the "model of care") and (ii) explore associations between the "model of care" and health facility-level uptake and retention rates for pregnant women identified as HIV-positive at antenatal (ANC) clinics. A health facility survey was conducted in all facilities providing PMTCT/antiretroviral therapy (ART) services in six of Malawi's 28 districts to describe and compare Option B+ service delivery models. Associations of identified models with program performance were explored using facility cohort reports. Among 141 health facilities, four "models of care" were identified: A) facilities where newly identified HIV-positive women are initiated and followed on ART at the ANC clinic until delivery; B) facilities where newly identified HIV-positive women receive only the first dose of ART at the ANC clinic, and are referred to the ART clinic for follow-up; C) facilities where newly identified HIV-positive women are referred from ANC to the ART clinic for initiation and follow-up of ART; and D) facilities serving as ART referral sites (not providing ANC). The proportion of women tested for HIV during ANC was highest in facilities applying Model A and lowest in facilities applying Model B. The highest retention rates were reported in Model C and D facilities and lowest in Model B facilities. In multivariable analyses, health facility factors independently associated with uptake of HIV testing and counselling (HTC) in ANC were number of women per HTC counsellor, HIV test kit availability, and the "model of care" applied; factors independently associated with ART retention were district location, patient volume and the "model of care" applied. A large variety exists in the way health facilities have integrated PMTCT Option B+ care into routine service delivery. This study showed that the "model of care" chosen is associated with uptake of HIV testing in ANC and retention in care on ART. Further patient-level research is needed to guide policy recommendations.
Perkins, L J; Betti, R; LaFortune, K N; Williams, W H
2009-07-24
Shock ignition, an alternative concept for igniting thermonuclear fuel, is explored as a new approach to high gain, inertial confinement fusion targets for the National Ignition Facility (NIF). Results indicate thermonuclear yields of approximately 120-250 MJ may be possible with laser drive energies of 1-1.6 MJ, while gains of approximately 50 may still be achievable at only approximately 0.2 MJ drive energy. The scaling of NIF energy gain with laser energy is found to be G approximately 126E (MJ);{0.510}. This offers the potential for high-gain targets that may lead to smaller, more economic fusion power reactors and a cheaper fusion energy development path.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ives, Robert Lawrence; Marsden, David; Collins, George
Calabazas Creek Research, Inc. developed a 1.5 MW RF load for the ITER fusion research facility currently under construction in France. This program leveraged technology developed in two previous SBIR programs that successfully developed high power RF loads for fusion research applications. This program specifically focused on modifications required by revised technical performance, materials, and assembly specification for ITER. This program implemented an innovative approach to actively distribute the RF power inside the load to avoid excessive heating or arcing associated with constructive interference. The new design implemented materials and assembly changes required to meet specifications. Critical components were builtmore » and successfully tested during the program.« less
Theory and Experimental Program for p-B11 Fusion with the Dense Plasma Focus
NASA Astrophysics Data System (ADS)
Lerner, Eric J.; Krupakar Murali, S.; Haboub, A.
2011-10-01
Lawrenceville Plasma Physics Inc. has initiated a 2-year-long experimental project to test the scientific feasibility of achieving controlled fusion using the dense plasma focus (DPF) device with hydrogen-boron (p-B11) fuel. The goals of the experiment are: first, to confirm the achievement of high ion and electron energies observed in previous experiments from 2001; second, to greatly increase the efficiency of energy transfer into the plasmoid where the fusion reactions take place; third, to achieve the high magnetic fields (>1 GG) needed for the quantum magnetic field effect, which will reduce cooling of the plasma by X-ray emission; and finally, to use p-B11 fuel to demonstrate net energy gain. The experiments are being conducted with a newly constructed dense plasma focus in Middlesex, NJ which is expected to generate peak currents in excess of 2 MA. Some preliminary results are reported.
2013-05-31
fusion welding and virtually eliminates the material porosity inherent with liquid alloy processes. Also because less heat is input to the material...Fe intermetallic present. Mechanical load testing determined that the bimetallic FSP joint was stronger than similar AA6061-to-AA6061 fusion- welded and...5 b) Weld Coupon Fixture ........................................................................................ 5 2. Friction Stir Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, A; Kwan, J
Earlier this year, the U.S. Department of Energy Office of Fusion Energy Sciences approved the NDCX-II project, a second-generation Neutralized Drift Compression eXperiment. NDCX-II is a collaborative effort of scientists and engineers from Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and the Princeton Plasma Physics Laboratory (PPPL), in a formal collaboration known as the Virtual National Laboratory for Heavy Ion Fusion Science (HIFS-VNL). Supported by $11 M of funding from the American Recovery and Reinvestment Act, construction at LBNL commenced in July of 2009, with completion anticipated in March of 2012. Applications of this facility will includemore » studies of: the basic physics of the poorly understood 'warm dense matter' regime of temperatures around 1 eV and densities near solid, using uniform, volumetric ion heating of thin foil targets; ion energy coupling into an ablating plasma (such as that which occurs in an inertial fusion target) using beams with time-varying kinetic energy; space-charge-dominated ion beam dynamics; and beam focusing and pulse compression in neutralizing plasma. The machine will complement facilities at GSI in Darmstadt, Germany, but will employ lower ion kinetic energies and commensurately shorter stopping ranges in matter. Much of this research will contribute directly toward the collaboration's ultimate goal of electric power production via heavy-ion beam-driven inertial confinement fusion ('Heavy-Ion Fusion', or HIF). In inertial fusion, a target containing fusion fuel is heated by energetic 'driver' beams, and undergoes a miniature thermonuclear explosion. Currently the largest U.S. research program in inertial confinement is at Livermore's National Ignition Facility (NIF), a multibillion-dollar, stadium-sized laser facility optimized for studying physics issues relevant to nuclear stockpile stewardship. Nonetheless, NIF is expected to establish the fundamental feasibility of fusion ignition on the laboratory scale, and thus advance this approach to fusion energy. Heavy ion accelerators have a number of attributes (such as efficiency, longevity, and use of magnetic fields for final focusing) that make them attractive candidates as Inertial Fusion energy (IFE) drivers As with LBNL's existing NDCX-I, the new machine will produce short ion pulses using the technique of neutralized drift compression. A head-to-tail velocity gradient is imparted to the beam, which then shortens as it drifts in neutralizing plasma that suppresses space-charge forces. NDCX-II will make extensive use of induction cells and other hardware from the decommissioned ATA facility at LLNL. Figure (1) shows the layout of the facility, to be sited in LBNL's Building 58 alongside the existing NDCX-I apparatus. This second-generation facility represents a significant upgrade from the existing NDCX-I. It will be extensible and reconfigurable; in the configuration that has received the most emphasis, each NDCX-II pulse will deliver 30 nC of ions at 3 MeV into a mm-scale spot onto a thin-foil target. Pulse compression to {approx} 1 ns occurs in the accelerator as well as in the drift compression line; the beam is manipulated using suitably tailored voltage waveforms in the accelerating gaps. NDCX-II employs novel beam dynamics. To use the 200 kV Blumlein power supplies from ATA (blue cylinders in the figure), the pulse duration must first be reduced to less than 70 ns. This shortening is accomplished in an initial stage of non-neutral drift compression, downstream of the injector and the first few induction cells. The compression is sufficiently rapid that fewer than ten long-pulse waveform generators are needed, with Blumleins powering the rest of the acceleration. Extensive simulation studies have enabled an attractive physics design; these employ both a new 1-D code (ASP) and the VNL's workhorse 2-D/3-D code Warp. Snapshots from a simulation movie (available online) appear in Fig. 2. Studies on a dedicated test stand are quantifying the performance of the ATA hardware and of pulsed solenoids that will provide transverse beam confinement (ions require much stronger fields than the electrons accelerated by ATA). For more information, see the recent article in the Berkeley Lab News and references therein. Joe Kwan is the NDCX-II project manager and Alex Friedman is the leader for the physics design.« less
van Lettow, Monique; Bedell, Richard; Mayuni, Isabell; Mateyu, Gabriel; Landes, Megan; Chan, Adrienne K; van Schoor, Vanessa; Beyene, Teferi; Harries, Anthony D; Chu, Stephen; Mganga, Andrew; van Oosterhout, Joep J
2014-01-01
Introduction Malawi introduced a new strategy to improve the effectiveness of prevention of mother-to-child HIV transmission (PMTCT), the Option B+ strategy. We aimed to (i) describe how Option B+ is provided in health facilities in the South East Zone in Malawi, identifying the diverse approaches to service organization (the “model of care”) and (ii) explore associations between the “model of care” and health facility–level uptake and retention rates for pregnant women identified as HIV-positive at antenatal (ANC) clinics. Methods A health facility survey was conducted in all facilities providing PMTCT/antiretroviral therapy (ART) services in six of Malawi's 28 districts to describe and compare Option B+ service delivery models. Associations of identified models with program performance were explored using facility cohort reports. Results Among 141 health facilities, four “models of care” were identified: A) facilities where newly identified HIV-positive women are initiated and followed on ART at the ANC clinic until delivery; B) facilities where newly identified HIV-positive women receive only the first dose of ART at the ANC clinic, and are referred to the ART clinic for follow-up; C) facilities where newly identified HIV-positive women are referred from ANC to the ART clinic for initiation and follow-up of ART; and D) facilities serving as ART referral sites (not providing ANC). The proportion of women tested for HIV during ANC was highest in facilities applying Model A and lowest in facilities applying Model B. The highest retention rates were reported in Model C and D facilities and lowest in Model B facilities. In multivariable analyses, health facility factors independently associated with uptake of HIV testing and counselling (HTC) in ANC were number of women per HTC counsellor, HIV test kit availability, and the “model of care” applied; factors independently associated with ART retention were district location, patient volume and the “model of care” applied. Conclusions A large variety exists in the way health facilities have integrated PMTCT Option B+ care into routine service delivery. This study showed that the “model of care” chosen is associated with uptake of HIV testing in ANC and retention in care on ART. Further patient-level research is needed to guide policy recommendations. PMID:25079437
Weed, Darin J; Pritchard, Suzanne M; Gonzalez, Floricel; Aguilar, Hector C; Nicola, Anthony V
2017-03-01
Herpes simplex virus (HSV) entry into a subset of cells requires endocytosis and endosomal low pH. Preexposure of isolated virions to mildly acidic pH of 5 to 6 partially inactivates HSV infectivity in an irreversible manner. Acid inactivation is a hallmark of viruses that enter via low-pH pathways; this occurs by pretriggering conformational changes essential for fusion. The target and mechanism(s) of low-pH inactivation of HSV are unclear. Here, low-pH-treated HSV-1 was defective in fusion activity and yet retained normal levels of attachment to cell surface heparan sulfate and binding to nectin-1 receptor. Low-pH-triggered conformational changes in gB reported to date are reversible, despite irreversible low-pH inactivation. gB conformational changes and their reversibility were measured by antigenic analysis with a panel of monoclonal antibodies and by detecting changes in oligomeric conformation. Three-hour treatment of HSV-1 virions with pH 5 or multiple sequential treatments at pH 5 followed by neutral pH caused an irreversible >2.5 log infectivity reduction. While changes in several gB antigenic sites were reversible, alteration of the H126 epitope was irreversible. gB oligomeric conformational change remained reversible under all conditions tested. Altogether, our results reveal that oligomeric alterations and fusion domain changes represent distinct conformational changes in gB, and the latter correlates with irreversible low-pH inactivation of HSV. We propose that conformational change in the gB fusion domain is important for activation of membrane fusion during viral entry and that in the absence of a host target membrane, this change results in irreversible inactivation of virions. IMPORTANCE HSV-1 is an important pathogen with a high seroprevalence throughout the human population. HSV infects cells via multiple pathways, including a low-pH route into epithelial cells, the primary portal into the host. HSV is inactivated by low-pH preexposure, and gB, a class III fusion protein, undergoes reversible conformational changes in response to low-pH exposure. Here, we show that low-pH inactivation of HSV is irreversible and due to a defect in virion fusion activity. We identified an irreversible change in the fusion domain of gB following multiple sequential low-pH exposures or following prolonged low-pH treatment. This change appears to be separable from the alteration in gB quaternary structure. Together, the results are consistent with a model by which low pH can have an activating or inactivating effect on HSV depending on the presence of a target membrane. Copyright © 2017 American Society for Microbiology.
Grantham, Steven; Lane, Brandon; Neira, Jorge; Mekhontsev, Sergey; Vlasea, Mihaela; Hanssen, Leonard
2017-01-01
The National Institute of Standards and Technology’s (NIST) Physical Measurement and Engineering Laboratories are jointly developing the Additive Manufacturing Measurement Testbed (AMMT)/ Temperature and Emittance of Melts, Powders and Solids (TEMPS) facilities. These facilities will be co-located on an open architecture laser-based powder bed fusion system allowing users full access to the system’s operation parameters. This will provide users with access to machine-independent monitoring and control of the powder bed fusion process. In this paper there will be emphasis on the AMMT, which incorporates in-line visible light collection optics for monitoring and feedback control of the powder bed fusion process. We shall present an overview of the AMMT/TEMPS program and its goals. The optical and mechanical design of the open architecture powder-bed fusion system and the AMMT will also be described. In addition, preliminary measurement results from the system along with the current status of the system will be described. PMID:28579666
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-01-01
This report summarizes research at the Laboratory for Laser Energetics (LLE), the operation of the National Laser Users` Facility (NLUF), and programs involving the education of high school, undergraduate, and graduate students for FY98. Research summaries cover: progress in laser fusion; diagnostic development; laser and optical technology; and advanced technology for laser targets.
Design and Demonstration of a Material-Plasma Exposure Target Station for Neutron Irradiated Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapp, Juergen; Aaron, A. M.; Bell, Gary L.
2015-10-20
Fusion energy is the most promising energy source for the future, and one of the most important problems to be solved progressing to a commercial fusion reactor is the identification of plasma-facing materials compatible with the extreme conditions in the fusion reactor environment. The development of plasma–material interaction (PMI) science and the technology of plasma-facing components are key elements in the development of the next step fusion device in the United States, the so-called Fusion Nuclear Science Facility (FNSF). All of these PMI issues and the uncertain impact of the 14-MeV neutron irradiation have been identified in numerous expert panelmore » reports to the fusion community. The 2007 Greenwald report classifies reactor plasma-facing materials (PFCs) and materials as the only Tier 1 issues, requiring a “. . . major extrapolation from the current state of knowledge, need for qualitative improvements and substantial development for both the short and long term.” The Greenwald report goes on to list 19 gaps in understanding and performance related to the plasma–material interface for the technology facilities needed for DEMO-oriented R&D and DEMO itself. Of the 15 major gaps, six (G7, G9, G10, G12, G13) can possibly be addressed with ORNL’s proposal of an advanced Material Plasma Exposure eXperiment. Establishing this mid-scale plasma materials test facility at ORNL is a key element in ORNL’s strategy to secure a leadership role for decades of fusion R&D. That is to say, our end goal is to bring the “signature facility” FNSF home to ORNL. This project is related to the pre-conceptual design of an innovative target station for a future Material–Plasma Exposure eXperiment (MPEX). The target station will be designed to expose candidate fusion reactor plasma-facing materials and components (PFMs and PFCs) to conditions anticipated in fusion reactors, where PFCs will be exposed to dense high-temperature hydrogen plasmas providing steady-state heat fluxes of 5–20 MW/m 2 and ion fluxes up to 10 24 m -2s -1. Since PFCs will have to withstand neutron irradiation displacement damage up to 50 dpa, the target station design must accommodate radioactive specimens (materials to be irradiated in HFIR or at SNS) to enable investigations of the impact of neutron damage on materials. Therefore, the system will have to be able to install and extract irradiated specimens using equipment and methods to avoid sample modification, control contamination, and minimize worker dose. Included in the design considerations will be an assessment of all the steps between neutron irradiation and post-exposure materials examination/characterization, as well as an evaluation of the facility hazard categorization. In particular, the factors associated with the acquisition of radioactive specimens and their preparation, transportation, experimental configuration at the plasma-specimen interface, post-plasma-exposure sample handling, and specimen preparation will be evaluated. Neutronics calculations to determine the dose rates of the samples were carried out for a large number of potential plasma-facing materials.« less
Progress in FMIT test assembly development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opperman, E.K.; Vogel, M.A.; Shen, E.J.
Research and development supporting the completed design of the Fusion Materials Irradiation Test (FMIT) Facility is continuing at the Hanford Engineering Development Laboratory (HEDL) in Richland, Washington. The FMIT, a deuteron accelerator based (d + Li) neutron source, will produce an intense flux of high energy neutrons for use in radiation damage studies of fusion reactor materials. The most intense flux magnitude of greater than 10/sup 15/ n/cm/sup 2/-s is located close to the neutron producing lithium target and is distributed within a volume about the size of an American football. The conceptual design and development of FMIT experiments calledmore » Test Assemblies has progressed over the past five years in parallel with the design of the FMIT. The paper will describe the recent accomplishments made in developing test assemblies appropriate for use in the limited volume close to the FMIT target where high neutron flux and heating rates and the associated spacial gradients significantly impact design considerations.« less
A Close-Coupled, Heavy Ion ICF Target
NASA Astrophysics Data System (ADS)
Callahan-Miller, Debra A.; Tabak, Max
1998-11-01
A ``close-coupled'' version of the distributed radiator, heavy ion ICF target has produced gain > 130 from 3.1 MJ of ion beam energy. To achieve these results, we reduced the hohlraum dimensions by 27% from our previous designs(M. Tabak, D. Callahan-Miller, D. D.-M. Ho, G. B. Zimmerman, Nuc. Fusion, 38, 509 (1998)) (M. Tabak, D. A. Callahan-Miller, Phys. Plasmas, 5, 1895 (1998).) while driving the same capsule. This reduced the beam energy required from 5.9-6.5 MJ to 3.1 MJ. The smaller hohlraum resulted in a smaller beam spot; elliptically shaped beams with effective radius 1.7 mm were used in this design. In addition to describing this target, we will discuss the effect of the close-coupled hohlraum on the Rayleigh-Taylor instability and scaling this design down to 1.5-2 MJ for an ETF (Engineering Test Facility).
NASA Astrophysics Data System (ADS)
Yeamans, C. B.; Gharibyan, N.
2016-11-01
At the National Ignition Facility, the diagnostic instrument manipulator-based neutron activation spectrometer is used as a diagnostic of implosion performance for inertial confinement fusion experiments. Additionally, it serves as a platform for independent neutronic experiments and may be connected to fast recording systems for neutron effect tests on active electronics. As an implosion diagnostic, the neutron activation spectrometers are used to quantify fluence of primary DT neutrons, downscattered neutrons, and neutrons above the primary DT neutron energy created by reactions of upscattered D and T in flight. At a primary neutron yield of 1015 and a downscattered fraction of neutrons in the 10-12 MeV energy range of 0.04, the downscattered neutron fraction can be measured to a relative uncertainty of 8%. Significant asymmetries in downscattered neutrons have been observed. Spectrometers have been designed and fielded to measure the tritium-tritium and deuterium-tritium neutron outputs simultaneously in experiments using DT/TT fusion ratio as a direct measure of mix of ablator into the gas.
Yeamans, C B; Gharibyan, N
2016-11-01
At the National Ignition Facility, the diagnostic instrument manipulator-based neutron activation spectrometer is used as a diagnostic of implosion performance for inertial confinement fusion experiments. Additionally, it serves as a platform for independent neutronic experiments and may be connected to fast recording systems for neutron effect tests on active electronics. As an implosion diagnostic, the neutron activation spectrometers are used to quantify fluence of primary DT neutrons, downscattered neutrons, and neutrons above the primary DT neutron energy created by reactions of upscattered D and T in flight. At a primary neutron yield of 10 15 and a downscattered fraction of neutrons in the 10-12 MeV energy range of 0.04, the downscattered neutron fraction can be measured to a relative uncertainty of 8%. Significant asymmetries in downscattered neutrons have been observed. Spectrometers have been designed and fielded to measure the tritium-tritium and deuterium-tritium neutron outputs simultaneously in experiments using DT/TT fusion ratio as a direct measure of mix of ablator into the gas.
40 CFR 792.43 - Test system care facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as... accomplished within a room or area by housing them separately in different chambers or aquaria. Separation of... different tests. (b) A testing facility shall have a number of animal rooms or other test system areas...
40 CFR 792.43 - Test system care facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as... accomplished within a room or area by housing them separately in different chambers or aquaria. Separation of... different tests. (b) A testing facility shall have a number of animal rooms or other test system areas...
40 CFR 792.43 - Test system care facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as... accomplished within a room or area by housing them separately in different chambers or aquaria. Separation of... different tests. (b) A testing facility shall have a number of animal rooms or other test system areas...
Hydrogen and Storage Initiatives at the NASA JSC White Sands Test Facility
NASA Technical Reports Server (NTRS)
Maes, Miguel; Woods, Stephen S.
2006-01-01
NASA WSTF Hydrogen Activities: a) Aerospace Test; b) System Certification & Verification; c) Component, System, & Facility Hazard Assessment; d) Safety Training Technical Transfer: a) Development of Voluntary Consensus Standards and Practices; b) Support of National Hydrogen Infrastructure Development.
NASA Technical Reports Server (NTRS)
Edwards, Daryl A.
2008-01-01
Preparing NASA's Plum Brook Station's Spacecraft Propulsion Research Facility (B-2) to support NASA's new generation of launch vehicles has raised many challenges for B-2's support staff. The facility provides a unique capability to test chemical propulsion systems/vehicles while simulating space thermal and vacuum environments. Designed and constructed in the early 1960s to support upper stage cryogenic engine/vehicle system development, the Plum Brook Station B-2 facility will require modifications to support the larger, more powerful, and more advanced engine systems for the next generation of vehicles leaving earth's orbit. Engine design improvements over the years have included large area expansion ratio nozzles, greater combustion chamber pressures, and advanced materials. Consequently, it has become necessary to determine what facility changes are required and how the facility can be adapted to support varying customers and their specific test needs. Exhaust system performance, including understanding the present facility capabilities, is the primary focus of this work. A variety of approaches and analytical tools are being employed to gain this understanding. This presentation discusses some of the challenges in applying these tools to this project and expected facility configuration to support the varying customer needs.
NASA Technical Reports Server (NTRS)
Edwards, Daryl A.
2007-01-01
Preparing NASA's Plum Brook Station's Spacecraft Propulsion Research Facility (B-2) to support NASA's new generation of launch vehicles has raised many challenges for B-2 s support staff. The facility provides a unique capability to test chemical propulsion systems/vehicles while simulating space thermal and vacuum environments. Designed and constructed 4 decades ago to support upper stage cryogenic engine/vehicle system development, the Plum Brook Station B-2 facility will require modifications to support the larger, more powerful, and more advanced engine systems for the next generation of vehicles leaving earth's orbit. Engine design improvements over the years have included large area expansion ratio nozzles, greater combustion chamber pressures, and advanced materials. Consequently, it has become necessary to determine what facility changes are required and how the facility can be adapted to support varying customers and their specific test needs. Instrumental in this task is understanding the present facility capabilities and identifying what reasonable changes can be implemented. A variety of approaches and analytical tools are being employed to gain this understanding. This paper discusses some of the challenges in applying these tools to this project and expected facility configuration to support the varying customer needs.
The National Ignition Facility: The Path to a Carbon-Free Energy Future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolz, C J
2011-03-16
The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centers on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.
The National Ignition Facility: the path to a carbon-free energy future.
Stolz, Christopher J
2012-08-28
The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centres on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.
Deuterium-tritium experiments on the Tokamak Fusion Test reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosea, J.; Adler, J.H.; Alling, P.
The deuterium-tritium (D-T) experimental program on the Tokamak Fusion Test Reactor (TFTR) is underway and routine tritium operations have been established. The technology upgrades made to the TFTR facility have been demonstrated to be sufficient for supporting both operations and maintenance for an extended D-T campaign. To date fusion power has been increased to {approx}9 MW and several physics results of importance to the D-T reactor regime have been obtained: electron temperature, ion temperature, and plasma stored energy all increase substantially in the D-T regime relative to the D-D regime at the same neutral beam power and comparable limiter conditioning;more » possible alpha electron heating is indicated and energy confinement improvement with average ion mass is observed; and alpha particle losses appear to be classical with no evidence of TAE mode activity up to the PFUS {approx}6 MW level. Instability in the TAE mode frequency range has been observed at PFUS > 7 MW and its effect on performance in under investigation. Preparations are underway to enhance the alpha particle density further by increasing fusion power and by extending the neutral beam pulse length to permit alpha particle effects of relevance to the ITER regime to be more fully explored.« less
Implementation of STUD Pulses at the Trident Laser and Initial Results
NASA Astrophysics Data System (ADS)
Johnson, R. P.; Shimada, T.; Montgomery, D. S.; Afeyan, B.; Hüller, S.
2012-10-01
Controlling and mitigating laser-plasma instabilities such as stimulated Brillouin scattering, stimulated Raman scattering, and crossed-beam energy transfer is important to achieve high-gain inertial fusion using laser drivers. Recent theory and simulations show that these instabilities can be largely controlled using laser pulses consisting of spike trains of uneven duration and delay (STUD) by modulating the laser on a picosecond time scale [1,2]. We have designed and implemented a STUD pulse generator at the LANL Trident Laser Facility using Fourier synthesis to produce a 0.5-ns envelope of psec-duration STUD pulses using a spatial light modulator. Initial results from laser propagation tests and measurements as well as initial laser-plasma characterization experiments will be presented.[4pt] [1] B. Afeyan and S. H"uller, ``Optimal Control of Laser Plasma Instabilities using STUD pulses,'' IFSA 2011, P.Mo.1, to appear in Euro. Phys. J. Web of Conf. (2012).[2] S. H"uller and B. Afeyan, ``Simulations of drastically reduced SBS with STUD pulses,'' IFSA 2011, O.Tu8-1, to appear in Euro. Phys. J. Web of Conf. (2012).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuller, T. P.; Easterly, C. E.
Occupational exposures to radiation from tritium received at present nuclear facilities and potential exposures at future fusion reactor facilities demonstrate the need for improved protective clothing. Important areas relating to increased protection factors of tritium protective ventilation suits are discussed. These areas include permeation processes of tritium through materials, various tests of film permeability, selection and availability of suit materials, suit designs, and administrative procedures. The phenomenological nature of film permeability calls for more standardized and universal test methods, which would increase the amount of directly useful information on impermeable materials. Improvements in suit designs could be expedited and bettermore » communicated to the health physics community by centralizing devlopmental equipment, manpower, and expertise in the field of tritium protection to one or two authoritative institutions.« less
NASA Astrophysics Data System (ADS)
Sutcliffe, G. D.; Milanese, L. M.; Orozco, D.; Lahmann, B.; Gatu Johnson, M.; Séguin, F. H.; Sio, H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.; Park, H.-S.; Rygg, J. R.; Casey, D. T.; Bionta, R.; Turnbull, D. P.; Huntington, C. M.; Ross, J. S.; Zylstra, A. B.; Rosenberg, M. J.; Glebov, V. Yu.
2016-11-01
CR-39 detectors are used routinely in inertial confinement fusion (ICF) experiments as a part of nuclear diagnostics. CR-39 is filtered to stop fast ablator ions which have been accelerated from an ICF implosion due to electric fields caused by laser-plasma interactions. In some experiments, the filtering is insufficient to block these ions and the fusion-product signal tracks are lost in the large background of accelerated ion tracks. A technique for recovering signal in these scenarios has been developed, tested, and implemented successfully. The technique involves removing material from the surface of the CR-39 to a depth beyond the endpoint of the ablator ion tracks. The technique preserves signal magnitude (yield) as well as structure in radiograph images. The technique is effective when signal particle range is at least 10 μm deeper than the necessary bulk material removal.
Sutcliffe, G D; Milanese, L M; Orozco, D; Lahmann, B; Gatu Johnson, M; Séguin, F H; Sio, H; Frenje, J A; Li, C K; Petrasso, R D; Park, H-S; Rygg, J R; Casey, D T; Bionta, R; Turnbull, D P; Huntington, C M; Ross, J S; Zylstra, A B; Rosenberg, M J; Glebov, V Yu
2016-11-01
CR-39 detectors are used routinely in inertial confinement fusion (ICF) experiments as a part of nuclear diagnostics. CR-39 is filtered to stop fast ablator ions which have been accelerated from an ICF implosion due to electric fields caused by laser-plasma interactions. In some experiments, the filtering is insufficient to block these ions and the fusion-product signal tracks are lost in the large background of accelerated ion tracks. A technique for recovering signal in these scenarios has been developed, tested, and implemented successfully. The technique involves removing material from the surface of the CR-39 to a depth beyond the endpoint of the ablator ion tracks. The technique preserves signal magnitude (yield) as well as structure in radiograph images. The technique is effective when signal particle range is at least 10 μm deeper than the necessary bulk material removal.
NASA Astrophysics Data System (ADS)
Zhang, Kezhao; Lei, Zhenglong; Chen, Yanbin; Liu, Ming; Liu, Yang
2015-10-01
Laser-TIG-hybrid-welding (TIG - tungsten inert gas) process was successfully applied to investigate the microstructure and tensile properties of Ti-22Al-27Nb/TA15 dissimilar joints. The HAZ of the arc zone in Ti-22Al-27Nb was characterized by three different regions: single B2, B2+α2 and B2+α2+O, while the single B2 phase region was absent in the HAZ of the laser zone. As for the HAZ in TA15 alloy, the microstructure mainly contained acicular α‧ martensites near the fusion line and partially remained the lamellar structure near the base metal. The fusion zone consisted of B2 phase due to the relatively high content of β phase stabilizing elements and fast cooling rate during the welding process. The tensile strength of the welds was higher than that of TA15 alloy because of the fully B2 microstructure in the fusion zone, and the fracture preferentially occurred on the base metal of TA15 alloy during the tensile tests at room temperature and 650 °C.
Solar Simulation for the CREST Preflight Thermal-Vacuum Test at B-2
NASA Technical Reports Server (NTRS)
Ziemke, Robert A.
2012-01-01
In June 2011, the multi-university sponsored Cosmic Ray Electron Synchrotron Telescope (CREST) has undergone thermal-vacuum qualification testing at the NASA Glenn Research Center (GRC), Plum Brook Station, Sandusky, Ohio. The testing was performed in the B-2 Space Propulsion Facility vacuum chamber. The CREST was later flown over the Antarctic region as the payload of a stratospheric balloon. Solar simulation was provided by a system of planar infrared lamp arrays specifically designed for CREST. The lamp arrays, in conjunction with a liquid-nitrogen-cooled cold wall, achieved the required thermal conditions for the qualification tests. The following slides accompanied the presentation of the report entitled Solar Simulation for the CREST Preflight Thermal-Vacuum Test at B-2, at the 27th Aerospace Testing Seminar, October 2012. The presentation described the test article, the test facility capability, the solar simulation requirements, the highlights of the engineering approach, and the results achieved. The presentation was intended to generate interest in the report and in the B-2 test facility.
Prototyping Control and Data Acquisition for the ITER Neutral Beam Test Facility
NASA Astrophysics Data System (ADS)
Luchetta, Adriano; Manduchi, Gabriele; Taliercio, Cesare; Soppelsa, Anton; Paolucci, Francesco; Sartori, Filippo; Barbato, Paolo; Breda, Mauro; Capobianco, Roberto; Molon, Federico; Moressa, Modesto; Polato, Sandro; Simionato, Paola; Zampiva, Enrico
2013-10-01
The ITER Neutral Beam Test Facility will be the project's R&D facility for heating neutral beam injectors (HNB) for fusion research operating with H/D negative ions. Its mission is to develop technology to build the HNB prototype injector meeting the stringent HNB requirements (16.5 MW injection power, -1 MeV acceleration energy, 40 A ion current and one hour continuous operation). Two test-beds will be built in sequence in the facility: first SPIDER, the ion source test-bed, to optimize the negative ion source performance, second MITICA, the actual prototype injector, to optimize ion beam acceleration and neutralization. The SPIDER control and data acquisition system is under design. To validate the main architectural choices, a system prototype has been assembled and performance tests have been executed to assess the prototype's capability to meet the control and data acquisition system requirements. The prototype is based on open-source software frameworks running under Linux. EPICS is the slow control engine, MDSplus is the data handler and MARTe is the fast control manager. The prototype addresses low and high-frequency data acquisition, 10 kS/s and 10 MS/s respectively, camera image acquisition, data archiving, data streaming, data retrieval and visualization, real time fast control with 100 μs control cycle and supervisory control.
Atanasiu, Doina; Saw, Wan Ting; Gallagher, John R.; Hannah, Brian P.; Matsuda, Zene; Whitbeck, J. Charles; Cohen, Gary H.
2013-01-01
Herpes simplex virus (HSV) entry and cell-cell fusion require glycoproteins gD, gH/gL, and gB. We propose that receptor-activated changes to gD cause it to activate gH/gL, which then triggers gB into an active form. We employed a dual split-protein (DSP) assay to monitor the kinetics of HSV glycoprotein-induced cell-cell fusion. This assay measures content mixing between two cells, i.e., fusion, within the same cell population in real time (minutes to hours). Titration experiments suggest that both gD and gH/gL act in a catalytic fashion to trigger gB. In fact, fusion rates are governed by the amount of gB on the cell surface. We then used the DSP assay to focus on mutants in two functional regions (FRs) of gB, FR1 and FR3. FR1 contains the fusion loops (FL1 and FL2), and FR3 encompasses the crown at the trimer top. All FL mutants initiated fusion very slowly, if at all. However, the fusion rates caused by some FL2 mutants increased over time, so that total fusion by 8 h looked much like that of the WT. Two distinct kinetic patterns, “slow and fast,” emerged for mutants in the crown of gB (FR3), again showing differences in initiation and ongoing fusion. Of note are the fusion kinetics of the gB syn mutant (LL871/872AA). Although this mutant was originally included as an ongoing high-rate-of-fusion control, its initiation of fusion is so rapid that it appears to be on a “hair trigger.” Thus, the DSP assay affords a unique way to examine the dynamics of HSV glycoprotein-induced cell fusion. PMID:23946457
40 CFR 160.45 - Test system supply facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... aquatic plants. (2) Facilities for plant growth, including, but not limited to greenhouses, growth chambers, light banks, and fields. (c) When appropriate, facilities for aquatic animal tests shall be... preserved by appropriate means. (b) When appropriate, plant supply facilities shall be provided. As...
Investigation of RF Emissions from Electric Field Dominated Plasmas
1989-03-31
David Rosenberg and Mr. Paul D. Spence, "RF Plasma Emissions Measured with Calibrated, Broadband Antenna". February 19 Mr. Antonino Carnevali, Fusion...plasma equipment exhibitors, and major Japanese i fusion facilities. November 20 Dr. Antonino Carnevalli, RPI and Fusion Energy Division, ORNL: "H av Ion
Research on Heating, Instabilities, Turbulence and RF Emission from Electric Field Dominated Plasmas
1989-07-01
Spence, "RF Plasma Emissions Measured with Calibrated, Broadband Antenna". February 19 Mr. Antonino Carnevali, Fusion Energy Division, ORNL,"Confinement...slides of the conference, plasma equipment exhibitors, and major Japanese fusion facilities. November 20 Dr. Antonino Carnevalli, RPI and Fusion Energy
Recent Upgrades at the Safety and Tritium Applied Research Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cadwallader, Lee Charles; Merrill, Brad Johnson; Stewart, Dean Andrew
This paper gives a brief overview of the Safety and Tritium Applied Research (STAR) facility operated by the Fusion Safety Program (FSP) at the Idaho National Laboratory (INL). FSP researchers use the STAR facility to carry out experiments in tritium permeation and retention in various fusion materials, including wall armor tile materials. FSP researchers also perform other experimentation as well to support safety assessment in fusion development. This lab, in its present two-building configuration, has been in operation for over ten years. The main experiments at STAR are briefly described. This paper discusses recent work to enhance personnel safety atmore » the facility. The STAR facility is a Department of Energy less than hazard category 3 facility; the personnel safety approach calls for ventilation and tritium monitoring for radiation protection. The tritium areas of STAR have about 4 to 12 air changes per hour, with air flow being once through and then routed to the facility vent stack. Additional radiation monitoring has been installed to read the laboratory room air where experiments with tritium are conducted. These ion chambers and bubblers are used to verify that no significant tritium concentrations are present in the experiment rooms. Standby electrical power has been added to the facility exhaust blower so that proper ventilation will now operate during commercial power outages as well as the real-time tritium air monitors.« less
NASA Astrophysics Data System (ADS)
Bonne, François; Alamir, Mazen; Bonnay, Patrick
2014-01-01
In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonne, François; Bonnay, Patrick; Alamir, Mazen
2014-01-29
In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection,more » to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.« less
Final Technical Report for "Nuclear Technologies for Near Term Fusion Devices"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Paul P.H.; Sawan, Mohamed E.; Davis, Andrew
Over approximately 18 years, this project evolved to focus on a number of related topics, all tied to the nuclear analysis of fusion energy systems. For the earliest years, the University of Wisconsin (UW)’s effort was in support of the Advanced Power Extraction (APEX) study to investigate high power density first wall and blanket systems. A variety of design concepts were studied before this study gave way to a design effort for a US Test Blanket Module (TBM) to be installed in ITER. Simultaneous to this TBM project, nuclear analysis supported the conceptual design of a number of fusion nuclearmore » science facilities that might fill a role in the path to fusion energy. Beginning in approximately 2005, this project added a component focused on the development of novel radiation transport software capability in support of the above nuclear analysis needs. Specifically, a clear need was identified to support neutron and photon transport on the complex geometries associated with Computer-Aided Design (CAD). Following the initial development of the Direct Accelerated Geoemtry Monte Carlo (DAGMC) capability, additional features were added, including unstructured mesh tallies and multi-physics analysis such as the Rigorous 2-Step (R2S) methodology for Shutdown Dose Rate (SDR) prediction. Throughout the project, there were also smaller tasks in support of the fusion materials community and for the testing of changes to the nuclear data that is fundamental to this kind of nuclear analysis.« less
Compressed Gas Safety for Experimental Fusion Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee C. Cadwallader
2004-09-01
Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertialmore » fusion experiments.« less
40 CFR 792.45 - Test system supply facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... maintaining algae and aquatic plants. (2) Facilities, as specified in the protocol, for plant growth... supplies shall be preserved by appropriate means. (b) When appropriate, plant supply facilities shall be..., facilities for aquatic animal tests shall be provided. These include but are not limited to aquaria, holding...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Test Procedure,” and Chapter 6, “Definitions and Acronyms,” of the EPA's “ENERGY STAR Testing Facility Guidance Manual: Building a Testing Facility and Performing the Solid State Test Method for ENERGY STAR... specified in Chapter 4, “Equipment Setup and Test Procedure,” of the EPA's “ENERGY STAR Testing Facility...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Test Procedure,” and Chapter 6, “Definitions and Acronyms,” of the EPA's “ENERGY STAR Testing Facility Guidance Manual: Building a Testing Facility and Performing the Solid State Test Method for ENERGY STAR... specified in Chapter 4, “Equipment Setup and Test Procedure,” of the EPA's “ENERGY STAR Testing Facility...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Test Procedure,” and Chapter 6, “Definitions and Acronyms,” of the EPA's “ENERGY STAR Testing Facility Guidance Manual: Building a Testing Facility and Performing the Solid State Test Method for ENERGY STAR... specified in Chapter 4, “Equipment Setup and Test Procedure,” of the EPA's “ENERGY STAR Testing Facility...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Test Procedure,” and Chapter 6, “Definitions and Acronyms,” of the EPA's “ENERGY STAR Testing Facility Guidance Manual: Building a Testing Facility and Performing the Solid State Test Method for ENERGY STAR... specified in Chapter 4, “Equipment Setup and Test Procedure,” of the EPA's “ENERGY STAR Testing Facility...
Pace, D. C.; Lanctot, M. J.; Jackson, G. L.; ...
2015-09-21
The march towards electricity production through tokamaks requires the construction of new facilities and the inevitable replacement of the previous generation. There are, however, research topics that are better suited to the existing tokamaks, areas of great potential that are not sufficiently mature for implementation in high power machines, and these provide strong support for a balanced policy that includes the redirection of existing programs. Spin polarized fusion, in which the nuclei of tokamak fuel particles are spin-aligned and favorably change both the fusion cross-section and the distribution of initial velocity vectors of charged fusion products, is described here asmore » an example of a technological and physics topic that is ripe for development in a machine such as the DIII-D tokamak. In this study, such research and development experiments may not be efficient at the ITER-scale, while the plasma performance, diagnostic access, and collaborative personnel available within the United States’ magnetic fusion research program, and at the DIII-D facility in particular, provide a unique opportunity to further fusion progress.« less
Engineering Isoprene Synthase Expression and Activity in Cyanobacteria.
Chaves, Julie E; Rueda-Romero, Paloma; Kirst, Henning; Melis, Anastasios
2017-12-15
Efforts to heterologously produce quantities of isoprene hydrocarbons (C 5 H 8 ) renewably from CO 2 and H 2 O through the photosynthesis of cyanobacteria face barriers, including low levels of recombinant enzyme accumulation compounded by their slow innate catalytic activity. The present work sought to alleviate the "expression level" barrier upon placing the isoprene synthase (IspS) enzyme in different fusion configurations with the cpcB protein, the highly expressed β-subunit of phycocyanin. Different cpcB*IspS fusion constructs were made, distinguished by the absence or presence of linker amino acids between the two proteins. Composition of linker amino acids was variable with lengths of 7, 10, 16, and 65 amino acids designed to test for optimal activity of the IspS through spatial positioning between the cpcB and IspS. Results showed that fusion constructs with the highly expressed cpcB gene, as the leader sequence, improved transgene expression in the range of 61 to 275-fold over what was measured with the unfused IspS control. However, the specific activity of the IspS enzyme was attenuated in all fusion transformants, possibly because of allosteric effects exerted by the leader cpcB fusion protein. This inhibition varied depending on the nature of the linker amino acids between the cpcB and IspS proteins. In terms of isoprene production, the results further showed a trade-off between specific activity and transgenic enzyme accumulation. For example, the cpcB*L7*IspS strain showed only about 10% the isoprene synthase specific-activity of the unfused cpcB-IspS control, but it accumulated 254-fold more IspS enzyme. The latter more than countered the slower specific activity and made the cpcB*L7*IspS transformant the best isoprene producing strain in this work. Isoprene to biomass yield ratios improved from 0.2 mg g -1 in the unfused cpcB-IspS control to 5.4 mg g -1 in the cpcB*L7*IspS strain, a 27-fold improvement.
Test and User Facilities | NREL
| L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z B Battery Thermal and Life Test Facility High-Flux Solar Furnace I Integrated Biorefinery Research Facility L Large Payload Solar Tracker M
NASA Technical Reports Server (NTRS)
Schafer, Charles F.; Cheston, Derrick J.; Worlund, Armis L.; Brown, James R.; Hooper, William G.; Monk, Jan C.; Winstead, Thomas W.
2008-01-01
A trade study of the feasibility of conducting J-2X testing in the Glenn Research Center (GRC) Plum Brook Station (PBS) B-2 facility was initiated in May 2006 with results available in October 2006. The Propulsion Test Integration Group (PTIG) led the study with support from Marshall Space Flight Center (MSFC) and Jacobs Sverdrup Engineering. The primary focus of the trade study was on facility design concepts and their capability to satisfy the J-2X altitude simulation test requirements. The propulsion systems tested in the B-2 facility were in the 30,000-pound (30K) thrust class. The J-2X thrust is approximately 10 times larger. Therefore, concepts significantly different from the current configuration are necessary for the diffuser, spray chamber subsystems, and cooling water. Steam exhaust condensation in the spray chamber is judged to be the key risk consideration relative to acceptable spray chamber pressure. Further assessment via computational fluid dynamics (CFD) and other simulation capabilities (e.g. methodology for anchoring predictions with actual test data and subscale testing to support investigation.
NASA Plum Brook's B-2 Test Facility: Thermal Vacuum and Propellant Test Facility
NASA Technical Reports Server (NTRS)
Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.
2012-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of upper stage chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility. The heat sink provided a uniform temperature environment of approximately 77 K. The modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface.
NASA Astrophysics Data System (ADS)
Meade, Dale
2010-01-01
Fusion energy research began in the early 1950s as scientists worked to harness the awesome power of the atom for peaceful purposes. There was early optimism for a quick solution for fusion energy as there had been for fission. However, this was soon tempered by reality as the difficulty of producing and confining fusion fuel at temperatures of 100 million °C in the laboratory was appreciated. Fusion research has followed two main paths—inertial confinement fusion and magnetic confinement fusion. Over the past 50 years, there has been remarkable progress with both approaches, and now each has a solid technical foundation that has led to the construction of major facilities that are aimed at demonstrating fusion energy producing plasmas.
Final report on the Magnetized Target Fusion Collaboration
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Slough
Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (~ a few cm). One such program now under study, referred tomore » as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking to be described in this proposal is to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The timescale for testing and development can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent experiments with these IPAs have demonstrated the ability to rapidly form, accelerate and merge two hypervelocity FRCs into a compression chamber. The resultant FRC that was formed was hot (T&ion ~ 400 eV), stationary, and stable with a configuration lifetime several times that necessary for the MTF liner experiments. The accelerator length was less than 1 meter, and the time from the initiation of formation to the establishment of the final equilibrium was less than 10 microseconds. With some modification, each accelerator was made capable of producing FRCs suitable for the production of the target plasma for the MTF liner experiment. Based on the initial FRC merging/compression results, the design and methodology for an experimental realization of the target plasma for the MTF liner experiment can now be defined. A high density FRC plasmoid is to be formed and accelerated out of each IPA into a merging/compression chamber similar to the imploding liner at AFRL. The properties of the resultant FRC plasma (size, temperature, density, flux, lifetime) are obtained in the reevant regime of interest. The process still needs to be optimized, and a final design for implementation at AFRL must now be carried out. When implemented at AFRL it is anticipated that the colliding/merging FRCs will then be compressed by the liner. In this manner it is hoped that ultimately a plasma with ion temperatures reaching the 10 keV range and fusion gain near unity can be obtained.« less
46 CFR 160.032-1 - Applicable specifications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Steel Castings, Carbon, Suitable for Fusion Welding for High-Temperature Service—160.032-3 (b) Copies on... ASTM from the American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA...
Convergent ablation measurements of plastic ablators in gas-filled rugby hohlraums on OMEGA
NASA Astrophysics Data System (ADS)
Casner, A.; Jalinaud, T.; Masse, L.; Galmiche, D.
2015-10-01
Indirect-drive implosions experiments were conducted on the Omega Laser Facility to test the performance of uniformly doped plastic ablators for Inertial Confinement Fusion. The first convergent ablation measurements in gas-filled rugby hohlraums are reported. Ignition relevant limb velocities in the range from 150 to 300 μm .n s-1 have been reached by varying the laser drive energy and the initial capsule aspect ratio. The measured capsule trajectory and implosion velocity are in good agreement with 2D integrated simulations and a zero-dimensional modeling of the implosions. We demonstrate experimentally the scaling law for the maximum implosion velocity predicted by the improved rocket model [Y. Saillard, Nucl. Fusion 46, 1017 (2006)] in the high-ablation regime case.
Overview of Engineering Design and Analysis at the NASA John C. Stennis Space Center
NASA Technical Reports Server (NTRS)
Ryan, Harry; Congiardo, Jared; Junell, Justin; Kirkpatrick, Richard
2007-01-01
A wide range of rocket propulsion test work occurs at the NASA John C. Stennis Space Center (SSC) including full-scale engine test activities at test facilities A-1, A-2, B-1 and B-2 as well as combustion device research and development activities at the E-Complex (E-1, E-2, E-3 and E-4) test facilities. The propulsion test engineer at NASA SSC faces many challenges associated with designing and operating a test facility due to the extreme operating conditions (e.g., cryogenic temperatures, high pressures) of the various system components and the uniqueness of many of the components and systems. The purpose of this paper is to briefly describe the NASA SSC Engineering Science Directorate s design and analysis processes, experience, and modeling techniques that are used to design and support the operation of unique rocket propulsion test facilities.
Facility Monitoring: A Qualitative Theory for Sensor Fusion
NASA Technical Reports Server (NTRS)
Figueroa, Fernando
2001-01-01
Data fusion and sensor management approaches have largely been implemented with centralized and hierarchical architectures. Numerical and statistical methods are the most common data fusion methods found in these systems. Given the proliferation and low cost of processing power, there is now an emphasis on designing distributed and decentralized systems. These systems use analytical/quantitative techniques or qualitative reasoning methods for date fusion.Based on other work by the author, a sensor may be treated as a highly autonomous (decentralized) unit. Each highly autonomous sensor (HAS) is capable of extracting qualitative behaviours from its data. For example, it detects spikes, disturbances, noise levels, off-limit excursions, step changes, drift, and other typical measured trends. In this context, this paper describes a distributed sensor fusion paradigm and theory where each sensor in the system is a HAS. Hence, given the reach qualitative information from each HAS, a paradigm and formal definitions are given so that sensors and processes can reason and make decisions at the qualitative level. This approach to sensor fusion makes it possible the implementation of intuitive (effective) methods to monitor, diagnose, and compensate processes/systems and their sensors. This paradigm facilitates a balanced distribution of intelligence (code and/or hardware) to the sensor level, the process/system level, and a higher controller level. The primary application of interest is in intelligent health management of rocket engine test stands.
10 CFR 26.159 - Assuring specimen security, chain of custody, and preservation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... licensee testing facility has retained the specimen in Bottle B, the licensee testing facility shall... the licensee testing facility. (2) The following are exclusive grounds requiring the MRO to cancel the... or legal challenge until they are no longer needed. (j) The laboratory shall discard a valid specimen...
Data Fusion Analysis For Test Validation System
2009-11-16
triethyl phosphate (TEP), methyl salicylate (MeS), and acetic acid (AA). A total of 29 release scenarios were conducted: fifteen TEP releases of 30...N2 - north second. bA - 2, 3, 6, 7, 10, and 11; B - 1 through 12; NA - not available. cTEP - triethyl phosphate; MeS - methyl salicylate ; AA
WI Biodiesel Blending Progream Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redmond, Maria E; Levy, Megan M
The Wisconsin State Energy Office's (SEO) primary mission is to implement cost effective, reliable, balanced, and environmentally friendly clean energy projects. To support this mission the Wisconsin Biodiesel Blending Program was created to financially support the installation infrastructure necessary to directly sustain biodiesel blending and distribution at petroleum terminal facilities throughout Wisconsin. The SEO secured a federal directed award of $600,000 over 2.25 years. With these funds, the SEO supported the construction of inline biodiesel blending facilities at two petroleum terminals in Wisconsin. The Federal funding provided through the state provided a little less than half of the necessary investmentmore » to construct the terminals, with the balance put forth by the partners. Wisconsin is now home to two new biodiesel blending terminals. Fusion Renewables on Jones Island (in the City of Milwaukee) will offer a B100 blend to both bulk and retail customers. CITGO is currently providing a B5 blend to all customers at their Granville, WI terminal north of the City of Milwaukee.« less
Soyama, Takeshi; Sakuhara, Yusuke; Kudo, Kohsuke; Abo, Daisuke; Wang, Jeff; Ito, Yoichi M; Hasegawa, Yu; Shirato, Hiroki
2016-07-01
This preliminary study compared ultrasonography-computed tomography (US-CT) fusion imaging and conventional ultrasonography (US) for accuracy and time required for target identification using a combination of real phantoms and sets of digitally modified computed tomography (CT) images (digital/real hybrid phantoms). In this randomized prospective study, 27 spheres visible on B-mode US were placed at depths of 3.5, 8.5, and 13.5 cm (nine spheres each). All 27 spheres were digitally erased from the CT images, and a radiopaque sphere was digitally placed at each of the 27 locations to create 27 different sets of CT images. Twenty clinicians were instructed to identify the sphere target using US alone and fusion imaging. The accuracy of target identification of the two methods was compared using McNemar's test. The mean time required for target identification and error distances were compared using paired t tests. At all three depths, target identification was more accurate and the mean time required for target identification was significantly less with US-CT fusion imaging than with US alone, and the mean error distances were also shorter with US-CT fusion imaging. US-CT fusion imaging was superior to US alone in terms of accurate and rapid identification of target lesions.
