Study of the Application of Separation Control by Unsteady Excitation to Civil Transport Aircraft
NASA Technical Reports Server (NTRS)
McLean, J. D.; Crouch, J. D.; Stoner, R. C.; Sakurai, S.; Seidel, G. E.; Feifel, W. M.; Rush, H. M.
1999-01-01
This study provides a preliminary assessment of the potential benefits of applying unsteady separation control to transport aircraft. Estimates are given for some of the costs associated with a specific application to high-lift systems. High-leverage areas for future research were identified during the course of the study. The study was conducted in three phases. Phase 1 consisted of a coarse screening of potential applications within the aerodynamics discipline. Potential benefits were identified and in some cases quantified in a preliminary way. Phase 2 concentrated on the application to the wing high-lift system, deemed to have the greatest potential benefit for commercial transports. A team of experts, including other disciplines (i.e. hydraulic, mechanical, and electrical systems, structures, configurations, manufacturing, and finance), assessed the feasibility, benefits, and costs to arrive at estimates of net benefits. In both phases of the study, areas of concern and areas for future research were identified. In phase 3 of this study, the high-leverage areas for future research were prioritized as a guide for future efforts aimed at the application of active flow control to commercial transport aircraft.
Future applications of artificial intelligence to Mission Control Centers
NASA Technical Reports Server (NTRS)
Friedland, Peter
1991-01-01
Future applications of artificial intelligence to Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: basic objectives of the NASA-wide AI program; inhouse research program; constraint-based scheduling; learning and performance improvement for scheduling; GEMPLAN multi-agent planner; planning, scheduling, and control; Bayesian learning; efficient learning algorithms; ICARUS (an integrated architecture for learning); design knowledge acquisition and retention; computer-integrated documentation; and some speculation on future applications.
Large-area fabrication of superhydrophobic surfaces for practical applications: an overview
Xue, Chao-Hua; Jia, Shun-Tian; Zhang, Jing; Ma, Jian-Zhong
2010-01-01
This review summarizes the key topics in the field of large-area fabrication of superhydrophobic surfaces, concentrating on substrates that have been used in commercial applications. Practical approaches to superhydrophobic surface construction and hydrophobization are discussed. Applications of superhydrophobic surfaces are described and future trends in superhydrophobic surfaces are predicted. PMID:27877336
The presentation summarizes developments of ongoing applications of fine-scale (geometry specific) CFD simulations to urban areas within atmospheric boundary layers. Enabling technology today and challenges for the future are discussed. There is a challenging need to develop a ...
Building from In Vivo Research to the Future of Research on Relational Thinking and Learning
ERIC Educational Resources Information Center
Schunn, Christian D.
2017-01-01
This concluding commentary takes the perspective of research on practicing scientists and engineers to consider what open areas and future directions on relational thinking and learning should be considered beyond the impressive research presented in the special issue. Areas for more work include (a) a need to examine educational applications of…
Applications for Freeforms Optics at NASA
NASA Technical Reports Server (NTRS)
West, Garrett J.; Howard, Joseph M.
2017-01-01
Review freeform optic applications as NASA. Describe design study results showing benefits of freeform optics to the instrument size, image quality, and field of view. Review areas of study and improvements needed to freeform manufacturing for future applications.
Life sciences today and tomorrow: emerging biotechnologies.
Williamson, E Diane
2017-08-01
The purpose of this review is to survey current, emerging and predicted future biotechnologies which are impacting, or are likely to impact in the future on the life sciences, with a projection for the coming 20 years. This review is intended to discuss current and future technical strategies, and to explore areas of potential growth during the foreseeable future. Information technology approaches have been employed to gather and collate data. Twelve broad categories of biotechnology have been identified which are currently impacting the life sciences and will continue to do so. In some cases, technology areas are being pushed forward by the requirement to deal with contemporary questions such as the need to address the emergence of anti-microbial resistance. In other cases, the biotechnology application is made feasible by advances in allied fields in biophysics (e.g. biosensing) and biochemistry (e.g. bio-imaging). In all cases, the biotechnologies are underpinned by the rapidly advancing fields of information systems, electronic communications and the World Wide Web together with developments in computing power and the capacity to handle extensive biological data. A rationale and narrative is given for the identification of each technology as a growth area. These technologies have been categorized by major applications, and are discussed further. This review highlights: Biotechnology has far-reaching applications which impinge on every aspect of human existence. The applications of biotechnology are currently wide ranging and will become even more diverse in the future. Access to supercomputing facilities and the ability to manipulate large, complex biological datasets, will significantly enhance knowledge and biotechnological development.
From Sensor to Observation Web with environmental enablers in the Future Internet.
Havlik, Denis; Schade, Sven; Sabeur, Zoheir A; Mazzetti, Paolo; Watson, Kym; Berre, Arne J; Mon, Jose Lorenzo
2011-01-01
This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities' environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term "envirofied" Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management).
From Sensor to Observation Web with Environmental Enablers in the Future Internet
Havlik, Denis; Schade, Sven; Sabeur, Zoheir A.; Mazzetti, Paolo; Watson, Kym; Berre, Arne J.; Mon, Jose Lorenzo
2011-01-01
This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term “envirofied” Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management). PMID:22163827
Assessment of the application of advanced technologies to subsonic CTOL transport aircraft
NASA Technical Reports Server (NTRS)
Graef, J. D.; Sallee, G. P.; Verges, J. T.
1974-01-01
Design studies of the application of advanced technologies to future transport aircraft were conducted. These studies were reviewed from the perspective of an air carrier. A fundamental study of the elements of airplane operating cost was performed, and the advanced technologies were ranked in order of potential profit impact. Recommendations for future study areas are given.
A review of volume‐area scaling of glaciers
Bahr, David B.; Kaser, Georg
2015-01-01
Abstract Volume‐area power law scaling, one of a set of analytical scaling techniques based on principals of dimensional analysis, has become an increasingly important and widely used method for estimating the future response of the world's glaciers and ice caps to environmental change. Over 60 papers since 1988 have been published in the glaciological and environmental change literature containing applications of volume‐area scaling, mostly for the purpose of estimating total global glacier and ice cap volume and modeling future contributions to sea level rise from glaciers and ice caps. The application of the theory is not entirely straightforward, however, and many of the recently published results contain analyses that are in conflict with the theory as originally described by Bahr et al. (1997). In this review we describe the general theory of scaling for glaciers in full three‐dimensional detail without simplifications, including an improved derivation of both the volume‐area scaling exponent γ and a new derivation of the multiplicative scaling parameter c. We discuss some common misconceptions of the theory, presenting examples of both appropriate and inappropriate applications. We also discuss potential future developments in power law scaling beyond its present uses, the relationship between power law scaling and other modeling approaches, and some of the advantages and limitations of scaling techniques. PMID:27478877
The European nanometrology landscape.
Leach, Richard K; Boyd, Robert; Burke, Theresa; Danzebrink, Hans-Ulrich; Dirscherl, Kai; Dziomba, Thorsten; Gee, Mark; Koenders, Ludger; Morazzani, Valérie; Pidduck, Allan; Roy, Debdulal; Unger, Wolfgang E S; Yacoot, Andrew
2011-02-11
This review paper summarizes the European nanometrology landscape from a technical perspective. Dimensional and chemical nanometrology are discussed first as they underpin many of the developments in other areas of nanometrology. Applications for the measurement of thin film parameters are followed by two of the most widely relevant families of functional properties: measurement of mechanical and electrical properties at the nanoscale. Nanostructured materials and surfaces, which are seen as key materials areas having specific metrology challenges, are covered next. The final section describes biological nanometrology, which is perhaps the most interdisciplinary applications area, and presents unique challenges. Within each area, a review is provided of current status, the capabilities and limitations of current techniques and instruments, and future directions being driven by emerging industrial measurement requirements. Issues of traceability, standardization, national and international programmes, regulation and skills development will be discussed in a future paper.
The European nanometrology landscape
NASA Astrophysics Data System (ADS)
Leach, Richard K.; Boyd, Robert; Burke, Theresa; Danzebrink, Hans-Ulrich; Dirscherl, Kai; Dziomba, Thorsten; Gee, Mark; Koenders, Ludger; Morazzani, Valérie; Pidduck, Allan; Roy, Debdulal; Unger, Wolfgang E. S.; Yacoot, Andrew
2011-02-01
This review paper summarizes the European nanometrology landscape from a technical perspective. Dimensional and chemical nanometrology are discussed first as they underpin many of the developments in other areas of nanometrology. Applications for the measurement of thin film parameters are followed by two of the most widely relevant families of functional properties: measurement of mechanical and electrical properties at the nanoscale. Nanostructured materials and surfaces, which are seen as key materials areas having specific metrology challenges, are covered next. The final section describes biological nanometrology, which is perhaps the most interdisciplinary applications area, and presents unique challenges. Within each area, a review is provided of current status, the capabilities and limitations of current techniques and instruments, and future directions being driven by emerging industrial measurement requirements. Issues of traceability, standardization, national and international programmes, regulation and skills development will be discussed in a future paper.
Current status and future directions of precision agriculture for aerial application in the USA
USDA-ARS?s Scientific Manuscript database
Precision aerial application in the USA is less than a decade old since the development of the first variable-rate aerial application system. Many areas of the United States rely on readily available agricultural airplanes or helicopters for pest management. Variable-rate aerial application provides...
Advanced Sensors and Applications Study (ASAS)
NASA Technical Reports Server (NTRS)
Chism, S. B.; Hughes, C. L.
1976-01-01
The present EOD requirements for sensors in the space shuttle era are reported with emphasis on those applications which were deemed important enough to warrant separate sections. The application areas developed are: (1) agriculture; (2) atmospheric corrections; (3) cartography; (4) coastal studies; (5) forestry; (6) geology; (7) hydrology; (8) land use; (9) oceanography; and (10) soil moisture. For each application area. The following aspects were covered: (1) specific goals and techniques, (2) individual sensor requirements including types, bands, resolution, etc.; (3) definition of mission requirements, type orbits, coverages, etc.; and (4) discussion of anticipated problem areas and solutions. The remote sensors required for these application areas include; (1) camera systems; (2) multispectral scanners; (3) microwave scatterometers; (4) synthetic aperture radars; (5) microwave radiometers; and (6) vidicons. The emphasis in the remote sensor area was on the evaluation of present technology implications about future systems.
Advanced scanners and imaging systems for earth observations. [conferences
NASA Technical Reports Server (NTRS)
1973-01-01
Assessments of present and future sensors and sensor related technology are reported along with a description of user needs and applications. Five areas are outlined: (1) electromechanical scanners, (2) self-scanned solid state sensors, (3) electron beam imagers, (4) sensor related technology, and (5) user applications. Recommendations, charts, system designs, technical approaches, and bibliographies are included for each area.
[Application of lower body negative pressure (LBNP) in aerospace medicine].
Wu, Ping; Xie, Bao-sheng; Huang, Wei-fen
2002-06-01
Effects of LBNP is similar to that produced by gravitational force, especially as a stress factor on the cardiovascular system as has been concerned in the area of aerospace medicine. This paper described experimental equipment, methods and physiological effects of LBNP, especially its application in the area of aerospace medicine. Several aspects for future research were put forward.
Local Area Networks and the Learning Lab of the Future.
ERIC Educational Resources Information Center
Ebersole, Dennis C.
1987-01-01
Considers educational applications of local area computer networks and discusses industry standards for design established by the International Standards Organization (ISO) and Institute of Electrical and Electronic Engineers (IEEE). A futuristic view of a learning laboratory using a local area network is presented. (Author/LRW)
Application of computational physics within Northrop
NASA Technical Reports Server (NTRS)
George, M. W.; Ling, R. T.; Mangus, J. F.; Thompkins, W. T.
1987-01-01
An overview of Northrop programs in computational physics is presented. These programs depend on access to today's supercomputers, such as the Numerical Aerodynamical Simulator (NAS), and future growth on the continuing evolution of computational engines. Descriptions here are concentrated on the following areas: computational fluid dynamics (CFD), computational electromagnetics (CEM), computer architectures, and expert systems. Current efforts and future directions in these areas are presented. The impact of advances in the CFD area is described, and parallels are drawn to analagous developments in CEM. The relationship between advances in these areas and the development of advances (parallel) architectures and expert systems is also presented.
Influence of IR sensor technology on the military and civil defense
NASA Astrophysics Data System (ADS)
Becker, Latika
2006-02-01
Advances in basic infrared science and developments in pertinent technology applications have led to mature designs being incorporated in civil as well as military area defense systems. Military systems include both tactical and strategic, and civil area defense includes homeland security. Technical challenges arise in applying infrared sensor technology to detect and track targets for space and missile defense. Infrared sensors are valuable due to their passive capability, lower mass and power consumption, and their usefulness in all phases of missile defense engagements. Nanotechnology holds significant promise in the near future by offering unique material and physical properties to infrared components. This technology is rapidly developing. This presentation will review the current IR sensor technology, its applications, and future developments that will have an influence in military and civil defense applications.
Wide Bandgap Semiconductor Opportunities in Power Electronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Sujit; Marlino, Laura D.; Armstrong, Kristina O.
The report objective is to explore the Wide Bandgap (WBG) Power Electronics (PE) market, applications, and potential energy savings in order to identify key areas where further resources and investments of the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (DOE EERE) would have the most impact on U.S. competiveness. After considering the current market, several potential near-term application areas were identified as having significant market and energy savings potential with respect to clean energy applications: (1) data centers (uninterruptible power supplies and server power supplies); (2) renewable energy generation (photovoltaic-solar and wind); (3) motor drives (industrial,more » commercial and residential); (4) rail traction; and, (5) hybrid and electric vehicles (traction and charging). After the initial explorative analyses, it became clear that, SiC, not GaN, would be the principal WBG power device material for the chosen markets in the near future. Therefore, while GaN is discussed when appropriate, this report focuses on SiC devices, other WBG applications (e.g., solid-state transformers, combined heat and power, medical, and wireless power), the GaN market, and GaN specific applications (e.g., LiDAR, 5G) will be explored at a later date. In addition to the market, supply and value chain analyses addressed in Section 1 of this report, a SWOT (Strength, Weakness, Opportunity, Threat) analysis and potential energy savings analysis was conducted for each application area to identify the major potential WBG application area(s) with a U.S. competitiveness opportunity in the future.« less
Six Sigma in healthcare delivery.
Liberatore, Matthew J
2013-01-01
The purpose of this paper is to conduct a comprehensive review and assessment of the extant Six Sigma healthcare literature, focusing on: application, process changes initiated and outcomes, including improvements in process metrics, cost and revenue. Data were obtained from an extensive literature search. Healthcare Six Sigma applications were categorized by functional area and department, key process metric, cost savings and revenue generation (if any) and other key implementation characteristics. Several inpatient care areas have seen most applications, including admission, discharge, medication administration, operating room (OR), cardiac and intensive care. About 42.1 percent of the applications have error rate as their driving metric, with the remainder focusing on process time (38 percent) and productivity (18.9 percent). While 67 percent had initial improvement in the key process metric, only 10 percent reported sustained improvement. Only 28 percent reported cost savings and 8 percent offered revenue enhancement. These results do not favorably assess Six Sigma's overall effectiveness and the value it offers healthcare. Results are based on reported applications. Future research can include directly surveying healthcare organizations to provide additional data for assessment. Future application should emphasize obtaining improvements that lead to significant and sustainable value. Healthcare staff can use the results to target promising areas. This article comprehensively assesses Six Sigma healthcare applications and impact.
NASA Technical Reports Server (NTRS)
1990-01-01
Papers presented at the conference on hypermedia and information reconstruction are compiled. The following subject areas are covered: real-world hypermedia projects, aerospace applications, and future directions in hypermedia research and development.
Current capabilities and future directions in computational fluid dynamics
NASA Technical Reports Server (NTRS)
1986-01-01
A summary of significant findings is given, followed by specific recommendations for future directions of emphasis for computational fluid dynamics development. The discussion is organized into three application areas: external aerodynamics, hypersonics, and propulsion - and followed by a turbulence modeling synopsis.
NASA Technical Reports Server (NTRS)
Weldon, W. F.
1980-01-01
The applicability/compatibility of inertial energy storage systems like the homopolar generator (HPG) and the compensated pulsed alternator (CPA) to future space missions is explored. Areas of CPA and HPG design requiring development for space applications are identified. The manner in which acceptance parameters of the CPA and HPG scale with operating parameters of the machines are explored and the types of electrical loads which are compatible with the CPA and HPG are examined. Potential applications including the magnetoplasmadynamic (MPD) thruster, pulsed data transmission, laser ranging, welding and electromagnetic space launch are discussed.
Applications of Telemedicine and Telecommunications to Disaster Medicine
Garshnek, Victoria; Burkle, Frederick M.
1999-01-01
Disaster management utilizes diverse technologies to accomplish a complex set of tasks. Despite a decade of experience, few published reports have reviewed application of telemedicine (clinical care at a distance enabled by telecommunication) in disaster situations. Appropriate new telemedicine applications can improve future disaster medicine outcomes, based on lessons learned from a decade of civilian and military disaster (wide-area) telemedicine deployments. This manuscript reviews the history of telemedicine activities in actual disasters and similar scenarios as well as ongoing telemedicine innovations that may be applicable to disaster situations. Emergency care providers must begin to plan effectively to utilize disaster-specific telemedicine applications to improve future outcomes. PMID:9925226
Large scale systems : a study of computer organizations for air traffic control applications.
DOT National Transportation Integrated Search
1971-06-01
Based on current sizing estimates and tracking algorithms, some computer organizations applicable to future air traffic control computing systems are described and assessed. Hardware and software problem areas are defined and solutions are outlined.
AnnAGNPS Model Application for the Future Midwest Landscape Study
The Future Midwest Landscape (FML) project is part of the US Environmental Protection Agency (EPA)’s new Ecosystem Services Research Program, undertaken to examine the variety of ways in which landscapes that include crop lands, conservation areas, wetlands, lakes, and streams af...
Applications of Tethers in Space
NASA Technical Reports Server (NTRS)
Cron, A. C.
1985-01-01
The proceedings of the first workshop on applications of tethers in space are summarized. The workshop gathered personalities from industry, academic institutions and government to discuss the relatively new area of applied technology of very long tethers in space to a broad spectrum of future space missions. A large number of tethered concepts and configurations was presented covering electrodynamic interaction tethers, tethered transportation through angular momentum exchange, tethered constellations, low gravity utilization, applicable technology, and tethered test facilities. Specific recommendations were made to NASA in each area.
Recent research on emergent verbal behavior: clinical applications and future directions.
Grow, Laura L; Kodak, Tiffany
2010-01-01
This paper describes recent studies that have evaluated the functional independence of verbal operants. Procedures that facilitate the emergence of untrained verbal operants and important areas of future research to increase efficiency of language programs for children diagnosed with developmental disabilities are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, C.H.; Bernard, S.; Andersen, G.L.
2009-03-01
Interactions between plants and microbes are an integral part of our terrestrial ecosystem. Microbe-plant interactions are being applied in many areas. In this review, we present recent reports of applications in the areas of plant-growth promotion, biocontrol, bioactive compound and biomaterial production, remediation and carbon sequestration. Challenges, limitations and future outlook for each field are discussed.
USDA-ARS?s Scientific Manuscript database
The first variable-rate aerial application system was developed about a decade ago in the USA and since then, aerial application has benefitted from these technologies. Many areas of the United States rely on readily available agricultural airplanes or helicopters for pest management, and variable-...
AnnAGNPS Model Application for Nitrogen Loading Assessment for the Future Midwest Landscape Study
The Future Midwest Landscape (FML) project is part of the US Environmental Protection Agency (EPA)’s new Ecosystem Services Research Program, undertaken to examine the variety of ways in which landscapes that include crop lands, conservation areas, wetlands, lakes, and streams af...
RECENT RESEARCH ON EMERGENT VERBAL BEHAVIOR: CLINICAL APPLICATIONS AND FUTURE DIRECTIONS
Grow, Laura L; Kodak, Tiffany
2010-01-01
This paper describes recent studies that have evaluated the functional independence of verbal operants. Procedures that facilitate the emergence of untrained verbal operants and important areas of future research to increase efficiency of language programs for children diagnosed with developmental disabilities are discussed. PMID:21541166
A survey of application: genomics and genetic programming, a new frontier.
Khan, Mohammad Wahab; Alam, Mansaf
2012-08-01
The aim of this paper is to provide an introduction to the rapidly developing field of genetic programming (GP). Particular emphasis is placed on the application of GP to genomics. First, the basic methodology of GP is introduced. This is followed by a review of applications in the areas of gene network inference, gene expression data analysis, SNP analysis, epistasis analysis and gene annotation. Finally this paper concluded by suggesting potential avenues of possible future research on genetic programming, opportunities to extend the technique, and areas for possible practical applications. Copyright © 2012 Elsevier Inc. All rights reserved.
The Role of Ambulatory Assessment in Psychological Science.
Trull, Timothy J; Ebner-Priemer, Ulrich
2014-12-01
We describe the current use and future promise of an innovative methodology, ambulatory assessment (AA), that can be used to investigate psychological, emotional, behavioral, and biological processes of individuals in their daily life. The term AA encompasses a wide range of methods used to study people in their natural environment, including momentary self-report, observational, and physiological. We emphasize applications of AA that integrate two or more of these methods, discuss the smart phone as a hub or access point for AA, and discuss future applications of AA methodology to the science of psychology. We pay particular attention to the development and application of Wireless Body Area Networks (WBANs) that can be implemented with smart phones and wireless physiological monitoring devices, and we close by discussing future applications of this approach to matters relevant to psychological science.
Biosensors for marine applications. We all need the sea, but does the sea need biosensors?
Kröger, Silke; Law, Robin J
2005-04-15
The aim of the paper is to explain the rationale behind marine biosensor applications, give an overview of measurement strategies currently employed, summarise some of the relevant available biosensor technology as well as instrumentation requirements for marine sensors and attempt a forward look at what the future might hold in terms of needs and developments. Application areas considered are eutrophication, organism detection, food safety, pollutants, trace metals and ecotoxicology. The drivers for many of these studies are discussed and the policy environment for current and future measurements is outlined.
Wireless Technology Use Case Requirement Analysis for Future Space Applications
NASA Technical Reports Server (NTRS)
Abedi, Ali; Wilkerson, DeLisa
2016-01-01
This report presents various use case scenarios for wireless technology -including radio frequency (RF), optical, and acoustic- and studies requirements and boundary conditions in each scenario. The results of this study can be used to prioritize technology evaluation and development and in the long run help in development of a roadmap for future use of wireless technology. The presented scenarios cover the following application areas: (i) Space Vehicles (manned/unmanned), (ii) Satellites and Payloads, (iii) Surface Explorations, (iv) Ground Systems, and (v) Habitats. The requirement analysis covers two parallel set of conditions. The first set includes the environmental conditions such as temperature, radiation, noise/interference, wireless channel characteristics and accessibility. The second set of requirements are dictated by the application and may include parameters such as latency, throughput (effective data rate), error tolerance, and reliability. This report provides a comprehensive overview of all requirements from both perspectives and details their effects on wireless system reliability and network design. Application area examples are based on 2015 NASA Technology roadmap with specific focus on technology areas: TA 2.4, 3.3, 5.2, 5.5, 6.4, 7.4, and 10.4 sections that might benefit from wireless technology.
Forecasting the Economic Impact of Future Space Station Operations
NASA Technical Reports Server (NTRS)
Summer, R. A.; Smolensky, S. M.; Muir, A. H.
1967-01-01
Recent manned and unmanned Earth-orbital operations have suggested great promise of improved knowledge and of substantial economic and associated benefits to be derived from services offered by a space station. Proposed application areas include agriculture, forestry, hydrology, public health, oceanography, natural disaster warning, and search/rescue operations. The need for reliable estimates of economic and related Earth-oriented benefits to be realized from Earth-orbital operations is discussed and recent work in this area is reviewed. Emphasis is given to those services based on remote sensing. Requirements for a uniform, comprehensive and flexible methodology are discussed. A brief review of the suggested methodology is presented. This methodology will be exercised through five case studies which were chosen from a gross inventory of almost 400 user candidates. The relationship of case study results to benefits in broader application areas is discussed, Some management implications of possible future program implementation are included.
Wu, Cindy H.; Bernard, Stéphanie M.; Andersen, Gary L.; Chen, Wilfred
2009-01-01
Summary Interactions between plants and microbes are an integral part of our terrestrial ecosystem. Microbe–plant interactions are being applied in many areas. In this review, we present recent reports of applications in the areas of plant‐growth promotion, biocontrol, bioactive compound and biomaterial production, remediation and carbon sequestration. Challenges, limitations and future outlook for each field are discussed. PMID:21255275
Advanced laptop and small personal computer technology
NASA Technical Reports Server (NTRS)
Johnson, Roger L.
1991-01-01
Advanced laptop and small personal computer technology is presented in the form of the viewgraphs. The following areas of hand carried computers and mobile workstation technology are covered: background, applications, high end products, technology trends, requirements for the Control Center application, and recommendations for the future.
Multiobjective optimization in bioinformatics and computational biology.
Handl, Julia; Kell, Douglas B; Knowles, Joshua
2007-01-01
This paper reviews the application of multiobjective optimization in the fields of bioinformatics and computational biology. A survey of existing work, organized by application area, forms the main body of the review, following an introduction to the key concepts in multiobjective optimization. An original contribution of the review is the identification of five distinct "contexts," giving rise to multiple objectives: These are used to explain the reasons behind the use of multiobjective optimization in each application area and also to point the way to potential future uses of the technique.
CONTACT: An Air Force technical report on military satellite control technology
NASA Astrophysics Data System (ADS)
Weakley, Christopher K.
1993-07-01
This technical report focuses on Military Satellite Control Technologies and their application to the Air Force Satellite Control Network (AFSCN). This report is a compilation of articles that provide an overview of the AFSCN and the Advanced Technology Program, and discusses relevant technical issues and developments applicable to the AFSCN. Among the topics covered are articles on Future Technology Projections; Future AFSCN Topologies; Modeling of the AFSCN; Wide Area Communications Technology Evolution; Automating AFSCN Resource Scheduling; Health & Status Monitoring at Remote Tracking Stations; Software Metrics and Tools for Measuring AFSCN Software Performance; Human-Computer Interface Working Group; Trusted Systems Workshop; and the University Technical Interaction Program. In addition, Key Technology Area points of contact are listed in the report.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Science and Technology.
Congressional hearings held on October 8-10, 1985, were meant to characterize the attributes of past successes of the United States' efforts in the space sciences, and to project the direction of future research in that area. This report prepared by the subcommittee on space science and application includes recommendations of expert panels on…
New applications of particle accelerators in medicine, materials science, and industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knapp, E.A.
1981-01-01
Recently, the application of particle accelerators to medicine, materials science, and other industrial uses has increased dramatically. A random sampling of some of these new programs is discussed, primarily to give the scope of these new applications. The three areas, medicine, materials science or solid-state physics, and industrial applications, are chosen for their diversity and are representative of new accelerator applications for the future.
The Application of Natural Language Processing to Augmentative and Alternative Communication
ERIC Educational Resources Information Center
Higginbotham, D. Jeffery; Lesher, Gregory W.; Moulton, Bryan J.; Roark, Brian
2012-01-01
Significant progress has been made in the application of natural language processing (NLP) to augmentative and alternative communication (AAC), particularly in the areas of interface design and word prediction. This article will survey the current state-of-the-science of NLP in AAC and discuss its future applications for the development of next…
Next generation information communication infrastructure and case studies for future power systems
NASA Astrophysics Data System (ADS)
Qiu, Bin
As power industry enters the new century, powerful driving forces, uncertainties and new functions are compelling electric utilities to make dramatic changes in their information communication infrastructure. Expanding network services such as real time measurement and monitoring are also driving the need for more bandwidth in the communication network. These needs will grow further as new remote real-time protection and control applications become more feasible and pervasive. This dissertation addresses two main issues for the future power system information infrastructure: communication network infrastructure and associated power system applications. Optical networks no doubt will become the predominant data transmission media for next generation power system communication. The rapid development of fiber optic network technology poses new challenges in the areas of topology design, network management and real time applications. Based on advanced fiber optic technologies, an all-fiber network is investigated and proposed. The study will cover the system architecture and data exchange protocol aspects. High bandwidth, robust optical networks could provide great opportunities to the power system for better service and efficient operation. In the dissertation, different applications are investigated. One of the typical applications is the SCADA information accessing system. An Internet-based application for the substation automation system will be presented. VLSI (Very Large Scale Integration) technology is also used for one-line diagrams auto-generation. High transition rate and low latency optical network is especially suitable for power system real time control. In the dissertation, a new local area network based Load Shedding Controller (LSC) for isolated power system will be presented. By using PMU (Phasor Measurement Unit) and fiber optic network, an AGE (Area Generation Error) based accurate wide area load shedding scheme will also be proposed. The objective is to shed the load in the limited area with minimum disturbance.
Partner Enabling of Substance Use Disorders: Critical Review and Future Directions.
ERIC Educational Resources Information Center
Rotunda, Rob J.; Doman, Kathy
2001-01-01
Substance use disorders affect not only the identified client but significant others as well. This article contrasts the enabling and codependency constructs, reviews empirical studies of enabling, and offers a conceptualization of partner responses to addiction that could enhance future research efforts and clinical applications in this area. (BF)
ERIC Educational Resources Information Center
Simonic, Tomaz; Mlinar, Tomi
2000-01-01
Discusses the planning and provision of mobile communications in Slovenia and suggests areas that will be developed in the future. Topics include the global mobile market; digital mobile networks; evolution from voice to multimedia services; wireless application protocol; the Internet; general packet radio service; and universal mobile…
Designing future landscapes from principles of form and function
Larry D. Harris; Patrick Kangas
1979-01-01
Future landscapes will consist of a gradient of types ranging from wilderness areas to totally "humanized" environments. The man-dominated landscapes will be required to fulfill multiple functions only one of which is aesthetic enjoyment. It is suggested that basic principles of form and function may contribute to design criteria. Applications to the...
Perspectives on Imaging: Advanced Applications. Introduction and Overview.
ERIC Educational Resources Information Center
Lynch, Clifford A.; Lunin, Lois F.
1991-01-01
Provides an overview of six articles that address relationships between electronic imaging technology and information science. Articles discuss the areas of technology; applications in the fields of visual arts, medicine, and textile history; conceptual foundations; and future visions, including work in virtual reality and cyberspace. (LRW)
Microwave Tissue Ablation: Biophysics, Technology and Applications
2010-01-01
Microwave ablation is an emerging treatment option for many cancers, cardiac arrhythmias and other medical conditions. During treatment, microwaves are applied directly to tissues to produce rapid temperature elevations sufficient to produce immediate coagulative necrosis. The engineering design criteria for each application differ, with individual consideration for factors such as desired ablation zone size, treatment duration, and procedural invasiveness. Recent technological developments in applicator cooling, power control and system optimization for specific applications promise to increase the utilization of microwave ablation in the future. This article will review the basic biophysics of microwave tissue heating, provide an overview of the design and operation of current equipment, and outline areas for future research for microwave ablation. PMID:21175404
Modeling the Office of Science Ten Year FacilitiesPlan: The PERI Architecture Tiger Team
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Supinski, B R; Alam, S R; Bailey, D H
2009-05-27
The Performance Engineering Institute (PERI) originally proposed a tiger team activity as a mechanism to target significant effort to the optimization of key Office of Science applications, a model that was successfully realized with the assistance of two JOULE metric teams. However, the Office of Science requested a new focus beginning in 2008: assistance in forming its ten year facilities plan. To meet this request, PERI formed the Architecture Tiger Team, which is modeling the performance of key science applications on future architectures, with S3D, FLASH and GTC chosen as the first application targets. In this activity, we have measuredmore » the performance of these applications on current systems in order to understand their baseline performance and to ensure that our modeling activity focuses on the right versions and inputs of the applications. We have applied a variety of modeling techniques to anticipate the performance of these applications on a range of anticipated systems. While our initial findings predict that Office of Science applications will continue to perform well on future machines from major hardware vendors, we have also encountered several areas in which we must extend our modeling techniques in order to fulfill our mission accurately and completely. In addition, we anticipate that models of a wider range of applications will reveal critical differences between expected future systems, thus providing guidance for future Office of Science procurement decisions, and will enable DOE applications to exploit machines in future facilities fully.« less
Modeling the Office of Science Ten Year Facilities Plan: The PERI Architecture Tiger Team
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Supinski, Bronis R.; Alam, Sadaf; Bailey, David H.
2009-06-26
The Performance Engineering Institute (PERI) originally proposed a tiger team activity as a mechanism to target significant effort optimizing key Office of Science applications, a model that was successfully realized with the assistance of two JOULE metric teams. However, the Office of Science requested a new focus beginning in 2008: assistance in forming its ten year facilities plan. To meet this request, PERI formed the Architecture Tiger Team, which is modeling the performance of key science applications on future architectures, with S3D, FLASH and GTC chosen as the first application targets. In this activity, we have measured the performance ofmore » these applications on current systems in order to understand their baseline performance and to ensure that our modeling activity focuses on the right versions and inputs of the applications. We have applied a variety of modeling techniques to anticipate the performance of these applications on a range of anticipated systems. While our initial findings predict that Office of Science applications will continue to perform well on future machines from major hardware vendors, we have also encountered several areas in which we must extend our modeling techniques in order to fulfill our mission accurately and completely. In addition, we anticipate that models of a wider range of applications will reveal critical differences between expected future systems, thus providing guidance for future Office of Science procurement decisions, and will enable DOE applications to exploit machines in future facilities fully.« less
Modeling the Office of Science Ten Year Facilities Plan: The PERI Architecture Team
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Supinski, Bronis R.; Alam, Sadaf R; Bailey, David
2009-01-01
The Performance Engineering Institute (PERI) originally proposed a tiger team activity as a mechanism to target significant effort optimizing key Office of Science applications, a model that was successfully realized with the assistance of two JOULE metric teams. However, the Office of Science requested a new focus beginning in 2008: assistance in forming its ten year facilities plan. To meet this request, PERI formed the Architecture Tiger Team, which is modeling the performance of key science applications on future architectures, with S3D, FLASH and GTC chosen as the first application targets. In this activity, we have measured the performance ofmore » these applications on current systems in order to understand their baseline performance and to ensure that our modeling activity focuses on the right versions and inputs of the applications. We have applied a variety of modeling techniques to anticipate the performance of these applications on a range of anticipated systems. While our initial findings predict that Office of Science applications will continue to perform well on future machines from major hardware vendors, we have also encountered several areas in which we must extend our modeling techniques in order to fulfilll our mission accurately and completely. In addition, we anticipate that models of a wider range of applications will reveal critical differences between expected future systems, thus providing guidance for future Office of Science procurement decisions, and will enable DOE applications to exploit machines in future facilities fully.« less
NASA Astrophysics Data System (ADS)
Dörner, Ralf; Lok, Benjamin; Broll, Wolfgang
Backed by a large consumer market, entertainment and education applications have spurred developments in the fields of real-time rendering and interactive computer graphics. Relying on Computer Graphics methodologies, Virtual Reality and Augmented Reality benefited indirectly from this; however, there is no large scale demand for VR and AR in gaming and learning. What are the shortcomings of current VR/AR technology that prevent a widespread use in these application areas? What advances in VR/AR will be necessary? And what might future “VR-enhanced” gaming and learning look like? Which role can and will Virtual Humans play? Concerning these questions, this article analyzes the current situation and provides an outlook on future developments. The focus is on social gaming and learning.
Sebastian, Rajani; Tsapkini, Kyrana; Tippett, Donna C
2016-06-13
The application of transcranial direct current stimulation (tDCS) in chronic post stroke aphasia is documented in a substantial literature, and there is some new evidence that tDCS can augment favorable language outcomes in primary progressive aphasia. Anodal tDCS is most often applied to the left hemisphere language areas to increase cortical excitability (increase the threshold of activation) and cathodal tDCS is most often applied to the right hemisphere homotopic areas to inhibit over activation in contralesional right homologues of language areas. Outcomes usually are based on neuropsychological and language test performance, following a medical model which emphasizes impairment of function, rather than a model which emphasizes functional communication. In this paper, we review current literature of tDCS as it is being used as a research tool, and discuss future implementation of tDCS as an adjuvant treatment to behavioral speech-language pathology intervention. We review literature describing non-invasive brain stimulation, the mechanism of tDCS, and studies of tDCS in aphasia and neurodegenerative disorders. We discuss future clinical applications. tDCS is a promising adjunct to traditional speech-language pathology intervention to address speech-language deficits after stroke and in the neurodegenerative disease, primary progressive aphasia. Limited data are available regarding how performance on these types of specific tasks translates to functional communication outcomes.
Sebastian, Rajani; Tsapkini, Kyrana; Tippett, Donna C.
2016-01-01
BACKGROUND The application of transcranial direct current stimulation (tDCS) in chronic post stroke aphasia is documented in a substantial literature, and there is some new evidence that tDCS can augment favorable language outcomes in primary progressive aphasia. Anodal tDCS is most often applied to the left hemisphere language areas to increase cortical excitability (increase the threshold of activation) and cathodal tDCS is most often applied to the right hemisphere homotopic areas to inhibit over activation in contralesional right homologues of language areas. Outcomes usually are based on neuropsychological and language test performance, following a medical model which emphasizes impairment of function, rather than a model which emphasizes functional communication. OBJECTIVE In this paper, we review current literature of tDCS as it is being used as a research tool, and discuss future implementation of tDCS as an adjuvant treatment to behavioral speech-language pathology intervention. METHODS We review literature describing non-invasive brain stimulation, the mechanism of tDCS, and studies of tDCS in aphasia and neurodegenerative disorders. We discuss future clinical applications. RESULTS/CONCLUSIONS tDCS is a promising adjunct to traditional speech-language pathology intervention to address speech-language deficits after stroke and in the neurodegenerative disease, primary progressive aphasia. Limited data are available regarding how performance on these types of specific tasks translates to functional communication outcomes. PMID:27314871
The application of natural language processing to augmentative and alternative communication.
Higginbotham, D Jeffery; Lesher, Gregory W; Moulton, Bryan J; Roark, Brian
2011-01-01
Significant progress has been made in the application of natural language processing (NLP) to augmentative and alternative communication (AAC), particularly in the areas of interface design and word prediction. This article will survey the current state-of-the-science of NLP in AAC and discuss its future applications for the development of next generation of AAC technology.
Nuclear Data Uncertainty Quantification: Past, Present and Future
NASA Astrophysics Data System (ADS)
Smith, D. L.
2015-01-01
An historical overview is provided of the mathematical foundations of uncertainty quantification and the roles played in the more recent past by nuclear data uncertainties in nuclear data evaluations and nuclear applications. Significant advances that have established the mathematical framework for contemporary nuclear data evaluation methods, as well as the use of uncertainty information in nuclear data evaluation and nuclear applications, are described. This is followed by a brief examination of the current status concerning nuclear data evaluation methodology, covariance data generation, and the application of evaluated nuclear data uncertainties in contemporary nuclear technology. A few possible areas for future investigation of this subject are also suggested.
JPL future missions and energy storage technology implications
NASA Technical Reports Server (NTRS)
Pawlik, Eugene V.
1987-01-01
The mission model for JPL future programs is presented. This model identifies mission areas where JPL is expected to have a major role and/or participate in a significant manner. These missions are focused on space science and applications missions, but they also include some participation in space station activities. The mission model is described in detail followed by a discussion on the needs for energy storage technology required to support these future activities.
Technology Directions for the 21st Century. Vol. 2
NASA Technical Reports Server (NTRS)
Crimi, Giles F.; Verheggen, Henry; Malinowski, John; Malinowski, Robert; Botta, Robert
1996-01-01
The Office of Space Communications (OSC) is tasked by NASA to conduct a planning process to meet NASA's science mission and other communications and data processing requirements. A set of technology trend studies was undertaken by Science Applications International Corporation (SAIC) for OSC to identify quantitative data that can be used to predict performance of electronic equipment in the future to assist in the planning process. Only commercially available, off-the-shelf technology was included. For each technology area considered, the current state of the technology is discussed, future applications that could benefit from use of the technology are identified, and likely future developments of the technology are described. The impact of each technology area on NASA operations is presented together with a discussion of the feasibility and risk associated with its development. An approximate timeline is given for the next 15 to 25 years to indicate the anticipated evolution of capabilities within each of the technology areas considered. This volume contains four chapters: one each on technology trends for database systems, computer software, neural and fuzzy systems, and artificial intelligence. The principal study results are summarized at the beginning of each chapter.
The status of tree improvement programs for northern tree species
David S. Canavera
1977-01-01
Forest tree improvement research and application in the Northeast is reviewed in the perspective of past development and future needs. Control over provenance selection can provide the best quality seed for today's reforestation programs. Future supplies of seed must come from seed orchards if forest land owners are to attain the maximum production per unit area...
Accelerating the Translation of Nanomaterials in Biomedicine
Mitragotri, Samir; Anderson, Daniel G.; Chen, Xiaoyuan; Chow, Edward K.; Ho, Dean; Kabanov, Alexander V.; Karp, Jeffrey M.; Kataoka, Kazunori; Mirkin, Chad A.; Petrosko, Sarah Hurst; Shi, Jinjun; Stevens, Molly M.; Sun, Shouheng; Teoh, Sweehin; Venkatraman, Subbu S.; Xia, Younan; Wang, Shutao; Gu, Zhen; Xu, Chenjie
2017-01-01
Due to their size and tailorable physicochemical properties, nanomaterials are an emerging class of structures utilized in biomedical applications. There are now many prominent examples of nanomaterials being used to improve human health, in areas ranging from imaging and diagnostics to therapeutics and regenerative medicine. An overview of these examples reveals several common areas of synergy and future challenges. This Nano Focus discusses the current status and future potential of promising nanomaterials and their translation from the laboratory to the clinic, by highlighting a handful of successful examples. PMID:26115196
Future NASA Power Technologies for Space and Aero Propulsion Applications
NASA Technical Reports Server (NTRS)
Soeder, James F.
2015-01-01
To achieve the ambitious goals that NASA has outlined for the next decades considerable development of power technology will be necessary. This presentation outlines the development objectives for both space and aero applications. It further looks at the various power technologies that support these objectives and examines drivers that will be a driving force for future development. Finally, the presentation examines what type of non-traditional learning areas should be emphasized in student curriculum so that the engineering needs of the third decade of the 21st Century are met.
Repeater in the sky. [public service communications satellite program
NASA Technical Reports Server (NTRS)
Cote, C. E.; Brown, J. P.
1977-01-01
The Public Service Communications Satellite (PSCS) program is intended to develop and demonstrate a space system aimed at stimulating future commercial markets in fixed and mobile applications. The services are envisioned for rural areas, regions beyond access to terrestrial systems, or for continuous cross-country applications. The system incorporates a UHF repeater for mobile voice and data experiments; 8 MHz of spectrum is specified for serving 70 channels. This paper describes the PSCS program and discusses some demonstration experiments. A future concept based on large structure multibeam antennas is also discussed.
Green tribology: principles, research areas and challenges.
Nosonovsky, Michael; Bhushan, Bharat
2010-10-28
In this introductory paper for the Theme Issue on green tribology, we discuss the concept of green tribology and its relation to other areas of tribology as well as other 'green' disciplines, namely, green engineering and green chemistry. We formulate the 12 principles of green tribology: the minimization of (i) friction and (ii) wear, (iii) the reduction or complete elimination of lubrication, including self-lubrication, (iv) natural and (v) biodegradable lubrication, (vi) using sustainable chemistry and engineering principles, (vii) biomimetic approaches, (viii) surface texturing, (ix) environmental implications of coatings, (x) real-time monitoring, (xi) design for degradation, and (xii) sustainable energy applications. We further define three areas of green tribology: (i) biomimetics for tribological applications, (ii) environment-friendly lubrication, and (iii) the tribology of renewable-energy application. The integration of these areas remains a primary challenge for this novel area of research. We also discuss the challenges of green tribology and future directions of research.
Propulsion Technology Development for Sample Return Missions Under NASA's ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil, Eric J.; Vento, Daniel; Dankanich, John W.; Munk, Michelle M.; Hahne, David
2011-01-01
The In-Space Propulsion Technology (ISPT) Program was tasked in 2009 to start development of propulsion technologies that would enable future sample return missions. Sample return missions could be quite varied, from collecting and bringing back samples of comets or asteroids, to soil, rocks, or atmosphere from planets or moons. The paper will describe the ISPT Program s propulsion technology development activities relevant to future sample return missions. The sample return propulsion technology development areas for ISPT are: 1) Sample Return Propulsion (SRP), 2) Planetary Ascent Vehicles (PAV), 3) Entry Vehicle Technologies (EVT), and 4) Systems/mission analysis and tools that focuses on sample return propulsion. The Sample Return Propulsion area is subdivided into: a) Electric propulsion for sample return and low cost Discovery-class missions, b) Propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination, and c) Low TRL advanced propulsion technologies. The SRP effort will continue work on HIVHAC thruster development in FY2011 and then transitions into developing a HIVHAC system under future Electric Propulsion for sample return (ERV and transfer stages) and low-cost missions. Previous work on the lightweight propellant-tanks will continue under advanced propulsion technologies for sample return with direct applicability to a Mars Sample Return (MSR) mission and with general applicability to all future planetary spacecraft. A major effort under the EVT area is multi-mission technologies for Earth Entry Vehicles (MMEEV), which will leverage and build upon previous work related to Earth Entry Vehicles (EEV). The major effort under the PAV area is the Mars Ascent Vehicle (MAV). The MAV is a new development area to ISPT, and builds upon and leverages the past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies.
Research and technology report, 1981
NASA Technical Reports Server (NTRS)
1981-01-01
The Marshall Space Flight Center programs of research and technology for 1981 in various areas of aerospace science are reviewed. Each activity reviewed has a high probability of application to current or future programs or is an application of the results of current programs. Projects in atmospheric and magnetospheric science, solar physics, astronomy, and space technology are included.
DOT National Transportation Integrated Search
1993-06-01
The safety of magnetically levitated (maglev) and high speed rail (HSR) trains proposed for application in the United States is the responsibility of the Federal Railroad Administration (FRA). Plans for near future US applications include maglev tech...
Space Station: Key to the Future.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
The possible applications, advantages and features of an advanced space station to be developed are considered in a non-technical manner in this booklet. Some of the areas of application considered include the following: the detection of large scale dynamic earth processes such as changes in snow pack, crops, and air pollution levels; the…
Land cover classification for Puget Sound, 1974-1979
NASA Technical Reports Server (NTRS)
Eby, J. R.
1981-01-01
Digital analysis of LANDSAT data for land cover classification projects in the Puget Sound region is surveyed. Two early rural and urban land use classifications and their application are described. After acquisition of VICAR/IBIs software, another land use classification of the area was performed, and is described in more detail. Future applications are considered.
DOT National Transportation Integrated Search
2017-11-01
Driver understanding of flashing yellow arrow (FYA) indications for left turns has been studied extensively; however, the use of FYA for right-turn applications is an area that needs to be better understood through evaluations focused on actual drive...
Bergen, P L; Nemec, D
1999-01-01
In December 1997, the authors completed an in-depth collection assessment project at the University of Wisconsin-Madison Health Sciences Libraries. The purpose was to develop a framework for future collection assessment projects by completing a multifaceted evaluation of the libraries' monograph and serial collections in the subject area of drug resistance. Evaluators adapted and synthesized several traditional collection assessment tools, including shelflist measurement, bibliography and standard list checking, and citation analysis. Throughout the project, evaluators explored strategies to overcome some of the problems inherent in the application of traditional collection assessment methods to the evaluation of biomedical collections. Their efforts resulted in the identification of standard monographs and core journals for the subject area, a measurement of the collections' strength relative to the collections of benchmark libraries, and a foundation for future collection development within the subject area. The project's primary outcome was a collection assessment methodology that has potential application to both internal and cooperative collection development in medical, pharmaceutical, and other health sciences libraries.
Bioengineering and Rehabilitation: Windows of Opportunity Past, Present and Future
NASA Technical Reports Server (NTRS)
1985-01-01
The applications of NASA research in the areas of bioengineering and rehabilitation are discussed. Wheelchairs, gait analysis, blood analyzers, programmable pacemakers and cardiology mannequins are among the topics covered.
Geospatial intelligence workforce
NASA Astrophysics Data System (ADS)
Showstack, Randy
2013-02-01
A report on the future U.S. workforce for geospatial intelligence, requested by the U.S. National Geospatial-Intelligence Agency (NGA), found that the agency—which hires about 300 scientists and analysts annually—is probably finding sufficient experts to fill the needs in all of its core areas, with the possible exception of geographic information systems (GIS) and remote sensing. The report by the U.S. National Research Council, released on 25 January, noted that competition for GIS applications analysts is strong. While there appear to be enough cartographers, photogrammetrists, and geodesists to meet NGA's current needs in those core areas, the report cautioned that future shortages in these areas seem likely because of a relatively small number of graduates.
