Sample records for future biological experiments

  1. The Viking biology results

    NASA Technical Reports Server (NTRS)

    Klein, Harold P.

    1989-01-01

    A brief review of the purposes and the results from the Viking Biology experiments is presented, in the expectation that the lessons learned from this mission will be useful in planning future approaches to the biological exploration of Mars. Since so little was then known about potential micro-environments on Mars, three different experiments were included in the Viking mission, each one based on different assumptions about what Martian organisms might be like. In addition to the Viking Biology Instrument (VBI), important corollary information was obtained from the Viking lander imaging system and from the molecular analysis experiments that were conducted using the gas chromatograph-mass spectrometer (GCMS) instrument. No biological objects were noted by the lander imaging instrument. The GCMS did not detect any organic compounds. A description of the tests conducted by the Gas Exchange Experiment, the Labeled Release experiment, and the Pyrolytic Release experiment is given. Results are discussed. Taken as a whole, the Viking data yielded no unequivocal evidence for a Martian biota at either landing site. The results also revealed the presence of one or more reactive oxidants in the surface material and these need to be further characterized, as does the range of micro-environments, before embarking upon future searches for extant life on Mars.

  2. Preparing the "New" Biologist of the Future: Student Research at the Interface of Mathematics and Biology

    ERIC Educational Resources Information Center

    Duncan, Sarah I.; Bishop, Pamela; Lenhart, Suzanne

    2010-01-01

    We describe a unique Research Experience for Undergraduates and Research Experience for Veterinary students summer program at the National Institute for Mathematical and Biological Synthesis on the campus of the University of Tennessee, Knoxville. The program focused on interdisciplinary research at the interface of biology and mathematics.…

  3. Preliminary results of the scientific experiments on the Kosmos-936 biosatellite

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The scientific equipment and experiments on the Kosmos-936 biosatellite are described, including various ground controls and the lab unit for studies at the descent vehicle landing site. Preliminary results are presented of the physiological experiment with rats, biological experiments with drosophila and higher and lower plants, and radiation physics and radiobiology studies for the planning of biological protection on future space flights. The most significant conclusion from the preliminary data is that rats tolerate space flight better with an artificial force of gravity.

  4. [Biological experiments on "Kosmos-1887"].

    PubMed

    Alpatov, A M; I'lin, E A; Antipov, V V; Tairbekov, M G

    1989-01-01

    In the 13-ray space flight on Kosmos-1887 various experiments in the field of cell biology, genetics, biorhythm, developmental biology and regeneration were performed using bacteria, protozoa, plants, worms, insects, fish and amphibia. Paramecia showed enhanced cell proliferation, spheroidization and diminished protein content. Experiments on fruit-flies, newt oocytes and primate lymphocytes confirmed involvement of the cell genetic apparatus in responses to microgravity. Beetles exhibited a reduction of the length of the spontaneous period of freely running circadian rhythms. Carausius morosus developed latent changes in early embryogenesis which manifested at later stages of ontogenesis. Exposure to microgravity did not prevent recovery of injured tissues; moreover their regeneration may be accelerated after recovery. Biology research programs in future biosatellite flights are discussed.

  5. Probing Gravitational Sensitivity in Biological Systems Using Magnetic Body Forces

    NASA Technical Reports Server (NTRS)

    Guevorkian, Karine; Wurzel, Sam; Mihalusova, Mariana; Valles, Jim

    2003-01-01

    At Brown University, we are developing the use of magnetic body forces as a means to simulate variable gravity body forces on biological systems. This tool promises new means to probe gravi-sensing and the gravi-response of biological systems. It also has the potential as a technique for screening future systems for space flight experiments.

  6. When preparation meets opportunity: a case study exploring the feasibility of pursuing a career in biology for two Latina high school girls

    NASA Astrophysics Data System (ADS)

    García, Yeni Violeta

    2013-12-01

    The future of this country depends on utilizing human intellectual resources from varying viewpoints to make informed decisions on issues from conservation biology to biotechnology, or even bioengineering. An increase in Latina/o students in the biological sciences would bring a variety of viewpoints, as well as personal and cultural experiences that would advance the field. To insure that we have enough experts in biology that represent changes in demographic trends, we must look into utilizing the expertise of students in our current educational system to continue and complete careers in biology. In this study, a career in biology referred to careers that require an expertise in biology that is gained by completing a bachelor's degree in biology or an affiliated field. Using case study methodology, I explored the experiences of two Latina students, one who is undocumented, and focused on the nature of the experiences and how they related to the young women's decision to pursue a career in biology. This study is grounded on a theoretical framework of critical systems theory and the notion that there are systems and components within those systems that either facilitate or hinder students' ability to pursue various pathways. Data were generated from semi-structured interviews, artifacts, life narratives, and cultural descriptors to gain an understanding of the girls' past, present, and future decisions regarding the feasibility of pursuing a degree in biology. Four common themes emerged: (1) experiences that made a lasting positive or negative impact early in life; (2) an intrinsic desire to serve their community or people in need; (3) sociocultural support networks; and (4) opportunities or circumstances within the cultural commons associated with their legal status in the United States, which caused the girls to continue or to deviate from their path towards pursuing a career in biology.

  7. Preparing Future Biology Faculty: An Advanced Professional Development Program for Graduate Students

    ERIC Educational Resources Information Center

    Lockwood, Stephanie A.; Miller, Amanda J.; Cromie, Meghan M.

    2014-01-01

    Formal professional development programs for biology graduate students interested in becoming faculty members have come far; however, programs that provide advanced teaching experience for seasoned graduate teaching assistants are scarce. We outline an advanced program that focuses on further training of graduate teaching assistants in pedagogy…

  8. Redefining Authentic Research Experiences in Introductory Biology Laboratories and Barriers to Their Implementation

    PubMed Central

    Spell, Rachelle M.; Guinan, Judith A.; Miller, Kristen R.; Beck, Christopher W.

    2014-01-01

    Incorporating authentic research experiences in introductory biology laboratory classes would greatly expand the number of students exposed to the excitement of discovery and the rigor of the scientific process. However, the essential components of an authentic research experience and the barriers to their implementation in laboratory classes are poorly defined. To guide future reform efforts in this area, we conducted a national survey of biology faculty members to determine 1) their definitions of authentic research experiences in laboratory classes, 2) the extent of authentic research experiences currently experienced in their laboratory classes, and 3) the barriers that prevent incorporation of authentic research experiences into these classes. Strikingly, the definitions of authentic research experiences differ among faculty members and tend to emphasize either the scientific process or the discovery of previously unknown data. The low level of authentic research experiences in introductory biology labs suggests that more development and support is needed to increase undergraduate exposure to research experiences. Faculty members did not cite several barriers commonly assumed to impair pedagogical reform; however, their responses suggest that expanded support for development of research experiences in laboratory classes could address the most common barrier. PMID:24591509

  9. Redefining authentic research experiences in introductory biology laboratories and barriers to their implementation.

    PubMed

    Spell, Rachelle M; Guinan, Judith A; Miller, Kristen R; Beck, Christopher W

    2014-01-01

    Incorporating authentic research experiences in introductory biology laboratory classes would greatly expand the number of students exposed to the excitement of discovery and the rigor of the scientific process. However, the essential components of an authentic research experience and the barriers to their implementation in laboratory classes are poorly defined. To guide future reform efforts in this area, we conducted a national survey of biology faculty members to determine 1) their definitions of authentic research experiences in laboratory classes, 2) the extent of authentic research experiences currently experienced in their laboratory classes, and 3) the barriers that prevent incorporation of authentic research experiences into these classes. Strikingly, the definitions of authentic research experiences differ among faculty members and tend to emphasize either the scientific process or the discovery of previously unknown data. The low level of authentic research experiences in introductory biology labs suggests that more development and support is needed to increase undergraduate exposure to research experiences. Faculty members did not cite several barriers commonly assumed to impair pedagogical reform; however, their responses suggest that expanded support for development of research experiences in laboratory classes could address the most common barrier.

  10. Students on STEM: More Hands-On, Real-World Experiences

    ERIC Educational Resources Information Center

    Change the Equation, 2016

    2016-01-01

    A new survey of American teenagers from the Amgen Foundation and Change the Equation offers real cause for optimism about the future of high school science and biology education in the United States. Teens generally like science--and biology in particular--and they grasp the importance of the field to people's lives. They know good biology…

  11. Bridging Physics and Biology Using Resistance and Axons

    NASA Astrophysics Data System (ADS)

    Dyer, Joshua M.

    2014-11-01

    When teaching physics, it is often difficult to get biology-oriented students to see the relevance of physics.1 A complaint often heard is that biology students are required to take physics for the Medical College Admission Test (MCAT) as part of a "weeding out" process, but that they don't feel like they need physics for biology. Despite this impression held by students, there have been calls for better physics education for future physicians and life scientists.2,3 Research is being performed to improve physics classes and labs by linking topics in biology and physics.4,5 Described here is a laboratory experiment covering the topics of resistance of materials and circuits/Kirchhoff's laws in a biology context with their direct application to neurons, axons, and electrical impulse transmission within animals. This experiment will also demonstrate the mechanism believed to cause multiple sclerosis. The apparatus was designed with low-cost and readily available materials in mind.

  12. Drosophila melanogaster and the future of 'evo-devo' biology in space. Challenges and problems in the path of an eventual colonization project outside the earth.

    PubMed

    Marco, Roberto; Husson, David; Herranz, Raul; Mateos, Jesús; Medina, F Javier

    2003-01-01

    Space exploration, especially its future phase involving the International Space Station (ISS) makes possible the study of the effects on living systems of long-term expositions to such a strange environment. This phase is being initiated when Biological Sciences are crossing a no-return line into a new territory where the connection between phenotype and genotype may be finally made. We briefly review the paradoxical results obtained in Space experiments performed during the last third of the XX Century. They reveal that simple unicellular systems sense the absence of gravity changing their cytoskeletal organization and the signal transduction pathways, while animal development proceeds unaltered in these conditions, in spite of the fact that these processes are heavily involved in embryogenesis. Longer-term experiments possible in the ISS may solve this apparent contradiction. On the other hand, the current constraints on the scientific use of the ISS makes necessary the development of new hardware and the modification of current techniques to start taking advantage of this extraordinary technological facility. We discuss our advances in this direction using one of the current key biological model systems, Drosophila melanogaster. In addition, the future phase of Space exploration, possibly leading to the exploration and, may be, the colonization of another planet, will provide the means of performing interesting evolutionary experiments, studying how the terrestrial biological systems will change in their long-term adaptation to new, very different environments. In this way, Biological Research in Space may contribute to the advancement of the new Biology, in particular to the branch known as "Evo-Devo". On the other hand, as much as the Space Adventure will continue involving human beings as the main actors in the play, long-term multi-generation experiments using a fast reproducing species, such as Drosophila melanogaster, capable of producing more than 300 generations in 15 years, the useful life foreseen for ISS, will be important. Among other useful information, they will help in detecting the possible changes that a biological species may undergo in such an environment, preventing the uncontrolled occurrence of irreversible deleterious effects with catastrophic consequences on the living beings participating in this endeavour.

  13. Robotics-inspired biology.

    PubMed

    Gravish, Nick; Lauder, George V

    2018-03-29

    For centuries, designers and engineers have looked to biology for inspiration. Biologically inspired robots are just one example of the application of knowledge of the natural world to engineering problems. However, recent work by biologists and interdisciplinary teams have flipped this approach, using robots and physical models to set the course for experiments on biological systems and to generate new hypotheses for biological research. We call this approach robotics-inspired biology; it involves performing experiments on robotic systems aimed at the discovery of new biological phenomena or generation of new hypotheses about how organisms function that can then be tested on living organisms. This new and exciting direction has emerged from the extensive use of physical models by biologists and is already making significant advances in the areas of biomechanics, locomotion, neuromechanics and sensorimotor control. Here, we provide an introduction and overview of robotics-inspired biology, describe two case studies and suggest several directions for the future of this exciting new research area. © 2018. Published by The Company of Biologists Ltd.

  14. UK–South Asian patients’ experiences of and satisfaction toward receiving information about biologics in rheumatoid arthritis

    PubMed Central

    Kumar, Kanta; Raizada, Sabrina R; Mallen, Christian D; Stack, Rebecca J

    2018-01-01

    Background Rheumatoid arthritis (RA) causes painful joint inflammation and is incurable, but treatments control RA. Drug regimens are complex, and patients often do not take their medication as expected. Poor medication adherence can lead to poorly controlled disease and worse patient outcomes. Biologics treatments are expensive and require full engagement from patients. We have previously shown that patients from Black ethnic minority backgrounds do not fully engage into treatment plan. This study explored the patients’ experiences in and satisfaction toward receiving information about biologics and future support preferences in South Asian patients with RA. Methods Twenty South Asian patients with RA from Royal Wolverhampton Hospitals NHS Trust and Central Manchester University Hospitals NHS Foundation Trust participated in individual semistructured interviews. Interviews were transcribed and data were analyzed by using thematic analysis approach. Results Four overarching themes describe the patients’ experience in and satisfaction toward receiving information on biologics: 1) current provision of information regarding the “biologics journey” and understanding of RA: in this theme, non-English-speaking patients expressed heightened anxiety about stepping up to biologics; 2) experience and perceptions of biologics: many patients were positive about the biologic experience; however, there were patient-perceived delays in getting on to the biologics; 3) factors influencing willingness to try biologics: in this theme, a number of factors were identified including seeking advice from doctors abroad; and 4) recommendations on the desired information to fully understand the use of biologics: some patients valued group discussions, while others suggested receiving RA and biologic information through a video interaction. Conclusion This novel study provides insight into South Asian RA patients’ experiences in and satisfaction toward receiving information about biologics. South Asian patients with RA reported a range of perceptions about biologics and support preferences, many of which may not be shared with the non-South Asian population. PMID:29670337

  15. In the jungle of time: the concept of identity as a way out.

    PubMed

    Zhou, Bin; Pöppel, Ernst; Bao, Yan

    2014-01-01

    WHAT COULD BE A UNIFYING PRINCIPLE FOR THE MANIFOLD OF TEMPORAL EXPERIENCES: the simultaneity or temporal order of events, the subjective present, the duration of experiences, or the impression of a continuity of time? Furthermore, we time travel to the past visiting in imagination previous experiences in episodic memory, and we also time travel to the future anticipating actions or plans. For such time traveling we divide time into three domains: past, present, and future. What could be an escape out of this "jungle of time" characterized by many different perceptual and conceptual phenomena? The key concept we want to propose is "identity" which is derived from homeostasis as a fundamental biological principle. Within this conceptual frame two modes of identity are distinguished: individual or self-identity required because of homeostatic demands, and object-related identity necessary for the reliability and efficiency of neuro-cognitive processing. With this concept of self- and object-identity, the different temporal experiences can be conceptualized within a common frame. Thus, we propose a fundamental biological principle to conceptually unify temporal phenomena on the psychological level.

  16. Gravitational biology on the space station

    NASA Technical Reports Server (NTRS)

    Keefe, J. R.; Krikorian, A. D.

    1983-01-01

    The current status of gravitational biology is summarized, future areas of required basic research in earth-based and spaceflight projects are presented, and potential applications of gravitational biology on a space station are demonstrated. Topics covered include vertebrate reproduction, prenatal/postnatal development, a review of plant space experiments, the facilities needed for growing plants, gravimorphogenesis, thigmomorphogenesis, centrifuges, maintaining a vivarium, tissue culture, and artificial human organ generation. It is proposed that space stations carrying out these types of long-term research be called the National Space Research Facility.

  17. Constructive biology and approaches to temporal grounding in postreactive robotics

    NASA Astrophysics Data System (ADS)

    Nehaniv, Chrystopher L.; Dautenhahn, Kerstin; Loomes, Martin J.

    1999-08-01

    Constructive Biology means understanding biological mechanisms through building systems that exhibit life-like properties. Applications include learning engineering tricks from biological system, as well as the validation in biological modeling. In particular, biological system in the course of development and experience become temporally grounded. Researchers attempting to transcend mere reactivity have been inspired by the drives, motivations, homeostasis, hormonal control, and emotions of animals. In order to contextualize and modulate behavior, these ideas have been introduced into robotics and synthetic agents, while further flexibility is achieved by introducing learning. Broadening scope of the temporal horizon further requires post-reactive techniques that address not only the action in the now, although such action may perhaps be modulated by drives and affect. Support is needed for expressing and benefitting from pats experiences, predictions of the future, and form interaction histories of the self with the world and with other agents. Mathematical methods provide a new way to support such grounding in the construction of post-reactive systems. Moreover, the communication of such mathematical encoded histories of experience between situated agents opens a route to narrative intelligence, analogous to communication or story telling in societies.

  18. Research experiences and mentoring practices in selected east Asian graduate programs: predictors of research productivity among doctoral students in molecular biology.

    PubMed

    Ynalvez, Ruby; Garza-Gongora, Claudia; Ynalvez, Marcus Antonius; Hara, Noriko

    2014-01-01

    Although doctoral mentors recognize the benefits of providing quality advisement and close guidance, those of sharing project management responsibilities with mentees are still not well recognized. We observed that mentees, who have the opportunity to co-manage projects, generate more written output. Here we examine the link between research productivity, doctoral mentoring practices (DMP), and doctoral research experiences (DRE) of mentees in programs in the non-West. Inspired by previous findings that early career productivity is a strong predictor of later productivity, we examine the research productivity of 210 molecular biology doctoral students in selected programs in Japan, Singapore, and Taiwan. Using principal component (PC) analysis, we derive two sets of PCs: one set from 15 DMP and another set from 16 DRE items. We model research productivity using Poisson and negative-binomial regression models with these sets as predictors. Our findings suggest a need to re-think extant practices and to allocate resources toward professional career development in training future scientists. We contend that doctoral science training must not only be an occasion for future scientists to learn scientific and technical skills, but it must also be the opportunity to experience, to acquire, and to hone research management skills. © 2014 The International Union of Biochemistry and Molecular Biology.

  19. Amplified Arctic warming by phytoplankton under greenhouse warming.

    PubMed

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  20. Amplified Arctic warming by phytoplankton under greenhouse warming

    PubMed Central

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-01-01

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical–ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean−atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes. PMID:25902494

  1. The development of the hardware for studying biological clock systems under microgravity conditions, using scorpions as animal models

    NASA Astrophysics Data System (ADS)

    Serafini, L.; Viganò, W.; Donati, A.; Porciani, M.; Zolesi, V.; Schulze-Varnholt, D.; Manieri, P.; El-Din Sallam, A.; Schmäh, M.; Horn, E. R.

    2007-02-01

    The study of internal clock systems of scorpions in weightless conditions is the goal of the SCORPI experiment. SCORPI was selected for flight on the International Space Station (ISS) and will be mounted in the European facility BIOLAB, the European Space Agency (ESA) laboratory designed to support biological experiments on micro-organisms, cells, tissue, cultures, small plants and small invertebrates. This paper outlines the main features of a breadboard designed and developed in order to allow the analysis of critical aspects of the experiment. It is a complete tool to simulate the experiment mission on ground and it can be customised, adapted and tuned to the scientific requirements. The paper introduces the SCORPI-T experiment which represents an important precursor for the success of the SCORPI on BIOLAB. The capabilities of the hardware developed show its potential use for future similar experiments in space.

