Sample records for future adaptive optics

  1. Advanced adaptive optics technology development

    NASA Astrophysics Data System (ADS)

    Olivier, Scot S.

    2002-02-01

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  2. Multi-Gigabit Free-Space Optical Data Communication and Network System

    DTIC Science & Technology

    2016-04-01

    IR), Ultraviolet ( UV ), Laser Transceiver, Adaptive Beam Tracking, Electronic Attack (EA), Cyber Attack, Multipoint-to-Multipoint Network, Adaptive...FileName.pptx Free Space Optical Datalink Timeline Phase 1 Point-to-point demonstration 2012 Future Adaptive optic & Quantum Cascade Laser

  3. Adaptive optics scanning laser ophthalmoscopy in fundus imaging, a review and update.

    PubMed

    Zhang, Bing; Li, Ni; Kang, Jie; He, Yi; Chen, Xiao-Ming

    2017-01-01

    Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics (AO) and AO-SLO. Then it compares AO-SLO with conventional imaging methods (fundus fluorescein angiography, fundus autofluorescence, indocyanine green angiography and optical coherence tomography) and other AO techniques (adaptive optics flood-illumination ophthalmoscopy and adaptive optics optical coherence tomography). Furthermore, an update of current research situation in AO-SLO is made based on different fundus structures as photoreceptors (cones and rods), fundus vessels, retinal pigment epithelium layer, retinal nerve fiber layer, ganglion cell layer and lamina cribrosa. Finally, this review indicates possible research directions of AO-SLO in future.

  4. Adaptive optics scanning laser ophthalmoscopy in fundus imaging, a review and update

    PubMed Central

    Zhang, Bing; Li, Ni; Kang, Jie; He, Yi; Chen, Xiao-Ming

    2017-01-01

    Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics (AO) and AO-SLO. Then it compares AO-SLO with conventional imaging methods (fundus fluorescein angiography, fundus autofluorescence, indocyanine green angiography and optical coherence tomography) and other AO techniques (adaptive optics flood-illumination ophthalmoscopy and adaptive optics optical coherence tomography). Furthermore, an update of current research situation in AO-SLO is made based on different fundus structures as photoreceptors (cones and rods), fundus vessels, retinal pigment epithelium layer, retinal nerve fiber layer, ganglion cell layer and lamina cribrosa. Finally, this review indicates possible research directions of AO-SLO in future. PMID:29181321

  5. SPECKLE NOISE SUBTRACTION AND SUPPRESSION WITH ADAPTIVE OPTICS CORONAGRAPHIC IMAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren Deqing; Dou Jiangpei; Zhang Xi

    2012-07-10

    Future ground-based direct imaging of exoplanets depends critically on high-contrast coronagraph and wave-front manipulation. A coronagraph is designed to remove most of the unaberrated starlight. Because of the wave-front error, which is inherit from the atmospheric turbulence from ground observations, a coronagraph cannot deliver its theoretical performance, and speckle noise will limit the high-contrast imaging performance. Recently, extreme adaptive optics, which can deliver an extremely high Strehl ratio, is being developed for such a challenging mission. In this publication, we show that barely taking a long-exposure image does not provide much gain for coronagraphic imaging with adaptive optics. We furthermore » discuss a speckle subtraction and suppression technique that fully takes advantage of the high contrast provided by the coronagraph, as well as the wave front corrected by the adaptive optics. This technique works well for coronagraphic imaging with conventional adaptive optics with a moderate Strehl ratio, as well as for extreme adaptive optics with a high Strehl ratio. We show how to substrate and suppress speckle noise efficiently up to the third order, which is critical for future ground-based high-contrast imaging. Numerical simulations are conducted to fully demonstrate this technique.« less

  6. Recent results and future plans for a 45 actuator adaptive x-ray optics experiment at the advanced light source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brejnholt, Nicolai F., E-mail: brejnholt1@llnl.gov; Poyneer, Lisa A.; Hill, Randal M.

    2016-07-27

    We report on the current status of the Adaptive X-ray Optics project run by Lawrence Livermore National Laboratory (LLNL). LLNL is collaborating with the Advanced Light Source (ALS) to demonstrate a near real-time adaptive X-ray optic. To this end, a custom-built 45 cm long deformable mirror has been installed at ALS beamline 5.3.1 (end station 2) for a two-year period that started in September 2014. We will outline general aspects of the instrument, present results from a recent experimental campaign and touch on future plans for the project.

  7. The optical system of the proposed Chinese 12-m optical/infrared telescope

    NASA Astrophysics Data System (ADS)

    Su, Ding-qiang; Liang, Ming; Yuan, Xiangyan; Bai, Hua; Cui, Xiangqun

    2017-08-01

    The lack of a large-aperture optical/infrared telescope has seriously affected the development of astronomy in China. In 2016, the authors published their concept study and suggestions for a 12-m telescope optical system. This article presents the authors' further research and some new results. Considering that this telescope should be a general-purpose telescope for a wide range of scientific goals and could be used for frontier scientific research in the future, the authors studied and designed a variety of 12-m telescope optical systems for comparison and final decision-making. In general, we still adopt our previous configuration, but the Nasmyth and prime-focus corrector systems have been greatly improved. In this article, the adaptive optics is given special attention. Ground-layer adaptive optics (GLAO) is adopted. It has a 14-arcmin field of view. The secondary mirror is used as the adaptive optical deformable mirror. Obviously, not all the optical systems in this telescope configuration will be used or constructed at the same stage. Some will be for the future and some are meant for research rather than for construction.

  8. Durham extremely large telescope adaptive optics simulation platform.

    PubMed

    Basden, Alastair; Butterley, Timothy; Myers, Richard; Wilson, Richard

    2007-03-01

    Adaptive optics systems are essential on all large telescopes for which image quality is important. These are complex systems with many design parameters requiring optimization before good performance can be achieved. The simulation of adaptive optics systems is therefore necessary to categorize the expected performance. We describe an adaptive optics simulation platform, developed at Durham University, which can be used to simulate adaptive optics systems on the largest proposed future extremely large telescopes as well as on current systems. This platform is modular, object oriented, and has the benefit of hardware application acceleration that can be used to improve the simulation performance, essential for ensuring that the run time of a given simulation is acceptable. The simulation platform described here can be highly parallelized using parallelization techniques suited for adaptive optics simulation, while still offering the user complete control while the simulation is running. The results from the simulation of a ground layer adaptive optics system are provided as an example to demonstrate the flexibility of this simulation platform.

  9. Atmospheric free-space coherent optical communications with adaptive optics

    NASA Astrophysics Data System (ADS)

    Ting, Chueh; Zhang, Chengyu; Yang, Zikai

    2017-02-01

    Free-space coherent optical communications have a potential application to offer last mile bottleneck solution in future local area networks (LAN) because of their information carrier, information security and license-free status. Coherent optical communication systems using orthogonal frequency division multiplexing (OFDM) digital modulation are successfully demonstrated in a long-haul tens Giga bits via optical fiber, but they are not yet available in free space due to atmospheric turbulence-induced channel fading. Adaptive optics is recognized as a promising technology to mitigate the effects of atmospheric turbulence in free-space optics. In this paper, a free-space coherent optical communication system using an OFDM digital modulation scheme and adaptive optics (FSO OFDM AO) is proposed, a Gamma-Gamma distribution statistical channel fading model for the FSO OFDM AO system is examined, and FSO OFDM AO system performance is evaluated in terms of bit error rate (BER) versus various propagation distances.

  10. Adaptive optics and interferometry

    NASA Technical Reports Server (NTRS)

    Beichman, Charles A.; Ridgway, Stephen

    1991-01-01

    Adaptive optics and interferometry, two techniques that will improve the limiting resolution of optical and infrared observations by factors of tens or even thousands, are discussed. The real-time adjustment of optical surfaces to compensate for wavefront distortions will improve image quality and increase sensitivity. The phased operation of multiple telescopes separated by large distances will make it possible to achieve very high angular resolution and precise positional measurements. Infrared and optical interferometers that will manipulate light beams and measure interference directly are considered. Angular resolutions of single telescopes will be limited to around 10 milliarcseconds even using the adaptive optics techniques. Interferometry would surpass this limit by a factor of 100 or more. Future telescope arrays with 100-m baselines (resolution of 2.5 milliarcseconds at a 1-micron wavelength) are also discussed.

  11. Wavefront sensorless adaptive optics ophthalmoscopy in the human eye

    PubMed Central

    Hofer, Heidi; Sredar, Nripun; Queener, Hope; Li, Chaohong; Porter, Jason

    2011-01-01

    Wavefront sensor noise and fidelity place a fundamental limit on achievable image quality in current adaptive optics ophthalmoscopes. Additionally, the wavefront sensor ‘beacon’ can interfere with visual experiments. We demonstrate real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye with image quality rivaling that of wavefront sensor based control in the same system. A stochastic parallel gradient descent algorithm directly optimized the mean intensity in retinal image frames acquired with a confocal adaptive optics scanning laser ophthalmoscope (AOSLO). When imaging through natural, undilated pupils, both control methods resulted in comparable mean image intensities. However, when imaging through dilated pupils, image intensity was generally higher following wavefront sensor-based control. Despite the typically reduced intensity, image contrast was higher, on average, with sensorless control. Wavefront sensorless control is a viable option for imaging the living human eye and future refinements of this technique may result in even greater optical gains. PMID:21934779

  12. Adaptive optics ophthalmoscopy.

    PubMed

    Roorda, Austin; Duncan, Jacque L

    2015-11-01

    This review starts with a brief history and description of adaptive optics (AO) technology, followed by a showcase of the latest capabilities of AO systems for imaging the human retina and an extensive review of the literature on where AO is being used clinically. The review concludes with a discussion on future directions and guidance on usage and interpretation of images from AO systems for the eye.

  13. Adaptive optics ophthalmoscopy

    PubMed Central

    Roorda, Austin; Duncan, Jacque L.

    2016-01-01

    This review starts with a brief history and description of adaptive optics (AO) technology, followed by a showcase of the latest capabilities of AO systems for imaging the human retina and an extensive review of the literature on where AO is being used clinically. The review concludes with a discussion on future directions and guidance on usage and interpretation of images from AO systems for the eye. PMID:26973867

  14. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift.

    PubMed

    She, Alan; Zhang, Shuyan; Shian, Samuel; Clarke, David R; Capasso, Federico

    2018-02-01

    Focal adjustment and zooming are universal features of cameras and advanced optical systems. Such tuning is usually performed longitudinally along the optical axis by mechanical or electrical control of focal length. However, the recent advent of ultrathin planar lenses based on metasurfaces (metalenses), which opens the door to future drastic miniaturization of mobile devices such as cell phones and wearable displays, mandates fundamentally different forms of tuning based on lateral motion rather than longitudinal motion. Theory shows that the strain field of a metalens substrate can be directly mapped into the outgoing optical wavefront to achieve large diffraction-limited focal length tuning and control of aberrations. We demonstrate electrically tunable large-area metalenses controlled by artificial muscles capable of simultaneously performing focal length tuning (>100%) as well as on-the-fly astigmatism and image shift corrections, which until now were only possible in electron optics. The device thickness is only 30 μm. Our results demonstrate the possibility of future optical microscopes that fully operate electronically, as well as compact optical systems that use the principles of adaptive optics to correct many orders of aberrations simultaneously.

  15. Adaptation technology between IP layer and optical layer in optical Internet

    NASA Astrophysics Data System (ADS)

    Ji, Yuefeng; Li, Hua; Sun, Yongmei

    2001-10-01

    Wavelength division multiplexing (WDM) optical network provides a platform with high bandwidth capacity and is supposed to be the backbone infrastructure supporting the next-generation high-speed multi-service networks (ATM, IP, etc.). In the foreseeable future, IP will be the predominant data traffic, to make fully use of the bandwidth of the WDM optical network, many attentions have been focused on IP over WDM, which has been proposed as the most promising technology for new kind of network, so-called Optical Internet. According to OSI model, IP is in the 3rd layer (network layer) and optical network is in the 1st layer (physical layer), so the key issue is what adaptation technology should be used in the 2nd layer (data link layer). In this paper, firstly, we analyze and compare the current adaptation technologies used in backbone network nowadays. Secondly, aiming at the drawbacks of above technologies, we present a novel adaptation protocol (DONA) between IP layer and optical layer in Optical Internet and describe it in details. Thirdly, the gigabit transmission adapter (GTA) we accomplished based on the novel protocol is described. Finally, we set up an experiment platform to apply and verify the DONA and GTA, the results and conclusions of the experiment are given.

  16. Wavelet methods in multi-conjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Helin, T.; Yudytskiy, M.

    2013-08-01

    The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem, a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domains. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate-gradient-based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simulation tool OCTOPUS of European Southern Observatory.

  17. Toward Adaptive X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Tim W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peer; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffrey J.; hide

    2011-01-01

    Future x-ray observatories will require high-resolution (less than 1 inch) optics with very-large-aperture (greater than 25 square meter) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the surface areal density of the grazing-incidence mirrors to about 1 kilogram per square meter or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve adaptive (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, adaptive optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Generation-X (Gen-X) concept studies in the United States, and the Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom. This paper discusses relevant technological issues and summarizes progress toward adaptive x-ray telescopes.

  18. Overview of deformable mirror technologies for adaptive optics and astronomy

    NASA Astrophysics Data System (ADS)

    Madec, P.-Y.

    2012-07-01

    From the ardent bucklers used during the Syracuse battle to set fire to Romans’ ships to more contemporary piezoelectric deformable mirrors widely used in astronomy, from very large voice coil deformable mirrors considered in future Extremely Large Telescopes to very small and compact ones embedded in Multi Object Adaptive Optics systems, this paper aims at giving an overview of Deformable Mirror technology for Adaptive Optics and Astronomy. First the main drivers for the design of Deformable Mirrors are recalled, not only related to atmospheric aberration compensation but also to environmental conditions or mechanical constraints. Then the different technologies available today for the manufacturing of Deformable Mirrors will be described, pros and cons analyzed. A review of the Companies and Institutes with capabilities in delivering Deformable Mirrors to astronomers will be presented, as well as lessons learned from the past 25 years of technological development and operation on sky. In conclusion, perspective will be tentatively drawn for what regards the future of Deformable Mirror technology for Astronomy.

  19. Fixation light hue bias revisited: implications for using adaptive optics to study color vision.

    PubMed

    Hofer, H J; Blaschke, J; Patolia, J; Koenig, D E

    2012-03-01

    Current vision science adaptive optics systems use near infrared wavefront sensor 'beacons' that appear as red spots in the visual field. Colored fixation targets are known to influence the perceived color of macroscopic visual stimuli (Jameson, D., & Hurvich, L. M. (1967). Fixation-light bias: An unwanted by-product of fixation control. Vision Research, 7, 805-809.), suggesting that the wavefront sensor beacon may also influence perceived color for stimuli displayed with adaptive optics. Despite its importance for proper interpretation of adaptive optics experiments on the fine scale interaction of the retinal mosaic and spatial and color vision, this potential bias has not yet been quantified or addressed. Here we measure the impact of the wavefront sensor beacon on color appearance for dim, monochromatic point sources in five subjects. The presence of the beacon altered color reports both when used as a fixation target as well as when displaced in the visual field with a chromatically neutral fixation target. This influence must be taken into account when interpreting previous experiments and new methods of adaptive correction should be used in future experiments using adaptive optics to study color. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Solar Adaptive Optics.

    PubMed

    Rimmele, Thomas R; Marino, Jose

    Adaptive optics (AO) has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO) and Ground-Layer AO (GLAO) will be given. Supplementary material is available for this article at 10.12942/lrsp-2011-2.

  1. Adaptive optics correction into single mode fiber for a low Earth orbiting space to ground optical communication link using the OPALS downlink.

    PubMed

    Wright, Malcolm W; Morris, Jeffery F; Kovalik, Joseph M; Andrews, Kenneth S; Abrahamson, Matthew J; Biswas, Abhijit

    2015-12-28

    An adaptive optics (AO) testbed was integrated to the Optical PAyload for Lasercomm Science (OPALS) ground station telescope at the Optical Communications Telescope Laboratory (OCTL) as part of the free space laser communications experiment with the flight system on board the International Space Station (ISS). Atmospheric turbulence induced aberrations on the optical downlink were adaptively corrected during an overflight of the ISS so that the transmitted laser signal could be efficiently coupled into a single mode fiber continuously. A stable output Strehl ratio of around 0.6 was demonstrated along with the recovery of a 50 Mbps encoded high definition (HD) video transmission from the ISS at the output of the single mode fiber. This proof of concept demonstration validates multi-Gbps optical downlinks from fast slewing low-Earth orbiting (LEO) spacecraft to ground assets in a manner that potentially allows seamless space to ground connectivity for future high data-rates network.

  2. Adaptive Optics Technology for High-Resolution Retinal Imaging

    PubMed Central

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2013-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging. PMID:23271600

  3. Testing the pyramid truth wavefront sensor for NFIRAOS in the lab

    NASA Astrophysics Data System (ADS)

    Mieda, Etsuko; Rosensteiner, Matthias; van Kooten, Maaike; Veran, Jean-Pierre; Lardiere, Olivier; Herriot, Glen

    2016-07-01

    For today and future adaptive optics observations, sodium laser guide stars (LGSs) are crucial; however, the LGS elongation problem due to the sodium layer has to be compensated, in particular for extremely large telescopes. In this paper, we describe the concept of truth wavefront sensing as a solution and present its design using a pyramid wavefront sensor (PWFS) to improve NFIRAOS (Narrow Field InfraRed Adaptive Optics System), the first light adaptive optics system for Thirty Meter Telescope. We simulate and test the truth wavefront sensor function under a controlled environment using the HeNOS (Herzberg NFIRAOS Optical Simulator) bench, a scaled-down NFIRAOS bench at NRC-Herzberg. We also touch on alternative pyramid component options because despite recent high demands for PWFSs, we suffer from the lack of pyramid supplies due to engineering difficulties.

  4. Freeform Optics: current challenges for future serial production

    NASA Astrophysics Data System (ADS)

    Schindler, C.; Köhler, T.; Roth, E.

    2017-10-01

    One of the major developments in optics industry recently is the commercial manufacturing of freeform surfaces for optical mid- and high performance systems. The loss of limitation on rotational symmetry enables completely new optical design solutions - but causes completely new challenges for the manufacturer too. Adapting the serial production from radial-symmetric to freeform optics cannot be done just by the extension of machine capabilities and software for every process step. New solutions for conventional optics productions or completely new process chains are necessary.

  5. Adaptive Optics of Small Choroidal Melanoma.

    PubMed

    Rodrigues, Murilo W; Say, Emil A; Shields, Carol L; Jorge, Rodrigo

    2017-04-01

    The authors report the use of an adaptive optics (AO) system in an asymptomatic patient with small choroidal melanoma. A noninvasive, novel assessment that detected potential photoreceptor abnormalities in the retina overlying the choroidal lesion and adjacent retina is presented. These findings may help current clinical evaluation to monitor structural damage to the outer retina and possibly justify earlier intervention in borderline cases. Future research is warranted to recognize full potential of this imaging modality. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:354-357.]. Copyright 2017, SLACK Incorporated.

  6. The fundus photo has met its match: optical coherence tomography and adaptive optics ophthalmoscopy are here to stay.

    PubMed

    Morgan, Jessica I W

    2016-05-01

    Over the past 25 years, optical coherence tomography (OCT) and adaptive optics (AO) ophthalmoscopy have revolutionised our ability to non-invasively observe the living retina. The purpose of this review is to highlight the techniques and human clinical applications of recent advances in OCT and adaptive optics scanning laser/light ophthalmoscopy (AOSLO) ophthalmic imaging. Optical coherence tomography retinal and optic nerve head (ONH) imaging technology allows high resolution in the axial direction resulting in cross-sectional visualisation of retinal and ONH lamination. Complementary AO ophthalmoscopy gives high resolution in the transverse direction resulting in en face visualisation of retinal cell mosaics. Innovative detection schemes applied to OCT and AOSLO technologies (such as spectral domain OCT, OCT angiography, confocal and non-confocal AOSLO, fluorescence, and AO-OCT) have enabled high contrast between retinal and ONH structures in three dimensions and have allowed in vivo retinal imaging to approach that of histological quality. In addition, both OCT and AOSLO have shown the capability to detect retinal reflectance changes in response to visual stimuli, paving the way for future studies to investigate objective biomarkers of visual function at the cellular level. Increasingly, these imaging techniques are being applied to clinical studies of the normal and diseased visual system. Optical coherence tomography and AOSLO technologies are capable of elucidating the structure and function of the retina and ONH noninvasively with unprecedented resolution and contrast. The techniques have proven their worth in both basic science and clinical applications and each will continue to be utilised in future studies for many years to come. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.

  7. Laser based bi-directional Gbit ground links with the Tesat transportable adaptive optical ground station

    NASA Astrophysics Data System (ADS)

    Heine, Frank; Saucke, Karen; Troendle, Daniel; Motzigemba, Matthias; Bischl, Hermann; Elser, Dominique; Marquardt, Christoph; Henninger, Hennes; Meyer, Rolf; Richter, Ines; Sodnik, Zoran

    2017-02-01

    Optical ground stations can be an alternative to radio frequency based transmit (forward) and receive (return) systems for data relay services and other applications including direct to earth optical communications from low earth orbit spacecrafts, deep space receivers, space based quantum key distribution systems and Tbps capacity feeder links to geostationary spacecrafts. The Tesat Transportable Adaptive Optical Ground Station is operational since September 2015 at the European Space Agency site in Tenerife, Spain.. This paper reports about the results of the 2016 experimental campaigns including the characterization of the optical channel from Tenerife for an optimized coding scheme, the performance of the T-AOGS under different atmospheric conditions and the first successful measurements of the suitability of the Alphasat LCT optical downlink performance for future continuous variable quantum key distribution systems.

  8. Towards femtosecond laser surgery guidance in the posterior eye: utilization of optical coherence tomography and adaptive optics for focus positioning and shaping

    NASA Astrophysics Data System (ADS)

    Krüger, Alexander; Hansen, Anja; Matthias, Ben; Ripken, Tammo

    2014-02-01

    Although fs-laser surgery is clinically established in the field of corneal flap cutting for laser in situ keratomileusis, surgery with fs-laser in the posterior part of the eye is impaired by focus degradation due to aberrations. Precise targeting and keeping of safety distance to the retina also relies on an intraoperative depth resolved imaging. We demonstrate a concept for image guided fs-laser surgery in the vitreous body combining adaptive optics (AO) for focus reshaping and optical coherence tomography (OCT) for focus position guidance. The setup of the laboratory system consist of an 800 nm fs-laser which is focused into a simple eye model via a closed loop adaptive optics system with Hartmann-Shack sensor and a deformable mirror to correct for wavefront aberrations. A spectral domain optical coherence tomography system is used to target phantom structures in the eye model. Both systems are set up to share the same scanner and focusing optics. The use of adaptive optics results in a lowered threshold energy for laser induced breakdown and an increased cutting precision. 3D OCT imaging of porcine retinal tissue prior and immediately after fs-laser cutting is also demonstrated. In the near future OCT and AO will be two essential assistive components in possible clinical systems for fs-laser based eye surgery beyond the cornea.

  9. The fundus photo has met its match: optical coherence tomography and adaptive optics ophthalmoscopy are here to stay

    PubMed Central

    Morgan, Jessica I. W.

    2016-01-01

    Purpose Over the past 25 years, optical coherence tomography (OCT) and adaptive optics (AO) ophthalmoscopy have revolutionised our ability to non-invasively observe the living retina. The purpose of this review is to highlight the techniques and human clinical applications of recent advances in OCT and adaptive optics scanning laser/light ophthalmoscopy (AOSLO) ophthalmic imaging. Recent findings Optical coherence tomography retinal and optic nerve head (ONH) imaging technology allows high resolution in the axial direction resulting in cross-sectional visualisation of retinal and ONH lamination. Complementary AO ophthalmoscopy gives high resolution in the transverse direction resulting in en face visualisation of retinal cell mosaics. Innovative detection schemes applied to OCT and AOSLO technologies (such as spectral domain OCT, OCT angiography, confocal and non-confocal AOSLO, fluorescence, and AO-OCT) have enabled high contrast between retinal and ONH structures in three dimensions and have allowed in vivo retinal imaging to approach that of histological quality. In addition, both OCT and AOSLO have shown the capability to detect retinal reflectance changes in response to visual stimuli, paving the way for future studies to investigate objective biomarkers of visual function at the cellular level. Increasingly, these imaging techniques are being applied to clinical studies of the normal and diseased visual system. Summary Optical coherence tomography and AOSLO technologies are capable of elucidating the structure and function of the retina and ONH noninvasively with unprecedented resolution and contrast. The techniques have proven their worth in both basic science and clinical applications and each will continue to be utilised in future studies for many years to come. PMID:27112222

  10. Modeling a space-based quantum link that includes an adaptive optics system

    NASA Astrophysics Data System (ADS)

    Duchane, Alexander W.; Hodson, Douglas D.; Mailloux, Logan O.

    2017-10-01

    Quantum Key Distribution uses optical pulses to generate shared random bit strings between two locations. If a high percentage of the optical pulses are comprised of single photons, then the statistical nature of light and information theory can be used to generate secure shared random bit strings which can then be converted to keys for encryption systems. When these keys are incorporated along with symmetric encryption techniques such as a one-time pad, then this method of key generation and encryption is resistant to future advances in quantum computing which will significantly degrade the effectiveness of current asymmetric key sharing techniques. This research first reviews the transition of Quantum Key Distribution free-space experiments from the laboratory environment to field experiments, and finally, ongoing space experiments. Next, a propagation model for an optical pulse from low-earth orbit to ground and the effects of turbulence on the transmitted optical pulse is described. An Adaptive Optics system is modeled to correct for the aberrations caused by the atmosphere. The long-term point spread function of the completed low-earth orbit to ground optical system is explored in the results section. Finally, the impact of this optical system and its point spread function on an overall quantum key distribution system as well as the future work necessary to show this impact is described.

  11. High resolution observations using adaptive optics: Achievements and future needs

    NASA Astrophysics Data System (ADS)

    Sankarasubramanian, K.; Rimmele, T.

    2008-06-01

    Over the last few years, several interesting observations were obtained with the help of solar Adaptive Optics (AO). In this paper, few observations made using the solar AO are enlightened and briefly discussed. A list of disadvantages with the current AO system are presented. With telescopes larger than 1.5 m expected during the next decade, there is a need to develop the existing AO technologies for large aperture telescopes. Some aspects of this development are highlighted. Finally, the recent AO developments in India are also presented.

  12. Synchronization of Clocks Through 12 km of Strongly Turbulent Air Over a City.

    PubMed

    Sinclair, Laura C; Swann, William C; Bergeron, Hugo; Baumann, Esther; Cermak, Michael; Coddington, Ian; Deschênes, Jean-Daniel; Giorgetta, Fabrizio R; Juarez, Juan C; Khader, Isaac; Petrillo, Keith G; Souza, Katherine T; Dennis, Michael L; Newbury, Nathan R

    2016-10-15

    We demonstrate real-time, femtosecond-level clock synchronization across a low-lying, strongly turbulent, 12-km horizontal air path by optical two-way time transfer. For this long horizontal free-space path, the integrated turbulence extends well into the strong turbulence regime corresponding to multiple scattering with a Rytov variance up to 7 and with the number of signal interruptions exceeding 100 per second. Nevertheless, optical two-way time transfer is used to synchronize a remote clock to a master clock with femtosecond-level agreement and with a relative time deviation dropping as low as a few hundred attoseconds. Synchronization is shown for a remote clock based on either an optical or microwave oscillator and using either tip-tilt or adaptive-optics free-space optical terminals. The performance is unaltered from optical two-way time transfer in weak turbulence across short links. These results confirm that the two-way reciprocity of the free-space time-of-flight is maintained both under strong turbulence and with the use of adaptive optics. The demonstrated robustness of optical two-way time transfer against strong turbulence and its compatibility with adaptive optics is encouraging for future femtosecond clock synchronization over very long distance ground-to-air free-space paths.

  13. Synchronization of Clocks Through 12 km of Strongly Turbulent Air Over a City

    PubMed Central

    Sinclair, Laura C.; Swann, William C.; Bergeron, Hugo; Baumann, Esther; Cermak, Michael; Coddington, Ian; Deschênes, Jean-Daniel; Giorgetta, Fabrizio R.; Juarez, Juan C.; Khader, Isaac; Petrillo, Keith G.; Souza, Katherine T.; Dennis, Michael L.; Newbury, Nathan R.

    2018-01-01

    We demonstrate real-time, femtosecond-level clock synchronization across a low-lying, strongly turbulent, 12-km horizontal air path by optical two-way time transfer. For this long horizontal free-space path, the integrated turbulence extends well into the strong turbulence regime corresponding to multiple scattering with a Rytov variance up to 7 and with the number of signal interruptions exceeding 100 per second. Nevertheless, optical two-way time transfer is used to synchronize a remote clock to a master clock with femtosecond-level agreement and with a relative time deviation dropping as low as a few hundred attoseconds. Synchronization is shown for a remote clock based on either an optical or microwave oscillator and using either tip-tilt or adaptive-optics free-space optical terminals. The performance is unaltered from optical two-way time transfer in weak turbulence across short links. These results confirm that the two-way reciprocity of the free-space time-of-flight is maintained both under strong turbulence and with the use of adaptive optics. The demonstrated robustness of optical two-way time transfer against strong turbulence and its compatibility with adaptive optics is encouraging for future femtosecond clock synchronization over very long distance ground-to-air free-space paths. PMID:29348695

  14. Fellow Eye Changes in Patients with Nonischemic Central Retinal Vein Occlusion: Assessment of Perfused Foveal Microvascular Density and Identification of Nonperfused Capillaries

    PubMed Central

    Pinhas, Alexander; Dubow, Michael; Shah, Nishit; Cheang, Eric; Liu, Chun L.; Razeen, Moataz; Gan, Alexander; Weitz, Rishard; Sulai, Yusufu N.; Chui, Toco Y.; Dubra, Alfredo; Rosen, Richard B.

    2016-01-01

    Purpose Eyes fellow to nonischemic central retinal vein occlusion (CRVO) were examined for abnormalities, which might explain their increased risk for future occlusion, using adaptive optics scanning light ophthalmoscope fluorescein angiography. Methods Adaptive optics scanning light ophthalmoscope fluorescein angiography foveal microvascular densities were calculated. Nonperfused capillaries adjacent to the foveal avascular zone were identified. Spectral domain optical coherence tomography, ultrawide field fluorescein angiographies, and microperimetry were also performed. Results Ten fellow eyes of nine nonischemic CRVO and 1 nonischemic hemi-CRVO subjects and four affected eyes of three nonischemic CRVO and one nonischemic hemi-CRVO subjects were imaged. Ninety percent of fellow eyes and 100% of affected eyes demonstrated at least 1 nonperfused capillary compared with 31% of healthy eyes. Fellow eye microvascular density (35 ± 3.6 mm−1) was significantly higher than that of affected eyes (25 ± 5.2 mm−1) and significantly lower than that of healthy eyes (42 ± 4.2 mm−1). Compared with healthy controls, spectral domain optical coherence tomography thicknesses showed no significant difference, whereas microperimetry and 2/9 ultrawide field fluorescein angiography revealed abnormalities in fellow eyes. Conclusion Fellow eye changes detectable on adaptive optics scanning light ophthalmoscope fluorescein angiography reflect subclinical pathology difficult to detect using conventional imaging technologies. These changes may help elucidate the pathogenesis of nonischemic CRVO and help identify eyes at increased risk of future occlusion. PMID:25932560

  15. Manufacturing of glassy thin shell for adaptive optics: results achieved

    NASA Astrophysics Data System (ADS)

    Poutriquet, F.; Rinchet, A.; Carel, J.-L.; Leplan, H.; Ruch, E.; Geyl, R.; Marque, G.

    2012-07-01

    Glassy thin shells are key components for the development of adaptive optics and are part of future & innovative projects such as ELT. However, manufacturing thin shells is a real challenge. Even though optical requirements for the front face - or optical face - are relaxed compared to conventional passive mirrors, requirements concerning thickness uniformity are difficult to achieve. In addition, process has to be completely re-defined as thin mirror generates new manufacturing issues. In particular, scratches and digs requirement is more difficult as this could weaken the shell, handling is also an important issue due to the fragility of the mirror. Sagem, through REOSC program, has recently manufactured different types of thin shells in the frame of European projects: E-ELT M4 prototypes and VLT Deformable Secondary Mirror (VLT DSM).

  16. Adaptive optics retinal imaging: emerging clinical applications.

    PubMed

    Godara, Pooja; Dubis, Adam M; Roorda, Austin; Duncan, Jacque L; Carroll, Joseph

    2010-12-01

    The human retina is a uniquely accessible tissue. Tools like scanning laser ophthalmoscopy and spectral domain-optical coherence tomography provide clinicians with remarkably clear pictures of the living retina. Although the anterior optics of the eye permit such non-invasive visualization of the retina and associated pathology, the same optics induce significant aberrations that obviate cellular-resolution imaging in most cases. Adaptive optics (AO) imaging systems use active optical elements to compensate for aberrations in the optical path between the object and the camera. When applied to the human eye, AO allows direct visualization of individual rod and cone photoreceptor cells, retinal pigment epithelium cells, and white blood cells. AO imaging has changed the way vision scientists and ophthalmologists see the retina, helping to clarify our understanding of retinal structure, function, and the etiology of various retinal pathologies. Here, we review some of the advances that were made possible with AO imaging of the human retina and discuss applications and future prospects for clinical imaging.

  17. HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baranec, Christoph; Riddle, Reed; Tendulkar, Shriharsh

    2014-07-20

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible frommore » the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.« less

  18. Deformable mirrors development program at ESO

    NASA Astrophysics Data System (ADS)

    Stroebele, Stefan; Vernet, Elise; Brinkmann, Martin; Jakob, Gerd; Lilley, Paul; Casali, Mark; Madec, Pierre-Yves; Kasper, Markus

    2016-07-01

    Over the last decade, adaptive optics has become essential in different fields of research including medicine and industrial applications. With this new need, the market of deformable mirrors has expanded a lot allowing new technologies and actuation principles to be developed. Several E-ELT instruments have identified the need for post focal deformable mirrors but with the increasing size of the telescopes the requirements on the deformable mirrors become more demanding. A simple scaling up of existing technologies from few hundred actuators to thousands of actuators will not be sufficient to satisfy the future needs of ESO. To bridge the gap between available deformable mirrors and the future needs for the E-ELT, ESO started a development program for deformable mirror technologies. The requirements and the path to get the deformable mirrors for post focal adaptive optics systems for the E-ELT is presented.

  19. Diffractive-optical correlators: chances to make optical image preprocessing as intelligent as human vision

    NASA Astrophysics Data System (ADS)

    Lauinger, Norbert

    2004-10-01

    The human eye is a good model for the engineering of optical correlators. Three prominent intelligent functionalities in human vision could in the near future become realized by a new diffractive-optical hardware design of optical imaging sensors: (1) Illuminant-adaptive RGB-based color Vision, (2) Monocular 3D Vision based on RGB data processing, (3) Patchwise fourier-optical Object-Classification and Identification. The hardware design of the human eye has specific diffractive-optical elements (DOE's) in aperture and in image space and seems to execute the three jobs at -- or not far behind -- the loci of the images of objects.

  20. Performance Predictions for the Adaptive Optics System at LCRD's Ground Station 1

    NASA Technical Reports Server (NTRS)

    Roberts, Lewis C., Jr.; Burruss, Rick; Roberts, Jennifer E.; Piazzolla, Sabino; Dew, Sharon; Truong, Tuan; Fregoso, Santos; Page, Norm

    2015-01-01

    NASA's LCRD mission will lay the foundation for future laser communication systems. We show the design of the Table Mountain ground station's AO system and time series of predicted coupling efficiency.

  1. Fourier-domain optical coherence tomography and adaptive optics reveal nerve fiber layer loss and photoreceptor changes in a patient with optic nerve drusen.

    PubMed

    Choi, Stacey S; Zawadzki, Robert J; Greiner, Mark A; Werner, John S; Keltner, John L

    2008-06-01

    New technology allows more precise definition of structural alterations of all retinal layers although it has not been used previously in cases of optic disc drusen. Using Stratus and Fourier domain (FD) optical coherence tomography (OCT) and adaptive optics (AO) through a flood-illuminated fundus camera, we studied the retinas of a patient with long-standing optic disc drusen and acute visual loss at high altitude attributed to ischemic optic neuropathy. Stratus OCT and FD-OCT confirmed severe thinning of the retinal nerve fiber layer (RNFL). FD-OCT revealed disturbances in the photoreceptor layer heretofore not described in optic disc drusen patients. AO confirmed the FD-OCT findings in the photoreceptor layer and also showed reduced cone density at retinal locations associated with reduced visual sensitivity. Based on this study, changes occur not only in the RNFL but also in the photoreceptor layer in optic nerve drusen complicated by ischemic optic neuropathy. This is the first reported application of FD-OCT and the AO to this condition. Such new imaging technology may in the future allow monitoring of disease progression more precisely and accurately.

  2. Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry.

    PubMed

    Schwertner, M; Booth, M J; Neil, M A A; Wilson, T

    2004-01-01

    Confocal or multiphoton microscopes, which deliver optical sections and three-dimensional (3D) images of thick specimens, are widely used in biology. These techniques, however, are sensitive to aberrations that may originate from the refractive index structure of the specimen itself. The aberrations cause reduced signal intensity and the 3D resolution of the instrument is compromised. It has been suggested to correct for aberrations in confocal microscopes using adaptive optics. In order to define the design specifications for such adaptive optics systems, one has to know the amount of aberrations present for typical applications such as with biological samples. We have built a phase stepping interferometer microscope that directly measures the aberration of the wavefront. The modal content of the wavefront is extracted by employing Zernike mode decomposition. Results for typical biological specimens are presented. It was found for all samples investigated that higher order Zernike modes give only a small contribution to the overall aberration. Therefore, these higher order modes can be neglected in future adaptive optics sensing and correction schemes implemented into confocal or multiphoton microscopes, leading to more efficient designs.

  3. Progress with the lick adaptive optics system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavel, D T; Olivier, S S; Bauman, B

    2000-03-01

    Progress and results of observations with the Lick Observatory Laser Guide Star Adaptive Optics System are presented. This system is optimized for diffraction-limited imaging in the near infrared, 1-2 micron wavelength bands. We describe our development efforts in a number of component areas including, a redesign of the optical bench layout, the commissioning of a new infrared science camera, and improvements to the software and user interface. There is also an ongoing effort to characterize the system performance with both natural and laser guide stars and to fold this data into a refined system model. Such a model can bemore » used to help plan future observations, for example, predicting the point-spread function as a function of seeing and guide star magnitude.« less

  4. Recent Science and Engineering Results with the Laser Guidestar Adaptive Optics System at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavel, D T; Gates, E; Max, C

    2002-10-17

    The Lick Observatory laser guide star adaptive optics system has undergone continual improvement and testing as it is being integrated as a facility science instrument on the Shane 3 meter telescope. Both Natural Guide Star (NGS) and Laser Guide Star (LGS) modes are now used in science observing programs. We report on system performance results as derived from data taken on both science and engineering nights and also describe the newly developed on-line techniques for seeing and system performance characterization. We also describe the future enhancements to the Lick system that will enable additional science goals such as long-exposure spectroscopy.

  5. Space Optics for the 21st Century

    NASA Technical Reports Server (NTRS)

    Bilbro, James W.

    2006-01-01

    Technological advances over the last decade in metrology, fabrication techniques and materials have made a significant impact on spacebased astronomy and together with advances in adaptive optics offer the opportunity for even more radical changes in the future. The Hubble Space Telescope primary mirror is 2.4 meters in diameter and weighs on the order of 150 kilograms per square meter. The technology demonstration mirrors developed for the James Webb Telescope had an order of magnitude less in area density and developments in membrane optics offer the opportunity to achieve another order of magnitude decrease. Similar advances in mirrors for x-ray astronomy means that across the spectrum future space based telescopes will have greater and greater collecting areas with ever increasing resolution.

  6. Open-source framework for documentation of scientific software written on MATLAB-compatible programming languages

    NASA Astrophysics Data System (ADS)

    Konnik, Mikhail V.; Welsh, James

    2012-09-01

    Numerical simulators for adaptive optics systems have become an essential tool for the research and development of the future advanced astronomical instruments. However, growing software code of the numerical simulator makes it difficult to continue to support the code itself. The problem of adequate documentation of the astronomical software for adaptive optics simulators may complicate the development since the documentation must contain up-to-date schemes and mathematical descriptions implemented in the software code. Although most modern programming environments like MATLAB or Octave have in-built documentation abilities, they are often insufficient for the description of a typical adaptive optics simulator code. This paper describes a general cross-platform framework for the documentation of scientific software using open-source tools such as LATEX, mercurial, Doxygen, and Perl. Using the Perl script that translates M-files MATLAB comments into C-like, one can use Doxygen to generate and update the documentation for the scientific source code. The documentation generated by this framework contains the current code description with mathematical formulas, images, and bibliographical references. A detailed description of the framework components is presented as well as the guidelines for the framework deployment. Examples of the code documentation for the scripts and functions of a MATLAB-based adaptive optics simulator are provided.

  7. Statement Testimony of The Honorable Zachary J. Lemnios Director, Defense Research and Engineering Before the United States House of Representatives Committee on Armed Services Subcommittee on Terrorism, Unconventional Threats and Capabilities

    DTIC Science & Technology

    2010-03-23

    nationwide virtual science libary adapted for Afghanistan’s needs. Prepare for an Uncertain Future In preparing for an uncertain future, a...to assess the military implications of the ubiquitous availability of high performance analog, digital , electro-optical, radio frequency and signal

  8. Reducing the Surface Performance Requirements of a Primary Mirror by Adding a Deformable Mirror in its Optical Path

    DTIC Science & Technology

    2015-12-01

    carbon fiber reinforced polymer (CFRP) mirrors been proposed for use in future imaging satellites. Compared to traditional glass -based mirrors, CFRP...SUBJECT TERMS carbon fiber reinforced polymer mirror, adaptive optics, deformable mirror, surface figure error 15. NUMBER OF PAGES 79 16. PRICE CODE...Department of Mechanical and Aerospace Engineering iv THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT In recent years, carbon fiber reinforced

  9. Supernovae and cosmology with future European facilities.

    PubMed

    Hook, I M

    2013-06-13

    Prospects for future supernova surveys are discussed, focusing on the European Space Agency's Euclid mission and the European Extremely Large Telescope (E-ELT), both expected to be in operation around the turn of the decade. Euclid is a 1.2 m space survey telescope that will operate at visible and near-infrared wavelengths, and has the potential to find and obtain multi-band lightcurves for thousands of distant supernovae. The E-ELT is a planned, general-purpose ground-based, 40-m-class optical-infrared telescope with adaptive optics built in, which will be capable of obtaining spectra of type Ia supernovae to redshifts of at least four. The contribution to supernova cosmology with these facilities will be discussed in the context of other future supernova programmes such as those proposed for DES, JWST, LSST and WFIRST.

  10. Center for Adaptive Optics | Home

    Science.gov Websites

    Center for Adaptive Optics A University of California Science and Technology Center Adaptive distortions in optical systems ... Announcements: The CfAO Summer School on Adaptive Optics 2018 will be held mission of the UC Center for Adaptive Optics is to develop, apply, and disseminate adaptive optics science

  11. Center for Adaptive Optics | Publications

    Science.gov Websites

    Text-Only Version Adaptive Optics, Center for Home Page CfAO Logo Search The Center Adaptive Optics for Adaptive Optics | Search | Sitemap | The Center | Adaptive Optics | Research | Education/HR

  12. Adaptive Optics for Industry and Medicine

    NASA Astrophysics Data System (ADS)

    Dainty, Christopher

    2008-01-01

    pt. 1. Wavefront correctors and control. Liquid crystal lenses for correction of presbyopia (Invited Paper) / Guoqiang Li and Nasser Peyghambarian. Converging and diverging liquid crystal lenses (oral paper) / Andrew X. Kirby, Philip J. W. Hands, and Gordon D. Love. Liquid lens technology for miniature imaging systems: status of the technology, performance of existing products and future trends (invited paper) / Bruno Berge. Carbon fiber reinforced polymer deformable mirrors for high energy laser applications (oral paper) / S. R. Restaino ... [et al.]. Tiny multilayer deformable mirrors (oral paper) / Tatiana Cherezova ... [et al.]. Performance analysis of piezoelectric deformable mirrors (oral paper) / Oleg Soloviev, Mikhail Loktev and Gleb Vdovin. Deformable membrane mirror with high actuator density and distributed control (oral paper) / Roger Hamelinck ... [et al.]. Characterization and closed-loop demonstration of a novel electrostatic membrane mirror using COTS membranes (oral paper) / David Dayton ... [et al.]. Electrostatic micro-deformable mirror based on polymer materials (oral paper) / Frederic Zamkotsian ... [et al.]. Recent progress in CMOS integrated MEMS A0 mirror development (oral paper) / A. Gehner ... [et al.]. Compact large-stroke piston-tip-tilt actuator and mirror (oral paper) / W. Noell ... [et al.]. MEMS deformable mirrors for high performance AO applications (oral paper) / Paul Bierden, Thomas Bifano and Steven Cornelissen. A versatile interferometric test-rig for the investigation and evaluation of ophthalmic AO systems (poster paper) / Steve Gruppetta, Jiang Jian Zhong and Luis Diaz-Santana. Woofer-tweeter adaptive optics (poster paper) / Thomas Farrell and Chris Dainty. Deformable mirrors based on transversal piezoeffect (poster paper) / Gleb Vdovin, Mikhail Loktev and Oleg Soloviev. Low-cost spatial light modulators for ophthalmic applications (poster paper) / Vincente Durán ... [et al.]. Latest MEMS DM developments and the path ahead at Iris AO (poster paper) / Michael A. Helmbrecht ... [et al.]. Electrostatic push pull mirror improvernents in visual optics (poster paper) / S. Bonora and L. Poletto. 25cm bimorph mirror for petawatt laser / S. Bonora ... [et al.]. Hysteresis compensation for piezo deformable mirror (poster paper) / H. Song ... [et al.]. Static and dynamic responses of an adaptive optics ferrofluidic mirror (poster paper) / A. Seaman ... [et al.]. New HDTV (1920 x 1080) phase-only SLM (poster paper) / Stefan Osten and Sven Krueger. Monomorph large aperture deformable mirror for laser applications (poster paper) / J-C Sinquin, J-M Lurcon, C. Guillemard. Low cost, high speed for adaptive optics control (oral paper) / Christopher D. Saunter and Gordon D. Love. Open loop woofer-tweeter adaptive control on the LAO multi-conjugate adaptive optics testbed (oral paper) / Edward Laag, Don Gavel and Mark Ammons -- pt. 2. Wavefront sensors. Wave front sensorless adaptive optics for imaging and microscopy (invited paper) / Martin J. Booth, Delphine Débarre and Tony Wilson. A fundamental limit for wavefront sensing (oral paper) / Carl Paterson. Coherent fibre-bundle wavefront sensor (oral paper) / Brian Vohnsen, I. Iglesias and Pablo Artal. Maximum-likelihood methods in wave-front sensing: nuisance parameters (oral paper) / David Lara, Harrison H. Barrett, and Chris Dainty. Real-time wavefront sensing for ultrafast high-power laser beams (oral paper) / Juan M. Bueno ... [et al.]. Wavefront sensing using a random phase screen (oral paper) / M. Loktev, G. Vdovin and O. Soloviev. Quadri-Wave Lateral Shearing Interferometry: a new mature technique for wave front sensing in adaptive optics (oral paper) / Benoit Wattellier ... [et al.]. In vivo measurement of ocular aberrations with a distorted grating wavefront sensor (oral paper) / P. Harrison ... [et al.]. Position-sensitive detector designed with unusual CMOS layout strategies for a Hartman-Shack wavefront sensor (oral Paper) / Davies W. de Lima Monteiro ... [et al.]. Adaptive optics system to compensate complex-shaped wavefronts (oral paper) / Miguel Ares, and Santiago Royo. A kind of novel linear phase retrieval wavefront sensor and its application in close-loop adaptive optics system (oral paper) / Xinyang Li ... [et al.]. Ophthalmic Shack-Hatmann wavefront sensor applications (oral paper) / Daniel R. Neal. Wave front sensing of an optical vortex and its correction with the help of bimorph mirror (poster paper) / F. A. Starikov ... [et al.]. Recent advances in laser metrology and correction of high numerical aperture laser beams using quadri-wave lateral shearing-interferometry (poster paper) / Benoit Wattellier, Ivan Doudet and William Boucher. Thin film optical metrology using principles of wavefront sensing and interference (poster paper) / D. M. Faichnie, A. H. Greenaway and I. Bain. Direct diffractive image simulation (poster paper) / A. P. Maryasov, N. P. Maryasov, A. P. Layko. High speed smart CMOS sensor for adaptive optics (poster paper) / T. D. Raymond ... [et al.]. Traceable astigmatism measurements for wavefront sensors (poster paper) / S. R. G. Hall, S. D. Knox, R. F. Stevens -- pt. 3. Adaptive optics in vision science. Dual-conjugate adaptive optics instrument for wide-field retinal imaging (oral paper) / Jörgen Thaung, Mette-Owner Petersen and Zoran Popovic. Visual simulation using electromagnetic adaptive-optics (oral paper) / Laurent Vabre ... [et al.]. High-resolution field-of-view widening in human eye retina imaging (oral paper) / Alexander V. Dubinin, Tatyana Yu. Cherezova, Alexis V. Kudryashov. Psychophysical experiments on visual performance with an ocular adaptive optics system (oral paper) / E. Dalimier, J. C. Dainty and J. Barbur. Does the accommodative mechanism of the eye calibrate itself using aberration dynamics? (oral paper) / K. M. Hampson, S. S. Chin and E. A. H. Mallen. A study of field aberrations in the human eye (oral paper) / Alexander V. Goncharov ... [et al.]. Dual wavefront corrector ophthalmic adaptive optics: design and alignment (oral paper) / Alfredo Dubra and David Williams. High speed simultaneous SLO/OCT imaging of the human retina with adaptive optics (oral paper) / M. Pircher ... [et al.]. Characterization of an AO-OCT system (oral paper) / Julia W. Evans ... [et al.]. Adaptive optics optical coherence tomography for retina imaging (oral paper) / Guohua Shi ... [et al.]. Development, calibration and performance of an electromagnetic-mirror-based adaptive optics system for visual optics (oral paper) / Enrique Gambra ... [et al.]. Adaptive eye model (poster paper) / Sergey O. Galetskzy and Alexty V. Kudryashov. Adaptive optics system for retinal imaging based on a pyramid wavefront sensor (poster paper) / Sabine Chiesa ... [et al.]. Modeling of non-stationary dynamic ocular aberrations (poster paper) / Conor Leahy and Chris Dainty. High-order aberrations and accommodation of human eye (poster paper) / Lixia Xue ... [et al.]. Electromagnetic deformable mirror: experimental assessment and first ophthalmic applications (poster paper) / L. Vabre ... [et al.]. Correcting ocular aberrations in optical coherence tomography (poster paper) / Simon Tuohy ... [et al.] -- pt. 4. Adaptive optics in optical storage and microscopy. The application of liquid crystal aberration compensator for the optical disc systems (invited paper) / Masakazu Ogasawara. Commercialization of the adaptive scanning optical microscope (ASOM) (oral paper) / Benjamin Potsaid ... [et al.]. A practical implementation of adaptive optics for aberration compensation in optical microscopy (oral paper) / A. J. Wright ... [et al.]. Active focus locking in an optically sectioning microscope using adaptive optics (poster paper) / S. Poland, A. J. Wright, J. M. Girkin. Towards four dimensional particle tracking for biological applications / Heather I. Campbell ... [et al.]. Adaptive optics for microscopy (poster paper) / Xavier Levecq -- pt. 5. Adaptive optics in lasers. Improved beam quality of a high power Yb: YAG laser (oral paper) / Dennis G. Harris ... [et al.]. Intracavity adaptive optics optimization of an end-pumped Nd:YVO4 laser (oral paper) / Petra Welp, Ulrich Wittrock. New results in high power lasers beam correction (oral paper) / Alexis Kudryashov ... [et al.]. Adaptive optical systems for the Shenguang-III prototype facility (oral paper) / Zeping Yang ... [et al.]. Adaptive optics control of solid-state lasers (poster paper) / Walter Lubeigt ... [et al.]. Gerchberg-Saxton algorithm for multimode beam reshaping (poster paper) / Inna V. Ilyina, Tatyana Yu. Cherezova. New algorithm of combining for spatial coherent beams (poster paper) / Ruofu Yang ... [et al.]. Intracavity mode control of a solid-state laser using a 19-element deformable mirror (poster paper) / Ping Yang ... [et al.] -- pt. 6. Adaptive optics in communication and atmospheric compensation. Fourier image sharpness sensor for laser communications (oral paper) / Kristin N. Walker and Robert K. Tyson. Fast closed-loop adaptive optics system for imaging through strong turbulence layers (oral paper) / Ivo Buske and Wolfgang Riede. Correction of wavefront aberrations and optical communication using aperture synthesis (oral paper) / R. J. Eastwood ... [et al.]. Adaptive optics system for a small telescope (oral paper) / G. Vdovin, M. Loktev and O. Soloviev. Fast correction of atmospheric turbulence using a membrane deformable mirror (poster paper) / Ivan Capraro, Stefano Bonora, Paolo Villoresi. Atmospheric turbulence measurements over a 3km horizontal path with a Shack-Hartmann wavefront sensor (poster paper) / Ruth Mackey, K. Murphy and Chris Dainty. Field-oriented wavefront sensor for laser guide stars (poster paper) / Lidija Bolbasova, Alexander Goncharov and Vladimir Lukin.

  13. Optical processing for future computer networks

    NASA Technical Reports Server (NTRS)

    Husain, A.; Haugen, P. R.; Hutcheson, L. D.; Warrior, J.; Murray, N.; Beatty, M.

    1986-01-01

    In the development of future data management systems, such as the NASA Space Station, a major problem represents the design and implementation of a high performance communication network which is self-correcting and repairing, flexible, and evolvable. To obtain the goal of designing such a network, it will be essential to incorporate distributed adaptive network control techniques. The present paper provides an outline of the functional and communication network requirements for the Space Station data management system. Attention is given to the mathematical representation of the operations being carried out to provide the required functionality at each layer of communication protocol on the model. The possible implementation of specific communication functions in optics is also considered.

  14. A Review of Adaptive Optics Optical Coherence Tomography: Technical Advances, Scientific Applications, and the Future.

    PubMed

    Jonnal, Ravi S; Kocaoglu, Omer P; Zawadzki, Robert J; Liu, Zhuolin; Miller, Donald T; Werner, John S

    2016-07-01

    Optical coherence tomography (OCT) has enabled "virtual biopsy" of the living human retina, revolutionizing both basic retina research and clinical practice over the past 25 years. For most of those years, in parallel, adaptive optics (AO) has been used to improve the transverse resolution of ophthalmoscopes to foster in vivo study of the retina at the microscopic level. Here, we review work done over the last 15 years to combine the microscopic transverse resolution of AO with the microscopic axial resolution of OCT, building AO-OCT systems with the highest three-dimensional resolution of any existing retinal imaging modality. We surveyed the literature to identify the most influential antecedent work, important milestones in the development of AO-OCT technology, its applications that have yielded new knowledge, research areas into which it may productively expand, and nascent applications that have the potential to grow. Initial efforts focused on demonstrating three-dimensional resolution. Since then, many improvements have been made in resolution and speed, as well as other enhancements of acquisition and postprocessing techniques. Progress on these fronts has produced numerous discoveries about the anatomy, function, and optical properties of the retina. Adaptive optics OCT continues to evolve technically and to contribute to our basic and clinical knowledge of the retina. Due to its capacity to reveal cellular and microscopic detail invisible to clinical OCT systems, it is an ideal companion to those instruments and has the demonstrable potential to produce images that can guide the interpretation of clinical findings.

  15. Fully programmable and scalable optical switching fabric for petabyte data center.

    PubMed

    Zhu, Zhonghua; Zhong, Shan; Chen, Li; Chen, Kai

    2015-02-09

    We present a converged EPS and OCS switching fabric for data center networks (DCNs) based on a distributed optical switching architecture leveraging both WDM & SDM technologies. The architecture is topology adaptive, well suited to dynamic and diverse *-cast traffic patterns. Compared to a typical folded-Clos network, the new architecture is more readily scalable to future multi-Petabyte data centers with 1000 + racks while providing a higher link bandwidth, reducing transceiver count by 50%, and improving cabling efficiency by more than 90%.

  16. Center for Adaptive Optics | Home

    Science.gov Websites

    Center for Adaptive Optics A University of California Science and Technology Center home Directions to The Center for Adaptive Optics Building Directions to the Center for Adaptive Optics Building * Seaway Inn * West Cliff Inn Last Modified: Apr 3, 2012 Center for Adaptive Optics | Search | The Center

  17. Center for Adaptive Optics | Software

    Science.gov Websites

    Center for Adaptive Optics A University of California Science and Technology Center home Adaptive Optics Software The Center for Adaptive Optics acts as a clearing house for distributing Software to Institutes it gives specialists in Adaptive Optics a place to distribute their software. All software is

  18. Design and construction of a multiple beam laser projector and dynamically refocused wavefront sensor

    NASA Astrophysics Data System (ADS)

    Stalcup, Thomas Eugene, Jr.

    Adaptive optics using natural guide stars can produce images of amazing quality, but is limited to a small fraction of the sky due to the need for a relatively bright guidestar. Adaptive optics systems using a laser generated artificial reference can be used over a majority of the sky, but these systems have some attendant problems. These problems can be reduced by increasing the altitude of the laser return, and indeed a simple, single laser source focused at an altitude of 95 km on a layer of atmospheric sodium performs well for the current generation of 8--10 m telescopes. For future giant telescopes in the 20--30 m class, however, the errors due to incorrect atmospheric sampling and spot elongation will prohibit such a simple system from working. The system presented in this dissertation provides a solution to these problems. Not only does it provide the 6.5m MMT with a relatively inexpensive laser guide star system with unique capabilities, it allows research into solving many of the problems faced by laser guide star systems on future giant telescopes. The MMT laser guidestar system projects a constellation of five doubled Nd:YAG laser beams focused at a mean height of 25 km, with a dynamic refocus system that corrects for spot elongation and allows integrating the return from a 10 km long range gate. It has produced seeing limited spot sizes in ˜1 arcsecond seeing conditions, and has enabled the first on-sky results of Ground Layer Adaptive Optics (GLAO).

  19. Adaptive optics based non-null interferometry for optical free form surfaces test

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Zhou, Sheng; Li, Jingsong; Yu, Benli

    2018-03-01

    An adaptive optics based non-null interferometry (ANI) is proposed for optical free form surfaces testing, in which an open-loop deformable mirror (DM) is employed as a reflective compensator, to compensate various low-order aberrations flexibly. The residual wavefront aberration is treated by the multi-configuration ray tracing (MCRT) algorithm. The MCRT algorithm based on the simultaneous ray tracing for multiple system models, in which each model has different DM surface deformation. With the MCRT algorithm, the final figure error can be extracted together with the surface misalignment aberration correction after the initial system calibration. The flexible test for free form surface is achieved with high accuracy, without auxiliary device for DM deformation monitoring. Experiments proving the feasibility, repeatability and high accuracy of the ANI were carried out to test a bi-conic surface and a paraboloidal surface, with a high stable ALPAOTM DM88. The accuracy of the final test result of the paraboloidal surface was better than 1/20 Μ PV value. It is a successful attempt in research of flexible optical free form surface metrology and would have enormous potential in future application with the development of the DM technology.

  20. Layer-oriented multigrid wavefront reconstruction algorithms for multi-conjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Gilles, Luc; Ellerbroek, Brent L.; Vogel, Curtis R.

    2003-02-01

    Multi-conjugate adaptive optics (MCAO) systems with 104-105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of AO degrees of freedom. In this paper, we develop an iterative sparse matrix implementation of minimum variance wavefront reconstruction for telescope diameters up to 32m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method, using a multigrid preconditioner incorporating a layer-oriented (block) symmetric Gauss-Seidel iterative smoothing operator. We present open-loop numerical simulation results to illustrate algorithm convergence.

  1. Center for Adaptive Optics | Search

    Science.gov Websites

    Center for Adaptive Optics A University of California Science and Technology Center home Search CfAO Google Search search: CfAO All of UCOLick.org Whole Web Search for recent Adaptive Optics news at GoogleNews! Last Modified: Sep 21, 2010 Center for Adaptive Optics | Search | The Center | Adaptive Optics

  2. MAD Adaptive Optics Imaging of High-luminosity Quasars: A Pilot Project

    NASA Astrophysics Data System (ADS)

    Liuzzo, E.; Falomo, R.; Paiano, S.; Treves, A.; Uslenghi, M.; Arcidiacono, C.; Baruffolo, A.; Diolaiti, E.; Farinato, J.; Lombini, M.; Moretti, A.; Ragazzoni, R.; Brast, R.; Donaldson, R.; Kolb, J.; Marchetti, E.; Tordo, S.

    2016-08-01

    We present near-IR images of five luminous quasars at z ˜ 2 and one at z ˜ 4 obtained with an experimental adaptive optics (AO) instrument at the European Southern Observatory Very Large Telescope. The observations are part of a program aimed at demonstrating the capabilities of multi-conjugated adaptive optics imaging combined with the use of natural guide stars for high spatial resolution studies on large telescopes. The observations were mostly obtained under poor seeing conditions but in two cases. In spite of these nonoptimal conditions, the resulting images of point sources have cores of FWHM ˜ 0.2 arcsec. We are able to characterize the host galaxy properties for two sources and set stringent upper limits to the galaxy luminosity for the others. We also report on the expected capabilities for investigating the host galaxies of distant quasars with AO systems coupled with future Extremely Large Telescopes. Detailed simulations show that it will be possible to characterize compact (2-3 kpc) quasar host galaxies for quasi-stellar objects at z = 2 with nucleus K-magnitude spanning from 15 to 20 (corresponding to absolute magnitude -31 to -26) and host galaxies that are 4 mag fainter than their nuclei.

  3. PHY-DLL dialogue: cross-layer design for optical-wireless OFDM downlink transmission

    NASA Astrophysics Data System (ADS)

    Wang, Xuguo; Li, Lee

    2005-11-01

    The use of radio over fiber to provide radio access has a number of advantages including the ability to deploy small, low-cost remote antenna units and ease of upgrade. And due to the great potential for increasing the capacity and quality of service, the combination of Orthogonal Frequency Division Multiplexing (OFDM) modulation and the sub-carrier multiplexed optical transmission is one of the best solutions for the future millimeter-wave mobile communication. And this makes the optimum utility of valuable radio resources essential. This paper devises a cross-layer adaptive algorithm for optical-wireless OFDM system, which takes into consideration not only transmission power limitation in the physical layer, but also traffic scheduling and user fairness at the data-link layer. According to proportional fairness principle and water-pouring theorem, we put forward the complete description of this cross-layer adaptive downlink transmission 6-step algorithm. Simulation results show that the proposed cross-layer algorithm outperforms the mere physical layer adaptive algorithm markedly. The novel scheme is able to improve performance of the packet success rate per time chip and average packet delay, support added active users.

  4. Multi-conjugated adaptive optics imaging of distant galaxies - a comparison of Gemini/GSAOI and VLT/HAWK-I data

    NASA Astrophysics Data System (ADS)

    Schirmer, Mischa; Garrel, Vincent; Sivo, Gaetano; Marin, Eduardo; Carrasco, Eleazar R.

    2017-11-01

    Multi-conjugated adaptive optics (MCAO) yield nearly diffraction-limited images at 2 μm wavelengths. Currently, Gemini Multi-Conjugate Adaptive Optics System (GeMS)/Gemini South Adaptive Optics Imager (GSAOI) at Gemini South is the only MCAO facility instrument at an 8-m telescope. Using real data, and for the first time, we investigate the gain in depth and signal-to-noise ratios (S/N) when MCAO is employed for Ks-band observations of distant galaxies. Our analysis is based on the Frontier Fields cluster MACS J0416.1-2403, observed with GeMS/GSAOI (near diffraction-limited) and compared against Very Large Telescope/HAWK-I (natural seeing) data. Using galaxy number counts, we show that the substantially increased thermal background and lower optical throughput of the MCAO unit are fully compensated for by the wavefront correction because the galaxy images can be measured in smaller apertures with less sky noise. We also performed a direct comparison of the S/N of sources detected in both data sets. For objects with intrinsic angular sizes corresponding to half the HAWK-I image seeing, the gain in S/N is 40 per cent. Even smaller objects experience a boost in S/N by up to a factor of 2.5 despite our suboptimal natural guide star configuration. The depth of the near diffraction limited images is more difficult to quantify than that of seeing limited images, due to a strong dependence on the intrinsic source profiles. Our results emphasize the importance of cooled MCAO systems for Ks-band observations with future, extremely large telescopes.