Regulation of Herpes Simplex Virus Glycoprotein-Induced Cascade of Events Governing Cell-Cell Fusion
Saw, Wan Ting; Eisenberg, Roselyn J.; Cohen, Gary H.
2016-01-01
ABSTRACT Receptor-dependent herpes simplex virus (HSV)-induced cell-cell fusion requires glycoproteins gD, gH/gL, and gB. Our current model posits that during fusion, receptor-activated conformational changes in gD activate gH/gL, which subsequently triggers the transformation of the prefusion form of gB into a fusogenic state. To examine the role of each glycoprotein in receptor-dependent cell-cell fusion, we took advantage of our discovery that fusion by wild-type herpes simplex virus 2 (HSV-2) glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we established that fusion speed was governed by gH/gL, with gH being the main contributor. While the mutant forms of gB fuse at distinct rates that are dictated by their molecular structure, these restrictions can be overcome by gH/gL of HSV-2 (gH2/gL2), thereby enhancing their activity. We also found that deregulated forms of gD of HSV-1 (gD1) and gH2/gL2 can alter the fusogenic potential of gB, promoting cell fusion in the absence of a cellular receptor, and that deregulated forms of gB can drive the fusion machinery to even higher levels. Low pH enhanced fusion by affecting the structure of both gB and gH/gL mutants. Together, our data highlight the complexity of the fusion machinery, the impact of the activation state of each glycoprotein on the fusion process, and the critical role of gH/gL in regulating HSV-induced fusion. IMPORTANCE Cell-cell fusion mediated by HSV glycoproteins requires gD, gH/gL, gB, and a gD receptor. Here, we show that fusion by wild-type HSV-2 glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we found that the fusion process was controlled by gH/gL. Restrictions imposed on the gB structure by mutations could be overcome by gH2/gL2, enhancing the activity of the mutants. Under low-pH conditions or when using deregulated forms of gD1 and gH2/gL2, the fusogenic potential of gB could only be increased in the absence of receptor, underlining the exquisite regulation that occurs in the presence of receptor. Our data highlight the complexity of the fusion machinery, the impact of the activation state of each glycoprotein on the fusion process, and the critical role of gH/gL in regulating HSV-induced fusion. PMID:27630245
Cost Modeling and Design of Field-Reversed Configuration Fusion Power Plants
NASA Astrophysics Data System (ADS)
Kirtley, David; Slough, John; Helion Team
2017-10-01
The Inductively Driven Liner (IDL) fusion concept uses the magnetically driven implosion of thin (0.5-1 mm) Aluminum hoops to magnetically compress a merged Field-Reversed Configuration (FRC) plasma to fusion conditions. Both the driver and the target have been studied experimentally and theoretically by researchers at Helion Energy, MSNW, and the University of Washington, demonstrating compression fields greater than 100 T and suitable fusion targets. In the presented study, a notional power plant facility using this approach will be described. In addition, a full cost study based on the LLNL Z-IFE and HYLIFE-II studies, the ARIES Tokamak concept, and RAND power plant studies will be described. Finally, the expected capital costs, development requirements, and LCOE for 50 and 500 MW power plants will be given. This analysis includes core FRC plant scaling, metallic liner recycling, radiation shielding, operations, and facilities capital requirements.
Herpes Simplex Virus Glycoprotein B Associates with Target Membranes via Its Fusion Loops▿
Hannah, Brian P.; Cairns, Tina M.; Bender, Florent C.; Whitbeck, J. Charles; Lou, Huan; Eisenberg, Roselyn J.; Cohen, Gary H.
2009-01-01
Herpes simplex virus (HSV) glycoproteins gB, gD, and gH/gL are necessary and sufficient for virus entry into cells. Structural features of gB are similar to those of vesicular stomatitis virus G and baculovirus gp64, and together they define the new class III group of fusion proteins. Previously, we used mutagenesis to show that three hydrophobic residues (W174, Y179, and A261) within the putative gB fusion loops are integral to gB function. Here we expanded our analysis, using site-directed mutagenesis of each residue in both gB fusion loops. Mutation of most of the nonpolar or hydrophobic amino acids (W174, F175, G176, Y179, and A261) had severe effects on gB function in cell-cell fusion and null virus complementation assays. Of the six charged amino acids, mutation of H263 or R264 also negatively affected gB function. To further analyze the mutants, we cloned the ectodomains of the W174R, Y179S, H263A, and R264A mutants into a baculovirus expression system and compared them with the wild-type (WT) form, gB730t. As shown previously, gB730t blocks virus entry into cells, suggesting that gB730t competes with virion gB for a cell receptor. All four mutant proteins retained this function, implying that fusion loop activity is separate from gB-receptor binding. However, unlike WT gB730t, the mutant proteins displayed reduced binding to cells and were either impaired or unable to bind naked, cholesterol-enriched liposomes, suggesting that it may be gB-lipid binding that is disrupted by the mutations. Furthermore, monoclonal antibodies with epitopes proximal to the fusion loops abrogated gB-liposome binding. Taken together, our data suggest that gB associates with lipid membranes via a fusion domain of key hydrophobic and hydrophilic residues and that this domain associates with lipid membranes during fusion. PMID:19369321
Zago, Anna; Connolly, Sarah A; Spear, Patricia G; Longnecker, Richard
2013-01-01
Among the herpesvirus glycoprotein B (gB) fusion proteins, the hydrophobic content of fusion loops and membrane proximal regions (MPRs) are inversely correlated with each other. We examined the functional importance of the hydrophobicity of these regions by replacing them in herpes simplex virus type 1 gB with corresponding regions from Epstein-Barr virus gB. We show that fusion activity is dependent on the structural context in which the specific loops and MPR sequences exist, rather than a simple hydrophobic relationship. Copyright © 2012 Elsevier B.V. All rights reserved.
Centaur Rocket in Space Propulsion Research Facility (B-2)
1969-07-21
A Centaur second-stage rocket in the Space Propulsion Research Facility, better known as B‒2, operating at NASA’s Plum Brook Station in Sandusky, Ohio. Centaur was designed to be used with an Atlas booster to send the Surveyor spacecraft to the moon in the mid-1960s. After those missions, the rocket was modified to launch a series of astronomical observation satellites into orbit and send space probes to other planets. Researchers conducted a series of systems tests at the Plum Brook test stands to improve the Centaur fuel pumping system. Follow up full-scale tests in the B-2 facility led to the eventual removal of the boost pumps from the design. This reduced the system’s complexity and significantly reduced the cost of a Centaur rocket. The Centaur tests were the first use of the new B-2 facility. B‒2 was the world's only high altitude test facility capable of full-scale rocket engine and launch vehicle system level tests. It was created to test rocket propulsion systems with up to 100,000 pounds of thrust in a simulated space environment. The facility has the unique ability to maintain a vacuum at the rocket’s nozzle while the engine is firing. The rocket fires into a 120-foot deep spray chamber which cools the exhaust before it is ejected outside the facility. B‒2 simulated space using giant diffusion pumps to reduce chamber pressure 10-6 torr, nitrogen-filled cold walls create cryogenic temperatures, and quartz lamps replicate the radiation of the sun.
Pakzad, Iraj; Rezaee, Abbas; Rasaee, Mohammad J; Hossieni, Ahmad Zavaran; Tabbaraee, Bahman; Kazemnejad, Anoshirvan
2010-01-01
The immunogenic Brucella abortus ribosomal protein L7/L12 and Lipopolysaccharide (LPS) are promising candidate antigens for the development of subunit vaccines against brucellosis. This study was aimed to evaluate the protection of combination of recombinant HSA-L7/L12 fusion protein with LPS in Balb/c mouse. The recombinant HSA-L7/L12 fusion protein in Saccharomyces cerevisiae was expressed and purified by affinity chromatography column. LPS was extracted by n-butanol, purified by ultracentrifugation. BALB/c mouses were immunized in 9 groups with PBS, HSA, tHSA-L7/L12, L7/L12, LPS, LPS+ HSA, LPS+ tHSA-L7/L12, LPS+ L7/L12, B. abortus S19. ELISA, LTT tests and challenging two weeks after last injection were carried out. Bacterial count of spleen of immunized BALB/c mouse was done four weeks after challenging with virulent strain B. abortus 544. In ELISA test the specific antibodies of tHSA-L7/L12 exhibited a dominance of immunoglobulin IgG1 over IgG2a. LPS-HSA and tHSA-L7/L12 + LPS produced a significantly higher antibody titer than LPS alone and L7/L12+LPS (P < 0.05). The predominant IgG subtype for LPS and L7/L12+LPS were IgG3. However, tHSA-L7/L12+ LPS and LPS+ HAS elicited predominantly IgG1 and IgG3 subtypes. In addition, the tHSA-L7/L12 fusion protein and L7/L12 elicited a strong T-cell proliferative response upon restimulation in vitro with recombinant tHSA-L7/L12 and L7/L12, suggesting the induction of a cellular immunity response in vivo. However, there was no significant difference proliferative response in L7/L12 and tHSA-L7/L12 fusion protein (P > 0.05). The combination of tHSA-L7/L12 fusion protein with LPS and B. abortus S19 induce higher level of protection against challenge with the virulent strain B. abortus 544 in BALB/c mice than other groups (P = 0.005). The combination of tHSA-L7/L12 fusion protein with LPS had higher protective ability than LPS and fusion protein distinctly.
The Physics of Advanced High-Gain Targets for Inertial Fusion Energy
NASA Astrophysics Data System (ADS)
Perkins, L. John
2010-11-01
In ca. 2011-2012, the National Ignition Facility is poised to demonstrate fusion ignition and gain in the laboratory for the first time. This key milestone in the development of inertial confinement fusion (ICF) can be expected to engender interest in the development of inertial fusion energy (IFE) and expanded efforts on a number of advanced targets that may achieve high fusion energy gain at lower driver energies. In this tutorial talk, we will discuss the physics underlying ICF ignition and thermonuclear burn, examine the requirements for high gain, and outline candidate R&D programs that will be required to assess the performance of these target concepts under various driver systems including lasers, heavy-ions and pulsed power. Such target concepts include those operating by fast ignition, shock ignition, impact ignition, dual-density, magnetically-insulated, one- and two-sided drive, etc., some of which may have potential to burn advanced, non-DT fusion fuels. We will then delineate the role of such targets in their application to the production of high average fusion power. Here, systems studies of IFE economics suggest that we should strive for target fusion gains of around 100 at drive energies of 1MJ, together with corresponding rep-rates of up to 10Hz and driver electrical efficiencies around 15%. In future years, there may be exciting opportunities to study such ``innovative confinement concepts'' with prospects of fielding them on facilities such as NIF to obtain high fusion energy gains on a single shot basis.
2014-01-01
Background Pseudomonas syringae pv. glycinea PG4180 is an opportunistic plant pathogen which causes bacterial blight of soybean plants. It produces the exopolysaccharide levan by the enzyme levansucrase. Levansucrase has three gene copies in PG4180, two of which, lscB and lscC, are expressed while the third, lscA, is cryptic. Previously, nucleotide sequence alignments of lscB/C variants in various P. syringae showed that a ~450-bp phage-associated promoter element (PAPE) including the first 48 nucleotides of the ORF is absent in lscA. Results Herein, we tested whether this upstream region is responsible for the expression of lscB/C and lscA. Initially, the transcriptional start site for lscB/C was determined. A fusion of the PAPE with the ORF of lscA (lscB UpN A) was generated and introduced to a levan-negative mutant of PG4180. Additionally, fusions comprising of the non-coding part of the upstream region of lscB with lscA (lscB Up A) or the upstream region of lscA with lscB (lscA Up B) were generated. Transformants harboring the lscB UpN A or the lscB Up A fusion, respectively, showed levan formation while the transformant carrying lscA Up B did not. qRT-PCR and Western blot analyses showed that lscB UpN A had an expression similar to lscB while lscB Up A had a lower expression. Accuracy of protein fusions was confirmed by MALDI-TOF peptide fingerprinting. Conclusions Our data suggested that the upstream sequence of lscB is essential for expression of levansucrase while the N-terminus of LscB mediates an enhanced expression. In contrast, the upstream region of lscA does not lead to expression of lscB. We propose that lscA might be an ancestral levansucrase variant upstream of which the PAPE got inserted by potentially phage-mediated transposition events leading to expression of levansucrase in P. syringae. PMID:24670199
Panayotov, Dobromir; Poitevin, Yves; Grief, Andrew; ...
2016-09-23
'Fusion for Energy' (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). Safety demonstration is an essential element for the integration of these TBSs into ITER and accident analysis is one of its critical components. A systematic approach to accident analysis has been developed under the F4E contract on TBS safety analyses. F4E technical requirements, together with Amec Foster Wheeler and INL efforts, have resulted in a comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials,more » and phenomena while remaining consistent with the approach already applied to ITER accident analyses. Furthermore, the methodology phases are illustrated in the paper by its application to the EU HCLL TBS using both MELCOR and RELAP5 codes.« less
Sutcliffe, G. D.; Milanese, L. M.; Orozco, D.; ...
2016-08-05
CR-39 detectors are used routinely in inertial confinement fusion (ICF) experiments as a part of nuclear diagnostics. CR-39 is filtered to stop fast ablator ions which have been accelerated from an ICF implosion due to electric fields caused by laser-plasma interactions. In some experiments, the filtering is insufficient to block these ions and the fusion-product signal tracks are lost in the large background of accelerated ion tracks. A technique for recovering signal in these scenarios has been developed, tested, and implemented successfully. The technique involves removing material from the surface of the CR-39 to a depth beyond the endpoint ofmore » the ablator ion tracks. The technique preserves signal magnitude (yield) as well as structure in radiograph images. The technique is effective when signal particle range is at least 10 μm deeper than the necessary bulk material removal.« less
Fusion materials semiannual progress report for the period ending December 31, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-04-01
This is the twenty-first in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reportedmore » separately. The report covers the following topics: vanadium alloys; silicon carbide composite materials; ferritic/martensitic steels; copper alloys and high heat flux materials; austenitic stainless steels; insulating ceramics and optical materials; solid breeding materials; radiation effects, mechanistic studies and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; and irradiation facilities, test matrices, and experimental methods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutcliffe, G. D., E-mail: gdsut@mit.edu; Milanese, L. M.; Orozco, D.
2016-11-15
CR-39 detectors are used routinely in inertial confinement fusion (ICF) experiments as a part of nuclear diagnostics. CR-39 is filtered to stop fast ablator ions which have been accelerated from an ICF implosion due to electric fields caused by laser-plasma interactions. In some experiments, the filtering is insufficient to block these ions and the fusion-product signal tracks are lost in the large background of accelerated ion tracks. A technique for recovering signal in these scenarios has been developed, tested, and implemented successfully. The technique involves removing material from the surface of the CR-39 to a depth beyond the endpoint ofmore » the ablator ion tracks. The technique preserves signal magnitude (yield) as well as structure in radiograph images. The technique is effective when signal particle range is at least 10 μm deeper than the necessary bulk material removal.« less
Verification and optimization of the CFETR baseline scenario
NASA Astrophysics Data System (ADS)
Zhao, D.; Lao, L. L.; Meneghini, O.; Staebler, G. M.; Candy, J.; Smith, S. P.; Snyder, P. B.; Prater, R.; Chen, X.; Chan, V. S.; Li, J.; Chen, J.; Shi, N.; Guo, W.; Pan, C.; Jian, X.
2016-10-01
The baseline scenario of China Fusion Engineering Test Reactor (CFETR) was designed starting from 0D calculations. The CFETR baseline scenario satisfies the minimum goal of Fusion Nuclear Science Facility aimed at bridging the gaps between ITER and DEMO. 1.5D calculations are presented to verify the on-going efforts in higher-dimensional modeling of CFETR. Steady-state scenarios are calculated self-consistently by the OMFIT integrated modeling framework that includes EFIT for equilibrium, ONETWO for sources and current, TGYRO for transport. With 68MW of neutral beam power and 8MW of ECH injected to the plasma, the average ion temperature
Ignition and Inertial Confinement Fusion at The National Ignition Facility
NASA Astrophysics Data System (ADS)
Moses, Edward I.
2016-10-01
The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear bum in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm3-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIP's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY20l0 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.
Kiani, Ali Asghar; Shahsavar, Farhad; Gorji, Mojtaba; Ahmadi, Kolsoum; Nazarabad, Vahideh Heydari; Bahmani, Banafsheh
2016-01-01
Chronic myelogenous leukemia (CML) is a chronic malignancy of myeloid linage associated with a significant increase in granulocytes in bone marrow and peripheral blood. CML diagnosis is based on detection of Philadelphia chromosome and "Abelson murine leukemia viral oncogene homolog" (ABL)-"breakpoint cluster region protein" fusions (ABL-BCR fusions). In this study, patients with CML morphology were studied according to ABL-BCR fusions and the relationship between the fusions and peripheral blood cell changes was examined. All patients suspected to chronic myeloproliferative disorders in Lorestan Province visiting subspecialist hematology clinics who were confirmed by oncologist were studied over a period of 5 years. After completing basic data questionnaire, blood samples were obtained with informed consent from the patients. Blood cell count and morphology were investigated and RNA was extracted from blood samples. cDNA was synthesized from RNA and ABL-BCR fusions including b3a2 and b2a2 (protein 210 kd or p210), e1a2 (protein 190 kdor p190), and e19a2 (protein 230 kdor p230) were studied by multiplex reverse transcription polymerase chain reaction method. Coexistence of e1a2 and b2a2 (p210/p190) fusions was also studied. The prevalence of mutations and their correlation with the blood parameters were statistically analyzed. Of 58 patients positive for ABL-BCR fusion, 18 (30.5%) had b2a2 fusion, 37 (62.71%) had b3a2 fusion and three (3.08%) had e1a2 fusion. Coexistence of e1a2 and b2a2 (p210/p190) was not observed. There was no significant correlation between ABL-BCR fusions and white blood cell count, platelet count, and hemoglobin concentration. The ABL-BCR fusions in Lorestan Province were similar to other studies in Iran, and b3a2 fusion had the highest prevalence in the studied patients studied.
NASA Astrophysics Data System (ADS)
Belyaev, I. A.; Sviridov, V. G.; Batenin, V. M.; Biryukov, D. A.; Nikitina, I. S.; Manchkha, S. P.; Pyatnitskaya, N. Yu.; Razuvanov, N. G.; Sviridov, E. V.
2017-11-01
The results are presented of experimental investigations into liquid metal heat transfer performed by the joint research group consisting of specialist in heat transfer and hydrodynamics from NIU MPEI and JIHT RAS. The program of experiments has been prepared considering the concept of development of the nuclear power industry in Russia. This concept calls for, in addition to extensive application of water-cooled, water-moderated (VVER-type) power reactors and BN-type sodium cooled fast reactors, development of the new generation of BREST-type reactors, fusion power reactors, and thermonuclear neutron sources. The basic coolants for these nuclear power installations will be heavy liquid metals, such as lead and lithium-lead alloy. The team of specialists from NRU MPEI and JIHT RAS commissioned a new RK-3 mercury MHD-test facility. The major components of this test facility are a unique electrical magnet constructed at Budker Nuclear Physics Institute and a pressurized liquid metal circuit. The test facility is designed for investigating upward and downward liquid metal flows in channels of various cross-sections in a transverse magnetic field. A probe procedure will be used for experimental investigation into heat transfer and hydrodynamics as well as for measuring temperature, velocity, and flow parameter fluctuations. It is generally adopted that liquid metals are the best coolants for the Tokamak reactors. However, alternative coolants should be sought for. As an alternative to liquid metal coolants, molten salts, such as fluorides of lithium and beryllium (so-called FLiBes) or fluorides of alkali metals (so-called FLiNaK) doped with uranium fluoride, can be used. That is why the team of specialists from NRU MPEI and JIHT RAS, in parallel with development of a mercury MHD test facility, is designing a test facility for simulating molten salt heat transfer and hydrodynamics. Since development of this test facility requires numerical predictions and verification of numerical codes, all examined configurations of the MHD flow are also investigated numerically.
A GDT-based fusion neutron source for academic and industrial applications
NASA Astrophysics Data System (ADS)
Anderson, J. K.; Forest, C. B.; Mirnov, V. V.; Peterson, E. E.; Waleffe, R.; Wallace, J.; Harvey, R. W.
2017-10-01
The design of a fusion neutron source based on the gas dynamic trap (GDT) configuration is underway. The motivation is both the ends and the means. There are immediate applications for neutrons including medical isotope production and actinide burners. Taking the next step in the magnetic mirror path will leverage advances in high-temperature superconducting magnets and additive manufacturing in confining a fusion plasma, and both the technological and physics bases exist. Recent breakthrough results at the GDT facility in Russia demonstrate stable confinement of a beta 60% mirror plasma at high Te ( 1 keV). These scale readily to a fusion neutron source with an increase in magnetic field, mirror ratio, and ion energy. Studies of a next-step compact device focus on calculations of MHD equilibrium and stability, and Fokker-Planck modeling to optimize the heating scenario. The conceptualized device uses off-the-shelf MRI magnets for a 1 T central field, REBCO superconducting mirror coils (which can currently produce fields in excess of 30T), and existing 75 keV NBI and 140 GHz ECRH. High harmonic fast wave injection is damped on beam ions, dramatically increasing the fusion reactivity for an incremental bump in input power. MHD stability is achieved with the vortex confinement scheme, where a biasing profile imposes optimal ExB rotation of the plasma. Liquid metal divertors are being considered in the end cells. Work supported by the Wisconsin Alumni Research Foundation.
Magnetized Target Fusion: Prospects for Low-Cost Fusion Energy
NASA Technical Reports Server (NTRS)
Siemon, Richard E.; Turchi, Peter J.; Barnes, Daniel C.; Degnan, James; Parks, Paul; Ryutov, Dmitri D.; Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)
2001-01-01
Magnetized Target Fusion (MTF) has attracted renewed interest in recent years because it has the potential to resolve one of the major problems with conventional fusion energy research - the high cost of facilities to do experiments and in general develop practical fusion energy. The requirement for costly facilities can be traced to fundamental constraints. The Lawson condition implies large system size in the case of conventional magnetic confinement, or large heating power in the case of conventional inertial confinement. The MTF approach is to use much higher fuel density than with conventional magnetic confinement (corresponding to megabar pressures), which results in a much-reduced system size to achieve Lawson conditions. Intrinsically the system must be pulsed because the pressures exceed the strength of any known material. To facilitate heating the fuel (or "target") to thermonuclear conditions with a high-power high-intensity source of energy, magnetic fields are used to insulate the high-pressure fuel from material surroundings (thus "magnetized target"). Because of magnetic insulation, the required heating power intensity is reduced by many orders of magnitude compared to conventional inertial fusion, even with relatively poor energy confinement in the magnetic field, such as that characterized by Bohm diffusion. In this paper we show semi-quantitatively why MTF-should allow fusion energy production without costly facilities within the same generally accepted physical constraints used for conventional magnetic and inertial fusion. We also briefly discuss potential applications of this technology ranging from nuclear rockets for space propulsion to a practical commercial energy system. Finally, we report on the exploratory research underway, and the interesting physics issues that arise in the MTF regime of parameters. Experiments at Los Alamos are focused on formation of a suitable plasma target for compression, utilizing the knowledge base for compact toroids called Field-Reversed Configurations. As reported earlier, it appears that the existing pulsed-power Shiva Star facility at the Air Force Research Laboratory in Albuquerque, NM can satisfy the heating requirements by means of imploding a thin metal cylinder (called a "liner") surrounding an FRC of the type presently being developed. The proposed next step is an integrated liner-on-plasma experiment in which an FRC would be heated to 10 keV by the imploding liner.
Overview of Propellant Delivery Systems at the NASA John C. Stennis Space Center
NASA Technical Reports Server (NTRS)
Haselmaier, L. Haynes; Field, Robert E.; Ryan, Harry M.; Dickey, Jonathan C.
2006-01-01
A wide range of rocket propulsion test work occurs at he NASA John C. Stennis Space Center (SSC) including full-scale engine test activities at test facilities A-1, A-2, B-1 and B-2 as well as combustion device research and development activities at the E-Complex (E-1, E-2. E-3 and E-4) test facilities. One of the greatest challenges associated with operating a test facility is maintaining the health of the primary propellant system and test-critical support systems. The challenge emerges due to the fact that the operating conditions of the various system components are extreme (e.g., low temperatures, high pressures) and due to the fact that many of the components and systems are unique. The purpose of this paper is to briefly describe the experience and modeling techniques that are used to operate the unique test facilities at NASA SSC that continue to support successful propulsion testing.
Erosion of newly developed CFCs and Be under disruption heat loads
NASA Astrophysics Data System (ADS)
Nakamura, K.; Akiba, M.; Araki, M.; Dairaku, M.; Sato, K.; Suzuki, S.; Yokoyama, K.; Linke, J.; Duwe, R.; Bolt, H.; Roedig, M.
1996-10-01
An evaluation of the erosion under disruption heat loads is very important to the lifetime prediction of divertor armour tiles of next fusion devices such as ITER. In particular, erosion data on CFCs (carbon fiber reinforced composites) and beryllium (Be) as the armour materials is urgently required in the ITER design. For CFCs, high heat flux experiments on the newly developed CFCs with high thermal conductivity have been performed under the heat flux of around 800-2000 MW/m 2 and the pulse length of 2-5 ms in JAERI electron beam irradiation systems (JEBIS). As a result, the weight losses of B 4C doped CFCs after heating were almost same to those of the non doped CFC up to 5 wt% boron content. For Be, we have carried out our first disruption experiments on S65/C grade Be specimens in the Juelich divertor test facility in hot cells (JUDITH) facility as a frame work of the J—EU collaboration. The heating conditions were heat loads of 1250-5000 MW/m 2 for 2-8 ms, and the heated area was 3 × 3 mm 2. As a result, the protuberances of the heated area of Be were observed under the lower heat flux.
Evaluation of CFETR as a Fusion Nuclear Science Facility using multiple system codes
NASA Astrophysics Data System (ADS)
Chan, V. S.; Costley, A. E.; Wan, B. N.; Garofalo, A. M.; Leuer, J. A.
2015-02-01
This paper presents the results of a multi-system codes benchmarking study of the recently published China Fusion Engineering Test Reactor (CFETR) pre-conceptual design (Wan et al 2014 IEEE Trans. Plasma Sci. 42 495). Two system codes, General Atomics System Code (GASC) and Tokamak Energy System Code (TESC), using different methodologies to arrive at CFETR performance parameters under the same CFETR constraints show that the correlation between the physics performance and the fusion performance is consistent, and the computed parameters are in good agreement. Optimization of the first wall surface for tritium breeding and the minimization of the machine size are highly compatible. Variations of the plasma currents and profiles lead to changes in the required normalized physics performance, however, they do not significantly affect the optimized size of the machine. GASC and TESC have also been used to explore a lower aspect ratio, larger volume plasma taking advantage of the engineering flexibility in the CFETR design. Assuming the ITER steady-state scenario physics, the larger plasma together with a moderately higher BT and Ip can result in a high gain Qfus ˜ 12, Pfus ˜ 1 GW machine approaching DEMO-like performance. It is concluded that the CFETR baseline mode can meet the minimum goal of the Fusion Nuclear Science Facility (FNSF) mission and advanced physics will enable it to address comprehensively the outstanding critical technology gaps on the path to a demonstration reactor (DEMO). Before proceeding with CFETR construction steady-state operation has to be demonstrated, further development is needed to solve the divertor heat load issue, and blankets have to be designed with tritium breeding ratio (TBR) >1 as a target.
Validating Inertial Confinement Fusion (ICF) predictive capability using perturbed capsules
NASA Astrophysics Data System (ADS)
Schmitt, Mark; Magelssen, Glenn; Tregillis, Ian; Hsu, Scott; Bradley, Paul; Dodd, Evan; Cobble, James; Flippo, Kirk; Offerman, Dustin; Obrey, Kimberly; Wang, Yi-Ming; Watt, Robert; Wilke, Mark; Wysocki, Frederick; Batha, Steven
2009-11-01
Achieving ignition on NIF is a monumental step on the path toward utilizing fusion as a controlled energy source. Obtaining robust ignition requires accurate ICF models to predict the degradation of ignition caused by heterogeneities in capsule construction and irradiation. LANL has embarked on a project to induce controlled defects in capsules to validate our ability to predict their effects on fusion burn. These efforts include the validation of feature-driven hydrodynamics and mix in a convergent geometry. This capability is needed to determine the performance of capsules imploded under less-than-optimum conditions on future IFE facilities. LANL's recently initiated Defect Implosion Experiments (DIME) conducted at Rochester's Omega facility are providing input for these efforts. Recent simulation and experimental results will be shown.
Bennett, G. R.; Herrmann, M. C.; Edwards, M. J.; ...
2007-11-13
We present on the first inertial-confinement-fusion ignition facility, the target capsule will be DT filled through a long, narrow tube inserted into the shell. μg-scale shell perturbations Δm' arising from multiple, 10–50 μm-diameter, hollow SiO 2 tubes on x-ray-driven, ignition-scale, 1-mg capsules have been measured on a subignition device. Finally, simulations compare well with observation, whence it is corroborated that Δm' arises from early x-ray shadowing by the tube rather than tube mass coupling to the shell, and inferred that 10–20 μm tubes will negligibly affect fusion yield on a full-ignition facility.
Presentation Stations of the General Atomics Fusion Educational Program
NASA Astrophysics Data System (ADS)
Lee, R. L.; Fusion Group Education Outreach Team
1996-11-01
The General Atomics Fusion Group's Educational Program has been actively promoting fusion science and applications throughout San Diego County's secondary school systems for over three years. The educational program allows many students to learn more about nuclear fusion science, its applications, and what it takes to become an active participant in an important field of study. It also helps educators to better understand how to teach fusion science in their classroom. Tours of the DIII--D facility are a centerpiece of the program. Over 1000 students visited the DIII--D research facility during the 1995--1996 school year for a half-day of presentations, discussions, and hands-on learning. Interactive presentations are provided at six different stations by GA scientists and engineers to small groups of students during the tours. Stations include topics on energy, plasma science, the electromagnetic spectrum, radiation and risk assessment, and data acquisition. Included also is a tour of the DIII--D machine hall and model where students can see and discuss many aspects of the tokamak. Portions of each station will be presented and discussed.
Experimental investigation on charcoal adsorption for cryogenic pump application
NASA Astrophysics Data System (ADS)
Scannapiego, Matthieu; Day, Christian
2017-12-01
Fusion reactors are generating energy by nuclear fusion between deuterium and tritium. In order to evacuate the high gas throughputs from the plasma exhaust, large pumping speed systems are required. Within the European Fusion Programme, the Karlsruhe Institute of Technology (KIT) has taken the lead to design a three-stage cryogenic pump that can provide a separation function of hydrogen isotopes from the remaining gases; hence limiting the tritium inventory in the machine. A primary input parameter for the detailed design of a cryopump is the sticking coefficient between the gas and the pumping surface. For this purpose, the so-called TIMO open panel pump experiment was conducted in the TIMO-2 test facility at KIT in order to measure pumping speeds on an activated carbon surface cooled at temperatures between 6 K and 22 K, for various pure gases and gas mixtures, under fusion relevant gas flow conditions, and for two different geometrical pump configurations. The influences of the panel temperature, the gas throughput and the intake gas temperature on the pumping speed have been characterized, providing valuable qualitative results for the design of the three-stage cryopump. In a future work, supporting Monte Carlo simulations should allow for derivation of the sticking coefficients.
Refined Calculations of Secondary Nuclear Reactions in Magneto-Inertial Fusion Plasmas
NASA Astrophysics Data System (ADS)
Schmit, Paul; Knapp, Patrick; Hansen, Stephanie; Gomez, Matthew; Hahn, Kelly; Sinars, Daniel; Peterson, Kyle; Slutz, Stephen; Sefkow, Adam; Awe, Thomas; Harding, Eric; Jennings, Christopher
2014-10-01
Diagnosing the degree of magnetic flux compression at stagnation in magneto-inertial fusion (MIF) is critical for charting the performance of any MIF concept. In pure deuterium plasma, the transport of high-energy tritons produced by the aneutronic DD fusion reaction depends strongly on the magnetic field. The tritons probe and occasionally react with the fuel, emitting secondary DT neutrons. We show that the DT/DD neutron yield ratio and the secondary DT neutron spectra can be used to infer the magnetic field-radius product (BR), the critical confinement parameter for MIF. The amount of fuel-pusher mix also can be constrained by secondary reactions. We discuss the sensitivity to plasma inhomogeneities of the calculations and outline methods to relate secondary yields to alpha particle energy deposition in ignition-relevant experiments employing DT fuel. We compare our calculations to recent tests of the Magnetized Liner Inertial Fusion (MagLIF) concept on the Z Pulsed Power Facility. Supported in part by the SNL Truman Fellowship, which is part of the LDRD Program, and sponsored by Sandia Corporation (a wholly owned subsidiary of Lockheed Martin Corporation) as Operator of SNL under its U.S. DoE Contract No. DE-AC04-94AL85000.
Leak testing and repair of fusion devices
NASA Astrophysics Data System (ADS)
Kozman, T. A.
1983-06-01
The leak testing, reporting and vacuum leak repair techniques of the MPTF yin-yang number one magnet system, the world's largest superconducting magnet system, are discussed. Based on this experience, techniques are developed for testing and repairing leaks on the 42 MPTF-B magnets. The leak hunting techniques for the yin-yang magnet systems were applied to two helium circuits (the coil bundle and guard vacuum; both require helium flow for magnet cooldown). Additionally, during MPTF-B operation there are warm water plasma shields and piping that require leak checking.
Hardwired Control Changes For NSTX DC Power Feeds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramakrishnan, S.
The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physics Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. The original TFTR Hardwired Control System (HCS) with electromechanical relays was used for NSTX DC Power loop control and protection during NSTX operations. As part of the NSTX Upgrade, the HCS is being changed to a PLC-based system with the same control logic. This paper gives a description ofmore » the changeover to the new PLC-based system __________________________________________________« less
NASA Astrophysics Data System (ADS)
Hoang, Tuan L.; Nazarov, Roman; Kang, Changwoo; Fan, Jiangyuan
2018-07-01
Under the multi-ion irradiation conditions present in accelerated material-testing facilities or fission/fusion nuclear reactors, the combined effects of atomic displacements with radiation products may induce complex synergies in the structural materials. However, limited access to multi-ion irradiation facilities and the lack of computational models capable of simulating the evolution of complex defects and their synergies make it difficult to understand the actual physical processes taking place in the materials under these extreme conditions. In this paper, we propose the application of pulsed single/dual-beam irradiation as replacements for the expensive steady triple-beam irradiation to study radiation damages in materials under multi-ion irradiation.
Tritium resources available for fusion reactors
NASA Astrophysics Data System (ADS)
Kovari, M.; Coleman, M.; Cristescu, I.; Smith, R.
2018-02-01
The tritium required for ITER will be supplied from the CANDU production in Ontario, but while Ontario may be able to supply 8 kg for a DEMO fusion reactor in the mid-2050s, it will not be able to provide 10 kg at any realistic starting time. The tritium required to start DEMO will depend on advances in plasma fuelling efficiency, burnup fraction, and tritium processing technology. It is in theory possible to start up a fusion reactor with little or no tritium, but at an estimated cost of 2 billion per kilogram of tritium saved, it is not economically sensible. Some heavy water reactor tritium production scenarios with varying degrees of optimism are presented, with the assumption that only Canada, the Republic of Korea, and Romania make tritium available to the fusion community. Results for the tritium available for DEMO in 2055 range from zero to 30 kg. CANDU and similar heavy water reactors could in theory generate additional tritium in a number of ways: (a) adjuster rods containing lithium could be used, giving 0.13 kg per year per reactor; (b) a fuel bundle with a burnable absorber has been designed for CANDU reactors, which might be adapted for tritium production; (c) tritium production could be increased by 0.05 kg per year per reactor by doping the moderator with lithium-6. If a fusion reactor is started up around 2055, governments in Canada, Argentina, China, India, South Korea and Romania will have the opportunity in the years leading up to that to take appropriate steps: (a) build, refurbish or upgrade tritium extraction facilities; (b) extend the lives of heavy water reactors, or build new ones; (c) reduce tritium sales; (d) boost tritium production in the remaining heavy water reactors. All of the alternative production methods considered have serious economic and regulatory drawbacks, and the risk of diversion of tritium or lithium-6 would also be a major concern. There are likely to be serious problems with supplying tritium for future fusion reactors.
Scientific and technological advancements in inertial fusion energy
Hinkel, D. E.
2013-09-26
Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well asmore » to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruel, Nancy; Zago, Anna; Spear, Patricia G.
2006-03-01
Herpes simplex virus (HSV) glycoprotein B (gB) is one of the four viral glycoproteins required for viral entry and cell fusion and is highly conserved among herpesviruses. Mutants of HSV type 2 gB were generated by substituting conserved residues in the cytoplasmic tail with alanine or by deleting 41 amino acids from the C-terminus. Some of the mutations abolished cell fusion activity and also prevented transport of gB to the cell surface, identifying residues in the gB cytoplasmic tail that are critical for intracellular transport of this glycoprotein. These mutations also prevented production of infectious virus, possibly because the mutantmore » forms of gB were not transported to the site of envelopment. Other mutations, particularly the deletion, significantly enhanced cell fusion activity. These mutations, as well as others described previously, identify regions of the gB cytoplasmic domain that modulate cell fusion activity.« less
Synaptotagmin C2B Domain Regulates Ca2+-triggered Fusion in Vitro
Gaffaney, Jon D.; Dunning, F. Mark; Wang, Zhao; Hui, Enfu; Chapman, Edwin R.
2008-01-01
Synaptotagmin (syt) 1 is localized to synaptic vesicles, binds Ca2+, and regulates neuronal exocytosis. Syt 1 harbors two Ca2+-binding motifs referred to as C2A and C2B. In this study we examine the function of the isolated C2 domains of Syt 1 using a reconstituted, SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor)-mediated, fusion assay. We report that inclusion of phosphatidylethanolamine into reconstituted SNARE vesicles enabled isolated C2B, but not C2A, to regulate Ca2+-triggered fusion. The isolated C2B domain had a 6-fold lower EC for Ca2+ 50-activated fusion than the intact cytosolic domain of Syt 1 (C2AB). Phosphatidylethanolamine increased both the rate and efficiency of C2AB- and C2B-regulated fusion without affecting their abilities to bind membrane-embedded syntaxin-SNAP-25 (t-SNARE) complexes. At equimolar concentrations, the isolated C2A domain was an effective inhibitor of C2B-, but not C2AB-regulated fusion; hence, C2A has markedly different effects in the fusion assay depending on whether it is tethered to C2B. Finally, scanning alanine mutagenesis of C2AB revealed four distinct groups of mutations within the C2B domain that play roles in the regulation of SNARE-mediated fusion. Surprisingly, substitution of Arg-398 with alanine, which lies on the opposite end of C2B from the Ca2+/membrane-binding loops, decreases C2AB t-SNARE binding and Ca2+-triggered fusion in vitro without affecting Ca2+-triggered interactions with phosphatidylserine or vesicle aggregation. In addition, some mutations uncouple the clamping and stimulatory functions of syt 1, suggesting that these two activities are mediated by distinct structural determinants in C2B. PMID:18784080
40 CFR 160.45 - Test system supply facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... aquatic plants. (2) Facilities for plant growth, including, but not limited to greenhouses, growth... preserved by appropriate means. (b) When appropriate, plant supply facilities shall be provided. As...
40 CFR 160.45 - Test system supply facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... aquatic plants. (2) Facilities for plant growth, including, but not limited to greenhouses, growth... preserved by appropriate means. (b) When appropriate, plant supply facilities shall be provided. As...
40 CFR 160.45 - Test system supply facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... aquatic plants. (2) Facilities for plant growth, including, but not limited to greenhouses, growth... preserved by appropriate means. (b) When appropriate, plant supply facilities shall be provided. As...
Energy-resolved neutron imaging for inertial confinement fusion
NASA Astrophysics Data System (ADS)
Moran, M. J.; Haan, S. W.; Hatchett, S. P.; Izumi, N.; Koch, J. A.; Lerche, R. A.; Phillips, T. W.
2003-03-01
The success of the National Ignition Facility program will depend on diagnostic measurements which study the performance of inertial confinement fusion (ICF) experiments. Neutron yield, fusion-burn time history, and images are examples of important diagnostics. Neutron and x-ray images will record the geometries of compressed targets during the fusion-burn process. Such images provide a critical test of the accuracy of numerical modeling of ICF experiments. They also can provide valuable information in cases where experiments produce unexpected results. Although x-ray and neutron images provide similar data, they do have significant differences. X-ray images represent the distribution of high-temperature regions where fusion occurs, while neutron images directly reveal the spatial distribution of fusion-neutron emission. X-ray imaging has the advantage of a relatively straightforward path to the imaging system design. Neutron imaging, by using energy-resolved detection, offers the intriguing advantage of being able to provide independent images of burning and nonburning regions of the nuclear fuel. The usefulness of energy-resolved neutron imaging depends on both the information content of the data and on the quality of the data that can be recorded. The information content will relate to the characteristic neutron spectra that are associated with emission from different regions of the source. Numerical modeling of ICF fusion burn will be required to interpret the corresponding energy-dependent images. The exercise will be useful only if the images can be recorded with sufficient definition to reveal the spatial and energy-dependent features of interest. Several options are being evaluated with respect to the feasibility of providing the desired simultaneous spatial and energy resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The vision described here builds on the present U.S. activities in fusion plasma and materials science relevant to the energy goal and extends plasma science at the frontier of discovery. The plan is founded on recommendations made by the National Academies, a number of recent studies by the Fusion Energy Sciences Advisory Committee (FESAC), and the Administration’s views on the greatest opportunities for U.S. scientific leadership.This report highlights five areas of critical importance for the U.S. fusion energy sciences enterprise over the next decade: 1) Massively parallel computing with the goal of validated whole-fusion-device modeling will enable a transformation inmore » predictive power, which is required to minimize risk in future fusion energy development steps; 2) Materials science as it relates to plasma and fusion sciences will provide the scientific foundations for greatly improved plasma confinement and heat exhaust; 3) Research in the prediction and control of transient events that can be deleterious to toroidal fusion plasma confinement will provide greater confidence in machine designs and operation with stable plasmas; 4) Continued stewardship of discovery in plasma science that is not expressly driven by the energy goal will address frontier science issues underpinning great mysteries of the visible universe and help attract and retain a new generation of plasma/fusion science leaders; 5) FES user facilities will be kept world-leading through robust operations support and regular upgrades. Finally, we will continue leveraging resources among agencies and institutions and strengthening our partnerships with international research facilities.« less
Modes of Paramyxovirus Fusion: a Henipavirus perspective
Lee, Benhur; Akyol-Ataman, Zeynep
2011-01-01
Henipavirus is a new genus of paramyxovirus that uses protein-based receptors (EphrinB2 and EphrinB3) for virus entry. Paramyxovirus entry requires the coordinated action of the fusion (F) and attachment viral envelope glycoproteins. Receptor binding to the attachment protein triggers F to undergo a conformational cascade that results in membrane fusion. The accumulation of structural and functional studies on many paramyxoviral fusion and attachment proteins, including recent structures of Nipah and Hendra virus G bound and unbound to cognate ephrinB receptors, indicate that henipavirus entry and fusion differs mechanistically from paramyxoviruses that use glycan-based receptors. PMID:21511478
Conference report on the 3rd International Symposium on Lithium Application for Fusion Devices
Mazzitelli, Guiseppe; Hirooka, Y.; Hu, J. S.; ...
2015-01-14
The third International Symposium on Lithium Application for Fusion Device (ISLA-2013) was held on 9-11 October 2013 at ENEA Frascati Centre with growing participation and interest from the community working on more general aspect of liquid metal research for fusion energy development. ISLA-2013 has been confirmed to be the largest and the most important meeting dedicated to liquid metal application for the magnetic fusion research. Overall, 45 presentation plus 5 posters were given, representing 28 institutions from 11 countries. The latest experimental results from nine magnetic fusion devices were presented in 16 presentations from NSTX (PPPL, USA), FTU (ENEA, Italy),more » T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST(ASIPP, China), HT-7 (ASIPP, China), RFX (Padova, Italy), KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) lithium in magnetic confinement experiments (facility overviews), (II) lithium in magnetic confinement experiments (topical issues), (III) special session on liquid lithium technology, (IV) lithium laboratory test stands, (V) Lithium theory/modelling/comments, (VI) innovative lithium applications and (VII) special Session on lithium-safety and lithium handling. There was a wide participation from the fusion technology communities, including IFMIF and TBM communities providing productive exchange with the physics oriented magnetic confinement liquid metal research groups. Furthermore, this international workshop will continue on a biennial basis (alternating with the Plasma-Surface Interactions (PSI) Conference) and the next workshop will be held at CIEMAT, Madrid, Spain, in 2015.« less
Conference Report on the 3rd International Symposium on Lithium Application for Fusion Devices
NASA Astrophysics Data System (ADS)
Mazzitelli, G.; Hirooka, Y.; Hu, J. S.; Mirnov, S. V.; Nygren, R.; Shimada, M.; Ono, M.; Tabares, F. L.
2015-02-01
The third International Symposium on Lithium Application for Fusion Device (ISLA-2013) was held on 9-11 October 2013 at ENEA Frascati Centre with growing participation and interest from the community working on more general aspect of liquid metal research for fusion energy development. ISLA-2013 has been confirmed to be the largest and the most important meeting dedicated to liquid metal application for the magnetic fusion research. Overall, 45 presentation plus 5 posters were given, representing 28 institutions from 11 countries. The latest experimental results from nine magnetic fusion devices were presented in 16 presentations from NSTX (PPPL, USA), FTU (ENEA, Italy), T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST(ASIPP, China), HT-7 (ASIPP, China), RFX (Padova, Italy), KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) lithium in magnetic confinement experiments (facility overviews), (II) lithium in magnetic confinement experiments (topical issues), (III) special session on liquid lithium technology, (IV) lithium laboratory test stands, (V) Lithium theory/modelling/comments, (VI) innovative lithium applications and (VII) special Session on lithium-safety and lithium handling. There was a wide participation from the fusion technology communities, including IFMIF and TBM communities providing productive exchange with the physics oriented magnetic confinement liquid metal research groups. This international workshop will continue on a biennial basis (alternating with the Plasma-Surface Interactions (PSI) Conference) and the next workshop will be held at CIEMAT, Madrid, Spain, in 2015.
Tyrosine kinase fusion genes in pediatric BCR-ABL1-like acute lymphoblastic leukemia
Boer, Judith M.; Steeghs, Elisabeth M.P.; Marchante, João R.M.; Boeree, Aurélie; Beaudoin, James J.; Berna Beverloo, H.; Kuiper, Roland P.; Escherich, Gabriele; van der Velden, Vincent H.J.; van der Schoot, C. Ellen; de Groot-Kruseman, Hester A.; Pieters, Rob; den Boer, Monique L.
2017-01-01
Approximately 15% of pediatric B cell precursor acute lymphoblastic leukemia (BCP-ALL) is characterized by gene expression similar to that of BCR-ABL1-positive disease and unfavorable prognosis. This BCR-ABL1-like subtype shows a high frequency of B-cell development gene aberrations and tyrosine kinase-activating lesions. To evaluate the clinical significance of tyrosine kinase gene fusions in children with BCP-ALL, we studied the frequency of recently identified tyrosine kinase fusions, associated genetic features, and prognosis in a representative Dutch/German cohort. We identified 14 tyrosine kinase fusions among 77 BCR-ABL1-like cases (18%) and none among 76 non-BCR-ABL1-like B-other cases. Novel exon fusions were identified for RCSD1-ABL2 and TERF2-JAK2. JAK2 mutation was mutually exclusive with tyrosine kinase fusions and only occurred in cases with high CRLF2 expression. The non/late response rate and levels of minimal residual disease in the fusion-positive BCR-ABL1-like group were higher than in the non-BCR-ABL1-like B-others (p<0.01), and also higher, albeit not statistically significant, compared with the fusion-negative BCR-ABL1-like group. The 8-year cumulative incidence of relapse in the fusion-positive BCR-ABL1-like group (35%) was comparable with that in the fusion-negative BCR-ABL1-like group (35%), and worse than in the non-BCR-ABL1-like B-other group (17%, p=0.07). IKZF1 deletions, predominantly other than the dominant-negative isoform and full deletion, co-occurred with tyrosine kinase fusions. This study shows that tyrosine kinase fusion-positive cases are a high-risk subtype of BCP-ALL, which warrants further studies with specific kinase inhibitors to improve outcome. PMID:27894077
Magnetized Target Fusion Collaboration. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slough, John
Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (~ a few cm). One such program now under study, referred tomore » as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking described in this report was to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The FRC must also survive during the time it takes for the metal liner to compress the FRC target. The initial work at the UW was focused on developing adequate preionization and flux trapping that were found to be essential in past experiments for obtaining the density, flux and most critically, FRC lifetime required for MTF. The timescale for testing and development of such a source can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent experiments with these IPAs have demonstrated the ability to rapidly form, accelerate and merge two hypervelocity FRCs into a compression chamber. The resultant FRC that was formed was hot (T{sub ion} ~ 400 eV), stationary, and stable with a configuration lifetime several times that necessary for the MTF liner experiments. The accelerator length was less than 1 meter, and the time from the initiation of formation to the establishment of the final equilibrium was less than 10 microseconds. With some modification, each accelerator can be made capable of producing FRCs suitable for the production of the target plasma for the MTF liner experiment. Based on the initial FRC merging/compression results, the design and methodology for an experimental realization of the target plasma for the MTF liner experiment can now be defined. The construction and testing of the key components for the formation of the target plasma at the Air Force Research Laboratory (AFRL) will be performed on the IPA experiment, now at MSNW. A high density FRC plasmoid will be formed and accelerated out of each IPA into a merging/compression chamber similar to the imploding liner at AFRL. The properties of the resultant FRC plasma (size, temperature, density, flux, lifetime) will be obtained. The process will be optimized, and a final design for implementation at AFRL will be carried out. When implemented at AFRL it is anticipated that the colliding/merging FRCs will then be compressed by the liner. In this manner it is hoped that ultimately a plasma with ion temperatures reaching the 10 keV range and fusion gain near unity can be obtained.« less
Development and Testing of Dispersion-Strengthened Tungsten Alloys via Spark Plasma Sinterin
NASA Astrophysics Data System (ADS)
Lang, Eric; Madden, Nathan; Smith, Charles; Krogstad, Jessica; Allain, Jean Paul
2017-10-01
Tungsten (W) is a common plasma-facing component (PFC) material in the divertor region of tokamak fusion devices due to its high melting point and high sputter threshold. However, W is intrinsically brittle and is further embrittled under neutron irradiation, and the low recrystallization temperature pose complications in fusion environments. More ductile W alloys, such as dispersion-strengthened tungsten are being developed. In this work, W samples are processed via spark plasma sintering (SPS) with TiC, ZrC, and TaC dispersoids alloyed from 0.5 to 10 weight %. SPS is a powder compaction technique that provides high pressure and heating rates via electrical current, allowing for a lower final temperature and hold time for compaction. Initial testing of material properties, smicrostructure, and composition of specimens will be presented. Deuterium and helium irradiations have been performed in IGNIS, a multi-functional, in-situ irradiation and characterization facility at the University of Illinois. High-flux, low-energy exposures at the Magnum-PSI facility at DIFFER exposed samples to a D fluence of 1×1026 cm-2 and He fluence of 1x1025-1x1026 cm-2 at temperatures of 300-1000 C. In-situ chemistry changes via XPS and ex-situ morphology changes via SEM will be studied. Work supported by US DOE Contract DE-SC0014267.