  2. Group processing in an undergraduate biology course for preservice teachers: Experiences and attitudes

    NASA Astrophysics Data System (ADS)

    Schellenberger, Lauren Brownback

    Group processing is a key principle of cooperative learning in which small groups discuss their strengths and weaknesses and set group goals or norms. However, group processing has not been well-studied at the post-secondary level or from a qualitative or mixed methods perspective. This mixed methods study uses a phenomenological framework to examine the experience of group processing for students in an undergraduate biology course for preservice teachers. The effect of group processing on students' attitudes toward future group work and group processing is also examined. Additionally, this research investigated preservice teachers' plans for incorporating group processing into future lessons. Students primarily experienced group processing as a time to reflect on past performance. Also, students experienced group processing as a time to increase communication among group members and become motivated for future group assignments. Three factors directly influenced students' experiences with group processing: (1) previous experience with group work, (2) instructor interaction, and (3) gender. Survey data indicated that group processing had a slight positive effect on students' attitudes toward future group work and group processing. Participants who were interviewed felt that group processing was an important part of group work and that it had increased their group's effectiveness as well as their ability to work effectively with other people. Participants held positive views on group work prior to engaging in group processing, and group processing did not alter their atittude toward group work. Preservice teachers who were interviewed planned to use group work and a modified group processing protocol in their future classrooms. They also felt that group processing had prepared them for their future professions by modeling effective collaboration and group skills. Based on this research, a new model for group processing has been created which includes extensive instructor interaction and additional group processing sessions. This study offers a new perspective on the phenomenon of group processing and informs science educators and teacher educators on the effective implementation of this important component of small-group learning.

  3. Advancing Small Satellite Electronics Heritage for Microfluidic Biological Experiments

    NASA Technical Reports Server (NTRS)

    White, Bruce; Mazmanian, Edward; Tapio, Eric

    2016-01-01

    DLR's Eu:CROPIS (Euglena and Combined Regenerative Organic-Food Production in Space) mission, launching in 2017, will carry multiple biological payloads into a sun-synchronous orbit, including NASA Ames' PowerCell experiment. PowerCell will attempt to characterize the viability of synthetic biology at micro-g, Lunar, and Martian gravity levels. PowerCell experiment requirements demand an electronic system similar to previous microfluidic biology payloads, but with an expanded feature set. As such, the system was based on PharmaSat (Diaz-Aguado et al. 2009), a previous successful biology payload from NASA Ames, and improved upon. Newer, more miniaturized electronics allow for greater capability with a lower part count and smaller size. Two identical PowerCell enclosures will fly. Each enclosure contains two separate and identical experiments with a 48-segment optical density measurement system, grow light system, microfluidic system for nutrient delivery and waste flushing, plus thermal control and environmental sensing/housekeeping including temperature, pressure, humidity, and acceleration. Electronics consist of a single Master PCB that interfaces to the spacecraft bus and regulates power and communication, plus LED, Detector, and Valve Manifold PCBs for each experiment. To facilitate ease of reuse on future missions, experiment electronics were designed to be compatible with a standard 3U small sat form factor and power bus, or to interface with a Master power/comm PCB for use in a larger satellite as in the case of PowerCell's flight on Eu:CROPIS.

  4. Art Therapy for Chronic Pain: Applications and Future Directions

    ERIC Educational Resources Information Center

    Angheluta, Anne-Marie; Lee, Bonnie K.

    2011-01-01

    Chronic pain is acknowledged as a phenomenological experience resulting from biological, psychological, and social interactions. Consequently, treatment for this complex and debilitating health phenomenon is often approached from multidisciplinary and biopsychosocial perspectives. One approach to treating chronic pain involves implementing…

  5. First biological and dosimetric results of the free flyer biostack experiment AO015 on LDEF

    NASA Technical Reports Server (NTRS)

    Reitz, G.; Buecker, H.; Facius, R.; Horneck, G.; Schaeffer, M.; Schott, J. U.; Bayonove, J.; Beaujean, R.; Benton, E. V.; Delpoux, M.

    1991-01-01

    The main objectives of the Biostack Experiment are to study the effectiveness of the structured components of the cosmic radiation to bacterial spores, plant seeds, and animal cysts for a long duration spaceflight and to get dosimetric data such as particle fluences and spectra and total doses for the Long Duration Exposure Facility orbit. The configuration of the experiment packages allows the localization of the trajectory of the particles in each biological layer and to correlate the potential biological impairment or injury with the physical characteristics of the responsible particle. Although the Biostack Experiment was designed for a long duration flight of only nine months, most of the biological systems show a high hatching or germination rate. Some of the first observations are an increase of the mutation rate of embryonic lethals in the second generation of Arabidopsis seeds, somatic mutations, and a reduction of growth rates of corn plants and a reduction of life span of Artemia salina shrimps. The different passive detector systems are also in a good shape and give access to a proper dosimetric analysis. The results are summarized, and some aspects of future analysis are shown.

  6. Workshop summary. Biomedical and Space-Related Research with Heavy Ions at the BEVALAC

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Curtis, S. B.

    1989-01-01

    The authors provide an overview of papers presented at a workshop on Biomedical and Space-Related Research with Heavy Ions at the BEVALAC at Lawrence Berkeley Laboratory. Goals of the meeting were to determine the critical experiments using heavy ions as probes in radiation physics, radiation chemistry, macromolecular and cellular biology, evolution science, basic neurophysiology, and medical therapies; how beam lines and facilities at Lawrence Berkeley Laboratory can be improved for these experiments; and implications in priorities and funding for national policy. Workshop topics included physics and facilities, cellular and molecular biology, tissue radiobiology, and the future of heavy ion research.

  7. A review of active learning approaches to experimental design for uncovering biological networks

    PubMed Central

    2017-01-01

    Various types of biological knowledge describe networks of interactions among elementary entities. For example, transcriptional regulatory networks consist of interactions among proteins and genes. Current knowledge about the exact structure of such networks is highly incomplete, and laboratory experiments that manipulate the entities involved are conducted to test hypotheses about these networks. In recent years, various automated approaches to experiment selection have been proposed. Many of these approaches can be characterized as active machine learning algorithms. Active learning is an iterative process in which a model is learned from data, hypotheses are generated from the model to propose informative experiments, and the experiments yield new data that is used to update the model. This review describes the various models, experiment selection strategies, validation techniques, and successful applications described in the literature; highlights common themes and notable distinctions among methods; and identifies likely directions of future research and open problems in the area. PMID:28570593

  8. Innovations in Undergraduate Chemical Biology Education.

    PubMed

    Van Dyke, Aaron R; Gatazka, Daniel H; Hanania, Mariah M

    2018-01-19

    Chemical biology derives intellectual vitality from its scientific interface: applying chemical strategies and perspectives to biological questions. There is a growing need for chemical biologists to synergistically integrate their research programs with their educational activities to become holistic teacher-scholars. This review examines how course-based undergraduate research experiences (CUREs) are an innovative method to achieve this integration. Because CUREs are course-based, the review first offers strategies for creating a student-centered learning environment, which can improve students' outcomes. Exemplars of CUREs in chemical biology are then presented and organized to illustrate the five defining characteristics of CUREs: significance, scientific practices, discovery, collaboration, and iteration. Finally, strategies to overcome common barriers in CUREs are considered as well as future innovations in chemical biology education.

  9. Artificial gravity studies and design considerations for Space Station centrifuges

    NASA Technical Reports Server (NTRS)

    Halstead, T. W.; Brown, A. H.; Fuller, C. A.; Oyama, J.

    1984-01-01

    The requirements to and capabilities of a Space Station biological facility centrifuge are discussed on the basis of an assessment of the objectives and subjects of future microgravity biological experiments. It is argued that the facility should be capable of both acute and extended chronic exposure of test subjects and biological materials to altered-g loading. In addition, the experimental approaches and equipment for microgravity studies on a Space Station are outlined. Finally, the engineering requirements of such a centrifuge are examined, with consideration of radial gravity gradients, size, and physical access to animals.

  10. The Self-Organizing Psyche: Nonlinear and Neurobiological Contributions to Psychoanalysis

    NASA Astrophysics Data System (ADS)

    Stein, A. H.

    Sigmund Freud attempted to align nineteenth century biology (and the dynamically conservative, continuous, Newtonian mechanics that underlie it) with discontinuous conscious experience. His tactics both set the future course for psychoanalytic development and introduced seemingly intractable complications into its metapsychology. In large part, these arose from what we now recognize were biological errors and dynamical oversimplifications amid his physical assumptions. Their correction, brought about by integrating nonlinear dynamics and neuro-biological research findings with W. Bion's reading of metapsychology, fundamentally supports a psychoanalysis based upon D. W. Winnicott's ideas surrounding play within transitional space.

  11. Future directions in inflammatory bowel disease management.

    PubMed

    D'Haens, Geert R; Sartor, R Balfour; Silverberg, Mark S; Petersson, Joel; Rutgeerts, Paul

    2014-08-01

    Clinical management of inflammatory bowel diseases (IBD), new treatment modalities and the potential impact of personalised medicine remain topics of intense interest as our understanding of the pathophysiology of IBD expands. Potential future strategies for IBD management are discussed, based on recent preclinical and clinical research. A top-down approach to medical therapy is increasingly being adopted for patients with risk factors for severe inflammation or an unfavourable disease course in an attempt to halt the inflammatory process as early as possible, prevent complications and induce mucosal healing. In the future, biological therapies for IBD are likely to be used more selectively based on personalised benefit/risk assessment, determined through reliable biomarkers and tissue signatures, and will probably be optimised throughout the course of treatment. Biologics with different mechanisms of action will be available; when one drug fails, patients will be able to switch to another and even combination biologics may become a reality. The role of biotherapeutic products that are similar to currently licensed biologics in terms of quality, safety and efficacy - i.e. biosimilars - is at an early stage and requires further experience. Other therapeutic strategies may involve manipulation of the microbiome using antibiotics, probiotics, prebiotics, diet and combinations of all these approaches. Faecal microbiota transplantation is also a potential option in IBD although controlled data are lacking. The future of classifying, prognosticating and managing IBD involves an outcomes-based approach to identify biomarkers reflecting various biological processes that can be matched with clinically important endpoints. Copyright © 2014 European Crohn's and Colitis Organisation. Published by Elsevier B.V. All rights reserved.

  12. Preparing the “New” Biologist of the Future: Student Research at the Interface of Mathematics and Biology

    PubMed Central

    Bishop, Pamela; Lenhart, Suzanne

    2010-01-01

    We describe a unique Research Experience for Undergraduates and Research Experience for Veterinary students summer program at the National Institute for Mathematical and Biological Synthesis on the campus of the University of Tennessee, Knoxville. The program focused on interdisciplinary research at the interface of biology and mathematics. Participants were selected to work on projects with a biology mentor and a mathematics mentor in an environment that promoted collaboration outside of the students' respective disciplines. There were four research projects with teams of four participants and two faculty mentors. The participants consisted of a mixture of 10 undergraduates in biology- and mathematics-related disciplines, four veterinary students, and two high-school teachers. The activities included lectures on both the biological and mathematical backgrounds of the projects, tutorials for software, and sessions on ethics, graduate school, and possible career paths for individuals interested in biology and mathematics. The program was designed to give students the ability to actively participate in the scientific research process by working on a project, writing up their results in a final report, and presenting their work orally. We report on the results of our evaluation surveys of the participants. PMID:20810963

  13. Preparing the "new" biologist of the future: student research at the interface of mathematics and biology.

    PubMed

    Duncan, Sarah I; Bishop, Pamela; Lenhart, Suzanne

    2010-01-01

    We describe a unique Research Experience for Undergraduates and Research Experience for Veterinary students summer program at the National Institute for Mathematical and Biological Synthesis on the campus of the University of Tennessee, Knoxville. The program focused on interdisciplinary research at the interface of biology and mathematics. Participants were selected to work on projects with a biology mentor and a mathematics mentor in an environment that promoted collaboration outside of the students' respective disciplines. There were four research projects with teams of four participants and two faculty mentors. The participants consisted of a mixture of 10 undergraduates in biology- and mathematics-related disciplines, four veterinary students, and two high-school teachers. The activities included lectures on both the biological and mathematical backgrounds of the projects, tutorials for software, and sessions on ethics, graduate school, and possible career paths for individuals interested in biology and mathematics. The program was designed to give students the ability to actively participate in the scientific research process by working on a project, writing up their results in a final report, and presenting their work orally. We report on the results of our evaluation surveys of the participants.

  14. Laboratory Experiences in an Introduction to Natural Science Course.

    ERIC Educational Resources Information Center

    Barnard, Sister Marquita

    1984-01-01

    Describes a two-semester course designed to meet the needs of future elementary teachers, home economists, and occupational therapists. Laboratory work includes homemade calorimeters, inclined planes, and computing. Content areas of the course include measurement, physics, chemistry, astronomy, biology, geology, and meteorology. (JN)

  15. Tools for the functional interpretation of metabolomic experiments.

    PubMed

    Chagoyen, Monica; Pazos, Florencio

    2013-11-01

    The so-called 'omics' approaches used in modern biology aim at massively characterizing the molecular repertories of living systems at different levels. Metabolomics is one of the last additions to the 'omics' family and it deals with the characterization of the set of metabolites in a given biological system. As metabolomic techniques become more massive and allow characterizing larger sets of metabolites, automatic methods for analyzing these sets in order to obtain meaningful biological information are required. Only recently the first tools specifically designed for this task in metabolomics appeared. They are based on approaches previously used in transcriptomics and other 'omics', such as annotation enrichment analysis. These, together with generic tools for metabolic analysis and visualization not specifically designed for metabolomics will for sure be in the toolbox of the researches doing metabolomic experiments in the near future.

  16. Culture and biology interplay: An introduction.

    PubMed

    Causadias, José M; Telzer, Eva H; Lee, Richard M

    2017-01-01

    Culture and biology have evolved together, influence each other, and concurrently shape behavior, affect, cognition, and development. This special section highlights 2 major domains of the interplay between culture and biology. The first domain is neurobiology of cultural experiences-how cultural, ethnic, and racial experiences influence limbic systems and neuroendocrine functioning-and the second domain is cultural neuroscience-the connections between cultural processes and brain functioning. We include 3 studies on neurobiology of cultural experiences that examine the associations between racial discrimination and heart rate variability (Hill et al., 2016), economic and sociocultural stressors and cortisol levels (Mendoza, Dmitrieva, Perreira, & Watamura, 2016), and unfair treatment and allostatic load (Ong, Williams, Nwizu, & Gruenewald, 2016). We also include 2 studies on cultural neuroscience that investigate cultural group differences and similarities in beliefs, practices, and neural basis of emotion regulation (Qu & Telzer, 2016), and reflected and direct self-appraisals (Pfeifer et al., 2016). We discuss pending challenges and future directions for this emerging field. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Bone, Calcium and Spaceflight: A Living Systems Experiment Relating Animals and Plants the Effects of Calcium on Plant Growth and Development

    NASA Technical Reports Server (NTRS)

    Reiss-Bubenheim, Debra; Navarro, B. J.; Souza, Kenneth A. (Technical Monitor)

    1994-01-01

    This educational outreach activity provided students with information about ARC's role in conducting life sciences research in space. Students were introduced to the scientific method while conducting a plant experiment that was correlated to the flight animal experiment. Students made daily observations, collected data and reported on their findings. This classroom experiment providing a hands-on learning opportunity about terrestrial and space biology in which exposed the students to new fields of study for future endeavors.

  18. A Personal Journey of Discovery: Developing Technology and Changing Biology

    NASA Astrophysics Data System (ADS)

    Hood, Lee

    2008-07-01

    This autobiographical article describes my experiences in developing chemically based, biological technologies for deciphering biological information: DNA, RNA, proteins, interactions, and networks. The instruments developed include protein and DNA sequencers and synthesizers, as well as ink-jet technology for synthesizing DNA chips. Diverse new strategies for doing biology also arose from novel applications of these instruments. The functioning of these instruments can be integrated to generate powerful new approaches to cloning and characterizing genes from a small amount of protein sequence or to using gene sequences to synthesize peptide fragments so as to characterize various properties of the proteins. I also discuss the five paradigm changes in which I have participated: the development and integration of biological instrumentation; the human genome project; cross-disciplinary biology; systems biology; and predictive, personalized, preventive, and participatory (P4) medicine. Finally, I discuss the origins, the philosophy, some accomplishments, and the future trajectories of the Institute for Systems Biology.

  19. A Common Lunar Lander (CLL) for the Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Bailey, Stephen

    1991-01-01

    Information is given in viewgraph form on the Artemis project, a plan to establish a permanent base on the Moon. Information includes a summary of past and future events, the program rationale, a summary of potential payloads, the physical characteristics of experiments, sketches of equipment, design study objectives, and details of such payloads as the Geophysical Station Network, teleoperated rovers, astronomical telescopes, a Moon-Earth radio interferometer, very low frequency radio antennas, the Lunar Polar Crater Telescope, Lunar Resource Utilization Experiments, and biological experiments.

  20. Fundamental Space Biology-1: HHR and Incubator for ISS Space Life Sciences

    NASA Astrophysics Data System (ADS)

    Kirven-Brooks, M.; Fahlen, T.; Sato, K.; Reiss-Bubenheim, D.

    The Space Station Biological Research Project (SSBRP) is developing an Incubator and a Habitat Holding Rack (HHR) to support life science experiments aboard the International Space Station (ISS). The HHR provides for cooling and power needs, and supports data transfer (including telemetry, commanding, video processing, Ethernet), video compression, and data and command storage). The Incubator is a habitat that provides for controlled temperature between +4 C and +45 C and air circulation. It has a set of connector ports for power, analog and digital sensors, and video pass-through to support experiment-unique hardware within the Incubator specimen chamber. The Incubator exchanges air with the ISS cabin. The Fundamental Space Biology-1 (FSB-1) Project will be delivering, the HHR and two Incubators to ISS. The two inaugural experiments to be conducted on ISS using this hardware will investigate the biological effects of the space environment on two model organisms, Saccharomyces cerevisiae (S. cerevisiae; yeast) and Caenorhabditis elegans (C. elegans; nematode). The {M}odel {Y}east {C}ultures {o}n {S}tation (MYCOS) experiment will support examination of the effect of microgravity and cosmic radiation on yeast biology. In the second series of experiments during the same increment, the effects of microgravity and space environment radiation on C. elegans will be examined. The {F}undamental Space Biology {I}ncubator {E}xperiment {R}esearch using {C}. {e}legans (FIERCE) study is designed to support a long duration, multi-generational study of nematodes. FIERCE on-orbit science operations will include video monitoring, sub-culturing and periodic fixation and freezing of samples. For both experiments, investigators will be solicited via an International Space Life Sciences Research Announcement. In the near future, the Centrifuge Accommodation Module will be delivered to ISS, which will house the SSBRP 2.5 m Centrifuge Rotor. The Incubator can be placed onto the Centrifuge Rotor, which is capable of supporting variable gravity experiments from microgravity through 2g.

  1. The Current Status of the Space Station Biological Research Project: a Core Facility Enabling Multi-Generational Studies under Slectable Gravity Levels

    NASA Astrophysics Data System (ADS)

    Santos, O.