  5. FOAM: the modular adaptive optics framework

    NASA Astrophysics Data System (ADS)

    van Werkhoven, T. I. M.; Homs, L.; Sliepen, G.; Rodenhuis, M.; Keller, C. U.

    2012-07-01

    Control software for adaptive optics systems is mostly custom built and very specific in nature. We have developed FOAM, a modular adaptive optics framework for controlling and simulating adaptive optics systems in various environments. Portability is provided both for different control hardware and adaptive optics setups. To achieve this, FOAM is written in C++ and runs on standard CPUs. Furthermore we use standard Unix libraries and compilation procedures and implemented a hardware abstraction layer in FOAM. We have successfully implemented FOAM on the adaptive optics system of ExPo - a high-contrast imaging polarimeter developed at our institute - in the lab and will test it on-sky late June 2012. We also plan to implement FOAM on adaptive optics systems for microscopy and solar adaptive optics. FOAM is available* under the GNU GPL license and is free to be used by anyone.

  6. A Review of Adaptive Optics Optical Coherence Tomography: Technical Advances, Scientific Applications, and the Future

    PubMed Central

    Jonnal, Ravi S.; Kocaoglu, Omer P.; Zawadzki, Robert J.; Liu, Zhuolin; Miller, Donald T.; Werner, John S.

    2016-01-01

    Purpose Optical coherence tomography (OCT) has enabled “virtual biopsy” of the living human retina, revolutionizing both basic retina research and clinical practice over the past 25 years. For most of those years, in parallel, adaptive optics (AO) has been used to improve the transverse resolution of ophthalmoscopes to foster in vivo study of the retina at the microscopic level. Here, we review work done over the last 15 years to combine the microscopic transverse resolution of AO with the microscopic axial resolution of OCT, building AO-OCT systems with the highest three-dimensional resolution of any existing retinal imaging modality. Methods We surveyed the literature to identify the most influential antecedent work, important milestones in the development of AO-OCT technology, its applications that have yielded new knowledge, research areas into which it may productively expand, and nascent applications that have the potential to grow. Results Initial efforts focused on demonstrating three-dimensional resolution. Since then, many improvements have been made in resolution and speed, as well as other enhancements of acquisition and postprocessing techniques. Progress on these fronts has produced numerous discoveries about the anatomy, function, and optical properties of the retina. Conclusions Adaptive optics OCT continues to evolve technically and to contribute to our basic and clinical knowledge of the retina. Due to its capacity to reveal cellular and microscopic detail invisible to clinical OCT systems, it is an ideal companion to those instruments and has the demonstrable potential to produce images that can guide the interpretation of clinical findings. PMID:27409507

  7. Thin Shell Manufacturing for large Wavefront correctors

    NASA Astrophysics Data System (ADS)

    Ruch, Eric; Poutriquet, Florence

    2011-09-01

    One of the major key elements in large adaptive optical systems is the thin shell, used as a deformable mirror. Although the optical prescriptions are relaxed with respect to a passive mirror, especially in the low spatial frequency domain, other requirements, such as the cosmetic defects (scratch & dig), the tight control of the thickness uniformity and of course the fragility of the piece having an aspect ratio up to 1000:1, generate new problems during the manufacturing, testing and handling of such optics. Moreover, the optical surface has to be tested in two different ways: a classical optical test bench allows us to create a surface map of the mirror. This map is then computed to determine the force required by the actuators to flatten the mirror and this becomes also a specification for polishing and implies a good interaction with the voice coil manufacturer. More than twenty years ago Sagem - Reosc developed the first meter class thin shell for early adaptive optics experiments. Since then, large thin shell have been used as the optical part in composite mirrors and more recently the aspheric shell for the VLT Deformable Secondary Mirror has been polished and prototypes, up to scale 1, of the E-ELT M4 Adaptive Mirror have been delivered to ESO in 2010. This paper will present some recent results in the manufacturing and testing technologies of large this shell, especially focusing on the development of the 1,1 meter convex aspherical shell for the VLT M2 mirror and on the results obtained on the largest thin shell produced so far (2,5 meter in diameter) developed as a demonstrator for the future E-ELT M4.

  8. An adaptive interferometer for optical testing .

    NASA Astrophysics Data System (ADS)

    Pariani, G.; Colella, L.; Bertarelli, C.; Aliverti, M.; Riva, M.; Bianco, A.

    Interferometry is a well-established technique to test optical elements. However, its use is challenging in the case of free-form and aspheric elements, due to the lack of the reference optics. The proposed idea concerns the development of a versatile interferometer, where its reference arm is equipped with a reprogrammable Computer Generated Hologram. This principle takes advantage from our study on photochromic materials for optical applications, which shows a strong and reversible modulation of transparency in the visible region. The encoding of the desired hologram can be done off-line, or directly into the interferometer, and different patterns may be realized sequentially after the erasing of the previous hologram. We report on the present state of the research and on the future perspectives. skip=5pt

  9. Roadmap of optical communications

    NASA Astrophysics Data System (ADS)

    Agrell, Erik; Karlsson, Magnus; Chraplyvy, A. R.; Richardson, David J.; Krummrich, Peter M.; Winzer, Peter; Roberts, Kim; Fischer, Johannes Karl; Savory, Seb J.; Eggleton, Benjamin J.; Secondini, Marco; Kschischang, Frank R.; Lord, Andrew; Prat, Josep; Tomkos, Ioannis; Bowers, John E.; Srinivasan, Sudha; Brandt-Pearce, Maïté; Gisin, Nicolas

    2016-06-01

    Lightwave communications is a necessity for the information age. Optical links provide enormous bandwidth, and the optical fiber is the only medium that can meet the modern society's needs for transporting massive amounts of data over long distances. Applications range from global high-capacity networks, which constitute the backbone of the internet, to the massively parallel interconnects that provide data connectivity inside datacenters and supercomputers. Optical communications is a diverse and rapidly changing field, where experts in photonics, communications, electronics, and signal processing work side by side to meet the ever-increasing demands for higher capacity, lower cost, and lower energy consumption, while adapting the system design to novel services and technologies. Due to the interdisciplinary nature of this rich research field, Journal of Optics has invited 16 researchers, each a world-leading expert in their respective subfields, to contribute a section to this invited review article, summarizing their views on state-of-the-art and future developments in optical communications.

  10. Center for Adaptive Optics | Events

    Science.gov Websites

    Center for Adaptive Optics A University of California Science and Technology Center home 2015 AO Adaptive Optics and Wavefront Control in Microscopy and Ophthalmology Paris, France October 25-25 CfAO Adaptive Optics Institute for Scientist and Engineer Educators Members Calendar of Events Publications

  11. Computational optical palpation: a finite-element approach to micro-scale tactile imaging using a compliant sensor

    PubMed Central

    Sampson, David D.; Kennedy, Brendan F.

    2017-01-01

    High-resolution tactile imaging, superior to the sense of touch, has potential for future biomedical applications such as robotic surgery. In this paper, we propose a tactile imaging method, termed computational optical palpation, based on measuring the change in thickness of a thin, compliant layer with optical coherence tomography and calculating tactile stress using finite-element analysis. We demonstrate our method on test targets and on freshly excised human breast fibroadenoma, demonstrating a resolution of up to 15–25 µm and a field of view of up to 7 mm. Our method is open source and readily adaptable to other imaging modalities, such as ultrasonography and confocal microscopy. PMID:28250098

  12. Methods of multi-conjugate adaptive optics for astronomy

    NASA Astrophysics Data System (ADS)

    Flicker, Ralf

    2003-07-01

    This work analyses several aspects of multi-conjugate adaptive optics (MCAO) for astronomy. The research ranges from fundamental and technical studies for present-day MCAO projects, to feasibility studies of high-order MCAO instruments for the extremely large telescopes (ELTs) of the future. The first part is an introductory exposition on atmospheric turbulence, adaptive optics (AO) and MCAO, establishing the framework within which the research was carried out The second part (papers I VI) commences with a fundamental design parameter study of MCAO systems, based upon a first-order performance estimation Monte Carlo simulation. It is investigated how the number and geometry of deformable mirrors and reference beacons, and the choice of wavefront reconstruction algorithm, affect system performance. Multi-conjugation introduces the possibility of optically canceling scintillation in part, at the expense of additional optics, by applying the phase correction in a certain sequence. The effects of scintillation when this sequence is not observed are investigated. As a link in characterizing anisoplanatism in conventional AO systems, images made with the AO instrument Hokupa'a on the Gemini-North Telescope were analysed with respect to the anisoplanatism signal. By model-fitting of simulated data, conclusions could be drawn about the vertical distribution of turbulence above the observatory site (Mauna Kea), and the significance to future AO and MCAO instruments with conjugated deformable mirrors is addressed. The problem of tilt anisoplanatism with MCAO systems relying on artificial reference beacons—laser guide stars (LGSs)—is analysed, and analytical models for predicting the effects of tilt anisoplanatism are devised. A method is presented for real-time retrieval of the tilt anisoplanatism point spread function (PSF), using control loop data. An independent PSF estimation of high accuracy is thus obtained which enables accurate PSF photometry and deconvolution. Lastly, a first-order performance estimation method is presented by which MCAO systems for ELTs may be studied efficiently, using sparse matrix techniques for wavefront reconstruction and a hybrid numerical/analytical simulation model. MCAO simulation results are presented for a wide range of telescope diameters up to 100 meters, and the effects of LGSs and a finite turbulence outer scale are investigated.

  13. High quality adaptive optics zoom with adaptive lenses

    NASA Astrophysics Data System (ADS)

    Quintavalla, M.; Santiago, F.; Bonora, S.; Restaino, S.

    2018-02-01

    We present the combined use of large aperture adaptive lens with large optical power modulation with a multi actuator adaptive lens. The Multi-actuator Adaptive Lens (M-AL) can correct up to the 4th radial order of Zernike polynomials, without any obstructions (electrodes and actuators) placed inside its clear aperture. We demonstrated that the use of both lenses together can lead to better image quality and to the correction of aberrations of adaptive optics optical systems.

  14. MAD ADAPTIVE OPTICS IMAGING OF HIGH-LUMINOSITY QUASARS: A PILOT PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liuzzo, E.; Falomo, R.; Paiano, S.

    2016-08-01

    We present near-IR images of five luminous quasars at z ∼ 2 and one at z ∼ 4 obtained with an experimental adaptive optics (AO) instrument at the European Southern Observatory Very Large Telescope. The observations are part of a program aimed at demonstrating the capabilities of multi-conjugated adaptive optics imaging combined with the use of natural guide stars for high spatial resolution studies on large telescopes. The observations were mostly obtained under poor seeing conditions but in two cases. In spite of these nonoptimal conditions, the resulting images of point sources have cores of FWHM ∼ 0.2 arcsec. Wemore » are able to characterize the host galaxy properties for two sources and set stringent upper limits to the galaxy luminosity for the others. We also report on the expected capabilities for investigating the host galaxies of distant quasars with AO systems coupled with future Extremely Large Telescopes. Detailed simulations show that it will be possible to characterize compact (2–3 kpc) quasar host galaxies for quasi-stellar objects at z = 2 with nucleus K -magnitude spanning from 15 to 20 (corresponding to absolute magnitude −31 to −26) and host galaxies that are 4 mag fainter than their nuclei.« less

  15. Vision Science and Adaptive Optics, The State of the Field

    PubMed Central

    Marcos, Susana; Werner, John S.; Burns, Stephen A; Merigan, William H.; Artal, Pablo; Atchison, David A.; Hampson, Karen M.; Legras, Richard; Lundstrom, Linda; Yoon, Geungyoung; Carroll, Joseph; Choi, Stacey S.; Doble, Nathan; Dubis, Adam M.; Dubra, Alfredo; Elsner, Ann; Jonnal, Ravi; Miller, Donald T.; Paques, Michel; Smithson, Hannah E.; Young, Laura K.; Zhang, Yuhua; Campbell, Melanie; Hunter, Jennifer; Metha, Andrew; Palczewska, Grazyna; Schallek, Jesse; Sincich, Lawrence C.

    2017-01-01

    Adaptive optics is a relatively new field, yet it is spreading rapidly and allows new questions to be asked about how the visual system is organized. The editors of this feature issue have posed a series of question to scientists involved in using adaptive optics in vision science. The questions are focused on three main areas. In the first we investigate the use of adaptive optics for psychophysical measurements of visual system function and for improving the optics of the eye. In the second, we look at the applications and impact of adaptive optics on retinal imaging and its promise for basic and applied research. In the third, we explore how adaptive optics is being used to improve our understanding of the neurophysiology of the visual system. PMID:28212982

  16. Future Technology Themes: 2030 to 2060

    DTIC Science & Technology

    2013-07-01

    Rocket-Based Combined Cycle RF Radio Frequency RNA Ribonucleic Acid SA Situational Awareness SEAD Suppression of Enemy Air Defences SME...and re-routing light in information processing and optical communications ; or for processing radio signals in mobile phones [44]. UNCLASSIFIED DSTO...make use of network polymorphism technologies from 2020 onwards to create frequency -agile and adaptive14 communications links that would change network

  17. An instrumental puzzle: the modular integration of AOLI

    NASA Astrophysics Data System (ADS)

    López, Roberto L.; Velasco, Sergio; Colodro-Conde, Carlos; Valdivia, Juan J. F.; Puga, Marta; Oscoz, Alejandro; Rebolo, Rafael; MacKay, Craig; Pérez-Garrido, Antonio; Rodríguez-Ramos, Luis Fernando; Rodríguez-Ramos, José Manuel M.; King, David; Labadie, Lucas; Muthusubramanian, Balaji; Rodríguez-Coira, Gustavo

    2016-08-01

    The Adaptive Optics Lucky Imager, AOLI, is an instrument developed to deliver the highest spatial resolution ever obtained in the visible, 20 mas, from ground-based telescopes. In AOLI a new philosophy of instrumental prototyping has been applied, based on the modularization of the subsystems. This modular concept offers maximum flexibility regarding the instrument, telescope or the addition of future developments.

  18. Adaptive optics imaging of the retina

    PubMed Central

    Battu, Rajani; Dabir, Supriya; Khanna, Anjani; Kumar, Anupama Kiran; Roy, Abhijit Sinha

    2014-01-01

    Adaptive optics is a relatively new tool that is available to ophthalmologists for study of cellular level details. In addition to the axial resolution provided by the spectral-domain optical coherence tomography, adaptive optics provides an excellent lateral resolution, enabling visualization of the photoreceptors, blood vessels and details of the optic nerve head. We attempt a mini review of the current role of adaptive optics in retinal imaging. PubMed search was performed with key words Adaptive optics OR Retina OR Retinal imaging. Conference abstracts were searched from the Association for Research in Vision and Ophthalmology (ARVO) and American Academy of Ophthalmology (AAO) meetings. In total, 261 relevant publications and 389 conference abstracts were identified. PMID:24492503

  19. Support of Integrated Health Management (IHM) through Automated Analyses of Flowfield-Derived Spectrographic Data

    NASA Technical Reports Server (NTRS)

    Patrick, Marshall C.; Cooper, Anita E.; Powers, W. T.

    2003-01-01

    Flow-field analysis techniques under continuing development at NASA's Marshall Space Flight Center are the foundation for a new type of health monitoring instrumentation for propulsion systems and a vast range of other applications. Physics, spectroscopy, mechanics, optics, and cutting-edge computer sciences merge to make recent developments in such instrumentation possible. Issues encountered in adaptation of such a system to future space vehicles, or retrofit in existing hardware, are central to the work. This paper is an overview of the collaborative efforts results, current efforts, and future plans.

  20. Center for Adaptive Optics | AO Summer School

    Science.gov Websites

    School on Adaptive Optics Sponsored by: Center for Adaptive Optics The AO Summer School instruction is Adaptive Optics and their implementation. Our Summer School is intended to facilitate and encourage previous summer school web pages. Please contact us, if you would like more information on AO Summer School

  1. Contributions to workload of rotational optical transformations

    NASA Technical Reports Server (NTRS)

    Atkinson, R. P.; Harrington, T. L.

    1985-01-01

    An investigation of visuomotor adaptation to optical rotation and optical inversion was conducted. Experiment 1 examined the visuomotor adaptability of subjects to an optically rotating visual world with a univariate repeated measures design. Experiment 1A tested one major prediction of a model of adaptation put forth by Welch who predicted that the aversive drive state that triggers adaptation would be habituated to fairly rapidly. Experiment 2 was conducted to investigate the role of motor activity in adaptation to optical rotation. Specifically, this experiment contrasted the reafference hypothesis and the proprioceptive change hypothesis. Experiment 3 examined the role of cognition, error-corrective feedback, and proprioceptive and/or reafferent feedback in visuomotor adaptation to optical inversion. Implications for research and implications for practice were suggested for all experiments.

  2. Through-wafer interrogation of microstructure motion for MEMS feedback control

    NASA Astrophysics Data System (ADS)

    Dawson, Jeremy M.; Chen, Jingdong; Brown, Kolin S.; Famouri, Parviz F.; Hornak, Lawrence A.

    1999-09-01

    Closed-loop MEMS control enables mechanical microsystems to adapt to the demands of the environment which they are actuating opening a new window of opportunity for future MEMS applications. Planar diffractive optical microsystems have the potential to enable the integrated optical interrogation of MEMS microstructure position fully decoupled from the means of mechanical actuation which is central to realization of feedback control. This paper presents the results of initial research evaluating through-wafer optical microsystems for MEMS integrated optical monitoring. Positional monitoring results obtained from a 1.3 micrometer wavelength through- wafer free-space optical probe of a lateral comb resonator fabricated using the Multi-User MEMS Process Service (MUMPS) are presented. Given the availability of positional information via probe signal feedback, a simulation of the application of nonlinear sliding control is presented illustrating position control of the lateral comb resonator structure.

  3. Vision science and adaptive optics, the state of the field.

    PubMed

    Marcos, Susana; Werner, John S; Burns, Stephen A; Merigan, William H; Artal, Pablo; Atchison, David A; Hampson, Karen M; Legras, Richard; Lundstrom, Linda; Yoon, Geungyoung; Carroll, Joseph; Choi, Stacey S; Doble, Nathan; Dubis, Adam M; Dubra, Alfredo; Elsner, Ann; Jonnal, Ravi; Miller, Donald T; Paques, Michel; Smithson, Hannah E; Young, Laura K; Zhang, Yuhua; Campbell, Melanie; Hunter, Jennifer; Metha, Andrew; Palczewska, Grazyna; Schallek, Jesse; Sincich, Lawrence C

    2017-03-01

    Adaptive optics is a relatively new field, yet it is spreading rapidly and allows new questions to be asked about how the visual system is organized. The editors of this feature issue have posed a series of question to scientists involved in using adaptive optics in vision science. The questions are focused on three main areas. In the first we investigate the use of adaptive optics for psychophysical measurements of visual system function and for improving the optics of the eye. In the second, we look at the applications and impact of adaptive optics on retinal imaging and its promise for basic and applied research. In the third, we explore how adaptive optics is being used to improve our understanding of the neurophysiology of the visual system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Modeling of high-precision wavefront sensing with new generation of CMT avalanche photodiode infrared detectors.

    PubMed

    Gousset, Silvère; Petit, Cyril; Michau, Vincent; Fusco, Thierry; Robert, Clelia

    2015-12-01

    Near-infrared wavefront sensing allows for the enhancement of sky coverage with adaptive optics. The recently developed HgCdTe avalanche photodiode arrays are promising due to their very low detector noise, but still present an imperfect cosmetic that may directly impact real-time wavefront measurements for adaptive optics and thus degrade performance in astronomical applications. We propose here a model of a Shack-Hartmann wavefront measurement in the presence of residual fixed pattern noise and defective pixels. To adjust our models, a fine characterization of such an HgCdTe array, the RAPID sensor, is proposed. The impact of the cosmetic defects on the Shack-Hartmann measurement is assessed through numerical simulations. This study provides both a new insight on the applicability of cadmium mercury telluride (CMT) avalanche photodiodes detectors for astronomical applications and criteria to specify the cosmetic qualities of future arrays.

  5. Polarization-multiplexed rate-adaptive non-binary-quasi-cyclic-LDPC-coded multilevel modulation with coherent detection for optical transport networks.

    PubMed

    Arabaci, Murat; Djordjevic, Ivan B; Saunders, Ross; Marcoccia, Roberto M

    2010-02-01

    In order to achieve high-speed transmission over optical transport networks (OTNs) and maximize its throughput, we propose using a rate-adaptive polarization-multiplexed coded multilevel modulation with coherent detection based on component non-binary quasi-cyclic (QC) LDPC codes. Compared to prior-art bit-interleaved LDPC-coded modulation (BI-LDPC-CM) scheme, the proposed non-binary LDPC-coded modulation (NB-LDPC-CM) scheme not only reduces latency due to symbol- instead of bit-level processing but also provides either impressive reduction in computational complexity or striking improvements in coding gain depending on the constellation size. As the paper presents, compared to its prior-art binary counterpart, the proposed NB-LDPC-CM scheme addresses the needs of future OTNs, which are achieving the target BER performance and providing maximum possible throughput both over the entire lifetime of the OTN, better.

  6. Adaptive optics ophthalmoscopy: results and applications.

    PubMed

    Pallikaris, A

    2005-01-01

    The living human eye's optical aberrations set a limit to retinal imaging in the clinical setting. Progress in the field of adaptive optics has offered unique solutions to this problem. The purpose of this review is to summarize the most recent advances in adaptive optics ophthalmoscopy. Adaptive optics technology has been combined with flood illumination imaging, confocal scanning laser ophthalmoscopy, and optical coherence tomography for the high resolution imaging of the retina. The advent of adaptive optics technology has provided the technical platform for the compensation of the eye's aberration and made possible the observation of single cones, small capillaries, nerve fibers, and leukocyte dynamics as well as the ultrastructure of the optic nerve head lamina cribrosa in vivo. Detailed imaging of retinal infrastructure provides valuable information for the study of retinal physiology and pathology.

  7. The research and development of the adaptive optics in ophthalmology

    NASA Astrophysics Data System (ADS)

    Wu, Chuhan; Zhang, Xiaofang; Chen, Weilin

    2015-08-01

    Recently the combination of adaptive optics and ophthalmology has made great progress and become highly effective. The retina disease is diagnosed by retina imaging technique based on scanning optical system, so the scanning of eye requires optical system characterized by great ability of anti-moving and optical aberration correction. The adaptive optics possesses high level of adaptability and is available for real time imaging, which meets the requirement of medical retina detection with accurate images. Now the Scanning Laser Ophthalmoscope and the Optical Coherence Tomography are widely used, which are the core techniques in the area of medical retina detection. Based on the above techniques, in China, a few adaptive optics systems used for eye medical scanning have been designed by some researchers from The Institute of Optics And Electronics of CAS(The Chinese Academy of Sciences); some foreign research institutions have adopted other methods to eliminate the interference of eye moving and optical aberration; there are many relevant patents at home and abroad. In this paper, the principles and relevant technique details of the Scanning Laser Ophthalmoscope and the Optical Coherence Tomography are described. And the recent development and progress of adaptive optics in the field of eye retina imaging are analyzed and summarized.

  8. Astrometric and photometric measurements of binary stars with adaptive optics: observations from 2001 to 2006

    NASA Astrophysics Data System (ADS)

    Roberts, Lewis C.; Mason, Brian D.

    2018-02-01

    The adaptive optics system at the 3.6 m Advanced Electro-Optical System telescope was used to measure the astrometry and differential magnitude in I band of binary star systems between 2002 and 2006. We report 413 astrometric and photometric measurements of 373 stellar pairs. The astrometric measurements will be of use for future orbital determination, and the photometric measurements will be of use in estimating the spectral types of the component stars. For 21 binaries that had not been observed in decades, we are able to confirm that the systems share common proper motion. Candidate new companions were detected in 24 systems; for these we show the discovery images. Follow-up observations should be able to determine if these systems share common proper motion and are gravitationally bound objects. We computed orbits for nine binaries. Of these, the orbits of five systems are improved compared to prior orbits and four systems have their orbits computed for the first time. In addition, 315 stars were unresolved and the full-width half maxima of the images are presented.

  9. Multiphoton imaging microscopy at deeper layers with adaptive optics control of spherical aberration.

    PubMed

    Bueno, Juan M; Skorsetz, Martin; Palacios, Raquel; Gualda, Emilio J; Artal, Pablo

    2014-01-01

    Despite the inherent confocality and optical sectioning capabilities of multiphoton microscopy, three-dimensional (3-D) imaging of thick samples is limited by the specimen-induced aberrations. The combination of immersion objectives and sensorless adaptive optics (AO) techniques has been suggested to overcome this difficulty. However, a complex plane-by-plane correction of aberrations is required, and its performance depends on a set of image-based merit functions. We propose here an alternative approach to increase penetration depth in 3-D multiphoton microscopy imaging. It is based on the manipulation of the spherical aberration (SA) of the incident beam with an AO device while performing fast tomographic multiphoton imaging. When inducing SA, the image quality at best focus is reduced; however, better quality images are obtained from deeper planes within the sample. This is a compromise that enables registration of improved 3-D multiphoton images using nonimmersion objectives. Examples on ocular tissues and nonbiological samples providing different types of nonlinear signal are presented. The implementation of this technique in a future clinical instrument might provide a better visualization of corneal structures in living eyes.

  10. Visible near-diffraction-limited lucky imaging with full-sky laser-assisted adaptive optics

    NASA Astrophysics Data System (ADS)

    Basden, A. G.

    2014-08-01

    Both lucky imaging techniques and adaptive optics require natural guide stars, limiting sky-coverage, even when laser guide stars are used. Lucky imaging techniques become less successful on larger telescopes unless adaptive optics is used, as the fraction of images obtained with well-behaved turbulence across the whole telescope pupil becomes vanishingly small. Here, we introduce a technique combining lucky imaging techniques with tomographic laser guide star adaptive optics systems on large telescopes. This technique does not require any natural guide star for the adaptive optics, and hence offers full sky-coverage adaptive optics correction. In addition, we introduce a new method for lucky image selection based on residual wavefront phase measurements from the adaptive optics wavefront sensors. We perform Monte Carlo modelling of this technique, and demonstrate I-band Strehl ratios of up to 35 per cent in 0.7 arcsec mean seeing conditions with 0.5 m deformable mirror pitch and full adaptive optics sky-coverage. We show that this technique is suitable for use with lucky imaging reference stars as faint as magnitude 18, and fainter if more advanced image selection and centring techniques are used.

  11. [Adaptive optics for ophthalmology].

    PubMed

    Saleh, M

    2016-04-01

    Adaptive optics is a technology enhancing the visual performance of an optical system by correcting its optical aberrations. Adaptive optics have already enabled several breakthroughs in the field of visual sciences, such as improvement of visual acuity in normal and diseased eyes beyond physiologic limits, and the correction of presbyopia. Adaptive optics technology also provides high-resolution, in vivo imaging of the retina that may eventually help to detect the onset of retinal conditions at an early stage and provide better assessment of treatment efficacy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. High-Resolution Optical and Near-Infrared Imaging of Young Circumstellar Disks

    NASA Technical Reports Server (NTRS)

    McCaughrean, Mark; Stapelfeldt, Karl; Close, Laird

    2000-01-01

    In the past five years, observations at optical and near-infrared wavelengths obtained with the Hubble Space Telescope and ground-based adaptive optics have provided the first well-resolved images of young circumstellar disks which may form planetary systems. We review these two observational techniques and highlight their results by presenting prototype examples of disks imaged in the Taurus-Auriga and Orion star-forming regions. As appropriate, we discuss the disk parameters that may be typically derived from the observations, as well as the implications that the observations may have on our understanding of, for example, the role of the ambient environment in shaping the disk evolution. We end with a brief summary of the prospects for future improvements in space- and ground-based optical/IR imaging techniques, and how they may impact disk studies.

  13. Practical guidelines for implementing adaptive optics in fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Wilding, Dean; Pozzi, Paolo; Soloviev, Oleg; Vdovin, Gleb; Verhaegen, Michel

    2018-02-01

    In life sciences, interest in the microscopic imaging of increasingly complex three dimensional samples, such as cell spheroids, zebrafish embryos, and in vivo applications in small animals, is growing quickly. Due to the increasing complexity of samples, more and more life scientists are considering the implementation of adaptive optics in their experimental setups. While several approaches to adaptive optics in microscopy have been reported, it is often difficult and confusing for the microscopist to choose from the array of techniques and equipment. In this poster presentation we offer a small guide to adaptive optics providing general guidelines for successful adaptive optics implementation.

  14. Dual-thread parallel control strategy for ophthalmic adaptive optics.

    PubMed

    Yu, Yongxin; Zhang, Yuhua

    To improve ophthalmic adaptive optics speed and compensate for ocular wavefront aberration of high temporal frequency, the adaptive optics wavefront correction has been implemented with a control scheme including 2 parallel threads; one is dedicated to wavefront detection and the other conducts wavefront reconstruction and compensation. With a custom Shack-Hartmann wavefront sensor that measures the ocular wave aberration with 193 subapertures across the pupil, adaptive optics has achieved a closed loop updating frequency up to 110 Hz, and demonstrated robust compensation for ocular wave aberration up to 50 Hz in an adaptive optics scanning laser ophthalmoscope.

  15. Dual-thread parallel control strategy for ophthalmic adaptive optics

    PubMed Central

    Yu, Yongxin; Zhang, Yuhua

    2015-01-01

    To improve ophthalmic adaptive optics speed and compensate for ocular wavefront aberration of high temporal frequency, the adaptive optics wavefront correction has been implemented with a control scheme including 2 parallel threads; one is dedicated to wavefront detection and the other conducts wavefront reconstruction and compensation. With a custom Shack-Hartmann wavefront sensor that measures the ocular wave aberration with 193 subapertures across the pupil, adaptive optics has achieved a closed loop updating frequency up to 110 Hz, and demonstrated robust compensation for ocular wave aberration up to 50 Hz in an adaptive optics scanning laser ophthalmoscope. PMID:25866498

  16. Design of a versatile clinical aberrometer

    NASA Astrophysics Data System (ADS)

    Sheehan, Matthew; Goncharov, Alexander; Dainty, Chris

    2005-09-01

    We have designed an ocular aberrometer based on the Hartmann-Shack (HS) type wavefront sensor for use in optometry clinics. The optical system has enhanced versatility compared with commercial aberrometers, yet it is compact and user-friendly. The system has the capability to sense both on-axis and off-axis aberrations in the eye within an unobstructed 20 degree field. This capability is essential to collect population data for off-axis aberrations. This data will be useful in designing future adaptive optics (AO) systems to improve image quality of eccentric retinal areas, in particular, for multi-conjugate AO systems. The ability of the examiner to control the accommodation demand is a unique feature of the design that commercial instruments are capable of only after modification. The pupil alignment channel is re-combined with the sensing channel in a parallel path and imaged on a single CCD. This makes the instrument more compact, less expensive, and it helps to synchronize the pupil center with the HS spot coordinate system. Another advantage of the optical design is telecentric re-imaging of the HS spots, increasing the robustness to small longitudinal alignment errors. The optical system has been optimized with a ray-tracing program and its prototype is being constructed. Design considerations together with a description of the optical components are presented. Difficulties and future work are outlined.

  17. Advances in X-ray optics: From metrology characterization to wavefront sensing-based optimization of active optics

    DOE PAGES

    Cocco, Daniele; Idir, Mourad; Morton, Daniel; ...

    2018-03-20

    Experiments using high brightness X-rays are on the forefront of science due to the vast variety of knowledge they can provide. New Synchrotron Radiation (SR) and Free Electron Laser (FEL) light sources provide unique tools for advanced studies using X-rays. Top-level scientists from around the world are attracted to these beamlines to perform unprecedented experiments. High brightness, low emittance light sources allow beamline scientists the possibility to dream up cutting-edge experimental stations. X-ray optics play a key role in bringing the beam from the source to the experimental stations. This paper explores the recent developments in X-ray optics. It touchesmore » on simulations, diagnostics, metrology and adaptive optics, giving an overview of the role X-ray optics have played in the recent past. It will also touch on future developments for one of the most active field in the X-ray science.« less

  18. Advances in X-ray optics: From metrology characterization to wavefront sensing-based optimization of active optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cocco, Daniele; Idir, Mourad; Morton, Daniel

    Experiments using high brightness X-rays are on the forefront of science due to the vast variety of knowledge they can provide. New Synchrotron Radiation (SR) and Free Electron Laser (FEL) light sources provide unique tools for advanced studies using X-rays. Top-level scientists from around the world are attracted to these beamlines to perform unprecedented experiments. High brightness, low emittance light sources allow beamline scientists the possibility to dream up cutting-edge experimental stations. X-ray optics play a key role in bringing the beam from the source to the experimental stations. This paper explores the recent developments in X-ray optics. It touchesmore » on simulations, diagnostics, metrology and adaptive optics, giving an overview of the role X-ray optics have played in the recent past. It will also touch on future developments for one of the most active field in the X-ray science.« less

  19. Center for Adaptive Optics | Center

    Science.gov Websites

    Center for Adaptive Optics A University of California Science and Technology Center home Contact Us Director: Claire Max Office: Room 205, Center for Adaptive Optics Phone: (831) 459-2049 Fax: (831 ) 459-5717 Email: max@ucolick.org Associate Director: Donald Gavel Office: Room 209, Center for Adaptive

  20. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1990-01-01

    A ground-based adaptive optics imaging telescope system attempts to improve image quality by detecting and correcting for atmospherically induced wavefront aberrations. The required control computations during each cycle will take a finite amount of time. Longer time delays result in larger values of residual wavefront error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper presents a study of the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for the adaptive optics application. An optimization of the adaptive optics correction algorithm with respect to an optical processor's degree of accuracy is also briefly discussed.

  1. X-ray pore optic developments

    NASA Astrophysics Data System (ADS)

    Wallace, Kotska; Bavdaz, Marcos; Collon, Maximilien; Beijersbergen, Marco; Kraft, Stefan; Fairbend, Ray; Séguy, Julien; Blanquer, Pascal; Graue, Roland; Kampf, Dirk

    2017-11-01

    In support of future x-ray telescopes ESA is developing new optics for the x-ray regime. To date, mass and volume have made x-ray imaging technology prohibitive to planetary remote sensing imaging missions. And although highly successful, the mirror technology used on ESA's XMM-Newton is not sufficient for future, large, x-ray observatories, since physical limits on the mirror packing density mean that aperture size becomes prohibitive. To reduce telescope mass and volume the packing density of mirror shells must be reduced, whilst maintaining alignment and rigidity. Structures can also benefit from a modular optic arrangement. Pore optics are shown to meet these requirements. This paper will discuss two pore optic technologies under development, with examples of results from measurement campaigns on samples. One activity has centred on the use of coated, silicon wafers, patterned with ribs, that are integrated onto a mandrel whose form has been polished to the required shape. The wafers follow the shape precisely, forming pore sizes in the sub-mm region. Individual stacks of mirrors can be manufactured without risk to, or dependency on, each other and aligned in a structure from which they can also be removed without hazard. A breadboard is currently being built to demonstrate this technology. A second activity centres on glass pore optics. However an adaptation of micro channel plate technology to form square pores has resulted in a monolithic material that can be slumped into an optic form. Alignment and coating of two such plates produces an x-ray focusing optic. A breadboard 20cm aperture optic is currently being built.

  2. Photometric Calibration of the Gemini South Adaptive Optics Imager

    NASA Astrophysics Data System (ADS)

    Stevenson, Sarah Anne; Rodrigo Carrasco Damele, Eleazar; Thomas-Osip, Joanna

    2017-01-01

    The Gemini South Adaptive Optics Imager (GSAOI) is an instrument available on the Gemini South telescope at Cerro Pachon, Chile, utilizing the Gemini Multi-Conjugate Adaptive Optics System (GeMS). In order to allow users to easily perform photometry with this instrument and to monitor any changes in the instrument in the future, we seek to set up a process for performing photometric calibration with standard star observations taken across the time of the instrument’s operation. We construct a Python-based pipeline that includes IRAF wrappers for reduction and combines the AstroPy photutils package and original Python scripts with the IRAF apphot and photcal packages to carry out photometry and linear regression fitting. Using the pipeline, we examine standard star observations made with GSAOI on 68 nights between 2013 and 2015 in order to determine the nightly photometric zero points in the J, H, Kshort, and K bands. This work is based on observations obtained at the Gemini Observatory, processed using the Gemini IRAF and gemini_python packages, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  3. Point spread function reconstruction validated using on-sky CANARY data in multiobject adaptive optics mode

    NASA Astrophysics Data System (ADS)

    Martin, Olivier A.; Correia, Carlos M.; Gendron, Eric; Rousset, Gerard; Gratadour, Damien; Vidal, Fabrice; Morris, Tim J.; Basden, Alastair G.; Myers, Richard M.; Neichel, Benoit; Fusco, Thierry

    2016-10-01

    In preparation of future multiobject spectrographs (MOS) whose one of the major role is to provide an extensive statistical studies of high redshifted galaxies surveyed, the demonstrator CANARY has been designed to tackle technical challenges related to open-loop adaptive optics (AO) control with jointed Natural Guide Star and Laser Guide Star tomography. We have developed a point spread function (PSF) reconstruction algorithm dedicated to multiobject adaptive optics systems using system telemetry to estimate the PSF potentially anywhere in the observed field, a prerequisite to postprocess AO-corrected observations in integral field spectroscopy. We show how to handle off-axis data to estimate the PSF using atmospheric tomography and compare it to a classical approach that uses on-axis residual phase from a truth sensor observing a natural bright source. We have reconstructed over 450 on-sky CANARY PSFs and we get bias/1-σ standard-deviation (std) of 1.3/4.8 on the H-band Strehl ratio (SR) with 92.3% of correlation between reconstructed and sky SR. On the full-width at half-maximum, we get, respectively, 2.94 mas, 19.9 mas, and 88.3% for the bias, std, and correlation. The reference method achieves 0.4/3.5/95% on the SR and 2.71 mas/14.9 mas/92.5% on the FWHM for the bias/std/correlation.

  4. Integration of power over fiber on RoF systems in different scenarios

    NASA Astrophysics Data System (ADS)

    Vázquez, C.; Montero, D. S.; Pinzón, P. J.; López-Cardona, J. D.; Contreras, P.; Tapetado, A.

    2017-01-01

    Future high capacity of the 5th Generation radio environment will boost transport networks to be adapted. The high bandwidth, together with stringent delay and jitter requirements, make dedicated optical connectivity a preferred solution for fronthaul. Those Radio Access Networks apart from higher capacity and lower latency should have higher energy efficiency. In order to cover this aspect, power over fiber has been pointed out as a key technology for that purpose having in mind that control plane will be centralized on future Cloud RAN and that sometimes Remote Radio Heads should be deployed in places lacking external power supply in order to fulfill the desired coverage. In this paper, different scenarios on potential demanding environments of power over fiber on Radio over Fiber systems such as automotive, in-house and remote mobile fronthaul will be discussed. Some tests on power over fiber systems based on different optical fibers are provided.

  5. Performance verification and environmental testing of a unimorph deformable mirror for space applications

    NASA Astrophysics Data System (ADS)

    Rausch, Peter; Verpoort, Sven; Wittrock, Ulrich

    2017-11-01

    Concepts for future large space telescopes require an active optics system to mitigate aberrations caused by thermal deformation and gravitational release. Such a system would allow on-site correction of wave-front errors and ease the requirements for thermal and gravitational stability of the optical train. In the course of the ESA project "Development of Adaptive Deformable Mirrors for Space Instruments" we have developed a unimorph deformable mirror designed to correct for low-order aberrations and dedicated to be used in space environment. We briefly report on design and manufacturing of the deformable mirror and present results from performance verifications and environmental testing.

  6. Adaptive free-space optical communications through turbulence using self-healing Bessel beams

    PubMed Central

    Li, Shuhui; Wang, Jian

    2017-01-01

    We present a scheme to realize obstruction- and turbulence-tolerant free-space orbital angular momentum (OAM) multiplexing link by using self-healing Bessel beams accompanied by adaptive compensation techniques. Compensation of multiple 16-ary quadrature amplitude modulation (16-QAM) data carrying Bessel beams through emulated atmospheric turbulence and obstructions is demonstrated. The obtained experimental results indicate that the compensation scheme can effectively reduce the inter-channel crosstalk, improve the bit-error rate (BER) performance, and recuperate the nondiffracting property of Bessel beams. The proposed scheme might be used in future high-capacity OAM links which are affected by atmospheric turbulence and obstructions. PMID:28230076

  7. Solar adaptive optics: specificities, lessons learned, and open alternatives

    NASA Astrophysics Data System (ADS)

    Montilla, I.; Marino, J.; Asensio Ramos, A.; Collados, M.; Montoya, L.; Tallon, M.

    2016-07-01

    First on sky adaptive optics experiments were performed on the Dunn Solar Telescope on 1979, with a shearing interferometer and limited success. Those early solar adaptive optics efforts forced to custom-develop many components, such as Deformable Mirrors and WaveFront Sensors, which were not available at that time. Later on, the development of the correlation Shack-Hartmann marked a breakthrough in solar adaptive optics. Since then, successful Single Conjugate Adaptive Optics instruments have been developed for many solar telescopes, i.e. the National Solar Observatory, the Vacuum Tower Telescope and the Swedish Solar Telescope. Success with the Multi Conjugate Adaptive Optics systems for GREGOR and the New Solar Telescope has proved to be more difficult to attain. Such systems have a complexity not only related to the number of degrees of freedom, but also related to the specificities of the Sun, used as reference, and the sensing method. The wavefront sensing is performed using correlations on images with a field of view of 10", averaging wavefront information from different sky directions, affecting the sensing and sampling of high altitude turbulence. Also due to the low elevation at which solar observations are performed we have to include generalized fitting error and anisoplanatism, as described by Ragazzoni and Rigaut, as non-negligible error sources in the Multi Conjugate Adaptive Optics error budget. For the development of the next generation Multi Conjugate Adaptive Optics systems for the Daniel K. Inouye Solar Telescope and the European Solar Telescope we still need to study and understand these issues, to predict realistically the quality of the achievable reconstruction. To improve their designs other open issues have to be assessed, i.e. possible alternative sensing methods to avoid the intrinsic anisoplanatism of the wide field correlation Shack-Hartmann, new parameters to estimate the performance of an adaptive optics solar system, alternatives to the Strehl and the Point Spread Function used in night time adaptive optics but not really suitable to the solar systems, and new control strategies more complex than the ones used in nowadays solar Multi Conjugate Adaptive Optics systems. In this paper we summarize the lessons learned with past and current solar adaptive optics systems and focus on the discussion on the new alternatives to solve present open issues limiting their performance.

  8. Adaptive optics images restoration based on frame selection and multi-framd blind deconvolution

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Rao, C. H.; Wei, K.

    2008-10-01

    The adaptive optics can only partially compensate the image blurred by atmospheric turbulent due to the observing condition and hardware restriction. A post-processing method based on frame selection and multi-frame blind deconvolution to improve images partially corrected by adaptive optics is proposed. The appropriate frames which are picked out by frame selection technique is deconvolved. There is no priori knowledge except the positive constraint. The method has been applied in the image restoration of celestial bodies which were observed by 1.2m telescope equipped with 61-element adaptive optical system in Yunnan Observatory. The results showed that the method can effectively improve the images partially corrected by adaptive optics.

  9. GLOBECOM '87 - Global Telecommunications Conference, Tokyo, Japan, Nov. 15-18, 1987, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    The present conference on global telecommunications discusses topics in the fields of Integrated Services Digital Network (ISDN) technology field trial planning and results to date, motion video coding, ISDN networking, future network communications security, flexible and intelligent voice/data networks, Asian and Pacific lightwave and radio systems, subscriber radio systems, the performance of distributed systems, signal processing theory, satellite communications modulation and coding, and terminals for the handicapped. Also discussed are knowledge-based technologies for communications systems, future satellite transmissions, high quality image services, novel digital signal processors, broadband network access interface, traffic engineering for ISDN design and planning, telecommunications software, coherent optical communications, multimedia terminal systems, advanced speed coding, portable and mobile radio communications, multi-Gbit/second lightwave transmission systems, enhanced capability digital terminals, communications network reliability, advanced antimultipath fading techniques, undersea lightwave transmission, image coding, modulation and synchronization, adaptive signal processing, integrated optical devices, VLSI technologies for ISDN, field performance of packet switching, CSMA protocols, optical transport system architectures for broadband ISDN, mobile satellite communications, indoor wireless communication, echo cancellation in communications, and distributed network algorithms.

  10. Photonic Potential of Haloarchaeal Pigment Bacteriorhodopsin for Future Electronics: A Review.

    PubMed

    Ashwini, Ravi; Vijayanand, S; Hemapriya, J

    2017-08-01

    Haloarchaea are known for its adaptation in extreme saline environment. Halophilic archaea produces carotenoid pigments and proton pumps to protect them from extremes of salinity. Bacteriorhodopsin (bR) is a light-driven proton pump that resides in the membrane of haloarchaea Halobacterium salinarum. The photocycle of Bacteriorhodopsin passes through several states from K to O, finally liberating ATP for host's survival. Extensive studies on Bacteriorhodopsin photocycle has provided in depth knowledge on their sequential mechanism of converting solar energy into chemical energy inside the cell. This ability of Bacteriorhodopsin to harvest sunlight has now been experimented to exploit the unexplored and extensively available solar energy in various biotechnological applications. Currently, bacteriorhodopsin finds its importance in dye-sensitized solar cell (DSSC), logic gates (integrated circuits, IC's), optical switching, optical memories, storage devices (random access memory, RAM), biosensors, electronic sensors and optical microcavities. This review deals with the optical and electrical applications of the purple pigment Bacteriorhodopsin.

  11. Asymmetric Spherical Coupled Escape Probability: Model and Results for Optically Thick Cometary Comae

    NASA Astrophysics Data System (ADS)

    Gersch, Alan; A'Hearn, M. F.

    2012-05-01

    We have adapted the Coupled Escape Probability method of radiative transfer calculations for use in asymmetrical spherical situations and applied it to modeling molecular emission spectra of potentially optically thick cometary comae. Recent space missions (e.g. Deep Impact & EPOXI) have provided spectra from comets of unprecedented spatial resolution of the regions of the coma near the nucleus, where the coma may be optically thick. Currently active missions (e.g. Rosetta) and hopefully more in the future will continue the trend and demonstrate the need for better modeling of comae with optical depth effects included. Here we present a brief description of our model and results of interest for cometary studies, especially for space based observations. Although primarily motivated by the need for comet modeling, our (asymmetric spherical) radiative transfer model could be used for studying other astrophysical phenomena as well.

  12. Coherent Optical Adaptive Techniques (COAT)

    DTIC Science & Technology

    1975-01-01

    8217 neceeemry and Identity by block number) Laser Phased Array Adaptive Optics Atmospheric-Turbulence and Thermal Blooming Compensation 20...characteristics of an experimental, visible wavelength, eighteen-element, self-adaptive optical phased array. Measurements on a well-characterized...V LOCAL PHASING ■ LOOP OPTICAL DETECTOR’ LOCAL LOCK / ROOF TOP "^/PROPAGATION’ ^ GLINT ■lm FOCAL LENGTH LENS DETECTOR DMWI rh

  13. Wavefront Reconstruction and Mirror Surface Optimizationfor Adaptive Optics

    DTIC Science & Technology

    2014-06-01

    TERMS Wavefront reconstruction, Adaptive optics , Wavelets, Atmospheric turbulence , Branch points, Mirror surface optimization, Space telescope, Segmented...contribution adapts the proposed algorithm to work when branch points are present from significant atmospheric turbulence . An analysis of vector spaces...estimate the distortion of the collected light caused by the atmosphere and corrected by adaptive optics . A generalized orthogonal wavelet wavefront

  14. NIAC Phase II Orbiting Rainbows: Future Space Imaging with Granular Systems

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco B.; Basinger, Scott; Arumugam, Darmindra; Swartzlander, Grover

    2017-01-01

    Inspired by the light scattering and focusing properties of distributed optical assemblies in Nature, such as rainbows and aerosols, and by recent laboratory successes in optical trapping and manipulation, we propose a unique combination of space optics and autonomous robotic system technology, to enable a new vision of space system architecture with applications to ultra-lightweight space optics and, ultimately, in-situ space system fabrication. Typically, the cost of an optical system is driven by the size and mass of the primary aperture. The ideal system is a cloud of spatially disordered dust-like objects that can be optically manipulated: it is highly reconfigurable, fault-tolerant, and allows very large aperture sizes at low cost. This new concept is based on recent understandings in the physics of optical manipulation of small particles in the laboratory and the engineering of distributed ensembles of spacecraft swarms to shape an orbiting cloud of micron-sized objects. In the same way that optical tweezers have revolutionized micro- and nano-manipulation of objects, our breakthrough concept will enable new large scale NASA mission applications and develop new technology in the areas of Astrophysical Imaging Systems and Remote Sensing because the cloud can operate as an adaptive optical imaging sensor. While achieving the feasibility of constructing one single aperture out of the cloud is the main topic of this work, it is clear that multiple orbiting aerosol lenses could also combine their power to synthesize a much larger aperture in space to enable challenging goals such as exo-planet detection. Furthermore, this effort could establish feasibility of key issues related to material properties, remote manipulation, and autonomy characteristics of cloud in orbit. There are several types of endeavors (science missions) that could be enabled by this type of approach, i.e. it can enable new astrophysical imaging systems, exo-planet search, large apertures allow for unprecedented high resolution to discern continents and important features of other planets, hyperspectral imaging, adaptive systems, spectroscopy imaging through limb, and stable optical systems from Lagrange-points. Furthermore, future micro-miniaturization might hold promise of a further extension of our dust aperture concept to other more exciting smart dust concepts with other associated capabilities. Our objective in Phase II was to experimentally and numerically investigate how to optically manipulate and maintain the shape of an orbiting cloud of dust-like matter so that it can function as an adaptable ultra-lightweight surface. Our solution is based on the aperture being an engineered granular medium, instead of a conventional monolithic aperture. This allows building of apertures at a reduced cost, enables extremely fault-tolerant apertures that cannot otherwise be made, and directly enables classes of missions for exoplanet detection based on Fourier spectroscopy with tight angular resolution and innovative radar systems for remote sensing. In this task, we have examined the advanced feasibility of a crosscutting concept that contributes new technological approaches for space imaging systems, autonomous systems, and space applications of optical manipulation. The proposed investigation has matured the concept that we started in Phase I to TRL 3, identifying technology gaps and candidate system architectures for the space-borne cloud as an aperture.

  15. The Durham Adaptive Optics Simulation Platform (DASP): Current status

    NASA Astrophysics Data System (ADS)

    Basden, A. G.; Bharmal, N. A.; Jenkins, D.; Morris, T. J.; Osborn, J.; Peng, J.; Staykov, L.

    2018-01-01

    The Durham Adaptive Optics Simulation Platform (DASP) is a Monte-Carlo modelling tool used for the simulation of astronomical and solar adaptive optics systems. In recent years, this tool has been used to predict the expected performance of the forthcoming extremely large telescope adaptive optics systems, and has seen the addition of several modules with new features, including Fresnel optics propagation and extended object wavefront sensing. Here, we provide an overview of the features of DASP and the situations in which it can be used. Additionally, the user tools for configuration and control are described.

  16. Wavefront measurement using computational adaptive optics.

    PubMed

    South, Fredrick A; Liu, Yuan-Zhi; Bower, Andrew J; Xu, Yang; Carney, P Scott; Boppart, Stephen A

    2018-03-01

    In many optical imaging applications, it is necessary to correct for aberrations to obtain high quality images. Optical coherence tomography (OCT) provides access to the amplitude and phase of the backscattered optical field for three-dimensional (3D) imaging samples. Computational adaptive optics (CAO) modifies the phase of the OCT data in the spatial frequency domain to correct optical aberrations without using a deformable mirror, as is commonly done in hardware-based adaptive optics (AO). This provides improvement of image quality throughout the 3D volume, enabling imaging across greater depth ranges and in highly aberrated samples. However, the CAO aberration correction has a complicated relation to the imaging pupil and is not a direct measurement of the pupil aberrations. Here we present new methods for recovering the wavefront aberrations directly from the OCT data without the use of hardware adaptive optics. This enables both computational measurement and correction of optical aberrations.

  17. Silicon pore optics for future x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Wille, Eric; Bavdaz, Marcos; Wallace, Kotska; Shortt, Brian; Collon, Maximilien; Ackermann, Marcelo; Günther, Ramses; Olde Riekerink, Mark; Koelewijn, Arenda; Haneveld, Jeroen; van Baren, Coen; Erhard, Markus; Kampf, Dirk; Christensen, Finn; Krumrey, Michael; Freyberg, Michael; Burwitz, Vadim

    2017-11-01

    Lightweight X-ray Wolter optics with a high angular resolution will enable the next generation of X-ray telescopes in space. The candidate mission ATHENA (Advanced Telescope for High Energy Astrophysics) required a mirror assembly of 1 m2 effective area (at 1 keV) and an angular resolution of 10 arcsec or better. These specifications can only be achieved with a novel technology like Silicon Pore Optics, which is being developed by ESA together with a consortium of European industry. Silicon Pore Optics are made of commercial Si wafers using process technology adapted from the semiconductor industry. We present the recent upgrades made to the manufacturing processes and equipment, ranging from the manufacture of single mirror plates towards complete focusing mirror modules mounted in flight configuration, and results from first vibration tests. The performance of the mirror modules is tested at X-ray facilities that were recently extended to measure optics at a focal distance up to 20 m.

  18. Deploying Monitoring Trails for Fault Localization in All- Optical Networks and Radio-over-Fiber Passive Optical Networks

    NASA Astrophysics Data System (ADS)

    Maamoun, Khaled Mohamed

    Fault localization is the process of realizing the true source of a failure from a set of collected failure notifications. Isolating failure recovery within the network optical domain is necessary to resolve alarm storm problems. The introduction of the monitoring trail (m-trail) has been proven to deliver better performance by employing monitoring resources in a form of optical trails - a monitoring framework that generalizes all the previously reported counterparts. In this dissertation, the m-trail design is explored and a focus is given to the analysis on using m-trails with established lightpaths to achieve fault localization. This process saves network resources by reducing the number of the m-trails required for fault localization and therefore the number of wavelengths used in the network. A novel approach based on Geographic Midpoint Technique, an adapted version of the Chinese Postman's Problem (CPP) solution and an adapted version of the Traveling Salesman's Problem (TSP) solution algorithms is introduced. The desirable features of network architectures and the enabling of innovative technologies for delivering future millimeter-waveband (mm-WB) Radio-over-Fiber (RoF) systems for wireless services integrated in a Dense Wavelength Division Multiplexing (DWDM) is proposed in this dissertation. For the conceptual illustration, a DWDM RoF system with channel spacing of 12.5 GHz is considered. The mm-WB Radio Frequency (RF) signal is obtained at each Optical Network Unit (ONU) by simultaneously using optical heterodyning photo detection between two optical carriers. The generated RF modulated signal has a frequency of 12.5 GHz. This RoF system is easy, cost-effective, resistant to laser phase noise and also reduces maintenance needs, in principle. A revision of related RoF network proposals and experiments is also included. A number of models for Passive Optical Networks (PON)/ RoF-PON that combine both innovative and existing ideas along with a number of solutions for m-trail design problem of these models are proposed. The comparison between these models uses the expected survivability function which proved that these models are liable to be implemented in the new and existing PON/ RoF-PON systems. This dissertation is followed by recommendation of possible directions for future research in this area.

  19. Interferometry in the Era of Very Large Telescopes

    NASA Technical Reports Server (NTRS)

    Barry, Richard K.

    2010-01-01

    Research in modern stellar interferometry has focused primarily on ground-based observatories, with very long baselines or large apertures, that have benefited from recent advances in fringe tracking, phase reconstruction, adaptive optics, guided optics, and modern detectors. As one example, a great deal of effort has been put into development of ground-based nulling interferometers. The nulling technique is the sparse aperture equivalent of conventional coronography used in filled aperture telescopes. In this mode the stellar light itself is suppressed by a destructive fringe, effectively enhancing the contrast of the circumstellar material located near the star. Nulling interferometry has helped to advance our understanding of the astrophysics of many distant objects by providing the spatial resolution necessary to localize the various faint emission sources near bright objects. We illustrate the current capabilities of this technique by describing the first scientific results from the Keck Interferometer Nuller that combines the light from the two largest optical telescopes in the world including new, unpublished measurements of exozodiacal dust disks. We discuss prospects in the near future for interferometry in general, the capabilities of secondary masking interferometry on very large telescopes, and of nulling interferometry using outriggers on very large telescopes. We discuss future development of a simplified space-borne NIR nulling architecture, the Fourier-Kelvin Stellar Interferometer, capable of detecting and characterizing an Earth twin in the near future and how such a mission would benefit from the optical wavelength coverage offered by large, ground-based instruments.

  20. Solar tomography adaptive optics.

    PubMed

    Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang

    2014-03-10

    Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.

  1. Adaptive matching of the iota ring linear optics for space charge compensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, A.; Bruhwiler, D. L.; Cook, N.

    Many present and future accelerators must operate with high intensity beams when distortions induced by space charge forces are among major limiting factors. Betatron tune depression of above approximately 0.1 per cell leads to significant distortions of linear optics. Many aspects of machine operation depend on proper relations between lattice functions and phase advances, and can be i proved with proper treatment of space charge effects. We implement an adaptive algorithm for linear lattice re matching with full account of space charge in the linear approximation for the case of Fermilab’s IOTA ring. The method is based on a searchmore » for initial second moments that give closed solution and, at the same predefined set of goals for emittances, beta functions, dispersions and phase advances at and between points of interest. Iterative singular value decomposition based technique is used to search for optimum by varying wide array of model parameters« less

  2. Exploring plasmonic nanoantenna arrays as a platform for biosensing

    NASA Astrophysics Data System (ADS)

    Toussaint, Kimani C.

    2017-08-01

    In recent years, the PROBE Lab at the University of Illinois at Urbana-Champaign has made significant developments in plasmonic nanoantenna technology by more closely exploring the rich parameter space associated with these structures including geometry and material composition, as well as the optical excitation conditions. Indeed, plasmonic nanoantennas are attractive for a variety of potential applications in nanotechnology, biology, and photonics due to their ability to tightly confine and strongly enhance optical fields. This talk will discuss our work with arrays of Au bowtie nanoantennas (BNAs) with an emphasis on how their field enhancement properties could be harnessed for particle manipulation and sensing. We also present our work with pillar-supported BNAs (p-BNAs) and discuss their potential for sensing applications, particularly when adapted for response in the near-IR. The talk will conclude with a brief discussion of some of the future work pursued by the PROBE lab, including adapting BNAs for lab-on-a-chip applications.

  3. Laboratory MCAO Test-Bed for Developing Wavefront Sensing Concepts.

    PubMed

    Goncharov, A V; Dainty, J C; Esposito, S; Puglisi, A

    2005-07-11

    An experimental optical bench test-bed for developing new wavefront sensing concepts for Multi-Conjugate Adaptive Optics (MCAO) systems is described. The main objective is to resolve imaging problems associated with wavefront sensing of the atmospheric turbulence for future MCAO systems on Extremely Large Telescopes (ELTs). The test-bed incorporates five reference sources, two deformable mirrors (DMs) and atmospheric phase screens to simulate a scaled version of a 10-m adaptive telescope operating at the K band. A recently proposed compact tomographic wavefront sensor is employed for star-oriented DMs control in the MCAO system. The MCAO test-bed is used to verify the feasibility of the wavefront sensing concept utilizing a field lenslet array for multi-pupil imaging on a single detector. First experimental results of MCAO correction with the proposed tomographic wavefront sensor are presented and compared to the theoretical prediction based on the characteristics of the phase screens, actuator density of the DMs and the guide star configuration.

  4. Simulation of DKIST solar adaptive optics system

    NASA Astrophysics Data System (ADS)

    Marino, Jose; Carlisle, Elizabeth; Schmidt, Dirk

    2016-07-01

    Solar adaptive optics (AO) simulations are a valuable tool to guide the design and optimization process of current and future solar AO and multi-conjugate AO (MCAO) systems. Solar AO and MCAO systems rely on extended object cross-correlating Shack-Hartmann wavefront sensors to measure the wavefront. Accurate solar AO simulations require computationally intensive operations, which have until recently presented a prohibitive computational cost. We present an update on the status of a solar AO and MCAO simulation tool being developed at the National Solar Observatory. The simulation tool is a multi-threaded application written in the C++ language that takes advantage of current large multi-core CPU computer systems and fast ethernet connections to provide accurate full simulation of solar AO and MCAO systems. It interfaces with KAOS, a state of the art solar AO control software developed by the Kiepenheuer-Institut fuer Sonnenphysik, that provides reliable AO control. We report on the latest results produced by the solar AO simulation tool.

  5. Design of a Compact, Bimorph Deformable Mirror-Based Adaptive Optics Scanning Laser Ophthalmoscope.

    PubMed

    He, Yi; Deng, Guohua; Wei, Ling; Li, Xiqi; Yang, Jinsheng; Shi, Guohua; Zhang, Yudong

    2016-01-01

    We have designed, constructed and tested an adaptive optics scanning laser ophthalmoscope (AOSLO) using a bimorph mirror. The simulated AOSLO system achieves diffraction-limited criterion through all the raster scanning fields (6.4 mm pupil, 3° × 3° on pupil). The bimorph mirror-based AOSLO corrected ocular aberrations in model eyes to less than 0.1 μm RMS wavefront error with a closed-loop bandwidth of a few Hz. Facilitated with a bimorph mirror at a stroke of ±15 μm with 35 elements and an aperture of 20 mm, the new AOSLO system has a size only half that of the first-generation AOSLO system. The significant increase in stroke allows for large ocular aberrations such as defocus in the range of ±600° and astigmatism in the range of ±200°, thereby fully exploiting the AO correcting capabilities for diseased human eyes in the future.

  6. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.

    PubMed

    Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N; Zawadzki, Robert J; Sarunic, Marinko V

    2015-08-24

    Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images.

  7. MULTIMODAL IMAGING OF ACUTE EXUDATIVE POLYMORPHOUS VITELLIFORM MACULOPATHY WITH OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY AND ADAPTIVE OPTICS SCANNING LASER OPHTHALMOSCOPY.

    PubMed

    Skondra, Dimitra; Nesper, Peter L; Fawzi, Amani A

    2017-05-16

    To report a case of acute exudative polymorphous vitelliform maculopathy including the findings of optical coherence tomography angiography and adaptive optics scanning laser ophthalmoscopy. Findings on clinical examination, color fundus photography, spectral-domain optical coherence tomography, infrared reflectance, autofluorescence, optical coherence tomography angiography, and adaptive optics scanning laser ophthalmoscopy. A 54-year-old white man with no significant medical history and history of smoking presented with bilateral multiple serous and vitelliform detachments consistent with acute exudative polymorphous vitelliform maculopathy. Extensive infectious, inflammatory, and malignancy workup was negative. Spectral-domain optical coherence tomography showed thickened, hyperreflective ellipsoid zone, subretinal fluid, and focal as well as diffuse subretinal hyperreflective material corresponding to the vitelliform lesions. Optical coherence tomography angiography showed normal retinal and choroidal vasculature, whereas adaptive optics scanning laser ophthalmoscopy showed circular focal "target" lesions at the level of the photoreceptors in the area of foveal detachment. Multimodal imaging is valuable in evaluating patients with acute exudative polymorphous vitelliform maculopathy.

  8. Adaptive Optics Image Restoration Based on Frame Selection and Multi-frame Blind Deconvolution

    NASA Astrophysics Data System (ADS)

    Tian, Yu; Rao, Chang-hui; Wei, Kai

    Restricted by the observational condition and the hardware, adaptive optics can only make a partial correction of the optical images blurred by atmospheric turbulence. A postprocessing method based on frame selection and multi-frame blind deconvolution is proposed for the restoration of high-resolution adaptive optics images. By frame selection we mean we first make a selection of the degraded (blurred) images for participation in the iterative blind deconvolution calculation, with no need of any a priori knowledge, and with only a positivity constraint. This method has been applied to the restoration of some stellar images observed by the 61-element adaptive optics system installed on the Yunnan Observatory 1.2m telescope. The experimental results indicate that this method can effectively compensate for the residual errors of the adaptive optics system on the image, and the restored image can reach the diffraction-limited quality.