Chen, Ming-Jun; Cheng, Jian; Yuan, Xiao-Dong; Liao, Wei; Wang, Hai-Jun; Wang, Jing-He; Xiao, Yong; Li, Ming-Quan
2015-01-01
Repairing initial slight damage site into stable structures by engineering techniques is the leading strategy to mitigate the damage growth on large-size components used in laser-driven fusion facilities. For KH2PO4 crystals, serving as frequency converter and optoelectronic switch-Pockels cell, micro-milling has been proven the most promising method to fabricate these stable structures. However, tool marks inside repairing pit would be unavoidably introduced due to the wearing of milling cutter in actual repairing process. Here we quantitatively investigate the effect of tool marks on repairing quality of damaged crystal components by simulating its induced light intensification and testing the laser-induced damage threshold. We found that due to the formation of focusing hot spots and interference ripples, the light intensity is strongly enhanced with the presence of tool marks, especially for those on rear surfaces. Besides, the negative effect of tool marks is mark density dependent and multiple tool marks would aggravate the light intensification. Laser damage tests verified the role of tool marks as weak points, reducing the repairing quality. This work offers new criterion to comprehensively evaluate the quality of repaired optical surfaces to alleviate the bottleneck issue of low laser damage threshold for optical components in laser-driven fusion facilities. PMID:26399624
Seña, Arlene C; Moorman, Anne; Njord, Levi; Williams, Roxanne E; Colborn, James; Khudyakov, Yury; Drobenuic, Jan; Xia, Guo-Liang; Wood, Hattie; Moore, Zack
2013-07-01
Acute hepatitis B virus (HBV) infections have been reported in long-term care facilities (LTCFs), primarily associated with infection control breaks during assisted blood glucose monitoring. We investigated HBV outbreaks that occurred in separate skilled nursing facilities (SNFs) to determine factors associated with transmission. Outbreak investigation with case-control studies. Two SNFs (facilities A and B) in Durham, North Carolina, during 2009-2010. Residents with acute HBV infection and controls randomly selected from HBV-susceptible residents during the outbreak period. After initial cases were identified, screening was offered to all residents, with repeat testing 3 months later for HBV-susceptible residents. Molecular testing was performed to assess viral relatedness. Infection control practices were observed. Case-control studies were conducted to evaluate associations between exposures and acute HBV infection in each facility. Six acute HBV cases were identified in each SNF. Viral phylogenetic analysis revealed a high degree of HBV relatedness within, but not between, facilities. No evaluated exposures were significantly associated with acute HBV infection in facility A; those associated with infection in facility B (all odds ratios >20) included injections, hospital or emergency room visits, and daily blood glucose monitoring. Observations revealed absence of trained infection control staff at facility A and suboptimal hand hygiene practices during blood glucose monitoring and insulin injections at facility B. These outbreaks underscore the vulnerability of LTCF residents to acute HBV infection, the importance of surveillance and prompt investigation of incident cases, and the need for improved infection control education to prevent transmission.
Sensitivity of the fusion cross section to the density dependence of the symmetry energy
NASA Astrophysics Data System (ADS)
Reinhard, P.-G.; Umar, A. S.; Stevenson, P. D.; Piekarewicz, J.; Oberacker, V. E.; Maruhn, J. A.
2016-04-01
Background: The study of the nuclear equation of state (EOS) and the behavior of nuclear matter under extreme conditions is crucial to our understanding of many nuclear and astrophysical phenomena. Nuclear reactions serve as one of the means for studying the EOS. Purpose: It is the aim of this paper to discuss the impact of nuclear fusion on the EOS. This is a timely subject given the expected availability of increasingly exotic beams at rare isotope facilities [A. B. Balantekin et al., Mod. Phys. Lett. A 29, 1430010 (2014), 10.1142/S0217732314300109]. In practice, we focus on 48Ca+48Ca fusion. Method: We employ three different approaches to calculate fusion cross sections for a set of energy density functionals with systematically varying nuclear matter properties. Fusion calculations are performed using frozen densities, using a dynamic microscopic method based on density-constrained time-dependent Hartree-Fock (DC-TDHF) approach, as well as direct TDHF study of above barrier cross sections. For these studies, we employ a family of Skyrme parametrizations with systematically varied nuclear matter properties. Results: The folding-potential model provides a reasonable first estimate of cross sections. DC-TDHF, which includes dynamical polarization, reduces the fusion barriers and delivers much better cross sections. Full TDHF near the barrier agrees nicely with DC-TDHF. Most of the Skyrme forces which we used deliver, on the average, fusion cross sections in good agreement with the data. Trying to read off a trend in the results, we find a slight preference for forces which deliver a slope of symmetry energy of L ≈50 MeV that corresponds to a neutron-skin thickness of 48Ca of Rskin=(0.180 -0.210 ) fm. Conclusions: Fusion reactions in the barrier and sub-barrier region can be a tool to study the EOS and the neutron skin of nuclei. The success of the approach will depend on reduced experimental uncertainties of fusion data as well as the development of fusion theories that closely couple to the microscopic structure and dynamics.
Vacuum System and Modeling for the Materials Plasma Exposure Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumsdaine, Arnold; Meitner, Steve; Graves, Van
Understanding the science of plasma-material interactions (PMI) is essential for the future development of fusion facilities. The design of divertors and first walls for the next generation of long-pulse fusion facilities, such as a Fusion Nuclear Science Facility (FNSF) or a DEMO, requires significant PMI research and development. In order to meet this need, a new linear plasma facility, the Materials Plasma Exposure Experiment (MPEX) is proposed, which will produce divertor relevant plasma conditions for these next generation facilities. The device will be capable of handling low activation irradiated samples and be able to remove and replace samples without breakingmore » vacuum. A Target Exchange Chamber (TEC) which can be disconnected from the high field environment in order to perform in-situ diagnostics is planned for the facility as well. The vacuum system for MPEX must be carefully designed in order to meet the requirements of the different heating systems, and to provide conditions at the target similar to those expected in a divertor. An automated coupling-decoupling (“autocoupler”) system is designed to create a high vacuum seal, and will allow the TEC to be disconnected without breaking vacuum in either the TEC or the primary plasma materials interaction chamber. This autocoupler, which can be actuated remotely in the presence of the high magnetic fields, has been designed and prototyped, and shows robustness in a variety of conditions. The vacuum system has been modeled using a simplified finite element analysis, and indicates that the design goals for the pressures in key regions of the facility are achievable.« less
Vacuum System and Modeling for the Materials Plasma Exposure Experiment
Lumsdaine, Arnold; Meitner, Steve; Graves, Van; ...
2017-08-07
Understanding the science of plasma-material interactions (PMI) is essential for the future development of fusion facilities. The design of divertors and first walls for the next generation of long-pulse fusion facilities, such as a Fusion Nuclear Science Facility (FNSF) or a DEMO, requires significant PMI research and development. In order to meet this need, a new linear plasma facility, the Materials Plasma Exposure Experiment (MPEX) is proposed, which will produce divertor relevant plasma conditions for these next generation facilities. The device will be capable of handling low activation irradiated samples and be able to remove and replace samples without breakingmore » vacuum. A Target Exchange Chamber (TEC) which can be disconnected from the high field environment in order to perform in-situ diagnostics is planned for the facility as well. The vacuum system for MPEX must be carefully designed in order to meet the requirements of the different heating systems, and to provide conditions at the target similar to those expected in a divertor. An automated coupling-decoupling (“autocoupler”) system is designed to create a high vacuum seal, and will allow the TEC to be disconnected without breaking vacuum in either the TEC or the primary plasma materials interaction chamber. This autocoupler, which can be actuated remotely in the presence of the high magnetic fields, has been designed and prototyped, and shows robustness in a variety of conditions. The vacuum system has been modeled using a simplified finite element analysis, and indicates that the design goals for the pressures in key regions of the facility are achievable.« less
On the feasibility of a fiber-based inertial fusion laser driver
NASA Astrophysics Data System (ADS)
Labaune, C.; Hulin, D.; Galvanauskas, A.; Mourou, G. A.
2008-08-01
One critical issue for the realization of Inertial Fusion Energy (IFE) power plants is the driver efficiency. High driver efficiency will greatly relax the driver energy requested to produce a fusion gain, resulting in more compact and less costly facilities. Among lasers, systems based on guided wave such as diode pumped Yb:glass fiber-amplifiers with a demonstrated overall efficiency close to 70% as opposed to few percents for systems based on free propagation, offer some intriguing opportunities. Guided optics provides the enormous advantage to directly benefit from the telecommunication industry where components are made cheap, rugged, well tested, environmentally stable, with lifetimes measured in tens of years and compatible with massive manufacturing. In this paper, we are studying the possibility to design a laser driver solely based on guided wave optics. We call this concept FAN for Fiber Amplification Network. It represents a profound departure from already proposed laser drivers all based on free propagation optics. The system will use a large number of identical fibers to combines long (ns) and short (ps) pulses that are needed for the fast ignition scheme. Technical details are discussed relative to fiber type, pump, phasing, pulse shaping and timing as well as fiber distribution around the chamber. The proposed fiber driver provides maximum and independent control on the wavefront, pulse duration, pulse shape, timing, making possible reaching the highest gain. The massive manufacturing will be amenable to a cheaper facility with an easy upkeep.
Semi-analytic modeling and simulation of magnetized liner inertial fusion
NASA Astrophysics Data System (ADS)
McBride, R. D.; Slutz, S. A.; Hansen, S. B.
2013-10-01
Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) pre-heat of the fuel; (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, and internal magnetic pressure and heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) deuterium-deuterium and deuterium-tritium primary fusion reactions; and (9) magnetized alpha-particle heating. We will first show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original MagLIF paper. We will then use this model to illustrate the MagLIF parameter space, energetics, and efficiencies, and to show the experimental challenges that we will likely be facing as we begin testing MagLIF using the infrastructure presently available at the Z facility. Finally, we will demonstrate how this scenario could likely change as various facility upgrades are made over the next three to five years and beyond. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Structure-function analysis of herpes simplex virus glycoprotein B with fusion-from-without activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roller, Devin G.; Dollery, Stephen J.; Doyle, James L.
2008-12-20
Fusion-from-without (FFWO) is the rapid induction of cell fusion by virions in the absence of viral protein synthesis. The combination of two amino acid mutations in envelope glycoprotein B (gB), one in the ectodomain and one in the cytoplasmic tail, can confer FFWO activity to wild type herpes simplex virus (HSV). In this report, we analyzed the entry and cell fusion phenotypes of HSV that contains FFWO gB, with emphasis on the cellular receptors for HSV, nectin-1, nectin-2 and HVEM. The ability of an HSV strain with FFWO gB to efficiently mediate FFWO via a specific gD-receptor correlated with itsmore » ability to mediate viral entry by that receptor. A FFWO form of gB was not sufficient to switch the entry of HSV from a pH-dependent, endocytic pathway to a direct fusion, pH-independent pathway. The conformation of gB with FFWO activity was not globally altered relative to wild type. However, distinct monoclonal antibodies had reduced reactivity with FFWO gB, suggesting an altered antigenic structure relative to wild type. FFWO was blocked by preincubation of virions with neutralizing antibodies to gB or gD. Together with previous studies, the results indicate that the roles of gB in FFWO and in virus-cell fusion during entry are related but not identical. This study also suggests that the FFWO function of gB is not a specific determinant for the selection of HSV entry pathway and that antigenic differences in FFWO gB may reflect its enhanced fusion activity.« less
Effect of Illumination on Ocular Status Modifications Induced by Short-Term 3D TV Viewing
Chen, Yuanyuan; Xu, Aiqin; Jiang, Jian
2017-01-01
Objectives. This study aimed to compare changes in ocular status after 3D TV viewing under three modes of illumination and thereby identify optimal illumination for 3D TV viewing. Methods. The following measures of ocular status were assessed: the accommodative response, accommodative microfluctuation, accommodative facility, relative accommodation, gradient accommodative convergence/accommodation (AC/A) ratio, phoria, and fusional vergence. The observers watched 3D television for 90 minutes through 3D shutter glasses under three illumination modes: A, complete darkness; B, back illumination (50 lx); and C, front illumination (130 lx). The ocular status of the observers was assessed both before and after the viewing. Results. After 3D TV viewing, the accommodative response and accommodative microfluctuation were significantly changed under illumination Modes A and B. The near positive fusional vergence decreased significantly after the 90-minute 3D viewing session under each illumination mode, and this effect was not significantly different among the three modes. Conclusions. Short-term 3D viewing modified the ocular status of adults. The least amount of such change occurred with front illumination, suggesting that this type of illumination is an appropriate mode for 3D shutter TV viewing. PMID:28348893
Immunogencity of HSA-L7/L12 (Brucella abortus ribosomal protein) in an animal model.
Pakzad, Iraj; Rezaee, Abbas; Rasaee, Mohammad Javad; Tabbaraee, Bahman; Delpisheh, Ali
2009-03-01
The immunogenic Brucella abortus ribosomal protein L7/L12 is a promising candidate antigen for the development of subunit vaccines against brucellosis. This study was aimed to evaluate the protection of recombinant Human Serum Albumin (HAS)-L7/L12 fusion protein in Balb/c mice. The amplified L7/L12 gene was cloned in pYHSA5 vector, pYHSA5-L7/L12 construct was transformed in Saccharomyces cerevisiae and the expressed protein from supernatant was purified by affinity chromatography. Balb/c mice were immunized in five groups by tHSA-L7/L12 fusion protein (group 1), Brucella abortus S19 (group 2), HSA (group 3), recombinant L7/L12 (group 4), PBS (group 5). ELISA to detect antibody production, LTT test to assess antigen specific lymphocyte response were conducted prior to virulent B. abortus strain 544 challenge two weeks after the last injection. Bacterial counts from spleens of immunized mice were done four weeks after challenge. In ELISA tests, the specific antibodies exhibited a dominance of immunoglobulin IgG1 over IgG2a. In addition, the tHSA-L7/L12 fusion protein and L7/L12 elicited a strong T-cell proliferative response upon restimulation in vitro with recombinant tHSA-L7/L12 and L7/L12, suggesting the induction of a cellular immunity response in vivo. However, there was no significant difference in proliferative response of L7/L12 and tHSA-L7/L12 fusion protein (p>0.05). The L7/L12 and tHSA-L7/L12 fusion protein vaccines could also induce significant protection against challenge with the virulent strain B. abortus 544 in Balb/c mice (p< or =0.05). The tHSA-L7/L12 fusion protein, similar to L7/L12 has the ability to induce antigen specific lymphocyte proliferation, stimulate humoral immunity and engender protection.
Tandem SUMO fusion vectors for improving soluble protein expression and purification.
Guerrero, Fernando; Ciragan, Annika; Iwaï, Hideo
2015-12-01
Availability of highly purified proteins in quantity is crucial for detailed biochemical and structural investigations. Fusion tags are versatile tools to facilitate efficient protein purification and to improve soluble overexpression of proteins. Various purification and fusion tags have been widely used for overexpression in Escherichia coli. However, these tags might interfere with biological functions and/or structural investigations of the protein of interest. Therefore, an additional purification step to remove fusion tags by proteolytic digestion might be required. Here, we describe a set of new vectors in which yeast SUMO (SMT3) was used as the highly specific recognition sequence of ubiquitin-like protease 1, together with other commonly used solubility enhancing proteins, such as glutathione S-transferase, maltose binding protein, thioredoxin and trigger factor for optimizing soluble expression of protein of interest. This tandem SUMO (T-SUMO) fusion system was tested for soluble expression of the C-terminal domain of TonB from different organisms and for the antiviral protein scytovirin. Copyright © 2015 Elsevier Inc. All rights reserved.
Insulin chains as efficient fusion tags for prokaryotic expression of short peptides.
Deng, Ligang; Xue, Xiaoying; Shen, Cangjie; Song, Xiaohan; Wang, Chunyang; Wang, Nan
2017-10-01
Insulin chains are usually expressed in Escherichia coli as fusion proteins with different tags, including various low molecular weight peptide tags. The objective of this study was to determine if insulin chains could facilitate the recombinant expression of other target proteins, with an emphasis on low molecular weight peptides. A series of short peptides were fused to mini-proinsulin, chain B or chain A, and induced for expression in Escherichia coli. All the tested peptides including glucagon-like peptide 1 (GLP-1), a C-terminal extended GLP-1, oxyntomodulin, enfuvirtide, linaclotide, and an unstructured artificial peptide were expressed with reasonable yields, identified by Tricine-SDS-PAGE and immunoblotting. All recombinant products were expressed in inclusion bodies. The effective accumulation of products was largely attributed to the insoluble expression induced by fusion with insulin chains, and was confirmed by the fusion expression of transthyretin. Insulin chains thus show promise as efficient fusion tags for mass production of heterologous peptides in prokaryotes. Copyright © 2017 Elsevier Inc. All rights reserved.
Electron Shock Ignition of Inertial Fusion Targets
Shang, W. L.; Betti, R.; Hu, S. X.; ...
2017-11-07
Here, it is shown that inertial fusion targets designed with low implosion velocities can be shock ignited using laser–plasma interaction generated hot electrons (hot-e) to obtain high-energy gains. These designs are robust to multimode asymmetries and are predicted to ignite even for significantly distorted implosions. Electron shock ignition requires tens of kilojoules of hot-e, which can only be produced on a large laser facility like the National Ignition Facility, with the laser to hot-e conversion efficiency greater than 10% at laser intensities ~10 16 W/cm 2.
Source term evaluation for accident transients in the experimental fusion facility ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virot, F.; Barrachin, M.; Cousin, F.
2015-03-15
We have studied the transport and chemical speciation of radio-toxic and toxic species for an event of water ingress in the vacuum vessel of experimental fusion facility ITER with the ASTEC code. In particular our evaluation takes into account an assessed thermodynamic data for the beryllium gaseous species. This study shows that deposited beryllium dusts of atomic Be and Be(OH){sub 2} are formed. It also shows that Be(OT){sub 2} could exist in some conditions in the drain tank. (authors)
Electron Shock Ignition of Inertial Fusion Targets
NASA Astrophysics Data System (ADS)
Shang, W. L.; Betti, R.; Hu, S. X.; Woo, K.; Hao, L.; Ren, C.; Christopherson, A. R.; Bose, A.; Theobald, W.
2017-11-01
It is shown that inertial confinement fusion targets designed with low implosion velocities can be shock-ignited using laser-plasma interaction generated hot electrons (hot-e 's) to obtain high energy gains. These designs are robust to multimode asymmetries and are predicted to ignite even for significantly distorted implosions. Electron shock ignition requires tens of kilojoules of hot-e 's which can be produced only at a large laser facility like the National Ignition Facility, with the laser-to-hot-e conversion efficiency greater than 10% at laser intensities ˜1016 W /cm2 .
Electron Shock Ignition of Inertial Fusion Targets.
Shang, W L; Betti, R; Hu, S X; Woo, K; Hao, L; Ren, C; Christopherson, A R; Bose, A; Theobald, W
2017-11-10
It is shown that inertial confinement fusion targets designed with low implosion velocities can be shock-ignited using laser-plasma interaction generated hot electrons (hot-e's) to obtain high energy gains. These designs are robust to multimode asymmetries and are predicted to ignite even for significantly distorted implosions. Electron shock ignition requires tens of kilojoules of hot-e's which can be produced only at a large laser facility like the National Ignition Facility, with the laser-to-hot-e conversion efficiency greater than 10% at laser intensities ∼10^{16} W/cm^{2}.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Correll, D
The continuing objective of Lawrence Livermore National Laboratory's (LLNL's) Inertial Confinement Fusion (ICF) Program is the demonstration of thermonuclear fusion ignition and energy gain in the laboratory and to support the nuclear weapons program in its use of ICF facilities. The underlying theme of all ICF activities as a science research and development program is the Department of Energy's (DOE's) Defense Programs (DP) science-based Stockpile Stewardship Program (SSP). The mission of the US Inertial Fusion Program is twofold: (1) to address high-energy-density physics issues for the SSP and (2) to develop a laboratory microfusion capability for defense and energy applications.more » In pursuit of this mission, the ICF Program has developed a state-of-the-art capability to investigate high-energy-density physics in the laboratory. The near-term goals pursued by the ICF Program in support of its mission are demonstrating fusion ignition in the laboratory and expanding the Program's capabilities in high-energy-density science. The National Ignition Facility (NIF) project is a cornerstone of this effort.« less
NASA Astrophysics Data System (ADS)
Alvarez Ruiz, J.; Rivera, A.; Mima, K.; Garoz, D.; Gonzalez-Arrabal, R.; Gordillo, N.; Fuchs, J.; Tanaka, K.; Fernández, I.; Briones, F.; Perlado, J.
2012-12-01
Dry-wall laser inertial fusion (LIF) chambers will have to withstand strong bursts of fast charged particles which will deposit tens of kJ m-2 and implant more than 1018 particles m-2 in a few microseconds at a repetition rate of some Hz. Large chamber dimensions and resistant plasma-facing materials must be combined to guarantee the chamber performance as long as possible under the expected threats: heating, fatigue, cracking, formation of defects, retention of light species, swelling and erosion. Current and novel radiation resistant materials for the first wall need to be validated under realistic conditions. However, at present there is a lack of facilities which can reproduce such ion environments. This contribution proposes the use of ultra-intense lasers and high-intense pulsed ion beams (HIPIB) to recreate the plasma conditions in LIF reactors. By target normal sheath acceleration, ultra-intense lasers can generate very short and energetic ion pulses with a spectral distribution similar to that of the inertial fusion ion bursts, suitable to validate fusion materials and to investigate the barely known propagation of those bursts through background plasmas/gases present in the reactor chamber. HIPIB technologies, initially developed for inertial fusion driver systems, provide huge intensity pulses which meet the irradiation conditions expected in the first wall of LIF chambers and thus can be used for the validation of materials too.
Fusion of small unilamellar vesicles induced by bovine serum albumin fragments.
Garcia, L A; Schenkman, S; Araujo, P S; Chaimovich, H
1983-07-01
The limited pepsin proteolysis products of bovine serum albumin, fragment A (residues 307-586) and fragment B (residues 1-306), induced the fusion of small unilamellar vesicles of egg phosphatidyl choline at concentrations near 5 microM. Fusion was demonstrated and analyzed on the basis of: a) time-dependent changes in absorbance; b) dilution of the fluorescent label 2-(10-(1-pyrene)decanoyl) phosphatidyl choline, incorporated into a small percentage of the vesicles, as measured by the decrease in the excimer to monomer (E/M) ratio; c) increase of the average hydrodynamic radius of the liposomes, estimated by Sepharose 4B filtration, and d) the strict inverse relationship between the size of the liposomes and their E/M ratios. Albumin fragment B, like albumin, induced the formation of large aggregates in which rapid cooperative fusion produced vesicles having a large hydrodynamic radius. Fragment A did not produce large aggregates and the initial fusion products exhibited a hydrodynamic radius. Fragment A did not produce large aggregates and the initial fusion products exhibited a hydrodynamic radius smaller than those obtained with fragment B. Albumin and fragments A and B are fusogenic only at pH below 4.0. These data discussed in terms of a general model for a signal-dependent protein-induced membrane fusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. C. Cadwallader; C. P. C. Wong; M. Abdou
2014-10-01
A leading power reactor breeding blanket candidate for a fusion demonstration power plant (DEMO) being pursued by the US Fusion Community is the Dual Coolant Lead Lithium (DCLL) concept. The safety hazards associated with the DCLL concept as a reactor blanket have been examined in several US design studies. These studies identify the largest radiological hazards as those associated with the dust generation by plasma erosion of plasma blanket module first walls, oxidation of blanket structures at high temperature in air or steam, inventories of tritium bred in or permeating through the ferritic steel structures of the blanket module andmore » blanket support systems, and the 210Po and 203Hg produced in the PbLi breeder/coolant. What these studies lack is the scrutiny associated with a licensing review of the DCLL concept. An insight into this process was gained during the US participation in the International Thermonuclear Experimental Reactor (ITER) Test Blanket Module (TBM) Program. In this paper we discuss the lessons learned during this activity and make safety proposals for the design of a Fusion Nuclear Science Facility (FNSF) or a DEMO that employs a lead lithium breeding blanket.« less
Chesnokova, Liudmila S; Ahuja, Munish K; Hutt-Fletcher, Lindsey M
2014-11-01
Epstein-Barr virus (EBV) fusion with an epithelial cell requires virus glycoproteins gHgL and gB and is triggered by an interaction between gHgL and integrin αvβ5, αvβ6, or αvβ8. Fusion with a B cell requires gHgL, gp42, and gB and is triggered by an interaction between gp42 and human leukocyte antigen class II. We report here that, like alpha- and betaherpesviruses, EBV, a gammaherpesvirus, can mediate cell fusion if gB and gHgL are expressed in trans. Entry of a gH-null virus into an epithelial cell is possible if the epithelial cell expresses gHgL, and entry of the same virus, which phenotypically lacks gHgL and gp42, into a B cell expressing gHgL is possible in the presence of a soluble integrin. Heat is capable of inducing the fusion of cells expressing only gB, and the proteolytic digestion pattern of gB in virions changes in the same way following the exposure of virus to heat or to soluble integrins. It is suggested that the Gibbs free energy released as a result of the high-affinity interaction of gHgL with an integrin contributes to the activation energy required to cause the refolding of gB from a prefusion to a postfusion conformation. The core fusion machinery of herpesviruses consists of glycoproteins gB and gHgL. We demonstrate that as in alpha- and betaherpesvirus, gB and gHgL of the gammaherpesvirus EBV can mediate fusion and entry when expressed in trans in opposing membranes, implicating interactions between the ectodomains of the proteins in the activation of fusion. We further show that heat and exposure to a soluble integrin, both of which activate fusion, result in the same changes in the proteolytic digestion pattern of gB, possibly representing the refolding of gB from its prefusion to its postfusion conformation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Chesnokova, Liudmila S.; Ahuja, Munish K.
2014-01-01
ABSTRACT Epstein-Barr virus (EBV) fusion with an epithelial cell requires virus glycoproteins gHgL and gB and is triggered by an interaction between gHgL and integrin αvβ5, αvβ6, or αvβ8. Fusion with a B cell requires gHgL, gp42, and gB and is triggered by an interaction between gp42 and human leukocyte antigen class II. We report here that, like alpha- and betaherpesviruses, EBV, a gammaherpesvirus, can mediate cell fusion if gB and gHgL are expressed in trans. Entry of a gH-null virus into an epithelial cell is possible if the epithelial cell expresses gHgL, and entry of the same virus, which phenotypically lacks gHgL and gp42, into a B cell expressing gHgL is possible in the presence of a soluble integrin. Heat is capable of inducing the fusion of cells expressing only gB, and the proteolytic digestion pattern of gB in virions changes in the same way following the exposure of virus to heat or to soluble integrins. It is suggested that the Gibbs free energy released as a result of the high-affinity interaction of gHgL with an integrin contributes to the activation energy required to cause the refolding of gB from a prefusion to a postfusion conformation. IMPORTANCE The core fusion machinery of herpesviruses consists of glycoproteins gB and gHgL. We demonstrate that as in alpha- and betaherpesvirus, gB and gHgL of the gammaherpesvirus EBV can mediate fusion and entry when expressed in trans in opposing membranes, implicating interactions between the ectodomains of the proteins in the activation of fusion. We further show that heat and exposure to a soluble integrin, both of which activate fusion, result in the same changes in the proteolytic digestion pattern of gB, possibly representing the refolding of gB from its prefusion to its postfusion conformation. PMID:25142593
A novel anti-CD22 scFv-apoptin fusion protein induces apoptosis in malignant B-cells.
Agha Amiri, Solmaz; Shahhosseini, Soraya; Zarei, Najmeh; Khorasanizadeh, Dorsa; Aminollahi, Elahe; Rezaie, Faegheh; Zargari, Mehryar; Azizi, Mohammad; Khalaj, Vahid
2017-12-01
CD22 marker is a highly internalizing antigen which is located on the surface of B-cells and is being used as a promising target for treatment of B cell malignancies. Monoclonal antibodies targeting CD22 have been introduced and some are currently under investigation in clinical trials. Building on the success of antibody drug conjugates, we developed a fusion protein consisting of a novel anti-CD22 scFv and apoptin and tested binding and therapeutic effects in lymphoma cells. The recombinant protein was expressed in E. coli and successfully purified and refolded. In vitro binding analysis by immunofluorescence and flow cytometry demonstrated that the recombinant protein specifically binds to CD22 positive Raji cells but not to CD22 negative Jurkat cells. The cytotoxic properties of scFv-apoptin were assessed by an MTT assay and Annexin V/PI flow cytometry analysis and showed that the recombinant protein induced apoptosis preferentially in Raji cells with no detectable effects in Jurkat cells. Our findings indicated that the recombinant anti-CD22 scFv-apoptin fusion protein could successfully cross the cell membrane and induce apoptosis with high specificity, make it as a promising molecule for immunotherapy of B-cell malignancies.
Mach-Zehnder Fiber-Optic Links for ICF Diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, E. K., Hermann, H. W.
2012-11-01
This article describes the operation and evolution of Mach-Zehnder links for single-point detectors in inertial confinement fusion experimental facilities, based on the Gamma Reaction History (GRH) diagnostic at the National Ignition Facility.
Spectral CT imaging in patients with Budd-Chiari syndrome: investigation of image quality.
Su, Lei; Dong, Junqiang; Sun, Qiang; Liu, Jie; Lv, Peijie; Hu, Lili; Yan, Liangliang; Gao, Jianbo
2014-11-01
To assess the image quality of monochromatic imaging from spectral CT in patients with Budd-Chiari syndrome (BCS), fifty patients with BCS underwent spectral CT to generate conventional 140 kVp polychromatic images (group A) and monochromatic images, with energy levels from 40 to 80, 40 + 70, and 50 + 70 keV fusion images (group B) during the portal venous phase (PVP) and the hepatic venous phase (HVP). Two-sample t tests compared vessel-to-liver contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) for the portal vein (PV), hepatic vein (HV), inferior vena cava. Readers' subjective evaluations of the image quality were recorded. The highest SNR values in group B were distributed at 50 keV; the highest CNR values in group B were distributed at 40 keV. The higher CNR values and SNR values were obtained though PVP of PV (SNR 18.39 ± 6.13 vs. 10.56 ± 3.31, CNR 7.81 ± 3.40 vs. 3.58 ± 1.31) and HVP of HV (3.89 ± 2.08 vs. 1.27 ± 1.55) in the group B; the lower image noise for group B was at 70 keV and 50 + 70 keV (15.54 ± 8.39 vs. 18.40 ± 4.97, P = 0.0004 and 18.97 ± 7.61 vs. 18.40 ± 4.97, P = 0.0691); the results show that the 50 + 70 keV fusion image quality was better than that in group A. Monochromatic energy levels of 40-70, 40 + 70, and 50 + 70 keV fusion image can increase vascular contrast and that will be helpful for the diagnosis of BCS, we select the 50 + 70 keV fusion image to acquire the best BCS images.
NASA Astrophysics Data System (ADS)
Gauthier, Jean-Claude; Hammel, Bruce; Azechi, Hiroshi; Labaune, Christine
2006-06-01
The Fourth International Conference on Inertial Fusion Sciences and Applications (IFSA 2005) was held September 4-9, 2005 at the Bellevue Conference Center in Biarritz, France. The host organizations for this conference were the University of Bordeaux 1, the Centre National de la Recherche Scientifique (CNRS) and the Commissariat a l'Energie Atomique (CEA). The conference objective was to review of the state of the art of research in inertial fusion sciences and applications since the last conference held in Monterey California, USA, in 2003. Altogether 509 abstracts were submitted, 418 accepted, and more than 440 persons from 23 countries attended the conference. These Proceedings contain 249 of the papers presented at IFSA 2005. This collection of papers represents the manuscripts submitted to and passing the peer review process. The IFSA 2005 conference is the first of a new series of three conferences to be organized in France, Japan and the USA and governed under Annex I of the Memorandum of Agreement, signed in June 2004, among the Lawrence Livermore Laboratory operated by the University of California (UC), Osaka University, and Institut Lasers et Plasmas (ILP), operated by CNRS Delegation Aquitaine. The IFSA 2005 continued the strong tradition of the three previous conferences in Bordeaux, Kyoto and Monterey. It was the largest IFSA yet with a substantial participation from countries such as China and Russia. With a goal of achieving inertial fusion ignition and burn propagation in the laboratory, there continues to be significant progress in the international inertial fusion community. At IFSA 2005, researchers presented the exciting advances in traditional hot spot ignition approach, including results from the early experiments from the NIF laser. A particularly emphasis of the meeting was the rapid and exciting progress in the fast ignition scheme. Integrated and basic physics experiments on GekkoXII, Vulcan, and other laser-matter interaction facilities have shown promising results. A lot of new results of experiments and numerical simulations in ultra-intense laser interactions have also been presented. The Megajoule Laser (LMJ), as one of two facilities being built to achieve target ignition, was a key attraction of IFSA 2005. About 200 participants toured the LMJ construction site and the LIL laser prototype during the conference. Before the tour, a special Facility Focus session examined progress on inertial fusion facilities around the world, including the soon-to-be-completed OMEGA-EP upgrade at Rochester, USA, and FIREX I, at Osaka, Japan. Recent progresses in hohlraum physics continue to give confidence in the ultimate achievement of ignition on the NIF Laser and the Megajoule Laser. The USA are pursuing a very focused program on ICF under the National Ignition Campaign (NIC). In China, a national project has been launched, the goal of which is fusion ignition and plasma burning in about 2020. Progress in direct drive has been notable over the past few years with the cryogenic implosions at LLE, polar direct-drive that may enable to switch rapidly from an indirect- to a direct-drive laser configuration, adiabat shaping of laser pulses, and even "Saturn targets", a short circuit topic from ICF to laboratory astrophysics. About this last topic, radiative shocks and plasma jets were among the most studied subjects. There were also sessions on the technologies of al1 types of drivers, including KrF and DPSSL lasers, particle beams, and Z-pinches. Advances in Z-pinch included double-hohlraum irradiation symmetry and the construction of a PW laser beam for the Z-facility. Advance in plasma diagnostics were dominated by proton imaging from ultra-intense interactions and precise imaging spectroscopy of core implosions. Of special interest, advanced target physics and reactor design studies have started to be more present during this IFSA edition. These Proceedings start with special chapters on the keynote speeches and the Teller lectures. The keynotes give an overview of progress in inertial fusion in North America, Europe and Asia. The Teller lectures show the contributions of this year's two winners: Joe Kilkenny of General Atomics and Max Tabak of LLNL. The remainder of the Proceedings is divided into three parts. Part A covers the physics of inertial fusion; Part B covers facilities, lasers, particle beams, Z-pinches, target fabrication and reactor design; Part C covers fundamental high-energy density science and other applications of inertial fusion VI technology such as plasma diagnostics, atomic physics and X-ray sources, laboratory astrophysics and laser particle acceleration. The readers should be aware that for some of the papers, only a short version is presented in this book: the extended version will be published in a topical issue of the European Physical Journal. The IFSA International Organizing Committee and Scientific Advisory Board appreciate the efforts of inertial fusion researchers worldwide in making IFSA 2005 an extremely successful conference. Jean-Claude Gauthier, technical committee co-chair Bruce Hammel, technical committee co-chair Hiroshi Azechi, technical committee co-chair Christine Labaune, proceedings co-editor
Combined neutron and x-ray imaging at the National Ignition Facility (invited)
Danly, C. R.; Christensen, K.; Fatherley, Valerie E.; ...
2016-10-11
X-ray and neutrons are commonly used to image Inertial Confinement Fusion implosions, providing key diagnostic information on the fuel assembly of burning DT fuel. The x-ray and neutron data provided are complementary as the production of neutrons and x-rays occur from different physical processes, but typically these two images are collected from different views with no opportunity for co-registration of the two images. Neutrons are produced where the DT fusion fuel is burning; X-rays are produced in regions corresponding to high temperatures. Processes such as mix of ablator material into the hotspot can result in increased x-ray production and decreasedmore » neutron production but can only be confidently observed if the two images are collected along the same line of sight and co-registered. To allow direct comparison of x-ray and neutron data, a Combined Neutron X-ray Imaging system has been tested at Omega and installed at the National Ignition Facility to collect an x-ray image along the currently installed neutron imaging line-of-sight. Here, this system is described, and initial results are presented along with prospects for definitive coregistration of the images.« less
Combined neutron and x-ray imaging at the National Ignition Facility (invited).
Danly, C R; Christensen, K; Fatherley, V E; Fittinghoff, D N; Grim, G P; Hibbard, R; Izumi, N; Jedlovec, D; Merrill, F E; Schmidt, D W; Simpson, R A; Skulina, K; Volegov, P L; Wilde, C H
2016-11-01
X-ray and neutrons are commonly used to image inertial confinement fusion implosions, providing key diagnostic information on the fuel assembly of burning deuterium-tritium (DT) fuel. The x-ray and neutron data provided are complementary as the production of neutrons and x-rays occurs from different physical processes, but typically these two images are collected from different views with no opportunity for co-registration of the two images. Neutrons are produced where the DT fusion fuel is burning; X-rays are produced in regions corresponding to high temperatures. Processes such as mix of ablator material into the hotspot can result in increased x-ray production and decreased neutron production but can only be confidently observed if the two images are collected along the same line of sight and co-registered. To allow direct comparison of x-ray and neutron data, a combined neutron x-ray imaging system has been tested at Omega and installed at the National Ignition Facility to collect an x-ray image along the currently installed neutron imaging line of sight. This system is described, and initial results are presented along with prospects for definitive coregistration of the images.
Targeting of Cytolytic T-Cells for Breast Cancer Therapy Using Novel-Fusion Proteins
1999-07-01
1 construct was subsequently subcloned into the Pichia pastoris expression plasmid pPICZcxB (Invitrogen) which contains the alcohol oxidase promoter...breast carcinomas, and the extracellular domain of B7.2 (CD86). This fusion protein was expressed and purified from Pichia pastoris, shown to retain...year’s report, the hB7.2/B1 chimeric fusion protein produced in Pichia pastoris, was shown to bind to both recombinant and cell surface tumor marker erbB
NASA Astrophysics Data System (ADS)
Gates, David
2013-10-01
The QUAsi-Axisymmetric Research (QUASAR) stellarator is a new facility which can solve two critical problems for fusion, disruptions and steady-state, and which provides new insights into the role of magnetic symmetry in plasma confinement. If constructed it will be the only quasi-axisymmetric stellarator in the world. The innovative principle of quasi-axisymmetry (QA) will be used in QUASAR to study how ``tokamak-like'' systems can be made: 1) Disruption-free, 2) Steady-state with low recirculating power, while preserving or improving upon features of axisymmetric tokamaks, such as 1) Stable at high pressure simultaneous with 2) High confinement (similar to tokamaks), and 3) Scalable to a compact reactor Stellarator research is critical to fusion research in order to establish the physics basis for a magnetic confinement device that can operate efficiently in steady-state, without disruptions at reactor-relevant parameters. The two large stellarator experiments - LHD in Japan and W7-X under construction in Germany are pioneering facilities capable of developing 3D physics understanding at large scale and for very long pulses. The QUASAR design is unique in being QA and optimized for confinement, stability, and moderate aspect ratio (4.5). It projects to a reactor with a major radius of ~8 m similar to advanced tokamak concepts. It is striking that (a) the EU DEMO is a pulsed (~2.5 hour) tokamak with major R ~ 9 m and (b) the ITER physics scenarios do not presume steady-state behavior. Accordingly, QUASAR fills a critical gap in the world stellarator program. This work supported by DoE Contract No. DEAC02-76CH03073.
Overview of innovative PMI research on NSTX-U and associated PMI facilities at PPPL
M. Ono; Jaworski, M.; Kaita, R.; ...
2013-05-01
Developing a reactor compatible divertor and managing the associated plasma material interaction (PMI) has been identified as a high priority research area for magnetic confinement fusion. Accordingly on NSTX-U, the PMI research has received a strong emphasis. Moreover, with ˜15 MW of auxiliary heating power, NSTX-U will be able to test the PMI physics with the peak divertor plasma facing component (PFC) heat loads of up to 40-60 MW/m 2.
47 CFR 87.307 - Cooperative use of facilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SERVICES AVIATION SERVICES Flight Test Stations § 87.307 Cooperative use of facilities. (a) The Commission will license only one flight test land station per airport, except as provided in paragraph (d) of this section. (b) Flight test land stations located at an airport are required to provide service without...
Dictyostelium LvsB has a regulatory role in endosomal vesicle fusion
Falkenstein, Kristin; De Lozanne, Arturo
2014-01-01
ABSTRACT Defects in human lysosomal-trafficking regulator (Lyst) are associated with the lysosomal disorder Chediak–Higashi syndrome. The absence of Lyst results in the formation of enlarged lysosome-related compartments, but the mechanism for how these compartments arise is not well established. Two opposing models have been proposed to explain Lyst function. The fission model describes Lyst as a positive regulator of fission from lysosomal compartments, whereas the fusion model identifies Lyst as a negative regulator of fusion between lysosomal vesicles. Here, we used assays that can distinguish between defects in vesicle fusion versus fission. We compared the phenotype of Dictyostelium discoideum cells defective in LvsB, the ortholog of Lyst, with that of two known fission defect mutants (μ3- and WASH-null mutants). We found that the temporal localization characteristics of the post-lysosomal marker vacuolin, as well as vesicular acidity and the fusion dynamics of LvsB-null cells are distinct from those of both μ3- and WASH-null fission defect mutants. These distinctions are predicted by the fusion defect model and implicate LvsB as a negative regulator of vesicle fusion. PMID:25086066
Li, Fei; Fang, Zhaoyuan; Zhang, Jian; Li, Chen; Liu, Hongyan; Xia, Jufeng; Zhu, Hongwen; Guo, Chenchen; Qin, Zhen; Li, Fuming; Han, Xiangkun; Wang, Yuetong; Feng, Yan; Wang, Ye; Zhang, Wenjing; Wang, Zuoyun; Jin, Yujuan; Sun, Yihua; Wei, Wenyi; Zeng, Rong; Chen, Haiquan; Ji, Hongbin
2016-01-01
Lung squamous cell carcinoma (SCC) is one of the major subtypes of lung cancer. Our current knowledge of oncogenic drivers in this specific subtype of lung cancer is largely limited compared with lung adenocarcinoma (ADC). Through exon array analyses, molecular analyses and functional studies, we here identify the TRA2B-DNAH5 fusion as a novel oncogenic driver in lung SCC. We found that this gene fusion occurs exclusively in lung SCC (3.1%, 5/163), but not in lung ADC (0/119). Through mechanistic studies, we further revealed that this TRA2B-DNAH5 fusion promotes lung SCC malignant progression through regulating a SIRT6-ERK1/2-MMP1 signaling axis. We show that inhibition of ERK1/2 activation using selumetinib efficiently inhibits the growth of lung SCC with TRA2B-DNAH5 fusion expression. These findings improve our current knowledge of oncogenic drivers in lung SCC and provide a potential therapeutic strategy for lung SCC patients with TRA2B-DNAH5 fusion. PMID:27670699
Design and Fabrication of Opacity Targets for the National Ignition Facility
Cardenas, Tana; Schmidt, Derek William; Dodd, Evan S.; ...
2017-12-22
Accurate models for opacity of partially ionized atoms are important for modeling and understanding stellar interiors and other high-energy-density phenomena such as inertial confinement fusion. Lawrence Livermore National Laboratory is leading a multilaboratory effort to conduct experiments on the National Ignition Facility (NIF) to try to reproduce recent opacity tests at the Sandia National Laboratory Z-facility. Since 2015, the NIF effort has evolved several hohlraum designs that consist of multiple pieces joined together. The target also has three components attached to the main stalk over a long distance with high tolerances that have resulted in several design iterations. The targetmore » has made use of rapid prototyped features to attach a capsule and collimator under the hohlraum while avoiding interference with the beams. Furthermore, this paper discusses the evolution of the hohlraum and overall target design and the challenges involved with fabricating and assembling these targets.« less
Design and Fabrication of Opacity Targets for the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardenas, Tana; Schmidt, Derek William; Dodd, Evan S.
Accurate models for opacity of partially ionized atoms are important for modeling and understanding stellar interiors and other high-energy-density phenomena such as inertial confinement fusion. Lawrence Livermore National Laboratory is leading a multilaboratory effort to conduct experiments on the National Ignition Facility (NIF) to try to reproduce recent opacity tests at the Sandia National Laboratory Z-facility. Since 2015, the NIF effort has evolved several hohlraum designs that consist of multiple pieces joined together. The target also has three components attached to the main stalk over a long distance with high tolerances that have resulted in several design iterations. The targetmore » has made use of rapid prototyped features to attach a capsule and collimator under the hohlraum while avoiding interference with the beams. Furthermore, this paper discusses the evolution of the hohlraum and overall target design and the challenges involved with fabricating and assembling these targets.« less
Comparison of Cryogenic Temperature Sensor Installation Inside or Outside the Piping
NASA Astrophysics Data System (ADS)
Müller, R.; Süßer, M.
2010-04-01
Cryogenic thermometers for large cryogenic facilities, like superconducting particle accelerator or fusion devices, must be able to withstand very severe conditions over the lifetime of the facility. In addition to the proper selection of the sensor, the choice of the appropriate installation method plays an important role for satisfying operation. Several characteristics must be taken into account, for instance: large numbers of sensors, different claims of accuracy, qualified preparation methods and at least qualified attachment of the sensor holder on the piping. One remedy to get satisfying results is the development of simple thermometer mounting fixtures, because thermometer mounting often may be realized by personnel with limited experience. This contribution presents two different methods for sensor installations, namely inside or outside installation on the piping. These have been the standard applications in the superconducting coil test facility TOSKA for many years. The characteristics of each of these methods will be discussed and compared.
Laser and Optical Fiber Metrology in Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sporea, Dan; Sporea, Adelina
2008-04-15
The Romanian government established in the last five years a National Program for the improvement of country's infrastructure of metrology. The set goal was to develop and accredit testing and calibration laboratories, as well as certification bodies, according to the ISO 17025:2005 norm. Our Institute benefited from this policy, and developed a laboratory for laser and optical fibers metrology in order to provide testing and calibration services for the certification of laser-based industrial, medical and communication products. The paper will present the laboratory accredited facilities and some of the results obtained in the evaluation of irradiation effects of optical andmore » optoelectronic parts, tests run under the EU's Fusion Program.« less
Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps
Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; ...
2015-07-31
The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m 2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holdersmore » compatible with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-ε turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.« less
TSTA Piping and Flame Arrestor Operating Experience Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cadwallader, Lee C.; Willms, R. Scott
The Tritium Systems Test Assembly (TSTA) was a facility dedicated to tritium handling technology and experiment research at the Los Alamos National Laboratory. The facility operated from 1984 to 2001, running a prototype fusion fuel processing loop with ~100 grams of tritium as well as small experiments. There have been several operating experience reports written on this facility’s operation and maintenance experience. This paper describes analysis of two additional components from TSTA, small diameter gas piping that handled small amounts of tritium in a nitrogen carrier gas, and the flame arrestor used in this piping system. The operating experiences andmore » the component failure rates for these components are discussed in this paper. Comparison data from other applications are also presented.« less
High-density carbon capsule experiments on the national ignition facility
Ross, J. S.; Ho, D.; Milovich, J.; ...
2015-02-25
Indirect-drive implosions with a high-density carbon (HDC) capsule were conducted on the National Ignition Facility (NIF) to test HDC properties as an ablator material for inertial confinement fusion. In this study, a series of five experiments were completed with 76-μm-thick HDC capsules using a four-shock laser pulse optimized for HDC. The pulse delivered a total energy of 1.3 MJ with a peak power of 360 TW. The experiment demonstrated good laser to target coupling (~90 %) and excellent nuclear performance. Lastly, a deuterium and tritium gas-filled HDC capsule implosion produced a neutron yield of 1.6×10 15 ± 3×10 13, amore » yield over simulated in one dimension of 70%.« less
Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion
Gomez, Matthew R.; Slutz, Stephen A..; Sefkow, Adam B.; ...
2014-10-06
This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed axial magnetic field of 10 T is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA current with 100 ns rise time on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with T e ≈ T i, and produces up tomore » 2e12 thermonuclear DD neutrons. In this study, X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. The number of secondary deuterium-tritium neutrons observed was greater than 10 10, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm 2.« less
Laser plasma instability experiments with KrF lasersa)
NASA Astrophysics Data System (ADS)
Weaver, J. L.; Oh, J.; Afeyan, B.; Phillips, L.; Seely, J.; Feldman, U.; Brown, C.; Karasik, M.; Serlin, V.; Aglitskiy, Y.; Mostovych, A. N.; Holland, G.; Obenschain, S.; Chan, L.-Y.; Kehne, D.; Lehmberg, R. H.; Schmitt, A. J.; Colombant, D.; Velikovich, A.
2007-05-01
Deleterious effects of laser-plasma instability (LPI) may limit the maximum laser irradiation that can be used for inertial confinement fusion. The short wavelength (248nm), large bandwidth, and very uniform illumination available with krypton-fluoride (KrF) lasers should increase the maximum usable intensity by suppressing LPI. The concomitant increase in ablation pressure would allow implosion of low-aspect-ratio pellets to ignition with substantial gain (>20) at much reduced laser energy. The proposed KrF-laser-based Fusion Test Facility (FTF) would exploit this strategy to achieve significant fusion power (150MW) with a rep-rate system that has a per pulse laser energy well below 1 MJ. Measurements of LPI using the Nike KrF laser are presented at and above intensities needed for the FTF (I˜2×1015W/cm2). The results to date indicate that LPI is indeed suppressed. With overlapped beam intensity above the planar, single beam intensity threshold for the two-plasmon decay instability, no evidence of instability was observed via measurements of 3/2ωo and 1/2ωo harmonic emissions.
Coyaud, Etienne; Struski, Stephanie; Prade, Nais; Familiades, Julien; Eichner, Ruth; Quelen, Cathy; Bousquet, Marina; Mugneret, Francine; Talmant, Pascaline; Pages, Marie-Pierre; Lefebvre, Christine; Penther, Dominique; Lippert, Eric; Nadal, Nathalie; Taviaux, Sylvie; Poppe, Bruce; Luquet, Isabelle; Baranger, Laurence; Eclache, Virginie; Radford, Isabelle; Barin, Carole; Mozziconacci, Marie-Joëlle; Lafage-Pochitaloff, Marina; Antoine-Poirel, Hélène; Charrin, Christiane; Perot, Christine; Terre, Christine; Brousset, Pierre; Dastugue, Nicole; Broccardo, Cyril
2010-04-15
PAX5 is the main target of somatic mutations in acute B lymphoblastic leukemia (B-ALL). We analyzed 153 adult and child B-ALL harboring karyotypic abnormalities at chromosome 9p, to determine the frequency and the nature of PAX5 alterations. We found PAX5 internal rearrangements in 21% of the cases. To isolate fusion partners, we used classic and innovative techniques (rolling circle amplification-rapid amplification of cDNA ends) and single nucleotide polymorphism-comparative genomic hybridization arrays. Recurrent and novel fusion partners were identified, including NCoR1, DACH2, GOLGA6, and TAOK1 genes showing the high variability of the partners. We noted that half the fusion genes can give rise to truncated PAX5 proteins. Furthermore, malignant cells carrying PAX5 fusion genes displayed a simple karyotype. These data strongly suggest that PAX5 fusion genes are early players in leukemogenesis. In addition, PAX5 deletion was observed in 60% of B-ALL with 9p alterations. Contrary to cases with PAX5 fusions, deletions were associated with complex karyotypes and common recurrent translocations. This supports the hypothesis of the secondary nature of the deletion. Our data shed more light on the high variability of PAX5 alterations in B-ALL. Therefore, it is probable that gene fusions occur early, whereas deletions should be regarded as a late/secondary event.