Printing Technologies for Medical Applications.
Shafiee, Ashkan; Atala, Anthony
2016-03-01
Over the past 15 years, printers have been increasingly utilized for biomedical applications in various areas of medicine and tissue engineering. This review discusses the current and future applications of 3D bioprinting. Several 3D printing tools with broad applications from surgical planning to 3D models are being created, such as liver replicas and intermediate splints. Numerous researchers are exploring this technique to pattern cells or fabricate several different tissues and organs, such as blood vessels or cardiac patches. Current investigations in bioprinting applications are yielding further advances. As one of the fastest areas of industry expansion, 3D additive manufacturing will change techniques across biomedical applications, from research and testing models to surgical planning, device manufacturing, and tissue or organ replacement. Copyright © 2016. Published by Elsevier Ltd.
Nanoscience and nanotechnologies in food industries: opportunities and research trends
NASA Astrophysics Data System (ADS)
Ranjan, Shivendu; Dasgupta, Nandita; Chakraborty, Arkadyuti Roy; Melvin Samuel, S.; Ramalingam, Chidambaram; Shanker, Rishi; Kumar, Ashutosh
2014-06-01
Nanomaterials have gained importance in various fields of science, technology, medicine, colloid technologies, diagnostics, drug delivery, personal care applications and others due to their small size and unique physico-chemical characteristic. Apart from above mentioned area, it is also extensively being used in food sector specifically in preservation and packaging. The future applications in food can also be extended to improve the shelf life, food quality, safety, fortification and biosensors for contaminated or spoiled food or food packaging. Different types and shapes of nanomaterials are being employed depending upon the need and nature of the food. Characterisation of these nanomaterials is essential to understand the interaction with the food matrix and also with biological compartment. This review is focused on application of nanotechnology in food industries. It also gives insight on commercial products in market with usage of nanomaterials, current research and future aspects in these areas. Currently, they are being incorporated into commercial products at a faster rate than the development of knowledge and regulations to mitigate potential health and environmental impacts associated with their manufacturing, application and disposal. As nanomaterials are finding new application every day, care should be taken about their potential toxic effects.
Code of Federal Regulations, 2013 CFR
2013-10-01
... administration. 21.6 Section 21.6 Public Lands: Interior Office of the Secretary of the Interior OCCUPANCY OF... future public uses. All applicable safeguards set forth in this part, including the protection of future... agency for administration. (a) After the effective date of this part, any agreement whereby a recreation...
Code of Federal Regulations, 2012 CFR
2012-10-01
... administration. 21.6 Section 21.6 Public Lands: Interior Office of the Secretary of the Interior OCCUPANCY OF... future public uses. All applicable safeguards set forth in this part, including the protection of future... agency for administration. (a) After the effective date of this part, any agreement whereby a recreation...
NASA Astrophysics Data System (ADS)
Wilson, T. S.; Sleeter, B. M.; Sherba, J.; Cameron, D.
2014-12-01
Human land use will increasingly contribute to habitat losses and water shortages in California, given future population projections and associated demand for agricultural land. Understanding how land-use change may impact future water use and where existing protected areas may be threatened by land-use conversion will be important if effective, sustainable management approaches are to be implemented. We used a state-and-transition simulation modeling (STSM) framework to simulate spatially-explicit (1 km2) historical (1992-2010) and future (2011-2060) land-use change for 52 California counties within the Mediterranean California ecoregion. Historical land use change estimates were derived from the Farmland Mapping and Monitoring Program (FMMP) dataset and attributed with county-level agricultural water-use data from the California Department of Water Resources (CDWR). Six future alternative land-use scenarios were developed and modeled using the historical land-use change estimates and land-use projections based on the Intergovernmental Panel on Climate Change's (IPCC) Special Report on Emission Scenarios (SRES) A2 and B1 scenarios. Resulting spatial land-use scenario outputs were combined based on scenario agreement and a land conversion threat index developed to evaluate vulnerability of existing protected areas. Modeled scenario output of county-level agricultural water use data were also summarized, enabling examination of alternative water use futures. We present results of two separate applications of STSM of land-use change, demonstrating the utility of STSM in analyzing land-use related impacts on water resources as well as potential threats to existing protected land. Exploring a range of alternative, yet plausible, land-use change impacts will help to better inform resource management and mitigation strategies.
Potential applications of biosurfactant rhamnolipids in agriculture and biomedicine.
Chen, Jianwei; Wu, Qihao; Hua, Yi; Chen, Jun; Zhang, Huawei; Wang, Hong
2017-12-01
Rhamnolipids have recently emerged as promising bioactive molecules due to their novel structures, diverse and versatile biological functions, lower toxicity, higher biodegradability, as well as production from renewable resources. The advantages of rhamnolipids make them attractive targets for research in a wide variety of applications. Especially rhamnolipids are likely to possess potential applications of the future in areas such as biomedicine, therapeutics, and agriculture. The purpose of this mini review is to provide a comprehensive prospective of biosurfactant rhamnolipids as potential antimicrobials, immune modulators, and virulence factors, and anticancer agents in the field of biomedicine and agriculture that may meet the ever-increasing future pharmacological treatment and food safety needs in human health.
(abstract) Electronic Packaging for Microspacecraft Applications
NASA Technical Reports Server (NTRS)
Wasler, David
1993-01-01
The intent of this presentation is to give a brief look into the future of electronic packaging for microspacecraft applications. Advancements in electronic packaging technology areas have developed to the point where a system engineer's visions, concepts, and requirements for a microspacecraft can now be a reality. These new developments are ideal candidates for microspacecraft applications. These technologies are capable of bringing about major changes in how we design future spacecraft while taking advantage of the benefits due to size, weight, power, performance, reliability , and cost. This presentation will also cover some advantages and limitations of surface mount technology (SMT), multichip modules (MCM), and wafer scale integration (WSI), and what is needed to implement these technologies into microspacecraft.
Business Use of Small Computers in the Salt Lake City, Utah Area.
ERIC Educational Resources Information Center
Homer, Michael M.
In July 1981, Utah Technical College (UTC) conducted a survey of businesses in the Salt Lake City area to gather information for the development of a curriculum integrating computer applications with business course instruction. The survey sought to determine the status and usage of current micro/mini computer equipment, future data processing…
The role of development of photovoltaics for Mongolia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enebish, N.; Agchbayar, D.; Baatarkhuu, M.
1994-12-31
This paper describes an assessment of the potential applications of photovoltaic technology in Mongolia. Socio-economic conditions of the pastoral culture are described and it is shown that the photovoltaic system is the most suitable source of electricity and has potential for wide application. One application identified is for powering communications systems for herdspeople and other decentralized communities of Mongolian rural areas. Some strategies for the future development and application of photovoltaic systems in Mongolia are discussed.
Translational benchmark risk analysis
Piegorsch, Walter W.
2010-01-01
Translational development – in the sense of translating a mature methodology from one area of application to another, evolving area – is discussed for the use of benchmark doses in quantitative risk assessment. Illustrations are presented with traditional applications of the benchmark paradigm in biology and toxicology, and also with risk endpoints that differ from traditional toxicological archetypes. It is seen that the benchmark approach can apply to a diverse spectrum of risk management settings. This suggests a promising future for this important risk-analytic tool. Extensions of the method to a wider variety of applications represent a significant opportunity for enhancing environmental, biomedical, industrial, and socio-economic risk assessments. PMID:20953283
NASA Technical Reports Server (NTRS)
Rado, B. Q.
1975-01-01
Automatic classification techniques are described in relation to future information and natural resource planning systems with emphasis on application to Georgia resource management problems. The concept, design, and purpose of Georgia's statewide Resource AS Assessment Program is reviewed along with participation in a workshop at the Earth Resources Laboratory. Potential areas of application discussed include: agriculture, forestry, water resources, environmental planning, and geology.
McDonnell Douglas Helicopter Company independent research and development: Preparing for the future
NASA Technical Reports Server (NTRS)
Haggerty, Allen C.
1988-01-01
During the 1970's and 80's, research has produced the technology that is seen in aircraft such as the LHX and future models. The technology is discussed that is reaching maturity and moving into the application stage of future programs. Technology is discussed in six major areas: advanced concepts, analysis techniques, structures, systems, simulation, and research and development facilities. The partnership of McDonnell Douglas Helicopter Co. and the government in developing these technologies is illustrated in several programs.
NASA Astrophysics Data System (ADS)
Thomson, David; Zilkie, Aaron; Bowers, John E.; Komljenovic, Tin; Reed, Graham T.; Vivien, Laurent; Marris-Morini, Delphine; Cassan, Eric; Virot, Léopold; Fédéli, Jean-Marc; Hartmann, Jean-Michel; Schmid, Jens H.; Xu, Dan-Xia; Boeuf, Frédéric; O'Brien, Peter; Mashanovich, Goran Z.; Nedeljkovic, M.
2016-07-01
Silicon photonics research can be dated back to the 1980s. However, the previous decade has witnessed an explosive growth in the field. Silicon photonics is a disruptive technology that is poised to revolutionize a number of application areas, for example, data centers, high-performance computing and sensing. The key driving force behind silicon photonics is the ability to use CMOS-like fabrication resulting in high-volume production at low cost. This is a key enabling factor for bringing photonics to a range of technology areas where the costs of implementation using traditional photonic elements such as those used for the telecommunications industry would be prohibitive. Silicon does however have a number of shortcomings as a photonic material. In its basic form it is not an ideal material in which to produce light sources, optical modulators or photodetectors for example. A wealth of research effort from both academia and industry in recent years has fueled the demonstration of multiple solutions to these and other problems, and as time progresses new approaches are increasingly being conceived. It is clear that silicon photonics has a bright future. However, with a growing number of approaches available, what will the silicon photonic integrated circuit of the future look like? This roadmap on silicon photonics delves into the different technology and application areas of the field giving an insight into the state-of-the-art as well as current and future challenges faced by researchers worldwide. Contributions authored by experts from both industry and academia provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths. Advances in science and technology required to meet challenges faced by the field in each of these areas are also addressed together with predictions of where the field is destined to reach.
Magnetized jet creation using a ring laser and applications
NASA Astrophysics Data System (ADS)
Liang, Edison; Gao, Ian; Lu, Yingchao; Ji, Hantao; Follett, Russ; Froula, Dustin; Tzeferacos, Petros; Lamb, Donald; Bickel, Andrew; Sio, Hong; Li, Chi Kiang; Petrasso, Richard; Wei, Mingsheng; Fu, Wen; Han, Lily
2017-10-01
We have recently demonstrated a new robust platform of magnetized jet creation using 20 OMEGA beams to form a hollow ring. We will present the latest experimental results and their theoretical interpretation, and explore potential applications to laboratory astrophysics, fundamental plasma physics and other areas. We will also discuss the scaling of this platform to future NIF experiments.
Applications of aerospace technology in the environmental sciences
NASA Technical Reports Server (NTRS)
1972-01-01
Detailed information is reported on the operations and accomplishments of the RTI Technology Application Team for the period October 11, 1971 to March 10, 1972. Mathematical models for prediction of pollutant formation during combustion are discussed along with generic areas of air pollution problems, which NASA technology offers a high potential for solving. Recommendations for future work are included.
DNA origami nanopores: developments, challenges and perspectives
NASA Astrophysics Data System (ADS)
Hernández-Ainsa, Silvia; Keyser, Ulrich F.
2014-11-01
DNA nanotechnology has enabled the construction of DNA origami nanopores; synthetic nanopores that present improved capabilities for the area of single molecule detection. Their extraordinary versatility makes them a new and powerful tool in nanobiotechnology for a wide range of important applications beyond molecular sensing. In this review, we briefly present the recent developments in this emerging field of research. We discuss the current challenges and possible solutions that would enhance the sensing capabilities of DNA origami nanopores. Finally, we anticipate novel avenues for future research and highlight a range of exciting ideas and applications that could be explored in the near future.
Application of nanotechnology in cancers prevention, early detection and treatment.
Patel, Shraddha P; Patel, Parshottambhai B; Parekh, Bhavesh B
2014-01-01
Use of nanotechnology in medical science is a rapidly developing area. New opportunities of diagnosis, imaging and therapy have developed due to recent rapid advancement by nanotechnology. The most common areas to be affected are diagnostic, imaging and targeted drug delivery in gastroenterology, oncology, cardiovascular medicine, obstetrics and gynecology. Mass screening with inexpensive imaging might be possible in the near future with the help of nanotechnology. This review paper provides an overview of causes of cancer and the application of nanotechnology in cancer prevention, detection and treatment.
Nanotechnology: current uses and future applications in the food industry.
Thiruvengadam, Muthu; Rajakumar, Govindasamy; Chung, Ill-Min
2018-01-01
Recent advances in nanoscience and nanotechnology intend new and innovative applications in the food industry. Nanotechnology exposed to be an efficient method in many fields, particularly the food industry and the area of functional foods. Though as is the circumstance with the growth of any novel food processing technology, food packaging material, or food ingredient, additional studies are needed to demonstrate the potential benefits of nanotechnologies and engineered nanomaterials designed for use in foods without adverse health effects. Nanoemulsions display numerous advantages over conventional emulsions due to the small droplets size they contain: high optical clarity, excellent physical constancy against gravitational partition and droplet accumulation, and improved bioavailability of encapsulated materials, which make them suitable for food applications. Nano-encapsulation is the most significant favorable technologies having the possibility to ensnare bioactive chemicals. This review highlights the applications of current nanotechnology research in food technology and agriculture, including nanoemulsion, nanocomposites, nanosensors, nano-encapsulation, food packaging, and propose future developments in the developing field of agrifood nanotechnology. Also, an overview of nanostructured materials, and their current applications and future perspectives in food science are also presented.
Cryogenics for superconductors: Refrigeration, delivery, and preservation of the cold
NASA Astrophysics Data System (ADS)
Ganni, Venkatarao; Fesmire, James
2012-06-01
Applications in superconductivity have become widespread, enabled by advancements in cryogenic engineering. In this paper, the history of cryogenic refrigeration, its delivery, its preservation and the important scientific and engineering advancements in these areas in the last 100 years will be reviewed, beginning with small laboratory dewars to very large scale systems. The key technological advancements in these areas that enabled the development of superconducting applications at temperatures from 4 to 77 K are identified. Included are advancements in the components used up to the present state-of-the-art in refrigeration systems design. Viewpoints as both an equipment supplier and the end-user with regard to the equipment design and operations will be presented. Some of the present and future challenges in these areas will be outlined. Most of the materials in this paper are a collection of the historical materials applicable to these areas of interest.
Cryogenics for superconductors: Refrigeration, delivery, and preservation of the cold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkatarao Ganni, James Fesmire
Applications in superconductivity have become widespread, enabled by advancements in cryogenic engineering. In this paper, the history of cryogenic refrigeration, its delivery, its preservation and the important scientific and engineering advancements in these areas in the last 100 years will be reviewed, beginning with small laboratory dewars to very large scale systems. The key technological advancements in these areas that enabled the development of superconducting applications at temperatures from 4 to 77 K are identified. Included are advancements in the components used up to the present state-of-the-art in refrigeration systems design. Viewpoints as both an equipment supplier and the end-usermore » with regard to the equipment design and operations will be presented. Some of the present and future challenges in these areas will be outlined. Most of the materials in this paper are a collection of the historical materials applicable to these areas of interest.« less
Cryogenics for Superconductors: Refrigeration, Delivery, and Preservation of the Cold
NASA Technical Reports Server (NTRS)
Ganni, V.; Fesmire, J. E.
2011-01-01
Applications in superconductivity have become widespread, enabled by advancements in cryogenic engineering. In this paper, the history of cryogenic refrigeration, its delivery, its preservation and the important scientific and engineering advancements in these areas in the last 100 years will be reviewed, beginning with small laboratory dewars to very large scale systems. The key technological advancements in these areas that enabled the development of superconducting applications at temperatures from 4 to 77 K are identified. Included are advancements in the components used up to the present state-of-the-art in refrigeration systems design. Viewpoints as both an equipment supplier and the end-user with regard to the equipment design and operations will be presented. Some of the present and future challenges in these areas will be outlined. Most of the materials in this paper are a collection of the historical materials applicable to these areas of interest.
NASA Technical Reports Server (NTRS)
Fischer, M. C.; Ash, R. L.
1974-01-01
Four main concepts which have significantly reduced skin friction in experimental studies are discussed; suction, gaseous injection, particle additives, and compliant wall. It is considered possible that each of these concepts could be developed and applied in viable skin friction reduction systems for aircraft application. Problem areas with each concept are discussed, and recommendations for future studies are made.
Emerging Trends in Phosphorene Fabrication towards Next Generation Devices
Dhanabalan, Sathish Chander; Ponraj, Joice Sophia; Guo, Zhinan
2017-01-01
The challenge of science and technology is to design and make materials that will dominate the future of our society. In this context, black phosphorus has emerged as a new, intriguing two‐dimensional (2D) material, together with its monolayer, which is referred to as phosphorene. The exploration of this new 2D material demands various fabrication methods to achieve potential applications— this demand motivated this review. This article is aimed at supplementing the concrete understanding of existing phosphorene fabrication techniques, which forms the foundation for a variety of applications. Here, the major issue of the degradation encountered in realizing devices based on few‐layered black phosphorus and phosphorene is reviewed. The prospects of phosphorene in future research are also described by discussing its significance and explaining ways to advance state‐of‐art of phosphorene‐based devices. In addition, a detailed presentation on the demand for future studies to promote well‐systemized fabrication methods towards large‐area, high‐yield and perfectly protected phosphorene for the development of reliable devices in optoelectronic applications and other areas is offered. PMID:28638779
Maritime transport in the Gulf of Bothnia 2030.
Pekkarinen, Annukka; Repka, Sari
2014-10-01
Scenarios for shipping traffic in the Gulf of Bothnia (GoB) by 2030 are described in order to identify the main factors that should be taken into account when preparing a Maritime Spatial Plan (MSP) for the area. The application of future research methodology to planning of marine areas was also assessed. The methods include applying existing large scale quantitative scenarios for maritime traffic in the GoB and using real-time Delphi in which an expert group discussed different factors contributing to future maritime traffic in the GoB to find out the probability and significance of the factors having an impact on maritime traffic. MSP was tested on transnational scale in the Bothnian sea area as a pilot project.
Space Electrochemical Research and Technology (SERT), 1989
NASA Technical Reports Server (NTRS)
Baldwin, Richard S. (Editor)
1989-01-01
The proceedings of NASA's second Space Electrochemical Research and Technology Conference are presented. The objectives of the conference were to examine current technologies, research efforts, and advanced ideas, and to identify technical barriers which affect the advancement of electrochemical energy storage systems for space applications. The conference provided a forum for the exchange of ideas and opinions of those actively involved in the field, with the intention of coalescing views and findings into conclusions on progress in the field, prospects for future advances, areas overlooked, and the directions of future efforts. Related overviews were presented in the areas of NASA advanced mission models. Papers were presented and workshops conducted in four technical areas: advanced concepts, hydrogen-oxygen fuel cells and electrolyzers, the nickel electrode, and advanced rechargable batteries.
Nonlinear Constitutive Relations for High Temperature Application, 1984
NASA Technical Reports Server (NTRS)
1985-01-01
Nonlinear constitutive relations for high temperature applications were discussed. The state of the art in nonlinear constitutive modeling of high temperature materials was reviewed and the need for future research and development efforts in this area was identified. Considerable research efforts are urgently needed in the development of nonlinear constitutive relations for high temperature applications prompted by recent advances in high temperature materials technology and new demands on material and component performance. Topics discussed include: constitutive modeling, numerical methods, material testing, and structural applications.
Research status and development of application fields in enzyme technology
NASA Astrophysics Data System (ADS)
Ji, Y. B.; Wang, S. W.; Yu, M.; Ru, X.; Wei, C.; Zhu, H. J.; Li, Z. Y.; Zhao, H.; Qiao, A. N.; Guo, S. Z.; Lu, L.
2018-01-01
Biological enzymes are catalyzed by living cells, most of which are proteins, and very few are RNA. Biological engineering as a new high-tech has been rapid development, Enzyme manufacturing and application areas are gradually expanding, In this paper, the status and progress of the application of enzyme technology are reviewed by reviewing the literature. and aims to provide reference for the application of enzyme technology and provide scientific basis for its future research and development in new field.
Artificial intelligence in healthcare: past, present and future.
Jiang, Fei; Jiang, Yong; Zhi, Hui; Dong, Yi; Li, Hao; Ma, Sufeng; Wang, Yilong; Dong, Qiang; Shen, Haipeng; Wang, Yongjun
2017-12-01
Artificial intelligence (AI) aims to mimic human cognitive functions. It is bringing a paradigm shift to healthcare, powered by increasing availability of healthcare data and rapid progress of analytics techniques. We survey the current status of AI applications in healthcare and discuss its future. AI can be applied to various types of healthcare data (structured and unstructured). Popular AI techniques include machine learning methods for structured data, such as the classical support vector machine and neural network, and the modern deep learning, as well as natural language processing for unstructured data. Major disease areas that use AI tools include cancer, neurology and cardiology. We then review in more details the AI applications in stroke, in the three major areas of early detection and diagnosis, treatment, as well as outcome prediction and prognosis evaluation. We conclude with discussion about pioneer AI systems, such as IBM Watson, and hurdles for real-life deployment of AI.
Artificial intelligence in healthcare: past, present and future
Jiang, Fei; Jiang, Yong; Zhi, Hui; Dong, Yi; Li, Hao; Ma, Sufeng; Wang, Yilong; Dong, Qiang; Shen, Haipeng; Wang, Yongjun
2017-01-01
Artificial intelligence (AI) aims to mimic human cognitive functions. It is bringing a paradigm shift to healthcare, powered by increasing availability of healthcare data and rapid progress of analytics techniques. We survey the current status of AI applications in healthcare and discuss its future. AI can be applied to various types of healthcare data (structured and unstructured). Popular AI techniques include machine learning methods for structured data, such as the classical support vector machine and neural network, and the modern deep learning, as well as natural language processing for unstructured data. Major disease areas that use AI tools include cancer, neurology and cardiology. We then review in more details the AI applications in stroke, in the three major areas of early detection and diagnosis, treatment, as well as outcome prediction and prognosis evaluation. We conclude with discussion about pioneer AI systems, such as IBM Watson, and hurdles for real-life deployment of AI. PMID:29507784
An information adaptive system study report and development plan
NASA Technical Reports Server (NTRS)
Ataras, W. S.; Eng, K.; Morone, J. J.; Beaudet, P. R.; Chin, R.
1980-01-01
The purpose of the information adaptive system (IAS) study was to determine how some selected Earth resource applications may be processed onboard a spacecraft and to provide a detailed preliminary IAS design for these applications. Detailed investigations of a number of applications were conducted with regard to IAS and three were selected for further analysis. Areas of future research and development include algorithmic specifications, system design specifications, and IAS recommended time lines.
Application of remote sensing to state and regional problems
NASA Technical Reports Server (NTRS)
Miller, W. F.; Clark, J. R.; Solomon, J. L.; Duffy, B.; Minchew, K.; Wright, L. H. (Principal Investigator)
1981-01-01
The objectives, accomplishments, and future plans of several LANDSAT applications projects in Mississippi are discussed. The applications include land use planning in Lowandes County, strip mine inventory and reclamation, white tailed deer habitat evaluation, data analysis support systems, discrimination of forest habitats in potential lignite areas, changes in gravel operations, and determination of freshwater wetlands for inventory and monitoring. In addition, a conceptual design for a LANDSAT based information system is discussed.
Bandgap Optimization of Perovskite Semiconductors for Photovoltaic Applications.
Xiao, Zewen; Zhou, Yuanyuan; Hosono, Hideo; Kamiya, Toshio; Padture, Nitin P
2018-02-16
The bandgap is the most important physical property that determines the potential of semiconductors for photovoltaic (PV) applications. This Minireview discusses the parameters affecting the bandgap of perovskite semiconductors that are being widely studied for PV applications, and the recent progress in the optimization of the bandgaps of these materials. Perspectives are also provided for guiding future research in this area. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Using high-performance networks to enable computational aerosciences applications
NASA Technical Reports Server (NTRS)
Johnson, Marjory J.
1992-01-01
One component of the U.S. Federal High Performance Computing and Communications Program (HPCCP) is the establishment of a gigabit network to provide a communications infrastructure for researchers across the nation. This gigabit network will provide new services and capabilities, in addition to increased bandwidth, to enable future applications. An understanding of these applications is necessary to guide the development of the gigabit network and other high-performance networks of the future. In this paper we focus on computational aerosciences applications run remotely using the Numerical Aerodynamic Simulation (NAS) facility located at NASA Ames Research Center. We characterize these applications in terms of network-related parameters and relate user experiences that reveal limitations imposed by the current wide-area networking infrastructure. Then we investigate how the development of a nationwide gigabit network would enable users of the NAS facility to work in new, more productive ways.
Directionally Solidified Eutectic Ceramics for Multifunctional Aerospace Applications
2009-06-01
Solidified Alumina - Titania Composites", Key Engineering Materials, 290 (2005) pp 199 - 202. PEER REVIEWED CONFERENCE PROCEEDINGS 22. A. Sayir, S...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 1 Progress Report for 2006 For the Grant Directionally Solidified Eutectic Ceramics ...incorporating structural ceramics in future aerospace applications: (1) the challenges associated with ceramics are improving strength, toughness and
Long-term soil accumulation of chromium, copper, and arsenic adjacent to preservative-treated wood.
S. Lebow; D. Foster; J. Evans
2004-01-01
Chromated copper arsenate (CCA) treated wood has been used extensively in outdoor applications. The Environmental Protection Agency (EPA) and CCA producers recently reached an agreement to limit future use of CCA for some types of applications. One area of concern is the long-term accumulation of leached CCA in soil adjacent to treated wood structures. Interpreting...
Vision for Micro Technology Space Missions. Chapter 2
NASA Technical Reports Server (NTRS)
Dennehy, Neil
2005-01-01
It is exciting to contemplate the various space mission applications that Micro Electro Mechanical Systems (MEMS) technology could enable in the next 10-20 years. The primary objective of this chapter is to both stimulate ideas for MEMS technology infusion on future NASA space missions and to spur adoption of the MEMS technology in the minds of mission designers. This chapter is also intended to inform non-space oriented MEMS technologists, researchers and decision makers about the rich potential application set that future NASA Science and Exploration missions will provide. The motivation for this chapter is therefore to lead the reader down a path to identify and it is exciting to contemplate the various space mission applications that Micro Electro Mechanical Systems (MEMS) technology could enable in the next 10-20 years. The primary objective of this chapter is to both stimulate ideas for MEMS technology infusion on future NASA space missions and to spur adoption of the MEMS technology in the minds of mission designers. This chapter is also intended to inform non-space oriented MEMS technologists, researchers and decision makers about the rich potential application set that future NASA Science and Exploration missions will provide. The motivation for this chapter is therefore to lead the reader down a path to identify and consider potential long-term, perhaps disruptive or revolutionary, impacts that MEMS technology may have for future civilian space applications. A general discussion of the potential for MEMS in space applications is followed by a brief showcasing of a few selected examples of recent MEMS technology developments for future space missions. Using these recent developments as a point of departure, a vision is then presented of several areas where MEMS technology might eventually be exploited in future Science and Exploration mission applications. Lastly, as a stimulus for future research and development, this chapter summarizes a set of barriers to progress, design challenges and key issues that must be overcome in order for the community to move on, from the current nascent phase of developing and infusing MEMS technology into space missions, in order to achieve its full future potential.
Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine.
Yang, Guohai; Zhu, Chengzhou; Du, Dan; Zhu, Junjie; Lin, Yuehe
2015-09-14
The development of nanotechnology provides promising opportunities for various important applications. The recent discovery of atomically-thick two-dimensional (2D) nanomaterials can offer manifold perspectives to construct versatile devices with high-performance to satisfy multiple requirements. Many studies directed at graphene have stimulated renewed interest on graphene-like 2D layered nanomaterials (GLNs). GLNs including boron nitride nanosheets, graphitic-carbon nitride nanosheets and transition metal dichalcogenides (e.g. MoS2 and WS2) have attracted significant interest in numerous research fields from physics and chemistry to biology and engineering, which has led to numerous interdisciplinary advances in nano science. Benefiting from the unique physical and chemical properties (e.g. strong mechanical strength, high surface area, unparalleled thermal conductivity, remarkable biocompatibility and ease of functionalization), these 2D layered nanomaterials have shown great potential in biochemistry and biomedicine. This review summarizes recent advances of GLNs in applications of biosensors and nanomedicine, including electrochemical biosensors, optical biosensors, bioimaging, drug delivery and cancer therapy. Current challenges and future perspectives in these rapidly developing areas are also outlined. It is expected that they will have great practical foundation in biomedical applications with future efforts.
Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine
NASA Astrophysics Data System (ADS)
Yang, Guohai; Zhu, Chengzhou; Du, Dan; Zhu, Junjie; Lin, Yuehe
2015-08-01
The development of nanotechnology provides promising opportunities for various important applications. The recent discovery of atomically-thick two-dimensional (2D) nanomaterials can offer manifold perspectives to construct versatile devices with high-performance to satisfy multiple requirements. Many studies directed at graphene have stimulated renewed interest on graphene-like 2D layered nanomaterials (GLNs). GLNs including boron nitride nanosheets, graphitic-carbon nitride nanosheets and transition metal dichalcogenides (e.g. MoS2 and WS2) have attracted significant interest in numerous research fields from physics and chemistry to biology and engineering, which has led to numerous interdisciplinary advances in nano science. Benefiting from the unique physical and chemical properties (e.g. strong mechanical strength, high surface area, unparalleled thermal conductivity, remarkable biocompatibility and ease of functionalization), these 2D layered nanomaterials have shown great potential in biochemistry and biomedicine. This review summarizes recent advances of GLNs in applications of biosensors and nanomedicine, including electrochemical biosensors, optical biosensors, bioimaging, drug delivery and cancer therapy. Current challenges and future perspectives in these rapidly developing areas are also outlined. It is expected that they will have great practical foundation in biomedical applications with future efforts.
Boundary of the future of a surface
Akers, Chris; Bousso, Raphael; Halpern, Illan F.; ...
2018-01-12
We prove that the boundary of the future of a surface K consists precisely of the points p that lie on a null geodesic orthogonal to K such that between K and p there are no points conjugate to K nor intersections with another such geodesic. Our theorem has applications to holographic screens and their associated light sheets and in particular enters the proof that holographic screens satisfy an area law.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staller, G.E.; Hamilton, I.D.; Aker, M.F.
1978-02-01
A single-unit electron beam accelerator was designed, fabricated, and assembled in Sandia's Technical Area V to conduct magnetically insulated transmission experiments. Results of these experiments will be utilized in the future design of larger, more complex accelerators. This design makes optimum use of existing facilities and equipment. When designing new components, possible future applications were considered as well as compatibility with existing facilities and hardware.
Real-Time Interactive Facilities Associated With A 3-D Medical Workstation
NASA Astrophysics Data System (ADS)
Goldwasser, S. M.; Reynolds, R. A.; Talton, D.; Walsh, E.
1986-06-01
Biomedical workstations of the future will incorporate three-dimensional interactive capabilities which provide real-time response to most common operator requests. Such systems will find application in many areas of medicine including clinical diagnosis, surgical and radiation therapy planning, biomedical research based on functional imaging, and medical education. This paper considers the requirements of these future systems in terms of image quality, performance, and the interactive environment, and examines the relationship of workstation capabilities to specific medical applications. We describe a prototype physician's workstation that we have designed and built to meet many of these requirements (using conventional graphics technology in conjunction with a custom real-time 3-D processor), and give an account of the remaining issues and challenges that future designers of such systems will have to address.
Bergen, P L; Nemec, D
1999-01-01
In December 1997, the authors completed an in-depth collection assessment project at the University of Wisconsin-Madison Health Sciences Libraries. The purpose was to develop a framework for future collection assessment projects by completing a multifaceted evaluation of the libraries' monograph and serial collections in the subject area of drug resistance. Evaluators adapted and synthesized several traditional collection assessment tools, including shelflist measurement, bibliography and standard list checking, and citation analysis. Throughout the project, evaluators explored strategies to overcome some of the problems inherent in the application of traditional collection assessment methods to the evaluation of biomedical collections. Their efforts resulted in the identification of standard monographs and core journals for the subject area, a measurement of the collections' strength relative to the collections of benchmark libraries, and a foundation for future collection development within the subject area. The project's primary outcome was a collection assessment methodology that has potential application to both internal and cooperative collection development in medical, pharmaceutical, and other health sciences libraries. PMID:9934527
Earth benefits from NASA research and technology. Life sciences applications
NASA Technical Reports Server (NTRS)
1991-01-01
This document provides a representative sampling of examples of Earth benefits in life-sciences-related applications, primarily in the area of medicine and health care, but also in agricultural productivity, environmental monitoring and safety, and the environment. This brochure is not intended as an exhaustive listing, but as an overview to acquaint the reader with the breadth of areas in which the space life sciences have, in one way or another, contributed a unique perspective to the solution of problems on Earth. Most of the examples cited were derived directly from space life sciences research and technology. Some examples resulted from other space technologies, but have found important life sciences applications on Earth. And, finally, we have included several areas in which Earth benefits are anticipated from biomedical and biological research conducted in support of future human exploration missions.
An overview of current approaches and future challenges in physiological monitoring
NASA Technical Reports Server (NTRS)
Horst, Richard L.
1988-01-01
Sufficient evidence exists from laboratory studies to suggest that physiological measures can be useful as an adjunct to behavioral and subjective measures of human performance and capabilities. Thus it is reasonable to address the conceptual and engineering challenges that arise in applying this technology in operational settings. Issues reviewed include the advantages and disadvantages of constructs such as mental states, the need for physiological measures of performance, areas of application for physiological measures in operational settings, which measures appear to be most useful, problem areas that arise in the use of these measures in operational settings, and directions for future development.
The Coming Paradigm-Shift in Maintenance: From Metals to Composites
NASA Technical Reports Server (NTRS)
Hobbs, Alan; Brasil, Connie; Kanki, Barbara
2009-01-01
The purpose of this study is to examine the current maintenance practices of airline operators in the detection and repair of damage to composite structures, with the aim of learning lessons that will be applicable to the maintenance of future advanced composite airplanes. A process map was created to capture the events and activities that occur from the moment a damage event occurs, through damage detection, assessment and repair. The study is identifying areas where operational risks may negatively impact the process, where personnel are required to make judgments in the absence of procedural guidance, and areas where future tools or techniques may be of assistance.
Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics.
Vallabani, N V Srikanth; Singh, Sanjay
2018-06-01
Superparamagnetic iron oxide nanoparticles (SPIONs) are considered as chemically inert materials and, therefore, being extensively applied in the areas of imaging, targeting, drug delivery and biosensors. Their unique properties such as low toxicity, biocompatibility, potent magnetic and catalytic behavior and superior role in multifunctional modalities have epitomized them as an appropriate candidate for biomedical applications. Recent developments in the area of materials science have enabled the facile synthesis of Iron oxide nanoparticles (IONPs) offering easy tuning of surface properties and surface functionalization with desired biomolecules. Such developments have enabled IONPs to be easily accommodated in nanocomposite platform or devices. Additionally, the tag of biocompatible material has realized their potential in myriad applications of nanomedicines including imaging modalities, sensing, and therapeutics. Further, IONPs enzyme mimetic activity pronounced their role as nanozymes in detecting biomolecules like glucose, and cholesterol etc. Hence, based on their versatile applications in biomedicine, the present review article focusses on the current trends, developments and future prospects of IONPs in MRI, hyperthermia, photothermal therapy, biomolecules detection, chemotherapy, antimicrobial activity and also their role as the multifunctional agent in diagnosis and nanomedicines.
Telehealth innovations in health education and training.
Conde, José G; De, Suvranu; Hall, Richard W; Johansen, Edward; Meglan, Dwight; Peng, Grace C Y
2010-01-01
Telehealth applications are increasingly important in many areas of health education and training. In addition, they will play a vital role in biomedical research and research training by facilitating remote collaborations and providing access to expensive/remote instrumentation. In order to fulfill their true potential to leverage education, training, and research activities, innovations in telehealth applications should be fostered across a range of technology fronts, including online, on-demand computational models for simulation; simplified interfaces for software and hardware; software frameworks for simulations; portable telepresence systems; artificial intelligence applications to be applied when simulated human patients are not options; and the development of more simulator applications. This article presents the results of discussion on potential areas of future development, barries to overcome, and suggestions to translate the promise of telehealth applications into a transformed environment of training, education, and research in the health sciences.
Synthesis, functionalization, and applications of metal-organic frameworks in biomedicine.
Chen, Wei; Wu, Chunsheng
2018-02-13
Metal-organic frameworks (MOFs), also known as coordination polymers, have attracted extensive research interest in the past few decades due to their unique physical structures and potentially vast applications. In this review, we outline the recent progress in the synthesis, functionalization and applications of MOFs in biomedicine, mainly focusing on two promising, yet challenging areas, i.e., drug delivery and biosensing applications. A major challenge is the proper functionalization of MOFs with demanding properties suitable for biomedical applications. Extensive studies on MOFs in biomedicine have led to substantial progress in the control of key properties of MOFs such as toxicity, size and shape, and biological stability. Due to their flexible composition, pore size and easy functionalization properties, MOFs can be utilized as key components for the development of various functional systems, and their applications in drug delivery and biosensing are reviewed. Future trends and perspectives in these research areas are also outlined.
NASA Technical Reports Server (NTRS)
Gevarter, W. B.
1983-01-01
Artificial Intelligence (AI) is an emerging technology that has recently attracted considerable attention. Many applications are now under development. This report, Part B of a three part report on AI, presents overviews of the key application areas: Expert Systems, Computer Vision, Natural Language Processing, Speech Interfaces, and Problem Solving and Planning. The basic approaches to such systems, the state-of-the-art, existing systems and future trends and expectations are covered.
Numerical solution of the Navier-Stokes equations about three-dimensional configurations: A survey
NASA Technical Reports Server (NTRS)
Holst, Terry L.
1987-01-01
The numerical solution of the Navier-Stokes equations about three-dimensional configurations is reviewed. Formulational and computational requirements for the various Navier-Stokes approaches are examined for typical problems including the viscous flow field solution about a complete aerospace vehicle. Recent computed results, with experimental comparisons when available, are presented to highlight the presentation. The future of Navier-Stokes applications in three-dimensions is seen to be rapidly expanding across a broad front including internal and external flows, and flows across the entire speed regime from incompressible to hypersonic applications. Prospects for the future are described and recommendations for areas of concentrated research are indicated.
Manufacturing Magic and Computational Creativity
Williams, Howard; McOwan, Peter W.
2016-01-01
This paper describes techniques in computational creativity, blending mathematical modeling and psychological insight, to generate new magic tricks. The details of an explicit computational framework capable of creating new magic tricks are summarized, and evaluated against a range of contemporary theories about what constitutes a creative system. To allow further development of the proposed system we situate this approach to the generation of magic in the wider context of other areas of application in computational creativity in performance arts. We show how approaches in these domains could be incorporated to enhance future magic generation systems, and critically review possible future applications of such magic generating computers. PMID:27375533
The new applications of sputtering and ion plating
NASA Technical Reports Server (NTRS)
Spalvins, T.
1977-01-01
The potential industrial applications of sputtering and ion plating are strictly governed by the unique features these methods possess. The outstanding features of each method, the resultant coating characteristics and the various sputtering modes and configurations are discussed. New, more complex coatings and deposits can be developed such as graded composition structures (metal-ceramic seals), laminated and dispersion strengthened composites which improve the mechanical properties and high temperature stability. Specific industrial areas where future effort of sputtering and ion plating will concentrate to develop intricate alloy or compound coatings and solve difficult problem areas are discussed.
Infrared fiber-optic fire sensors - Concepts and designs for Space Station applications
NASA Technical Reports Server (NTRS)
Tapphorn, Ralph M.; Porter, Alan R.
1990-01-01
Various design configurations used for testing IR fiber-optic (IFO) fire-sensor concepts are presented. Responsibility measurements conducted to select the best concept are reviewed. The results indicate that IFO fire-sensor systems based on distributed fiber sensors are feasible for future aerospace applications. For Space Station Freedom, these systems offer alternative fire detectors for monitoring areas within equipment or stage compartments where the ventilation may be inadequate for proper operation of smoke detectors. They also allow a large number of areas to be monitored by a single central detector unit, which reduces the associated cost and weight.
NASA Technical Reports Server (NTRS)
Waters, K. T.
1979-01-01
The results of a study of the uses of helicopters in agriculture and forestry in the United States are discussed. Comparisons with agricultural airplanes are made in terms of costs of aerial application to the growers. An analysis of cost drivers and potential improvements to helicopters that will lower costs is presented. Future trends are discussed, and recommendations for research are outlined. Operational safety hazards and accident records are examined, and problem areas are identified. Areas where research and development are needed to provide opportunities for lowering costs while increasing productivity are analyzed.
Status and Mission Applicability of NASA's In-Space Propulsion Technology Project
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Dankanich, John; Pencil, Eric; Liou, Larry
2009-01-01
The In-Space Propulsion Technology (ISPT) project develops propulsion technologies that will enable or enhance NASA robotic science missions. Since 2001, the ISPT project developed and delivered products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. These in-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of advanced chemical thrusters, electric propulsion, aerocapture, and systems analysis tools. The current chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Investments in electric propulsion technologies focused on completing NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system, and the High Voltage Hall Accelerator (HiVHAC) thruster, which is a mid-term product specifically designed for a low-cost electric propulsion option. Aerocapture investments developed a family of thermal protections system materials and structures; guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars and Venus; and models for aerothermal effects. In 2009 ISPT started the development of propulsion technologies that would enable future sample return missions. The paper describes the ISPT project's future focus on propulsion for sample return missions. The future technology development areas for ISPT is: Planetary Ascent Vehicles (PAV), with a Mars Ascent Vehicle (MAV) being the initial development focus; multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; propulsion for Earth Return Vehicles (ERV), transfer stages to the destination, and Electric Propulsion for sample return and low cost missions; and Systems/Mission Analysis focused on sample return propulsion. The ISPT project is funded by NASA's Science Mission Directorate (SMD).
Mobile Social Networking Health (MSNet-Health): beyond the mHealth frontier.
Househ, Mowafa
2012-01-01
The purpose of this conceptual paper is to introduce the concept of Mobile Social Networking Healthcare (MSNet-Health). The paper defines MSNet-Health and provides a working scenario of MSNet-Health. The paper suggests various potential domain area applications for MSNet-Health, such as diabetes, antenatal education, smoking cessation, weight loss, and arthritis. Challenges and future research areas are also discussed.
Viking dynamics experience with application to future payload design
NASA Technical Reports Server (NTRS)
Barrett, S.; Rader, W. P.; Payne, K. R.
1978-01-01
Analytical and test techniques are discussed. Areas in which hindsight indicated erroneous, redundant, or unnecessarily severe design and test specifications are identified. Recommendations are made for improvements in the dynamic design and criteria philosophy, aimed at reducing costs for payloads.
What Is Artificial Intelligence Anyway?
ERIC Educational Resources Information Center
Kurzweil, Raymond
1985-01-01
Examines the past, present, and future status of Artificial Intelligence (AI). Acknowledges the limitations of AI but proposes possible areas of application and further development. Urges a concentration on the unique strengths of machine intelligence rather than a copying of human intelligence. (ML)
Measurement and testing of the acoustic properties of materials: a review
NASA Astrophysics Data System (ADS)
Zeqiri, Bajram; Scholl, Werner; Robinson, Stephen P.
2010-04-01
A review is presented of methods of measurement for a range of key acoustic properties of materials, spanning three application areas: airborne sound, underwater acoustics and ultrasound. The acoustic properties considered, primarily transmission loss (damping) and echo-reduction, are specifically important to the end application of any material. The state-of-the-art in measurement and likely future challenges are described in detail.
Applications of Gold Nanoparticles in Nanomedicine: Recent Advances in Vaccines.
Carabineiro, Sónia Alexandra Correia
2017-05-22
Nowadays, gold is used in (nano-)medicine, usually in the form of nanoparticles, due to the solid proofs given of its therapeutic effects on several diseases. Gold also plays an important role in the vaccine field as an adjuvant and a carrier, reducing toxicity, enhancing immunogenic activity, and providing stability in storage. An even brighter golden future is expected for gold applications in this area.
Recommended system of application and development
NASA Astrophysics Data System (ADS)
Wang, Wei
2018-04-01
A recommender system is a project that helps users identify their wishes and needs. The recommender system has been successfully applied to many e-commerce environments, such as news, film, music, books and other areas of recommendation. This paper mainly discusses the application of recommendation technology in software engineering, data and knowledge engineering, configurable projects and persuasion technology, and summarizes the development trend of recommendation technology in the future.
AMTEC: a cooperative effort in medical technology education.
Beiermann, M K; Coggeshall, M; Gavin, M L; Laughlin, P; Palermo, J; Torrey, J A; Weidner, J
1978-04-01
A committee in the St. Louis Metropolitan area has been established to promote communication and cooperation among the area's existing hospital-based programs in medical technology. Area Medical Technology Education Coordinators (AMTEC) was established three years ago primarily to facilitate the administrative functions of medical technology education and to serve as an instrument for the exchange of ideas. Its primary undertaking has been the central processing of applications to the area programs, as an aid in the admission process. In addition, a continuing education program sponsored by the committee has been established, and various "curriculum sharing" activities have been sponsored for the students enrolled in the schools. Future plans for the committee include sponsoring an on-going evaluation process of graduates by employers, and establishing a criterion-referenced question pool. The authors describe the experiences of the committee to date and plans for the implementation of future goals.
Bluetooth-enabled teleradiology: applications and complications.
Hura, Angela M
2002-01-01
Wireless personal area networks and local area networks are becoming increasingly more prevalent in the teleradiology and telemedicine industry. Although there has been much debate about the role that Bluetooth will play in the future of wireless technology, both promoters and doubters acknowledge that Bluetooth will have an impact on networking, even if only as a "niche" product. This article provides an overview of the Bluetooth standard and highlights current and future areas of inclusion for use in a teleradiology environment. The possibilities for Bluetooth in a teleradiology environment without wires are nearly boundless and an overview of current and proposed Bluetooth-enabled radiology equipment and vendors is provided. A comparison of Bluetooth and other wireless technologies is provided, including areas of similarity and potential conflict. Bluetooth and other wireless technologies can not only peacefully coexist but also complement each other and provide enhanced teleradiology services.
State of science: human factors and ergonomics in healthcare.
Hignett, Sue; Carayon, Pascale; Buckle, Peter; Catchpole, Ken
2013-01-01
The past decade has seen an increase in the application of human factors and ergonomics (HFE) techniques to healthcare delivery in a broad range of contexts (domains, locations and environments). This paper provides a state of science commentary using four examples of HFE in healthcare to review and discuss analytical and implementation challenges and to identify future issues for HFE. The examples include two domain areas (occupational ergonomics and surgical safety) to illustrate a traditional application of HFE and the area that has probably received the most research attention. The other two examples show how systems and design have been addressed in healthcare with theoretical approaches for organisational and socio-technical systems and design for patient safety. Future opportunities are identified to develop and embed HFE systems thinking in healthcare including new theoretical models and long-term collaborative partnerships. HFE can contribute to systems and design initiatives for both patients and clinicians to improve everyday performance and safety, and help to reduce and control spiralling healthcare costs. There has been an increase in the application of HFE techniques to healthcare delivery in the past 10 years. This paper provides a state of science commentary using four illustrative examples (occupational ergonomics, design for patient safety, surgical safety and organisational and socio-technical systems) to review and discuss analytical and implementation challenges and identify future issues for HFE.
Grand Challenges and Future Opportunities for Metal–Organic Frameworks
2017-01-01
Metal–organic frameworks (MOFs) allow compositional and structural diversity beyond conventional solid-state materials. Continued interest in the field is justified by potential applications of exceptional breadth, ranging from gas storage and separation, which takes advantage of the inherent pores and their volume, to electronic applications, which requires precise control of electronic structure. In this Outlook we present some of the pertinent challenges that MOFs face in their conventional implementations, as well as opportunities in less traditional areas. Here the aim is to discuss select design concepts and future research goals that emphasize nuances relevant to this class of materials as a whole. Particular emphasis is placed on synthetic aspects, as they influence the potential for MOFs in gas separation, electrical conductivity, and catalytic applications. PMID:28691066
Use of display technologies for augmented reality enhancement
NASA Astrophysics Data System (ADS)
Harding, Kevin
2016-06-01
Augmented reality (AR) is seen as an important tool for the future of user interfaces as well as training applications. An important application area for AR is expected to be in the digitization of training and worker instructions used in the Brilliant Factory environment. The transition of work instructions methods from printed pages in a book or taped to a machine to virtual simulations is a long step with many challenges along the way. A variety of augmented reality tools are being explored today for industrial applications that range from simple programmable projections in the work space to 3D displays and head mounted gear. This paper will review where some of these tool are today and some of the pros and cons being considered for the future worker environment.