    2002-01-01

    The Space Station Biological Research Project (SSBRP) has developed a new plan which greatly reduces the development costs required to complete the facility. This new plan retains core capabilities while allowing for future growth. The most important piece of equipment required for quality biological research, the 2.5 meter diameter centrifuge capable of accommodating research specimen habitats at simulated gravity levels ranging from microgravity to 2.0 g, is being developed by NASDA, the Japanese space agency, for the SSBRP. This is scheduled for flight to the ISS in 2007. The project is also developing a multi-purpose incubator, an automated cell culture unit, and two microgravity habitat holding racks, currently scheduled for launch in 2005. In addition the Canadian Space Agency is developing for the project an insect habitat, which houses Drosophila melanogaster, and provides an internal centrifuge for 1 g controls. NASDA is also developing for the project a glovebox for the contained manipulation and analysis of biological specimens, scheduled for launch in 2006. This core facility will allow for experimentation on small plants (Arabidopsis species), nematode worms (C. elegans), fruit flies (Drosophila melanogaster), and a variety of microorganisms, bacteria, yeast, and mammalian cells. We propose a plan for early utilization which focuses on surveys of changes in gene expression and protein structure due to the space flight environment. In the future, the project is looking to continue development of a rodent habitat and a plant habitat that can be accommodated on the 2.5 meter centrifuge. By utilizing the early phases of the ISS to broadly answer what changes occur at the genetic and protein level of cells and organisms exposed to the ISS low earth orbit environment, we can generate interest for future experiments when the ISS capabilities allow for direct manipulation and intervention of experiments. The ISS continues to hold promise for high quality, long term, multi-generational biological studies with large sample sizes and appropriate controls.

  2. False positives in Biolog EcoPlates™ and MT2 MicroPlates™ caused by calcium.

    PubMed

    Pierce, Melissa L; Ward, J Evan; Dobbs, Fred C

    2014-02-01

    Biolog MicroPlates(TM) (e.g. EcoPlate(TM), MT2 MicroPlate(TM), GN MicroPlate(TM)) are useful tools for characterizing microbial communities, providing community-level physiological profiles to terrestrial and aquatic ecologists. The more recently designed Biolog EcoPlates have been used frequently in aquatic ecology with success. This study, however, reveals one major problem when using EcoPlates to evaluate samples within an estuarine or seawater matrix. At concentrations greater than 100 parts per million, the cation calcium begins to interfere with the microplate chemistry, causing false positive readings. Experiments, in which multiple treatments of natural and artificial seawater were tested, as well as calcium-addition experiments, demonstrate that calcium inhibits complete dissolution of the minimal growth medium in wells. Future studies involving Biolog EcoPlates and MicroPlates should take this effect into account, and the dilution of samples is strongly recommended to diminish the "calcium effect." Copyright © 2013 Elsevier B.V. All rights reserved.

  3. A crucial step toward realism: responses to climate change from an evolving metacommunity perspective.

    PubMed

    Urban, Mark C; De Meester, Luc; Vellend, Mark; Stoks, Robby; Vanoverbeke, Joost

    2012-02-01

    We need to understand joint ecological and evolutionary responses to climate change to predict future threats to biological diversity. The 'evolving metacommunity' framework emphasizes that interactions between ecological and evolutionary mechanisms at both local and regional scales will drive community dynamics during climate change. Theory suggests that ecological and evolutionary dynamics often interact to produce outcomes different from those predicted based on either mechanism alone. We highlight two of these dynamics: (i) species interactions prevent adaptation of nonresident species to new niches and (ii) resident species adapt to changing climates and thereby prevent colonization by nonresident species. The rate of environmental change, level of genetic variation, source-sink structure, and dispersal rates mediate between these potential outcomes. Future models should evaluate multiple species, species interactions other than competition, and multiple traits. Future experiments should manipulate factors such as genetic variation and dispersal to determine their joint effects on responses to climate change. Currently, we know much more about how climates will change across the globe than about how species will respond to these changes despite the profound effects these changes will have on global biological diversity. Integrating evolving metacommunity perspectives into climate change biology should produce more accurate predictions about future changes to species distributions and extinction threats.

  4. A crucial step toward realism: responses to climate change from an evolving metacommunity perspective

    PubMed Central

    Urban, Mark C; De Meester, Luc; Vellend, Mark; Stoks, Robby; Vanoverbeke, Joost

    2012-01-01

    We need to understand joint ecological and evolutionary responses to climate change to predict future threats to biological diversity. The ‘evolving metacommunity’ framework emphasizes that interactions between ecological and evolutionary mechanisms at both local and regional scales will drive community dynamics during climate change. Theory suggests that ecological and evolutionary dynamics often interact to produce outcomes different from those predicted based on either mechanism alone. We highlight two of these dynamics: (i) species interactions prevent adaptation of nonresident species to new niches and (ii) resident species adapt to changing climates and thereby prevent colonization by nonresident species. The rate of environmental change, level of genetic variation, source-sink structure, and dispersal rates mediate between these potential outcomes. Future models should evaluate multiple species, species interactions other than competition, and multiple traits. Future experiments should manipulate factors such as genetic variation and dispersal to determine their joint effects on responses to climate change. Currently, we know much more about how climates will change across the globe than about how species will respond to these changes despite the profound effects these changes will have on global biological diversity. Integrating evolving metacommunity perspectives into climate change biology should produce more accurate predictions about future changes to species distributions and extinction threats. PMID:25568038

  5. Molecular Biology for the Environment: an EC-US hands-on Course in Environmental Biotechnology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor de Lorenzo; Juan Luis Ramos; Jerome Kukor

    One of the central goals of this activity is to bring together young scientists (at the late Ph.D. or early postdoctoral stages of their careers) in a forum that should result in future collaborations. The course is designed to give scientists hands-on experience in modern, up-to-date biotechnological methods at the interface between molecular biology and environmental biotechnology for the analysis of microorganisms and their activities with regard to the remediation of pollutants in the environment.

  6. A Practical Look at the Chemistry and Biology of Hydrogen Sulfide

    PubMed Central

    2012-01-01

    Abstract Significance: Hydrogen sulfide (H2S) is garnering increasing interest as a biologically relevant signaling molecule. The effects of H2S have now been observed in virtually every organ system and numerous physiological processes. Recent Advances: These studies have not only opened a new field of “gasotransmitter” biology, they have also led to the development of synthetic H2S “donating” compounds with the potential to be parlayed into a variety of therapeutic applications. Critical Issues: Often lost in the exuberance of this new field is a critical examination or understanding of practical aspects of H2S chemistry and biology. This is especially notable in the areas of handling and measuring H2S, evaluating biosynthetic and metabolic pathways, and separating physiological from pharmacological responses. Future Directions: This brief review describes some of the pitfalls in H2S chemistry and biology that can lead or have already led to misleading or erroneous conclusions. The intent is to allow individuals entering or already in this burgeoning field to critically analyze the literature and to assist them in the design of future experiments. Antioxid. Redox Signal. 17, 32–44. PMID:22074253

  7. BIOPACK: the ground controlled late access biological research facility.

    PubMed

    van Loon, Jack J W A

    2004-03-01

    Future Space Shuttle flights shall be characterized by activities necessary to further build the International Space Station, ISS. During these missions limited resources are available to conduct biological experiments in space. The Shuttles' Middeck is a very suitable place to conduct science during the ISS assembly missions or dedicated science missions. The BIOPACK, which flew its first mission during the STS-107, provides a versatile Middeck Locker based research tool for gravitational biology studies. The core facility occupies the space of only two Middeck Lockers. Experiment temperatures are controlled for bacteria, plant, invertebrate and mammalian cultures. Gravity levels and profiles can be set ranging from 0 to 2.0 x g on three independent centrifuges. This provides the experimenter with a 1.0 x g on-board reference and intermediate hypogravity and hypergravity data points to investigate e.g. threshold levels in biological responses. Temperature sensitive items can be stored in the facilities' -10 degrees C and +4 degrees C stowage areas. During STS-107 the facility also included a small glovebox (GBX) and passive temperature controlled units (PTCU). The GBX provides the experimenter with two extra levels of containment for safe sample handling. This biological research facility is a late access (L-10 hrs) laboratory, which, when reaching orbit, could automatically be starting up reducing important experiment lag-time and valuable crew time. The system is completely telecommanded when needed. During flight system parameters like temperatures, centrifuge speeds, experiment commanding or sensor readouts can be monitored and changed when needed. Although ISS provides a wide range of research facilities there is still need for an STS-based late access facility such as the BIOPACK providing experimenters with a very versatile research cabinet for biological experiments under microgravity and in-flight control conditions.

  8. Child and Adolescent Development for Educators

    ERIC Educational Resources Information Center

    Pressley, Michael; McCormick, Christine B.

    2006-01-01

    Filling a tremendous need, this is the first graduate-level child development text written specifically for future educators. The volume provides a solid understanding of major theories of development, focusing on how each has informed research and practice in educational contexts. Topics include the impact of biology and early experiences on the…

  9. Estimating the Size of Onion Epidermal Cells from Diffraction Patterns

    ERIC Educational Resources Information Center

    Groff, Jeffrey R.

    2012-01-01

    Bioscience and premedical profession students are a major demographic served by introductory physics courses at many colleges and universities. Exposing these students to biological applications of physical principles will help them to appreciate physics as a useful tool for their future professions. Here I describe an experiment suitable for…

  10. Prospective Primary Teachers' Self-Efficacy and Emotions in Science Teaching

    ERIC Educational Resources Information Center

    Brigido, Maria; Borrachero, Ana Belen; Bermejo, Maria Luisa; Mellado, Vicente

    2013-01-01

    The self-efficacy of prospective primary teachers was studied, considering in particular the relationship of that construct with the emotions they expect to experience as future science teachers, differentiating between when they will be teaching the content of the "nature sciences" (biology and geology) and that of the "hard…

  11. Concept Recognition in an Automatic Text-Processing System for the Life Sciences.

    ERIC Educational Resources Information Center

    Vleduts-Stokolov, Natasha

    1987-01-01

    Describes a system developed for the automatic recognition of biological concepts in titles of scientific articles; reports results of several pilot experiments which tested the system's performance; analyzes typical ambiguity problems encountered by the system; describes a disambiguation technique that was developed; and discusses future plans…

  12. A Useful Laboratory Tool

    ERIC Educational Resources Information Center

    Johnson, Samuel A.; Tutt, Tye

    2008-01-01

    Recently, a high school Science Club generated a large number of questions involving temperature. Therefore, they decided to construct a thermal gradient apparatus in order to conduct a wide range of experiments beyond the standard "cookbook" labs. They felt that this apparatus could be especially useful in future ninth-grade biology classes, in…

  13. Specimen preparation for cryogenic coherent X-ray diffraction imaging of biological cells and cellular organelles by using the X-ray free-electron laser at SACLA

    PubMed Central

    Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka; Okajima, Koji; Fukuda, Asahi; Oide, Mao; Yamamoto, Masaki; Nakasako, Masayoshi

    2016-01-01

    Coherent X-ray diffraction imaging (CXDI) allows internal structures of biological cells and cellular organelles to be analyzed. CXDI experiments have been conducted at 66 K for frozen-hydrated biological specimens at the SPring-8 Angstrom Compact Free-Electron Laser facility (SACLA). In these cryogenic CXDI experiments using X-ray free-electron laser (XFEL) pulses, specimen particles dispersed on thin membranes of specimen disks are transferred into the vacuum chamber of a diffraction apparatus. Because focused single XFEL pulses destroy specimen particles at the atomic level, diffraction patterns are collected through raster scanning the specimen disks to provide fresh specimen particles in the irradiation area. The efficiency of diffraction data collection in cryogenic experiments depends on the quality of the prepared specimens. Here, detailed procedures for preparing frozen-hydrated biological specimens, particularly thin membranes and devices developed in our laboratory, are reported. In addition, the quality of the frozen-hydrated specimens are evaluated by analyzing the characteristics of the collected diffraction patterns. Based on the experimental results, the internal structures of the frozen-hydrated specimens and the future development for efficient diffraction data collection are discussed. PMID:27359147

  14. Specimen preparation for cryogenic coherent X-ray diffraction imaging of biological cells and cellular organelles by using the X-ray free-electron laser at SACLA.

    PubMed

    Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka; Okajima, Koji; Fukuda, Asahi; Oide, Mao; Yamamoto, Masaki; Nakasako, Masayoshi

    2016-07-01

    Coherent X-ray diffraction imaging (CXDI) allows internal structures of biological cells and cellular organelles to be analyzed. CXDI experiments have been conducted at 66 K for frozen-hydrated biological specimens at the SPring-8 Angstrom Compact Free-Electron Laser facility (SACLA). In these cryogenic CXDI experiments using X-ray free-electron laser (XFEL) pulses, specimen particles dispersed on thin membranes of specimen disks are transferred into the vacuum chamber of a diffraction apparatus. Because focused single XFEL pulses destroy specimen particles at the atomic level, diffraction patterns are collected through raster scanning the specimen disks to provide fresh specimen particles in the irradiation area. The efficiency of diffraction data collection in cryogenic experiments depends on the quality of the prepared specimens. Here, detailed procedures for preparing frozen-hydrated biological specimens, particularly thin membranes and devices developed in our laboratory, are reported. In addition, the quality of the frozen-hydrated specimens are evaluated by analyzing the characteristics of the collected diffraction patterns. Based on the experimental results, the internal structures of the frozen-hydrated specimens and the future development for efficient diffraction data collection are discussed.

  15. The future of biologics: applications for food allergy.

    PubMed

    Bauer, Rebecca N; Manohar, Monali; Singh, Anne Marie; Jay, David C; Nadeau, Kari C

    2015-02-01

    Allergic diseases affect millions worldwide, with growing evidence of an increase in allergy occurrence over the past few decades. Current treatments for allergy include corticosteroids to reduce inflammation and allergen immunotherapy; however, some subjects experience treatment-resistant inflammation or adverse reactions to these treatments, and there are currently no approved therapeutics for the treatment of food allergy. There is a dire need for new therapeutic approaches for patients with poorly controlled atopic diseases and a need to improve the safety and effectiveness of allergen immunotherapy. Improved understanding of allergy through animal models and clinical trials has unveiled potential targets for new therapies, leading to the development of several biologics to treat allergic diseases. This review focuses on the mechanisms that contribute to allergy, with an emphasis on future targets for biologics for the treatment of food allergy. These biologics include immunotherapy with novel anti-IgE antibodies and analogs, small-molecule inhibitors of cell signaling, anti-type 2 cytokine mAbs, and TH1-promoting adjuvants. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. Applications of systems biology towards microbial fuel production.

    PubMed

    Gowen, Christopher M; Fong, Stephen S

    2011-10-01

    Harnessing the immense natural diversity of biological functions for economical production of fuel has enormous potential benefits. Inevitably, however, the native capabilities for any given organism must be modified to increase the productivity or efficiency of a biofuel bioprocess. From a broad perspective, the challenge is to sufficiently understand the details of cellular functionality to be able to prospectively predict and modify the cellular function of a microorganism. Recent advances in experimental and computational systems biology approaches can be used to better understand cellular level function and guide future experiments. With pressure to quickly develop viable, renewable biofuel processes a balance must be maintained between obtaining depth of biological knowledge and applying that knowledge. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heise, J.

    The former Homestake gold mine in Lead, South Dakota, has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansionmore » of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-search dark matter experiments and the Fermilab-led international long-baseline neutrino program. Planning to understand the infrastructure developments necessary to accommodate these future projects is well advanced and in some cases have already started. SURF is a dedicated research facility with significant expansion capability.« less

  18. IBPRO - A Novel Short-Duration Teaching Course in Advanced Physics and Biology Underlying Cancer Radiotherapy.

    PubMed

    Joiner, Michael C; Tracey, Monica W; Kacin, Sara E; Burmeister, Jay W

    2017-06-01

    This article provides a summary and status report of the ongoing advanced education program IBPRO - Integrated course in Biology and Physics of Radiation Oncology. IBPRO is a five-year program funded by NCI. It addresses the recognized deficiency in the number of mentors available who have the required knowledge and skill to provide the teaching and training that is required for future radiation oncologists and researchers in radiation sciences. Each year, IBPRO brings together 50 attendees typically at assistant professor level and upwards, who are already qualified/certified radiation oncologists, medical physicists or biologists. These attendees receive keynote lectures and activities based on active learning strategies, merging together the clinical, biological and physics underpinnings of radiation oncology, at the forefront of the field. This experience is aimed at increasing collaborations, raising the level and amount of basic and applied research undertaken in radiation oncology, and enabling attendees to confidently become involved in the future teaching and training of researchers and radiation oncologists.

  19. IBPRO – a novel short-duration teaching course in advanced physics and biology underlying cancer radiotherapy

    PubMed Central

    Joiner, Michael C.; Tracey, Monica W.; Kacin, Sara E.; Burmeister, Jay W.

    2017-01-01

    This article provides a summary and status report of the ongoing advanced education program IBPRO – Integrated course in Biology and Physics of Radiation Oncology. IBPRO is a five-year program funded by NCI. It addresses the recognized deficiency in the number of mentors available who have the required knowledge and skill to provide the teaching and training that is required for future radiation oncologists and researchers in radiation sciences. Each year, IBPRO brings together 50 attendees typically at assistant professor level and upwards, who are already qualified/certified radiation oncologists, medical physicists or biologists. These attendees receive keynote lectures and activities based on active learning strategies, merging together the clinical, biological and physics underpinnings of radiation oncology, at the forefront of the field. This experience is aimed at increasing collaborations, raising the level and amount of basic and applied research undertaken in radiation oncology, and enabling attendees to confidently become involved in the future teaching and training of researchers and radiation oncologists. PMID:28328309

  20. An Interactive Environmental Science Course for Education Science Majors

    ERIC Educational Resources Information Center

    Lunsford, Suzanne K.; Slattery, William

    2006-01-01

    An interactive environmental science course was designed to provide a set of learning experiences that connect chemistry, geology, biology, physics, and math with the future careers as teachers. The environment deals with many factors contributing with the quality of life, such as the air, the water and the protective shelter of the atmosphere.

  1. Multichannel microformulators for massively parallel machine learning and automated design of biological experiments

    NASA Astrophysics Data System (ADS)

    Wikswo, John; Kolli, Aditya; Shankaran, Harish; Wagoner, Matthew; Mettetal, Jerome; Reiserer, Ronald; Gerken, Gregory; Britt, Clayton; Schaffer, David

    Genetic, proteomic, and metabolic networks describing biological signaling can have 102 to 103 nodes. Transcriptomics and mass spectrometry can quantify 104 different dynamical experimental variables recorded from in vitro experiments with a time resolution approaching 1 s. It is difficult to infer metabolic and signaling models from such massive data sets, and it is unlikely that causality can be determined simply from observed temporal correlations. There is a need to design and apply specific system perturbations, which will be difficult to perform manually with 10 to 102 externally controlled variables. Machine learning and optimal experimental design can select an experiment that best discriminates between multiple conflicting models, but a remaining problem is to control in real time multiple variables in the form of concentrations of growth factors, toxins, nutrients and other signaling molecules. With time-division multiplexing, a microfluidic MicroFormulator (μF) can create in real time complex mixtures of reagents in volumes suitable for biological experiments. Initial 96-channel μF implementations control the exposure profile of cells in a 96-well plate to different temporal profiles of drugs; future experiments will include challenge compounds. Funded in part by AstraZeneca, NIH/NCATS HHSN271201600009C and UH3TR000491, and VIIBRE.