Nova Upgrade: A proposed ICF facility to demonstrate ignition and gain, revision 1
NASA Astrophysics Data System (ADS)
1992-07-01
The present objective of the national Inertial Confinement Fusion (ICF) Program is to determine the scientific feasibility of compressing and heating a small mass of mixed deuterium and tritium (DT) to conditions at which fusion occurs and significant energy is released. The potential applications of ICF will be determined by the resulting fusion energy yield (amount of energy produced) and gain (ratio of energy released to energy required to heat and compress the DT fuel). Important defense and civilian applications, including weapons physics, weapons effects simulation, and ultimately the generation of electric power will become possible if yields of 100 to 1,000 MJ and gains exceeding approximately 50 can be achieved. Once ignition and propagating bum producing modest gain (2 to 10) at moderate drive energy (1 to 2 MJ) has been achieved, the extension to high gain (greater than 50) is straightforward. Therefore, the demonstration of ignition and modest gain is the final step in establishing the scientific feasibility of ICF. Lawrence Livermore National Laboratory (LLNL) proposes the Nova Upgrade Facility to achieve this demonstration by the end of the decade. This facility would be constructed within the existing Nova building at LLNL for a total cost of approximately $400 M over the proposed FY 1995-1999 construction period. This report discusses this facility.
DIII-D Upgrade to Prepare the Basis for Steady-State Burning Plasmas
NASA Astrophysics Data System (ADS)
Buttery, R. J.; Guo, H. Y.; Taylor, T. S.; Wade, M. R.; Hill, D. N.
2014-10-01
Future steady-state burning plasma facilities will access new physics regimes and modes of plasma behavior. It is vital to prepare for this both experimentally using existing facilities, and theoretically in order to develop the tools to project to and optimize these devices. An upgrade to DIII-D is proposed to address the three critical aspects where research must go beyond what we can do now: (i) torque free electron heating to address the energy, particle and momentum transport mechanisms of burning plasmas using electron cyclotron (EC) heating and full power balanced neutral beams; (ii) off-axis heating and current drive to develop the path to true fusion steady state by reorienting neutral beams and deploying EC and helicon current drive; (iii) a new divertor with hot walls and reactor relevant materials to develop the basis for benign detached divertor operation compatible with wall materials and a high performance fusion core. These elements with modest incremental cost and enacted as a user facility for the whole US program will enable the US to lead on ITER and take a decision to proceed with a Fusion Nuclear Science Facility. Work supported by the US Department of Energy under DE-FC02-04ER54698 and DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldi, R.W.; Tatro, R.E.; Scanlan, R.M.
1984-03-01
Two 12-tesla superconducting insert coils are being designed by General Dynamics Convair Division for the axicell regions of MFTF-B for Lawrence Livermore National Laboratory. A major challenge of this project is to ensure that combined fabrication and operational strains induced in the conductor are within stringent limitations of the relatively brittle Nb/sub 3/Sn superconductor filaments. These coils are located in the axicell region of MFTF-B. They have a clear-bore diameter of 36.195cm (14.25 inches) and consist of 27 double pancakes (i.e., 54 pancakes per coil) would on an electrically insulated 304LN stainless steel/bobbin helium vessel. Each pancake has 57 turnsmore » separated by G-10CR insulation. The complete winding bundle has 4.6 million ampere-turns and uniform current density of 2007 A/cm/sup 2/. In conjunction with the other magnets in the system, they produce a 12-tesla central field and a 12.52-tesla peak field. A multifilamentary Nb/sub 3/Sn conductor was selected to meet these requirements. The conductor consists of a monolithic insert soldered into a copper stabilizer. Sufficient cross-sectional area and work-hardening of the copper stabilizer has been provided for the conductor to self-react the electromagnetic Lorentz force induced hoop stresses with normal operational tensile strains less than 0.07 percent.« less
1981-08-01
by psychological tests and EEG recordings. No statistically significant differences between the two groups were found. In our opinion, the lack of...phenomena. A jet engine test facility is located immediately south of the site. Engines are tested at the facility approximately 20 times a year. The...duration of each test is approximately 68 minutes. Noise monitoring data for operation of this facility are not available; however, it is clear that
NASA Astrophysics Data System (ADS)
Mulder, T.; van der Laan, D.; Weiss, J. D.; Dudarev, A.; Dhallé, M.; ten Kate, H. H. J.
2017-12-01
Two new ReBCO-CORC® based cable-in-conduit conductors (CICC) are developed by CERN in collaboration with ACT-Boulder. Both conductors feature a critical current of about 80 kA at 4.5 K and 12 T. One conductor is designed for operation in large detector magnets, while the other is aimed for application in fusion type magnets. The conductors use a six-around-one cable geometry with six flexible ReBCO CORC® strands twisted around a central tube. The fusion CICC is designed to be cooled by the internal forced flow of either helium gas or supercritical helium to cope with high heat loads in superconducting magnets in large fusion experimental reactors. In addition, the cable is enclosed by a stainless steel jacket to accommodate with the high level of Lorentz forces present in such magnets. Detector type magnets require stable, high-current conductors. Therefore, the detector CORC® CICC comprises an OFHC copper jacket with external conduction cooling, which is advantageous due to its simplicity. A 2.8 m long sample of each conductor is manufactured and prepared for testing in the Sultan facility at PSI Villigen. In the paper, the conductor design and assembly steps for both CORC® CICCs are highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stencel, J.R.; Finley, V.L.
This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory for CY90. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The PPPL has engaged in fusion energy research sincemore » 1951 and in 1990 had one of its two large tokamak devices in operation: namely, the Tokamak Fusion Test Reactor. The Princeton Beta Experiment-Modification is undergoing new modifications and upgrades for future operation. A new machine, the Burning Plasma Experiment -- formerly called the Compact Ignition Tokamak -- is under conceptual design, and it is awaiting the approval of its draft Environmental Assessment report by DOE Headquarters. This report is required under the National Environmental Policy Act. The long-range goal of the US Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. 59 refs., 39 figs., 45 tabs.« less
Satoh, Yuto; Yonemori, Saeka; Hirose, Mitsuhiro; Shogaki, Hiroko; Wakimoto, Hiroshi; Kitagawa, Yoshinori; Gotoh, Bin; Shirai, Tsuyoshi; Takahashi, Ken-Ichi; Itoh, Masae
2017-02-01
The fusion (F) protein of measles virus performs refolding from the thermodynamically metastable prefusion form to the highly stable postfusion form via an activated unstable intermediate stage, to induce membrane fusion. Some amino acids involved in the fusion regulation cluster in the heptad repeat B (HR-B) domain of the stalk region, among which substitution of residue 465 by various amino acids revealed that fusion activity correlates well with its side chain length from the Cα (P<0.01) and van der Waals volume (P<0.001), except for Phe, Tyr, Trp, Pro and His carrying ring structures. Directed towards the head region, longer side chains of the non-ring-type 465 residues penetrate more deeply into the head region and may disturb the hydrophobic interaction between the stalk and head regions and cause destabilization of the molecule by lowering the energy barrier for refolding, which conferred the F protein enhanced fusion activity. Contrarily, the side chain of ring-type 465 residues turned away from the head region, resulting in not only no contact with the head region but also extensive coverage of the HR-B surface, which may prevent the dissociation of the HR-B bundle for initiation of membrane fusion and suppress fusion activity. Located in the HR-B domain just at the junction between the head and stalk regions, amino acid 465 is endowed with a possible ability to either destabilize or stabilize the F protein depending on its molecular volume and the direction of the side chain, regulating fusion activity of measles virus F protein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, S.A.; Beach, R.J.; Bibeau, C.
We discuss how solid-state laser technology can serve in the interests of fusion energy beyond the goals of the National Ignition Facility (NIF), which is now being constructed to ignite a deuterium-tritium target to fusion conditions in the laboratory for the first time. We think that advanced solid-state laser technology can offer the repetition-rate and efficiency needed to drive a fusion power plant, in contrast to the single-shot character of NIF. As discuss below, we propose that a gas-cooled, diode-pumped Yb:S-FAP laser can provide a new paradigm for fusion laser technology leading into the next century.
Yang, Yongbi; Zhang, Teng; Cao, Hongxue; Yu, Dan; Zhang, Tong; Zhao, Shaojuan; Jing, Xiaohui; Song, Liying; Liu, Yunye; Che, Ruixiang; Liu, Xin; Li, Deshan; Ren, Guiping
2017-08-01
Acute lung injury (ALI) is still a leading cause of morbidity and mortality in critically ill patients. Recently, our study found that a bispecific fusion protein treatment can ameliorate the lung injury induced by LPS. However, the molecular mechanisms which bispecific fusion protein ameliorates acute lung injury remain unclear. In this study, we found that the bispecific fusion protein treatment inhibited the nuclear transcription of NF-κB in confocal laser scanning fluorescence microscopy, the bispecific fusion protein exert protective effects in the cell model of ALI induced by lipopolysaccharide (LPS) via inhibiting the nuclear factor κB (NF-κB) signaling pathway and mediate inflammation. Moreover, the treatment of the bispecific fusion protein show its efficacy in animal models stimulated by LPS, the results of real-time PCR and ELISA demonstrate that bispecific fusion protein treatment effectively inhibited the over-expression of inflammatory cytokines(tumor necrosis factor α, interleukin 1β and interleukin 17). In addition, LPS-challenged mice exhibited significant lung injury characterized by the deterioration of histopathology, which was meliorated by bispecific fusion protein treatment. Collectively, these results demonstrate that bispecific fusion protein treatment ameliorates LPS-induced ALI through reducing inflammatory cytokines and lung inflammation, which may be associated with the decreased the nuclear transcription of NF-κB. The bispecific fusion protein may be useful as a novel therapy to treat ALI. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Simultaneous measurement of the HT and DT fusion burn histories in inertial fusion implosions
Zylstra, Alex B.; Herrmann, Hans W.; Kim, Yong Ho; ...
2017-05-23
Measuring the thermonuclear burn history is an important way to diagnose inertial fusion implosions. Here, using the gas Cherenkov detectors at the OMEGA laser facility, we measure the HT fusion burn in a H 2+T 2 gas-fueled implosion for the first time. Then, using multiple detectors with varied Cherenkov thresholds, we demonstrate a technique for simultaneously measuring both the HT and DT burn histories from an implosion where the total reaction yields are comparable. This new technique will be used to study material mixing and kinetic phenomena in implosions.
Simultaneous measurement of the HT and DT fusion burn histories in inertial fusion implosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zylstra, Alex B.; Herrmann, Hans W.; Kim, Yong Ho
Measuring the thermonuclear burn history is an important way to diagnose inertial fusion implosions. Here, using the gas Cherenkov detectors at the OMEGA laser facility, we measure the HT fusion burn in a H 2+T 2 gas-fueled implosion for the first time. Then, using multiple detectors with varied Cherenkov thresholds, we demonstrate a technique for simultaneously measuring both the HT and DT burn histories from an implosion where the total reaction yields are comparable. This new technique will be used to study material mixing and kinetic phenomena in implosions.
Diagnosing magnetized liner inertial fusion experiments on Z
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.
The Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (~10 12 DD neutrons) from multi-keV deuterium plasmasinertially confined by slow (~10 cm/μs), stable, cylindrical implosions. Moreover, effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 10 10. Further analysis of extensive power, imaging, and spectroscopicx-ray measurements provides a detailed picture of ~3 keV temperatures, 0.3 g/cm 3 densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.
Diagnosing magnetized liner inertial fusion experiments on Z
Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.; ...
2015-05-14
The Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (~10 12 DD neutrons) from multi-keV deuterium plasmasinertially confined by slow (~10 cm/μs), stable, cylindrical implosions. Moreover, effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 10 10. Further analysis of extensive power, imaging, and spectroscopicx-ray measurements provides a detailed picture of ~3 keV temperatures, 0.3 g/cm 3 densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.
Honeycomblike large area LaB6 plasma source for Multi-Purpose Plasma facility
NASA Astrophysics Data System (ADS)
Woo, Hyun-Jong; Chung, Kyu-Sun; You, Hyun-Jong; Lee, Myoung-Jae; Lho, Taihyeop; Choh, Kwon Kook; Yoon, Jung-Sik; Jung, Yong Ho; Lee, Bongju; Yoo, Suk Jae; Kwon, Myeon
2007-10-01
A Multi-Purpose Plasma (MP2) facility has been renovated from Hanbit mirror device [Kwon et al., Nucl. Fusion 43, 686 (2003)] by adopting the same philosophy of diversified plasma simulator (DiPS) [Chung et al., Contrib. Plasma Phys. 46, 354 (2006)] by installing two plasma sources: LaB6 (dc) and helicon (rf) plasma sources; and making three distinct simulators: divertor plasma simulator, space propulsion simulator, and astrophysics simulator. During the first renovation stage, a honeycomblike large area LaB6 (HLA-LaB6) cathode was developed for the divertor plasma simulator to improve the resistance against the thermal shock fragility for large and high density plasma generation. A HLA-LaB6 cathode is composed of the one inner cathode with 4in. diameter and the six outer cathodes with 2in. diameter along with separate graphite heaters. The first plasma is generated with Ar gas and its properties are measured by the electric probes with various discharge currents and magnetic field configurations. Plasma density at the middle of central cell reaches up to 2.6×1012 cm-3, while the electron temperature remains around 3-3.5eV at the low discharge current of less than 45A, and the magnetic field intensity of 870G. Unique features of electric property of heaters, plasma density profiles, is explained comparing with those of single LaB6 cathode with 4in. diameter in DiPS.
Honeycomblike large area LaB6 plasma source for Multi-Purpose Plasma facility.
Woo, Hyun-Jong; Chung, Kyu-Sun; You, Hyun-Jong; Lee, Myoung-Jae; Lho, Taihyeop; Choh, Kwon Kook; Yoon, Jung-Sik; Jung, Yong Ho; Lee, Bongju; Yoo, Suk Jae; Kwon, Myeon
2007-10-01
A Multi-Purpose Plasma (MP(2)) facility has been renovated from Hanbit mirror device [Kwon et al., Nucl. Fusion 43, 686 (2003)] by adopting the same philosophy of diversified plasma simulator (DiPS) [Chung et al., Contrib. Plasma Phys. 46, 354 (2006)] by installing two plasma sources: LaB(6) (dc) and helicon (rf) plasma sources; and making three distinct simulators: divertor plasma simulator, space propulsion simulator, and astrophysics simulator. During the first renovation stage, a honeycomblike large area LaB(6) (HLA-LaB(6)) cathode was developed for the divertor plasma simulator to improve the resistance against the thermal shock fragility for large and high density plasma generation. A HLA-LaB(6) cathode is composed of the one inner cathode with 4 in. diameter and the six outer cathodes with 2 in. diameter along with separate graphite heaters. The first plasma is generated with Ar gas and its properties are measured by the electric probes with various discharge currents and magnetic field configurations. Plasma density at the middle of central cell reaches up to 2.6 x 10(12) cm(-3), while the electron temperature remains around 3-3.5 eV at the low discharge current of less than 45 A, and the magnetic field intensity of 870 G. Unique features of electric property of heaters, plasma density profiles, is explained comparing with those of single LaB(6) cathode with 4 in. diameter in DiPS.
Code of Federal Regulations, 2012 CFR
2012-01-01
.... Nuclear Regulatory Commission, Washington, DC 20555-0001. The guidance discusses, among other topics, the.... (b)(1) Except for test and research reactor facilities, the Director, Office of Nuclear Reactor... involving a test and research reactor facility licensed under 10 CFR part 50 and any related inquiry...
Code of Federal Regulations, 2013 CFR
2013-01-01
.... Nuclear Regulatory Commission, Washington, DC 20555-0001. The guidance discusses, among other topics, the.... (b)(1) Except for test and research reactor facilities, the Director, Office of Nuclear Reactor... involving a test and research reactor facility licensed under 10 CFR part 50 and any related inquiry...
Measuring visual discomfort associated with 3D displays
NASA Astrophysics Data System (ADS)
Lambooij, M.; Fortuin, M.; Ijsselsteijn, W. A.; Heynderickx, I.
2009-02-01
Some people report visual discomfort when watching 3D displays. For both the objective measurement of visual fatigue and the subjective measurement of visual discomfort, we would like to arrive at general indicators that are easy to apply in perception experiments. Previous research yielded contradictory results concerning such indicators. We hypothesize two potential causes for this: 1) not all clinical tests are equally appropriate to evaluate the effect of stereoscopic viewing on visual fatigue, and 2) there is a natural variation in susceptibility to visual fatigue amongst people with normal vision. To verify these hypotheses, we designed an experiment, consisting of two parts. Firstly, an optometric screening was used to differentiate participants in susceptibility to visual fatigue. Secondly, in a 2×2 within-subjects design (2D vs 3D and two-view vs nine-view display), a questionnaire and eight optometric tests (i.e. binocular acuity, fixation disparity with and without fusion lock, heterophoria, convergent and divergent fusion, vergence facility and accommodation response) were administered before and immediately after a reading task. Results revealed that participants found to be more susceptible to visual fatigue during screening showed a clinically meaningful increase in fusion amplitude after having viewed 3D stimuli. Two questionnaire items (i.e., pain and irritation) were significantly affected by the participants' susceptibility, while two other items (i.e., double vision and sharpness) were scored differently between 2D and 3D for all participants. Our results suggest that a combination of fusion range measurements and self-report is appropriate for evaluating visual fatigue related to 3D displays.
NASA Astrophysics Data System (ADS)
Hogan, W. J.
2004-12-01
The Third International Conference on Inertial Fusion Sciences and Applications (IFSA2003) was held in Monterey, CA, USA, on 7--12 September 2003. The goal of IFSA2003 was to bring together scientists and engineers in the fields of inertial fusion sciences, high energy density physics, inertial fusion energy (IFE) and other related research and applications. By all measures IFSA2003 was a resounding success. IFSA2003 was hosted by the University of California, which was supported in organizing the conference by seven institutions: General Atomics, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Naval Research Laboratory, Sandia National Laboratory and the University of Rochester, Laboratory for Laser Energetics. IFSA2003 was the largest IFSA conference yet with 405 participants from 17 countries. Approximately 430 papers were presented and 236 appeared in the Proceedings, published in July 2004 by the American Nuclear Society [1]. A subset of the Nuclear Fusion Board of Editors, those who work on inertial confinement fusion (ICF), recommended creating this special issue of Nuclear Fusion by selecting a representative cross-section of the papers presented at IFSA2003. Authors of the selected papers were asked to expand their papers and make them suitable for publication in it Nuclear Fusion. Nineteen papers are presented in this special issue. They represent a cross-section of the papers presented at IFSA2003. However, there was no attempt to represent the `feel' of the conference by having the same fraction of papers on each topic as existed at IFSA. There were far more detailed scientific papers at IFSA than are presented in this special issue. However, in the interest of giving the reader a cross-section of the papers and showing the entire breadth of ICF research going on, we have biased the selection process toward review papers. The first three papers here are based upon the keynote talks at IFSA2003 and are, therefore, overviews of all ICF research being done in the Americas, Asia, and Europe. The next two papers are also reviews but of a different sort. The Teller Medal is awarded at the IFSA conferences for pioneering work and leadership in inertial fusion and high energy density science. The two recipients for 2003 were H. Takabe of the Institute of Laser Engineering at Osaka University and L. Suter of Lawrence Livermore National Laboratory. These awardees were asked to deliver the two Teller Lectures at IFSA based upon the work for which they were being honoured. The papers presented here are expansions of those two review talks. Suter chose to focus his review on his recent work on ignition physics for targets driven by 0.54 m light. This is of interest because large facilities like the National Ignition Facility (NIF) will deliver much more energy in the frequency doubled wavelength than in the frequency tripled one. Takabe, on the other hand chose to give a historical perspective of his lifelong work. The other 14 papers were selected to represent a cross-section of the research being conducted in the science and engineering of inertial fusion. The papers by Haan et al and Holstein et al represent some of the recent progress in target design calculations for the ignition first experiments. Haan presents his team's work on indirect drive ignition targets (driven by 0.35 m) intended for the National Ignition Facility (NIF) when all the beamlines are activated. Holstein does the same for targets being design for the Laser MegaJoule (LMJ). Suter's paper, presented earlier as a Teller Lecture also falls into this ignition target physics category. The next four papers look at some of the exciting high energy density physics being studied in ICF facilities around the world. Glenzer et al looks at stimulated light scattering processes in hot dense plasmas. Pukhov et al look at relativistic laser-plasma interactions that produce energetic particles and x-rays. Peyrusse et al examine atomic physics and radiative processes in hot dense plasmas. Koenig et al examine ways to simulate planetary physics processes using high pressures generated in laser driven shocks. Non-laser approaches to inertial fusion were also fully represented at IFSA2003. The paper by Lebedev et al shows important physics developments in Z-pinch plasmas. Sharp et al present chamber transport modelling for heavy ion fusion drivers. Technology development studies were also well represented at IFSA2003. There was a special session on facility and driver developments that contained several papers. Presented here are the papers by Miller et al on the NIF, Danson et al on the Vulcan petawatt facility, and Myers et al on KrF lasers for IFE. A paper by Goodin et al shows progress in finding cost effective target manufacturing methods for IFE. Finally, there were many papers at IFSA2003 that focused upon the very promising but more immature field of fast ignition. Barty et al give an overview of the development issues for short pulse lasers that will be essential if fast ignition is to become mainstream. A paper by Kodama et al looks at target physics using cone focus targets. Fast ignition lasers and innovative target physics within this concept were a `hot topic' at IFSA2003. The IFSA conferences have become the principal forum for the exchange of research results in inertial fusion and high energy and density science. There is a unique blend of science and technology. All fields of inertial fusion are represented. This special issue is a snapshot and a cross-section of the field at this time. We hope the reader is encouraged to look into more of the papers in areas that interest them. References [1] Inertial Fusion Sciences and Applications: State of the Art 2003 ed B. Hammel, D. Meyerhofer, J. Meyer-ter-Vehn and H. Azechi American Nuclear Society (July 2004) These IFSA2003 proceedings may be purchased on-line at http://www.ans.org.
Mohamed, Yehia S; Dunnion, Debbie; Teobald, Iryna; Walewska, Renata; Browning, Michael J
2012-10-12
Fusions of dendritic cells (DCs) and tumour cells have been shown to induce protective immunity to tumour challenge in animal models, and to represent a promising approach to cancer immunotherapy. The broader clinical application of this approach, however, is potentially constrained by the lack of replicative capacity and limited standardisation of fusion cell preparations. We show here that fusion of ex vivo tumour cells isolated from patients with a range of haematological malignancies with the human B-lymphoblastoid cell line (LCL), HMy2, followed by chemical selection of the hybridomas, generated stable, self-replicating human hybrid cell lines that grew continuously in tissue culture, and survived freeze/thawing cycles. The hybrid cell lines expressed HLA class I and class II molecules, and the major T-cell costimulatory molecules, CD80 and CD86. All but two of 14 hybrid cell lines generated expressed tumour-associated antigens that were not expressed by HMy2 cells, and were therefore derived from the parent tumour cells. The hybrid cell lines stimulated allogeneic T-cell proliferative responses and interferon-gamma release in vitro to a considerably greater degree than their respective parent tumour cells. The enhanced T-cell stimulation was inhibited by CTLA4-Ig fusion protein, and by blocking antibodies to MHC class I and class II molecules. Finally, all of five LCL/tumour hybrid cell lines tested induced tumour antigen-specific cytotoxic T-cell responses in vitro in PBL from healthy, HLA-A2+ individuals, as detected by HLA-A2-peptide pentamer staining and cellular cytotoxicity. These data show that stable hybrid cell lines, with enhanced immunostimulatory properties and potential for therapeutic vaccination, can be generated by in vitro fusion and chemical selection of B-LCL and ex vivo haematological tumour cells. Copyright © 2012 Elsevier Ltd. All rights reserved.
Inertial-confinement fusion with lasers
Betti, R.; Hurricane, O. A.
2016-05-03
The quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications to national security and basic sciences. The U.S. is arguably the world leader in the inertial con fment approach to fusion and has invested in large facilities to pursue it with the objective of establishing the science related to themore » safety and reliability of the stockpile of nuclear weapons. Even though significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion.« less
Günzel, Karsten; Cash, Hannes; Buckendahl, John; Königbauer, Maximilian; Asbach, Patrick; Haas, Matthias; Neymeyer, Jörg; Hinz, Stefan; Miller, Kurt; Kempkensteffen, Carsten
2017-01-13
To explore the diagnostic benefit of an additional image fusion of the sagittal plane in addition to the standard axial image fusion, using a sensor-based MRI/US fusion platform. During July 2013 and September 2015, 251 patients with at least one suspicious lesion on mpMRI (rated by PI-RADS) were included into the analysis. All patients underwent MRI/US targeted biopsy (TB) in combination with a 10 core systematic prostate biopsy (SB). All biopsies were performed on a sensor-based fusion system. Group A included 162 men who received TB by an axial MRI/US image fusion. Group B comprised 89 men in whom the TB was performed with an additional sagittal image fusion. The median age in group A was 67 years (IQR 61-72) and in group B 68 years (IQR 60-71). The median PSA level in group A was 8.10 ng/ml (IQR 6.05-14) and in group B 8.59 ng/ml (IQR 5.65-12.32). In group A the proportion of patients with a suspicious digital rectal examination (DRE) (14 vs. 29%, p = 0.007) and the proportion of primary biopsies (33 vs 46%, p = 0.046) were significantly lower. The rate of PI-RADS 3 lesions were overrepresented in group A compared to group B (19 vs. 9%; p = 0.044). Classified according to PI-RADS 3, 4 and 5, the detection rates of TB were 42, 48, 75% in group A and 25, 74, 90% in group B. The rate of PCa with a Gleason score ≥7 missed by TB was 33% (18 cases) in group A and 9% (5 cases) in group B; p-value 0.072. An explorative multivariate binary logistic regression analysis revealed that PI-RADS, a suspicious DRE and performing an additional sagittal image fusion were significant predictors for PCa detection in TB. 9 PCa were only detected by TB with sagittal fusion (sTB) and sTB identified 10 additional clinically significant PCa (Gleason ≥7). Performing an additional sagittal image fusion besides the standard axial fusion appears to improve the accuracy of the sensor-based MRI/US fusion platform.
Inertial Confinement Fusion quarterly report, January-March 1998, volume 8, number 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruer, W
1998-03-31
The coupling of laser light with plasmas is one of the key physics issues for the use of high-power lasers for inertial fusion, high-energy-density physics, and scientific stockpile stewardship. The coupling physics is extremely rich and challenging, particularly in the large plasmas to be accessed on the National Ignition Facility (NIF). The coupling mechanisms span the gamut from classical inverse bremsstrahlung absorption to a variety of nonlinear optical processes. These include stimulated Raman scattering (SRS) from electron plasma waves, stimulated Brillouin scattering (SBS) from ion sound waves, resonant decay into electron plasma and ion sound waves, and laser beam filamentation.more » These processes depend on laser intensity and produce effects such as changes in the efficiency and location of the energy deposition or generation of a component of very energetic electrons, which can preheat capsules. Coupling physics issues have an extremely high leverage. The coupling models are clearly very important ingredients for detailed calculations of laser-irradiated target behavior. Improved understanding and models enable a more efficient use of laser facilities, which becomes even more important as these facilities become larger and more expensive. Advances in the understanding also allow a more timely and cost-effective identification of new applications of high-power lasers, such as for generation of high-temperature hohlraums and compact x-ray sources, or for discovery of advanced fusion schemes. Finally, the interaction of intense electromagnetic waves with ionized media is a fundamental topic of interest to numerous areas of applied science and is an excellent test bed for advancing plasma science and computational modeling of complex phenomena. This issue of the ICF Quarterly Report is dedicated to laser--plasma interactions. The eight articles present a cross section of the broad progress in understanding the key interaction issues, such as laser beam bending, spraying, and scattering, as well as scaling the Nova results to NIF.« less
Initial Operation of the Miniaturized Inductively Heated Plasma Generator IPG6
NASA Astrophysics Data System (ADS)
Dropmann, Michael; Herdrich, Georg; Laufer, Rene; Koch, Helmut; Gomringer, Chris; Cook, Mike; Schmoke, Jimmy; Matthews, Lorin; Hyde, Truell
2012-10-01
In close collaboration between the Center for Astrophysics, Space Physics and Engineering Research (CASPER) at Baylor University, Texas, and the Institute of Space Systems (IRS) at the University of Stuttgart, Germany, two plasma wind tunnel facilities of similar type have been established using the inductively heated plasma source IPG6 which is based on proven IRS designs. The facility at Baylor University (IPG6-B) works at a frequency of 13.56 MHz and a maximum power of 15 kW. A vacuum pump of 160m^3/h in combination with a butterfly valve allows pressure control in a wide range. First experiments have been conducted with Air, O2 and N2 as working gases and volumetric flow rates of up to 14 L/min at pressures of a few 100 Pa, although pressures below 1 Pa are achievable at lower flow rates. The maximum tested electric power so far was 8 kW. Plasma powers and total pressures in the plasma jet have been obtained. In the near future the set up of additional diagnostics, the use of other gases (i.e. H2, He), and the integration of a dust particle accelerator are planned. The intended fields of research are basic investigation in thermo-chemistry and plasma radiation, space plasma environments and high heat fluxes e.g. in fusion devices or during atmospheric entry of spacecraft.
Klose, Diana; Saunders, Ute; Barth, Stefan; Fischer, Rainer; Jacobi, Annett Marita; Nachreiner, Thomas
2016-02-17
In an earlier study we developed a unique strategy allowing us to specifically eliminate antigen-specific murine B cells via their distinct B cell receptors using a new class of fusion proteins. In the present work we elaborated our idea to demonstrate the feasibility of specifically addressing and eliminating human memory B cells. The present study reveals efficient adaptation of the general approach to selectively target and eradicate human memory B cells. In order to demonstrate the feasibility we engineered a fusion protein following the principle of recombinant immunotoxins by combining a model antigen (tetanus toxoid fragment C, TTC) for B cell receptor targeting and a truncated version of Pseudomonas aeruginosa exotoxin A (ETA') to induce apoptosis after cellular uptake. The TTC-ETA' fusion protein not only selectively bound to a TTC-reactive murine B cell hybridoma cell line in vitro but also to freshly isolated human memory B cells from immunized donors ex vivo. Specific toxicity was confirmed on an antigen-specific population of human CD27(+) memory B cells. This protein engineering strategy can be used as a generalized platform approach for the construction of therapeutic fusion proteins with disease-relevant antigens as B cell receptor-binding domains, offering a promising approach for the specific depletion of autoreactive B-lymphocytes in B cell-driven autoimmune diseases.
Shi, Ming; Zhang, Ling; Gu, Hong-Tao; Jiang, Feng-Qin; Qian, Lu; Yu, Ming; Chen, Guo-Jiang; Luo, Qun; Shen, Bei-Fen; Guo, Ning
2007-10-01
To investigate the antitumor activities of an anti-ErbB2 scFv-Fc-interleukin 2 (IL-2) fusion protein (HFI) in vitro and in vivo. Fusion protein HFI was constructed. The efficacy of HFI in mediating tumor cell lysis was determined by colorimetric lactate dehydrogenase release assays. The antitumor activity of HFI was evaluated in tumor xenograft models. The fusion protein was folded as a homodimer formed by covalently linking Fc portions and it retained ErbB2 specificity and IL-2 biological activity. HFI mediated antibody-dependent cell-mediated cytotoxicity (ADCC) at low effector-to-target ratios in vitro and improved the therapeutic efficacy of IL-2 in experiments in vivo. The genetically-engineered anti-ErbB2 scFv-Fc-IL-2 fusion protein exhibited high efficiency both in mediating ADCC in vitro and significant antitumor activity in tumor xenograft models.
26 CFR 1.141-8 - $15 million limitation for output facilities.
Code of Federal Regulations, 2013 CFR
2013-04-01
... the private business tests of section 141(b)(1) and (2) if the nonqualified amount with respect to... limitation applies in addition to the private business tests of section 141(b)(1) and (2). Under section 141... cases. Specifically, an issue meets the test in section 141(b)(4) if both of the following tests are met...
26 CFR 1.141-8 - $15 million limitation for output facilities.
Code of Federal Regulations, 2012 CFR
2012-04-01
... the private business tests of section 141(b)(1) and (2) if the nonqualified amount with respect to... limitation applies in addition to the private business tests of section 141(b)(1) and (2). Under section 141... cases. Specifically, an issue meets the test in section 141(b)(4) if both of the following tests are met...
26 CFR 1.141-8 - $15 million limitation for output facilities.
Code of Federal Regulations, 2014 CFR
2014-04-01
... the private business tests of section 141(b)(1) and (2) if the nonqualified amount with respect to... limitation applies in addition to the private business tests of section 141(b)(1) and (2). Under section 141... cases. Specifically, an issue meets the test in section 141(b)(4) if both of the following tests are met...
Detection of osteoclastic cell-cell fusion through retroviral vector packaging.
Kondo, Takako; Ikeda, Kyoji; Matsuo, Koichi
2004-11-01
Cell-cell fusion generates multinucleated cells such as osteoclasts in bone, myotubes in muscle, and trophoblasts in placenta. Molecular details governing these fusion processes are still largely unknown. As a step toward identification of fusogenic genes, we tested the concept that retroviral vectors can be packaged as a result of cell-cell fusion. First, we introduced replication-deficient retroviral vectors expressing mCAT-1, which mediates fusogenic interaction with the retroviral envelope protein Env, into Chinese hamster ovary (CHO) cells to generate vector cells. Plasmids expressing virion proteins Gag, Pol, and Env were introduced into a separate culture of CHO cells to generate packaging cells. Co-culturing vector and packaging cells resulted in production of infectious retroviruses carrying the mCAT-1 gene as a consequence of cell-cell fusion. Second, we introduced a retroviral vector into primary osteoclast precursors and co-cultured them with established osteoclast precursor RAW264.7 cells, which turned out to harbor packaging activity. Packaged retroviral vector was detected in culture supernatants only where the osteoclast differentiation factor receptor activator for NF-kappaB ligand (RANKL) induced fusion between these two cell types. These data suggest that retrovirus production can occur as a result of cell-cell fusion. This provides a novel approach for isolating and characterizing fusogenic genes using retroviral expression vectors.
Promoting Pre-college Science Education
NASA Astrophysics Data System (ADS)
Taylor, P. L.; Lee, R. L.
2000-10-01
The Fusion Education Program, with continued support from DOE, has strengthened its interactions with educators in promoting pre-college science education for students. Projects aggressively pursued this year include an on-site, college credited, laboratory-based 10-day educator workshop on plasma and fusion science; completion of `Starpower', a fusion power plant simulation on interactive CD; expansion of scientist visits to classrooms; broadened participation in an internet-based science olympiad; and enhancements to the tours of the DIII-D Facility. In the workshop, twelve teachers used bench top devices to explore basic plasma physics. Also included were radiation experiments, computer aided drafting, techniques to integrate fusion science and technology in the classroom, and visits to a University Physics lab and the San Diego Supercomputer Center. Our ``Scientist in a Classroom'' program reached more than 2200 students at 20 schools. Our `Starpower' CD allows a range of interactive learning from the effects of electric and magnetic fields on charged particles to operation of a Tokamak-based power plant. Continuing tours of the DIII-D facility were attended by more than 800 students this past year.
An NPSS Model of a Proposed Altitude Test Facility
2011-02-01
An NPSS Model of a Proposed Altitude Test Facility by Brian C. Huffman, Thomas M. Lavelle, and Albert K. Owen ARL-RP-310 February 2011...originator. Army Research Laboratory Aberdeen Proving Ground, MD 21005-5066 ARL-RP-310 February 2011 An NPSS Model of a Proposed...January 2011 4. TITLE AND SUBTITLE An NPSS Model of a Proposed Altitude Test Facility 5a. CONTRACT NUMBER DAAB07-03-D-2389 5b. GRANT NUMBER 5c
Code of Federal Regulations, 2011 CFR
2011-01-01
.... Nuclear Regulatory Commission, Washington, DC 20555-0001. The guidance discusses, among other topics, the.... (b)(1) Except for test and research reactor facilities, the Director, Office of Nuclear Reactor... this part involving a test and research reactor facility licensed under 10 CFR part 50 and any related...
Pulse shaping and energy storage capabilities of angularly multiplexed KrF laser fusion drivers
NASA Astrophysics Data System (ADS)
Lehmberg, R. H.; Giuliani, J. L.; Schmitt, A. J.
2009-07-01
This paper describes a rep-rated multibeam KrF laser driver design for the 500kJ Inertial Fusion test Facility (FTF) recently proposed by NRL, then models its optical pulse shaping capabilities using the ORESTES laser kinetics code. It describes a stable and reliable iteration technique for calculating the required precompensated input pulse shape that will achieve the desired output shape, even when the amplifiers are heavily saturated. It also describes how this precompensation technique could be experimentally implemented in real time on a reprated laser system. The simulations show that this multibeam system can achieve a high fidelity pulse shaping capability, even for a high gain shock ignition pulse whose final spike requires output intensities much higher than the ˜4MW/cm2 saturation levels associated with quasi-cw operation; i.e., they show that KrF can act as a storage medium even for pulsewidths of ˜1ns. For the chosen pulse, which gives a predicted fusion energy gain of ˜120, the simulations predict the FTF can deliver a total on-target energy of 428kJ, a peak spike power of 385TW, and amplified spontaneous emission prepulse contrast ratios IASE/I<3×10-7 in intensity and FASE/F<1.5×10-5 in fluence. Finally, the paper proposes a front-end pulse shaping technique that combines an optical Kerr gate with cw 248nm light and a 1μm control beam shaped by advanced fiber optic technology, such as the one used in the National Ignition Facility (NIF) laser.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClements, K.G.
A full orbit code is used to compute collisionless losses of fusion {alpha} particles from three proposed burning plasma tokamaks: the International Tokamak Experimental Reactor (ITER); a spherical tokamak power plant (STPP) [T. C. Hender, A. Bond, J. Edwards, P. J. Karditsas, K. G. McClements, J. Mustoe, D. V. Sherwood, G. M. Voss, and H. R. Wilson, Fusion Eng. Des. 48, 255 (2000)]; and a spherical tokamak components test facility (CTF) [H. R. Wilson, G. M. Voss, R. J. Akers, L. Appel, A. Dnestrovskij, O. Keating, T. C. Hender, M. J. Hole, G. Huysmans, A. Kirk, P. J. Knight, M.more » Loughlin, K. G. McClements, M. R. O'Brien, and D. Yu. Sychugov, Proceedings of the 20th IAEA Fusion Energy Conference, Invited Paper FT/3-1Ra]. It has been suggested that {alpha} particle transport could be enhanced due to cyclotron resonance with the toroidal magnetic field ripple. However, calculations for inductive operation in ITER yield a loss rate that appears to be broadly consistent with the predictions of guiding center theory, falling monotonically as the number of toroidal field coils N is increased (and hence the ripple amplitude is decreased). For STPP and CTF the loss rate does not decrease monotonically with N, but collisionless losses are generally low in absolute terms. As in the case of ITER, there is no evidence that finite Larmor radius effects would seriously degrade fusion {alpha}-particle confinement.« less
Conference Report on the 4rd International Symposium on Lithium Applications
NASA Astrophysics Data System (ADS)
Tabares, F. L.; Hirooka, Y.; Maingi, R.; Mazzitelli, G.; Mirnov, V.; Nygren, R.; Ono, M.; Ruzic, D. N.
2016-12-01
The fourth International Symposium on Liquid Metal Application for Fusion Devices (ISLA-2015) was held on 28-30 September 2015 at Granada, Spain, with growing participation and interest from the community working on general aspects of liquid metal research for fusion energy development. The ISLA symposia remain the largest, and arguably, the most important meetings dedicated to liquid metal application for the magnetic fusion research. Overall, 43 presentations plus 7 posters were given, representing 28 institutions from 12 countries. The latest experimental results from 9 magnetic fusion devices were given in 17 presentations from NSTX and LTX (PPPL, USA), FTU (ENEA, Italy), T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST (ASIPP, China), HT-7 (ASIPP, China), DIII-D (GA, USA), ISTTOK (IPFN, Portugal) and KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) liquid metals (LM) in magnetic confinement experiments (facility overviews), (II) LM in magnetic confinement experiments (topical issues), (III) laboratory experiments, (IV) LM tests in linear plasma devices, (V) LM theory/modeling (VI) LM technology and (VII) a special session on lithium-safety and lithium handling. There were contributions from fusion technology communities including IFMIF and TBM, which provided productive exchanges with physics-oriented magnetic confinement liquid metal research groups. This international workshop will continue on a biennial basis (alternating with the Plasma-Surface Interactions (PSI) Conference), with the next workshop scheduled for Moscow, Russian Federation, in 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazzitelli, Guiseppe; Hirooka, Y.; Hu, J. S.
The third International Symposium on Lithium Application for Fusion Device (ISLA-2013) was held on 9-11 October 2013 at ENEA Frascati Centre with growing participation and interest from the community working on more general aspect of liquid metal research for fusion energy development. ISLA-2013 has been confirmed to be the largest and the most important meeting dedicated to liquid metal application for the magnetic fusion research. Overall, 45 presentation plus 5 posters were given, representing 28 institutions from 11 countries. The latest experimental results from nine magnetic fusion devices were presented in 16 presentations from NSTX (PPPL, USA), FTU (ENEA, Italy),more » T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST(ASIPP, China), HT-7 (ASIPP, China), RFX (Padova, Italy), KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) lithium in magnetic confinement experiments (facility overviews), (II) lithium in magnetic confinement experiments (topical issues), (III) special session on liquid lithium technology, (IV) lithium laboratory test stands, (V) Lithium theory/modelling/comments, (VI) innovative lithium applications and (VII) special Session on lithium-safety and lithium handling. There was a wide participation from the fusion technology communities, including IFMIF and TBM communities providing productive exchange with the physics oriented magnetic confinement liquid metal research groups. Furthermore, this international workshop will continue on a biennial basis (alternating with the Plasma-Surface Interactions (PSI) Conference) and the next workshop will be held at CIEMAT, Madrid, Spain, in 2015.« less
Inertial-confinement fusion with lasers
NASA Astrophysics Data System (ADS)
Betti, R.; Hurricane, O. A.
2016-05-01
The quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications in national security and basic sciences. The US is arguably the world leader in the inertial confinement approach to fusion and has invested in large facilities to pursue it, with the objective of establishing the science related to the safety and reliability of the stockpile of nuclear weapons. Although significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion. Here, we review the current state of the art in inertial confinement fusion research and describe the underlying physical principles.
Wright, Catherine C; Wisner, Todd W; Hannah, Brian P; Eisenberg, Roselyn J; Cohen, Gary H; Johnson, David C
2009-11-01
Herpesviruses cross nuclear membranes (NMs) in two steps, as follows: (i) capsids assemble and bud through the inner NM into the perinuclear space, producing enveloped virus particles, and (ii) the envelopes of these virus particles fuse with the outer NM. Two herpes simplex virus (HSV) glycoproteins, gB and gH (the latter, likely complexed as a heterodimer with gL), are necessary for the second step of this process. Mutants lacking both gB and gH accumulate in the perinuclear space or in herniations (membrane vesicles derived from the inner NM). Both gB and gH/gL are also known to act directly in fusing the virion envelope with host cell membranes during HSV entry into cells, i.e., both glycoproteins appear to function directly in different aspects of the membrane fusion process. We hypothesized that HSV gB and gH/gL also act directly in the membrane fusion that occurs during virus egress from the nucleus. Previous studies of the role of gB and gH/gL in nuclear egress involved HSV gB and gH null mutants that could potentially also possess gross defects in the virion envelope. Here, we produced recombinant HSV-expressing mutant forms of gB with single amino acid substitutions in the hydrophobic "fusion loops." These fusion loops are thought to play a direct role in membrane fusion by insertion into cellular membranes. HSV recombinants expressing gB with any one of four fusion loop mutations (W174R, W174Y, Y179K, and A261D) were unable to enter cells. Moreover, two of the mutants, W174Y and Y179K, displayed reduced abilities to mediate HSV cell-to-cell spread, and W174R and A261D exhibited no spread. All mutant viruses exhibited defects in nuclear egress, enveloped virions accumulated in herniations and in the perinuclear space, and fewer enveloped virions were detected on cell surfaces. These results support the hypothesis that gB functions directly to mediate the fusion between perinuclear virus particles and the outer NM.
Pfeiffer, Daniel
2012-01-01
Poly(3-hydroxybutyrate) (PHB) granules are covered by a surface layer consisting of mainly phasins and other PHB granule-associated proteins (PGAPs). Phasins are small amphiphilic proteins that determine the number and size of accumulated PHB granules. Five phasin proteins (PhaP1 to PhaP5) are known for Ralstonia eutropha. In this study, we identified three additional potential phasin genes (H16_B1988, H16_B2296, and H16_B2326) by inspection of the R. eutropha genome for sequences with “phasin 2 motifs.” To determine whether the corresponding proteins represent true PGAPs, fusions with eYFP (enhanced yellow fluorescent protein) were constructed. Similar fusions of eYFP with PhaP1 to PhaP5 as well as fusions with PHB synthase (PhaC1), an inactive PhaC1 variant (PhaC1-C319A), and PhaC2 were also made. All fusions were investigated in wild-type and PHB-negative backgrounds. Colocalization with PHB granules was found for all PhaC variants and for PhaP1 to PhaP5. Additionally, eYFP fusions with H16_B1988 and H16_B2326 colocalized with PHB. Fusions of H16_B2296 with eYFP, however, did not colocalize with PHB granules but did colocalize with the nucleoid region. Notably, all fusions (except H16_B2296) were soluble in a ΔphaC1 strain. These data confirm that H16_B1988 and H16_B2326 but not H16_B2296 encode true PGAPs, for which we propose the designation PhaP6 (H16_B1988) and PhaP7 (H16_B2326). When localization of phasins was investigated at different stages of PHB accumulation, fusions of PhaP6 and PhaP7 were soluble in the first 3 h under PHB-permissive conditions, although PHB granules appeared after 10 min. At later time points, the fusions colocalized with PHB. Remarkably, PHB granules of strains expressing eYFP fusions with PhaP5, PhaP6, or PhaP7 localized predominantly near the cell poles or in the area of future septum formation. This phenomenon was not observed for the other PGAPs (PhaP1 to PhaP4, PhaC1, PhaC1-C319A, and PhaC2) and indicated that some phasins can have additional functions. A chromosomal deletion of phaP6 or phaP7 had no visible effect on formation of PHB granules. PMID:22923598
Pfeiffer, Daniel; Jendrossek, Dieter
2012-11-01
Poly(3-hydroxybutyrate) (PHB) granules are covered by a surface layer consisting of mainly phasins and other PHB granule-associated proteins (PGAPs). Phasins are small amphiphilic proteins that determine the number and size of accumulated PHB granules. Five phasin proteins (PhaP1 to PhaP5) are known for Ralstonia eutropha. In this study, we identified three additional potential phasin genes (H16_B1988, H16_B2296, and H16_B2326) by inspection of the R. eutropha genome for sequences with "phasin 2 motifs." To determine whether the corresponding proteins represent true PGAPs, fusions with eYFP (enhanced yellow fluorescent protein) were constructed. Similar fusions of eYFP with PhaP1 to PhaP5 as well as fusions with PHB synthase (PhaC1), an inactive PhaC1 variant (PhaC1-C319A), and PhaC2 were also made. All fusions were investigated in wild-type and PHB-negative backgrounds. Colocalization with PHB granules was found for all PhaC variants and for PhaP1 to PhaP5. Additionally, eYFP fusions with H16_B1988 and H16_B2326 colocalized with PHB. Fusions of H16_B2296 with eYFP, however, did not colocalize with PHB granules but did colocalize with the nucleoid region. Notably, all fusions (except H16_B2296) were soluble in a ΔphaC1 strain. These data confirm that H16_B1988 and H16_B2326 but not H16_B2296 encode true PGAPs, for which we propose the designation PhaP6 (H16_B1988) and PhaP7 (H16_B2326). When localization of phasins was investigated at different stages of PHB accumulation, fusions of PhaP6 and PhaP7 were soluble in the first 3 h under PHB-permissive conditions, although PHB granules appeared after 10 min. At later time points, the fusions colocalized with PHB. Remarkably, PHB granules of strains expressing eYFP fusions with PhaP5, PhaP6, or PhaP7 localized predominantly near the cell poles or in the area of future septum formation. This phenomenon was not observed for the other PGAPs (PhaP1 to PhaP4, PhaC1, PhaC1-C319A, and PhaC2) and indicated that some phasins can have additional functions. A chromosomal deletion of phaP6 or phaP7 had no visible effect on formation of PHB granules.
Huang, H.; Nightingale, R. W.
2018-01-01
Objectives Loss of motion following spine segment fusion results in increased strain in the adjacent motion segments. However, to date, studies on the biomechanics of the cervical spine have not assessed the role of coupled motions in the lumbar spine. Accordingly, we investigated the biomechanics of the cervical spine following cervical fusion and lumbar fusion during simulated whiplash using a whole-human finite element (FE) model to simulate coupled motions of the spine. Methods A previously validated FE model of the human body in the driver-occupant position was used to investigate cervical hyperextension injury. The cervical spine was subjected to simulated whiplash exposure in accordance with Euro NCAP (the European New Car Assessment Programme) testing using the whole human FE model. The coupled motions between the cervical spine and lumbar spine were assessed by evaluating the biomechanical effects of simulated cervical fusion and lumbar fusion. Results Peak anterior longitudinal ligament (ALL) strain ranged from 0.106 to 0.382 in a normal spine, and from 0.116 to 0.399 in a fused cervical spine. Strain increased from cranial to caudal levels. The mean strain increase in the motion segment immediately adjacent to the site of fusion from C2-C3 through C5-C6 was 26.1% and 50.8% following single- and two-level cervical fusion, respectively (p = 0.03, unpaired two-way t-test). Peak cervical strains following various lumbar-fusion procedures were 1.0% less than those seen in a healthy spine (p = 0.61, two-way ANOVA). Conclusion Cervical arthrodesis increases peak ALL strain in the adjacent motion segments. C3-4 experiences greater changes in strain than C6-7. Lumbar fusion did not have a significant effect on cervical spine strain. Cite this article: H. Huang, R. W. Nightingale, A. B. C. Dang. Biomechanics of coupled motion in the cervical spine during simulated whiplash in patients with pre-existing cervical or lumbar spinal fusion: A Finite Element Study. Bone Joint Res 2018;7:28–35. DOI: 10.1302/2046-3758.71.BJR-2017-0100.R1. PMID:29330341
Huang, H; Nightingale, R W; Dang, A B C
2018-01-01
Loss of motion following spine segment fusion results in increased strain in the adjacent motion segments. However, to date, studies on the biomechanics of the cervical spine have not assessed the role of coupled motions in the lumbar spine. Accordingly, we investigated the biomechanics of the cervical spine following cervical fusion and lumbar fusion during simulated whiplash using a whole-human finite element (FE) model to simulate coupled motions of the spine. A previously validated FE model of the human body in the driver-occupant position was used to investigate cervical hyperextension injury. The cervical spine was subjected to simulated whiplash exposure in accordance with Euro NCAP (the European New Car Assessment Programme) testing using the whole human FE model. The coupled motions between the cervical spine and lumbar spine were assessed by evaluating the biomechanical effects of simulated cervical fusion and lumbar fusion. Peak anterior longitudinal ligament (ALL) strain ranged from 0.106 to 0.382 in a normal spine, and from 0.116 to 0.399 in a fused cervical spine. Strain increased from cranial to caudal levels. The mean strain increase in the motion segment immediately adjacent to the site of fusion from C2-C3 through C5-C6 was 26.1% and 50.8% following single- and two-level cervical fusion, respectively (p = 0.03, unpaired two-way t -test). Peak cervical strains following various lumbar-fusion procedures were 1.0% less than those seen in a healthy spine (p = 0.61, two-way ANOVA). Cervical arthrodesis increases peak ALL strain in the adjacent motion segments. C3-4 experiences greater changes in strain than C6-7. Lumbar fusion did not have a significant effect on cervical spine strain. Cite this article : H. Huang, R. W. Nightingale, A. B. C. Dang. Biomechanics of coupled motion in the cervical spine during simulated whiplash in patients with pre-existing cervical or lumbar spinal fusion: A Finite Element Study. Bone Joint Res 2018;7:28-35. DOI: 10.1302/2046-3758.71.BJR-2017-0100.R1. © 2018 Huang et al.