Grand Challenges and Future Opportunities for Metal–Organic Frameworks
Hendon, Christopher H.; Rieth, Adam J.; Korzyński, Maciej D.; ...
2017-06-06
Metal–organic frameworks (MOFs) allow compositional and structural diversity beyond conventional solid-state materials. Continued interest in the field is justified by potential applications of exceptional breadth, ranging from gas storage and separation, which takes advantage of the inherent pores and their volume, to electronic applications, which requires precise control of electronic structure. In this Outlook we present some of the pertinent challenges that MOFs face in their conventional implementations, as well as opportunities in less traditional areas. Here the aim is to discuss select design concepts and future research goals that emphasize nuances relevant to this class of materials as amore » whole. Particular emphasis is placed on synthetic aspects, as they influence the potential for MOFs in gas separation, electrical conductivity, and catalytic applications.« less
Gallagher, Joe; O'Donoghue, John; Car, Josip
2015-04-01
Immunology, similar to other areas of clinical science, is a data-rich discipline that involves a great deal of interaction between healthcare professionals and their patients. The focus of this editorial is to review the challenges and opportunities for mobile healthcare applications within immunology. It is clear that further research is required to fully maximize the potential of mobile apps (e.g., regulations and guidelines, electronic health). However, it is equally clear that mobile healthcare applications have had a positive impact on patient outcomes (better response rates, more efficient usage of time and more accurate diagnosis). Overall, healthcare applications have a fundamental role to play in the future management of diseases as they will help to ensure that we deliver more effective patient care.
NASA Technical Reports Server (NTRS)
Krishen, Kumar (Editor); Burnham, Calvin (Editor)
1995-01-01
The papers presented at the 4th International Conference Exhibition: World Congress on Superconductivity held at the Marriott Orlando World Center, Orlando, Florida, are contained in this document and encompass the research, technology, applications, funding, political, and social aspects of superconductivity. Specifically, the areas covered included: high-temperature materials; thin films; C-60 based superconductors; persistent magnetic fields and shielding; fabrication methodology; space applications; physical applications; performance characterization; device applications; weak link effects and flux motion; accelerator technology; superconductivity energy; storage; future research and development directions; medical applications; granular superconductors; wire fabrication technology; computer applications; technical and commercial challenges, and power and energy applications.
NASA Technical Reports Server (NTRS)
Krishen, Kumar (Editor); Burnham, Calvin (Editor)
1995-01-01
This document contains papers presented at the 4th International Conference Exhibition: World Congress on Superconductivity held June 27-July 1, 1994 in Orlando, Florida. These documents encompass research, technology, applications, funding, political, and social aspects of superconductivity. The areas covered included: high-temperature materials; thin films; C-60 based superconductors; persistent magnetic fields and shielding; fabrication methodology; space applications; physical applications; performance characterization; device applications; weak link effects and flux motion; accelerator technology; superconductivity energy; storage; future research and development directions; medical applications; granular superconductors; wire fabrication technology; computer applications; technical and commercial challenges; and power and energy applications.
The ESA standard for telemetry and telecommand packet utilisation: PUS
NASA Technical Reports Server (NTRS)
Kaufeler, Jean-Francois
1994-01-01
ESA has developed standards for packet telemetry and telecommand, which are derived from the recommendations of the Inter-Agency Consultative Committee for Space Data Systems (CCSDS). These standards are now mandatory for future ESA programs as well as for many programs currently under development. However, while these packet standards address the end-to-end transfer of telemetry and telecommand data between applications on the ground and Application Processes on-board, they leave open the internal structure or content of the packets. This paper presents the ESA Packet Utilization Standard (PUS) which addresses this very subject and, as such, serves to extend and complement the ESA packet standards. The goal of the PUS is to be applicable to future ESA missions in all application areas (Telecommunications, Science, Earth Resources, microgravity, etc.). The production of the PUS falls under the responsibility of the ESA Committee for Operations and EGSE Standards (COES).
Application of plantar pressure assessment in footwear and insert design.
Mueller, M J
1999-12-01
This clinical perspective describes the application of plantar pressure assessment in footwear and insert design. First, the rationale and evidence for using pressure assessment to assist in the design of footwear for patients with diabetes is described. I discuss 2 important measures obtained from pressure assessment: peak pressure, because it represents the magnitude of potential mechanical stresses that can contribute to skin breakdown, and contact area, because this identifies the treatment areas. Using measures obtained from pressure assessment, guidelines are presented to maximize contact area of the insert to the foot and reduce highest peak pressures on the skin, with the goal of preventing skin breakdown. Second, a rationale and guidelines are presented for the application of plantar pressure assessment in the evaluation and design of footwear for people without impairments (i.e., the general public). Finally, future applications of pressure assessment to improve the design and fit of shoes are discussed. Benefits and limitations of using pressure assessment to assist in footwear design are addressed throughout.
Selenium nanomaterials: applications in electronics, catalysis and sensors.
Chaudhary, Savita; Mehta, S K
2014-02-01
This review provides insights into the synthesis, functionalization, and applications of selenium nanoparticles in electronics, optics, catalysis and sensors. The variation of physicochemical properties such as particle size, surface area, and shape of the selenium nanoparticles and the effect of experimental conditions has also been discussed. An overview has also been provided on the fundamental electrical and optical properties of selenium nanomaterials as well as their utilization in different research fields. The work presents an insight on selenium nanoparticles with interesting properties and their future applications.
Nonlinear Constitutive Relations for High Temperature Applications, 1986
NASA Technical Reports Server (NTRS)
1988-01-01
The purpose of the symposium was to review the state-of-the-art in nonlinear constitutive modeling of high temperature materials for aeronautics applications and to identify the need for future research and development efforts in this area. Through this symposium, it was recognized that considerable research efforts are urgently needed in the development of nonlinear constitutive relations for high temperature applications. In the aerospace industry this need is further prompted by recent advances in high temperature materials technology and new demands on material and component performance.
Graphene Hybrid Materials in Gas Sensing Applications †
Latif, Usman; Dickert, Franz L.
2015-01-01
Graphene, a two dimensional structure of carbon atoms, has been widely used as a material for gas sensing applications because of its large surface area, excellent conductivity, and ease of functionalization. This article reviews the most recent advances in graphene hybrid materials developed for gas sensing applications. In this review, synthetic approaches to fabricate graphene sensors, the nano structures of hybrid materials, and their sensing mechanism are presented. Future perspectives of this rapidly growing field are also discussed. PMID:26690156
NASA Astrophysics Data System (ADS)
Loibl, Wolfgang; Peters-Anders, Jan; Züger, Johann
2010-05-01
To achieve public awareness and thorough understanding about expected climate changes and their future implications, ways have to be found to communicate model outputs to the public in a scientifically sound and easily understandable way. The newly developed Climate Twins tool tries to fulfil these requirements via an intuitively usable web application, which compares spatial patterns of current climate with future climate patterns, derived from regional climate model results. To get a picture of the implications of future climate in an area of interest, users may click on a certain location within an interactive map with underlying future climate information. A second map depicts the matching Climate Twin areas according to current climate conditions. In this way scientific output can be communicated to the public which allows for experiencing climate change through comparison with well-known real world conditions. To identify climatic coincidence seems to be a simple exercise, but the accuracy and applicability of the similarity identification depends very much on the selection of climate indicators, similarity conditions and uncertainty ranges. Too many indicators representing various climate characteristics and too narrow uncertainty ranges will judge little or no area as regions with similar climate, while too little indicators and too wide uncertainty ranges will address too large regions as those with similar climate which may not be correct. Similarity cannot be just explored by comparing mean values or by calculating correlation coefficients. As climate change triggers an alteration of various indicators, like maxima, minima, variation magnitude, frequency of extreme events etc., the identification of appropriate similarity conditions is a crucial question to be solved. For Climate Twins identification, it is necessary to find a right balance of indicators, similarity conditions and uncertainty ranges, unless the results will be too vague conducting a useful Climate Twins regions search. The Climate Twins tool works actually comparing future climate conditions of a certain source area in the Greater Alpine Region with current climate conditions of entire Europe and the neighbouring southern as well south-eastern areas as target regions. A next version will integrate web crawling features for searching information about climate-related local adaptations observed today in the target region which may turn out as appropriate solution for the source region under future climate conditions. The contribution will present the current tool functionally and will discuss which indicator sets, similarity conditions and uncertainty ranges work best to deliver scientifically sound climate comparisons and distinct mapping results.
Rapid Response: D-Wave Effort Debrief Welcome, Logistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eidenbenz, Stephan Johannes
The main objects of this project is to develop a diverse and sizable workforce, community, interest within LANL for D-Wave and Quantum Computing; identify promising application areas/problems for future projects; and complement other D-Wave work at LANL (LDRD DR, ASC).
NASA Technical Reports Server (NTRS)
1980-01-01
A research program plan developed by the Office of Space and Terrestrial Applications to provide guidelines for a concentrated effort to improve the understanding of the measurement capabilities of active microwave imaging sensors, and to define the role of such sensors in future Earth observations programs is outlined. The focus of the planned activities is on renewable and non-renewable resources. Five general application areas are addressed: (1) vegetation canopies, (2) surface water, (3) surface morphology, (4) rocks and soils, and (5) man-made structures. Research tasks are described which, when accomplished, will clearly establish the measurement capabilities in each area, and provide the theoretical and empirical results needed to specify and justify satellite systems using imaging radar sensors for global observations.
Acoustic Levitation Containerless Processing
NASA Technical Reports Server (NTRS)
Whymark, R. R.; Rey, C. A.
1985-01-01
This research program consists of the development of acoustic containerless processing systems with applications in the areas of research in material sciences, as well as the production of new materials, solid forms with novel and unusual microstructures, fusion target spheres, and improved optical fibers. Efforts have been focused on the containerless processing at high temperatures for producing new kinds of glasses. Also, some development has occurred in the areas of containerlessly supporting liquids at room temperature, with applications in studies of fluid dynamics, potential undercooling of liquids, etc. The high temperature area holds the greatest promise for producing new kinds of glasses and ceramics, new alloys, and possibly unusual structural shapes, such as very uniform hollow glass shells for fusion target applications. High temperature acoustic levitation required for containerless processing has been demonstrated in low-g environments as well as in ground-based experiments. Future activities include continued development of the signals axis acoustic levitator.
NASA Technical Reports Server (NTRS)
Castruccio, P.; Loats, H.; Lloyd, D.; Newman, P.
1981-01-01
The results of the OASSO ASVT's were used to estimate the benefits accruing from the added information available from satellite snowcover area measurement. Estimates of the improvement in runoff prediction due to addition of SATSCAM were made by the Colorado ASVT personnel. The improvement estimate is 6-10%. Data were applied to subregions covering the Western States snow area amended by information from the ASVT and other watershed experts to exclude areas which are not impacted by snowmelt runoff. Benefit models were developed for irrigation and hydroenergy uses. The benefit/cost ratio is 72:1. Since only two major benefit contributors were used and since the forecast improvement estimate does not take into account future satellite capabilities these estimates are considered to be conservative. The large magnitude of the benefit/cost ratio supports the utility and applicability of SATSCAM.
Soil Organic Matter (SOM): Molecular Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, Amity
Molecular simulation is a powerful tool used to gain an atomistic, molecular, and nanoscale level understanding of the structure, dynamics, and interactions from adsorption on minerals and assembly in aggregates of soil organic matter (SOM). Given the importance of SOM fate and persistence in soils and the current knowledge gaps, applications of atomistic scale simulations to study the complex compounds in SOM and their interactions in self-assembled aggregates composed of different organic matter compounds and with mineral surfaces of different types common in soils are few and far between. Here, we describe various molecular simulation methods that are currently inmore » use in various areas and applicable to SOM research, followed by a brief survey of specific applications to SOM research and an illustration with our own recent efforts in this area. We conclude with an outlook and the challenges for future research in this area.« less
Wireless Sensing Opportunities for Aerospace Applications
NASA Technical Reports Server (NTRS)
Wilson, William; Atkinson, Gary
2007-01-01
Wireless sensors and sensor networks is an emerging technology area with many applications within the aerospace industry. Integrated vehicle health monitoring (IVHM) of aerospace vehicles is needed to ensure the safety of the crew and the vehicle, yet often high costs, weight, size and other constraints prevent the incorporation of instrumentation onto spacecraft. This paper presents a few of the areas such as IVHM, where new wireless sensing technology is needed on both existing vehicles as well as future spacecraft. From ground tests to inflatable structures to the International Space Station, many applications could receive benefits from small, low power, wireless sensors. This paper also highlights some of the challenges that need to overcome when implementing wireless sensor networks for aerospace vehicles.
NASA Earth Observation Systems and Applications for Health and Air Quality
NASA Technical Reports Server (NTRS)
Omar, Ali H.
2015-01-01
There is a growing body of evidence that the environment can affect human health in ways that are both complex and global in scope. To address some of these complexities, NASA maintains a diverse constellation of Earth observing research satellites, and sponsors research in developing satellite data applications across a wide spectrum of areas. These include environmental health; infectious disease; air quality standards, policies, and regulations; and the impact of climate change on health and air quality in a number of interrelated efforts. The Health and Air Quality Applications fosters the use of observations, modeling systems, forecast development, application integration, and the research to operations transition process to address environmental health effects. NASA has been a primary partner with Federal operational agencies over the past nine years in these areas. This talk presents the background of the Health and Air Quality Applications program, recent accomplishments, and a plan for the future.
Telehealth Innovations in Health Education and Training
De, Suvranu; Hall, Richard W.; Johansen, Edward; Meglan, Dwight; Peng, Grace C.Y.
2010-01-01
Abstract Telehealth applications are increasingly important in many areas of health education and training. In addition, they will play a vital role in biomedical research and research training by facilitating remote collaborations and providing access to expensive/remote instrumentation. In order to fulfill their true potential to leverage education, training, and research activities, innovations in telehealth applications should be fostered across a range of technology fronts, including online, on-demand computational models for simulation; simplified interfaces for software and hardware; software frameworks for simulations; portable telepresence systems; artificial intelligence applications to be applied when simulated human patients are not options; and the development of more simulator applications. This article presents the results of discussion on potential areas of future development, barries to overcome, and suggestions to translate the promise of telehealth applications into a transformed environment of training, education, and research in the health sciences. PMID:20155874
NASA Technical Reports Server (NTRS)
1973-01-01
Remote sensing techniques are being used in Minnesota to study: (1) forest disease detection and control; (2) water quality indicators; (3) forest vegetation classification and management; (4) detection of saline soils in the Red River Valley; (5) corn defoliation; and (6) alfalfa crop productivity. Results of progress, and plans for future work in these areas, are discussed.
The future of satellite remote sensing: A worldwide assessment and prediction
NASA Technical Reports Server (NTRS)
Spann, G. W.
1984-01-01
A frame-work in which to assess and predict the future prospects for satellite remote sensing markets is provided. The scope of the analysis is the satellite-related market for data, equipment, and services. It encompasses both domestic and international markets and contains an examination of the various market characteristics by market segment (e.g., Federal Government, State and Local Governments, Academic Organizations, Industrial Companies, and Individuals) and primary applications areas (e.g., Geology, Forestry, Land Resource Management, Agriculture and Cartography). The forecasts are derived from an analysis of both U.S. and foreign market data. The evolution and current status of U.S. and Foreign markets to arrive at market growth rates is evaluated. Circumstances and events which are likely to affect the future market development are examined. A market growth scenario is presented that is consistent with past data sales trends and takes into account the dynamic nature of the future satellite remote sensing market. Several areas of current and future business opportunities available in this market are discussed. Specific worldwide forecasts are presented in three market sectors for the period 1980 to 1990.
Robotics in neurosurgery: state of the art and future technological challenges.
Zamorano, L; Li, Q; Jain, S; Kaur, G
2004-06-01
The use of robotic technologies to assist surgeons was conceptually described almost thirty years ago but has only recently become feasible. In Neurosurgery, medical robots have been applied to neurosurgery for over 19 years. Nevertheless this field remains unknown to most neurosurgeons. The intrinsic characteristics of robots, such as high precision, repeatability and endurance make them ideal surgeon's assistants. Unfortunately, limitations in the current available systems make its use limited to very few centers in the world. During the last decade, important efforts have been made between academic and industry partnerships to develop robots suitable for use in the operating room environment. Although some applications have been successful in areas of laparoscopic surgery and orthopaedics, Neurosurgery has presented a major challenge due to the eloquence of the surrounding anatomy. This review focuses on the application of medical robotics in neurosurgery. The paper begins with an overview of the development of the medical robotics, followed by the current clinical applications in neurosurgery and an analysis of current limitations. We discuss robotic applications based in our own experience in the field. Next, we discuss the technological challenges and research areas to overcome those limitations, including some of our current research approaches for future progress in the field. Copyright 2004 Robotic Publications Ltd.
Elastography: current status, future prospects, and making it work for you.
Garra, Brian S
2011-09-01
Elastography has emerged as a useful adjunct tool for ultrasound diagnosis. Elastograms are images of tissue stiffness and may be in color, grayscale, or a combination of the two. The first and most common application of elastography is for the diagnosis of breast lesions where studies have shown an area under the receiver operating characteristic curve of 0.88 to 0.95 for distinguishing cancer from benign lesions. The technique is also useful for the diagnosis of complex cysts, although different scanners may vary in how they display such lesions. Recent advances in elastography include quantification using strain ratios, acoustic radiation force impulse imaging, and shear wave velocity estimation. These are useful not only for characterizing focal masses but also for diagnosing diffuse organ diseases such as liver cirrhosis. Other near term potential applications for elastography include characterization of thyroid nodules and lymph node evaluation for metastatic disease. Prostate cancer detection is also a potential application, but obtaining high-quality elastograms may be difficult. This area is evolving. Other promising applications include atheromatous plaque and arterial wall evaluation, venous thrombus evaluation, graft rejection, and monitoring of tumor ablation therapy. When contemplating the acquisition of a system with elastography in this rapidly evolving field, a clear picture of the manufacturer's plans for future upgrades (including quantification) should be obtained.
Future superconductivity applications in space - A review
NASA Astrophysics Data System (ADS)
Krishen, Kumar; Ignatiev, Alex
High temperature superconductor (HISC) materials and devices can provide immediate applications for many space missions. The in-space thermal environment provides an opportunity to develop, test, and apply this technology to enhance performance and reliability for many applications of crucial importance to NASA. Specifically, the technology development areas include: (1) high current power transmission, (2) microwave components, devices, and antennas, (3) microwave, optical, and infrared sensors, (4) signal processors, (5) submillimeter wave components and systems, (6) ultra stable space clocks, (7) electromagnetic launch systems, and (8) accelerometers and position sensors for flight operations. HTSC is expected to impact NASA's Lunar Bases, Mars exploration, Mission to Earth, and Planetary exploration programs providing enabling and cost-effect technology. A review of the space applications of the HTSC technology is presented. Problem areas in technology development needing special attention are identified.
NASA Technical Reports Server (NTRS)
Drummond, J. Philip; Cockrell, Charles E., Jr.; Pellett, Gerald L.; Diskin, Glenn S.; Auslender, Aaron H.; Exton, Reginald J.; Guy, R. Wayne; Hoppe, John C.; Puster, Richard L.; Rogers, R. Clayton
2002-01-01
This White Paper examines the current state of Hypersonic Airbreathing Propulsion at the NASA Langley Research Center and the factors influencing this area of work and its personnel. Using this knowledge, the paper explores beyond the present day and suggests future directions and strategies for the field. Broad views are first taken regarding potential missions and applications of hypersonic propulsion. Then, candidate propulsion systems that may be applicable to these missions are suggested and discussed. Design tools and experimental techniques for developing these propulsion systems are then described, and approaches for applying them in the design process are considered. In each case, current strategies are reviewed and future approaches that may improve the techniques are considered. Finally, the paper concentrates on the needs to be addressed in each of these areas to take advantage of the opportunities that lay ahead for both the NASA Langley Research Center and the Aerodynamic Aerothermodynamic, and Aeroacoustics Competency. Recommendations are then provided so that the goals set forth in the paper may be achieved.
CEOS visualization environment (COVE) tool for intercalibration of satellite instruments
Kessler, P.D.; Killough, B.D.; Gowda, S.; Williams, B.R.; Chander, G.; Qu, Min
2013-01-01
Increasingly, data from multiple instruments are used to gain a more complete understanding of land surface processes at a variety of scales. Intercalibration, comparison, and coordination of satellite instrument coverage areas is a critical effort of international and domestic space agencies and organizations. The Committee on Earth Observation Satellites Visualization Environment (COVE) is a suite of browser-based applications that leverage Google Earth to display past, present, and future satellite instrument coverage areas and coincident calibration opportunities. This forecasting and ground coverage analysis and visualization capability greatly benefits the remote sensing calibration community in preparation for multisatellite ground calibration campaigns or individual satellite calibration studies. COVE has been developed for use by a broad international community to improve the efficiency and efficacy of such calibration planning efforts, whether those efforts require past, present, or future predictions. This paper provides a brief overview of the COVE tool, its validation, accuracies, and limitations with emphasis on the applicability of this visualization tool for supporting ground field campaigns and intercalibration of satellite instruments.
Graphene-Based Materials for Lithium-Ion Hybrid Supercapacitors.
Ma, Yanfeng; Chang, Huicong; Zhang, Miao; Chen, Yongsheng
2015-09-23
Lithium-ion hybrid supercapacitors (LIHSs), also called Li-ion capacitors, have attracted much attention due to the combination of the rapid charge-discharge and long cycle life of supercapacitors and the high energy-storage capacity of lithium-ion batteries. Thus, LIHSs are expected to become the ultimate power source for hybrid and all-electric vehicles in the near future. As an electrode material, graphene has many advantages, including high surface area and porous structure, high electric conductivity, and high chemical and thermal stability, etc. Compared with other electrode materials, such as activated carbon, graphite, and metal oxides, graphene-based materials with 3D open frameworks show higher effective specific surface area, better control of channels, and higher conductivity, which make them better candidates for LIHS applications. Here, the latest advances in electrode materials for LIHSs are briefly summarized, with an emphasis on graphene-based electrode materials (including 3D graphene networks) for LIHS applications. An outlook is also presented to highlight some future directions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Potential applications of advanced aircraft in developing countries. [Brazil and Indonesia
NASA Technical Reports Server (NTRS)
Maddalon, D. V.
1979-01-01
Air transportation concepts for movement of cargo in developing countries are reviewed using aicraft which may appear in the future. For certain industrial applications, including mining and forestry, the relative costs of doing the job using different types of aircraft are compared with surface transportation systems. Two developing countries, Brazil and Indonesia, were taken as examples to determine what impact they might have on the aircraft markets of the future. Economic and demographic data on developing countries in general, and Brazil and Indonesia in particular, are reviewed. The concept of an industrial city in a remote area developed around an airport is discussed. It is noted that developing areas generally lack extensive surface transportation systems and that an air transportation system can be implemented in a relatively short time. A developing nation interested in rapid expansion may thus find the role of air cargo far more important than has been true in developed nations. Technological developments which may dramatically increase the performance of agricultural aircraft are also reviewed.
Space Electrochemical Research and Technology
NASA Technical Reports Server (NTRS)
1991-01-01
The proceedings of NASA's third Space Electrochemical Research and Technology (SERT) conference are presented. The objective of the conference was to assess the present status and general thrust of research and development in those areas of electrochemical technology required to enable NASA missions in the next century. The conference provided a forum for the exchange of ideas and opinions of those actively involved in the field, in order to define new opportunities for the application of electrochemical processes in future NASA missions. Papers were presented in three technical areas: the electrochemical interface, the next generation in aerospace batteries and fuel cells, and electrochemistry for nonenergy storage applications.
Towards new uses of botulinum toxin as a novel therapeutic tool.
Pickett, Andy; Perrow, Karen
2011-01-01
The uses of botulinum toxin in the fields of neurology, ophthalmology, urology, rehabilitation medicine and aesthetic applications have been revolutionary for the treatment of patients. This non-invasive therapeutic has continually been developed since first discovered in the 1970s as a new approach to what were previously surgical treatments. As these applications develop, so also the molecules are developing into tools with new therapeutic properties in specific clinical areas. This review examines how the botulinum toxin molecule is being adapted to new therapeutic uses and also how new areas of use for the existing molecules are being identified. Prospects for future developments are also considered.
Bridle, Helen; Balharry, Dominique; Gaiser, Birgit; Johnston, Helinor
2015-09-15
Contaminated drinking water is one of the most important environmental contributors to the human disease burden. Monitoring of water for the presence of pathogens is an essential part of ensuring drinking water safety. In order to assess water quality it is essential to have methods available to sample and detect the type, level and viability of pathogens in water which are effective, cheap, quick, sensitive, and where possible high throughput. Nanotechnology has the potential to drastically improve the monitoring of waterborne pathogens when compared to conventional approaches. To date, there have been no reviews that outline the applications of nanotechnology in this area despite increasing exploitation of nanotechnology for this purpose. This review is therefore the first overview of the state-of-the-art in the application of nanotechnology to waterborne pathogen sampling and detection schemes. Research in this field has been centered on the use of engineered nanomaterials. The effectiveness and limitations of nanomaterial-based approaches is outlined. A future outlook of the advances that are likely to emerge in this area, as well as recommendations for areas of further research are provided.
Green Chemistry for Nanotechnology: Opportunities and Future Challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preeti Nigam, Joshi, E-mail: ph.joshi@ncl.res.in
2016-01-26
Nanotechnology is a paradigm for emerging technologies and much talked about area of science. It is the technology of future and has revolutionized all fields of medicine, agriculture, environmental and electronics by providing abilities that would never have previously dreamt of. It is a unique platform of multidisciplinary approaches integrating diverse fields of engineering, biology, physics and chemistry. In recent years, nanotechnology has seen the fastest pace in its all aspects of synthesis methodologies and wide applications in all areas of medicine, agricultural, environmental, and electronics. It is the impact of nanotechnology approaches that new fields of nanomedicine, cancer nanotechnology,more » nanorobotics and nanoelectronics have been emerged and are flourishing with the advances in this expanding field. Nanotechnology holds the potential for pervasive and promising applications and getting significant attention and financial aids also. Although there are different definitions of nanotechnology, in broad prospective, nanotechnology can be described as designing or exploiting materials at nanometer dimensions (i.e., one dimension less than 100 nanometers). At nanoscale, substances have a larger surface area to volume ratio than conventional materials which is the prime reason behind their increased level of reactivity, improved and size tunable magnetic, optical and electrical properties and more toxicity also.« less
Enabling functional genomics with genome engineering
Hilton, Isaac B.; Gersbach, Charles A.
2015-01-01
Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. PMID:26430154
Envisioning the Future of Aquatic Animal Tracking: Technology, Science, and Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lennox, Robert J.; Aarestrup, Kim; Cooke, Steven J.
Electronic tags have proven to be extremely useful for broadening our understanding of aquatic animals by answering diverse questions about their behaviours, physiologies, and life histories fundamental to ecology. Simultaneously, many applied conservation and management efforts are informed by animals tagged with electronic tags. In spite of the many advances in tracking software and hardware, an uncertain future in the world’s aquatic ecosystems portends great challenges for science. Aquatic animal tracking with electronic tags represents both the present and future of integrative biology and ecology in aquatic ecosystems. Here we identify what we regard as the future of aquatic animalmore » tracking in a horizon scanning exercise. We submit that the future of aquatic animal tracking will include opportunities for multi-platform tracking systems for simultaneously monitoring position, activity, physiology, and microhabitat of animals, improved data collection and accessibility with new infrastructure (e.g. tags, receivers) and cyberinfrastructure, and integrated tagging information with animal traits derived from biopsy during tagging. We discuss parallel needs and opportunities in areas related to the application of animal tracking in the future such as knowledge mobilization and governance.« less
Emerging issues in public health genomics
Roberts, J. Scott
2014-01-01
This review highlights emerging areas of interest in public health genomics. First, recent advances in newborn screening (NBS) are described, with a focus on practice and policy implications of current and future efforts to expand NBS programs (e.g., via next-generation sequencing). Next, research findings from the rapidly progressing field of epigenetics and epigenomics are detailed, highlighting ways in which our emerging understanding in these areas could guide future intervention and research efforts in public health. We close by considering various ethical, legal and social issues posed by recent developments in public health genomics; these include policies to regulate access to personal genomic information; the need to enhance genetic literacy in both health professionals and the public; and challenges in ensuring that the benefits (and burdens) from genomic discoveries and applications are equitably distributed. Needs for future genomics research that integrates across basic and social sciences are also noted. PMID:25184533
Padeken, D; Sotiriou, D; Boddy, K; Gerzer, R
1995-02-01
Migration from space medicine toward telemedicine services is described by potential application areas in highly populated and remote areas of Europe. Special emphasis is laid upon links between mobile patient monitoring and health care in remote areas. Pilot projects are described for home (mobile) monitoring of newborn infants endangered by sudden infant death (SID) and adults suffering from sleep apnoea. Health care in remote areas is described by the "TeleClinic-project" which will link national nodes for telemedicine services in several European states for the mobile European citizen. Another project describes the future potential of robotics for semiautonomous ultrasound diagnostics and for realtime interaction of remote experts with diagnostics and therapy.
Past and ongoing shifts in Joshua tree distribution support future modeled range contraction
Cole, Kenneth L.; Ironside, Kirsten; Eischeid, Jon K.; Garfin, Gregg; Duffy, Phil; Toney, Chris
2011-01-01
The future distribution of the Joshua tree (Yucca brevifolia) is projected by combining a geostatistical analysis of 20th-century climates over its current range, future modeled climates, and paleoecological data showing its response to a past similar climate change. As climate rapidly warmed ;11 700 years ago, the range of Joshua tree contracted, leaving only the populations near what had been its northernmost limit. Its ability to spread northward into new suitable habitats after this time may have been inhibited by the somewhat earlier extinction of megafaunal dispersers, especially the Shasta ground sloth. We applied a model of climate suitability for Joshua tree, developed from its 20th-century range and climates, to future climates modeled through a set of six individual general circulation models (GCM) and one suite of 22 models for the late 21st century. All distribution data, observed climate data, and future GCM results were scaled to spatial grids of ;1 km and ;4 km in order to facilitate application within this topographically complex region. All of the models project the future elimination of Joshua tree throughout most of the southern portions of its current range. Although estimates of future monthly precipitation differ between the models, these changes are outweighed by large increases in temperature common to all the models. Only a few populations within the current range are predicted to be sustainable. Several models project significant potential future expansion into new areas beyond the current range, but the species' Historical and current rates of dispersal would seem to prevent natural expansion into these new areas. Several areas are predicted to be potential sites for relocation/ assisted migration. This project demonstrates how information from paleoecology and modern ecology can be integrated in order to understand ongoing processes and future distributions.
Organization Development Strategies in Educational Policy Planning and Management.
ERIC Educational Resources Information Center
Jones, B. Kathryn; Biles, Stephen
1990-01-01
This synthesis reviews organizational development (OD) and its decision tools, describes OD applications in educational organizations, explores OD's limitations, and predicts how OD will influence future educational decision making. Findings identify eight specific management and planning areas where OD can be used to improve organizational…
The role of integrative, whole organism testing in monitoring applications: Back to the future
The biological effects of chemicals released to surface waters continue to be an area of uncertainty in risk assessment and risk management. Based on conventional risk assessment considerations, adequate exposure and effects information are required to reach a scientifically soun...
Simulating Student Flow: Institutional Research Applications.
ERIC Educational Resources Information Center
Fawcett, Greg
Monitoring and subsequently simulating student transfer patterns from one academic major (or level) to another typically enables an institution to estimate future student enrollment distributions across academic areas. At the University of Missouri-Columbia (UMC), a student flow model not only simulates the patterns of student transfer but also…
Interactive access and management for four-dimensional environmental data sets using McIDAS
NASA Technical Reports Server (NTRS)
Hibbard, William L.; Tripoli, Gregory J.
1991-01-01
Significant accomplishments in the following areas are presented: (1) enhancements to the visualization of 5-D data sets (VIS-5D); (2) development of the visualization of global images (VIS-GI) application; (3) design of the Visualization for Algorithm Development (VIS-AD) System; and (4) numerical modeling applications. The focus of current research and future research plans is presented and the following topics are addressed: (1) further enhancements to VIS-5D; (2) generalization and enhancement of the VIS-GI application; (3) the implementation of the VIS-AD System; and (4) plans for modeling applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harder, B.J.
1995-03-01
Louisiana wetlands require careful management to allow exploitation of non-renewable resources without destroying renewable resources. Current regulatory requirements have been moderately successful in meeting this goal by restricting development in wetland habitats. Continuing public emphasis on reducing environmental impacts of resource development is causing regulators to reassess their regulations and operators to rethink their compliance strategies. We examined the regulatory system and found that reducing the number of applications required by going to a single application process and having a coherent map of the steps required for operations in wetland areas would reduce regulatory burdens. Incremental changes can be mademore » to regulations to allow one agency to be the lead for wetland permitting at minimal cost to operators. Operators need cost effective means of access that will reduce environmental impacts, decrease permitting time, and limit future liability. Regulators and industry must partner to develop incentive based regulations that can provide significant environmental impact reduction for minimal economic cost. In addition regulators need forecasts of future E&P trends to estimate the impact of future regulations. To determine future activity we attempted to survey potential operators when this approach was unsuccessful we created two econometric models of north and south Louisiana relating drilling activity, success ratio, and price to predict future wetland activity. Results of the econometric models indicate that environmental regulations have a small but statistically significant effect on drilling operations in wetland areas of Louisiana. We examined current wetland practices and evaluated those practices comparing environmental versus economic costs and created a method for ranking the practices.« less
Wilson, Tamara; Sleeter, Benjamin M.; Sherba, Jason T.; Dick Cameron,
2015-01-01
Human land use will increasingly contribute to habitat loss and water shortages in California, given future population projections and associated land-use demand. Understanding how land-use change may impact future water use and where existing protected areas may be threatened by land-use conversion will be important if effective, sustainable management approaches are to be implemented. We used a state-and-transition simulation modeling (STSM) framework to simulate spatially-explicit (1 km2) historical (1992-2010) and future (2011-2060) land-use change for 52 California counties within Mediterranean California ecoregions. Historical land use and land cover (LULC) change estimates were derived from the Farmland Mapping and Monitoring Program dataset and attributed with county-level agricultural water-use data from the California Department of Water Resources. Five future alternative land-use scenarios were developed and modeled using the historical land-use change estimates and land-use projections based on the Intergovernmental Panel on Climate Change's Special Report on Emission Scenarios A2 and B1 scenarios. Spatial land-use transition outputs across scenarios were combined to reveal scenario agreement and a land conversion threat index was developed to evaluate vulnerability of existing protected areas to proximal land conversion. By 2060, highest LULC conversion threats were projected to impact nearly 10,500 km2 of land area within 10 km of a protected area boundary and over 18,000 km2 of land area within essential habitat connectivity areas. Agricultural water use declined across all scenarios perpetuating historical drought-related land use from 2008-2010 and trends of annual cropland conversion into perennial woody crops. STSM is useful in analyzing land-use related impacts on water resource use as well as potential threats to existing protected land. Exploring a range of alternative, yet plausible, LULC change impacts will help to better inform resource management and mitigation strategies.
Global-local methodologies and their application to nonlinear analysis
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.
1989-01-01
An assessment is made of the potential of different global-local analysis strategies for predicting the nonlinear and postbuckling responses of structures. Two postbuckling problems of composite panels are used as benchmarks and the application of different global-local methodologies to these benchmarks is outlined. The key elements of each of the global-local strategies are discussed and future research areas needed to realize the full potential of global-local methodologies are identified.
Tsang, Hin-Fung; Xue, Vivian Weiwen; Koh, Su-Pin; Chiu, Ya-Ming; Ng, Lawrence Po-Wah; Wong, Sze-Chuen Cesar
2017-01-01
Formalin-fixed, paraffin-embedded (FFPE) tissue sample is a gold mine of resources for molecular diagnosis and retrospective clinical studies. Although molecular technologies have expanded the range of mutations identified in FFPE samples, the applications of existing technologies are limited by the low nucleic acids yield and poor extraction quality. As a result, the routine clinical applications of molecular diagnosis using FFPE samples has been associated with many practical challenges. NanoString technologies utilize a novel digital color-coded barcode technology based on direct multiplexed measurement of gene expression and offer high levels of precision and sensitivity. Each color-coded barcode is attached to a single target-specific probe corresponding to a single gene which can be individually counted without amplification. Therefore, NanoString is especially useful for measuring gene expression in degraded clinical specimens. Areas covered: This article describes the applications of NanoString technologies in molecular diagnostics and challenges associated with its applications and the future development. Expert commentary: Although NanoString technology is still in the early stages of clinical use, it is expected that NanoString-based cancer expression panels would play more important roles in the future in classifying cancer patients and in predicting the response to therapy for better personal therapeutic care.
Application of narrow-band television to industrial and commercial communications
NASA Technical Reports Server (NTRS)
Embrey, B. C., Jr.; Southworth, G. R.
1974-01-01
The development of narrow-band systems for use in space systems is presented. Applications of the technology to future spacecraft requirements are discussed along with narrow-band television's influence in stimulating development within the industry. The transferral of the technology into industrial and commercial communications is described. Major areas included are: (1) medicine; (2) education; (3) remote sensing for traffic control; and (5) weather observation. Applications in data processing, image enhancement, and information retrieval are provided by the combination of the TV camera and the computer.
Shaffer, Franklin D.
2013-03-12
The application relates to particle trajectory recognition from a Centroid Population comprised of Centroids having an (x, y, t) or (x, y, f) coordinate. The method is applicable to visualization and measurement of particle flow fields of high particle. In one embodiment, the centroids are generated from particle images recorded on camera frames. The application encompasses digital computer systems and distribution mediums implementing the method disclosed and is particularly applicable to recognizing trajectories of particles in particle flows of high particle concentration. The method accomplishes trajectory recognition by forming Candidate Trajectory Trees and repeated searches at varying Search Velocities, such that initial search areas are set to a minimum size in order to recognize only the slowest, least accelerating particles which produce higher local concentrations. When a trajectory is recognized, the centroids in that trajectory are removed from consideration in future searches.
7 CFR 1942.310 - Other considerations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... basis of age and title III of the Americans with Disabilities Act, Public Law 101-336, which prohibits... environmental resources of rural areas such as important farmlands and forest lands, prime rangelands, wetlands.... The applicant may use guide 2 of this subpart as an example in preparing the resolution. Future...
NASA Technical Reports Server (NTRS)
Sullivan, D. B. (Editor)
1978-01-01
Technical subject areas discussed include: (1) high field magnets; (2) magnetometers; (3) digital electronics; (4) high frequency detectors; (5) instruments related to gravitational studies; and (6) ultra high Q cavities. Applications of superconductivity which are of potential interest to NASA were identified.
Improving the accuracy and capability of transport and dispersion models in urban areas is essential for current and future urban applications. These models must reflect more realistically the presence and details of urban canopy features. Such features markedly influence the flo...
FIBER OPTICS: Fibre optics: Forty years later
NASA Astrophysics Data System (ADS)
Dianov, Evgenii M.
2010-01-01
This paper presents a brief overview of the state of the art in fibre optics and its main applications: optical fibre communications, fibre lasers and fibre sensors for various physical property measurements. The future of fibre optics and the status of this important area of the modern technology in Russia are discussed.
Books Online: Visions, Plans, and Perspectives for Electronic Text.
ERIC Educational Resources Information Center
Basch, Reva
1991-01-01
Discussion of current applications of and future possibilities for electronic text, or e-text, focuses on activities in the area of higher education. Topics covered are input technology, including optical scanners and keyboarding; standardization; copyright issues; access to e-text through networks; user interface; hypertext; software; shareware;…
Service Quality and Customer Satisfaction: An Assessment and Future Directions.
ERIC Educational Resources Information Center
Hernon, Peter; Nitecki, Danuta A.; Altman, Ellen
1999-01-01
Reviews the literature of library and information science to examine issues related to service quality and customer satisfaction in academic libraries. Discusses assessment, the application of a business model to higher education, a multiple constituency approach, decision areas regarding service quality, resistance to service quality, and future…
Black Men in the Medical Education Pipeline: Past, Present, and Future.
ERIC Educational Resources Information Center
Ready, Timothy; Nickens, Herbert W.
1991-01-01
Factors in the decline in Black male enrollment in medical schools are examined, including the general medical school applicant pool, popularity of undergraduate biology degrees, Black enrollment in college, poverty, and employment opportunities. Social implications, areas for further research, and potential solutions are discussed. (Author/MSE)
US Geological Survey customers speak out
Gillespie, S.; Snyder, G.
1995-01-01
Provides results of a customer survey carried out in 1994 by the US Geological Survey. Uses of cartographic products are classified, as are application areas, accuracy satisfaction, media, Digital Line Graph requirements in update, and frequency of product use. USGS responses and plans for the future are noted. -M.Blakemore
Evaluation of laminar flow control system concepts for subsonic commercial transport aircraft
NASA Technical Reports Server (NTRS)
1978-01-01
A two-year study conducted to establish a basis for industry decisions on the application of laminar flow control (LFC) to future commercial transports was presented. Areas of investigation included: (1) mission definition and baseline selection; (2) concepts evaluations; and (3) LFC transport configuration selection and component design. The development and evaluation of competing design concepts was conducted in the areas of aerodynamics, structures and materials, and systems. The results of supporting wind tunnel and laboratory testing on a full-scale LFC wing panel, suction surface opening concepts and structural samples were included. A final LFC transport was configured in incorporating the results of concept evaluation studies and potential performance improvements were assessed. Remaining problems together with recommendations for future research are discussed.
Fiberoptics technology and its application to propulsion control systems
NASA Technical Reports Server (NTRS)
Baumbick, R. J.
1983-01-01
Electro-optical systems have many advantages over conventional electrical systems. Among these are optics' insensitivity to electro-magnetic interference, good electrical isolation and the ability to make measurements in highly explosive areas without risk. These advantages promise to help improve the reliability of future aircraft engine control systems which will be entirely electronic digital. To improve the reliability of these systems, especially against lightning strikes, passive, optical, sensors and fiberoptic transmission lines are being considered for use in future engine systems. Also under consideration are actuators which receive their command signals over fiber optic cables. This paper reviews concepts used for optical instrumentation and actuation systems and discusses work being done by NASA Lewis Research Center in this area.
Recent Advances of Solution-Processed Metal Oxide Thin-Film Transistors.
Xu, Wangying; Li, Hao; Xu, Jian-Bin; Wang, Lei
2018-03-06
Solution-processed metal oxide thin-film transistors (TFTs) are considered as one of the most promising transistor technologies for future large-area flexible electronics. This review surveys the recent advances in solution-based oxide TFTs, including n-type oxide semiconductors, oxide dielectrics and p-type oxide semiconductors. Firstly, we provide an introduction on oxide TFTs and the TFT configurations and operating principles. Secondly, we present the recent progress in solution-processed n-type transistors, with a special focus on low-temperature and large-area solution processed approaches as well as novel non-display applications. Thirdly, we give a detailed analysis of the state-of-the-art solution-processed oxide dielectrics for low-voltage electronics. Fourthly, we discuss the recent progress in solution-based p-type oxide semiconductors, which will enable the highly desirable future low-cost large-area complementary circuits. Finally, we draw the conclusions and outline the perspectives over the research field.
Future Translational Applications From the Contemporary Genomics Era
Fox, Caroline S.; Hall, Jennifer L.; Arnett, Donna K.; Ashley, Euan A.; Delles, Christian; Engler, Mary B.; Freeman, Mason W.; Johnson, Julie A.; Lanfear, David E.; Liggett, Stephen B.; Lusis, Aldons J.; Loscalzo, Joseph; MacRae, Calum A.; Musunuru, Kiran; Newby, L. Kristin; O’Donnell, Christopher J.; Rich, Stephen S.; Terzic, Andre
2016-01-01
The field of genetics and genomics has advanced considerably with the achievement of recent milestones encompassing the identification of many loci for cardiovascular disease and variable drug responses. Despite this achievement, a gap exists in the understanding and advancement to meaningful translation that directly affects disease prevention and clinical care. The purpose of this scientific statement is to address the gap between genetic discoveries and their practical application to cardiovascular clinical care. In brief, this scientific statement assesses the current timeline for effective translation of basic discoveries to clinical advances, highlighting past successes. Current discoveries in the area of genetics and genomics are covered next, followed by future expectations, tools, and competencies for achieving the goal of improving clinical care. PMID:25882488
Breast magnetic resonance elastography: a review of clinical work and future perspectives.
Bohte, A E; Nelissen, J L; Runge, J H; Holub, O; Lambert, S A; de Graaf, L; Kolkman, S; van der Meij, S; Stoker, J; Strijkers, G J; Nederveen, A J; Sinkus, R
2018-05-30
This review on magnetic resonance elastography (MRE) of the breast provides an overview of available literature and describes current developments in the field of breast MRE, including new transducer technology for data acquisition and multi-frequency-derived power-law behaviour of tissue. Moreover, we discuss the future potential of breast MRE, which goes beyond its original application as an additional tool in differentiating benign from malignant breast lesions. These areas of ongoing and future research include MRE for pre-operative tumour delineation, staging, monitoring and predicting response to treatment, as well as prediction of the metastatic potential of primary tumours. Copyright © 2018 John Wiley & Sons, Ltd.
Retention and application of Skylab experiment experiences to future programs
NASA Technical Reports Server (NTRS)
Milly, N.; Gillespie, V. G.
1974-01-01
Problems encountered on Skylab Experiments are listed in order that these experiences and associated recommendations might help to prevent similar problems on future programs. The criteria for selection of the data to be utilized was to identify the problem areas within the Skylab Program which would be of major significance with respect to future programs. Also, the problem had to be unique in that it would help identify to a designer/manufacturer an unforeseen or unanticipated occurrence which could cause failures, delays, or additional cost. Only those unexpected problems that may occur due to the nature of aerospace experiment environmental and operational requirements are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Guangchao; Abhyankar, Shrirang; Wang, Xiaoyu
Transient stability-constrained optimal power flow is an important emerging problem with power systems pushed to the limits for economic benefits, dense and larger interconnected systems, and reduced inertia due to expected proliferation of renewable energy resources. In this study, two more approaches: single machine equivalent and computational intelligence are presented. Also discussed are various application areas, and future directions in this research area. In conclusion, a comprehensive resource for the available literature, publicly available test systems, and relevant numerical libraries is also provided.
Current status and future prospects for enabling chemistry technology in the drug discovery process.
Djuric, Stevan W; Hutchins, Charles W; Talaty, Nari N
2016-01-01
This review covers recent advances in the implementation of enabling chemistry technologies into the drug discovery process. Areas covered include parallel synthesis chemistry, high-throughput experimentation, automated synthesis and purification methods, flow chemistry methodology including photochemistry, electrochemistry, and the handling of "dangerous" reagents. Also featured are advances in the "computer-assisted drug design" area and the expanding application of novel mass spectrometry-based techniques to a wide range of drug discovery activities.
A Scenario Based Assessment of Future Groundwater Resources in the Phoenix Active Management Area
NASA Astrophysics Data System (ADS)
Escobar, V. M.; Lant, T. W.
2007-12-01
The availability of future water supplies in central Arizona depends on the interaction of multiple physical and human systems: climate, hydrology, water and land-use policy, urbanization, and regulation. The problem in assessing future water supplies requires untangling these drivers and recasting the issue in a way that acknowledges the inherent uncertainties in climate and population growth predictions while offering meaningful metrics for outcomes under alternative scenarios. Further, the drivers, policy options, and outcomes are spatially heterogeneous - surface water supplies, new urban developments and changes in land-use will not be shared uniformly across the region. Consequently, different geographic regions of the Phoenix metropolitan area will be more vulnerable to shortages in water availability, and these potential vulnerabilities will be more or less severe depending on which factors cause the shortage. The results of this research will make several contributions to existing literature and research products for groundwater conservation and future urban planning. It will provide location specific metrics of water vulnerability and offer a novel approach to groundwater analysis; it will demonstrate the XLRM framework with an application to central Arizona Water resources. Lastly, it will add to the WaterSim climate model by spatializing the groundwater component for the Phoenix Active Management Area.
Locally adaptive, spatially explicit projection of US population for 2030 and 2050.
McKee, Jacob J; Rose, Amy N; Bright, Edward A; Huynh, Timmy; Bhaduri, Budhendra L
2015-02-03
Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Building on the spatial interpolation technique previously developed for high-resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically informed spatial distribution of projected population of the contiguous United States for 2030 and 2050, depicting one of many possible population futures. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection model departs from these by accounting for multiple components that affect population distribution. Modeled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the US Census's projection methodology, with the US Census's official projection as the benchmark. Applications of our model include incorporating multiple various scenario-driven events to produce a range of spatially explicit population futures for suitability modeling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.
Methods for artifact detection and removal from scalp EEG: A review.