  9. Research on the adaptive optical control technology based on DSP

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolu; Xue, Qiao; Zeng, Fa; Zhao, Junpu; Zheng, Kuixing; Su, Jingqin; Dai, Wanjun

    2018-02-01

    Adaptive optics is a real-time compensation technique using high speed support system for wavefront errors caused by atmospheric turbulence. However, the randomness and instantaneity of atmospheric changing introduce great difficulties to the design of adaptive optical systems. A large number of complex real-time operations lead to large delay, which is an insurmountable problem. To solve this problem, hardware operation and parallel processing strategy are proposed, and a high-speed adaptive optical control system based on DSP is developed. The hardware counter is used to check the system. The results show that the system can complete a closed loop control in 7.1ms, and improve the controlling bandwidth of the adaptive optical system. Using this system, the wavefront measurement and closed loop experiment are carried out, and obtain the good results.

  10. Predictor-corrector framework for the sequential assembly of optical systems based on wavefront sensing.

    PubMed

    Schindlbeck, Christopher; Pape, Christian; Reithmeier, Eduard

    2018-04-16

    Alignment of optical components is crucial for the assembly of optical systems to ensure their full functionality. In this paper we present a novel predictor-corrector framework for the sequential assembly of serial optical systems. Therein, we use a hybrid optical simulation model that comprises virtual and identified component positions. The hybrid model is constantly adapted throughout the assembly process with the help of nonlinear identification techniques and wavefront measurements. This enables prediction of the future wavefront at the detector plane and therefore allows for taking corrective measures accordingly during the assembly process if a user-defined tolerance on the wavefront error is violated. We present a novel notation for the so-called hybrid model and outline the work flow of the presented predictor-corrector framework. A beam expander is assembled as demonstrator for experimental verification of the framework. The optical setup consists of a laser, two bi-convex spherical lenses each mounted to a five degree-of-freedom stage to misalign and correct components, and a Shack-Hartmann sensor for wavefront measurements.

  11. Study on polarized optical flow algorithm for imaging bionic polarization navigation micro sensor

    NASA Astrophysics Data System (ADS)

    Guan, Le; Liu, Sheng; Li, Shi-qi; Lin, Wei; Zhai, Li-yuan; Chu, Jin-kui

    2018-05-01

    At present, both the point source and the imaging polarization navigation devices only can output the angle information, which means that the velocity information of the carrier cannot be extracted from the polarization field pattern directly. Optical flow is an image-based method for calculating the velocity of pixel point movement in an image. However, for ordinary optical flow, the difference in pixel value as well as the calculation accuracy can be reduced in weak light. Polarization imaging technology has the ability to improve both the detection accuracy and the recognition probability of the target because it can acquire the extra polarization multi-dimensional information of target radiation or reflection. In this paper, combining the polarization imaging technique with the traditional optical flow algorithm, a polarization optical flow algorithm is proposed, and it is verified that the polarized optical flow algorithm has good adaptation in weak light and can improve the application range of polarization navigation sensors. This research lays the foundation for day and night all-weather polarization navigation applications in future.

  12. The optical design of a visible adaptive optics system for the Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Kopon, Derek

    The Magellan Adaptive Optics system will achieve first light in November of 2012. This AO system contains several subsystems including the 585-actuator concave adaptive secondary mirror, the Calibration Return Optic (CRO) alignment and calibration system, the CLIO 1-5 microm IR science camera, the movable guider camera and active optics assembly, and the W-Unit, which contains both the Pyramid Wavefront Sensor (PWFS) and the VisAO visible science camera. In this dissertation, we present details of the design, fabrication, assembly, alignment, and laboratory performance of the VisAO camera and its optical components. Many of these components required a custom design, such as the Spectral Differential Imaging Wollaston prisms and filters and the coronagraphic spots. One component, the Atmospheric Dispersion Corrector (ADC), required a unique triplet design that had until now never been fabricated and tested on sky. We present the design, laboratory, and on-sky results for our triplet ADC. We also present details of the CRO test setup and alignment. Because Magellan is a Gregorian telescope, the ASM is a concave ellipsoidal mirror. By simulating a star with a white light point source at the far conjugate, we can create a double-pass test of the whole system without the need for a real on-sky star. This allows us to test the AO system closed loop in the Arcetri test tower at its nominal design focal length and optical conjugates. The CRO test will also allow us to calibrate and verify the system off-sky at the Magellan telescope during commissioning and periodically thereafter. We present a design for a possible future upgrade path for a new visible Integral Field Spectrograph. By integrating a fiber array bundle at the VisAO focal plane, we can send light to a pre-existing facility spectrograph, such as LDSS3, which will allow 20 mas spatial sampling and R˜1,800 spectra over the band 0.6-1.05 microm. This would be the highest spatial resolution IFU to date, either from the ground or in space.

  13. Eastern Anatolia Observatory (DAG): Recent developments and a prospective observing site for robotic telescopes

    NASA Astrophysics Data System (ADS)

    Yesilyaprak, C.; Yerli, S. K.; Keskin, O.

    2016-12-01

    This document (Eastern Anatolia Observatory (DAG) is the new observatory of Turkey with the optical and near-infrared largest telescope (4 m class) and its robust observing site infrastructure. This national project consists of three phases with DAG (Telescope, Enclosure, Buildings and Infrastructures), FPI (Focal Plane Instruments and Adaptive Optics) and MCP (Mirror Coating Plant) and is supported by the Ministry of Development of Turkey. The tenders of telescope and enclosure have been made and almost all the infrastructure (roads, geological and atmospherical surveys, electricity, fiber optics, cable car, water, generator, etc.) of DAG site (Erzurum/Turkey, 3,170 m altitude) have been completed. This poster is about the recent developments of DAG and about the future possible collaborations for various robotic telescopes which can be set up in DAG site.

  14. DARKNESS: A Microwave Kinetic Inductance Detector Integral Field Spectrograph for High-contrast Astronomy

    NASA Astrophysics Data System (ADS)

    Meeker, Seth R.; Mazin, Benjamin A.; Walter, Alex B.; Strader, Paschal; Fruitwala, Neelay; Bockstiegel, Clint; Szypryt, Paul; Ulbricht, Gerhard; Coiffard, Grégoire; Bumble, Bruce; Cancelo, Gustavo; Zmuda, Ted; Treptow, Ken; Wilcer, Neal; Collura, Giulia; Dodkins, Rupert; Lipartito, Isabel; Zobrist, Nicholas; Bottom, Michael; Shelton, J. Chris; Mawet, Dimitri; van Eyken, Julian C.; Vasisht, Gautam; Serabyn, Eugene

    2018-06-01

    We present DARKNESS (the DARK-speckle Near-infrared Energy-resolving Superconducting Spectrophotometer), the first of several planned integral field spectrographs to use optical/near-infrared Microwave Kinetic Inductance Detectors (MKIDs) for high-contrast imaging. The photon counting and simultaneous low-resolution spectroscopy provided by MKIDs will enable real-time speckle control techniques and post-processing speckle suppression at frame rates capable of resolving the atmospheric speckles that currently limit high-contrast imaging from the ground. DARKNESS is now operational behind the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph at Palomar Observatory. Here, we describe the motivation, design, and characterization of the instrument, early on-sky results, and future prospects.

  15. Adaptive optics for in-vivo exploration of human retinal structures

    NASA Astrophysics Data System (ADS)

    Paques, Michel; Meimon, Serge; Grieve, Kate; Rossant, Florence

    2017-06-01

    Adaptive optics (AO)-enhanced imaging of the retina is now reaching a level of technical maturity which fosters its expanding use in research and clinical centers in the world. By achieving wavelength-limited resolution it did not only allow a better observation of retinal substructures already visible by other means, it also broke anatomical frontiers such as individual photoreceptors or vessel walls. The clinical applications of AO-enhanced imaging has been slower than that of optical coherence tomography because of the combination of technical complexity, costs and the paucity of interpretative scheme of complex data. In several diseases, AO-enhanced imaging has already proven to provide added clinical value and quantitative biomarkers. Here, we will review some of the clinical applications of AO-enhanced en face imaging, and trace perspectives to improve its clinical pertinence in these applications. An interesting perspective is to document cell motion through time-lapse imaging such as during agerelated macular degeneration. In arterial hypertension, the possibility to measure parietal thickness and perform fine morphometric analysis is of interest for monitoring patients. In the near future, implementation of novel approaches and multimodal imaging, including in particular optical coherence tomography, will undoubtedly expand our imaging capabilities. Tackling the technical, scientific and medical challenges offered by high resolution imaging are likely to contribute to our rethinking of many retinal diseases, and, most importantly, may find applications in other areas of medicine.

  16. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens

    PubMed Central

    Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N.; Zawadzki, Robert J.; Sarunic, Marinko V.

    2015-01-01

    Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images. PMID:26368169

  17. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems.

    PubMed

    Downie, J D; Goodman, J W

    1989-10-15

    A ground-based adaptive optics imaging telescope system attempts to improve image quality by measuring and correcting for atmospherically induced wavefront aberrations. The necessary control computations during each cycle will take a finite amount of time, which adds to the residual error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper investigates this possibility by studying the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for adaptive optics use.

  18. Large-field-of-view imaging by multi-pupil adaptive optics.

    PubMed

    Park, Jung-Hoon; Kong, Lingjie; Zhou, Yifeng; Cui, Meng

    2017-06-01

    Adaptive optics can correct for optical aberrations. We developed multi-pupil adaptive optics (MPAO), which enables simultaneous wavefront correction over a field of view of 450 × 450 μm 2 and expands the correction area to nine times that of conventional methods. MPAO's ability to perform spatially independent wavefront control further enables 3D nonplanar imaging. We applied MPAO to in vivo structural and functional imaging in the mouse brain.

  19. Adaptive Optics Communications Performance Analysis

    NASA Technical Reports Server (NTRS)

    Srinivasan, M.; Vilnrotter, V.; Troy, M.; Wilson, K.

    2004-01-01

    The performance improvement obtained through the use of adaptive optics for deep-space communications in the presence of atmospheric turbulence is analyzed. Using simulated focal-plane signal-intensity distributions, uncoded pulse-position modulation (PPM) bit-error probabilities are calculated assuming the use of an adaptive focal-plane detector array as well as an adaptively sized single detector. It is demonstrated that current practical adaptive optics systems can yield performance gains over an uncompensated system ranging from approximately 1 dB to 6 dB depending upon the PPM order and background radiation level.

  20. Remote sensing with intense filaments enhanced by adaptive optics

    NASA Astrophysics Data System (ADS)

    Daigle, J.-F.; Kamali, Y.; Châteauneuf, M.; Tremblay, G.; Théberge, F.; Dubois, J.; Roy, G.; Chin, S. L.

    2009-11-01

    A method involving a closed loop adaptive optic system is investigated as a tool to significantly enhance the collected optical emissions, for remote sensing applications involving ultrafast laser filamentation. The technique combines beam expansion and geometrical focusing, assisted by an adaptive optics system to correct the wavefront aberrations. Targets, such as a gaseous mixture of air and hydrocarbons, solid lead and airborne clouds of contaminated aqueous aerosols, were remotely probed with filaments generated at distances up to 118 m after the focusing beam expander. The integrated backscattered signals collected by the detection system (15-28 m from the filaments) were increased up to a factor of 7, for atmospheric N2 and solid lead, when the wavefronts were corrected by the adaptive optic system. Moreover, an extrapolation based on a simplified version of the LIDAR equation showed that the adaptive optic system improved the detection distance for N2 molecular fluorescence, from 45 m for uncorrected wavefronts to 125 m for corrected.

  1. Robust Wave-front Correction in a Small Scale Adaptive Optics System Using a Membrane Deformable Mirror

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Park, S.; Baik, S.; Jung, J.; Lee, S.; Yoo, J.

    A small scale laboratory adaptive optics system using a Shack-Hartmann wave-front sensor (WFS) and a membrane deformable mirror (DM) has been built for robust image acquisition. In this study, an adaptive limited control technique is adopted to maintain the long-term correction stability of an adaptive optics system. To prevent the waste of dynamic correction range for correcting small residual wave-front distortions which are inefficient to correct, the built system tries to limit wave-front correction when a similar small difference wave-front pattern is repeatedly generated. Also, the effect of mechanical distortion in an adaptive optics system is studied and a pre-recognition method for the distortion is devised to prevent low-performance system operation. A confirmation process for a balanced work assignment among deformable mirror (DM) actuators is adopted for the pre-recognition. The corrected experimental results obtained by using a built small scale adaptive optics system are described in this paper.

  2. Proposed Multiconjugate Adaptive Optics Experiment at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauman, B J; Gavel, D T; Flath, L M

    2001-08-15

    While the theory behind design of multiconjugate adaptive optics (MCAO) systems is growing, there is still a paucity of experience building and testing such instruments. We propose using the Lick adaptive optics (AO) system as a basis for demonstrating the feasibility/workability of MCAO systems, testing underlying assumptions, and experimenting with different approaches to solving MCAO system issues.

  3. System and method for reproducibly mounting an optical element

    DOEpatents

    Eisenbies, Stephen; Haney, Steven

    2005-05-31

    The present invention provides a two-piece apparatus for holding and aligning the MEMS deformable mirror. The two-piece apparatus comprises a holding plate for fixedly holding an adaptive optics element in an overall optical system and a base spatially fixed with respect to the optical system and adapted for mounting and containing the holding plate. The invention further relates to a means for configuring the holding plate through adjustments to each of a number of off-set pads touching each of three orthogonal plane surfaces on the base, wherein through the adjustments the orientation of the holding plate, and the adaptive optics element attached thereto, can be aligned with respect to the optical system with six degrees of freedom when aligning the plane surface of the optical element. The mounting system thus described also enables an operator to repeatedly remove and restore the adaptive element in the optical system without the need to realign the system once that element has been aligned.

  4. Development of fiber optic sensing interrogators for launchers

    NASA Astrophysics Data System (ADS)

    Plattner, M. P.; Buck, T. C.; Eder, B.; Reutlinger, A.; McKenzie, I.

    2017-11-01

    We present our work about the development of two complementary interrogation schemes based on fiber optic sensing for the use of structural and thermal monitoring of Ariane launchers. The advantages of fiber optic sensing in particular light-weight, immunity to electromagnetic interferences and the possibility of sensor distribution along optical fibers are driving factors for utilization of this technology in space crafts [1]. The edge-filter (EF) and scanning-laser (SL) interrogators for determination of the mean wavelength of fiber Bragg grating (FBG) sensors have been implemented as two separate demonstrators. Within this paper we describe the functional principles of both interrogators. Furthermore we present test results where the developed systems have been used for readout of FBG sensors which are implemented in an Ariane structural demonstrator during thermal, thermal-vacuum and vibration tests. Functionality of both systems is demonstrated and their potential for further development towards space qualified systems is shown. Since the performance characteristics of the two systems are different from each other, they are dedicated for different sensing applications on a launcher. The EF sensor interrogator provides a sample rate of 20 kHz at a number of 4 connected sensors and supports parallel readout and aliasing free operation. Therefore it is best suited for high priority measurement. Structural monitoring which requires the acquisition of real time sensor information in order to support control of the launcher is one operation area for a future EF system. The SL interrogator provides an overall measurement rate of 1 kHz at a number of 24 connected sensors distributed on three sensor channels. It can be adapted to any sensors that have design wavelengths lying within the output spectrum of the laser diode. Furthermore the number of overall sensors to be read out with this system can be adapted easily. Thermal mapping of satellite panels is one possible future application for the SL interrogator.

  5. High-Resolution Adaptive Optics Test-Bed for Vision Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilks, S C; Thomspon, C A; Olivier, S S

    2001-09-27

    We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefrontmore » correction are done at different wavelengths. Issues associated with these techniques will be discussed.« less

  6. Solar multi-conjugate adaptive optics based on high order ground layer adaptive optics and low order high altitude correction.

    PubMed

    Zhang, Lanqiang; Guo, Youming; Rao, Changhui

    2017-02-20

    Multi-conjugate adaptive optics (MCAO) is the most promising technique currently developed to enlarge the corrected field of view of adaptive optics for astronomy. In this paper, we propose a new configuration of solar MCAO based on high order ground layer adaptive optics and low order high altitude correction, which result in a homogeneous correction effect in the whole field of view. An individual high order multiple direction Shack-Hartmann wavefront sensor is employed in the configuration to detect the ground layer turbulence for low altitude correction. Furthermore, the other low order multiple direction Shack-Hartmann wavefront sensor supplies the wavefront information caused by high layers' turbulence through atmospheric tomography for high altitude correction. Simulation results based on the system design at the 1-meter New Vacuum Solar Telescope show that the correction uniform of the new scheme is obviously improved compared to conventional solar MCAO configuration.

  7. The numerical simulation tool for the MAORY multiconjugate adaptive optics system

    NASA Astrophysics Data System (ADS)

    Arcidiacono, C.; Schreiber, L.; Bregoli, G.; Diolaiti, E.; Foppiani, I.; Agapito, G.; Puglisi, A.; Xompero, M.; Oberti, S.; Cosentino, G.; Lombini, M.; Butler, R. C.; Ciliegi, P.; Cortecchia, F.; Patti, M.; Esposito, S.; Feautrier, P.

    2016-07-01

    The Multiconjugate Adaptive Optics RelaY (MAORY) is and Adaptive Optics module to be mounted on the ESO European-Extremely Large Telescope (E-ELT). It is an hybrid Natural and Laser Guide System that will perform the correction of the atmospheric turbulence volume above the telescope feeding the Multi-AO Imaging Camera for Deep Observations Near Infrared spectro-imager (MICADO). We developed an end-to-end Monte- Carlo adaptive optics simulation tool to investigate the performance of a the MAORY and the calibration, acquisition, operation strategies. MAORY will implement Multiconjugate Adaptive Optics combining Laser Guide Stars (LGS) and Natural Guide Stars (NGS) measurements. The simulation tool implement the various aspect of the MAORY in an end to end fashion. The code has been developed using IDL and use libraries in C++ and CUDA for efficiency improvements. Here we recall the code architecture, we describe the modeled instrument components and the control strategies implemented in the code.

  8. Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope.

    PubMed

    Burns, Stephen A; Tumbar, Remy; Elsner, Ann E; Ferguson, Daniel; Hammer, Daniel X

    2007-05-01

    We describe the design and performance of an adaptive optics retinal imager that is optimized for use during dynamic correction for eye movements. The system incorporates a retinal tracker and stabilizer, a wide-field line scan scanning laser ophthalmoscope (SLO), and a high-resolution microelectromechanical-systems-based adaptive optics SLO. The detection system incorporates selection and positioning of confocal apertures, allowing measurement of images arising from different portions of the double pass retinal point-spread function (psf). System performance was excellent. The adaptive optics increased the brightness and contrast for small confocal apertures by more than 2x and decreased the brightness of images obtained with displaced apertures, confirming the ability of the adaptive optics system to improve the psf. The retinal image was stabilized to within 18 microm 90% of the time. Stabilization was sufficient for cross-correlation techniques to automatically align the images.

  9. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging

    PubMed Central

    Cua, Michelle; Wahl, Daniel J.; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.

    2016-01-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems. PMID:27599635

  10. Large Field of View, Modular, Stabilized, Adaptive-Optics-Based Scanning Laser Ophthalmoscope

    PubMed Central

    Burns, Stephen A.; Tumbar, Remy; Elsner, Ann E.; Ferguson, Daniel; Hammer, Daniel X.

    2007-01-01

    We describe the design and performance of an adaptive optics retinal imager that is optimized for use during dynamic correction for eye movements. The system incorporates a retinal tracker and stabilizer, a wide field line scan Scanning Laser Ophthalmocsope (SLO), and a high resolution MEMS based adaptive optics SLO. The detection system incorporates selection and positioning of confocal apertures, allowing measurement of images arising from different portions of the double pass retinal point spread function (psf). System performance was excellent. The adaptive optics increased the brightness and contrast for small confocal apertures by more than 2x, and decreased the brightness of images obtained with displaced apertures, confirming the ability of the adaptive optics system to improve the pointspread function. The retinal image was stabilized to within 18 microns 90% of the time. Stabilization was sufficient for cross-correlation techniques to automatically align the images. PMID:17429477

  11. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.

    PubMed

    Cua, Michelle; Wahl, Daniel J; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J; Jian, Yifan; Sarunic, Marinko V

    2016-09-07

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.

  12. Meaning of visualizing retinal cone mosaic on adaptive optics images.

    PubMed

    Jacob, Julie; Paques, Michel; Krivosic, Valérie; Dupas, Bénédicte; Couturier, Aude; Kulcsar, Caroline; Tadayoni, Ramin; Massin, Pascale; Gaudric, Alain

    2015-01-01

    To explore the anatomic correlation of the retinal cone mosaic on adaptive optics images. Retrospective nonconsecutive observational case series. A retrospective review of the multimodal imaging charts of 6 patients with focal alteration of the cone mosaic on adaptive optics was performed. Retinal diseases included acute posterior multifocal placoid pigment epitheliopathy (n = 1), hydroxychloroquine retinopathy (n = 1), and macular telangiectasia type 2 (n = 4). High-resolution retinal images were obtained using a flood-illumination adaptive optics camera. Images were recorded using standard imaging modalities: color and red-free fundus camera photography; infrared reflectance scanning laser ophthalmoscopy, fluorescein angiography, indocyanine green angiography, and spectral-domain optical coherence tomography (OCT) images. On OCT, in the marginal zone of the lesions, a disappearance of the interdigitation zone was observed, while the ellipsoid zone was preserved. Image recording demonstrated that such attenuation of the interdigitation zone co-localized with the disappearance of the cone mosaic on adaptive optics images. In 1 case, the restoration of the interdigitation zone paralleled that of the cone mosaic after a 2-month follow-up. Our results suggest that the interdigitation zone could contribute substantially to the reflectance of the cone photoreceptor mosaic. The absence of cones on adaptive optics images does not necessarily mean photoreceptor cell death. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Architecture of a general purpose embedded Slow-Control Adapter ASIC for future high-energy physics experiments

    NASA Astrophysics Data System (ADS)

    Gabrielli, Alessandro; Loddo, Flavio; Ranieri, Antonio; De Robertis, Giuseppe

    2008-10-01

    This work is aimed at defining the architecture of a new digital ASIC, namely Slow-Control Adapter (SCA), which will be designed in a commercial 130-nm CMOS technology. This chip will be embedded within a high-speed data acquisition optical link (GBT) to control and monitor the front-end electronics in future high-energy physics experiments. The GBT link provides a transparent transport layer between the SCA and control electronics in the counting room. The proposed SCA supports a variety of common bus protocols to interface with end-user general-purpose electronics. Between the GBT and the SCA a standard 100 Mb/s IEEE-802.3 compatible protocol will be implemented. This standard protocol allows off-line tests of the prototypes using commercial components that support the same standard. The project is justified because embedded applications in modern large HEP experiments require particular care to assure the lowest possible power consumption, still offering the highest reliability demanded by very large particle detectors.

  14. Toward active x-ray telescopes

    NASA Astrophysics Data System (ADS)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffery J.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Rodriguez Sanmartin, Daniel; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.

    2011-09-01

    Future x-ray observatories will require high-resolution (< 1") optics with very-large-aperture (> 25 m2) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the areal density of the grazing-incidence mirrors to about 1 kg/m2 or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve active (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, active optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom (UK) and the Generation-X (Gen-X) concept studies in the United States (US). This paper discusses relevant technological issues and summarizes progress toward active x-ray telescopes.

  15. Investigating neuronal function with optically controllable proteins

    PubMed Central

    Zhou, Xin X.; Pan, Michael; Lin, Michael Z.

    2015-01-01

    In the nervous system, protein activities are highly regulated in space and time. This regulation allows for fine modulation of neuronal structure and function during development and adaptive responses. For example, neurite extension and synaptogenesis both involve localized and transient activation of cytoskeletal and signaling proteins, allowing changes in microarchitecture to occur rapidly and in a localized manner. To investigate the role of specific protein regulation events in these processes, methods to optically control the activity of specific proteins have been developed. In this review, we focus on how photosensory domains enable optical control over protein activity and have been used in neuroscience applications. These tools have demonstrated versatility in controlling various proteins and thereby cellular functions, and possess enormous potential for future applications in nervous systems. Just as optogenetic control of neuronal firing using opsins has changed how we investigate the function of cellular circuits in vivo, optical control may yet yield another revolution in how we study the circuitry of intracellular signaling in the brain. PMID:26257603

  16. Control, Filtering and Prediction for Phased Arrays in Directed Energy Systems

    DTIC Science & Technology

    2016-04-30

    adaptive optics. 15. SUBJECT TERMS control, filtering, prediction, system identification, adaptive optics, laser beam pointing, target tracking, phase... laser beam control; furthermore, wavefront sensors are plagued by the difficulty of maintaining the required alignment and focusing in dynamic mission...developed new methods for filtering, prediction and system identification in adaptive optics for high energy laser systems including phased arrays. The

  17. Blind deconvolution post-processing of images corrected by adaptive optics

    NASA Astrophysics Data System (ADS)

    Christou, Julian C.

    1995-08-01

    Experience with the adaptive optics system at the Starfire Optical Range has shown that the point spread function is non-uniform and varies both spatially and temporally as well as being object dependent. Because of this, the application of a standard linear and non-linear deconvolution algorithms make it difficult to deconvolve out the point spread function. In this paper we demonstrate the application of a blind deconvolution algorithm to adaptive optics compensated data where a separate point spread function is not needed.

  18. Ultrahigh-speed ultrahigh-resolution adaptive optics: optical coherence tomography system for in-vivo small animal retinal imaging

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Xu, Jing; Zawadzki, Robert J.; Sarunic, Marinko V.

    2013-03-01

    Small animal models of human retinal diseases are a critical component of vision research. In this report, we present an ultrahigh-resolution ultrahigh-speed adaptive optics optical coherence tomography (AO-OCT) system for small animal retinal imaging (mouse, fish, etc.). We adapted our imaging system to different types of small animals in accordance with the optical properties of their eyes. Results of AO-OCT images of small animal retinas acquired with AO correction are presented. Cellular structures including nerve fiber bundles, capillary networks and detailed double-cone photoreceptors are visualized.

  19. Development of Laser Beam Transmission Strategies for Future Ground-to-Space Optical Communications

    NASA Technical Reports Server (NTRS)

    Wilson, Keith E.; Kovalik, Joseph M.; Biswas, Abhijit; Roberts, William T.

    2007-01-01

    Optical communications is a key technology to meet the bandwidth expansion required in the global information grid. High bandwidth bi-directional links between sub-orbital platforms and ground and space terminals can provide a seamless interconnectivity for rapid return of critical data to analysts. The JPL Optical Communications Telescope Laboratory (OCTL) is located in Wrightwood California at an altitude of 2.2.km. This 200 sq-m facility houses a state-of- the-art 1-m telescope and is used to develop operational strategies for ground-to-space laser beam propagation that include safe beam transmission through navigable air space, adaptive optics correction and multi-beam scintillation mitigation, and line of sight optical attenuation monitoring. JPL has received authorization from international satellite owners to transmit laser beams to more than twenty retro-reflecting satellites. This paper presents recent progress in the development of these operational strategies tested by narrow laser beam transmissions from the OCTL to retro-reflecting satellites. We present experimental results and compare our measurements with predicted performance for a variety of atmospheric conditions.

  20. Parallel implementation of all-digital timing recovery for high-speed and real-time optical coherent receivers.

    PubMed

    Zhou, Xian; Chen, Xue

    2011-05-09

    The digital coherent receivers combine coherent detection with digital signal processing (DSP) to compensate for transmission impairments, and therefore are a promising candidate for future high-speed optical transmission system. However, the maximum symbol rate supported by such real-time receivers is limited by the processing rate of hardware. In order to cope with this difficulty, the parallel processing algorithms is imperative. In this paper, we propose a novel parallel digital timing recovery loop (PDTRL) based on our previous work. Furthermore, for increasing the dynamic dispersion tolerance range of receivers, we embed a parallel adaptive equalizer in the PDTRL. This parallel joint scheme (PJS) can be used to complete synchronization, equalization and polarization de-multiplexing simultaneously. Finally, we demonstrate that PDTRL and PJS allow the hardware to process 112 Gbit/s POLMUX-DQPSK signal at the hundreds MHz range. © 2011 Optical Society of America

  1. Navy Prototype Optical Interferometer observations of geosynchronous satellites.

    PubMed

    Hindsley, Robert B; Armstrong, J Thomas; Schmitt, Henrique R; Andrews, Jonathan R; Restaino, Sergio R; Wilcox, Christopher C; Vrba, Frederick J; Benson, James A; DiVittorio, Michael E; Hutter, Donald J; Shankland, Paul D; Gregory, Steven A

    2011-06-10

    Using a 15.9  m baseline at the Navy Prototype Optical Interferometer (NPOI), we have successfully detected interferometric fringes in observations of the geosynchronous satellite (geosat) DirecTV-9S while it glinted on two nights in March 2009. The fringe visibilities can be fitted by a model consisting of two components, one resolved (≳3.7  m) and one unresolved (∼1.1  m). Both the length of the glint and the specular albedos are consistent with the notion that the glinting surfaces are not completely flat and scatter reflected sunlight into an opening angle of roughly 15°. Enhancements to the NPOI that would improve geosat observations include adding an infrared capability, which could extend the glint season, and adding larger, adaptive-optics equipped telescopes. Future work may test the feasibility of observing geosats with aperture-masked large telescopes and of developing an array of six to nine elements.

  2. Single-axis four-mirror system: large spherical primary and small fields

    NASA Astrophysics Data System (ADS)

    Baranne, Andre

    1998-08-01

    A catoptric corrector of modest size can be used for large spherical primaries, easily integrated at the prime focus, this corrector gives back to the system, aspect and properties of 2-mirrors classical telescopes. In the last few years, progress in active and adaptative optics makes possible a lot of things, progress in measuring distances, new ideas on optical coatings, new materials and so on in a near future, all that makes the instrumentalist dreamy It is said that nobody knows today if the size of 3rd millennium telescopes will be limited or not by a theoretical, physical or technical phenomenon, thus let us imagine but with thoughtfulness because our projects will be surely restricted by financial considerations

  3. Astronomy Applications of Adaptive Optics at Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauman, B J; Gavel, D T

    2003-04-23

    Astronomical applications of adaptive optics at Lawrence Livermore National Laboratory (LLNL) has a history that extends from 1984. The program started with the Lick Observatory Adaptive Optics system and has progressed through the years to lever-larger telescopes: Keck, and now the proposed CELT (California Extremely Large Telescope) 30m telescope. LLNL AO continues to be at the forefront of AO development and science.

  4. Adaptive optics fundus images of cone photoreceptors in the macula of patients with retinitis pigmentosa.

    PubMed

    Tojo, Naoki; Nakamura, Tomoko; Fuchizawa, Chiharu; Oiwake, Toshihiko; Hayashi, Atsushi

    2013-01-01

    The purpose of this study was to examine cone photoreceptors in the macula of patients with retinitis pigmentosa using an adaptive optics fundus camera and to investigate any correlations between cone photoreceptor density and findings on optical coherence tomography and fundus autofluorescence. We examined two patients with typical retinitis pigmentosa who underwent ophthalmological examination, including measurement of visual acuity, and gathering of electroretinographic, optical coherence tomographic, fundus autofluorescent, and adaptive optics fundus images. The cone photoreceptors in the adaptive optics images of the two patients with retinitis pigmentosa and five healthy subjects were analyzed. An abnormal parafoveal ring of high-density fundus autofluorescence was observed in the macula in both patients. The border of the ring corresponded to the border of the external limiting membrane and the inner segment and outer segment line in the optical coherence tomographic images. Cone photoreceptors at the abnormal parafoveal ring were blurred and decreased in the adaptive optics images. The blurred area corresponded to the abnormal parafoveal ring in the fundus autofluorescence images. Cone densities were low at the blurred areas and at the nasal and temporal retina along a line from the fovea compared with those of healthy controls. The results for cone spacing and Voronoi domains in the macula corresponded with those for the cone densities. Cone densities were heavily decreased in the macula, especially at the parafoveal ring on high-density fundus autofluorescence in both patients with retinitis pigmentosa. Adaptive optics images enabled us to observe in vivo changes in the cone photoreceptors of patients with retinitis pigmentosa, which corresponded to changes in the optical coherence tomographic and fundus autofluorescence images.

  5. Development of the Optical Communications Telescope Laboratory: A Laser Communications Relay Demonstration Ground Station

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.; Antsos, D.; Roberts, L. C. Jr.,; Piazzolla, S.; Clare, L. P.; Croonquist, A. P.

    2012-01-01

    The Laser Communications Relay Demonstration (LCRD) project will demonstrate high bandwidth space to ground bi-directional optical communications links between a geosynchronous satellite and two LCRD optical ground stations located in the southwestern United States. The project plans to operate for two years with a possible extension to five. Objectives of the demonstration include the development of operational strategies to prototype optical link and relay services for the next generation tracking and data relay satellites. Key technologies to be demonstrated include adaptive optics to correct for clear air turbulence-induced wave front aberrations on the downlink, and advanced networking concepts for assured and automated data delivery. Expanded link availability will be demonstrated by supporting operations at small sun-Earth-probe angles. Planned optical modulation formats support future concepts of near-Earth satellite user services to a maximum of 1.244 Gb/s differential phase shift keying modulation and pulse position modulations formats for deep space links at data rates up to 311 Mb/s. Atmospheric monitoring instruments that will characterize the optical channel during the link include a sun photometer to measure atmospheric transmittance, a solar scintillometer, and a cloud camera to measure the line of sight cloud cover. This paper describes the planned development of the JPL optical ground station.

  6. Center for Adaptive Optics | Links

    Science.gov Websites

    extraterrestrische Physik, Infrared/Submillimeter Astronomy MMT Adaptive Optics Mount Wilson Observatory National Astronomical Observatory of Japan National Solar Observatory National Optical Astronomy Observatories, AO Astronomy Observatoire de Paris Osservatorio Astrofisico di Arcetri Padua Observatory Palomar Observatory

  7. An Inquiry-Based Vision Science Activity for Graduate Students and Postdoctoral Research Scientists

    NASA Astrophysics Data System (ADS)

    Putnam, N. M.; Maness, H. L.; Rossi, E. A.; Hunter, J. J.

    2010-12-01

    The vision science activity was originally designed for the 2007 Center for Adaptive Optics (CfAO) Summer School. Participants were graduate students, postdoctoral researchers, and professionals studying the basics of adaptive optics. The majority were working in fields outside vision science, mainly astronomy and engineering. The primary goal of the activity was to give participants first-hand experience with the use of a wavefront sensor designed for clinical measurement of the aberrations of the human eye and to demonstrate how the resulting wavefront data generated from these measurements can be used to assess optical quality. A secondary goal was to examine the role wavefront measurements play in the investigation of vision-related scientific questions. In 2008, the activity was expanded to include a new section emphasizing defocus and astigmatism and vision testing/correction in a broad sense. As many of the participants were future post-secondary educators, a final goal of the activity was to highlight the inquiry-based approach as a distinct and effective alternative to traditional laboratory exercises. Participants worked in groups throughout the activity and formative assessment by a facilitator (instructor) was used to ensure that participants made progress toward the content goals. At the close of the activity, participants gave short presentations about their work to the whole group, the major points of which were referenced in a facilitator-led synthesis lecture. We discuss highlights and limitations of the vision science activity in its current format (2008 and 2009 summer schools) and make recommendations for its improvement and adaptation to different audiences.

  8. Automated Photoreceptor Cell Identification on Nonconfocal Adaptive Optics Images Using Multiscale Circular Voting.

    PubMed

    Liu, Jianfei; Jung, HaeWon; Dubra, Alfredo; Tam, Johnny

    2017-09-01

    Adaptive optics scanning light ophthalmoscopy (AOSLO) has enabled quantification of the photoreceptor mosaic in the living human eye using metrics such as cell density and average spacing. These rely on the identification of individual cells. Here, we demonstrate a novel approach for computer-aided identification of cone photoreceptors on nonconfocal split detection AOSLO images. Algorithms for identification of cone photoreceptors were developed, based on multiscale circular voting (MSCV) in combination with a priori knowledge that split detection images resemble Nomarski differential interference contrast images, in which dark and bright regions are present on the two sides of each cell. The proposed algorithm locates dark and bright region pairs, iteratively refining the identification across multiple scales. Identification accuracy was assessed in data from 10 subjects by comparing automated identifications with manual labeling, followed by computation of density and spacing metrics for comparison to histology and published data. There was good agreement between manual and automated cone identifications with overall recall, precision, and F1 score of 92.9%, 90.8%, and 91.8%, respectively. On average, computed density and spacing values using automated identification were within 10.7% and 11.2% of the expected histology values across eccentricities ranging from 0.5 to 6.2 mm. There was no statistically significant difference between MSCV-based and histology-based density measurements (P = 0.96, Kolmogorov-Smirnov 2-sample test). MSCV can accurately detect cone photoreceptors on split detection images across a range of eccentricities, enabling quick, objective estimation of photoreceptor mosaic metrics, which will be important for future clinical trials utilizing adaptive optics.

  9. Preconditioned conjugate gradient wave-front reconstructors for multiconjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Gilles, Luc; Ellerbroek, Brent L.; Vogel, Curtis R.

    2003-09-01

    Multiconjugate adaptive optics (MCAO) systems with 104-105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wave-front control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of adaptive optics degrees of freedom. We develop scalable open-loop iterative sparse matrix implementations of minimum variance wave-front reconstruction for telescope diameters up to 32 m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method with an efficient preconditioner, whose block structure is defined by the atmospheric turbulent layers very much like the layer-oriented MCAO algorithms of current interest. Two cost-effective preconditioners are investigated: a multigrid solver and a simpler block symmetric Gauss-Seidel (BSGS) sweep. Both options require off-line sparse Cholesky factorizations of the diagonal blocks of the matrix system. The cost to precompute these factors scales approximately as the three-halves power of the number of estimated phase grid points per atmospheric layer, and their average update rate is typically of the order of 10-2 Hz, i.e., 4-5 orders of magnitude lower than the typical 103 Hz temporal sampling rate. All other computations scale almost linearly with the total number of estimated phase grid points. We present numerical simulation results to illustrate algorithm convergence. Convergence rates of both preconditioners are similar, regardless of measurement noise level, indicating that the layer-oriented BSGS sweep is as effective as the more elaborated multiresolution preconditioner.

  10. Compensating Atmospheric Turbulence Effects at High Zenith Angles with Adaptive Optics Using Advanced Phase Reconstructors

    NASA Astrophysics Data System (ADS)

    Roggemann, M.; Soehnel, G.; Archer, G.

    Atmospheric turbulence degrades the resolution of images of space objects far beyond that predicted by diffraction alone. Adaptive optics telescopes have been widely used for compensating these effects, but as users seek to extend the envelopes of operation of adaptive optics telescopes to more demanding conditions, such as daylight operation, and operation at low elevation angles, the level of compensation provided will degrade. We have been investigating the use of advanced wave front reconstructors and post detection image reconstruction to overcome the effects of turbulence on imaging systems in these more demanding scenarios. In this paper we show results comparing the optical performance of the exponential reconstructor, the least squares reconstructor, and two versions of a reconstructor based on the stochastic parallel gradient descent algorithm in a closed loop adaptive optics system using a conventional continuous facesheet deformable mirror and a Hartmann sensor. The performance of these reconstructors has been evaluated under a range of source visual magnitudes and zenith angles ranging up to 70 degrees. We have also simulated satellite images, and applied speckle imaging, multi-frame blind deconvolution algorithms, and deconvolution algorithms that presume the average point spread function is known to compute object estimates. Our work thus far indicates that the combination of adaptive optics and post detection image processing will extend the useful envelope of the current generation of adaptive optics telescopes.

  11. Using two MEMS deformable mirrors in an adaptive optics test bed for multiconjugate correction

    NASA Astrophysics Data System (ADS)

    Andrews, Jonathan R.; Martinez, Ty; Teare, Scott W.; Restaino, Sergio R.; Wilcox, Christopher C.; Santiago, Freddie; Payne, Don M.

    2010-02-01

    Adaptive optics systems have advanced considerably over the past decade and have become common tools for optical engineers. The most recent advances in adaptive optics technology have lead to significant reductions in the cost of most of the key components. Most significantly, the cost of deformable elements and wavefront sensor components have dropped to the point where multiple deformable mirrors and Shack- Hartmann array based wavefront sensor cameras can be included in a single system. Matched with the appropriate hardware and software, formidable systems can be operating in nearly any sized research laboratory. The significant advancement of MEMS deformable mirrors has made them very popular for use as the active corrective element in multi-conjugate adaptive optics systems so that, in particular for astronomical applications, this allows correction in more than one plane. The NRL compact AO system and atmospheric simulation systems has now been expanded to support Multi Conjugate Adaptive Optics (MCAO), taking advantage of using the liquid crystal spatial light modulator (SLM) driven aberration generators in two conjugate planes that are well separated spatially. Thus, by using two SLM based aberration generators and two separate wavefront sensors, the system can measure and apply wavefront correction with two MEMS deformable mirrors. This paper describes the multi-conjugate adaptive optics system and the testing and calibration of the system and demonstrates preliminary results with this system.

  12. Statistical moments of the Strehl ratio

    NASA Astrophysics Data System (ADS)

    Yaitskova, Natalia; Esselborn, Michael; Gladysz, Szymon

    2012-07-01

    Knowledge of the statistical characteristics of the Strehl ratio is essential for the performance assessment of the existing and future adaptive optics systems. For full assessment not only the mean value of the Strehl ratio but also higher statistical moments are important. Variance is related to the stability of an image and skewness reflects the chance to have in a set of short exposure images more or less images with the quality exceeding the mean. Skewness is a central parameter in the domain of lucky imaging. We present a rigorous theory for the calculation of the mean value, the variance and the skewness of the Strehl ratio. In our approach we represent the residual wavefront as being formed by independent cells. The level of the adaptive optics correction defines the number of the cells and the variance of the cells, which are the two main parameters of our theory. The deliverables are the values of the three moments as the functions of the correction level. We make no further assumptions except for the statistical independence of the cells.

  13. Very Accurate Imaging of the Close Environment of Bright Objects in Visible and Near-Infrared

    NASA Astrophysics Data System (ADS)

    Mouillet, David; Beuzit, Jean-Luc; Chauvin, Gael; Lagrange, Anne-Marie

    The development of adaptive optics (AO) in near IR has demonstrated in the latest decade both its astronomical impact and its increasing importance with the development of larger telescopes. We emphasize that still better imaging capabilities would extend the wavelength range from near-IR to visible and would also enable to perform very high dynamic observations from the ground. Such a gain in performance is interesting for a large number of astrophysical topics: environment of young stellar objects, evolved stars, binary or multiple systems, planetary disks and low mass companions down to brown dwarves or hot planets. The specification of an instrument fulfilling such requirements could be focussed on high image quality on a narrow field around bright objects, so as to limit the cost and development timescale. Additionally, this facility could also be used (with the same specifications) to feed other future instruments (such as interferometers or high resolution spectrometers working in visible) and would be an important step in the general scheme of larger adaptive optics systems development.

  14. Comparing Parafoveal Cone Photoreceptor Mosaic Metrics in Younger and Older Age Groups Using an Adaptive Optics Retinal Camera.

    PubMed

    Jacob, Julie; Paques, Michel; Krivosic, Valérie; Dupas, Bénédicte; Erginay, Ali; Tadayoni, Ramin; Gaudric, Alain

    2017-01-01

    To analyze cone mosaic metrics on adaptive optics (AO) images as a function of retinal eccentricity in two different age groups using a commercial flood illumination AO device. Fifty-three eyes of 28 healthy subjects divided into two age groups were imaged using an AO flood-illumination camera (rtx1; Imagine Eyes, Orsay, France). A 16° × 4° field was obtained horizontally. Cone-packing metrics were determined in five neighboring 50 µm × 50 µm regions. Both retinal (cones/mm 2 and µm) and visual (cones/degrees 2 and arcmin) units were computed. Results for cone mosaic metrics at 2°, 2.5°, 3°, 4°, and 5° eccentricity were compatible with previous AO scanning laser ophthalmoscopy and histology data. No significant difference was observed between the two age groups. The rtx1 camera enabled reproducible measurements of cone-packing metrics across the extrafoveal retina. These findings may contribute to the development of normative data and act as a reference for future research. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:45-50.]. Copyright 2017, SLACK Incorporated.

  15. Laboratory demonstrations on a pyramid wavefront sensor without modulation for closed-loop adaptive optics system.

    PubMed

    Wang, Shengqian; Rao, Changhui; Xian, Hao; Zhang, Jianlin; Wang, Jianxin; Liu, Zheng

    2011-04-25

    The feasibility and performance of the pyramid wavefront sensor without modulation used in closed-loop adaptive optics system is investigated in this paper. The theory concepts and some simulation results are given to describe the detection trend and the linearity range of such a sensor with the aim to better understand its properties, and then a laboratory setup of the adaptive optics system based on this sensor and the liquid-crystal spatial light modulator is built. The correction results for the individual Zernike aberrations and the Kolmogorov phase screens are presented to demonstrate that the pyramid wavefront sensor without modulation can work as expected for closed-loop adaptive optics system.

  16. Through-wafer optical probe characterization for microelectromechanical systems positional state monitoring and feedback control

    NASA Astrophysics Data System (ADS)

    Dawson, Jeremy M.; Chen, Jingdong; Brown, Kolin S.; Famouri, Parviz F.; Hornak, Lawrence A.

    2000-12-01

    Implementation of closed-loop microelectromechanical system (MEMS) control enables mechanical microsystems to adapt to the demands of the environment that they are actuating, opening a broad range of new opportunities for future MEMS applications. Integrated optical microsystems have the potential to enable continuous in situ optical interrogation of MEMS microstructure position fully decoupled from the means of mechanical actuation that is necessary for realization of feedback control. We present the results of initial research evaluating through-wafer optical microprobes for surface micromachined MEMS integrated optical position monitoring. Results from the through-wafer free-space optical probe of a lateral comb resonator fabricated using the multiuser MEMS process service (MUMPS) indicate significant positional information content with an achievable return probe signal dynamic range of up to 80% arising from film transmission contrast. Static and dynamic deflection analysis and experimental results indicate a through-wafer probe positional signal sensitivity of 40 mV/micrometers for the present setup or 10% signal change per micrometer. A simulation of the application of nonlinear sliding control is presented illustrating position control of the lateral comb resonator structure given the availability of positional state information.

  17. Hyperspectral Remote Sensing of the Coastal Ocean: Adaptive Sampling and Forecasting of In situ Optical Properties

    DTIC Science & Technology

    2002-09-30

    integrated observation system that is being coupled to a data assimilative hydrodynamic bio-optical ecosystem model. The system was used adaptively to develop hyperspectral remote sensing techniques in optically complex nearshore coastal waters.

  18. Process science development at the Center for Optics Manufacturing

    NASA Astrophysics Data System (ADS)

    Pollicove, Harvey M.; Moore, Duncan T.; Golini, Donald

    1992-01-01

    The Center for Optics Manufacturing (COM) has organized a volunteer Process Science Committee that will cooperate in advancing the optical manufacturing sciences. The objective is to develop technical information and processes that improve manufacturing capability, especially in grinding and polishing technology. Chaired by Donald Golini of Litton Itek Optical Systems, the committee members are volunteers from several American Precision Optics Manufacturers Association (APOMA) companies and institutions. Many of the companies are also funding project elements. The committee will accelerate industry progress by integrating the research and development activities of cooperating APOMA companies and institutions involved in both COM and independent programs. In the short term, the effort concentrates on grinding and polishing process innovation. In later phases, the effort will aid in the design future generations of machines and processes. While the developments are directly adaptable to COM's OPTICAM program, the results will influence a wide range of innovation and application in all methods of optical fabrication. Several leaders in the field are participating in the research and development effort--Boston University, Eastman Kodak Company, Hughes Leitz Optical Technologies, Lawrence Livermore National Laboratory, Litton Itek Optical Systems, Melles Griot, Optical Components Inc., Precision Optical, Rank Pneumo, Schott Glass Technologies, Solution Technology, Texas Instruments, Tropel, and the universities of Arizona and Rochester. Other APOMA member companies will participate as resource needs grow. The collaboration is unique in the industry's history.

  19. Digital adaptive optics line-scanning confocal imaging system.

    PubMed

    Liu, Changgeng; Kim, Myung K

    2015-01-01

    A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack–Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea.

  20. Post-processing of adaptive optics images based on frame selection and multi-frame blind deconvolution

    NASA Astrophysics Data System (ADS)

    Tian, Yu; Rao, Changhui; Wei, Kai

    2008-07-01

    The adaptive optics can only partially compensate the image blurred by atmospheric turbulence due to the observing condition and hardware restriction. A post-processing method based on frame selection and multi-frames blind deconvolution to improve images partially corrected by adaptive optics is proposed. The appropriate frames which are suitable for blind deconvolution from the recorded AO close-loop frames series are selected by the frame selection technique and then do the multi-frame blind deconvolution. There is no priori knowledge except for the positive constraint in blind deconvolution. It is benefit for the use of multi-frame images to improve the stability and convergence of the blind deconvolution algorithm. The method had been applied in the image restoration of celestial bodies which were observed by 1.2m telescope equipped with 61-element adaptive optical system at Yunnan Observatory. The results show that the method can effectively improve the images partially corrected by adaptive optics.

  1. ISTC Projects from RFNC-VNIIEF Devoted to Improving Laser Beam Quality

    NASA Astrophysics Data System (ADS)

    Starikov, F.; Kochemasov, G.

    Information is given about the Projects # 1929 and # 2631 supported by ISTC and concerned with improving laser beam quality and interesting for adaptive optics community. One of them, Project # 1929 has been recently finished. It has been devoted to development of an SBS phase conjugation mirror of superhigh conjugation quality employing the kinoform optics for high-power lasers with nanosecond scale pulse duration. With the purpose of reaching ideal PC fidelity, the SBS mirror includes the raster of small lenses that has been traditionally used as the lenslet in Shack-Hartmann wavefront sensor in adaptive optics. The second of them, Project # 2631, is concerned with the development of an adaptive optical system for phase correction of laser beams with wavefront vortex. The principles of operation of modern adaptive systems are based on the assumption that the phase is a smooth continuous function in space. Therefore the solution of the Project tasks will assume a new step in adaptive optics.

  2. IMAGING WITH MULTIMODAL ADAPTIVE-OPTICS OPTICAL COHERENCE TOMOGRAPHY IN MULTIPLE EVANESCENT WHITE DOT SYNDROME: THE STRUCTURE AND FUNCTIONAL RELATIONSHIP.

    PubMed

    Labriola, Leanne T; Legarreta, Andrew D; Legarreta, John E; Nadler, Zach; Gallagher, Denise; Hammer, Daniel X; Ferguson, R Daniel; Iftimia, Nicusor; Wollstein, Gadi; Schuman, Joel S

    2016-01-01

    To elucidate the location of pathological changes in multiple evanescent white dot syndrome (MEWDS) with the use of multimodal adaptive optics (AO) imaging. A 5-year observational case study of a 24-year-old female with recurrent MEWDS. Full examination included history, Snellen chart visual acuity, pupil assessment, intraocular pressures, slit lamp evaluation, dilated fundoscopic exam, imaging with Fourier-domain optical coherence tomography (FD-OCT), blue-light fundus autofluorescence (FAF), fundus photography, fluorescein angiography, and adaptive-optics optical coherence tomography. Three distinct acute episodes of MEWDS occurred during the period of follow-up. Fourier-domain optical coherence tomography and adaptive-optics imaging showed disturbance in the photoreceptor outer segments (PR OS) in the posterior pole with each flare. The degree of disturbance at the photoreceptor level corresponded to size and extent of the visual field changes. All findings were transient with delineation of the photoreceptor recovery from the outer edges of the lesion inward. Hyperautofluorescence was seen during acute flares. Increase in choroidal thickness did occur with each active flare but resolved. Although changes in the choroid and RPE can be observed in MEWDS, Fourier-domain optical coherence tomography, and multimodal adaptive optics imaging localized the visually significant changes seen in this disease at the level of the photoreceptors. These transient retinal changes specifically occur at the level of the inner segment ellipsoid and OS/RPE line. En face optical coherence tomography imaging provides a detailed, yet noninvasive method for following the convalescence of MEWDS and provides insight into the structural and functional relationship of this transient inflammatory retinal disease.

  3. A dual-modal retinal imaging system with adaptive optics.

    PubMed

    Meadway, Alexander; Girkin, Christopher A; Zhang, Yuhua

    2013-12-02

    An adaptive optics scanning laser ophthalmoscope (AO-SLO) is adapted to provide optical coherence tomography (OCT) imaging. The AO-SLO function is unchanged. The system uses the same light source, scanning optics, and adaptive optics in both imaging modes. The result is a dual-modal system that can acquire retinal images in both en face and cross-section planes at the single cell level. A new spectral shaping method is developed to reduce the large sidelobes in the coherence profile of the OCT imaging when a non-ideal source is used with a minimal introduction of noise. The technique uses a combination of two existing digital techniques. The thickness and position of the traditionally named inner segment/outer segment junction are measured from individual photoreceptors. In-vivo images of healthy and diseased human retinas are demonstrated.

  4. A Comparative Study of Acousto-Optic Time-Integrating Correlators for Adaptive Jamming Cancellation

    DTIC Science & Technology

    1997-10-01

    This final report presents a comparative study of the space-integrating and time-integrating configurations of an acousto - optic correlator...systematically evaluate all existing acousto - optic correlator architectures and to determine which would be most suitable for adaptive jamming

  5. Adaptive beam shaping by controlled thermal lensing in optical elements

    NASA Astrophysics Data System (ADS)

    Arain, Muzammil A.; Quetschke, Volker; Gleason, Joseph; Williams, Luke F.; Rakhmanov, Malik; Lee, Jinho; Cruz, Rachel J.; Mueller, Guido; Tanner, D. B.; Reitze, David. H.

    2007-04-01

    We describe an adaptive optical system for use as a tunable focusing element. The system provides adaptive beam shaping via controlled thermal lensing in the optical elements. The system is agile, remotely controllable, touch free, and vacuum compatible; it offers a wide dynamic range, aberration-free focal length tuning, and can provide both positive and negative lensing effects. Focusing is obtained through dynamic heating of an optical element by an external pump beam. The system is especially suitable for use in interferometric gravitational wave interferometers employing high laser power, allowing for in situ control of the laser modal properties and compensation for thermal lensing of the primary laser. Using CO2 laser heating of fused-silica substrates, we demonstrate a focal length variable from infinity to 4.0 m, with a slope of 0.082 diopter/W of absorbed heat. For on-axis operation, no higher-order modes are introduced by the adaptive optical element. Theoretical modeling of the induced optical path change and predicted thermal lens agrees well with measurement.

  6. Adaptive beam shaping by controlled thermal lensing in optical elements.

    PubMed

    Arain, Muzammil A; Quetschke, Volker; Gleason, Joseph; Williams, Luke F; Rakhmanov, Malik; Lee, Jinho; Cruz, Rachel J; Mueller, Guido; Tanner, D B; Reitze, David H

    2007-04-20

    We describe an adaptive optical system for use as a tunable focusing element. The system provides adaptive beam shaping via controlled thermal lensing in the optical elements. The system is agile, remotely controllable, touch free, and vacuum compatible; it offers a wide dynamic range, aberration-free focal length tuning, and can provide both positive and negative lensing effects. Focusing is obtained through dynamic heating of an optical element by an external pump beam. The system is especially suitable for use in interferometric gravitational wave interferometers employing high laser power, allowing for in situ control of the laser modal properties and compensation for thermal lensing of the primary laser. Using CO(2) laser heating of fused-silica substrates, we demonstrate a focal length variable from infinity to 4.0 m, with a slope of 0.082 diopter/W of absorbed heat. For on-axis operation, no higher-order modes are introduced by the adaptive optical element. Theoretical modeling of the induced optical path change and predicted thermal lens agrees well with measurement.

  7. Marginal adaptation of ceramic veneers investigated with en face optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sinescu, Cosmin; Negruţiu, Meda-Lavinia; Petrescu, Emanuela; Rominu, Mihai; Marcauteanu, Corina; Rominu, Roxana; Hughes, Michael; Bradu, Adrian; Dobre, George; Podoleanu, Adrian G.

    2009-07-01

    The aim of this study was to analyze the quality of marginal adaptation and gap width of Empress veneers using en-face optical coherence tomography. The results prove the necessity of investigating the marginal adaptation after each veneer bonding process.

  8. How adaptive optics may have won the Cold War

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    2013-05-01

    While there are many theories and studies concerning the end of the Cold War, circa 1990, I postulate that one of the contributors to the result was the development of adaptive optics. The emergence of directed energy weapons, specifically space-based and ground-based high energy lasers made practicable with adaptive optics, showed that a successful defense against inter-continental ballistic missiles was not only possible, but achievable in a reasonable period of time.

  9. Photonic Lantern Adaptive Spatial Mode Control in LMA Fiber Amplifiers using SPGD

    DTIC Science & Technology

    2015-12-15

    ll.mit.edu Abstract: We demonstrate adaptive-spatial mode control (ASMC) in few- moded double- clad large mode area (LMA) fiber amplifiers by using an...combination resulting in a single fundamental mode at the output is achieved. 2015 Optical Society of America OCIS codes: (140.3510) Lasers ...fiber; (140.3425) Laser stabilization; (060.2340) Fiber optics components; (110.1080) Active or adaptive optics; References and links 1. C

  10. Direct phase measurement in zonal wavefront reconstruction using multidither coherent optical adaptive technique.

    PubMed

    Liu, Rui; Milkie, Daniel E; Kerlin, Aaron; MacLennan, Bryan; Ji, Na

    2014-01-27

    In traditional zonal wavefront sensing for adaptive optics, after local wavefront gradients are obtained, the entire wavefront can be calculated by assuming that the wavefront is a continuous surface. Such an approach will lead to sub-optimal performance in reconstructing wavefronts which are either discontinuous or undersampled by the zonal wavefront sensor. Here, we report a new method to reconstruct the wavefront by directly measuring local wavefront phases in parallel using multidither coherent optical adaptive technique. This method determines the relative phases of each pupil segment independently, and thus produces an accurate wavefront for even discontinuous wavefronts. We implemented this method in an adaptive optical two-photon fluorescence microscopy and demonstrated its superior performance in correcting large or discontinuous aberrations.

  11. Sky coverage modeling for the whole sky for laser guide star multiconjugate adaptive optics.

    PubMed

    Wang, Lianqi; Andersen, David; Ellerbroek, Brent

    2012-06-01

    The scientific productivity of laser guide star adaptive optics systems strongly depends on the sky coverage, which describes the probability of finding natural guide stars for the tip/tilt wavefront sensor(s) to achieve a certain performance. Knowledge of the sky coverage is also important for astronomers planning their observations. In this paper, we present an efficient method to compute the sky coverage for the laser guide star multiconjugate adaptive optics system, the Narrow Field Infrared Adaptive Optics System (NFIRAOS), being designed for the Thirty Meter Telescope project. We show that NFIRAOS can achieve more than 70% sky coverage over most of the accessible sky with the requirement of 191 nm total rms wavefront.

  12. Near infra-red astronomy with adaptive optics and laser guide stars at the Keck Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Max, C.E.; Gavel, D.T.; Olivier, S.S.

    1995-08-03

    A laser guide star adaptive optics system is being built for the W. M. Keck Observatory`s 10-meter Keck II telescope. Two new near infra-red instruments will be used with this system: a high-resolution camera (NIRC 2) and an echelle spectrometer (NIRSPEC). The authors describe the expected capabilities of these instruments for high-resolution astronomy, using adaptive optics with either a natural star or a sodium-layer laser guide star as a reference. They compare the expected performance of these planned Keck adaptive optics instruments with that predicted for the NICMOS near infra-red camera, which is scheduled to be installed on the Hubblemore » Space Telescope in 1997.« less

  13. Calibrations for a MCAO Imaging System

    NASA Astrophysics Data System (ADS)

    Hibon, Pascale; B. Neichel; V. Garrel; R. Carrasco

    2017-09-01

    "GeMS, the Gemini Multi conjugate adaptive optics System installed at the Gemini South telescope (Cerro Pachon, Chile) started to deliver science since the beginning of 2013. GeMS is using the Multi Conjugate AdaptiveOptics (MCAO) technique allowing to dramatically increase the corrected field of view (FOV) compared to classical Single Conjugated Adaptive Optics (SCAO) systems. It is the first sodium-based multi-Laser Guide Star (LGS) adaptive optics system. It has been designed to feed two science instruments: GSAOI, a 4k×4k NIR imager covering 85"×85" with 0.02" pixel scale, and Flamingos-2, a NIR multi-object spectrograph. We present here an overview of the calibrations necessary for reducing and analysing the science datasets obtained with GeMS+GSAOI."

  14. Adaptive optics compensation over a 3 km near horizontal path

    NASA Astrophysics Data System (ADS)

    Mackey, Ruth; Dainty, Chris

    2008-10-01

    We present results of adaptive optics compensation at the receiver of a 3km optical link using a beacon laser operating at 635nm. The laser is transmitted from the roof of a seven-storey building over a near horizontal path towards a 127 mm optical receiver located on the second-floor of the Applied Optics Group at the National University of Ireland, Galway. The wavefront of the scintillated beam is measured using a Shack-Hartmann wavefront sensor (SHWFS) with high-speed CMOS camera capable of frame rates greater than 1kHz. The strength of turbulence is determined from the fluctuations in differential angle-of-arrival in the wavefront sensor measurements and from the degree of scintillation in the pupil plane. Adaptive optics compensation is applied using a tip-tilt mirror and 37 channel membrane mirror and controlled using a single desktop computer. The performance of the adaptive optics system in real turbulence is compared with the performance of the system in a controlled laboratory environment, where turbulence is generated using a liquid crystal spatial light modulator.

  15. Design, fabrication and characterization of MEMS deformable mirrors for ocular adaptive optics

    NASA Astrophysics Data System (ADS)

    Park, Hyunkyu

    This dissertation describes the design and modeling of MEMS-based bimorph deformable mirrors for adaptive optics as well as the characterization of fabricated devices. The objective of this research is to create a compact and low-cost deformable mirror that can be used as a phase corrector particularly for vision science applications. A fundamental theory of adaptive optics is reviewed, paying attention to the phase corrector which is a key component of the adaptive optics system. Several types of phase corrector are presented and the minimization of their size and cost using micro electromechanical systems (MEMS) technology is also discussed. Since this research is targeted towards the ophthalmic applications of adaptive optics, aberrations of the human eye are illustrated and the benefits of corrections by adaptive optics are explained. A couple of actuator types of the phase corrector that can be used in vision science are introduced and discussed their suitability for the purpose. The requirements to be an ideal deformable mirror for ocular adaptive optics are presented. The characteristics of bimorph deformable mirrors originally developed for laser communications are investigated in an effort to understand their suitability for ophthalmological adaptive optics applications. A Phase shifting interferometer setup is developed for optical characterization and fundamental theory of interferogram analysis is described along with wavefront reconstruction. The theoretical analysis of the bimorph deformable mirror begins with developing an analytical model of the laminated structure. The finite element models are also developed using COMSOL Multiphysics. Using the FEM results, the performance of deformable mirrors under various structure dimensions and operating conditions is analyzed for optimization. A basic theory of piezoelectricity is explained, followed by introduction of applications to MEMS devices. The material properties of single crystal PMN-PT adopted in this research are described and characterized. The fabrication process of the optimized deformable mirror is presented and advanced techniques used in the process are described in detail. The fabricated deformable mirrors are characterized and the comparison with FEM is described. Finally, the dissertation ends up with suggestions for further developments and tests for the mirror.

  16. Astrophysics on the Edge: New Instrumental Developments at the ING

    NASA Astrophysics Data System (ADS)

    Santander-García, M.; Rodríguez-Gil, P.; Tulloch, S.; Rutten, R. G. M.