  2. The experimental teaching reform in biochemistry and molecular biology for undergraduate students in Peking University Health Science Center.

    PubMed

    Yang, Xiaohan; Sun, Luyang; Zhao, Ying; Yi, Xia; Zhu, Bin; Wang, Pu; Lin, Hong; Ni, Juhua

    2015-01-01

    Since 2010, second-year undergraduate students of an eight-year training program leading to a Doctor of Medicine degree or Doctor of Philosophy degree in Peking University Health Science Center (PKUHSC) have been required to enter the "Innovative talent training project." During that time, the students joined a research lab and participated in some original research work. There is a critical educational need to prepare these students for the increasing accessibility of research experience. The redesigned experimental curriculum of biochemistry and molecular biology was developed to fulfill such a requirement, which keeps two original biochemistry experiments (Gel filtration and Enzyme kinetics) and adds a new two-experiment component called "Analysis of anti-tumor drug induced apoptosis." The additional component, also known as the "project-oriented experiment" or the "comprehensive experiment," consists of Western blotting and a DNA laddering assay to assess the effects of etoposide (VP16) on the apoptosis signaling pathways. This reformed laboratory teaching system aims to enhance the participating students overall understanding of important biological research techniques and the instrumentation involved, and to foster a better understanding of the research process all within a classroom setting. Student feedback indicated that the updated curriculum helped them improve their operational and self-learning capability, and helped to increase their understanding of theoretical knowledge and actual research processes, which laid the groundwork for their future research work. © 2015 The International Union of Biochemistry and Molecular Biology.

  3. The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stagg, Elizabeth

    2004-01-01

    In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations. Some initial results from the first three materials experiments are given.

  4. Forward to the past

    PubMed Central

    Carlini, Alessandro; Actis-Grosso, Rossana; Stucchi, Natale; Pozzo, Thierry

    2012-01-01

    Our daily experience shows that the CNS is a highly efficient machine to predict the effect of actions into the future; are we so efficient also in reconstructing the past of an action? Previous studies demonstrated we are more effective in extrapolating the final position of a stimulus moving according to biological kinematic laws. Here we address the complementary question: are we more effective in extrapolating the starting position (SP) of a motion following a biological velocity profile? We presented a dot moving upward and corresponding to vertical arm movements that were masked in the first part of the trajectory. The stimulus could either move according to biological or non-biological kinematic laws of motion. Results show a better efficacy in reconstructing the SP of a natural motion: participants demonstrate to reconstruct coherently only the SP of the biological condition. When the motion violates the biological kinematic law, responses are scattered and show a tendency toward larger errors. Instead, in a control experiment where the full motions were displayed, no-difference between biological and non-biological motions is found. Results are discussed in light of potential mechanisms involved in visual inference. We propose that as soon as the target appears the cortical motor area would generate an internal representation of reaching movement. When the visual input and the stored kinematic template match, the SP is traced back on the basis of this memory template, making more effective the SP reconstruction. PMID:22712012

  5. Landing in the future: Biological experiments on Earth and in space orbit

    NASA Astrophysics Data System (ADS)

    Pokrovskiy, A.

    1980-09-01

    The development of an Earth biosatellite to duplicate the parameters of pressure, temperature, humidity and others in a space environment onboard Cosmos-1129 is discussed. Effects of a space environment on fruit flies, dogs, laboratory rats in procreation, behavior, stress, biorhythm, body composition, gravitation preference, and cell cultures are examined. The space environment for agricultural products is also studied. The effects of heavy nuclei of galactic space radiation on biological objects inside and outside the satellite is studied, and methods of electrostatic protection are developed.

  6. Landing in the future: Biological experiments on Earth and in space orbit

    NASA Technical Reports Server (NTRS)

    Pokrovskiy, A.

    1980-01-01

    The development of an Earth biosatellite to duplicate the parameters of pressure, temperature, humidity and others in a space environment onboard Cosmos-1129 is discussed. Effects of a space environment on fruit flies, dogs, laboratory rats in procreation, behavior, stress, biorhythm, body composition, gravitation preference, and cell cultures are examined. The space environment for agricultural products is also studied. The effects of heavy nuclei of galactic space radiation on biological objects inside and outside the satellite is studied, and methods of electrostatic protection are developed.

  7. A First Attempt to Bring Computational Biology into Advanced High School Biology Classrooms

    PubMed Central

    Gallagher, Suzanne Renick; Coon, William; Donley, Kristin; Scott, Abby; Goldberg, Debra S.

    2011-01-01

    Computer science has become ubiquitous in many areas of biological research, yet most high school and even college students are unaware of this. As a result, many college biology majors graduate without adequate computational skills for contemporary fields of biology. The absence of a computational element in secondary school biology classrooms is of growing concern to the computational biology community and biology teachers who would like to acquaint their students with updated approaches in the discipline. We present a first attempt to correct this absence by introducing a computational biology element to teach genetic evolution into advanced biology classes in two local high schools. Our primary goal was to show students how computation is used in biology and why a basic understanding of computation is necessary for research in many fields of biology. This curriculum is intended to be taught by a computational biologist who has worked with a high school advanced biology teacher to adapt the unit for his/her classroom, but a motivated high school teacher comfortable with mathematics and computing may be able to teach this alone. In this paper, we present our curriculum, which takes into consideration the constraints of the required curriculum, and discuss our experiences teaching it. We describe the successes and challenges we encountered while bringing this unit to high school students, discuss how we addressed these challenges, and make suggestions for future versions of this curriculum.We believe that our curriculum can be a valuable seed for further development of computational activities aimed at high school biology students. Further, our experiences may be of value to others teaching computational biology at this level. Our curriculum can be obtained at http://ecsite.cs.colorado.edu/?page_id=149#biology or by contacting the authors. PMID:22046118

  8. A first attempt to bring computational biology into advanced high school biology classrooms.

    PubMed

    Gallagher, Suzanne Renick; Coon, William; Donley, Kristin; Scott, Abby; Goldberg, Debra S

    2011-10-01

    Computer science has become ubiquitous in many areas of biological research, yet most high school and even college students are unaware of this. As a result, many college biology majors graduate without adequate computational skills for contemporary fields of biology. The absence of a computational element in secondary school biology classrooms is of growing concern to the computational biology community and biology teachers who would like to acquaint their students with updated approaches in the discipline. We present a first attempt to correct this absence by introducing a computational biology element to teach genetic evolution into advanced biology classes in two local high schools. Our primary goal was to show students how computation is used in biology and why a basic understanding of computation is necessary for research in many fields of biology. This curriculum is intended to be taught by a computational biologist who has worked with a high school advanced biology teacher to adapt the unit for his/her classroom, but a motivated high school teacher comfortable with mathematics and computing may be able to teach this alone. In this paper, we present our curriculum, which takes into consideration the constraints of the required curriculum, and discuss our experiences teaching it. We describe the successes and challenges we encountered while bringing this unit to high school students, discuss how we addressed these challenges, and make suggestions for future versions of this curriculum.We believe that our curriculum can be a valuable seed for further development of computational activities aimed at high school biology students. Further, our experiences may be of value to others teaching computational biology at this level. Our curriculum can be obtained at http://ecsite.cs.colorado.edu/?page_id=149#biology or by contacting the authors.

  9. An Integrated XRF/XRD Instrument for Mars Exobiology and Geology Experiments

    NASA Technical Reports Server (NTRS)

    Koppel, L. N.; Franco, E. D.; Kerner, J. A.; Fonda, M. L.; Schwartz, D. E.; Marshall, J. R.

    1993-01-01

    By employing an integrated x-ray instrument on a future Mars mission, data obtained will greatly augment those returned by Viking; details characterizing the past and present environment on Mars and those relevant to the possibility of the origin and evolution of life will be acquired. A combined x-ray fluorescence/x-ray diffraction (XRF/XRD) instrument was breadboarded and demonstrated to accommodate important exobiology and geology experiment objectives outlined for MESUR and future Mars missions. Among others, primary objectives for the exploration of Mars include the intense study of local areas on Mars to establish the chemical, mineralogical, and petrological character of different components of the surface material; to determine the distribution, abundance, and sources and sinks of volatile materials, including an assessment of the biologic potential, now and during past epoches; and to establish the global chemical and physical characteristics of the Martian surface. The XRF/XRD breadboard instrument identifies and quantifies soil surface elemental, mineralogical, and petrological characteristics and acquires data necessary to address questions on volatile abundance and distribution. Additionally, the breadboard is able to characterize the biogenic element constituents of soil samples providing information on the biologic potential of the Mars environment. Preliminary breadboard experiments confirmed the fundamental instrument design approach and measurement performance.

  10. Final Report, 2011-2014. Forecasting Carbon Storage as Eastern Forests Age. Joining Experimental and Modeling Approaches at the UMBS AmeriFlux Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, Peter; Bohrer, Gil; Gough, Christopher

    2015-03-12

    At the University of Michigan Biological Station (UMBS) AmeriFlux sites (US-UMB and US-UMd), long-term C cycling measurements and a novel ecosystem-scale experiment are revealing physical, biological, and ecological mechanisms driving long-term trajectories of C cycling, providing new data for improving modeling forecasts of C storage in eastern forests. Our findings provide support for previously untested hypotheses that stand-level structural and biological properties constrain long-term trajectories of C storage, and that remotely sensed canopy structural parameters can substantially improve model forecasts of forest C storage. Through the Forest Accelerated Succession ExperimenT (FASET), we are directly testing the hypothesis that forest Cmore » storage will increase due to increasing structural and biological complexity of the emerging tree communities. Support from this project, 2011-2014, enabled us to incorporate novel physical and ecological mechanisms into ecological, meteorological, and hydrological models to improve forecasts of future forest C storage in response to disturbance, succession, and current and long-term climate variation« less

  11. Engaging Students in Authentic Microbiology Research in an Introductory Biology Laboratory Course is Correlated with Gains in Student Understanding of the Nature of Authentic Research and Critical Thinking†

    PubMed Central

    Gasper, Brittany J.; Gardner, Stephanie M.

    2013-01-01

    Recent recommendations for biology education highlight the role of authentic research experiences early in undergraduate education as a means of increasing the number and quality of biology majors. These experiences will inform students on the nature of science, increase their confidence in doing science, as well as foster critical thinking skills, an area that has been lacking despite it being one of the desired outcomes at undergraduate institutions and with future employers. With these things in mind, we have developed an introductory biology laboratory course where students design and execute an authentic microbiology research project. Students in this course are assimilated into the community of researchers by engaging in scholarly activities such as participating in inquiry, reading scientific literature, and communicating findings in written and oral formats. After three iterations of a semester-long laboratory course, we found that students who took the course showed a significant increase in their understanding of the nature of authentic research and their level of critical thinking skills. PMID:23858351

  12. Guidelines for Developing Successful Short Advanced Courses in Systems Medicine and Systems Biology.

    PubMed

    Gomez-Cabrero, David; Marabita, Francesco; Tarazona, Sonia; Cano, Isaac; Roca, Josep; Conesa, Ana; Sabatier, Philippe; Tegnér, Jesper

    2017-09-27

    Systems medicine and systems biology have inherent educational challenges. These have largely been addressed either by providing new masters programs or by redesigning undergraduate programs. In contrast, short courses can respond to a different need: they can provide condensed updates for professionals across academia, the clinic, and industry. These courses have received less attention. Here, we share our experiences in developing and providing such courses to current and future leaders in systems biology and systems medicine. We present guidelines for how to reproduce our courses, and we offer suggestions for how to select students who will nurture an interdisciplinary learning environment and thrive there. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Biological effects and physics of solar and galactic cosmic radiation, Part B; Proceedings of a NATO Advanced Study Institute on Biological Effects and Physics of Solar and Galactic Cosmic Radiation, Algarve, Portugal, Oct. 13-23, 1991

    NASA Technical Reports Server (NTRS)

    Swenberg, Charles E. (Editor); Horneck, Gerda (Editor); Stassinopoulos, E. G. (Editor)

    1993-01-01

    Since there is an increasing interest in establishing lunar bases and exploring Mars by manned missions, it is important to develop appropriate risk estimates and radiation protection guidelines. The biological effects and physics of solar and galactic cosmic radiation are examined with respect to the following: the radiation environment of interplanetary space, the biological responses to radiation in space, and the risk estimates for deep space missions. There is a need for a long-term program where ground-based studies can be augmented by flight experiments and an international standardization with respect to data collection, protocol comparison, and formulation of guidelines for future missions.

  14. Scientific assessment of animal welfare.

    PubMed

    Hemsworth, P H; Mellor, D J; Cronin, G M; Tilbrook, A J

    2015-01-01

    Animal welfare is a state within the animal and a scientific perspective provides methodologies for evidence-based assessment of an animal's welfare. A simplistic definition of animal welfare might be how the animal feels now. Affective experiences including emotions, are subjective states so cannot be measured directly in animals, but there are informative indirect physiological and behavioural indices that can be cautiously used to interpret such experiences. This review enunciates several key science-based frameworks for understanding animal welfare. The biological functioning and affective state frameworks were initially seen as competing, but a recent more unified approach is that biological functioning is taken to include affective experiences and affective experiences are recognised as products of biological functioning, and knowledge of the dynamic interactions between the two is considered to be fundamental to managing and improving animal welfare. The value of these two frameworks in understanding the welfare of group-housed sows is reviewed. The majority of studies of the welfare of group-housed sows have employed the biological functioning framework to infer compromised sow welfare, on the basis that suboptimal biological functioning accompanies negative affective states such as sow hunger, pain, fear, helplessness, frustration and anger. Group housing facilitates social living, but group housing of gestating sows raises different welfare considerations to stall housing, such as high levels of aggression, injuries and stress, at least for several days after mixing, as well as subordinate sows being underfed due to competition at feeding. This paper highlights the challenges and potential opportunities for the continued improvement in sow management through well-focused research and multidisciplinary assessment of animal welfare. In future the management of sentient animals will require the promotion of positive affective experiences in animals and this is likely to be a major focus for animal welfare science activity in the early twenty-first century.

  15. [Cell biology researches aboard the robotic space vehicles: preparation and performance].

    PubMed

    Tairbekov, M G

    2006-01-01

    The article reviews the unique aspects of preparation and performance of cell biology experiments flown on robotic space vehicles Bion and Foton, and gives an overview of key findings in researches made under the author's leadership over the past decades. Described are the criteria of selecting test objects, and the conditions required for preparation and implementation of space and control (synchronous) experiments. The present-day status and issues of researches into cell responsivity to space microgravity and other factors are discussed. Also, potentialities of equipment designed to conduct experiments with cell cultures in vitro and populations of single-celled organisms are presented, as well as some ideas for new devices and systems. Unveiled are some circumstances inherent to the development and performance of space experiments, setting up laboratory facilities at the launch and landing site, and methods of safe transportation and storage of biosamples. In conclusion, the author puts forward his view on biospecies, equipment and areas of research aboard future space vehicles.

  16. Biologic therapies for refractory juvenile dermatomyositis: five years of experience of the Childhood Arthritis and Rheumatology Research Alliance in North America.

    PubMed

    Spencer, C H; Rouster-Stevens, K; Gewanter, H; Syverson, G; Modica, R; Schmidt, K; Emery, H; Wallace, C; Grevich, S; Nanda, K; Zhao, Y D; Shenoi, S; Tarvin, S; Hong, S; Lindsley, C; Weiss, J E; Passo, M; Ede, K; Brown, A; Ardalan, K; Bernal, W; Stoll, M L; Lang, B; Carrasco, R; Agaiar, C; Feller, L; Bukulmez, H; Vehe, R; Kim, H; Schmeling, H; Gerstbacher, D; Hoeltzel, M; Eberhard, B; Sundel, R; Kim, S; Huber, A M; Patwardhan, A

    2017-06-13

    The prognosis of children with juvenile dermatomyositis (JDM) has improved remarkably since the 1960's with the use of corticosteroid and immunosuppressive therapy. Yet there remain a minority of children who have refractory disease. Since 2003 the sporadic use of biologics (genetically-engineered proteins that usually are derived from human genes) for inflammatory myositis has been reported. In 2011-2016 we investigated our collective experience of biologics in JDM through the Childhood Arthritis and Rheumatology Research Alliance (CARRA). The JDM biologic study group developed a survey on the CARRA member experience using biologics for Juvenile DM utilizing Delphi consensus methods in 2011-2012. The survey was completed online by the CARRA members interested in JDM in 2012. A second survey was similarly developed that provided more opportunity to describe their experiences with biologics in JDM in detail and was completed by CARRA members in Feb 2013. During three CARRA meetings in 2013-2015, nominal group techniques were used for achieving consensus on the current choices of biologic drugs. A final survey was performed at the 2016 CARRA meeting. One hundred and five of a potential 231 pediatric rheumatologists (42%) responded to the first survey in 2012. Thirty-five of 90 had never used a biologic for Juvenile DM at that time. Fifty-five of 91 (denominators vary) had used biologics for JDM in their practice with 32%, 5%, and 4% using rituximab, etanercept, and infliximab, respectively, and 17% having used more than one of the three drugs. Ten percent used a biologic as monotherapy, 19% a biologic in combination with methotrexate (mtx), 52% a biologic in combination with mtx and corticosteroids, 42% a combination of a biologic, mtx, corticosteroids (steroids), and an immunosuppressive drug, and 43% a combination of a biologic, IVIG and mtx. The results of the second survey supported these findings in considerably more detail with multiple combinations of drugs used with biologics and supported the use of rituximab, abatacept, anti-TNFα drugs, and tocilizumab in that order. One hundred percent recommended that CARRA continue studying biologics for JDM. The CARRA meeting survey in 2016 again supported the study and use of these four biologic drug groups. Our CARRA JDM biologic work group developed and performed three surveys demonstrating that pediatric rheumatologists in North America have been using multiple biologics for refractory JDM in numerous scenarios from 2011 to 2016. These survey results and our consensus meetings determined our choice of four biologic therapies (rituximab, abatacept, tocilizumab and anti-TNFα drugs) to consider for refractory JDM treatment when indicated and to evaluate for comparative effectiveness and safety in the future. Significance and Innovations This is the first report that provides a substantial clinical experience of a large group of pediatric rheumatologists with biologics for refractory JDM over five years. This experience with biologic therapies for refractory JDM may aid pediatric rheumatologists in the current treatment of these children and form a basis for further clinical research into the comparative effectiveness and safety of biologics for refractory JDM.

  17. Microdosimetry in ion-beam therapy

    NASA Astrophysics Data System (ADS)

    Magrin, Giulio; Mayer, Ramona

    2015-06-01

    The information of the dose is not sufficiently describing the biological effects of ions on tissue since it does not express the radiation quality, i.e. the heterogeneity of the processes due to the slowing-down and the fragmentation of the particles when crossing a target. Depending on different circumstances, the radiation quality can be determined using measurements, calculations, or simulations. Microdosimeters are the primary tools used to provide the experimental information of the radiation quality and their role is becoming crucial for the recent clinical developments in particular with carbon ion therapy. Microdosimetry is strongly linked to the biological effectiveness of the radiation since it provides the physical parameters which explicitly distinguish the radiation for its capability of damaging cells. In the framework of ion-beam therapy microdosimetry can be used in the preparation of the treatment to complement radiobiological experiments and to analyze the modification of the radiation quality in phantoms. A more ambitious goal is to perform the measurements during the irradiation procedure to determine the non-targeted radiation and, more importantly, to monitor the modification of the radiation quality inside the patient. These procedures provide the feedback of the treatment directly beneficial for the single patient but also for the characterization of the biological effectiveness in general with advantages for all future treatment. Traditional and innovative tools are currently under study and an outlook of present experience and future development is presented here.