Islam, Md Kafiul; Rastegarnia, Amir; Yang, Zhi
2016-11-01
Electroencephalography (EEG) is the most popular brain activity recording technique used in wide range of applications. One of the commonly faced problems in EEG recordings is the presence of artifacts that come from sources other than brain and contaminate the acquired signals significantly. Therefore, much research over the past 15 years has focused on identifying ways for handling such artifacts in the preprocessing stage. However, this is still an active area of research as no single existing artifact detection/removal method is complete or universal. This article presents an extensive review of the existing state-of-the-art artifact detection and removal methods from scalp EEG for all potential EEG-based applications and analyses the pros and cons of each method. First, a general overview of the different artifact types that are found in scalp EEG and their effect on particular applications are presented. In addition, the methods are compared based on their ability to remove certain types of artifacts and their suitability in relevant applications (only functional comparison is provided not performance evaluation of methods). Finally, the future direction and expected challenges of current research is discussed. Therefore, this review is expected to be helpful for interested researchers who will develop and/or apply artifact handling algorithm/technique in future for their applications as well as for those willing to improve the existing algorithms or propose a new solution in this particular area of research. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Silk fibroin as biomaterial for bone tissue engineering.
Melke, Johanna; Midha, Swati; Ghosh, Sourabh; Ito, Keita; Hofmann, Sandra
2016-02-01
Silk fibroin (SF) is a fibrous protein which is produced mainly by silkworms and spiders. Its unique mechanical properties, tunable biodegradation rate and the ability to support the differentiation of mesenchymal stem cells along the osteogenic lineage, have made SF a favorable scaffold material for bone tissue engineering. SF can be processed into various scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified, which provides an impressive toolbox and allows SF scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing SF, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted. Silk fibroin is a natural biomaterial with remarkable biomedical and mechanical properties which make it favorable for a broad range of bone tissue engineering applications. It can be processed into different scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified which provides a unique toolbox and allows silk fibroin scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing silk fibroin, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Civil and military satellite communications: A systems overview and the future developments
NASA Astrophysics Data System (ADS)
Dezaire, J. P.
1991-02-01
The project A90KM616, Orientatie SATCOM, is being performed on behalf of the Royal Netherlands Navy (RNLN) to assist the Navy on the subject of satellite communications. An overview is given of the phenomenon satellite communication. The result is a general overview of satellite communications for both civil and military applications. Some examples of applications are; international telephony, television broadcasting, small private business networks, and mobile (at the moment still principally maritime) communications. In these applications satellite communication systems provide a global coverage and a high flexibility. The scientific articles have not been considered because in this stage it was the intention to study on a specialist level the broad area of techniques. Magazines, books, and a number of reports of universities and research institutes have been the main sources of information. They provided afforded an understanding of the existing systems and insight in the future developments.
Thermoelectricity for future sustainable energy technologies
NASA Astrophysics Data System (ADS)
Weidenkaff, Anke
2017-07-01
Thermoelectricity is a general term for a number of effects describing the direct interconversion of heat and electricity. Thermoelectric devices are therefore promising, environmental-friendly alternatives to conventional power generators or cooling units. Since the mid-90s, research on thermoelectric properties and their applications has steadily increased. In the course of years, the development of high-temperature resistant TE materials and devices has emerged as one of the main areas of interest focusing both on basic research and practical applications. A wide range of innovative and cost-efficient material classes has been studied and their properties improved. This has also led to advances in synthesis and metrology. The paper starts out with thermoelectric history, basic effects underlying thermoelectric conversion and selected examples of application. The main part focuses on thermoelectric materials including an outline of the design rules, a review on the most common materials and the feasibility of improved future high-temperature thermoelectric converters.
Enabling functional genomics with genome engineering.
Hilton, Isaac B; Gersbach, Charles A
2015-10-01
Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. © 2015 Hilton and Gersbach; Published by Cold Spring Harbor Laboratory Press.
Global land cover mapping and characterization: present situation and future research priorities
Giri, Chandra
2005-01-01
The availability and accessibility of global land cover data sets plays an important role in many global change studies. The importance of such science‐based information is also reflected in a number of international, regional, and national projects and programs. Recent developments in earth observing satellite technology, information technology, computer hardware and software, and infrastructure development have helped developed better quality land cover data sets. As a result, such data sets are increasingly becoming available, the user‐base is ever widening, application areas have been expanding, and the potential of many other applications are enormous. Yet, we are far from producing high quality global land cover data sets. This paper examines the progress in the development of digital global land cover data, their availability, and current applications. Problems and opportunities are also explained. The overview sets the stage for identifying future research priorities needed for operational land cover assessment and monitoring.
Applications of Deep Learning and Reinforcement Learning to Biological Data.
Mahmud, Mufti; Kaiser, Mohammed Shamim; Hussain, Amir; Vassanelli, Stefano
2018-06-01
Rapid advances in hardware-based technologies during the past decades have opened up new possibilities for life scientists to gather multimodal data in various application domains, such as omics, bioimaging, medical imaging, and (brain/body)-machine interfaces. These have generated novel opportunities for development of dedicated data-intensive machine learning techniques. In particular, recent research in deep learning (DL), reinforcement learning (RL), and their combination (deep RL) promise to revolutionize the future of artificial intelligence. The growth in computational power accompanied by faster and increased data storage, and declining computing costs have already allowed scientists in various fields to apply these techniques on data sets that were previously intractable owing to their size and complexity. This paper provides a comprehensive survey on the application of DL, RL, and deep RL techniques in mining biological data. In addition, we compare the performances of DL techniques when applied to different data sets across various application domains. Finally, we outline open issues in this challenging research area and discuss future development perspectives.
Social media for empowering people with diabetes: Current status and future trends.
Gomez-Galvez, Pedro; Suarez Mejias, Cristina; Fernandez-Luque, Luis
2015-01-01
The use of social media has become commonplace in society. Consequently, many people living with chronic conditions are turning to social media applications to support self-management. This paper presents a formative non-exhaustive review of research literature regarding the role of social media for diabetes type II empowerment. In our review, we identified several major areas for diabetes health social media research, namely: a) social network data analytics, b) mHealth and diabetes, c) gamification for diabetes, c) wearable, and d) MOOCs (Massive Open Online Courses). In all these areas, we analyzed how social media is being used and the challenges emerging from its application in the diabetes domain.
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.
1986-01-01
An assessment is made of the potential of different global-local analysis strategies for predicting the nonlinear and postbuckling responses of structures. Two postbuckling problems of composite panels are used as benchmarks and the application of different global-local methodologies to these benchmarks is outlined. The key elements of each of the global-local strategies are discussed and future research areas needed to realize the full potential of global-local methodologies are identified.
Global ring satellite communications system for future broadband network
NASA Astrophysics Data System (ADS)
Iida, Takashi; Suzuki, Yoshiaki; Arimoto, Yoshinori; Akaishi, Akira
2005-04-01
The purpose of this paper is to examine a cost model of a global ring satellite communications system as a 2G-satellite (second generation Internet satellite) for the future Internet satellite, whose capacity is around 120 Gbps. The authors proposed the future needs of research and development of communications satellite for the next 30 years and also proposed the approach of three generations for the future Internet satellites. First, the paper reviews and updates the original proposal for the future needs of communications satellite, considering the recent development of the quantum communication technology. It also examines the communications satellite applicability for bridging the digital divide in the Asia-Oceania as an example. The paper clarifies this possibility of communications satellite by showing various relationships among Internet penetration, land area, population growth, etc. Second, the cost of the global ring satellite is examined. The user terminal is considered as a combination of an earth terminal and wireless local area network for a user community. This paper shows that the global ring satellite has a possibility of a good cost-competitiveness to the terrestrial system because of the global communications system can be configured only by satellite system.
Floating-Point Modules Targeted for Use with RC Compilation Tools
NASA Technical Reports Server (NTRS)
Sahin, Ibrahin; Gloster, Clay S.
2000-01-01
Reconfigurable Computing (RC) has emerged as a viable computing solution for computationally intensive applications. Several applications have been mapped to RC system and in most cases, they provided the smallest published execution time. Although RC systems offer significant performance advantages over general-purpose processors, they require more application development time than general-purpose processors. This increased development time of RC systems provides the motivation to develop an optimized module library with an assembly language instruction format interface for use with future RC system that will reduce development time significantly. In this paper, we present area/performance metrics for several different types of floating point (FP) modules that can be utilized to develop complex FP applications. These modules are highly pipelined and optimized for both speed and area. Using these modules, and example application, FP matrix multiplication, is also presented. Our results and experiences show, that with these modules, 8-10X speedup over general-purpose processors can be achieved.
NASA Astrophysics Data System (ADS)
Kapur, Pawan
The miniaturization paradigm for silicon integrated circuits has resulted in a tremendous cost and performance advantage. Aggressive shrinking of devices provides faster transistors and a greater functionality for circuit design. However, scaling induced smaller wire cross-sections coupled with longer lengths owing to larger chip areas, result in a steady deterioration of interconnects. This degradation in interconnect trends threatens to slow down the rapid growth along Moore's law. This work predicts that the situation is worse than anticipated. It shows that in the light of technology and reliability constraints, scaling induced increase in electron surface scattering, fractional cross section area occupied by the highly resistive barrier, and realistic interconnect operation temperature will lead to a significant rise in effective resistivity of modern copper based interconnects. We start by discussing various technology factors affecting copper resistivity. We, next, develop simulation tools to model these effects. Using these tools, we quantify the increase in realistic copper resistivity as a function of future technology nodes, under various technology assumptions. Subsequently, we evaluate the impact of these technology effects on delay and power dissipation of global signaling interconnects. Modern long on-chip wires use repeaters, which dramatically improves their delay and bandwidth. We quantify the repeated wire delays and power dissipation using realistic resistance trends at future nodes. With the motivation of reducing power, we formalize a methodology, which trades power with delay very efficiently for repeated wires. Using this method, we find that although the repeater power comes down, the total power dissipation due to wires is still found to be very large at future nodes. Finally, we explore optical interconnects as a possible substitute, for specific interconnect applications. We model an optical receiver and waveguides. Using this we assess future optical system performance. Finally, we compare the delay and power of future metal interconnects with that of optical interconnects for global signaling application. We also compare the power dissipation of the two approaches for an upper level clock distribution application. We find that for long on-chip communication links, optical interconnects have lower latencies than future metal interconnects at comparable levels of power dissipation.
Overview of NASA Technology Development for In-Situ Resource Utilization (ISRU)
NASA Technical Reports Server (NTRS)
Linne, Diane L.; Sanders, Gerald B.; Starr, Stanley O.; Eisenman, David J.; Suzuki, Nantel H.; Anderson, Molly S.; O'Malley, Terrence F.; Araghi, Koorosh R.
2017-01-01
In-Situ Resource Utilization (ISRU) encompasses a broad range of systems that enable the production and use of extraterrestrial resources in support of future exploration missions. It has the potential to greatly reduce the dependency on resources transported from Earth (e.g., propellants, life support consumables), thereby significantly improving the ability to conduct future missions. Recognizing the critical importance of ISRU for the future, NASA is currently conducting technology development projects in two of its four mission directorates. The Advanced Exploration Systems Division in the Agency's Human Exploration and Operations Mission Directorate has initiated a new project for ISRU Technology focused on component, subsystem, and system maturation in the areas of water volatiles resource acquisition, and water volatiles and atmospheric processing into propellants and other consumable products. The Space Technology Mission Directorate is supporting development of ISRU component technologies in the areas of Mars atmosphere acquisition, including dust management, and oxygen production from Mars atmosphere for propellant and life support consumables. Together, these two coordinated projects are working towards a common goal of demonstrating ISRU technology and systems in preparation for future flight applications.
Virtual reality for health care: a survey.
Moline, J
1997-01-01
This report surveys the state of the art in applications of virtual environments and related technologies for health care. Applications of these technologies are being developed for health care in the following areas: surgical procedures (remote surgery or telepresence, augmented or enhanced surgery, and planning and simulation of procedures before surgery); medical therapy; preventive medicine and patient education; medical education and training; visualization of massive medical databases; skill enhancement and rehabilitation; and architectural design for health-care facilities. To date, such applications have improved the quality of health care, and in the future they will result in substantial cost savings. Tools that respond to the needs of present virtual environment systems are being refined or developed. However, additional large-scale research is necessary in the following areas: user studies, use of robots for telepresence procedures, enhanced system reality, and improved system functionality.
NASA Technical Reports Server (NTRS)
1975-01-01
The Proceedings contain the papers presented at the Seventh Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting and the edited record of the discussion period following each paper. This meeting provided a forum to promote more effective, efficient, economical and skillful applications of PTTI technology to the many problem areas to which PTTI offers solutions. Specifically the purpose of the meeting is to: disseminate, coordinate, and exchange practical information associated with precise time and frequency; acquaint systems engineers, technicians and managers with precise time and frequency technology and its applications; and review present and future requirements for PTTI.
Urban remote sensing applications: TIMS observations of the City of Scottsdale
NASA Technical Reports Server (NTRS)
Christensen, Philip R.; Melendrez, David E.; Anderson, Donald L.; Hamilton, Victoria E.; Wenrich, Melissa L.; Howard, Douglas
1995-01-01
A research program has been initiated between Arizona State University and the City of Scottsdale, Arizona to study the potential applications of TIMS (Thermal Infrared Multispectral Scanner) data for urban scene classification, desert environmental assessment, and change detection. This program is part of a long-term effort to integrate remote sensing observations into state and local planning activities to improve decision making and future planning. Specific test sites include a section of the downtown Scottsdale region that has been mapped in very high detail as part of a pilot program to develop an extensive GIS database. This area thus provides excellent time history of the evolution of the city infrastructure, such as the timing and composition of street repavement. A second area of study includes the McDowell intensive study by state and local agencies to assess potential sites for urban development as well as preservation. These activities are of particular relevance as the Phoenix metropolitan area undergoes major expansion into the surrounding desert areas. The objectives of this study in urban areas are aimed at determining potential applications of TIMS data for classifying and assessing land use and surface temperatures. Land use centers on surface impermeability studies for storm runoff assessment and pollution control. These studies focus on determining the areal abundance of urban vegetation and undeveloped soil. Highly experimental applications include assessment and monitoring of pavement condition. Temperature studies focus on determining swimming pool area and temperature for use in monitoring evaporating and urban water consumption. These activities are of particular relevance as the Phoenix metropolitan area undergoes major expansion into the surrounding desert area.
Some Problems in Using Diffusion Models for New Products.
ERIC Educational Resources Information Center
Bernhardt, Irwin; Mackenzie, Kenneth D.
This paper analyzes some of the problems of using diffusion models to formulate marketing strategies for new products. Though future work in this area appears justified, many unresolved problems limit its application. There is no theory for adoption and diffusion processes; such a theory is outlined in this paper. The present models are too…
Gnotobiology in modern medicine
NASA Technical Reports Server (NTRS)
Podoprigora, G. I.
1980-01-01
A review is given of currently accepted theories and applications of gnotobiology. A brief history of gnotobiology is supplied. Problems involved in creating germ-free gnotobiota and the use of these animals in experimental biology are cited. Examples of how gnotobiology is used in modern medical practice illustrate the future prospects for this area of science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mickens, Ronald E.
2008-12-22
This research examined the following items/issues: the NSFD methodology, technical achievements and applications, dissemination efforts and research related professional activities. Also a list of unresolved issues were identified that could form the basis for future research in the area of constructing and analyzing NSFD schemes for both ODE's and PDE's.
Affective Forecasting: Teaching a Useful, Accessible, and Humbling Area of Research
ERIC Educational Resources Information Center
Kurtz, Jaime L.
2016-01-01
All students, from college freshmen to advanced graduate students, have asked themselves, "Will this decision make me happy?" The vast majority of them have been wrong. Affective forecasting, the process of predicting future feelings, is a topic of great interest to students due to its applicable and highly relatable nature. This article…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-06
... analysis of the best available science and application of that science and to provide any additional... in these areas of science are limited, some uncertainties are associated with this assessment. Where... in the foreseeable future (threatened species). Because of the fact-specific nature of listing...
1994-03-31
overhead water sprinklers in enclosed personnel areas not already protected by existing facility fire suppression systems. Sprinkler systems shall not...facilitate future changes and updates to remain current with the application aircraft. 3.4.4 Availabilit . The ARWA SS shall be designed and constructed to
State-of-the-art developments in the field of electroactive polymers
NASA Technical Reports Server (NTRS)
Vinogradov, Aleksandra; Su, Ji; Jenkins, Christopher; Bar-Cohen, Yoseph
2005-01-01
The paper presents a brief review in the field of electroactive polymers. it outlines the main classes of electroactive polymers, their properties and applications. Current efforts to synthesize electroactive polymers with novel or improved characteristics along with the challenges, opportunities and future research directions in the subject area are discussed.
Behavioral and Social Science Research: A National Resource. Part II.
ERIC Educational Resources Information Center
Adams, Robert McC., Ed.; And Others
Areas of behavioral and social science research that have achieved significant breakthroughs in knowledge or application or that show future promise of achieving such breakthroughs are discussed in 12 papers. For example, the paper on formal demography shows how mathematical or statistical techniques can be used to explain and predict change in…
PAST, PRESENT AND FUTURE AIR QUALITY MODELING AND ITS APPLICATIONS IN THE UNITED STATES
Since the inception of the Clean Air Act (CAA) in 1969, atmospheric models have been used to assess source-receptor relationships for sulfur dioxide and total suspended particulate matter (TSP) in the urban areas. The focus through the 1970's has been on the Gaussian dispersio...
76 FR 23230 - Segregation of Lands-Renewable Energy
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-26
... within the wind energy right-of- way application areas in FY 2009 and 2010, we estimate the total cost of... transmission facilities that could be used to carry the power generated from a specific wind or solar energy..., public lands included in a pending or future wind or solar energy generation right-of-way (ROW...
What can nuclear energy do for society?
NASA Technical Reports Server (NTRS)
Rom, F. E.
1971-01-01
The utilization of nuclear energy and the predicted impact of future uses of nuclear energy are discussed. Areas of application in electric power production and transportation methods are described. It is concluded that the need for many forms of nuclear energy will become critical as the requirements for power to supply an increasing population are met.
Wang, Guocheng; Li, Tingting; Zhang, Wen; Yu, Yongqiang
2014-01-01
Dynamics of cropland soil organic carbon (SOC) in response to different management practices and environmental conditions across North China Plain (NCP) were studied using a modeling approach. We identified the key variables driving SOC changes at a high spatial resolution (10 km × 10 km) and long time scale (90 years). The model used future climatic data from the FGOALS model based on four future greenhouse gas (GHG) concentration scenarios. Agricultural practices included different rates of nitrogen (N) fertilization, manure application, and stubble retention. We found that SOC change was significantly influenced by the management practices of stubble retention (linearly positive), manure application (linearly positive) and nitrogen fertilization (nonlinearly positive) - and the edaphic variable of initial SOC content (linearly negative). Temperature had weakly positive effects, while precipitation had negligible impacts on SOC dynamics under current irrigation management. The effects of increased N fertilization on SOC changes were most significant between the rates of 0 and 300 kg ha-1 yr-1. With a moderate rate of manure application (i.e., 2000 kg ha-1 yr-1), stubble retention (i.e., 50%), and an optimal rate of nitrogen fertilization (i.e., 300 kg ha-1 yr-1), more than 60% of the study area showed an increase in SOC, and the average SOC density across NCP was relatively steady during the study period. If the rates of manure application and stubble retention doubled (i.e., manure application rate of 4000 kg ha-1 yr-1 and stubble retention rate of 100%), soils across more than 90% of the study area would act as a net C sink, and the average SOC density kept increasing from 40 Mg ha-1 during 2010s to the current worldwide average of ∼ 55 Mg ha-1 during 2060s. The results can help target agricultural management practices for effectively mitigating climate change through soil C sequestration.
Wang, Guocheng; Li, Tingting; Zhang, Wen; Yu, Yongqiang
2014-01-01
Dynamics of cropland soil organic carbon (SOC) in response to different management practices and environmental conditions across North China Plain (NCP) were studied using a modeling approach. We identified the key variables driving SOC changes at a high spatial resolution (10 km×10 km) and long time scale (90 years). The model used future climatic data from the FGOALS model based on four future greenhouse gas (GHG) concentration scenarios. Agricultural practices included different rates of nitrogen (N) fertilization, manure application, and stubble retention. We found that SOC change was significantly influenced by the management practices of stubble retention (linearly positive), manure application (linearly positive) and nitrogen fertilization (nonlinearly positive) – and the edaphic variable of initial SOC content (linearly negative). Temperature had weakly positive effects, while precipitation had negligible impacts on SOC dynamics under current irrigation management. The effects of increased N fertilization on SOC changes were most significant between the rates of 0 and 300 kg ha−1 yr−1. With a moderate rate of manure application (i.e., 2000 kg ha−1 yr−1), stubble retention (i.e., 50%), and an optimal rate of nitrogen fertilization (i.e., 300 kg ha−1 yr−1), more than 60% of the study area showed an increase in SOC, and the average SOC density across NCP was relatively steady during the study period. If the rates of manure application and stubble retention doubled (i.e., manure application rate of 4000 kg ha−1 yr−1 and stubble retention rate of 100%), soils across more than 90% of the study area would act as a net C sink, and the average SOC density kept increasing from 40 Mg ha−1 during 2010s to the current worldwide average of ∼55 Mg ha−1 during 2060s. The results can help target agricultural management practices for effectively mitigating climate change through soil C sequestration. PMID:24722689
NASA Astrophysics Data System (ADS)
Sporea, R. A.; Trainor, M. J.; Young, N. D.; Shannon, J. M.; Silva, S. R. P.
2014-03-01
Ultra-large-scale integrated (ULSI) circuits have benefited from successive refinements in device architecture for enormous improvements in speed, power efficiency and areal density. In large-area electronics (LAE), however, the basic building-block, the thin-film field-effect transistor (TFT) has largely remained static. Now, a device concept with fundamentally different operation, the source-gated transistor (SGT) opens the possibility of unprecedented functionality in future low-cost LAE. With its simple structure and operational characteristics of low saturation voltage, stability under electrical stress and large intrinsic gain, the SGT is ideally suited for LAE analog applications. Here, we show using measurements on polysilicon devices that these characteristics lead to substantial improvements in gain, noise margin, power-delay product and overall circuit robustness in digital SGT-based designs. These findings have far-reaching consequences, as LAE will form the technological basis for a variety of future developments in the biomedical, civil engineering, remote sensing, artificial skin areas, as well as wearable and ubiquitous computing, or lightweight applications for space exploration.
A comprehensive review on droplet-based bioprinting: Past, present and future.
Gudapati, Hemanth; Dey, Madhuri; Ozbolat, Ibrahim
2016-09-01
Droplet-based bioprinting (DBB) offers greater advantages due to its simplicity and agility with precise control on deposition of biologics including cells, growth factors, genes, drugs and biomaterials, and has been a prominent technology in the bioprinting community. Due to its immense versatility, DBB technology has been adopted by various application areas, including but not limited to, tissue engineering and regenerative medicine, transplantation and clinics, pharmaceutics and high-throughput screening, and cancer research. Despite the great benefits, the technology currently faces several challenges such as a narrow range of available bioink materials, bioprinting-induced cell damage at substantial levels, limited mechanical and structural integrity of bioprinted constructs, and restrictions on the size of constructs due to lack of vascularization and porosity. This paper presents a first-time review of DBB and comprehensively covers the existing DBB modalities including inkjet, electrohydrodynamic, acoustic, and micro-valve bioprinting. The recent notable studies are highlighted, the relevant bioink biomaterials and bioprinters are expounded, the application areas are presented, and the future prospects are provided to the reader. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sporea, R. A.; Trainor, M. J.; Young, N. D.; Shannon, J. M.; Silva, S. R. P.
2014-01-01
Ultra-large-scale integrated (ULSI) circuits have benefited from successive refinements in device architecture for enormous improvements in speed, power efficiency and areal density. In large-area electronics (LAE), however, the basic building-block, the thin-film field-effect transistor (TFT) has largely remained static. Now, a device concept with fundamentally different operation, the source-gated transistor (SGT) opens the possibility of unprecedented functionality in future low-cost LAE. With its simple structure and operational characteristics of low saturation voltage, stability under electrical stress and large intrinsic gain, the SGT is ideally suited for LAE analog applications. Here, we show using measurements on polysilicon devices that these characteristics lead to substantial improvements in gain, noise margin, power-delay product and overall circuit robustness in digital SGT-based designs. These findings have far-reaching consequences, as LAE will form the technological basis for a variety of future developments in the biomedical, civil engineering, remote sensing, artificial skin areas, as well as wearable and ubiquitous computing, or lightweight applications for space exploration. PMID:24599023
NASA Astrophysics Data System (ADS)
Grewe, L.
2013-05-01
This paper explores the current practices in social data fusion and analysis as it applies to consumer-oriented applications in a slew of areas including business, economics, politics, sciences, medicine, education and more. A categorization of these systems is proposed and contributions to each area are explored preceded by a discussion of some special issues related to social data and networks. From this work, future paths of consumer-based social data analysis research and current outstanding problems are discovered.
Low thrust propulsion literature survey
NASA Technical Reports Server (NTRS)
Monroe, Darrel
1989-01-01
A literature search was performed to investigate the area of low thrust propulsion. In an effort to evaluate this technology, a number of articles, obtained through the use of the NASA-RECON database, were collected and categorized. The study indicates that although much was done, particularly in the 1960's and 1970's, more can be done in the area of practical navigation and guidance. It is suggested that the older studies be reinvestigated to see what potential there exists for future low thrust applications.
Computer-based visual communication in aphasia.
Steele, R D; Weinrich, M; Wertz, R T; Kleczewska, M K; Carlson, G S
1989-01-01
The authors describe their recently developed Computer-aided VIsual Communication (C-VIC) system, and report results of single-subject experimental designs probing its use with five chronic, severely impaired aphasic individuals. Studies replicate earlier results obtained with a non-computerized system, demonstrate patient competence with the computer implementation, extend the system's utility, and identify promising areas of application. Results of the single-subject experimental designs clarify patients' learning, generalization, and retention patterns, and highlight areas of performance difficulties. Future directions for the project are indicated.
NASA Astrophysics Data System (ADS)
Patra, Santanu; Roy, Ekta; Madhuri, Rashmi; Sharma, Prashant K.
2017-05-01
The present work represents the preparation of imprinted magnetic reduced graphene oxide and applied it for the selective removal of Eu (III) from local coal mines area. A simple solid phase extraction method was used for this purpose. The material shows a very high adsorption as well as removal efficiency towards Eu (III), which suggest that the material have potential to be used in future for their real time applications in removal of Eu (III) from complex matrices.
Current status and future prospects for enabling chemistry technology in the drug discovery process
Djuric, Stevan W.; Hutchins, Charles W.; Talaty, Nari N.
2016-01-01
This review covers recent advances in the implementation of enabling chemistry technologies into the drug discovery process. Areas covered include parallel synthesis chemistry, high-throughput experimentation, automated synthesis and purification methods, flow chemistry methodology including photochemistry, electrochemistry, and the handling of “dangerous” reagents. Also featured are advances in the “computer-assisted drug design” area and the expanding application of novel mass spectrometry-based techniques to a wide range of drug discovery activities. PMID:27781094
Wang, Wei; Guo, Shirui; Lee, Ilkeun; Ahmed, Kazi; Zhong, Jiebin; Favors, Zachary; Zaera, Francisco; Ozkan, Mihrimah; Ozkan, Cengiz S.
2014-01-01
In real life applications, supercapacitors (SCs) often can only be used as part of a hybrid system together with other high energy storage devices due to their relatively lower energy density in comparison to other types of energy storage devices such as batteries and fuel cells. Increasing the energy density of SCs will have a huge impact on the development of future energy storage devices by broadening the area of application for SCs. Here, we report a simple and scalable way of preparing a three-dimensional (3D) sub-5 nm hydrous ruthenium oxide (RuO2) anchored graphene and CNT hybrid foam (RGM) architecture for high-performance supercapacitor electrodes. This RGM architecture demonstrates a novel graphene foam conformally covered with hybrid networks of RuO2 nanoparticles and anchored CNTs. SCs based on RGM show superior gravimetric and per-area capacitive performance (specific capacitance: 502.78 F g−1, areal capacitance: 1.11 F cm−2) which leads to an exceptionally high energy density of 39.28 Wh kg−1 and power density of 128.01 kW kg−1. The electrochemical stability, excellent capacitive performance, and the ease of preparation suggest this RGM system is promising for future energy storage applications. PMID:24663242
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei; Guo, S.; Lee, I.
2014-03-25
In real life applications, supercapacitors (SCs) often can only be used as part of a hybrid system together with other high energy storage devices due to their relatively lower energy density in comparison to other types of energy storage devices such as batteries and fuel cells. Increasing the energy density of SCs will have a huge impact on the development of future energy storage devices by broadening the area of application for SCs. Here, we report a simple and scalable way of preparing a three-dimensional (3D) sub-5 nm hydrous ruthenium oxide (RuO₂) anchored graphene and CNT hybrid foam (RGM) architecturemore » for high-performance supercapacitor electrodes. This RGM architecture demonstrates a novel graphene foam conformally covered with hybrid networks of RuO₂ nanoparticles and anchored CNTs. SCs based on RGM show superior gravimetric and per-area capacitive performance (specific capacitance: 502.78 F g⁻¹, areal capacitance: 1.11 F cm⁻²) which leads to an exceptionally high energy density of 39.28 Wh kg⁻¹ and power density of 128.01 kW kg⁻¹. The electrochemical stability, excellent capacitive performance, and the ease of preparation suggest this RGM system is promising for future energy storage applications.« less
Evaluation of a Leadership in Mental Health course for Pacific Island Nation delegates.
Charlson, Fiona; Redman-MacLaren, Michelle; Hunter, Ernest
2015-12-01
We report the background to and preliminary evaluation of the Leadership in Mental Health: Island Nations course, run for the first time in Cairns in conjunction with Creating Futures 2015. The course was well attended and well received, with increased confidence in key areas demonstrated and concerns regarding local application identified. In addition to positive comments, content and delivery issues were raised. Future opportunities for expanding upon this initial course are discussed. © The Royal Australian and New Zealand College of Psychiatrists 2015.
A Primer on Audience Response Systems: Current Applications and Future Considerations
Robinson, Evan
2008-01-01
Audience response systems (ARSs) are an increasingly popular tool in higher education for promoting interactivity, gathering feedback, preassessing knowledge, and assessing students' understanding of lecture concepts. Instructors in numerous disciplines are realizing the pedagogical value of these systems. Actual research on ARS usage within pharmacy education is sparse. In this paper, the health professions literature on uses of ARSs is reviewed and a primer on the issues, benefits, and potential uses within pharmacy education is presented. Future areas of educational research on ARS instructional strategies are also suggested. PMID:19002277
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Kisailus; Lara Estroff; Himadri S. Gupta
The technical presentations and discussions at this symposium disseminated and assessed current research and defined future directions in biomaterials research, with a focus on structure-function relationships in biological and biomimetic composites. The invited and contributed talks covered a diverse range of topics from fundamental biology, physics, chemistry, and materials science to potential applications in developing areas such as light-weight composites, multifunctional and smart materials, biomedical engineering, and nanoscaled sensors. The invited speakers were chosen to create a stimulating program with a mixture of established and junior faculty, industrial and academic researchers, and American and international experts in the field. Thismore » symposium served as an excellent introduction to the area for younger scientists (graduate students and post-doctoral researchers). Direct interactions between participants also helped to promote potential future collaborations involving multiple disciplines and institutions.« less
Nanosystem trends in drug delivery using quality-by-design concept.
Li, Jing; Qiao, Yanjiang; Wu, Zhisheng
2017-06-28
Quality by design (QbD) has become an inevitable trend because of its benefits for product quality and process understanding. Trials have been conducted using QbD in nanosystems' optimization. This paper reviews the application of QbD for processing nanosystems and summarizes the application procedure. It provides prospective guidelines for future investigations that apply QbD to nanosystem manufacturing processes. Employing the QbD concept in this way is a novel area in nanosystem quality. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rubinsztein-Dunlop, Halina; Forbes, Andrew; Berry, M. V.; Dennis, M. R.; Andrews, David L.; Mansuripur, Masud; Denz, Cornelia; Alpmann, Christina; Banzer, Peter; Bauer, Thomas; Karimi, Ebrahim; Marrucci, Lorenzo; Padgett, Miles; Ritsch-Marte, Monika; Litchinitser, Natalia M.; Bigelow, Nicholas P.; Rosales-Guzmán, C.; Belmonte, A.; Torres, J. P.; Neely, Tyler W.; Baker, Mark; Gordon, Reuven; Stilgoe, Alexander B.; Romero, Jacquiline; White, Andrew G.; Fickler, Robert; Willner, Alan E.; Xie, Guodong; McMorran, Benjamin; Weiner, Andrew M.
2017-01-01
Structured light refers to the generation and application of custom light fields. As the tools and technology to create and detect structured light have evolved, steadily the applications have begun to emerge. This roadmap touches on the key fields within structured light from the perspective of experts in those areas, providing insight into the current state and the challenges their respective fields face. Collectively the roadmap outlines the venerable nature of structured light research and the exciting prospects for the future that are yet to be realized.
Use of remote sensing for monitoring deforestation in tropical and subtropical latitudes
Talbot, J. J.; Pettinger, Lawrence R.
1981-01-01
Factors limiting the application of Landsat data—including relatively low spatial resolution, persistent cloud cover in tropical regions, inadequate coverage of certain areas due to data-acquisition restraints and lack of local Landsat data receiving stations for real-time data recording—must be considered in any proposed study. Future improvements in Landsat capabilities might extend present applications beyond distinction of forest vs. non-forest cover, determination of gross vegetation or forest type, and generalized land use mapping.
Space optics with silicon wafers and slumped glass
NASA Astrophysics Data System (ADS)
Hudec, R.; Semencova, V.; Inneman, A.; Skulinova, M.; Sveda, L.; Míka, M.; Sik, J.; Lorenc, M.
2017-11-01
The future space X-ray astronomy imaging missions require very large collecting areas at still fine angular resolution and reasonable weight. The novel substrates for X-ray mirrors such as Silicon wafers and thin thermally formed glass enable wide applications of precise and very light weight (volume densities 2.3 to 2.5 gcm-3) optics. The recent status of novel technologies as well as developed test samples with emphasis on precise optical surfaces based on novel materials and their space applications is presented and discussed.
Carbon Nanotubes: Present and Future Commercial Applications
NASA Astrophysics Data System (ADS)
De Volder, Michael F. L.; Tawfick, Sameh H.; Baughman, Ray H.; Hart, A. John
2013-02-01
Worldwide commercial interest in carbon nanotubes (CNTs) is reflected in a production capacity that presently exceeds several thousand tons per year. Currently, bulk CNT powders are incorporated in diverse commercial products ranging from rechargeable batteries, automotive parts, and sporting goods to boat hulls and water filters. Advances in CNT synthesis, purification, and chemical modification are enabling integration of CNTs in thin-film electronics and large-area coatings. Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.
Recent Developments and Applications of the MMPBSA Method
Wang, Changhao; Greene, D'Artagnan; Xiao, Li; Qi, Ruxi; Luo, Ray
2018-01-01
The Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) approach has been widely applied as an efficient and reliable free energy simulation method to model molecular recognition, such as for protein-ligand binding interactions. In this review, we focus on recent developments and applications of the MMPBSA method. The methodology review covers solvation terms, the entropy term, extensions to membrane proteins and high-speed screening, and new automation toolkits. Recent applications in various important biomedical and chemical fields are also reviewed. We conclude with a few future directions aimed at making MMPBSA a more robust and efficient method. PMID:29367919
Miga, Michael I
2016-01-01
With the recent advances in computing, the opportunities to translate computational models to more integrated roles in patient treatment are expanding at an exciting rate. One area of considerable development has been directed towards correcting soft tissue deformation within image guided neurosurgery applications. This review captures the efforts that have been undertaken towards enhancing neuronavigation by the integration of soft tissue biomechanical models, imaging and sensing technologies, and algorithmic developments. In addition, the review speaks to the evolving role of modeling frameworks within surgery and concludes with some future directions beyond neurosurgical applications.
Printing versus coating - What will be the future production technology for printed electronics?
NASA Astrophysics Data System (ADS)
Glawe, Andrea; Eggerath, Daniel; Schäfer, Frank
2015-02-01
The market of Large Area Organic Printed Electronics is developing rapidly to increase efficiency and quality as well as to lower costs further. Applications for OPV, OLED, RFID and compact Printed Electronic systems are increasing. In order to make the final products more affordable, but at the same time highly accurate, Roll to Roll (R2R) production on flexible transparent polymer substrates is the way forward. There are numerous printing and coating technologies suitable depending on the design, the product application and the chemical process technology. Mainly the product design (size, pattern, repeatability) defines the application technology.
Carbon nanotubes: present and future commercial applications.
De Volder, Michael F L; Tawfick, Sameh H; Baughman, Ray H; Hart, A John
2013-02-01
Worldwide commercial interest in carbon nanotubes (CNTs) is reflected in a production capacity that presently exceeds several thousand tons per year. Currently, bulk CNT powders are incorporated in diverse commercial products ranging from rechargeable batteries, automotive parts, and sporting goods to boat hulls and water filters. Advances in CNT synthesis, purification, and chemical modification are enabling integration of CNTs in thin-film electronics and large-area coatings. Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.
Salunkhe, Rahul R; Kaneti, Yusuf Valentino; Kim, Jeonghun; Kim, Jung Ho; Yamauchi, Yusuke
2016-12-20
The future advances of supercapacitors depend on the development of novel carbon materials with optimized porous structures, high surface area, high conductivity, and high electrochemical stability. Traditionally, nanoporous carbons (NPCs) have been prepared by a variety of methods, such as templated synthesis, carbonization of polymer precursors, physical and chemical activation, etc. Inorganic solid materials such as mesoporous silica and zeolites have been successfully utilized as templates to prepare NPCs. However, the hard-templating methods typically involve several synthetic steps, such as preparation of the original templates, formation of carbon frameworks, and removal of the original templates. Therefore, these methods are not favorable for large-scale production. Metal-organic frameworks (MOFs) with high surface areas and large pore volumes have been studied over the years, and recently, enormous efforts have been made to utilize MOFs for electrochemical applications. However, their low conductivity and poor stability still present major challenges toward their practical applications in supercapacitors. MOFs can be used as precursors for the preparation of NPCs with high porosity. Their parent MOFs can be prepared with endless combinations of organic and inorganic constituents by simple coordination chemistry, and it is possible to control their porous architectures, pore volumes, surface areas, etc. These unique properties of MOF-derived NPCs make them highly attractive for many technological applications. Compared with carbonaceous materials prepared using conventional precursors, MOF-derived carbons have significant advantages in terms of a simple synthesis with inherent diversity affording precise control over porous architectures, pore volumes, and surface areas. In this Account, we will summarize our recent research developments on the preparation of three-dimensional (3-D) MOF-derived carbons for supercapacitor applications. This Account will be divided into three main sections: (1) useful background on carbon materials for supercapacitor applications, (2) the importance of MOF-derived carbons, and (3) potential future developments of MOF-derived carbons for supercapacitors. This Account focuses mostly on carbons derived from two types of MOFs, namely, zeolite imidazolate framework-8 (ZIF-8) and ZIF-67. By using examples from our previous works, we will show the uniqueness of these carbons for achieving high performance by control of the chemical reactions/conditions as well proper utilization in asymmetric/symmetric supercapacitor configurations. This Account will promote further developments of MOF-derived multifunctional carbon materials with controlled porous architectures for optimization of their electrochemical performance toward supercapacitor applications.
NASA In-Space Propulsion Technologies and Their Infusion Potential
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil,Eric J.; Peterson, Todd; Vento, Daniel; Munk, Michelle M.; Glaab, Louis J.; Dankanich, John W.
2012-01-01
The In-Space Propulsion Technology (ISPT) program has been developing in-space propulsion technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (Electric and Chemical), Entry Vehicle Technologies (Aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies that will be ready for flight infusion in the near future will be Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future focuses for ISPT are sample return missions and other spacecraft bus technologies like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle-focused, and present a different set of technology infusion challenges. While the Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Evaluation of Dynamic Coastal Response to Sea-level Rise Modifies Inundation Likelihood
NASA Technical Reports Server (NTRS)
Lentz, Erika E.; Thieler, E. Robert; Plant, Nathaniel G.; Stippa, Sawyer R.; Horton, Radley M.; Gesch, Dean B.
2016-01-01
Sea-level rise (SLR) poses a range of threats to natural and built environments, making assessments of SLR-induced hazards essential for informed decision making. We develop a probabilistic model that evaluates the likelihood that an area will inundate (flood) or dynamically respond (adapt) to SLR. The broad-area applicability of the approach is demonstrated by producing 30x30m resolution predictions for more than 38,000 sq km of diverse coastal landscape in the northeastern United States. Probabilistic SLR projections, coastal elevation and vertical land movement are used to estimate likely future inundation levels. Then, conditioned on future inundation levels and the current land-cover type, we evaluate the likelihood of dynamic response versus inundation. We find that nearly 70% of this coastal landscape has some capacity to respond dynamically to SLR, and we show that inundation models over-predict land likely to submerge. This approach is well suited to guiding coastal resource management decisions that weigh future SLR impacts and uncertainty against ecological targets and economic constraints.
Deep into the Brain: Artificial Intelligence in Stroke Imaging
Lee, Eun-Jae; Kim, Yong-Hwan; Kim, Namkug; Kang, Dong-Wha
2017-01-01
Artificial intelligence (AI), a computer system aiming to mimic human intelligence, is gaining increasing interest and is being incorporated into many fields, including medicine. Stroke medicine is one such area of application of AI, for improving the accuracy of diagnosis and the quality of patient care. For stroke management, adequate analysis of stroke imaging is crucial. Recently, AI techniques have been applied to decipher the data from stroke imaging and have demonstrated some promising results. In the very near future, such AI techniques may play a pivotal role in determining the therapeutic methods and predicting the prognosis for stroke patients in an individualized manner. In this review, we offer a glimpse at the use of AI in stroke imaging, specifically focusing on its technical principles, clinical application, and future perspectives. PMID:29037014
Optical data communication: fundamentals and future directions
NASA Astrophysics Data System (ADS)
DeCusatis, Casimer M.
1998-12-01
An overview of optical data communications is provided, beginning with a brief history and discussion of the unique requirements that distinguish this subfield from related areas such as telecommunications. Each of the major datacom standards is then discussed, including the physical layer specification, distances and data rates, fiber and connector types, data frame structures, and network considerations. These standards can be categorized by their prevailing applications, either storage [Enterprise System Connection, Fiber Channel Connection, and Fiber Channel], coupling (Fiber Channel), or networking [Fiber Distributed Data Interface, Gigabit Ethernet, and asynchronous transfer mode/synchronous optical network]. We also present some emerging technologies and their applications, including parallel optical interconnects, plastic optical fiber, wavelength multiplexing, and free- space optical links. We conclude with some cost/performance trade-offs and predictions of future bandwidth trends.
Fox, Caroline S; Hall, Jennifer L; Arnett, Donna K; Ashley, Euan A; Delles, Christian; Engler, Mary B; Freeman, Mason W; Johnson, Julie A; Lanfear, David E; Liggett, Stephen B; Lusis, Aldons J; Loscalzo, Joseph; MacRae, Calum A; Musunuru, Kiran; Newby, L Kristin; O'Donnell, Christopher J; Rich, Stephen S; Terzic, Andre
2015-05-12
The field of genetics and genomics has advanced considerably with the achievement of recent milestones encompassing the identification of many loci for cardiovascular disease and variable drug responses. Despite this achievement, a gap exists in the understanding and advancement to meaningful translation that directly affects disease prevention and clinical care. The purpose of this scientific statement is to address the gap between genetic discoveries and their practical application to cardiovascular clinical care. In brief, this scientific statement assesses the current timeline for effective translation of basic discoveries to clinical advances, highlighting past successes. Current discoveries in the area of genetics and genomics are covered next, followed by future expectations, tools, and competencies for achieving the goal of improving clinical care. © 2015 American Heart Association, Inc.
Virtual reality for obsessive-compulsive disorder: past and the future.
Kim, Kwanguk; Kim, Chan-Hyung; Kim, So-Yeon; Roh, Daeyoung; Kim, Sun I
2009-09-01
The use of computers, especially for virtual reality (VR), to understand, assess, and treat various mental health problems has been developed for the last decade, including application for phobia, post-traumatic stress disorder, attention deficits, and schizophrenia. However, the number of VR tools addressing obsessive-compulsive disorder (OCD) is still lacking due to the heterogeneous symptoms of OCD and poor understanding of the relationship between VR and OCD. This article reviews the empirical literatures for VR tools in the future, which involve applications for both clinical work and experimental research in this area, including examining symptoms using VR according to OCD patients' individual symptoms, extending OCD research in the VR setting to also study behavioral and physiological correlations of the symptoms, and expanding the use of VR for OCD to cognitive-behavioral intervention.
Stassen, Ivo; De Vos, Dirk; Ameloot, Rob
2016-10-04
Materials processing, and thin-film deposition in particular, is decisive in the implementation of functional materials in industry and real-world applications. Vapor processing of materials plays a central role in manufacturing, especially in electronics. Metal-organic frameworks (MOFs) are a class of nanoporous crystalline materials on the brink of breakthrough in many application areas. Vapor deposition of MOF thin films will facilitate their implementation in micro- and nanofabrication research and industries. In addition, vapor-solid modification can be used for postsynthetic tailoring of MOF properties. In this context, we review the recent progress in vapor processing of MOFs, summarize the underpinning chemistry and principles, and highlight promising directions for future research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Doern, Christopher D; Butler-Wu, Susan M
2016-11-01
The performance of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MS) for routine bacterial and yeast identification as well as direct-from-blood culture bottle identification has been thoroughly evaluated in the peer-reviewed literature. Microbiologists are now moving beyond these methods to apply MS to other areas of the diagnostic process. This review discusses the emergence of advanced matrix-assisted laser desorption ionization time-of-flight MS applications, including the identification of filamentous fungi and mycobacteria and the current and future state of antimicrobial resistance testing. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Deep into the Brain: Artificial Intelligence in Stroke Imaging.
Lee, Eun-Jae; Kim, Yong-Hwan; Kim, Namkug; Kang, Dong-Wha
2017-09-01
Artificial intelligence (AI), a computer system aiming to mimic human intelligence, is gaining increasing interest and is being incorporated into many fields, including medicine. Stroke medicine is one such area of application of AI, for improving the accuracy of diagnosis and the quality of patient care. For stroke management, adequate analysis of stroke imaging is crucial. Recently, AI techniques have been applied to decipher the data from stroke imaging and have demonstrated some promising results. In the very near future, such AI techniques may play a pivotal role in determining the therapeutic methods and predicting the prognosis for stroke patients in an individualized manner. In this review, we offer a glimpse at the use of AI in stroke imaging, specifically focusing on its technical principles, clinical application, and future perspectives.
Two decades of ART: improving on success through further research
HOLMGREN, Christopher J.; FIGUEREDO, Márcia Cançado
2009-01-01
ABSTRACT Since the introduction of the Atraumatic Restorative Treatment (ART) approach over twenty years ago, more than 190 research publications have appeared. The last research agenda defining research priorities for ART was published in 1999. The objective of the present work was to review existing research in the context of future research priorities for ART. Material and Methods: An internet survey was conducted amongst those who had published on ART or were known to be working on the ART approach, to solicit their views as to areas of future ART research. Three broad categories were defined, namely: 1. Basic and laboratory research; 2. Clinical research, and, 3. Community, Public Health, Health Services Research. Results: A 31% response rate was achieved. The study identified a number of new areas of research as well as areas where additional research is required. These are expressed as recommendations for future ART research. Conclusions: The ART approach is based on a robust, reliable and ever-growing evidence base concerning its clinical applications which indicates that it is a reliable and quality treatment approach. In common with all other oral health care procedures, targeted applied research is required to improve the oral health care offered. PMID:21499666
NASA Technical Reports Server (NTRS)
Hanson, P. W.
1984-01-01
Active controls technology is assessed based on a review of most of the wind-tunnel and flight tests and actual applications of active control concepts since the late sixties. The distinction is made between so-called ""rigid-body'' active control functions and those that involve significant modification of structural elastic response or stability. Both areas are reviewed although the focus is on the latter area. The basic goals and major results of the various studies or applications are summarized, and the anticipated use of active controls on current and near-future research and demonstration aircraft is discussed. Some of the ""holes'' remaining in the feasbility/benefits demonstration of active controls technology are examined.
Cryogenic fluid management in space
NASA Technical Reports Server (NTRS)
Antar, Basil N.