    Present and future key instruments at the Isaac Newton Group of Telescopes (ING) are introduced, and their corresponding latest scientific highlights are presented. GLAS (Ground-layer Laser Adaptive optics System): The recently installed 515 nm laser, mounted on the WHT (William Herschel Telescope), produces a bright artificial star at a height of 15 km. This enables almost full-sky access to Adaptive Optics observations. Recent commissioning observations with the NAOMI+GLAS system showed that very significant improvement in image quality can be obtained, e.g. down to 0.16 arcsec in the H band. QUCAM2 and QUCAM3: Two Low Light Level (L3) CCD cameras for fast or faint-object spectroscopy with the twin-armed ISIS spectrograph at the WHT. Their use opens a new window of high time-frequency observations, as well as access to fainter objects. They are powerful instruments for research on compact objects such as white dwarfs, neutron stars or black holes, stellar pulsations, and compact binaries.HARPS-NEF (High-Accuracy Radial-velocity Planet Searcher of the New Earths Facility): An extremely stable, high-resolution (R ˜ 120, 000) spectrograph for the WHT which is being constructed for commissioning in 2009-2010. Its radial velocity stability of < 1 m s- 1 may in the future be even further improved by using a Fabry-Perot laser-comb, a wavelength calibration unit capable of achieving an accuracy of 1 cm s- 1. This instrument will effectively allow to search for earth-like exoplanets.

  17. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Byoungho; Kim, Myung K.

    2015-03-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: wavefront sensor, wavefront corrector and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, e.g., lenslet arrays for sensing or multi-acuator deformable mirrors for correcting. We have previously introduced an alternate approach to adaptive optics based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile is possible not only with the conventional coherent type of digital holography, but also with a new type of digital holography using incoherent light: self-interference incoherent digital holography (SIDH). The SIDH generates complex - i.e. amplitude plus phase - hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using a guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. The adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  18. Euro50: Proposal for a 50 m Optical and Infrared Telescope

    NASA Astrophysics Data System (ADS)

    Ardeberg, Arne; Andersen, Torben; Rodriguez Espinosa, Jose Miguel

    Staff from Instituto de Astrofisica de Canarias, Lund Observatory, Physics Department and Larmor Research Institute at Galway, and Tuorla Observatory is collaborating on studies for a 50 m optical and infrared telescope. The telescope concepts are based on the work on extremely large telescopes carried out during 1991-2000 at Lund Observatory, and on the experience from the 10.4 m segmented Grantecan telescope presently under construction. The proposed 50 m telescope is a fully adaptive Nasmyth telescope with a Ritchey Chretien configuration. It will have an aspherical, segmented primary mirror with 2 m large segments and a deformable secondary. Adaptive optics will be implemented in several steps. From the beginning, there will be single-conjugate adaptive optics for the K-band. Next, and within the first year of operation, the telescope will have single-conjugate adaptive optics for visible wavelengths. As a third step, and another year of operation, dual-conjugate adaptive optics will be made available for the K-band. The telescope will be housed in a co-rotating enclosure at the Roque de los Muchachos observatory on La Palma. Further studies are in progress aiming at preparation of a proposal during the first half of 2002.

  19. Characterization and Operation of Liquid Crystal Adaptive Optics Phoropter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awwal, A; Bauman, B; Gavel, D

    2003-02-05

    Adaptive optics (AO), a mature technology developed for astronomy to compensate for the effects of atmospheric turbulence, can also be used to correct the aberrations of the eye. The classic phoropter is used by ophthalmologists and optometrists to estimate and correct the lower-order aberrations of the eye, defocus and astigmatism, in order to derive a vision correction prescription for their patients. An adaptive optics phoropter measures and corrects the aberrations in the human eye using adaptive optics techniques, which are capable of dealing with both the standard low-order aberrations and higher-order aberrations, including coma and spherical aberration. High-order aberrations havemore » been shown to degrade visual performance for clinical subjects in initial investigations. An adaptive optics phoropter has been designed and constructed based on a Shack-Hartmann sensor to measure the aberrations of the eye, and a liquid crystal spatial light modulator to compensate for them. This system should produce near diffraction-limited optical image quality at the retina, which will enable investigation of the psychophysical limits of human vision. This paper describes the characterization and operation of the AO phoropter with results from human subject testing.« less

  20. Terahertz adaptive optics with a deformable mirror.

    PubMed

    Brossard, Mathilde; Sauvage, Jean-François; Perrin, Mathias; Abraham, Emmanuel

    2018-04-01

    We report on the wavefront correction of a terahertz (THz) beam using adaptive optics, which requires both a wavefront sensor that is able to sense the optical aberrations, as well as a wavefront corrector. The wavefront sensor relies on a direct 2D electro-optic imaging system composed of a ZnTe crystal and a CMOS camera. By measuring the phase variation of the THz electric field in the crystal, we were able to minimize the geometrical aberrations of the beam, thanks to the action of a deformable mirror. This phase control will open the route to THz adaptive optics in order to optimize the THz beam quality for both practical and fundamental applications.

  1. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Goodman, Joseph W.

    1989-01-01

    The accuracy requirements of optical processors in adaptive optics systems are determined by estimating the required accuracy in a general optical linear algebra processor (OLAP) that results in a smaller average residual aberration than that achieved with a conventional electronic digital processor with some specific computation speed. Special attention is given to an error analysis of a general OLAP with regard to the residual aberration that is created in an adaptive mirror system by the inaccuracies of the processor, and to the effect of computational speed of an electronic processor on the correction. Results are presented on the ability of an OLAP to compete with a digital processor in various situations.

  2. LAO web page

    Science.gov Websites

    of adaptive optics systems for the next generation of high resolution astronomy instrumentation. The largest telescopes in support of UC Astronomy, including those at the Keck, Gemini, and Lick Observatories optics for astronomy: MEMS and fiber lasers lead the way. In Adaptive Optics: Analysis, Methods and

  3. Dynamic properties of the adaptive optics system depending on the temporary transformations of mirror control voltages

    NASA Astrophysics Data System (ADS)

    Lavrinov, V. V.; Lavrinova, L. N.

    2017-11-01

    The statistically optimal control algorithm for the correcting mirror is formed by constructing a prediction of distortions of the optical signal and improves the time resolution of the adaptive optics system. The prediction of distortions is based on an analysis of the dynamics of changes in the optical inhomogeneities of the turbulent atmosphere or the evolution of phase fluctuations at the input aperture of the adaptive system. Dynamic properties of the system are manifested during the temporary transformation of the stresses controlling the mirror and are determined by the dynamic characteristics of the flexible mirror.

  4. Optical Profilometers Using Adaptive Signal Processing

    NASA Technical Reports Server (NTRS)

    Hall, Gregory A.; Youngquist, Robert; Mikhael, Wasfy

    2006-01-01

    A method of adaptive signal processing has been proposed as the basis of a new generation of interferometric optical profilometers for measuring surfaces. The proposed profilometers would be portable, hand-held units. Sizes could be thus reduced because the adaptive-signal-processing method would make it possible to substitute lower-power coherent light sources (e.g., laser diodes) for white light sources and would eliminate the need for most of the optical components of current white-light profilometers. The adaptive-signal-processing method would make it possible to attain scanning ranges of the order of decimeters in the proposed profilometers.

  5. Evaluation of white-to-white distance and anterior chamber depth measurements using the IOL Master, slit-lamp adapted optical coherence tomography and digital photographs in phakic eyes.

    PubMed

    Wilczyński, Michał; Pośpiech-Zabierek, Aleksandra

    2015-01-01

    The accurate measurement of the anterior chamber internal diameter and depth is important in ophthalmic diagnosis and before some eye surgery procedures. The purpose of the study was to compare the white-to-white distance measurements performed using the IOL-Master and photography with internal anterior chamber diameter determined using slit lamp adapted optical coherence tomography in healthy eyes, and to compare anterior chamber depth measurements by IOL-Master and slit lamp adapted optical coherence tomography. The data were gathered prospectively from a non-randomized consecutive series of patients. The examined group consisted of 46 eyes of 39 patients. White-to-white was measured using IOL-Master and photographs of the eye were taken with a digital camera. Internal anterior chamber diameter was measured with slit-lamp adapted optical coherence tomography. Anterior chamber depth was measured using the IOL Master and slit-lamp adapted optical coherence tomography. Statistical analysis was performed using parametric tests. A Bland-Altman plot was drawn. White-to-white distance by the IOL Master was 11.8 +/- 0.40 mm, on photographs it was 11.29 +/- 0.58 mm and internal anterior chamber diameter by slit-lamp adapted optical coherence tomography was 11.34?0.54 mm. A significant difference was found between IOL-Master and slit-lamp adapted optical coherence tomography (p<0.01), as well as between IOL Master and digital photographs (p<0.01). There was no difference between SL-OCT and digital photographs (p>0.05). All measurements were correlated (Spearman p<0.001). Mean anterior chamber depth determined using the IOL-Master was 2.99 +/- 0.50 mm and by slit-lamp adapted optical coherence tomography was 2.56 +/- 0.46 mm. The difference was statistically significant (p<0.001). The correlation between the values was also statistically significant (Spearman, p<0.001). Automated measurements using IOL-Master yield constantly higher values than measurements based on direct eye visualization slit-lamp adapted optical coherence tomography and digital photographs. In order to obtain accurate measurements of the internal anterior chamber diameter and anterior chamber depth, a method involving direct visualization of intraocular structures should be used.

  6. Engineering aspects of the Large Binocular Telescope Observatory adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Brusa, Guido; Ashby, Dave; Christou, Julian C.; Kern, Jonathan; Lefebvre, Michael; McMahon, Tom J.; Miller, Douglas; Rahmer, Gustavo; Sosa, Richard; Taylor, Gregory; Vogel, Conrad; Zhang, Xianyu

    2016-07-01

    Vertical profiles of the atmospheric optical turbulence strength and velocity is of critical importance for simulating, designing, and operating the next generation of instruments for the European Extremely Large Telescope. Many of these instruments are already well into the design phase meaning these profies are required immediately to ensure they are optimised for the unique conditions likely to be observed. Stereo-SCIDAR is a generalised SCIDAR instrument which is used to characterise the profile of the atmospheric optical turbulence strength and wind velocity using triangulation between two optical binary stars. Stereo-SCIDAR has demonstrated the capability to resolve turbulent layers with the required vertical resolution to support wide-field ELT instrument designs. These high resolution atmospheric parameters are critical for design studies and statistical evaluation of on-sky performance under real conditions. Here we report on the new Stereo-SCIDAR instrument installed on one of the Auxillary Telescope ports of the Very Large Telescope array at Cerro Paranal. Paranal is located approximately 20 km from Cerro Armazones, the site of the E-ELT. Although the surface layer of the turbulence will be different for the two sites due to local geography, the high-altitude resolution profiles of the free atmosphere from this instrument will be the most accurate available for the E-ELT site. In addition, these unbiased and independent profiles are also used to further characterise the site of the VLT. This enables instrument performance calibration, optimisation and data analysis of, for example, the ESO Adaptive Optics facility and the Next Generation Transit Survey. It will also be used to validate atmospheric models for turbulence forecasting. We show early results from the commissioning and address future implications of the results.

  7. Adaptive Optics at the World’s Biggest Optical Telescope

    DTIC Science & Technology

    2010-09-01

    bottom up. The reflective, and deformable, component of each of the LBT’s mirrors is a concave Zerodur shell, 1.6 mm in average thickness and 911 mm in...Physik, 85748 Garching, Germany ABSTRACT The Large Binocular Telescope (LBT) on Mt. Graham, Arizona, comprises two 8.4 m primary mirrors on a...adaptive optics (AO) was incorporated into the design through two adaptive secondary mirrors (ASM), each 91 cm in diameter with 672 actuators, which feed

  8. Optofluidic Approaches for Enhanced Microsensor Performances

    PubMed Central

    Testa, Genni; Persichetti, Gianluca; Bernini, Romeo

    2015-01-01

    Optofluidics is a relatively young research field able to create a tight synergy between optics and micro/nano-fluidics. The high level of integration between fluidic and optical elements achievable by means of optofluidic approaches makes it possible to realize an innovative class of sensors, which have been demonstrated to have an improved sensitivity, adaptability and compactness. Many developments in this field have been made in the last years thanks to the availability of a new class of low cost materials and new technologies. This review describes the Italian state of art on optofluidic devices for sensing applications and offers a perspective for further future advances. We introduce the optofluidic concept and describe the advantages of merging photonic and fluidic elements, focusing on sensor developments for both environmental and biomedical monitoring. PMID:25558989

  9. Optical imaging of intracranial hemorrhages in newborns: modern strategies in diagnostics and direction for future research

    NASA Astrophysics Data System (ADS)

    Pavlov, A. N.; Semyachkina-Glushkovskaya, O. V.; Lychagov, V. V.; Bibikova, O. A.; Sindeev, S. S.; Pavlova, O. N.; Shuvalova, E. P.; Tuchin, V. V.

    2014-05-01

    Using Doppler optical coherence tomography (DOCT) we study stress-related intracranial hemorrhages (ICHs) in newborn rats. We investigate a masked stage of ICH development that corresponds to the first 4 h after the stress. We show that this period is characterized by significant changes in the diameter of the sagittal vein and the velocity of the cerebral venous blood flow (CVBF). We discuss diagnostic abilities of wavelet-based methods and consider an adaptive technique allowing us to reveal clearest distinctions in the dynamics of CVBF between normal and stressed newborn rats. Finally, we conclude that the venous insufficiency in newborns and a reduced response of the sagittal vein to adrenaline are related to important prognostic markers of the risk of ICH development.

  10. Small scale adaptive optics experiment systems engineering

    NASA Technical Reports Server (NTRS)

    Boykin, William H.

    1993-01-01

    Assessment of the current technology relating to the laser power beaming system which in full scale is called the Beam Transmission Optical System (BTOS). Evaluation of system integration efforts are being conducted by the various government agencies and industry. Concepts are being developed for prototypes of adaptive optics for a BTOS.

  11. Addition of Adapted Optics towards obtaining a quantitative detection of diabetic retinopathy

    NASA Astrophysics Data System (ADS)

    Yust, Brian; Obregon, Isidro; Tsin, Andrew; Sardar, Dhiraj

    2009-04-01

    An adaptive optics system was assembled for correcting the aberrated wavefront of light reflected from the retina. The adaptive optics setup includes a superluminous diode light source, Hartmann-Shack wavefront sensor, deformable mirror, and imaging CCD camera. Aberrations found in the reflected wavefront are caused by changes in the index of refraction along the light path as the beam travels through the cornea, lens, and vitreous humour. The Hartmann-Shack sensor allows for detection of aberrations in the wavefront, which may then be corrected with the deformable mirror. It has been shown that there is a change in the polarization of light reflected from neovascularizations in the retina due to certain diseases, such as diabetic retinopathy. The adaptive optics system was assembled towards the goal of obtaining a quantitative measure of onset and progression of this ailment, as one does not currently exist. The study was done to show that the addition of adaptive optics results in a more accurate detection of neovascularization in the retina by measuring the expected changes in polarization of the corrected wavefront of reflected light.

  12. Initial results from the Lick Observatory Laser Guide Star Adaptive Optics System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivier, S.S.; An, J.; Avicola, K.

    1995-11-08

    A prototype adaptive optics system has been installed and tested on the 3 m Shane telescope at Lick Observatory. The adaptive optics system performance, using bright natural guide stars, is consistent with expectations based on theory. A sodium-layer laser guide star system has also been installed and tested on the Shane telescope. Operating at 15 W, the laser system produces a 9th magnitude guide star with seeing-limited size at 589 nm. Using the laser guide star, the adaptive optics system has reduced the wavefront phase variance on scales above 50 cm by a factor of 4. These results represent themore » first continuous wavefront phase correction using a sodium-layer laser guide star. Assuming tip-tilt is removed using a natural guide star, the measured control loop performance should produce images with a Strehl ratio of 0.4 at 2.2 {mu}m in 1 arc second seeing. Additional calibration procedures must be implemented in order to achieve these results with the prototype Lick adaptive optics system.« less

  13. Adaptive upstream optical power adjustment depending on required power budget in PON access

    NASA Astrophysics Data System (ADS)

    Yeh, C. H.; Chow, C. W.; Liu, Y. L.

    2012-11-01

    According to the present passive optical network (PON) standard, the fiber transmission lengths are from 500 m to 20 km between the optical line terminal (OLT) and different optical network units (ONUs). It will result in difference power losses (ΔPloss) from 4 to 5 dB. Hence, we propose to adjust adaptively the output optical power of the upstream laser diode (LD) depending on the different fiber lengths. With the different fiber transmission lengths, we can properly adjust the bias current and modulation index of upstream LD for energy-saving. We characterize and analyze experimentally the relationship of output optical power and modulation amplitude Vamp under different fiber transmissions in PON access. Moreover, due to the adaptive power control of upstream signal, the optical upstream equalization also can be retrieved with power variation of 1.1 dB in this experiment.

  14. Optical figuring specifications for thin shells to be used in adaptive telescope mirrors

    NASA Astrophysics Data System (ADS)

    Riccardi, A.

    2006-06-01

    The present work describes the guidelines to define the optical figuring specifications for optical manufacturing of thin shells in terms of figuring error power spectrum (and related rms vs scale distributon) to be used in adaptive optics correctors with force actuators like Deformable Secondary Mirrors (DSM). In particular the numerical example for a thin shell for a VLT DSM is considered.

  15. Adapter plate assembly for adjustable mounting of objects

    DOEpatents

    Blackburn, R.S.

    1986-05-02

    An adapter plate and two locking discs are together affixed to an optic table with machine screws or bolts threaded into a fixed array of internally threaded holes provided in the table surface. The adapter plate preferably has two, and preferably parallel, elongated locating slots each freely receiving a portion of one of the locking discs for secure affixation of the adapter plate to the optic table. A plurality of threaded apertures provided in the adapter plate are available to attach optical mounts or other devices onto the adapter plate in an orientation not limited by the disposition of the array of threaded holes in the table surface. An axially aligned but radially offset hole through each locking disc receives a screw that tightens onto the table, such that prior to tightening of the screw the locking disc may rotate and translate within each locating slot of the adapter plate for maximum flexibility of the orientation thereof.

  16. Adapter plate assembly for adjustable mounting of objects

    DOEpatents

    Blackburn, Robert S.

    1987-01-01

    An adapter plate and two locking discs are together affixed to an optic table with machine screws or bolts threaded into a fixed array of internally threaded holes provided in the table surface. The adapter plate preferably has two, and preferably parallel, elongated locating slots each freely receiving a portion of one of the locking discs for secure affixation of the adapter plate to the optic table. A plurality of threaded apertures provided in the adapter plate are available to attach optical mounts or other devices onto the adapter plate in an orientation not limited by the disposition of the array of threaded holes in the table surface. An axially aligned but radially offset hole through each locking disc receives a screw that tightens onto the table, such that prior to tightening of the screw the locking disc may rotate and translate within each locating slot of the adapter plate for maximum flexibility of the orientation thereof.

  17. ISTC projects devoted to improving laser beam quality

    NASA Astrophysics Data System (ADS)

    Malakhov, Yu. I.

    2007-05-01

    Short overview is done about the activity of ISTC in a direction concerned with improving powerful laser beam quality by means of nonlinear and linear adaptive optics methods. Completed projects #0591 and #1929 resulted in the development of a stimulated Brillouin scattering (SBS) phase conjugation mirror of superhigh fidelity employing the kinoform optical elements (rasters of small lenses) of new generation designed for pulsed or pulse-periodic lasers with nanosecond scale pulse duration. Project #2631 is devoted to development of an adaptive optical system for phase registration and correction of laser beams with wave front vortices. The principles of operation of conventional adaptive systems are based on the assumption that the phase is a smooth continuous function in space. Therefore the solution of the Project tasks will assume a new step in adaptive optics.

  18. Adaptive optics compensation of orbital angular momentum beams with a modified Gerchberg-Saxton-based phase retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Chang, Huan; Yin, Xiao-li; Cui, Xiao-zhou; Zhang, Zhi-chao; Ma, Jian-xin; Wu, Guo-hua; Zhang, Li-jia; Xin, Xiang-jun

    2017-12-01

    Practical orbital angular momentum (OAM)-based free-space optical (FSO) communications commonly experience serious performance degradation and crosstalk due to atmospheric turbulence. In this paper, we propose a wave-front sensorless adaptive optics (WSAO) system with a modified Gerchberg-Saxton (GS)-based phase retrieval algorithm to correct distorted OAM beams. We use the spatial phase perturbation (SPP) GS algorithm with a distorted probe Gaussian beam as the only input. The principle and parameter selections of the algorithm are analyzed, and the performance of the algorithm is discussed. The simulation results show that the proposed adaptive optics (AO) system can significantly compensate for distorted OAM beams in single-channel or multiplexed OAM systems, which provides new insights into adaptive correction systems using OAM beams.

  19. Optical design of automotive headlight system incorporating digital micromirror device.

    PubMed

    Hung, Chuan-Cheng; Fang, Yi-Chin; Huang, Ming-Shyan; Hsueh, Bo-Ren; Wang, Shuan-Fu; Wu, Bo-Wen; Lai, Wei-Chi; Chen, Yi-Liang

    2010-08-01

    In recent years, the popular adaptive front-lighting automobile headlight system has become a main emphasis of research that manufacturers will continue to focus great efforts on in the future. In this research we propose a new integral optical design for an automotive headlight system with an advanced light-emitting diode and digital micromirror device (DMD). Traditionally, automobile headlights have all been designed as a low beam light module, whereas the high beam light module still requires using accessory lamps. In anticipation of this new concept of integral optical design, we have researched and designed a single optical system with high and low beam capabilities. To switch on and off the beams, a DMD is typically used. Because DMDs have the capability of redirecting incident light into a specific angle, they also determine the shape of the high or low light beam in order to match the standard of headlight illumination. With collocation of the multicurvature reflection lens design, a DMD can control the light energy distribution and thereby reinforce the resolution of the light beam.

  20. Center for Adaptive Optics | Jobs

    Science.gov Websites

    , 2015 University of Geneva Adaptive Optics Scientist or Engineer March 16, 2015 NRC-Herzberg Astronomy Max Planck Institute for Astronomy (MPIA) Post-doctoral Fellowships in High-angular Resolution

  1. Stress polishing of thin shells for adaptive secondary mirrors. Application to the Very Large Telescope deformable secondary

    NASA Astrophysics Data System (ADS)

    Hugot, E.; Ferrari, M.; Riccardi, A.; Xompero, M.; Lemaître, G. R.; Arsenault, R.; Hubin, N.

    2011-03-01

    Context. Adaptive secondary mirrors (ASM) are, or will be, key components on all modern telescopes, providing improved seeing conditions or diffraction limited images, thanks to the high-order atmospheric turbulence correction obtained by controlling the shape of a thin mirror. Their development is a key milestone towards future extremely large telescopes (ELT) where this technology is mandatory for successful observations. Aims: The key point of actual adaptive secondaries technology is the thin glass mirror that acts as a deformable membrane, often aspheric. On 6 m - 8 m class telescopes, these are typically 1 m-class with a 2 mm thickness. The optical quality of this shell must be sufficiently good not to degrade the correction, meaning that high spatial frequency errors must be avoided. The innovative method presented here aims at generating aspherical shapes by elastic bending to reach high optical qualities. Methods: This method is called stress polishing and allows generating aspherical optics of a large amplitude with a simple spherical polishing with a full sized lap applied on a warped blank. The main advantage of this technique is the smooth optical quality obtained, free of high spatial frequency ripples as they are classically caused by subaperture toolmarks. After describing the manufacturing process we developed, our analytical calculations lead to a preliminary definition of the geometry of the blank, which allows a precise bending of the substrate. The finite element analysis (FEA) can be performed to refine this geometry by using an iterative method with a criterion based on the power spectral density of the displacement map of the optical surface. Results: Considering the specific case of the Very Large Telescope (VLT) deformable secondary mirror (DSM), extensive FEA were performed for the optimisation of the geometry. Results are showing that the warping will not introduce surface errors higher than 0.3 nm rms on the minimal spatial scale considered on the mirror. Simulations of the flattening operation of the shell also demonstrate that the actuators system is able to correct manufacturing surface errors coming from the warping of the blank with a residual error lower than 8 nm rms.

  2. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2008-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  3. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2007-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  4. Thin nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth J. (Inventor); Hughes, Eli (Inventor)

    2009-01-01

    A thin nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  5. Preconditioned conjugate gradient wave-front reconstructors for multiconjugate adaptive optics.

    PubMed

    Gilles, Luc; Ellerbroek, Brent L; Vogel, Curtis R

    2003-09-10

    Multiconjugate adaptive optics (MCAO) systems with 10(4)-10(5) degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of adaptive optics degrees of freedom. We develop scalable open-loop iterative sparse matrix implementations of minimum variance wave-front reconstruction for telescope diameters up to 32 m with more than 10(4) actuators. The basic approach is the preconditioned conjugate gradient method with an efficient preconditioner, whose block structure is defined by the atmospheric turbulent layers very much like the layer-oriented MCAO algorithms of current interest. Two cost-effective preconditioners are investigated: a multigrid solver and a simpler block symmetric Gauss-Seidel (BSGS) sweep. Both options require off-line sparse Cholesky factorizations of the diagonal blocks of the matrix system. The cost to precompute these factors scales approximately as the three-halves power of the number of estimated phase grid points per atmospheric layer, and their average update rate is typically of the order of 10(-2) Hz, i.e., 4-5 orders of magnitude lower than the typical 10(3) Hz temporal sampling rate. All other computations scale almost linearly with the total number of estimated phase grid points. We present numerical simulation results to illustrate algorithm convergence. Convergence rates of both preconditioners are similar, regardless of measurement noise level, indicating that the layer-oriented BSGS sweep is as effective as the more elaborated multiresolution preconditioner.

  6. Methods for correcting tilt anisoplanatism in laser-guide-star-based multiconjugate adaptive optics.

    PubMed

    Ellerbroek, B L; Rigaut, F

    2001-10-01

    Multiconjugate adaptive optics (MCAO) is a technique for correcting turbulence-induced phase distortions in three dimensions instead of two, thereby greatly expanding the corrected field of view of an adaptive optics system. This is accomplished with use of multiple deformable mirrors conjugate to distinct ranges in the atmosphere, with actuator commands computed from wave-front sensor (WFS) measurements from multiple guide stars. Laser guide stars (LGSs) must be used (at least for the forseeable future) to achieve a useful degree of sky coverage in an astronomical MCAO system. Much as a single LGS cannot be used to measure overall wave-front tilt, a constellation of multiple LGSs at a common range cannot detect tilt anisoplanatism. This error alone will significantly degrade the performance of a MCAO system based on a single tilt-only natural guide star (NGS) and multiple tilt-removed LGSs at a common altitude. We present a heuristic, low-order model for the principal source of tilt anisoplanatism that suggests four possible approaches to eliminating this defect in LGS MCAO: (i) tip/tilt measurements from multiple NGS, (ii) a solution to the LGS tilt uncertainty problem, (iii) additional higher-order WFS measurements from a single NGS, or (iv) higher-order WFS measurements from both sodium and Rayleigh LGSs at different ranges. Sample numerical results for one particular MCAO system configuration indicate that approach (ii), if feasible, would provide the highest degree of tilt anisoplanatism compensation. Approaches (i) and (iv) also provide very useful levels of performance and do not require unrealistically low levels of WFS measurement noise. For a representative set of parameters for an 8-m telescope, the additional laser power required for approach (iv) is on the order of 2 W per Rayleigh LGS.

  7. Automated Photoreceptor Cell Identification on Nonconfocal Adaptive Optics Images Using Multiscale Circular Voting

    PubMed Central

    Liu, Jianfei; Jung, HaeWon; Dubra, Alfredo; Tam, Johnny

    2017-01-01

    Purpose Adaptive optics scanning light ophthalmoscopy (AOSLO) has enabled quantification of the photoreceptor mosaic in the living human eye using metrics such as cell density and average spacing. These rely on the identification of individual cells. Here, we demonstrate a novel approach for computer-aided identification of cone photoreceptors on nonconfocal split detection AOSLO images. Methods Algorithms for identification of cone photoreceptors were developed, based on multiscale circular voting (MSCV) in combination with a priori knowledge that split detection images resemble Nomarski differential interference contrast images, in which dark and bright regions are present on the two sides of each cell. The proposed algorithm locates dark and bright region pairs, iteratively refining the identification across multiple scales. Identification accuracy was assessed in data from 10 subjects by comparing automated identifications with manual labeling, followed by computation of density and spacing metrics for comparison to histology and published data. Results There was good agreement between manual and automated cone identifications with overall recall, precision, and F1 score of 92.9%, 90.8%, and 91.8%, respectively. On average, computed density and spacing values using automated identification were within 10.7% and 11.2% of the expected histology values across eccentricities ranging from 0.5 to 6.2 mm. There was no statistically significant difference between MSCV-based and histology-based density measurements (P = 0.96, Kolmogorov-Smirnov 2-sample test). Conclusions MSCV can accurately detect cone photoreceptors on split detection images across a range of eccentricities, enabling quick, objective estimation of photoreceptor mosaic metrics, which will be important for future clinical trials utilizing adaptive optics. PMID:28873173

  8. Adaptive optics high-resolution IR spectroscopy with silicon grisms and immersion gratings

    NASA Astrophysics Data System (ADS)

    Ge, Jian; McDavitt, Daniel L.; Chakraborty, Abhijit; Bernecker, John L.; Miller, Shane

    2003-02-01

    The breakthrough of silicon immersion grating technology at Penn State has the ability to revolutionize high-resolution infrared spectroscopy when it is coupled with adaptive optics at large ground-based telescopes. Fabrication of high quality silicon grism and immersion gratings up to 2 inches in dimension, less than 1% integrated scattered light, and diffraction-limited performance becomes a routine process thanks to newly developed techniques. Silicon immersion gratings with etched dimensions of ~ 4 inches are being developed at Penn State. These immersion gratings will be able to provide a diffraction-limited spectral resolution of R = 300,000 at 2.2 micron, or 130,000 at 4.6 micron. Prototype silicon grisms have been successfully used in initial scientific observations at the Lick 3m telescope with adaptive optics. Complete K band spectra of a total of 6 T Tauri and Ae/Be stars and their close companions at a spectral resolution of R ~ 3000 were obtained. This resolving power was achieved by using a silicon echelle grism with a 5 mm pupil diameter in an IR camera. These results represent the first scientific observations conducted by the high-resolution silicon grisms, and demonstrate the extremely high dispersing power of silicon-based gratings. New discoveries from this high spatial and spectral resolution IR spectroscopy will be reported. The future of silicon-based grating applications in ground-based AO IR instruments is promising. Silicon immersion gratings will make very high-resolution spectroscopy (R > 100,000) feasible with compact instruments for implementation on large telescopes. Silicon grisms will offer an efficient way to implement low-cost medium to high resolution IR spectroscopy (R ~ 1000-50000) through the conversion of existing cameras into spectrometers by locating a grism in the instrument's pupil location.

  9. EO system concepts in the littoral

    NASA Astrophysics Data System (ADS)

    Schwering, Piet B. W.; van den Broek, Sebastiaan P.; van Iersel, Miranda

    2007-04-01

    In recent years, operations executed by naval forces have taken place at many different locations. At present, operations against international terrorism and asymmetric warfare in coastal environments are of major concern. In these scenarios, the threat caused by pirates on-board of small surface targets, such as jetskis and fast inshore attack crafts, is increasing. In the littoral environment, the understanding of its complexity and the efficient use of the limited reaction time, are essential for successful operations. Present-day electro-optical sensor suites, also incorporating Infrared Search and Track systems, can be used for varying tasks as detection, classification and identification. By means of passive electro-optical systems, infrared and visible light sensors, improved situational awareness can be achieved. For long range capability, elevated sensor masts and flying platforms are ideally suited for the surveillance task and improve situational awareness. A primary issue is how to incorporate new electro-optical technology and signal processing into the new sensor concepts, to improve system performance. It is essential to derive accurate information from the high spatial-resolution imagery created by the EO sensors. As electro-optical sensors do not have all-weather capability, the performance degradation in adverse scenarios must be understood, in order to support the operational use of adaptive sensor management techniques. In this paper we discuss the approach taken at TNO in the design and assessment of system concepts for future IRST development. An overview of our maritime programme in future IRST and EO system concepts including signal processing is presented.

  10. Space micro-guidance and control - Applications and architectures

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Hadaegh, Fred Y.

    1992-01-01

    The features and the components of a new microscale guidance, navigation, and control (GN&C) system for future space systems are discussed. An approach is described for the utilization of new microengineering technologies for achieving major reductions in the GN&C system's mass, size, power, and costs. The micro-GN&C system and the component concepts include microactuated adaptive optics, micromachined inertial sensors, fiberoptic data nets with light-power transmission, and VLSI microcomputers. The GN&C system will be applied in microspacecraft, microlanders, microrovers, remote sensing platforms, interferometers, and deployable reflectors.

  11. Space micro-guidance and control - Applications and architectures

    NASA Astrophysics Data System (ADS)

    Mettler, Edward; Hadaegh, Fred Y.

    1992-07-01

    The features and the components of a new microscale guidance, navigation, and control (GN&C) system for future space systems are discussed. An approach is described for the utilization of new microengineering technologies for achieving major reductions in the GN&C system's mass, size, power, and costs. The micro-GN&C system and the component concepts include microactuated adaptive optics, micromachined inertial sensors, fiberoptic data nets with light-power transmission, and VLSI microcomputers. The GN&C system will be applied in microspacecraft, microlanders, microrovers, remote sensing platforms, interferometers, and deployable reflectors.

  12. Adaptive optics plug-and-play setup for high-resolution microscopes with multi-actuator adaptive lens

    NASA Astrophysics Data System (ADS)

    Quintavalla, M.; Pozzi, P.; Verhaegen, Michelle; Bijlsma, Hielke; Verstraete, Hans; Bonora, S.

    2018-02-01

    Adaptive Optics (AO) has revealed as a very promising technique for high-resolution microscopy, where the presence of optical aberrations can easily compromise the image quality. Typical AO systems however, are almost impossible to implement on commercial microscopes. We propose a simple approach by using a Multi-actuator Adaptive Lens (MAL) that can be inserted right after the objective and works in conjunction with an image optimization software allowing for a wavefront sensorless correction. We presented the results obtained on several commercial microscopes among which a confocal microscope, a fluorescence microscope, a light sheet microscope and a multiphoton microscope.

  13. Liquid lens: advances in adaptive optics

    NASA Astrophysics Data System (ADS)

    Casey, Shawn Patrick

    2010-12-01

    'Liquid lens' technologies promise significant advancements in machine vision and optical communications systems. Adaptations for machine vision, human vision correction, and optical communications are used to exemplify the versatile nature of this technology. Utilization of liquid lens elements allows the cost effective implementation of optical velocity measurement. The project consists of a custom image processor, camera, and interface. The images are passed into customized pattern recognition and optical character recognition algorithms. A single camera would be used for both speed detection and object recognition.

  14. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    DOEpatents

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  15. Lowering threshold energy for femtosecond laser pulse photodisruption through turbid media using adaptive optics

    NASA Astrophysics Data System (ADS)

    Hansen, A.; Ripken, Tammo; Krueger, Ronald R.; Lubatschowski, Holger

    2011-03-01

    Focussed femtosecond laser pulses are applied in ophthalmic tissues to create an optical breakdown and therefore a tissue dissection through photodisruption. The threshold irradiance for the optical breakdown depends on the photon density in the focal volume which can be influenced by the pulse energy, the size of the irradiated area (focus), and the irradiation time. For an application in the posterior eye segment the aberrations of the anterior eye elements cause a distortion of the wavefront and therefore an increased focal volume which reduces the photon density and thus raises the required energy for surpassing the threshold irradiance. The influence of adaptive optics on lowering the pulse energy required for photodisruption by refining a distorted focus was investigated. A reduction of the threshold energy can be shown when using adaptive optics. The spatial confinement with adaptive optics furthermore raises the irradiance at constant pulse energy. The lowered threshold energy allows for tissue dissection with reduced peripheral damage. This offers the possibility for moving femtosecond laser surgery from corneal or lental applications in the anterior eye to vitreal or retinal applications in the posterior eye.

  16. Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis.

    PubMed

    Greiner, Birgit; Ribi, Willi A; Warrant, Eric J

    2004-06-01

    The apposition compound eye of a nocturnal bee, the halictid Megalopta genalis, is described for the first time. Compared to the compound eye of the worker honeybee Apis mellifera and the diurnal halictid bee Lasioglossum leucozonium, the eye of M. genalis shows specific retinal and optical adaptations for vision in dim light. The major anatomical adaptations within the eye of the nocturnal bee are (1) nearly twofold larger ommatidial facets and (2) a 4-5 times wider rhabdom diameter than found in the diurnal bees studied. Optically, the apposition eye of M. genalis is 27 times more sensitive to light than the eyes of the diurnal bees. This increased optical sensitivity represents a clear optical adaptation to low light intensities. Although this unique nocturnal apposition eye has a greatly improved ability to catch light, a 27-fold increase in sensitivity alone cannot account for nocturnal vision at light intensities that are 8 log units dimmer than during daytime. New evidence suggests that additional neuronal spatial summation within the first optic ganglion, the lamina, is involved.

  17. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.

    PubMed

    Wong, Kevin S K; Jian, Yifan; Cua, Michelle; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V

    2015-02-01

    Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing a clinical high-resolution retinal imaging system as it enables the use of a compact, low-cost and robust lens-based adaptive optics design. In this report, we describe our WSAO-OCT system for imaging the human photoreceptor mosaic in vivo. We validated our system performance by imaging the retina at several eccentricities, and demonstrated the improvement in photoreceptor visibility with WSAO compensation.

  18. Adaptive Filter Techniques for Optical Beam Jitter Control and Target Tracking

    DTIC Science & Technology

    2008-12-01

    OPTICAL BEAM JITTER CONTROL AND TARGET TRACKING Michael J. Beerer Civilian, United States Air Force B.S., University of California Irvine, 2006...TECHNIQUES FOR OPTICAL BEAM JITTER CONTROL AND TARGET TRACKING by Michael J. Beerer December 2008 Thesis Advisor: Brij N. Agrawal Co...DATE December 2008 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Adaptive Filter Techniques for Optical Beam Jitter

  19. A Study on a Microwave-Driven Smart Material Actuator

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Chu, Sang-Hyon; Kwak, M.; Cutler, A. D.

    2001-01-01

    NASA s Next Generation Space Telescope (NGST) has a large deployable, fragmented optical surface (greater than or = 2 8 m in diameter) that requires autonomous correction of deployment misalignments and thermal effects. Its high and stringent resolution requirement imposes a great deal of challenge for optical correction. The threshold value for optical correction is dictated by lambda/20 (30 nm for NGST optics). Control of an adaptive optics array consisting of a large number of optical elements and smart material actuators is so complex that power distribution for activation and control of actuators must be done by other than hard-wired circuitry. The concept of microwave-driven smart actuators is envisioned as the best option to alleviate the complexity associated with hard-wiring. A microwave-driven actuator was studied to realize such a concept for future applications. Piezoelectric material was used as an actuator that shows dimensional change with high electric field. The actuators were coupled with microwave rectenna and tested to correlate the coupling effect of electromagnetic wave. In experiments, a 3x3 rectenna patch array generated more than 50 volts which is a threshold voltage for 30-nm displacement of a single piezoelectric material. Overall, the test results indicate that the microwave-driven actuator concept can be adopted for NGST applications.

  20. Adaptive upstream rate adjustment by RSOA-ONU depending on different injection power of seeding light in standard-reach and long-reach PON systems

    NASA Astrophysics Data System (ADS)

    Yeh, C. H.; Chow, C. W.; Shih, F. Y.; Pan, C. L.

    2012-08-01

    The wavelength division multiplexing-time division multiplexing (WDM-TDM) passive optical network (PON) using reflective semiconductor optical amplifier (RSOA)-based colorless optical networking units (ONUs) is considered as a promising candidate for the realization of fiber-to-the-home (FTTH). And this architecture is actively considered by Industrial Technology Research Institute (ITRI) for the realization of FTTH in Taiwan. However, different fiber distances and optical components would introduce different power budgets to different ONUs in the PON. Besides, due to the aging of optical transmitter (Tx), the power decay of the distributed optical carrier from the central office (CO) could also reduce the injection power into each ONU. The situation will be more severe in the long-reach (LR) PON, which is considered as an option for the future access. In this work, we investigate a WDM-TDM PON using RSOA-based ONU for upstream data rate adjustment depending on different continuous wave (CW) injection powers. Both standard-reach (25 km) and LR (100 km) transmissions are evaluated. Moreover, a detail analysis of the upstream signal bit-error rate (BER) performances at different injection powers, upstream data rates, PON split-ratios under stand-reach and long-reach is presented.

  1. Efficient, High-Power Mid-Infrared Laser for National Securityand Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiani, Leily S.

    The LLNL fiber laser group developed a unique short-wave-infrared, high-pulse energy, highaverage- power fiber based laser. This unique laser source has been used in combination with a nonlinear frequency converter to generate wavelengths, useful for remote sensing and other applications in the mid-wave infrared (MWIR). Sources with high average power and high efficiency in this MWIR wavelength region are not yet available with the size, weight, and power requirements or energy efficiency necessary for future deployment. The LLNL developed Fiber Laser Pulsed Source (FiLPS) design was adapted to Erbium doped silica fibers for 1.55 μm pumping of Cadmium Silicon Phosphidemore » (CSP). We have demonstrated, for the first time optical parametric amplification of 2.4 μm light via difference frequency generation using CSP with an Erbium doped fiber source. In addition, for efficiency comparison purposes, we also demonstrated direct optical parametric generation (OPG) as well as optical parametric oscillation (OPO).« less

  2. The design of a breadboard cryogenic optical delay line for DARWIN

    NASA Astrophysics Data System (ADS)

    van den Dool, Teun C.; Kamphues, Fred; Fouss, B.; Henrioulle, K.; Kooijman, P. P.; Visser, Martijn; Velsink, G.; Fleury, K.

    2004-09-01

    TNO TPD, in cooperation with Micromega-Dynamics, SRON, Dutch Space and CSL, has designed a compact breadboard cryogenic delay line for use in future space interferometry missions. The work is performed under ESA contract in preparation for the DARWIN mission. The breadboard (BB) delay line is representative of a flight mechanism, with all materials and processes used being flight representative. The delay line has a single stage voice coil actuator for Optical Path Difference (OPD) control, driving a two-mirror cat's eye. Magnetic bearings provide frictionless and wear free operation with zero-hysteresis. Overall power consumption is below the ESA specification of 2.5 W. The power dissipated on the optical bench at 40 K is considerably less than the maximum allowable 25 mW. The design of the BB delay line has been completed. Verification testing, including functional testing at 40 K, is planned to start in the 4th quarter of 2004. The current design could also be adapted to the needs of the TPF-I mission.

  3. Adaptive Optics at Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavel, D T

    2003-03-10

    Adaptive optics enables high resolution imaging through the atmospheric by correcting for the turbulent air's aberrations to the light waves passing through it. The Lawrence Livermore National Laboratory for a number of years has been at the forefront of applying adaptive optics technology to astronomy on the world's largest astronomical telescopes, in particular at the Keck 10-meter telescope on Mauna Kea, Hawaii. The technology includes the development of high-speed electrically driven deformable mirrors, high-speed low-noise CCD sensors, and real-time wavefront reconstruction and control hardware. Adaptive optics finds applications in many other areas where light beams pass through aberrating media andmore » must be corrected to maintain diffraction-limited performance. We describe systems and results in astronomy, medicine (vision science), and horizontal path imaging, all active programs in our group.« less

  4. Experimental instrumentation system for the Phased Array Mirror Extendible Large Aperture (PAMELA) test program

    NASA Technical Reports Server (NTRS)

    Boykin, William H., Jr.

    1993-01-01

    Adaptive optics are used in telescopes for both viewing objects with minimum distortion and for transmitting laser beams with minimum beam divergence and dance. In order to test concepts on a smaller scale, NASA MSFC is in the process of setting up an adaptive optics test facility with precision (fraction of wavelengths) measurement equipment. The initial system under test is the adaptive optical telescope called PAMELA (Phased Array Mirror Extendible Large Aperture). Goals of this test are: assessment of test hardware specifications for PAMELA application and the determination of the sensitivities of instruments for measuring PAMELA (and other adaptive optical telescopes) imperfections; evaluation of the PAMELA system integration effort and test progress and recommended actions to enhance these activities; and development of concepts and prototypes of experimental apparatuses for PAMELA.

  5. Optical vortices with starlight

    NASA Astrophysics Data System (ADS)

    Anzolin, G.; Tamburini, F.; Bianchini, A.; Umbriaco, G.; Barbieri, C.

    2008-09-01

    Aims: In this paper we present our first observations at the Asiago 122 cm telescope of ℓ = 1 optical vortices generated with starlight beams. Methods: We used a fork-hologram blazed at the first diffraction order as a phase modifying device. The multiple system Rasalgethi (α Herculis) in white light and the single star Arcturus (α Bootis) through a 300 Å bandpass were observed using a fast CCD camera. In the first case we could adopt the Lucky Imaging approach to partially correct for seeing effects. Results: For both stars, the optical vortices could be clearly detected above the smearing caused by the mediocre seeing conditions. The profiles of the optical vortices produced by the beams of the two main components of the α Her system are consistent with numerically simulated on-axis and off-axis optical vortices. The optical vortices produced by α Boo can also be reproduced by numerical simulations. Our experiments confirm that the ratio between the intensity peaks of an optical vortex can be extremely sensitive to off-axis displacements of the beam. Conclusions: Our results give insights for future astronomical applications of optical vortices both for space telescopes and ground-based telescopes with good seeing conditions and adaptive optics devices. The properties of optical vortices can be used to perform high precision astrometry and tip/tilt correction of the isoplanatic field. We are now designing a ℓ = 2 optical vortex coronagraph around a continuous spiral phase plate. We also point out that optical vortices could find extremely interesting applications also in the infrared and radio wavelengths.

  6. NFIRAOS in 2015: engineering for future integration of complex subsystems

    NASA Astrophysics Data System (ADS)

    Atwood, Jenny; Andersen, David; Byrnes, Peter; Densmore, Adam; Fitzsimmons, Joeleff; Herriot, Glen; Hill, Alexis

    2016-07-01

    The Narrow Field InfraRed Adaptive Optics System (NFIRAOS) will be the first-light facility Adaptive Optics (AO) system for the Thirty Meter Telescope (TMT). NFIRAOS will be able to host three science instruments that can take advantage of this high performance system. NRC Herzberg is leading the design effort for this critical TMT subsystem. As part of the final design phase of NFIRAOS, we have identified multiple subsystems to be sub-contracted to Canadian industry. The scope of work for each subcontract is guided by the NFIRAOS Work Breakdown Structure (WBS) and is divided into two phases: the completion of the final design and the fabrication, assembly and delivery of the final product. Integration of the subsystems at NRC will require a detailed understanding of the interfaces between the subsystems, and this work has begun by defining the interface physical characteristics, stability, local coordinate systems, and alignment features. In order to maintain our stringent performance requirements, the interface parameters for each subsystem are captured in multiple performance budgets, which allow a bottom-up error estimate. In this paper we discuss our approach for defining the interfaces in a consistent manner and present an example error budget that is influenced by multiple subsystems.

  7. Adaptive-optics optical coherence tomography processing using a graphics processing unit.

    PubMed

    Shafer, Brandon A; Kriske, Jeffery E; Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T

    2014-01-01

    Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability.

  8. Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration.

    PubMed

    Zayit-Soudry, Shiri; Duncan, Jacque L; Syed, Reema; Menghini, Moreno; Roorda, Austin J

    2013-11-15

    To evaluate cone spacing using adaptive optics scanning laser ophthalmoscopy (AOSLO) in eyes with nonneovascular AMD, and to correlate progression of AOSLO-derived cone measures with standard measures of macular structure. Adaptive optics scanning laser ophthalmoscopy images were obtained over 12 to 21 months from seven patients with AMD including four eyes with geographic atrophy (GA) and four eyes with drusen. Adaptive optics scanning laser ophthalmoscopy images were overlaid with color, infrared, and autofluorescence fundus photographs and spectral domain optical coherence tomography (SD-OCT) images to allow direct correlation of cone parameters with macular structure. Cone spacing was measured for each visit in selected regions including areas over drusen (n = 29), at GA margins (n = 14), and regions without drusen or GA (n = 13) and compared with normal, age-similar values. Adaptive optics scanning laser ophthalmoscopy imaging revealed continuous cone mosaics up to the GA edge and overlying drusen, although reduced cone reflectivity often resulted in hyporeflective AOSLO signals at these locations. Baseline cone spacing measures were normal in 13/13 unaffected regions, 26/28 drusen regions, and 12/14 GA margin regions. Although standard clinical measures showed progression of GA in all study eyes, cone spacing remained within normal ranges in most drusen regions and all GA margin regions. Adaptive optics scanning laser ophthalmoscopy provides adequate resolution for quantitative measurement of cone spacing at the margin of GA and over drusen in eyes with AMD. Although cone spacing was often normal at baseline and remained normal over time, these regions showed focal areas of decreased cone reflectivity. These findings may provide insight into the pathophysiology of AMD progression. (ClinicalTrials.gov number, NCT00254605).

  9. ASSOCIATIONS BETWEEN MACULAR EDEMA AND CIRCULATORY STATUS IN EYES WITH RETINAL VEIN OCCLUSION: An Adaptive Optics Scanning Laser Ophthalmoscopy Study.

    PubMed

    Iida, Yuto; Muraoka, Yuki; Uji, Akihito; Ooto, Sotaro; Murakami, Tomoaki; Suzuma, Kiyoshi; Tsujikawa, Akitaka; Arichika, Shigeta; Takahashi, Ayako; Miwa, Yuko; Yoshimura, Nagahisa

    2017-10-01

    To investigate associations between parafoveal microcirculatory status and foveal pathomorphology in eyes with macular edema (ME) secondary to retinal vein occlusion (RVO). Ten consecutive patients (10 eyes) with acute retinal vein occlusion were enrolled, 9 eyes of which received intravitreal ranibizumab (IVR) injections. Foveal morphologic changes were examined via optical coherence tomography (OCT), and parafoveal circulatory status was assessed via adaptive optics scanning laser ophthalmoscopy (AO-SLO). The mean parafoveal aggregated erythrocyte velocity (AEV) measured by adaptive optics scanning laser ophthalmoscopy in eyes with retinal vein occlusion was 0.99 ± 0.43 mm/second at baseline, which was significantly lower than that of age-matched healthy subjects (1.41 ± 0.28 mm/second, P = 0.042). The longitudinal adaptive optics scanning laser ophthalmoscopy examinations of each patient showed that parafoveal AEV was strongly inversely correlated with optical coherence tomography-measured central foveal thickness (CFT) over the entire observation period. Using parafoveal AEV and central foveal thickness measurements obtained at the first and second examinations, we investigated associations between differences in parafoveal AEV and central foveal thickness, which were significantly and highly correlated (r = -0.84, P = 0.002). Using adaptive optics scanning laser ophthalmoscopy in eyes with retinal vein occlusion macular edema, we could quantitatively evaluate the parafoveal AEV. A reduction or an increase in parafoveal AEV may be a clinical marker for the resolution or development/progression of macular edema respectively.

  10. A Phase-Shifting Zernike Wavefront Sensor for the Palomar P3K Adaptive Optics System

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Crawford, Sam; Loya, Frank; Moore, James

    2012-01-01

    A phase-shifting Zernike wavefront sensor has distinct advantages over other types of wavefront sensors. Chief among them are: 1) improved sensitivity to low-order aberrations and 2) efficient use of photons (hence reduced sensitivity to photon noise). We are in the process of deploying a phase-shifting Zernike wavefront sensor to be used with the realtime adaptive optics system for Palomar. Here we present the current state of the Zernike wavefront sensor to be integrated into the high-order adaptive optics system at Mount Palomar's Hale Telescope.

  11. GUIELOA: Adaptive Optics System for the 2.1-m SPM UNAM Telescope

    NASA Astrophysics Data System (ADS)

    Cuevas, S.; Iriarte, A.; Martínez, L. A.; Garfias, F.; Sánchez, L.; Chapa, O.; Ruelas, R. A.

    2004-08-01

    GUIELOA is the adaptive optics system project for the 2.1-m SPM telescope. This is a 19 sub-apertures curvature-type system. It corrects 8 Zernike terms. GUIELOA is very similar to PUEO, the CFHT adaptive optics system and compensates the atmospheric turbulence from the R band to the K band. Among the planned applications of GUIELOA are the study of OB binary systems, the detection of close binary stars, and the study of disks, jets and other phenomena associated with young stars.

  12. Feed-forward adaptive-optic correction of a weakly-compressible high-subsonic shear layer

    NASA Astrophysics Data System (ADS)

    Duffin, Daniel A.

    Development of airborne laser systems began in the 1970s with the Airborne Laser Laboratory, a KC135 aircraft with a CO2 laser projected from a beam director mounted atop the aircraft as a hemispherical turret encased in a fairing. It was known that the turbulent air flowing around the turret and separating over the aft portions of the turret would aberrate the laser beam's wavefront (the aero-optic problem); however, the CO2 wavelength, 10.6 mum, was long enough that the aberrating turbulent flow decreased the system's performance by only about 5%. With newer airborne laser systems using wavelengths nearer 1 mum, this same turbulent flow now reduces system performance by more than 95%. It has long been known that if a conjugate waveform is used to pre-distort the outgoing laser's wavefront, the turbulence will actually correct the beam, restoring most of the system's performance. The problem with performing this compensation is that the system for performing this function, the so-called adaptive-optic system, is bandwidth limited in its conventional architecture, by orders of magnitude lower than that required to correct for the aero-optic effects. The research described in this dissertation explored changing the adaptive-optic paradigm from feedback to feed-forward by adding flow control to make the aberration environment predictable rather than unpredictable. This research demonstrated that the turbulent high-speed separated shear layer could be robustly forced into a regularized form. It was also shown that these regularized velocity patterns in the shear layer produced periodic optical aberrations. Extensive measurement and analysis of these convecting aberrations yielded the underlying structure required to produce the conjugate wavefront correction patterns required for a range of laser propagation angles through the shear layer. Ultimately, a feed-forward adaptive-optic system was developed and used to demonstrate the highest-bandwidth correction of aero-optic aberrations ever performed; the effective bandwidth of the demonstrated adaptive-optic correction was at least two orders of magnitude greater than the capabilities of existing conventional adaptive-optic systems.

  13. An adaptive threshold detector and channel parameter estimator for deep space optical communications

    NASA Technical Reports Server (NTRS)

    Arabshahi, P.; Mukai, R.; Yan, T. -Y.

    2001-01-01

    This paper presents a method for optimal adaptive setting of ulse-position-modulation pulse detection thresholds, which minimizes the total probability of error for the dynamically fading optical fee space channel.

  14. Comparative Study of Neural Network Frameworks for the Next Generation of Adaptive Optics Systems.

    PubMed

    González-Gutiérrez, Carlos; Santos, Jesús Daniel; Martínez-Zarzuela, Mario; Basden, Alistair G; Osborn, James; Díaz-Pernas, Francisco Javier; De Cos Juez, Francisco Javier

    2017-06-02

    Many of the next generation of adaptive optics systems on large and extremely large telescopes require tomographic techniques in order to correct for atmospheric turbulence over a large field of view. Multi-object adaptive optics is one such technique. In this paper, different implementations of a tomographic reconstructor based on a machine learning architecture named "CARMEN" are presented. Basic concepts of adaptive optics are introduced first, with a short explanation of three different control systems used on real telescopes and the sensors utilised. The operation of the reconstructor, along with the three neural network frameworks used, and the developed CUDA code are detailed. Changes to the size of the reconstructor influence the training and execution time of the neural network. The native CUDA code turns out to be the best choice for all the systems, although some of the other frameworks offer good performance under certain circumstances.

  15. Adaptive optics vision simulation and perceptual learning system based on a 35-element bimorph deformable mirror.

    PubMed

    Dai, Yun; Zhao, Lina; Xiao, Fei; Zhao, Haoxin; Bao, Hua; Zhou, Hong; Zhou, Yifeng; Zhang, Yudong

    2015-02-10

    An adaptive optics visual simulation combined with a perceptual learning (PL) system based on a 35-element bimorph deformable mirror (DM) was established. The larger stroke and smaller size of the bimorph DM made the system have larger aberration correction or superposition ability and be more compact. By simply modifying the control matrix or the reference matrix, select correction or superposition of aberrations was realized in real time similar to a conventional adaptive optics closed-loop correction. PL function was first integrated in addition to conventional adaptive optics visual simulation. PL training undertaken with high-order aberrations correction obviously improved the visual function of adult anisometropic amblyopia. The preliminary application of high-order aberrations correction with PL training on amblyopia treatment was being validated with a large scale population, which might have great potential in amblyopia treatment and visual performance maintenance.

  16. Comparative Study of Neural Network Frameworks for the Next Generation of Adaptive Optics Systems

    PubMed Central

    González-Gutiérrez, Carlos; Santos, Jesús Daniel; Martínez-Zarzuela, Mario; Basden, Alistair G.; Osborn, James; Díaz-Pernas, Francisco Javier; De Cos Juez, Francisco Javier

    2017-01-01

    Many of the next generation of adaptive optics systems on large and extremely large telescopes require tomographic techniques in order to correct for atmospheric turbulence over a large field of view. Multi-object adaptive optics is one such technique. In this paper, different implementations of a tomographic reconstructor based on a machine learning architecture named “CARMEN” are presented. Basic concepts of adaptive optics are introduced first, with a short explanation of three different control systems used on real telescopes and the sensors utilised. The operation of the reconstructor, along with the three neural network frameworks used, and the developed CUDA code are detailed. Changes to the size of the reconstructor influence the training and execution time of the neural network. The native CUDA code turns out to be the best choice for all the systems, although some of the other frameworks offer good performance under certain circumstances. PMID:28574426

  17. DYNAMISM OF DOT SUBRETINAL DRUSENOID DEPOSITS IN AGE-RELATED MACULAR DEGENERATION DEMONSTRATED WITH ADAPTIVE OPTICS IMAGING.

    PubMed

    Zhang, Yuhua; Wang, Xiaolin; Godara, Pooja; Zhang, Tianjiao; Clark, Mark E; Witherspoon, C Douglas; Spaide, Richard F; Owsley, Cynthia; Curcio, Christine A

    2018-01-01

    To investigate the natural history of dot subretinal drusenoid deposits (SDD) in age-related macular degeneration, using high-resolution adaptive optics scanning laser ophthalmoscopy. Six eyes of four patients with intermediate age-related macular degeneration were studied at baseline and 1 year later. Individual dot SDD within the central 30° retina were examined with adaptive optics scanning laser ophthalmoscopy and optical coherence tomography. A total of 269 solitary SDD were identified at baseline. Over 12.25 ± 1.18 months, all 35 Stage 1 SDD progressed to advanced stages. Eighteen (60%) Stage 2 lesions progressed to Stage 3 and 12 (40%) remained at Stage 2. Of 204 Stage 3 SDD, 12 (6.4%) disappeared and the rest remained. Twelve new SDD were identified, including 6 (50%) at Stage 1, 2 (16.7%) at Stage 2, and 4 (33.3%) at Stage 3. The mean percentage of the retina affected by dot SDD, measured by the adaptive optics scanning laser ophthalmoscopy, increased in 5/6 eyes (from 2.31% to 5.08% in the most changed eye) and decreased slightly in 1/6 eye (from 10.67% to 10.54%). Dynamism, the absolute value of the areas affected by new and regressed lesions, ranged from 0.7% to 9.3%. Adaptive optics scanning laser ophthalmoscopy reveals that dot SDD, like drusen, are dynamic.

  18. Adaptive Optics For Imaging Bright Objects Next To Dim Ones

    NASA Technical Reports Server (NTRS)

    Shao, Michael; Yu, Jeffrey W.; Malbet, Fabien

    1996-01-01

    Adaptive optics used in imaging optical systems, according to proposal, to enhance high-dynamic-range images (images of bright objects next to dim objects). Designed to alter wavefronts to correct for effects of scattering of light from small bumps on imaging optics. Original intended application of concept in advanced camera installed on Hubble Space Telescope for imaging of such phenomena as large planets near stars other than Sun. Also applicable to other high-quality telescopes and cameras.

  19. Elastic all-optical multi-hop interconnection in data centers with adaptive spectrum allocation

    NASA Astrophysics Data System (ADS)

    Hong, Yuanyuan; Hong, Xuezhi; Chen, Jiajia; He, Sailing

    2017-01-01

    In this paper, a novel flex-grid all-optical interconnect scheme that supports transparent multi-hop connections in data centers is proposed. An inter-rack all-optical multi-hop connection is realized with an optical loop employed at flex-grid wavelength selective switches (WSSs) in an intermediate rack rather than by relaying through optical-electric-optical (O-E-O) conversions. Compared with the conventional O-E-O based approach, the proposed all-optical scheme is able to off-load the traffic at intermediate racks, leading to a reduction of the power consumption and cost. The transmission performance of the proposed flex-grid multi-hop all-optical interconnect scheme with various modulation formats, including both coherently detected and directly detected approaches, are investigated by Monte-Carlo simulations. To enhance the spectrum efficiency (SE), number-of-hop adaptive bandwidth allocation is introduced. Numerical results show that the SE can be improved by up to 33.3% at 40 Gbps, and by up to 25% at 100 Gbps. The impact of parameters, such as targeted bit error rate (BER) level and insertion loss of components, on the transmission performance of the proposed approach are also explored. The results show that the maximum SE improvement of the adaptive approach over the non-adaptive one is enhanced with the decrease of the targeted BER levels and the component insertion loss.

  20. Adaptive Optics for the Human Eye

    NASA Astrophysics Data System (ADS)

    Williams, D. R.

    2000-05-01

    Adaptive optics can extend not only the resolution of ground-based telescopes, but also the human eye. Both static and dynamic aberrations in the cornea and lens of the normal eye limit its optical quality. Though it is possible to correct defocus and astigmatism with spectacle lenses, higher order aberrations remain. These aberrations blur vision and prevent us from seeing at the fundamental limits set by the retina and brain. They also limit the resolution of cameras to image the living retina, cameras that are a critical for the diagnosis and treatment of retinal disease. I will describe an adaptive optics system that measures the wave aberration of the eye in real time and compensates for it with a deformable mirror, endowing the human eye with unprecedented optical quality. This instrument provides fresh insight into the ultimate limits on human visual acuity, reveals for the first time images of the retinal cone mosaic responsible for color vision, and points the way to contact lenses and laser surgical methods that could enhance vision beyond what is currently possible today. Supported by the NSF Science and Technology Center for Adaptive Optics, the National Eye Institute, and Bausch and Lomb, Inc.

  1. Active telescope systems; Proceedings of the Meeting, Orlando, FL, Mar. 28-31, 1989

    NASA Astrophysics Data System (ADS)

    Roddier, Francois J.

    1989-09-01

    The present conference discusses topics in the fundamental limitations of adaptive optics in astronomical telescopy, integrated telescope systems designs, novel components for adaptive telescopes, active interferometry, flexible-mirror and segmented-mirror telescopes, and various aspects of the NASA Precision Segmented Reflectors Program. Attention is given to near-ground atmospheric turbulence effects, a near-IR astronomical adaptive optics system, a simplified wavefront sensor for adaptive mirror control, excimer laser guide star techniques for adaptive astronomical imaging, active systems in long-baseline interferometry, mirror figure control primitives for a 10-m primary mirror, and closed-loop active optics for large flexible mirrors subject to wind buffet deformations. Also discussed are active pupil geometry control for a phased-array telescope, extremely lightweight space telescope mirrors, segmented-mirror manufacturing tolerances, and composite deformable mirror design.

  2. Adaptive optics for the ESO-VLT

    NASA Astrophysics Data System (ADS)

    Merkle, Fritz

    1989-04-01

    This paper discusses adaptive optics, its performance, and its requirements for applications in astronomy to overcome limitations due to atmospheric turbulence. Guidelines for the implementation of these devices in telescopes are given, in particular for the Very Large Telescope (VLT) at ESO. It is intended to equip each one of the four 8-m telescopes of the VLT, which are arranged in a linear array with an independent adaptive optical system. These systems will serve the individual and the combined coude foci. A small-scale prototype adaptive system is under development. It is equipped with a 19-piezoelectric-actuator deformable mirror, a Shack-Hartmann-type wavefront sensor, and a dedicated wavefront computer for closing the feedback loop. This system is based on a polychromatic approach; i.e., it senses the wavefront in the visible, but the adaptive correction loop works at 3-5 microns.