  18. E-Portfolios Rescue Biology Students from a Poorer Final Exam Result: Promoting Student Metacognition

    ERIC Educational Resources Information Center

    Haave, Neil

    2016-01-01

    E-portfolios have the potential to transform students' learning experiences. They promote reflection on the significance of what and how students have learned. Such reflective practices enhance students' ability to articulate their knowledge and skills to their peers, teachers, and future employers. In addition, e-portfolios can help assess the…

  19. Parameter estimation using meta-heuristics in systems biology: a comprehensive review.

    PubMed

    Sun, Jianyong; Garibaldi, Jonathan M; Hodgman, Charlie

    2012-01-01

    This paper gives a comprehensive review of the application of meta-heuristics to optimization problems in systems biology, mainly focussing on the parameter estimation problem (also called the inverse problem or model calibration). It is intended for either the system biologist who wishes to learn more about the various optimization techniques available and/or the meta-heuristic optimizer who is interested in applying such techniques to problems in systems biology. First, the parameter estimation problems emerging from different areas of systems biology are described from the point of view of machine learning. Brief descriptions of various meta-heuristics developed for these problems follow, along with outlines of their advantages and disadvantages. Several important issues in applying meta-heuristics to the systems biology modelling problem are addressed, including the reliability and identifiability of model parameters, optimal design of experiments, and so on. Finally, we highlight some possible future research directions in this field.

  20. Fruit Flies Provide New Insights in Low-Radiation Background Biology at the INFN Underground Gran Sasso National Laboratory (LNGS).

    PubMed

    Morciano, Patrizia; Cipressa, Francesca; Porrazzo, Antonella; Esposito, Giuseppe; Tabocchini, Maria Antonella; Cenci, Giovanni

    2018-06-04

    Deep underground laboratories (DULs) were originally created to host particle, astroparticle or nuclear physics experiments requiring a low-background environment with vastly reduced levels of cosmic-ray particle interference. More recently, the range of science projects requiring an underground experiment site has greatly expanded, thus leading to the recognition of DULs as truly multidisciplinary science sites that host important studies in several fields, including geology, geophysics, climate and environmental sciences, technology/instrumentation development and biology. So far, underground biology experiments are ongoing or planned in a few of the currently operating DULs. Among these DULs is the Gran Sasso National Laboratory (LNGS), where the majority of radiobiological data have been collected. Here we provide a summary of the current scenario of DULs around the world, as well as the specific features of the LNGS and a summary of the results we obtained so far, together with other findings collected in different underground laboratories. In particular, we focus on the recent results from our studies of Drosophila melanogaster, which provide the first evidence of the influence of the radiation environment on life span, fertility and response to genotoxic stress at the organism level. Given the increasing interest in this field and the establishment of new projects, it is possible that in the near future more DULs will serve as sites of radiobiology experiments, thus providing further relevant biological information at extremely low-dose-rate radiation. Underground experiments can be nicely complemented with above-ground studies at increasing dose rate. A systematic study performed in different exposure scenarios provides a potential opportunity to address important radiation protection questions, such as the dose/dose-rate relationship for cancer and non-cancer risk, the possible existence of dose/dose-rate threshold(s) for different biological systems and/or end points and the possible role of radiation quality in triggering the biological response.

  1. Exploring women community college natural scientists' personal experience narratives through a subjectivist lens

    NASA Astrophysics Data System (ADS)

    Woods, Nancy Anne

    The thrust in education today is to encourage young women to enter nontraditional fields of study such as chemistry, physics, and biology. In order to better prepare the next generation of women scientists, then, we should examine the experiences of women participants already working within these areas. We can learn from their experiences. What motivated them toward science? What influenced them to become teachers? What brought them to the community college? If the premise is that we want more women involved in science, then one way to understand how to entice women into science would be to research those who are already there. This research project has two important findings, (1) women community college natural science instructors can experience issues of identity between their roles as scientists and teachers; (2) women community college natural science instructors value a different community structure compared to many of their male counterparts. This research lists several recommendations for future practice as well as recommendations for future research.

  2. Update on Psychological Trauma, Other Severe Adverse Experiences and Eating Disorders: State of the Research and Future Research Directions.

    PubMed

    Trottier, Kathryn; MacDonald, Danielle E

    2017-08-01

    This paper provides an updated review of the literature on the relationship between psychological trauma exposure, other severe adverse experiences, and eating disorders. Trauma exposure and other severe adverse experiences (e.g., emotional abuse) in both childhood and adulthood are associated with eating disorders. The relationship between traumatic and other adverse experiences and eating disorders appears to be mediated by emotional and behavioral dysregulation, as well as by cognitive factors such as self-criticism. Biological vulnerabilities may also be relevant to this relationship. Overall, the literature is limited by predominantly cross-sectional designs. There is clear evidence of a correlational relationship between trauma exposure and other severe adverse events, and eating disorders. Both risk and maintenance factor hypotheses have been put forth; however, prospective research testing these hypotheses remains limited. Future research should use prospective designs and focus on trauma-related symptoms (rather than trauma exposure) in order to advance research on risk and maintaining factors for eating disorders and inform treatment directions.

  3. Measuring and Advancing Experimental Design Ability in an Introductory Course without Altering Existing Lab Curriculum.

    PubMed

    Shanks, Ryan A; Robertson, Chuck L; Haygood, Christian S; Herdliksa, Anna M; Herdliska, Heather R; Lloyd, Steven A

    2017-01-01

    Introductory biology courses provide an important opportunity to prepare students for future courses, yet existing cookbook labs, although important in their own way, fail to provide many of the advantages of semester-long research experiences. Engaging, authentic research experiences aid biology students in meeting many learning goals. Therefore, overlaying a research experience onto the existing lab structure allows faculty to overcome barriers involving curricular change. Here we propose a working model for this overlay design in an introductory biology course and detail a means to conduct this lab with minimal increases in student and faculty workloads. Furthermore, we conducted exploratory factor analysis of the Experimental Design Ability Test (EDAT) and uncovered two latent factors which provide valid means to assess this overlay model's ability to increase advanced experimental design abilities. In a pre-test/post-test design, we demonstrate significant increases in both basic and advanced experimental design abilities in an experimental and comparison group. We measured significantly higher gains in advanced experimental design understanding in students in the experimental group. We believe this overlay model and EDAT factor analysis contribute a novel means to conduct and assess the effectiveness of authentic research experiences in an introductory course without major changes to the course curriculum and with minimal increases in faculty and student workloads.

  4. A proposed abiotic reaction scheme for hydroxylamine and monochloramine under chloramination relevant drinking water conditions.

    PubMed

    Wahman, David G; Speitel, Gerald E; Machavaram, Madhav V

    2014-09-01

    Drinking water monochloramine (NH2Cl) use may promote ammonia-oxidizing bacteria (AOB). AOB use (i) ammonia monooxygenase for biological ammonia (NH3) oxidation to hydroxylamine (NH2OH) and (ii) hydroxylamine oxidoreductase for NH2OH oxidation to nitrite. NH2Cl and NH2OH may react, providing AOB potential benefits and detriments. The NH2Cl/NH2OH reaction would benefit AOB by removing the disinfectant (NH2Cl) and releasing their growth substrate (NH3), but the NH2Cl/NH2OH reaction would also provide a possible additional inactivation mechanism besides direct NH2Cl reaction with cells. Because biological NH2OH oxidation supplies the electrons required for biological NH3 oxidation, the NH2Cl/NH2OH reaction provides a direct mechanism for NH2Cl to inhibit NH3 oxidation, starving the cell of reductant by preventing biological NH2OH oxidation. To investigate possible NH2Cl/NH2OH reaction implications on AOB, an understanding of the underlying abiotic reaction is first required. The present study conducted a detailed literature review and proposed an abiotic NH2Cl/NH2OH reaction scheme (RS) for chloramination relevant drinking water conditions (μM concentrations, air saturation, and pH 7-9). Next, RS literature based kinetics and end-products were evaluated experimentally between pHs 7.7 and 8.3, representing (i) the pH range for future experiments with AOB and (ii) mid-range pHs typically found in chloraminated drinking water. In addition, a (15)N stable isotope experiment was conducted to verify nitrous oxide and nitrogen gas production and their nitrogen source. Finally, the RS was slightly refined using the experimental data and an AQUASIM implemented kinetic model. A chloraminated drinking water relevant RS is proposed and provides the abiotic reaction foundation for future AOB biotic experiments. Published by Elsevier Ltd.

  5. Biomedical engineering continues to make the future.

    PubMed

    Fantini, Sergio; Bennis, Caoimhe; Kaplan, David

    2011-01-01

    Biomedical engineering (BME) continues to make the future, not just respond to the present, by anticipating the needs of interface engineering and clinical medicine. In many respects, BME is the educational mode of the future, fostering collaboration among disciplines at its core by building on basic concepts in engineering and biology. We strive to educate where the needs, opportunities, and jobs are and will be in the future. The bridge between engineering, biology, and medicine is a growing link, and there is no sign that this interface will slow. With an aging population, dynamic changes in health care, as well as global economies and related themes upon us, we are only at the very beginning of the impact that BME will have on medicine and the quality of life. Those of us in BME are excited to be setting this agenda and welcome your participation. In part, this is why we have designed our BME major to cover both the depth and breadth, always a challenge, but one that we are committed to. The depth of the design projects, research experience, coursework, study abroad options, and internships all convenes to establish a solid foundation for our students as they embark on their career paths.

  6. Development of a structured undergraduate research experience: Framework and implications.

    PubMed

    Brown, Anne M; Lewis, Stephanie N; Bevan, David R

    2016-09-10

    Participating in undergraduate research can be a pivotal experience for students in life science disciplines. Development of critical thinking skills, in addition to conveying scientific ideas in oral and written formats, is essential to ensuring that students develop a greater understanding of basic scientific knowledge and the research process. Modernizing the current life sciences research environment to accommodate the growing demand by students for experiential learning is needed. By developing and implementing a structured, theory-based approach to undergraduate research in the life sciences, specifically biochemistry, it has been successfully shown that more students can be provided with a high-quality, high-impact research experience. The structure of this approach allowed students to develop novel, independent projects in a computational molecular modeling lab. Students engaged in an experience in which career goals, problem-solving skills, time management skills, and independence in a research lab were developed. After experiencing this approach to undergraduate research, students reported feeling challenged to think critically and prepared for future career paths. The approach allowed for a progressive learning environment where more undergraduate students could participate in publishable research. Future areas for development include implementation in a bench-top lab and extension to disciplines beyond biochemistry. In this study, it has been shown that utilizing the structured approach to undergraduate research could allow for more students to experience undergraduate research and develop into more confident, independent life scientists well prepared for graduate schools and professional research environments. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):463-474, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  7. Life science experiments performed in space in the ISS/Kibo facility and future research plans

    PubMed Central

    Ohnishi, Takeo

    2016-01-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese ‘Kibo’ facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the ‘Rad Gene’ project, which utilized two human cultured lymphoblastoid cell lines containing a mutated p53 gene (mp53) and a parental wild-type p53 gene (wtp53) respectively. Four parameters were examined: (i) detecting space radiation–induced DSBs by observing γH2AX foci; (ii) observing p53-dependent gene expression during space flight; (iii) observing p53-dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type p53 genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. PMID:27130692

  8. Measurements of the driving forces of bio-motors using the fluctuation theorem

    PubMed Central

    Hayashi, Kumiko; Tanigawara, Mizue; Kishikawa, Jun-ichi

    2012-01-01

    The fluctuation theorem (FT), which is a recent achievement in non-equilibrium statistical mechanics, has been suggested to be useful for measuring the driving forces of motor proteins. As an example of this application, we performed single-molecule experiments on F1-ATPase, which is a rotary motor protein, in which we measured its rotary torque by taking advantage of FT. Because fluctuation is inherent nature in biological small systems and because FT is a non-destructive force measurement method using fluctuation, it will be applied to a wide range of biological small systems in future. PMID:27857609

  9. Developmental plasticity and evolutionary biology.

    PubMed

    Bateson, Patrick

    2007-04-01

    Fetal experience determines some of the characteristics of human adults. Well-nourished mothers have offspring who are adapted to affluent conditions; mothers on a low level of nutrition have offspring who are adapted to lean environments. If the mother's forecast of her offspring's future environment is incorrect, the health of her offspring may suffer severely. The developmental plasticity that accounts for the ill health of humans who are living in conditions of rapid economic change is commonplace in biology. Understanding the evolutionary background sets the developmental origins of ill health in humans in context and has profound implications for public health.

  10. The deprivation argument against abortion.

    PubMed

    Stretton, Dean

    2004-04-01

    The most plausible pro-life argument claims that abortion is seriously wrong because it deprives the foetus of something valuable. This paper examines two recent versions of this argument. Don Marquis's version takes the valuable thing to be a 'future like ours', a future containing valuable experiences and activities. Jim Stone's version takes the valuable thing to be a future containing conscious goods, which it is the foetus's biological nature to make itself have. I give three grounds for rejecting these arguments. First, they lead to unacceptable inequalities in the wrongness of killing. Second, they lead to counterintuitive results in a range of imaginary cases. Third, they ignore the role of psychological connectedness in determining the magnitude or seriousness of deprivation-based harms: because the foetus is only weakly psychologically connected to its own future, it cannot be seriously harmed by being deprived of that future.

  11. Guidelines for Genome-Scale Analysis of Biological Rhythms.

    PubMed

    Hughes, Michael E; Abruzzi, Katherine C; Allada, Ravi; Anafi, Ron; Arpat, Alaaddin Bulak; Asher, Gad; Baldi, Pierre; de Bekker, Charissa; Bell-Pedersen, Deborah; Blau, Justin; Brown, Steve; Ceriani, M Fernanda; Chen, Zheng; Chiu, Joanna C; Cox, Juergen; Crowell, Alexander M; DeBruyne, Jason P; Dijk, Derk-Jan; DiTacchio, Luciano; Doyle, Francis J; Duffield, Giles E; Dunlap, Jay C; Eckel-Mahan, Kristin; Esser, Karyn A; FitzGerald, Garret A; Forger, Daniel B; Francey, Lauren J; Fu, Ying-Hui; Gachon, Frédéric; Gatfield, David; de Goede, Paul; Golden, Susan S; Green, Carla; Harer, John; Harmer, Stacey; Haspel, Jeff; Hastings, Michael H; Herzel, Hanspeter; Herzog, Erik D; Hoffmann, Christy; Hong, Christian; Hughey, Jacob J; Hurley, Jennifer M; de la Iglesia, Horacio O; Johnson, Carl; Kay, Steve A; Koike, Nobuya; Kornacker, Karl; Kramer, Achim; Lamia, Katja; Leise, Tanya; Lewis, Scott A; Li, Jiajia; Li, Xiaodong; Liu, Andrew C; Loros, Jennifer J; Martino, Tami A; Menet, Jerome S; Merrow, Martha; Millar, Andrew J; Mockler, Todd; Naef, Felix; Nagoshi, Emi; Nitabach, Michael N; Olmedo, Maria; Nusinow, Dmitri A; Ptáček, Louis J; Rand, David; Reddy, Akhilesh B; Robles, Maria S; Roenneberg, Till; Rosbash, Michael; Ruben, Marc D; Rund, Samuel S C; Sancar, Aziz; Sassone-Corsi, Paolo; Sehgal, Amita; Sherrill-Mix, Scott; Skene, Debra J; Storch, Kai-Florian; Takahashi, Joseph S; Ueda, Hiroki R; Wang, Han; Weitz, Charles; Westermark, Pål O; Wijnen, Herman; Xu, Ying; Wu, Gang; Yoo, Seung-Hee; Young, Michael; Zhang, Eric Erquan; Zielinski, Tomasz; Hogenesch, John B

    2017-10-01

    Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding "big data" that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them.

  12. Guidelines for Genome-Scale Analysis of Biological Rhythms

    PubMed Central

    Hughes, Michael E.; Abruzzi, Katherine C.; Allada, Ravi; Anafi, Ron; Arpat, Alaaddin Bulak; Asher, Gad; Baldi, Pierre; de Bekker, Charissa; Bell-Pedersen, Deborah; Blau, Justin; Brown, Steve; Ceriani, M. Fernanda; Chen, Zheng; Chiu, Joanna C.; Cox, Juergen; Crowell, Alexander M.; DeBruyne, Jason P.; Dijk, Derk-Jan; DiTacchio, Luciano; Doyle, Francis J.; Duffield, Giles E.; Dunlap, Jay C.; Eckel-Mahan, Kristin; Esser, Karyn A.; FitzGerald, Garret A.; Forger, Daniel B.; Francey, Lauren J.; Fu, Ying-Hui; Gachon, Frédéric; Gatfield, David; de Goede, Paul; Golden, Susan S.; Green, Carla; Harer, John; Harmer, Stacey; Haspel, Jeff; Hastings, Michael H.; Herzel, Hanspeter; Herzog, Erik D.; Hoffmann, Christy; Hong, Christian; Hughey, Jacob J.; Hurley, Jennifer M.; de la Iglesia, Horacio O.; Johnson, Carl; Kay, Steve A.; Koike, Nobuya; Kornacker, Karl; Kramer, Achim; Lamia, Katja; Leise, Tanya; Lewis, Scott A.; Li, Jiajia; Li, Xiaodong; Liu, Andrew C.; Loros, Jennifer J.; Martino, Tami A.; Menet, Jerome S.; Merrow, Martha; Millar, Andrew J.; Mockler, Todd; Naef, Felix; Nagoshi, Emi; Nitabach, Michael N.; Olmedo, Maria; Nusinow, Dmitri A.; Ptáček, Louis J.; Rand, David; Reddy, Akhilesh B.; Robles, Maria S.; Roenneberg, Till; Rosbash, Michael; Ruben, Marc D.; Rund, Samuel S.C.; Sancar, Aziz; Sassone-Corsi, Paolo; Sehgal, Amita; Sherrill-Mix, Scott; Skene, Debra J.; Storch, Kai-Florian; Takahashi, Joseph S.; Ueda, Hiroki R.; Wang, Han; Weitz, Charles; Westermark, Pål O.; Wijnen, Herman; Xu, Ying; Wu, Gang; Yoo, Seung-Hee; Young, Michael; Zhang, Eric Erquan; Zielinski, Tomasz; Hogenesch, John B.