1988-01-01
Many future space based vehicles and satellites will require on orbit refuelling procedures. Cryogenic fluid management technology is being developed to assess the requirements of such procedures as well as to aid in the design and development of these vehicles. Cryogenic fluid management technology for this application could be divided into two areas of study, one is concerned with fluid transfer process and the other with cryogenic liquid storage. This division is based upon the needed technology for the development of each area. In the first, the interaction of fluid dynamics with thermodynamics is essential, while in the second only thermodynamic analyses are sufficient to define the problem. The following specific process related to the liquid transfer area are discussed: tank chilldown and fill; tank pressurization; liquid positioning; and slosh dynamics and control. These specific issues are discussed in relation with the required technology for their development in the low gravity application area. In each process the relevant physics controlling the technology is identified and methods for resolving some of the basic questions are discussed.
Present Status and Future Prospects of Silicon Thin-Film Solar Cells
NASA Astrophysics Data System (ADS)
Konagai, Makoto
2011-03-01
In this report, an overview of the recent status of photovoltaic (PV) power generation is first presented from the viewpoint of reducing CO2 emission. Next, the Japanese roadmap for the research and development (R&D) of PV power generation and the progress in the development of various solar cells are explained. In addition, the present status and future prospects of amorphous silicon (a-Si) thin-film solar cells, which are expected to enter the stage of full-scale practical application in the near future, are described. For a-Si single-junction solar cells, the conversion efficiency of their large-area modules has now reached 6-8%, and their practical application to megawatt solar systems has started. Meanwhile, the focus of R&D has been shifting to a-Si and microcrystalline silicon (µc-Si) tandem solar cells. Thus far, a-Si/µc-Si tandem solar cell modules with conversion efficiency exceeding 13% have been reported. In addition, triple-junction solar cells, whose target year for practical application is 2025 or later, are introduced, as well as innovative thin-film full-spectrum solar cells, whose target year of realization is 2050.
BASIC STUDY ON APPLICABILITY OF MODIS DATA FOR VEGETATION MONITORING IN ASHIO AREA
NASA Astrophysics Data System (ADS)
Ikeda, Hirokazu; Todate, Hikaru; Tanaka, Hiroshi; Ota, Tametomo
Ashio Basin was once lushly green until 1800's. However, the forest had been almost lost by copper mine de velopment and forest fire by 1956. From that time on, afforestation has been carried out for over 50 years, and the vegetation is being recovered. Therefore, it is very important to estimate the past afforestation activities, and to propose future directions. There exists an earlier research on vegetation monitoring in Ashio area, but it was performed more than 15 years ago, and used expensive commercial GIS and LANDSAT data. The present study examined a sustainable and inexpensive system with using preferably free data and software. It is shown that, by comparison with aerial photographs and digital national land information, vegetation index (NDVI) by MODIS data, available to download free, are easy to obtain and manipulate, and applicable for vegetation monitoring in Ashio area.
Nanomedicine: application areas and development prospects.
Boulaiz, Houria; Alvarez, Pablo J; Ramirez, Alberto; Marchal, Juan A; Prados, Jose; Rodríguez-Serrano, Fernando; Perán, Macarena; Melguizo, Consolación; Aranega, Antonia
2011-01-01
Nanotechnology, along with related concepts such as nanomaterials, nanostructures and nanoparticles, has become a priority area for scientific research and technological development. Nanotechnology, i.e., the creation and utilization of materials and devices at nanometer scale, already has multiple applications in electronics and other fields. However, the greatest expectations are for its application in biotechnology and health, with the direct impact these could have on the quality of health in future societies. The emerging discipline of nanomedicine brings nanotechnology and medicine together in order to develop novel therapies and improve existing treatments. In nanomedicine, atoms and molecules are manipulated to produce nanostructures of the same size as biomolecules for interaction with human cells. This procedure offers a range of new solutions for diagnoses and "smart" treatments by stimulating the body's own repair mechanisms. It will enhance the early diagnosis and treatment of diseases such as cancer, diabetes, Alzheimer's, Parkinson's and cardiovascular diseases. Preventive medicine may then become a reality.
Molecularly Imprinted Nanomaterials for Sensor Applications
Irshad, Muhammad; Iqbal, Naseer; Mujahid, Adnan; Afzal, Adeel; Hussain, Tajamal; Sharif, Ahsan; Ahmad, Ejaz; Athar, Muhammad Makshoof
2013-01-01
Molecular imprinting is a well-established technology to mimic antibody-antigen interaction in a synthetic platform. Molecularly imprinted polymers and nanomaterials usually possess outstanding recognition capabilities. Imprinted nanostructured materials are characterized by their small sizes, large reactive surface area and, most importantly, with rapid and specific analysis of analytes due to the formation of template driven recognition cavities within the matrix. The excellent recognition and selectivity offered by this class of materials towards a target analyte have found applications in many areas, such as separation science, analysis of organic pollutants in water, environmental analysis of trace gases, chemical or biological sensors, biochemical assays, fabricating artificial receptors, nanotechnology, etc. We present here a concise overview and recent developments in nanostructured imprinted materials with respect to various sensor systems, e.g., electrochemical, optical and mass sensitive, etc. Finally, in light of recent studies, we conclude the article with future perspectives and foreseen applications of imprinted nanomaterials in chemical sensors. PMID:28348356
Latency Requirements for Head-Worn Display S/EVS Applications
NASA Technical Reports Server (NTRS)
Bailey, Randall E.; Trey Arthur, J. J., III; Williams, Steven P.
2004-01-01
NASA s Aviation Safety Program, Synthetic Vision Systems Project is conducting research in advanced flight deck concepts, such as Synthetic/Enhanced Vision Systems (S/EVS), for commercial and business aircraft. An emerging thrust in this activity is the development of spatially-integrated, large field-of-regard information display systems. Head-worn or helmet-mounted display systems are being proposed as one method in which to meet this objective. System delays or latencies inherent to spatially-integrated, head-worn displays critically influence the display utility, usability, and acceptability. Research results from three different, yet similar technical areas flight control, flight simulation, and virtual reality are collectively assembled in this paper to create a global perspective of delay or latency effects in head-worn or helmet-mounted display systems. Consistent definitions and measurement techniques are proposed herein for universal application and latency requirements for Head-Worn Display S/EVS applications are drafted. Future research areas are defined.
York, Timothy; Powell, Samuel B.; Gao, Shengkui; Kahan, Lindsey; Charanya, Tauseef; Saha, Debajit; Roberts, Nicholas W.; Cronin, Thomas W.; Marshall, Justin; Achilefu, Samuel; Lake, Spencer P.; Raman, Baranidharan; Gruev, Viktor
2015-01-01
In this paper, we present recent work on bioinspired polarization imaging sensors and their applications in biomedicine. In particular, we focus on three different aspects of these sensors. First, we describe the electro–optical challenges in realizing a bioinspired polarization imager, and in particular, we provide a detailed description of a recent low-power complementary metal–oxide–semiconductor (CMOS) polarization imager. Second, we focus on signal processing algorithms tailored for this new class of bioinspired polarization imaging sensors, such as calibration and interpolation. Third, the emergence of these sensors has enabled rapid progress in characterizing polarization signals and environmental parameters in nature, as well as several biomedical areas, such as label-free optical neural recording, dynamic tissue strength analysis, and early diagnosis of flat cancerous lesions in a murine colorectal tumor model. We highlight results obtained from these three areas and discuss future applications for these sensors. PMID:26538682
Towards Theranostic Multicompartment Microcapsules: in-situ Diagnostics and Laser-induced Treatment
Xiong, Ranhua; Soenen, Stefaan J.; Braeckmans, Kevin; Skirtach, Andre G.
2013-01-01
Paving the way towards the application of polyelectrolyte multilayer capsules in theranostics, we describe diagnostic multi-functionality and drug delivery using multicompartment polymeric capsules which represent the next generation of drug delivery carriers. Their versatility is particularly important for potential applications in the area of theranostics wherein the carriers are endowed with the functionality for both diagnostics and therapy. Responsiveness towards external stimuli is attractive for providing controlled and on-demand release of encapsulated materials. An overview of external stimuli is presented with an emphasis on light as a physical stimulus which has been widely used for activation of microcapsules and release of their contents. In this article we also describe existing and new approaches to build multicompartment microcapsules as well as means available to achieve controlled and triggered release from their subcompartments, with a focus on applications in theranostics. Outlook for future directions in the area are highlighted. PMID:23471141
Latency requirements for head-worn display S/EVS applications
NASA Astrophysics Data System (ADS)
Bailey, Randall E.; Arthur, Jarvis J., III; Williams, Steven P.
2004-08-01
NASA's Aviation Safety Program, Synthetic Vision Systems Project is conducting research in advanced flight deck concepts, such as Synthetic/Enhanced Vision Systems (S/EVS), for commercial and business aircraft. An emerging thrust in this activity is the development of spatially-integrated, large field-of-regard information display systems. Head-worn or helmet-mounted display systems are being proposed as one method in which to meet this objective. System delays or latencies inherent to spatially-integrated, head-worn displays critically influence the display utility, usability, and acceptability. Research results from three different, yet similar technical areas - flight control, flight simulation, and virtual reality - are collectively assembled in this paper to create a global perspective of delay or latency effects in head-worn or helmet-mounted display systems. Consistent definitions and measurement techniques are proposed herein for universal application and latency requirements for Head-Worn Display S/EVS applications are drafted. Future research areas are defined.
Networking and AI systems: Requirements and benefits
NASA Technical Reports Server (NTRS)
1988-01-01
The price performance benefits of network systems is well documented. The ability to share expensive resources sold timesharing for mainframes, department clusters of minicomputers, and now local area networks of workstations and servers. In the process, other fundamental system requirements emerged. These have now been generalized with open system requirements for hardware, software, applications and tools. The ability to interconnect a variety of vendor products has led to a specification of interfaces that allow new techniques to extend existing systems for new and exciting applications. As an example of the message passing system, local area networks provide a testbed for many of the issues addressed by future concurrent architectures: synchronization, load balancing, fault tolerance and scalability. Gold Hill has been working with a number of vendors on distributed architectures that range from a network of workstations to a hypercube of microprocessors with distributed memory. Results from early applications are promising both for performance and scalability.
Protein–Hydrogel Interactions in Tissue Engineering: Mechanisms and Applications
Zustiak, Silviya P.; Wei, Yunqian
2013-01-01
Recent advances in our understanding of the sophistication of the cellular microenvironment and the dynamics of tissue remodeling during development, disease, and regeneration have increased our appreciation of the current challenges facing tissue engineering. As this appreciation advances, we are better equipped to approach problems in the biology and therapeutics of even more complex fields, such as stem cells and cancer. To aid in these studies, as well as the established areas of tissue engineering, including cardiovascular, musculoskeletal, and neural applications, biomaterials scientists have developed an extensive array of materials with specifically designed chemical, mechanical, and biological properties. Herein, we highlight an important topic within this area of biomaterials research, protein–hydrogel interactions. Due to inherent advantages of hydrated scaffolds for soft tissue engineering as well as specialized bioactivity of proteins and peptides, this field is well-posed to tackle major needs within emerging areas of tissue engineering. We provide an overview of the major modes of interactions between hydrogels and proteins (e.g., weak forces, covalent binding, affinity binding), examples of applications within growth factor delivery and three-dimensional scaffolds, and finally future directions within the area of hydrogel–protein interactions that will advance our ability to control the cell–biomaterial interface. PMID:23150926
Thermoelectric Power Generation System for Future Hybrid Vehicles Using Hot Exhaust Gas
NASA Astrophysics Data System (ADS)
Kim, Sun-Kook; Won, Byeong-Cheol; Rhi, Seok-Ho; Kim, Shi-Ho; Yoo, Jeong-Ho; Jang, Ju-Chan
2011-05-01
The present experimental and computational study investigates a new exhaust gas waste heat recovery system for hybrid vehicles, using a thermoelectric module (TEM) and heat pipes to produce electric power. It proposes a new thermoelectric generation (TEG) system, working with heat pipes to produce electricity from a limited hot surface area. The current TEG system is directly connected to the exhaust pipe, and the amount of electricity generated by the TEMs is directly proportional to their heated area. Current exhaust pipes fail to offer a sufficiently large hot surface area for the high-efficiency waste heat recovery required. To overcome this, a new TEG system has been designed to have an enlarged hot surface area by the addition of ten heat pipes, which act as highly efficient heat transfer devices and can transmit the heat to many TEMs. As designed, this new waste heat recovery system produces a maximum 350 W when the hot exhaust gas heats the evaporator surface of the heat pipe to 170°C; this promises great possibilities for application of this technology in future energy-efficient hybrid vehicles.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-01
... Member State of the European Union via any point or points in any Member State and via intermediate... rights made available to European Union carriers in the future. Barbara J. Hairston, Acting Program... any member of the European Common Aviation Area; (c) foreign charter cargo air transportation between...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-22
... any Member State of the European Union via any point or points in any Member State and via... points in any member of the European Common Aviation Area; (iii) other charters; and (iv) transportation authorized by any additional route rights made available to European Community carriers in the future. HLE...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-29
... Member State of the European Union via any point or points in any Member State and via intermediate... points in any member of the European Common Aviation Area (``ECAA''); (c) other charters pursuant to the... available to European Community carriers in the future. Renee V. Wright, Program Manager, Docket Operations...
Automatic speech recognition technology development at ITT Defense Communications Division
NASA Technical Reports Server (NTRS)
White, George M.
1977-01-01
An assessment of the applications of automatic speech recognition to defense communication systems is presented. Future research efforts include investigations into the following areas: (1) dynamic programming; (2) recognition of speech degraded by noise; (3) speaker independent recognition; (4) large vocabulary recognition; (5) word spotting and continuous speech recognition; and (6) isolated word recognition.
Future Trends in the Application and Impact of Psychopharmacology within the School Setting
ERIC Educational Resources Information Center
Noggle, Chad A.
2009-01-01
The number of children and adolescents using prescription medications is continually climbing. The preceding articles have offered discussions on a multitude of areas within this subject matter. This article will serve to summarize some of those points raised with particular emphasis on where we go from here in terms of training and professional…
Transformative Geography: Ethics and Action in Elementary and Secondary Geography Education
ERIC Educational Resources Information Center
Kirman, Joseph M.
2003-01-01
Geographic ethics are profoundly important if students are expected to be stewards of the earth and responsible citizens whose decisions about the environment will affect our planet's future. The proposed framework, founded in geography but applicable to other subject areas, guides students to moral decisions for the well-being of the planet and…
Integrated Flight and Propulsion Controls for Advanced Aircraft Configurations
NASA Technical Reports Server (NTRS)
Merrill, Walter; Garg, Sanjay
1995-01-01
The research vision of the NASA Lewis Research Center in the area of integrated flight and propulsion controls technologies is described. In particular the Integrated Method for Propulsion and Airframe Controls developed at the Lewis Research Center is described including its application to an advanced aircraft configuration. Additionally, future research directions in integrated controls are described.
Integrated Flight and Propulsion Controls for Advanced Aircraft Configurations
NASA Technical Reports Server (NTRS)
Merrill, Walter; Garg, Sanjay
1996-01-01
The research vision of the NASA Lewis Research Center in the area of integrated flight and propulsion controls technologies is described. In particular, the integrated method for propulsion and airframe controls developed at the Lewis Research Center is described including its application to an advanced aircraft configuration. Additionally, future research directions in integrated controls are described.
Evolving Technologies Require Educational Policy Change: Music Education for the 21st Century
ERIC Educational Resources Information Center
Crawford, Renee
2013-01-01
There is growing discussion among education and government authorities on rethinking education in the 21st century. This increasing area of interest has come in response to the evolution of technology and its effect on the future needs and requirements of society. Online applications and social networking capabilities have accelerated in…
NASA Glenn Research Center Electrochemistry Branch Battery and Fuel Cell Development Overview
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.
2011-01-01
This presentation covers an overview of NASA Glenn s history and heritage in the development of electrochemical systems for aerospace applications. Current developments related to batteries and fuel cells are addressed. Specific areas of focus are Li-ion batteries and Polymer Electrolyte Membrane Fuel cells systems and their development for future Exploration missions.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-10
... gopher tortoise. In advance of the progression of the mining operations into future phases, quantitative surveys will be conducted for the skinks and gopher tortoises to determine the occupancy and extent of occupancy within these suitable areas. The completion of these surveys will be subject to the guidelines at...
Stephen F. McCool; David N. Cole
1997-01-01
Experience with Limits of Acceptable Change (LAC) and related planning processes has accumulated since the mid-1980's. These processes were developoed as a means of dealing with recreation carrying capacity issues in wilderness and National Parks. These processes clearly also have application outside of protected areas and to issues other than recreation...
Feminism and Feminist Therapy: Lessons from the Past and Hopes for the Future
ERIC Educational Resources Information Center
Evans, Kathy M.; Kincade, Elizabeth A.; Marbley, Aretha F.; Seem, Susan R.
2005-01-01
Feminist therapy and counseling emerged nearly 40 years ago to better meet the needs of women experiencing psychological distress (Enns, 1997). Since its inception, feminist therapy has evolved in terms of theory, therapeutic techniques, and scope of application. In this article, the authors explore five areas relevant to counselors and counselor…
ERIC Educational Resources Information Center
Ibrahim, Zainuddin; Alias, Norlidah; Nordin, Abu Bakar
2016-01-01
The field of Information Communication Technology has offered a promising future for deaf students. Web design, animation, and multimedia application design are a branch of graphic design area, which aim to aid their learning visually. However, most of the technical terms cannot be interpreted in Malaysian sign language. Moreover, the development…
NASA Astrophysics Data System (ADS)
Kayastha, R.; Kayastha, R. B.
2017-12-01
Unavailability of hydro meteorological data in the Himalayan regions is challenging on understanding the flow regimes. Temperature index model is simple yet the powerful glacio-hydrological model to simulate the discharge in the glacierized basin. Modified Positive Degree Day (MPDD) Model Version 2.0 is a grid-ded based semi distributed model with baseflow module is a robust melt modelling tools to estimate the discharge. MPDD model uses temperature and precipitation as a forcing datasets to simulate the discharge and also to obtain the snowmelt, icemelt, rain and baseflow contribution on total discharge. In this study two glacierized, Marsyangdi and Langtang catchment were investigated for the future hydrological regimes. Marsyangdi encompasses an area of 4026.19 sq. km with 20% glaciated area, whereas Langtang catchment with area of 354.64 sq. km with 36% glaciated area is studied to examine for the future climatic scenarios. The model simulates discharge well for the observed period; (1992-1998) in Marsyangdi and from (2007-2013) in Langtang catchment. The Nash-Sutcliffe Efficiency (NSE) for the both catchment were above 0.75 with the volume difference less than - 8 %. The snow and ice melts contribution in Marsyangdi were 4.7% and 10.2% whereas in Langtang the contribution is 15.3% and 23.4%, respectively. Rain contribution ( 40%) is higher than the baseflow contribution in total discharge in both basins. The future river discharge is also predicted using the future climate data from the regional climate models (RCMs) of CORDEX South Asia experiments for the medium stabilization scenario RCP4.5 and very high radiative forcing scenario RCP8.5 after bias correction. The projected future discharge of both catchment shows slightly increase in both scenarios with increase of snow and ice melt contribution on discharge. The result generated from the model can be utilized to understand the future hydrological regimes of the glacierized catchment also the impact of climate change on the snow and ice contribution on discharge. The future discharge projection is also helpful for the water resource management and also for the strategic planners.
Industrial applications of nanoparticles.
Stark, W J; Stoessel, P R; Wohlleben, W; Hafner, A
2015-08-21
Research efforts in the past two decades have resulted in thousands of potential application areas for nanoparticles - which materials have become industrially relevant? Where are sustainable applications of nanoparticles replacing traditional processing and materials? This tutorial review starts with a brief analysis on what makes nanoparticles attractive to chemical product design. The article highlights established industrial applications of nanoparticles and then moves to rapidly emerging applications in the chemical industry and discusses future research directions. Contributions from large companies, academia and high-tech start-ups are used to elucidate where academic nanoparticle research has revolutionized industry practice. A nanomaterial-focused analysis discusses new trends, such as particles with an identity, and the influence of modern instrument advances in the development of novel industrial products.
Air cushion landing gear applications study
NASA Technical Reports Server (NTRS)
Earl, T. D.
1979-01-01
A series of air cushion landing gear (ACLG) applications was studied and potential benefits analyzed in order to identify the most attractive of these. The selected applications are new integrated designs (not retrofits) and employ a modified design approach with improved characteristics and performance. To aid the study, a survey of potential users was made. Applications were evaluated in the light of comments received. A technology scenario is developed, with discussion of problem areas, current technology level and future needs. Feasible development timetables are suggested. It is concluded that near-term development of small-size ACLG trunks, exploration of flight effects and braking are key items. The most attractive applications are amphibious with very large cargo aircraft and small general aviation having the greatest potential.
Application of geostatistics to coal-resource characterization and mine planning. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kauffman, P.W.; Walton, D.R.; Martuneac, L.
1981-12-01
Geostatistics is a proven method of ore reserve estimation in many non-coal mining areas but little has been published concerning its application to coal resources. This report presents the case for using geostatistics for coal mining applications and describes how a coal mining concern can best utilize geostatistical techniques for coal resource characterization and mine planning. An overview of the theory of geostatistics is also presented. Many of the applications discussed are documented in case studies that are a part of the report. The results of an exhaustive literature search are presented and recommendations are made for needed future researchmore » and demonstration projects.« less
Sensors Applications, Volume 4, Sensors for Automotive Applications
NASA Astrophysics Data System (ADS)
Marek, Jiri; Trah, Hans-Peter; Suzuki, Yasutoshi; Yokomori, Iwao
2003-07-01
An international team of experts from the leading companies in this field gives a detailed picture of existing as well as future applications. They discuss in detail current technologies, design and construction concepts, market considerations and commercial developments. Topics covered include vehicle safety, fuel consumption, air conditioning, emergency control, traffic control systems, and electronic guidance using radar and video. Meeting the growing need for comprehensive information on the capabilities, potentials and limitations of modern sensor systems, Sensors Applications is a book series covering the use of sophisticated technologies and materials for the creation of advanced sensors and their implementation in the key areas process monitoring, building control, health care, automobiles, aerospace, environmental technology and household appliances.
Augmented reality in dentistry: a current perspective.
Kwon, Ho-Beom; Park, Young-Seok; Han, Jung-Suk
2018-02-21
Augmentation reality technology offers virtual information in addition to that of the real environment and thus opens new possibilities in various fields. The medical applications of augmentation reality are generally concentrated on surgery types, including neurosurgery, laparoscopic surgery and plastic surgery. Augmentation reality technology is also widely used in medical education and training. In dentistry, oral and maxillofacial surgery is the primary area of use, where dental implant placement and orthognathic surgery are the most frequent applications. Recent technological advancements are enabling new applications of restorative dentistry, orthodontics and endodontics. This review briefly summarizes the history, definitions, features, and components of augmented reality technology and discusses its applications and future perspectives in dentistry.
Molecular Assembly of Polysaccharide-Based Microcapsules and Their Biomedical Applications.
Feng, Xiyun; Du, Cuiling; Li, Junbai
2016-08-01
Advanced multifunctional microcapsules have revealed great potential in biomedical applications owing to their tunable size, shape, surface properties, and stimuli responsiveness. Polysaccharides are one of the most acceptable biomaterials for biomedical applications because of their outstanding virtues such as biocompatibility, biodegradability, and low toxicity. Many efforts have been devoted to investigating novel molecular design and efficient building blocks for polysaccharide-based microcapsules. In this Personal Account, we first summarize the common features of polysaccharides and the main principles of the design and fabrication of polysaccharide-based microcapsules, and further discuss their applications in biomedical areas and perspectives for future research. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wei, Dongning; Li, Bingyu; Huang, Hongli; Luo, Lin; Zhang, Jiachao; Yang, Yuan; Guo, Jiajun; Tang, Lin; Zeng, Guangming; Zhou, Yaoyu
2018-04-01
Nowadays, agricultural contamination is becoming more and more serious due to the rapid growth of agricultural industry, which discharged antibiotics, pesticides or toxic metals into farmlands. A large number of researchers have applied biochar-based functional materials to the treatment of agricultural wastewater contamination. Meanwhile, biochar has also proved to be a very promising and effective technology in water purification field due to its various beneficial properties (e.g., cost effective, high specific surface area, and surface reactive groups). The focus of this review is to highlight the fabrication methods and application of biochar-based functional materials with the removal of different agricultural contaminants, and discuss the underlying mechanisms. However, the application of biochar-based functional materials is currently under its infancy, with the main hindrance is identified as the gap between laboratory scale and field application, immaturity of engineered biochar production technologies, and lack of quality standards. In order to fill these knowledge gaps, more efforts should be made to pay for the relevant research in future studies. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gooré Bi, Eustache; Gachon, Philippe; Vrac, Mathieu; Monette, Frédéric
2017-02-01
Changes in extreme precipitation should be one of the primary impacts of climate change (CC) in urban areas. To assess these impacts, rainfall data from climate models are commonly used. The main goal of this paper is to report on the state of knowledge and recent works on the study of CC impacts with a focus on urban areas, in order to produce an integrated review of various approaches to which future studies can then be compared or constructed. Model output statistics (MOS) methods are increasingly used in the literature to study the impacts of CC in urban settings. A review of previous works highlights the non-stationarity nature of future climate data, underscoring the need to revise urban drainage system design criteria. A comparison of these studies is made difficult, however, by the numerous sources of uncertainty arising from a plethora of assumptions, scenarios, and modeling options. All the methods used do, however, predict increased extreme precipitation in the future, suggesting potential risks of combined sewer overflow frequencies, flooding, and back-up in existing sewer systems in urban areas. Future studies must quantify more accurately the different sources of uncertainty by improving downscaling and correction methods. New research is necessary to improve the data validation process, an aspect that is seldom reported in the literature. Finally, the potential application of non-stationarity conditions into generalized extreme value (GEV) distribution should be assessed more closely, which will require close collaboration between engineers, hydrologists, statisticians, and climatologists, thus contributing to the ongoing reflection on this issue of social concern.
Noelle, G; Dudeck, J
1999-01-01
Two years, since the World Wide Web Consortium (W3C) has published the first specification of the eXtensible Markup Language (XML) there exist some concrete tools and applications to work with XML-based data. In particular, new generation Web browsers offer great opportunities to develop new kinds of medical, web-based applications. There are several data-exchange formats in medicine, which have been established in the last years: HL-7, DICOM, EDIFACT and, in the case of Germany, xDT. Whereas communication and information exchange becomes increasingly important, the development of appropriate and necessary interfaces causes problems, rising costs and effort. It has been also recognised that it is difficult to define a standardised interchange format, for one of the major future developments in medical telematics: the electronic patient record (EPR) and its availability on the Internet. Whereas XML, especially in an industrial environment, is celebrated as a generic standard and a solution for all problems concerning e-commerce, in a medical context there are only few applications developed. Nevertheless, the medical environment is an appropriate area for building XML applications: as the information and communication management becomes increasingly important in medical businesses, the role of the Internet changes quickly from an information to a communication medium. The first XML based applications in healthcare show us the advantage for a future engagement of the healthcare industry in XML: such applications are open, easy to extend and cost-effective. Additionally, XML is much more than a simple new data interchange format: many proposals for data query (XQL), data presentation (XSL) and other extensions have been proposed to the W3C and partly realised in medical applications.
Quantum technology past, present, future: quantum energetics (Conference Presentation)
NASA Astrophysics Data System (ADS)
Choi, Sang H.
2017-04-01
Since the development of quantum physics in the early part of the 1900s, this field of study has made remarkable contributions to our civilization. Some of these advances include lasers, light-emitting diodes (LED), sensors, spectroscopy, quantum dots, quantum gravity and quantum entanglements. In 1998, the NASA Langley Research Center established a quantum technology committee to monitor the progress in this area and initiated research to determine the potential of quantum technology for future NASA missions. The areas of interest in quantum technology at NASA included fundamental quantum-optics materials associated with quantum dots and quantum wells, device-oriented photonic crystals, smart optics, quantum conductors, quantum information and computing, teleportation theorem, and quantum energetics. A brief review of the work performed, the progress made in advancing these technologies, and the potential NASA applications of quantum technology will be presented.
Chiu, Ming-Chih; Hunt, Lisa; Resh, Vincent H
2017-03-01
Limited studies have addressed how future climate-change scenarios may alter the effects of pesticides on biotic assemblages or the effects of exposures to repeated pulses of pesticide mixtures. We used reported pesticide-use data as input to a hydrological fate and transport model (Soil and Water Assessment Tool) under multiple climate-change scenarios to simulate spatiotemporal dynamics of pesticides mixtures in streams on a daily time-step in the Sacramento River watershed of California. We predicted that there will be increased pesticide application with warming across the watershed, especially in upstream areas. Using a statistical model describing the relationship between macroinvertebrate communities and pesticide dynamics, we found that compared to the baseline period of 1970-1999: (1) most climate-change scenarios predicted increased rainfall and warming across the watershed during 2070-2099; and (2) increasing pesticide contamination and increased impact on macroinvertebrates will likely occur in most areas of the watershed by 2070-2099; and (3) lower increases in effects of pesticides on macroinvertebrates were predicted for the downstream areas with intensive agriculture compared to some upstream areas with less-intensive agriculture. Future efforts on practical adaptation and mitigation strategies can be improved by awareness of altered threats of pesticide mixtures under future climate-change conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Pu, Zhao-Xia; Tao, Wei-Kuo
2004-01-01
An effort has been made at NASA/GSFC to use the Goddard Earth Observing system (GEOS) global analysis in generating the initial and boundary conditions for MM5/WRF simulation. This linkage between GEOS global analysis and MM5/WRF models has made possible for a few useful applications. As one of the sample studies, a series of MM5 simulations were conducted to test the sensitivity of initial and boundary conditions to MM5 simulated precipitation over the eastern; USA. Global analyses horn different operational centers (e.g., NCEP, ECMWF, I U ASA/GSFCj were used to provide first guess field and boundary conditions for MM5. Numerical simulations were performed for one- week period over the eastern coast areas of USA. the distribution and quantities of MM5 simulated precipitation were compared. Results will be presented in the workshop. In addition,other applications from recent and future studies will also be addressed.
The future of automation for high-volume wafer fabrication and ASIC manufacturing
NASA Astrophysics Data System (ADS)
Hughes, Randall A.; Shott, John D.
1986-12-01
A framework is given to analyze the future trends in semiconductor manufacturing automation systems, focusing specifically on the needs of ASIC (application-specific integrated circuit) or custom integrated circuit manufacturing. Advances in technologies such as gate arrays and standard cells now make it significantly easier to obtain system cost and performance advantages by integrating nonstandard functions on silicon. ASICs are attractive to U.S. manufacturers because they place a premium on sophisticated design tools, familiarity with customer needs and applications, and fast turn-around fabrication. These are areas where U.S. manufacturers believe they have an advantage and, consequently, will not suffer from the severe price/manufacturing competition encountered in conventional high-volume semiconductor products. Previously, automation was often considered viable only for high-volume manufacturing, but automation becomes a necessity in the new ASIC environment.
An overview of computer-based natural language processing
NASA Technical Reports Server (NTRS)
Gevarter, W. B.
1983-01-01
Computer based Natural Language Processing (NLP) is the key to enabling humans and their computer based creations to interact with machines in natural language (like English, Japanese, German, etc., in contrast to formal computer languages). The doors that such an achievement can open have made this a major research area in Artificial Intelligence and Computational Linguistics. Commercial natural language interfaces to computers have recently entered the market and future looks bright for other applications as well. This report reviews the basic approaches to such systems, the techniques utilized, applications, the state of the art of the technology, issues and research requirements, the major participants and finally, future trends and expectations. It is anticipated that this report will prove useful to engineering and research managers, potential users, and others who will be affected by this field as it unfolds.
The construct of resilience: Implications for interventions and social policies
LUTHAR, SUNIYA S.; CICCHETTI, DANTE
2007-01-01
The focus of this article is on the interface between research on resilience—a construct representing positive adaptation despite adversity —and the applications of this work to the development of interventions and social policies. Salient defining features of research on resilience are delineated, as are various advantages, limitations, and precautions linked with the application of the resilience framework to developing interventions. For future applied efforts within this tradition, a series of guiding principles are presented along with exemplars of existing programs based on the resilience paradigm. The article concludes with discussions of directions for future work in this area, with emphases on an enhanced interface between science and practice, and a broadened scope of resilience-based interventions in terms of the types of populations, and the types of adjustment domains, that are encompassed. PMID:11202047
NASA Technical Reports Server (NTRS)
Bekey, I.; Mayer, H. L.; Wolfe, M. G.
1976-01-01
The following areas were discussed in relation to a study of the commonality of space vehicle applications to future national needs: (1) index of initiatives (civilian observation, communication, support), brief illustrated description of each initiative, time periods (from 1980 to 2000+) for implementation of these initiatives; (2) data bank of functional system options, presented in the form of data sheets, one for each of the major functions, with the system option for near-term, midterm, and far-term space projects applicable to each subcategory of functions to be fulfilled; (3) table relating initiatives and desired goals (public service and humanistic, materialistic, scientific and intellectual); and (4) data on size, weight and cost estimations.
Central Facilities Area Sewage Lagoon Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Mark R.
2013-12-01
The Central Facilities Area (CFA), located in Butte County, Idaho, at the Idaho National Laboratory has an existing wastewater system to collect and treat sanitary wastewater and non-contact cooling water from the facility. The existing treatment facility consists of three cells: Cell #1 has a surface area of 1.7 acres, Cell #2 has a surface area of 10.3 acres, and Cell #3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5-acre land application site that uses a center-pivot irrigation sprinkler system. As flows at CFA have decreasedmore » in recent years, the amount of wastewater discharged to the land application site has decreased from 13.64 million gallons in 2004 to no discharge in 2012 and 2013. In addition to the decreasing need for land application, approximately 7.7 MG of supplemental water was added to the system in 2013 to maintain a water level and prevent the clay soil liners in the cells from drying out and “cracking.” The Idaho National Laboratory is concerned that the sewage lagoons and land application site may be oversized for current and future flows. A further concern is the sustainability of the large volumes of supplemental water that are added to the system according to current operational practices. Therefore, this study was initiated to evaluate the system capacity, operational practices, and potential improvement alternatives, as warranted.« less
Solution techniques for transient stability-constrained optimal power flow – Part II
Geng, Guangchao; Abhyankar, Shrirang; Wang, Xiaoyu; ...
2017-06-28
Transient stability-constrained optimal power flow is an important emerging problem with power systems pushed to the limits for economic benefits, dense and larger interconnected systems, and reduced inertia due to expected proliferation of renewable energy resources. In this study, two more approaches: single machine equivalent and computational intelligence are presented. Also discussed are various application areas, and future directions in this research area. In conclusion, a comprehensive resource for the available literature, publicly available test systems, and relevant numerical libraries is also provided.
Solution techniques for transient stability-constrained optimal power flow – Part II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Guangchao; Abhyankar, Shrirang; Wang, Xiaoyu
Transient stability-constrained optimal power flow is an important emerging problem with power systems pushed to the limits for economic benefits, dense and larger interconnected systems, and reduced inertia due to expected proliferation of renewable energy resources. In this study, two more approaches: single machine equivalent and computational intelligence are presented. Also discussed are various application areas, and future directions in this research area. In conclusion, a comprehensive resource for the available literature, publicly available test systems, and relevant numerical libraries is also provided.
Applied Information Systems Research Program (AISRP). Workshop 2: Meeting Proceedings
NASA Technical Reports Server (NTRS)
1992-01-01
The Earth and space science participants were able to see where the current research can be applied in their disciplines and computer science participants could see potential areas for future application of computer and information systems research. The Earth and Space Science research proposals for the High Performance Computing and Communications (HPCC) program were under evaluation. Therefore, this effort was not discussed at the AISRP Workshop. OSSA's other high priority area in computer science is scientific visualization, with the entire second day of the workshop devoted to it.
Recent drug approvals from the US FDA and EMEA: what the future holds.
Pevarello, Paolo
2009-04-01
The decreased productivity of the pharmaceutical industry in terms of new medical entities approved by the US FDA and the European Medicines Agency (EMEA) on a yearly basis has long been debated. This review will analyze overall new drug applications (NDAs) approved by both the FDA and EMEA in 2007, with the aim of finding trends (also looking at the past) that can be used to predict what the future may be. After a general introduction to the regulatory terminology, NDA approvals in 2007 are divided into categories (new applications of old medicines, metabolites, enantiomers and prodrugs, biological products, natural products and small organic molecule new molecular entities) and discussed. General aspects of the NDA approvals, such as historical trends, the length of the drug-discovery process, geography, differences among therapeutic areas, and the relative role of biotech and pharma industries are also outlined. From this analysis, a perspective is gained on some aspects that will probably influence future drug approvals. The conclusion is that 2007 may represent an inflexion point, in terms of quality if not quantity of new approvals, and that the future may be brighter than previously forecast.
Measuring emotion socialization in schools.
Horner, Christy G; Wallace, Tanner L
2013-10-01
Understanding how school personnel can best support students' development of communication skills around feelings is critical to long-term health outcomes. The measurement of emotion socialization in schools facilitates future research in this area; we review existing measures of emotion socialization to assess their applicability to school-based health studies. A content analysis of four emotion socialization measures was conducted. Inclusion criteria included: high frequency of use in prior research, established documentation of validity and reliability, and sufficient description of measurement procedures. Four dimensions emerged as particularly salient to a measure's future relevance and applicability to school-based health studies: (1) methods of measurement; (2) mode and agent of socialization; (3) type of emotion; and (4) structure versus function of socializing behavior. Future measurement strategies should address (1) the structures of emotion socializing processes; (2) diverse socializing agents such as teachers, peers, and administrators; (3) the intended functions of such processes; (4) student perceptions of and responses to such processes; and (5) the complex interactions of these factors across contexts. Strategies attending to these components will permit future studies of school-based emotion socializing processes to determine how they enhance health and reduce health risks. © 2013, American School Health Association.
Navier-Stokes computations useful in aircraft design
NASA Technical Reports Server (NTRS)
Holst, Terry L.
1990-01-01
Large scale Navier-Stokes computations about aircraft components as well as reasonably complete aircraft configurations are presented and discussed. Speed and memory requirements are described for various general problem classes, which in some cases are already being used in the industrial design environment. Recent computed results, with experimental comparisons when available, are included to highlight the presentation. Finally, prospects for the future are described and recommendations for areas of concentrated research are indicated. The future of Navier-Stokes computations is seen to be rapidly expanding across a broad front of applications, which includes the entire subsonic-to-hypersonic speed regime.
Imaging detectors and electronics—a view of the future
NASA Astrophysics Data System (ADS)
Spieler, Helmuth
2004-09-01
Imaging sensors and readout electronics have made tremendous strides in the past two decades. The application of modern semiconductor fabrication techniques and the introduction of customized monolithic integrated circuits have made large-scale imaging systems routine in high-energy physics. This technology is now finding its way into other areas, such as space missions, synchrotron light sources, and medical imaging. I review current developments and discuss the promise and limits of new technologies. Several detector systems are described as examples of future trends. The discussion emphasizes semiconductor detector systems, but I also include recent developments for large-scale superconducting detector arrays.
From POEM to POET: Applications and perspectives for submucosal tunnel endoscopy.
Chiu, Philip W Y; Inoue, Haruhiro; Rösch, Thomas
2016-12-01
Recent advances in submucosal endoscopy have unlocked a new horizon for potential development in diagnostic and therapeutic endoscopy. Increasing evidence has demonstrated that peroral endoscopic myotomy (POEM) is not only clinically feasible and safe, but also has excellent results in symptomatic relief of achalasia. The success of submucosal endoscopy in performance of tumor resection has confirmed the potential of this new area in diagnostic and therapeutic endoscopy. This article reviews the current applications and evidence, from POEM to peroral endoscopic tunnel resection (POET), while exploring the possible future clinical applications in this field. © Georg Thieme Verlag KG Stuttgart · New York.
Review on the progress in synthesis and application of magnetic carbon nanocomposites.
Zhu, Maiyong; Diao, Guowang
2011-07-01
This review focuses on the synthesis and application of nanostructured composites containing magnetic nanostructures and carbon-based materials. Great progress in fabrication of magnetic carbon nanocomposites has been made by developing methods including filling process, template-based synthesis, chemical vapor deposition, hydrothermal/solvothermal method, pyrolysis procedure, sol-gel process, detonation induced reaction, self-assembly method, etc. The applications of magnetic carbon nanocomposites expanded to a wide range of fields such as environmental treatment, microwave absorption, magnetic recording media, electrochemical sensor, catalysis, separation/recognization of biomolecules and drug delivery are discussed. Finally, some future trends and perspectives in this research area are outlined.
Review on the progress in synthesis and application of magnetic carbon nanocomposites
NASA Astrophysics Data System (ADS)
Zhu, Maiyong; Diao, Guowang
2011-07-01
This review focuses on the synthesis and application of nanostructured composites containing magnetic nanostructures and carbon-based materials. Great progress in fabrication of magnetic carbon nanocomposites has been made by developing methods including filling process, template-based synthesis, chemical vapor deposition, hydrothermal/solvothermal method, pyrolysis procedure, sol-gel process, detonation induced reaction, self-assembly method, etc. The applications of magnetic carbon nanocomposites expanded to a wide range of fields such as environmental treatment, microwave absorption, magnetic recording media, electrochemical sensor, catalysis, separation/recognization of biomolecules and drug delivery are discussed. Finally, some future trends and perspectives in this research area are outlined.
Recent advances in terahertz technology for biomedical applications.
Sun, Qiushuo; He, Yuezhi; Liu, Kai; Fan, Shuting; Parrott, Edward P J; Pickwell-MacPherson, Emma
2017-06-01
Terahertz instrumentation has improved significantly in recent years such that THz imaging systems have become more affordable and easier to use. THz systems can now be operated by non-THz experts greatly facilitating research into many potential applications. Due to the non-ionising nature of THz light and its high sensitivity to soft tissues, there is an increasing interest in biomedical applications including both in vivo and ex vivo studies. Additionally, research continues into understanding the origin of contrast and how to interpret terahertz biomedical images. This short review highlights some of the recent work in these areas and suggests some future research directions.
Conceptual study of superconducting urban area power systems
NASA Astrophysics Data System (ADS)
Noe, Mathias; Bach, Robert; Prusseit, Werner; Willén, Dag; Gold-acker, Wilfried; Poelchau, Juri; Linke, Christian
2010-06-01
Efficient transmission, distribution and usage of electricity are fundamental requirements for providing citizens, societies and economies with essential energy resources. It will be a major future challenge to integrate more sustainable generation resources, to meet growing electricity demand and to renew electricity networks. Research and development on superconducting equipment and components have an important role to play in addressing these challenges. Up to now, most studies on superconducting applications in power systems have been concentrated on the application of specific devices like for example cables and current limiters. In contrast to this, the main focus of our study is to show the consequence of a large scale integration of superconducting power equipment in distribution level urban power systems. Specific objectives are to summarize the state-of-the-art of superconducting power equipment including cooling systems and to compare the superconducting power system with respect to energy and economic efficiency with conventional solutions. Several scenarios were considered starting from the replacement of an existing distribution level sub-grid up to a full superconducting urban area distribution level power system. One major result is that a full superconducting urban area distribution level power system could be cost competitive with existing solutions in the future. In addition to that, superconducting power systems offer higher energy efficiency as well as a number of technical advantages like lower voltage drops and improved stability.
Roadmap for In-Space Propulsion Technology
NASA Technical Reports Server (NTRS)
Meyer, Michael; Johnson, Les; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold
2012-01-01
NASA has created a roadmap for the development of advanced in-space propulsion technologies for the NASA Office of the Chief Technologist (OCT). This roadmap was drafted by a team of subject matter experts from within the Agency and then independently evaluated, integrated and prioritized by a National Research Council (NRC) panel. The roadmap describes a portfolio of in-space propulsion technologies that could meet future space science and exploration needs, and shows their traceability to potential future missions. Mission applications range from small satellites and robotic deep space exploration to space stations and human missions to Mars. Development of technologies within the area of in-space propulsion will result in technical solutions with improvements in thrust, specific impulse (Isp), power, specific mass (or specific power), volume, system mass, system complexity, operational complexity, commonality with other spacecraft systems, manufacturability, durability, and of course, cost. These types of improvements will yield decreased transit times, increased payload mass, safer spacecraft, and decreased costs. In some instances, development of technologies within this area will result in mission-enabling breakthroughs that will revolutionize space exploration. There is no single propulsion technology that will benefit all missions or mission types. The requirements for in-space propulsion vary widely according to their intended application. This paper provides an updated summary of the In-Space Propulsion Systems technology area roadmap incorporating the recommendations of the NRC.
Parallel programming of industrial applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heroux, M; Koniges, A; Simon, H
1998-07-21
In the introductory material, we overview the typical MPP environment for real application computing and the special tools available such as parallel debuggers and performance analyzers. Next, we draw from a series of real applications codes and discuss the specific challenges and problems that are encountered in parallelizing these individual applications. The application areas drawn from include biomedical sciences, materials processing and design, plasma and fluid dynamics, and others. We show how it was possible to get a particular application to run efficiently and what steps were necessary. Finally we end with a summary of the lessons learned from thesemore » applications and predictions for the future of industrial parallel computing. This tutorial is based on material from a forthcoming book entitled: "Industrial Strength Parallel Computing" to be published by Morgan Kaufmann Publishers (ISBN l-55860-54).« less
NASA Astrophysics Data System (ADS)
Sabeur, Z. A.; Denis, H.; Nativi, S.
2012-04-01
The phenomenal advances in information and communication technologies over the last decade have led to offering unprecedented connectivity with real potentials for "Smart living" between large segments of human populations around the world. In particular, Voluntary Groups(VGs) and individuals with interest in monitoring the state of their local environment can be connected through the internet and collaboratively generate important localised environmental observations. These could be considered as the Community Observatories(CO) of the Future Internet(FI). However, a set of FI enablers are needed to be deployed for these communities to become effective COs in the Future Internet. For example, these communities will require access to services for the intelligent processing of heterogeneous data and capture of advancend situation awarness about the environment. This important enablement will really unlock the communities true potential for participating in localised monitoring of the environment in addition to their contribution in the creation of business entreprise. Among the eight Usage Areas(UA) projects of the FP7 FI-PPP programme, the ENVIROFI Integrated Project focuses on the specifications of the Future Internet enablers of the Environment UA. The specifications are developed under multiple environmental domains in context of users needs for the development of mash-up applications in the Future Internet. It will enable users access to real-time, on-demand fused information with advanced situation awareness about the environment at localised scales. The mash-up applications shall get access to rich spatio-temporal information from structured fusion services which aggregate COs information with existing environmental monitoring stations data, established by research organisations and private entreprise. These applications are being developed in ENVIROFI for the atmospheric, marine and biodiversity domains, together with a potential to be extended to other domains and scenarios concerning smart and safe living in the Future Internet.
Coad, Lauren; Leverington, Fiona; Knights, Kathryn; Geldmann, Jonas; Eassom, April; Kapos, Valerie; Kingston, Naomi; de Lima, Marcelo; Zamora, Camilo; Cuardros, Ivon; Nolte, Christoph; Burgess, Neil D.; Hockings, Marc
2015-01-01
Protected areas (PAs) are at the forefront of conservation efforts, and yet despite considerable progress towards the global target of having 17% of the world's land area within protected areas by 2020, biodiversity continues to decline. The discrepancy between increasing PA coverage and negative biodiversity trends has resulted in renewed efforts to enhance PA effectiveness. The global conservation community has conducted thousands of assessments of protected area management effectiveness (PAME), and interest in the use of these data to help measure the conservation impact of PA management interventions is high. Here, we summarize the status of PAME assessment, review the published evidence for a link between PAME assessment results and the conservation impacts of PAs, and discuss the limitations and future use of PAME data in measuring the impact of PA management interventions on conservation outcomes. We conclude that PAME data, while designed as a tool for local adaptive management, may also help to provide insights into the impact of PA management interventions from the local-to-global scale. However, the subjective and ordinal characteristics of the data present significant limitations for their application in rigorous scientific impact evaluations, a problem that should be recognized and mitigated where possible. PMID:26460133
Study of future world markets for agricultural aircraft
NASA Technical Reports Server (NTRS)
Gobetz, F. W.; Assarabowski, R. J.
1979-01-01
The future world market for US-manufactured agricultural aircraft was studied and the technology needs for foreign markets were identified. Special emphasis was placed on the developing country market, but the developed countries and the communist group were also included in the forecasts. Aircraft needs were projected to the year 2000 by a method which accounted for field size, crop production, treated area, productivity, and attrition of the fleet. A special scenario involving a significant shift toward aerial fertilization was also considered. An operations analysis was conducted to compare the relative application costs of various existing and hypothetical future aircraft. A case study was made of Colombia as an example of a developing country in which aviation is emerging as an important industry.
Nanotechnology: Future of Oncotherapy.