  3. Development of a miniaturized deformable mirror controller

    NASA Astrophysics Data System (ADS)

    Bendek, Eduardo; Lynch, Dana; Pluzhnik, Eugene; Belikov, Ruslan; Klamm, Benjamin; Hyde, Elizabeth; Mumm, Katherine

    2016-07-01

    High-Performance Adaptive Optics systems are rapidly spreading as useful applications in the fields of astronomy, ophthalmology, and telecommunications. This technology is critical to enable coronagraphic direct imaging of exoplanets utilized in ground-based telescopes and future space missions such as WFIRST, EXO-C, HabEx, and LUVOIR. We have developed a miniaturized Deformable Mirror controller to enable active optics on small space imaging mission. The system is based on the Boston Micromachines Corporation Kilo-DM, which is one of the most widespread DMs on the market. The system has three main components: The Deformable Mirror, the Driving Electronics, and the Mechanical and Heat management. The system is designed to be extremely compact and have lowpower consumption to enable its use not only on exoplanet missions, but also in a wide-range of applications that require precision optical systems, such as direct line-of-sight laser communications, and guidance systems. The controller is capable of handling 1,024 actuators with 220V maximum dynamic range, 16bit resolution, and 14bit accuracy, and operating at up to 1kHz frequency. The system fits in a 10x10x5cm volume, weighs less than 0.5kg, and consumes less than 8W. We have developed a turnkey solution reducing the risk for currently planned as well as future missions, lowering their cost by significantly reducing volume, weight and power consumption of the wavefront control hardware.

  4. Adapting to blur produced by ocular high-order aberrations

    PubMed Central

    Sawides, Lucie; de Gracia, Pablo; Dorronsoro, Carlos; Webster, Michael; Marcos, Susana

    2011-01-01

    The perceived focus of an image can be strongly biased by prior adaptation to a blurred or sharpened image. We examined whether these adaptation effects can occur for the natural patterns of retinal image blur produced by high-order aberrations (HOAs) in the optics of the eye. Focus judgments were measured for 4 subjects to estimate in a forced choice procedure (sharp/blurred) their neutral point after adaptation to different levels of blur produced by scaled increases or decreases in their HOAs. The optical blur was simulated by convolution of the PSFs from the 4 different HOA patterns, with Zernike coefficients (excluding tilt, defocus, and astigmatism) multiplied by a factor between 0 (diffraction limited) and 2 (double amount of natural blur). Observers viewed the images through an Adaptive Optics system that corrected their aberrations and made settings under neutral adaptation to a gray field or after adapting to 5 different blur levels. All subjects adapted to changes in the level of blur imposed by HOA regardless of which observer’s HOA was used to generate the stimuli, with the perceived neutral point proportional to the amount of blur in the adapting image. PMID:21712375

  5. Adapting to blur produced by ocular high-order aberrations.

    PubMed

    Sawides, Lucie; de Gracia, Pablo; Dorronsoro, Carlos; Webster, Michael; Marcos, Susana

    2011-06-28

    The perceived focus of an image can be strongly biased by prior adaptation to a blurred or sharpened image. We examined whether these adaptation effects can occur for the natural patterns of retinal image blur produced by high-order aberrations (HOAs) in the optics of the eye. Focus judgments were measured for 4 subjects to estimate in a forced choice procedure (sharp/blurred) their neutral point after adaptation to different levels of blur produced by scaled increases or decreases in their HOAs. The optical blur was simulated by convolution of the PSFs from the 4 different HOA patterns, with Zernike coefficients (excluding tilt, defocus, and astigmatism) multiplied by a factor between 0 (diffraction limited) and 2 (double amount of natural blur). Observers viewed the images through an Adaptive Optics system that corrected their aberrations and made settings under neutral adaptation to a gray field or after adapting to 5 different blur levels. All subjects adapted to changes in the level of blur imposed by HOA regardless of which observer's HOA was used to generate the stimuli, with the perceived neutral point proportional to the amount of blur in the adapting image.

  6. Optical components of adaptive systems for improving laser beam quality

    NASA Astrophysics Data System (ADS)

    Malakhov, Yuri I.; Atuchin, Victor V.; Kudryashov, Aleksis V.; Starikov, Fedor A.

    2008-10-01

    The short overview is given of optical equipment developed within the ISTC activity for adaptive systems of new generation allowing for correction of high-power laser beams carrying optical vortices onto the phase surface. They are the kinoform many-level optical elements of new generation, namely, special spiral phase plates and ordered rasters of microlenses, i.e. lenslet arrays, as well as the wide-aperture Hartmann-Shack sensors and bimorph deformable piezoceramics- based mirrors with various grids of control elements.

  7. Hyperspectral Remote Sensing of the Coastal Ocean: Adaptive Sampling and Forecasting of In situ Optical Properties

    DTIC Science & Technology

    2003-09-30

    We are developing an integrated rapid environmental assessment capability that will be used to feed an ocean nowcast/forecast system. The goal is to develop a capacity for predicting the dynamics in inherent optical properties in coastal waters. This is being accomplished by developing an integrated observation system that is being coupled to a data assimilative hydrodynamic bio-optical ecosystem model. The system was used adaptively to calibrate hyperspectral remote sensing sensors in optically complex nearshore coastal waters.

  8. Solar adaptive optics with the DKIST: status report

    NASA Astrophysics Data System (ADS)

    Johnson, Luke C.; Cummings, Keith; Drobilek, Mark; Gregory, Scott; Hegwer, Steve; Johansson, Erik; Marino, Jose; Richards, Kit; Rimmele, Thomas; Sekulic, Predrag; Wöger, Friedrich

    2014-08-01

    The DKIST wavefront correction system will be an integral part of the telescope, providing active alignment control, wavefront correction, and jitter compensation to all DKIST instruments. The wavefront correction system will operate in four observing modes, diffraction-limited, seeing-limited on-disk, seeing-limited coronal, and limb occulting with image stabilization. Wavefront correction for DKIST includes two major components: active optics to correct low-order wavefront and alignment errors, and adaptive optics to correct wavefront errors and high-frequency jitter caused by atmospheric turbulence. The adaptive optics system is built around a fast tip-tilt mirror and a 1600 actuator deformable mirror, both of which are controlled by an FPGA-based real-time system running at 2 kHz. It is designed to achieve on-axis Strehl of 0.3 at 500 nm in median seeing (r0 = 7 cm) and Strehl of 0.6 at 630 nm in excellent seeing (r0 = 20 cm). We present the current status of the DKIST high-order adaptive optics, focusing on system design, hardware procurements, and error budget management.

  9. Matera Laser Ranging Observatory (MLRO): An overview

    NASA Technical Reports Server (NTRS)

    Varghese, Thomas K.; Decker, Winfield M.; Crooks, Henry A.; Bianco, Giuseppe

    1993-01-01

    The Agenzia Spaziale Italiana (ASI) is currently under negotiation with the Bendix Field Engineering Corporation (BFEC) of the Allied Signal Aerospace Company (ASAC) to build a state-of-the-art laser ranging observatory for the Centro di Geodesia Spaziale, in Matera, Italy. The contract calls for the delivery of a system based on a 1.5 meter afocal Cassegrain astronomical quality telescope with multiple ports to support a variety of experiments for the future, with primary emphasis on laser ranging. Three focal planes, viz. Cassegrain, Coude, and Nasmyth will be available for these experiments. The open telescope system will be protected from dust and turbulence using a specialized dome which will be part of the building facilities to be provided by ASI. The fixed observatory facility will be partitioned into four areas for locating the following: laser, transmit/receive optics, telescope/dome enclosure, and the operations console. The optical tables and mount rest on a common concrete pad for added mechanical stability. Provisions will be in place for minimizing the effects of EMI, for obtaining maximum cleanliness for high power laser and transmit optics, and for providing an ergonomic environment fitting to a state-of-the-art multipurpose laboratory. The system is currently designed to be highly modular and adaptable for scaling or changes in technology. It is conceived to be a highly automated system with superior performance specifications to any currently operational system. Provisions are also made to adapt and accommodate changes that are of significance during the course of design and integration.

  10. Center for Adaptive Optics | What is Adaptive Optics

    Science.gov Websites

    (?) microns in size. In astronomy, the turbulent atmosphere blurs images to a size of 0.5 to 1 arcsec even at an additional gain in contrast -- for astronomy, where light levels are often very low, this means

  11. Modeling update for the Thirty Meter Telescope laser guide star dual-conjugate adaptive optics system

    NASA Astrophysics Data System (ADS)

    Gilles, Luc; Wang, Lianqi; Ellerbroek, Brent

    2010-07-01

    This paper describes the modeling efforts undertaken in the past couple of years to derive wavefront error (WFE) performance estimates for the Narrow Field Infrared Adaptive Optics System (NFIRAOS), which is the facility laser guide star (LGS) dual-conjugate adaptive optics (AO) system for the Thirty Meter Telescope (TMT). The estimates describe the expected performance of NFIRAOS as a function of seeing on Mauna Kea, zenith angle, and galactic latitude (GL). They have been developed through a combination of integrated AO simulations, side analyses, allocations, lab and lidar experiments.

  12. Development of a scalable generic platform for adaptive optics real time control

    NASA Astrophysics Data System (ADS)

    Surendran, Avinash; Burse, Mahesh P.; Ramaprakash, A. N.; Parihar, Padmakar

    2015-06-01

    The main objective of the present project is to explore the viability of an adaptive optics control system based exclusively on Field Programmable Gate Arrays (FPGAs), making strong use of their parallel processing capability. In an Adaptive Optics (AO) system, the generation of the Deformable Mirror (DM) control voltages from the Wavefront Sensor (WFS) measurements is usually through the multiplication of the wavefront slopes with a predetermined reconstructor matrix. The ability to access several hundred hard multipliers and memories concurrently in an FPGA allows performance far beyond that of a modern CPU or GPU for tasks with a well-defined structure such as Adaptive Optics control. The target of the current project is to generate a signal for a real time wavefront correction, from the signals coming from a Wavefront Sensor, wherein the system would be flexible to accommodate all the current Wavefront Sensing techniques and also the different methods which are used for wavefront compensation. The system should also accommodate for different data transmission protocols (like Ethernet, USB, IEEE 1394 etc.) for transmitting data to and from the FPGA device, thus providing a more flexible platform for Adaptive Optics control. Preliminary simulation results for the formulation of the platform, and a design of a fully scalable slope computer is presented.

  13. Structured illumination 3D microscopy using adaptive lenses and multimode fibers

    NASA Astrophysics Data System (ADS)

    Czarske, Jürgen; Philipp, Katrin; Koukourakis, Nektarios

    2017-06-01

    Microscopic techniques with high spatial and temporal resolution are required for in vivo studying biological cells and tissues. Adaptive lenses exhibit strong potential for fast motion-free axial scanning. However, they also lead to a degradation of the achievable resolution because of aberrations. This hurdle can be overcome by digital optical technologies. We present a novel High-and-Low-frequency (HiLo) 3D-microscope using structured illumination and an adaptive lens. Uniform illumination is used to obtain optical sectioning for the high-frequency (Hi) components of the image, and nonuniform illumination is needed to obtain optical sectioning for the low-frequency (Lo) components of the image. Nonuniform illumination is provided by a multimode fiber. It ensures robustness against optical aberrations of the adaptive lens. The depth-of-field of our microscope can be adjusted a-posteriori by computational optics. It enables to create flexible scans, which compensate for irregular axial measurement positions. The adaptive HiLo 3D-microscope provides an axial scanning range of 1 mm with an axial resolution of about 4 microns and sub-micron lateral resolution over the full scanning range. In result, volumetric measurements with high temporal and spatial resolution are provided. Demonstration measurements of zebrafish embryos with reporter gene-driven fluorescence in the thyroid gland are presented.

  14. Optical turbulence profiling with Stereo-SCIDAR for VLT and ELT

    NASA Astrophysics Data System (ADS)

    Osborn, J.; Wilson, R. W.; Sarazin, M.; Butterley, T.; Chacón, A.; Derie, F.; Farley, O. J. D.; Haubois, X.; Laidlaw, D.; LeLouarn, M.; Masciadri, E.; Milli, J.; Navarrete, J.; Townson, M. J.

    2018-04-01

    Knowledge of the Earth's atmospheric optical turbulence is critical for astronomical instrumentation. Not only does it enable performance verification and optimisation of existing systems but it is required for the design of future instruments. As a minimum this includes integrated astro-atmospheric parameters such as seeing, coherence time and isoplanatic angle, but for more sophisticated systems such as wide field adaptive optics enabled instrumentation the vertical structure of the turbulence is also required. Stereo-SCIDAR is a technique specifically designed to characterise the Earth's atmospheric turbulence with high altitude resolution and high sensitivity. Together with ESO, Durham University has commissioned a Stereo-SCIDAR instrument at Cerro Paranal, Chile, the site of the Very Large Telescope (VLT), and only 20 km from the site of the future Extremely Large Telescope (ELT). Here we provide results from the first 18 months of operation at ESO Paranal including instrument comparisons and atmospheric statistics. Based on a sample of 83 nights spread over 22 months covering all seasons, we find the median seeing to be 0.64" with 50% of the turbulence confined to an altitude below 2 km and 40% below 600 m. The median coherence time and isoplanatic angle are found as 4.18 ms and 1.75" respectively. A substantial campaign of inter-instrument comparison was also undertaken to assure the validity of the data. The Stereo-SCIDAR profiles (optical turbulence strength and velocity as a function of altitude) have been compared with the Surface-Layer SLODAR, MASS-DIMM and the ECMWF weather forecast model. The correlation coefficients are between 0.61 (isoplanatic angle) and 0.84 (seeing).

  15. Morphology and Topography of Retinal Pericytes in the Living Mouse Retina Using In Vivo Adaptive Optics Imaging and Ex Vivo Characterization

    PubMed Central

    Schallek, Jesse; Geng, Ying; Nguyen, HoanVu; Williams, David R.

    2013-01-01

    Purpose. To noninvasively image retinal pericytes in the living eye and characterize NG2-positive cell topography and morphology in the adult mouse retina. Methods. Transgenic mice expressing fluorescent pericytes (NG2, DsRed) were imaged using a two-channel, adaptive optics scanning laser ophthalmoscope (AOSLO). One channel imaged vascular perfusion with near infrared light. A second channel simultaneously imaged fluorescent retinal pericytes. Mice were also imaged using wide-field ophthalmoscopy. To confirm in vivo imaging, five eyes were enucleated and imaged in flat mount with conventional fluorescent microscopy. Cell topography was quantified relative to the optic disc. Results. We observed strong DsRed fluorescence from NG2-positive cells. AOSLO revealed fluorescent vascular mural cells enveloping all vessels in the living retina. Cells were stellate on larger venules, and showed banded morphology on arterioles. NG2-positive cells indicative of pericytes were found on the smallest capillaries of the retinal circulation. Wide-field SLO enabled quick assessment of NG2-positive distribution, but provided insufficient resolution for cell counts. Ex vivo microscopy showed relatively even topography of NG2-positive capillary pericytes at eccentricities more than 0.3 mm from the optic disc (515 ± 94 cells/mm2 of retinal area). Conclusions. We provide the first high-resolution images of retinal pericytes in the living animal. Subcellular resolution enabled morphological identification of NG2-positive cells on capillaries showing classic features and topography of retinal pericytes. This report provides foundational basis for future studies that will track and quantify pericyte topography, morphology, and function in the living retina over time, especially in the progression of microvascular disease. PMID:24150762

  16. Training telescope operators and support astronomers at Paranal

    NASA Astrophysics Data System (ADS)

    Boffin, Henri M. J.; Gadotti, Dimitri A.; Anderson, Joe; Pino, Andres; de Wit, Willem-Jan; Girard, Julien H. V.

    2016-07-01

    The operations model of the Paranal Observatory relies on the work of efficient staff to carry out all the daytime and nighttime tasks. This is highly dependent on adequate training. The Paranal Science Operations department (PSO) has a training group that devises a well-defined and continuously evolving training plan for new staff, in addition to broadening and reinforcing courses for the whole department. This paper presents the training activities for and by PSO, including recent astronomical and quality control training for operators, as well as adaptive optics and interferometry training of all staff. We also present some future plans.

  17. Adaptive lenses using transparent dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Shian, Samuel; Diebold, Roger; Clarke, David

    2013-03-01

    Variable focal lenses, used in a vast number of applications such as endoscope, digital camera, binoculars, information storage, communication, and machine vision, are traditionally constructed as a lens system consisting of solid lenses and actuating mechanisms. However, such lens system is complex, bulky, inefficient, and costly. Each of these shortcomings can be addressed using an adaptive lens that performs as a lens system. In this presentation, we will show how we push the boundary of adaptive lens technology through the use of a transparent electroactive polymer actuator that is integral to the optics. Detail of our concepts and lens construction will be described as well as electromechanical and optical performances. Preliminary data indicate that our adaptive lens prototype is capable of varying its focus by more than 100%, which is higher than that of human eyes. Furthermore, we will show how our approach can be used to achieve certain controls over the lens characteristics such as adaptive aberration and optical axis, which are difficult or impossible to achieve in other adaptive lens configurations.

  18. Design and realization of adaptive optical principle system without wavefront sensing

    NASA Astrophysics Data System (ADS)

    Wang, Xiaobin; Niu, Chaojun; Guo, Yaxing; Han, Xiang'e.

    2018-02-01

    In this paper, we focus on the performance improvement of the free space optical communication system and carry out the research on wavefront-sensorless adaptive optics. We use a phase only liquid crystal spatial light modulator (SLM) as the wavefront corrector. The optical intensity distribution of the distorted wavefront is detected by a CCD. We develop a wavefront controller based on ARM and a software based on the Linux operating system. The wavefront controller can control the CCD camera and the wavefront corrector. There being two SLMs in the experimental system, one simulates atmospheric turbulence and the other is used to compensate the wavefront distortion. The experimental results show that the performance quality metric (the total gray value of 25 pixels) increases from 3037 to 4863 after 200 iterations. Besides, it is demonstrated that our wavefront-sensorless adaptive optics system based on SPGD algorithm has a good performance in compensating wavefront distortion.

  19. Benefit of adaptive FEC in shared backup path protected elastic optical network.

    PubMed

    Guo, Hong; Dai, Hua; Wang, Chao; Li, Yongcheng; Bose, Sanjay K; Shen, Gangxiang

    2015-07-27

    We apply an adaptive forward error correction (FEC) allocation strategy to an Elastic Optical Network (EON) operated with shared backup path protection (SBPP). To maximize the protected network capacity that can be carried, an Integer Linear Programing (ILP) model and a spectrum window plane (SWP)-based heuristic algorithm are developed. Simulation results show that the FEC coding overhead required by the adaptive FEC scheme is significantly lower than that needed by a fixed FEC allocation strategy resulting in higher network capacity for the adaptive strategy. The adaptive FEC allocation strategy can also significantly outperform the fixed FEC allocation strategy both in terms of the spare capacity redundancy and the average FEC coding overhead needed per optical channel. The proposed heuristic algorithm is efficient and not only performs closer to the ILP model but also does much better than the shortest-path algorithm.

  20. Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples

    PubMed Central

    Yan, Wei; Yang, Yanlong; Tan, Yu; Chen, Xun; Li, Yang; Qu, Junle; Ye, Tong

    2018-01-01

    Stimulated emission depletion microscopy (STED) is one of far-field optical microscopy techniques that can provide sub-diffraction spatial resolution. The spatial resolution of the STED microscopy is determined by the specially engineered beam profile of the depletion beam and its power. However, the beam profile of the depletion beam may be distorted due to aberrations of optical systems and inhomogeneity of specimens’ optical properties, resulting in a compromised spatial resolution. The situation gets deteriorated when thick samples are imaged. In the worst case, the sever distortion of the depletion beam profile may cause complete loss of the super resolution effect no matter how much depletion power is applied to specimens. Previously several adaptive optics approaches have been explored to compensate aberrations of systems and specimens. However, it is hard to correct the complicated high-order optical aberrations of specimens. In this report, we demonstrate that the complicated distorted wavefront from a thick phantom sample can be measured by using the coherent optical adaptive technique (COAT). The full correction can effectively maintain and improve the spatial resolution in imaging thick samples. PMID:29400356

  1. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Seungjae; Lee, Byoungho; Kim, Myung K.

    2015-11-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: self­interference incoherent digital holography (SIDH). The SIDH generates a complex-i.e., amplitude plus phase-hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  2. Conceptual design for a user-friendly adaptive optics system at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissinger, H.D.; Olivier, S.; Max, C.

    1996-03-08

    In this paper, we present a conceptual design for a general-purpose adaptive optics system, usable with all Cassegrain facility instruments on the 3 meter Shane telescope at the University of California`s Lick Observatory located on Mt. Hamilton near San Jose, California. The overall design goal for this system is to take the sodium-layer laser guide star adaptive optics technology out of the demonstration stage and to build a user-friendly astronomical tool. The emphasis will be on ease of calibration, improved stability and operational simplicity in order to allow the system to be run routinely by observatory staff. A prototype adaptivemore » optics system and a 20 watt sodium-layer laser guide star system have already been built at Lawrence Livermore National Laboratory for use at Lick Observatory. The design presented in this paper is for a next- generation adaptive optics system that extends the capabilities of the prototype system into the visible with more degrees of freedom. When coupled with a laser guide star system that is upgraded to a power matching the new adaptive optics system, the combined system will produce diffraction-limited images for near-IR cameras. Atmospheric correction at wavelengths of 0.6-1 mm will significantly increase the throughput of the most heavily used facility instrument at Lick, the Kast Spectrograph, and will allow it to operate with smaller slit widths and deeper limiting magnitudes. 8 refs., 2 figs.« less

  3. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics.

    PubMed

    Jang, Changwon; Kim, Jonghyun; Clark, David C; Lee, Seungjae; Lee, Byoungho; Kim, Myung K

    2015-01-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex—i.e., amplitude plus phase—hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  4. Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging

    PubMed Central

    Zawadzki, Robert J.; Jones, Steven M.; Pilli, Suman; Balderas-Mata, Sandra; Kim, Dae Yu; Olivier, Scot S.; Werner, John S.

    2011-01-01

    We describe an ultrahigh-resolution (UHR) retinal imaging system that combines adaptive optics Fourier-domain optical coherence tomography (AO-OCT) with an adaptive optics scanning laser ophthalmoscope (AO-SLO) to allow simultaneous data acquisition by the two modalities. The AO-SLO subsystem was integrated into the previously described AO-UHR OCT instrument with minimal changes to the latter. This was done in order to ensure optimal performance and image quality of the AO- UHR OCT. In this design both imaging modalities share most of the optical components including a common AO-subsystem and vertical scanner. One of the benefits of combining Fd-OCT with SLO includes automatic co-registration between two acquisition channels for direct comparison between retinal structures imaged by both modalities (e.g., photoreceptor mosaics or microvasculature maps). Because of differences in the detection scheme of the two systems, this dual imaging modality instrument can provide insight into retinal morphology and potentially function, that could not be accessed easily by a single system. In this paper we describe details of the components and parameters of the combined instrument, including incorporation of a novel membrane magnetic deformable mirror with increased stroke and actuator count used as a single wavefront corrector. We also discuss laser safety calculations for this multimodal system. Finally, retinal images acquired in vivo with this system are presented. PMID:21698028

  5. Membrane adaptive optics

    NASA Astrophysics Data System (ADS)

    Marker, Dan K.; Wilkes, James M.; Ruggiero, Eric J.; Inman, Daniel J.

    2005-08-01

    An innovative adaptive optic is discussed that provides a range of capabilities unavailable with either existing, or newly reported, research devices. It is believed that this device will be inexpensive and uncomplicated to construct and operate, with a large correction range that should dramatically relax the static and dynamic structural tolerances of a telescope. As the areal density of a telescope primary is reduced, the optimal optical figure and the structural stiffness are inherently compromised and this phenomenon will require a responsive, range-enhanced wavefront corrector. In addition to correcting for the aberrations in such innovative primary mirrors, sufficient throw remains to provide non-mechanical steering to dramatically improve the Field of regard. Time dependent changes such as thermal disturbances can also be accommodated. The proposed adaptive optic will overcome some of the issues facing conventional deformable mirrors, as well as current and proposed MEMS-based deformable mirrors and liquid crystal based adaptive optics. Such a device is scalable to meter diameter apertures, eliminates high actuation voltages with minimal power consumption, provides long throw optical path correction, provides polychromatic dispersion free operation, dramatically reduces the effects of adjacent actuator influence, and provides a nearly 100% useful aperture. This article will reveal top-level details of the proposed construction and include portions of a static, dynamic, and residual aberration analysis. This device will enable certain designs previously conceived by visionaries in the optical community.

  6. Concept for image-guided vitreo-retinal fs-laser surgery: adaptive optics and optical coherence tomography for laser beam shaping and positioning

    NASA Astrophysics Data System (ADS)

    Matthias, Ben; Brockmann, Dorothee; Hansen, Anja; Horke, Konstanze; Knoop, Gesche; Gewohn, Timo; Zabic, Miroslav; Krüger, Alexander; Ripken, Tammo

    2015-03-01

    Fs-lasers are well established in ophthalmic surgery as high precision tools for corneal flap cutting during laser in situ keratomileusis (LASIK) and increasingly utilized for cutting the crystalline lens, e.g. in assisting cataract surgery. For addressing eye structures beyond the cornea, an intraoperative depth resolved imaging is crucial to the safety and success of the surgical procedure due to interindividual anatomical disparities. Extending the field of application even deeper to the posterior eye segment, individual eye aberrations cannot be neglected anymore and surgery with fs-laser is impaired by focus degradation. Our demonstrated concept for image-guided vitreo-retinal fs-laser surgery combines adaptive optics (AO) for spatial beam shaping and optical coherence tomography (OCT) for focus positioning guidance. The laboratory setup comprises an adaptive optics assisted 800 nm fs-laser system and is extended by a Fourier domain optical coherence tomography system. Phantom structures are targeted, which mimic tractional epiretinal membranes in front of excised porcine retina within an eye model. AO and OCT are set up to share the same scanning and focusing optics. A Hartmann-Shack sensor is employed for aberration measurement and a deformable mirror for aberration correction. By means of adaptive optics the threshold energy for laser induced optical breakdown is lowered and cutting precision is increased. 3D OCT imaging of typical ocular tissue structures is achieved with sufficient resolution and the images can be used for orientation of the fs-laser beam. We present targeted dissection of the phantom structures and its evaluation regarding retinal damage.

  7. Morphometric analysis of small arteries in the human retina using adaptive optics imaging: relationship with blood pressure and focal vascular changes

    PubMed Central

    Koch, Edouard; Rosenbaum, David; Brolly, Aurélie; Sahel, José-Alain; Chaumet-Riffaud, Philippe; Girerd, Xavier; Rossant, Florence; Paques, Michel

    2014-01-01

    Objectives: The wall-to-lumen ratio (WLR) of retinal arteries is a recognized surrogate of end-organ damage due to aging and/or arterial hypertension. However, parietal morphometry remains difficult to assess in vivo. Recently, it was shown that adaptive optics retinal imaging can resolve parietal structures of retinal arterioles in humans in vivo. Here, using adaptive optics retinal imaging, we investigated the variations of parietal thickness of small retinal arteries with blood pressure and focal vascular damage. Methods: Adaptive optics imaging of the superotemporal retinal artery was done in 49 treatment-naive individuals [mean age (±SD) 44.9 years (±14); mean systolic pressure 132 mmHg (±22)]. Semi-automated segmentation allowed extracting parietal thickness and lumen diameter. In a distinct cohort, adaptive optics images of arteriovenous nicking (AVN; n = 12) and focal arteriolar narrowing (FAN; n = 10) were also analyzed qualitatively and quantitatively. Results: In the cohort of treatment-naive individuals, by multiple regression taking into account age, body mass index, mean, systolic, diastolic and pulse blood pressure, the WLR was found positively correlated to mean blood pressure and age which in combination accounted for 43% of the variability of WLR. In the cohort of patients with focal vascular damage, neither FANs or AVNs showed evidence of parietal growth; instead, at sites of FANs, decreased outer diameter suggestive of vasoconstriction was consistently found, while at sites of AVNs venous narrowing could be seen in the absence of arteriovenous contact. Conclusion: High resolution imaging of retinal vessels by adaptive optics allows quantitative microvascular phenotyping, which may contribute to a better understanding and management of hypertensive retinopathy. PMID:24406779

  8. Morphometric analysis of small arteries in the human retina using adaptive optics imaging: relationship with blood pressure and focal vascular changes.

    PubMed

    Koch, Edouard; Rosenbaum, David; Brolly, Aurélie; Sahel, José-Alain; Chaumet-Riffaud, Philippe; Girerd, Xavier; Rossant, Florence; Paques, Michel

    2014-04-01

    The wall-to-lumen ratio (WLR) of retinal arteries is a recognized surrogate of end-organ damage due to aging and/or arterial hypertension. However, parietal morphometry remains difficult to assess in vivo. Recently, it was shown that adaptive optics retinal imaging can resolve parietal structures of retinal arterioles in humans in vivo. Here, using adaptive optics retinal imaging, we investigated the variations of parietal thickness of small retinal arteries with blood pressure and focal vascular damage. Adaptive optics imaging of the superotemporal retinal artery was done in 49 treatment-naive individuals [mean age (±SD) 44.9 years (±14); mean systolic pressure 132  mmHg (±22)]. Semi-automated segmentation allowed extracting parietal thickness and lumen diameter. In a distinct cohort, adaptive optics images of arteriovenous nicking (AVN; n = 12) and focal arteriolar narrowing (FAN; n = 10) were also analyzed qualitatively and quantitatively. In the cohort of treatment-naive individuals, by multiple regression taking into account age, body mass index, mean, systolic, diastolic and pulse blood pressure, the WLR was found positively correlated to mean blood pressure and age which in combination accounted for 43% of the variability of WLR. In the cohort of patients with focal vascular damage, neither FANs or AVNs showed evidence of parietal growth; instead, at sites of FANs, decreased outer diameter suggestive of vasoconstriction was consistently found, while at sites of AVNs venous narrowing could be seen in the absence of arteriovenous contact. High resolution imaging of retinal vessels by adaptive optics allows quantitative microvascular phenotyping, which may contribute to a better understanding and management of hypertensive retinopathy.

  9. Spitzer Microlens Measurement of a Massive Remnant in a Well-separated Binary

    NASA Astrophysics Data System (ADS)

    Shvartzvald, Y.; Udalski, A.; Gould, A.; Han, C.; Bozza, V.; Friedmann, M.; Hundertmark, M.; and; Beichman, C.; Bryden, G.; Calchi Novati, S.; Carey, S.; Fausnaugh, M.; Gaudi, B. S.; Henderson, C. B.; Kerr, T.; Pogge, R. W.; Varricatt, W.; Wibking, B.; Yee, J. C.; Zhu, W.; Spitzer Team; Poleski, R.; Pawlak, M.; Szymański, M. K.; Skowron, J.; Mróz, P.; Kozłowski, S.; Wyrzykowski, Ł.; Pietrukowicz, P.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; OGLE Group; Choi, J.-Y.; Park, H.; Jung, Y. K.; Shin, I.-G.; Albrow, M. D.; Park, B.-G.; Kim, S.-L.; Lee, C.-U.; Cha, S.-M.; Kim, D.-J.; Lee, Y.; KMTNet Group; Maoz, D.; Kaspi, S.; Wise Group; Street, R. A.; Tsapras, Y.; Bachelet, E.; Dominik, M.; Bramich, D. M.; Horne, Keith; Snodgrass, C.; Steele, I. A.; Menzies, J.; Figuera Jaimes, R.; Wambsganss, J.; Schmidt, R.; Cassan, A.; Ranc, C.; Mao, S.; Dong, Subo; RoboNet; D'Ago, G.; Scarpetta, G.; Verma, P.; Jørgensen, U. G.; Kerins, E.; Skottfelt, J.; MiNDSTEp

    2015-12-01

    We report the detection and mass measurement of a binary lens OGLE-2015-BLG-1285La,b, with the more massive component having M1 > 1.35 M⊙ (80% probability). A main-sequence star in this mass range is ruled out by limits on blue light, meaning that a primary in this mass range must be a neutron star (NS) or black hole (BH). The system has a projected separation r⊥ = 6.1 ± 0.4 AU and lies in the Galactic bulge. These measurements are based on the “microlens parallax” effect, i.e., comparing the microlensing light curve as seen from Spitzer, which lay at 1.25 AU projected from Earth, to the light curves from four ground-based surveys, three in the optical and one in the near-infrared. Future adaptive optics imaging of the companion by 30 m class telescopes will yield a much more accurate measurement of the primary mass. This discovery both opens the path and defines the challenges to detecting and characterizing BHs and NSs in wide binaries, with either dark or luminous companions. In particular, we discuss lessons that can be applied to future Spitzer and Kepler K2 microlensing parallax observations.

  10. Referenceless Phase Holography for 3D Imaging

    NASA Astrophysics Data System (ADS)

    Kreis, Thomas

    2017-12-01

    Referenceless phase holography generates the full (amplitude and phase) optical field if intensity and phase of this field are given as numerical data. It is based on the interference of two pure phase fields which are produced by reflection of two mutually coherent plane waves at two phase modulating spatial light modulators of the liquid crystal on silicon type. Thus any optical field of any real or artificial 3D scene can be displayed. This means that referenceless phase holography is a promising method for future 3D imaging, e. g. in 3D television. The paper introduces the theory of the method and presents three possible interferometer arrangements, for the first time the Mach-Zehnder and the grating interferometer adapted to this application. The possibilities and problems in calculating the diffraction fields of given 3D scenes are worked out, the best choice and modifications of the algorithms are given. Several novelty experimental examples are given proving the 3D cues depth of field, occlusion and parallax. The benefits and advantages over other holographic approaches are pointed out, open problems and necessary technological developments as well as possibilities and future prospects are discussed.

  11. Interferometry

    NASA Technical Reports Server (NTRS)

    Ridgway, Stephen; Wilson, Robert W.; Begelman, Mitchell C.; Bender, Peter; Burke, Bernard F.; Cornwell, Tim; Drever, Ronald; Dyck, H. Melvin; Johnston, Kenneth J.; Kibblewhite, Edward

    1991-01-01

    The following recommended programs are reviewed: (1) infrared and optical interferometry (a ground-based and space programs); (2) compensation for the atmosphere with adaptive optics (a program for development and implementation of adaptive optics); and (3) gravitational waves (high frequency gravitational wave sources (LIGO), low frequency gravitational wave sources (LAGOS), a gravitational wave observatory program, laser gravitational wave observatory in space, and technology development during the 1990's). Prospects for international collaboration and related issues are also discussed.

  12. Adaptive optical fluorescence microscopy.

    PubMed

    Ji, Na

    2017-03-31

    The past quarter century has witnessed rapid developments of fluorescence microscopy techniques that enable structural and functional imaging of biological specimens at unprecedented depth and resolution. The performance of these methods in multicellular organisms, however, is degraded by sample-induced optical aberrations. Here I review recent work on incorporating adaptive optics, a technology originally applied in astronomical telescopes to combat atmospheric aberrations, to improve image quality of fluorescence microscopy for biological imaging.

  13. Micromirror Arrays for Adaptive Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, E.J.

    The long-range goal of this project is to develop the optical and mechanical design of a micromirror array for adaptive optics that will meet the following criteria: flat mirror surface ({lambda}/20), high fill factor (> 95%), large stroke (5-10 {micro}m), and pixel size {approx}-200 {micro}m. This will be accomplished by optimizing the mirror surface and actuators independently and then combining them using bonding technologies that are currently being developed.

  14. Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope.

    PubMed

    Venkateswaran, Krishnakumar; Roorda, Austin; Romero-Borja, Fernando

    2004-01-01

    We present axial resolution calculated using a mathematical model of the adaptive optics scanning laser ophthalmoscope (AOSLO). The peak intensity and the width of the axial intensity response are computed with the residual Zernike coefficients after the aberrations are corrected using adaptive optics for eight subjects and compared with the axial resolution of a diffraction-limited eye. The AOSLO currently uses a confocal pinhole that is 80 microm, or 3.48 times the width of the Airy disk radius of the collection optics, and projects to 7.41 microm on the retina. For this pinhole, the axial resolution of a diffraction-limited system is 114 microm and the computed axial resolution varies between 120 and 146 microm for the human subjects included in this study. The results of this analysis indicate that to improve axial resolution, it is best to reduce the pinhole size. The resulting reduction in detected light may demand, however, a more sophisticated adaptive optics system. The study also shows that imaging systems with large pinholes are relatively insensitive to misalignment in the lateral positioning of the confocal pinhole. However, when small pinholes are used to maximize resolution, alignment becomes critical. ( c) 2004 Society of Photo-Optical Instrumentation Engineers.

  15. Evaluation and comparison of an adaptive method technique for improved performance of linear Fresnel secondary designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hack, Madeline; Zhu, Guangdong; Wendelin, Timothy J.

    As a line-focus concentrating solar power (CSP) technology, linear Fresnel collectors have the potential to become a low-cost solution for electricity production and a variety of thermal energy applications. However, this technology often suffers from relatively low performance. A secondary reflector is a key component used to improve optical performance of a linear Fresnel collector. The shape of a secondary reflector is particularly critical in determining solar power captured by the absorber tube(s), and thus, the collector's optical performance. However, to the authors' knowledge, no well-established process existed to derive the optimal secondary shape prior to the development of amore » new adaptive method to optimize the secondary reflector shape. The new adaptive method does not assume any pre-defined analytical form; rather, it constitutes an optimum shape through an adaptive process by maximizing the energy collection onto the absorber tube. In this paper, the adaptive method is compared with popular secondary-reflector designs with respect to a collector's optical performance under various scenarios. For the first time, a comprehensive, in-depth comparison was conducted on all popular secondary designs for CSP applications. In conclusion, it is shown that the adaptive design exhibits the best optical performance.« less

  16. Evaluation and comparison of an adaptive method technique for improved performance of linear Fresnel secondary designs

    DOE PAGES

    Hack, Madeline; Zhu, Guangdong; Wendelin, Timothy J.

    2017-09-13

    As a line-focus concentrating solar power (CSP) technology, linear Fresnel collectors have the potential to become a low-cost solution for electricity production and a variety of thermal energy applications. However, this technology often suffers from relatively low performance. A secondary reflector is a key component used to improve optical performance of a linear Fresnel collector. The shape of a secondary reflector is particularly critical in determining solar power captured by the absorber tube(s), and thus, the collector's optical performance. However, to the authors' knowledge, no well-established process existed to derive the optimal secondary shape prior to the development of amore » new adaptive method to optimize the secondary reflector shape. The new adaptive method does not assume any pre-defined analytical form; rather, it constitutes an optimum shape through an adaptive process by maximizing the energy collection onto the absorber tube. In this paper, the adaptive method is compared with popular secondary-reflector designs with respect to a collector's optical performance under various scenarios. For the first time, a comprehensive, in-depth comparison was conducted on all popular secondary designs for CSP applications. In conclusion, it is shown that the adaptive design exhibits the best optical performance.« less

  17. Phase Contrast Wavefront Sensing for Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Wallace, J. K.; Bloemhof, E. E.

    2004-01-01

    Most ground-based adaptive optics systems use one of a small number of wavefront sensor technologies, notably (for relatively high-order systems) the Shack-Hartmann sensor, which provides local measurements of the phase slope (first-derivative) at a number of regularly-spaced points across the telescope pupil. The curvature sensor, with response proportional to the second derivative of the phase, is also sometimes used, but has undesirable noise propagation properties during wavefront reconstruction as the number of actuators becomes large. It is interesting to consider the use for astronomical adaptive optics of the "phase contrast" technique, originally developed for microscopy by Zemike to allow convenient viewing of phase objects. In this technique, the wavefront sensor provides a direct measurement of the local value of phase in each sub-aperture of the pupil. This approach has some obvious disadvantages compared to Shack-Hartmann wavefront sensing, but has some less obvious but substantial advantages as well. Here we evaluate the relative merits in a practical ground-based adaptive optics system.

  18. Multiconjugate adaptive optics applied to an anatomically accurate human eye model.

    PubMed

    Bedggood, P A; Ashman, R; Smith, G; Metha, A B

    2006-09-04

    Aberrations of both astronomical telescopes and the human eye can be successfully corrected with conventional adaptive optics. This produces diffraction-limited imagery over a limited field of view called the isoplanatic patch. A new technique, known as multiconjugate adaptive optics, has been developed recently in astronomy to increase the size of this patch. The key is to model atmospheric turbulence as several flat, discrete layers. A human eye, however, has several curved, aspheric surfaces and a gradient index lens, complicating the task of correcting aberrations over a wide field of view. Here we utilize a computer model to determine the degree to which this technology may be applied to generate high resolution, wide-field retinal images, and discuss the considerations necessary for optimal use with the eye. The Liou and Brennan schematic eye simulates the aspheric surfaces and gradient index lens of real human eyes. We show that the size of the isoplanatic patch of the human eye is significantly increased through multiconjugate adaptive optics.

  19. An adaptive optics system for solid-state laser systems used in inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salmon, J.T.; Bliss, E.S.; Byrd, J.L.

    1995-09-17

    Using adaptive optics the authors have obtained nearly diffraction-limited 5 kJ, 3 nsec output pulses at 1.053 {micro}m from the Beamlet demonstration system for the National Ignition Facility (NIF). The peak Strehl ratio was improved from 0.009 to 0.50, as estimated from measured wavefront errors. They have also measured the relaxation of the thermally induced aberrations in the main beam line over a period of 4.5 hours. Peak-to-valley aberrations range from 6.8 waves at 1.053 {micro}m within 30 minutes after a full system shot to 3.9 waves after 4.5 hours. The adaptive optics system must have enough range to correctmore » accumulated thermal aberrations from several shots in addition to the immediate shot-induced error. Accumulated wavefront errors in the beam line will affect both the design of the adaptive optics system for NIF and the performance of that system.« less

  20. Perspective and potential of smart optical materials

    NASA Astrophysics Data System (ADS)

    Choi, Sang H.; Duzik, Adam J.; Kim, Hyun-Jung; Park, Yeonjoon; Kim, Jaehwan; Ko, Hyun-U.; Kim, Hyun-Chan; Yun, Sungryul; Kyung, Ki-Uk

    2017-09-01

    The increasing requirements of hyperspectral imaging optics, electro/photo-chromic materials, negative refractive index metamaterial optics, and miniaturized optical components from micro-scale to quantum-scale optics have all contributed to new features and advancements in optics technology. Development of multifunctional capable optics has pushed the boundaries of optics into new fields that require new disciplines and materials to maximize the potential benefits. The purpose of this study is to understand and show the fundamental materials and fabrication technology for field-controlled spectrally active optics (referred to as smart optics) that are essential for future industrial, scientific, military, and space applications, such as membrane optics, filters, windows for sensors and probes, telescopes, spectroscopes, cameras, light valves, light switches, and flat-panel displays. The proposed smart optics are based on the Stark and Zeeman effects in materials tailored with quantum dot arrays and thin films made from readily polarizable materials via ferroelectricity or ferromagnetism. Bound excitonic states of organic crystals are also capable of optical adaptability, tunability, and reconfigurability. To show the benefits of smart optics, this paper reviews spectral characteristics of smart optical materials and device technology. Experiments testing the quantum-confined Stark effect, arising from rare earth element doping effects in semiconductors, and applied electric field effects on spectral and refractive index are discussed. Other bulk and dopant materials were also discovered to have the same aspect of shifts in spectrum and refractive index. Other efforts focus on materials for creating field-controlled spectrally smart active optics on a selected spectral range. Surface plasmon polariton transmission of light through apertures is also discussed, along with potential applications. New breakthroughs in micro scale multiple zone plate optics as a micro convex lens are reviewed, along with the newly discovered pseudo-focal point not predicted with conventional optics modeling. Micron-sized solid state beam scanner chips for laser waveguides are reviewed as well.

  1. Live imaging using adaptive optics with fluorescent protein guide-stars

    PubMed Central

    Tao, Xiaodong; Crest, Justin; Kotadia, Shaila; Azucena, Oscar; Chen, Diana C.; Sullivan, William; Kubby, Joel

    2012-01-01

    Spatially and temporally dependent optical aberrations induced by the inhomogeneous refractive index of live samples limit the resolution of live dynamic imaging. We introduce an adaptive optical microscope with a direct wavefront sensing method using a Shack-Hartmann wavefront sensor and fluorescent protein guide-stars for live imaging. The results of imaging Drosophila embryos demonstrate its ability to correct aberrations and achieve near diffraction limited images of medial sections of large Drosophila embryos. GFP-polo labeled centrosomes can be observed clearly after correction but cannot be observed before correction. Four dimensional time lapse images are achieved with the correction of dynamic aberrations. These studies also demonstrate that the GFP-tagged centrosome proteins, Polo and Cnn, serve as excellent biological guide-stars for adaptive optics based microscopy. PMID:22772285

  2. Very high-resolution spectroscopy for extremely large telescopes using pupil slicing and adaptive optics.

    PubMed

    Beckers, Jacques M; Andersen, Torben E; Owner-Petersen, Mette

    2007-03-05

    Under seeing limited conditions very high resolution spectroscopy becomes very difficult for extremely large telescopes (ELTs). Using adaptive optics (AO) the stellar image size decreases proportional with the telescope diameter. This makes the spectrograph optics and hence its resolution independent of the telescope diameter. However AO for use with ELTs at visible wavelengths require deformable mirrors with many elements. Those are not likely to be available for quite some time. We propose to use the pupil slicing technique to create a number of sub-pupils each of which having its own deformable mirror. The images from all sub-pupils are combined incoherently with a diameter corresponding to the diffraction limit of the sub-pupil. The technique is referred to as "Pupil Slicing Adaptive Optics" or PSAO.

  3. Extended use of two crossed Babinet compensators for wavefront sensing in adaptive optics

    NASA Astrophysics Data System (ADS)

    Paul, Lancelot; Kumar Saxena, Ajay

    2010-12-01

    An extended use of two crossed Babinet compensators as a wavefront sensor for adaptive optics applications is proposed. This method is based on the lateral shearing interferometry technique in two directions. A single record of the fringes in a pupil plane provides the information about the wavefront. The theoretical simulations based on this approach for various atmospheric conditions and other errors of optical surfaces are provided for better understanding of this method. Derivation of the results from a laboratory experiment using simulated atmospheric conditions demonstrates the steps involved in data analysis and wavefront evaluation. It is shown that this method has a higher degree of freedom in terms of subapertures and on the choice of detectors, and can be suitably adopted for real-time wavefront sensing for adaptive optics.

  4. Multi-limit unsymmetrical MLIBD image restoration algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Cheng, Yiping; Chen, Zai-wang; Bo, Chen

    2012-11-01

    A novel multi-limit unsymmetrical iterative blind deconvolution(MLIBD) algorithm was presented to enhance the performance of adaptive optics image restoration.The algorithm enhances the reliability of iterative blind deconvolution by introducing the bandwidth limit into the frequency domain of point spread(PSF),and adopts the PSF dynamic support region estimation to improve the convergence speed.The unsymmetrical factor is automatically computed to advance its adaptivity.Image deconvolution comparing experiments between Richardson-Lucy IBD and MLIBD were done,and the result indicates that the iteration number is reduced by 22.4% and the peak signal-to-noise ratio is improved by 10.18dB with MLIBD method. The performance of MLIBD algorithm is outstanding in the images restoration the FK5-857 adaptive optics and the double-star adaptive optics.

  5. Adaptation to Laterally Displacing Prisms in Anisometropic Amblyopia.

    PubMed

    Sklar, Jaime C; Goltz, Herbert C; Gane, Luke; Wong, Agnes M F

    2015-06-01

    Using visual feedback to modify sensorimotor output in response to changes in the external environment is essential for daily function. Prism adaptation is a well-established experimental paradigm to quantify sensorimotor adaptation; that is, how the sensorimotor system adapts to an optically-altered visuospatial environment. Amblyopia is a neurodevelopmental disorder characterized by spatiotemporal deficits in vision that impacts manual and oculomotor function. This study explored the effects of anisometropic amblyopia on prism adaptation. Eight participants with anisometropic amblyopia and 11 visually-normal adults, all right-handed, were tested. Participants pointed to visual targets and were presented with feedback of hand position near the terminus of limb movement in three blocks: baseline, adaptation, and deadaptation. Adaptation was induced by viewing with binocular 11.4° (20 prism diopter [PD]) left-shifting prisms. All tasks were performed during binocular viewing. Participants with anisometropic amblyopia required significantly more trials (i.e., increased time constant) to adapt to prismatic optical displacement than visually-normal controls. During the rapid error correction phase of adaptation, people with anisometropic amblyopia also exhibited greater variance in motor output than visually-normal controls. Amblyopia impacts on the ability to adapt the sensorimotor system to an optically-displaced visual environment. The increased time constant and greater variance in motor output during the rapid error correction phase of adaptation may indicate deficits in processing of visual information as a result of degraded spatiotemporal vision in amblyopia.

  6. Model of the lines of sight for an off-axis optical instrument Pleiades

    NASA Astrophysics Data System (ADS)

    Sauvage, Dominique; Gaudin-Delrieu, Catherine; Tournier, Thierry

    2017-11-01

    The future Earth observation missions aim at delivering images with a high resolution and a large field of view. These images have to be processed to get a very accurate localisation. In that goal, the individual lines of sight of each photosensitive element must be evaluated according to the localisation of the pixels in the focal plane. But, with off-axis Korsch telescope (like PLEIADES), the classical model has to be adapted. This is possible by using optical ground measurements made after the integration of the instrument. The processing of these results leads to several parameters, which are function of the offsets of the focal plane and the real focal length. All this study which has been proposed for the PLEIADES mission leads to a more elaborated model which provides the relation between the lines of sight and the location of the pixels, with a very good accuracy, close to the pixel size.

  7. First-order error budgeting for LUVOIR mission

    NASA Astrophysics Data System (ADS)

    Lightsey, Paul A.; Knight, J. Scott; Feinberg, Lee D.; Bolcar, Matthew R.; Shaklan, Stuart B.

    2017-09-01

    Future large astronomical telescopes in space will have architectures that will have complex and demanding requirements to meet the science goals. The Large UV/Optical/IR Surveyor (LUVOIR) mission concept being assessed by the NASA/Goddard Space Flight Center is expected to be 9 to 15 meters in diameter, have a segmented primary mirror and be diffraction limited at a wavelength of 500 nanometers. The optical stability is expected to be in the picometer range for minutes to hours. Architecture studies to support the NASA Science and Technology Definition teams (STDTs) are underway to evaluate systems performance improvements to meet the science goals. To help define the technology needs and assess performance, a first order error budget has been developed. Like the JWST error budget, the error budget includes the active, adaptive and passive elements in spatial and temporal domains. JWST performance is scaled using first order approximations where appropriate and includes technical advances in telescope control.

  8. Wafer defect detection by a polarization-insensitive external differential interference contrast module.

    PubMed

    Nativ, Amit; Feldman, Haim; Shaked, Natan T

    2018-05-01

    We present a system that is based on a new external, polarization-insensitive differential interference contrast (DIC) module specifically adapted for detecting defects in semiconductor wafers. We obtained defect signal enhancement relative to the surrounding wafer pattern when compared with bright-field imaging. The new DIC module proposed is based on a shearing interferometer that connects externally at the output port of an optical microscope and enables imaging thin samples, such as wafer defects. This module does not require polarization optics (such as Wollaston or Nomarski prisms) and is insensitive to polarization, unlike traditional DIC techniques. In addition, it provides full control of the DIC shear and orientation, which allows obtaining a differential phase image directly on the camera (with no further digital processing) while enhancing defect detection capabilities, even if the size of the defect is smaller than the resolution limit. Our technique has the potential of future integration into semiconductor production lines.

  9. SRAO: optical design and the dual-knife-edge WFS

    NASA Astrophysics Data System (ADS)

    Ziegler, Carl; Law, Nicholas M.; Tokovinin, Andrei

    2016-07-01

    The Southern Robotic Adaptive Optics (SRAO) instrument will bring the proven high-efficiency capabilities of Robo-AO to the Southern-Hemisphere, providing the unique capability to image with high-angular-resolution thousands of targets per year across the entire sky. Deployed on the modern 4.1m SOAR telescope located on Cerro Tololo, the NGS AO system will use an innovative dual-knife-edge wavefront sensor, similar to a pyramid sensor, to enable guiding on targets down to V=16 with diffraction limited resolution in the NIR. The dual-knife-edge wavefront sensor can be up to two orders of magnitude less costly than custom glass pyramids, with similar wavefront error sensitivity and minimal chromatic aberrations. SRAO is capable of observing hundreds of targets a night through automation, allowing confirmation and characterization of the large number of exoplanets produced by current and future missions.

  10. Diffraction phase microscopy realized with an automatic digital pinhole

    NASA Astrophysics Data System (ADS)

    Zheng, Cheng; Zhou, Renjie; Kuang, Cuifang; Zhao, Guangyuan; Zhang, Zhimin; Liu, Xu

    2017-12-01

    We report a novel approach to diffraction phase microscopy (DPM) with automatic pinhole alignment. The pinhole, which serves as a spatial low-pass filter to generate a uniform reference beam, is made out of a liquid crystal display (LCD) device that allows for electrical control. We have made DPM more accessible to users, while maintaining high phase measurement sensitivity and accuracy, through exploring low cost optical components and replacing the tedious pinhole alignment process with an automatic pinhole optical alignment procedure. Due to its flexibility in modifying the size and shape, this LCD device serves as a universal filter, requiring no future replacement. Moreover, a graphic user interface for real-time phase imaging has been also developed by using a USB CMOS camera. Experimental results of height maps of beads sample and live red blood cells (RBCs) dynamics are also presented, making this system ready for broad adaption to biological imaging and material metrology.

  11. Comparison between invasive and noninvasive techniques of evaluation of microvascular structural alterations.

    PubMed

    De Ciuceis, Carolina; Agabiti Rosei, Claudia; Caletti, Stefano; Trapletti, Valentina; Coschignano, Maria A; Tiberio, Guido A M; Duse, Sarah; Docchio, Franco; Pasinetti, Simone; Zambonardi, Federica; Semeraro, Francesco; Porteri, Enzo; Solaini, Leonardo; Sansoni, Giovanna; Pileri, Paola; Rossini, Claudia; Mittempergher, Francesco; Portolani, Nazario; Ministrini, Silvia; Agabiti-Rosei, Enrico; Rizzoni, Damiano

    2018-05-01

    The evaluation of the morphological characteristics of small resistance arteries in humans is challenging. The gold standard method is generally considered to be the measurement by wire or pressure micromyography of the media-to-lumen ratio of subcutaneous small vessels obtained by local biopsies. However, noninvasive techniques for the evaluation of retinal arterioles were recently proposed; in particular, two approaches, scanning laser Doppler flowmetry (SLDF) and adaptive optics, seem to provide useful information; both of them provide an estimation of the wall-to-lumen ratio (WLR) of retinal arterioles. Moreover, a noninvasive measurement of basal and total capillary density may be obtained by videomicroscopy/capillaroscopy. No direct comparison of these three noninvasive techniques in the same population was previously performed; in particular, adaptive optics was never validated against micromyography. In the current study, we enrolled 41 controls and patients: 12 normotensive lean controls, 12 essential hypertensive lean patients, nine normotensive obese patients and eight hypertensive obese patients undergoing elective surgery. All patients underwent a biopsy of subcutaneous fat during surgery. Subcutaneous small resistance artery structure was assessed by wire micromyography and the media-to-lumen ratio was calculated. WLR of retinal arterioles was obtained by SLDF and adaptive optics. Functional (basal) and structural (total) microvascular density was evaluated by capillaroscopy before and after venous congestion. Our data suggest that adaptive optics has a substantial advantage over SLDF in terms of evaluation of microvascular morphology, as WLR measured with adaptive optics is more closely correlated with the M/L of subcutaneous small arteries (r = 0.84, P < 0.001 vs. r = 0.52, P < 0.05, slopes of the relations: P < 0.01 adaptive optics vs. SLDF). In addition, the reproducibility of the evaluation of the WLR with adaptive optics is far better, as compared with SLDF, as intraobserver and interobserver variation coefficients are clearly smaller. This may be important in terms of clinical evaluation of microvascular morphology in a clinical setting, as micromyography has substantial limitations in its clinical application due to the local invasiveness of the procedure.

  12. Observations of starburst galaxies: Science and supporting technology

    NASA Astrophysics Data System (ADS)

    Laag, Edward Aric

    In chapter 1 we report on the development of wavefront reconstruction and control algorithms for multi-conjugate adaptive optics (MCAO) and the results of testing them in the laboratory under conditions that simulate an 8 meter class telescope. The UCO/Lick Observatory Laboratory for Adaptive Optics Multi-Conjugate testbed allows us to test wide field of view adaptive optics systems as they might be instantiated in the near future on giant telescopes. In particular, we have been investigating the performance of MCAO using five laser beacons for wavefront sensing and a minimum variance algorithm for control of two conjugate deformable mirrors. We have demonstrated improved Strehl ratio and enlarged field of view performance when compared to conventional AO techniques. We have demonstrated improved MCAO performance with the implementation of a routine that minimizes the generalized isoplanatism when turbulent layers do not correspond to deformable mirror conjugate altitudes. Finally, we have demonstrated suitability of the system for closed-loop operation when configured to feed back conditional mean estimates of wavefront residuals rather than the directly measured residuals. This technique has recently been referred to as the "pseudo-open-loop" control law in the literature. Chapter 2 introduces the Multi-wavelength Extreme Starburst Sample (MESS), a new catalog of 138 star-forming galaxies (0.1 < z < 0.3) optically selected from the SDSS using emission line strength diagnostics to have SFR ≥ 50 M⊙ yr-1 based on a Kroupa IMF. The MESS was designed to complement samples of nearby star forming galaxies such as the luminous infrared galaxies (LIRGs), and ultraviolet luminous galaxies (UVLGs). Observations using the multiband imaging photometer (MIPS; 24, 70, and 160mum channels) on the Spitzer Space Telescope indicate the MESS galaxies have IR luminosities similar to those of LIRGs, with an estimated median LTIR ˜ 3 x 1011 L⊙ . The selection criteria for the MESS suggests they may be less obscured than typical far-IR selected galaxies with similar estimated SFRs. We estimate the SFRs based directly on luminosities to determine the agreement for these methods in the MESS.

  13. Axial range of conjugate adaptive optics in two-photon microscopy

    PubMed Central

    Paudel, Hari P.; Taranto, John; Mertz, Jerome; Bifano, Thomas

    2015-01-01

    We describe an adaptive optics technique for two-photon microscopy in which the deformable mirror used for aberration compensation is positioned in a plane conjugate to the plane of the aberration. We demonstrate in a proof-of-principle experiment that this technique yields a large field of view advantage in comparison to standard pupil-conjugate adaptive optics. Further, we show that the extended field of view in conjugate AO is maintained over a relatively large axial translation of the deformable mirror with respect to the conjugate plane. We conclude with a discussion of limitations and prospects for the conjugate AO technique in two-photon biological microscopy. PMID:26367938

  14. Axial range of conjugate adaptive optics in two-photon microscopy.

    PubMed

    Paudel, Hari P; Taranto, John; Mertz, Jerome; Bifano, Thomas

    2015-08-10

    We describe an adaptive optics technique for two-photon microscopy in which the deformable mirror used for aberration compensation is positioned in a plane conjugate to the plane of the aberration. We demonstrate in a proof-of-principle experiment that this technique yields a large field of view advantage in comparison to standard pupil-conjugate adaptive optics. Further, we show that the extended field of view in conjugate AO is maintained over a relatively large axial translation of the deformable mirror with respect to the conjugate plane. We conclude with a discussion of limitations and prospects for the conjugate AO technique in two-photon biological microscopy.

  15. Intracavity adaptive optics. 1: Astigmatism correction performance.

    PubMed

    Spinhirne, J M; Anafi, D; Freeman, R H; Garcia, H R

    1981-03-15

    A detailed experimental study has been conducted on adaptive optical control methodologies inside a laser resonator. A comparison is presented of several optimization techniques using a multidither zonal coherent optical adaptive technique system within a laser resonator for the correction of astigmatism. A dramatic performance difference is observed when optimizing on beam quality compared with optimizing on power-in-the-bucket. Experimental data are also presented on proper selection criteria for dither frequencies when controlling phase front errors. The effects of hardware limitations and design considerations on the performance of the system are presented, and general conclusions and physical interpretations on the results are made when possible.

  16. Adaptive channel estimation for soft decision decoding over non-Gaussian optical channel

    NASA Astrophysics Data System (ADS)

    Xiang, Jing-song; Miao, Tao-tao; Huang, Sheng; Liu, Huan-lin

    2016-10-01

    An adaptive priori likelihood ratio (LLR) estimation method is proposed over non-Gaussian channel in the intensity modulation/direct detection (IM/DD) optical communication systems. Using the nonparametric histogram and the weighted least square linear fitting in the tail regions, the LLR is estimated and used for the soft decision decoding of the low-density parity-check (LDPC) codes. This method can adapt well to the three main kinds of intensity modulation/direct detection (IM/DD) optical channel, i.e., the chi-square channel, the Webb-Gaussian channel and the additive white Gaussian noise (AWGN) channel. The performance penalty of channel estimation is neglected.

  17. Sensor Control And Film Annotation For Long Range, Standoff Reconnaissance

    NASA Astrophysics Data System (ADS)

    Schmidt, Thomas G.; Peters, Owen L.; Post, Lawrence H.

    1984-12-01

    This paper describes a Reconnaissance Data Annotation System that incorporates off-the-shelf technology and system designs providing a high degree of adaptability and interoperability to satisfy future reconnaissance data requirements. The history of data annotation for reconnaissance is reviewed in order to provide the base from which future developments can be assessed and technical risks minimized. The system described will accommodate new developments in recording head assemblies and the incorporation of advanced cameras of both the film and electro-optical type. Use of microprocessor control and digital bus inter-face form the central design philosophy. For long range, high altitude, standoff missions, the Data Annotation System computes the projected latitude and longitude of central target position from aircraft position and attitude. This complements the use of longer ranges and high altitudes for reconnaissance missions.

  18. Linear quadratic Gaussian control of a deformable mirror adaptive optics system with time-delayed measurements

    NASA Astrophysics Data System (ADS)

    Paschall, Randall N.; Anderson, David J.

    1993-11-01

    A linear quadratic Gaussian method is proposed for a deformable mirror adaptive optics system control. Estimates of system states describing the distortion are generated by a Kalman filter based on Hartmann wave front measurements of the wave front gradient.

  19. Optic Flow Dominates Visual Scene Polarity in Causing Adaptive Modification of Locomotor Trajectory

    NASA Technical Reports Server (NTRS)

    Nomura, Y.; Mulavara, A. P.; Richards, J. T.; Brady, R.; Bloomberg, Jacob J.

    2005-01-01

    Locomotion and posture are influenced and controlled by vestibular, visual and somatosensory information. Optic flow and scene polarity are two characteristics of a visual scene that have been identified as being critical in how they affect perceived body orientation and self-motion. The goal of this study was to determine the role of optic flow and visual scene polarity on adaptive modification in locomotor trajectory. Two computer-generated virtual reality scenes were shown to subjects during 20 minutes of treadmill walking. One scene was a highly polarized scene while the other was composed of objects displayed in a non-polarized fashion. Both virtual scenes depicted constant rate self-motion equivalent to walking counterclockwise around the perimeter of a room. Subjects performed Stepping Tests blindfolded before and after scene exposure to assess adaptive changes in locomotor trajectory. Subjects showed a significant difference in heading direction, between pre and post adaptation stepping tests, when exposed to either scene during treadmill walking. However, there was no significant difference in the subjects heading direction between the two visual scene polarity conditions. Therefore, it was inferred from these data that optic flow has a greater role than visual polarity in influencing adaptive locomotor function.

  20. Multiconjugate adaptive optics for the Swedish ELT

    NASA Astrophysics Data System (ADS)

    Gontcharov, Alexander; Owner-Petersen, Mette

    2000-08-01

    The Swedish ELT is intended to be a 50 m telescope with multiconjugate adaptive optics integrated directly as a crucial part of the optical design. In this paper we discuss the effects of the distributed atmospheric turbulence with regard to the choice of optimal geometry of the telescope. Originally the basic system was foreseen to be a Gregorian with an adaptive secondary correcting adequately for nearby turbulences in both the infrared and visual regions, but if the performance degradation expected from changing the basic system to a Cassegrain keeping the adaptive secondary could be accepted, the constructional costs would be significantly reduced. In order to clarify this question, a simple analytical model describing the performance employing a single deformable mirror for adaptive correction has been developed and used for analysis. The quantitative results shown here relates to a wavelength of 2.2 micrometers and are based on the seven layer atmospheric model for the Cerro Pachon site, which is believed to be a good representative of most good astronomical sites. As a consequence of the analysis no performance degradation is expected from changing the core telescope to a Cassegrain (Ritchey- Chretien). The paper presents the layout and optical performance of the new design.