    2017-01-01

    Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding “big data” that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them. PMID:29098954

  13. Developmental Origins, Epigenetics, and Equity: Moving Upstream.

    PubMed

    Wallack, Lawrence; Thornburg, Kent

    2016-05-01

    The Developmental Origins of Health and Disease and the related science of epigenetics redefines the meaning of what constitutes upstream approaches to significant social and public health problems. An increasingly frequent concept being expressed is "When it comes to your health, your zip code may be more important than your genetic code". Epigenetics explains how the environment-our zip code-literally gets under our skin, creates biological changes that increase our vulnerability for disease, and even children's prospects for social success, over their life course and into future generations. This science requires us to rethink where disease comes from and the best way to promote health. It identifies the most fundamental social equity issue in our society: that initial social and biological disadvantage, established even prior to birth, and linked to the social experience of prior generations, is made worse by adverse environments throughout the life course. But at the same time, it provides hope because it tells us that a concerted focus on using public policy to improve our social, physical, and economic environments can ultimately change our biology and the trajectory of health and social success into future generations.

  14. No question about exciting questions in cell biology.

    PubMed

    Pollard, Thomas D

    2013-12-01

    Although we have a good grasp of many important processes in cell biology, including knowledge of many molecules involved and how they interact with each other, we still do not understand most of the dynamical features that are the essence of living systems. Fortunately, we now have the ability to dissect biological systems in enough detail to understand their dynamics, including the use of mathematical models to account for past observations and predict future experiments. This deep level of mechanistic understanding should be our goal—not simply to satisfy our scientific curiosity, but also to understand the causes of disease well enough to predict risks, make early diagnoses, and treat effectively. Many big questions remain to be answered before we reach this goal of understanding cellular dynamics.

  15. Experiment module concepts study. Volume 2: Experiments and mission operations

    NASA Technical Reports Server (NTRS)

    Macdonald, J. M.

    1970-01-01

    The baseline experiment program is concerned with future space experiments and cover the scientific disciplines of astronomy, space physics, space biology, biomedicine and biotechnology, earth applications, materials science, and advanced technology. The experiments within each discipline are grouped into functional program elements according to experiments that support a particular area of research or investigation and experiments that impose similar or related demand on space station support systems. The experiment requirements on module subsystems, experiment operating modes and time profiles, and the role of the astronaut are discussed. Launch and rendezvous with the space station, disposal, and on-orbit operations are delineated. The operational interfaces between module and other system elements are presented and include space station and logistic system interfaces. Preliminary launch and on-orbit environmental criteria and requirements are discussed, and experiment equipment weights by functional program elements are tabulated.

  16. Artificial Lipid Membranes: Past, Present, and Future

    PubMed Central

    Siontorou, Christina G.; Nikoleli, Georgia-Paraskevi; Nikolelis, Dimitrios P.

    2017-01-01

    The multifaceted role of biological membranes prompted early the development of artificial lipid-based models with a primary view of reconstituting the natural functions in vitro so as to study and exploit chemoreception for sensor engineering. Over the years, a fair amount of knowledge on the artificial lipid membranes, as both, suspended or supported lipid films and liposomes, has been disseminated and has helped to diversify and expand initial scopes. Artificial lipid membranes can be constructed by several methods, stabilized by various means, functionalized in a variety of ways, experimented upon intensively, and broadly utilized in sensor development, drug testing, drug discovery or as molecular tools and research probes for elucidating the mechanics and the mechanisms of biological membranes. This paper reviews the state-of-the-art, discusses the diversity of applications, and presents future perspectives. The newly-introduced field of artificial cells further broadens the applicability of artificial membranes in studying the evolution of life. PMID:28933723

  17. Cloning humans? Biological, ethical, and social considerations.

    PubMed

    Ayala, Francisco J

    2015-07-21

    There are, in mankind, two kinds of heredity: biological and cultural. Cultural inheritance makes possible for humans what no other organism can accomplish: the cumulative transmission of experience from generation to generation. In turn, cultural inheritance leads to cultural evolution, the prevailing mode of human adaptation. For the last few millennia, humans have been adapting the environments to their genes more often than their genes to the environments. Nevertheless, natural selection persists in modern humans, both as differential mortality and as differential fertility, although its intensity may decrease in the future. More than 2,000 human diseases and abnormalities have a genetic causation. Health care and the increasing feasibility of genetic therapy will, although slowly, augment the future incidence of hereditary ailments. Germ-line gene therapy could halt this increase, but at present, it is not technically feasible. The proposal to enhance the human genetic endowment by genetic cloning of eminent individuals is not warranted. Genomes can be cloned; individuals cannot. In the future, therapeutic cloning will bring enhanced possibilities for organ transplantation, nerve cells and tissue healing, and other health benefits.

  18. Cloning humans? Biological, ethical, and social considerations

    PubMed Central

    Ayala, Francisco J.

    2015-01-01

    There are, in mankind, two kinds of heredity: biological and cultural. Cultural inheritance makes possible for humans what no other organism can accomplish: the cumulative transmission of experience from generation to generation. In turn, cultural inheritance leads to cultural evolution, the prevailing mode of human adaptation. For the last few millennia, humans have been adapting the environments to their genes more often than their genes to the environments. Nevertheless, natural selection persists in modern humans, both as differential mortality and as differential fertility, although its intensity may decrease in the future. More than 2,000 human diseases and abnormalities have a genetic causation. Health care and the increasing feasibility of genetic therapy will, although slowly, augment the future incidence of hereditary ailments. Germ-line gene therapy could halt this increase, but at present, it is not technically feasible. The proposal to enhance the human genetic endowment by genetic cloning of eminent individuals is not warranted. Genomes can be cloned; individuals cannot. In the future, therapeutic cloning will bring enhanced possibilities for organ transplantation, nerve cells and tissue healing, and other health benefits. PMID:26195738

  19. Laboratory based instruction in Pakistan: Comparative evaluation of three laboratory instruction methods in biological science at higher secondary school level

    NASA Astrophysics Data System (ADS)

    Cheema, Tabinda Shahid

    This study of laboratory based instruction at higher secondary school level was an attempt to gain some insight into the effectiveness of three laboratory instruction methods: cooperative group instruction method, individualised instruction method and lecture demonstration method on biology achievement and retention. A Randomised subjects, Pre-test Post-test Comparative Methods Design was applied. Three groups of students from a year 11 class in Pakistan conducted experiments using the different laboratory instruction methods. Pre-tests, achievement tests after the experiments and retention tests one month later were administered. Results showed no significant difference between the groups on total achievement and retention, nor was there any significant difference on knowledge and comprehension test scores or skills performance. Future research investigating a similar problem is suggested.

  20. On the temporality of creative insight: a psychological and phenomenological perspective

    PubMed Central

    Cosmelli, Diego; Preiss, David D.

    2014-01-01

    Research into creative insight has had a strong emphasis on the psychological processes underlying problem-solving situations as a standard model for the empirical study of this phenomenon. Although this model has produced significant advances in our scientific understanding of the nature of insight, we believe that a full comprehension of insight requires complementing cognitive and neuroscientific studies with a descriptive, first-person, phenomenological approach into how creative insight is experienced. Here we propose to take such first-person perspective while paying special attention to the temporal aspects of this experience. When this first-person perspective is taken into account, a dynamic past–future interplay can be identified at the core of the experience of creative insight, a structure that is compatible with both biological and biographical evidences. We believe this approach could complement and help bring together biological and psychological perspectives. Furthermore, we argue that because of its spontaneous but recurrent nature, creative insight could represent a relevant target for the phenomenological investigation of the flow of experience itself. PMID:25368595

  1. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change-A review.

    PubMed

    Boyd, Philip W; Collins, Sinead; Dupont, Sam; Fabricius, Katharina; Gattuso, Jean-Pierre; Havenhand, Jonathan; Hutchins, David A; Riebesell, Ulf; Rintoul, Max S; Vichi, Marcello; Biswas, Haimanti; Ciotti, Aurea; Gao, Kunshan; Gehlen, Marion; Hurd, Catriona L; Kurihara, Haruko; McGraw, Christina M; Navarro, Jorge M; Nilsson, Göran E; Passow, Uta; Pörtner, Hans-Otto

    2018-06-01

    Marine life is controlled by multiple physical and chemical drivers and by diverse ecological processes. Many of these oceanic properties are being altered by climate change and other anthropogenic pressures. Hence, identifying the influences of multifaceted ocean change, from local to global scales, is a complex task. To guide policy-making and make projections of the future of the marine biosphere, it is essential to understand biological responses at physiological, evolutionary and ecological levels. Here, we contrast and compare different approaches to multiple driver experiments that aim to elucidate biological responses to a complex matrix of ocean global change. We present the benefits and the challenges of each approach with a focus on marine research, and guidelines to navigate through these different categories to help identify strategies that might best address research questions in fundamental physiology, experimental evolutionary biology and community ecology. Our review reveals that the field of multiple driver research is being pulled in complementary directions: the need for reductionist approaches to obtain process-oriented, mechanistic understanding and a requirement to quantify responses to projected future scenarios of ocean change. We conclude the review with recommendations on how best to align different experimental approaches to contribute fundamental information needed for science-based policy formulation. © 2018 John Wiley & Sons Ltd.

  2. Wet Lab Accelerator: A Web-Based Application Democratizing Laboratory Automation for Synthetic Biology.

    PubMed

    Bates, Maxwell; Berliner, Aaron J; Lachoff, Joe; Jaschke, Paul R; Groban, Eli S

    2017-01-20

    Wet Lab Accelerator (WLA) is a cloud-based tool that allows a scientist to conduct biology via robotic control without the need for any programming knowledge. A drag and drop interface provides a convenient and user-friendly method of generating biological protocols. Graphically developed protocols are turned into programmatic instruction lists required to conduct experiments at the cloud laboratory Transcriptic. Prior to the development of WLA, biologists were required to write in a programming language called "Autoprotocol" in order to work with Transcriptic. WLA relies on a new abstraction layer we call "Omniprotocol" to convert the graphical experimental description into lower level Autoprotocol language, which then directs robots at Transcriptic. While WLA has only been tested at Transcriptic, the conversion of graphically laid out experimental steps into Autoprotocol is generic, allowing extension of WLA into other cloud laboratories in the future. WLA hopes to democratize biology by bringing automation to general biologists.

  3. Reducing Future International Chemical and Biological Dangers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haddal, Chad; Bull, Diana L.; Hernandez, Patricia Marie

    The International Biological and Chemical Threat Reduction Program at Sandia National Laboratories is developing a 15 - year technology road map in support the United States Government efforts to reduce international chemical and biological dangers . In 2017, the program leadership chartered an analysis team to explore dangers in the future international chemical and biological landscape through engagements with national security experts within and beyond Sandia to gain a multidisciplinary perspective on the future . This report offers a hi gh level landscape of future chemical and biological dangers based upon analysis of those engagements and provides support for furthermore » technology road map development.« less

  4. Measuring and Advancing Experimental Design Ability in an Introductory Course without Altering Existing Lab Curriculum†

    PubMed Central

    Shanks, Ryan A.; Robertson, Chuck L.; Haygood, Christian S.; Herdliksa, Anna M.; Herdliska, Heather R.; Lloyd, Steven A.

    2017-01-01

    Introductory biology courses provide an important opportunity to prepare students for future courses, yet existing cookbook labs, although important in their own way, fail to provide many of the advantages of semester-long research experiences. Engaging, authentic research experiences aid biology students in meeting many learning goals. Therefore, overlaying a research experience onto the existing lab structure allows faculty to overcome barriers involving curricular change. Here we propose a working model for this overlay design in an introductory biology course and detail a means to conduct this lab with minimal increases in student and faculty workloads. Furthermore, we conducted exploratory factor analysis of the Experimental Design Ability Test (EDAT) and uncovered two latent factors which provide valid means to assess this overlay model’s ability to increase advanced experimental design abilities. In a pre-test/post-test design, we demonstrate significant increases in both basic and advanced experimental design abilities in an experimental and comparison group. We measured significantly higher gains in advanced experimental design understanding in students in the experimental group. We believe this overlay model and EDAT factor analysis contribute a novel means to conduct and assess the effectiveness of authentic research experiences in an introductory course without major changes to the course curriculum and with minimal increases in faculty and student workloads. PMID:28904647

  5. Integration of Information and Scientific Literacy: Promoting Literacy in Undergraduates

    PubMed Central

    Wolbach, Kevin C.; Purzycki, Catherine B.; Bowman, Leslie A.; Agbada, Eva; Mostrom, Alison M.

    2010-01-01

    The Association of College and Research Libraries recommends incorporating information literacy (IL) skills across university and college curricula, for the goal of developing information literate graduates. Congruent with this goal, the Departments of Biological Sciences and Information Science developed an integrated IL and scientific literacy (SL) exercise for use in a first-year biology course. Students were provided the opportunity to access, retrieve, analyze, and evaluate primary scientific literature. By the completion of this project, student responses improved concerning knowledge and relevance of IL and SL skills. This project exposes students to IL and SL early in their undergraduate experience, preparing them for future academic advancement. PMID:21123700

  6. A woman with leprosy is in double jeopardy.

    PubMed

    Morrison, A

    2000-06-01

    The double jeopardy associated with female leprosy patients is the central theme underpinning this essay. It constitutes a combination of biological factors unique to women and culturally defined bias, resulting in more stigmatization and isolation for women. Having examined the female immunological response and biological roles, the essay continues by focusing on the gender-culture perspective of leprosy. It draws upon an historical analysis of the experiences of Indian and African women to illustrate the ways in which gender roles impact upon health education and the utilization of health care services. Concluding comments suggest strategies that might improve female leprosy patient status, and views towards future research.

  7. Insect gravitational biology: ground-based and shuttle flight experiments using the beetle Tribolium castaneum

    NASA Technical Reports Server (NTRS)

    Bennett, R. L.; Abbott, M. K.; Denell, R. E.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Many of the traditional experimental advantages of insects recommend their use in studies of gravitational and space biology. The fruit fly, Drosophila melanogaster, is an obvious choice for studies of the developmental significance of gravity vectors because of the unparalleled description of regulatory mechanisms controlling oogenesis and embryogenesis. However, we demonstrate that Drosophila could not survive the conditions mandated for particular flight opportunities on the Space Shuttle. With the exception of Drosophila, the red flour beetle, Tribolium castaneum, is the insect best characterized with respect to molecular embryology and most frequently utilized for past space flights. We show that Tribolium is dramatically more resistant to confinement in small sealed volumes. In preparation for flight experiments we characterize the course and timing of the onset of oogenesis in newly eclosed adult females. Finally, we present results from two shuttle flights which indicate that a number of aspects of the development and function of the female reproductive system are not demonstrably sensitive to microgravity. Available information supports the utility of this insect for future studies of gravitational biology.

  8. An overview of Korean astronaut’s space experiments

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Kim, Y. K.; Yi, S. Y.; Kim, K. S.; Kang, S. W.; Choi, G. H.; Sim, E. S.

    2010-10-01

    The paper presents an overview of the scientific space experiments in the Korean Astronaut Program (KAP) that were conducted on the International Space Station (ISS), beginning with launch of the Soyuz TMA-12 spacecraft with the first Korean astronaut and two Russian astronauts on April 8, 2008 and returning to Earth on April 19, 2008. During the 10 days aboard the ISS, the Korean astronaut successfully completed thirteen scientific experiments in biology, life science, material science, earth science, and system engineering, five educational space experiments, and three kinds of international collaboration experiments. These experiments were the first Korean manned space experiments and these missions were the first steps toward the manned space exploration by Korea. In this paper, we briefly discuss the descriptions, conduct, and results of the space experiments and discuss future plans. In addition, the lessons learned with respect to the performing of these manned space experiments on the ISS are presented.

  9. Applications of computational models to better understand microvascular remodelling: a focus on biomechanical integration across scales

    PubMed Central

    Murfee, Walter L.; Sweat, Richard S.; Tsubota, Ken-ichi; Gabhann, Feilim Mac; Khismatullin, Damir; Peirce, Shayn M.

    2015-01-01

    Microvascular network remodelling is a common denominator for multiple pathologies and involves both angiogenesis, defined as the sprouting of new capillaries, and network patterning associated with the organization and connectivity of existing vessels. Much of what we know about microvascular remodelling at the network, cellular and molecular scales has been derived from reductionist biological experiments, yet what happens when the experiments provide incomplete (or only qualitative) information? This review will emphasize the value of applying computational approaches to advance our understanding of the underlying mechanisms and effects of microvascular remodelling. Examples of individual computational models applied to each of the scales will highlight the potential of answering specific questions that cannot be answered using typical biological experimentation alone. Looking into the future, we will also identify the needs and challenges associated with integrating computational models across scales. PMID:25844149

  10. Electrophoresis tests on STS-3 and ground control experiments - A basis for future biological sample selections

    NASA Technical Reports Server (NTRS)

    Morrison, D. R.; Lewis, M. L.

    1982-01-01

    Static zone electrophoresis is an electrokinetic method of separating macromolecules and small particles. However, its application for the isolation of biological cells and concentrated protein solutions is limited by sedimentation and convection. Microgravity eliminates or reduces sedimentation, floatation, and density-driven convection arising from either Joule heating or concentration differences. The advantages of such an environment were first demonstrated in space during the Apollo 14 and 16 missions. In 1975 the Electrophoresis Technology Experiment (MA-011) was conducted during the Apollo-Soyuz Test Project flight. In 1979 a project was initiated to repeat the separations of human kidney cells. One of the major objectives of the Electrophoresis Equipment Verification Tests (EEVT) on STS-3 was to repeat and thereby validate the first successful electrophoretic separation of human kidney cells. Attention is given to the EEVT apparatus, the preflight electrophoresis, and inflight operational results.

  11. Reproductive Science for High School Students: A Shared Curriculum Model to Enhance Student Success.

    PubMed

    Castle, Megan; Cleveland, Charlotte; Gordon, Diana; Jones, Lynda; Zelinski, Mary; Winter, Patricia; Chang, Jeffrey; Senegar-Mitchell, Ericka; Coutifaris, Christos; Shuda, Jamie; Mainigi, Monica; Bartolomei, Marisa; Woodruff, Teresa K

    2016-07-01

    The lack of a national reproductive biology curriculum leads to critical knowledge gaps in today's high school students' comprehensive understanding of human biology. The Oncofertility Consortium developed curricula that address the basic and clinical aspects of reproductive biology. Launching this academy and creating easy-to-disseminate learning modules allowed other universities to implement similar programs across the country. The expansion of this informal, extracurricular academy on reproductive health from Northwestern University to the University of California, San Diego, Oregon Health & Science University, and the University of Pennsylvania magnifies the scope of scientific learning to students who might not otherwise be exposed to this important information. To assess the experience gained from this curriculum, we polled alumni from the four centers. Data were collected anonymously from de-identified users who elected to self-report on their experiences in their respective reproductive science academy. The alumni survey asked participants to report on their current academic standing, past experiences in the academy, and future academic and career goals. The results of this national survey suggest the national oncofertility academies had a lasting impact on participants and may have contributed to student persistence in scientific learning. © 2016 by the Society for the Study of Reproduction, Inc.

  12. The subsurface geology of Río Tinto: material examined during a simulated Mars drilling mission for the Mars Astrobiology Research and Technology Experiment (MARTE).

    PubMed

    Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L; Bell, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undisclosed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.

  13. The Subsurface Geology of Río Tinto: Material Examined During a Simulated Mars Drilling Mission for the Mars Astrobiology Research and Technology Experiment (MARTE)

    NASA Astrophysics Data System (ADS)

    Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L.; Bell Johnson, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R.

    2008-10-01

    The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undis closed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.