Herpes B Virus Utilizes Human Nectin-1 but Not HVEM or PILRα for Cell-Cell Fusion and Virus Entry
Fan, Qing; Amen, Melanie; Harden, Mallory; Severini, Alberto; Griffiths, Anthony
2012-01-01
To investigate the requirements of herpesvirus entry and fusion, the four homologous glycoproteins necessary for herpes simplex virus (HSV) fusion were cloned from herpes B virus (BV) (or macacine herpesvirus 1, previously known as cercopithecine herpesvirus 1) and cercopithecine herpesvirus 2 (CeHV-2), both related simian simplexviruses belonging to the alphaherpesvirus subfamily. Western blots and cell-based enzyme-linked immunosorbent assay (ELISA) showed that glycoproteins gB, gD, and gH/gL were expressed in whole-cell lysates and on the cell surface. Cell-cell fusion assays indicated that nectin-1, an HSV-1 gD receptor, mediated fusion of cells expressing glycoproteins from both BV and CeHV-2. However, herpesvirus entry mediator (HVEM), another HSV-1 gD receptor, did not facilitate BV- and CeHV-2-induced cell-cell fusion. Paired immunoglobulin-like type 2 receptor alpha (PILRα), an HSV-1 gB fusion receptor, did not mediate fusion of cells expressing glycoproteins from either simian virus. Productive infection with BV was possible only with nectin-1-expressing cells, indicating that nectin-1 mediated entry while HVEM and PILRα did not function as entry receptors. These results indicate that these alphaherpesviruses have differing preferences for entry receptors. The usage of the HSV-1 gD receptor nectin-1 may explain interspecies transfer of the viruses, and altered receptor usage may result in altered virulence, tropism, or pathogenesis in the new host. A heterotypic cell fusion assay resulting in productive fusion may provide insight into interactions that occur to trigger fusion. These findings may be of therapeutic significance for control of deadly BV infections. PMID:22345445
Burning plasma regime for Fussion-Fission Research Facility
NASA Astrophysics Data System (ADS)
Zakharov, Leonid E.
2010-11-01
The basic aspects of burning plasma regimes of Fusion-Fission Research Facility (FFRF, R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, P^DT=50-100 MW, P^fission=80-4000 MW, 1 m thick blanket), which is suggested as the next step device for Chinese fusion program, are presented. The mission of FFRF is to advance magnetic fusion to the level of a stationary neutron source and to create a technical, scientific, and technology basis for the utilization of high-energy fusion neutrons for the needs of nuclear energy and technology. FFRF will rely as much as possible on ITER design. Thus, the magnetic system, especially TFC, will take advantage of ITER experience. TFC will use the same superconductor as ITER. The plasma regimes will represent an extension of the stationary plasma regimes on HT-7 and EAST tokamaks at ASIPP. Both inductive discharges and stationary non-inductive Lower Hybrid Current Drive (LHCD) will be possible. FFRF strongly relies on new, Lithium Wall Fusion (LiWF) plasma regimes, the development of which will be done on NSTX, HT-7, EAST in parallel with the design work. This regime will eliminate a number of uncertainties, still remaining unresolved in the ITER project. Well controlled, hours long inductive current drive operation at P^DT=50-100 MW is predicted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Choong-Seock; Greenwald, Martin; Riley, Katherine
The additional computing power offered by the planned exascale facilities could be transformational across the spectrum of plasma and fusion research — provided that the new architectures can be efficiently applied to our problem space. The collaboration that will be required to succeed should be viewed as an opportunity to identify and exploit cross-disciplinary synergies. To assess the opportunities and requirements as part of the development of an overall strategy for computing in the exascale era, the Exascale Requirements Review meeting of the Fusion Energy Sciences (FES) community was convened January 27–29, 2016, with participation from a broad range ofmore » fusion and plasma scientists, specialists in applied mathematics and computer science, and representatives from the U.S. Department of Energy (DOE) and its major computing facilities. This report is a summary of that meeting and the preparatory activities for it and includes a wealth of detail to support the findings. Technical opportunities, requirements, and challenges are detailed in this report (and in the recent report on the Workshop on Integrated Simulation). Science applications are described, along with mathematical and computational enabling technologies. Also see http://exascaleage.org/fes/ for more information.« less
Induction of human immunodeficiency virus neutralizing antibodies using fusion complexes.
Zipeto, Donato; Matucci, Andrea; Ripamonti, Chiara; Scarlatti, Gabriella; Rossolillo, Paola; Turci, Marco; Sartoris, Silvia; Tridente, Giuseppe; Bertazzoni, Umberto
2006-05-01
Human immunodeficiency virus-1 (HIV-1) infects cells by membrane fusion that is mediated by the envelope proteins gp120/gp41 and the cellular receptors CD4 and CCR5. During this process, some conserved viral epitopes are temporarily exposed and may induce a neutralizing antibody response when fixed in the fusogenic conformation. These transient structures are conserved and may be effective antigens for use in an anti-HIV-1 vaccine. In this study we tested different conditions of preparation of fusion complexes inducing neutralizing antibodies against both R5 and X4 tropic HIV-1 strains. Cell lines expressing HIV-1 gp120/gp41 and CD4-CCR5 were prepared and conditions for producing fusion complexes were tested. Complexes produced at different temperature and fixative combinations were used to immunize mice. Results indicated that (a) fusion complexes prepared at either 21 degrees C, 30 degrees C or 37 degrees C were immunogenic and induced neutralizing antibodies against both R5 and X4 HIV-1 heterologous isolates; (b) after extensive purification of antibodies there was no cytotoxic effect; (c) complexes prepared at 37 degrees C were more immunogenic and induced higher titers of neutralizing antibodies than complexes prepared at either 21 degrees C or 30 degrees C; (d) the fixative used did not affect the titer of neutralizing antibodies except for glutaraldehyde which was ineffective; (e) the neutralizing activity was retained after CD4-CCR5 antibody removal. The production of higher titers of neutralizing antibody with fusion complexes prepared at 37 degrees C, as compared to lower temperatures, may be related to the induction of antibodies against many different conformation intermediates that subsequently act synergistically at different steps in the fusion process.
NASA Technical Reports Server (NTRS)
Fisher, Mark F.; King, Richard F.; Chenevert, Donald J.
1998-01-01
The need for low cost access to space has initiated the development of low cost liquid rocket engine and propulsion system hardware at the Marshall Space Flight Center. This hardware will be tested at the Stennis Space Center's B-2 test stand. This stand has been reactivated for the testing of the Marshall designed Fastrac engine and the Propulsion Test Article. The RP-1 and LOX engine is a turbopump fed gas generator rocket with an ablative nozzle which has a thrust of 60,000 lbf. The Propulsion Test Article (PTA) is a test bed for low cost propulsion system hardware including a composite RP-I tank, flight feedlines and pressurization system, stacked in a booster configuration. The PTA is located near the center line of the B-2 test stand, firing vertically into the water cooled flame deflector. A new second position on the B-2 test stand has been designed and built for the horizontal testing of the Fastrac engine in direct support of the X-34 launch vehicle. The design and integration of these test facilities as well as the coordination which was required between the two Centers is described and lessons learned are provided. The construction of the horizontal test position is discussed in detail. The activation of these facilities is examined and the major test milestones are described.
4. Credit WCT. Photographic copy of photograph, test Stand 'B' ...
4. Credit WCT. Photographic copy of photograph, test Stand 'B' set up for shock tube and research on ship-to-ship fueling problems for the U.S. Coast Guard. (JPL negative no. 344-3743-A, October or November 1980) - Jet Propulsion Laboratory Edwards Facility, Test Stand B, Edwards Air Force Base, Boron, Kern County, CA
Expression of fusion IL2-B7.1(IgV+C) and effects on T lymphocytes.
Kong, Linghong; Li, Yaochen; Yang, Ye; Li, Kangsheng
2007-12-01
The search for an effective immunotherapeutic treatment for tumors is an important area of cancer research. To prepare a more effective form of the bifunctional fusion protein IL2-B7.1(IgV+C) and analyze its effect on the stimulation of T lymphocyte proliferation, we used DNAStar 5.03 software to predict the structural diversity and biochemical character of IL2-B7.1(IgV+C). We then prepared fusion protein IL2-B7.1(IgV+C) by establishing its prokaryotic expression system, and tested its effect on the stimulation of T lymphocytes in vitro. The results indicated that IL2-B7.1(IgV+C) correctly formed a secondary structure in which both IL2 and B7.1(IgV+C) maintained their original hydrophilicity and epitopes. Western blot analysis revealed that IL2-B7.1(IgV+C) was efficiently expressed. Our analysis of CTLL-2 and T-cell proliferation showed that recombinant human (rh) IL2-B7.1(IgV+C) exerted the combined stimulating effects of both rhIL2 and rh B7.1(IgV+C) on cell proliferation, and that these effects could be blocked by adding either anti-IL2 or anti-B7.1 monoclonal antibodies. A >2-fold increase in [3H]TdR incorporation compared with that of cells treated with recombinant protein IL2, or B7.1(IgV+C) alone, revealed that rhIL2-B7.1(IgV+C) had dose-dependent synergetic effects on T-cell activation in the presence of anti-CD3 monoclonal antibody. We concluded that the augmented potency of rhIL2-B7.1(IgV+C) resulted in a stronger stimulation of T-cell proliferation than either rhB7.1(IgV+C) or rhIL2 alone.
12. SOUTHWEST VIEW OF BUILDING 25C (SUBSONIC AERODYNAMICS TEST FACILITY) ...
12. SOUTHWEST VIEW OF BUILDING 25C (SUBSONIC AERODYNAMICS TEST FACILITY) (1992). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panayotov, Dobromir; Poitevin, Yves; Grief, Andrew
'Fusion for Energy' (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). Safety demonstration is an essential element for the integration of these TBSs into ITER and accident analysis is one of its critical components. A systematic approach to accident analysis has been developed under the F4E contract on TBS safety analyses. F4E technical requirements, together with Amec Foster Wheeler and INL efforts, have resulted in a comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials,more » and phenomena while remaining consistent with the approach already applied to ITER accident analyses. Furthermore, the methodology phases are illustrated in the paper by its application to the EU HCLL TBS using both MELCOR and RELAP5 codes.« less
Tritium assay of Li/sub 2/O in the LBM/LOTUS experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quanci, J.; Azam, S.; Bertone, P.
1986-11-01
The Lithium Blanket Module (LBM) is an assembly of over 20,000 cylindrical lithium oxide pellets in an array representative of a limited-coverage breeding zone for a toroidal fusion device. A principal objective of the LBM program is to test the ability of advanced neutronics coding to model the tritium breeding characteristics of a fusion device blanket. The LBM has been irradiated at the Ecole Polytechnique Federale de Lausanne (EPFL) LOTUS facility with a 14 MeV point-neutron source. Princeton Plasma Physics Laboratory (PPPL) and EPFL assayed the tritium bred in lithium oxide diagnostic samples placed at various positions in the LBM.more » PPPL employed a thermal extraction technique while EPFL used a dissolution method. The results for the assay are reported and compared to MCNP Monte Carlo neutronics calculations for the LBM/LOTUS system.« less
The first experiments on the national ignition facility
NASA Astrophysics Data System (ADS)
Landen, O. L.; Glenzer, S.; Froula, D.; Dewald, E.; Suter, L. J.; Schneider, M.; Hinkel, D.; Fernandez, J.; Kline, J.; Goldman, S.; Braun, D.; Celliers, P.; Moon, S.; Robey, H.; Lanier, N.; Glendinning, G.; Blue, B.; Wilde, B.; Jones, O.; Schein, J.; Divol, L.; Kalantar, D.; Campbell, K.; Holder, J.; McDonald, J.; Niemann, C.; MacKinnon, A.; Collins, R.; Bradley, D.; Eggert, J.; Hicks, D.; Gregori, G.; Kirkwood, R.; Niemann, C.; Young, B.; Foster, J.; Hansen, F.; Perry, T.; Munro, D.; Baldis, H.; Grim, G.; Heeter, R.; Hegelich, B.; Montgomery, D.; Rochau, G.; Olson, R.; Turner, R.; Workman, J.; Berger, R.; Cohen, B.; Kruer, W.; Langdon, B.; Langer, S.; Meezan, N.; Rose, H.; Still, B.; Williams, E.; Dodd, E.; Edwards, J.; Monteil, M.-C.; Stevenson, M.; Thomas, B.; Coker, R.; Magelssen, G.; Rosen, P.; Stry, P.; Woods, D.; Weber, S.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, J.-L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P.; Atherton, L.; Bardsley, G.; Bonanno, R.; Borger, T.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S.; Cooper, F.; Dixit, S.; Erbert, G.; Eder, D.; Ehrlich, B.; Felker, B.; Fornes, J.; Frieders, G.; Gardner, S.; Gates, C.; Gonzalez, M.; Grace, S.; Hall, T.; Haynam, C.; Heestand, G.; Henesian, M.; Hermann, M.; Hermes, G.; Huber, S.; Jancaitis, K.; Johnson, S.; Kauffman, B.; Kelleher, T.; Kohut, T.; Koniges, A. E.; Labiak, T.; Latray, D.; Lee, A.; Lund, D.; Mahavandi, S.; Manes, K. R.; Marshall, C.; McBride, J.; McCarville, T.; McGrew, L.; Menapace, J.; Mertens, E.; Munro, D.; Murray, J.; Neumann, J.; Newton, M.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rinnert, R.; Riordan, B.; Ross, G.; Robert, V.; Tobin, M.; Sailors, S.; Saunders, R.; Schmitt, M.; Shaw, M.; Singh, M.; Spaeth, M.; Stephens, A.; Tietbohl, G.; Tuck, J.; van Wonterghem, B.; Vidal, R.; Wegner, P.; Whitman, P.; Williams, K.; Winward, K.; Work, K.; Wallace, R.; Nobile, A.; Bono, M.; Day, B.; Elliott, J.; Hatch, D.; Louis, H.; Manzenares, R.; O'Brien, D.; Papin, P.; Pierce, T.; Rivera, G.; Ruppe, J.; Sandoval, D.; Schmidt, D.; Valdez, L.; Zapata, K.; MacGowan, B.; Eckart, M.; Hsing, W.; Springer, P.; Hammel, B.; Moses, E.; Miller, G.
2006-06-01
A first set of shock propagation, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics.
47 CFR 5.402 - Eligibility and usage.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EXPERIMENTAL RADIO SERVICE Medical Testing Experimental... health care facilities as defined in § 95.1103(b) of this chapter. (b) Medical testing experimental radio... limited to testing equipment designed to comply with the rules in part 15, Radio Frequency Devices; part...
47 CFR 5.402 - Eligibility and usage.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EXPERIMENTAL RADIO SERVICE Medical Testing Experimental... health care facilities as defined in § 95.1103(b) of this chapter. (b) Medical testing experimental radio... limited to testing equipment designed to comply with the rules in part 15, Radio Frequency Devices; part...
Quality Improvement Intervention for Reduction of Redundant Testing.
Ducatman, Alan M; Tacker, Danyel H; Ducatman, Barbara S; Long, Dustin; Perrotta, Peter L; Lawther, Hannah; Pennington, Kelly; Lander, Owen; Warden, Mary; Failinger, Conard; Halbritter, Kevin; Pellegrino, Ronald; Treese, Marney; Stead, Jeffrey A; Glass, Eric; Cianciaruso, Lauren; Nau, Konrad C
2017-01-01
Laboratory data are critical to analyzing and improving clinical quality. In the setting of residual use of creatine kinase M and B isoenzyme testing for myocardial infarction, we assessed disease outcomes of discordant creatine kinase M and B isoenzyme +/troponin I (-) test pairs in order to address anticipated clinician concerns about potential loss of case-finding sensitivity following proposed discontinuation of routine creatine kinase and creatine kinase M and B isoenzyme testing. Time-sequenced interventions were introduced. The main outcome was the percentage of cardiac marker studies performed within guidelines. Nonguideline orders dominated at baseline. Creatine kinase M and B isoenzyme testing in 7496 order sets failed to detect additional myocardial infarctions but was associated with 42 potentially preventable admissions/quarter. Interruptive computerized soft stops improved guideline compliance from 32.3% to 58% ( P < .001) in services not receiving peer leader intervention and to >80% ( P < .001) with peer leadership that featured dashboard feedback about test order performance. This successful experience was recapitulated in interrupted time series within 2 additional services within facility 1 and then in 2 external hospitals (including a critical access facility). Improvements have been sustained postintervention. Laboratory cost savings at the academic facility were estimated to be ≥US$635 000 per year. National collaborative data indicated that facility 1 improved its order patterns from fourth to first quartile compared to peer norms and imply that nonguideline orders persist elsewhere. This example illustrates how pathologists can provide leadership in assisting clinicians in changing laboratory ordering practices. We found that clinicians respond to local laboratory data about their own test performance and that evidence suggesting harm is more compelling to clinicians than evidence of cost savings. Our experience indicates that interventions done at an academic facility can be readily instituted by private practitioners at external facilities. The intervention data also supplement existing literature that electronic order interruptions are more successful when combined with modalities that rely on peer education combined with dashboard feedback about laboratory order performance. The findings may have implications for the role of the pathology laboratory in the ongoing pivot from quantity-based to value-based health care.
Casey, D. T.; Sayre, D. B.; Brune, C. R.; ...
2017-08-07
Stars are giant thermonuclear plasma furnaces that slowly fuse the lighter elements in the universe into heavier elements, releasing energy, and generating the pressure required to prevent collapse. To understand stars, we must rely on nuclear reaction rate data obtained, up to now, under conditions very different from those of stellar cores. Here we show thermonuclear measurements of the 2H(d, n) 3He and 3H(t,2n) 4He S-factors at a range of densities (1.2–16 g cm –3) and temperatures (2.1–5.4 keV) that allow us to test the conditions of the hydrogen-burning phase of main-sequence stars. The relevant conditions are created using inertial-confinementmore » fusion implosions at the National Ignition Facility. Here, our data agree within uncertainty with previous accelerator-based measurements and establish this approach for future experiments to measure other reactions and to test plasma-nuclear effects present in stellar interiors, such as plasma electron screening, directly in the environments where they occur.« less
NASA Technical Reports Server (NTRS)
VanDyke, Melissa; Houts, Mike; Godfroy, Thomas; Martin, James
2003-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fusion propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and utilized. Successful utilization will most likely occur if frequent, significant hardware-based milestones can be achieved throughout the program. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system pe$ormance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the Early Flight Fission Test Facilities (EFF-TF) at the Marshall Space Flight Center. The EFF-TF is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers.
Construction of Rabbit Immune Antibody Libraries.
Nguyen, Thi Thu Ha; Lee, Jong Seo; Shim, Hyunbo
2018-01-01
Rabbits have distinct advantages over mice as a source of target-specific antibodies. They produce higher affinity antibodies than mice, and may elicit strong immune response against antigens or epitopes that are poorly immunogenic or tolerated in mice. However, a great majority of currently available monoclonal antibodies are of murine origin because of the wider availability of murine fusion partner cell lines and well-established tools and protocols for fusion and cloning of mouse hybridoma. Phage-display selection of antibody libraries is an alternative method to hybridoma technology for the generation of target-specific monoclonal antibodies. High-affinity monoclonal antibodies from nonmurine species can readily be obtained by constructing immune antibody libraries from B cells of the immunized animal and screening the library by phage display. In this article, we describe the construction of a rabbit immune Fab library for the facile isolation of rabbit monoclonal antibodies. After immunization, B-cell cDNA is obtained from the spleen of the animal, from which antibody variable domain repertoires are amplified and assembled into a Fab repertoire by PCR. The Fab genes are then cloned into a phagemid vector and transformed to E. coli, from which a phage-displayed immune Fab library is rescued. Such a library can be biopanned against the immunization antigen for rapid identification of high-affinity, target-specific rabbit monoclonal antibodies.
Control of molten salt corrosion of fusion structural materials by metallic beryllium
NASA Astrophysics Data System (ADS)
Calderoni, P.; Sharpe, P.; Nishimura, H.; Terai, T.
2009-04-01
A series of tests have been performed between 2001 and 2006 at the Safety and Tritium Applied Research facility of the Idaho National Laboratory to demonstrate chemical compatibility between the molten salt flibe (2LiF + BeF 2 in moles) and fusion structural materials once suitable fluoride potential control methods are established. The tests adopted metallic beryllium contact as main fluoride potential control, and the results have been published in recent years. A further step was to expose two specimens of low activation ferritic/martensitic steel 9Cr-2W to static corrosion tests that include an active corrosion agent (hydrofluoric gas) in controlled conditions at 530 °C, and the results of the tests are presented in this paper. The results confirmed the expected correlation of the HF recovery with the concentration of metallic impurities dissolved in the salt because of specimen corrosion. The metals concentration dropped to levels close to the detectable limit when the beryllium rod was inserted and increased once the content of excess beryllium in the system had been consumed by HF reduction and specimen corrosion progressed. Metallographic analysis of the samples after 500 h exposure in reactive conditions showed evidence of the formation of unstable chromium oxide layers on the specimen's surface.
Control of molten salt corrosion of fusion structural materials by metallic beryllium
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Calderoni; P. Sharpe; H. Nishimura
2009-04-01
A series of tests have been performed between 2001 and 2006 at the Safety and Tritium Applied Research facility of the Idaho National Laboratory to demonstrate chemical compatibility between the molten salt flibe (2LiF+BeF2 in moles) and fusion structural materials once suitable fluoride potential control methods are established. The tests adopted metallic beryllium contact as main fluoride potential control, and the results have been published in recent years. A further step was to expose two specimens of low activation ferritic/martensitic steel 9Cr-2W to static corrosion tests that include an active corrosion agent (hydrofluoric gas) in controlled conditions at 530 C,more » and the results of the tests are presented in this paper. The results confirmed the expected correlation of the HF recovery with the concentration of metallic impurities dissolved in the salt because of specimen corrosion. The metals concentration dropped to level close to the detectable limit when the beryllium rod was inserted and increased once the content of excess beryllium in the system had been consumed by HF reduction and specimens corrosion progressed. Metallographic analysis of the samples after 500 hours exposure in reactive conditions showed evidence of the formation of unstable chromium oxide layers on the specimens surface.« less
Diagnosing magnetized liner inertial fusion experiments on Z
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, S. B., E-mail: sbhanse@sandia.gov; Gomez, M. R.; Sefkow, A. B.
Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (∼10{sup 12} DD neutrons) from multi-keV deuterium plasmas inertially confined by slow (∼10 cm/μs), stable, cylindrical implosions. Effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 10{sup 10}. Analysis of extensive power, imaging, and spectroscopic x-ray measurements provides a detailed picture of ∼3 keV temperatures, 0.3 g/cm{sup 3} densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. Zakharov, J. Li and Y. Wu
The project of ASIPP (with PPPL participation), called FFRF, (R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, PDT=50-100 MW, Pfission=80-4000 MW, 1 m thick blanket) is outlined. FFRF stands for the Fusion-Fission Research Facility with a unique fusion mission and a pioneering mission of merging fusion and fission for accumulation of design, experimental, and operational data for future hybrid applications. The design of FFRF will use as much as possible the EAST and ITER design experience. On the other hand, FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China.
5. FERROCEMENT APRON, CONTROL BUILDING B AT UPPER CENTER, VIEW ...
5. FERROCEMENT APRON, CONTROL BUILDING B AT UPPER CENTER, VIEW TOWARD SOUTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-4, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
Design and installation of a ferromagnetic wall in tokamak geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, P. E., E-mail: peh2109@columbia.edu; Levesque, J. P.; Rivera, N.
Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective component test facility and DEMO power reactor. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these facilities. In order to study ferromagnetic effects in toroidal geometry, a ferritic wall upgrade was designed and installed in the High Beta Tokamak–Extended Pulse (HBT-EP). Several material options were investigated based on conductivity, magnetic permeability, vacuum compatibility, and other criteria, and the material of choice (high-cobalt steel) is characterized. Installation was accomplished quickly, with minimal impact on existing diagnostics andmore » overall machine performance, and initial results demonstrate the effects of the ferritic wall on plasma stability.« less
NASA Astrophysics Data System (ADS)
Petrasso, R.; Gatu Johnson, M.; Armstrong, E.; Han, H. W.; Kabadi, N.; Lahmann, B.; Orozco, D.; Rojas Herrera, J.; Sio, H.; Sutcliffe, G.; Frenje, J.; Li, C. K.; Séguin, F. H.; Leeper, R.; Ruiz, C. L.; Sangster, T. C.
2015-11-01
The MIT HEDP Accelerator Facility utilizes a 135-keV linear electrostatic ion accelerator, a D-T neutron source and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The ion accelerator generates D-D and D-3He fusion products through acceleration of D ions onto a 3He-doped Erbium-Deuteride target. Fusion reaction rates around 106 s-1 are routinely achieved, and fluence and energy of the fusion products have been accurately characterized. The D-T neutron source generates up to 6 × 108 neutrons/s. The two x-ray generators produce spectra with peak energies of 35 keV and 225 keV and maximum dose rates of 0.5 Gy/min and 12 Gy/min, respectively. Diagnostics developed and calibrated at this facility include CR-39 based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a vital tool in the education of graduate and undergraduate students at MIT. This work was supported in part by SNL, DOE, LLE and LLNL.
The Explosive Pulsed Power Test Facility at AFRL
2005-06-01
Air Force Research Laboratory , AFRL /DEHP, Albuquerque...NM 87117 S. Coffey, A. Brown, B. Guffey NumerEx, Albuquerque, NM Abstract The Air Force Research Laboratory has developed and tested a...Chestnut Site on Kirtland Air Force Base. The facility is described in this paper, including details of recent upgrades. I.
The National Ignition Facility: The world's largest optical system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolz, C J
2007-10-15
The National Ignition Facility (NIF), a 192-beam fusion laser, is presently under construction at the Lawrence Livermore National Laboratory with an expected completion in 2008. The facility contains 7,456 meter-scale optics for amplification, beam steering, vacuum barriers, focusing, polarization rotation, and wavelength conversion. A multiphase program was put in place to increase the monthly optical manufacturing rate by up to 20x while simultaneously reducing cost by up to 3x through a sub-scale development, full-scale facilitization, and a pilot production phase. Currently 80% of the optics are complete with over 50% installed. In order to manufacture the high quality optics atmore » desired manufacturing rate of over 100 precision optics per month, new more deterministic advanced fabrication technologies had to be employed over those used to manufacture previous fusion lasers.« less
5. EDGE OF CAPTIVE TEST STAND THREE FERROCEMENT APRON AT ...
5. EDGE OF CAPTIVE TEST STAND THREE FERROCEMENT APRON AT FAR LEFT, CONNECTING TUNNEL AT CENTER, CONTROL BUILDING B AT RIGHT, VIEW TOWARDS SOUTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Control Building B, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
Farrington-Rock, Claire; Kirilova, Veneta; Dillard-Telm, Lisa; Borowsky, Alexander D; Chalk, Sara; Rock, Matthew J; Cohn, Daniel H; Krakow, Deborah
2008-03-01
Spondylocarpotarsal synostosis syndrome (SCT) is an autosomal recessive disease that is characterized by short stature, and fusions of the vertebrae and carpal and tarsal bones. SCT results from homozygosity or compound heterozygosity for nonsense mutations in FLNB. FLNB encodes filamin B, a multifunctional cytoplasmic protein that plays a critical role in skeletal development. Protein extracts derived from cells of SCT patients with nonsense mutations in FLNB did not contain filamin B, demonstrating that SCT results from absence of filamin B. To understand the role of filamin B in skeletal development, an Flnb-/- mouse model was generated. The Flnb-/- mice were phenotypically similar to individuals with SCT as they exhibited short stature and similar skeletal abnormalities. Newborn Flnb-/- mice had fusions between the neural arches of the vertebrae in the cervical and thoracic spine. At postnatal day 60, the vertebral fusions were more widespread and involved the vertebral bodies as well as the neural arches. In addition, fusions were seen in sternum and carpal bones. Analysis of the Flnb-/- mice phenotype showed that an absence of filamin B causes progressive vertebral fusions, which is contrary to the previous hypothesis that SCT results from failure of normal spinal segmentation. These findings suggest that spinal segmentation can occur normally in the absence of filamin B, but the protein is required for maintenance of intervertebral, carpal and sternal joints, and the joint fusion process commences antenatally.
NASA Astrophysics Data System (ADS)
Stambaugh, Ronald D.
2013-01-01
The journal Nuclear Fusion has played a key role in the development of the physics basis for fusion energy. That physics basis has been sufficiently advanced to enable construction of such major facilities as ITER along the tokamak line in magnetic fusion and the National Ignition Facility (NIF) in laser-driven fusion. In the coming decade, while ITER is being constructed and brought into deuterium-tritium (DT) operation, this physics basis will be significantly deepened and extended, with particular key remaining issues addressed. Indeed such a focus was already evident with about 19% of the papers submitted to the 24th IAEA Fusion Energy Conference in San Diego, USA appearing in the directly labelled ITER and IFE categories. Of course many of the papers in the other research categories were aimed at issues relevant to these major fusion directions. About 17% of the papers submitted in the 'Experiment and Theory' categories dealt with the highly ITER relevant and inter-related issues of edge-localized modes, non-axisymmetric fields and plasma rotation. It is gratifying indeed to see how the international community is able to make such a concerted effort, facilitated by the ITPA and the ITER-IO, around such a major issue for ITER. In addition to deepening and extending the physics bases for the mainline approaches to fusion energy, the coming decade should see significant progress in the physics basis for additional fusion concepts. The stellarator concept should reach a high level of maturity with such facilities as LHD operating in Japan and already producing significant results and the W7-X in the EU coming online soon. Physics issues that require pulses of hundreds of seconds to investigate can be confronted in the new superconducting tokamaks coming online in Asia and in the major stellarators. The basis for steady-state operation of a tokamak may be further developed in the upper half of the tokamak operating space—the wall stabilized regime. New divertor geometries are already being investigated. Progress should continue on additional driver approaches in inertial fusion. Nuclear Fusion will continue to play a major role in documenting the significant advances in fusion plasma science on the way to fusion energy. Successful outcomes in projects like ITER and NIF will bring sharply into focus the remaining significant issues in fusion materials science and fusion nuclear science and technology needed to move from the scientific feasibility of fusion to the actual realization of fusion power production. These issues are largely common to magnetic and inertial fusion. Progress in these areas has been limited by the lack of suitable major research facilities. Hopefully the coming decade will see progress along these lines. Nuclear Fusion will play its part with increased papers reporting significant advances in fusion materials and nuclear science and technology. The reputation and status of the journal remains high; paper submissions are increasing and the Impact Factor for the journal remains high at 4.09 for 2011. We look forward in the coming months to publishing expanded versions of many of the outstanding papers presented at the IAEA FEC in San Diego. We congratulate Dr Patrick Diamond of the University of California at San Diego for winning the 2012 Nuclear Fusion Prize for his paper [1] and Dr Hajime Urano of the Japan Atomic Energy Agency for winning the 2011 Nuclear Fusion Prize for his paper [2]. Papers of such quality by our many authors enable the high standard of the journal to be maintained. The Nuclear Fusion editorial office understands how much effort is required by our referees. The Editorial Board decided that an expression of thanks to our most loyal referees is appropriate and so, since January 2005, we have been offering ten of the most active referees over the past year a personal subscription to Nuclear Fusion with electronic access for one year, free of charge. This year, three of the top referees have reviewed five manuscripts in the period November 2011 to December 2012 and provided excellent advice to the authors. We have excluded our Board Members, Guest Editors of special editions and those referees who were already listed in recent years. The following people have been selected: Marina Becoulet, CEA-Cadarache, France Jiaqui Dong, Southwestern Institute of Physics, China Emiliano Fable, Max-Planck-Institut für Plasmaphysik, Germany Ambrogio Fasoli, Ecole Polytechnique Federale de Lausanne, Switzerland Eric Fredrickson, Princeton Plasma Physics Laboratory, USA Manuel Garcia-Munoz, Max-Planck-Institut fuer Plasmaphysik, Germany William Heidbrink, California University, USA Katsumi Ida, National Inst. For Fusion Science, Japan Peter Stangeby, Toronto University, Canada James Strachan, Princeton Plasma Physics Laboratory, USA Victor Yavorskij, Ukraine National Academy of Sciences, Ukraine In addition, there is a group of several hundred referees who have helped us in the past year to maintain the high scientific standard of Nuclear Fusion. At the end of this issue we give the full list of all referees for 2012. Our thanks to them!
NASA Technical Reports Server (NTRS)
Gerrish, Harold P., Jr.
2003-01-01
This paper presents viewgraphs on Solar Thermal Propulsion (STP). Some of the topics include: 1) Ways to use Solar Energy for Propulsion; 2) Solar (fusion) Energy; 3) Operation in Orbit; 4) Propulsion Concepts; 5) Critical Equations; 6) Power Efficiency; 7) Major STP Projects; 8) Types of STP Engines; 9) Solar Thermal Propulsion Direct Gain Assembly; 10) Specific Impulse; 11) Thrust; 12) Temperature Distribution; 13) Pressure Loss; 14) Transient Startup; 15) Axial Heat Input; 16) Direct Gain Engine Design; 17) Direct Gain Engine Fabrication; 18) Solar Thermal Propulsion Direct Gain Components; 19) Solar Thermal Test Facility; and 20) Checkout Results.
NASA Astrophysics Data System (ADS)
Scarlat, Raluca O.; Peterson, Per F.
2014-01-01
The fluoride salt cooled high temperature reactor (FHR) is a class of fission reactor designs that use liquid fluoride salt coolant, TRISO coated particle fuel, and graphite moderator. Heavy ion fusion (HIF) can likewise make use of liquid fluoride salts, to create thick or thin liquid layers to protect structures in the target chamber from ablation by target X-rays and damage from fusion neutron irradiation. This presentation summarizes ongoing work in support of design development and safety analysis of FHR systems. Development work for fluoride salt systems with application to both FHR and HIF includes thermal-hydraulic modeling and experimentation, salt chemistry control, tritium management, salt corrosion of metallic alloys, and development of major components (e.g., pumps, heat exchangers) and gas-Brayton cycle power conversion systems. In support of FHR development, a thermal-hydraulic experimental test bay for separate effects (SETs) and integral effect tests (IETs) was built at UC Berkeley, and a second IET facility is under design. The experiments investigate heat transfer and fluid dynamics and they make use of oils as simulant fluids at reduced scale, temperature, and power of the prototypical salt-cooled system. With direct application to HIF, vortex tube flow was investigated in scaled experiments with mineral oil. Liquid jets response to impulse loading was likewise studied using water as a simulant fluid. A set of four workshops engaging industry and national laboratory experts were completed in 2012, with the goal of developing a technology pathway to the design and licensing of a commercial FHR. The pathway will include experimental and modeling efforts at universities and national laboratories, requirements for a component test facility for reliability testing of fluoride salt equipment at prototypical conditions, requirements for an FHR test reactor, and development of a pre-conceptual design for a commercial reactor.
National Ignition Facility under fire over ignition failure
NASA Astrophysics Data System (ADS)
Allen, Michael
2016-08-01
The 3.5bn National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory in California is no nearer to igniting a sustainable nuclear fusion burn - four years after its initial target date - according to a report by the US National Nuclear Security Administration (NNSA).
40 CFR 792.45 - Test system supply facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... maintaining algae and aquatic plants. (2) Facilities, as specified in the protocol, for plant growth, including but not limited to, greenhouses, growth chambers, light banks, and fields. (c) When appropriate... supplies shall be preserved by appropriate means. (b) When appropriate, plant supply facilities shall be...
40 CFR 792.45 - Test system supply facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... maintaining algae and aquatic plants. (2) Facilities, as specified in the protocol, for plant growth, including but not limited to, greenhouses, growth chambers, light banks, and fields. (c) When appropriate... supplies shall be preserved by appropriate means. (b) When appropriate, plant supply facilities shall be...
40 CFR 792.45 - Test system supply facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... maintaining algae and aquatic plants. (2) Facilities, as specified in the protocol, for plant growth, including but not limited to, greenhouses, growth chambers, light banks, and fields. (c) When appropriate... supplies shall be preserved by appropriate means. (b) When appropriate, plant supply facilities shall be...
4. CONTROL BUILDING B, VIEW TOWARDS SOUTHEAST. Glenn L. ...
4. CONTROL BUILDING B, VIEW TOWARDS SOUTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Control Building B, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlburg, Jill; Corones, James; Batchelor, Donald
Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individualmore » features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the FESAC integrated planning document (IPPA, 2000), represents a significant opportunity for the DOE Office of Science to further the understanding of fusion plasmas to a level unparalleled worldwide.« less
National Spherical Torus Experiment (NSTX) and Planned Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Yueng Kay Martin; Ono, M.; Kaye, S.
1998-01-01
The U.S. fusion energy sciences program began in 1996 to increase emphasis on confinement concept innovation. The NSTX is being built at PPPL as a national fusion science research facility in response to this emphasis. NSTX is to test fusion science principles of the Spherical Torus (ST) plasmas, which include: (1) High plasma pressure in low magnetic field for high fusion power density, (2) Good energy confinement is a small-size plasma, (3) Nearly fully self-driven (bootstrap) plasma current, (4) Dispersed heat and particle fluxes, and (5) Plasma startup without complicated in board solenoid magnet. These properties of the ST plasma,more » if verified, would lead to possible future fusion devices of high fusion performance, small size, feasible power handling, and improved economy. The design of NSTX is depicted in a figure. The vessel will be covered fully with graphite tiles and can be baked to 350 C. Other wall condition techniques are also planned. The NSTX facilty extensively utilizes the equipment at PPPL and other reasearch institutions in collaboration. These include 6-MW High Harmonic Fast Wave (HHFW) power at {approx}30 MHz for 5 s, which will be the primary heating and current drive system following the first plasma planned for April 1999, and small ECH systems to assist breakdown for initiation. A plethora of diagnostics from TFTR and collaborators are planned. A NBI system from TFTR capable of delivering 5 MW at 80 keV for 5 s, and more powerful ECH systems are also planned for installation in 2000. The baseline plan for diagnostics systems are laid out in a figure and include: (1) Rogowski coils to measure total plasma and halo curents.« less
A Summary of the NASA Fusion Propulsion Workshop 2000
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Turchi, Peter J.; Santarius, John F.; Schafer, Charles (Technical Monitor)
2001-01-01
A NASA Fusion Propulsion Workshop was held on Nov. 8 and 9, 2000 at Marshall Space Flight Center (MSFC) in Huntsville, Alabama. A total of 43 papers were presented at the Workshop orally or by posters, covering a broad spectrum of issues related to applying fusion to propulsion. The status of fusion research was reported at the Workshop showing the outstanding scientific research that has been accomplished worldwide in the fusion energy research program. The international fusion research community has demonstrated the scientific principles of fusion creating plasmas with conditions for fusion burn with a gain of order unity: 0.25 in Princeton TFTR, 0.65 in the Joint European Torus, and a Q-equivalent of 1.25 in Japan's JT-60. This research has developed an impressive range of physics and technological capabilities that may be applied effectively to the research of possibly new propulsion-oriented fusion schemes. The pertinent physics capabilities include the plasma computational tools, the experimental plasma facilities, the diagnostics techniques, and the theoretical understanding. The enabling technologies include the various plasma heating, acceleration, and the pulsed power technologies.
Remote experimental site concept development
NASA Astrophysics Data System (ADS)
Casper, Thomas A.; Meyer, William; Butner, David
1995-01-01
Scientific research is now often conducted on large and expensive experiments that utilize collaborative efforts on a national or international scale to explore physics and engineering issues. This is particularly true for the current US magnetic fusion energy program where collaboration on existing facilities has increased in importance and will form the basis for future efforts. As fusion energy research approaches reactor conditions, the trend is towards fewer large and expensive experimental facilities, leaving many major institutions without local experiments. Since the expertise of various groups is a valuable resource, it is important to integrate these teams into an overall scientific program. To sustain continued involvement in experiments, scientists are now often required to travel frequently, or to move their families, to the new large facilities. This problem is common to many other different fields of scientific research. The next-generation tokamaks, such as the Tokamak Physics Experiment (TPX) or the International Thermonuclear Experimental Reactor (ITER), will operate in steady-state or long pulse mode and produce fluxes of fusion reaction products sufficient to activate the surrounding structures. As a direct consequence, remote operation requiring robotics and video monitoring will become necessary, with only brief and limited access to the vessel area allowed. Even the on-site control room, data acquisition facilities, and work areas will be remotely located from the experiment, isolated by large biological barriers, and connected with fiber-optics. Current planning for the ITER experiment includes a network of control room facilities to be located in the countries of the four major international partners; USA, Russian Federation, Japan, and the European Community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plate, Aileen E.; Reimer, Jessica J.; Jardetzky, Theodore S.
Glycoproteins gB and gH/gL are required for entry of Epstein-Barr virus (EBV) into cells, but the role of each glycoprotein and how they function together to mediate fusion is unclear. Analysis of the functional homology of gB from the closely related primate gammaherpesvirus, rhesus lymphocryptovirus (Rh-LCV), showed that EBV gB could not complement Rh gB due to a species-specific dependence between gB and gL. To map domains of gB required for this interaction, we constructed a panel of EBV/Rh gB chimeric proteins. Analysis showed that insertion of Rh gB from residues 456 to 807 restored fusion function of EBV gBmore » with Rh gH/gL, suggesting this region of gB is important for interaction with gH/gL. Split YFP bimolecular complementation (BiFC) provided evidence of an interaction between EBV gB and gH/gL. Together, our results suggest the importance of a gB-gH/gL interaction in EBV-mediated fusion with B cells requiring the region of EBV gB from 456 to 807.« less
Pitkin, Andrea; Deen, John; Otake, Satoshi; Moon, Roger; Dee, Scott
2009-04-01
The purpose of this study was to evaluate the potential for houseflies (Musca domestica) to mechanically transport and transmit porcine reproductive and respiratory syndrome virus (PRRSV) between pig populations under controlled field conditions. The study employed swine housed in commercial livestock facilities and a release-recapture protocol involving marked (ochre-eyed) houseflies. To assess whether transport of PRRSV by insects occurred, ochre-eyed houseflies were released and collected from a facility housing an experimentally PRRSV-inoculated population of pigs (facility A) and collected from a neighboring facility located 120 m to the northwest that housed a naïve pig population (facility B). All samples were tested for PRRSV RNA by polymerase chain reaction (PCR). To assess transmission between the 2 populations, blood samples were collected from naïve pigs in facility B at designated intervals and tested by PCR. A total of 7 replicates were conducted. During 2 of 7 replicates (1 and 5), PCR-positive ochre-eyed houseflies were recovered in facility B and pigs in this facility became infected with PRRSV. Chi-squared analysis indicated that the presence of PRRSV in an insect sample was significantly (P = 0.0004) associated with infection of facility B pigs. Porcine reproductive and respiratory syndrome virus was not recovered from other reported routes of transmission during the study period, including air, fomites, and personnel. In conclusion, while an insufficient number of replicates were conducted to predict the frequency of the event, houseflies may pose some level of risk for the transport and transmission of PRRSV between pig populations under field conditions.
Pitkin, Andrea; Deen, John; Otake, Satoshi; Moon, Roger; Dee, Scott
2009-01-01
The purpose of this study was to evaluate the potential for houseflies (Musca domestica) to mechanically transport and transmit porcine reproductive and respiratory syndrome virus (PRRSV) between pig populations under controlled field conditions. The study employed swine housed in commercial livestock facilities and a release-recapture protocol involving marked (ochre-eyed) houseflies. To assess whether transport of PRRSV by insects occurred, ochre-eyed houseflies were released and collected from a facility housing an experimentally PRRSV-inoculated population of pigs (facility A) and collected from a neighboring facility located 120 m to the northwest that housed a naïve pig population (facility B). All samples were tested for PRRSV RNA by polymerase chain reaction (PCR). To assess transmission between the 2 populations, blood samples were collected from naïve pigs in facility B at designated intervals and tested by PCR. A total of 7 replicates were conducted. During 2 of 7 replicates (1 and 5), PCR-positive ochre-eyed houseflies were recovered in facility B and pigs in this facility became infected with PRRSV. Chi-squared analysis indicated that the presence of PRRSV in an insect sample was significantly (P = 0.0004) associated with infection of facility B pigs. Porcine reproductive and respiratory syndrome virus was not recovered from other reported routes of transmission during the study period, including air, fomites, and personnel. In conclusion, while an insufficient number of replicates were conducted to predict the frequency of the event, houseflies may pose some level of risk for the transport and transmission of PRRSV between pig populations under field conditions. PMID:19436589
Arc fusion splicing of photonic crystal fibers to standard single mode fibers
NASA Astrophysics Data System (ADS)
Borzycki, Krzysztof; Kobelke, Jens; Schuster, Kay; Wójcik, Jan
2010-04-01
Coupling a photonic crystal fiber (PCF) to measuring instruments or optical subsystems is often done by splicing it to short lengths of single mode fiber (SMF) used for interconnections, as SMF is standardized, widely available and compatible with most fiber optic components and measuring instruments. This paper presents procedures and results of loss measurements during fusion splicing of five PCFs tested at NIT laboratory within activities of COST Action 299 "FIDES". Investigated silica-based fibers had 80-200 μm cladding diameter and were designed as single mode. A standard splicing machine designed for telecom fibers was used, but splicing procedure and arc power were tailored to each PCF. Splice loss varied between 0.7 and 2.8 dB at 1550 nm. Splices protected with heat-shrinkable sleeves served well for gripping fibers during mechanical tests and survived temperature cycling from -30°C to +70°C with stable loss. Collapse of holes in the PCF was limited by reducing fusion time to 0.2-0.5 s; additional measures included reduction of discharge power and shifting SMF-PCF contact point away from the axis of electrodes. Unfortunately, short fusion time sometimes precluded proper smoothing of glass surface, leading to a trade-off between splice loss and strength.
Production of Hev b5 as a fluorescent biotin-binding tripartite fusion protein in insect cells.
Nordlund, Henri R; Laitinen, Olli H; Uotila, Sanna T H; Kulmala, Minna; Kalkkinen, Nisse; Kulomaa, Markku S
2005-10-14
The presented green fluorescent protein and streptavidin core-based tripartite fusion system provides a simple and efficient way for the production of proteins fused to it in insect cells. This fusion protein forms a unique tag, which serves as a multipurpose device enabling easy optimization of production, one-step purification via streptavidin-biotin interaction, and visualization of the fusion protein during downstream processing and in applications. In the present study, we demonstrate the successful production, purification, and detection of a natural rubber latex allergen Hev b5 with this system. We also describe the production of another NRL allergen with the system, Hev b1, which formed large aggregates and gave small yields in purification. The aggregates were detected at early steps by microscopical inspection of the infected insect cells producing this protein. Therefore, this fusion system can also be utilized as a fast indicator of the solubility of the expressed fusion proteins and may therefore be extremely useful in high-throughput expression approaches.
NASA Technical Reports Server (NTRS)
McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, William O.; Chang, Li C.; Hozman, Aron D.; Henry, Michael W.
2012-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007 to 2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cubic feet in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their T-junctions connecting the 12 in. supply line to their respective 4 in. branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed T-junction connections through non-destructive evaluation testing. Through structural dynamic modeling of the piping system, the root cause of the T-junction connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.
NASA Technical Reports Server (NTRS)
McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, WIlliam O.; Chang, Li, C.; Hozman, Aron D.; Henry, Michael W.
2012-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007-2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cu ft in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their "t-junctions" connecting the 12 inch supply line to their respective 4 inch branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed "t-junction" connections through non-destructive evaluation testing . Through structural dynamic modeling of the piping system, the root cause of the "t-junction" connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kung, C. C.; Kramer, G. J.; Johnson, E.
Reflectometry, which uses the microwave radar technique to probe the magnetically confined fusion plasmas, is a very powerful tool to observe the density fluctuations in the fusion plasmas. Typically, two or more microwave beams of different frequencies are used to study the plasma density fluctuations. The frequency separation between these two beams of the PPPL designed reflectometer system upgrade on the DIII-D tokamak can be varied over 18 GHz. Due to the performance of the associated electronics, the local oscillator (LO) power level at the LO port of the I/Q demodulator suffers more than 12 dB of power fluctuations whenmore » the frequency separation is varied. Thus, the I/Q demodulator performance is impaired. In order to correct this problem, a power leveling circuit is introduced in the PPPL upgrade. According to the test results, the LO power fluctuation was regulated to be within 1 dB for greater than 16 dB of input power variation over the full dynamic bandwidth of the receiver.« less
Yao, Sen; Li, Tao; Li, JieQing; Liu, HongGao; Wang, YuanZhong
2018-06-05
Boletus griseus and Boletus edulis are two well-known wild-grown edible mushrooms which have high nutrition, delicious flavor and high economic value distributing in Yunnan Province. In this study, a rapid method using Fourier transform infrared (FT-IR) and ultraviolet (UV) spectroscopies coupled with data fusion was established for the discrimination of Boletus mushrooms from seven different geographical origins with pattern recognition method. Initially, the spectra of 332 mushroom samples obtained from the two spectroscopic techniques were analyzed individually and then the classification performance based on data fusion strategy was investigated. Meanwhile, the latent variables (LVs) of FT-IR and UV spectra were extracted by partial least square discriminant analysis (PLS-DA) and two datasets were concatenated into a new matrix for data fusion. Then, the fusion matrix was further analyzed by support vector machine (SVM). Compared with single spectroscopic technique, data fusion strategy can improve the classification performance effectively. In particular, the accuracy of correct classification of SVM model in training and test sets were 99.10% and 100.00%, respectively. The results demonstrated that data fusion of FT-IR and UV spectra can provide higher synergic effect for the discrimination of different geographical origins of Boletus mushrooms, which may be benefit for further authentication and quality assessment of edible mushrooms. Copyright © 2018 Elsevier B.V. All rights reserved.