  1. Common-Path Wavefront Sensing for Advanced Coronagraphs

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Serabyn, Eugene; Mawet, Dimitri

    2012-01-01

    Imaging of faint companions around nearby stars is not limited by either intrinsic resolution of a coronagraph/telescope system, nor is it strictly photon limited. Typically, it is both the magnitude and temporal variation of small phase and amplitude errors imparted to the electric field by elements in the optical system which will limit ultimate performance. Adaptive optics systems, particularly those with multiple deformable mirrors, can remove these errors, but they need to be sensed in the final image plane. If the sensing system is before the final image plane, which is typical for most systems, then the non-common path optics between the wavefront sensor and science image plane will lead to un-sensed errors. However, a new generation of high-performance coronagraphs naturally lend themselves to wavefront sensing in the final image plane. These coronagraphs and the wavefront sensing will be discussed, as well as plans for demonstrating this with a high-contrast system on the ground. Such a system will be a key system-level proof for a future space-based coronagraph mission, which will also be discussed.

  2. Comparison of Angle of Attack Measurements for Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Jones, Thomas, W.; Hoppe, John C.

    2001-01-01

    Two optical systems capable of measuring model attitude and deformation were compared to inertial devices employed to acquire wind tunnel model angle of attack measurements during the sting mounted full span 30% geometric scale flexible configuration of the Northrop Grumman Unmanned Combat Air Vehicle (UCAV) installed in the NASA Langley Transonic Dynamics Tunnel (TDT). The overall purpose of the test at TDT was to evaluate smart materials and structures adaptive wing technology. The optical techniques that were compared to inertial devices employed to measure angle of attack for this test were: (1) an Optotrak (registered) system, an optical system consisting of two sensors, each containing a pair of orthogonally oriented linear arrays to compute spatial positions of a set of active markers; and (2) Video Model Deformation (VMD) system, providing a single view of passive targets using a constrained photogrammetric solution whose primary function was to measure wing and control surface deformations. The Optotrak system was installed for this test for the first time at TDT in order to assess the usefulness of the system for future static and dynamic deformation measurements.

  3. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation

    PubMed Central

    Anthony Eikema, Diderik Jan A.; Chien, Jung Hung; Stergiou, Nicholas; Myers, Sara A.; Scott-Pandorf, Melissa M.; Bloomberg, Jacob J.; Mukherjee, Mukul

    2015-01-01

    Human locomotor adaptation requires feedback and feed-forward control processes to maintain an appropriate walking pattern. Adaptation may require the use of visual and proprioceptive input to decode altered movement dynamics and generate an appropriate response. After a person transfers from an extreme sensory environment and back, as astronauts do when they return from spaceflight, the prolonged period required for re-adaptation can pose a significant burden. In our previous paper, we showed that plantar tactile vibration during a split-belt adaptation task did not interfere with the treadmill adaptation however, larger overground transfer effects with a slower decay resulted. Such effects, in the absence of visual feedback (of motion) and perturbation of tactile feedback, is believed to be due to a higher proprioceptive gain because, in the absence of relevant external dynamic cues such as optic flow, reliance on body-based cues is enhanced during gait tasks through multisensory integration. In this study we therefore investigated the effect of optic flow on tactile stimulated split-belt adaptation as a paradigm to facilitate the sensorimotor adaptation process. Twenty healthy young adults, separated into two matched groups, participated in the study. All participants performed an overground walking trial followed by a split-belt treadmill adaptation protocol. The tactile group (TC) received vibratory plantar tactile stimulation only, whereas the virtual reality and tactile group (VRT) received an additional concurrent visual stimulation: a moving virtual corridor, inducing perceived self-motion. A post-treadmill overground trial was performed to determine adaptation transfer. Interlimb coordination of spatiotemporal and kinetic variables was quantified using symmetry indices, and analyzed using repeated-measures ANOVA. Marked changes of step length characteristics were observed in both groups during split-belt adaptation. Stance and swing time symmetry were similar in the two groups, suggesting that temporal parameters are not modified by optic flow. However, whereas the TC group displayed significant stance time asymmetries during the post-treadmill session, such aftereffects were absent in the VRT group. The results indicated that the enhanced transfer resulting from exposure to plantar cutaneous vibration during adaptation was alleviated by optic flow information. The presence of visual self-motion information may have reduced proprioceptive gain during learning. Thus, during overground walking, the learned proprioceptive split-belt pattern is more rapidly overridden by visual input due to its increased relative gain. The results suggest that when visual stimulation is provided during adaptive training, the system acquires the novel movement dynamics while maintaining the ability to flexibly adapt to different environments. PMID:26525712

  4. AO Images of Asteroids, Inverting their Lightcurves, and SSA

    DTIC Science & Technology

    2008-09-01

    telescopes, we have recently obtained images of Main- Belt asteroids with adaptive optics (AO) on the Keck-II 10 meter telescope, the world’s largest...telescopes, we have recently obtained images of Main- Belt asteroids with adaptive optics (AO) on the Keck-II 10 meter telescope, the world’s largest...AO Images of Asteroids , Inverting their Lightcurves, and SSA Jack Drummond a and Julian Christoub,c aStarfire Optical Range, Directed Energy

  5. Adaptive optical microscope for brain imaging in vivo

    NASA Astrophysics Data System (ADS)

    Wang, Kai

    2017-04-01

    The optical heterogeneity of biological tissue imposes a major limitation to acquire detailed structural and functional information deep in the biological specimens using conventional microscopes. To restore optimal imaging performance, we developed an adaptive optical microscope based on direct wavefront sensing technique. This microscope can reliably measure and correct biological samples induced aberration. We demonstrated its performance and application in structural and functional brain imaging in various animal models, including fruit fly, zebrafish and mouse.

  6. Bioinspired adaptive gradient refractive index distribution lens

    NASA Astrophysics Data System (ADS)

    Yin, Kezhen; Lai, Chuan-Yar; Wang, Jia; Ji, Shanzuo; Aldridge, James; Feng, Jingxing; Olah, Andrew; Baer, Eric; Ponting, Michael

    2018-02-01

    Inspired by the soft, deformable human eye lens, a synthetic polymer gradient refractive index distribution (GRIN) lens with an adaptive geometry and focal power has been demonstrated via multilayer coextrusion and thermoforming of nanolayered elastomeric polymer films. A set of 30 polymer nanolayered films comprised of two thermoplastic polyurethanes having a refractive index difference of 0.05 were coextruded via forced-assembly technique. The set of 30 nanolayered polymer films exhibited transmission near 90% with each film varying in refractive index by 0.0017. An adaptive GRIN lens was fabricated from a laminated stack of the variable refractive index films with a 0.05 spherical GRIN. This lens was subsequently deformed by mechanical ring compression of the lens. Variation in the optical properties of the deformable GRIN lens was determined, including 20% variation in focal length and reduced spherical aberration. These properties were measured and compared to simulated results by placido-cone topography and ANSYS methods. The demonstration of a solid-state, dynamic focal length, GRIN lens with improved aberration correction was discussed relative to the potential future use in implantable devices.

  7. Active Correction of Aberrations of Low-Quality Telescope Optics

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Chen, Yijian

    2007-01-01

    A system of active optics that includes a wavefront sensor and a deformable mirror has been demonstrated to be an effective means of partly correcting wavefront aberrations introduced by fixed optics (lenses and mirrors) in telescopes. It is envisioned that after further development, active optics would be used to reduce wavefront aberrations of about one wave or less in telescopes having aperture diameters of the order of meters or tens of meters. Although this remaining amount of aberration would be considered excessive in scientific applications in which diffraction-limited performance is required, it would be acceptable for free-space optical- communication applications at wavelengths of the order of 1 m. To prevent misunderstanding, it is important to state the following: The technological discipline of active optics, in which the primary or secondary mirror of a telescope is directly and dynamically tilted, distorted, and/or otherwise varied to reduce wavefront aberrations, has existed for decades. The term active optics does not necessarily mean the same thing as does adaptive optics, even though active optics and adaptive optics are related. The term "adaptive optics" is often used to refer to wavefront correction at speeds characterized by frequencies ranging up to between hundreds of hertz and several kilohertz high enough to enable mitigation of adverse effects of fluctuations in atmospheric refraction upon propagation of light beams. The term active optics usually appears in reference to wavefront correction at significantly lower speeds, characterized by times ranging from about 1 second to as long as minutes. Hence, the novelty of the present development lies, not in the basic concept of active or adaptive optics, but in the envisioned application of active optics in conjunction with a deformable mirror to achieve acceptably small wavefront errors in free-space optical communication systems that include multi-meter-diameter telescope mirrors that are relatively inexpensive because their surface figures are characterized by errors as large as about 10 waves. Figure 1 schematically depicts the apparatus used in an experiment to demonstrate such an application on a reduced scale involving a 30-cm-diameter aperture.

  8. Adaptive wiener image restoration kernel

    DOEpatents

    Yuan, Ding [Henderson, NV

    2007-06-05

    A method and device for restoration of electro-optical image data using an adaptive Wiener filter begins with constructing imaging system Optical Transfer Function, and the Fourier Transformations of the noise and the image. A spatial representation of the imaged object is restored by spatial convolution of the image using a Wiener restoration kernel.

  9. Gradient Index Optics at DARPA

    DTIC Science & Technology

    2013-11-01

    four efforts were selected for further development and demonstration: fluidic adaptive zoom lenses, foveated imaging, photon sieves, and nanolayer...2-4 1. Fluidic Adaptive Zoom Lenses... gastropod mollusks. In simple optical systems such as the fish lens, the focal length is a function of the wavelength of light. This distortion is called

  10. Phase Adaptation and Correction by Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Tiziani, Hans J.

    2010-04-01

    Adaptive optical elements and systems for imaging or laser beam propagation are used for some time in particular in astronomy, where the image quality is degraded by atmospheric turbulence. In astronomical telescopes a deformable mirror is frequently used to compensate wavefront-errors due to deformations of the large mirror, vibrations as well as turbulence and hence to increase the image quality. In the last few years interesting elements like Spatial Light Modulators, SLM's, such as photorefractive crystals, liquid crystals and micro mirrors and membrane mirrors were introduced. The development of liquid crystals and micro mirrors was driven by data projectors as consumer products. They contain typically a matrix of individually addressable pixels of liquid crystals and flip mirrors respectively or more recently piston mirrors for special applications. Pixel sizes are in the order of a few microns and therefore also appropriate as active diffractive elements in digital holography or miniature masks. Although liquid crystals are mainly optimized for intensity modulation; they can be used for phase modulation. Adaptive optics is a technology for beam shaping and wavefront adaptation. The application of spatial light modulators for wavefront adaptation and correction and defect analysis as well as sensing will be discussed. Dynamic digital holograms are generated with liquid crystal devices (LCD) and used for wavefront correction as well as for beam shaping and phase manipulation, for instance. Furthermore, adaptive optics is very useful to extend the measuring range of wavefront sensors and for the wavefront adaptation in order to measure and compare the shape of high precision aspherical surfaces.

  11. Dynamic metrology and data processing for precision freeform optics fabrication and testing

    NASA Astrophysics Data System (ADS)

    Aftab, Maham; Trumper, Isaac; Huang, Lei; Choi, Heejoo; Zhao, Wenchuan; Graves, Logan; Oh, Chang Jin; Kim, Dae Wook

    2017-06-01

    Dynamic metrology holds the key to overcoming several challenging limitations of conventional optical metrology, especially with regards to precision freeform optical elements. We present two dynamic metrology systems: 1) adaptive interferometric null testing; and 2) instantaneous phase shifting deflectometry, along with an overview of a gradient data processing and surface reconstruction technique. The adaptive null testing method, utilizing a deformable mirror, adopts a stochastic parallel gradient descent search algorithm in order to dynamically create a null testing condition for unknown freeform optics. The single-shot deflectometry system implemented on an iPhone uses a multiplexed display pattern to enable dynamic measurements of time-varying optical components or optics in vibration. Experimental data, measurement accuracy / precision, and data processing algorithms are discussed.

  12. Layer-oriented simulation tool.

    PubMed

    Arcidiacono, Carmelo; Diolaiti, Emiliano; Tordi, Massimiliano; Ragazzoni, Roberto; Farinato, Jacopo; Vernet, Elise; Marchetti, Enrico

    2004-08-01

    The Layer-Oriented Simulation Tool (LOST) is a numerical simulation code developed for analysis of the performance of multiconjugate adaptive optics modules following a layer-oriented approach. The LOST code computes the atmospheric layers in terms of phase screens and then propagates the phase delays introduced in the natural guide stars' wave fronts by using geometrical optics approximations. These wave fronts are combined in an optical or numerical way, including the effects of wave-front sensors on measurements in terms of phase noise. The LOST code is described, and two applications to layer-oriented modules are briefly presented. We have focus on the Multiconjugate adaptive optics demonstrator to be mounted upon the Very Large Telescope and on the Near-IR-Visible Adaptive Interferometer for Astronomy (NIRVANA) interferometric system to be installed on the combined focus of the Large Binocular Telescope.

  13. Surface tension determination using liquid sample micromirror property

    NASA Astrophysics Data System (ADS)

    Hošek, Jan

    2007-05-01

    This paper presents an application of adaptive optics principle onto small sample of liquid surface tension measurement. The principle of experimental method devised by Ferguson (1924) is based on measurement of pressure difference across a liquid sample placed into small diameter capillary on condition of one flat meniscus of the liquid sample. Planarity or curvature radius of the capillary tip meniscus has to be measured and controlled, in order to fulfill this condition during measurement. Two different optical set-ups using liquid meniscus micromirror property are presented and its suitability for meniscus profile determination is compared. Meniscus radius optical measurement, data processing and control algorithm of the adaptive micromirror profile set are presented too. The presented adaptive optics system can be used for focal length control of microsystems based on liquid micromirrors or microlenses with long focal distances especially.

  14. Aberration control in 4Pi nanoscopy: definitions, properties, and applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hao, Xiang; Allgeyer, Edward S.; Velasco, Mary Grace M.; Booth, Martin J.; Bewersdorf, Joerg

    2016-03-01

    The development of fluorescence microscopy, which allows live-cell imaging with high labeling specificity, has made the visualization of cellular architecture routine. However, for centuries, the spatial resolution of optical microscopy was fundamentally limited by diffraction. The past two decades have seen a revolution in far-field optical nanoscopy (or "super-resolution" microscopy). The best 3D resolution is achieved by optical nanoscopes like the isoSTED or the iPALM/4Pi-SMS, which utilize two opposing objective lenses in a coherent manner. These system are, however, also more complex and the required interference conditions demand precise aberration control. Our research involves developing novel adaptive optics techniques that enable high spatial and temporal resolution imaging for biological applications. In this talk, we will discuss how adaptive optics can enhance dual-objective lens nanoscopes. We will demonstrate how adaptive optics devices provide unprecedented freedom to manipulate the light field in isoSTED nanoscopy, allow to realize automatic beam alignment, suppress the inherent side-lobes of the point-spread function, and dynamically compensate for sample-induced aberrations. We will present both the theoretical groundwork and the experimental confirmations.

  15. Simulating the performance of adaptive optics techniques on FSO communications through the atmosphere

    NASA Astrophysics Data System (ADS)

    Martínez, Noelia; Rodríguez Ramos, Luis Fernando; Sodnik, Zoran

    2017-08-01

    The Optical Ground Station (OGS), installed in the Teide Observatory since 1995, was built as part of ESA efforts in the research field of satellite optical communications to test laser telecommunication terminals on board of satellites in Low Earth Orbit and Geostationary Orbit. As far as one side of the link is settled on the Earth, the laser beam (either on the uplink or on the downlink) has to bear with the atmospheric turbulence. Within the framework of designing an Adaptive Optics system to improve the performance of the Free-Space Optical Communications at the OGS, turbulence conditions regarding uplink and downlink have been simulated within the OOMAO (Object-Oriented Matlab Adaptive Optics) Toolbox as well as the possible utilization of a Laser Guide Star to measure the wavefront in this context. Simulations have been carried out by reducing available atmospheric profiles regarding both night-time and day-time measurements and by having into account possible seasonal changes. An AO proposal to reduce atmospheric aberrations and, therefore, ameliorate FSO links performance is presented and analysed in this paper

  16. Applications of Adaptive Optics Scanning Laser Ophthalmoscopy

    PubMed Central

    Roorda, Austin

    2010-01-01

    Adaptive optics (AO) describes a set of tools to correct or control aberrations in any optical system. In the eye, AO allows for precise control of the ocular aberrations. If used to correct aberrations over a large pupil, for example, cellular level resolution in retinal images can be achieved. AO systems have been demonstrated for advanced ophthalmoscopy as well as for testing and/or improving vision. In fact, AO can be integrated to any ophthalmic instrument where the optics of the eye is involved, with a scope of applications ranging from phoropters to optical coherence tomography systems. In this paper, I discuss the applications and advantages of using AO in a specific system, the adaptive optics scanning laser ophthalmoscope, or AOSLO. Since the Borish award was, in part, awarded to me because of this effort, I felt it appropriate to select this as the topic for this paper. Furthermore, users of AOSLO continue to appreciate the benefits of the technology, some of which were not anticipated at the time of development, and so it is time to revisit this topic and summarize them in a single paper. PMID:20160657

  17. The Direct Imaging Search of Exoplanets from Ground and Space

    NASA Astrophysics Data System (ADS)

    Dou, Jiangpei; Ren, Deqing; Zhu, Yongtian

    2015-08-01

    Exoplanets search is one of the hottest topics in both modern astronomy and public domain. Until now over 1990 exoplanets have been confirmed mostly by the indirect radial velocity and transiting approaches, yielding several important physical information such as masses and radius. The study of the physics of planet formation and evolution will focus on giant planets through the direct imaging.However, the direct imaging of exoplanets remains challenging, due to the large flux ratio difference and the nearby angular distance. In recent years, the extreme adaptive optics (Ex-AO) coronagraphic instrumentation has been proposed and developed on 8-meter class telescopes, which is optimized for the high-contrast imaging observation from ground, for the giant exoplanets and other faint stellar companions. Gemini Planet Imager (GPI) has recently come to its first light, with a development period over 10 years. The contrast level has been pushed to 10-6. Due to the space limitation or this or other reasons, none professional adaptive optics is available for most of current 3~4 meter class telescopes, which will limit its observation power to some extent, especially in the research of high-contrast imaging of exoplanets.In this presentation, we will report the latest observation results by using our Extreme Adaptive Optics (Ex-AO) as a visiting instrument for high-contrast imaging on ESO’s 3.58-meter NTT telescope at LSO, and on 3.5-meter ARC telescope at Apache Point Observatory, respectively. It has demonstrated the Ex-AO can be used for the scientific research of exoplanets and brown dwarfs. With a update of the currect configuration with critical hardware, the dedicated instrument called as EDICT for imaging research of young giant exoplanets will be presented. Meanwhile, we have fully demonstrated in the lab a contrast on the order of 10-9 in a large detection area, which is a critical technique for future Earth-like exoplanets imaging space missions. And a space program of JEEEDIS will also be presented in this talk.

  18. Photorefractive Integrators and Correlators

    DTIC Science & Technology

    1992-12-01

    The use of photorefractive crystals as optically addressed time integrating spatial light modulators in acousto - optic signal processing applications...adaptive acousto - optic processor. These results demonstrated the feasibility of using photorefractives for such applications.... Photorefractive, Acousto - optic processor.

  19. Software-centric View on OVMS for LBT

    NASA Astrophysics Data System (ADS)

    Trowitzsch, J.; Borelli, J.; Pott, J.; Kürster, M.

    2012-09-01

    The performance of infrared interferometry (IF) and adaptive optics (AO) strongly depends on the mitigation and correction of telescope vibrations. Therefore, at the Large Binocular Telescope (LBT) the OVMS, the Optical Path Difference and Vibration Monitoring System, is being installed. It is meant to ensure suitable conditions for adaptive optics and interferometry. The vibration information is collected from accelerometers that are distributed over the optical elements of the LBT. The collected vibration measurements are converted into tip-tilt and optical path difference data. That data is utilized in the control strategies of the LBT adaptive secondary mirrors and the beam combining interferometers, LINC-NIRVANA and LBTI. Within the OVMS the software part is responsibility of the LINC-NIRVANA team at MPIA Heidelberg. It comprises the software for the real-time data acquisition from the accelerometers as well as the related telemetry interface and the vibration monitoring quick look tools. The basic design ideas, implementation details and special features are explained here.

  20. Adaptive restoration of a partially coherent blurred image using an all-optical feedback interferometer with a liquid-crystal device.

    PubMed

    Shirai, Tomohiro; Barnes, Thomas H

    2002-02-01

    A liquid-crystal adaptive optics system using all-optical feedback interferometry is applied to partially coherent imaging through a phase disturbance. A theoretical analysis based on the propagation of the cross-spectral density shows that the blurred image due to the phase disturbance can be restored, in principle, irrespective of the state of coherence of the light illuminating the object. Experimental verification of the theory has been performed for two cases when the object to be imaged is illuminated by spatially coherent light originating from a He-Ne laser and by spatially incoherent white light from a halogen lamp. We observed in both cases that images blurred by the phase disturbance were successfully restored, in agreement with the theory, immediately after the adaptive optics system was activated. The origin of the deviation of the experimental results from the theory, together with the effect of the feedback misalignment inherent in our optical arrangement, is also discussed.

  1. The Etiology of Presbyopia, Contributing Factors, and Future Correction Methods

    NASA Astrophysics Data System (ADS)

    Hickenbotham, Adam Lyle

    Presbyopia has been a complicated problem for clinicians and researchers for centuries. Defining what constitutes presbyopia and what are its primary causes has long been a struggle for the vision and scientific community. Although presbyopia is a normal aging process of the eye, the continuous and gradual loss of accommodation is often dreaded and feared. If presbyopia were to be considered a disease, its global burden would be enormous as it affects more than a billion people worldwide. In this dissertation, I explore factors associated with presbyopia and develop a model for explaining the onset of presbyopia. In this model, the onset of presbyopia is associated primarily with three factors; depth of focus, focusing ability (accommodation), and habitual reading (or task) distance. If any of these three factors could be altered sufficiently, the onset of presbyopia could be delayed or prevented. Based on this model, I then examine possible optical methods that would be effective in correcting for presbyopia by expanding depth of focus. Two methods that have been show to be effective at expanding depth of focus include utilizing a small pupil aperture or generating higher order aberrations, particularly spherical aberration. I compare these two optical methods through the use of simulated designs, monitor testing, and visual performance metrics and then apply them in subjects through an adaptive optics system that corrects aberrations through a wavefront aberrometer and deformable mirror. I then summarize my findings and speculate about the future of presbyopia correction.

  2. Phase and amplitude beam shaping with two deformable mirrors implementing input plane and Fourier plane phase modifications.

    PubMed

    Wu, Chensheng; Ko, Jonathan; Rzasa, John R; Paulson, Daniel A; Davis, Christopher C

    2018-03-20

    We find that ideas in optical image encryption can be very useful for adaptive optics in achieving simultaneous phase and amplitude shaping of a laser beam. An adaptive optics system with simultaneous phase and amplitude shaping ability is very desirable for atmospheric turbulence compensation. Atmospheric turbulence-induced beam distortions can jeopardize the effectiveness of optical power delivery for directed-energy systems and optical information delivery for free-space optical communication systems. In this paper, a prototype adaptive optics system is proposed based on a famous image encryption structure. The major change is to replace the two random phase plates at the input plane and Fourier plane of the encryption system, respectively, with two deformable mirrors that perform on-demand phase modulations. A Gaussian beam is used as an input to replace the conventional image input. We show through theory, simulation, and experiments that the slightly modified image encryption system can be used to achieve arbitrary phase and amplitude beam shaping within the limits of stroke range and influence function of the deformable mirrors. In application, the proposed technique can be used to perform mode conversion between optical beams, generate structured light signals for imaging and scanning, and compensate atmospheric turbulence-induced phase and amplitude beam distortions.

  3. Photorefractive-based adaptive optical windows

    NASA Astrophysics Data System (ADS)

    Liu, Yuexin; Yang, Yi; Wang, Bo; Fu, John Y.; Yin, Shizhuo; Guo, Ruyan; Yu, Francis T.

    2004-10-01

    Optical windows have been widely used in optical spectrographic processing system. In this paper, various window profiles, such as rectangular, triangular, Hamming, Hanning, and Blackman etc., have been investigated in detail, regarding their effect on the generated spectrograms, such as joint time-frequency resolution ΔtΔw, the sidelobe amplitude attenuation etc.. All of these windows can be synthesized in a photorefractive crystal by angular multiplexing holographic technique, which renders the system more adaptive. Experimental results are provided.

  4. An adaptive spatio-temporal Gaussian filter for processing cardiac optical mapping data.

    PubMed

    Pollnow, S; Pilia, N; Schwaderlapp, G; Loewe, A; Dössel, O; Lenis, G

    2018-06-04

    Optical mapping is widely used as a tool to investigate cardiac electrophysiology in ex vivo preparations. Digital filtering of fluorescence-optical data is an important requirement for robust subsequent data analysis and still a challenge when processing data acquired from thin mammalian myocardium. Therefore, we propose and investigate the use of an adaptive spatio-temporal Gaussian filter for processing optical mapping signals from these kinds of tissue usually having low signal-to-noise ratio (SNR). We demonstrate how filtering parameters can be chosen automatically without additional user input. For systematic comparison of this filter with standard filtering methods from the literature, we generated synthetic signals representing optical recordings from atrial myocardium of a rat heart with varying SNR. Furthermore, all filter methods were applied to experimental data from an ex vivo setup. Our developed filter outperformed the other filter methods regarding local activation time detection at SNRs smaller than 3 dB which are typical noise ratios expected in these signals. At higher SNRs, the proposed filter performed slightly worse than the methods from literature. In conclusion, the proposed adaptive spatio-temporal Gaussian filter is an appropriate tool for investigating fluorescence-optical data with low SNR. The spatio-temporal filter parameters were automatically adapted in contrast to the other investigated filters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. NAOMI: a low-order adaptive optics system for the VLT interferometer

    NASA Astrophysics Data System (ADS)

    Gonté, Frédéric Yves J.; Alonso, Jaime; Aller-Carpentier, Emmanuel; Andolfato, Luigi; Berger, Jean-Philippe; Cortes, Angela; Delplancke-Strobele, Françoise; Donaldson, Rob; Dorn, Reinhold J.; Dupuy, Christophe; Egner, Sebastian E.; Huber, Stefan; Hubin, Norbert; Kirchbauer, Jean-Paul; Le Louarn, Miska; Lilley, Paul; Jolley, Paul; Martis, Alessandro; Paufique, Jérôme; Pasquini, Luca; Quentin, Jutta; Ridings, Robert; Reyes, Javier; Shchkaturov, Pavel; Suarez, Marcos; Phan Duc, Thanh; Valdes, Guillermo; Woillez, Julien; Le Bouquin, Jean-Baptiste; Beuzit, Jean-Luc; Rochat, Sylvain; Vérinaud, Christophe; Moulin, Thibaut; Delboulbé, Alain; Michaud, Laurence; Correia, Jean-Jacques; Roux, Alain; Maurel, Didier; Stadler, Eric; Magnard, Yves

    2016-08-01

    The New Adaptive Optics Module for Interferometry (NAOMI) will be developed for and installed at the 1.8-metre Auxiliary Telescopes (ATs) at ESO Paranal. The goal of the project is to equip all four ATs with a low-order Shack- Hartmann adaptive optics system operating in the visible. By improving the wavefront quality delivered by the ATs for guide stars brighter than R = 13 mag, NAOMI will make the existing interferometer performance less dependent on the seeing conditions. Fed with higher and more stable Strehl, the fringe tracker(s) will achieve the fringe stability necessary to reach the full performance of the second-generation instruments GRAVITY and MATISSE.

  6. Contrast-based sensorless adaptive optics for retinal imaging.

    PubMed

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T O; He, Zheng; Metha, Andrew

    2015-09-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes.

  7. Multichannel-Hadamard calibration of high-order adaptive optics systems.

    PubMed

    Guo, Youming; Rao, Changhui; Bao, Hua; Zhang, Ang; Zhang, Xuejun; Wei, Kai

    2014-06-02

    we present a novel technique of calibrating the interaction matrix for high-order adaptive optics systems, called the multichannel-Hadamard method. In this method, the deformable mirror actuators are firstly divided into a series of channels according to their coupling relationship, and then the voltage-oriented Hadamard method is applied to these channels. Taking the 595-element adaptive optics system as an example, the procedure is described in detail. The optimal channel dividing is discussed and tested by numerical simulation. The proposed method is also compared with the voltage-oriented Hadamard only method and the multichannel only method by experiments. Results show that the multichannel-Hadamard method can produce significant improvement on interaction matrix measurement.

  8. Neptune and Titan Observed with Keck Telescope Adaptive Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Max, C.E.; Macintosh, B.A.; Gibbard, S.

    2000-05-05

    The authors report on observations taken during engineering science validation time using the new adaptive optics system at the 10-m Keck II Telescope. They observe Neptune and Titan at near-infrared wavelengths. These objects are ideal for adaptive optics imaging because they are bright and small, yet have many diffraction-limited resolution elements across their disks. In addition Neptune and Titan have prominent physical features, some of which change markedly with time. They have observed infrared-bright storms on Neptune, and very low-albedo surface regions on Titan, Saturn's largest moon, Spatial resolution on Neptune and Titan was 0.05-0.06 and 0.04-0.05 arc sec, respectively.

  9. Bit-error rate for free-space adaptive optics laser communications.

    PubMed

    Tyson, Robert K

    2002-04-01

    An analysis of adaptive optics compensation for atmospheric-turbulence-induced scintillation is presented with the figure of merit being the laser communications bit-error rate. The formulation covers weak, moderate, and strong turbulence; on-off keying; and amplitude-shift keying, over horizontal propagation paths or on a ground-to-space uplink or downlink. The theory shows that under some circumstances the bit-error rate can be improved by a few orders of magnitude with the addition of adaptive optics to compensate for the scintillation. Low-order compensation (less than 40 Zernike modes) appears to be feasible as well as beneficial for reducing the bit-error rate and increasing the throughput of the communication link.

  10. Adaptive optical system for writing large holographic optical elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyutchev, M.V.; Kalyashov, E.V.; Pavlov, A.P.

    1994-11-01

    This paper formulates the requirements imposed on systems for correcting the phase-difference distribution of recording waves over the field of a large-diameter photographic plate ({le}1.5 m) when writing holographic optical elements (HOEs). A technique is proposed for writing large HOEs, based on the use of an adaptive phase-correction optical system of the first type, controlled by the self-diffraction signal from a latent image. The technique is implemented by writing HOEs on photographic plates with an effective diameter of 0.7 m on As{sub 2}S{sub 3} layers. 13 refs., 4 figs.

  11. Modeling of Adaptive Optics-Based Free-Space Communications Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilks, S C; Morris, J R; Brase, J M

    2002-08-06

    We introduce a wave-optics based simulation code written for air-optic laser communications links, that includes a detailed model of an adaptive optics compensation system. We present the results obtained by this model, where the phase of a communications laser beam is corrected, after it propagates through a turbulent atmosphere. The phase of the received laser beam is measured using a Shack-Hartmann wavefront sensor, and the correction method utilizes a MEMS mirror. Strehl improvement and amount of power coupled to the receiving fiber for both 1 km horizontal and 28 km slant paths are presented.

  12. Super-Gaussian laser intensity output formation by means of adaptive optics

    NASA Astrophysics Data System (ADS)

    Cherezova, T. Y.; Chesnokov, S. S.; Kaptsov, L. N.; Kudryashov, A. V.

    1998-10-01

    An optical resonator using an intracavity adaptive mirror with three concentric rings of controlling electrodes, which produc low loss and large beamwidth super-Gaussian output of order 4, 6, 8, is analyzed. An inverse propagation method is used to determine the appropriate shape of the adaptive mirror. The mirror reproduces the shape with minimal RMS error by combining weights of experimentally measured response functions of the mirror sample. The voltages applied to each mirror electrode are calculated. Practical design parameters such as construction of an adaptive mirror, Fresnel numbers, and geometric factor are discussed.

  13. Optical turbulence profiling with Stereo-SCIDAR for VLT and ELT

    NASA Astrophysics Data System (ADS)

    Osborn, J.; Wilson, R. W.; Sarazin, M.; Butterley, T.; Chacón, A.; Derie, F.; Farley, O. J. D.; Haubois, X.; Laidlaw, D.; LeLouarn, M.; Masciadri, E.; Milli, J.; Navarrete, J.; Townson, M. J.

    2018-07-01

    Knowledge of the Earth's atmospheric optical turbulence is critical for astronomical instrumentation. Not only does it enable performance verification and optimization of the existing systems, but it is required for the design of future instruments. As a minimum this includes integrated astro-atmospheric parameters such as seeing, coherence time, and isoplanatic angle, but for more sophisticated systems such as wide-field adaptive optics enabled instrumentation the vertical structure of the turbulence is also required. Stereo-SCIDAR (Scintillation Detection and Ranging) is a technique specifically designed to characterize the Earth's atmospheric turbulence with high-altitude resolution and high sensitivity. Together with ESO (European Southern Observatory), Durham University has commissioned a Stereo-SCIDAR instrument at Cerro Paranal, Chile, the site of the Very Large Telescope (VLT), and only 20 km from the site of the future Extremely Large Telescope (ELT). Here we provide results from the first 18 months of operation at ESO Paranal including instrument comparisons and atmospheric statistics. Based on a sample of 83 nights spread over 22 months covering all seasons, we find the median seeing to be 0.64″ with 50 per cent of the turbulence confined to an altitude below 2 km and 40 per cent below 600 m. The median coherence time and isoplanatic angle are found as 4.18 ms and 1.75″, respectively. A substantial campaign of inter-instrument comparison was also undertaken to assure the validity of the data. The Stereo-SCIDAR profiles (optical turbulence strength and velocity as a function of altitude) have been compared with the Surface-Layer Slope Detection And Ranging, Multi-Aperture Scintillation Sensor-Differential Image Motion Monitor, and the European Centre for Medium Range Weather Forecasts model. The correlation coefficients are between 0.61 (isoplanatic angle) and 0.84 (seeing).

  14. Optical Power Transfer System for Powering a Remote Mobility System for Multiple Missions

    NASA Technical Reports Server (NTRS)

    Hogan, Bartholomew P. (Inventor); Stone, William C. (Inventor)

    2016-01-01

    An optical power transfer system for powering a remote mobility system for multiple missions comprising a high power source and a chilling station connected to a laser source. The laser source transmits a high optical energy to a beam switch assembly via an optical fiber. The beam switch assembly is optically connected to actively cooled fiber spoolers. Docking stations are adapted for securing the fiber spoolers until alternatively ready for use by a remote mobility system. The remote mobility system is optically connected to the fiber spoolers and has a receiving port adapted for securing the fiber spoolers thereon. The fiber spooler transmits the optical energy to a power conversion system which converts the optical energy received to another usable form of energy. More than one power source may be used where the remote mobility system transfers from one source to another while maintaining an operational radius to each source.

  15. Analysis technique for controlling system wavefront error with active/adaptive optics

    NASA Astrophysics Data System (ADS)

    Genberg, Victor L.; Michels, Gregory J.

    2017-08-01

    The ultimate goal of an active mirror system is to control system level wavefront error (WFE). In the past, the use of this technique was limited by the difficulty of obtaining a linear optics model. In this paper, an automated method for controlling system level WFE using a linear optics model is presented. An error estimate is included in the analysis output for both surface error disturbance fitting and actuator influence function fitting. To control adaptive optics, the technique has been extended to write system WFE in state space matrix form. The technique is demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.

  16. Phased Array Mirror Extendible Large Aperture (PAMELA) Optics Adjustment

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Scientists at Marshall's Adaptive Optics Lab demonstrate the Wave Front Sensor alignment using the Phased Array Mirror Extendible Large Aperture (PAMELA) optics adjustment. The primary objective of the PAMELA project is to develop methods for aligning and controlling adaptive optics segmented mirror systems. These systems can be used to acquire or project light energy. The Next Generation Space Telescope is an example of an energy acquisition system that will employ segmented mirrors. Light projection systems can also be used for power beaming and orbital debris removal. All segmented optical systems must be adjusted to provide maximum performance. PAMELA is an on going project that NASA is utilizing to investigate various methods for maximizing system performance.

  17. Intelligent Optical Systems Using Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2012-01-01

    Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications including guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. The active components presented here allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.

  18. Adaptive optics using a MEMS deformable mirror for a segmented mirror telescope

    NASA Astrophysics Data System (ADS)

    Miyamura, Norihide

    2017-09-01

    For small satellite remote sensing missions, a large aperture telescope more than 400mm is required to realize less than 1m GSD observations. However, it is difficult or expensive to realize the large aperture telescope using a monolithic primary mirror with high surface accuracy. A segmented mirror telescope should be studied especially for small satellite missions. Generally, not only high accuracy of optical surface but also high accuracy of optical alignment is required for large aperture telescopes. For segmented mirror telescopes, the alignment is more difficult and more important. For conventional systems, the optical alignment is adjusted before launch to achieve desired imaging performance. However, it is difficult to adjust the alignment for large sized optics in high accuracy. Furthermore, thermal environment in orbit and vibration in a launch vehicle cause the misalignments of the optics. We are developing an adaptive optics system using a MEMS deformable mirror for an earth observing remote sensing sensor. An image based adaptive optics system compensates the misalignments and wavefront aberrations of optical elements using the deformable mirror by feedback of observed images. We propose the control algorithm of the deformable mirror for a segmented mirror telescope by using of observed image. The numerical simulation results and experimental results show that misalignment and wavefront aberration of the segmented mirror telescope are corrected and image quality is improved.

  19. Performance of the Gemini Planet Imager’s adaptive optics system

    DOE PAGES

    Poyneer, Lisa A.; Palmer, David W.; Macintosh, Bruce; ...

    2016-01-07

    The Gemini Planet Imager’s adaptive optics (AO) subsystem was designed specifically to facilitate high-contrast imaging. We give a definitive description of the system’s algorithms and technologies as built. Ultimately, the error budget indicates that for all targets and atmospheric conditions AO bandwidth error is the largest term.

  20. Center for Adaptive Optics | News

    Science.gov Websites

    * Methane Clouds Observed Near Titan's Equator May Explain Presence of Riverbeds on the Surface * 'Dark Center for Adaptive Optics A University of California Science and Technology Center home AO of Cosmic Time * Celebration of Science and Technology Centers Class of 2000 AO Headlines 2009

  1. Real-time blind deconvolution of retinal images in adaptive optics scanning laser ophthalmoscopy

    NASA Astrophysics Data System (ADS)

    Li, Hao; Lu, Jing; Shi, Guohua; Zhang, Yudong

    2011-06-01

    With the use of adaptive optics (AO), the ocular aberrations can be compensated to get high-resolution image of living human retina. However, the wavefront correction is not perfect due to the wavefront measure error and hardware restrictions. Thus, it is necessary to use a deconvolution algorithm to recover the retinal images. In this paper, a blind deconvolution technique called Incremental Wiener filter is used to restore the adaptive optics confocal scanning laser ophthalmoscope (AOSLO) images. The point-spread function (PSF) measured by wavefront sensor is only used as an initial value of our algorithm. We also realize the Incremental Wiener filter on graphics processing unit (GPU) in real-time. When the image size is 512 × 480 pixels, six iterations of our algorithm only spend about 10 ms. Retinal blood vessels as well as cells in retinal images are restored by our algorithm, and the PSFs are also revised. Retinal images with and without adaptive optics are both restored. The results show that Incremental Wiener filter reduces the noises and improve the image quality.

  2. High temporal resolution aberrometry in a 50-eye population and implications for adaptive optics error budget.

    PubMed

    Jarosz, Jessica; Mecê, Pedro; Conan, Jean-Marc; Petit, Cyril; Paques, Michel; Meimon, Serge

    2017-04-01

    We formed a database gathering the wavefront aberrations of 50 healthy eyes measured with an original custom-built Shack-Hartmann aberrometer at a temporal frequency of 236 Hz, with 22 lenslets across a 7-mm diameter pupil, for a duration of 20 s. With this database, we draw statistics on the spatial and temporal behavior of the dynamic aberrations of the eye. Dynamic aberrations were studied on a 5-mm diameter pupil and on a 3.4 s sequence between blinks. We noted that, on average, temporal wavefront variance exhibits a n -2 power-law with radial order n and temporal spectra follow a f -1.5 power-law with temporal frequency f . From these statistics, we then extract guidelines for designing an adaptive optics system. For instance, we show the residual wavefront error evolution as a function of the number of corrected modes and of the adaptive optics loop frame rate. In particular, we infer that adaptive optics performance rapidly increases with the loop frequency up to 50 Hz, with gain being more limited at higher rates.

  3. High temporal resolution aberrometry in a 50-eye population and implications for adaptive optics error budget

    PubMed Central

    Jarosz, Jessica; Mecê, Pedro; Conan, Jean-Marc; Petit, Cyril; Paques, Michel; Meimon, Serge

    2017-01-01

    We formed a database gathering the wavefront aberrations of 50 healthy eyes measured with an original custom-built Shack-Hartmann aberrometer at a temporal frequency of 236 Hz, with 22 lenslets across a 7-mm diameter pupil, for a duration of 20 s. With this database, we draw statistics on the spatial and temporal behavior of the dynamic aberrations of the eye. Dynamic aberrations were studied on a 5-mm diameter pupil and on a 3.4 s sequence between blinks. We noted that, on average, temporal wavefront variance exhibits a n−2 power-law with radial order n and temporal spectra follow a f−1.5 power-law with temporal frequency f. From these statistics, we then extract guidelines for designing an adaptive optics system. For instance, we show the residual wavefront error evolution as a function of the number of corrected modes and of the adaptive optics loop frame rate. In particular, we infer that adaptive optics performance rapidly increases with the loop frequency up to 50 Hz, with gain being more limited at higher rates. PMID:28736657

  4. Adaptive Optical System for Retina Imaging Approaches Clinic Applications

    NASA Astrophysics Data System (ADS)

    Ling, N.; Zhang, Y.; Rao, X.; Wang, C.; Hu, Y.; Jiang, W.; Jiang, C.

    We presented "A small adaptive optical system on table for human retinal imaging" at the 3rd Workshop on Adaptive Optics for Industry and Medicine. In this system, a 19 element small deformable mirror was used as wavefront correction element. High resolution images of photo receptors and capillaries of human retina were obtained. In recent two years, at the base of this system a new adaptive optical system for human retina imaging has been developed. The wavefront correction element is a newly developed 37 element deformable mirror. Some modifications have been adopted for easy operation. Experiments for different imaging wavelengths and axial positions were conducted. Mosaic pictures of photoreceptors and capillaries were obtained. 100 normal and abnormal eyes of different ages have been inspected.The first report in the world concerning the most detailed capillary distribution images cover ±3° by ± 3° field around the fovea has been demonstrated. Some preliminary very early diagnosis experiment has been tried in laboratory. This system is being planned to move to the hospital for clinic experiments.

  5. Acute Solar Retinopathy Imaged With Adaptive Optics, Optical Coherence Tomography Angiography, and En Face Optical Coherence Tomography.

    PubMed

    Wu, Chris Y; Jansen, Michael E; Andrade, Jorge; Chui, Toco Y P; Do, Anna T; Rosen, Richard B; Deobhakta, Avnish

    2018-01-01

    Solar retinopathy is a rare form of retinal injury that occurs after direct sungazing. To enhance understanding of the structural changes that occur in solar retinopathy by obtaining high-resolution in vivo en face images. Case report of a young adult woman who presented to the New York Eye and Ear Infirmary with symptoms of acute solar retinopathy after viewing the solar eclipse on August 21, 2017. Results of comprehensive ophthalmic examination and images obtained by fundus photography, microperimetry, spectral-domain optical coherence tomography (OCT), adaptive optics scanning light ophthalmoscopy, OCT angiography, and en face OCT. The patient was examined after viewing the solar eclipse. Visual acuity was 20/20 OD and 20/25 OS. The patient was left-eye dominant. Spectral-domain OCT images were consistent with mild and severe acute solar retinopathy in the right and left eye, respectively. Microperimetry was normal in the right eye but showed paracentral decreased retinal sensitivity in the left eye with a central absolute scotoma. Adaptive optics images of the right eye showed a small region of nonwaveguiding photoreceptors, while images of the left eye showed a large area of abnormal and nonwaveguiding photoreceptors. Optical coherence tomography angiography images were normal in both eyes. En face OCT images of the right eye showed a small circular hyperreflective area, with central hyporeflectivity in the outer retina of the right eye. The left eye showed a hyperreflective lesion that intensified in area from inner to middle retina and became mostly hyporeflective in the outer retina. The shape of the lesion on adaptive optics and en face OCT images of the left eye corresponded to the shape of the scotoma drawn by the patient on Amsler grid. Acute solar retinopathy can present with foveal cone photoreceptor mosaic disturbances on adaptive optics scanning light ophthalmoscopy imaging. Corresponding reflectivity changes can be seen on en face OCT, especially in the middle and outer retina. Young adults may be especially vulnerable and need to be better informed of the risks of viewing the sun with inadequate protective eyewear.

  6. In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy

    PubMed Central

    Tam, Johnny; Liu, Jianfei; Dubra, Alfredo; Fariss, Robert

    2016-01-01

    Purpose The purpose of this study was to establish that retinal pigment epithelial (RPE) cells take up indocyanine green (ICG) dye following systemic injection and that adaptive optics enhanced indocyanine green ophthalmoscopy (AO-ICG) enables direct visualization of the RPE mosaic in the living human eye. Methods A customized adaptive optics scanning light ophthalmoscope (AOSLO) was used to acquire high-resolution retinal fluorescence images of residual ICG dye in human subjects after intravenous injection at the standard clinical dose. Simultaneously, multimodal AOSLO images were also acquired, which included confocal reflectance, nonconfocal split detection, and darkfield. Imaging was performed in 6 eyes of three healthy subjects with no history of ocular or systemic diseases. In addition, histologic studies in mice were carried out. Results The AO-ICG channel successfully resolved individual RPE cells in human subjects at various time points, including 20 minutes and 2 hours after dye administration. Adaptive optics-ICG images of RPE revealed detail which could be correlated with AO dark-field images of the same cells. Interestingly, there was a marked heterogeneity in the fluorescence of individual RPE cells. Confirmatory histologic studies in mice corroborated the specific uptake of ICG by the RPE layer at a late time point after systemic ICG injection. Conclusions Adaptive optics-enhanced imaging of ICG dye provides a novel way to visualize and assess the RPE mosaic in the living human eye alongside images of the overlying photoreceptors and other cells. PMID:27564519

  7. In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy.

    PubMed

    Tam, Johnny; Liu, Jianfei; Dubra, Alfredo; Fariss, Robert

    2016-08-01

    The purpose of this study was to establish that retinal pigment epithelial (RPE) cells take up indocyanine green (ICG) dye following systemic injection and that adaptive optics enhanced indocyanine green ophthalmoscopy (AO-ICG) enables direct visualization of the RPE mosaic in the living human eye. A customized adaptive optics scanning light ophthalmoscope (AOSLO) was used to acquire high-resolution retinal fluorescence images of residual ICG dye in human subjects after intravenous injection at the standard clinical dose. Simultaneously, multimodal AOSLO images were also acquired, which included confocal reflectance, nonconfocal split detection, and darkfield. Imaging was performed in 6 eyes of three healthy subjects with no history of ocular or systemic diseases. In addition, histologic studies in mice were carried out. The AO-ICG channel successfully resolved individual RPE cells in human subjects at various time points, including 20 minutes and 2 hours after dye administration. Adaptive optics-ICG images of RPE revealed detail which could be correlated with AO dark-field images of the same cells. Interestingly, there was a marked heterogeneity in the fluorescence of individual RPE cells. Confirmatory histologic studies in mice corroborated the specific uptake of ICG by the RPE layer at a late time point after systemic ICG injection. Adaptive optics-enhanced imaging of ICG dye provides a novel way to visualize and assess the RPE mosaic in the living human eye alongside images of the overlying photoreceptors and other cells.

  8. High-speed optical feeder-link system using adaptive optics

    NASA Astrophysics Data System (ADS)

    Arimoto, Yoshinori; Hayano, Yutaka; Klaus, Werner

    1997-05-01

    We propose a satellite laser communication system between a ground station and a geostationary satellite, named high- speed optical feeder link system. It is based on the application of (a) high-speed optical devices, which have been developed for ground-based high-speed fiber-optic communications, and (b) the adaptive optics which compensates wavefront distortions due to atmospheric turbulences using a real time feedback control. A link budget study shows that a system with 10-Gbps bit-rate are available assuming the state-of-the-art device performance of the Er-doped fiber amplifier. We further discuss preliminary measurement results of the atmospheric turbulence at the telescope site in Tokyo, and present current study on the design of the key components for the feeder-link laser transceiver.

  9. Enhanced visual acuity and image perception following correction of highly aberrated eyes using an adaptive optics visual simulator.

    PubMed

    Rocha, Karolinne Maia; Vabre, Laurent; Chateau, Nicolas; Krueger, Ronald R

    2010-01-01

    To evaluate the changes in visual acuity and visual perception generated by correcting higher order aberrations in highly aberrated eyes using a large-stroke adaptive optics visual simulator. A crx1 Adaptive Optics Visual Simulator (Imagine Eyes) was used to correct and modify the wavefront aberrations in 12 keratoconic eyes and 8 symptomatic postoperative refractive surgery (LASIK) eyes. After measuring ocular aberrations, the device was programmed to compensate for the eye's wavefront error from the second order to the fifth order (6-mm pupil). Visual acuity was assessed through the adaptive optics system using computer-generated ETDRS opto-types and the Freiburg Visual Acuity and Contrast Test. Mean higher order aberration root-mean-square (RMS) errors in the keratoconus and symptomatic LASIK eyes were 1.88+/-0.99 microm and 1.62+/-0.79 microm (6-mm pupil), respectively. The visual simulator correction of the higher order aberrations present in the keratoconus eyes improved their visual acuity by a mean of 2 lines when compared to their best spherocylinder correction (mean decimal visual acuity with spherocylindrical correction was 0.31+/-0.18 and improved to 0.44+/-0.23 with higher order aberration correction). In the symptomatic LASIK eyes, the mean decimal visual acuity with spherocylindrical correction improved from 0.54+/-0.16 to 0.71+/-0.13 with higher order aberration correction. The visual perception of ETDRS letters was improved when correcting higher order aberrations. The adaptive optics visual simulator can effectively measure and compensate for higher order aberrations (second to fifth order), which are associated with diminished visual acuity and perception in highly aberrated eyes. The adaptive optics technology may be of clinical benefit when counseling patients with highly aberrated eyes regarding their maximum subjective potential for vision correction. Copyright 2010, SLACK Incorporated.

  10. Experimental demonstration of real-time adaptively modulated DDO-OFDM systems with a high spectral efficiency up to 5.76bit/s/Hz transmission over SMF links.

    PubMed

    Chen, Ming; He, Jing; Tang, Jin; Wu, Xian; Chen, Lin

    2014-07-28

    In this paper, a FPGAs-based real-time adaptively modulated 256/64/16QAM-encoded base-band OFDM transceiver with a high spectral efficiency up to 5.76bit/s/Hz is successfully developed, and experimentally demonstrated in a simple intensity-modulated direct-detection optical communication system. Experimental results show that it is feasible to transmit a raw signal bit rate of 7.19Gbps adaptively modulated real-time optical OFDM signal over 20km and 50km single mode fibers (SMFs). The performance comparison between real-time and off-line digital signal processing is performed, and the results show that there is a negligible power penalty. In addition, to obtain the best transmission performance, direct-current (DC) bias voltage for MZM and launch power into optical fiber links are explored in the real-time optical OFDM systems.

  11. Close-loop performance of a high precision deflectometry controlled deformable mirror (DCDM) unit for wavefront correction in adaptive optics system

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Zhou, Chenlu; Zhao, Wenchuan; Choi, Heejoo; Graves, Logan; Kim, Daewook

    2017-06-01

    We present a high precision deflectometry system (DS) controlled deformable mirror (DM) solution for optical system. Different from wavefront and non-wavefront system, the DS and the DM are set to be an individual integrated DCDM unit and can be installed in one base plate. In the DCDM unit, the DS can directly provide the influence functions and surface shape of the DM to the industrial computer in any adaptive optics system. As an integrated adaptive unit, the DCDM unit could be put into various optical systems to realize aberration compensation. In this paper, the configuration and principle of the DCDM unit is introduced first. Theoretical simulation on the close-loop performance of the DCDM unit is carried out. Finally, a verification experiment is proposed to verify the compensation capability of the DCDM unit.

  12. Correction of a Space Telescope Active Primary Mirror Using Adaptive Optics in a Woofer-Tweeter Configuration

    DTIC Science & Technology

    2015-09-01

    shows the elements of an AHM. The substrate is a rib-stiffened silicon carbide ( SiC ) structure cast to meet the required optical figure. The...right) 2. SMT Three Point Linearity Test The active mirror under study is a 1-meter hexagonal SiC AHM mirror with 156 face sheet actuators. The...CORRECTION OF A SPACE TELESCOPE ACTIVE PRIMARY MIRROR USING ADAPTIVE OPTICS IN A WOOFER-TWEETER CONFIGURATION by Matthew R. Allen September 2015

  13. Wavefront sensorless adaptive optics OCT with the DONE algorithm for in vivo human retinal imaging [Invited

    PubMed Central

    Verstraete, Hans R. G. W.; Heisler, Morgan; Ju, Myeong Jin; Wahl, Daniel; Bliek, Laurens; Kalkman, Jeroen; Bonora, Stefano; Jian, Yifan; Verhaegen, Michel; Sarunic, Marinko V.

    2017-01-01

    In this report, which is an international collaboration of OCT, adaptive optics, and control research, we demonstrate the Data-based Online Nonlinear Extremum-seeker (DONE) algorithm to guide the image based optimization for wavefront sensorless adaptive optics (WFSL-AO) OCT for in vivo human retinal imaging. The ocular aberrations were corrected using a multi-actuator adaptive lens after linearization of the hysteresis in the piezoelectric actuators. The DONE algorithm succeeded in drastically improving image quality and the OCT signal intensity, up to a factor seven, while achieving a computational time of 1 ms per iteration, making it applicable for many high speed applications. We demonstrate the correction of five aberrations using 70 iterations of the DONE algorithm performed over 2.8 s of continuous volumetric OCT acquisition. Data acquired from an imaging phantom and in vivo from human research volunteers are presented. PMID:28736670

  14. Adaptive focus for deep tissue using diffuse backscatter

    NASA Astrophysics Data System (ADS)

    Kress, Jeremy; Pourrezaei, Kambiz

    2014-02-01

    A system integrating high density diffuse optical imaging with adaptive optics using MEMS for deep tissue interaction is presented. In this system, a laser source is scanned over a high density fiber bundle using Digital Micromirror Device (DMD) and channeled to a tissue phantom. Backscatter is then collected from the tissue phantom by a high density fiber array of different fiber type and channeled to CMOS sensor for image acquisition. Intensity focus is directly verified using a second CMOS sensor which measures intensity transmitted though the tissue phantom. A set of training patterns are displayed on the DMD and backscatter is numerically fit to the transmission intensity. After the training patterns are displayed, adaptive focus is performed using only the backscatter and fitting functions. Additionally, tissue reconstruction and prediction of interference focusing by photoacoustic and optical tomographic methods is discussed. Finally, potential NIR applications such as in-vivo adaptive neural photostimulation and cancer targeting are discussed.

  15. Wavefront sensorless adaptive optics OCT with the DONE algorithm for in vivo human retinal imaging [Invited].

    PubMed

    Verstraete, Hans R G W; Heisler, Morgan; Ju, Myeong Jin; Wahl, Daniel; Bliek, Laurens; Kalkman, Jeroen; Bonora, Stefano; Jian, Yifan; Verhaegen, Michel; Sarunic, Marinko V

    2017-04-01

    In this report, which is an international collaboration of OCT, adaptive optics, and control research, we demonstrate the Data-based Online Nonlinear Extremum-seeker (DONE) algorithm to guide the image based optimization for wavefront sensorless adaptive optics (WFSL-AO) OCT for in vivo human retinal imaging. The ocular aberrations were corrected using a multi-actuator adaptive lens after linearization of the hysteresis in the piezoelectric actuators. The DONE algorithm succeeded in drastically improving image quality and the OCT signal intensity, up to a factor seven, while achieving a computational time of 1 ms per iteration, making it applicable for many high speed applications. We demonstrate the correction of five aberrations using 70 iterations of the DONE algorithm performed over 2.8 s of continuous volumetric OCT acquisition. Data acquired from an imaging phantom and in vivo from human research volunteers are presented.

  16. Underwater wireless optical MIMO system with spatial modulation and adaptive power allocation

    NASA Astrophysics Data System (ADS)

    Huang, Aiping; Tao, Linwei; Niu, Yilong

    2018-04-01

    In this paper, we investigate the performance of underwater wireless optical multiple-input multiple-output communication system combining spatial modulation (SM-UOMIMO) with flag dual amplitude pulse position modulation (FDAPPM). Channel impulse response for coastal and harbor ocean water links are obtained by Monte Carlo (MC) simulation. Moreover, we obtain the closed-form and upper bound average bit error rate (BER) expressions for receiver diversity including optical combining, equal gain combining and selected combining. And a novel adaptive power allocation algorithm (PAA) is proposed to minimize the average BER of SM-UOMIMO system. Our numeric results indicate an excellent match between the analytical results and numerical simulations, which confirms the accuracy of our derived expressions. Furthermore, the results show that adaptive PAA outperforms conventional fixed factor PAA and equal PAA obviously. Multiple-input single-output system with adaptive PAA obtains even better BER performance than MIMO one, at the same time reducing receiver complexity effectively.

  17. ARGOS - the Laser Star Adaptive Optics for LBT

    NASA Astrophysics Data System (ADS)

    Rabien, S.; Barl, L.; Beckmann, U.; Blümchen, T.; Bonaglia, M.; Borelli, J. L.; Brynnel, J.; Busoni, L.; Carbonaro, L.; Conot, C.; Davies, R.; Deysenroth, M.; Durney, O.; Elberich, M.; Esposito, S.; Gasho, V.; Gässler, W.; Gemperlein, H.; Genzel, R.; Green, R.; Haug, M.; Lloyd Hart, M.; Hubbard, P.; Kanneganti, S.; Kulas, M.; Noenickx, J.; Peter, D.; Quirrenbach, A.; Rademacher, M.; Rix, H. W.; Salinari, P.; Schwab, C.; Storm, J.; Strüder, L.; Thiel, M.; Weigelt, G.; Ziegleder, J.; Orban de Xivry, G.

    2011-09-01

    We will present the design and status of ARGOS - the Laser Guide Star adaptive optics facility for the Large Binocular Telescope. By projecting a constellation of multiple laser guide stars above each of the 8.4m primary mirrors of the LBT, ARGOS in its ground layer mode will enable a wide field adaptive optics correction for multi object spectroscopy. ARGOS implements high power pulsed green lasers and makes use of Rayleigh scattering for the guide star creation. The geometric relations of this setup in guide star height vs. primary diameter are quite comparable to an ELT with sodium guide stars. The use of LBT's adaptive secondary mirror, gated wavefront sensors, a prime focus calibration system and the laser constellation shows several aspects that may be used as pathfinding technology for the planned ELTs. In already planned upgrade steps with a hybrid Sodium-Rayleigh combination ARGOS will enable MCAO and MOAO implementations at LBT allowing unique astronomical observations.

  18. Adaptive Optics Facility: control strategy and first on-sky results of the acquisition sequence

    NASA Astrophysics Data System (ADS)

    Madec, P.-Y.; Kolb, J.; Oberti, S.; Paufique, J.; La Penna, P.; Hackenberg, W.; Kuntschner, H.; Argomedo, J.; Kiekebusch, M.; Donaldson, R.; Suarez, M.; Arsenault, R.

    2016-07-01

    The Adaptive Optics Facility is an ESO project aiming at converting Yepun, one of the four 8m telescopes in Paranal, into an adaptive telescope. This is done by replacing the current conventional secondary mirror of Yepun by a Deformable Secondary Mirror (DSM) and attaching four Laser Guide Star (LGS) Units to its centerpiece. In the meantime, two Adaptive Optics (AO) modules have been developed incorporating each four LGS WaveFront Sensors (WFS) and one tip-tilt sensor used to control the DSM at 1 kHz frame rate. The four LGS Units and one AO module (GRAAL) have already been assembled on Yepun. Besides the technological challenge itself, one critical area of AOF is the AO control strategy and its link with the telescope control, including Active Optics used to shape M1. Another challenge is the request to minimize the overhead due to AOF during the acquisition phase of the observation. This paper presents the control strategy of the AOF. The current control of the telescope is first recalled, and then the way the AO control makes the link with the Active Optics is detailed. Lab results are used to illustrate the expected performance. Finally, the overall AOF acquisition sequence is presented as well as first results obtained on sky with GRAAL.

  19. Computational adaptive optics for broadband optical interferometric tomography of biological tissue

    NASA Astrophysics Data System (ADS)

    Boppart, Stephen A.

    2015-03-01

    High-resolution real-time tomography of biological tissues is important for many areas of biological investigations and medical applications. Cellular level optical tomography, however, has been challenging because of the compromise between transverse imaging resolution and depth-of-field, the system and sample aberrations that may be present, and the low imaging sensitivity deep in scattering tissues. The use of computed optical imaging techniques has the potential to address several of these long-standing limitations and challenges. Two related techniques are interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO). Through three-dimensional Fourierdomain resampling, in combination with high-speed OCT, ISAM can be used to achieve high-resolution in vivo tomography with enhanced depth sensitivity over a depth-of-field extended by more than an order-of-magnitude, in realtime. Subsequently, aberration correction with CAO can be performed in a tomogram, rather than to the optical beam of a broadband optical interferometry system. Based on principles of Fourier optics, aberration correction with CAO is performed on a virtual pupil using Zernike polynomials, offering the potential to augment or even replace the more complicated and expensive adaptive optics hardware with algorithms implemented on a standard desktop computer. Interferometric tomographic reconstructions are characterized with tissue phantoms containing sub-resolution scattering particles, and in both ex vivo and in vivo biological tissue. This review will collectively establish the foundation for high-speed volumetric cellular-level optical interferometric tomography in living tissues.

  20. Computational adaptive optics for broadband interferometric tomography of tissues and cells

    NASA Astrophysics Data System (ADS)

    Adie, Steven G.; Mulligan, Jeffrey A.

    2016-03-01

    Adaptive optics (AO) can shape aberrated optical wavefronts to physically restore the constructive interference needed for high-resolution imaging. With access to the complex optical field, however, many functions of optical hardware can be achieved computationally, including focusing and the compensation of optical aberrations to restore the constructive interference required for diffraction-limited imaging performance. Holography, which employs interferometric detection of the complex optical field, was developed based on this connection between hardware and computational image formation, although this link has only recently been exploited for 3D tomographic imaging in scattering biological tissues. This talk will present the underlying imaging science behind computational image formation with optical coherence tomography (OCT) -- a beam-scanned version of broadband digital holography. Analogous to hardware AO (HAO), we demonstrate computational adaptive optics (CAO) and optimization of the computed pupil correction in 'sensorless mode' (Zernike polynomial corrections with feedback from image metrics) or with the use of 'guide-stars' in the sample. We discuss the concept of an 'isotomic volume' as the volumetric extension of the 'isoplanatic patch' introduced in astronomical AO. Recent CAO results and ongoing work is highlighted to point to the potential biomedical impact of computed broadband interferometric tomography. We also discuss the advantages and disadvantages of HAO vs. CAO for the effective shaping of optical wavefronts, and highlight opportunities for hybrid approaches that synergistically combine the unique advantages of hardware and computational methods for rapid volumetric tomography with cellular resolution.