  14. A three-way approach for protein function classification

    PubMed Central

    2017-01-01

    The knowledge of protein functions plays an essential role in understanding biological cells and has a significant impact on human life in areas such as personalized medicine, better crops and improved therapeutic interventions. Due to expense and inherent difficulty of biological experiments, intelligent methods are generally relied upon for automatic assignment of functions to proteins. The technological advancements in the field of biology are improving our understanding of biological processes and are regularly resulting in new features and characteristics that better describe the role of proteins. It is inevitable to neglect and overlook these anticipated features in designing more effective classification techniques. A key issue in this context, that is not being sufficiently addressed, is how to build effective classification models and approaches for protein function prediction by incorporating and taking advantage from the ever evolving biological information. In this article, we propose a three-way decision making approach which provides provisions for seeking and incorporating future information. We considered probabilistic rough sets based models such as Game-Theoretic Rough Sets (GTRS) and Information-Theoretic Rough Sets (ITRS) for inducing three-way decisions. An architecture of protein functions classification with probabilistic rough sets based three-way decisions is proposed and explained. Experiments are carried out on Saccharomyces cerevisiae species dataset obtained from Uniprot database with the corresponding functional classes extracted from the Gene Ontology (GO) database. The results indicate that as the level of biological information increases, the number of deferred cases are reduced while maintaining similar level of accuracy. PMID:28234929

  15. A three-way approach for protein function classification.

    PubMed

    Ur Rehman, Hafeez; Azam, Nouman; Yao, JingTao; Benso, Alfredo

    2017-01-01

    The knowledge of protein functions plays an essential role in understanding biological cells and has a significant impact on human life in areas such as personalized medicine, better crops and improved therapeutic interventions. Due to expense and inherent difficulty of biological experiments, intelligent methods are generally relied upon for automatic assignment of functions to proteins. The technological advancements in the field of biology are improving our understanding of biological processes and are regularly resulting in new features and characteristics that better describe the role of proteins. It is inevitable to neglect and overlook these anticipated features in designing more effective classification techniques. A key issue in this context, that is not being sufficiently addressed, is how to build effective classification models and approaches for protein function prediction by incorporating and taking advantage from the ever evolving biological information. In this article, we propose a three-way decision making approach which provides provisions for seeking and incorporating future information. We considered probabilistic rough sets based models such as Game-Theoretic Rough Sets (GTRS) and Information-Theoretic Rough Sets (ITRS) for inducing three-way decisions. An architecture of protein functions classification with probabilistic rough sets based three-way decisions is proposed and explained. Experiments are carried out on Saccharomyces cerevisiae species dataset obtained from Uniprot database with the corresponding functional classes extracted from the Gene Ontology (GO) database. The results indicate that as the level of biological information increases, the number of deferred cases are reduced while maintaining similar level of accuracy.

  16. Aerial Vehicles to Detect Maximum Volume of Plume Material Associated with Habitable Areas in Extreme Environments

    NASA Technical Reports Server (NTRS)

    Gunasekara, Onalli; Wong, Uland Y.; Furlong, Michael P.; Dille, Michael

    2017-01-01

    Current technologies of exploring habitable areas of icy moons are limited to flybys of space probes. This research project addresses long-term navigation of icy moons by developing a MATLAB adjustable trajectory based on the volume of plume material observed. Plumes expose materials from the sub-surface without accessing the subsurface. Aerial vehicles capable of scouting vapor plumes and detecting maximum plume material volumes, which are considered potentially habitable in inhospitable environments, would enable future deep-space missions to search for extraterrestrial organisms on the surface of icy moons. Although this platform is still a prototype, it demonstrates the potential aerial vehicles can have in improving the capabilities of long-term space navigation and enabling technology for detecting life in extreme environments. Additionally, this work is developing the capabilities that could be utilized as a platform for space biology research. For example, aerial vehicles that are sent to map extreme environments of icy moons or the planet Mars, could also carry small payloads with automated cell-biology experiments, designed to probe the biological response of low-gravity and high-radiation planetary environments, serving as a pathfinder for future human missions.

  17. SCORPI and SCORPI-T: Neurophysiological experiments on animals in space

    NASA Astrophysics Data System (ADS)

    Serafini, L.; Ramacciotti, T.; Vigano, W.; Donati, A.; Porciani, M.; Zolesi, V.; Schulze-Varnholt, D.; Manieri, P.; El-Din Sallam, A.; Schmah, M.; Horn, E. R.

    2005-08-01

    The study of physiological adaptation to long-term space flights with special consideration of the internal clock systems of scorpions is the goal of the SCORPI and SCORPI-T experiments. SCORPI was selected for flight on the International Space Station (ISS) and will be mounted in the European facility BIOLAB, the ESA laboratory designed to support biological experiments on micro-organisms, cells, tissue, cultures, small plants and small invertebrates. SCORPI-T experiment, performed on the Russian FOTON-M2 satellite in May-June 2005, represents an important precursor for the success of the experiment SCORPI on BIOLAB. This paper outlines the main features of the hardware designed and developed in order to allow the analysis of critical aspects of experiment execution and the verification of experiment objectives. The capabilities of the hardware developed for SCORPI and SCORPI-T show its potential use for any future similar type of experiments in space.

  18. GeneLab: A Systems Biology Platform for Spaceflight Omics Data

    NASA Technical Reports Server (NTRS)

    Reinsch, Sigrid S.; Lai, San-Huei; Chen, Rick; Thompson, Terri; Berrios, Daniel; Fogle, Homer; Marcu, Oana; Timucin, Linda; Chakravarty, Kaushik; Coughlan, Joseph

    2015-01-01

    NASA's mission includes expanding our understanding of biological systems to improve life on Earth and to enable long-duration human exploration of space. Resources to support large numbers of spaceflight investigations are limited. NASA's GeneLab project is maximizing the science output from these experiments by: (1) developing a unique public bioinformatics database that includes space bioscience relevant "omics" data (genomics, transcriptomics, proteomics, and metabolomics) and experimental metadata; (2) partnering with NASA-funded flight experiments through bio-sample sharing or sample augmentation to expedite omics data input to the GeneLab database; and (3) developing community-driven reference flight experiments. The first database, GeneLab Data System Version 1.0, went online in April 2015. V1.0 contains numerous flight datasets and has search and download capabilities. Version 2.0 will be released in 2016 and will link to analytic tools. In 2015 Genelab partnered with two Biological Research in Canisters experiments (BBRIC-19 and BRIC-20) which examine responses of Arabidopsis thaliana to spaceflight. GeneLab also partnered with Rodent Research-1 (RR1), the maiden flight to test the newly developed rodent habitat. GeneLab developed protocols for maxiumum yield of RNA, DNA and protein from precious RR-1 tissues harvested and preserved during the SpaceX-4 mission, as well as from tissues from mice that were frozen intact during spaceflight and later dissected. GeneLab is establishing partnerships with at least three planned flights for 2016. Organism-specific nationwide Science Definition Teams (SDTs) will define future GeneLab dedicated missions and ensure the broader scientific impact of the GeneLab missions. GeneLab ensures prompt release and open access to all high-throughput omics data from spaceflight and ground-based simulations of microgravity and radiation. Overall, GeneLab will facilitate the generation and query of parallel multi-omics data, and deep curation of metadata for integrative analysis, allowing researchers to uncover cellular networks as observed in systems biology platforms. Consequently, the scientific community will have access to a more complete picture of functional and regulatory networks responsive to the spaceflight environment.. Analysis of GeneLab data will contribute fundamental knowledge of how the space environment affects biological systems, and enable emerging terrestrial benefits resulting from mitigation strategies to prevent effects observed during exposure to space. As a result, open access to the data will foster new hypothesis-driven research for future spaceflight studies spanning basic science to translational science.

  19. Six-month space greenhouse experiments--a step to creation of future biological life support systems

    NASA Technical Reports Server (NTRS)

    Ivanova, T. N.; Kostov, P. T.; Sapunova, S. M.; Dandolov, I. W.; Salisbury, F. B.; Bingham, G. E.; Sytchov, V. N.; Levinskikh, M. A.; Podolski, I. G.; Bubenheim, D. B.; hide

    1998-01-01

    SVET Space Greenhouse (SG)--the first automated facility for growing of higher plants in microgravity was designed in the eighty years to be used for the future BLSS. The first successful experiment with vegetables was carried out in 1990 on the MIR Space Station (SS). The experiments in SVET SG were resumed in 1995, when an American Gas Exchange Measurement System (GEMS) was added. A three-month wheat experiment was carried out as part of MIR-SHUTTLE'95 program. SVET-2 SG Bulgarian equipment of a new generation with optimised characteristics was developed (financed by NASA). The new SVET-GEMS equipment was launched on board the MIR SS and a successful six-month experiments for growing up of two crops of wheat were conducted in 1996 - 97 as part of MIR-NASA-3 program. The first of these "Greenhouse" experiments (123 days) with the goal to grow wheat through a complete life cycle is described. Nearly 300 heads developed but no seeds were produced. A second crop of wheat was planted and after 42 days the plants were frozen for biochemical investigations. The main environmental parameters during the six-month experiments in SVET (substrate moisture and lighting period) are given. The results and the contribution to BLSS are discussed.

  20. Electrophysiological experiments in microgravity: lessons learned and future challenges.

    PubMed

    Wuest, Simon L; Gantenbein, Benjamin; Ille, Fabian; Egli, Marcel

    2018-01-01

    Advances in electrophysiological experiments have led to the discovery of mechanosensitive ion channels (MSCs) and the identification of the physiological function of specific MSCs. They are believed to play important roles in mechanosensitive pathways by allowing for cells to sense their mechanical environment. However, the physiological function of many MSCs has not been conclusively identified. Therefore, experiments have been developed that expose cells to various mechanical loads, such as shear flow, membrane indentation, osmotic challenges and hydrostatic pressure. In line with these experiments, mechanical unloading, as experienced in microgravity, represents an interesting alternative condition, since exposure to microgravity leads to a series of physiological adaption processes. As outlined in this review, electrophysiological experiments performed in microgravity have shown an influence of gravity on biological functions depending on ion channels at all hierarchical levels, from the cellular level to organs. In this context, calcium signaling represents an interesting cellular pathway, as it involves the direct action of calcium-permeable ion channels, and specific gravitatic cells have linked graviperception to this pathway. Multiple key proteins in the graviperception pathways have been identified. However, measurements on vertebrae cells have revealed controversial results. In conclusion, electrophysiological experiments in microgravity have shown that ion-channel-dependent physiological processes are altered in mechanically unloaded conditions. Future experiments may provide a better understanding of the underlying mechanisms.

  1. The chemical reactivity of the Martian soil and implications for future missions

    NASA Technical Reports Server (NTRS)

    Zent, Aaron P.; Mckay, Christopher P.

    1994-01-01

    Possible interpretations of the results of the Viking Biology Experiments suggest that greater than 1 ppm of a thermally labile oxidant, perhaps H2O2, and about 10 ppm of a thermally stable oxidant are present in the martian soil. We reexamine these results and discuss implications for future missions, the search for organics on Mars, and the possible health and engineering effects for human exploration. We conclude that further characterization of the reactivity of the martian regolith materials is warrented-although if our present understanding is correct the oxidant does not pose a hazard to humans. There are difficulties in explaining the reactivity of the Martian soil by oxidants. Most bulk phase compounds that are capable of oxidizing H2O to O2 per the Gas Exchange Experiment (GEx) are thermally labile or unstable against reduction by atmospheric CO2. Models invoking trapped O2 or peroxynitrates (NOO2(-)) require an unlikely geologic history for the Viking Lander 2 site. Most suggested oxidants, including H2O2, are expected to decompose rapidly under martian UV. Nonetheless, we conclude that the best model for the martian soil contains oxidants produced by heterogeneous chemical reactions with a photochemically produced atmospheric oxidant. The GEx results may be due to catalytic decomposition of an unstable oxidizing material by H2O. We show that interfacial reaction sites covering less than 1% of the available soil surfaces could explain the Viking Biology Experiments results.

  2. The Biological Revolution: Examining Values Through the Futures Perspective.

    ERIC Educational Resources Information Center

    Howard, Mary Kay; Franks, Betty Barclay

    The most value laden of futures issues are raised by contemporary biological research. Current biological research has reached the point where we must now ask such questions as: What should be the nature of the human in the future? Who should make these decisions? How should humans interact with the universe? The problems and possibilities of the…

  3. Life science experiments performed in space in the ISS/Kibo facility and future research plans.

    PubMed

    Ohnishi, Takeo

    2016-08-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese 'Kibo' facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the 'Rad Gene' project, which utilized two human cultured lymphoblastoid cell lines containing a mutated P53 : gene (m P53 : ) and a parental wild-type P53 : gene (wt P53 : ) respectively. Four parameters were examined: (i) detecting space radiation-induced DSBs by observing γH2AX foci; (ii) observing P53 : -dependent gene expression during space flight; (iii) observing P53 : -dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type P53 : genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  4. Apparent competition drives community-wide parasitism rates and changes in host abundance across ecosystem boundaries

    PubMed Central

    Frost, Carol M.; Peralta, Guadalupe; Rand, Tatyana A.; Didham, Raphael K.; Varsani, Arvind; Tylianakis, Jason M.

    2016-01-01

    Species have strong indirect effects on others, and predicting these effects is a central challenge in ecology. Prey species sharing an enemy (predator or parasitoid) can be linked by apparent competition, but it is unknown whether this process is strong enough to be a community-wide structuring mechanism that could be used to predict future states of diverse food webs. Whether species abundances are spatially coupled by enemy movement across different habitats is also untested. Here, using a field experiment, we show that predicted apparent competitive effects between species, mediated via shared parasitoids, can significantly explain future parasitism rates and herbivore abundances. These predictions are successful even across edges between natural and managed forests, following experimental reduction of herbivore densities by aerial spraying of insecticide over 20 hectares. This result shows that trophic indirect effects propagate across networks and habitats in important, predictable ways, with implications for landscape planning, invasion biology and biological control. PMID:27577948

  5. Oscillatory multiphase flow strategy for chemistry and biology.

    PubMed

    Abolhasani, Milad; Jensen, Klavs F

    2016-07-19

    Continuous multiphase flow strategies are commonly employed for high-throughput parameter screening of physical, chemical, and biological processes as well as continuous preparation of a wide range of fine chemicals and micro/nano particles with processing times up to 10 min. The inter-dependency of mixing and residence times, and their direct correlation with reactor length have limited the adaptation of multiphase flow strategies for studies of processes with relatively long processing times (0.5-24 h). In this frontier article, we describe an oscillatory multiphase flow strategy to decouple mixing and residence times and enable investigation of longer timescale experiments than typically feasible with conventional continuous multiphase flow approaches. We review current oscillatory multiphase flow technologies, provide an overview of the advancements of this relatively new strategy in chemistry and biology, and close with a perspective on future opportunities.

  6. Microbial Monitoring of Crewed Habitats in Space—Current Status and Future Perspectives

    PubMed Central

    Yamaguchi, Nobuyasu; Roberts, Michael; Castro, Sarah; Oubre, Cherie; Makimura, Koichi; Leys, Natalie; Grohmann, Elisabeth; Sugita, Takashi; Ichijo, Tomoaki; Nasu, Masao

    2014-01-01

    Previous space research conducted during short-term flight experiments and long-term environmental monitoring on board orbiting space stations suggests that the relationship between humans and microbes is altered in the crewed habitat in space. Both human physiology and microbial communities adapt to spaceflight. Microbial monitoring is critical to crew safety in long-duration space habitation and the sustained operation of life support systems on space transit vehicles, space stations, and surface habitats. To address this critical need, space agencies including NASA (National Aeronautics and Space Administration), ESA (European Space Agency), and JAXA (Japan Aerospace Exploration Agency) are working together to develop and implement specific measures to monitor, control, and counteract biological contamination in closed-environment systems. In this review, the current status of microbial monitoring conducted in the International Space Station (ISS) as well as the results of recent microbial spaceflight experiments have been summarized and future perspectives are discussed. PMID:25130885

  7. Working memory capacity of biological movements predicts empathy traits.

    PubMed

    Gao, Zaifeng; Ye, Tian; Shen, Mowei; Perry, Anat

    2016-04-01

    Working memory (WM) and empathy are core issues in cognitive and social science, respectively. However, no study so far has explored the relationship between these two constructs. Considering that empathy takes place based on the others' observed experiences, which requires extracting the observed dynamic scene into WM and forming a coherent representation, we hypothesized that a sub-type of WM capacity, i.e., WM for biological movements (BM), should predict one's empathy level. Therefore, WM capacity was measured for three distinct types of stimuli in a change detection task: BM of human beings (BM; Experiment 1), movements of rectangles (Experiment 2), and static colors (Experiment 3). The first two stimuli were dynamic and shared one WM buffer which differed from the WM buffer for colors; yet only the BM conveyed social information. We found that BM-WM capacity was positively correlated with both cognitive and emotional empathy, with no such correlations for WM capacity of movements of rectangles or of colors. Thus, the current study is the first to provide evidence linking a specific buffer of WM and empathy, and highlights the necessity for considering different WM capacities in future social and clinical research.

  8. A far-field radio-frequency experimental exposure system with unrestrained mice.

    PubMed

    Hansen, Jared W; Asif, Sajid; Singelmann, Lauren; Khan, Muhammad Saeed; Ghosh, Sumit; Gustad, Tom; Doetkott, Curt; Braaten, Benjamin D; Ewert, Daniel L

    2015-01-01

    Many studies have been performed on exploring the effects of radio-frequency (RF) energy on biological function in vivo. In particular, gene expression results have been inconclusive due, in part, to a lack of a standardized experimental procedure. This research describes a new far field RF exposure system for unrestrained murine models that reduces experimental error. The experimental procedure includes the materials used, the creation of a patch antenna, the uncertainty analysis of the equipment, characterization of the test room, experimental equipment used and setup, power density and specific absorption rate experiment, and discussion. The result of this research is an experimental exposure system to be applied to future biological studies.

  9. A Qualitative Analysis of Medical Students' Reflection on Attending an Alcoholics Anonymous Meeting: Insights for Future Addiction Curricula.

    PubMed

    Kastenholz, Kurt J; Agarwal, Gaurava

    2016-06-01

    This paper describes medical students' views of alcoholism and their response to attending an Alcoholics Anonymous (AA) meeting during their psychiatry clerkship. This may assist other educators in planning their addiction curricula. Medical students were required to attend an AA meeting during their psychiatry clerkship and then to write a reflection piece on this experience. We selected a random sample of 40 pieces and performed a qualitative analysis to identify the prominent ideas and themes in this sample. Medical students found their experience attending an AA meeting to be educationally valuable. They reported their familiarity with AA prior to this experience was largely limited to popular media depictions. Students reported understanding alcoholism as a disease with both biological and psychosocial components. They were often concerned with the presence of religiosity and spirituality at the meetings. Following the experience, students felt more comfortable referring patients to AA and identified empathy, honesty, and openness as crucial contributors to the efficacy of AA. Students felt that attending an AA meeting during their psychiatry clerkship was an educationally valuable experience. Medical students' familiarity with addiction treatment is limited, and attending an AA meeting may be helpful in increasing their comfort with treating addicted patients in the future. In addition, educators may want to explicitly address the spirituality issue related to some treatment programs to increase the likelihood that future physicians feel comfortable referring their patients to recovery programs.