Loomis, E N; Grim, G P; Wilde, C; Wilson, D C; Morgan, G; Wilke, M; Tregillis, I; Merrill, F; Clark, D; Finch, J; Fittinghoff, D; Bower, D
2010-10-01
Development of analysis techniques for neutron imaging at the National Ignition Facility is an important and difficult task for the detailed understanding of high-neutron yield inertial confinement fusion implosions. Once developed, these methods must provide accurate images of the hot and cold fuels so that information about the implosion, such as symmetry and areal density, can be extracted. One method under development involves the numerical inversion of the pinhole image using knowledge of neutron transport through the pinhole aperture from Monte Carlo simulations. In this article we present results of source reconstructions based on simulated images that test the methods effectiveness with regard to pinhole misalignment.
NASA Astrophysics Data System (ADS)
Carpenter, A. C.; Herrmann, H. W.; Beeman, B. V.; Lopez, F. E.; Hernandez, J. E.
2016-09-01
This paper covers the performance of a high speed analogue data transmission system. This system uses multiple Mach- Zehnder optical modulators to transmit and record fusion burn history data for the Gas Cherenkov Detector (GCD) on the National Ignition Facility. The GCD is designed to measure the burn duration of high energy gamma rays generated by Deuterium-Tritium (DT) interactions in the NIF. The burn duration of DT fusion can be as short as 10ps and the optical photons generated in the gas Cherenkov cell are measured using a vacuum photodiode with a FWHM of 55ps. A recording system with a 3dB bandwidth of ≥10GHz and a signal to noise ratio of ≥5 for photodiode output voltage of 50mV is presented. The data transmission system uses two or three Mach-Zehnder modulators and an RF amplifier to transmit data optically. This signal is received and recorded by optical to electrical converts and a high speed digital oscilloscope placed outside of the NIF Target Bay. Electrical performance metrics covered include signal to noise ratio (SNR), signal to peak to peak noise ratio, single shot dynamic range, shot to shot dynamic range, system bandwidth, scattering parameters, are shown. Design considerations such as self-test capabilities, the NIF radiation environment, upgrade compatibility, Mach-Zehnder (MZ) biasing, maintainability, and operating considerations for the use of MZs are covered. This data recording system will be used for the future upgrade of the GCD to be used with a Pulse Dilation PMT, currently under development.
Alectinib shows potent antitumor activity against RET-rearranged non-small cell lung cancer.
Kodama, Tatsushi; Tsukaguchi, Toshiyuki; Satoh, Yasuko; Yoshida, Miyuki; Watanabe, Yoshiaki; Kondoh, Osamu; Sakamoto, Hiroshi
2014-12-01
Alectinib/CH5424802 is a known inhibitor of anaplastic lymphoma kinase (ALK) and is being evaluated in clinical trials for the treatment of ALK fusion-positive non-small cell lung cancer (NSCLC). Recently, some RET and ROS1 fusion genes have been implicated as driver oncogenes in NSCLC and have become molecular targets for antitumor agents. This study aims to explore additional target indications of alectinib by testing its ability to inhibit the activity of kinases other than ALK. We newly verified that alectinib inhibited RET kinase activity and the growth of RET fusion-positive cells by suppressing RET phosphorylation. In contrast, alectinib hardly inhibited ROS1 kinase activity unlike other ALK/ROS1 inhibitors such as crizotinib and LDK378. It also showed antitumor activity in mouse models of tumors driven by the RET fusion. In addition, alectinib showed kinase inhibitory activity against RET gatekeeper mutations (RET V804L and V804M) and blocked cell growth driven by the KIF5B-RET V804L and V804M. Our results suggest that alectinib is effective against RET fusion-positive tumors. Thus, alectinib might be a therapeutic option for patients with RET fusion-positive NSCLC. ©2014 American Association for Cancer Research.
NASA Technical Reports Server (NTRS)
Evans, Richard K.; Hill, Gerald M.
2012-01-01
Very large space environment test facilities present unique engineering challenges in the design of facility data systems. Data systems of this scale must be versatile enough to meet the wide range of data acquisition and measurement requirements from a diverse set of customers and test programs, but also must minimize design changes to maintain reliability and serviceability. This paper presents an overview of the common architecture and capabilities of the facility data acquisition systems available at two of the world?s largest space environment test facilities located at the NASA Glenn Research Center?s Plum Brook Station in Sandusky, Ohio; namely, the Space Propulsion Research Facility (commonly known as the B-2 facility) and the Space Power Facility (SPF). The common architecture of the data systems is presented along with details on system scalability and efficient measurement systems analysis and verification. The architecture highlights a modular design, which utilizes fully-remotely managed components, enabling the data systems to be highly configurable and support multiple test locations with a wide-range of measurement types and very large system channel counts.
NASA Technical Reports Server (NTRS)
Evans, Richard K.; Hill, Gerald M.
2014-01-01
Very large space environment test facilities present unique engineering challenges in the design of facility data systems. Data systems of this scale must be versatile enough to meet the wide range of data acquisition and measurement requirements from a diverse set of customers and test programs, but also must minimize design changes to maintain reliability and serviceability. This paper presents an overview of the common architecture and capabilities of the facility data acquisition systems available at two of the world's largest space environment test facilities located at the NASA Glenn Research Center's Plum Brook Station in Sandusky, Ohio; namely, the Space Propulsion Research Facility (commonly known as the B-2 facility) and the Space Power Facility (SPF). The common architecture of the data systems is presented along with details on system scalability and efficient measurement systems analysis and verification. The architecture highlights a modular design, which utilizes fully-remotely managed components, enabling the data systems to be highly configurable and support multiple test locations with a wide-range of measurement types and very large system channel counts.
40 CFR 264.1064 - Recordkeeping requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... facility (e.g., identify the hazardous waste management unit on a facility plot plan). (iii) Type of... schedule as specified in § 264.1033(a)(2). (3) Where an owner or operator chooses to use test data to... device, a performance test plan as specified in § 264.1035(b)(3). (4) Documentation of compliance with...
40 CFR 264.1064 - Recordkeeping requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... facility (e.g., identify the hazardous waste management unit on a facility plot plan). (iii) Type of... schedule as specified in § 264.1033(a)(2). (3) Where an owner or operator chooses to use test data to... device, a performance test plan as specified in § 264.1035(b)(3). (4) Documentation of compliance with...
40 CFR 264.1064 - Recordkeeping requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... facility (e.g., identify the hazardous waste management unit on a facility plot plan). (iii) Type of... schedule as specified in § 264.1033(a)(2). (3) Where an owner or operator chooses to use test data to... device, a performance test plan as specified in § 264.1035(b)(3). (4) Documentation of compliance with...
40 CFR 264.1064 - Recordkeeping requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... facility (e.g., identify the hazardous waste management unit on a facility plot plan). (iii) Type of... schedule as specified in § 264.1033(a)(2). (3) Where an owner or operator chooses to use test data to... device, a performance test plan as specified in § 264.1035(b)(3). (4) Documentation of compliance with...
Gajadeera, Chathurada S; Weber, Joachim
2013-09-13
The "stator stalk" of F1Fo-ATP synthase is essential for rotational catalysis as it connects the nonrotating portions of the enzyme. In Escherichia coli, the stator stalk consists of two (identical) b subunits and the δ subunit. In mycobacteria, one of the b subunits and the δ subunit are replaced by a b/δ fusion protein; the remaining b subunit is of the shorter b' type. In the present study, it is shown that it is possible to generate a functional E. coli ATP synthase containing a b/δ fusion protein. This construct allowed the analysis of the roles of the individual b subunits. The full-length b subunit (which in this case is covalently linked to δ in the fusion protein) is responsible for connecting the stalk to the catalytic F1 subcomplex. It is not required for interaction with the membrane-embedded Fo subcomplex, as its transmembrane helix can be removed. Attachment to Fo is the function of the other b subunit which in turn has only a minor (if any at all) role in binding to δ. Also in E. coli the second b subunit can be shortened to a b' type.
Description and Operation of the Mark 1B Plasma Focus Radiation Facility,
plasma focus facility (Mk 1B) at The Aerospace Corporation produces x-ray fluences that are applicable to most radiation testing problems (e.g., integrated circuits or transistors). Although the facility has only one beryllium window for exposing 1.6-cm-dia samples to doses of 25 to 45 krad (Si) per shot, three more windows could be added and the additional samples exposed simultaneously. The facility is experiencing switch problems and is presently averaging 50 shots per week--15 shots per day for 3 or 4 days. The results of a comprehensive switch analysis should
The first target experiments on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Landen, O. L.; Glenzer, S. H.; Froula, D. H.; Dewald, E. L.; Suter, L. J.; Schneider, M. B.; Hinkel, D. E.; Fernandez, J. C.; Kline, J. L.; Goldman, S. R.; Braun, D. G.; Celliers, P. M.; Moon, S. J.; Robey, H. S.; Lanier, N. E.; Glendinning, S. G.; Blue, B. E.; Wilde, B. H.; Jones, O. S.; Schein, J.; Divol, L.; Kalantar, D. H.; Campbell, K. M.; Holder, J. P.; McDonald, J. W.; Niemann, C.; MacKinnon, A. J.; Collins, G. W.; Bradley, D. K.; Eggert, J. H.; Hicks, D. G.; Gregori, G.; Kirkwood, R. K.; Young, B. K.; Foster, J. M.; Hansen, J. F.; Perry, T. S.; Munro, D. H.; Baldis, H. A.; Grim, G. P.; Heeter, R. F.; Hegelich, M. B.; Montgomery, D. S.; Rochau, G. A.; Olson, R. E.; Turner, R. E.; Workman, J. B.; Berger, R. L.; Cohen, B. I.; Kruer, W. L.; Langdon, A. B.; Langer, S. H.; Meezan, N. B.; Rose, H. A.; Still, C. H.; Williams, E. A.; Dodd, E. S.; Edwards, M. J.; Monteil, M.-C.; Stevenson, R. M.; Thomas, B. R.; Coker, R. F.; Magelssen, G. R.; Rosen, P. A.; Stry, P. E.; Woods, D.; Weber, S. V.; Young, P. E.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, J.-L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, F. D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P.; Atherton, L.; Bardsley, G.; Bonanno, R.; Borger, T.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S.; Cooper, F.; Dixit, S. N.; Erbert, G.; Eder, D. C.; Ehrlich, R. E.; Felker, B.; Fornes, J.; Frieders, G.; Gardner, S.; Gates, C.; Gonzalez, M.; Grace, S.; Hall, T.; Haynam, C. A.; Heestand, G.; Henesian, M. A.; Hermann, M.; Hermes, G.; Huber, S.; Jancaitis, K.; Johnson, S.; Kauffman, B.; Kelleher, T.; Kohut, T.; Koniges, A. E.; Labiak, T.; Latray, D.; Lee, A.; Lund, D.; Mahavandi, S.; Manes, K. R.; Marshall, C.; McBride, J.; McCarville, T.; McGrew, L.; Menapace, J.; Mertens, E.; Murray, J.; Neumann, J.; Newton, M.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rinnert, R.; Riordan, B.; Ross, G.; Robert, V.; Tobin, M.; Sailors, S.; Saunders, R.; Schmitt, M.; Shaw, M.; Singh, M.; Spaeth, M.; Stephens, A.; Tietbohl, G.; Tuck, J.; van Wonterghem, B. M.; Vidal, R.; Wegner, P. J.; Whitman, P.; Williams, K.; Winward, K.; Work, K.; Wallace, R.; Nobile, A.; Bono, M.; Day, B.; Elliott, J.; Hatch, D.; Louis, H.; Manzenares, R.; O'Brien, D.; Papin, P.; Pierce, T.; Rivera, G.; Ruppe, J.; Sandoval, D.; Schmidt, D.; Valdez, L.; Zapata, K.; MacGowan, B. J.; Eckart, M. J.; Hsing, W. W.; Springer, P. T.; Hammel, B. A.; Moses, E. I.; Miller, G. H.
2007-08-01
A first set of shock timing, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and X-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1 9 ns pulses focused with various beam smoothing options. The experiments have demonstrated excellent agreement between measured and predicted laser-target coupling in foils and hohlraums, even when extended to a longer pulse regime unattainable at previous laser facilities, validated the predicted effects of beam smoothing on intense laser beam propagation in long scale-length plasmas and begun to test 3D codes by extending the study of laser driven hydrodynamic jets to 3D geometries.
The Neutrons for Science Facility at SPIRAL-2
NASA Astrophysics Data System (ADS)
Ledoux, X.; Aïche, M.; Avrigeanu, M.; Avrigeanu, V.; Audouin, L.; Balanzat, E.; Ban-d'Etat, B.; Ban, G.; Barreau, G.; Bauge, E.; Bélier, G.; Bem, P.; Blideanu, V.; Blomgren, J.; Borcea, C.; Bouffard, S.; Caillaud, T.; Chatillon, A.; Czajkowski, S.; Dessagne, P.; Doré, D.; Fallot, M.; Farget, F.; Fischer, U.; Giot, L.; Granier, T.; Guillous, S.; Gunsing, F.; Gustavsson, C.; Herber, S.; Jacquot, B.; Jurado, B.; Kerveno, M.; Klix, A.; Landoas, O.; Lecolley, F. R.; Lecolley, J. F.; Lecouey, J. L.; Majerle, M.; Marie, N.; Materna, T.; Mrazek, J.; Negoita, F.; Novak, J.; Oberstedt, S.; Oberstedt, A.; Panebianco, S.; Perrot, L.; Petrascu, M.; Plompen, A. J. M.; Pomp, S.; Ramillon, J. M.; Ridikas, D.; Rossé, B.; Rudolf, G.; Serot, O.; Shcherbakov, O.; Simakov, S. P.; Simeckova, E.; Smith, A. G.; Steckmeyer, J. C.; Sublet, J. C.; Taïeb, J.; Tassan-Got, L.; Takibayev, A.; Tungborn, E.; Thfoin, I.; Tsekhanovich, I.; Varignon, C.; Wieleczko, J. P.
2011-12-01
The "Neutrons for Science" (NFS) facility will be a component of SPIRAL-2, the future accelerator dedicated to the production of very intense radioactive ion beams, under construction at GANIL in Caen (France). NFS will be composed of a pulsed neutron beam for in-flight measurements and irradiation stations for cross-section measurements and material studies. Continuous and quasi-monokinetic energy spectra will be available at NFS respectively produced by the interaction of deuteron beam on thick a Be converter and by the 7Li(p,n) reaction on a thin converter. The flux at NFS will be up to 2 orders of magnitude higher than those of other existing time-of-flight facilities in the 1 MeV to 40 MeV range. NFS will be a very powerful tool for physics and fundamental research as well as applications like the transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Muri, M., E-mail: michela.demuri@igi.cnr.it; Pasqualotto, R.; Dalla Palma, M.
2014-02-15
Operation of the thermonuclear fusion experiment ITER requires additional heating via injection of neutral beams from accelerated negative ions. In the SPIDER test facility, under construction in Padova, the production of negative ions will be studied and optimised. STRIKE (Short-Time Retractable Instrumented Kalorimeter Experiment) is a diagnostic used to characterise the SPIDER beam during short pulse operation (several seconds) to verify if the beam meets the ITER requirements about the maximum allowed beam non-uniformity (below ±10%). The major components of STRIKE are 16 1D-CFC (Carbon-Carbon Fibre Composite) tiles, observed at the rear side by a thermal camera. This contribution givesmore » an overview of some tests under high energy particle flux, aimed at verifying the thermo-mechanical behaviour of several CFC prototype tiles. The tests were performed in the GLADIS facility at IPP (Max-Plank-Institut für Plasmaphysik), Garching. Dedicated linear and nonlinear simulations were carried out to interpret the experiments and a comparison of the experimental data with the simulation results is presented. The results of some morphological and structural studies on the material after exposure to the GLADIS beam are also given.« less
Fuel gain exceeding unity in an inertially confined fusion implosion.
Hurricane, O A; Callahan, D A; Casey, D T; Celliers, P M; Cerjan, C; Dewald, E L; Dittrich, T R; Döppner, T; Hinkel, D E; Berzak Hopkins, L F; Kline, J L; Le Pape, S; Ma, T; MacPhee, A G; Milovich, J L; Pak, A; Park, H-S; Patel, P K; Remington, B A; Salmonson, J D; Springer, P T; Tommasini, R
2014-02-20
Ignition is needed to make fusion energy a viable alternative energy source, but has yet to be achieved. A key step on the way to ignition is to have the energy generated through fusion reactions in an inertially confined fusion plasma exceed the amount of energy deposited into the deuterium-tritium fusion fuel and hotspot during the implosion process, resulting in a fuel gain greater than unity. Here we report the achievement of fusion fuel gains exceeding unity on the US National Ignition Facility using a 'high-foot' implosion method, which is a manipulation of the laser pulse shape in a way that reduces instability in the implosion. These experiments show an order-of-magnitude improvement in yield performance over past deuterium-tritium implosion experiments. We also see a significant contribution to the yield from α-particle self-heating and evidence for the 'bootstrapping' required to accelerate the deuterium-tritium fusion burn to eventually 'run away' and ignite.
Accelerators for Fusion Materials Testing
NASA Astrophysics Data System (ADS)
Knaster, Juan; Okumura, Yoshikazu
Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge with the International Fusion Materials Irradiation Facility (IFMIF) under discussion at the time. Worldwide technological efforts are maturing soundly and the time for a fusion-relevant neutron source has arrived according to world fusion roadmaps; if decisions are taken we could count the next decade with a powerful source of 14 MeV neutrons thanks to the expected significant results of the Engineering Validation and Engineering Design Activity (EVEDA) phase of the IFMIF project. The accelerator know-how has matured in all possible aspects since the times of FMIT conception in the 1970s; today, operating 125 mA deuteron beam at 40 MeV in CW with high availabilities seems feasible thanks to the understanding of the beam halo physics and the three main technological breakthroughs in accelerator technology: (1) the ECR ion source for light ions developed at Chalk River Laboratories in the early 1990s, (2) the RFQ operation of H+ in CW with 100 mA demonstrated by LEDA in LANL in the late 1990s, and (3) the growing maturity of superconducting resonators for light hadrons and low β beams achieved in recent years.
Accelerators for Fusion Materials Testing
NASA Astrophysics Data System (ADS)
Knaster, Juan; Okumura, Yoshikazu
Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes > 1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa ("displacement-per-atom", the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge with the International Fusion Materials Irradiation Facility (IFMIF) under discussion at the time. Worldwide technological efforts are maturing soundly and the time for a fusion-relevant neutron source has arrived according to world fusion roadmaps; if decisions are taken we could count the next decade with a powerful source of 14 MeV neutrons thanks to the expected significant results of the Engineering Validation and Engineering Design Activity (EVEDA) phase of the IFMIF project. The accelerator know-how has matured in all possible aspects since the times of FMIT conception in the 1970s; today, operating 125 mA deuteron beam at 40 MeV in CW with high availabilities seems feasible thanks to the understanding of the beam halo physics and the three main technological breakthroughs in accelerator technology: (1) the ECR ion source for light ions developed at Chalk River Laboratories in the early 1990s, (2) the RFQ operation of H+ in CW with 100 mA demonstrated by LEDA in LANL in the late 1990s, and (3) the growing maturity of superconducting resonators for light hadrons and low β beams achieved in recent years.
Abiola, Abdul-Hakeem Olatunji; Agunbiade, Adebukola Bola; Badmos, Kabir Bolarinwa; Lesi, Adenike Olufunmilayo; Lawal, Abdulrazzaq Oluwagbemiga; Alli, Quadri Olatunji
2016-01-01
Hepatitis B Virus, a highly infectious blood-borne virus poses a major threat to public health globally due to its high prevalence rate and grave consequence in causing liver cirrhosis and hepatocelullar carcinoma, the third cause of cancer death worldwide. The aim is determine the prevalence of HBsAg, knowledge, and vaccination practices against viral hepatitis B infection among doctors and nurses in a health care facility. Study design was a descriptive cross-sectional study among all the doctors and nurses in the health care facility. Data was collected using pre-tested, structured, self-administered questionnaire and blood samples were taken from respondents and tested using commercial enzyme-linked immunosorbent assay (ELIZA) test kit to determine prevalence of hepatitis B surface antigen after informed consent. Ethical approval was obtained from Health Research and Ethics Committee of the Lagos University Teaching Hospital. Responses of the respondents to the knowledge and vaccination practices against viral hepatitis B infection were scored and graded as poor (<50%), fair (50-74%) and good (≥75%). The study was carried out in January, 2014. A total of 134 out of the 143 recruited respondents participated in the study. Prevalence of HBsAg was 1.5%. Among the respondents, 56.7% had good knowledge and 94.8% reported poor practice of vaccination against viral hepatitis B infection. Mean knowledge and vaccination practices scores (%) were 72.54+7.60 and 29.44+14.37 respectively. Only 29% of the respondents did post vaccination testing for anti HBsAg. Prevalence of HBsAg was low. Knowledge of viral hepatitis B was fair, and practice of post hepatitis B vaccination testing was poor. It is therefore recommended that the state ministry of health should organise further health education programme, institute compulsory occupational hepatitis B vaccination programme and post vaccination anti-HBS testing to ensure adequate antibody level in this adult population.
Progress toward commissioning and plasma operation in NSTX-U
NASA Astrophysics Data System (ADS)
Ono, M.; Chrzanowski, J.; Dudek, L.; Gerhardt, S.; Heitzenroeder, P.; Kaita, R.; Menard, J. E.; Perry, E.; Stevenson, T.; Strykowsky, R.; Titus, P.; von Halle, A.; Williams, M.; Atnafu, N. D.; Blanchard, W.; Cropper, M.; Diallo, A.; Gates, D. A.; Ellis, R.; Erickson, K.; Hosea, J.; Hatcher, R.; Jurczynski, S. Z.; Kaye, S.; Labik, G.; Lawson, J.; LeBlanc, B.; Maingi, R.; Neumeyer, C.; Raman, R.; Raftopoulos, S.; Ramakrishnan, R.; Roquemore, A. L.; Sabbagh, S. A.; Sichta, P.; Schneider, H.; Smith, M.; Stratton, B.; Soukhanovskii, V.; Taylor, G.; Tresemer, K.; Zolfaghari, A.; The NSTX-U Team
2015-07-01
The National Spherical Torus Experiment-Upgrade (NSTX-U) is the most powerful spherical torus facility at PPPL, Princeton USA. The major mission of NSTX-U is to develop the physics basis for an ST-based Fusion Nuclear Science Facility (FNSF). The ST-based FNSF has the promise of achieving the high neutron fluence needed for reactor component testing with relatively modest tritium consumption. At the same time, the unique operating regimes of NSTX-U can contribute to several important issues in the physics of burning plasmas to optimize the performance of ITER. NSTX-U further aims to determine the attractiveness of the compact ST for addressing key research needs on the path toward a fusion demonstration power plant (DEMO). The upgrade will nearly double the toroidal magnetic field BT to 1 T at a major radius of R0 = 0.93 m, plasma current Ip to 2 MA and neutral beam injection (NBI) heating power to 14 MW. The anticipated plasma performance enhancement is a quadrupling of the plasma stored energy and near doubling of the plasma confinement time, which would result in a 5-10 fold increase in the fusion performance parameter nτ T. A much more tangential 2nd NBI system, with 2-3 times higher current drive efficiency compared to the 1st NBI system, is installed to attain the 100% non-inductive operation needed for a compact FNSF design. With higher fields and heating powers, the NSTX-U plasma collisionality will be reduced by a factor of 3-6 to help explore the favourable trend in transport towards the low collisionality FNSF regime. The NSTX-U first plasma is planned for the Summer of 2015, at which time the transition to plasma operations will occur.
NASA Technical Reports Server (NTRS)
1973-01-01
The launch operations test and checkout plan is a planning document that establishes all launch site checkout activity, including the individual tests and sequence of testing required to fulfill the development center and KSC test and checkout requirements. This volume contains the launch vehicle test and checkout plan encompassing S-1B, S-4B, IU stage, and ground support equipment tests. The plan is based upon AS-208 flow utilizing a manned spacecraft, LUT 1, and launch pad 39B facilities.
Solid polystyrene and deuterated polystyrene light output response to fast neutrons
NASA Astrophysics Data System (ADS)
Simpson, R.; Danly, C.; Glebov, V. Yu.; Hurlbut, C.; Merrill, F. E.; Volegov, P. L.; Wilde, C.
2016-04-01
The Neutron Imaging System has proven to be an important diagnostic in studying DT implosion characteristics at the National Ignition Facility. The current system depends on a polystyrene scintillating fiber array, which detects fusion neutrons born in the DT hotspot as well as neutrons that have scattered to lower energies in the surrounding cold fuel. Increasing neutron yields at NIF, as well as a desire to resolve three-dimensional information about the fuel assembly, have provided the impetus to build and install two additional next-generation neutron imaging systems. We are currently investigating a novel neutron imaging system that will utilize a deuterated polystyrene (CD) fiber array instead of standard hydrogen-based polystyrene (CH). Studies of deuterated xylene or deuterated benzene liquid scintillator show an improvement in imaging resolution by a factor of two [L. Disdier et al., Rev. Sci. Instrum. 75, 2134 (2004)], but also a reduction in light output [V. Bildstein et al., Nucl. Instrum. Methods Phys. Res., Sect. A 729, 188 (2013); M. I. Ojaruega, Ph.D. thesis, University of Michigan, 2009; M. T. Febbraro, Ph.D. thesis, University of Michigan, 2014] as compared to standard plastic. Tests of the relative light output of deuterated polystyrene and standard polystyrene were completed using 14 MeV fusion neutrons generated through implosions of deuterium-tritium filled capsules at the OMEGA laser facility. In addition, we collected data of the relative response of these two scintillators to a wide energy range of neutrons (1-800 MeV) at the Weapons Neutrons Research Facility. Results of these measurements are presented.
Solid polystyrene and deuterated polystyrene light output response to fast neutrons.
Simpson, R; Danly, C; Glebov, V Yu; Hurlbut, C; Merrill, F E; Volegov, P L; Wilde, C
2016-04-01
The Neutron Imaging System has proven to be an important diagnostic in studying DT implosion characteristics at the National Ignition Facility. The current system depends on a polystyrene scintillating fiber array, which detects fusion neutrons born in the DT hotspot as well as neutrons that have scattered to lower energies in the surrounding cold fuel. Increasing neutron yields at NIF, as well as a desire to resolve three-dimensional information about the fuel assembly, have provided the impetus to build and install two additional next-generation neutron imaging systems. We are currently investigating a novel neutron imaging system that will utilize a deuterated polystyrene (CD) fiber array instead of standard hydrogen-based polystyrene (CH). Studies of deuterated xylene or deuterated benzene liquid scintillator show an improvement in imaging resolution by a factor of two [L. Disdier et al., Rev. Sci. Instrum. 75, 2134 (2004)], but also a reduction in light output [V. Bildstein et al., Nucl. Instrum. Methods Phys. Res., Sect. A 729, 188 (2013); M. I. Ojaruega, Ph.D. thesis, University of Michigan, 2009; M. T. Febbraro, Ph.D. thesis, University of Michigan, 2014] as compared to standard plastic. Tests of the relative light output of deuterated polystyrene and standard polystyrene were completed using 14 MeV fusion neutrons generated through implosions of deuterium-tritium filled capsules at the OMEGA laser facility. In addition, we collected data of the relative response of these two scintillators to a wide energy range of neutrons (1-800 MeV) at the Weapons Neutrons Research Facility. Results of these measurements are presented.
Solid polystyrene and deuterated polystyrene light output response to fast neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, R., E-mail: raspberry@lanl.gov; Danly, C.; Merrill, F. E.
The Neutron Imaging System has proven to be an important diagnostic in studying DT implosion characteristics at the National Ignition Facility. The current system depends on a polystyrene scintillating fiber array, which detects fusion neutrons born in the DT hotspot as well as neutrons that have scattered to lower energies in the surrounding cold fuel. Increasing neutron yields at NIF, as well as a desire to resolve three-dimensional information about the fuel assembly, have provided the impetus to build and install two additional next-generation neutron imaging systems. We are currently investigating a novel neutron imaging system that will utilize amore » deuterated polystyrene (CD) fiber array instead of standard hydrogen-based polystyrene (CH). Studies of deuterated xylene or deuterated benzene liquid scintillator show an improvement in imaging resolution by a factor of two [L. Disdier et al., Rev. Sci. Instrum. 75, 2134 (2004)], but also a reduction in light output [V. Bildstein et al., Nucl. Instrum. Methods Phys. Res., Sect. A 729, 188 (2013); M. I. Ojaruega, Ph.D. thesis, University of Michigan, 2009; M. T. Febbraro, Ph.D. thesis, University of Michigan, 2014] as compared to standard plastic. Tests of the relative light output of deuterated polystyrene and standard polystyrene were completed using 14 MeV fusion neutrons generated through implosions of deuterium-tritium filled capsules at the OMEGA laser facility. In addition, we collected data of the relative response of these two scintillators to a wide energy range of neutrons (1-800 MeV) at the Weapons Neutrons Research Facility. Results of these measurements are presented.« less
Analysis of neutron propagation from the skyshine port of a fusion neutron source facility
NASA Astrophysics Data System (ADS)
Wakisaka, M.; Kaneko, J.; Fujita, F.; Ochiai, K.; Nishitani, T.; Yoshida, S.; Sawamura, T.
2005-12-01
The process of neutron leaking from a 14 MeV neutron source facility was analyzed by calculations and experiments. The experiments were performed at the Fusion Neutron Source (FNS) facility of the Japan Atomic Energy Institute, Tokai-mura, Japan, which has a port on the roof for skyshine experiments, and a 3He counter surrounded with a polyethylene moderator of different thicknesses was used to estimate the energy spectra and dose distributions. The 3He counter with a 3-cm-thick moderator was also used for dose measurements, and the doses evaluated by the counter counts and the calculated count-to-dose conversion factor agreed with the calculations to within ˜30%. The dose distribution was found to fit a simple analytical expression, D(r)=Q{exp(-r/λD)}/{r} and the parameters Q and λD are discussed.
Immunological Properties of Hepatitis B Core Antigen Fusion Proteins
NASA Astrophysics Data System (ADS)
Francis, Michael J.; Hastings, Gillian Z.; Brown, Alan L.; Grace, Ken G.; Rowlands, David J.; Brown, Fred; Clarke, Berwyn E.
1990-04-01
The immunogenicity of a 19 amino acid peptide from foot-and-mouth disease virus has previously been shown to approach that of the inactivated virus from which it was derived after multimeric particulate presentation as an N-terminal fusion with hepatitis B core antigen. In this report we demonstrate that rhinovirus peptide-hepatitis B core antigen fusion proteins are 10-fold more immunogenic than peptide coupled to keyhole limpet hemocyanin and 100-fold more immunogenic than uncoupled peptide with an added helper T-cell epitope. The fusion proteins can be readily administered without adjuvant or with adjuvants acceptable for human and veterinary application and can elicit a response after nasal or oral dosing. The fusion proteins can also act as T-cell-independent antigens. These properties provide further support for their suitability as presentation systems for "foreign" epitopes in the development of vaccines.
Wang, Yanran; Xiao, Gang; Dai, Zhouyun
2017-11-13
Automatic Dependent Surveillance-Broadcast (ADS-B) is the direction of airspace surveillance development. Research analyzing the benefits of Traffic Collision Avoidance System (TCAS) and ADS-B data fusion is almost absent. The paper proposes an ADS-B minimum system from ADS-B In and ADS-B Out. In ADS-B In, a fusion model with a variable sampling Variational Bayesian-Interacting Multiple Model (VSVB-IMM) algorithm is proposed for integrated display and an airspace traffic situation display is developed by using ADS-B information. ADS-B Out includes ADS-B Out transmission based on a simulator platform and an Unmanned Aerial Vehicle (UAV) platform. This paper describes the overall implementation of ADS-B minimum system, including theoretical model design, experimental simulation verification, engineering implementation, results analysis, etc. Simulation and implementation results show that the fused system has better performance than each independent subsystem and it can work well in engineering applications.
LIFE: a sustainable solution for developing safe, clean fusion power.
Reyes, Susana; Dunne, Mike; Kramer, Kevin; Anklam, Tom; Havstad, Mark; Mazuecos, Antonio Lafuente; Miles, Robin; Martinez-Frias, Joel; Deri, Bob
2013-06-01
The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in California is currently in operation with the goal to demonstrate fusion energy gain for the first time in the laboratory-also referred to as "ignition." Based on these demonstration experiments, the Laser Inertial Fusion Energy (LIFE) power plant is being designed at LLNL in partnership with other institutions with the goal to deliver baseload electricity from safe, secure, sustainable fusion power in a time scale that is consistent with the energy market needs. For this purpose, the LIFE design takes advantage of recent advances in diode-pumped, solid-state laser technology and adopts the paradigm of Line Replaceable Units used on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. The LIFE market entry plant will demonstrate the feasibility of a closed fusion fuel cycle, including tritium breeding, extraction, processing, refueling, accountability, and safety, in a steady-state power-producing device. While many fusion plant designs require large quantities of tritium for startup and operations, a range of design choices made for the LIFE fuel cycle act to reduce the in-process tritium inventory. This paper presents an overview of the delivery plan and the preconceptual design of the LIFE facility with emphasis on the key safety design principles being adopted. In order to illustrate the favorable safety characteristics of the LIFE design, some initial accident analysis results are presented that indicate potential for a more attractive licensing regime than that of current fission reactors.
2013 Nuclear Fusion Prize Acceptance Speech 2013 Nuclear Fusion Prize Acceptance Speech
NASA Astrophysics Data System (ADS)
Whyte, D.
2015-01-01
I would like to express gratitude to the IAEA, the journal Nuclear Fusion and its board for this acknowledgement of work carried out at the MIT Alcator C-Mod tokamak. I must begin by making it clear that this is in no way an award to an individual. The experiments, data analysis and paper were a true collaborative effort from the C-Mod team. It is a honor to work with them and to accept the award on their behalf. I would also like to thank the US Department of Energy for their support in funding this research. The paper describes the exploration of the 'improved' confinement regime dubbed 'I-mode'. The distinguishing feature of this operational mode is a robust boundary pedestal in temperature with the somewhat surprising lack of any form of density pedestal. Thus the regime exhibits an enhanced energy confinement similar to H-mode, roughly double of L-mode at fixed input power, yet has global fuel and impurity particle transport of L-mode. These features are intriguing from a scientific and practical point of view. On the science side it is extremely useful to obtain such a clear demarcation between the energy and particle transport. For example, soon after its discovery, the I-mode was used to extract the observation that the edge T pedestal is the strongest determinant for intrinsic rotation in work by John Rice, Pat Diamond and colleagues. Recent results regarding core transport by Anne White, Nate Howard and colleagues show that I-mode has intriguing properties with respect to core response of fluctuations and profile stiffness. Mike Churchill's recent Ph. D study on C-Mod shows that I-mode exhibits no strong poloidal impurity asymmetry, unlike H-mode. The I-mode posed an interesting test for the peeling-ballooning-KBM model of the pedestal, the subject of the 2014 Nuclear Fusion award of Phil Snyder, and was examined by John Walk and Jerry Hughes showing that in fact the lack of the density pedestal pushed the I-mode far away from the P-B limit, and thus the limiting transport/stability feature of the I-mode was in a sense self-enforcing for keeping the regime free of ELMs. Also intriguing is that the I-mode exhibits global energy confinement scaling with a very weak power degradation, presumably this arises from a temperature pedestal which is not regulated by stability, it seems I-mode provides fertile ground for studying basic plasma phenomena. From a pragmatic point of view I-mode has now been obtained and studied in ASDEX-Upgrade and DIII-0D, as reported by Amanda Hubbard at this conference. There are interesting similarities to the C-Mod observations, such as a Te pedestal without a density pedestal, but also differences which are being sorted through in details of the edge fluctuations and the operational window to access I-mode. The I-mode is 'found' at power levels between L- and H, and thus suppressing the H-mode transition is a key aspect to maintaining I-mode. This is done basically by operating with the ion grad-B drift pointed away from the primary X-point. This is one of the reasons why intrinsically stationary regimes like I-mode, and others like QH-mode, are an attractive option for burning plasma scenarios without the need for ELM, if accessible and maintainable this requires no additional hardware since the pedestal self-regulates. In addition I-mode is highly attractive because of the L-mode particle confinement: the turbulence-dominated particle transport greatly eases both fuelling requirements and impurity control. Indeed I-mode is highly successful on the all high-Z wall of C-Mod. And in a burning plasma the control of the operating point is primarily through density control, thus one foresees that burn control through densification is very powerful and promising. Recent work has suggested that the power requirement to access I-mode has rather weak B dependence. This may explain why the regime has a relatively wide operating window in the high-field C-Mod and I-mode may be highly applicable to high B ITER and reactors. So while it is relatively early after this paper and the I-mode discovery, we expect continued interesting work in this area. I would also like to point out another feature of the Nuclear Fusion paper from 2010. Approximately one third of the co-authors were students at the time when the paper was written. Indeed, it is unlikely that I-mode would have been discovered without students. A student, Rachael McDermott, was seeking to slow down the confinement transition time in order to capture it with her new charge-exchange spectroscopy diagnostic. The attempt was a 'crazy idea' to use the 'unfavorable' grad-B drift with a very careful set of small power steps just below the H-mode transition. It was in such steps that the I-mode was found and then later expanded to a much wider operating window once it was realized how attractive the I-mode appeared. I believe the fusion community can take two lessons from this. First, it is vital that we continue to support the education of young scientists. Our investments in new devices are for naught if we do not have an extremely talented and trained new generation coming behind us. And to do that means we need to assure student are integrated with access to leading facilities like C-Mod where one third of the session leaders are students. Secondly, and related, small, capable and versatile fusion experiments are both highly appropriate to meet the education mission and to push forward the fusion science because of their ability to take on risk and try new ideas, and to explore unique, but relevant, parts of parameter space such as high magnet field fusion. I urge that we continue to support such facilities in the international fusion portfolio. Thank you again on behalf of the co-authors and the C-Mod team.
SAFE Software and FED Database to Uncover Protein-Protein Interactions using Gene Fusion Analysis.
Tsagrasoulis, Dimosthenis; Danos, Vasilis; Kissa, Maria; Trimpalis, Philip; Koumandou, V Lila; Karagouni, Amalia D; Tsakalidis, Athanasios; Kossida, Sophia
2012-01-01
Domain Fusion Analysis takes advantage of the fact that certain proteins in a given proteome A, are found to have statistically significant similarity with two separate proteins in another proteome B. In other words, the result of a fusion event between two separate proteins in proteome B is a specific full-length protein in proteome A. In such a case, it can be safely concluded that the protein pair has a common biological function or even interacts physically. In this paper, we present the Fusion Events Database (FED), a database for the maintenance and retrieval of fusion data both in prokaryotic and eukaryotic organisms and the Software for the Analysis of Fusion Events (SAFE), a computational platform implemented for the automated detection, filtering and visualization of fusion events (both available at: http://www.bioacademy.gr/bioinformatics/projects/ProteinFusion/index.htm). Finally, we analyze the proteomes of three microorganisms using these tools in order to demonstrate their functionality.
SAFE Software and FED Database to Uncover Protein-Protein Interactions using Gene Fusion Analysis
Tsagrasoulis, Dimosthenis; Danos, Vasilis; Kissa, Maria; Trimpalis, Philip; Koumandou, V. Lila; Karagouni, Amalia D.; Tsakalidis, Athanasios; Kossida, Sophia
2012-01-01
Domain Fusion Analysis takes advantage of the fact that certain proteins in a given proteome A, are found to have statistically significant similarity with two separate proteins in another proteome B. In other words, the result of a fusion event between two separate proteins in proteome B is a specific full-length protein in proteome A. In such a case, it can be safely concluded that the protein pair has a common biological function or even interacts physically. In this paper, we present the Fusion Events Database (FED), a database for the maintenance and retrieval of fusion data both in prokaryotic and eukaryotic organisms and the Software for the Analysis of Fusion Events (SAFE), a computational platform implemented for the automated detection, filtering and visualization of fusion events (both available at: http://www.bioacademy.gr/bioinformatics/projects/ProteinFusion/index.htm). Finally, we analyze the proteomes of three microorganisms using these tools in order to demonstrate their functionality. PMID:22267904
Relevance of Wnt10b and activation of β-catenin/GCMa/syncytin-1 pathway in BeWo cell fusion.
Malhotra, Sudha Saryu; Banerjee, Priyanka; Chaudhary, Piyush; Pal, Rahul; Gupta, Satish Kumar
2017-10-01
To study the involvement of specific Wnt(s) ligand during trophoblastic BeWo cell differentiation. BeWo cells on treatment with forskolin/human chorionic gonadotropin (hCG) were studied for cell fusion by desmoplakin I+II staining and/or hCG secretion by ELISA. Levels of Wnt10b/β-catenin/glial cell missing a (GCMa)/syncytin-1 were studied by qPCR/Western blotting in forskolin-/hCG-treated control siRNA and Wnt10b silenced BeWo cells. BeWo cells on treatment with hCG (5 IU/mL) led to a 94-fold increase in Wnt10b transcript. Wnt10b silencing showed significant decrease in forskolin-/hCG-mediated BeWo cell fusion and/or hCG secretion. It led to down-regulation of β-catenin (nuclear and cytoplasmic), GCMa and syncytin-1 expression. Treatment of BeWo cells with H89, protein kinase A (PKA) signaling inhibitor, significantly reduced forskolin-/hCG-induced Wnt10b, β-catenin, and syncytin-1 expression, which also resulted in reduced cell fusion. Wnt10b is involved in forskolin/hCG-mediated BeWo cell fusion via β-catenin/GCMa/syncytin pathway, which may also involve activation of PKA. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Recently, the landscape of single base mutations in diffuse large B-cell lymphoma (DLBCL) was described. Here we report the discovery of a gene fusion between TBL1XR1 and TP63, the only recurrent somatic novel gene fusion identified in our analysis of transcriptome data from 96 DLBCL cases. Based on this cohort and a further 157 DLBCL cases analyzed by FISH, the incidence in de novo germinal center B cell-like (GCB) DLBCL is 5% (6 of 115).
Steady State Advanced Tokamak (SSAT): The mission and the machine
NASA Astrophysics Data System (ADS)
Thomassen, K.; Goldston, R.; Nevins, B.; Neilson, H.; Shannon, T.; Montgomery, B.
1992-03-01
Extending the tokamak concept to the steady state regime and pursuing advances in tokamak physics are important and complementary steps for the magnetic fusion energy program. The required transition away from inductive current drive will provide exciting opportunities for advances in tokamak physics, as well as important impetus to drive advances in fusion technology. Recognizing this, the Fusion Policy Advisory Committee and the U.S. National Energy Strategy identified the development of steady state tokamak physics and technology, and improvements in the tokamak concept, as vital elements in the magnetic fusion energy development plan. Both called for the construction of a steady state tokamak facility to address these plan elements. Advances in physics that produce better confinement and higher pressure limits are required for a similar unit size reactor. Regimes with largely self-driven plasma current are required to permit a steady-state tokamak reactor with acceptable recirculating power. Reliable techniques of disruption control will be needed to achieve the availability goals of an economic reactor. Thus the central role of this new tokamak facility is to point the way to a more attractive demonstration reactor (DEMO) than the present data base would support. To meet the challenges, we propose a new 'Steady State Advanced Tokamak' (SSAT) facility that would develop and demonstrate optimized steady state tokamak operating mode. While other tokamaks in the world program employ superconducting toroidal field coils, SSAT would be the first major tokamak to operate with a fully superconducting coil set in the elongated, divertor geometry planned for ITER and DEMO.
Charger 1: A New Facility for Z-Pinch Research
NASA Technical Reports Server (NTRS)
Taylor, Brian; Cassibry, Jason; Cortez, Ross; Doughty, Glen; Adams, Robert; DeCicco, Anthony
2017-01-01
Charger 1 is a multipurpose pulsed power laboratory located on Redstone Arsenal, with a focus on fusion propulsion relevant experiments involving testing z-pinch diodes, pulsed magnetic nozzle and other related physics experiments. UAH and its team of pulsed power researchers are investigating ways to increase and optimize fusion production from Charger 1. Currently the team has reached high-power testing. Due to the unique safety issues related to high power operations the UAH/MSFC team has slowed repair efforts to develop safety and operations protocols. The facility is expected to be operational by the time DZP 2017 convenes. Charger 1 began life as the Decade Module 2, an experimental prototype built to prove the Decade Quad pinch configuration. The system was donated to UAH by the Defense Threat Reduction Agency (DRTA) in 2012. For the past 5 years a UAH/MSFC/Boeing team has worked to refurbish, assemble and test the system. With completion of high power testing in summer 2017 Charger 1 will become operational for experimentation. Charger 1 utilizes a Marx Bank of 72 100-kV capacitors that are charged in parallel and discharged in series. The Marx output is compressed to a pulse width of approximately 200 ns via a pulse forming network of 32 coaxial stainless steel tubes using water as a dielectric. After pulse compression a set of SF6 switches are triggered, allowing the wave front to propagate through the output line to the load. Charger 1 is capable of storing 572-kJ of energy and time compressing discharge to less than 250 ns discharge time producing a discharge of about 1 TW of discharge with 1 MV and 1 MA peak voltage and current, respectively. This capability will be used to study energy yield scaling and physics from solid density target as applied to advanced propulsion research.
ADX: a high field, high power density, Advanced Divertor test eXperiment
NASA Astrophysics Data System (ADS)
Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team
2014-10-01
The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.
Extraction and quantitative analysis of iodine in solid and solution matrixes.
Brown, Christopher F; Geiszler, Keith N; Vickerman, Tanya S
2005-11-01
129I is a contaminant of interest in the vadose zone and groundwater at numerous federal and privately owned facilities. Several techniques have been utilized to extract iodine from solid matrixes; however, all of them rely on two fundamental approaches: liquid extraction or chemical/heat-facilitated volatilization. While these methods are typically chosen for their ease of implementation, they do not totally dissolve the solid. We defined a method that produces complete solid dissolution and conducted laboratory tests to assess its efficacy to extract iodine from solid matrixes. Testing consisted of potassium nitrate/potassium hydroxide fusion of the sample, followed by sample dissolution in a mixture of sulfuric acid and sodium bisulfite. The fusion extraction method resulted in complete sample dissolution of all solid matrixes tested. Quantitative analysis of 127I and 129I via inductively coupled plasma mass spectrometry showed better than +/-10% accuracy for certified reference standards, with the linear operating range extending more than 3 orders of magnitude (0.005-5 microg/L). Extraction and analysis of four replicates of standard reference material containing 5 microg/g 127I resulted in an average recovery of 98% with a relative deviation of 6%. This simple and cost-effective technique can be applied to solid samples of varying matrixes with little or no adaptation.
Visual and binocular status in elementary school children with a reading problem.
Christian, Lisa W; Nandakumar, Krithika; Hrynchak, Patricia K; Irving, Elizabeth L
2017-11-21
This descriptive study provides a summary of the binocular anomalies seen in elementary school children identified with reading problems. A retrospective chart review of all children identified with reading problems and seen by the University of Waterloo, Optometry Clinic, from September 2012 to June 2013. Files of 121 children (mean age 8.6 years, range 6-14 years) were reviewed. No significant refractive error was found in 81% of children. Five and 8 children were identified as strabismic at distance and near respectively. Phoria test revealed 90% and 65% of patients had normal distance and near phoria. Near point of convergencia (NPC) was <5cm in 68% of children, and 77% had stereoacuity of ≤40seconds of arc. More than 50% of the children had normal fusional vergence ranges except for near positive fusional vergencce (base out) break (46%). Tests for accommodation showed 91% of children were normal for binocular facility, and approximately 70% of children had an expected accuracy of accommodation. Findings indicate that some children with an identified reading problem also present with abnormal binocular test results compared to published normal values. Further investigation should be performed to investigate the relationship between binocular vision function and reading performance. Crown Copyright © 2017. Published by Elsevier España, S.L.U. All rights reserved.
Pourfaraj, Majid; Mohammadi, Nourallah; Taghavi, Mohammadreza
2008-12-01
The purpose of this study is to examine the psychometric properties of Thought-Action Fusion revised scale (TAF-R; Amir, N., freshman, M., Ramsey, B., Neary, E., & Brigidi, B. (2001). Thought-action fusion in individuals with OCD symptoms. Behaviour Research and Therapy, 39, 765-776) in a sample of 565 (321 female) students of Shiraz university. The results of factor analysis with using varimax rotation yielded eight factors that explained 80% variances of total scale. These factors are labeled: moral TAF, responsibility for positive thoughts, likelihood negative events, likelihood positive events, responsibility for negative thoughts, responsibility for harm avoidance, likelihood harm avoidance and likelihood self, respectively. The reliability coefficients of total scale are calculated by two methods: internal consistency and test-retest, which were 0.81 and 0.61, respectively. Concurrent validity showed that TAF-R scores positively and significantly correlate with responsibility, guilt and obsessive-compulsive symptoms. Confirming the expectations, there were people with high obsessive-compulsive symptoms having higher TAF-R scores than those with low symptoms. Moreover, subscales-total correlations showed that the correlations between subscales were low, but subscales correlating with total score of TAF-R were moderated.
Yu, Minjun; Qi, Xiulan; Moreno, Jose L.; Farber, Donna L.; Keegan, Achsah D.
2011-01-01
NF-κB activation is essential for RANKL-induced osteoclast formation. IL-4 is known to inhibit the RANKL-induced osteoclast differentiation, while at the same time promote macrophage fusion to form multinucleated giant cells (MNG). Several groups have proposed that IL-4 inhibition of osteoclastogenesis is mediated by suppressing the RANKL-induced activation of NF-κB. However, we found that IL-4 did not block proximal, canonical NF-κB signaling. Instead, we found that IL-4 inhibited alternative NF-κB signaling and induced p105/50 expression. Interestingly, in nfκb1−/− bone marrow macrophages (BMM), the formation of both multinucleated osteoclast and MNG induced by RANKL or IL-4 respectively was impaired. This suggests that NF-κB signaling also plays an important role in IL-4-induced macrophage fusion. Indeed, we found that the RANKL-induced and IL-4-induced macrophage fusion were both inhibited by the NF-κB inhibitors IKK2 inhibitor, and NEMO inhibitory peptide. Furthermore, overexpression of p50, p65, p52 and RelB individually in nfκb1−/− or nfκb1+/+ BMM enhanced both giant osteoclast and MNG formation. Interestingly, knockdown of nfκb2 in wild type BMM dramatically enhanced both osteoclast and MNG formation. In addition, both RANKL- and IL-4-induced macrophage fusion were impaired in NIK−/− BMM. These results suggest IL-4 influences NF-κB pathways by increasing p105/p50 and suppressing RANKL-induced p52 translocation, and that NF-κB pathways participate in both RANKL- and IL-4- induced giant cell formation. PMID:21734075
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, Christopher P.J.
Lasers and laser-based sources are now routinely used to control and manipulate nuclear processes, e.g. fusion, fission and resonant nuclear excitation. Two such “nuclear photonics” activities with the potential for profound societal impact will be reviewed in this presentation: the pursuit of laser-driven inertial confinement fusion at the National Ignition Facility and the development of laser-based, mono-energetic gamma-rays for isotope-specific detection, assay and imaging of materials.
NASA Astrophysics Data System (ADS)
Stork, D.; Heidinger, R.; Muroga, T.; Zinkle, S. J.; Moeslang, A.; Porton, M.; Boutard, J.-L.; Gonzalez, S.; Ibarra, A.