  1. CHARIS Construction Status, Design, and Future Science

    NASA Astrophysics Data System (ADS)

    Groff, Tyler Dean; Kasdin, N. Jeremy; Peters, Mary Anne; Galvin, Michael; Knapp, Gillian R.; Brandt, Timothy; Loomis, Craig; Carr, Michael; Mede, Kyle; Jarosik, Norman; McElwain, Michael W.; Guyon, Olivier; Jovanovic, Nemanja; Takato, Naruhisa; Hayashi, Masahiko

    2015-01-01

    Princeton University is funded by the National Astronomical Observatory of Japan to build an integral field spectrograph (IFS) dubbed the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS). CHARIS is part of the ongoing exoplanet science effort at the Subaru Telescope, and will serve as the science imager for the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) and AO188 systems. The principal science goals are disk imaging and high contrast spectra of brown dwarfs and hot Jovian planets across J, H, and K bands. SCExAO is a coronagraphic and wavefront control system that will be capable of extreme adaptive optics and quasi-static speckle suppression. Speckle suppression is meant to reduce the residual speckle to a level that makes it possible to detect planets at very low inner working angles (~80 mas). Even so, CHARIS must mitigate spectral contamination from the residual speckle halo due to crosstalk between the closely packed spectra of the image. CHARIS mitigates crosstalk via an array of field stops behind the lenslet array and carefully toleranced relay optics. This reduces uncertainty in the measured spectrum of the exoplanets by increasing robustness of the spectrograph to nearby bright speckles. Mitigating crosstalk in hardware both improves science and reduces computational overhead. Combined with a detailed wavefront budget this improves the utility of CHARIS in the speckle control loop. Another defining feature of CHARIS is its disperser design. In addition to imaging in individual J, H, and K bands, CHARIS has a fourth mode that images across all three simultaneously. This required an improvement in the linearity of dispersion from 1.15 to 2.38 microns. To do so the CHARIS project has chosen a new high-index dispersing material and characterized its properties at cryogenic temperatures. We present the build status of the spectrograph, including status and viability of operating an H2RG detector directly using a SAM card via gigabit Ethernet over Linux. In addition to the stated and as-built specifications of the instrument hardware, we discuss the future of science impacts of CHARIS at the Subaru telescope.

  2. Hybrid diffuse optical techniques for continuous hemodynamic measurement in gastrocnemius during plantar flexion exercise

    NASA Astrophysics Data System (ADS)

    Henry, Brad; Zhao, Mingjun; Shang, Yu; Uhl, Timothy; Thomas, D. Travis; Xenos, Eleftherios S.; Saha, Sibu P.; Yu, Guoqiang

    2015-12-01

    Occlusion calibrations and gating techniques have been recently applied by our laboratory for continuous and absolute diffuse optical measurements of forearm muscle hemodynamics during handgrip exercises. The translation of these techniques from the forearm to the lower limb is the goal of this study as various diseases preferentially affect muscles in the lower extremity. This study adapted a hybrid near-infrared spectroscopy and diffuse correlation spectroscopy system with a gating algorithm to continuously quantify hemodynamic responses of medial gastrocnemius during plantar flexion exercises in 10 healthy subjects. The outcomes from optical measurement include oxy-, deoxy-, and total hemoglobin concentrations, blood oxygen saturation, and relative changes in blood flow (rBF) and oxygen consumption rate (rV˙O2). We calibrated rBF and rV˙O2 profiles with absolute baseline values of BF and V˙O2 obtained by venous and arterial occlusions, respectively. Results from this investigation were comparable to values from similar studies. Additionally, significant correlation was observed between resting local muscle BF measured by the optical technique and whole limb BF measured concurrently by a strain gauge venous plethysmography. The extensive hemodynamic and metabolic profiles during exercise will allow for future comparison studies to investigate the diagnostic value of hybrid technologies in muscles affected by disease.

  3. Testing the pyramid wavefront sensor on the sky

    NASA Astrophysics Data System (ADS)

    Ragazzoni, Roberto; Ghedina, Adriano; Baruffolo, Andrea; Marchetti, Enrico; Farinato, Jacopo; Niero, Tiziano; Crimi, G.; Ghigo, Mauro

    2000-07-01

    The pyramid wavefront sensor is a novel concept device whose features are attractive for adaptive optics for several reasons. We show here the first loop closure of an AO system using this kind of sensor at the focal plane of a 4m-class telescope. One of the critical optical elements of our wavefront sensor is the pyramid that splits the light from the star used for the wavefront correction. This component is essentially a four faces prism having actually a full vertex angle of 7 degrees with specifications on its edges and roof of 4 - 5 microns or better. The best turned edges obtained on the prototypes already built have shown values of the order of 6 microns, with roofs of the same order, not far from the required tolerances. In this article we describe the techniques and the system used for the construction of this optical component and the improvements to the polishing procedure that we plan to adopt in order to increase the quality of its edges and optical surfaces. Pixel processing is suitable to fit with existing Shack-Hartmann systems, making this device an attractive add-on option for existing SH-based AO systems. The plans for future developments in order to firmly establish the performances of the pyramid wavefront sensor are briefed out.

  4. Optical fiber-based setup for in vivo measurement of the delayed fluorescence lifetime of oxygen sensors

    NASA Astrophysics Data System (ADS)

    Piffaretti, Filippo M.; Santhakumar, Kanappan; Forte, Eddy; van den Bergh, Hubert E.; Wagnières, Georges A.

    2011-03-01

    A new optical-fiber-based spectrofluorometer for in vivo or in vitro detection of delayed fluorescence is presented and characterized. This compact setup is designed so that it can be readily adapted for future clinical use. Optical excitation is done with a nitrogen laser-pumped, tunable dye laser, emitting in the UV-vis part of the spectrum. Excitation and luminescence signals are carried to and from the biological tissues under investigation, located out of the setup enclosure, by a single optical fiber. These measurements, as well as measurements performed without a fiber on in vitro samples in a thermostable quartz cell, in a controlled-atmosphere enclosure, are possible due to the efficient collection of the laser-induced luminescence light which is collected and focused on the detector with a high aperture parabolic mirror. The detection is based on a gated photomultiplier which allows for time-resolved measurements of the delayed fluorescence intensity. Thus, relevant luminescence lifetimes, typically in the sub-microsecond-to-millisecond range, can be measured with near total rejection of the sample's prompt fluorescence. The instrument spectral and temporal resolution, as well as its sensitivity, is characterized and measurement examples are presented. The primary application foreseen for this setup is the monitoring and adjustment of the light dose delivered during photodynamic therapy.

  5. Study of a MEMS-based Shack-Hartmann wavefront sensor with adjustable pupil sampling for astronomical adaptive optics.

    PubMed

    Baranec, Christoph; Dekany, Richard

    2008-10-01

    We introduce a Shack-Hartmann wavefront sensor for adaptive optics that enables dynamic control of the spatial sampling of an incoming wavefront using a segmented mirror microelectrical mechanical systems (MEMS) device. Unlike a conventional lenslet array, subapertures are defined by either segments or groups of segments of a mirror array, with the ability to change spatial pupil sampling arbitrarily by redefining the segment grouping. Control over the spatial sampling of the wavefront allows for the minimization of wavefront reconstruction error for different intensities of guide source and different atmospheric conditions, which in turn maximizes an adaptive optics system's delivered Strehl ratio. Requirements for the MEMS devices needed in this Shack-Hartmann wavefront sensor are also presented.

  6. Adaptive Optics Imaging of Solar System Objects

    NASA Technical Reports Server (NTRS)

    Roddier, Francois; Owen, Toby

    1999-01-01

    Most solar system objects have never been observed at wavelengths longer than the R band with an angular resolution better than 1". The Hubble Space Telescope itself has only recently been equipped to observe in the infrared. However, because of its small diameter, the angular resolution is lower than that one can now achieved from the ground with adaptive optics, and time allocated to planetary science is limited. We have successfully used adaptive optics on a 4-m class telescope to obtain 0.1" resolution images of solar system objects in the far red and near infrared (0.7-2.5 microns), aE wavelengths which best discl"lmlnate their spectral signatures. Our efforts have been put into areas of research for which high angular resolution is essential.

  7. On distributed wavefront reconstruction for large-scale adaptive optics systems.

    PubMed

    de Visser, Cornelis C; Brunner, Elisabeth; Verhaegen, Michel

    2016-05-01

    The distributed-spline-based aberration reconstruction (D-SABRE) method is proposed for distributed wavefront reconstruction with applications to large-scale adaptive optics systems. D-SABRE decomposes the wavefront sensor domain into any number of partitions and solves a local wavefront reconstruction problem on each partition using multivariate splines. D-SABRE accuracy is within 1% of a global approach with a speedup that scales quadratically with the number of partitions. The D-SABRE is compared to the distributed cumulative reconstruction (CuRe-D) method in open-loop and closed-loop simulations using the YAO adaptive optics simulation tool. D-SABRE accuracy exceeds CuRe-D for low levels of decomposition, and D-SABRE proved to be more robust to variations in the loop gain.

  8. Contrast-based sensorless adaptive optics for retinal imaging

    PubMed Central

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T.O.; He, Zheng; Metha, Andrew

    2015-01-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes. PMID:26417525

  9. Real-time real-sky dual-conjugate adaptive optics experiment

    NASA Astrophysics Data System (ADS)

    Knutsson, Per; Owner-Petersen, Mette

    2006-06-01

    The current status of a real-time real-sky dual-conjugate adaptive optics experiment is presented. This experiment is a follow-up on a lab experiment at Lund Observatory that demonstrated dual-conjugate adaptive optics on a static atmosphere. The setup is to be placed at Lund Observatory. This means that the setup will be available 24h a day and does not have to share time with other instruments. The optical design of the experiment is finalized. A siderostat will be used to track the guide object and all other optical components are placed on an optical table. A small telescope, 35 cm aperture, is used and following this a tip-tilt mirror and two deformable mirrors are placed. The wave-front sensor is a Shack-Hartmann sensor using a SciMeasure Li'l Joe CCD39 camera system. The maximum update rate of the setup will be 0.5 kHz and the control system will be running under Linux. The effective wavelength will be 750 nm. All components in the setup have been acquired and the completion of the setup is underway. Collaborating partners in this project are the Applied Optics Group at National University of Ireland, Galway and the Swedish Defense Research Agency.

  10. Synergy of adaptive thresholds and multiple transmitters in free-space optical communication.

    PubMed

    Louthain, James A; Schmidt, Jason D

    2010-04-26

    Laser propagation through extended turbulence causes severe beam spread and scintillation. Airborne laser communication systems require special considerations in size, complexity, power, and weight. Rather than using bulky, costly, adaptive optics systems, we reduce the variability of the received signal by integrating a two-transmitter system with an adaptive threshold receiver to average out the deleterious effects of turbulence. In contrast to adaptive optics approaches, systems employing multiple transmitters and adaptive thresholds exhibit performance improvements that are unaffected by turbulence strength. Simulations of this system with on-off-keying (OOK) showed that reducing the scintillation variations with multiple transmitters improves the performance of low-frequency adaptive threshold estimators by 1-3 dB. The combination of multiple transmitters and adaptive thresholding provided at least a 10 dB gain over implementing only transmitter pointing and receiver tilt correction for all three high-Rytov number scenarios. The scenario with a spherical-wave Rytov number R=0.20 enjoyed a 13 dB reduction in the required SNR for BER's between 10(-5) to 10(-3), consistent with the code gain metric. All five scenarios between 0.06 and 0.20 Rytov number improved to within 3 dB of the SNR of the lowest Rytov number scenario.

  11. Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice

    PubMed Central

    Jian, Yifan; Xu, Jing; Gradowski, Martin A.; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2014-01-01

    We present wavefront sensorless adaptive optics (WSAO) Fourier domain optical coherence tomography (FD-OCT) for in vivo small animal retinal imaging. WSAO is attractive especially for mouse retinal imaging because it simplifies optical design and eliminates the need for wavefront sensing, which is difficult in the small animal eye. GPU accelerated processing of the OCT data permitted real-time extraction of image quality metrics (intensity) for arbitrarily selected retinal layers to be optimized. Modal control of a commercially available segmented deformable mirror (IrisAO Inc.) provided rapid convergence using a sequential search algorithm. Image quality improvements with WSAO OCT are presented for both pigmented and albino mouse retinal data, acquired in vivo. PMID:24575347

  12. Space Science

    NASA Image and Video Library

    1995-06-08

    Scientists at Marshall's Adaptive Optics Lab demonstrate the Wave Front Sensor alignment using the Phased Array Mirror Extendible Large Aperture (PAMELA) optics adjustment. The primary objective of the PAMELA project is to develop methods for aligning and controlling adaptive optics segmented mirror systems. These systems can be used to acquire or project light energy. The Next Generation Space Telescope is an example of an energy acquisition system that will employ segmented mirrors. Light projection systems can also be used for power beaming and orbital debris removal. All segmented optical systems must be adjusted to provide maximum performance. PAMELA is an on going project that NASA is utilizing to investigate various methods for maximizing system performance.

  13. Extended depth of focus adaptive optics spectral domain optical coherence tomography

    PubMed Central

    Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki

    2012-01-01

    We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA. PMID:23082278

  14. Simplified flexible-PON upstream transmission using pulse position modulation at ONU and DSP-enabled soft-combining at OLT for adaptive link budgets.

    PubMed

    Liu, Xiang; Effenberger, Frank; Chand, Naresh

    2015-03-09

    We demonstrate a flexible modulation and detection scheme for upstream transmission in passive optical networks using pulse position modulation at optical network unit, facilitating burst-mode detection with automatic decision threshold tracking, and DSP-enabled soft-combining at optical line terminal. Adaptive receiver sensitivities of -33.1 dBm, -36.6 dBm and -38.3 dBm at a bit error ratio of 10(-4) are respectively achieved for 2.5 Gb/s, 1.25 Gb/s and 625 Mb/s after transmission over a 20-km standard single-mode fiber without any optical amplification.

  15. Extended depth of focus adaptive optics spectral domain optical coherence tomography.

    PubMed

    Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki

    2012-10-01

    We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA.

  16. Performance optimization of PM-16QAM transmission system enabled by real-time self-adaptive coding.

    PubMed

    Qu, Zhen; Li, Yao; Mo, Weiyang; Yang, Mingwei; Zhu, Shengxiang; Kilper, Daniel C; Djordjevic, Ivan B

    2017-10-15

    We experimentally demonstrate self-adaptive coded 5×100  Gb/s WDM polarization multiplexed 16 quadrature amplitude modulation transmission over a 100 km fiber link, which is enabled by a real-time control plane. The real-time optical signal-to-noise ratio (OSNR) is measured using an optical performance monitoring device. The OSNR measurement is processed and fed back using control plane logic and messaging to the transmitter side for code adaptation, where the binary data are adaptively encoded with three types of low-density parity-check (LDPC) codes with code rates of 0.8, 0.75, and 0.7 of large girth. The total code-adaptation latency is measured to be 2273 ms. Compared with transmission without adaptation, average net capacity improvements of 102%, 36%, and 7.5% are obtained, respectively, by adaptive LDPC coding.

  17. CHARACTERIZING PHOTORECEPTOR CHANGES IN ACUTE POSTERIOR MULTIFOCAL PLACOID PIGMENT EPITHELIOPATHY USING ADAPTIVE OPTICS.

    PubMed

    Roberts, Philipp K; Nesper, Peter L; Onishi, Alex C; Skondra, Dimitra; Jampol, Lee M; Fawzi, Amani A

    2018-01-01

    To characterize lesions of acute posterior multifocal placoid pigment epitheliopathy (APMPPE) by multimodal imaging including adaptive optics scanning laser ophthalmoscopy (AOSLO). We included patients with APMPPE at different stages of evolution of the placoid lesions. Color fundus photography, spectral domain optical coherence tomography, infrared reflectance, fundus autofluorescence, and AOSLO images were obtained and registered to correlate microstructural changes. Eight eyes of four patients (two women) were included and analyzed by multimodal imaging. Photoreceptor reflectivity within APMPPE lesions was more heterogeneous than in adjacent healthy areas. Hyperpigmentation on color fundus photography appeared hyperreflective on infrared reflectance and on AOSLO. Irregularity of the interdigitation zone and the photoreceptor inner and outer segment junctions (IS/OS) on spectral domain optical coherence tomography was associated with photoreceptor hyporeflectivity on AOSLO. Interruption of the interdigitation zone or IS/OS was associated with loss of photoreceptor reflectivity on AOSLO. Irregularities in the reflectivity of the photoreceptor mosaic are visible on AOSLO even in inactive APMPPE lesions, where the photoreceptor bands on spectral domain optical coherence tomography have recovered. Adaptive optics scanning laser ophthalmoscopy combined with multimodal imaging has the potential to enhance our understanding of photoreceptor involvement in APMPPE.

  18. Correcting highly aberrated eyes using large-stroke adaptive optics.

    PubMed

    Sabesan, Ramkumar; Ahmad, Kamran; Yoon, Geunyoung

    2007-11-01

    To investigate the optical performance of a large-stroke deformable mirror in correcting large aberrations in highly aberrated eyes. A large-stroke deformable mirror (Mirao 52D; Imagine Eyes) and a Shack-Hartmann wavefront sensor were used in an adaptive optics system. Closed-loop correction of the static aberrations of a phase plate designed for an advanced keratoconic eye was performed for a 6-mm pupil. The same adaptive optics system was also used to correct the aberrations in one eye each of two moderate keratoconic and three normal human eyes for a 6-mm pupil. With closed-loop correction of the phase plate, the total root-mean-square (RMS) over a 6-mm pupil was reduced from 3.54 to 0.04 microm in 30 to 40 iterations, corresponding to 3 to 4 seconds. Adaptive optics closed-loop correction reduced an average total RMS of 1.73+/-0.998 to 0.10+/-0.017 microm (higher order RMS of 0.39+/-0.124 to 0.06+/-0.004 microm) in the three normal eyes and 2.73+/-1.754 to 0.10+/-0.001 microm (higher order RMS of 1.82+/-1.058 to 0.05+/-0.017 microm) in the two keratoconic eyes. Aberrations in both normal and highly aberrated eyes were successfully corrected using the large-stroke deformable mirror to provide almost perfect optical quality. This mirror can be a powerful tool to assess the limit of visual performance achievable after correcting the aberrations, especially in eyes with abnormal corneal profiles.

  19. Adaptive optics in spinning disk microscopy: improved contrast and brightness by a simple and fast method.

    PubMed

    Fraisier, V; Clouvel, G; Jasaitis, A; Dimitrov, A; Piolot, T; Salamero, J

    2015-09-01

    Multiconfocal microscopy gives a good compromise between fast imaging and reasonable resolution. However, the low intensity of live fluorescent emitters is a major limitation to this technique. Aberrations induced by the optical setup, especially the mismatch of the refractive index and the biological sample itself, distort the point spread function and further reduce the amount of detected photons. Altogether, this leads to impaired image quality, preventing accurate analysis of molecular processes in biological samples and imaging deep in the sample. The amount of detected fluorescence can be improved with adaptive optics. Here, we used a compact adaptive optics module (adaptive optics box for sectioning optical microscopy), which was specifically designed for spinning disk confocal microscopy. The module overcomes undesired anomalies by correcting for most of the aberrations in confocal imaging. Existing aberration detection methods require prior illumination, which bleaches the sample. To avoid multiple exposures of the sample, we established an experimental model describing the depth dependence of major aberrations. This model allows us to correct for those aberrations when performing a z-stack, gradually increasing the amplitude of the correction with depth. It does not require illumination of the sample for aberration detection, thus minimizing photobleaching and phototoxicity. With this model, we improved both signal-to-background ratio and image contrast. Here, we present comparative studies on a variety of biological samples. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  20. SPITZER MICROLENS MEASUREMENT OF A MASSIVE REMNANT IN A WELL-SEPARATED BINARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvartzvald, Y.; Bryden, G.; Henderson, C. B.

    2015-12-01

    We report the detection and mass measurement of a binary lens OGLE-2015-BLG-1285La,b, with the more massive component having M{sub 1} > 1.35 M{sub ⊙} (80% probability). A main-sequence star in this mass range is ruled out by limits on blue light, meaning that a primary in this mass range must be a neutron star (NS) or black hole (BH). The system has a projected separation r{sub ⊥} = 6.1 ± 0.4 AU and lies in the Galactic bulge. These measurements are based on the “microlens parallax” effect, i.e., comparing the microlensing light curve as seen from Spitzer, which lay atmore » 1.25 AU projected from Earth, to the light curves from four ground-based surveys, three in the optical and one in the near-infrared. Future adaptive optics imaging of the companion by 30 m class telescopes will yield a much more accurate measurement of the primary mass. This discovery both opens the path and defines the challenges to detecting and characterizing BHs and NSs in wide binaries, with either dark or luminous companions. In particular, we discuss lessons that can be applied to future Spitzer and Kepler K2 microlensing parallax observations.« less

  1. Reflective afocal broadband adaptive optics scanning ophthalmoscope

    PubMed Central

    Dubra, Alfredo; Sulai, Yusufu

    2011-01-01

    A broadband adaptive optics scanning ophthalmoscope (BAOSO) consisting of four afocal telescopes, formed by pairs of off-axis spherical mirrors in a non-planar arrangement, is presented. The non-planar folding of the telescopes is used to simultaneously reduce pupil and image plane astigmatism. The former improves the adaptive optics performance by reducing the root-mean-square (RMS) of the wavefront and the beam wandering due to optical scanning. The latter provides diffraction limited performance over a 3 diopter (D) vergence range. This vergence range allows for the use of any broadband light source(s) in the 450-850 nm wavelength range to simultaneously image any combination of retinal layers. Imaging modalities that could benefit from such a large vergence range are optical coherence tomography (OCT), multi- and hyper-spectral imaging, single- and multi-photon fluorescence. The benefits of the non-planar telescopes in the BAOSO are illustrated by resolving the human foveal photoreceptor mosaic in reflectance using two different superluminescent diodes with 680 and 796 nm peak wavelengths, reaching the eye with a vergence of 0.76 D relative to each other. PMID:21698035

  2. Reflective afocal broadband adaptive optics scanning ophthalmoscope.

    PubMed

    Dubra, Alfredo; Sulai, Yusufu

    2011-06-01

    A broadband adaptive optics scanning ophthalmoscope (BAOSO) consisting of four afocal telescopes, formed by pairs of off-axis spherical mirrors in a non-planar arrangement, is presented. The non-planar folding of the telescopes is used to simultaneously reduce pupil and image plane astigmatism. The former improves the adaptive optics performance by reducing the root-mean-square (RMS) of the wavefront and the beam wandering due to optical scanning. The latter provides diffraction limited performance over a 3 diopter (D) vergence range. This vergence range allows for the use of any broadband light source(s) in the 450-850 nm wavelength range to simultaneously image any combination of retinal layers. Imaging modalities that could benefit from such a large vergence range are optical coherence tomography (OCT), multi- and hyper-spectral imaging, single- and multi-photon fluorescence. The benefits of the non-planar telescopes in the BAOSO are illustrated by resolving the human foveal photoreceptor mosaic in reflectance using two different superluminescent diodes with 680 and 796 nm peak wavelengths, reaching the eye with a vergence of 0.76 D relative to each other.

  3. Performance assessment of MEMS adaptive optics in tactical airborne systems

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    1999-09-01

    Tactical airborne electro-optical systems are severely constrained by weight, volume, power, and cost. Micro- electrical-mechanical adaptive optics provide a solution that addresses the engineering realities without compromising spatial and temporal compensation requirements. Through modeling and analysis, we determined that substantial benefits could be gained for laser designators, ladar, countermeasures, and missile seekers. The developments potential exists for improving seeker imagery resolution 20 percent, extending countermeasures keep-out range by a factor of 5, doubling the range for ladar detection and identification, and compensating for supersonic and hypersonic aircraft boundary layers. Innovative concepts are required for atmospheric pat hand boundary layer compensation. We have developed design that perform these tasks using high speed scene-based wavefront sensing, IR aerosol laser guide stars, and extended-object wavefront beacons. We have developed a number of adaptive optics system configurations that met the spatial resolution requirements and we have determined that sensing and signal processing requirements can be met. With the help of micromachined deformable mirrors and sensor, we will be able to integrate the systems into existing airborne pods and missiles as well as next generation electro-optical systems.

  4. Average spectral efficiency analysis of FSO links over turbulence channel with adaptive transmissions and aperture averaging

    NASA Astrophysics Data System (ADS)

    Aarthi, G.; Ramachandra Reddy, G.

    2018-03-01

    In our paper, the impact of adaptive transmission schemes: (i) optimal rate adaptation (ORA) and (ii) channel inversion with fixed rate (CIFR) on the average spectral efficiency (ASE) are explored for free-space optical (FSO) communications with On-Off Keying (OOK), Polarization shift keying (POLSK), and Coherent optical wireless communication (Coherent OWC) systems under different turbulence regimes. Further to enhance the ASE we have incorporated aperture averaging effects along with the above adaptive schemes. The results indicate that ORA adaptation scheme has the advantage of improving the ASE performance compared with CIFR under moderate and strong turbulence regime. The coherent OWC system with ORA excels the other modulation schemes and could achieve ASE performance of 49.8 bits/s/Hz at the average transmitted optical power of 6 dBm under strong turbulence. By adding aperture averaging effect we could achieve an ASE of 50.5 bits/s/Hz under the same conditions. This makes ORA with Coherent OWC modulation as a favorable candidate for improving the ASE of the FSO communication system.

  5. Holographic Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Andersen, G.

    For the last two decades adaptive optics has been used as a technique for correcting imaging applications and directed energy/laser targeting and laser communications systems affected by atmospheric turbulence. Typically these systems are bulky and limited to <10 kHz due to large computing overhead and limited photon efficiencies. Moreover most use zonal wavefront sensors which cannot easily handle extreme scintillation or unexpected obscuration of a pre-set aperture. Here we present a compact, lightweight adaptive optics system with the potential to operate at speeds of MHz. The system utilizes a hologram to perform an all-optical wavefront analysis that removes the need for any computer. Finally, the sensing is made on a modal basis so it is largely insensitive to scintillation and obscuration. We have constructed a prototype device and will present experimental results from our research. The holographic adaptive optics system begins with the creation of a multiplexed hologram. This hologram is created by recording the maximum and minimum response functions of every actuator in the deformable mirror against a unique focused reference beam. When a wavefront of some arbitrary phase is incident on the processed hologram, a number of focal spots are created -- one pair for each actuator in the DM. The absolute phase error at each particular actuator location is simply related to the ratio of the intensity of each pair of spots. In this way we can use an array of photodetectors to give a direct readout of phase error without the need for any calculations. The advantages of holographic adaptive optics are many. To begin with, the measurement of phase error is made all optically, so the wavefront sensor directly controls the actuators in the DM without any computers. Using fast, photon counting photodetectors allows for closed loop correction limited only by the speed of the deformable mirror which in the case of MEMS devices can be 100 kHz or more. All this can be achieved in an extremely compact and lightweight package making it perfectly suited to applications such as UAV surveillance imagery and free space optical communications systems. Lastly, since the correction is made on a modal basis instead of zonal, it is virtually insensitive to scintillation and obscuration.

  6. Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system

    NASA Astrophysics Data System (ADS)

    Cheng, Sheng-Yi; Liu, Wen-Jin; Chen, Shan-Qiu; Dong, Li-Zhi; Yang, Ping; Xu, Bing

    2015-08-01

    Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ˜ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ˜ (O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. Project supported by the National Key Scientific and Research Equipment Development Project of China (Grant No. ZDYZ2013-2), the National Natural Science Foundation of China (Grant No. 11173008), and the Sichuan Provincial Outstanding Youth Academic Technology Leaders Program, China (Grant No. 2012JQ0012).

  7. Dynamic Reconstruction and Multivariable Control for Force-Actuated, Thin Facesheet Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Grocott, Simon C. O.; Miller, David W.

    1997-01-01

    The Multiple Mirror Telescope (MMT) under development at the University of Arizona takes a new approach in adaptive optics placing a large (0.65 m) force-actuated, thin facesheet deformable mirror at the secondary of an astronomical telescope, thus reducing the effects of emissivity which are important in IR astronomy. However, The large size of the mirror and low stiffness actuators used drive the natural frequencies of the mirror down into the bandwidth of the atmospheric distortion. Conventional adaptive optics takes a quasi-static approach to controlling the, deformable mirror. However, flexibility within the control bandwidth calls for a new approach to adaptive optics. Dynamic influence functions are used to characterize the influence of each actuator on the surface of the deformable mirror. A linearized model of atmospheric distortion is combined with dynamic influence functions to produce a dynamic reconstructor. This dynamic reconstructor is recognized as an optimal control problem. Solving the optimal control problem for a system with hundreds of actuators and sensors is formidable. Exploiting the circularly symmetric geometry of the mirror, and a suitable model of atmospheric distortion, the control problem is divided into a number of smaller decoupled control problems using circulant matrix theory. A hierarchic control scheme which seeks to emulate the quasi-static control approach that is generally used in adaptive optics is compared to the proposed dynamic reconstruction technique. Although dynamic reconstruction requires somewhat more computational power to implement, it achieves better performance with less power usage, and is less sensitive than the hierarchic technique.

  8. Adaptive optics; Proceedings of the Meeting, Arlington, VA, April 10, 11, 1985

    NASA Astrophysics Data System (ADS)

    Ludman, J. E.

    Papers are presented on the directed energy program for ballistic missile defense, a self-referencing wavefront interferometer for laser sources, the effects of mirror grating distortions on diffraction spots at wavefront sensors, and the optical design of an all-reflecting, high-resolution camera for active-optics on ground-based telescopes. Also considered are transverse coherence length observations, time dependent statistics of upper atmosphere optical turbulence, high altitude acoustic soundings, and the Cramer-Rao lower bound on wavefront sensor error. Other topics include wavefront reconstruction from noisy slope or difference data using the discrete Fourier transform, acoustooptic adaptive signal processing, the recording of phase deformations on a PLZT wafer for holographic and spatial light modulator applications, and an optical phase reconstructor using a multiplier-accumulator approach. Papers are also presented on an integrated optics wavefront measurement sensor, a new optical preprocessor for automatic vision systems, a model for predicting infrared atmospheric emission fluctuations, and optical logic gates and flip-flops based on polarization-bistable semiconductor lasers.

  9. Computational adaptive optics for broadband optical interferometric tomography of biological tissue.

    PubMed

    Adie, Steven G; Graf, Benedikt W; Ahmad, Adeel; Carney, P Scott; Boppart, Stephen A

    2012-05-08

    Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.

  10. Scientific Design of a High Contrast Integral Field Spectrograph for the Subaru Telescope

    NASA Technical Reports Server (NTRS)

    McElwain, Michael W.

    2012-01-01

    Ground based telescopes equipped with adaptive optics systems and specialized science cameras are now capable of directly detecting extrasolar planets. We present the scientific design for a high contrast integral field spectrograph for the Subaru Telescope. This lenslet based integral field spectrograph will be implemented into the new extreme adaptive optics system at Subaru, called SCExAO.

  11. AO corrected satellite imaging from Mount Stromlo

    NASA Astrophysics Data System (ADS)

    Bennet, F.; Rigaut, F.; Price, I.; Herrald, N.; Ritchie, I.; Smith, C.

    2016-07-01

    The Research School of Astronomy and Astrophysics have been developing adaptive optics systems for space situational awareness. As part of this program we have developed satellite imaging using compact adaptive optics systems for small (1-2 m) telescopes such as those operated by Electro Optic Systems (EOS) from the Mount Stromlo Observatory. We have focused on making compact, simple, and high performance AO systems using modern high stroke high speed deformable mirrors and EMCCD cameras. We are able to track satellites down to magnitude 10 with a Strehl in excess of 20% in median seeing.

  12. Optomechanical design of TMT NFIRAOS Subsystems at INO

    NASA Astrophysics Data System (ADS)

    Lamontagne, Frédéric; Desnoyers, Nichola; Grenier, Martin; Cottin, Pierre; Leclerc, Mélanie; Martin, Olivier; Buteau-Vaillancourt, Louis; Boucher, Marc-André; Nash, Reston; Lardière, Olivier; Andersen, David; Atwood, Jenny; Hill, Alexis; Byrnes, Peter W. G.; Herriot, Glen; Fitzsimmons, Joeleff; Véran, Jean-Pierre

    2017-08-01

    The adaptive optics system for the Thirty Meter Telescope (TMT) is the Narrow-Field InfraRed Adaptive Optics System (NFIRAOS). Recently, INO has been involved in the optomechanical design of several subsystems of NFIRAOS, including the Instrument Selection Mirror (ISM), the NFIRAOS Beamsplitters (NBS), and the NFIRAOS Source Simulator system (NSS) comprising the Focal Plane Mask (FPM), the Laser Guide Star (LGS) sources, and the Natural Guide Star (NGS) sources. This paper presents an overview of these subsystems and the optomechanical design approaches used to meet the optical performance requirements under environmental constraints.

  13. Update on optical design of adaptive optics system at Lick Observatory

    NASA Astrophysics Data System (ADS)

    Bauman, Brian J.; Gavel, Donald T.; Waltjen, Kenneth E.; Freeze, Gary J.; Hurd, Randall L.; Gates, Elinor L.; Max, Claire E.; Olivier, Scot S.; Pennington, Deanna M.

    2002-02-01

    In 1999, we presented our plan to upgrade the adaptive optics (AO) system on the Lick Observatory Shane telescope (3m) from a prototype instrument pressed into field service to a facility instrument. This paper updates the progress of that plan and details several important improvements in the alignment and calibration of the AO bench. The paper also includes a discussion of the problems seen in the original design of the tip/tilt (t/t) sensor used in laser guide star mode, and how these problems were corrected with excellent results.

  14. Update on Optical Design of Adaptive Optics System at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauman, B J; Gavel, D T; Waltjen, K E

    2001-07-31

    In 1999, we presented our plan to upgrade the adaptive optics (AO) system on the Lick Observatory Shane telescope (3m) from a prototype instrument pressed into field service to a facility instrument. This paper updates the progress of that plan and details several important improvements in the alignment and calibration of the AO bench. The paper also includes a discussion of the problems seen in the original design of the tip/tilt (t/t) sensor used in laser guide star mode, and how these problems were corrected with excellent results.

  15. Lens based adaptive optics scanning laser ophthalmoscope.

    PubMed

    Felberer, Franz; Kroisamer, Julia-Sophie; Hitzenberger, Christoph K; Pircher, Michael

    2012-07-30

    We present an alternative approach for an adaptive optics scanning laser ophthalmoscope (AO-SLO). In contrast to other commonly used AO-SLO instruments, the imaging optics consist of lenses. Images of the fovea region of 5 healthy volunteers are recorded. The system is capable to resolve human foveal cones in 3 out of 5 healthy volunteers. Additionally, we investigated the capability of the system to support larger scanning angles (up to 5°) on the retina. Finally, in order to demonstrate the performance of the instrument images of rod photoreceptors are presented.

  16. Adaptive optics with pupil tracking for high resolution retinal imaging

    PubMed Central

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-01-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics. PMID:22312577

  17. Adaptive optics with pupil tracking for high resolution retinal imaging.

    PubMed

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-02-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.

  18. Generating Artificial Reference Images for Open Loop Correlation Wavefront Sensors

    NASA Astrophysics Data System (ADS)

    Townson, M. J.; Love, G. D.; Saunter, C. D.

    2018-05-01

    Shack-Hartmann wavefront sensors for both solar and laser guide star adaptive optics (with elongated spots) need to observe extended objects. Correlation techniques have been successfully employed to measure the wavefront gradient in solar adaptive optics systems and have been proposed for laser guide star systems. In this paper we describe a method for synthesising reference images for correlation Shack-Hartmann wavefront sensors with a larger field of view than individual sub-apertures. We then show how these supersized reference images can increase the performance of correlation wavefront sensors in regimes where large relative shifts are induced between sub-apertures, such as those observed in open-loop wavefront sensors. The technique we describe requires no external knowledge outside of the wavefront-sensor images, making it available as an entirely "software" upgrade to an existing adaptive optics system. For solar adaptive optics we show the supersized reference images extend the magnitude of shifts which can be accurately measured from 12% to 50% of the field of view of a sub-aperture and in laser guide star wavefront sensors the magnitude of centroids that can be accurately measured is increased from 12% to 25% of the total field of view of the sub-aperture.

  19. Performance of laser guide star adaptive optics at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivier, S.S.; An, J.; Avicola, K.

    1995-07-19

    A sodium-layer laser guide star adaptive optics system has been developed at Lawrence Livermore National Laboratory (LLNL) for use on the 3-meter Shane telescope at Lick Observatory. The system is based on a 127-actuator continuous-surface deformable mirror, a Hartmann wavefront sensor equipped with a fast-framing low-noise CCD camera, and a pulsed solid-state-pumped dye laser tuned to the atomic sodium resonance line at 589 nm. The adaptive optics system has been tested on the Shane telescope using natural reference stars yielding up to a factor of 12 increase in image peak intensity and a factor of 6.5 reduction in image fullmore » width at half maximum (FWHM). The results are consistent with theoretical expectations. The laser guide star system has been installed and operated on the Shane telescope yielding a beam with 22 W average power at 589 nm. Based on experimental data, this laser should generate an 8th magnitude guide star at this site, and the integrated laser guide star adaptive optics system should produce images with Strehl ratios of 0.4 at 2.2 {mu}m in median seeing and 0.7 at 2.2 {mu}m in good seeing.« less

  20. Fast adaptive optical system for the high-power laser beam correction in atmosphere

    NASA Astrophysics Data System (ADS)

    Kudryashov, Alexis; Lylova, Anna; Samarkin, Vadim; Sheldakova, Julia; Alexandrov, Alexander

    2017-09-01

    Key elements of the fast adaptive optical system (AOS), having correction frequency of 1400 Hz, for atmospheric turbulence compensation, are described in this paper. A water-cooled bimorph deformable mirror with 46 electrodes, as well as stacked actuator deformable mirror with 81 piezoactuators and 2000 Hz Shack-Hartmann wavefront sensor were considered to be used to control the light beam. The parameters of the turbulence at the 1.2 km path of the light propagation were measured and analyzed. The key parameters for such an adaptive system were worked out.

  1. Development of liquid crystal based adaptive optical elements for space applications

    NASA Astrophysics Data System (ADS)

    Geday, M. A.; Quintana, X.; Otón, E.; Cerrolaza, B.; Lopez, D.; Garcia de Quiro, F.; Manolis, I.; Short, A.

    2017-11-01

    In this paper we present the results obtained within the context of the ESA-funded project Programmable Optoelectronic Adaptive Element (AO/1-5476/07/NL/EM). The objective of this project is the development of adaptive (reconfigurable) optical elements for use in space applications and the execution of preliminary qualification tests in the relevant environment. The different designs and materials that have been considered and manufactured for a 2D beam steerer based on passive matrix liquid crystal programmable blaze grating will described and discussed.

  2. On the development status of high performance silicon pore optics for future x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Kraft, Stefan; Collon, M.; Günther, R.; Partapsing, R.; Beijersbergen, M.; Bavdaz, M.; Lumb, D.; Peacock, A.; Wallace, K.

    2017-11-01

    Silicon pore optics have been proposed earlier as modular optical X-ray units in large Wolter-I telescopes that would match effective area and resolution requirements imposed by missions such as XEUS. Since then the optics have been developed further and the feasibility of the production of high-performance pore optics has been demonstrated. Optimisation of both the production and the assembly process allowed the generation of optics with larger areas with improved imaging performance. Silicon pore optics can now be manufactured with properties required for future X-ray telescopes. A suitable design that allows the implementation of pore optics into X-ray Optical Units in Wolter-I configuration was recently derived including an appropriate telescope mounting structure with interfaces for the individual components. The development status, the achieved performance and the requirements regarding future mirror production, optics assembly and related metrology for its characterisation are presented.

  3. Wavefront Analysis of Adaptive Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Hillman, Lloyd

    1997-01-01

    The motivation for this work came from a NASA Headquarters interest in investigating design concepts for a large space telescope employing active optics technology. The development of telescope optical requirements and potential optical design configurations is reported.

  4. Pixelized Device Control Actuators for Large Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth J.; Bird, Ross W.; Shea, Brian; Chen, Peter

    2009-01-01

    A fully integrated, compact, adaptive space optic mirror assembly has been developed, incorporating new advances in ultralight, high-performance composite mirrors. The composite mirrors use Q-switch matrix architecture-based pixelized control (PMN-PT) actuators, which achieve high-performance, large adaptive optic capability, while reducing the weight of present adaptive optic systems. The self-contained, fully assembled, 11x11x4-in. (approx.= 28x28x10-cm) unit integrates a very-high-performance 8-in. (approx.=20-cm) optic, and has 8-kHz true bandwidth. The assembled unit weighs less than 15 pounds (=6.8 kg), including all mechanical assemblies, power electronics, control electronics, drive electronics, face sheet, wiring, and cabling. It requires just three wires to be attached (power, ground, and signal) for full-function systems integration, and uses a steel-frame and epoxied electronics. The three main innovations are: 1. Ultralightweight composite optics: A new replication method for fabrication of very thin composite 20-cm-diameter laminate face sheets with good as-fabricated optical figure was developed. The approach is a new mandrel resin surface deposition onto previously fabricated thin composite laminates. 2. Matrix (regenerative) power topology: Waveform correction can be achieved across an entire face sheet at 6 kHz, even for large actuator counts. In practice, it was found to be better to develop a quadrant drive, that is, four quadrants of 169 actuators behind the face sheet. Each quadrant has a single, small, regenerative power supply driving all 169 actuators at 8 kHz in effective parallel. 3. Q-switch drive architecture: The Q-switch innovation is at the heart of the matrix architecture, and allows for a very fast current draw into a desired actuator element in 120 counts of a MHz clock without any actuator coupling.

  5. Real time optimization algorithm for wavefront sensorless adaptive optics OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Verstraete, Hans R. G. W.; Heisler, Morgan; Ju, Myeong Jin; Wahl, Daniel J.; Bliek, Laurens; Kalkman, Jeroen; Bonora, Stefano; Sarunic, Marinko V.; Verhaegen, Michel; Jian, Yifan

    2017-02-01

    Optical Coherence Tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. A limitation of the performance and utilization of the OCT systems has been the lateral resolution. Through the combination of wavefront sensorless adaptive optics with dual variable optical elements, we present a compact lens based OCT system that is capable of imaging the photoreceptor mosaic. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient eyes, and a multi-actuator adaptive lens after linearization of the hysteresis in the piezoelectric actuators for aberration correction to obtain near diffraction limited imaging at the retina. A parallel processing computational platform permitted real-time image acquisition and display. The Data-based Online Nonlinear Extremum seeker (DONE) algorithm was used for real time optimization of the wavefront sensorless adaptive optics OCT, and the performance was compared with a coordinate search algorithm. Cross sectional images of the retinal layers and en face images of the cone photoreceptor mosaic acquired in vivo from research volunteers before and after WSAO optimization are presented. Applying the DONE algorithm in vivo for wavefront sensorless AO-OCT demonstrates that the DONE algorithm succeeds in drastically improving the signal while achieving a computational time of 1 ms per iteration, making it applicable for high speed real time applications.

  6. Phase discrepancy induced from least squares wavefront reconstruction of wrapped phase measurements with high noise or large localized wavefront gradients

    NASA Astrophysics Data System (ADS)

    Steinbock, Michael J.; Hyde, Milo W.

    2012-10-01

    Adaptive optics is used in applications such as laser communication, remote sensing, and laser weapon systems to estimate and correct for atmospheric distortions of propagated light in real-time. Within an adaptive optics system, a reconstruction process interprets the raw wavefront sensor measurements and calculates an estimate for the unwrapped phase function to be sent through a control law and applied to a wavefront correction device. This research is focused on adaptive optics using a self-referencing interferometer wavefront sensor, which directly measures the wrapped wavefront phase. Therefore, its measurements must be reconstructed for use on a continuous facesheet deformable mirror. In testing and evaluating a novel class of branch-point- tolerant wavefront reconstructors based on the post-processing congruence operation technique, an increase in Strehl ratio compared to a traditional least squares reconstructor was noted even in non-scintillated fields. To investigate this further, this paper uses wave-optics simulations to eliminate many of the variables from a hardware adaptive optics system, so as to focus on the reconstruction techniques alone. The simulation results along with a discussion of the physical reasoning for this phenomenon are provided. For any applications using a self-referencing interferometer wavefront sensor with low signal levels or high localized wavefront gradients, understanding this phenomena is critical when applying a traditional least squares wavefront reconstructor.

  7. High-speed adaptive optics line scan confocal retinal imaging for human eye

    PubMed Central

    Wang, Xiaolin; Zhang, Yuhua

    2017-01-01

    Purpose Continuous and rapid eye movement causes significant intraframe distortion in adaptive optics high resolution retinal imaging. To minimize this artifact, we developed a high speed adaptive optics line scan confocal retinal imaging system. Methods A high speed line camera was employed to acquire retinal image and custom adaptive optics was developed to compensate the wave aberration of the human eye’s optics. The spatial resolution and signal to noise ratio were assessed in model eye and in living human eye. The improvement of imaging fidelity was estimated by reduction of intra-frame distortion of retinal images acquired in the living human eyes with frame rates at 30 frames/second (FPS), 100 FPS, and 200 FPS. Results The device produced retinal image with cellular level resolution at 200 FPS with a digitization of 512×512 pixels/frame in the living human eye. Cone photoreceptors in the central fovea and rod photoreceptors near the fovea were resolved in three human subjects in normal chorioretinal health. Compared with retinal images acquired at 30 FPS, the intra-frame distortion in images taken at 200 FPS was reduced by 50.9% to 79.7%. Conclusions We demonstrated the feasibility of acquiring high resolution retinal images in the living human eye at a speed that minimizes retinal motion artifact. This device may facilitate research involving subjects with nystagmus or unsteady fixation due to central vision loss. PMID:28257458

  8. High-speed adaptive optics line scan confocal retinal imaging for human eye.

    PubMed

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2017-01-01

    Continuous and rapid eye movement causes significant intraframe distortion in adaptive optics high resolution retinal imaging. To minimize this artifact, we developed a high speed adaptive optics line scan confocal retinal imaging system. A high speed line camera was employed to acquire retinal image and custom adaptive optics was developed to compensate the wave aberration of the human eye's optics. The spatial resolution and signal to noise ratio were assessed in model eye and in living human eye. The improvement of imaging fidelity was estimated by reduction of intra-frame distortion of retinal images acquired in the living human eyes with frame rates at 30 frames/second (FPS), 100 FPS, and 200 FPS. The device produced retinal image with cellular level resolution at 200 FPS with a digitization of 512×512 pixels/frame in the living human eye. Cone photoreceptors in the central fovea and rod photoreceptors near the fovea were resolved in three human subjects in normal chorioretinal health. Compared with retinal images acquired at 30 FPS, the intra-frame distortion in images taken at 200 FPS was reduced by 50.9% to 79.7%. We demonstrated the feasibility of acquiring high resolution retinal images in the living human eye at a speed that minimizes retinal motion artifact. This device may facilitate research involving subjects with nystagmus or unsteady fixation due to central vision loss.

  9. Massively parallel data processing for quantitative total flow imaging with optical coherence microscopy and tomography

    NASA Astrophysics Data System (ADS)

    Sylwestrzak, Marcin; Szlag, Daniel; Marchand, Paul J.; Kumar, Ashwin S.; Lasser, Theo

    2017-08-01

    We present an application of massively parallel processing of quantitative flow measurements data acquired using spectral optical coherence microscopy (SOCM). The need for massive signal processing of these particular datasets has been a major hurdle for many applications based on SOCM. In view of this difficulty, we implemented and adapted quantitative total flow estimation algorithms on graphics processing units (GPU) and achieved a 150 fold reduction in processing time when compared to a former CPU implementation. As SOCM constitutes the microscopy counterpart to spectral optical coherence tomography (SOCT), the developed processing procedure can be applied to both imaging modalities. We present the developed DLL library integrated in MATLAB (with an example) and have included the source code for adaptations and future improvements. Catalogue identifier: AFBT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFBT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPLv3 No. of lines in distributed program, including test data, etc.: 913552 No. of bytes in distributed program, including test data, etc.: 270876249 Distribution format: tar.gz Programming language: CUDA/C, MATLAB. Computer: Intel x64 CPU, GPU supporting CUDA technology. Operating system: 64-bit Windows 7 Professional. Has the code been vectorized or parallelized?: Yes, CPU code has been vectorized in MATLAB, CUDA code has been parallelized. RAM: Dependent on users parameters, typically between several gigabytes and several tens of gigabytes Classification: 6.5, 18. Nature of problem: Speed up of data processing in optical coherence microscopy Solution method: Utilization of GPU for massively parallel data processing Additional comments: Compiled DLL library with source code and documentation, example of utilization (MATLAB script with raw data) Running time: 1,8 s for one B-scan (150 × faster in comparison to the CPU data processing time)

  10. Data fusion and photometric restoration

    NASA Astrophysics Data System (ADS)

    Pirzkal, Norbert; Hook, Richard N.

    2001-11-01

    The current generation of 8-10m optical ground-based telescopes have a symbiotic relationship with space telescopes. For direct imaging in the optical the former can collect photons relatively cheaply but the latter can still achieve, even in the era of adaptive optics, significantly higher spatial resolution, point-spread function stability and astrometric fidelity over fields of a few arcminutes. The large archives of HST imaging already in place, when combined with the ease of access to ground-based data afforded by the virtual observatory currently under development, will make space-ground data fusion a powerful tool for the future. We describe a photometric image restoration method that we have developed which allows the efficient and accurate use of high-resolution space imaging of crowded fields to extract high quality photometry from very crowded ground-based images. We illustrate the method using HST and ESO VLT/FORS imaging of a globular cluster and demonstrate quantitatively the photometric measurements quality that can achieved using the data fusion approach instead of just using data from just one telescope. This method can handle most of the common difficulties encountered when attempting this problem such as determining the geometric mapping to the requisite precision, deriving the PSF and the background.

  11. Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy

    PubMed Central

    Cha, Jae Won; Ballesta, Jerome; So, Peter T.C.

    2010-01-01

    The imaging depth of two-photon excitation fluorescence microscopy is partly limited by the inhomogeneity of the refractive index in biological specimens. This inhomogeneity results in a distortion of the wavefront of the excitation light. This wavefront distortion results in image resolution degradation and lower signal level. Using an adaptive optics system consisting of a Shack-Hartmann wavefront sensor and a deformable mirror, wavefront distortion can be measured and corrected. With adaptive optics compensation, we demonstrate that the resolution and signal level can be better preserved at greater imaging depth in a variety of ex-vivo tissue specimens including mouse tongue muscle, heart muscle, and brain. However, for these highly scattering tissues, we find signal degradation due to scattering to be a more dominant factor than aberration. PMID:20799824

  12. Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy.

    PubMed

    Cha, Jae Won; Ballesta, Jerome; So, Peter T C

    2010-01-01

    The imaging depth of two-photon excitation fluorescence microscopy is partly limited by the inhomogeneity of the refractive index in biological specimens. This inhomogeneity results in a distortion of the wavefront of the excitation light. This wavefront distortion results in image resolution degradation and lower signal level. Using an adaptive optics system consisting of a Shack-Hartmann wavefront sensor and a deformable mirror, wavefront distortion can be measured and corrected. With adaptive optics compensation, we demonstrate that the resolution and signal level can be better preserved at greater imaging depth in a variety of ex-vivo tissue specimens including mouse tongue muscle, heart muscle, and brain. However, for these highly scattering tissues, we find signal degradation due to scattering to be a more dominant factor than aberration.

  13. Propagation of high-energy laser beams through the earth's atmosphere II; Proceedings of the Meeting, Los Angeles, CA, Jan. 21-23, 1991

    NASA Technical Reports Server (NTRS)

    Ulrich, Peter B. (Editor); Wilson, Leroy E. (Editor)

    1991-01-01

    Consideration is given to turbulence at the inner scale, modeling turbulent transport in laser beam propagation, variable wind direction effects on thermal blooming correction, realistic wind effects on turbulence and thermal blooming compensation, wide bandwidth spectral measurements of atmospheric tilt turbulence, remote alignment of adaptive optical systems with far-field optimization, focusing infrared laser beams on targets in space without using adaptive optics, and a simplex optimization method for adaptive optics system alignment. Consideration is also given to ground-to-space multiline propagation at 1.3 micron, a path integral approach to thermal blooming, functional reconstruction predictions of uplink whole beam Strehl ratios in the presence of thermal blooming, and stability analysis of semidiscrete schemes for thermal blooming computation.

  14. Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence

    PubMed Central

    Sinefeld, David; Paudel, Hari P.; Ouzounov, Dimitre G.; Bifano, Thomas G.; Xu, Chris

    2015-01-01

    We demonstrate adaptive optics system based on nonlinear feedback from 3- and 4-photon fluorescence. The system is based on femtosecond pulses created by soliton self-frequency shift of a 1550-nm fiber-based femtosecond laser together with micro-electro-mechanical system (MEMS) phase spatial light modulator (SLM). We perturb the 1020-segment SLM using an orthogonal Walsh sequence basis set with a modified version of three-point phase shifting interferometry. We show the improvement after aberrations correction in 3-photon signal from fluorescent beads. In addition, we compare the improvement obtained in the same adaptive optical system for 2-, 3- and 4-photon fluorescence using dye pool. We show that signal improvement resulting from aberration correction grows exponentially as a function of the order of nonlinearity. PMID:26698772

  15. Empirical Examinations of Modifications and Adaptations to Evidence-Based Psychotherapies: Methodologies, Impact, and Future Directions.

    PubMed

    Stirman, Shannon Wiltsey; Gamarra, Jennifer; Bartlett, Brooke; Calloway, Amber; Gutner, Cassidy

    2017-12-01

    This review describes methods used to examine the modifications and adaptations to evidence-based psychological treatments (EBPTs), assesses what is known about the impact of modifications and adaptations to EBPTs, and makes recommendations for future research and clinical care. One hundred eight primary studies and three meta-analyses were identified. All studies examined planned adaptations, and many simultaneously investigated multiple types of adaptations. With the exception of studies on adding or removing specific EBPT elements, few studies compared adapted EBPTs to the original protocols. There was little evidence that adaptations in the studies were detrimental, but there was also limited consistent evidence that adapted protocols outperformed the original protocols, with the exception of adding components to EBPTs. Implications for EBPT delivery and future research are discussed.

  16. Reservoir adaptive operating rules based on both of historical streamflow and future projections

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Liu, Pan; Wang, Hao; Chen, Jie; Lei, Xiaohui; Feng, Maoyuan

    2017-10-01

    Climate change is affecting hydrological variables and consequently is impacting water resources management. Historical strategies are no longer applicable under climate change. Therefore, adaptive management, especially adaptive operating rules for reservoirs, has been developed to mitigate the possible adverse effects of climate change. However, to date, adaptive operating rules are generally based on future projections involving uncertainties under climate change, yet ignoring historical information. To address this, we propose an approach for deriving adaptive operating rules considering both historical information and future projections, namely historical and future operating rules (HAFOR). A robustness index was developed by comparing benefits from HAFOR with benefits from conventional operating rules (COR). For both historical and future streamflow series, maximizations of both average benefits and the robustness index were employed as objectives, and four trade-offs were implemented to solve the multi-objective problem. Based on the integrated objective, the simulation-based optimization method was used to optimize the parameters of HAFOR. Using the Dongwushi Reservoir in China as a case study, HAFOR was demonstrated to be an effective and robust method for developing adaptive operating rules under the uncertain changing environment. Compared with historical or projected future operating rules (HOR or FPOR), HAFOR can reduce the uncertainty and increase the robustness for future projections, especially regarding results of reservoir releases and volumes. HAFOR, therefore, facilitates adaptive management in the context that climate change is difficult to predict accurately.

  17. Pyramidal Wavefront Sensor Demonstrator at INO

    NASA Astrophysics Data System (ADS)

    Martin, Olivier; Véran, Jean-Pierre; Anctil, Geneviève; Bourqui, Pascal; Châteauneuf, François; Gauvin, Jonny; Goyette, Philippe; Lagacé, François; Turbide, Simon; Wang, Min

    2014-08-01

    Wavefront sensing is one of the key elements of an Adaptive Optics System. Although Shack-Hartmann WFS are the most commonly used whether for astronomical or biomedical applications, the high-sensitivity and large dynamic-range of the Pyramid-WFS (P-WFS) technology is promising and needs to be further investigated for proper justification in future Extremely Large Telescopes (ELT) applications. At INO, center for applied research in optics and technology transfer in Quebec City, Canada, we have recently set to develop a Pyramid wavefront sensor (P-WFS), an option for which no other research group in Canada had any experience. A first version had been built and tested in 2013 in collaboration with NRC-HIA Victoria. Here we present a second iteration of demonstrator with an extended spectral range, fast modulation capability and low-noise, fast-acquisition EMCCD sensor. The system has been designed with compactness and robustness in mind to allow on-sky testing at Mont Mégantic facility, in parallel with a Shack- Hartmann sensor so as to compare both options.

  18. Concepts and technology development towards a platform for macroscopic quantum experiments in space

    NASA Astrophysics Data System (ADS)

    Kaltenbaek, Rainer

    Tremendous progress has been achieved in space technology over the last decade. This technological heritage promises enabling applications of quantum technology in space already now or in the near future. Heritage in laser and optical technologies from LISA Pathfinder comprises core technologies required for quantum optical experiments. Low-noise micro-thruster technology from GAIA allows achieving an impressive quality of microgravity, and passive radiative cooling approaches as in the James Webb Space Telescope may be adapted for achieving cryogenic temperatures. Developments like these have rendered space an increasingly attractive platform for quantum-enhanced sensing and for fundamental tests of physics using quantum technology. In particular, there already have been significant efforts towards ralizing atom interferometry and atomic clocks in space as well as efforts to harness space as an environment for fundamental tests of physics using quantum optomechanics and high-mass matter-wave interferometry. Here, we will present recent efforts in spacecraft design and technology development towards this latter goal in the context of the mission proposal MAQRO.

  19. Four faint T dwarfs from the UKIRT Infrared Deep Sky Survey (UKIDSS) Southern Stripe

    NASA Astrophysics Data System (ADS)

    Chiu, Kuenley; Liu, Michael C.; Jiang, Linhua; Allers, Katelyn N.; Stark, Daniel P.; Bunker, Andrew; Fan, Xiaohui; Glazebrook, Karl; Dupuy, Trent J.

    2008-03-01

    We present the optical and near-infrared photometry and spectroscopy of four faint T dwarfs newly discovered from the UKIDSS first data release. The sample, drawn from an imaged area of ~136 deg2 to a depth of Y = 19.9 (5σ, Vega), is located in the Sloan Digital Sky Survey (SDSS) Southern Equatorial Stripe, a region of significant future deep imaging potential. We detail the selection and followup of these objects, three of which are spectroscopically confirmed brown dwarfs ranging from type T2.5 to T7.5, and one is photometrically identified as early T. Their magnitudes range from Y = 19.01 to 19.88 with derived distances from 34 to 98 pc, making these among the coldest and faintest brown dwarfs known. The T7.5 dwarf appears to be single based on 0.05-arcsec images from Keck laser guide star adaptive optics. The sample brings the total number of T dwarfs found or confirmed by UKIDSS data in this region to nine, and we discuss the projected numbers of dwarfs in the future survey data. We estimate that ~240 early and late T dwarfs are discoverable in the UKIDSS Large Area Survey (LAS) data, falling significantly short of published model projections and suggesting that initial mass functions and/or birth rates may be at the low end of possible models. Thus, deeper optical data have good potential to exploit the UKIDSS survey depth more fully, but may still find the potential Y dwarf sample to be extremely rare.

  20. X-ray fluorescence beamline at the LNLS: Current instrumentation and future developments (abstract)

    NASA Astrophysics Data System (ADS)

    Pérez, C. A.; Bueno, M. I. S.; Neuenshwander, R. T.; Sánchez, H. J.; Tolentino, H.

    2002-03-01

    The x-ray fluorescence (XRF) beamline, constructed at the Brazilian National Synchrotron Radiation Laboratory (LNLS-http://www.lnls.br), has been operating for the external users since August of 1998 (C. A. Pérez et al., Proc. of the European Conference on Energy Dispersive X-Ray Spectrometry, Bologna, Italy, 1998, pp. 125-129). The synchrotron source for this beamline is the D09B (15°) dipole magnet of the LNLS storage ring. Two main experimental setups are mounted at the XRF beamline. One consists of a high vacuum chamber adapted to carry out experiments in grazing excitation conditions. This allows chemical trace and ultratrace element determination on several samples, mainly coming from environmental and biological sciences. Another setup consists of an experimental station, operated in air, in which x-ray fluorescence analysis with spatial resolution can be done. This station is equipped with a fine conical capillary, capable of achieving 20 μm spatial resolution, and with an optical microscope in order to select the region of interest on the sample surface. In this work, the main characteristic of the beamline, experimental stations as well as the description of some new experimental facilities will be given. Future development in the instrumentation focuses on an appropriate x-ray optic to be able to carry out chemical trace analysis of light elements using the total x-ray fluorescence technique. Also, chemical mapping below 10 μm spatial resolution, while keeping high flux of photon on the sample, will be achieved by using the Kirkpatrick-Baez x-ray microfocusing optic.

  1. Simulations for Improved Imaging of Faint Objects at Maui Space Surveillance Site

    NASA Astrophysics Data System (ADS)

    Holmes, R.; Roggemann, M.; Werth, M.; Lucas, J.; Thompson, D.

    A detailed wave-optics simulation is used in conjunction with advanced post-processing algorithms to explore the trade space between image post-processing and adaptive optics for improved imaging of low signal-to-noise ratio (SNR) targets. Target-based guidestars are required for imaging of most active Earth-orbiting satellites because of restrictions on using laser-backscatter-based guidestars in the direction of such objects. With such target-based guidestars and Maui conditions, it is found that significant reductions in adaptive optics actuator and subaperture density can result in improved imaging of fainter objects. Simulation indicates that elimination of adaptive optics produces sub-optimal results for all of the faint-object cases considered. This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

  2. Real-time turbulence profiling with a pair of laser guide star Shack-Hartmann wavefront sensors for wide-field adaptive optics systems on large to extremely large telescopes.

    PubMed

    Gilles, L; Ellerbroek, B L

    2010-11-01

    Real-time turbulence profiling is necessary to tune tomographic wavefront reconstruction algorithms for wide-field adaptive optics (AO) systems on large to extremely large telescopes, and to perform a variety of image post-processing tasks involving point-spread function reconstruction. This paper describes a computationally efficient and accurate numerical technique inspired by the slope detection and ranging (SLODAR) method to perform this task in real time from properly selected Shack-Hartmann wavefront sensor measurements accumulated over a few hundred frames from a pair of laser guide stars, thus eliminating the need for an additional instrument. The algorithm is introduced, followed by a theoretical influence function analysis illustrating its impulse response to high-resolution turbulence profiles. Finally, its performance is assessed in the context of the Thirty Meter Telescope multi-conjugate adaptive optics system via end-to-end wave optics Monte Carlo simulations.

  3. Modulation transfer function estimation of optical lens system by adaptive neuro-fuzzy methodology

    NASA Astrophysics Data System (ADS)

    Petković, Dalibor; Shamshirband, Shahaboddin; Pavlović, Nenad T.; Anuar, Nor Badrul; Kiah, Miss Laiha Mat

    2014-07-01

    The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the adaptive neuro-fuzzy (ANFIS) estimator is designed and adapted to estimate MTF value of the actual optical system. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system. The back propagation learning algorithm is used for training this network. This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  4. Adaptive Optics Imaging in Laser Pointer Maculopathy.

    PubMed

    Sheyman, Alan T; Nesper, Peter L; Fawzi, Amani A; Jampol, Lee M

    2016-08-01

    The authors report multimodal imaging including adaptive optics scanning laser ophthalmoscopy (AOSLO) (Apaeros retinal image system AOSLO prototype; Boston Micromachines Corporation, Boston, MA) in a case of previously diagnosed unilateral acute idiopathic maculopathy (UAIM) that demonstrated features of laser pointer maculopathy. The authors also show the adaptive optics images of a laser pointer maculopathy case previously reported. A 15-year-old girl was referred for the evaluation of a maculopathy suspected to be UAIM. The authors reviewed the patient's history and obtained fluorescein angiography, autofluorescence, optical coherence tomography, infrared reflectance, and AOSLO. The time course of disease and clinical examination did not fit with UAIM, but the linear pattern of lesions was suspicious for self-inflicted laser pointer injury. This was confirmed on subsequent questioning of the patient. The presence of linear lesions in the macula that are best highlighted with multimodal imaging techniques should alert the physician to the possibility of laser pointer injury. AOSLO further characterizes photoreceptor damage in this condition. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:782-785.]. Copyright 2016, SLACK Incorporated.