Gharpure, Kshipra M; Wu, Sherry Y; Li, Chun; Lopez-Berestein, Gabriel; Sood, Anil K
2015-07-15
Recent advances in nanotechnology have established its importance in several areas including medicine. The myriad of applications in oncology range from detection and diagnosis to drug delivery and treatment. Although nanotechnology has attracted a lot of attention, the practical application of nanotechnology to clinical cancer care is still in its infancy. This review summarizes the role that nanotechnology has played in improving cancer therapy, its potential for affecting all aspects of cancer care, and the challenges that must be overcome to realize its full promise. ©2015 American Association for Cancer Research.
The application of space program fire retardant technology to housing
NASA Technical Reports Server (NTRS)
Riccitiello, S. R.; Heising, K. W.
1973-01-01
A review of the NASA fire research and developed fire retardant materials is presented with the objective to analyze and evaluate the concepts and materials to determine the practical applicability to the housing industry. The report presents the NASA materials, their performance in a fire environment and areas where further evaluation is required. The review establishes where advancements in the state of the art have been achieved and points out reasons why these advancements can not be directly applied to the housing industry in the near future.
Two-Phase Flow Research on the ISS for Thermal Control Applications
NASA Technical Reports Server (NTRS)
Motil, Brian J.
2013-01-01
With the era of full utilization of the ISS now upon us, this presentation will discuss some of the highest-priority areas for two-phase flow systems with thermal control applications. These priorities are guided by recommendations of a 2011 NRC Decadal Survey report, Recapturing a Future for Space Exploration, Life and Physical Sciences for a New Era as well as an internal NASA exercise in response to the NRC report conducted in early 2012. Many of these proposals are already in various stages of development, while others are still conceptual.
Advanced wiring technique and hardware application: Airplane and space vehicle
NASA Technical Reports Server (NTRS)
Ernst, H. L.; Eichman, C. D.
1972-01-01
An advanced wiring system is described which achieves the safety/reliability required for present and future airplane and space vehicle applications. Also, present wiring installation techniques and hardware are analyzed to establish existing problem areas. An advanced wiring system employing matrix interconnecting unit, plug to plug trunk bundles (FCC or ribbon cable) is outlined, and an installation study presented. A planned program to develop, lab test and flight test key features of these techniques and hardware as a part of the SST technology follow-on activities is discussed.
The atmospheric boundary layer — advances in knowledge and application
NASA Astrophysics Data System (ADS)
Garratt, J. R.; Hess, G. D.; Physick, W. L.; Bougeault, P.
1996-02-01
We summarise major activities and advances in boundary-layer knowledge in the 25 years since 1970, with emphasis on the application of this knowledge to surface and boundary-layer parametrisation schemes in numerical models of the atmosphere. Progress in three areas is discussed: (i) the mesoscale modelling of selected phenomena; (ii) numerical weather prediction; and (iii) climate simulations. Future trends are identified, including the incorporation into models of advanced cloud schemes and interactive canopy schemes, and the nesting of high resolution boundary-layer schemes in global climate models.
NASA Technical Reports Server (NTRS)
Mercanti, E. P.
1974-01-01
In less than two years of operation ERTS-1 is shown to have successfully completed its experimental mission and to be delivering an ever-increasing roster of benefits. The widening ERTS applications reviewed include air quality and weather modification, aid to oil exploration, ore-deposit exploration, short-lived event observation, flood area assessment and flood-plain mapping, land and water quality assessment, soil association mapping, crop production measurements, wildlife resources, drought and desertification studies, ground-water exploration, watershed surveys, snow and ice monitoring, surface water mapping, and iceberg surveys. Future projects and developments are also briefly reviewed.
Research keeps lead and zinc viable in high-tech markets
NASA Astrophysics Data System (ADS)
Cole, Jerome F.
1989-08-01
Lead and zinc have long enjoyed widespread use in a variety of applications. To insure growing markets for the future, however, new applications for these durable metals must be developed. Currently, projects are underway to determine the capabilities of lead for such high-technology uses as earthquake damping and nuclear waste containment. Zinc's capabilities are being developed further, too, particularly in the areas of direct injection die casting, composites and the improvement of coating properties. Other ongoing research initiatives are attempting to better determine the health and environmental influences of these metals.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-17
... from any point or points behind any Member State of the European Union, via any point or points in any... route rights made available to European Union carriers in the future, to the extent permitted by the... the United States and any point or points in any member of the European Common Aviation Area; (iii...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-08
... from any point or points behind any Member State of the European Union, via any point or points in any... route rights made available to European Union carriers in the future, to the extent permitted by FAI's... the United States and any point or points in any member of the European Common Aviation Area; (iii...
Commerce Lab: Mission analysis payload integration study. Appendix A: Data bases
NASA Technical Reports Server (NTRS)
1985-01-01
The development of Commerce Lab is detailed. Its objectives are to support the space program in these areas: (1) the expedition of space commercialization; (2) the advancement of microgravity science and applications; and (3) as a precursor to future missions in the space program. Ways and means of involving private industry and academia in this commercialization is outlined.
The head injured adolescent: a case report and review of the issues.
Reiter, S; Kutcher, S P
1990-11-01
Closed head injuries in adolescents are a common problem with potentially disastrous consequences to multiple areas of functioning. Through a case presentation and literature review, this paper considers treatment issues and research applications in an adolescent population with closed head injuries. Suggestions for understanding the symptom constellations are made and directions for future research and service delivery are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akers, Chris; Bousso, Raphael; Halpern, Illan F.
We prove that the boundary of the future of a surface K consists precisely of the points p that lie on a null geodesic orthogonal to K such that between K and p there are no points conjugate to K nor intersections with another such geodesic. Our theorem has applications to holographic screens and their associated light sheets and in particular enters the proof that holographic screens satisfy an area law.
Laser-produced plasmas in medicine
NASA Astrophysics Data System (ADS)
Gitomer, S. J.; Jones, R. D.
The laser has found numerous applications in medicine, beginning with uses in ophthalmology in the 1960's. Today, lasers are used in tissue cutting, blood coagulation, photo-dynamic cancer therapy, arterial plaque removal, dental drilling, etc. Those areas of laser medicine are examined in which plasmas (ionized gases) are produced. In fact, the presence of a plasma is essential for the application at hand to succeed. Examples are examined for the plasmas produced in ophthalmology (e.g., lens membrane destruction following cataract surgery), in urology and gastroenterology (e.g., kidney and gall stone ablation and fragmentation) and in cardiology and vascular surgery (e.g., laser ablation and removal of fibro-fatty and calcified arterial plaque). Experimental data are presented along with some results from computer simulations of the phenomena. Comments on future directions in these areas are included.
Heading in the right direction: thermodynamics-based network analysis and pathway engineering.
Ataman, Meric; Hatzimanikatis, Vassily
2015-12-01
Thermodynamics-based network analysis through the introduction of thermodynamic constraints in metabolic models allows a deeper analysis of metabolism and guides pathway engineering. The number and the areas of applications of thermodynamics-based network analysis methods have been increasing in the last ten years. We review recent applications of these methods and we identify the areas that such analysis can contribute significantly, and the needs for future developments. We find that organisms with multiple compartments and extremophiles present challenges for modeling and thermodynamics-based flux analysis. The evolution of current and new methods must also address the issues of the multiple alternatives in flux directionalities and the uncertainties and partial information from analytical methods. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Next-generation materials for future synchrotron and free-electron laser sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assoufid, Lahsen; Graafsma, Heinz
We show that the development of new materials and improvements of existing ones are at the root of the spectacular recent developments of new technologies for synchrotron storage rings and free-electron laser sources. This holds true for all relevant application areas, from electron guns to undulators, x-ray optics, and detectors. As demand grows for more powerful and efficient light sources, efficient optics, and high-speed detectors, an overview of ongoing materials research for these applications is timely. In this article, we focus on the most exciting and demanding areas of materials research and development for synchrotron radiation optics and detectors. Materialsmore » issues of components for synchrotron and free-electron laser accelerators are briefly discussed. Lastly, the articles in this issue expand on these topics.« less
Next-generation materials for future synchrotron and free-electron laser sources
Assoufid, Lahsen; Graafsma, Heinz
2017-06-09
We show that the development of new materials and improvements of existing ones are at the root of the spectacular recent developments of new technologies for synchrotron storage rings and free-electron laser sources. This holds true for all relevant application areas, from electron guns to undulators, x-ray optics, and detectors. As demand grows for more powerful and efficient light sources, efficient optics, and high-speed detectors, an overview of ongoing materials research for these applications is timely. In this article, we focus on the most exciting and demanding areas of materials research and development for synchrotron radiation optics and detectors. Materialsmore » issues of components for synchrotron and free-electron laser accelerators are briefly discussed. Lastly, the articles in this issue expand on these topics.« less
Space Electrochemical Research and Technology. Abstracts
NASA Technical Reports Server (NTRS)
1995-01-01
This document contains abstracts of the proceedings of NASA's fifth Space Electrochemical Research and Technology (SERT) Conference, held at the NASA Lewis Research Center on May 1-3, 1995. The objective of the conference was to assess the present status and general thrust of research and development in those areas of electrochemical technology required to enable NASA missions into the next century. The conference provided a forum for the exchange of ideas and opinions of those actively involved in the field, in order to define new opportunities for the application of electrochemical processes in future NASA missions. Papers were presented in three technical areas: (1) the electrochemical interface, (2) the next generation in aerospace batteries and fuel cells, and (3) electrochemistry for non-energy storage applications. This document contains the abstracts of the papers presented.
Survey on the use of smart and adaptive engineering systems in medicine.
Abbod, M F; Linkens, D A; Mahfouf, M; Dounias, G
2002-11-01
In this paper, the current published knowledge about smart and adaptive engineering systems in medicine is reviewed. The achievements of frontier research in this particular field within medical engineering are described. A multi-disciplinary approach to the applications of adaptive systems is observed from the literature surveyed. The three modalities of diagnosis, imaging and therapy are considered to be an appropriate classification method for the analysis of smart systems being applied to specified medical sub-disciplines. It is expected that future research in biomedicine should identify subject areas where more advanced intelligent systems could be applied than is currently evident. The literature provides evidence of hybridisation of different types of adaptive and smart systems with applications in different areas of medical specifications. Copyright 2002 Elsevier Science B.V.
Vaz, Belén; Salgueiriño, Verónica; Pérez-Lorenzo, Moisés; Correa-Duarte, Miguel A
2015-08-18
Hollow inorganic nanostructures have attracted much interest in the last few years due to their many applications in different areas of science and technology. In this Feature Article, we overview part of our current work concerning the collective use of plasmonic and magnetic nanoparticles located in voided nanostructures and explore the more specific operational issues that should be taken into account in the design of inorganic nanocapsules. Along these lines, we focus our attention on the applications of silica-based submicrometer capsules aiming to stress the importance of creating nanocavities in order to further exploit the great potential of these functional nanomaterials. Additionally, we will examine some of the recent research on this topic and try to establish a perspective for future developments in this area.
Tuneable porous carbonaceous materials from renewable resources.
White, Robin J; Budarin, Vitaly; Luque, Rafael; Clark, James H; Macquarrie, Duncan J
2009-12-01
Porous carbon materials are ubiquitous with a wide range of technologically important applications, including separation science, heterogeneous catalyst supports, water purification filters, stationary phase materials, as well as the developing future areas of energy generation and storage applications. Hard template routes to ordered mesoporous carbons are well established, but whilst offering different mesoscopic textural phases, the surface of the material is difficult to chemically post-modify and processing is energy, resource and step intensive. The production of carbon materials from biomass (i.e. sugars or polysaccharides) is a relatively new but rapidly expanding research area. In this tutorial review, we compare and contrast recently reported routes to the preparation of porous carbon materials derived from renewable resources, with examples of our previously reported mesoporous polysaccharide-derived "Starbon" carbonaceous material technology.
Status of Sample Return Propulsion Technology Development Under NASA's ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Glaab, Louis J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Peterson, Todd T.
2012-01-01
The In-Space Propulsion Technology (ISPT) program was tasked in 2009 to start development of propulsion technologies that would enable future sample return missions. ISPT s sample return technology development areas are diverse. Sample Return Propulsion (SRP) addresses electric propulsion for sample return and low cost Discovery-class missions, propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination, and low technology readiness level (TRL) advanced propulsion technologies. The SRP effort continues work on HIVHAC thruster development to transition into developing a Hall-effect propulsion system for sample return (ERV and transfer stages) and low-cost missions. Previous work on the lightweight propellant-tanks continues for sample return with direct applicability to a Mars Sample Return (MSR) mission with general applicability to all future planetary spacecraft. The Earth Entry Vehicle (EEV) work focuses on building a fundamental base of multi-mission technologies for Earth Entry Vehicles (MMEEV). The main focus of the Planetary Ascent Vehicles (PAV) area is technology development for the Mars Ascent Vehicle (MAV), which builds upon and leverages the past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies
The NASA In-Space Propulsion Technology Project's Current Products and Future Directions
NASA Technical Reports Server (NTRS)
Anderson, David J.; Dankanich, John; Munk, Michelle M.; Pencil, Eric; Liou, Larry
2010-01-01
Since its inception in 2001, the objective of the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling for future NASA flagship and sample return missions currently under consideration, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that recently completed, or will be completing within the next year, their technology development and are ready for infusion into missions. The paper also describes the ISPT project s future focus on propulsion for sample return missions. The ISPT technologies completing their development are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) aerocapture technologies which include thermal protection system (TPS) materials and structures, guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and atmospheric and aerothermal effect models. The future technology development areas for ISPT are: 1) Planetary Ascent Vehicles (PAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; 3) propulsion for Earth Return Vehicles (ERV) and transfer stages, and electric propulsion for sample return and low cost missions; 4) advanced propulsion technologies for sample return; and 5) Systems/Mission Analysis focused on sample return propulsion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinars, Daniel; Scott, Kimberly Carole; Edwards, M. John
Major advances in pulsed power technology and applications over the last twenty years have expanded the mission areas for pulsed power and created compelling new opportunities for the Stockpile Stewardship Program (SSP). This summary document is a forward look at the development of pulsed power science and technology (PPS&T) capabilities in support of the next 20 years of the SSP. This outlook was developed during a three-month-long tri-lab study on the future of PPS&T research and capabilities in support of applications to: (1) Dynamic Materials, (2) Thermonuclear Burn Physics and Inertial Confinement Fusion (ICF), and (3) Radiation Effects and Nuclearmore » Survivability. It also considers necessary associated developments in next-generation codes and pulsed power technology as well as opportunities for academic, industry, and international engagement. The document identifies both imperatives and opportunities to address future SSP mission needs. This study was commissioned by the National Nuclear Security Administration (NNSA). A copy of the memo request is contained in the Appendix. NNSA guidance received during this study explicitly directed that it not be constrained by resource limitations and not attempt to prioritize its findings against plans and priorities in other areas of the national weapons program. That prioritization, including the relative balance amongst the three focus areas themselves, must of course occur before any action is taken on the observations presented herein. This unclassified summary document presents the principal imperatives and opportunities identified in each mission and supporting area during this study. Preceding this area-specific outlook, we discuss a cross-cutting opportunity to increase the shot capacity on the Z pulsed power facility as a near-term, cost-effective way to broadly impact PPS&T for SSP as well as advancing the science and technology to inform future SSMP milestones over the next 5-10 years. The final page of the summary presents two timelines that couch the opportunities discussed here in terms of the broader strategic timelines encapsulated in the fiscal year 2017 Stockpile Stewardship Management Plan (SSMP).« less
The future for weed control and technology.
Shaner, Dale L; Beckie, Hugh J
2014-09-01
This review is both a retrospective (what have we missed?) and prospective (where are we going?) examination of weed control and technology, particularly as it applies to herbicide-resistant weed management (RWM). Major obstacles to RWM are discussed, including lack of diversity in weed management, unwillingness of many weed researchers to conduct real integrated weed management research or growers to accept recommendations, influence or role of agrichemical marketing and governmental policy and lack of multidisciplinary research. We then look ahead to new technologies that are needed for future weed control in general and RWM in particular, in areas such as non-chemical and chemical weed management, novel herbicides, site-specific weed management, drones for monitoring large areas, wider application of 'omics' and simulation model development. Finally, we discuss implementation strategies for integrated weed management to achieve RWM, development of RWM for developing countries, a new classification of herbicides based on mode of metabolism to facilitate greater stewardship and greater global exchange of information to focus efforts on areas that maximize progress in weed control and RWM. There is little doubt that new or emerging technologies will provide novel tools for RMW in the future, but will they arrive in time? © 2013 Her Majesty the Queen in Right of Canada Pest Management Science © 2013 Society of Chemical Industry.
Zhao, Xinne; Zhang, Panpan; Chen, Yuting; Su, Zhiqiang; Wei, Gang
2015-03-12
The preparation and applications of graphene (G)-based materials are attracting increasing interests due to their unique electronic, optical, magnetic, thermal, and mechanical properties. Compared to G-based hybrid and composite materials, G-based inorganic hybrid membrane (GIHM) offers enormous advantages ascribed to their facile synthesis, planar two-dimensional multilayer structure, high specific surface area, and mechanical stability, as well as their unique optical and mechanical properties. In this review, we report the recent advances in the technical fabrication and structure-specific applications of GIHMs with desirable thickness and compositions. In addition, the advantages and disadvantages of the methods utilized for creating GIHMs are discussed in detail. Finally, the potential applications and key challenges of GIHMs for future technical applications are mentioned.
Hydroxylapatite nanoparticles: fabrication methods and medical applications
NASA Astrophysics Data System (ADS)
Okada, Masahiro; Furuzono, Tsutomu
2012-12-01
Hydroxylapatite (or hydroxyapatite, HAp) exhibits excellent biocompatibility with various kinds of cells and tissues, making it an ideal candidate for tissue engineering, orthopedic and dental applications. Nanosized materials offer improved performances compared with conventional materials due to their large surface-to-volume ratios. This review summarizes existing knowledge and recent progress in fabrication methods of nanosized (or nanostructured) HAp particles, as well as their recent applications in medical and dental fields. In section 1, we provide a brief overview of HAp and nanoparticles. In section 2, fabrication methods of HAp nanoparticles are described based on the particle formation mechanisms. Recent applications of HAp nanoparticles are summarized in section 3. The future perspectives in this active research area are given in section 4.
NASA Technical Reports Server (NTRS)
Brower, Robert N.
2004-01-01
This Summary of Research report is a final report which summarizes significant accomplishments achieved during NASA grant NAG 13-00044 entitled Phase IV: Deploying ESE Pilot Information Programs for State and Local Government in the Northeast, the Education Community and the Commercial Sector , for the period of September 27,2000 through September 26,2004. All activities under this grant have been successfully completed. It has been requested by NASA reviewers that the material contained herein also be considered in $iew of NASA s twelve national priority areas. During the grant period, the nature of the Earth Science Enterprise (ESE) Application Program has been significantly amended (two major restructurings). These amendments have been reviewed at several meetings, including a national gathering held in Washington DC. Additional meetings have occurred with NASA officials at headquarters and at IAGT offices as the newly emerging programs have become defined. The work described herein is considered "cross-cutting", meaning that it has relevancy to several of the national priority areas. The time period covered requires that the twelve national priority areas initially articulated by NASA be considered. (Subsequent NASA revision has eliminated "community growth" as a focus area. It is not clear how this area might be treated in the future NASA organizational structure, but it is noted that the work reported herein includes clear potential for application to the previously defined community growth area, as well as most of the other application areas.) As indicated in the accompanying figure, activity reports throughout this report can be "mapped" to the priority areas.
Evaluation of dynamic coastal response to sea-level rise modifies inundation likelihood
Lentz, Erika E.; Thieler, E. Robert; Plant, Nathaniel G.; Stippa, Sawyer R.; Horton, Radley M.; Gesch, Dean B.
2016-01-01
Sea-level rise (SLR) poses a range of threats to natural and built environments1, 2, making assessments of SLR-induced hazards essential for informed decision making3. We develop a probabilistic model that evaluates the likelihood that an area will inundate (flood) or dynamically respond (adapt) to SLR. The broad-area applicability of the approach is demonstrated by producing 30 × 30 m resolution predictions for more than 38,000 km2 of diverse coastal landscape in the northeastern United States. Probabilistic SLR projections, coastal elevation and vertical land movement are used to estimate likely future inundation levels. Then, conditioned on future inundation levels and the current land-cover type, we evaluate the likelihood of dynamic response versus inundation. We find that nearly 70% of this coastal landscape has some capacity to respond dynamically to SLR, and we show that inundation models over-predict land likely to submerge. This approach is well suited to guiding coastal resource management decisions that weigh future SLR impacts and uncertainty against ecological targets and economic constraints.
UCS-PROMOVE: The engineer of the future
NASA Astrophysics Data System (ADS)
Villas-Boas, V.
2010-06-01
The Universidade de Caxias do Sul (UCS) elaborated the cooperative project called 'The engineer of the future', with the objective of promoting science and engineering among high school teachers and students. This project aims to improve the quality of the teaching and to increase the interest of students in technological areas, leading to a future career in engineering. The activities of this project were planned to give meaning and foundation to the teaching-learning process of science and for the application of theory in the solution of real problems, while articulating scientific, economic, environmental, social and political aspects and also to reinforce the important role of engineering in society. Amongst the activities to be offered to high school teachers and students are a specialisation course for teachers based upon new educational methodologies, workshops in different areas of science and technology, a programme entitled 'Encouraging girls in technology, science and engineering', science fairs and visits to the industries of the region. Activities with the engineering instructors of UCS are also being developed in order to help them to incorporate in their classes more effective pedagogical strategies for educating the engineer-to-be.
Standardisation of magnetic nanoparticles in liquid suspension
NASA Astrophysics Data System (ADS)
Wells, James; Kazakova, Olga; Posth, Oliver; Steinhoff, Uwe; Petronis, Sarunas; Bogart, Lara K.; Southern, Paul; Pankhurst, Quentin; Johansson, Christer
2017-09-01
Suspensions of magnetic nanoparticles offer diverse opportunities for technology innovation, spanning a large number of industry sectors from imaging and actuation based applications in biomedicine and biotechnology, through large-scale environmental remediation uses such as water purification, to engineering-based applications such as position-controlled lubricants and soaps. Continuous advances in their manufacture have produced an ever-growing range of products, each with their own unique properties. At the same time, the characterisation of magnetic nanoparticles is often complex, and expert knowledge is needed to correctly interpret the measurement data. In many cases, the stringent requirements of the end-user technologies dictate that magnetic nanoparticle products should be clearly defined, well characterised, consistent and safe; or to put it another way—standardised. The aims of this document are to outline the concepts and terminology necessary for discussion of magnetic nanoparticles, to examine the current state-of-the-art in characterisation methods necessary for the most prominent applications of magnetic nanoparticle suspensions, to suggest a possible structure for the future development of standardisation within the field, and to identify areas and topics which deserve to be the focus of future work items. We discuss potential roadmaps for the future standardisation of this developing industry, and the likely challenges to be encountered along the way.
NASA Astrophysics Data System (ADS)
Schneider, J.; Klein, A.; Mannweiler, C.; Schotten, H. D.
2011-08-01
In the future, sensors will enable a large variety of new services in different domains. Important application areas are service adaptations in fixed and mobile environments, ambient assisted living, home automation, traffic management, as well as management of smart grids. All these applications will share a common property, the usage of networked sensors and actuators. To ensure an efficient deployment of such sensor-actuator networks, concepts and frameworks for managing and distributing sensor data as well as for triggering actuators need to be developed. In this paper, we present an architecture for integrating sensors and actuators into the future Internet. In our concept, all sensors and actuators are connected via gateways to the Internet, that will be used as comprehensive transport medium. Additionally, an entity is needed for registering all sensors and actuators, and managing sensor data requests. We decided to use a hierarchical structure, comparable to the Domain Name Service. This approach realizes a cost-efficient architecture disposing of "plug and play" capabilities and accounting for privacy issues.
Alarcón, Diego; Cavieres, Lohengrin A
2015-01-01
In order to assess the effects of climate change in temperate rainforest plants in southern South America in terms of habitat size, representation in protected areas, considering also if the expected impacts are similar for dominant trees and understory plant species, we used niche modeling constrained by species migration on 118 plant species, considering two groups of dominant trees and two groups of understory ferns. Representation in protected areas included Chilean national protected areas, private protected areas, and priority areas planned for future reserves, with two thresholds for minimum representation at the country level: 10% and 17%. With a 10% representation threshold, national protected areas currently represent only 50% of the assessed species. Private reserves are important since they increase up to 66% the species representation level. Besides, 97% of the evaluated species may achieve the minimum representation target only if the proposed priority areas were included. With the climate change scenario representation levels slightly increase to 53%, 69%, and 99%, respectively, to the categories previously mentioned. Thus, the current location of all the representation categories is useful for overcoming climate change by 2050. Climate change impacts on habitat size and representation of dominant trees in protected areas are not applicable to understory plants, highlighting the importance of assessing these effects with a larger number of species. Although climate change will modify the habitat size of plant species in South American temperate rainforests, it will have no significant impact in terms of the number of species adequately represented in Chile, where the implementation of the proposed reserves is vital to accomplish the present and future minimum representation. Our results also show the importance of using migration dispersal constraints to develop more realistic future habitat maps from climate change predictions.
Alarcón, Diego; Cavieres, Lohengrin A.
2015-01-01
In order to assess the effects of climate change in temperate rainforest plants in southern South America in terms of habitat size, representation in protected areas, considering also if the expected impacts are similar for dominant trees and understory plant species, we used niche modeling constrained by species migration on 118 plant species, considering two groups of dominant trees and two groups of understory ferns. Representation in protected areas included Chilean national protected areas, private protected areas, and priority areas planned for future reserves, with two thresholds for minimum representation at the country level: 10% and 17%. With a 10% representation threshold, national protected areas currently represent only 50% of the assessed species. Private reserves are important since they increase up to 66% the species representation level. Besides, 97% of the evaluated species may achieve the minimum representation target only if the proposed priority areas were included. With the climate change scenario representation levels slightly increase to 53%, 69%, and 99%, respectively, to the categories previously mentioned. Thus, the current location of all the representation categories is useful for overcoming climate change by 2050. Climate change impacts on habitat size and representation of dominant trees in protected areas are not applicable to understory plants, highlighting the importance of assessing these effects with a larger number of species. Although climate change will modify the habitat size of plant species in South American temperate rainforests, it will have no significant impact in terms of the number of species adequately represented in Chile, where the implementation of the proposed reserves is vital to accomplish the present and future minimum representation. Our results also show the importance of using migration dispersal constraints to develop more realistic future habitat maps from climate change predictions. PMID:25786226
NASA Technical Reports Server (NTRS)
Smith, Stephen
2011-01-01
We are developing arrays of transition-edge sensor (TES) X-ray detectors optimized for high count-rate solar astronomy applications where characterizing the high velocity motions of X-ray jets in solar flares is of particular interest. These devices are fabricated on thick Si substrates and consist of 35x35micron^2 TESs with 4.5micron thick, 60micron pitch, electroplated absorbers. We have tested devices fabricated with different geometric stem contact areas with the TES and surrounding substrate area, which allows us to investigate the loss of athermal phonons to the substrate. Results show a correlation between the stem contact area and a non-Gaussian broadening in the spectral line shape consistent with athermal phonon loss. When the contact area is minimized we have obtained remarkable board-band spectral resolving capabilities of 1.3 plus or minus 0.leV at an energy of 1.5 keV, 1.6 plus or minus 0.1 eV at 5.9 keV and 2.0 plus or minus 0.1 eV at 8 keV. This, coupled with a capability of accommodating 100's of counts per second per pixel makes these devices an exciting prospect of future x-ray astronomy applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Mike
This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2013, through October 31, 2014. The report contains, as applicable, the following information; Site description; Facility and system description; Permit required monitoring data and loading rates; Status of compliance conditions and activities; and Discussion of the facility’s environmental impacts. The current permit expires on March 16, 2015. A permit renewal application was submitted to Idaho Department of Environmental Quality on September 15, 2014. Duringmore » the 2014 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. Seepage testing of the three lagoons was performed between August 26, 2014 and September 22, 2014. Seepage rates from Lagoons 1 and 2 were below the 0.25 inches/day requirement; however, Lagoon 3 was above the 0.25 inches/day. Lagoon 3 has been isolated and is being evaluated for future use or permanent removal from service.« less
Vi-da: vitiligo diagnostic assistance mobile application
NASA Astrophysics Data System (ADS)
Nugraha, G. A.; Nurhudatiana, A.; Bahana, R.
2018-03-01
Vitiligo is a skin disorder in which white patches of depigmentation appear on different parts of the body. Usually, patients come to hospitals or clinics to have their vitiligo conditions assessed. This can be very tiring to the patients, as vitiligo treatments usually take a relatively long period of time, which can range from months to years. To address this challenge, we present in this paper a prototype of an Android-based mobile application called Vi-DA, which stands for Vitiligo Diagnostic Assistance. Vi-DA consists of three subsystems, which are user sign-up subsystem, camera and image analysis subsystem, and progress report subsystem. The mobile application was developed in Java programming language and uses MySQL as the database system. Vi-DA adopts a vitiligo segmentation algorithm to segment input image into normal skin area, vitiligo skin area, and non-skin area. Results showed that Vi-DA gave comparable results to the previous system implemented in Matlab. User acceptance testing results also showed that all respondents agreed on the usefulness of the system and agreed to use Vi-DA again in the future. Vi-DA benefits both dermatologists and patients as not only a computer-aided diagnosis (CAD) tool but also as a smart application that can be used for self-assessment at home.
NASA Astrophysics Data System (ADS)
Nichersu, Iulian; Mierla, Marian; Trifanov, Cristian
2013-04-01
Cumulative River Dynamic Assessment using Topo-Hydrographical High Definition Surveying in the Danube River area - Km 347-Km344 Iulian NICHERSU, Cristian TRIFANOV, Marian MIERLA The purpose of this paper is to depict and illustrate the benefits of Topo-Hydrographical High Definition Surveying (THHDS), also known as 3D multi-beam scanning, on a topo-hydrological survey application in Danube Valley. This research investigates the evolution of Danube river dynamics. We start with cross-sections made in 2002, 2007 and 2010 in this area and we coupled with 2012 THHDS. 3D multi-beam scanning method of data acquisition improve the spatial hydrological model and offers better dynamics assessment for future studies, considering that this area is carried out dredging works to improve navigation conditions - THHDS technique true modeling capabilities have applications in hydrotechnical works. Dynamics stands out on all 3 axes and cartographic documents have used both the 1930, 1950, and orthophoto images taken during flight to obtain the 3D model of the floodplain through LIDAR method, in 2007.
Transport processes in biomedical systems: a roadmap for future research directions.
Schmid-Schönbein, Geert W; Diller, Kenneth R
2005-09-01
A workshop was convened at Bethesda, Maryland on May 5 and 6, 2004 under the sponsorship of the NSF and NIH with the objectives of identifying emerging intellectual opportunities and applications in biotransport sciences and of guiding future research in the field. Approximately 50 leading researchers in the fields of fluid, heat, and mass biotransport were presented forward-looking perspectives and discussed how to synthesize broad cross-disciplinary areas: this defined guidelines for a roadmap document. Applications were presented in the context of disease analysis and diagnosis, therapy and prevention, and for physiologic and engineered living systems. The roadmap prioritizes specific research thrusts that reflect projected impacts on intellectuals, medical, and biological advances. Several overarching themes emerged. Most central is the expanded integration of fundamental transport sciences into the understanding of living systems and the great potential of patient specific modeling in designing a broad array of medical procedures.
Electrophoretic separations on paper: Past, present, and future-A review.
Nanthasurasak, Pavisara; Cabot, Joan Marc; See, Hong Heng; Guijt, Rosanne M; Breadmore, Michael C
2017-09-08
Point-of-collection (POC) devices aim for a fast, on-site detection for medical and environmental purposes. In this area, microfluidic Paper-based Analytical Devices (μPADs) have recently gained popularity because these are potentially cheap and environmentally friendly to produce, and easy to use. From an analytical perspective, paper is well known for its use as a substrate for chromatography, but less known for its use in electrophoretic separations. With the recent interest in μPADs, most applications are based on rather simple assays with relatively few applications incorporating an analytical separation. The focus of this review is on paper-based electrophoresis, originating with the key developments in the 1940s and 1950s as well as the recent developments of electrophoretic μPADs, and concluding with a critical discussion of the opportunities and challenges for electrophoretic μPADS in the future. Copyright © 2017. Published by Elsevier B.V.
Motion planning: A journey of robots, molecules, digital actors, and other artifacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latombe, J.C.
1999-11-01
During the past three decades, motion planning has emerged as a crucial and productive research area in robotics. In the mid-1980s, the most advanced planners were barely able to compute collision-free paths for objects crawling in planar workspaces. Today, planners efficiently deal with robots with many degrees of freedom in complex environments. Techniques also exist to generate quasi-optimal trajectories, coordinate multiple robots, deal with dynamic and kinematic constraints, and handle dynamic environments. This paper describes some of these achievements, presents new problems that have recently emerged, discusses applications likely to motivate future research, and finally gives expectations for the comingmore » years. It stresses the fact that nonrobotics applications (e.g., graphic animation, surgical planning, computational biology) are growing in importance and are likely to shape future motion-planning research more than robotics itself.« less
Intensification of constructed wetlands for land area reduction: a review.
Ilyas, Huma; Masih, Ilyas
2017-05-01
The large land area requirement of constructed wetlands (CWs) is a major limitation of its application especially in densely populated and mountainous areas. This review paper provides insights on different strategies applied for the reduction of land area including stack design and intensification of CWs with different aeration methods. The impacts of different aeration methods on the performance and land area reduction were extensively and critically evaluated for nine wetland systems under three aeration strategies such as tidal flow (TF), effluent recirculation (ER), and artificial aeration (AA) applied on three types of CWs including vertical flow constructed wetland (VFCW), horizontal flow constructed wetland (HFCW), and hybrid constructed wetland (HCW). The area reduction and pollutant removal efficiency showed substantial variation among different types of CWs and aeration strategies. The ER-VFCW designated the smallest footprint of 1.1 ± 0.5 m 2 PE -1 (population equivalent) followed by TF-VFCW with the footprint of 2.1 ± 1.8 m 2 PE -1 , and the large footprint was of AA-HFCW (7.8 ± 4.7 m 2 PE -1 ). When footprint and removal efficiency both are the major indicators for the selection of wetland type, the best options for practical application could be TF-VFCW, ER-HCW, and AA-HCW. The data and results outlined in this review could be instructive for futures studies and practical applications of CWs for wastewater treatment, especially in land-limited regions.
ERIC Educational Resources Information Center
Paul, Sandra K.; Kranberg, Susan
The third report from a comprehensive Unesco study, this document traces the history of the application of computer-based technology to the book distribution process in the United States and indicates functional areas currently showing the effects of using this technology. Ways in which computer use is altering book distribution management…
ERIC Educational Resources Information Center
Information Dynamics Corp., Reading, MA.
A five-year development program plan was drawn up for the Defense Documentation Center (DDC). This report presents in summary form the results of various surveys and reviews performed in selected areas of micrographics to support the efforts of the program's planners. Exhibits of supporting documentation are presented, together with a discussion…
The Space Factor--fundamental and applied research benefiting Europe's citizens and economy.
Heppener, M
2002-08-01
Although "made in space" products are not expected to appear in the near-future, space is gaining interest as an area for industrial or applied R&D. ESA is supporting a growing number of projects involving non-space industries and other third parties. This article gives an overview of the potential of research in space to develop valuable applications on Earth.
2D materials: Graphene and others
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Suneev Anil, E-mail: suneev@gmail.com; Singh, Amrinder Pal; Kumar, Suresh
Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.
Demonstration of Self-Training Autonomous Neural Networks in Space Vehicle Docking Simulations
NASA Technical Reports Server (NTRS)
Patrick, M. Clinton; Thaler, Stephen L.; Stevenson-Chavis, Katherine
2006-01-01
Neural Networks have been under examination for decades in many areas of research, with varying degrees of success and acceptance. Key goals of computer learning, rapid problem solution, and automatic adaptation have been elusive at best. This paper summarizes efforts at NASA's Marshall Space Flight Center harnessing such technology to autonomous space vehicle docking for the purpose of evaluating applicability to future missions.
Wang, Hui; Chen, Qianwang; Zhou, Shuiqin
2018-06-05
Nanosized crosslinked polymer networks, named as nanogels, are playing an increasingly important role in a diverse range of applications by virtue of their porous structures, large surface area, good biocompatibility and responsiveness to internal and/or external chemico-physical stimuli. Recently, a variety of carbon nanomaterials, such as carbon quantum dots, graphene/graphene oxide nanosheets, fullerenes, carbon nanotubes, and nanodiamonds, have been embedded into responsive polymer nanogels, in order to integrate the unique electro-optical properties of carbon nanomaterials with the merits of nanogels into a single hybrid nanogel system for improvement of their applications in nanomedicine. A vast number of studies have been pursued to explore the applications of carbon-based hybrid nanogels in biomedical areas for biosensing, bioimaging, and smart drug carriers with combinatorial therapies and/or theranostic ability. New synthetic methods and structures have been developed to prepare carbon-based hybrid nanogels with versatile properties and functions. In this review, we summarize the latest developments and applications and address the future perspectives of these carbon-based hybrid nanogels in the biomedical field.
Radiology education: a glimpse into the future.
Scarsbrook, A F; Graham, R N J; Perriss, R W
2006-08-01
The digital revolution in radiology continues to advance rapidly. There are a number of interesting developments within radiology informatics which may have a significant impact on education and training of radiologists in the near future. These include extended functionality of handheld computers, web-based skill and knowledge assessment, standardization of radiological procedural training using simulated or virtual patients, worldwide videoconferencing via high-quality health networks such as Internet2 and global collaboration of radiological educational resources via comprehensive, multi-national databases such as the medical imaging resource centre initiative of the Radiological Society of North America. This article will explore the role of e-learning in radiology, highlight a number of useful web-based applications in this area, and explain how the current and future technological advances might best be incorporated into radiological training.
On the present and future of dissolution-DNP
NASA Astrophysics Data System (ADS)
Ardenkjaer-Larsen, Jan Henrik
2016-03-01
Dissolution-DNP is a method to create solutions of molecules with nuclear spin polarization close to unity. The many orders of magnitude signal enhancement have enabled many new applications, in particular in vivo MR metabolic imaging. The method relies on solid state dynamic nuclear polarization at low temperature followed by a dissolution to produce the room temperature solution of highly polarized spins. This work describes the present and future of dissolution-DNP in the mind of the author. The article describes some of the current trends in the field as well as outlines some of the areas where new ideas will make an impact. Most certainly, the future will take unpredicted directions, but hopefully the thoughts presented here will stimulate new ideas that can further advance the field.
Application of data mining approaches to drug delivery.
Ekins, Sean; Shimada, Jun; Chang, Cheng
2006-11-30
Computational approaches play a key role in all areas of the pharmaceutical industry from data mining, experimental and clinical data capture to pharmacoeconomics and adverse events monitoring. They will likely continue to be indispensable assets along with a growing library of software applications. This is primarily due to the increasingly massive amount of biology, chemistry and clinical data, which is now entering the public domain mainly as a result of NIH and commercially funded projects. We are therefore in need of new methods for mining this mountain of data in order to enable new hypothesis generation. The computational approaches include, but are not limited to, database compilation, quantitative structure activity relationships (QSAR), pharmacophores, network visualization models, decision trees, machine learning algorithms and multidimensional data visualization software that could be used to improve drug delivery after mining public and/or proprietary data. We will discuss some areas of unmet needs in the area of data mining for drug delivery that can be addressed with new software tools or databases of relevance to future pharmaceutical projects.
Ultrasonic image analysis and image-guided interventions.
Noble, J Alison; Navab, Nassir; Becher, H
2011-08-06
The fields of medical image analysis and computer-aided interventions deal with reducing the large volume of digital images (X-ray, computed tomography, magnetic resonance imaging (MRI), positron emission tomography and ultrasound (US)) to more meaningful clinical information using software algorithms. US is a core imaging modality employed in these areas, both in its own right and used in conjunction with the other imaging modalities. It is receiving increased interest owing to the recent introduction of three-dimensional US, significant improvements in US image quality, and better understanding of how to design algorithms which exploit the unique strengths and properties of this real-time imaging modality. This article reviews the current state of art in US image analysis and its application in image-guided interventions. The article concludes by giving a perspective from clinical cardiology which is one of the most advanced areas of clinical application of US image analysis and describing some probable future trends in this important area of ultrasonic imaging research.
Mine-hunting dolphins of the Navy
NASA Astrophysics Data System (ADS)
Moore, Patrick W.
1997-07-01
Current counter-mine and obstacle avoidance technology is inadequate, and limits the Navy's capability to conduct shallow water (SW) and very shallow water (VSW) MCM in support of beach assaults by Marine Corps forces. Without information as to the location or density of mined beach areas, it must be assumed that if mines are present in one area then they are present in all areas. Marine mammal systems (MMS) are an unusual, effective and unique solution to current problems of mine and obstacle hunting. In the US Navy Mine Warfare Plan for 1994-1995 Marine Mammal Systems are explicitly identified as the Navy's only means of countering buried mines and the best means for dealing with close-tethered mines. The dolphins in these systems possess a biological sonar specifically adapted for their shallow and very shallow water habitat. Research has demonstrated that the dolphin biosonar outperforms any current hardware system available for SW and VSW applications. This presentation will cover current Fleet MCM systems and future technology application to the littoral region.
Widom, Julia R.; Dhakal, Soma; Heinicke, Laurie A.; Walter, Nils G.
2015-01-01
Toxicology is the highly interdisciplinary field studying the adverse effects of chemicals on living organisms. It requires sensitive tools to detect such effects. After their initial implementation during the 1990s, single-molecule fluorescence detection tools were quickly recognized for their potential to contribute greatly to many different areas of scientific inquiry. In the intervening time, technical advances in the field have generated ever-improving spatial and temporal resolution, and have enabled the application of single-molecule fluorescence to increasingly complex systems, such as live cells. In this review, we give an overview of the optical components necessary to implement the most common versions of single-molecule fluorescence detection. We then discuss current applications to enzymology and structural studies, systems biology, and nanotechnology, presenting the technical considerations that are unique to each area of study, along with noteworthy recent results. We also highlight future directions that have the potential to revolutionize these areas of study by further exploiting the capabilities of single-molecule fluorescence microscopy. PMID:25212907
Sun, Cheng-Jun; Zhang, Bangmin; Brewe, Dale L; Chen, Jing-Sheng; Chow, G M; Venkatesan, T; Heald, Steve M
2014-04-01
X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr0.67Sr0.33MnO3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.
Smart Materials Based on DNA Aptamers: Taking Aptasensing to the Next Level
Mastronardi, Emily; Foster, Amanda; Zhang, Xueru; DeRosa, Maria C.
2014-01-01
“Smart” materials are an emerging category of multifunctional materials with physical or chemical properties that can be controllably altered in response to an external stimulus. By combining the standard properties of the advanced material with the unique ability to recognize and adapt in response to a change in their environment, these materials are finding applications in areas such as sensing and drug delivery. While the majority of these materials are responsive to physical or chemical changes, a particularly exciting area of research seeks to develop smart materials that are sensitive to specific molecular or biomolecular stimuli. These systems require the integration of a molecular recognition probe specific to the target molecule of interest. The ease of synthesis and labeling, low cost, and stability of DNA aptamers make them uniquely suited to effectively serve as molecular recognition probes in novel smart material systems. This review will highlight current work in the area of aptamer-based smart materials and prospects for their future applications. PMID:24553083
Perspectives About Personalization for mHealth Solutions Against Noise Pollution.
Kepplinger, Sara; Liebetrau, Judith; Clauss, Tobias; Pharow, Peter
2017-01-01
Noise harms the environmental quality and can have negative effect on health and wellbeing. Providing silent areas and periods of rest is one way to improve the perceived environmental quality. However, realization is not easy in the day to day life. The usage of mHealth solutions which can provide information about the sound of a certain area and the respective effect on humans could be supportive. As the perception of sound is highly subjective, the prediction of the perceived acoustic environments is very difficult. This paper describes a course of action to develop an automatic estimation of an acoustic environment, based on the measurement of sound properties solely. The challenges of this endeavor are explained in detail. Possible application areas in mHealth are identified and presented. This future vision paper wants to draw the attention to different possibilities to cope with noise pollution either by personal behavior change or by using personalized data to reach out for a more general applicability for example through soundscape.
Affordable remote-area power supply in the Philippines
NASA Astrophysics Data System (ADS)
Heruela, C. S.
The feasibility of photovoltaic (PV) systems for electrifying remote areas of the Philippines is discussed. In particular, a technical description is given of those PV systems that are appropriate to the needs of remote, but populated, rural areas and have been developed as part of the Philippine-German Solar Energy Project. Details are provided of a financing scheme, piloted by the Project on an unelectrified island, to make PV systems affordable to rural users. An analysis is presented of the potential of large-scale applications of PV systems in developing countries such as the Philippines, and a description is provided of current efforts to promote the use of such technology. A storage battery is identified as an essential component of a PV system. As a consequence, the wide use of PV systems will have a very significant impact on the market for storage batteries in countries embarking on PV-utilization programmes. It is clear, therefore, that battery manufacturers should take an interest in future development in PV applications.
The Design, Planning and Control of Robotic Systems in Space
NASA Technical Reports Server (NTRS)
Dubowsky, Steven
1996-01-01
In the future, robotic systems will be expected to perform important tasks in space, in orbit and in planetary exploration. In orbit, current technology requires that tasks such as the repair, construction and maintenance of space stations and satellites be performed by astronaut Extra Vehicular Activity (EVA). Eliminating the need for astronaut EVA through the use of space manipulators would greatly reduce both mission costs and hazards to astronauts. In planetary exploration, cost and logistical considerations clearly make the use of autonomous and telerobotic systems also very attractive, even in cases where an astronaut explorer might be in the area. However, such applications introduce a number of technical problems not found in conventional earth-bound industrial robots. To design useful and practical systems to meet the needs of future space missions, substantial technical development is required, including in the areas of the design, control and planning. The objectives of this research program were to develop such design paradigms and control and planning algorithms to enable future space robotic systems to meet their proposed mission objectives. The underlying intellectual focus of the program is to construct a set of integrated design, planning and control techniques based on an understanding of the fundamental mechanics of space robotic systems. This work was to build upon the results obtained in our previous research in this area supported by NASA Langley Research Center in which we have made important contributions to the area of space robotics.
Nuclear Data Uncertainty Quantification: Past, Present and Future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D. L.
2015-01-01
An historical overview is provided of the mathematical foundations of uncertainty quantification and the roles played in the more recent past by nuclear data uncertainties in nuclear data evaluations and nuclear applications. Significant advances that have established the mathematical framework for contemporary nuclear data evaluation methods, as well as the use of uncertainty information in nuclear data evaluation and nuclear applications, are described. This is followed by a brief examination of the current status concerning nuclear data evaluation methodology, covariance data generation, and the application of evaluated nuclear data uncertainties in contemporary nuclear technology. A few possible areas for futuremore » investigation of this subject are also suggested.« less
Nuclear Data Uncertainty Quantification: Past, Present and Future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D.L., E-mail: Donald.L.Smith@anl.gov
2015-01-15
An historical overview is provided of the mathematical foundations of uncertainty quantification and the roles played in the more recent past by nuclear data uncertainties in nuclear data evaluations and nuclear applications. Significant advances that have established the mathematical framework for contemporary nuclear data evaluation methods, as well as the use of uncertainty information in nuclear data evaluation and nuclear applications, are described. This is followed by a brief examination of the current status concerning nuclear data evaluation methodology, covariance data generation, and the application of evaluated nuclear data uncertainties in contemporary nuclear technology. A few possible areas for futuremore » investigation of this subject are also suggested.« less
Research into alternative network approaches for space operations
NASA Technical Reports Server (NTRS)
Kusmanoff, Antone L.; Barton, Timothy J.
1990-01-01
The main goal is to resolve the interoperability problem of applications employing DOD TCP/IP (Department of Defence Transmission Control Protocol/Internet Protocol) family of protocols on a CCITT/ISO based network. The objective is to allow them to communicate over the CCITT/ISO protocol GPLAN (General Purpose Local Area Network) network without modification to the user's application programs. There were two primary assumptions associated with the solution that was actually realized. The first is that the solution had to allow for future movement to the exclusive use of the CCITT/ISO standards. The second is that the solution had to be software transparent to the currently installed TCP/IP and CCITT/ISO user application programs.
NASA Glenn Research Center Electrochemistry Branch Battery Overview
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.
2010-01-01
This presentation covers an overview of NASA Glenn s history and heritage in the development of electrochemical systems for aerospace applications. Specific areas of focus are Li-ion batteries and their development for future Exploration missions. Current component development efforts for high energy and ultra high energy Li-ion batteries are addressed. Electrochemical systems are critical to the success of Exploration, Science and Space Operations missions. NASA Glenn has a long, successful heritage with batteries and fuel cells for aerospace applications. GRC Battery capabilities and expertise span basic research through flight hardware development and implementation. There is a great deal of synergy between energy storage system needs for aerospace and terrestrial applications.