2017-09-01
Materials damage by 14.1MeV neutrons from deuterium-tritium (D-T) fusion reactions can only be characterised definitively by subjecting a relevant configuration of test materials to high-intensity ‘fusion-neutron spectrum sources’, i.e. those simulating closely D-T fusion-neutron spectra. This provides major challenges to programmes to design and construct a demonstration fusion reactor prior to having a large-scale, high-intensity source of such neutrons. In this paper, we discuss the different aspects related to these ‘relevant configuration’ tests, including: • generic issues in materials qualification/validation, comparing safety requirements against those of investment protection; • lessons learned from the fission programme, enabling a reduced fusion materials testing programme; • the use and limitations of presently available possible irradiation sources to optimise a fusion neutron testing program including fission-neutron irradiation of isotopically and chemically tailored steels, ion damage by high-energy helium ions and self-ion beams, or irradiation studies with neutron sources of non-fusion spectra; and • the different potential sources of simulated fusion neutron spectra and the choice using stripping reactions from deuterium-beam ions incident on light-element targets.
Crystal structure of the conserved herpes virus fusion regulator complex gH-gL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdary, Tirumala K; Cairns, Tina M; Atanasiu, Doina
2010-09-13
Herpesviruses, which cause many incurable diseases, infect cells by fusing viral and cellular membranes. Whereas most other enveloped viruses use a single viral catalyst called a fusogen, herpesviruses, inexplicably, require two conserved fusion-machinery components, gB and the heterodimer gH-gL, plus other nonconserved components. gB is a class III viral fusogen, but unlike other members of its class, it does not function alone. We determined the crystal structure of the gH ectodomain bound to gL from herpes simplex virus 2. gH-gL is an unusually tight complex with a unique architecture that, unexpectedly, does not resemble any known viral fusogen. Instead, wemore » propose that gH-gL activates gB for fusion, possibly through direct binding. Formation of a gB-gH-gL complex is critical for fusion and is inhibited by a neutralizing antibody, making the gB-gH-gL interface a promising antiviral target.« less
Crystal Structure of the Conserved Herpes Virus Fusion Regulator Complex gH–gL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdary, T.; Cairns, T; Atanasiu, D
2010-01-01
Herpesviruses, which cause many incurable diseases, infect cells by fusing viral and cellular membranes. Whereas most other enveloped viruses use a single viral catalyst called a fusogen, herpesviruses, inexplicably, require two conserved fusion-machinery components, gB and the heterodimer gH-gL, plus other nonconserved components. gB is a class III viral fusogen, but unlike other members of its class, it does not function alone. We determined the crystal structure of the gH ectodomain bound to gL from herpes simplex virus 2. gH-gL is an unusually tight complex with a unique architecture that, unexpectedly, does not resemble any known viral fusogen. Instead, wemore » propose that gH-gL activates gB for fusion, possibly through direct binding. Formation of a gB-gH-gL complex is critical for fusion and is inhibited by a neutralizing antibody, making the gB-gH-gL interface a promising antiviral target.« less
Fusion Science Education Outreach
NASA Astrophysics Data System (ADS)
Danielson, C. A.; DIII-D Education Group
1996-11-01
This presentation will focus on education outreach activities at General Atomics that have been expanded to include the general population on science education with a focus on fusion energy. Outreach materials are distributed upon request both nationally and internationally. These materials include a notebook containing copies of DIII--D tour panels, fusion poster, new fusion energy video, new fusion energy brochure, and the electromagnetic spectrum curriculum. The 1996 Fusion Forum (held in the House Caucus Room) included a student/ teacher lunch with Energy Secretary Hazel O'Leary and a private visit to the Forum exhibits. The continuing partnership with Kearny High School includes lectures, job shadowing, internship, equipment donations and an award-winning electric car-racing program. Development of distribution by CD of the existing interactive fusion energy kiosk and a virtual reality tour of the DIII--D facility are underway. The DIII--D fusion education WWW site includes e-mail addresses to ``Ask the Wizard,'' and/or receive GA's outreach materials. Steve Rodecker, a local science teacher, aided by DIII--D fusion staff, won his second Tapestry Award; he also was named the ``1995 National Science Teacher of the Year'' and will be present to share his experiences with the DIII--D educational outreach program.
Breakup and fusion cross sections of the 6Li nucleus with targets of mass A = 58, 144 and 208
NASA Astrophysics Data System (ADS)
Mukeru, B.; Rampho, G. J.; Lekala, M. L.
2018-04-01
We use the continuum discretized coupled channels method to investigate the effects of continuum-continuum coupling on the breakup and fusion cross sections of the weakly bound 6Li nucleus with the 58Ni, 144Sm and 208Pb nuclear targets. The cross sections were analyzed at incident energies E cm below, close to and above the Coulomb barrier V B. We found that for the medium and heavy targets, the breakup cross sections are enhanced at energies below the Coulomb barrier (E cm/V B ≤ 0.8) owing to these couplings. For the lighter target, relatively small enhancement of the breakup cross sections appear at energies well below the barrier (E cm/V B ≤ 0.6). At energies E cm/V B > 0.8 for medium and heavy targets, and E cm/V B > 0.6 for the light target, the continuum-continuum couplings substantially suppress the breakup cross sections. On the other hand, the fusion cross sections are enhanced at energies E cm/V B < 1.4, E cm/V B < 1.2 and E cm/V B < 0.8 for the light, medium and heavy target, respectively. The enhancement decreases as the target mass increases. Above the indicated respective energies, these couplings suppress the fusion cross sections. We also compared the breakup and fusion cross sections, and found that below the barrier, the breakup cross sections are more dominant regardless of whether continuum-continuum couplings are included.
1. CONNECTING TUNNEL AT LEFT, CONTROL BUILDING B AT RIGHT, ...
1. CONNECTING TUNNEL AT LEFT, CONTROL BUILDING B AT RIGHT, VIEW TOWARDS SOUTHEAST - Glenn L. Martin Company, Titan Missile Test Facilities, Control Building B, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slough, John
The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. The main impediment for current nuclear fusion concepts is the complexity and large mass associated with the confinement systems. To take advantage of the smaller scale, higher density regime of magnetic fusion, an efficient method for achieving the compressional heating required to reach fusion gain conditions must be found. The very compact, high energy density plasmoid commonly referred to as a Field Reversed Configuration (FRC) provides formore » an ideal target for this purpose. To make fusion with the FRC practical, an efficient method for repetitively compressing the FRC to fusion gain conditions is required. A novel approach to be explored in this endeavor is to remotely launch a converging array of small macro-particles (macrons) that merge and form a more massive liner inside the reactor which then radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target FRC plasmoid suppresses the thermal transport to the confining liner significantly lowering the imploding power needed to compress the target. With the momentum flux being delivered by an assemblage of low mass, but high velocity macrons, many of the difficulties encountered with the liner implosion power technology are eliminated. The undertaking to be described in this proposal is to evaluate the feasibility achieving fusion conditions from this simple and low cost approach to fusion. During phase I the design and testing of the key components for the creation of the macron formed liner have been successfully carried out. Detailed numerical calculations of the merging, formation and radial implosion of the Macron Formed Liner (MFL) were also performed. The phase II effort will focus on an experimental demonstration of the macron launcher at full power, and the demonstration of megagauss magnetic field compression by a small array of full scale macrons. In addition the physics of the compression of an FRC to fusion conditions will be undertaken with a smaller scale MFL. The timescale for testing will be rapidly accelerated by taking advantage of other facilities at MSNW where the target FRC will be created and translated inside the MFL just prior to implosion of the MFL. Experimental success would establish the concept at the proof of principle level and the following phase III effort would focus on the full development of the concept into a fusion gain device. Successful operation would lead to several benefits in various fields. It would have application to high energy density physics, as well as nuclear waste transmutation and alternate fission fuel cycles. The smaller scale device could find immediate application as an intense source of neutrons for diagnostic imaging and non-invasive object interrogation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Click, D. R.; Edwards, T. B.; Wiedenman, B. J.
2013-03-18
This report contains the results and comparison of data generated from inductively coupled plasma – atomic emission spectroscopy (ICP-AES) analysis of Aqua Regia (AR), Sodium Peroxide/Sodium Hydroxide Fusion Dissolution (PF) and Cold Chem (CC) method digestions and Cold Vapor Atomic Absorption analysis of Hg digestions from the DWPF Hg digestion method of Sludge Batch 8 (SB8) Sludge Receipt and Adjustment Tank (SRAT) Receipt and SB8 SRAT Product samples. The SB8 SRAT Receipt and SB8 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB8 Batch ormore » qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 7b (SB7b), to form the SB8 Blend composition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strozzi, David J.; Perkins, L. J.; Marinak, M. M.
The effects of an imposed, axial magnetic fieldmore » $$B_{z0}$$ on hydrodynamics and energetic electrons in inertial confinement fusion indirect-drive hohlraums are studied. We present simulations from the radiation-hydrodynamics code HYDRA of a low-adiabat ignition design for the National Ignition Facility, with and without $$B_{z0}=70~\\text{T}$$. The field’s main hydrodynamic effect is to significantly reduce electron thermal conduction perpendicular to the field. This results in hotter and less dense plasma on the equator between the capsule and hohlraum wall. The inner laser beams experience less inverse bremsstrahlung absorption before reaching the wall. The X-ray drive is thus stronger from the equator with the imposed field. We study superthermal, or ‘hot’, electron dynamics with the particle-in-cell code ZUMA, using plasma conditions from HYDRA. During the early-time laser picket, hot electrons based on two-plasmon decay in the laser entrance hole (Regan et al., Phys. Plasmas, vol. 17(2), 2010, 020703) are guided to the capsule by a 70 T field. Twelve times more energy deposits in the deuterium–tritium fuel. For plasma conditions early in peak laser power, we present mono-energetic test-case studies with ZUMA as well as sources based on inner-beam stimulated Raman scattering. Furthermore, the effect of the field on deuterium–tritium deposition depends strongly on the source location, namely whether hot electrons are generated on field lines that connect to the capsule.« less
Fusion Building: New Trend with Some Old Roots
ERIC Educational Resources Information Center
Hamilton, Craig
2009-01-01
The focus on the quality of a student's entire academic experience has led to a greater emphasis on student life activities and facilities. In response, many campuses are renovating, expanding, or creating new buildings that support student life. While many of these are traditional stand-alone student dormitories, dining facilities, unions, and…
Weightless Environment Training Facility (WETF) materials coating evaluation, volume 2
NASA Technical Reports Server (NTRS)
1995-01-01
This volume consists of Appendices A and B to the report on the Weightless Environment Training Facility Materials Coating Evaluation project. The project selected 10 coating systems to be evaluated in six separate exposure environments, and subject to three tests for physical properties. Appendix A holds the coating system, surface preparation, and application data. Appendix B holds the coating material infrared spectra.
Aperture tolerances for neutron-imaging systems in inertial confinement fusion.
Ghilea, M C; Sangster, T C; Meyerhofer, D D; Lerche, R A; Disdier, L
2008-02-01
Neutron-imaging systems are being considered as an ignition diagnostic for the National Ignition Facility (NIF) [Hogan et al., Nucl. Fusion 41, 567 (2001)]. Given the importance of these systems, a neutron-imaging design tool is being used to quantify the effects of aperture fabrication and alignment tolerances on reconstructed neutron images for inertial confinement fusion. The simulations indicate that alignment tolerances of more than 1 mrad would introduce measurable features in a reconstructed image for both pinholes and penumbral aperture systems. These simulations further show that penumbral apertures are several times less sensitive to fabrication errors than pinhole apertures.
Malinowski, K; Skladnik-Sadowska, E; Sadowski, M J; Szydlowski, A; Czaus, K; Kwiatkowski, R; Zaloga, D; Paduch, M; Zielinska, E
2015-01-01
The paper concerns fast protons and neutrons from D-D fusion reactions in a Plasma-Focus-1000U facility. Measurements were performed with nuclear-track detectors arranged in "sandwiches" of an Al-foil and two PM-355 detectors separated by a polyethylene-plate. The Al-foil eliminated all primary deuterons, but was penetrable for fast fusion protons. The foil and first PM-355 detector were penetrable for fast neutrons, which were converted into recoil-protons in the polyethylene and recorded in the second PM-355 detector. The "sandwiches" were irradiated by discharges of comparable neutron-yields. Analyses of etched tracks and computer simulations of the fusion-products behavior in the detectors were performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malinowski, K., E-mail: karol.malinowski@ncbj.gov.pl; Sadowski, M. J.; Szydlowski, A.
2015-01-15
The paper concerns fast protons and neutrons from D-D fusion reactions in a Plasma-Focus-1000U facility. Measurements were performed with nuclear-track detectors arranged in “sandwiches” of an Al-foil and two PM-355 detectors separated by a polyethylene-plate. The Al-foil eliminated all primary deuterons, but was penetrable for fast fusion protons. The foil and first PM-355 detector were penetrable for fast neutrons, which were converted into recoil-protons in the polyethylene and recorded in the second PM-355 detector. The “sandwiches” were irradiated by discharges of comparable neutron-yields. Analyses of etched tracks and computer simulations of the fusion-products behavior in the detectors were performed.
Cold Regions Test of Indirect Fire Weapons Ammunition
1983-03-08
COLD REGIONS TEST OF INDIRECT FIRE WEAPONS AMMUNITION Paragraph 1 . SCOPE. 1 2. FACILITIES AND INSTRUMENTATION .......... 3. PREPARATION FOR TEST...A- 1 B. Data Collection Sheets ..... .............. B- 1 C. References ..... .................... ... C- 1 D. Cold-Dry...Uniform .D...... .. ... .. ... 0- 1 1 . SCOPE. The procedures outlined in this TOP are designed to determine the c-h-arac-teristics of indirect artillery
Transport simulations of linear plasma generators with the B2.5-Eirene and EMC3-Eirene codes
Rapp, Juergen; Owen, Larry W.; Bonnin, X.; ...
2014-12-20
Linear plasma generators are cost effective facilities to simulate divertor plasma conditions of present and future fusion reactors. For this research, the codes B2.5-Eirene and EMC3-Eirene were extensively used for design studies of the planned Material Plasma Exposure eXperiment (MPEX). Effects on the target plasma of the gas fueling and pumping locations, heating power, device length, magnetic configuration and transport model were studied with B2.5-Eirene. Effects of tilted or vertical targets were calculated with EMC3-Eirene and showed that spreading the incident flux over a larger area leads to lower density, higher temperature and off-axis profile peaking in front of themore » target. In conclusion, the simulations indicate that with sufficient heating power MPEX can reach target plasma conditions that are similar to those expected in the ITER divertor. B2.5-Eirene simulations of the MAGPIE experiment have been carried out in order to establish an additional benchmark with experimental data from a linear device with helicon wave heating.« less
The US ICF Ignition Program and the Inertial Fusion Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindl, J D; Hammel, B A; Logan, B G
2003-07-02
There has been rapid progress in inertial fusion in the past few years. This progress spans the construction of ignition facilities, a wide range of target concepts, and the pursuit of integrated programs to develop fusion energy using lasers, ion beams and z-pinches. Two ignition facilities are under construction (NIF in the U.S. and LMJ in France) and both projects are progressing toward an initial experimental capability. The LIL prototype beamline for LMJ and the first 4 beams of NIF will be available for experiments in 2003. The full 192 beam capability of NIF will be available in 2009 andmore » ignition experiments are expected to begin shortly after that time. There is steady progress in the target science and target fabrication in preparation for indirect drive ignition experiments on NIF. Advanced target designs may lead to 5-10 times more yield than initial target designs. There has also been excellent progress on the science of ion beam and z-pinch driven indirect drive targets. Excellent progress on direct-drive targets has been obtained on the Omega laser at the University of Rochester. This includes improved performance of targets with a pulse shape predicted to result in reduced hydrodynamic instability. Rochester has also obtained encouraging results from initial cryogenic implosions. There is widespread interest in the science of fast ignition because of its potential for achieving higher target gain with lower driver energy and relaxed target fabrication requirements. Researchers from Osaka have achieved outstanding implosion and heating results from the Gekko XII Petawatt facility and implosions suitable for fast ignition have been tested on the Omega laser. A broad based program to develop lasers and ions beams for IFE is under way with excellent progress in drivers, chambers, target fabrication and target injection. KrF and Diode Pumped Solid-State lasers (DPSSL) are being developed in conjunction with drywall chambers and direct drive targets. Induction accelerators for heavy ions are being developed in conjunction with thick-liquid protected wall chambers and indirect-drive targets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
C.P.C. Wong; B. Merrill
2014-10-01
ITER is under construction and will begin operation in 2020. This is the first 500 MWfusion class DT device, and since it is not going to breed tritium, it will consume most of the limited supply of tritium resources in the world. Yet, in parallel, DT fusion nuclear component testing machines will be needed to provide technical data for the design of DEMO. It becomes necessary to estimate the tritium burn-up fraction and corresponding initial tritium inventory and the doubling time of these machines for the planning of future supply and utilization of tritium. With the use of a systemmore » code, tritium burn-up fraction and initial tritium inventory for steady state DT machines can be estimated. Estimated tritium burn-up fractions of FNSF-AT, CFETR-R and ARIES-AT are in the range of 1–2.8%. Corresponding total equilibrium tritium inventories of the plasma flow and tritium processing system, and with the DCLL blanket option are 7.6 kg, 6.1 kg, and 5.2 kg for ARIES-AT, CFETR-R and FNSF-AT, respectively.« less
Kim, H S; Jung, M; Kang, H N; Kim, H; Park, C-W; Kim, S-M; Shin, S J; Kim, S H; Kim, S G; Kim, E K; Yun, M R; Zheng, Z; Chung, K Y; Greenbowe, J; Ali, S M; Kim, T-M; Cho, B C
2017-06-08
Despite remarkable progress in cutaneous melanoma genomic profiling, the mutational landscape of primary mucosal melanomas (PMM) remains unclear. Forty-six PMMs underwent targeted exome sequencing of 111 cancer-associated genes. Seventy-six somatic nonsynonymous mutations in 42 genes were observed, and recurrent mutations were noted on eight genes, including TP53 (13%), NRAS (13%), SNX31 (9%), NF1 (9%), KIT (7%) and APC (7%). Mitogen-activated protein kinase (MAPK; 37%), cell cycle (20%) and phosphatidylinositol 3-kinase (PI3K)-mTOR (15%) pathways were frequently mutated. We biologically characterized a novel ZNF767-BRAF fusion found in a vemurafenib-refractory respiratory tract PMM, from which cell line harboring ZNF767-BRAF fusion were established for further molecular analyses. In an independent data set, NFIC-BRAF fusion was identified in an oral PMM case and TMEM178B-BRAF fusion and DGKI-BRAF fusion were identified in two malignant melanomas with a low mutational burden (number of mutation per megabase, 0.8 and 4, respectively). Subsequent analyses revealed that the ZNF767-BRAF fusion protein promotes RAF dimerization and activation of the MAPK pathway. We next tested the in vitro and in vivo efficacy of vemurafenib, trametinib, BKM120 or LEE011 alone and in combination. Trametinib effectively inhibited tumor cell growth in vitro, but the combination of trametinib and BKM120 or LEE011 yielded more than additive anti-tumor effects both in vitro and in vivo in a melanoma cells harboring the BRAF fusion. In conclusion, BRAF fusions define a new molecular subset of PMM that can be targeted therapeutically by the combination of a MEK inhibitor with PI3K or cyclin-dependent kinase 4/6 inhibitors.
NASA Astrophysics Data System (ADS)
Becker, Jurgen C.; Pancook, James D.; Gillies, Stephen D.; Mendelsohn, John; Reisfeld, Ralph A.
1996-04-01
Antibody--cytokine fusion proteins combine the unique targeting ability of antibodies with the multifunctional activity of cytokines. Here, we demonstrate the therapeutic efficacy of such constructs for the treatment of hepatic and pulmonary metastases of different melanoma cell lines. Two antibody--interleukin 2 (IL-2) fusion proteins, ch225-IL2 and ch14.18-IL2, constructed by fusion of a synthetic sequence coding for human IL-2 to the carboxyl end of the Cγ 1 gene of the corresponding antibodies, were tested for their therapeutic efficacy against xenografted human melanoma in vivo. Tumorspecific fusion proteins completely inhibited the growth of hepatic and pulmonary metastases in C.B-17 scid/scid mice previously reconstituted with human lymphokine-activated killer cells, whereas treatment with combinations of the corresponding antibodies plus recombinant IL-2 only reduced the tumor load. Even when treatment with fusion proteins was delayed up to 8 days after inoculation of tumor cells, it still resulted in complete eradication of micrometastases that were established at that time point. Selection of tumor cell lines expressing or lacking the targeted antigen of the administered fusion protein proved the specificity of the observed antitumor effect. Biodistribution analysis demonstrated that the tumorspecific fusion protein accumulated not only in subcutaneous tumors but also in lungs and livers affected with micrometastases. Survival times of animals treated with the fusion protein were more than doubled as compared to those treated with the combination of the corresponding antibody plus IL-2. Our data demonstrate that an immunotherapeutic approach using cytokines targeted by antibodies to tumor sites has potent effects against disseminated human melanoma.
Green, Kimberly A; Becker, Yvonne; Tanaka, Aiko; Takemoto, Daigo; Fitzsimons, Helen L; Seiler, Stephan; Lalucque, Hervé; Silar, Philippe; Scott, Barry
2017-02-01
Cell-cell fusion in fungi is required for colony formation, nutrient transfer and signal transduction. Disruption of genes required for hyphal fusion in Epichloë festucae, a mutualistic symbiont of Lolium grasses, severely disrupts the host interaction phenotype. They examined whether symB and symC, the E. festucae homologs of Podospora anserina self-signaling genes IDC2 and IDC3, are required for E. festucae hyphal fusion and host symbiosis. Deletion mutants of these genes were defective in hyphal cell fusion, formed intra-hyphal hyphae, and had enhanced conidiation. SymB-GFP and SymC-mRFP1 localize to plasma membrane, septa and points of hyphal cell fusion. Plants infected with ΔsymB and ΔsymC strains were severely stunted. Hyphae of the mutants colonized vascular bundles, were more abundant than wild type in the intercellular spaces and formed intra-hyphal hyphae. Although these phenotypes are identical to those previously observed for cell wall integrity MAP kinase mutants no difference was observed in the basal level of MpkA phosphorylation or its cellular localization in the mutant backgrounds. Both genes contain binding sites for the transcription factor ProA. Collectively these results show that SymB and SymC are key components of a conserved signaling network for E. festucae to maintain a mutualistic symbiotic interaction within L. perenne. © 2016 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.
The continuum fusion theory of signal detection applied to a bi-modal fusion problem
NASA Astrophysics Data System (ADS)
Schaum, A.
2011-05-01
A new formalism has been developed that produces detection algorithms for model-based problems, in which one or more parameter values is unknown. Continuum Fusion can be used to generate different flavors of algorithm for any composite hypothesis testing problem. The methodology is defined by a fusion logic that can be translated into max/min conditions. Here it is applied to a simple sensor fusion model, but one for which the generalized likelihood ratio test is intractable. By contrast, a fusion-based response to the same problem can be devised that is solvable in closed form and represents a good approximation to the GLR test.
Fusion Energy Division progress report, 1 January 1990--31 December 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.
1994-03-01
The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from componentsmore » for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.« less
1. Photographic copy of engineering drawing showing structure of Test ...
1. Photographic copy of engineering drawing showing structure of Test Stand 'B' (4215/E-16), also known as the 'Short Snorter.' California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'Structural Addition - Bldg. E-12, Edwards Test Station,' drawing no. E12/1-1, 8 August 1957. - Jet Propulsion Laboratory Edwards Facility, Test Stand B, Edwards Air Force Base, Boron, Kern County, CA
Liu, Pei; Han, Lei; Wang, Fei; Petrenko, Valery A; Liu, Aihua
2016-08-15
Staphylococcus aureus (S. aureus) is one of the most ubiquitous pathogens in public healthcare worldwide. It holds great insterest in establishing robust analytical method for S. aureus. Herein, we report a S. aureus-specific recognition element, isolated from phage monoclone GQTTLTTS, which was selected from f8/8 landscape phage library against S. aureus in a high-throughput way. By functionalizing cysteamine (CS)-stabilized gold nanoparticles (CS-AuNPs) with S. aureus-specific pVIII fusion protein (fusion-pVIII), a bifunctional nanoprobe (CS-AuNPs@fusion-pVIII) for S. aureus was developed. In this strategy, the CS-AuNPs@fusion-pVIII could be induced to aggregate quickly in the presence of target S. aureus, resulting in a rapid colorimetric response of gold nanoparticles. More importantly, the as-designed probe exhibited excellent selectivity over other bacteria. Thus, the CS-AuNPs@fusion-pVIII could be used as the indicator of target S. aureus. This assay can detect as low as 19CFUmL(-1)S. aureus within 30min. Further, this approach can be applicable to detect S. aureus in real water samples. Due to its sensitivity, specificity and rapidness, this proposed method is promising for on-site testing of S. aureus without using any costly instruments. Copyright © 2016 Elsevier B.V. All rights reserved.
Farnsworth, Aaron; Wisner, Todd W; Webb, Michael; Roller, Richard; Cohen, Gary; Eisenberg, Roselyn; Johnson, David C
2007-06-12
Herpesviruses must traverse the nuclear envelope to gain access to the cytoplasm and, ultimately, to exit cells. It is believed that herpesvirus nucleocapsids enter the perinuclear space by budding through the inner nuclear membrane (NM). To reach the cytoplasm these enveloped particles must fuse with the outer NM and the unenveloped capsids then acquire a second envelope in the trans-Golgi network. Little is known about the process by which herpesviruses virions fuse with the outer NM. Here we show that a herpes simplex virus (HSV) mutant lacking both the two putative fusion glycoproteins gB and gH failed to cross the nuclear envelope. Enveloped virions accumulated in the perinuclear space or in membrane vesicles that bulged into the nucleoplasm (herniations). By contrast, mutants lacking just gB or gH showed only minor or no defects in nuclear egress. We concluded that either HSV gB or gH can promote fusion between the virion envelope and the outer NM. It is noteworthy that fusion associated with HSV entry requires the cooperative action of both gB and gH, suggesting that the two types of fusion (egress versus entry) are dissimilar processes.
Structure of a trimeric variant of the Epstein-Barr virus glycoprotein B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backovic, Marija; Longnecker, Richard; Jardetzky, Theodore S
Epstein-Barr virus (EBV) is a herpesvirus that is associated with development of malignancies of lymphoid tissue. EBV infections are life-long and occur in >90% of the population. Herpesviruses enter host cells in a process that involves fusion of viral and cellular membranes. The fusion apparatus is comprised of envelope glycoprotein B (gB) and a heterodimeric complex made of glycoproteins H and L. Glycoprotein B is the most conserved envelope glycoprotein in human herpesviruses, and the structure of gB from Herpes simplex virus 1 (HSV-1) is available. Here, we report the crystal structure of the secreted EBV gB ectodomain, which formsmore » 16-nm long spike-like trimers, structurally homologous to the postfusion trimers of the fusion protein G of vesicular stomatitis virus (VSV). Comparative structural analyses of EBV gB and VSV G, which has been solved in its pre and postfusion states, shed light on gB residues that may be involved in conformational changes and membrane fusion. Also, the EBV gB structure reveals that, despite the high sequence conservation of gB in herpesviruses, the relative orientations of individual domains, the surface charge distributions, and the structural details of EBV gB differ from the HSV-1 protein, indicating regions and residues that may have important roles in virus-specific entry.« less
Dälken, Benjamin; Jabulowsky, Robert A.; Oberoi, Pranav; Benhar, Itai; Wels, Winfried S.
2010-01-01
Background The apoptosis-inducing serine protease granzyme B (GrB) is an important factor contributing to lysis of target cells by cytotoxic lymphocytes. Expression of enzymatically active GrB in recombinant form is a prerequisite for functional analysis and application of GrB for therapeutic purposes. Methods and Findings We investigated the influence of bacterial maltose-binding protein (MBP) fused to GrB via a synthetic furin recognition motif on the expression of the MBP fusion protein also containing an N-terminal α-factor signal peptide in the yeast Pichia pastoris. MBP markedly enhanced the amount of GrB secreted into culture supernatant, which was not the case when GrB was fused to GST. MBP-GrB fusion protein was cleaved during secretion by an endogenous furin-like proteolytic activity in vivo, liberating enzymatically active GrB without the need of subsequent in vitro processing. Similar results were obtained upon expression of a recombinant fragment of the ErbB2/HER2 receptor protein or GST as MBP fusions. Conclusions Our results demonstrate that combination of MBP as a solubility enhancer with specific in vivo cleavage augments secretion of processed and functionally active proteins from yeast. This strategy may be generally applicable to improve folding and increase yields of recombinant proteins. PMID:21203542
NASA Astrophysics Data System (ADS)
Hohenberger, M.; Albert, F.; Palmer, N. E.; Lee, J. J.; Döppner, T.; Divol, L.; Dewald, E. L.; Bachmann, B.; MacPhee, A. G.; LaCaille, G.; Bradley, D. K.; Stoeckl, C.
2014-11-01
In laser-driven inertial confinement fusion, hot electrons can preheat the fuel and prevent fusion-pellet compression to ignition conditions. Measuring the hot-electron population is key to designing an optimized ignition platform. The hot electrons in these high-intensity, laser-driven experiments, created via laser-plasma interactions, can be inferred from the bremsstrahlung generated by hot electrons interacting with the target. At the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)], the filter-fluorescer x-ray (FFLEX) diagnostic-a multichannel, hard x-ray spectrometer operating in the 20-500 keV range-has been upgraded to provide fully time-resolved, absolute measurements of the bremsstrahlung spectrum with ˜300 ps resolution. Initial time-resolved data exhibited significant background and low signal-to-noise ratio, leading to a redesign of the FFLEX housing and enhanced shielding around the detector. The FFLEX x-ray sensitivity was characterized with an absolutely calibrated, energy-dispersive high-purity germanium detector using the high-energy x-ray source at NSTec Livermore Operations over a range of K-shell fluorescence energies up to 111 keV (U Kβ). The detectors impulse response function was measured in situ on NIF short-pulse (˜90 ps) experiments, and in off-line tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raman, K. S.; Smalyuk, V. A.; Casey, D. T.
2014-07-15
A new in-flight radiography platform has been established at the National Ignition Facility (NIF) to measure Rayleigh–Taylor and Richtmyer–Meshkov instability growth in inertial confinement fusion capsules. The platform has been tested up to a convergence ratio of 4. An experimental campaign is underway to measure the growth of pre-imposed sinusoidal modulations of the capsule surface, as a function of wavelength, for a pair of ignition-relevant laser drives: a “low-foot” drive representative of what was fielded during the National Ignition Campaign (NIC) [Edwards et al., Phys. Plasmas 20, 070501 (2013)] and the new high-foot [Dittrich et al., Phys. Rev. Lett. 112,more » 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014)] pulse shape, for which the predicted instability growth is much lower. We present measurements of Legendre modes 30, 60, and 90 for the NIC-type, low-foot, drive, and modes 60 and 90 for the high-foot drive. The measured growth is consistent with model predictions, including much less growth for the high-foot drive, demonstrating the instability mitigation aspect of this new pulse shape. We present the design of the platform in detail and discuss the implications of the data it generates for the on-going ignition effort at NIF.« less
Marozas, J A; Hohenberger, M; Rosenberg, M J; Turnbull, D; Collins, T J B; Radha, P B; McKenty, P W; Zuegel, J D; Marshall, F J; Regan, S P; Sangster, T C; Seka, W; Campbell, E M; Goncharov, V N; Bowers, M W; Di Nicola, J-M G; Erbert, G; MacGowan, B J; Pelz, L J; Yang, S T
2018-02-23
Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces ablation pressure and implosion velocity in direct-drive inertial confinement fusion. Mitigating CBET is demonstrated for the first time in inertial-confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams. We show that, in polar direct-drive, wavelength detuning increases the equatorial region velocity experimentally by 16% and alters the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation-hydrodynamic simulations that indicate a 10% increase in the average ablation pressure.
Thin Shell, High Velocity Inertial Confinement Fusion Implosions on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Ma, T.; Hurricane, O. A.; Callahan, D. A.; Barrios, M. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Haan, S. W.; Hinkel, D. E.; Berzak Hopkins, L. F.; Le Pape, S.; MacPhee, A. G.; Pak, A.; Park, H.-S.; Patel, P. K.; Remington, B. A.; Robey, H. F.; Salmonson, J. D.; Springer, P. T.; Tommasini, R.; Benedetti, L. R.; Bionta, R.; Bond, E.; Bradley, D. K.; Caggiano, J.; Celliers, P.; Cerjan, C. J.; Church, J. A.; Dixit, S.; Dylla-Spears, R.; Edgell, D.; Edwards, M. J.; Field, J.; Fittinghoff, D. N.; Frenje, J. A.; Gatu Johnson, M.; Grim, G.; Guler, N.; Hatarik, R.; Herrmann, H. W.; Hsing, W. W.; Izumi, N.; Jones, O. S.; Khan, S. F.; Kilkenny, J. D.; Knauer, J.; Kohut, T.; Kozioziemski, B.; Kritcher, A.; Kyrala, G.; Landen, O. L.; MacGowan, B. J.; Mackinnon, A. J.; Meezan, N. B.; Merrill, F. E.; Moody, J. D.; Nagel, S. R.; Nikroo, A.; Parham, T.; Ralph, J. E.; Rosen, M. D.; Rygg, J. R.; Sater, J.; Sayre, D.; Schneider, M. B.; Shaughnessy, D.; Spears, B. K.; Town, R. P. J.; Volegov, P. L.; Wan, A.; Widmann, K.; Wilde, C. H.; Yeamans, C.
2015-04-01
Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165 μ m in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Early results have shown good repeatability, with up to 1 /2 the neutron yield coming from α -particle self-heating.
NASA Astrophysics Data System (ADS)
Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.; Turnbull, D.; Collins, T. J. B.; Radha, P. B.; McKenty, P. W.; Zuegel, J. D.; Marshall, F. J.; Regan, S. P.; Sangster, T. C.; Seka, W.; Campbell, E. M.; Goncharov, V. N.; Bowers, M. W.; Di Nicola, J.-M. G.; Erbert, G.; MacGowan, B. J.; Pelz, L. J.; Yang, S. T.
2018-02-01
Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces ablation pressure and implosion velocity in direct-drive inertial confinement fusion. Mitigating CBET is demonstrated for the first time in inertial-confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams. We show that, in polar direct-drive, wavelength detuning increases the equatorial region velocity experimentally by 16% and alters the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation-hydrodynamic simulations that indicate a 10% increase in the average ablation pressure.
NASA Astrophysics Data System (ADS)
Whyte, D. G.; Bonoli, P.; Barnard, H.; Haakonsen, C.; Hartwig, Z.; Kasten, C.; Palmer, T.; Sung, C.; Sutherland, D.; Bromberg, L.; Mangiarotti, F.; Goh, J.; Sorbom, B.; Sierchio, J.; Ball, J.; Greenwald, M.; Olynyk, G.; Minervini, J.
2012-10-01
Two of the greatest challenges to tokamak reactors are 1) large single-unit cost of each reactor's construction and 2) their susceptibility to disruptions from operation at or above operational limits. We present an attractive tokamak reactor design that substantially lessens these issues by exploiting recent advancements in superconductor (SC) tapes allowing peak field on SC coil > 20 Tesla. A R˜3.3 m, B˜9.2 T, ˜ 500 MW fusion power tokamak provides high fusion gain while avoiding all disruptive operating boundaries (no-wall beta, kink, and density limits). Robust steady-state core scenarios are obtained by exploiting the synergy of high field, compact size and ideal efficiency current drive using high-field side launch of Lower Hybrid waves. The design features a completely modular replacement of internal solid components enabled by the demountability of the coils/tapes and the use of an immersion liquid blanket. This modularity opens up the possibility of using the device as a nuclear component test facility.
Optimization of a mirror-based neutron source using differential evolution algorithm
NASA Astrophysics Data System (ADS)
Yurov, D. V.; Prikhodko, V. V.
2016-12-01
This study is dedicated to the assessment of capabilities of gas-dynamic trap (GDT) and gas-dynamic multiple-mirror trap (GDMT) as potential neutron sources for subcritical hybrids. In mathematical terms the problem of the study has been formulated as determining the global maximum of fusion gain (Q pl), the latter represented as a function of trap parameters. A differential evolution method has been applied to perform the search. Considered in all calculations has been a configuration of the neutron source with 20 m long distance between the mirrors and 100 MW heating power. It is important to mention that the numerical study has also taken into account a number of constraints on plasma characteristics so as to provide physical credibility of searched-for trap configurations. According to the results obtained the traps considered have demonstrated fusion gain up to 0.2, depending on the constraints applied. This enables them to be used either as neutron sources within subcritical reactors for minor actinides incineration or as material-testing facilities.
Design options for reducing the impact of the fill-tube in ICF implosion experiments on the NIF
NASA Astrophysics Data System (ADS)
Weber, Christopher R.; Berzak Hopkins, L. F.; Casey, D. T.; Clark, D. S.; Hammel, B. A.; Le Pape, S.; Macphee, A.; Milovich, J.; Pickworth, L. A.; Robey, H. F.; Smalyuk, V. A.; Stadermann, M.; Felker, S. J.; Nikroo, A.; Thomas, C. A.; Crippen, J.; Rice, N.
2017-10-01
Inertial Confinement Fusion (ICF) capsules on the National Ignition Facility (NIF) are filled with thermonuclear fuel through a fill-tube. When the capsule implodes, perturbations caused by the fill-tube allow ablator material to mix into the hot spot and reduce fusion performance. This talk will explore several design options that attempt to reduce this damaging effect. Reducing the diameter of the fill-tube and its entrance hole is the obvious course and has been tested in experiments. Simulations also show sensitivity to the amount of glue holding the fill-tube to the capsule and suggest that careful control of this feature can limit the amount of injected mass. Finally, an off-axis fill-tube reduces the initial squirt of material into the fuel and may be a way of further optimizing this engineering feature. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
Plasma Stopping Power Measurements Relevant to Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
McEvoy, Aaron; Herrmann, Hans; Kim, Yongho; Hoffman, Nelson; Schmitt, Mark; Rubery, Michael; Garbett, Warren; Horsfield, Colin; Gales, Steve; Zylstra, Alex; Gatu Johnson, Maria; Frenje, Johan; Petrasso, Richard; Marshall, Frederic; Batha, Steve
2015-11-01
Ignition in inertial confinement fusion (ICF) experiments may be achieved if the alpha particle energy deposition results in a thermonuclear burn wave induced in the dense DT fuel layer surrounding the hotspot. As such, understanding the physics of particle energy loss in a plasma is of critical importance to designing ICF experiments. Experiments have validated various stopping power models under select ne and Te conditions, however there remain unexplored regimes where models predict differing rates of energy deposition. An upcoming experiment at the Omega laser facility will explore charged particle stopping in CH plastic capsule ablators across a range of plasma conditions (ne between 1024 cm-3 and 1025 cm-3 and Te on the order of hundreds of eV). Plasma conditions will be measured using x-ray and gamma ray diagnostics, while plasma stopping power will be measured using charged particle energy loss measurements. Details on the experiment and the theoretical models to be tested will be presented.
NASA Astrophysics Data System (ADS)
Ruzic, D. N.; Alman, D. A.; Jurczyk, B. E.; Stubbers, R.; Coventry, M. D.; Neumann, M. J.; Olczak, W.; Qiu, H.
2004-09-01
Advanced plasma facing components (PFCs) are needed to protect walls in future high power fusion devices. In the semiconductor industry, extreme ultraviolet (EUV) sources are needed for next generation lithography. Lithium and tin are candidate materials in both areas, with liquid Li and Sn plasma material interactions being critical. The Plasma Material Interaction Group at the University of Illinois is leveraging liquid metal experimental and computational facilities to benefit both fields. The Ion surface InterAction eXperiment (IIAX) has measured liquid Li and Sn sputtering, showing an enhancement in erosion with temperature for light ion bombardment. Surface Cleaning of Optics by Plasma Exposure (SCOPE) measures erosion and damage of EUV mirror samples, and tests cleaning recipes with a helicon plasma. The Flowing LIquid surface Retention Experiment (FLIRE) measures the He and H retention in flowing liquid metals, with retention coefficients varying between 0.001 at 500 eV to 0.01 at 4000 eV.
Two-Plasmon Decay: Simulations and Experiments on the NIKE Laser System
NASA Astrophysics Data System (ADS)
Phillips, Lee; Weaver, J. L.; Oh, J.; Schmitt, A. J.; Obenschain, S.; Colombant, D.
2009-11-01
NIKE is a Krf laser system at the Naval Research Laboratory used to explore hydrodynamic stability, equation of state, and other issues arising in the research toward inertial fusion energy. The relatively small KrF wavelength, according to widely used theories, raises the threshold of most parametric instabilities. We report on simulations performed using the FAST3d radiation hydrocode to design TPD experiments. By post-processing the results of the simulations we have designed experiments that have explored the use of simple threshold formulas (from developing theories) and help establish the soundness of our simulational approach. Turning to the targets proposed for ICF energy research, we have found that among the designs for the proposed Fusion Test Facility (Obenschain et al., Phys. Plasmas 13 056320 (2006)), are some that are below LPI thresholds. We have also studied high-gain KrF shock ignition designs and found that they are below LPI thresholds for most of the implosion, becoming susceptible to TPD only late in the pulse.
Sinenian, N; Manuel, M J-E; Zylstra, A B; Rosenberg, M; Waugh, C J; Rinderknecht, H G; Casey, D T; Sio, H; Ruszczynski, J K; Zhou, L; Gatu Johnson, M; Frenje, J A; Séguin, F H; Li, C K; Petrasso, R D; Ruiz, C L; Leeper, R J
2012-04-01
The MIT Linear Electrostatic Ion Accelerator (LEIA) generates DD and D(3)He fusion products for the development of nuclear diagnostics for Omega, Z, and the National Ignition Facility (NIF). Significant improvements to the system in recent years are presented. Fusion reaction rates, as high as 10(7) s(-1) and 10(6) s(-1) for DD and D(3)He, respectively, are now well regulated with a new ion source and electronic gas control system. Charged fusion products are more accurately characterized, which allows for better calibration of existing nuclear diagnostics. In addition, in situ measurements of the on-target beam profile, made with a CCD camera, are used to determine the metrology of the fusion-product source for particle-counting applications. Finally, neutron diagnostics development has been facilitated by detailed Monte Carlo N-Particle Transport (MCNP) modeling of neutrons in the accelerator target chamber, which is used to correct for scattering within the system. These recent improvements have resulted in a versatile platform, which continues to support the existing nuclear diagnostics while simultaneously facilitating the development of new diagnostics in aid of the National Ignition Campaign at the National Ignition Facility. © 2012 American Institute of Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinenian, N.; Manuel, M. J.-E.; Zylstra, A. B.
2012-04-15
The MIT Linear Electrostatic Ion Accelerator (LEIA) generates DD and D{sup 3}He fusion products for the development of nuclear diagnostics for Omega, Z, and the National Ignition Facility (NIF). Significant improvements to the system in recent years are presented. Fusion reaction rates, as high as 10{sup 7} s{sup -1} and 10{sup 6} s{sup -1} for DD and D{sup 3}He, respectively, are now well regulated with a new ion source and electronic gas control system. Charged fusion products are more accurately characterized, which allows for better calibration of existing nuclear diagnostics. In addition, in situ measurements of the on-target beam profile,more » made with a CCD camera, are used to determine the metrology of the fusion-product source for particle-counting applications. Finally, neutron diagnostics development has been facilitated by detailed Monte Carlo N-Particle Transport (MCNP) modeling of neutrons in the accelerator target chamber, which is used to correct for scattering within the system. These recent improvements have resulted in a versatile platform, which continues to support the existing nuclear diagnostics while simultaneously facilitating the development of new diagnostics in aid of the National Ignition Campaign at the National Ignition Facility.« less
Advanced Fusion Reactors for Space Propulsion and Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, John J.
In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Protonmore » triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.« less
Advanced Fusion Reactors for Space Propulsion and Power Systems
NASA Technical Reports Server (NTRS)
Chapman, John J.
2011-01-01
In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.
Iodine Plasma Species Measurements in a Hall Effect Thruster Plume
2013-05-01
with an ExB probe , an electrostatic analyzer (ESA), and a combined ESA/ExB probe . The distribution of xenon ions was also measured. Multiply charge...of iodine ions was measured with an ExB probe , an electrostatic analyzer (ESA), and a combined ESA/ExB probe . • Results: – Multiply charged species...Test Hardware – Vacuum test facility (6’ diameter) – Faraday probe (MIT) – ESA, ExB, ESA/ExB Probes (Plasma Controls) – Rotary probe arm (about
NASA Astrophysics Data System (ADS)
Barnes, Cris W.
2009-05-01
The great vision of fusion power - harnessing the energy source of the stars for the good of people on Earth - is and has always been a highly attractive one. The history of fusion research is full of interesting tales, from its discovery to the recent completion of the US National Ignition Facility (NIF), now the world's largest laser (see Physics World March p7). Unfortunately, a new popular account of this history, Sun in a Bottle, mostly retells old stories of notable fusion failures, from mysterious early devices in Argentina through the cold-fusion debacle of the late 1980s. As a scientist who has devoted his career to plasma physics and fusion, I am - at least according to author Charles Seife - part of a community of researchers "unable to rid themselves of their intemperate self-deception". Having read it, I appear to be faced with a choice: am I a fraud or an incompetent?
High-energy krypton fluoride lasers for inertial fusion.
Obenschain, Stephen; Lehmberg, Robert; Kehne, David; Hegeler, Frank; Wolford, Matthew; Sethian, John; Weaver, James; Karasik, Max
2015-11-01
Laser fusion researchers have realized since the 1970s that the deep UV light from excimer lasers would be an advantage as a driver for robust high-performance capsule implosions for inertial confinement fusion (ICF). Most of this research has centered on the krypton-fluoride (KrF) laser. In this article we review the advantages of the KrF laser for direct-drive ICF, the history of high-energy KrF laser development, and the present state of the art and describe a development path to the performance needed for laser fusion and its energy application. We include descriptions of the architecture and performance of the multi-kilojoule Nike KrF laser-target facility and the 700 J Electra high-repetition-rate KrF laser that were developed at the U.S. Naval Research Laboratory. Nike and Electra are the most advanced KrF lasers for inertial fusion research and energy applications.
Anomalous DD and TT yields relative to the DT yield in inertial-confinement-fusion implosions
NASA Astrophysics Data System (ADS)
Casey, Daniel T.
2011-10-01
Measurements of the D(d,p)T (DD), T(t,2n)4He (TT) and D(t,n)4He (DT) reactions have been conducted using deuterium-tritium gas-filled inertial confinement fusion (ICF) implosions. In these experiments, which were carried out at the OMEGA laser facility, absolute spectral measurements of the DD protons and TT neutrons were conducted and compared to neutron-time-of-flight measured DT-neutron yields. From these measurements, it is concluded that the DD yield is anomalously low and the TT yield is anomalously high relative to the DT yield, an effect that is enhanced with increasing ion temperature. These results can be explained by an enrichment of tritium in the core of an ICF implosion, which may be present in ignition experiments planned on the National Ignition Facility. In addition, the spectral measurements of the TT-neutron spectrum were conducted for the first time at reactant central-mass energies in the range of 15-30 keV. The results from these measurements indicate that the TT reaction proceeds primarily through the direct three-body reaction channel, producing a continuous TT-neutron spectrum in the range 0 - 9.5 MeV. This work was conducted in collaboration with J. A. Frenje, M. Gatu Johnson, M. J.-E. Manuel, H. G. Rinderknecht, N. Sinenian, F. H. Seguin, C. K. Li, R. D. Petrasso, P. B. Radha, J. A. Delettrez, V. Yu Glebov, D. D. Meyerhofer, T. C. Sangster, D. P. McNabb, P. A. Amendt, R. N. Boyd, J. R. Rygg, H. W. Herrmann, Y. H. Kim, G. P. Grim and A. D. Bacher. This work was supported in part by the U.S. Department of Energy (Grant No. DE-FG03-03SF22691), LLE (subcontract Grant No. 412160-001G), LLNL (subcontract Grant No. B504974).
Wang, Yanran; Xiao, Gang; Dai, Zhouyun
2017-01-01
Automatic Dependent Surveillance–Broadcast (ADS-B) is the direction of airspace surveillance development. Research analyzing the benefits of Traffic Collision Avoidance System (TCAS) and ADS-B data fusion is almost absent. The paper proposes an ADS-B minimum system from ADS-B In and ADS-B Out. In ADS-B In, a fusion model with a variable sampling Variational Bayesian-Interacting Multiple Model (VSVB-IMM) algorithm is proposed for integrated display and an airspace traffic situation display is developed by using ADS-B information. ADS-B Out includes ADS-B Out transmission based on a simulator platform and an Unmanned Aerial Vehicle (UAV) platform. This paper describes the overall implementation of ADS-B minimum system, including theoretical model design, experimental simulation verification, engineering implementation, results analysis, etc. Simulation and implementation results show that the fused system has better performance than each independent subsystem and it can work well in engineering applications. PMID:29137194
26 CFR 1.141-8 - $15 million limitation for output facilities.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 26 Internal Revenue 2 2011-04-01 2011-04-01 false $15 million limitation for output facilities. 1....141-8 $15 million limitation for output facilities. (a) In general—(1) General rule. Section 141(b)(4... million output limitation, the benefits and burdens test of § 1.141-7 applies, except that “$15 million...
26 CFR 1.141-8 - $15 million limitation for output facilities.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 2 2010-04-01 2010-04-01 false $15 million limitation for output facilities. 1....141-8 $15 million limitation for output facilities. (a) In general—(1) General rule. Section 141(b)(4... million output limitation, the benefits and burdens test of § 1.141-7 applies, except that “$15 million...
Fusion hindrance at deep sub-barrier energies for the 11B+197Au system
NASA Astrophysics Data System (ADS)
Shrivastava, A.; Mahata, K.; Nanal, V.; Pandit, S. K.; Parkar, V. V.; Rout, P. C.; Dokania, N.; Ramachandran, K.; Kumar, A.; Chatterjee, A.; Kailas, S.
2017-09-01
Fusion cross sections for the 11B+197Au system have been measured at energies around and deep below the Coulomb barrier, to probe the occurrence of fusion hindrance in case of asymmetric systems. A deviation with respect to the standard coupled channels calculations has been observed at the lowest energy. The results have been compared with an adiabatic model calculation that considers a damping of the coupling strength for a gradual transition from sudden to adiabatic regime at very low energies. The data could be explained without inclusion of the damping factor. This implies that the influence of fusion hindrance is not significant within the measured energy range for this system. The present result is consistent with the observed trend between the degree of fusion hindrance and the charge product that reveals a weaker influence of hindrance on fusion involving lighter projectiles on heavy targets.
Lilljebjörn, Henrik; Henningsson, Rasmus; Hyrenius-Wittsten, Axel; Olsson, Linda; Orsmark-Pietras, Christina; von Palffy, Sofia; Askmyr, Maria; Rissler, Marianne; Schrappe, Martin; Cario, Gunnar; Castor, Anders; Pronk, Cornelis J H; Behrendtz, Mikael; Mitelman, Felix; Johansson, Bertil; Paulsson, Kajsa; Andersson, Anna K; Fontes, Magnus; Fioretos, Thoas
2016-06-06
Fusion genes are potent driver mutations in cancer. In this study, we delineate the fusion gene landscape in a consecutive series of 195 paediatric B-cell precursor acute lymphoblastic leukaemia (BCP ALL). Using RNA sequencing, we find in-frame fusion genes in 127 (65%) cases, including 27 novel fusions. We describe a subtype characterized by recurrent IGH-DUX4 or ERG-DUX4 fusions, representing 4% of cases, leading to overexpression of DUX4 and frequently co-occurring with intragenic ERG deletions. Furthermore, we identify a subtype characterized by an ETV6-RUNX1-like gene-expression profile and coexisting ETV6 and IKZF1 alterations. Thus, this study provides a detailed overview of fusion genes in paediatric BCP ALL and adds new pathogenetic insights, which may improve risk stratification and provide therapeutic options for this disease.