  5. Shared-hole graph search with adaptive constraints for 3D optic nerve head optical coherence tomography image segmentation

    PubMed Central

    Yu, Kai; Shi, Fei; Gao, Enting; Zhu, Weifang; Chen, Haoyu; Chen, Xinjian

    2018-01-01

    Optic nerve head (ONH) is a crucial region for glaucoma detection and tracking based on spectral domain optical coherence tomography (SD-OCT) images. In this region, the existence of a “hole” structure makes retinal layer segmentation and analysis very challenging. To improve retinal layer segmentation, we propose a 3D method for ONH centered SD-OCT image segmentation, which is based on a modified graph search algorithm with a shared-hole and locally adaptive constraints. With the proposed method, both the optic disc boundary and nine retinal surfaces can be accurately segmented in SD-OCT images. An overall mean unsigned border positioning error of 7.27 ± 5.40 µm was achieved for layer segmentation, and a mean Dice coefficient of 0.925 ± 0.03 was achieved for optic disc region detection. PMID:29541497

  6. Single cell imaging of the chick retina with adaptive optics.

    PubMed

    Headington, Kenneth; Choi, Stacey S; Nickla, Debora; Doble, Nathan

    2011-10-01

    The chick eye is extensively used as a model in the study of myopia and its progression; however, analysis of the photoreceptor mosaic has required the use of excised retina due to the uncorrected optical aberrations in the lens and cornea. This study implemented high resolution adaptive optics (AO) retinal imaging to visualize the chick cone mosaic in vivo. The New England College of Optometry (NECO) AO fundus camera was modified to allow high resolution in vivo imaging on two 6-week-old White Leghorn chicks (Gallus gallus domesticus)-labeled chick A and chick B. Multiple, adjacent images, each with a 2.5(o) field of view, were taken and subsequently montaged together. This process was repeated at varying retinal locations measured from the tip of the pecten. Automated software was used to determine the cone spacing and density at each location. Voronoi analysis was applied to determine the packing arrangement of the cones. In both chicks, cone photoreceptors were clearly visible at all retinal locations imaged. Cone densities measured at 36(o) nasal-12(o) superior retina from the pecten tip for chick A and 40(o) nasal-12(o) superior retina for chick B were 21,714 ± 543 and 26,105 ± 653 cones/mm(2) respectively. For chick B, a further 11 locations immediately surrounding the pecten were imaged, with cone densities ranging from 20,980 ± 524 to 25,148 ± 629 cones/mm(2). In vivo analysis of the cone density and its packing characteristics are now possible in the chick eye through AO imaging, which has important implications for future studies of myopia and ocular disease research.

  7. MO-G-BRF-06: Radiotherapy and Prompt Oxygen Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kissick, M; Campos, D; Adamson, E

    Purpose: Adaptive radiotherapy requires a knowledge of the changing local tumor oxygen concentrations for times on the order of the treatment time, a time scale far shorter than cell death and proliferation. This knowledge will be needed to guide hypofractionated radiotherapy. Methods: A diffuse optical probe system was developed to spatially average over the whole interior of athymic Sprague Dawley nude mouse xenografts of human head and neck cancers. The blood volume and hemoglobin saturation was measured in real time. The quantities were measured with spectral fitting before and after 10 Gy of radiation is applied. An MRI BOLD scanmore » is acquired before and after 10 Gy that measures regional changes in R2* which is inversely proportional to oxygen availability. Simulations were performed to fit the blood oxygen dynamics and infer changes in hypoxia within the tumor. Results: The optical probe measured nearly constant blood volume and a significant drop in hemoglobin saturation of about 30% after 10 Gy over the time scale of less than 30 minutes. The averaged R2* within the tumor volume increased by 15% after the 10 Gy dose, which is consistent with the optical results. The simulations and experiments support likely dynamic metabolic changes and/or fast vasoconstrictive signals are occurring that change the oxygen concentrations significantly, but not cell death or proliferation. Conclusion: Significant oxygen changes were observed to occur within 30 minutes, coinciding with the treatment time scale. This dynamic is very important for patient specific adaptive therapy. For hypofractionated therapy, the local instantaneous oxygen content is likely the most important variable to control. The invention of a bedside device for the purpose of measuring the instantaneous response to large radiation doses would be an important step to future improvements in outcome.« less

  8. Adaptive beam shaping for improving the power coupling of a two-Cassegrain-telescope

    NASA Astrophysics Data System (ADS)

    Ma, Haotong; Hu, Haojun; Xie, Wenke; Zhao, Haichuan; Xu, Xiaojun; Chen, Jinbao

    2013-08-01

    We demonstrate the adaptive beam shaping for improving the power coupling of a two-Cassegrain-telescope based on the stochastic parallel gradient descent (SPGD) algorithm and dual phase only liquid crystal spatial light modulators (LC-SLMs). Adaptive pre-compensation the wavefront of projected laser beam at the transmitter telescope is chosen to improve the power coupling efficiency. One phase only LC-SLM adaptively optimizes phase distribution of the projected laser beam and the other generates turbulence phase screen. The intensity distributions of the dark hollow beam after passing through the turbulent atmosphere with and without adaptive beam shaping are analyzed in detail. The influence of propagation distance and aperture size of the Cassegrain-telescope on coupling efficiency are investigated theoretically and experimentally. These studies show that the power coupling can be significantly improved by adaptive beam shaping. The technique can be used in optical communication, deep space optical communication and relay mirror.

  9. An engineered design of a diffractive mask for high precision astrometry [Modeling a diffractive mask that calibrates optical distortions

    DOE PAGES

    Dennison, Kaitlin; Ammons, S. Mark; Garrel, Vincent; ...

    2016-06-26

    AutoCAD, Zemax Optic Studio 15, and Interactive Data Language (IDL) with the Proper Library are used to computationally model and test a diffractive mask (DiM) suitable for use in the Gemini Multi-Conjugate Adaptive Optics System (GeMS) on the Gemini South Telescope. Systematic errors in telescope imagery are produced when the light travels through the adaptive optics system of the telescope. DiM is a transparent, flat optic with a pattern of miniscule dots lithographically applied to it. It is added ahead of the adaptive optics system in the telescope in order to produce diffraction spots that will encode systematic errors inmore » the optics after it. Once these errors are encoded, they can be corrected for. DiM will allow for more accurate measurements in astrometry and thus improve exoplanet detection. Furthermore, the mechanics and physical attributes of the DiM are modeled in AutoCAD. Zemax models the ray propagation of point sources of light through the telescope. IDL and Proper simulate the wavefront and image results of the telescope. Aberrations are added to the Zemax and IDL models to test how the diffraction spots from the DiM change in the final images. Based on the Zemax and IDL results, the diffraction spots are able to encode the systematic aberrations.« less

  10. Robust optical flow using adaptive Lorentzian filter for image reconstruction under noisy condition

    NASA Astrophysics Data System (ADS)

    Kesrarat, Darun; Patanavijit, Vorapoj

    2017-02-01

    In optical flow for motion allocation, the efficient result in Motion Vector (MV) is an important issue. Several noisy conditions may cause the unreliable result in optical flow algorithms. We discover that many classical optical flows algorithms perform better result under noisy condition when combined with modern optimized model. This paper introduces effective robust models of optical flow by using Robust high reliability spatial based optical flow algorithms using the adaptive Lorentzian norm influence function in computation on simple spatial temporal optical flows algorithm. Experiment on our proposed models confirm better noise tolerance in optical flow's MV under noisy condition when they are applied over simple spatial temporal optical flow algorithms as a filtering model in simple frame-to-frame correlation technique. We illustrate the performance of our models by performing an experiment on several typical sequences with differences in movement speed of foreground and background where the experiment sequences are contaminated by the additive white Gaussian noise (AWGN) at different noise decibels (dB). This paper shows very high effectiveness of noise tolerance models that they are indicated by peak signal to noise ratio (PSNR).

  11. Design and Performance Evaluation of Sensors and Actuators for Advanced Optical Systems

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2011-01-01

    Current state-of-the-art commercial sensors and actuators do not meet many of NASA s next generation spacecraft and instrument needs. Nor do they satisfy the DoD needs for satellite missions, especially micro/nano satellite missions. In an effort to develop advanced optical devices and instruments that meet mission requirements, NASA Langley recently completed construction of a new cleanroom housing equipment capable of fabricating high performance active optic and adaptive optic technologies including deformable mirrors, reconfigurable lenses (both refractive and diffractive), spectrometers, spectro-polarimeters, tunable filters and many other active optic devices. In addition to performance, these advanced optic technologies offer advantages in speed, size, weight, power consumption, and radiation tolerance. The active optic devices described in this paper rely on birefringent liquid crystal materials to alter either the phase or the polarization of the incoming light. Design considerations and performance evaluation results for various NASA applications are presented. Applications presented will include large space telescopes, optical communications, spacecraft windows, coronagraphs, and star trackers. Keywords: Photonics, Adaptive Optics, Tunable Filters, MEMs., MOEMs, Coronagraph, Star Tracker

  12. Integrated Modeling of Optical Systems (IMOS): An Assessment and Future Directions

    NASA Technical Reports Server (NTRS)

    Moore, Gregory; Broduer, Steve (Technical Monitor)

    2001-01-01

    Integrated Modeling of Optical Systems (IMOS) is a finite element-based code combining structural, thermal, and optical ray-tracing capabilities in a single environment for analysis of space-based optical systems. We'll present some recent examples of IMOS usage and discuss future development directions. Due to increasing model sizes and a greater emphasis on multidisciplinary analysis and design, much of the anticipated future work will be in the areas of improved architecture, numerics, and overall performance and analysis integration.

  13. Next Generation Mass Memory Architecture

    NASA Astrophysics Data System (ADS)

    Herpel, H.-J.; Stahle, M.; Lonsdorfer, U.; Binzer, N.

    2010-08-01

    Future Mass Memory units will have to cope with various demanding requirements driven by onboard instruments (optical and SAR) that generate a huge amount of data (>10TBit) at a data rate > 6 Gbps. For downlink data rates around 3 Gbps will be feasible using latest ka-band technology together with Variable Coding and Modulation (VCM) techniques. These high data rates and storage capacities need to be effectively managed. Therefore, data structures and data management functions have to be improved and adapted to existing standards like the Packet Utilisation Standard (PUS). In this paper we will present a highly modular and scalable architectural approach for mass memories in order to support a wide range of mission requirements.

  14. Initial performance results for high-aspect ratio gold MEMS deformable mirrors

    NASA Astrophysics Data System (ADS)

    Fernández, Bautista; Kubby, Joel

    2009-02-01

    The fabrication and initial performance results of high-aspect ratio 3-dimensional Micro-Electro-Mechanical System (MEMS) Deformable Mirrors (DM) for Adaptive Optics (AO) will be discussed. The DM systems were fabricated out of gold, and consist of actuators bonded to a continuous face sheet, with different boundary conditions. DM mirror displacements vs. voltage have been measured with a white light interferometer and the corresponding results compared to Finite Element Analysis (FEA) simulations. Interferometer scans of a DM have shown that ~9.4um of stroke can be achieved with low voltage, thus showing that this fabrication process holds promise in the manufacturing of future MEMS DM's for the next generation of extremely large telescopes.

  15. Modeling Self-Referencing Interferometers with Extended Beacons and Strong Turbulence

    DTIC Science & Technology

    2011-09-01

    identified then typically compensated. These results not only serve to address problems when using adaptive optics to correct for strong turbulence ...compensat- ing for distortions due to atmospheric turbulence with adaptive optics (AO) [70, 84]. AO typically compensates for atmospheric distortions... used in Chapter VII to discuss how strong atmospheric turbulence and extended beacons affect the performance of an SRI. Additionally, it enumerates the

  16. The Adaptive Optics Lucky Imager: Diffraction limited imaging at visible wavelengths with large ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Crass, Jonathan; Mackay, Craig; King, David; Rebolo-López, Rafael; Labadie, Lucas; Puga, Marta; Oscoz, Alejandro; González Escalera, Victor; Pérez Garrido, Antonio; López, Roberto; Pérez-Prieto, Jorge; Rodríguez-Ramos, Luis; Velasco, Sergio; Villó, Isidro

    2015-01-01

    One of the continuing challenges facing astronomers today is the need to obtain ever higher resolution images of the sky. Whether studying nearby crowded fields or distant objects, with increased resolution comes the ability to probe systems in more detail and advance our understanding of the Universe. Obtaining these high-resolution images at visible wavelengths however has previously been limited to the Hubble Space Telescope (HST) due to atmospheric effects limiting the spatial resolution of ground-based telescopes to a fraction of their potential. With HST now having a finite lifespan, it is prudent to investigate other techniques capable of providing these kind of observations from the ground. Maintaining this capability is one of the goals of the Adaptive Optics Lucky Imager (AOLI).Achieving the highest resolutions requires the largest telescope apertures, however, this comes at the cost of increased atmospheric distortion. To overcome these atmospheric effects, there are two main techniques employed today: adaptive optics (AO) and lucky imaging. These techniques individually are unable to provide diffraction limited imaging in the visible on large ground-based telescopes; AO currently only works at infrared wavelengths while lucky imaging reduces in effectiveness on telescopes greater than 2.5 metres in diameter. The limitations of both techniques can be overcome by combing them together to provide diffraction limited imaging at visible wavelengths on the ground.The Adaptive Optics Lucky Imager is being developed as a European collaboration and combines AO and lucky imaging in a dedicated instrument for the first time. Initially for use on the 4.2 metre William Herschel Telescope, AOLI uses a low-order adaptive optics system to reduce the effects of atmospheric turbulence before imaging with a lucky imaging based science detector. The AO system employs a novel type of wavefront sensor, the non-linear Curvature Wavefront Sensor (nlCWFS) which provides significant sky-coverage using natural guide-stars alone.Here we present an overview of the instrument design, results from the first on-sky and laboratory testing and on-going development work of the instrument and its adaptive optics system.

  17. An engineered design of a diffractive mask for high precision astrometry

    NASA Astrophysics Data System (ADS)

    Dennison, Kaitlin; Ammons, S. Mark; Garrel, Vincent; Marin, Eduardo; Sivo, Gaetano; Bendek, Eduardo; Guyon, Oliver

    2016-07-01

    AutoCAD, Zemax Optic Studio 15, and Interactive Data Language (IDL) with the Proper Library are used to computationally model and test a diffractive mask (DiM) suitable for use in the Gemini Multi-Conjugate Adaptive Optics System (GeMS) on the Gemini South Telescope. Systematic errors in telescope imagery are produced when the light travels through the adaptive optics system of the telescope. DiM is a transparent, flat optic with a pattern of miniscule dots lithographically applied to it. It is added ahead of the adaptive optics system in the telescope in order to produce diffraction spots that will encode systematic errors in the optics after it. Once these errors are encoded, they can be corrected for. DiM will allow for more accurate measurements in astrometry and thus improve exoplanet detection. The mechanics and physical attributes of the DiM are modeled in AutoCAD. Zemax models the ray propagation of point sources of light through the telescope. IDL and Proper simulate the wavefront and image results of the telescope. Aberrations are added to the Zemax and IDL models to test how the diffraction spots from the DiM change in the final images. Based on the Zemax and IDL results, the diffraction spots are able to encode the systematic aberrations.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennison, Kaitlin; Ammons, S. Mark; Garrel, Vincent

    AutoCAD, Zemax Optic Studio 15, and Interactive Data Language (IDL) with the Proper Library are used to computationally model and test a diffractive mask (DiM) suitable for use in the Gemini Multi-Conjugate Adaptive Optics System (GeMS) on the Gemini South Telescope. Systematic errors in telescope imagery are produced when the light travels through the adaptive optics system of the telescope. DiM is a transparent, flat optic with a pattern of miniscule dots lithographically applied to it. It is added ahead of the adaptive optics system in the telescope in order to produce diffraction spots that will encode systematic errors inmore » the optics after it. Once these errors are encoded, they can be corrected for. DiM will allow for more accurate measurements in astrometry and thus improve exoplanet detection. Furthermore, the mechanics and physical attributes of the DiM are modeled in AutoCAD. Zemax models the ray propagation of point sources of light through the telescope. IDL and Proper simulate the wavefront and image results of the telescope. Aberrations are added to the Zemax and IDL models to test how the diffraction spots from the DiM change in the final images. Based on the Zemax and IDL results, the diffraction spots are able to encode the systematic aberrations.« less

  19. Afocal viewport optics for underwater imaging

    NASA Astrophysics Data System (ADS)

    Slater, Dan

    2014-09-01

    A conventional camera can be adapted for underwater use by enclosing it in a sealed waterproof pressure housing with a viewport. The viewport, as an optical interface between water and air needs to consider both the camera and water optical characteristics while also providing a high pressure water seal. Limited hydrospace visibility drives a need for wide angle viewports. Practical optical interfaces between seawater and air vary from simple flat plate windows to complex water contact lenses. This paper first provides a brief overview of the physical and optical properties of the ocean environment along with suitable optical materials. This is followed by a discussion of the characteristics of various afocal underwater viewport types including flat windows, domes and the Ivanoff corrector lens, a derivative of a Galilean wide angle camera adapter. Several new and interesting optical designs derived from the Ivanoff corrector lens are presented including a pair of very compact afocal viewport lenses that are compatible with both in water and in air environments and an afocal underwater hyper-hemispherical fisheye lens.

  20. Graphite/Cyanate Ester Face Sheets for Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Bennett, Harold; Shaffer, Joseph; Romeo, Robert

    2008-01-01

    It has been proposed that thin face sheets of wide-aperture deformable mirrors in adaptive-optics systems be made from a composite material consisting of cyanate ester filled with graphite. This composite material appears to offer an attractive alternative to low-thermal-expansion glasses that are used in some conventional optics and have been considered for adaptive-optics face sheets. Adaptive-optics face sheets are required to have maximum linear dimensions of the order of meters or even tens of meters for some astronomical applications. If the face sheets were to be made from low-thermal-expansion glasses, then they would also be required to have thicknesses of the order of a millimeter so as to obtain the optimum compromise between the stiffness needed for support and the flexibility needed to enable deformation to controlled shapes by use of actuators. It is difficult to make large glass sheets having thicknesses less than 3 mm, and 3-mm-thick glass sheets are too stiff to be deformable to the shapes typically required for correction of wavefronts of light that has traversed the terrestrial atmosphere. Moreover, the primary commercially produced candidate low-thermal-expansion glass is easily fractured when in the form of thin face sheets. Graphite-filled cyanate ester has relevant properties similar to those of the low-expansion glasses. These properties include a coefficient of thermal expansion (CTE) of the order of a hundredth of the CTEs of other typical mirror materials. The Young s modulus (which quantifies stiffness in tension and compression) of graphite-filled cyanate ester is also similar to the Young's moduli of low-thermal-expansion glasses. However, the fracture toughness of graphite-filled cyanate ester is much greater than that of the primary candidate low-thermal-expansion glass. Therefore, graphite-filled cyanate ester could be made into nearly unbreakable face sheets, having maximum linear dimensions greater than a meter and thicknesses of the order of a millimeter, that would satisfy the requirements for use in adaptive optics.

  1. ADAPTIVE OPTICS IMAGING OF FOVEAL SPARING IN GEOGRAPHIC ATROPHY SECONDARY TO AGE-RELATED MACULAR DEGENERATION.

    PubMed

    Querques, Giuseppe; Kamami-Levy, Cynthia; Georges, Anouk; Pedinielli, Alexandre; Capuano, Vittorio; Blanco-Garavito, Rocio; Poulon, Fanny; Souied, Eric H

    2016-02-01

    To describe adaptive optics (AO) imaging of foveal sparing in geographic atrophy (GA) secondary to age-related macular degeneration. Flood-illumination AO infrared (IR) fundus images were obtained in four consecutive patients with GA using an AO retinal camera (rtx1; Imagine Eyes). Adaptive optics IR images were overlaid with confocal scanning laser ophthalmoscope near-IR autofluorescence images to allow direct correlation of en face AO features with areas of foveal sparing. Adaptive optics appearance of GA and foveal sparing, preservation of functional photoreceptors, and cone densities in areas of foveal sparing were investigated. In 5 eyes of 4 patients (all female; mean age 74.2 ± 11.9 years), a total of 5 images, sized 4° × 4°, of foveal sparing visualized on confocal scanning laser ophthalmoscope near-IR autofluorescence were investigated by AO imaging. En face AO images revealed GA as regions of inhomogeneous hyperreflectivity with irregularly dispersed hyporeflective clumps. By direct comparison with adjacent regions of GA, foveal sparing appeared as well-demarcated areas of reduced reflectivity with less hyporeflective clumps (mean 14.2 vs. 3.2; P = 0.03). Of note, in these areas, en face AO IR images revealed cone photoreceptors as hyperreflective dots over the background reflectivity (mean cone density 3,271 ± 1,109 cones per square millimeter). Microperimetry demonstrated residual function in areas of foveal sparing detected by confocal scanning laser ophthalmoscope near-IR autofluorescence. Adaptive optics allows the appreciation of differences in reflectivity between regions of GA and foveal sparing. Preservation of functional cone photoreceptors was demonstrated on en face AO IR images in areas of foveal sparing detected by confocal scanning laser ophthalmoscope near-IR autofluorescence.

  2. Experimental characterization of an all-optical wavelength converter of OFDM signals using two-mode injection-locking in a Fabry-Pérot laser.

    PubMed

    Dang, Juntao; Yi, Xingwen; Zhang, Jing; Ye, Taiping; Xu, Bo; Qiu, Kun

    2016-07-25

    While optical OFDM has been demonstrated for superior transmission performance, its analogue waveform in the time domain challenges many conventional all-optical wavelength converters (AOWC) that are needed for future flexible optical networks. There only exist a few reports on AOWC of OFDM signals, which are mainly based on the low-efficient four-wave mixing. In this paper, we propose an AOWC for OFDM signals by using two-mode injection-locking in a low-cost Fabry-Pérot laser. The control signal and the probe signal at a milliwatt power level are combined and injected into the FP laser. By a proper control, they can be injection-locked to two longitudinal modes in the FP laser and subsequently, the transmission of the probe signal is conditioned by the control signal. We conduct an experimental study on various aspects of this AOWC. Despite a vendor-specified electrical-to-optical (E/O) modulation bandwidth of 2.5 GHz, we find that the optical-to-optical (O/O) modulation bandwidth of AOWC is free from this limit and can be much wider. We examine the linear transfer curve of the AOWC by simply using the OFDM waveforms as the stimulus. The performance tolerance to the wavelength detuning and injected power ratio is also measured. The proposed AOWC can provide a linear transfer function from the control signal to the probe signal to support the random-fluctuated OFDM waveform. We also investigate the maximum capacity of the AOWC by using the adaptive bit-loading OFDM. Finally, we measure the power penalty after the AOWC at two different bit rates to show the tradeoff between the penalty and capacity.

  3. The JPL optical communications telescope laboratory (OCTL) test bed for the future optical Deep Space Network

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.; Page, N.; Wu, J.; Srinivasan, M.

    2003-01-01

    Relative to RF, the lower power-consumption and lower mass of high bandwidth optical telecommunications make this technology extremely attractive for returning data from future NASA/JPL deep space probes.

  4. Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography.

    PubMed

    Xu, Yang; Liu, Yuan-Zhi; Boppart, Stephen A; Carney, P Scott

    2016-03-10

    In this paper, we introduce an algorithm framework for the automation of interferometric synthetic aperture microscopy (ISAM). Under this framework, common processing steps such as dispersion correction, Fourier domain resampling, and computational adaptive optics aberration correction are carried out as metrics-assisted parameter search problems. We further present the results of this algorithm applied to phantom and biological tissue samples and compare with manually adjusted results. With the automated algorithm, near-optimal ISAM reconstruction can be achieved without manual adjustment. At the same time, the technical barrier for the nonexpert using ISAM imaging is also significantly lowered.

  5. Deformable Mirrors Correct Optical Distortions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    By combining the high sensitivity of space telescopes with revolutionary imaging technologies consisting primarily of adaptive optics, the Terrestrial Planet Finder is slated to have imaging power 100 times greater than the Hubble Space Telescope. To this end, Boston Micromachines Corporation, of Cambridge, Massachusetts, received Small Business Innovation Research (SBIR) contracts from the Jet Propulsion Laboratory for space-based adaptive optical technology. The work resulted in a microelectromechanical systems (MEMS) deformable mirror (DM) called the Kilo-DM. The company now offers a full line of MEMS DMs, which are being used in observatories across the world, in laser communication, and microscopy.

  6. An FPGA design of generalized low-density parity-check codes for rate-adaptive optical transport networks

    NASA Astrophysics Data System (ADS)

    Zou, Ding; Djordjevic, Ivan B.

    2016-02-01

    Forward error correction (FEC) is as one of the key technologies enabling the next-generation high-speed fiber optical communications. In this paper, we propose a rate-adaptive scheme using a class of generalized low-density parity-check (GLDPC) codes with a Hamming code as local code. We show that with the proposed unified GLDPC decoder architecture, a variable net coding gains (NCGs) can be achieved with no error floor at BER down to 10-15, making it a viable solution in the next-generation high-speed fiber optical communications.

  7. Lens-based wavefront sensorless adaptive optics swept source OCT

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.

    2016-06-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects.

  8. An adaptive optics approach for laser beam correction in turbulence utilizing a modified plenoptic camera

    NASA Astrophysics Data System (ADS)

    Ko, Jonathan; Wu, Chensheng; Davis, Christopher C.

    2015-09-01

    Adaptive optics has been widely used in the field of astronomy to correct for atmospheric turbulence while viewing images of celestial bodies. The slightly distorted incoming wavefronts are typically sensed with a Shack-Hartmann sensor and then corrected with a deformable mirror. Although this approach has proven to be effective for astronomical purposes, a new approach must be developed when correcting for the deep turbulence experienced in ground to ground based optical systems. We propose the use of a modified plenoptic camera as a wavefront sensor capable of accurately representing an incoming wavefront that has been significantly distorted by strong turbulence conditions (C2n <10-13 m- 2/3). An intelligent correction algorithm can then be developed to reconstruct the perturbed wavefront and use this information to drive a deformable mirror capable of correcting the major distortions. After the large distortions have been corrected, a secondary mode utilizing more traditional adaptive optics algorithms can take over to fine tune the wavefront correction. This two-stage algorithm can find use in free space optical communication systems, in directed energy applications, as well as for image correction purposes.

  9. Adaptive Temporal Matched Filtering for Noise Suppression in Fiber Optic Distributed Acoustic Sensing.

    PubMed

    Ölçer, İbrahim; Öncü, Ahmet

    2017-06-05

    Distributed vibration sensing based on phase-sensitive optical time domain reflectometry ( ϕ -OTDR) is being widely used in several applications. However, one of the main challenges in coherent detection-based ϕ -OTDR systems is the fading noise, which impacts the detection performance. In addition, typical signal averaging and differentiating techniques are not suitable for detecting high frequency events. This paper presents a new approach for reducing the effect of fading noise in fiber optic distributed acoustic vibration sensing systems without any impact on the frequency response of the detection system. The method is based on temporal adaptive processing of ϕ -OTDR signals. The fundamental theory underlying the algorithm, which is based on signal-to-noise ratio (SNR) maximization, is presented, and the efficacy of our algorithm is demonstrated with laboratory experiments and field tests. With the proposed digital processing technique, the results show that more than 10 dB of SNR values can be achieved without any reduction in the system bandwidth and without using additional optical amplifier stages in the hardware. We believe that our proposed adaptive processing approach can be effectively used to develop fiber optic-based distributed acoustic vibration sensing systems.

  10. Variability of the atmospheric turbulence in the region lake of Baykal

    NASA Astrophysics Data System (ADS)

    Botygina, N. N.; Kopylov, E. A.; Lukin, V. P.; Kovadlo, P. G.; Shihovcev, A. Yu.

    2015-11-01

    The estimations of the fried parameter according to micrometeorological and optical measurements in the atmospheric surface layer in the area of lake Baikal, Baikal astrophysical Observatory. According to the archive of NCEP/NCAR Reanalysis data obtained vertical distribution of temperature pulsations, and revealed the most pronounced atmospheric layers with high turbulence. A comparison of astronomical conditions vision in winter and in summer. By the registration of optical radiation of the Sun with telescopes, ground-based there is a need to compensate for the effects of atmospheric turbulence. Atmospheric turbulence reduces the angular resolution of the observed objects and distorts the structure of the obtained images. To improve image quality, and ideally closer to angular resolution, limited only by diffraction, it is necessary to implement and use adaptive optics system. The specificity of image correction using adaptive optics is that it is necessary not only to compensate for the random jitter of the image as a whole, but also adjust the geometry of the individual parts of the image. Evaluation of atmospheric radius of coherence (Fried parameter) are of interest not only for site-testing research space, but also are the basis for the efficient operation of adaptive optical systems 1 .

  11. Adaptive Temporal Matched Filtering for Noise Suppression in Fiber Optic Distributed Acoustic Sensing

    PubMed Central

    Ölçer, İbrahim; Öncü, Ahmet

    2017-01-01

    Distributed vibration sensing based on phase-sensitive optical time domain reflectometry (ϕ-OTDR) is being widely used in several applications. However, one of the main challenges in coherent detection-based ϕ-OTDR systems is the fading noise, which impacts the detection performance. In addition, typical signal averaging and differentiating techniques are not suitable for detecting high frequency events. This paper presents a new approach for reducing the effect of fading noise in fiber optic distributed acoustic vibration sensing systems without any impact on the frequency response of the detection system. The method is based on temporal adaptive processing of ϕ-OTDR signals. The fundamental theory underlying the algorithm, which is based on signal-to-noise ratio (SNR) maximization, is presented, and the efficacy of our algorithm is demonstrated with laboratory experiments and field tests. With the proposed digital processing technique, the results show that more than 10 dB of SNR values can be achieved without any reduction in the system bandwidth and without using additional optical amplifier stages in the hardware. We believe that our proposed adaptive processing approach can be effectively used to develop fiber optic-based distributed acoustic vibration sensing systems. PMID:28587240

  12. Blind adaptive equalization of polarization-switched QPSK modulation.

    PubMed

    Millar, David S; Savory, Seb J

    2011-04-25

    Coherent detection in combination with digital signal processing has recently enabled significant progress in the capacity of optical communications systems. This improvement has enabled detection of optimum constellations for optical signals in four dimensions. In this paper, we propose and investigate an algorithm for the blind adaptive equalization of one such modulation format: polarization-switched quaternary phase shift keying (PS-QPSK). The proposed algorithm, which includes both blind initialization and adaptation of the equalizer, is found to be insensitive to the input polarization state and demonstrates highly robust convergence in the presence of PDL, DGD and polarization rotation.

  13. Smartphone based point-of-care detector of urine albumin

    NASA Astrophysics Data System (ADS)

    Cmiel, Vratislav; Svoboda, Ondrej; Koscova, Pavlina; Provaznik, Ivo

    2016-03-01

    Albumin plays an important role in human body. Its changed level in urine may indicate serious kidney disorders. We present a new point-of-care solution for sensitive detection of urine albumin - the miniature optical adapter for iPhone with in-built optical filters and a sample slot. The adapter exploits smart-phone flash to generate excitation light and camera to measure the level of emitted light. Albumin Blue 580 is used as albumin reagent. The proposed light-weight adapter can be produced at low cost using a 3D printer. Thus, the miniaturized detector is easy to use out of lab.

  14. Fast calibration of high-order adaptive optics systems.

    PubMed

    Kasper, Markus; Fedrigo, Enrico; Looze, Douglas P; Bonnet, Henri; Ivanescu, Liviu; Oberti, Sylvain

    2004-06-01

    We present a new method of calibrating adaptive optics systems that greatly reduces the required calibration time or, equivalently, improves the signal-to-noise ratio. The method uses an optimized actuation scheme with Hadamard patterns and does not scale with the number of actuators for a given noise level in the wavefront sensor channels. It is therefore highly desirable for high-order systems and/or adaptive secondary systems on a telescope without a Gregorian focal plane. In the latter case, the measurement noise is increased by the effects of the turbulent atmosphere when one is calibrating on a natural guide star.

  15. Non-common path aberration correction in an adaptive optics scanning ophthalmoscope.

    PubMed

    Sulai, Yusufu N; Dubra, Alfredo

    2014-09-01

    The correction of non-common path aberrations (NCPAs) between the imaging and wavefront sensing channel in a confocal scanning adaptive optics ophthalmoscope is demonstrated. NCPA correction is achieved by maximizing an image sharpness metric while the confocal detection aperture is temporarily removed, effectively minimizing the monochromatic aberrations in the illumination path of the imaging channel. Comparison of NCPA estimated using zonal and modal orthogonal wavefront corrector bases provided wavefronts that differ by ~λ/20 in root-mean-squared (~λ/30 standard deviation). Sequential insertion of a cylindrical lens in the illumination and light collection paths of the imaging channel was used to compare image resolution after changing the wavefront correction to maximize image sharpness and intensity metrics. Finally, the NCPA correction was incorporated into the closed-loop adaptive optics control by biasing the wavefront sensor signals without reducing its bandwidth.

  16. OLT-centralized sampling frequency offset compensation scheme for OFDM-PON.

    PubMed

    Chen, Ming; Zhou, Hui; Zheng, Zhiwei; Deng, Rui; Chen, Qinghui; Peng, Miao; Liu, Cuiwei; He, Jing; Chen, Lin; Tang, Xionggui

    2017-08-07

    We propose an optical line terminal (OLT)-centralized sampling frequency offset (SFO) compensation scheme for adaptively-modulated OFDM-PON systems. By using the proposed SFO scheme, the phase rotation and inter-symbol interference (ISI) caused by SFOs between OLT and multiple optical network units (ONUs) can be centrally compensated in the OLT, which reduces the complexity of ONUs. Firstly, the optimal fast Fourier transform (FFT) size is identified in the intensity-modulated and direct-detection (IMDD) OFDM system in the presence of SFO. Then, the proposed SFO compensation scheme including phase rotation modulation (PRM) and length-adaptive OFDM frame has been experimentally demonstrated in the downlink transmission of an adaptively modulated optical OFDM with the optimal FFT size. The experimental results show that up to ± 300 ppm SFO can be successfully compensated without introducing any receiver performance penalties.

  17. Brillouin micro-spectroscopy through aberrations via sensorless adaptive optics

    NASA Astrophysics Data System (ADS)

    Edrei, Eitan; Scarcelli, Giuliano

    2018-04-01

    Brillouin spectroscopy is a powerful optical technique for non-contact viscoelastic characterizations which has recently found applications in three-dimensional mapping of biological samples. Brillouin spectroscopy performances are rapidly degraded by optical aberrations and have therefore been limited to homogenous transparent samples. In this work, we developed an adaptive optics (AO) configuration designed for Brillouin scattering spectroscopy to engineer the incident wavefront and correct for aberrations. Our configuration does not require direct wavefront sensing and the injection of a "guide-star"; hence, it can be implemented without the need for sample pre-treatment. We used our AO-Brillouin spectrometer in aberrated phantoms and biological samples and obtained improved precision and resolution of Brillouin spectral analysis; we demonstrated 2.5-fold enhancement in Brillouin signal strength and 1.4-fold improvement in axial resolution because of the correction of optical aberrations.

  18. Real-time adaptive optics testbed to investigate point-ahead angle in pre-compensation of Earth-to-GEO optical communication.

    PubMed

    Leonhard, Nina; Berlich, René; Minardi, Stefano; Barth, Alexander; Mauch, Steffen; Mocci, Jacopo; Goy, Matthias; Appelfelder, Michael; Beckert, Erik; Reinlein, Claudia

    2016-06-13

    We explore adaptive optics (AO) pre-compensation for optical communication between Earth and geostationary (GEO) satellites in a laboratory experiment. Thus, we built a rapid control prototyping breadboard with an adjustable point-ahead angle where downlink and uplink can operate both at 1064 nm and 1550 nm wavelength. With our real-time system, beam wander resulting from artificial turbulence was reduced such that the beam hits the satellite at least 66% of the time as compared to merely 3% without correction. A seven-fold increase of the average Strehl ratio to (28 ± 15)% at 18 μrad point-ahead angle leads to a considerable reduction of the calculated fading probability. These results make AO pre-compensation a viable technique to enhance Earth-to-GEO optical communication.

  19. Laser communication experiments between Sota and Meo optical ground station

    NASA Astrophysics Data System (ADS)

    Artaud, G.,; Issler, J.-L.; Védrenne, N.; Robert, C.; Petit, C.; Samain, E.; Phung, D.-H.; Maurice, N.; Toyoshima, M.; Kolev, D.

    2017-09-01

    Optical transmissions between earth and space have been identified as key technologies for future high data rate transmissions between satellites and ground. CNES is investigating the use of optics both for High data rate direct to Earth transfer from observation satellites in LEO, and for future telecommunications applications using optics for the high capacity Gateway link.

  20. SILDENAFIL CITRATE INDUCED RETINAL TOXICITY-ELECTRORETINOGRAM, OPTICAL COHERENCE TOMOGRAPHY, AND ADAPTIVE OPTICS FINDINGS.

    PubMed

    Yanoga, Fatoumata; Gentile, Ronald C; Chui, Toco Y P; Freund, K Bailey; Fell, Millie; Dolz-Marco, Rosa; Rosen, Richard B

    2018-02-27

    To report a case of persistent retinal toxicity associated with a high dose of sildenafil citrate intake. Single retrospective case report. A 31-year-old white man with no medical history presented with complaints of bilateral multicolored photopsias and erythropsia (red-tinted vision), shortly after taking sildenafil citrate-purchased through the internet. Patient was found to have cone photoreceptor damage, demonstrated using electroretinogram, optical coherence tomography, and adaptive optics imaging. The patient's symptoms and the photoreceptor structural changes persisted for several months. Sildenafil citrate is a widely used erectile dysfunction medication that is typically associated with transient visual symptoms in normal dosage. At high dosage, sildenafil citrate can lead to persistent retinal toxicity in certain individuals.

  1. Adaptive imaging through far-field turbulence

    NASA Astrophysics Data System (ADS)

    Troxel, Steven E.; Welsh, Byron M.; Roggemann, Michael C.

    1993-11-01

    This paper presents a new method for calculating the field angle dependent average OTF of an adaptive optic system and compares this method to calculations based on geometric optics. Geometric optics calculations are shown to be inaccurate due to the diffraction effects created by far-field turbulence and the approximations made in the atmospheric parameters. Our analysis includes diffraction effects and properly accounts for the effect of the atmospheric turbulence scale sizes. We show that for any atmospheric C(superscript 2)(subscript n) profile, the actual OTF is always better than the OTF calculated using geometric optics. The magnitude of the difference between the calculation methods is shown to be dependent on the amount of far- field turbulence and the values of the outer scale dimension.

  2. Active optics as enabling technology for future large missions: current developments for astronomy and Earth observation at ESA

    NASA Astrophysics Data System (ADS)

    Hallibert, Pascal

    2017-09-01

    In recent years, a trend for higher resolution has increased the entrance apertures of future optical payloads for both Astronomy and Earth Observation most demanding applications, resulting in new opto-mechanical challenges for future systems based on either monolithic or segmented large primary mirrors. Whether easing feasibility and schedule impact of tight manufacturing and integration constraints or correcting mission-critical in-orbit and commissioning effects, Active Optics constitutes an enabling technology for future large optical space instruments at ESA and needs to reach the necessary maturity in time for future mission selection and implementation. We present here a complete updated overview of our current R and D activities in this field, ranging from deformable space-compatible components to full correction chains including wavefront sensing as well as control and correction algorithms. We share as well our perspectives on the way-forward to technological maturity and implementation within future missions.

  3. Adaptive optics at the Subaru telescope: current capabilities and development

    NASA Astrophysics Data System (ADS)

    Guyon, Olivier; Hayano, Yutaka; Tamura, Motohide; Kudo, Tomoyuki; Oya, Shin; Minowa, Yosuke; Lai, Olivier; Jovanovic, Nemanja; Takato, Naruhisa; Kasdin, Jeremy; Groff, Tyler; Hayashi, Masahiko; Arimoto, Nobuo; Takami, Hideki; Bradley, Colin; Sugai, Hajime; Perrin, Guy; Tuthill, Peter; Mazin, Ben

    2014-08-01

    Current AO observations rely heavily on the AO188 instrument, a 188-elements system that can operate in natural or laser guide star (LGS) mode, and delivers diffraction-limited images in near-IR. In its LGS mode, laser light is transported from the solid state laser to the launch telescope by a single mode fiber. AO188 can feed several instruments: the infrared camera and spectrograph (IRCS), a high contrast imaging instrument (HiCIAO) or an optical integral field spectrograph (Kyoto-3DII). Adaptive optics development in support of exoplanet observations has been and continues to be very active. The Subaru Coronagraphic Extreme-AO (SCExAO) system, which combines extreme-AO correction with advanced coronagraphy, is in the commissioning phase, and will greatly increase Subaru Telescope's ability to image and study exoplanets. SCExAO currently feeds light to HiCIAO, and will soon be combined with the CHARIS integral field spectrograph and the fast frame MKIDs exoplanet camera, which have both been specifically designed for high contrast imaging. SCExAO also feeds two visible-light single pupil interferometers: VAMPIRES and FIRST. In parallel to these direct imaging activities, a near-IR high precision spectrograph (IRD) is under development for observing exoplanets with the radial velocity technique. Wide-field adaptive optics techniques are also being pursued. The RAVEN multi-object adaptive optics instrument was installed on Subaru telescope in early 2014. Subaru Telescope is also planning wide field imaging with ground-layer AO with the ULTIMATE-Subaru project.

  4. Motion-form interactions beyond the motion integration level: evidence for interactions between orientation and optic flow signals.

    PubMed

    Pavan, Andrea; Marotti, Rosilari Bellacosa; Mather, George

    2013-05-31

    Motion and form encoding are closely coupled in the visual system. A number of physiological studies have shown that neurons in the striate and extrastriate cortex (e.g., V1 and MT) are selective for motion direction parallel to their preferred orientation, but some neurons also respond to motion orthogonal to their preferred spatial orientation. Recent psychophysical research (Mather, Pavan, Bellacosa, & Casco, 2012) has demonstrated that the strength of adaptation to two fields of transparently moving dots is modulated by simultaneously presented orientation signals, suggesting that the interaction occurs at the level of motion integrating receptive fields in the extrastriate cortex. In the present psychophysical study, we investigated whether motion-form interactions take place at a higher level of neural processing where optic flow components are extracted. In Experiment 1, we measured the duration of the motion aftereffect (MAE) generated by contracting or expanding dot fields in the presence of either radial (parallel) or concentric (orthogonal) counterphase pedestal gratings. To tap the stage at which optic flow is extracted, we measured the duration of the phantom MAE (Weisstein, Maguire, & Berbaum, 1977) in which we adapted and tested different parts of the visual field, with orientation signals presented either in the adapting (Experiment 2) or nonadapting (Experiments 3 and 4) sectors. Overall, the results showed that motion adaptation is suppressed most by orientation signals orthogonal to optic flow direction, suggesting that motion-form interactions also take place at the global motion level where optic flow is extracted.

  5. Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy

    PubMed Central

    Yang, Qiang; Zhang, Jie; Nozato, Koji; Saito, Kenichi; Williams, David R.; Roorda, Austin; Rossi, Ethan A.

    2014-01-01

    Eye motion is a major impediment to the efficient acquisition of high resolution retinal images with the adaptive optics (AO) scanning light ophthalmoscope (AOSLO). Here we demonstrate a solution to this problem by implementing both optical stabilization and digital image registration in an AOSLO. We replaced the slow scanning mirror with a two-axis tip/tilt mirror for the dual functions of slow scanning and optical stabilization. Closed-loop optical stabilization reduced the amplitude of eye-movement related-image motion by a factor of 10–15. The residual RMS error after optical stabilization alone was on the order of the size of foveal cones: ~1.66–2.56 μm or ~0.34–0.53 arcmin with typical fixational eye motion for normal observers. The full implementation, with real-time digital image registration, corrected the residual eye motion after optical stabilization with an accuracy of ~0.20–0.25 μm or ~0.04–0.05 arcmin RMS, which to our knowledge is more accurate than any method previously reported. PMID:25401030

  6. Digital adaptive optics confocal microscopy based on iterative retrieval of optical aberration from a guidestar hologram

    PubMed Central

    Liu, Changgeng; Thapa, Damber; Yao, Xincheng

    2017-01-01

    Guidestar hologram based digital adaptive optics (DAO) is one recently emerging active imaging modality. It records each complex distorted line field reflected or scattered from the sample by an off-axis digital hologram, measures the optical aberration from a separate off-axis digital guidestar hologram, and removes the optical aberration from the distorted line fields by numerical processing. In previously demonstrated DAO systems, the optical aberration was directly retrieved from the guidestar hologram by taking its Fourier transform and extracting the phase term. For the direct retrieval method (DRM), when the sample is not coincident with the guidestar focal plane, the accuracy of the optical aberration retrieved by DRM undergoes a fast decay, leading to quality deterioration of corrected images. To tackle this problem, we explore here an image metrics-based iterative method (MIM) to retrieve the optical aberration from the guidestar hologram. Using an aberrated objective lens and scattering samples, we demonstrate that MIM can improve the accuracy of the retrieved aberrations from both focused and defocused guidestar holograms, compared to DRM, to improve the robustness of the DAO. PMID:28380937

  7. Preliminary result of the solar multi-conjugate adaptive optics for 1m new vacuum solar telescope

    NASA Astrophysics Data System (ADS)

    Zhang, Lanqiang; Kong, Lin; Bao, Hua; Zhu, Lei; Rao, Xuejun; Rao, Changhui

    2016-07-01

    Solar observation with high resolution in large field of view (FoV) is required for some solar active regions with the typical sizes of 1' to 3'. Conventional adaptive optics (AO) could not satisfy this demand because of the atmospheric anisoplanatism. Through compensating the turbulence in different heights, multi-conjugate adaptive optics (MCAO) has been proved to obtain a larger corrected FoV. A MCAO experimental system including a conventional 151-element AO system and a 37-element MCAO part is being developed. The MCAO part contains a 37-element deformable mirror conjugated into the 2km to 5km height and a multi-direction Shack-Hartmann wavefront sensor (MD-SHWFS) with 7×7 subaperture array and 60 arcsec FoV, the frame rate of the MD-SHWFS is up to 840Hz. Three-dimensional (3-D) wavefront sensing utilizing atmospheric tomography had been validated by solar observation. Based on these results, a ground layer adaptive optics (GLAO) experimental system including a 151-element deformable mirror and the MD-SHWFS has been built at the 1m New Vacuum Solar Telescope (NVST). In this paper, the MCAO experimental system will be introduced. The preliminary experimental results of three-dimensional wavefront sensing and GLAO on the NVST of Full-shine Lake Solar Observatory are presented.

  8. Visible light high-resolution imaging system for large aperture telescope by liquid crystal adaptive optics with phase diversity technique.

    PubMed

    Xu, Zihao; Yang, Chengliang; Zhang, Peiguang; Zhang, Xingyun; Cao, Zhaoliang; Mu, Quanquan; Sun, Qiang; Xuan, Li

    2017-08-30

    There are more than eight large aperture telescopes (larger than eight meters) equipped with adaptive optics system in the world until now. Due to the limitations such as the difficulties of increasing actuator number of deformable mirror, most of them work in the infrared waveband. A novel two-step high-resolution optical imaging approach is proposed by applying phase diversity (PD) technique to the open-loop liquid crystal adaptive optics system (LC AOS) for visible light high-resolution adaptive imaging. Considering the traditional PD is not suitable for LC AOS, the novel PD strategy is proposed which can reduce the wavefront estimating error caused by non-modulated light generated by liquid crystal spatial light modulator (LC SLM) and make the residual distortions after open-loop correction to be smaller. Moreover, the LC SLM can introduce any aberration which realizes the free selection of phase diversity. The estimating errors are greatly reduced in both simulations and experiments. The resolution of the reconstructed image is greatly improved on both subjective visual effect and the highest discernible space resolution. Such technique can be widely used in large aperture telescopes for astronomical observations such as terrestrial planets, quasars and also can be used in other applications related to wavefront correction.

  9. Fiber optic interconnect and optoelectronic packaging challenges for future generation avionics

    NASA Astrophysics Data System (ADS)

    Beranek, Mark W.

    2007-02-01

    Forecasting avionics industry fiber optic interconnect and optoelectronic packaging challenges that lie ahead first requires an assumption that military avionics architectures will evolve from today's centralized/unified concept based on gigabit laser, optical-to-electrical-to-optical switching and optical backplane technology, to a future federated/distributed or centralized/unified concept based on gigabit tunable laser, electro-optical switch and add-drop wavelength division multiplexing (WDM) technology. The requirement to incorporate avionics optical built-in test (BIT) in military avionics fiber optic systems is also assumed to be correct. Taking these assumptions further indicates that future avionics systems engineering will use WDM technology combined with photonic circuit integration and advanced packaging to form the technical basis of the next generation military avionics onboard local area network (LAN). Following this theme, fiber optic cable plants will evolve from today's multimode interconnect solution to a single mode interconnect solution that is highly installable, maintainable, reliable and supportable. Ultimately optical BIT for fiber optic fault detection and isolation will be incorporated as an integral part of a total WDM-based avionics LAN solution. Cost-efficient single mode active and passive photonic component integration and packaging integration is needed to enable reliable operation in the harsh military avionics application environment. Rugged multimode fiber-based transmitters and receivers (transceivers) with in-package optical BIT capability are also needed to enable fully BIT capable single-wavelength fiber optic links on both legacy and future aerospace platforms.

  10. Statistical learning methods for aero-optic wavefront prediction and adaptive-optic latency compensation

    NASA Astrophysics Data System (ADS)

    Burns, W. Robert

    Since the early 1970's research in airborne laser systems has been the subject of continued interest. Airborne laser applications depend on being able to propagate a near diffraction-limited laser beam from an airborne platform. Turbulent air flowing over the aircraft produces density fluctuations through which the beam must propagate. Because the index of refraction of the air is directly related to the density, the turbulent flow imposes aberrations on the beam passing through it. This problem is referred to as Aero-Optics. Aero-Optics is recognized as a major technical issue that needs to be solved before airborne optical systems can become routinely fielded. This dissertation research specifically addresses an approach to mitigating the deleterious effects imposed on an airborne optical system by aero-optics. A promising technology is adaptive optics: a feedback control method that measures optical aberrations and imprints the conjugate aberrations onto an outgoing beam. The challenge is that it is a computationally-difficult problem, since aero-optic disturbances are on the order of kilohertz for practical applications. High control loop frequencies and high disturbance frequencies mean that adaptive-optic systems are sensitive to latency in sensors, mirrors, amplifiers, and computation. These latencies build up to result in a dramatic reduction in the system's effective bandwidth. This work presents two variations of an algorithm that uses model reduction and data-driven predictors to estimate the evolution of measured wavefronts over a short temporal horizon and thus compensate for feedback latency. The efficacy of the two methods are compared in this research, and evaluated against similar algorithms that have been previously developed. The best version achieved over 75% disturbance rejection in simulation in the most optically active flow region in the wake of a turret, considerably outperforming conventional approaches. The algorithm is shown to be insensitive to changes in flow condition, and stable in the presence of small latency uncertainty. Consideration is given to practical implementation of the algorithms as well as computational requirement scaling.

  11. Prospects for Measuring Supermassive Black Hole Masses with Future Extremely Large Telescopes

    NASA Astrophysics Data System (ADS)

    Do, Tuan; Wright, S. A.; Barton, E. J.; Barth, A. J.; Simard, L.; Larkin, J. E.; Moore, A.

    2013-01-01

    The next generation of giant-segmented mirror telescopes (> 20 m) will enable us to observe galactic nuclei at much higher angular resolution and sensitivity than ever before. These capabilities will introduce a revolutionary shift in our understanding of the origin and evolution of supermassive black holes by enabling more precise black hole mass measurements in a mass range that is unreachable today. We present simulations and predictions of the observations of nuclei that will be made with the Thirty Meter Telescope (TMT) and the adaptive optics assisted integral-field spectrograph IRIS. These simulations, for the first time, use realistic values for the sky, telescope, adaptive optics system, and instrument, to determine the expected signal-to-noise of a range of possible targets spanning intermediate mass black holes of ~10^4 M⊙ to the most massive black holes known today of >10^10 M⊙. We find that future integral-field spectrographs will be able to observe Milky Way-mass black holes out the distance of the Virgo cluster, and will allow us to observe many more brightest-cluster galaxies where the most massive black holes are thought to reside. We also evaluate how well the kinematic moments of the velocity distributions can be constrained at different spectral resolutions and plate scales. We find that a spectral resolution of ~8000 will be necessary to measure the masses of IMBHs. We find by using the SDSS DR7 catalog of galaxies that over 4000 massive black holes will be observable at distances between 0.005 < z < 0.3 with the estimated sensitivity and angular resolution of TMT. These observations will provide the most accurate dynamical mass measurements of black holes to enable the study of their demography, address the origin of the M_bh-σ and M_bh - L relationships, and the origins and evolution of black holes through cosmic time.

  12. Potential economic benefits of adapting agricultural production systems to future climate change

    USGS Publications Warehouse

    Fagre, Daniel B.; Pederson, Gregory; Bengtson, Lindsey E.; Prato, Tony; Qui, Zeyuan; Williams, Jimmie R.

    2010-01-01

    Potential economic impacts of future climate change on crop enterprise net returns and annual net farm income (NFI) are evaluated for small and large representative farms in Flathead Valley in Northwest Montana. Crop enterprise net returns and NFI in an historical climate period (1960–2005) and future climate period (2006–2050) are compared when agricultural production systems (APSs) are adapted to future climate change. Climate conditions in the future climate period are based on the A1B, B1, and A2 CO2 emission scenarios from the Intergovernmental Panel on Climate Change Fourth Assessment Report. Steps in the evaluation include: (1) specifying crop enterprises and APSs (i.e., combinations of crop enterprises) in consultation with locals producers; (2) simulating crop yields for two soils, crop prices, crop enterprises costs, and NFIs for APSs; (3) determining the dominant APS in the historical and future climate periods in terms of NFI; and (4) determining whether NFI for the dominant APS in the historical climate period is superior to NFI for the dominant APS in the future climate period. Crop yields are simulated using the Environmental/Policy Integrated Climate (EPIC) model and dominance comparisons for NFI are based on the stochastic efficiency with respect to a function (SERF) criterion. Probability distributions that best fit the EPIC-simulated crop yields are used to simulate 100 values for crop yields for the two soils in the historical and future climate periods. Best-fitting probability distributions for historical inflation-adjusted crop prices and specified triangular probability distributions for crop enterprise costs are used to simulate 100 values for crop prices and crop enterprise costs. Averaged over all crop enterprises, farm sizes, and soil types, simulated net return per ha averaged over all crop enterprises decreased 24% and simulated mean NFI for APSs decreased 57% between the historical and future climate periods. Although adapting APSs to future climate change is advantageous (i.e., NFI with adaptation is superior to NFI without adaptation based on SERF), in six of the nine cases in which adaptation is advantageous, NFI with adaptation in the future climate period is inferior to NFI in the historical climate period. Therefore, adaptation of APSs to future climate change in Flathead Valley is insufficient to offset the adverse impacts on NFI of such change.

  13. Potential economic benefits of adapting agricultural production systems to future climate change.

    PubMed

    Prato, Tony; Zeyuan, Qiu; Pederson, Gregory; Fagre, Dan; Bengtson, Lindsey E; Williams, Jimmy R

    2010-03-01

    Potential economic impacts of future climate change on crop enterprise net returns and annual net farm income (NFI) are evaluated for small and large representative farms in Flathead Valley in Northwest Montana. Crop enterprise net returns and NFI in an historical climate period (1960-2005) and future climate period (2006-2050) are compared when agricultural production systems (APSs) are adapted to future climate change. Climate conditions in the future climate period are based on the A1B, B1, and A2 CO(2) emission scenarios from the Intergovernmental Panel on Climate Change Fourth Assessment Report. Steps in the evaluation include: (1) specifying crop enterprises and APSs (i.e., combinations of crop enterprises) in consultation with locals producers; (2) simulating crop yields for two soils, crop prices, crop enterprises costs, and NFIs for APSs; (3) determining the dominant APS in the historical and future climate periods in terms of NFI; and (4) determining whether NFI for the dominant APS in the historical climate period is superior to NFI for the dominant APS in the future climate period. Crop yields are simulated using the Environmental/Policy Integrated Climate (EPIC) model and dominance comparisons for NFI are based on the stochastic efficiency with respect to a function (SERF) criterion. Probability distributions that best fit the EPIC-simulated crop yields are used to simulate 100 values for crop yields for the two soils in the historical and future climate periods. Best-fitting probability distributions for historical inflation-adjusted crop prices and specified triangular probability distributions for crop enterprise costs are used to simulate 100 values for crop prices and crop enterprise costs. Averaged over all crop enterprises, farm sizes, and soil types, simulated net return per ha averaged over all crop enterprises decreased 24% and simulated mean NFI for APSs decreased 57% between the historical and future climate periods. Although adapting APSs to future climate change is advantageous (i.e., NFI with adaptation is superior to NFI without adaptation based on SERF), in six of the nine cases in which adaptation is advantageous, NFI with adaptation in the future climate period is inferior to NFI in the historical climate period. Therefore, adaptation of APSs to future climate change in Flathead Valley is insufficient to offset the adverse impacts on NFI of such change.

  14. Wavefront Analysis of Adaptive Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Hillman, Lloyd

    1997-01-01

    The motivation for this work came from a NASA Headquarters interest in investigating design concepts for a large space telescope employing active optics technology. Current and foreseeable launch vehicles will be limited to carrying around 4-5 meter diameter objects. Thus, if a large, filled-aperture telescope (6-20 meters in diameter) is to be placed in space, it will be required to have a deployable primary mirror. Such a mirror may be an inflatable membrane or a segmented mirror consisting of many smaller pieces. In any case, it is expected that the deployed primary will not be of sufficient quality to achieve diffraction-limited performance for its aperture size. Thus, an active optics system will be needed to correct for initial as well as environmentally-produced primary figure errors. Marshall Space Flight Center has developed considerable expertise in the area of active optics with the PAMELA test-bed. The combination of this experience along with the Marshall optical shop's work in mirror fabrication made MSFC the logical choice to lead NASA's effort to develop active optics technology for large, space-based, astronomical telescopes. Furthermore, UAH's support of MSFC in the areas of optical design, fabrication, and testing of space-based optical systems placed us in a key position to play a major role in the development of this future-generation telescope. A careful study of the active optics components had to be carried out in order to determine control segment size, segment quality, and segment controllability required to achieve diffraction-limited resolution with a given primary mirror. With this in mind, UAH undertook the following effort to provide NASA/MSFC with optical design and analysis support for the large telescope study. All of the work performed under this contract has already been reported, as a team member with MSFC, to NASA Headquarters in a series of presentations given between May and December of 1995. As specified on the delivery order, this report simply summarizes the material with the various UAH-written presentation packages attached as appendices.

  15. A potent approach for the development of FPGA based DAQ system for HEP experiments

    NASA Astrophysics Data System (ADS)

    Khan, Shuaib Ahmad; Mitra, Jubin; David, Erno; Kiss, Tivadar; Nayak, Tapan Kumar

    2017-10-01

    With ever increasing particle beam energies and interaction rates in modern High Energy Physics (HEP) experiments in the present and future accelerator facilities, there has always been the demand for robust Data Acquisition (DAQ) schemes which perform in the harsh radiation environment and handle high data volume. The scheme is required to be flexible enough to adapt to the demands of future detector and electronics upgrades, and at the same time keeping the cost factor in mind. To address these challenges, in the present work, we discuss an efficient DAQ scheme for error resilient, high speed data communication on commercially available state-of-the-art FPGA with optical links. The scheme utilises GigaBit Transceiver (GBT) protocol to establish radiation tolerant communication link between on-detector front-end electronics situated in harsh radiation environment to the back-end Data Processing Unit (DPU) placed in a low radiation zone. The acquired data are reconstructed in DPU which reduces the data volume significantly, and then transmitted to the computing farms through high speed optical links using 10 Gigabit Ethernet (10GbE). In this study, we focus on implementation and testing of GBT protocol and 10GbE links on an Intel FPGA. Results of the measurements of resource utilisation, critical path delays, signal integrity, eye diagram and Bit Error Rate (BER) are presented, which are the indicators for efficient system performance.

  16. Performance verification of adaptive optics for satellite-to-ground coherent optical communications at large zenith angle.

    PubMed

    Chen, Mo; Liu, Chao; Rui, Daoman; Xian, Hao

    2018-02-19

    Although there is an urgent demand, it is still a tremendous challenge to use the coherent optical communication technology to the satellite-to-ground data transmission system especially at large zenith angle due to the influence of atmospheric turbulence. Adaptive optics (AO) is a considerable scheme to solve the problem. In this paper, we integrate the adaptive optics (AO) to the coherent laser communications and the performances of mixing efficiency as well as bit-error-rate (BER) at different zenith angles are studied. The analytical results show that the increasing of zenith angle can severely decrease the performances of the coherent detection, and increase the BER to higher than 10 -3 , which is unacceptable. The simulative results of coherent detection with AO compensation indicate that the larger mixing efficiency and lower BER can be performed by the coherent receiver with a high-mode AO compensation. The experiment of correcting the atmospheric turbulence wavefront distortion using a 249-element AO system at large zenith angles is carried out. The result demonstrates that the AO system has a significant improvement on satellite-to-ground coherent optical communication system at large zenith angle. It also indicates that the 249-element AO system can only meet the needs of coherent communication systems at zenith angle smaller than 65̊ for the 1.8m telescope under weak and moderate turbulence.

  17. Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) by particle swarm optimization

    PubMed Central

    Tehrani, Kayvan F.; Zhang, Yiwen; Shen, Ping; Kner, Peter

    2017-01-01

    Stochastic optical reconstruction microscopy (STORM) can achieve resolutions of better than 20nm imaging single fluorescently labeled cells. However, when optical aberrations induced by larger biological samples degrade the point spread function (PSF), the localization accuracy and number of localizations are both reduced, destroying the resolution of STORM. Adaptive optics (AO) can be used to correct the wavefront, restoring the high resolution of STORM. A challenge for AO-STORM microscopy is the development of robust optimization algorithms which can efficiently correct the wavefront from stochastic raw STORM images. Here we present the implementation of a particle swarm optimization (PSO) approach with a Fourier metric for real-time correction of wavefront aberrations during STORM acquisition. We apply our approach to imaging boutons 100 μm deep inside the central nervous system (CNS) of Drosophila melanogaster larvae achieving a resolution of 146 nm. PMID:29188105

  18. Compact MEMS-based adaptive optics: optical coherence tomography for clinical use

    NASA Astrophysics Data System (ADS)

    Chen, Diana C.; Olivier, Scot S.; Jones, Steven M.; Zawadzki, Robert J.; Evans, Julia W.; Choi, Stacey S.; Werner, John S.

    2008-02-01

    We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography (OCT) system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of limitations on current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in previous AO-OCT instruments. In this instrument, we incorporate an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminates the tedious process of using trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.

  19. Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) by particle swarm optimization.

    PubMed

    Tehrani, Kayvan F; Zhang, Yiwen; Shen, Ping; Kner, Peter

    2017-11-01

    Stochastic optical reconstruction microscopy (STORM) can achieve resolutions of better than 20nm imaging single fluorescently labeled cells. However, when optical aberrations induced by larger biological samples degrade the point spread function (PSF), the localization accuracy and number of localizations are both reduced, destroying the resolution of STORM. Adaptive optics (AO) can be used to correct the wavefront, restoring the high resolution of STORM. A challenge for AO-STORM microscopy is the development of robust optimization algorithms which can efficiently correct the wavefront from stochastic raw STORM images. Here we present the implementation of a particle swarm optimization (PSO) approach with a Fourier metric for real-time correction of wavefront aberrations during STORM acquisition. We apply our approach to imaging boutons 100 μm deep inside the central nervous system (CNS) of Drosophila melanogaster larvae achieving a resolution of 146 nm.

  20. Supersampling multiframe blind deconvolution resolution enhancement of adaptive-optics-compensated imagery of LEO satellites

    NASA Astrophysics Data System (ADS)

    Gerwe, David R.; Lee, David J.; Barchers, Jeffrey D.

    2000-10-01

    A post-processing methodology for reconstructing undersampled image sequences with randomly varying blur is described which can provide image enhancement beyond the sampling resolution of the sensor. This method is demonstrated on simulated imagery and on adaptive optics compensated imagery taken by the Starfire Optical Range 3.5 meter telescope that has been artificially undersampled. Also shown are the results of multiframe blind deconvolution of some of the highest quality optical imagery of low earth orbit satellites collected with a ground based telescope to date. The algorithm used is a generalization of multiframe blind deconvolution techniques which includes a representation of spatial sampling by the focal plane array elements in the forward stochastic model of the imaging system. This generalization enables the random shifts and shape of the adaptive compensated PSF to be used to partially eliminate the aliasing effects associated with sub- Nyquist sampling of the image by the focal plane array. The method could be used to reduce resolution loss which occurs when imaging in wide FOV modes.

Top