Bacterial L-arabinose isomerases: industrial application for D-tagatose production.
Boudebbouze, Samira; Maguin, Emmanuelle; Rhimi, Moez
2011-12-01
D-tagatose is a natural monosaccharide with a low caloric value and has an anti-hyperglycemiant effect. This hexose has potential applications both in pharmaceutical and agro-food industries. However, the use of D-tagatose remains limited by its production cost. Many production procedures including chemical and biological processes were developed and patented. The most profitable production way is based on the use of L-arabinose isomerase which allows the manufacture of D-tagatose with an attractive rate. Future developments are focused on the generation of L-arabinose isomerases having biochemical properties satisfying the industrial applications. This report provides a brief review of the most recent patents that have been published relating to this area.
Application of Nanotechnology and Nanomaterials in Oil and Gas Industry
NASA Astrophysics Data System (ADS)
Nabhani, Nader; Emami, Milad; Moghadam, A. B. Taghavi
2011-12-01
Micro and nano technologies have already contributed significantly to technological advances in a number of industries, including electronics, biomedical, pharmaceutical, materials and manufacturing, aerospace, photography and more recently the energy industries. Micro and nanotechnologies have the potential to introduce revolutionary changes in several areas of the oil and gas industries such as exploration, drilling, production, refining and distribution. For example, nanosensors might provide more detailed and accurate information about reservoirs and smart fluids for enhanced oil recovery (EOR) and drilling. This paper examines and documents applicable nanotechnology base products that can improve the competitiveness of the oil and gas industry. The future challenges of nanotechnology application in the oil and gas industry are also discussed.
Environmental concerns and future oil and gas developments in Coastal Wetlands of Louisiana
DOE Office of Scientific and Technical Information (OSTI.GOV)
John, C.J.; Harder, B.J.; Groat, C.G.
1993-09-01
Recent studies have confirmed that much oil and natural gas have been overlooked and increases in future recoverable reserves will come from drilling in these areas. Increased production will result from identifying unexploited compartmentalized reservoirs, new infield reservoirs, and bypassed reservoirs, and by using enhanced recovery technologies for hydrocarbon recovery in incompletely drained reservoirs previously left unproduced for economic reasons. Most of southern Louisiana's hydrocarbon reserves underlie coastal wetland areas of the state. Major environmental concerns associated with the future development of existing reserves are canal dredging and destruction of wildlife habitat, use and disposal of oil-based muds, mitigation formore » wetland damage, and the recent emerging issue of surface contamination by naturally occurring radioactive materials with potential liabilities and future remedial regulation. To reduce wetland environmental damage caused by access canals to drilling sites, the Coastal Management Division of the Louisiana Department of Natural Resources instituted a geologic reviews program to review drilling permit application in the coastal wetlands. This process provides a mechanism for state and federal agencies to comment on the requested drilling permit. As a result of this process, the total average wetland disturbed area has been reduced from 767 ac per year in 1982 to approximately 76 ac per year in 1991. Average lengths of access canals also have been reduced by approximately 78% during the period. Oil and gas companies are becoming increasingly aware of the environmental consequences of drilling in wetlands and are considering them in planning for development activities. In the current climate of increasing public consciousness about the environment, addressing environmental concerns in the planning state will go a long way in helping alleviate future environmental problems.« less
NASA Astrophysics Data System (ADS)
Achmad, A.; Irwansyah, M.; Ramli, I.
2018-03-01
Banda Aceh experienced rapid growth, both physically, socially, and economically, after the Tsunami that devastated it the end of December in 2004. Hence policy controls are needed to direct the pattern of urban growth to achieve sustainable development for the future. The purpose of this paper is to generate a growth model for Banda Aceh using the CA-Markov process. By knowing the changes in land use between 2005 and 2009 from the results of previous research, simulations for 2013, 2019 and 2029 using the application of Idrisi@Selva. CA-Markov models were prepared to determine the quantity of changes. The simulation results showed that, after the Tsunami, the City of Banda Aceh tended to grow towards the coast. For the control of the LUC, the Banda Aceh City government needs to prepare comprehensive and detailed maps and inventory of LUC for the city to provide basic data and information needed for monitoring and evaluation that can be done effectively and efficiently. An institution for monitoring and evaluation of the urban landscape and the LUC should be formed immediately. This institution could consist of representatives from government, academia, community leaders, the private sector and other experts. The findings from this study can be used to start the monitoring and evaluation of future urban growth. Especially for the coastal areas, the local government should immediately prepare special spatial coastal area plans to control growth in those areas and to ensure that the economic benefits from disaster mitigation and coastal protection are preserved. For the development of the city in the future, it is necessary to achieve a balance between economic development, and social welfare with environmental protection and disaster mitigation. iIt will become a big challenge to achieve sustainable development for the future.
NASA Astrophysics Data System (ADS)
Watford, M.; DeCusatis, C.
2005-09-01
With the advent of new regulations governing the protection and recovery of sensitive business data, including the Sarbanes-Oxley Act, there has been a renewed interest in business continuity and disaster recovery applications for metropolitan area networks. Specifically, there has been a need for more efficient bandwidth utilization and lower cost per channel to facilitate mirroring of multi-terabit data bases. These applications have further blurred the boundary between metropolitan and wide area networks, with synchronous disaster recovery applications running up to 100 km and asynchronous solutions extending to 300 km or more. In this paper, we discuss recent enhancements in the Nortel Optical Metro 5200 Dense Wavelength Division Multiplexing (DWDM) platform, including features recently qualified for data communication applications such as Metro Mirror, Global Mirror, and Geographically Distributed Parallel Sysplex (GDPS). Using a 10 Gigabit/second (Gbit/s) backbone, this solution transports significantly more Fibre Channel protocol traffic with up to five times greater hardware density in the same physical package. This is also among the first platforms to utilize forward error correction (FEC) on the aggregate signals to improve bit error rate (BER) performance beyond industry standards. When combined with encapsulation into wide area network protocols, the use of FEC can compensate for impairments in BER across a service provider infrastructure without impacting application level performance. Design and implementation of these features will be discussed, including results from experimental test beds which validate these solutions for a number of applications. Future extensions of this environment will also be considered, including ways to provide configurable bandwidth on demand, mitigate Fibre Channel buffer credit management issues, and support for other GDPS protocols.
Roy, Sagar; Singha, Nayan Ranjan
2017-09-08
Pervaporation (PV) has been considered as one of the most active and promising areas in membrane technologies in separating close boiling or azeotropic liquid mixtures, heat sensitive biomaterials, water or organics from its mixtures that are indispensable constituents for various important chemical and bio-separations. In the PV process, the membrane plays the most pivotal role and is of paramount importance in governing the overall efficiency. This article evaluates and collaborates the current research towards the development of next generation nanomaterials (NMs) and embedded polymeric membranes with regard to its synthesis, fabrication and application strategies, challenges and future prospects.
MS&T'13 Symposium Preview: Metal and Polymer Matrix Composites
NASA Astrophysics Data System (ADS)
Gupta, Nikhil; Paramsothy, Muralidharan
2013-08-01
The Metal and Polymer Matrix Composites symposium at Materials Science & Technology 2013 (MS&T'13) conference is planned to provide a platform to researchers working on various aspects of composite materials and capture the state of the art in this area. The dialogue among leading researchers is expected to provide insight into the future of this field and identify the future directions in terms of research, development, and applications of composite materials. In the 2 day program, the symposium includes 34 presentations, including 10 invited presentations. The contributions have come from 16 different countries including USA, Mexico, Switzerland, India, Egypt, and Singapore.
Sakr, Tamer M; Nawar, Mohamed F; Fasih, T W; El-Bayoumy, S; Abd El-Rehim, H A
2017-11-01
Nanostructured materials attracted considerable attention because of its high surface area to volume ratio resulting from their nano-scale dimensions. This class of sorbents is expected to have a potential impact on enhancement the efficacy of radioisotope generators for diagnostic and therapeutic applications in nuclear medicine. This review provides a summary on the importance of nanostructured materials as effective sorbents for the development of clinical-scale radioisotope generators and outlining the assessment of recent developments, key challenges and promising access to the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.
Singha, Nayan Ranjan
2017-01-01
Pervaporation (PV) has been considered as one of the most active and promising areas in membrane technologies in separating close boiling or azeotropic liquid mixtures, heat sensitive biomaterials, water or organics from its mixtures that are indispensable constituents for various important chemical and bio-separations. In the PV process, the membrane plays the most pivotal role and is of paramount importance in governing the overall efficiency. This article evaluates and collaborates the current research towards the development of next generation nanomaterials (NMs) and embedded polymeric membranes with regard to its synthesis, fabrication and application strategies, challenges and future prospects. PMID:28885591
Advanced supersonic technology and its implications for the future
NASA Technical Reports Server (NTRS)
Driver, C.
1979-01-01
A brief overview of the NASA Supersonic Cruise Research (SCR) program is presented. The SCR program has identified significant improvements in the areas of aerodynamics, structures, propulsion, noise reduction, takeoff and landing procedures, and advanced configuration concepts. These improvements tend to overcome most of the problems which led to the cancellation of the National SST program. They offer the promise of an advanced SST family of aircraft which are environmentally acceptable, have flexible range-payload capability, and are economically viable. The areas of technology addressed by the SCR program have direct application to advanced military aircraft and to supersonic executive aircraft.
Preparation, characteristics, convection and applications of magnetic nanofluids: A review
NASA Astrophysics Data System (ADS)
Kumar, Aditya; Subudhi, Sudhakar
2018-02-01
Magnetic nanofluids (MNfs), the colloidal suspension of ferromagnetic nanomaterial, have been taken into research fascinatingly. After contemplating its distinctive interesting properties and unique eximious features it offers innumerous application not only in heat transfer field but also immensely prevalent in medical, biological, aerospace, electronics and solar sciences. This review paper epitomizes and perusing the research work done on heat transfer application of MNfs and encapsulate it for the future research support. Moreover, numerical and experimental, both the approaches has been included for the insightful analysis of phenomenon to apprehend augmentation in heat transfer by MNfs. This article first underlines the importance of appropriate methods of preparation of MNfs as well as its effects on the thermophysical properties of MNfs. Subsequently, the paper comprehended the descriptive analysis of augmentation of convection heat transfer and the effect of magnetic field on the behavior MNfs. Additionally, the effect of magnetic field intensity has been taken as a pertinent parameter and correlations have been developed for thermal conductivity, viscosity and heat transfer coefficient based on the reviewed data. The paper concluded with the tremendous applications of the MNfs and the futuristic plan to support the potential areas for future research.
Allergen immunotherapy in allergic rhinitis: current use and future trends.
Klimek, Ludger; Pfaar, Oliver; Bousquet, Jean; Senti, Gabriela; Kündig, Thomas
2017-09-01
Type-1 allergies are among the most chronic common diseases of humans. Allergen immunotherapy (AIT) is the only causative and disease-modifying treatment option besides allergen avoidance. Severe systemic adverse allergic reactions may be induced by every AIT treatment. Different approaches have been used to provide safer AIT preparations to lower or even totally overcome this risk. Areas covered: A structured literature recherche in Medline and Pubmed under inclusion of national and international guidelines and Cochrane meta-analyses has been performed aiming at reviewing clinical use of such approaches in AIT. New allergen preparations may include allergoids, recombinant allergens (recA) and modified recombinant allergens (recA) in subcutaneous as well as in mucosal immunotherapies (application e.g. using bronchial, nasal, oral and sublingual application) with sublingual being the established mucosal application route and new ways of application like intralymphatic and epicutaneous immunotherapy. Expert commentary: Immune-modifying agents like Virus-like particles and CpG-motifs, adjuvants like MPL and aluminum hydroxide are evaluated and found to increase and direct the immunological response toward immunological tolerance. New forms of allergen extracts can improve safety and efficacy of AIT and may change our way of performing allergen immunotherapy in the future.
A Survey on M2M Systems for mHealth: A Wireless Communications Perspective
Kartsakli, Elli; Lalos, Aris S.; Antonopoulos, Angelos; Tennina, Stefano; Di Renzo, Marco; Alonso, Luis; Verikoukis, Christos
2014-01-01
In the new era of connectivity, marked by the explosive number of wireless electronic devices and the need for smart and pervasive applications, Machine-to-Machine (M2M) communications are an emerging technology that enables the seamless device interconnection without the need of human interaction. The use of M2M technology can bring to life a wide range of mHealth applications, with considerable benefits for both patients and healthcare providers. Many technological challenges have to be met, however, to ensure the widespread adoption of mHealth solutions in the future. In this context, we aim to provide a comprehensive survey on M2M systems for mHealth applications from a wireless communication perspective. An end-to-end holistic approach is adopted, focusing on different communication aspects of the M2M architecture. Hence, we first provide a systematic review of Wireless Body Area Networks (WBANs), which constitute the enabling technology at the patient's side, and then discuss end-to-end solutions that involve the design and implementation of practical mHealth applications. We close the survey by identifying challenges and open research issues, thus paving the way for future research opportunities. PMID:25264958
Laser-produced plasmas in medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gitomer, S.J.; Jones, R.D.
The laser has found numerous applications in medicine, beginning with uses in ophthalmology in the 1960's. Today, lasers are used in tissue cutting, blood coagulation, photodynamic cancer therapy, arterial plaque removal, dental drilling, etc. In this paper the authors examine those areas of laser medicine in which plasmas (ionized gases) are produced. In fact, the presence of a plasma is essential for the application at hand to succeed. We consider examples of the plasmas produced in ophthalmology (e.g., lens membrane destruction following cataract surgery), in urology and gastroenterology (e.g., kidney and gall stone ablation and fragmentation), and in cardiology andmore » vascular surgery (e.g., laser ablation and removal of fibro-fatty and calcified arterial plaque). Experimental data are presented, along with some results from computer simulations of the phenomena. Comments on future directions in these areas are included.« less
Laser-produced plasmas in medicine
NASA Astrophysics Data System (ADS)
Gitomer, Steven J.; Jones, Roger D.
1990-06-01
The laser has found numerous applications in medicine, beginning with uses in ophthalmology in the 1960's. Today, lasers are used in tissue cutting, blood coagulation, photo-dynamic cancer therapy, arterial plaque removal, dental drilling, etc. In this paper, we examine those areas of laser medicine in which plasmas (ionized gases) are produced. In fact, the presence of a plasma is essential for the application at hand to succeed. We consider examples of the plasmas produced in ophthalmology (e.g. lens membrane destruction following cataract surgery), in urology and gastroenterology (e.g. kidney and gall stone ablation and fragmentation) and in cardiology and vascular surgery (e.g. laser ablation and removal of fibro-fatty and calcified arterial plaque). Experimental data are presented along with some results from computer simulations of the phenomena. Comments on future directions in these areas are included.
NASA Technical Reports Server (NTRS)
Lange, R. H.; Sturgeon, R. F.; Adams, W. E.; Bradley, E. S.; Cahill, J. F.; Eudaily, R. R.; Hancock, J. P.; Moore, J. W.
1972-01-01
Investigations were conducted to evaluate the relative benefits attainable through the exploitation of advanced technologies and to identify future research and development efforts required to permit the application of selected technologies to transport aircraft entering commercial operation in 1985. Results show that technology advances, particularly in the areas of composite materials, supercritical aerodynamics, and active control systems, will permit the development of long-range, high-payload commercial transports operating at high-subsonic speeds with direct operating costs lower than those of current aircraft. These advanced transports also achieve lower noise levels and lower engine pollutant emissions than current transports. Research and development efforts, including analytical investigations, laboratory test programs, and flight test programs, are required in essentially all technology areas to achieve the potential technology benefits.
Use of computers in dysmorphology.
Diliberti, J H
1988-01-01
As a consequence of the increasing power and decreasing cost of digital computers, dysmorphologists have begun to explore a wide variety of computerised applications in clinical genetics. Of considerable interest are developments in the areas of syndrome databases, expert systems, literature searches, image processing, and pattern recognition. Each of these areas is reviewed from the perspective of the underlying computer principles, existing applications, and the potential for future developments. Particular emphasis is placed on the analysis of the tasks performed by the dysmorphologist and the design of appropriate tools to facilitate these tasks. In this context the computer and associated software are considered paradigmatically as tools for the dysmorphologist and should be designed accordingly. Continuing improvements in the ability of computers to manipulate vast amounts of data rapidly makes the development of increasingly powerful tools for the dysmorphologist highly probable. PMID:3050092
Virtual surgery in a (tele-)radiology framework.
Glombitza, G; Evers, H; Hassfeld, S; Engelmann, U; Meinzer, H P
1999-09-01
This paper presents telemedicine as an extension of a teleradiology framework through tools for virtual surgery. To classify the described methods and applications, the research field of virtual reality (VR) is broadly reviewed. Differences with respect to technical equipment, methodological requirements and areas of application are pointed out. Desktop VR, augmented reality, and virtual reality are differentiated and discussed in some typical contexts of diagnostic support, surgical planning, therapeutic procedures, simulation and training. Visualization techniques are compared as a prerequisite for virtual reality and assigned to distinct levels of immersion. The advantage of a hybrid visualization kernel is emphasized with respect to the desktop VR applications that are subsequently shown. Moreover, software design aspects are considered by outlining functional openness in the architecture of the host system. Here, a teleradiology workstation was extended by dedicated tools for surgical planning through a plug-in mechanism. Examples of recent areas of application are introduced such as liver tumor resection planning, diagnostic support in heart surgery, and craniofacial surgery planning. In the future, surgical planning systems will become more important. They will benefit from improvements in image acquisition and communication, new image processing approaches, and techniques for data presentation. This will facilitate preoperative planning and intraoperative applications.
Experiences with Text Mining Large Collections of Unstructured Systems Development Artifacts at JPL
NASA Technical Reports Server (NTRS)
Port, Dan; Nikora, Allen; Hihn, Jairus; Huang, LiGuo
2011-01-01
Often repositories of systems engineering artifacts at NASA's Jet Propulsion Laboratory (JPL) are so large and poorly structured that they have outgrown our capability to effectively manually process their contents to extract useful information. Sophisticated text mining methods and tools seem a quick, low-effort approach to automating our limited manual efforts. Our experiences of exploring such methods mainly in three areas including historical risk analysis, defect identification based on requirements analysis, and over-time analysis of system anomalies at JPL, have shown that obtaining useful results requires substantial unanticipated efforts - from preprocessing the data to transforming the output for practical applications. We have not observed any quick 'wins' or realized benefit from short-term effort avoidance through automation in this area. Surprisingly we have realized a number of unexpected long-term benefits from the process of applying text mining to our repositories. This paper elaborates some of these benefits and our important lessons learned from the process of preparing and applying text mining to large unstructured system artifacts at JPL aiming to benefit future TM applications in similar problem domains and also in hope for being extended to broader areas of applications.
LEDs for solid state lighting and other emerging applications: status, trends, and challenges
NASA Astrophysics Data System (ADS)
Craford, M. George
2005-09-01
LEDs have been commercially available since the 1960's, but in recent years there have been remarkable improvements in performance. These technology developments have enabled the use of LEDs in a variety of colored and white lighting applications. Colored LEDs have already become the technology of choice for traffic signals, much of interior and exterior vehicle lighting, signage of various types often as a replacement for neon, and other areas. LEDs are expected to become the dominant technology for most colored lighting applications. LEDs are beginning to penetrate white lighting markets such as flashlights and localized task lighting. With further improvement LEDs have the potential to become an important technology for large area general illumination. White LED products already have performance of over 30 lumens/watt which is nearly 3x better than incandescents. White LEDs with outputs of more than 100 lumens are already available commercially, and higher power devices can be expected in the near future. LEDs can be used as point sources, or can be used with light guides of various types to provide distributed illumination. Developments that will need to occur for LEDs to be viable for large area general illumination are discussed.
Melt Electrospinning – Characteristics, Application Areas and Perspectives
NASA Astrophysics Data System (ADS)
Manea, L. R.; Bertea, A.; Popa, A.; Bertea, A. P.
2018-06-01
Electrospinning is one of the most used processes for the production of nanofibers, due to its simplicity and versatility. This paper presents the current state of the melt electrospinning, which is less used than the solution electrospinning but which is the only way of electrospinning polymers with very limited solubility and high electrical resistivity such as polyolefins. The advantages of melt electrospinning, as well as the constraints of this method, are reviewed, and the factors that influence the process are described. The paper are presented the main applicability domains of nanofibers obtained in this way and the prospects of future development.
Application of remote sensing to state and regional problems. [mississippi
NASA Technical Reports Server (NTRS)
Miller, W. F.; Powers, J. S.; Clark, J. R.; Solomon, J. L.; Williams, S. G. (Principal Investigator)
1981-01-01
The methods and procedures used, accomplishments, current status, and future plans are discussed for each of the following applications of LANDSAT in Mississippi: (1) land use planning in Lowndes County; (2) strip mine inventory and reclamation; (3) white-tailed deer habitat evaluation; (4) remote sensing data analysis support systems; (5) discrimination of unique forest habitats in potential lignite areas; (6) changes in gravel operations; and (7) determining freshwater wetlands for inventory and monitoring. The documentation of all existing software and the integration of the image analysis and data base software into a single package are now considered very high priority items.
Nanoparticle based tailoring of adjuvant function: the role in vaccine development.
Prashant, Chandravilas Keshvan; Kumar, Manoj; Dinda, Amit Kumar
2014-09-01
Vaccination is one of the most powerful therapeutic tools for prevention and management of various infective and non-infective diseases including malignancy. Mass vaccination is a great strategy for eradicating major infectious diseases throughout the world like small pox. Application of nanotechnology for antigen delivery is a unique area of research and development which can change the vaccination strategy and policy in future. Nanocarriers can enhance antigen presentation including modulation of antigen processing pathways according to the specific need. The current review explores the pros and cons of application of different nanomaterials for antigen presentation and vaccine development.
A Review of Carbon Nanomaterials' Synthesis via the Chemical Vapor Deposition (CVD) Method.
Manawi, Yehia M; Samara, Ayman; Al-Ansari, Tareq; Atieh, Muataz A
2018-05-17
Carbon nanomaterials have been extensively used in many applications owing to their unique thermal, electrical and mechanical properties. One of the prime challenges is the production of these nanomaterials on a large scale. This review paper summarizes the synthesis of various carbon nanomaterials via the chemical vapor deposition (CVD) method. These carbon nanomaterials include fullerenes, carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene, carbide-derived carbon (CDC), carbon nano-onion (CNO) and MXenes. Furthermore, current challenges in the synthesis and application of these nanomaterials are highlighted with suggested areas for future research.
Advances in Computational Capabilities for Hypersonic Flows
NASA Technical Reports Server (NTRS)
Kumar, Ajay; Gnoffo, Peter A.; Moss, James N.; Drummond, J. Philip
1997-01-01
The paper reviews the growth and advances in computational capabilities for hypersonic applications over the period from the mid-1980's to the present day. The current status of the code development issues such as surface and field grid generation, algorithms, physical and chemical modeling, and validation is provided. A brief description of some of the major codes being used at NASA Langley Research Center for hypersonic continuum and rarefied flows is provided, along with their capabilities and deficiencies. A number of application examples are presented, and future areas of research to enhance accuracy, reliability, efficiency, and robustness of computational codes are discussed.
Evolution of a standard microprocessor-based space computer
NASA Technical Reports Server (NTRS)
Fernandez, M.
1980-01-01
An existing in inventory computer hardware/software package (B-1 RFS/ECM) was repackaged and applied to multiple missile/space programs. Concurrent with the application efforts, low risk modifications were made to the computer from program to program to take advantage of newer, advanced technology and to meet increasingly more demanding requirements (computational and memory capabilities, longer life, and fault tolerant autonomy). It is concluded that microprocessors hold promise in a number of critical areas for future space computer applications. However, the benefits of the DoD VHSIC Program are required and the old proliferation problem must be revised.
A Review of Carbon Nanomaterials’ Synthesis via the Chemical Vapor Deposition (CVD) Method
Manawi, Yehia M.; Samara, Ayman; Al-Ansari, Tareq; Atieh, Muataz A.
2018-01-01
Carbon nanomaterials have been extensively used in many applications owing to their unique thermal, electrical and mechanical properties. One of the prime challenges is the production of these nanomaterials on a large scale. This review paper summarizes the synthesis of various carbon nanomaterials via the chemical vapor deposition (CVD) method. These carbon nanomaterials include fullerenes, carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene, carbide-derived carbon (CDC), carbon nano-onion (CNO) and MXenes. Furthermore, current challenges in the synthesis and application of these nanomaterials are highlighted with suggested areas for future research. PMID:29772760
Sol Gel-Derived SBA-16 Mesoporous Material
Rivera-Muñoz, Eric M.; Huirache-Acuña, Rafael
2010-01-01
The aim of this article is to review current knowledge related to the synthesis and characterization of sol gel-derived SBA-16 mesoporous silicas, as well as a review of the state of the art in this issue, to take stock of knowledge about current and future applications. The ease of the method of preparation, the orderly structure, size and shape of their pores and control, all these achievable through simple changes in the method of synthesis, makes SBA-16 a very versatile material, potentially applicable in many areas of science and molecular engineering of materials. PMID:20957080
Aerospace clinical psychology and its role in serving practitioners of hazardous activities.
King, R
1999-04-01
Aerospace clinical psychology is defined as a special application of psychology to the hazardous and stressful occupations associated with aviation and space flight. Aerospace clinical psychological services usually are offered on a unit or organizational level, though interventions can be designed for individuals and their families. The application of aerospace clinical psychology to the "failing aviator" is described and the current status of the field is provided. The roles of flight surgeons and mental health providers are explained. Associations between poor pilot coping skills and failure at crew resource management are explored. Areas for future research are detailed.
NASA Technical Reports Server (NTRS)
Miller, L. D.; Tom, C.; Nualchawee, K.
1977-01-01
A tropical forest area of Northern Thailand provided a test case of the application of the approach in more natural surroundings. Remote sensing imagery subjected to proper computer analysis has been shown to be a very useful means of collecting spatial data for the science of hydrology. Remote sensing products provide direct input to hydrologic models and practical data bases for planning large and small-scale hydrologic developments. Combining the available remote sensing imagery together with available map information in the landscape model provides a basis for substantial improvements in these applications.
Pisano, L; Zumpano, V; Malek, Ž; Rosskopf, C M; Parise, M
2017-12-01
Land cover is one of the most important conditioning factors in landslide susceptibility analysis. Usually it is considered as a static factor, but it has proven to be dynamic, with changes occurring even in few decades. In this work the influence of land cover changes on landslide susceptibility are analyzed for the past and for future scenarios. For the application, an area representative of the hilly-low mountain sectors of the Italian Southern Apennines was chosen (Rivo basin, in Molise Region). With this purpose landslide inventories and land cover maps were produced for the years 1954, 1981 and 2007. Two alternative future scenarios were created for 2050, one which follows the past trend (2050-trend), and another one more extreme, foreseeing a decrease of forested and cultivated areas (2050-alternative). The landslide susceptibility analysis was performed using the Spatial Multi-Criteria Evaluation method for different time steps, investigating changes to susceptibility over time. The results show that environmental dynamics, such as land cover change, affect slope stability in time. In fact there is a decrease of susceptibility in the past and in the future 2050-trend scenario. This is due to the increase of forest or cultivated areas, that is probably determined by a better land management, water and soil control respect to other land cover types such as shrubland, pasture or bareland. Conversely the results revealed by the alternative scenario (2050-alternative), show how the decrease in forest and cultivated areas leads to an increase in landslide susceptibility. This can be related to the assumed worst climatic condition leading to a minor agricultural activity and lower extension of forested areas, possibly associated also to the effects of forest fires. The results suggest that conscious landscape management might contribute to determine a significant reduction in landslide susceptibility. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sperotto, Anna; Torresan, Silvia; Gallina, Valentina; Coppola, Erika; Critto, Andrea; Marcomini, Antonio
2015-04-01
Global climate change is expected to affect the intensity and frequency of extreme events (e.g. heat waves, drought, heavy precipitations events) leading to increasing natural disasters and damaging events (e.g. storms, pluvial floods and coastal flooding) worldwide. Especially in urban areas, disasters risks can be exacerbated by changes in exposure and vulnerability patterns (i.e. urbanization, population growth) and should be addressed by adopting a multi-disciplinary approach. A Regional Risk Assessment (RRA) methodology integrating climate and environmental sciences with bottom-up participative processes was developed and applied to the urban territory of the municipality of Venice in order to evaluate the potential consequences of climate change on pluvial flood risk in urban areas. Based on the consecutive analysis of hazard, exposure, vulnerability and risks, the RRA methodology is a screening risk tool to identify and prioritize major elements at risk (e.g. residential, commercial areas and infrastructures) and to localize sub-areas that are more likely to be affected by flood risk due to heavy precipitation events, in the future scenario (2041-2050). From the early stages of its development and application, the RRA followed a bottom-up approach to select and score site-specific vulnerability factors (e.g. slope, permeability of the soil, past flooded areas) and to consider the requests and perspectives of local stakeholders of the North Adriatic region, by means of interactive workshops, surveys and discussions. The main outputs of the assessment are risk and vulnerability maps and statistics aimed at increasing awareness about the potential effect of climate change on pluvial flood risks and at identifying hot-spot areas where future adaptation actions should be required to decrease physical-environmental vulnerabilities or building resilience and coping capacity of human society to climate change. The overall risk assessment methodology and the results of its application to the territory of the municipality of Venice will be here presented and discussed.
Space Biotech: Hindsight, Insight, Foresight
NASA Technical Reports Server (NTRS)
Harper, Lynn
2015-01-01
Over the past forty years, microgravity has inspired and enabled applications in a wide range of sectors including medicine, materials, computers, communications, and national defense. Trends show that demand for high-tech solutions is increasing in these sectors, solutions that require higher resolution, greater precision, novel materials, innovative processes, and more sophisticated tools. These are areas where microgravity can offer unique capabilities for innovation. The Emerging Space Office (ESO) has engaged in multiple studies over the past year that have found that microgravity RD is one of the most promising technology areas for contributing to economic growth and to NASAs mission. The focus of these studies was on terrestrial markets rather than NASA applications, applied research rather than basic research, and commercial rather than academic investigators. There have been more success stories than are generally appreciated and there are significant areas of promising future potential. Many of the problems that have limited commercial microgravity development in the past are being solved. Microgravity research and development (RD) requires iteration and learning, as rapidly as possible. New technologies enable high throughput and rapid data collection in increasingly small payloads. The International Space Station is in orbit and provides a laboratory that is available 247 at least until 2024. Frequent flights by commercial space providers to and from the ISS now enable the fast learning cycles needed by high-tech industries. Launch costs are decreasing and the ability to return payloads to Earth is increasing. New commercial space laboratories, such as those being developed by SpaceX and Bigelow Aerospace, are in the final stages of development and testing. This ecosystem for microgravity RD has never been available before. These are game-changer conditions for attracting high-tech industries to space for terrestrial, as well as NASA, applications. However, few know that these capabilities are available or how to use them. In aggregate, the potential value for new applications from microgravity RD over the next ten years could add billions of dollars per year in terrestrial applications to the future economy, create new jobs, and generate a wide range of public benefits in medical advances, while broadening the customer base for the emerging space industry.
PREFACE: International Conference on Structural Nano Composites (NANOSTRUC 2012)
NASA Astrophysics Data System (ADS)
Njuguna, James
2012-09-01
Dear Colleagues It is a great pleasure to welcome you to NanoStruc2012 at Cranfield University. The purpose of the 2012 International Conference on Structural Nano Composites (NanoStruc2012) is to promote activities in various areas of materials and structures by providing a forum for exchange of ideas, presentation of technical achievements and discussion of future directions. NanoStruc brings together an international community of experts to discuss the state-of-the-art, new research results, perspectives of future developments, and innovative applications relevant to structural materials, engineering structures, nanocomposites, modelling and simulations, and their related application areas. The conference is split in 7 panel sessions, Metallic Nanocomposites and Coatings, Silica based Nanocomposites, safty of Nanomaterials, Carboin based Nanocomposites, Multscale Modelling, Bio materials and Application of Nanomaterials. All accepted Papers will be published in the IOP Conference Series: Materials Science and Engineering (MSE), and included in the NanoStruc online digital library. The abstracts will be indexed in Scopus, Compedex, Inspec, INIS (International Nuclear Information System), Chemical Abstracts, NASA Astrophysics Data System and Polymer Library. Before ending this message, I would like to acknowledge the hard work, professional skills and efficiency of the team which ensured the general organisation. As a conclusion, I would like to Welcome you to the Nanostruc2012 and wish you a stimulating Conference and a wonderful time. On behalf of the scientific committee, Signature James Njuguna Conference Chair The PDF of this preface also contains committee listings and associates logos.
Building Design Guidelines for Solar Energy Technologies
DOE R&D Accomplishments Database
Givoni, B.
1989-01-01
There are two main objectives to this publication. The first is to find out the communalities in the experience gained in previous studies and in actual applications of solar technologies in buildings, residential as well as nonresidential. The second objective is to review innovative concepts and products which may have an impact on future developments and applications of solar technologies in buildings. The available information and common lessons were collated and presented in a form which, hopefully, is useful for architects and solar engineers, as well as for teachers of "solar architecture" and students in Architectural Schools. The publication is based mainly on the collection and analysis of relevant information. The information included previous studies in which the performance of solar buildings was evaluated, as well as the personal experience of the Author and the research consultants. The state of the art, as indicated by these studies and personal experience, was summarized and has served as basis for the development of the Design Guidelines. In addition to the summary of the state of the art, as was already applied in solar buildings, an account was given of innovative concepts and products. Such innovations have occurred in the areas of thermal storage by Phase Change Materials (PCM) and in glazing with specialized or changeable properties. Interesting concepts were also developed for light transfer, which may enable to transfer sunlight to the core areas of large multi story nonresidential buildings. These innovations may have a significant impact on future developments of solar technologies and their applications in buildings.
From nZVI to SNCs: development of a better material for pollutant removal in water.
Fang, Ying; Wen, Jia; Zeng, Guangming; Shen, Maocai; Cao, Weicheng; Gong, Jilai; Zhang, Yaxin
2018-03-01
Nanoscale zero-valent iron (nZVI), with its reductive potentials and wide availability, offers degradative remediation for environmental pollutants. However, weaknesses such as easy aggregation, easy oxidation, and nanoscale size have hindered its further applications in the environment to some extent. Therefore, various supported nZVI composites (SNCs) with higher dispersibility, enhanced water stability, and tunable size have been developed to overcome the weaknesses. SNCs family is a great alternative for water purification applications that require high removal efficiency and rapid kinetics, as a result of their multifunctional properties and magnetic separation capacity. In this review, we compare the advantages of SNCs to nZVI for pollutant removal in water, discuss for the first time the synthetic techniques of obtaining SNCs, and analyze the influencing factors and mechanisms associated with the removal of some typical hazardous pollutants (e.g., dyes, heavy metals, nitrogen, and phosphorus) using SNCs. Moreover, limitations and future research needs of such material are discussed. More attention should be paid to the evaluation of toxicity, development of green synthetic routes, and potential application areas of such materials in future research.
Physics through the 1990s: Scientific interfaces and technological applications
NASA Technical Reports Server (NTRS)
1986-01-01
The volume examines the scientific interfaces and technological applications of physics. Twelve areas are dealt with: biological physics-biophysics, the brain, and theoretical biology; the physics-chemistry interface-instrumentation, surfaces, neutron and synchrotron radiation, polymers, organic electronic materials; materials science; geophysics-tectonics, the atmosphere and oceans, planets, drilling and seismic exploration, and remote sensing; computational physics-complex systems and applications in basic research; mathematics-field theory and chaos; microelectronics-integrated circuits, miniaturization, future trends; optical information technologies-fiber optics and photonics; instrumentation; physics applications to energy needs and the environment; national security-devices, weapons, and arms control; medical physics-radiology, ultrasonics, MNR, and photonics. An executive summary and many chapters contain recommendations regarding funding, education, industry participation, small-group university research and large facility programs, government agency programs, and computer database needs.
Biotechnology of siderophores in high-impact scientific fields.
De Serrano, Luis O
2017-09-26
Different aspects of bacterial and fungal siderophore biotechnological applications will be discussed. Areas of application presented include, but are not limited to agriculture, medicine, pharmacology, bioremediation, biodegradation and food industry. In agriculture-related applications, siderophores could be employed to enhance plant growth due to their uptake by rhizobia. Siderophores hindered the presence of plant pathogens in biocontrol strategies. Bioremediation studies on siderophores discuss mostly the mobilization of heavy metals and radionuclides; the emulsifying effects of siderophore-producing microorganisms in oil-contaminated environments are also presented. The different applications found in literature based in medicine and pharmacological approaches range from iron overload to drug delivery systems and, more recently, vaccines. Additional research should be done in siderophore production and their metabolic relevance to have a deeper understanding for future biotechnological advances.
Advanced optical network architecture for integrated digital avionics
NASA Astrophysics Data System (ADS)
Morgan, D. Reed
1996-12-01
For the first time in the history of avionics, the network designer now has a choice in selecting the media that interconnects the sources and sinks of digital data on aircraft. Electrical designs are already giving way to photonics in application areas where the data rate times distance product is large or where special design requirements such as low weight or EMI considerations are critical. Future digital avionic architectures will increasingly favor the use of photonic interconnects as network data rates of one gigabit/second and higher are needed to support real-time operation of high-speed integrated digital processing. As the cost of optical network building blocks is reduced and as temperature-rugged laser sources are matured, metal interconnects will be forced to retreat to applications spanning shorter and shorter distances. Although the trend is already underway, the widespread use of digital optics will first occur at the system level, where gigabit/second, real-time interconnects between sensors, processors, mass memories and displays separated by a least of few meters will be required. The application of photonic interconnects for inter-printed wiring board signalling across the backplane will eventually find application for gigabit/second applications since signal degradation over copper traces occurs before one gigabit/second and 0.5 meters are reached. For the foreseeable future however, metal interconnects will continue to be used to interconnect devices on printed wiring boards since 5 gigabit/second signals can be sent over metal up to around 15 centimeters. Current-day applications of optical interconnects at the system level are described and a projection of how advanced optical interconnect technology will be driven by the use of high speed integrated digital processing on future aircraft is presented. The recommended advanced network for application in the 2010 time frame is a fiber-based system with a signalling speed of around 2-3 gigabits per second. This switch-based unified network will interconnect sensors, displays, mass memory and controls and displays to computer modules within the processing complex. The characteristics of required building blocks needed for the future are described. These building blocks include the fiber, an optical switch, a laser-based transceiver, blind-mate connectors and an optical backplane.
Application of 3D Spatio-Temporal Data Modeling, Management, and Analysis in DB4GEO
NASA Astrophysics Data System (ADS)
Kuper, P. V.; Breunig, M.; Al-Doori, M.; Thomsen, A.
2016-10-01
Many of todaýs world wide challenges such as climate change, water supply and transport systems in cities or movements of crowds need spatio-temporal data to be examined in detail. Thus the number of examinations in 3D space dealing with geospatial objects moving in space and time or even changing their shapes in time will rapidly increase in the future. Prominent spatio-temporal applications are subsurface reservoir modeling, water supply after seawater desalination and the development of transport systems in mega cities. All of these applications generate large spatio-temporal data sets. However, the modeling, management and analysis of 3D geo-objects with changing shape and attributes in time still is a challenge for geospatial database architectures. In this article we describe the application of concepts for the modeling, management and analysis of 2.5D and 3D spatial plus 1D temporal objects implemented in DB4GeO, our service-oriented geospatial database architecture. An example application with spatio-temporal data of a landfill, near the city of Osnabrück in Germany demonstrates the usage of the concepts. Finally, an outlook on our future research focusing on new applications with big data analysis in three spatial plus one temporal dimension in the United Arab Emirates, especially the Dubai area, is given.
Reports of planetary astronomy, 1985
NASA Technical Reports Server (NTRS)
1986-01-01
This is a compilation of abstracts of reports from Principal Investigators funded through NASA's Planetary Astronomy Program, Office of Space Science and Applications. The purpose is to provide a document which succinctly summarizes work conducted in this program for 1985. Each report contains a brief statement on the strategy of investigation and lists significant accomplishments within the area of the author's funded grant or contract, plans for future work, and publications.
Reports of planetary astronomy, 1986
NASA Technical Reports Server (NTRS)
1987-01-01
A compilation of abstracts of reports from Principal Investigators funded through NASA's Planetary Astronomy Program, Office of Space Science and Applications, is presented. The purpose is to provide a document which succinctly summarizes work conducted in this program for 1986. Each report contains a brief statement on the strategy of investigation and lists significant accomplishments within the area of the author's funded grant or contract, plans for future work, and publications.
ERIC Educational Resources Information Center
Howell, Bob A.
2017-01-01
The impact of polymeric materials on the well-being of citizens of the modern world is enormous. These materials enhance virtually every facet of life--from clothing and personal care items to housing and transportation. Yet despite this, and the fact that most chemists work in a polymer or polymer-related area, polymeric materials have…
ERIC Educational Resources Information Center
Council of Europe, Strasbourg (France). Committee for Out-of-School Education and Cultural Development.
This 2-part report summarizes the Council of Europe's 1977 colloquy on cable television, local radio, and video, and presents the chairman's report on media and public usefulness. Problem areas addressed in the section on public service applications of the media include ensuring public access to the media, financing local radio and television,…
Development and tests of MCP based timing and multiplicity detector for MIPs
NASA Astrophysics Data System (ADS)
Feofilov, G.; Kondratev, V.; Stolyarov, O.; Tulina, T.; Valiev, F.; Vinogradov, L.
2017-01-01
We present summary of technological developments and tests of the MCP based large area detector aimed at precise timing and charged particles multiplicity measurements. Results obtained in course of these developments of isochronous (simultaneity) precise signal readout, passive summation of 1 ns signals, fast (1 GHz) front-end electronics, miniature vacuum systems, etc. could be potentially interesting for a number of future applications in different fields.
Thermal batteries: A technology review and future directions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guidotti, R.A.
Thermally activated (``thermal``) batteries have been used for ordnance applications (e.g., proximity fuzes) since World War II and, subsequent to that, in nuclear weapons. This technology was developed by the Germans as a power source for their V2 rockets. It was obtained by the Allies by interrogation of captured German scientists after the war. The technology developed rapidly from the initial primitive systems used by the Germans to one based on Ca/CaCrO{sub 4}. This system was used very successfully into the late 1970s, when it was replaced by the Li-alloy/FeS{sub 2} electrochemical system. This paper describes the predominant electrochemical couplesmore » that have been used in thermal batteries over the years. Major emphasis is placed on the chemistry and electrochemistry of the Ca/CaCrO{sub 4} and Li-alloy/FeS{sub 2} systems. The reason for this is to give the reader a better appreciation for the advances in thermal-battery technology for which these two systems are directly responsible. Improvements to date in the current Li-alloy/FeS{sub 2} and related systems are discussed and areas for possible future research and development involving anodes, cathodes, electrolytes, and insulations are outlined. New areas where thermal-battery technology has potential applications are also examined.« less
Loranthus ferrugineus: a Mistletoe from Traditional Uses to Laboratory Bench
Omar Z., Ameer; Ibrahim M., Salman; Ko Jin, Quek; Mohd. Z., Asmawi
2015-01-01
Objectives: Loranthus ferrugineus (L. ferrugineus) from Loranthaceae, a mistletoe, is a medicinal herb used for a variety of human ailments. Traditionally, decoctions of this parasitic shrub have been mainly used to treat high blood pressure (BP) and gastrointestinal complaints; usage which is supported by experimental based pharmacological investigations. Nonetheless, there is still limited data available evaluating this plant’s traditions, and few studies have been scientifically translated toward evidence based phytomedicine. We therefore provide a concise review of the currently available L. ferrugineus literature and discuss potential directions for future areas of investigation. Methods: We surveyed available literature covering ethnopharmacological usage of L. ferrugineus and discussed relevant findings, including important future directions and shortcomings for the medicinal values of this parasitic shrub. Results: Evidence based pharmacological approaches significantly covered the medicinal application of L. ferrugineus for hypertension and gastrointestinal complaint management, with a particular focus on the active hydrophilic extract of this herb. Conclusion: Understanding the sites of action of this plant and its beneficial effects will provide justification for its use in old traditional treatments, and potentially lead to the development of therapies. Other medicinal applicative areas of this parasitic shrub, such as wound healing, gerontological effects, and antiviral and anticancer activities, are yet to be researched. PMID:25830054
Goovaerts, P; Albuquerque, Teresa; Antunes, Margarida
2016-11-01
This paper describes a multivariate geostatistical methodology to delineate areas of potential interest for future sedimentary gold exploration, with an application to an abandoned sedimentary gold mining region in Portugal. The main challenge was the existence of only a dozen gold measurements confined to the grounds of the old gold mines, which precluded the application of traditional interpolation techniques, such as cokriging. The analysis could, however, capitalize on 376 stream sediment samples that were analyzed for twenty two elements. Gold (Au) was first predicted at all 376 locations using linear regression (R 2 =0.798) and four metals (Fe, As, Sn and W), which are known to be mostly associated with the local gold's paragenesis. One hundred realizations of the spatial distribution of gold content were generated using sequential indicator simulation and a soft indicator coding of regression estimates, to supplement the hard indicator coding of gold measurements. Each simulated map then underwent a local cluster analysis to identify significant aggregates of low or high values. The one hundred classified maps were processed to derive the most likely classification of each simulated node and the associated probability of occurrence. Examining the distribution of the hot-spots and cold-spots reveals a clear enrichment in Au along the Erges River downstream from the old sedimentary mineralization.
Masbruch, Melissa D.; Brooks, Lynette E.
2017-04-14
Several U.S. Department of Interior (DOI) agencies are concerned about the cumulative effects of groundwater development on groundwater resources managed by, and other groundwater resources of interest to, these agencies in Snake Valley and surrounding areas. The new water uses that potentially concern the DOI agencies include 12 water-right applications filed in 2005, totaling approximately 8,864 acre-feet per year. To date, only one of these applications has been approved and partially developed. In addition, the DOI agencies are interested in the potential effects of three new water-right applications (UT 18-756, UT 18-758, and UT 18-759) and one water-right change application (UT a40687), which were the subject of a water-right hearing on April 19, 2016.This report presents a hydrogeologic analysis of areas in and around Snake Valley to assess potential effects of existing and future groundwater development on groundwater resources, specifically groundwater discharge sites, of interest to the DOI agencies. A previously developed steady-state numerical groundwater-flow model was modified to transient conditions with respect to well withdrawals and used to quantify drawdown and capture (withdrawals that result in depletion) of natural discharge from existing and proposed groundwater withdrawals. The original steady-state model simulates and was calibrated to 2009 conditions. To investigate the potential effects of existing and proposed groundwater withdrawals on the groundwater resources of interest to the DOI agencies, 10 withdrawal scenarios were simulated. All scenarios were simulated for periods of 5, 10, 15, 30, 55, and 105 years from the start of 2010; additionally, all scenarios were simulated to a new steady state to determine the ultimate long-term effects of the withdrawals. Capture maps were also constructed as part of this analysis. The simulations used to develop the capture maps test the response of the system, specifically the reduction of natural discharge, to future stresses at a point in the area represented by the model. In this way, these maps can be used as a tool to determine the source of water to, and potential effects at specific areas from, future well withdrawals.Downward trends in water levels measured in wells indicate that existing groundwater withdrawals in Snake Valley are affecting water levels. The numerical model simulates similar downward trends in water levels; simulated drawdowns in the model, however, are generally less than observed water-level declines. At the groundwater discharge sites of interest to the DOI agencies, simulated drawdowns from existing well withdrawals (projected into the future) range from 0 to about 50 feet. Following the addition of the proposed withdrawals, simulated drawdowns at some sites increase by 25 feet. Simulated drawdown resulting from the proposed withdrawals began in as few as 5 years after 2014 at several of the sites. At the groundwater discharge sites of interest to the DOI agencies, simulated capture of natural discharge resulting from the existing withdrawals ranged from 0 to 87 percent. Following the addition of the proposed withdrawals, simulated capture at several of the sites reached 100 percent, indicating that groundwater discharge at that site would cease. Simulated capture following the addition of the proposed withdrawals increased in as few as 5 years after 2014 at several of the sites.
Locally-Adaptive, Spatially-Explicit Projection of U.S. Population for 2030 and 2050
McKee, Jacob J.; Rose, Amy N.; Bright, Eddie A.; ...
2015-02-03
Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Moreover, knowing the spatial distribution of future population allows for increased preparation in the event of an emergency. Building on the spatial interpolation technique previously developed for high resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically-informed spatial distribution of the projected population of the contiguous U.S. for 2030 and 2050. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection modelmore » departs from these by accounting for multiple components that affect population distribution. Modelled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the U.S. Census s projection methodology with the U.S. Census s official projection as the benchmark. Applications of our model include, but are not limited to, suitability modelling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.« less
Locally-Adaptive, Spatially-Explicit Projection of U.S. Population for 2030 and 2050
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKee, Jacob J.; Rose, Amy N.; Bright, Eddie A.
Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Moreover, knowing the spatial distribution of future population allows for increased preparation in the event of an emergency. Building on the spatial interpolation technique previously developed for high resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically-informed spatial distribution of the projected population of the contiguous U.S. for 2030 and 2050. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection modelmore » departs from these by accounting for multiple components that affect population distribution. Modelled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the U.S. Census s projection methodology with the U.S. Census s official projection as the benchmark. Applications of our model include, but are not limited to, suitability modelling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.« less
A Distribution Level Wide Area Monitoring System for the Electric Power Grid–FNET/GridEye
Liu, Yong; You, Shutang; Yao, Wenxuan; ...
2017-02-09
The wide area monitoring system (WAMS) is considered a pivotal component of future electric power grids. As a pilot WAMS that has been operated for more than a decade, the frequency monitoring network FNET/GridEye makes use of hundreds of global positioning system-synchronized phasor measurement sensors to capture the increasingly complicated grid behaviors across the interconnected power systems. In this paper, the FNET/GridEye system is overviewed and its operation experiences in electric power grid wide area monitoring are presented. Particularly, the implementation of a number of data analytics applications will be discussed in details. FNET/GridEye lays a firm foundation for themore » later WAMS operation in the electric power industry.« less
NASA Astrophysics Data System (ADS)
Sheate, William R.; Partidário, Maria Rosário Do; Byron, Helen; Bina, Olivia; Dagg, Suzan
2008-02-01
BioScene (scenarios for reconciling biodiversity conservation with declining agriculture use in mountain areas in Europe) was a three-year project (2002 2005) funded by the European Union’s Fifth Framework Programme, and aimed to investigate the implications of agricultural restructuring and decline for biodiversity conservation in the mountain areas of Europe. The research took a case study approach to the analysis of the biodiversity processes and outcomes of different scenarios of agri-environmental change in six countries (France, Greece, Norway, Slovakia, Switzerland, and the United Kingdom) covering the major biogeographical regions of Europe. The project was coordinated by Imperial College London, and each study area had a multidisciplinary team including ecologists and social and economic experts, which sought a comprehensive understanding of the drivers for change and their implications for sustainability. A key component was the sustainability assessment (SA) of the alternative scenarios. This article discusses the development and application of the SA methodology developed for BioScene. While the methodology was objectives-led, it was also strongly grounded in baseline ecological and socio-economic data. This article also describes the engagement of stakeholder panels in each study area and the use of causal chain analysis for understanding the likely implications for land use and biodiversity of strategic drivers of change under alternative scenarios for agriculture and rural policy and for biodiversity management. Finally, this article draws conclusions for the application of SA more widely, its use with scenarios, and the benefits of stakeholder engagement in the SA process.
NASA Technical Reports Server (NTRS)
Barnett, Gregory; Bullard, David B.
2015-01-01
The last several years have witnessed a significant advancement in the area of additive manufacturing technology. One area that has seen substantial expansion in application has been laser sintering (or melting) in a powder bed. This technology is often termed 3D printing or various acronyms that may be industry, process, or company specific. Components manufactured via 3D printing have the potential to significantly reduce development and fabrication time and cost. The usefulness of 3D printed components is influenced by several factors such as material properties and surface roughness. This paper details three injectors that were designed, fabricated, and tested in order to evaluate the utility of 3D printed components for rocket engine applications. The three injectors were tested in a hot-fire environment with chamber pressures of approximately 1400 psia. One injector was a 28 element design printed by Directed Manufacturing. The other two injectors were identical 40 element designs printed by Directed Manufacturing and Solid Concepts. All the injectors were swirl-coaxial designs and were subscale versions of a full-scale injector currently in fabrication. The test and evaluation programs for the 28 element and 40 element injectors provided a substantial amount of data that confirms the feasibility of 3D printed parts for future applications. The operating conditions of previously tested, conventionally manufactured injectors were reproduced in the 28 and 40 element programs in order to contrast the performance of each. Overall, the 3D printed injectors demonstrated comparable performance to the conventionally manufactured units. The design features of the aforementioned injectors can readily be implemented in future applications with a high degree of confidence.
Future Directions in Computer Graphics and Visualization: From CG&A's Editorial Board
DOE Office of Scientific and Technical Information (OSTI.GOV)
Encarnacao, L. M.; Chuang, Yung-Yu; Stork, Andre
2015-01-01
With many new members joining the CG&A editorial board over the past year, and with a renewed commitment to not only document the state of the art in computer graphics research and applications but to anticipate and where possible foster future areas of scientific discourse and industrial practice, we asked editorial and advisory council members about where they see their fields of expertise going. The answers compiled here aren’t meant to be all encompassing or deterministic when it comes to the opportunities computer graphics and interactive visualization hold for the future. Instead, we aim to accomplish two things: give amore » more in-depth introduction of members of the editorial board to the CG&A readership and encourage cross-disciplinary discourse toward approaching, complementing, or disputing the visions laid out in this compilation.« less
Double-shell target fabrication workshop-2016 report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y. Morris; Oertel, John; Farrell, Michael
On June 30, 2016, over 40 representatives from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), General Atomics (GA), Laboratory for Laser Energetics (LLE), Schafer Corporation, and NNSA headquarter attended a double-shell (DS) target fabrication workshop at Livermore, California. Pushered-single-shell (PSS) and DS metalgas platforms potentially have a large impact on programmatic applications. The goal of this focused workshop is to bring together target fabrication scientists, physicists, and designers to brainstorm future PSS and DS target fabrication needs and strategies. This one-day workshop intends to give an overall view of historical information, recent approaches, and future research activitiesmore » at each participating organization. Five topical areas have been discussed that are vital to the success of future DS target fabrications, including inner metal shells, foam spheres, outer ablators, fill tube assembly, and metrology.« less
A systematic analysis of influenza vaccine shortage policies.
Uscher-Pines, Lori; Barnett, Daniel J; Sapsin, Jason W; Bishai, David M; Balicer, Ran D
2008-02-01
The aim of this study was to apply SWOT analysis (strengths, weaknesses, opportunities, threats) to a domestic shortage of influenza vaccine, to identify lessons learned, and to generate effective solutions for future public health rationing emergencies. SWOT and TOWS techniques were employed to characterize the vulnerability of the USA to disruptions in the supply of influenza vaccine. A group of five researchers reviewed relevant literature, engaged in group brainstorming, and categorized elements according to the SWOT framework. Three strengths, five weaknesses, five threats and seven opportunities were identified in the areas of vaccine production, purchasing and distribution, and provision. Four future recommendations emerged with respect to government investment, communications, sanctioning of physicians, and incident command. Application of the SWOT technique is highly relevant to the health policy realm and can assist public health planners in planning for future resource scarcity.
NASA Astrophysics Data System (ADS)
Brelsford, Christa; Shepherd, Doug
2013-09-01
In desert cities, securing sufficient water supply to meet the needs of both existing population and future growth is a complex problem with few easy solutions. Grass lawns are a major driver of water consumption and accurate measurements of vegetation area are necessary to understand drivers of changes in household water consumption. Measuring vegetation change in a heterogeneous urban environment requires sub-pixel estimation of vegetation area. Mixture Tuned Match Filtering has been successfully applied to target detection for materials that only cover small portions of a satellite image pixel. There have been few successful applications of MTMF to fractional area estimation, despite theory that suggests feasibility. We use a ground truth dataset over ten times larger than that available for any previous MTMF application to estimate the bias between ground truth data and matched filter results. We find that the MTMF algorithm underestimates the fractional area of vegetation by 5-10%, and calculate that averaging over 20 to 30 pixels is necessary to correct this bias. We conclude that with a large ground truth dataset, using MTMF for fractional area estimation is possible when results can be estimated at a lower spatial resolution than the base image. When this method is applied to estimating vegetation area in Las Vegas, NV spatial and temporal trends are consistent with expectations from known population growth and policy goals.
NASA Astrophysics Data System (ADS)
Testan, Peter R.
1987-04-01
A number of Color Hard Copy (CHC) market drivers are currently indicating strong growth in the use of CHC technologies for the business graphics marketplace. These market drivers relate to product, software, color monitors and color copiers. The use of color in business graphics allows more information to be relayed than is normally the case in a monochrome format. The communicative powers of full-color computer generated output in the business graphics application area will continue to induce end users to desire and require color in their future applications. A number of color hard copy technologies will be utilized in the presentation graphics arena. Thermal transfer, ink jet, photographic and electrophotographic technologies are all expected to be utilized in the business graphics presentation application area in the future. Since the end of 1984, the availability of color application software packages has grown significantly. Sales revenue generated by business graphics software is expected to grow at a compound annual growth rate of just over 40 percent to 1990. Increased availability of packages to allow the integration of text and graphics is expected. Currently, the latest versions of page description languages such as Postscript, Interpress and DDL all support color output. The use of color monitors will also drive the demand for color hard copy in the business graphics market place. The availability of higher resolution screens is allowing color monitors to be easily used for both text and graphics applications in the office environment. During 1987, the sales of color monitors are expected to surpass the sales of monochrome monitors. Another major color hard copy market driver will be the color copier. In order to take advantage of the communications power of computer generated color output, multiple copies are required for distribution. Product introductions of a new generation of color copiers is now underway with additional introductions expected during 1987. The color hard copy market continues to be in a state of constant change, typical of any immature market. However, much of the change is positive. During 1985, the color hard copy market generated 1.2 billion. By 1990, total market revenue is expected to exceed 5.5 billion. The business graphics CHC application area is expected to grow at a compound annual growth rate greater than 40 percent to 1990.
Study of Civil Markets for Heavy-Lift Airships
NASA Technical Reports Server (NTRS)
Mettam, P. J.; Hansen, D.; Chabot, C.; Byrne, R.
1978-01-01
The civil markets for heavy lift airships (HLAs) were defined by first identifying areas of most likely application. The operational suitability of HLAs for the applications identified were then assessed. The operating economics of HLAs were established and the market size for HLA services estimated by comparing HLA operating and economic characteristics with those of competing modes. The sensitivities of the market size to HLA characteristics were evaluated and the number and sizes of the vehicles required to service the more promising markets were defined. Important characteristics for future HLAs are discussed that were derived from the study of each application, including operational requirements, features enhancing profitability, military compatibility, improved design requirements, approach to entry into service, and institutional implications for design and operation.
Spirulina in Clinical Practice: Evidence-Based Human Applications
Karkos, P. D.; Leong, S. C.; Karkos, C. D.; Sivaji, N.; Assimakopoulos, D. A.
2011-01-01
Spirulina or Arthrospira is a blue-green alga that became famous after it was successfully used by NASA as a dietary supplement for astronauts on space missions. It has the ability to modulate immune functions and exhibits anti-inflammatory properties by inhibiting the release of histamine by mast cells. Multiple studies investigating the efficacy and the potential clinical applications of Spirulina in treating several diseases have been performed and a few randomized controlled trials and systematic reviews suggest that this alga may improve several symptoms and may even have an anticancer, antiviral and antiallergic effects. Current and potential clinical applications, issues of safety, indications, side-effects and levels of evidence are addressed in this review. Areas of ongoing and future research are also discussed. PMID:18955364
System Integration - A Major Step toward Lab on a Chip
2011-01-01
Microfluidics holds great promise to revolutionize various areas of biological engineering, such as single cell analysis, environmental monitoring, regenerative medicine, and point-of-care diagnostics. Despite the fact that intensive efforts have been devoted into the field in the past decades, microfluidics has not yet been adopted widely. It is increasingly realized that an effective system integration strategy that is low cost and broadly applicable to various biological engineering situations is required to fully realize the potential of microfluidics. In this article, we review several promising system integration approaches for microfluidics and discuss their advantages, limitations, and applications. Future advancements of these microfluidic strategies will lead toward translational lab-on-a-chip systems for a wide spectrum of biological engineering applications. PMID:21612614
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendon, Christopher H.; Rieth, Adam J.; Korzyński, Maciej D.
Metal–organic frameworks (MOFs) allow compositional and structural diversity beyond conventional solid-state materials. Continued interest in the field is justified by potential applications of exceptional breadth, ranging from gas storage and separation, which takes advantage of the inherent pores and their volume, to electronic applications, which requires precise control of electronic structure. In this Outlook we present some of the pertinent challenges that MOFs face in their conventional implementations, as well as opportunities in less traditional areas. Here the aim is to discuss select design concepts and future research goals that emphasize nuances relevant to this class of materials as amore » whole. Particular emphasis is placed on synthetic aspects, as they influence the potential for MOFs in gas separation, electrical conductivity, and catalytic applications.« less
Leka, Stavroula; Jain, Aditya; Iavicoli, Sergio; Di Tecco, Cristina
2015-01-01
Despite the developments both in hard and soft law policies in the European Union in relation to mental health and psychosocial risks in the workplace, a review of these policies at EU level has not been conducted to identify strengths, weaknesses, and gaps to be addressed in the future. Keeping in mind that the aim should be to engage employers in good practice, ideally such policies should include key definitions and elements of the psychosocial risk management process, covering risk factors, mental health outcomes, risk assessment and preventive actions, or interventions. The current paper aims to fill this gap by reviewing hard and soft law policies on mental health in the workplace and psychosocial risks applicable at EU level and conducting a gap analysis according to a set of dimensions identified in models of good practice in this area. Our review of ninety-four policies in total revealed several gaps, especially in relation to binding in comparison to nonbinding policies. These are discussed in light of the context of policy-making in the EU, and recommendations are offered for future actions in this area.
Leka, Stavroula; Jain, Aditya; Di Tecco, Cristina
2015-01-01
Despite the developments both in hard and soft law policies in the European Union in relation to mental health and psychosocial risks in the workplace, a review of these policies at EU level has not been conducted to identify strengths, weaknesses, and gaps to be addressed in the future. Keeping in mind that the aim should be to engage employers in good practice, ideally such policies should include key definitions and elements of the psychosocial risk management process, covering risk factors, mental health outcomes, risk assessment and preventive actions, or interventions. The current paper aims to fill this gap by reviewing hard and soft law policies on mental health in the workplace and psychosocial risks applicable at EU level and conducting a gap analysis according to a set of dimensions identified in models of good practice in this area. Our review of ninety-four policies in total revealed several gaps, especially in relation to binding in comparison to nonbinding policies. These are discussed in light of the context of policy-making in the EU, and recommendations are offered for future actions in this area. PMID:26557655
Laser-produced plasmas in medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gitomer, S.J.; Jones, R.D.
The laser has found numerous applications in medicine, beginning with uses in ophthalmology in the 1960's. Today, lasers are used in tissue cutting, blood coagulation, photo-dynamic cancer therapy, arterial plaque removal, dental drilling, etc. In this paper, we examine those areas of laser medicine in which plasmas (ionized gases) are produced. In fact, the presence of a plasma is essential for the application at hand to succeed. We consider examples of the plasmas produced in ophthalmology (e.g., lens membrane destruction following cataract surgery), in urology and gastroenterology (e.g., kidney and gall stone ablation and fragmentation) and in cardiology and vascularmore » surgery (e.g., laser ablation and removal of fibro-fatty and calcified arterial plaque). Experimental data are presented along with some results from computer simulations of the phenomena. Comments on future directions in these areas are included. 63 refs.« less
Visualization and imaging methods for flames in microgravity
NASA Technical Reports Server (NTRS)
Weiland, Karen J.
1993-01-01
The visualization and imaging of flames has long been acknowledged as the starting point for learning about and understanding combustion phenomena. It provides an essential overall picture of the time and length scales of processes and guides the application of other diagnostics. It is perhaps even more important in microgravity combustion studies, where it is often the only non-intrusive diagnostic measurement easily implemented. Imaging also aids in the interpretation of single-point measurements, such as temperature, provided by thermocouples, and velocity, by hot-wire anemometers. This paper outlines the efforts of the Microgravity Combustion Diagnostics staff at NASA Lewis Research Center in the area of visualization and imaging of flames, concentrating on methods applicable for reduced-gravity experimentation. Several techniques are under development: intensified array camera imaging, and two-dimensional temperature and species concentrations measurements. A brief summary of results in these areas is presented and future plans mentioned.
Global Carbon Fiber Composites Supply Chain Competitiveness Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Sujit; Warren, Josh; West, Devin
This study identifies key opportunities in the carbon fiber supply chain where the United States Department of Energy's Office of Energy Efficiency and Renewable Energy resources and investments can help the United States achieve or maintain a competitive advantage. The report focuses on four application areas--wind energy, aerospace, automotive, and pressure vessels--that top the list of industries using carbon fiber and carbon fiber reinforced polymers and are also particularly relevant to EERE's mission. For each of the four application areas, the report addresses the supply and demand trends within that sector, supply chain, and costs of carbon fiber and components,more » all contributing to a competitiveness assessment that addresses the United States' role in future industry growth. This report was prepared by researchers at Oak Ridge National Laboratory and the University of Tennessee for the Clean Energy Manufacturing Analysis Center.« less
Feasibility study for future implantable neural-silicon interface devices.
Al-Armaghany, Allann; Yu, Bo; Mak, Terrence; Tong, Kin-Fai; Sun, Yihe
2011-01-01
The emerging neural-silicon interface devices bridge nerve systems with artificial systems and play a key role in neuro-prostheses and neuro-rehabilitation applications. Integrating neural signal collection, processing and transmission on a single device will make clinical applications more practical and feasible. This paper focuses on the wireless antenna part and real-time neural signal analysis part of implantable brain-machine interface (BMI) devices. We propose to use millimeter-wave for wireless connections between different areas of a brain. Various antenna, including microstrip patch, monopole antenna and substrate integrated waveguide antenna are considered for the intra-cortical proximity communication. A Hebbian eigenfilter based method is proposed for multi-channel neuronal spike sorting. Folding and parallel design techniques are employed to explore various structures and make a trade-off between area and power consumption. Field programmable logic arrays (FPGAs) are used to evaluate various structures.
Recent advances in electrohydrodynamic pumps operated by ionic winds: a review
NASA Astrophysics Data System (ADS)
Johnson, Michael J.; Go, David B.
2017-10-01
An ionic or electric wind is a bulk air movement induced by electrohydrodynamic (EHD) phenomena in a gas discharge. Because they are silent, low power, respond rapidly, and require no moving parts, ionic wind devices have been proposed for a wide range of applications, ranging from convection cooling and food drying to combustion management. The past several decades have seen the area grow tremendously leading to a number of new actuation strategies and devices that can be incorporated into various applications. In this review, we discuss the physics of ionic winds and recent developments of the past five years that have pushed the field forward, focusing on the development on bulk air-moving devices we term EHD pumps. We then highlight the ongoing challenges with transitioning ionic wind technologies to the market place, from issues that affect robustness to practical implementation, and point to areas where future research could have an impact on the field.
NASA Astrophysics Data System (ADS)
Nieland, Simon; Kleinschmit, Birgit; Förster, Michael
2015-05-01
Ontology-based applications hold promise in improving spatial data interoperability. In this work we use remote sensing-based biodiversity information and apply semantic formalisation and ontological inference to show improvements in data interoperability/comparability. The proposed methodology includes an observation-based, "bottom-up" engineering approach for remote sensing applications and gives a practical example of semantic mediation of geospatial products. We apply the methodology to three different nomenclatures used for remote sensing-based classification of two heathland nature conservation areas in Belgium and Germany. We analysed sensor nomenclatures with respect to their semantic formalisation and their bio-geographical differences. The results indicate that a hierarchical and transparent nomenclature is far more important for transferability than the sensor or study area. The inclusion of additional information, not necessarily belonging to a vegetation class description, is a key factor for the future success of using semantics for interoperability in remote sensing.
Intra-building telecommunications cabling standards for Sandia National Laboratories, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, R.L.
1993-08-01
This document establishes a working standard for all telecommunications cable installations at Sandia National Laboratories, New Mexico. It is based on recent national commercial cabling standards. The topics addressed are Secure and Open/Restricted Access telecommunications environments and both twisted-pair and optical-fiber components of communications media. Some of the state-of-the-art technologies that will be supported by the intrabuilding cable infrastructure are Circuit and Packet Switched Networks (PBX/5ESS Voice and Low-Speed Data), Local Area Networks (Ethernet, Token Ring, Fiber and Copper Distributed Data Interface), and Wide Area Networks (Asynchronous Transfer Mode). These technologies can be delivered to every desk and can transportmore » data at rates sufficient to support all existing applications (such as Voice, Text and graphics, Still Images, Full-motion Video), as well as applications to be defined in the future.« less
Engineering uses of physics-based ground motion simulations
Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.
2014-01-01
This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.
Advances in the application of MRI to amyotrophic lateral sclerosis
Turner, Martin R; Modo, Michel
2011-01-01
Importance of the field With the emergence of therapeutic candidates for the incurable and rapidly progressive neurodegenerative condition of amyotrophic lateral sclerosis (ALS), it will be essential to develop easily obtainable biomarkers for diagnosis, as well as monitoring, in a disease where clinical examination remains the predominant diagnostic tool. Magnetic resonance imaging (MRI) has greatly developed over the past thirty years since its initial introduction to neuroscience. With multi-modal applications, MRI is now offering exciting opportunities to develop practical biomarkers in ALS. Areas covered in this review The historical application of MRI to the field of ALS, its state-of-the-art and future aspirations will be reviewed. Specifically, the significance and limitations of structural MRI to detect gross morphological tissue changes in relation to clinical presentation will be discussed. The more recent application of diffusion tensor imaging (DTI), magnetic resonance spectroscopy (MRS), functional and resting-state MRI (fMRI & R-fMRI) will be contrasted in relation to these more conventional MRI assessments. Finally, future aspirations will be sketched out in providing a more disease mechanism-based molecular MRI. What the reader will gain This review will equip the reader with an overview of the application of MRI to ALS and illustrate its potential to develop biomarkers. This discussion is exemplified by key studies, demonstrating the strengths and limitations of each modality. The reader will gain an expert opinion on both the current and future developments of MR imaging in ALS. Take home message MR imaging generates potential diagnostic, prognostic and therapeutic monitoring biomarkers of ALS. The emerging fusion of structural, functional and potentially molecular imaging will improve our understanding of wider cerebral connectivity and holds the promise of biomarkers sensitive to the earliest changes. PMID:21516259
NASA Technical Reports Server (NTRS)
Singh, Bhim (Compiler)
2002-01-01
The Sixth Microgravity Fluid Physics and Transport Phenomena Conference provides the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program, current research opportunities, and plans for the near future. The conference focuses not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. A whole session dedicated to biological fluid physics shows increased emphasis that the program has placed on interdisciplinary research. The conference includes invited plenary talks, technical paper presentations, poster presentations, and exhibits. This CP (conference proceeding) is a compilation of the abstracts, presentations, and posters presented at the conference.
Future impact of nanotechnology on medicine and dentistry
Patil, Mallanagouda; Mehta, Dhoom Singh; Guvva, Sowjanya
2008-01-01
The human characteristics of curiosity, wonder, and ingenuity are as old as mankind. People around the world have been harnessing their curiosity into inquiry and the process of scientific methodology. Recent years have witnessed an unprecedented growth in research in the area of nanoscience. There is increasing optimism that nanotechnology applied to medicine and dentistry will bring significant advances in the diagnosis, treatment, and prevention of disease. Growing interest in the future medical applications of nanotechnology is leading to the emergence of a new field called nanomedicine. Nanomedicine needs to overcome the challenges for its application, to improve the understanding of pathophysiologic basis of disease, bring more sophisticated diagnostic opportunities, and yield more effective therapies and preventive properties. When doctors gain access to medical robots, they will be able to quickly cure most known diseases that hobble and kill people today, to rapidly repair most physical injuries our bodies can suffer, and to vastly extend the human health span. Molecular technology is destined to become the core technology underlying all of 21st century medicine and dentistry. In this article, we have made an attempt to have an early glimpse on future impact of nanotechnology in medicine and dentistry. PMID:20142942
NASA Technical Reports Server (NTRS)
Watson, Michael; Shah, Sandeep; Kaul, Raj; Zhu, Shen; Vandiver, Terry; Zimmerman, Joe E. (Technical Monitor)
2001-01-01
Nanotube technology has broad applicability to programs at both the NASA Marshall Space Flight Center (MSFC) and the US Army Aviation and Missile Command (AMCOM). MSFC has interest in applications of nanotubes as sensors and high strength lightweight materials for propulsion system components, avionic systems, and scientific instruments. MSFC is currently pursuing internal programs to develop nanotube temperature sensors, heat pipes, and metal matrix composites. In support of these application areas MSFC is interested in growth of long nanotubes, growth of nanotubes in the microgravity environment, and nanotubes fabricated from high temperature materials such as Boron Nitride or Silicon Carbide. AMCOM is similarly interested in nanotube applications which take advantage of the nanotube thermal conductance properties, high strength, and lightweight. Applications of interest to AMCOM include rocket motor casing structures, rocket nozzles, and lightweight structure and aeronautic skins.
Forecasting urban growth across the United States-Mexico border
Norman, L.M.; Feller, M.; Phillip, Guertin D.
2009-01-01
The sister-city area of Nogales, Arizona, and Nogales, Sonora, Mexico, is known collectively as Ambos (both) Nogales. This area was historically one city and was administratively divided by the Gadsden Purchase in 1853. These arid-lands have limited and sensitive natural resources. Environmental planning can support sustainable development to accommodate the predicted influx of population. The objective of this research is to quantify the amount of predicted urban growth for the Ambos Nogales watershed to support future planning for sustainable development. Two modeling regimes are explored. Our goal is to identify possible growth patterns associated with the twin-city area as a whole and with the two cities modeled as separate entities. We analyzed the cross-border watershed using regression analysis from satellite images from 1975, 1983, 1996, and 2002 and created urban area classifications. We used these classifications as input to the urban growth model, SLEUTH, to simulate likely patterns of development and define projected conversion probabilities. Model results indicate that the two cities are undergoing very different patterns of change and identify locations of expected growth based on historical development. Growth in Nogales, Arizona is stagnant while the urban area in Nogales, Sonora is exploding. This paper demonstrates an application that portrays how future binational urban growth could develop and affect the environment. This research also provides locations of potential growth for use in city planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skowronski, P.; Wisniewski, G.
Application of solar energy for preparing domestic hot water is one of the easiest methods of utilization of this energy. At least part of the needs for warm tap water could be covered by solar systems. At present, mainly coal is used for water heating at dwellings in rural areas in Poland. Warm tap water consumption will increase significantly in the future as standards of living are improved. This can result in the growth of electricity use and an increase in primary fuel consumption. Present and future methods of warm sanitary water generation in rural areas in Poland is discussed,more » and associated greenhouse gas (GHG) emissions are estimated. It is predicted that the emission of CO{sub 2} and NOx will increase. The emission of CO and CH{sub 4} will decrease because of changes in the structure of the final energy carriers used. The economic and market potentials of solar energy for preparing warm water in rural areas are discussed. It is estimated that solar systems can meet 30%-45% of the energy demand for warm water generation in rural areas at a reasonable cost, with a corresponding CO{sub 2} emission reduction. The rate of realization of the economic potential of solar water heaters depends on subsidies for the installation of equipment. 13 refs., 9 tabs.« less
Application of the ACASA model for urban development studies
NASA Astrophysics Data System (ADS)
Marras, S.; Pyles, R. D.; Falk, M.; Snyder, R. L.; Paw U, K. T.; Blecic, I.; Trunfio, G. A.; Cecchini, A.; Spano, D.
2012-04-01
Since urban population is growing fast and urban areas are recognized as the major source of CO2 emissions, more attention has being dedicated to the topic of urban sustainability and its connection with the climate. Urban flows of energy, water and carbon have an important impact on climate change and their quantification is pivotal in the city design and management. Large effort has been devoted to quantitative estimates of the urban metabolism components, and several advanced models have been developed and used at different spatial and temporal scales for this purpose. However, it is necessary to develop suitable tools and indicators to effectively support urban planning and management with the goal of achieving a more sustainable metabolism in the urban environment. In this study, the multilayer model ACASA (Advanced Canopy-Atmosphere-Soil Algorithm) was chosen to simulate the exchanges of heat, water vapour and CO2 within and above urban canopy. After several calibration and evaluation tests over natural and agricultural ecosystems, the model was recently modified for application in urban and peri-urban areas. New equations to account for the anthropogenic contribution to heat exchange and carbon production, as well as key parameterizations of leaf-facet scale interactions to separate both biogenic and anthropogenic flux sources and sinks, were added to test changes in land use or urban planning strategies. The analysis was based on the evaluation of the ACASA model performance in estimating urban metabolism components at local scale. Simulated sensible heat, latent heat, and carbon fluxes were compared with in situ Eddy Covariance measurements collected in the city centre of Florence (Italy). Statistical analysis was performed to test the model accuracy and reliability. Model sensitivity to soil types and increased population density values was conducted to investigate the potential use of ACASA for evaluating the impact of planning alternative scenarios. In this contest, an in progress application of ACASA for estimating carbon exchanges alternative scenarios is represented by its integration in a software framework composed by: (i) a Cellular Automata model to simulate the urban land-use dynamics; (ii) a transportation model, able to estimate the variation of the transportation network load; (iii) the ACASA model, and (iv) the mesoscale weather model WRF for the estimation of the relevant urban metabolism components at regional scale. The CA module is able to produce future land use maps, which represent a spatial distribution of the aggregate land-use demand consistent with the main rules governing the functioning of an urban system. Such future land use maps, together with the street network including the current traffic data, are used by the transportation module for estimating future traffic data coherent with the assumed land uses trends. All these information are then used by the coupled model WRF-ACASA for estimating future maps of CO2 fluxes in the urban area under consideration, allowing to estimate the impact of future planning strategies in reducing C emissions. The in-progress application of this system to the city of Florence is presented here.
The development of composite materials for spacecraft precision reflector panels
NASA Technical Reports Server (NTRS)
Tompkins, Stephen S.; Bowles, David E.; Funk, Joan G.; Towell, Timothy W.; Lavoie, J. A.
1990-01-01
One of the critical technology needs for large precision reflectors required for future astrophysics and optical communications is in the area of structural materials. Therefore, a major area of the Precision Segmented Reflector Program at NASA is to develop lightweight composite reflector panels with durable, space environmentally stable materials which maintain both surface figure and required surface accuracy necessary for space telescope applications. Results from the materials research and development program at NASA Langley Research Center are discussed. Advanced materials that meet the reflector panel requirements are identified. Thermal, mechanical and durability properties of candidate materials after exposure to simulated space environments are compared to the baseline material.
Motion/imagery secure cloud enterprise architecture analysis
NASA Astrophysics Data System (ADS)
DeLay, John L.
2012-06-01
Cloud computing with storage virtualization and new service-oriented architectures brings a new perspective to the aspect of a distributed motion imagery and persistent surveillance enterprise. Our existing research is focused mainly on content management, distributed analytics, WAN distributed cloud networking performance issues of cloud based technologies. The potential of leveraging cloud based technologies for hosting motion imagery, imagery and analytics workflows for DOD and security applications is relatively unexplored. This paper will examine technologies for managing, storing, processing and disseminating motion imagery and imagery within a distributed network environment. Finally, we propose areas for future research in the area of distributed cloud content management enterprises.
Aerodynamic characteristics at high angles of attack
NASA Technical Reports Server (NTRS)
Chambers, J. R.
1977-01-01
An overview is presented of the aerodynamic inputs required for analysis of flight dynamics in the high-angle-of-attack regime wherein large-disturbance, nonlinear effects predominate. An outline of the presentation is presented. The discussion includes: (1) some important fundamental phenomena which determine to a large extent the aerodynamic characteristics of airplanes at high angles of attack; (2) static and dynamic aerodynamic characteristics near the stall; (3) aerodynamics of the spin; (4) test techniques used in stall/spin studies; (5) applications of aerodynamic data to problems in flight dynamics in the stall/spin area; and (6) the outlook for future research in the area.
Stryjewska, Agnieszka; Kiepura, Katarzyna; Librowski, Tadeusz; Lochyński, Stanisław
2013-01-01
Monoclonal antibodies, modern vaccines and gene therapy have become a major field in modern biotechnology, especially in the area of human health and fascinating developments achieved in the past decades are impressive examples of an interdisciplinary interplay between medicine, biology and engineering. Among the classical products from cells one can find viral vaccines, monoclonal antibodies, and interferons, as well as recombinant therapeutic proteins. Gene therapy opens up challenging new areas. In this review, a definitions of these processes are given and fields of application and products, as well as the future prospects, are discussed.
Innocence abroad: a pocket guide to psychological research on tourism.
Berno, Tracy; Ward, Colleen
2005-09-01
This article introduces tourism as a neglected topic of study for psychologists and discusses how ventures into this area provide opportunities for pioneering research and innovative applications. A coherent body of theory, drawn from experimental, social, and health psychology and synthesized by cross-cultural psychologists for the study of acculturation, is presented as one foundation for this area of inquiry. This includes stress and coping, culture learning, and social identification theories. The conceptual frameworks are applied to the interpretation of selected studies of tourism and are recommended for designing prospective investigations and guiding future research. Copyright (c) 2005 APA, all rights reserved.
NASA Technical Reports Server (NTRS)
Shariq, Syed Z.; Kutler, Paul (Technical Monitor)
1997-01-01
The emergence of rapidly expanding technologies for distribution and dissemination of information and knowledge has brought to focus the opportunities for development of knowledge-based networks, knowledge dissemination and knowledge management technologies and their potential applications for enhancing productivity of knowledge work. The challenging and complex problems of the future can be best addressed by developing the knowledge management as a new discipline based on an integrative synthesis of hard and soft sciences. A knowledge management professional society can provide a framework for catalyzing the development of proposed synthesis as well as serve as a focal point for coordination of professional activities in the strategic areas of education, research and technology development. Preliminary concepts for the development of the knowledge management discipline and the professional society are explored. Within this context of knowledge management discipline and the professional society, potential opportunities for application of information technologies for more effectively delivering or transferring information and knowledge (i.e., resulting from the NASA's Mission to Planet Earth) for the development of policy options in critical areas of national and global importance (i.e., policy decisions in economic and environmental areas) can be explored, particularly for those policy areas where a global collaborative knowledge network is likely to be critical to the acceptance of the policies.
Hazard perception and the economic impact of internment on residential land values
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merz, J.F.
1983-04-01
The potential for large scale natural and man-made hazards exists in the form of hurricanes, earthquakes, volcanoes, floods, dams, accidents involving poisonous, explosive or radioactive materials, and severe pollution or waste disposal mishaps. Regions prone to natural hazards and areas located proximally to technological hazards may be subject to economic losses from low probability-high consequence events. Economic costs may be incurred in: evacuation and relocation of inhabitants; personal, industrial, agricultural, and tax revenue losses; decontamination; property damage or loss of value; and temporary or prolonged internment of land. The value of land in an area subjected to a low probability-highmore » consequence event may decrease, reflecting, a fortiori, a reluctance to continue living in the area or to repopulate a region which had required internment. The future value of such land may be described as a function of location, time, interdiction period (if applicable), and variables reflecting the magnitude of the perceived hazard. This paper presents a study of these variables and proposes a model for land value estimation. As an example, the application of the model to the Love Canal area in Niagara Falls, New York is presented.« less
Metabolomics and Metabolic Diseases: Where Do We Stand?
Newgard, Christopher B
2017-01-10
Metabolomics, or the comprehensive profiling of small molecule metabolites in cells, tissues, or whole organisms, has undergone a rapid technological evolution in the past two decades. These advances have led to the application of metabolomics to defining predictive biomarkers for incident cardiometabolic diseases and, increasingly, as a blueprint for understanding those diseases' pathophysiologic mechanisms. Progress in this area and challenges for the future are reviewed here. Copyright © 2017 Elsevier Inc. All rights reserved.
1989-09-01
inventory of rotorcraft activity by mission and location. 17. Key Words 18. Distribution Statement Helicopter Helicopter Missions This document is available...helicopter is used to transport skiers /hikers to remote, normally inaccessible places. This mission is performed in rural or wilderness areas at altitudes...their applicability to the CNS benefit/cost analysis. Because of the uncertainty in the knowledge of the characteristics of both current and future
2014-09-01
approaches. Ecological Modelling Volume 200, Issues 1–2, 10, pp 1–19. Buhlmann, Kurt A ., Thomas S.B. Akre , John B. Iverson, Deno Karapatakis, Russell A ...statistical multivariate analysis to define the current and projected future range probability for species of interest to Army land managers. A software...15 Figure 4. RCW omission rate and predicted area as a function of the cumulative threshold
NASA Technical Reports Server (NTRS)
1975-01-01
User technology requirements are identified in relation to needed technology advancement for future space missions in the areas of navigation, guidance, and control. Emphasis is placed on: reduction of mission support cost by 50% through autonomous operation, a ten-fold increase in mission output through improved pointing and control, and a hundred-fold increase in human productivity in space through large-scale teleoperator applications.
Navy Tactical Applications Guide. Volume 2. Environmental Phenomena and Effects
1979-01-01
usually distinguished: the polar-front jet stream, associated with extratropical frontal systems; and the subtropical jet stream, overlying the poleward...patterns have formed in the cold air behind a frontal cloud band which extends from North Africa into Southern Europe . Note that the cellular cloud field...but because of the future potential of such areas for rapid storm " , development. (See Case 3 for the further development of these vorticity centers
Mobile robotics research at Sandia National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morse, W.D.
Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandenhove, Hildegarde
The accident at the Fukushima Daiichi Nuclear Power Plant has raised questions about the accumulation of radionuclides in soils, the transfer in the food chain and the possibility of continued restricted future land use. This paper summarizes what is generally understood about the application of agricultural countermeasures as a land management option to reduce the radionuclides transfer in the food chain and to facilitate the return of potentially affected soils to agricultural practices in areas impacted by a nuclear accident. (authors)
Biometrics and ID Cards — Enablers for Personal Security
NASA Astrophysics Data System (ADS)
Reisen, Andreas
The electronic ID card is a modernization and security project of the German Government. On the one hand, the multifunctional card is intended to boost security and the convenience of e-government and e-business applications. On the other hand, the new biometric ID card should allow citizens to use it as a travel document in the Schengen area and for specific destinations outside the European Union also in the future.
Preventive Medicine in World War II. Volume 2. Environmental Hygiene
1955-01-01
in principle of future problems. This volume is concerned with environmental hygiene and its impact upon the health, well-being, and morale of United...theater. The scope of the problem was global. Therefore, emphasis has been placed upon principles and practices peculiar to areas of the world and the...the broad application of the principles of disease preven- tion to military conditions. In such a program, one of the prime factors is environmental
Nanotechnology in Radiation Oncology
Wang, Andrew Z.; Tepper, Joel E.
2014-01-01
Nanotechnology, the manipulation of matter on atomic and molecular scales, is a relatively new branch of science. It has already made a significant impact on clinical medicine, especially in oncology. Nanomaterial has several characteristics that are ideal for oncology applications, including preferential accumulation in tumors, low distribution in normal tissues, biodistribution, pharmacokinetics, and clearance, that differ from those of small molecules. Because these properties are also well suited for applications in radiation oncology, nanomaterials have been used in many different areas of radiation oncology for imaging and treatment planning, as well as for radiosensitization to improve the therapeutic ratio. In this article, we review the unique properties of nanomaterials that are favorable for oncology applications and examine the various applications of nanotechnology in radiation oncology. We also discuss the future directions of nanotechnology within the context of radiation oncology. PMID:25113769
Nanotechnology in radiation oncology.
Wang, Andrew Z; Tepper, Joel E
2014-09-10
Nanotechnology, the manipulation of matter on atomic and molecular scales, is a relatively new branch of science. It has already made a significant impact on clinical medicine, especially in oncology. Nanomaterial has several characteristics that are ideal for oncology applications, including preferential accumulation in tumors, low distribution in normal tissues, biodistribution, pharmacokinetics, and clearance, that differ from those of small molecules. Because these properties are also well suited for applications in radiation oncology, nanomaterials have been used in many different areas of radiation oncology for imaging and treatment planning, as well as for radiosensitization to improve the therapeutic ratio. In this article, we review the unique properties of nanomaterials that are favorable for oncology applications and examine the various applications of nanotechnology in radiation oncology. We also discuss the future directions of nanotechnology within the context of radiation oncology. © 2014 by American Society of Clinical Oncology.
Transfer Learning beyond Text Classification
NASA Astrophysics Data System (ADS)
Yang, Qiang
Transfer learning is a new machine learning and data mining framework that allows the training and test data to come from different distributions or feature spaces. We can find many novel applications of machine learning and data mining where transfer learning is necessary. While much has been done in transfer learning in text classification and reinforcement learning, there has been a lack of documented success stories of novel applications of transfer learning in other areas. In this invited article, I will argue that transfer learning is in fact quite ubiquitous in many real world applications. In this article, I will illustrate this point through an overview of a broad spectrum of applications of transfer learning that range from collaborative filtering to sensor based location estimation and logical action model learning for AI planning. I will also discuss some potential future directions of transfer learning.
The history, hotspots, and trends of electrocardiogram.
Yang, Xiang-Lin; Liu, Guo-Zhen; Tong, Yun-Hai; Yan, Hong; Xu, Zhi; Chen, Qi; Liu, Xiang; Zhang, Hong-Hao; Wang, Hong-Bo; Tan, Shao-Hua
2015-07-01
The electrocardiogram (ECG) has broad applications in clinical diagnosis and prognosis of cardiovascular disease. Many researchers have contributed to its progressive development. To commemorate those pioneers, and to better study and promote the use of ECG, we reviewed and present here a systematic introduction about the history, hotspots, and trends of ECG. In the historical part, information including the invention, improvement, and extensive applications of ECG, such as in long QT syndrome (LQTS), angina, and myocardial infarction (MI), are chronologically presented. New technologies and applications from the 1990s are also introduced. In the second part, we use the bibliometric analysis method to analyze the hotspots in the field of ECG-related research. By using total citations and year-specific total citations as our main criteria, four key hotspots in ECG-related research were identified from 11 articles, including atrial fibrillation, LQTS, angina and MI, and heart rate variability. Recent studies in those four areas are also reported. In the final part, we discuss the future trends concerning ECG-related research. The authors believe that improvement of the ECG instrumentation, big data mining for ECG, and the accuracy of diagnosis and application will be areas of continuous concern.
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Mattern, Duane
1994-01-01
An advanced methodology for integrated flight propulsion control (IFPC) design for future aircraft, which will use propulsion system generated forces and moments for enhanced maneuver capabilities, is briefly described. This methodology has the potential to address in a systematic manner the coupling between the airframe and the propulsion subsystems typical of such enhanced maneuverability aircraft. Application of the methodology to a short take-off vertical landing (STOVL) aircraft in the landing approach to hover transition flight phase is presented with brief description of the various steps in the IFPC design methodology. The details of the individual steps have been described in previous publications and the objective of this paper is to focus on how the components of the control system designed at each step integrate into the overall IFPC system. The full nonlinear IFPC system was evaluated extensively in nonreal-time simulations as well as piloted simulations. Results from the nonreal-time evaluations are presented in this paper. Lessons learned from this application study are summarized in terms of areas of potential improvements in the STOVL IFPC design as well as identification of technology development areas to enhance the applicability of the proposed design methodology.
The history, hotspots, and trends of electrocardiogram
Yang, Xiang-Lin; Liu, Guo-Zhen; Tong, Yun-Hai; Yan, Hong; Xu, Zhi; Chen, Qi; Liu, Xiang; Zhang, Hong-Hao; Wang, Hong-Bo; Tan, Shao-Hua
2015-01-01
The electrocardiogram (ECG) has broad applications in clinical diagnosis and prognosis of cardiovascular disease. Many researchers have contributed to its progressive development. To commemorate those pioneers, and to better study and promote the use of ECG, we reviewed and present here a systematic introduction about the history, hotspots, and trends of ECG. In the historical part, information including the invention, improvement, and extensive applications of ECG, such as in long QT syndrome (LQTS), angina, and myocardial infarction (MI), are chronologically presented. New technologies and applications from the 1990s are also introduced. In the second part, we use the bibliometric analysis method to analyze the hotspots in the field of ECG-related research. By using total citations and year-specific total citations as our main criteria, four key hotspots in ECG-related research were identified from 11 articles, including atrial fibrillation, LQTS, angina and MI, and heart rate variability. Recent studies in those four areas are also reported. In the final part, we discuss the future trends concerning ECG-related research. The authors believe that improvement of the ECG instrumentation, big data mining for ECG, and the accuracy of diagnosis and application will be areas of continuous concern. PMID:26345622
Graphene-based flexible and wearable electronics
NASA Astrophysics Data System (ADS)
Das, Tanmoy; Sharma, Bhupendra K.; Katiyar, Ajit K.; Ahn, Jong-Hyun
2018-01-01
Graphene with an exceptional combination of electronic, optical and outstanding mechanical features has been proved to lead a completely different kind of 2-D electronics. The most exciting feature of graphene is its ultra-thin thickness, that can be conformally contacted to any kind of rough surface without losing much of its transparency and conductivity. Graphene has been explored demonstrating various prototype flexible electronic applications, however, its potentiality has been proven wherever transparent conductive electrodes (TCEs) are needed in a flexible, stretchable format. Graphene-based TCEs in flexible electronic applications showed greatly superior performance over their conventionally available competitor indium tin oxide (ITO). Moreover, enormous applications have been emerging, especially in wearable devices that can be potentially used in our daily life as well as in biomedical areas. However, the production of high-quality, defect-free large area graphene is still a challenge and the main hurdle in the commercialization of flexible and wearable products. The objective of the present review paper is to summarize the progress made so far in graphene-based flexible and wearable applications. The current developments including challenges and future perspectives are also highlighted. Project supported by the National Research Foundation of Korea (No. NRF-2015R1A3A2066337).
The theory of reasoned action and intention to seek cancer information.
Ross, Levi; Kohler, Connie L; Grimley, Diane M; Anderson-Lewis, Charkarra
2007-01-01
To evaluate the applicability of the theory of reasoned action to explain men's intentions to seek prostate cancer information. Three hundred randomly selected African American men participated in telephone interviews. Correlational and regression analyses were conducted to examine relationships among measures. All relationships were significant in regression analyses. Attitudes and subjective norm were significantly related to intentions. Indirect measures of beliefs derived from elicitation research were associated with direct measures of attitude and subjective norms. The data are sufficiently clear to support the applicability of the theory for this behavioral domain with African American men and suggest several important areas for future research.
NASA's In-Space Propulsion Technology Project's Products for Near-term Mission Applicability
NASA Astrophysics Data System (ADS)
Dankanich, John
2009-01-01
The In-Space Propulsion Technology (ISPT) project, funded by NASA's Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. The primary investments and products currently available for technology infusion include NASA's Evolutionary Xenon Thruster (NEXT) and the Advanced Materials Bipropellant Rocket (AMBR) engine. These products will reach TRL 6 in 2008 and are available for the current and all future mission opportunities. Development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of electric propulsion, advanced chemical thrusters, and aerocapture are presented.
Graphics performance in rich Internet applications.
Hoetzlein, Rama C
2012-01-01
Rendering performance for rich Internet applications (RIAs) has recently focused on the debate between using Flash and HTML5 for streaming video and gaming on mobile devices. A key area not widely explored, however, is the scalability of raw bitmap graphics performance for RIAs. Does Flash render animated sprites faster than HTML5? How much faster is WebGL than Flash? Answers to these questions are essential for developing large-scale data visualizations, online games, and truly dynamic websites. A new test methodology analyzes graphics performance across RIA frameworks and browsers, revealing specific performance outliers in existing frameworks. The results point toward a future in which all online experiences might be GPU accelerated.
IMT-2000 Satellite Standards with Applications to Mobile Air Traffic Communications Networks
NASA Technical Reports Server (NTRS)
Shamma, Mohammed A.
2004-01-01
The International Mobile Telecommunications - 2000 (IMT-2000) standard and more specifically the Satellite component of it, is investigated as a potential alternative for communications to aircraft mobile users en-route and in terminal area. Its application to Air Traffic Management (ATM) communication needs is considered. A summary of the specifications of IMT-2000 satellite standards are outlined. It is shown via a system research analysis that it is possible to support most air traffic communication needs via an IMT-2000 infrastructure. This technology can compliment existing, or future digital aeronautical communications technologies such as VDL2, VDL3, Mode S, and UAT.
NASA Astrophysics Data System (ADS)
Keiser, Gerd; Liu, Hao-Yu; Lu, Shao-Hsi; Devi Pukhrambam, Puspa
2012-07-01
Low-cost multimode glass and plastic optical fibers are attractive for high-capacity indoor telecom networks. Many existing buildings already have glass multimode fibers installed for local area network applications. Future indoor applications will use combinations of glass multimode fibers with plastic optical fibers that have low losses in the 850-nm-1,310-nm range. This article examines real-world link losses when randomly interconnecting glass and plastic fiber segments having factory-installed connectors. Potential interconnection issues include large variations in connector losses among randomly selected fiber segments, asymmetric link losses in bidirectional links, and variations in bandwidths among different types of fibers.