Fuel cycle for a fusion neutron source
NASA Astrophysics Data System (ADS)
Ananyev, S. S.; Spitsyn, A. V.; Kuteev, B. V.
2015-12-01
The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion-fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium-tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m3Pa/s, and temperature of reactor elements up to 650°C). The deuterium-tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.
National Ignition Facility project acquisition plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callaghan, R.W.
The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertialmore » Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF.« less
Vulnerability of CMOS image sensors in Megajoule Class Laser harsh environment.
Goiffon, V; Girard, S; Chabane, A; Paillet, P; Magnan, P; Cervantes, P; Martin-Gonthier, P; Baggio, J; Estribeau, M; Bourgade, J-L; Darbon, S; Rousseau, A; Glebov, V Yu; Pien, G; Sangster, T C
2012-08-27
CMOS image sensors (CIS) are promising candidates as part of optical imagers for the plasma diagnostics devoted to the study of fusion by inertial confinement. However, the harsh radiative environment of Megajoule Class Lasers threatens the performances of these optical sensors. In this paper, the vulnerability of CIS to the transient and mixed pulsed radiation environment associated with such facilities is investigated during an experiment at the OMEGA facility at the Laboratory for Laser Energetics (LLE), Rochester, NY, USA. The transient and permanent effects of the 14 MeV neutron pulse on CIS are presented. The behavior of the tested CIS shows that active pixel sensors (APS) exhibit a better hardness to this harsh environment than a CCD. A first order extrapolation of the reported results to the higher level of radiation expected for Megajoule Class Laser facilities (Laser Megajoule in France or National Ignition Facility in the USA) shows that temporarily saturated pixels due to transient neutron-induced single event effects will be the major issue for the development of radiation-tolerant plasma diagnostic instruments whereas the permanent degradation of the CIS related to displacement damage or total ionizing dose effects could be reduced by applying well known mitigation techniques.
Distributed computing testbed for a remote experimental environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butner, D.N.; Casper, T.A.; Howard, B.C.
1995-09-18
Collaboration is increasing as physics research becomes concentrated on a few large, expensive facilities, particularly in magnetic fusion energy research, with national and international participation. These facilities are designed for steady state operation and interactive, real-time experimentation. We are developing tools to provide for the establishment of geographically distant centers for interactive operations; such centers would allow scientists to participate in experiments from their home institutions. A testbed is being developed for a Remote Experimental Environment (REE), a ``Collaboratory.`` The testbed will be used to evaluate the ability of a remotely located group of scientists to conduct research on themore » DIII-D Tokamak at General Atomics. The REE will serve as a testing environment for advanced control and collaboration concepts applicable to future experiments. Process-to-process communications over high speed wide area networks provide real-time synchronization and exchange of data among multiple computer networks, while the ability to conduct research is enhanced by adding audio/video communication capabilities. The Open Software Foundation`s Distributed Computing Environment is being used to test concepts in distributed control, security, naming, remote procedure calls and distributed file access using the Distributed File Services. We are exploring the technology and sociology of remotely participating in the operation of a large scale experimental facility.« less
2. CONNECTING TUNNEL AT LEFT, CONTROL BUILDING B AT CENTER, ...
2. CONNECTING TUNNEL AT LEFT, CONTROL BUILDING B AT CENTER, WATER TANK AT TOP CENTER, VIEW TOWARDS SOUTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Control Building B, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
Biomechanical evaluation of CIBOR spine interbody fusion device.
Chong, Alexander C M; Harrer, Seth W; Heggeness, Michael H; Wooley, Paul H
2017-07-01
The CIBOR PEEK spinal interbody fusion device is an anterior lumbar interbody fusion construct with a hollow center designed to accommodate an osteoinductive carbon foam insert to promote bony ingrowth to induce fusion where rigid stabilization is needed. Three different sizes of the device were investigated. Part-I: implants were tested under axial compression and rotation using polyurethane foam blocks. Part-II: simulated 2-legged stance using cadaveric specimen using the L5-S1 lumbar spine segment. Part-III: a survey feedback form was used to investigate two orthopedic surgeons concern regarding the implant. In Part-I, the subsidence hysteresis under axial compression loading was found to be statistical significant difference between these three implant sizes. It was noted that the implants had migration as rotation applied, and the amount of subsidence was a factor of the axial compression loads applied. In Part-II, a minor subsidence and carbon foam debris were observed when compared to each implant size. Poor contact surface of the implant with the end plates of the L5 or S1 vertebrae from the anterior view under maximum loads was observed; however, the implant seemed to be stable. Each surgeon has their own subjective opinion about the CIBOR implant. Two out of the three different sizes of the device (medium and large sizes) provided appropriate rigid stabilization at the physiological loads. Neither orthopedic surgeon was 100% satisfied with overall performance of the implant, but felt potential improvement could be made. This study indicates an option for operative treatment of spine interbody fusion, as the CIBOR spine interbody fusion device has a hollow center. This hollow center is designed to accommodate a carbon foam insert to promote bony ingrowth. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1157-1168, 2017. © 2016 Wiley Periodicals, Inc.
Cendron, Delphine; Ingoure, Sophie; Martino, Angelo; Casetti, Rita; Horand, Françoise; Romagné, François; Sicard, Hélène; Fournié, Jean-Jacques; Poccia, Fabrizio
2007-02-01
Phosphoantigens are mycobacterial non-peptide antigens that might enhance the immunogenicity of current subunit candidate vaccines for tuberculosis. However, their testing requires monkeys, the only animal models suitable for gammadelta T cell responses to mycobacteria. Thus here, the immunogenicity of 6-kDa early secretory antigenic target-mycolyl transferase complex antigen 85B (ESAT-6-Ag85B) (H-1 hybrid) fusion protein associated or not to a synthetic phosphoantigen was compared by a prime-boost regimen of two groups of eight cynomolgus. Although phosphoantigen activated immediately a strong release of systemic Th1 cytokines (IL-2, IL-6, IFN-gamma, TNF-alpha), it further anergized blood gammadelta T lymphocytes selectively. By contrast, the hybrid H-1 induced only memory alphabeta T cell responses, regardless of phosphoantigen. These latter essentially comprised cytotoxic T lymphocytes specific for Ag85B (on average + 430 cells/million PBMC) and few IFN-gamma-secreting cells (+ 40 cells/million PBMC, equally specific for ESAT-6 and for Ag85B). Hence, in macaques, a prime-boost with the H-1/phosphoantigen subunit combination induces two waves of immune responses, successively by gammadelta T and alphabeta T lymphocytes.
NASA Astrophysics Data System (ADS)
Stambaugh, Ronald
2012-04-01
I am very pleased to join the outstanding leadership team for the journal Nuclear Fusion as Scientific Editor. The journal's high position in the field of fusion energy research derives in no small measure from the efforts of the IAEA team in Vienna, the production and marketing of IOP Publishing, the Board of Editors led by its chairman Mitsuru Kikuchi, the Associate Editor for Inertial Confinement Max Tabak and the outgoing Scientific Editor, Paul Thomas. During Paul's five year tenure submissions have grown by over 40%. The usage of the electronic journal has grown year by year with about 300 000 full text downloads of Nuclear Fusion articles in 2011, an impressive figure due in part to the launch of the full 50 year archive. High quality has been maintained while times for peer review and publishing have been reduced and the journal achieved some of the highest impact factors ever (as high as 4.27). The journal has contributed greatly to building the international scientific basis for fusion. I was privileged to serve from 2003 to 2010 as chairman of the Coordinating Committee for the International Tokamak Physics Activity (ITPA) which published in Nuclear Fusion the first ITER Physics Basis (1999) and its later update (2007). The scientific basis that has been developed to date for fusion has led to the construction of major facilities to demonstrate the production of power-plant relevant levels of fusion reactions. We look forward to the journal continuing to play a key role in the international effort toward fusion energy as these exciting major facilities and the various approaches to fusion continue to be developed. It is clear that Nuclear Fusion maintains its position in the field because of the perceived high quality of the submissions, the refereeing and the editorial processes, and the availability and utility of the online journal. The creation of the Nuclear Fusion Prize, led by the Board of Editors chairman Mitsuru Kikuchi, for the most outstanding paper published in the journal each year has furthered the submission and recognition of papers of the highest quality. The accomplishments of the journal's team over the last five years will be a tough act to follow but I look forward to working with this competent and dedicated group to continue the journal's high standards and ensure that Nuclear Fusion remains the journal of choice for authors and readers alike.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dionne, B.J.; Sullivan, S.G.; Baum, J.W.
1994-01-01
Promoting the exchange of information related to implementation of the As Low as Reasonably Achievable (ALARA) philosophy is a continuing objective for the Department of Energy (DOE). This report was prepared by the Brookhaven National Laboratory (BNL) ALARA Center for the DOE Office of Health. It contains the fifth in a series of bibliographies on dose reduction at DOE facilities. The BNL ALARA Center was originally established in 1983 under the sponsorship of the Nuclear Regulatory Commission to monitor dose-reduction research and ALARA activities at nuclear power plants. This effort was expanded in 1988 by the DOE`s Office of Environment,more » Safety and Health, to include DOE nuclear facilities. This bibliography contains abstracts relating to various aspects of ALARA program implementation and dose-reduction activities, with a specific focus on DOE facilities. Abstracts included in this bibliography were selected from proceedings of technical meetings, journals, research reports, searches of the DOE Energy, Science and Technology Database (in general, the citation and abstract information is presented as obtained from this database), and reprints of published articles provided by the authors. Facility types and activities covered in the scope of this report include: radioactive waste, uranium enrichment, fuel fabrication, spent fuel storage and reprocessing, facility decommissioning, hot laboratories, tritium production, research, test and production reactors, weapons fabrication and testing, fusion, uranium and plutonium processing, radiography, and accelerators. Information on improved shielding design, decontamination, containments, robotics, source prevention and control, job planning, improved operational and design techniques, as well as on other topics, has been included. In addition, DOE/EH reports not included in previous volumes of the bibliography are in this volume (abstracts 611 to 684). This volume (Volume 5 of the series) contains 217 abstracts.« less
Arakawa, Takeshi; Harakuni, Tetsuya
2014-09-03
To create a physicochemically stable cholera toxin (CT) B subunit (CTB), it was fused to the five-stranded α-helical coiled-coil domain of cartilage oligomeric matrix protein (COMP). The chimeric fusion protein (CTB-COMP) was expressed in Pichia pastoris, predominantly as a pentamer, and retained its affinity for the monosialoganglioside GM1, a natural receptor of CT. The fusion protein displayed thermostability, tolerating the boiling temperature of water for 10min, whereas unfused CTB readily dissociated to its monomers and lost its affinity for GM1. The fusion protein also displayed resistance to strong acid at pHs as low as 0.1, and to the protein denaturant sodium dodecyl sulfate at concentrations up to 10%. Intranasal administration of the fusion protein to mice induced anti-B subunit serum IgG, even after the protein was boiled, whereas unfused CTB showed no thermostable mucosal immunogenicity. This study demonstrates that CTB fused to a pentameric α-helical coiled coil has a novel physicochemical phenotype, which may provide important insight into the molecular design of enterotoxin-B-subunit-based vaccines and vaccine delivery molecules. Copyright © 2014 Elsevier Ltd. All rights reserved.
Suehara, Yoshiyuki; Arcila, Maria; Wang, Lu; Hasanovic, Adnan; Ang, Daphne; Ito, Tatsuo; Kimura, Yuki; Drilon, Alexander; Guha, Udayan; Rusch, Valerie; Kris, Mark G.; Zakowski, Maureen F.; Rizvi, Naiyer; Khanin, Raya; Ladanyi, Marc
2014-01-01
Background The mutually exclusive pattern of the major driver oncogenes in lung cancer suggests that other mutually exclusive oncogenes exist. We performed a systematic search for tyrosine kinase (TK) fusions by screening all TKs for aberrantly high RNA expression levels of the 3′ kinase domain (KD) exons relative to more 5′ exons. Methods We studied 69 patients (including 5 never smokers and 64 current or former smokers) with lung adenocarcinoma negative for all major mutations in KRAS, EGFR, BRAF, MEK1, and HER2, and for ALK fusions (termed “pan-negative”). A NanoString-based assay was designed to query the transcripts of 90 TKs at two points: 5′ to the KD and within the KD or 3′ to it. Tumor RNAs were hybridized to the NanoString probes and analyzed for outlier 3′ to 5′ expression ratios. Presumed novel fusion events were studied by rapid amplification of cDNA ends (RACE) and confirmatory RT-PCR and FISH. Results We identified 1 case each of aberrant 3′ to 5′ ratios in ROS1 and RET. RACE isolated a GOPC-ROS1 (FIG-ROS1) fusion in the former and a KIF5B-RET fusion in the latter, both confirmed by RT-PCR. The RET rearrangement was also confirmed by FISH. The KIF5B-RET patient was one of only 5 never smokers in this cohort. Conclusion The KIF5B-RET fusion defines an additional subset of lung cancer with a potentially targetable driver oncogene enriched in never smokers with “pan-negative” lung adenocarcinomas. We also report for the first time in lung cancer the GOPC-ROS1 fusion previously characterized in glioma. PMID:23052255
Photographic copy of photograph, aerial view looking north and showing ...
Photographic copy of photograph, aerial view looking north and showing Test Stand 'A' (at bottom), Test Stand 'B' (upper right), and a portion of Test Stand 'C' (top of view). Compare HAER CA-163-1 and 2 and note addition of liquid nitrogen storage tank (Building 4262/E-63) to west of Test Stand 'C' as well as various ancillary facilities located behind earth barriers near Test Stand 'C.' (JPL negative no. 384-3006-A, 12 December 1961) - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA
Lee, Jae Hyup; Kong, Chang-Bae; Yang, Jae Jun; Shim, Hee-Jong; Koo, Ki-Hyoung; Kim, Jeehyoung; Lee, Choon-Ki; Chang, Bong-Soon
2016-11-01
The CaO-SiO 2 -P 2 O 5 -B 2 O 3 glass ceramics spacer generates chemical bonding to adjacent bones with high mechanical stability to produce a union with the end plate, and ultimately stability. The authors aimed to compare the clinical efficacy and safety of CaO-SiO 2 -P 2 O 5 -B 2 O 3 glass ceramics with a titanium cage that is widely used for posterior lumbar interbody fusion (PLIF) surgery in the clinical field. This is a prospective, stratified randomized, multicenter, single-blinded, comparator-controlled non-inferiority trial. The present study was conducted in four hospitals and enrolled a total of 86 patients between 30 and 80 years of age who required one-level PLIF due to severe spinal stenosis, spondylolisthesis, or huge disc herniation. The Oswestry Disability Index (ODI), Short Form-36 Health Survey (SF-36), and pain visual analog scale (VAS) were assessed before surgery and at 3, 6, and 12 months after surgery. The spinal fusion rate was assessed at 6 and 12 months after surgery. The spinal fusion rate and the area of fusion, subsidence of each CaO-SiO 2 -P 2 O 5 -B 2 O 3 glass ceramics and titanium cage, and the extent of osteolysis were evaluated using a dynamic plain radiography and a three-dimensional computed tomography at 12 months after surgery. The present study was supported by BioAlpha, and some authors (JHL, C-KL, and B-SC) have stock ownership (<10,000 US dollars). From the plain radiography results, the 6-month fusion rates for the bioactive glass ceramics group and the titanium group were 89.7% and 91.4%, respectively. In addition, the 12-month fusion rates based on CT scan were 89.7% and 91.2%, respectively, showing no significant difference. However, the bone fusion area directly attached to the end plate of either bioactive glass ceramics or the titanium cage was significantly higher in the bioactive glass ceramics group than in the titanium group. The ODI, SF-36, back pain, and lower limb pain in both groups significantly improved after surgery, with no significant differences between the groups. No significant differences between the two groups were observed in the extent of subsidence and osteolysis. In lumbar posterior interbody fusion surgery, CaO-SiO 2 -P 2 O 5 -B 2 O 3 glass ceramics spacer showed a similar fusion rates and clinical outcomes compared with titanium cage. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Anzengruber, Julia; Bublin, Merima; Bönisch, Eva; Janesch, Bettina; Tscheppe, Angelika; Braun, Matthias L; Varga, Eva-Maria; Hafner, Christine; Breiteneder, Heimo; Schäffer, Christina
2017-05-01
Peanut allergy is an IgE-mediated severe hypersensitivity disorder. The lack of a treatment of this potentially fatal allergy has led to intensive research on vaccine development. Here, we describe the design and initial characterization of a carrier-bound peptide derived from the most potent peanut allergen, Ara h 2, as a candidate vaccine. Based on the adjuvant capability of bacterial surface (S-) layers, a fusion protein of the S-layer protein SlpB from Lactobacillus buchneri CD034 and the Ara h 2-derived peptide AH3a42 was produced. This peptide comprised immunodominant B-cell epitopes as well as one T cell epitope. The fusion protein SlpB-AH3a42 was expressed in E. coli, purified, and tested for its IgE binding capacity as well as for its ability to activate sensitized rat basophil leukemia (RBL) cells. The capacity of Ara h 2-specific IgG rabbit-antibodies raised against SlpB-AH3a42 or Ara h 2 to inhibit IgE-binding was determined by ELISA inhibition assays using sera of peanut allergic patients sensitized to Ara h 2. IgE specific to the SlpB-AH3a42 fusion protein was detected in 69% (25 of 36) of the sera. Despite the recognition by IgE, the SlpB-AH3a42 fusion protein was unable to induce β-hexosaminidase release from sensitized RBL cells at concentrations up to 100ng per ml. The inhibition of IgE-binding to the natural allergen observed after pre-incubation of the 20 sera with rabbit anti-SlpB-AH3a42 IgG was more than 30% for four sera, more than 20% for eight sera, and below 10% for eight sera. In comparison, anti-Ara h 2 rabbit IgG antibodies inhibited binding to Ara h 2 by 48% ±13.5%. Our data provide evidence for the feasibility of this novel approach towards the development of a peanut allergen peptide-based carrier-bound vaccine. Our experiments further indicate that more than one allergen-peptide will be needed to induce a broader protection of patients allergic to Ara h 2. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Cerjan, Ch J.; Bernstein, L.; Berzak Hopkins, L.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cassata, W. S.; Brune, C. R.; Frenje, J.; Gatu-Johnson, M.; Gharibyan, N.; Grim, G.; Hagmann, Chr; Hamza, A.; Hatarik, R.; Hartouni, E. P.; Henry, E. A.; Herrmann, H.; Izumi, N.; Kalantar, D. H.; Khater, H. Y.; Kim, Y.; Kritcher, A.; Litvinov, Yu A.; Merrill, F.; Moody, K.; Neumayer, P.; Ratkiewicz, A.; Rinderknecht, H. G.; Sayre, D.; Shaughnessy, D.; Spears, B.; Stoeffl, W.; Tommasini, R.; Yeamans, Ch; Velsko, C.; Wiescher, M.; Couder, M.; Zylstra, A.; Schneider, D.
2018-03-01
The generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capture cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.
Investigation of materials for fusion power reactors
NASA Astrophysics Data System (ADS)
Bouhaddane, A.; Slugeň, V.; Sojak, S.; Veterníková, J.; Petriska, M.; Bartošová, I.
2014-06-01
The possibility of application of nuclear-physical methods to observe radiation damage to structural materials of nuclear facilities is nowadays a very actual topic. The radiation damage to materials of advanced nuclear facilities, caused by extreme radiation stress, is a process, which significantly limits their operational life as well as their safety. In the centre of our interest is the study of the radiation degradation and activation of the metals and alloys for the new nuclear facilities (Generation IV fission reactors, fusion reactors ITER and DEMO). The observation of the microstructure changes in the reactor steels is based on experimental investigation using the method of positron annihilation spectroscopy (PAS). The experimental part of the work contains measurements focused on model reactor alloys and ODS steels. There were 12 model reactor steels and 3 ODS steels. We were investigating the influence of chemical composition on the production of defects in crystal lattice. With application of the LT 9 program, the spectra of specimen have been evaluated and the most convenient samples have been determined.
NASA Astrophysics Data System (ADS)
Nakamura, Hiroo; Riccardi, B.; Loginov, N.; Ara, K.; Burgazzi, L.; Cevolani, S.; Dell'Orco, G.; Fazio, C.; Giusti, D.; Horiike, H.; Ida, M.; Ise, H.; Kakui, H.; Matsui, H.; Micciche, G.; Muroga, T.; Nakamura, Hideo; Shimizu, K.; Sugimoto, M.; Suzuki, A.; Takeuchi, H.; Tanaka, S.; Yoneoka, T.
2004-08-01
During the three year key element technology phase of the International Fusion Materials Irradiation Facility (IFMIF) project, completed at the end of 2002, key technologies have been validated. In this paper, these results are summarized. A water jet experiment simulating Li flow validated stable flow up to 20 m/s with a double reducer nozzle. In addition, a small Li loop experiment validated stable Li flow up to 14 m/s. To control the nitrogen content in Li below 10 wppm will require surface area of a V-Ti alloy getter of 135 m 2. Conceptual designs of diagnostics have been carried out. Moreover, the concept of a remote handling system to replace the back wall based on `cut and reweld' and `bayonet' options has been established. Analysis by FMEA showed safe operation of the target system. Recent activities in the transition phase, started in 2003, and plan for the next phase are also described.
NASA Technical Reports Server (NTRS)
Hozman, Aron D.; Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.
2011-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA's space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 cu ft in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada's acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.
A new fusion protein platform for quantitatively measuring activity of multiple proteases
2014-01-01
Background Recombinant proteins fused with specific cleavage sequences are widely used as substrate for quantitatively analyzing the activity of proteases. Here we propose a new fusion platform for multiple proteases, by using diaminopropionate ammonia-lyase (DAL) as the fusion protein. It was based on the finding that a fused His6-tag could significantly decreases the activities of DAL from E. coli (eDAL) and Salmonella typhimurium (sDAL). Previously, we have shown that His6GST-tagged eDAL could be used to determine the activity of tobacco etch virus protease (TEVp) under different temperatures or in the denaturant at different concentrations. In this report, we will assay different tags and cleavage sequences on DAL for expressing yield in E. coli, stability of the fused proteins and performance of substrate of other common proteases. Results We tested seven different protease cleavage sequences (rhinovirus 3C, TEV protease, factor Xa, Ssp DnaB intein, Sce VMA1 intein, thrombin and enterokinase), three different tags (His6, GST, CBD and MBP) and two different DALs (eDAL and sDAL), for their performance as substrate to the seven corresponding proteases. Among them, we found four active DAL-fusion substrates suitable for TEVp, factor Xa, thrombin and DnaB intein. Enterokinase cleaved eDAL at undesired positions and did not process sDAL. Substitution of GST with MBP increase the expression level of the fused eDAL and this fusion protein was suitable as a substrate for analyzing activity of rhinovirus 3C. We demonstrated that SUMO protease Ulp1 with a N-terminal His6-tag or MBP tag displayed different activity using the designed His6SUMO-eDAL as substrate. Finally, owing to the high level of the DAL-fusion protein in E. coli, these protein substrates can also be detected directly from the crude extract. Conclusion The results show that our designed DAL-fusion proteins can be used to quantify the activities of both sequence- and conformational-specific proteases, with sufficient substrate specificity. PMID:24649897
B218 Weld Filler Wire Characterization for Al-Li Alloy 2195
NASA Technical Reports Server (NTRS)
Bjorkman, Gerry; Russell, Carolyn
2000-01-01
NASA Marshall Space Flight Center, Lockheed Martin Space Systems- Michoud Operations, and McCook Metals have developed an aluminum-copper weld filler wire for fusion welding aluminum lithium alloy 2195. The aluminum-copper based weld filler wire has been identified as B218, a McCook Metals designation. B218 is the result of six years of weld filler wire development funded by NASA, Lockheed Martin, and McCook Metals. The filler wire chemistry was developed to produce enhanced 2195 weld and repair weld mechanical properties over the 4043 aluminum-silicon weld filler wire, which is currently used to weld 2195 on the Super Lightweight External Tank for the NASA Space Shuttle Program. An initial characterization was performed consisting of a repair weld evaluation using B218 and 4043 weld filler wires. The testing involved room temperature and cryogenic repair weld tensile testing along with fracture toughness testing. From the testing, B218 weld filler wire produce enhanced repair weld tensile strength, ductility, and fracture properties over 4043. B218 weld filler wire has proved to be a superior weld filler wire for welding aluminum lithium alloy 2195 over 4043.
The national ignition facility high-energy ultraviolet laser system
NASA Astrophysics Data System (ADS)
Moses, Edward I.
2004-09-01
The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8 MJ, 500 TW, ultraviolet laser system together with a 10-m diameter target chamber with room for nearly 100 experimental diagnostics. When completed, NIF will be the world's largest and most energetic laser experimental system, providing an international center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF's 192 energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will allow the study of physical processes at temperatures approaching 10 8 K and 10 11 Bar, conditions that exist naturally only in the interior of stars, planets and in nuclear weapons. NIF is now entering the first phases of its laser commissioning program. The first four beams of the NIF laser system have generated 106 kJ of infrared light and over 10 kJ at the third harmonic (351 nm). NIF's target experimental systems are also being installed in preparation for experiments to begin in late 2003. This paper provides a detailed look the NIF laser systems, the significant laser and optical systems breakthroughs that were developed, the results of recent laser commissioning shots, and plans for commissioning diagnostics for experiments on NIF.
The Long way Towards Inertial Fusion Energy (lirpp Vol. 13)
NASA Astrophysics Data System (ADS)
Velarde, Guillermo
2016-10-01
In 1955 the first Geneva Conference was held in which two important events took place. Firstly, the announcement by President Eisenhower of the Program Atoms for Peace declassifying the information concerning nuclear fission reactors. Secondly, it was forecast that due to the research made on stellerators and magnetic mirrors, the first demo fusion facility would be in operation within ten years. This forecasting, as all of us know today, was a mistake. Forty years afterwards, we can say that probably the first Demo Reactor will be operative in some years more and I sincerely hope that it will be based on the inertial fusion concept...
Simulation and assessment of ion kinetic effects in a direct-drive capsule implosion experiment
Le, Ari Yitzchak; Kwan, Thomas J. T.; Schmitt, Mark J.; ...
2016-10-24
The first simulations employing a kinetic treatment of both fuel and shell ions to model inertial confinement fusion experiments are presented, including results showing the importance of kinetic physics processes in altering fusion burn. A pair of direct drive capsule implosions performed at the OMEGA facility with two different gas fills of deuterium, tritium, and helium-3 are analyzed. During implosion shock convergence, highly non-Maxwellian ion velocity distributions and separations in the density and temperature amongst the ion species are observed. Finally, diffusion of fuel into the capsule shell is identified as a principal process that degrades fusion burn performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, W. R.; Bieri, R. L.; Monsler, M. J.
1992-03-01
This is a comprehensive design study of two Inertial Fusion Energy (IFE) electric power plants. Conceptual designs are presented for a fusion reactor (called Osiris) using an induction-linac heavy-ion beam driver, and another (called SOMBRERO) using a KrF laser driver. The designs covered all aspects of IFE power plants, including the chambers, heat transport and power conversion systems, balance-of-plant facilities, target fabrication, target injection and tracking, as well as the heavy-ion and KrF drivers. The point designs were assessed and compared in terms of their environmental & safety aspects, reliability and availability, economics, and technology development needs.
NASA Astrophysics Data System (ADS)
Kodali, Anuradha
In this thesis, we develop dynamic multiple fault diagnosis (DMFD) algorithms to diagnose faults that are sporadic and coupled. Firstly, we formulate a coupled factorial hidden Markov model-based (CFHMM) framework to diagnose dependent faults occurring over time (dynamic case). Here, we implement a mixed memory Markov coupling model to determine the most likely sequence of (dependent) fault states, the one that best explains the observed test outcomes over time. An iterative Gauss-Seidel coordinate ascent optimization method is proposed for solving the problem. A soft Viterbi algorithm is also implemented within the framework for decoding dependent fault states over time. We demonstrate the algorithm on simulated and real-world systems with coupled faults; the results show that this approach improves the correct isolation rate as compared to the formulation where independent fault states are assumed. Secondly, we formulate a generalization of set-covering, termed dynamic set-covering (DSC), which involves a series of coupled set-covering problems over time. The objective of the DSC problem is to infer the most probable time sequence of a parsimonious set of failure sources that explains the observed test outcomes over time. The DSC problem is NP-hard and intractable due to the fault-test dependency matrix that couples the failed tests and faults via the constraint matrix, and the temporal dependence of failure sources over time. Here, the DSC problem is motivated from the viewpoint of a dynamic multiple fault diagnosis problem, but it has wide applications in operations research, for e.g., facility location problem. Thus, we also formulated the DSC problem in the context of a dynamically evolving facility location problem. Here, a facility can be opened, closed, or can be temporarily unavailable at any time for a given requirement of demand points. These activities are associated with costs or penalties, viz., phase-in or phase-out for the opening or closing of a facility, respectively. The set-covering matrix encapsulates the relationship among the rows (tests or demand points) and columns (faults or locations) of the system at each time. By relaxing the coupling constraints using Lagrange multipliers, the DSC problem can be decoupled into independent subproblems, one for each column. Each subproblem is solved using the Viterbi decoding algorithm, and a primal feasible solution is constructed by modifying the Viterbi solutions via a heuristic. The proposed Viterbi-Lagrangian relaxation algorithm (VLRA) provides a measure of suboptimality via an approximate duality gap. As a major practical extension of the above problem, we also consider the problem of diagnosing faults with delayed test outcomes, termed delay-dynamic set-covering (DDSC), and experiment with real-world problems that exhibit masking faults. Also, we present simulation results on OR-library datasets (set-covering formulations are predominantly validated on these matrices in the literature), posed as facility location problems. Finally, we implement these algorithms to solve problems in aerospace and automotive applications. Firstly, we address the diagnostic ambiguity problem in aerospace and automotive applications by developing a dynamic fusion framework that includes dynamic multiple fault diagnosis algorithms. This improves the correct fault isolation rate, while minimizing the false alarm rates, by considering multiple faults instead of the traditional data-driven techniques based on single fault (class)-single epoch (static) assumption. The dynamic fusion problem is formulated as a maximum a posteriori decision problem of inferring the fault sequence based on uncertain outcomes of multiple binary classifiers over time. The fusion process involves three steps: the first step transforms the multi-class problem into dichotomies using error correcting output codes (ECOC), thereby solving the concomitant binary classification problems; the second step fuses the outcomes of multiple binary classifiers over time using a sliding window or block dynamic fusion method that exploits temporal data correlations over time. We solve this NP-hard optimization problem via a Lagrangian relaxation (variational) technique. The third step optimizes the classifier parameters, viz., probabilities of detection and false alarm, using a genetic algorithm. The proposed algorithm is demonstrated by computing the diagnostic performance metrics on a twin-spool commercial jet engine, an automotive engine, and UCI datasets (problems with high classification error are specifically chosen for experimentation). We show that the primal-dual optimization framework performed consistently better than any traditional fusion technique, even when it is forced to give a single fault decision across a range of classification problems. Secondly, we implement the inference algorithms to diagnose faults in vehicle systems that are controlled by a network of electronic control units (ECUs). The faults, originating from various interactions and especially between hardware and software, are particularly challenging to address. Our basic strategy is to divide the fault universe of such cyber-physical systems in a hierarchical manner, and monitor the critical variables/signals that have impact at different levels of interactions. The proposed diagnostic strategy is validated on an electrical power generation and storage system (EPGS) controlled by two ECUs in an environment with CANoe/MATLAB co-simulation. Eleven faults are injected with the failures originating in actuator hardware, sensor, controller hardware and software components. Diagnostic matrix is established to represent the relationship between the faults and the test outcomes (also known as fault signatures) via simulations. The results show that the proposed diagnostic strategy is effective in addressing the interaction-caused faults.
Didierjean, Luc; Gondet, Laurence; Perkins, Roberta; Lau, Sze-Mei Cindy; Schaller, Hubert; O'Keefe, Daniel P.; Werck-Reichhart, Danièle
2002-01-01
The Jerusalem artichoke (Helianthus tuberosus) xenobiotic inducible cytochrome P450, CYP76B1, catalyzes rapid oxidative dealkylation of various phenylurea herbicides to yield nonphytotoxic metabolites. We have found that increased herbicide metabolism and tolerance can be achieved by ectopic constitutive expression of CYP76B1 in tobacco (Nicotiana tabacum) and Arabidopsis. Transformation with CYP76B1 conferred on tobacco and Arabidopsis a 20-fold increase in tolerance to linuron, a compound detoxified by a single dealkylation, and a 10-fold increase in tolerance to isoproturon or chlortoluron, which need successive catalytic steps for detoxification. Two constructs for expression of translational fusions of CYP76B1 with P450 reductase were prepared to test if they would yield even greater herbicide tolerance. Plants expressing these constructs had lower herbicide tolerance than CYP76B1 alone, which is apparently a consequence of reduced stability of the fusion proteins. In all cases, increased herbicide tolerance results from more extensive metabolism, as demonstrated with exogenously fed phenylurea. Beside increased herbicide tolerance, expression of CYP76B1 has no other visible phenotype in the transgenic plants. Our data indicate that CYP76B1 can function as a selectable marker for plant transformation, allowing efficient selection in vitro and in soil-grown plants. Plants expressing CYP76B1 may also be a potential tool for phytoremediation of contaminated sites. PMID:12226498
Engineering directorate technical facilities catalog
NASA Technical Reports Server (NTRS)
Maloy, Joseph E.
1993-01-01
The Engineering Directorate Technical Facilities Catalog is designed to provide an overview of the technical facilities available within the Engineering Directorate at the National Aeronautics and Space Administration (NASA), Lyndon B. Johnson Space Center (JSC) in Houston, Texas. The combined capabilities of these engineering facilities are essential elements of overall JSC capabilities required to manage and perform major NASA engineering programs. The facilities are grouped in the text by chapter according to the JSC division responsible for operation of the facility. This catalog updates the facility descriptions for the JSC Engineering Directorate Technical Facilities Catalog, JSC 19295 (August 1989), and supersedes the Engineering Directorate, Principle test and Development Facilities, JSC, 19962 (November 1984).
Variations in pretransfusion practices.
Padget, B J; Hannon, J L
2003-01-01
A variety of pretransfusion tests have been developed to improve the safety and effectiveness of transfusion. Recently, a number of traditional tests have been shown to offer limited clinical benefit and have been eliminated in many facilities. A survey of pretransfusion test practices was distributed to 116 hospital transfusion services. Routine test practices and facility size were analyzed. Ninety-one responses were received. Many smaller laboratories include tests such as anti-A,B, an autocontrol, and DAT, and immediate spin and 37 degrees Celsius microscopic readings. Nine percent never perform an Rh control with anti-D typing on patient samples. Various antibody screening and crossmatch methods are utilized. Individual laboratory test practices should be periodically assessed to ensure that they comply with standards, represent the recognized best practice, and are cost-effective. The survey responses indicate that many laboratories perform tests that are not necessary or cost-effective. These facilities should review their processes to determine which tests contribute to transfusion safety. Smaller facilities may be reluctant to change or lack the expertise necessary for this decision making and often continue to perform tests that have been eliminated in larger facilities. Consultation with larger hospital transfusion services may provide guidance for this change.
NASA Astrophysics Data System (ADS)
McMullen, Sonya A. H.; Henderson, Troy; Ison, David
2017-05-01
The miniaturization of unmanned systems and spacecraft, as well as computing and sensor technologies, has opened new opportunities in the areas of remote sensing and multi-sensor data fusion for a variety of applications. Remote sensing and data fusion historically have been the purview of large government organizations, such as the Department of Defense (DoD), National Aeronautics and Space Administration (NASA), and National Geospatial-Intelligence Agency (NGA) due to the high cost and complexity of developing, fielding, and operating such systems. However, miniaturized computers with high capacity processing capabilities, small and affordable sensors, and emerging, commercially available platforms such as UAS and CubeSats to carry such sensors, have allowed for a vast range of novel applications. In order to leverage these developments, Embry-Riddle Aeronautical University (ERAU) has developed an advanced sensor and data fusion laboratory to research component capabilities and their employment on a wide-range of autonomous, robotic, and transportation systems. This lab is unique in several ways, for example, it provides a traditional campus laboratory for students and faculty to model and test sensors in a range of scenarios, process multi-sensor data sets (both simulated and experimental), and analyze results. Moreover, such allows for "virtual" modeling, testing, and teaching capability reaching beyond the physical confines of the facility for use among ERAU Worldwide students and faculty located around the globe. Although other institutions such as Georgia Institute of Technology, Lockheed Martin, University of Dayton, and University of Central Florida have optical sensor laboratories, the ERAU virtual concept is the first such lab to expand to multispectral sensors and data fusion, while focusing on the data collection and data products and not on the manufacturing aspect. Further, the initiative is a unique effort among Embry-Riddle faculty to develop multi-disciplinary, cross-campus research to facilitate faculty- and student-driven research. Specifically, the ERAU Worldwide Campus, with locations across the globe and delivering curricula online, will be leveraged to provide novel approaches to remote sensor experimentation and simulation. The purpose of this paper and presentation is to present this new laboratory, research, education, and collaboration process.
Kang, Hyeon-Ju; Kim, Hye-Jin; Jung, Mun-Sik; Han, Jae-Kyu; Cha, Sang-Hoon
2017-04-01
Development of novel bi-functional or even tri-functional Fab-effector fusion proteins would have a great potential in the biomedical sciences. However, the expression of Fab-effector fusion proteins in Escherichia coli is problematic especially when a eukaryotic effector moiety is genetically linked to a Fab due to the lack of proper chaperone proteins and an inappropriate physicochemical environment intrinsic to the microbial hosts. We previously reported that a human Fab molecule, referred to as SL335, reactive to human serum albumin has a prolonged in vivo serum half-life in rats. We, herein, tested six discrete SL335-human growth hormone (hGH) fusion constructs as a model system to define an optimal Fab-effector fusion format for E. coli expression. We found that one variant, referred to as HserG/Lser, outperformed the others in terms of a soluble expression yield and functionality in that HserG/Lser has a functional hGH bioactivity and possesses an serum albumin-binding affinity comparable to SL335. Our results clearly demonstrated that the genetic linkage of an effector domain to the C-terminus of Fd (V H +C H1 ) and the removal of cysteine (Cys) residues responsible for an interchain disulfide bond (IDB) ina Fab molecule optimize the periplasmic expression of a Fab-effector fusion protein in E. coli. We believe that our approach can contribute the development of diverse bi-functional Fab-effector fusion proteins by providing a simple strategy that enables the reliable expression of a functional fusion proteins in E. coli. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Failed less invasive lumbar spine surgery as a predictor of subsequent fusion outcomes.
Gillard, Douglas M; Corenman, Donald S; Dornan, Grant J
2014-04-01
It is not uncommon for patients to undergo less invasive spine surgery (LISS) prior to succumbing to lumbar fusion; however, the effect of failed LISS on subsequent fusion outcomes is relatively unknown. The aim of this study was to test the hypothesis that patients who suffered failed LISS would afford inferior subsequent fusion outcomes when compared to patients who did not have prior LISS. After IRB approval, registry from a spine surgeon was queried for consecutive patients who underwent fusion for intractable low back pain. The 47 qualifying patients were enrolled and split into two groups based upon a history for prior LISS: a prior surgery group (PSG) and a non-prior surgery group (nPSG). Typical postoperative outcome questionnaires, which were available in 80.9% of the patients (38/47) at an average time point of 40.4 months (range, 13.5-66.1 months), were comparatively analysed and failed to demonstrate significant difference between the groups, e.g. PSG v. nPSG: ODI--14.6 ± 10.9 vs. 17.2 ± 19.4 (P = 0.60); SF12-PCS--10.9 ± 11.0 vs. 8.7 ± 12.4 (p = 0.59); bNRS--3.0 (range -2-7) vs. 2.0 (range -3-8) (p = 0.91). Patient satisfaction, return to work rates, peri-operative complications, success of fusion and rate of revision surgery were also not different. Although limited by size and retrospective design, the results of this rare investigation suggest that patients who experience a failed LISS prior to undergoing fusion will not suffer inferior fusion outcomes when compared to patients who did not undergo prior LISS.
Sekiguchi, Hiroyuki; Uchida, Kentaro; Matsushita, Osamu; Inoue, Gen; Nishi, Nozomu; Masuda, Ryo; Hamamoto, Nana; Koide, Takaki; Shoji, Shintaro; Takaso, Masashi
2018-01-01
Basic fibroblast growth factor 2 (bFGF) accelerates bone formation during fracture healing. Because the efficacy of bFGF decreases rapidly following its diffusion from fracture sites, however, repeated dosing is required to ensure a sustained therapeutic effect. We previously developed a fusion protein comprising bFGF, a polycystic kidney disease domain (PKD; s2b), and collagen-binding domain (CBD; s3) sourced from the Clostridium histolyticum class II collagenase, ColH, and reported that the combination of this fusion protein with a collagen-like peptide, poly(Pro-Hyp-Gly) 10 , induced mesenchymal cell proliferation and callus formation at fracture sites. In addition, C. histolyticum produces class I collagenase (ColG) with tandem CBDs (s3a and s3b) at the C-terminus. We therefore hypothesized that a bFGF fusion protein containing ColG-derived tandem CBDs (s3a and s3b) would show enhanced collagen-binding activity, leading to improved bone formation. Here, we examined the binding affinity of four collagen anchors derived from the two clostridial collagenases to H-Gly-Pro-Arg-Gly-(Pro-Hyp-Gly) 12 -NH 2 , a collagenous peptide, by surface plasmon resonance and found that tandem CBDs (s3a-s3b) have the highest affinity for the collagenous peptide. We also constructed four fusion proteins consisting of bFGF and s3 (bFGF-s3), s2b-s3b (bFGF-s2b-s3), s3b (bFGF-s3b), and s3a-s3b (bFGF-s3a-s3b) and compared their biological activities to those of a previous fusion construct (bFGF-s2b-s3) using a cell proliferation assay in vitro and a mouse femoral fracture model in vivo. Among these CB-bFGFs, bFGF-s3a-s3b showed the highest capacity to induce mesenchymal cell proliferation and callus formation in the mice fracture model. The poly(Pro-Hyp-Gly) 10 /bFGF-s3a-s3b construct may therefore have the potential to promote bone formation in clinical settings.
Kaushik, Himani; Deshmukh, Sachin; Mathur, Deepika Dayal; Tiwari, Archana; Garg, Lalit C
2013-01-01
Epsilon toxin secreted by Clostridium perfringens types B and D has been directly implicated as the causative agent of fatal enterotoxemia in domestic animals. The aim of the present study is to use in silico approach for identification of B-cell epitope(s) of epsilon toxin, and its expression in fusion with a carrier protein to analyze its potential as vaccine candidate(s). Using different computational analyses and bioinformatics tools, a number of antigenic determinant regions of epsilon toxin were identified. One of the B cell epitopes of epsilon toxin comprising the region (amino acids 40-62) was identified as a promising antigenic determinant. This Etx epitope (Etx40-62) was cloned and expressed as a translational fusion with B-subunit of heat labile enterotoxin (LTB) of E. coli in a secretory expression system. Similar to the native LTB, the recombinant fusion protein retained the ability to pentamerize and bind to GM1 ganglioside receptor of LTB. The rLTB.Etx40-62 could be detected both with anti-Etx and anti-LTB antisera. The rLTB.Etx40-62 fusion protein thus can be evaluated as a potential vaccine candidate against C. perfringens. aa - amino acid(s), Etx - epsilon toxin of Clostridium perfringens, LTB - B-subunit of heat labile enterotoxin of E. coli.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonne, François; Bonnay, Patrick; Alamir, Mazen
2014-01-29
In this paper, a multivariable model-based non-linear controller for Warm Compression Stations (WCS) is proposed. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to have precise control of every pressure in normal operation or to stabilize and control the cryoplant under high variation of thermal loads (such as a pulsedmore » heat load expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details how to set the WCS model up to synthesize the Linear Quadratic Optimal feedback gain and how to use it. After preliminary tuning at CEA-Grenoble on the 400W@1.8K helium test facility, the controller has been implemented on a Schneider PLC and fully tested first on the CERN's real-time simulator. Then, it was experimentally validated on a real CERN cryoplant. The efficiency of the solution is experimentally assessed using a reasonable operating scenario of start and stop of compressors and cryogenic turbines. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.« less
NASA Astrophysics Data System (ADS)
Bonne, François; Alamir, Mazen; Bonnay, Patrick; Bradu, Benjamin
2014-01-01
In this paper, a multivariable model-based non-linear controller for Warm Compression Stations (WCS) is proposed. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to have precise control of every pressure in normal operation or to stabilize and control the cryoplant under high variation of thermal loads (such as a pulsed heat load expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details how to set the WCS model up to synthesize the Linear Quadratic Optimal feedback gain and how to use it. After preliminary tuning at CEA-Grenoble on the 400W@1.8K helium test facility, the controller has been implemented on a Schneider PLC and fully tested first on the CERN's real-time simulator. Then, it was experimentally validated on a real CERN cryoplant. The efficiency of the solution is experimentally assessed using a reasonable operating scenario of start and stop of compressors and cryogenic turbines. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.
Yan, Xiaocai; Ma, Jun; Zheng, Jin; Lai, Baochang; Geng, Yiping; Wang, Yili; Si, Lüsheng
2002-07-01
To investigate which of the two immunoglobulin (Ig)-like domains, the immunoglobulin variable region homologous domain IgV (hB7.2 IgV) and the immunoglobulin constant region homologous domain IgC (hB7.2 IgC) on the human B7.2 molecule contains receptor binding sites, and to evaluate whether the B7.2 protein expressed in bacteria has biological activity in vitro. Three fragments of hB7.2 IgV,hB7.2 IgC and the complete extracellular region of human B7.2 containing both the IgV and IgC domains,hB7.2 Ig (V+C), were amplified by PCR and subcloned into pGEM-Teasy. Three recombinants,pGEX-4T-3-hB7.2 IgV,pGEX-4T-3-hB7.2 IgC and pGEX-4T-3-hB7.2 Ig (V+C), were generated by cloning the fragments into a prokaryote expression plasmid (pGEX-4T-3) and transformed into the host strain E. coli DH5alpha. The relevant target fusion proteins consisting of GST and hB7.2 IgV,hB7.2 IgC and hB7.2 Ig (V+C), were identified by SDS-PAGE and Western blotting. With the presence of the first signal imitated by anti-CD3 antibody, T cell activation was observed by exposing purified T lymphocytes to each soluble form of the three bacterially-produced human B7.2 fusion proteins by [(3)H]-TdR incorporation. Three recombinant fusion proteins of human B7.2, GST-hB7.2 IgV, GST-hB7.2 IgC and GST-hB7.2 Ig (V+C) were produced and detected in inclusion body form from engineered bacteria. With the first signal present,T lymphocytes proliferated when co-stimulated by bacterially-produced either GST-hB7.2 Ig (V+C) or GST-hB7.2 IgV fusion proteins, but not by GST-hB7.2 IgC. Functional human B7.2 fusion protein can be produced in bacteria. The IgV-like domain of human B7.2 is sufficient for B7.2 to interact with its counter-receptors and co-stimulate T lymphocytes.
NASA Astrophysics Data System (ADS)
Poinsot, Audrey; Yang, Fan; Brost, Vincent
2011-02-01
Including multiple sources of information in personal identity recognition and verification gives the opportunity to greatly improve performance. We propose a contactless biometric system that combines two modalities: palmprint and face. Hardware implementations are proposed on the Texas Instrument Digital Signal Processor and Xilinx Field-Programmable Gate Array (FPGA) platforms. The algorithmic chain consists of a preprocessing (which includes palm extraction from hand images), Gabor feature extraction, comparison by Hamming distance, and score fusion. Fusion possibilities are discussed and tested first using a bimodal database of 130 subjects that we designed (uB database), and then two common public biometric databases (AR for face and PolyU for palmprint). High performance has been obtained for recognition and verification purpose: a recognition rate of 97.49% with AR-PolyU database and an equal error rate of 1.10% on the uB database using only two training samples per subject have been obtained. Hardware results demonstrate that preprocessing can easily be performed during the acquisition phase, and multimodal biometric recognition can be treated almost instantly (0.4 ms on FPGA). We show the feasibility of a robust and efficient multimodal hardware biometric system that offers several advantages, such as user-friendliness and flexibility.
Takamatsu, Daisuke; Bensing, Barbara A.; Sullam, Paul M.
2004-01-01
Platelet binding by Streptococcus gordonii strain M99 is mediated predominantly by the cell surface glycoprotein GspB. This adhesin consists of a putative N-terminal signal peptide, two serine-rich regions (SRR1 and SRR2), a basic region between SRR1 and SRR2, and a C-terminal cell wall anchoring domain. The glycosylation of GspB is mediated at least in part by Gly and Nss, which are encoded in the secY2A2 locus immediately downstream of gspB. This region also encodes two proteins (Gtf and Orf4) that are required for the expression of GspB but whose functions have not been delineated. In this study, we further characterized the roles of Gly, Nss, Gtf, and Orf4 by investigating the expression and glycosylation of a series of glutathione S-transferase-GspB fusion proteins in M99 and in gly, nss, gtf, and orf4 mutants. Compared with fusion proteins expressed in the wild-type background, fusion proteins expressed in the mutant strain backgrounds showed altered electrophoretic mobility. In addition, the fusion proteins formed insoluble aggregates in protoplasts of the gtf and orf4 mutants. Glycan detection and lectin blot analysis revealed that SRR1 and SRR2 were glycosylated but that the basic region was unmodified. When the fusion protein was expressed in Escherichia coli, glycosylation of this protein was observed only in the presence of both gtf and orf4. These results demonstrate that Gly, Nss, Gtf, and Orf4 are all involved in the intracellular glycosylation of SRRs. Moreover, Gtf and Orf4 are essential for glycosylation, which in turn is important for the solubility of GspB. PMID:15489421
Thin shell, high velocity inertial confinement fusion implosions on the national ignition facility.
Ma, T; Hurricane, O A; Callahan, D A; Barrios, M A; Casey, D T; Dewald, E L; Dittrich, T R; Döppner, T; Haan, S W; Hinkel, D E; Berzak Hopkins, L F; Le Pape, S; MacPhee, A G; Pak, A; Park, H-S; Patel, P K; Remington, B A; Robey, H F; Salmonson, J D; Springer, P T; Tommasini, R; Benedetti, L R; Bionta, R; Bond, E; Bradley, D K; Caggiano, J; Celliers, P; Cerjan, C J; Church, J A; Dixit, S; Dylla-Spears, R; Edgell, D; Edwards, M J; Field, J; Fittinghoff, D N; Frenje, J A; Gatu Johnson, M; Grim, G; Guler, N; Hatarik, R; Herrmann, H W; Hsing, W W; Izumi, N; Jones, O S; Khan, S F; Kilkenny, J D; Knauer, J; Kohut, T; Kozioziemski, B; Kritcher, A; Kyrala, G; Landen, O L; MacGowan, B J; Mackinnon, A J; Meezan, N B; Merrill, F E; Moody, J D; Nagel, S R; Nikroo, A; Parham, T; Ralph, J E; Rosen, M D; Rygg, J R; Sater, J; Sayre, D; Schneider, M B; Shaughnessy, D; Spears, B K; Town, R P J; Volegov, P L; Wan, A; Widmann, K; Wilde, C H; Yeamans, C
2015-04-10
Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165 μm in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Early results have shown good repeatability, with up to 1/2 the neutron yield coming from α-particle self-heating.