  10. Effects of an Educational Experience Incorporating an Inventory of Factors Potentially Influencing Student Acceptance of Biological Evolution

    NASA Astrophysics Data System (ADS)

    Wiles, Jason R.; Alters, Brian

    2011-12-01

    This investigation provides an extensive review of scientific, religious, and otherwise non-scientific factors that may influence student acceptance of biological evolution. We also measure the extent to which students' levels of acceptance changed following an educational experience designed to address an inclusive inventory of factors identified as potentially affecting student acceptance of evolution (n = 81, pre-test/post-test) n = 37, one-year longitudinal). Acceptance of evolution was measured using the Measure of Acceptance of the Theory of Evolution (MATE) instrument among participants enrolled in a secondary-level academic programme during the summer prior to their final year of high school and as they transitioned to the post-secondary level. Student acceptance of evolution was measured to be significantly higher than initial levels both immediately following and over one year after the educational experience. Results reported herein carry implications for future quantitative and qualitative research as well as for cross-disciplinary instruction plans related to evolutionary science and non-scientific factors which may influence student understanding of evolution.

  11. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  12. Near-term lander experiments for growing plants on Mars: requirements for information on chemical and physical properties of Mars regolith.

    PubMed

    Schuerger, Andrew C; Ming, Douglas W; Newsom, Horton E; Ferl, Robert J; McKay, Christopher P

    2002-01-01

    In order to support humans for long-duration missions to Mars, bioregenerative Advanced Life Support (ALS) systems have been proposed that would use higher plants as the primary candidates for photosynthesis. Hydroponic technologies have been suggested as the primary method of plant production in ALS systems, but the use of Mars regolith as a plant growth medium may have several advantages over hydroponic systems. The advantages for using Mars regolith include the likely bioavailability of plant-essential ions, mechanical support for plants, and easy access of the material once on the surface. We propose that plant biology experiments must be included in near-term Mars lander missions in order to begin defining the optimum approach for growing plants on Mars. Second, we discuss a range of soil chemistry and soil physics tests that must be conducted prior to, or in concert with, a plant biology experiment in order to properly interpret the results of plant growth studies in Mars regolith. The recommended chemical tests include measurements on soil pH, electrical conductivity and soluble salts, redox potential, bioavailability of essential plant nutrients, and bioavailability of phytotoxic elements. In addition, a future plant growth experiment should include procedures for determining the buffering and leaching requirements of Mars regolith prior to planting. Soil physical tests useful for plant biology studies in Mars regolith include bulk density, particle size distribution, porosity, water retention, and hydraulic conductivity.

  13. Near-term lander experiments for growing plants on Mars: requirements for information on chemical and physical properties of Mars regolith

    NASA Technical Reports Server (NTRS)

    Schuerger, Andrew C.; Ming, Douglas W.; Newsom, Horton E.; Ferl, Robert J.; McKay, Christopher P.

    2002-01-01

    In order to support humans for long-duration missions to Mars, bioregenerative Advanced Life Support (ALS) systems have been proposed that would use higher plants as the primary candidates for photosynthesis. Hydroponic technologies have been suggested as the primary method of plant production in ALS systems, but the use of Mars regolith as a plant growth medium may have several advantages over hydroponic systems. The advantages for using Mars regolith include the likely bioavailability of plant-essential ions, mechanical support for plants, and easy access of the material once on the surface. We propose that plant biology experiments must be included in near-term Mars lander missions in order to begin defining the optimum approach for growing plants on Mars. Second, we discuss a range of soil chemistry and soil physics tests that must be conducted prior to, or in concert with, a plant biology experiment in order to properly interpret the results of plant growth studies in Mars regolith. The recommended chemical tests include measurements on soil pH, electrical conductivity and soluble salts, redox potential, bioavailability of essential plant nutrients, and bioavailability of phytotoxic elements. In addition, a future plant growth experiment should include procedures for determining the buffering and leaching requirements of Mars regolith prior to planting. Soil physical tests useful for plant biology studies in Mars regolith include bulk density, particle size distribution, porosity, water retention, and hydraulic conductivity.

  14. Modulating peroxisome proliferator–activated receptors for therapeutic benefit? Biology, clinical experience, and future prospects

    PubMed Central

    Rosenson, Robert S.; Wright, R. Scott; Farkouh, Michael; Plutzky, Jorge

    2014-01-01

    Clinical trials of cardiovascular disease (CVD) prevention in patients with type 2 diabetes mellitus primarily have been directed at the modification of a single major risk factor; however, in trials that enroll patients with and without diabetes, the absolute risk in CVD events remains higher in patients with diabetes. Efforts to reduce the macrovascular and microvascular residual risk have been directed toward a multifactorial CVD risk-factor modification; nonetheless, long-term complications remain high. Dual-peroxisome proliferator–activated receptor (PPAR) α/γ agonists may offer opportunities to lower macrovascular and microvascular complications of type 2 diabetes mellitus beyond the reductions achieved with conventional risk-factor modification. The information presented elucidates the differentiation of compound-specific vs class-effect properties of PPARs as the basis for future development of a new candidate molecule. Prior experience with thiazolidinediones, an approved class of PPARγ agonists, and glitazars, investigational class of dual-PPARα/γ agonists, also provides important lessons about the risks and benefits of targeting a nuclear receptor while revealing some of the future challenges for regulatory approval. PMID:23137497

  15. In Situ Biological Contamination Studies of the Moon: Implications for Future Planetary Protection and Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Kminek, Gerhard; Rummel, John D.

    2010-01-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require that all spacecraft and instrumentation be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there yet a planetary protection category for human missions. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.

  16. Genelab: Scientific Partnerships and an Open-Access Database to Maximize Usage of Omics Data from Space Biology Experiments

    NASA Technical Reports Server (NTRS)

    Reinsch, S. S.; Galazka, J..; Berrios, D. C; Chakravarty, K.; Fogle, H.; Lai, S.; Bokyo, V.; Timucin, L. R.; Tran, P.; Skidmore, M.

    2016-01-01

    NASA's mission includes expanding our understanding of biological systems to improve life on Earth and to enable long-duration human exploration of space. The GeneLab Data System (GLDS) is NASA's premier open-access omics data platform for biological experiments. GLDS houses standards-compliant, high-throughput sequencing and other omics data from spaceflight-relevant experiments. The GeneLab project at NASA-Ames Research Center is developing the database, and also partnering with spaceflight projects through sharing or augmentation of experiment samples to expand omics analyses on precious spaceflight samples. The partnerships ensure that the maximum amount of data is garnered from spaceflight experiments and made publically available as rapidly as possible via the GLDS. GLDS Version 1.0, went online in April 2015. Software updates and new data releases occur at least quarterly. As of October 2016, the GLDS contains 80 datasets and has search and download capabilities. Version 2.0 is slated for release in September of 2017 and will have expanded, integrated search capabilities leveraging other public omics databases (NCBI GEO, PRIDE, MG-RAST). Future versions in this multi-phase project will provide a collaborative platform for omics data analysis. Data from experiments that explore the biological effects of the spaceflight environment on a wide variety of model organisms are housed in the GLDS including data from rodents, invertebrates, plants and microbes. Human datasets are currently limited to those with anonymized data (e.g., from cultured cell lines). GeneLab ensures prompt release and open access to high-throughput genomics, transcriptomics, proteomics, and metabolomics data from spaceflight and ground-based simulations of microgravity, radiation or other space environment factors. The data are meticulously curated to assure that accurate experimental and sample processing metadata are included with each data set. GLDS download volumes indicate strong interest of the scientific community in these data. To date GeneLab has partnered with multiple experiments including two plant (Arabidopsis thaliana) experiments, two mice experiments, and several microbe experiments. GeneLab optimized protocols in the rodent partnerships for maximum yield of RNA, DNA and protein from tissues harvested and preserved during the SpaceX-4 mission, as well as from tissues from mice that were frozen intact during spaceflight and later dissected on the ground. Analysis of GeneLab data will contribute fundamental knowledge of how the space environment affects biological systems, and as well as yield terrestrial benefits resulting from mitigation strategies to prevent effects observed during exposure to space environments.

  17. Recent Progress in Electromagnetic Absorption and Dosimetry in Biological Systems.

    DTIC Science & Technology

    1978-12-21

    AEROSPACE M!DICAL RESEARCH LABORATORY NAVAL AIR STATION PENSACOLA, FLORIDA 32508 L4 oj6L I SUMMARY PAGE Ti9(PROSLEM Dosimetry , as a subset of research In...absonce of sound dosimetry design, lacks credibility. This study provides a usable orientation in present and future dosimetric technology through a...leading experiment; while at other times experimental results lead the way. Progress In absorption and dosimetry Is still urderway, and higher degrees

  18. The Value of Humans in the Biological Exploration of Space

    NASA Astrophysics Data System (ADS)

    Cockell, C. S.

    2004-06-01

    Regardless of the discovery of life on Mars, or of "no apparent life" on Mars, the questions that follow will provide a rich future for biological exploration. Extraordinary pattern recognition skills, decadal assimilation of data and experience, and rapid sample acquisition are just three of the characteristics that make humans the best means we have to explore the biological potential of Mars and other planetary surfaces. I make the case that instead of seeing robots as in conflict, or even in support, of human exploration activity, from the point of view of scientific data gathering and analysis, we should view humans as the most powerful robots we have, thus removing the separation that dogs discussions on the exploration of space. The narrow environmental requirements of humans, although imposing constraints on the life support systems required, is more than compensated for by their capabilities in biological exploration. I support this view with an example of the "Christmas present effect," a simple demonstration of human data and pattern recognition capabilities.

  19. Probing the biology of cell boundary conditions through confinement of Xenopus cell-free cytoplasmic extracts.

    PubMed

    Bermudez, Jessica G; Chen, Hui; Einstein, Lily C; Good, Matthew C

    2017-01-01

    Cell-free cytoplasmic extracts prepared from Xenopus eggs and embryos have for decades provided a biochemical system with which to interrogate complex cell biological processes in vitro. Recently, the application of microfabrication and microfluidic strategies in biology has narrowed the gap between in vitro and in vivo studies by enabling formation of cell-size compartments containing functional cytoplasm. These approaches provide numerous advantages over traditional biochemical experiments performed in a test tube. Most notably, the cell-free cytoplasm is confined using a two- or three-dimensional boundary, which mimics the natural configuration of a cell. This strategy enables characterization of the spatial organization of a cell, and the role that boundaries play in regulating intracellular assembly and function. In this review, we describe the marriage of Xenopus cell-free cytoplasm and confinement technologies to generate synthetic cell-like systems, the recent biological insights they have enabled, and the promise they hold for future scientific discovery. © 2017 Wiley Periodicals, Inc.

  20. Introducing basic molecular biology to Turkish rural and urban primary school children via hands-on PCR and gel electrophoresis activities.

    PubMed

    Selli, Cigdem; Yıldırım, Gokce; Kaymak, Aysegul; Karacicek, Bilge; Ogut, Deniz; Gungor, Turkan; Erem, Erdem; Ege, Mehmet; Bümen, Nilay; Tosun, Metiner

    2014-01-01

    This study includes the results of a 2-day education project titled "Molecular Biology Laboratory Summer School, MoBiLYO." The project was held at a University Research Center by scientists from Department of Pharmacology and graduate students. The project was composed of introductory lectures, model construction, DNA isolation, polymerase chain reaction (PCR), and gel electrophoresis. The participants were 13-year-old eighth-graders attending primary schools affiliated with Ministry of National Education in urban and rural areas of Izmir, Turkey. The purpose of this study was to introduce basic molecular biology concepts through individually performed experiments such as PCR and gel electrophoresis integrated with creative drama. The students were assessed at the beginning and the end of each project day via mini-tests, experimental and presentation skills evaluation forms. Data showed that students' knowledge about DNA structure and basic molecular biology techniques significantly increased. On the basis of experimental and presentational skills, there was no significant difference between kids from urban and rural schools or between public and boarding public schools, whereas the average score of girls was significantly higher than that of boys. In conclusion, individually performed experiments integrated with creative drama significantly increased students' perception of complex experimental procedures on basic molecular biology concepts. Data suggests that integration of these concepts into the science and technology curriculum of Turkish primary education may support the recruitment of future scientists who can handle rapidly developing genomic techniques that will affect our everyday life. © 2014 by The International Union of Biochemistry and Molecular Biology.

  1. So what do we really mean when we say that systems biology is holistic?

    PubMed Central

    2010-01-01

    Background An old debate has undergone a resurgence in systems biology: that of reductionism versus holism. At least 35 articles in the systems biology literature since 2003 have touched on this issue. The histories of holism and reductionism in the philosophy of biology are reviewed, and the current debate in systems biology is placed in context. Results Inter-theoretic reductionism in the strict sense envisaged by its creators from the 1930s to the 1960s is largely impractical in biology, and was effectively abandoned by the early 1970s in favour of a more piecemeal approach using individual reductive explanations. Classical holism was a stillborn theory of the 1920s, but the term survived in several fields as a loose umbrella designation for various kinds of anti-reductionism which often differ markedly. Several of these different anti-reductionisms are on display in the holistic rhetoric of the recent systems biology literature. This debate also coincides with a time when interesting arguments are being proposed within the philosophy of biology for a new kind of reductionism. Conclusions Engaging more deeply with these issues should sharpen our ideas concerning the philosophy of systems biology and its future best methodology. As with previous decisive moments in the history of biology, only those theories that immediately suggest relatively easy experiments will be winners. PMID:20226033

  2. Father Involvement, Dating Violence, and Sexual Risk Behaviors Among a National Sample of Adolescent Females.

    PubMed

    Alleyne-Green, Binta; Grinnell-Davis, Claudette; Clark, Trenette T; Quinn, Camille R; Cryer-Coupet, Qiana R

    2016-03-01

    This study explored the relationship between the involvement of biological fathers and the sexual risk behaviors and dating violence/victimization and/or perpetration of adolescent girls. The data used in this cross-sectional analysis were drawn from the second wave of the public release of the National Longitudinal Study of Adolescent Health. Only adolescents who reported their biological sex as female, reported a history of being sexually active, and reported having a romantic partner in the previous 18 months were selected (N = 879). This study focused on overall positive sexual behaviors and use of contraception. Structural equation modeling (SEM) was used to best utilize capacity for dealing with latent variables and to test for possible mediation effects. The analysis demonstrated main effects of dating violence and father involvement on sexual behaviors. The more dating violence an adolescent girl experiences, the less likely she is to engage in healthy sexual behaviors. Likewise, the more involvement the biological father has in a woman's life, the more likely she is to engage in positive sexual behaviors. Perceived father involvement was associated with risky sexual behaviors among sexually experienced adolescent girls. Dating violence was directly associated with risky sexual behaviors among sexually experienced adolescent girls, particularly non-White girls. Future studies should use longitudinal models and test theoretically and empirically guided potential mediators. Future studies should also consider father figures such as step-fathers and grandfathers in addition to biological fathers, as having a father figure may be a stronger predictor of adolescent sexual behaviors than having a biological connection. © The Author(s) 2014.

  3. Statistical design of quantitative mass spectrometry-based proteomic experiments.

    PubMed

    Oberg, Ann L; Vitek, Olga

    2009-05-01

    We review the fundamental principles of statistical experimental design, and their application to quantitative mass spectrometry-based proteomics. We focus on class comparison using Analysis of Variance (ANOVA), and discuss how randomization, replication and blocking help avoid systematic biases due to the experimental procedure, and help optimize our ability to detect true quantitative changes between groups. We also discuss the issues of pooling multiple biological specimens for a single mass analysis, and calculation of the number of replicates in a future study. When applicable, we emphasize the parallels between designing quantitative proteomic experiments and experiments with gene expression microarrays, and give examples from that area of research. We illustrate the discussion using theoretical considerations, and using real-data examples of profiling of disease.

  4. Mainstreaming Caenorhabditis elegans in experimental evolution.

    PubMed

    Gray, Jeremy C; Cutter, Asher D

    2014-03-07

    Experimental evolution provides a powerful manipulative tool for probing evolutionary process and mechanism. As this approach to hypothesis testing has taken purchase in biology, so too has the number of experimental systems that use it, each with its own unique strengths and weaknesses. The depth of biological knowledge about Caenorhabditis nematodes, combined with their laboratory tractability, positions them well for exploiting experimental evolution in animal systems to understand deep questions in evolution and ecology, as well as in molecular genetics and systems biology. To date, Caenorhabditis elegans and related species have proved themselves in experimental evolution studies of the process of mutation, host-pathogen coevolution, mating system evolution and life-history theory. Yet these organisms are not broadly recognized for their utility for evolution experiments and remain underexploited. Here, we outline this experimental evolution work undertaken so far in Caenorhabditis, detail simple methodological tricks that can be exploited and identify research areas that are ripe for future discovery.

  5. Cardiac-Biology-In-Space

    NASA Image and Video Library

    2017-08-21

    Astronauts experience structural changes to their heart during long-duration spaceflight, but the biological basis of that is not clearly understood. Jonathon Baio, a doctoral student at Loma Linda University’s School of Medicine, details an investigation of cardiovascular stem cells that hopes to better understand their role in cardiac biology and tissue regeneration, which could advance ways to maintain cardiac health of astronauts during extended missions as well inform future treatments to reverse heart muscle loss upon return to Earth, and may help the medical community combat cardiovascular disease, one of the world’s leading causes of death. For more on space station science, please visit: Twitter: https://twitter.com/ISS_Research or @ISS_research Website: https://www.nasa.gov/mission_pages/station/research/index.html _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  6. Developmental therapeutics for patients with breast cancer and central nervous system metastasis: current landscape and future perspectives.

    PubMed

    Costa, R; Carneiro, B A; Wainwright, D A; Santa-Maria, C A; Kumthekar, P; Chae, Y K; Gradishar, W J; Cristofanilli, M; Giles, F J

    2017-01-01

    Breast cancer is the second-leading cause of metastatic disease in the central nervous system (CNS). Recent advances in the biological understanding of breast cancer have facilitated an unprecedented increase of survival in a subset of patients presenting with metastatic breast cancer. Patients with HER2 positive (HER2+) or triple negative breast cancer are at highest risk of developing CNS metastasis, and typically experience a poor prognosis despite treatment with local and systemic therapies. Among the obstacles ahead in the realm of developmental therapeutics for breast cancer CNS metastasis is the improvement of our knowledge on its biological nuances and on the interaction of the blood–brain barrier with new compounds. This article reviews recent discoveries related to the underlying biology of breast cancer brain metastases, clinical progress to date and suggests rational approaches for investigational therapies.

  7. Marketing the use of the space environment for the processing of biological and pharmaceutical materials

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The perceptions of U.S. biotechnology and pharmaceutical companies concerning the potential use of the space environment for the processing of biological substances was examined. Physical phenomena that may be important in space-base processing of biological materials are identified and discussed in the context of past and current experiment programs. The capabilities of NASA to support future research and development, and to engage in cooperative risk sharing programs with industry are discussed. Meetings were held with several biotechnology and pharmaceutical companies to provide data for an analysis of the attitudes and perceptions of these industries toward the use of the space environment. Recommendations are made for actions that might be taken by NASA to facilitate the marketing of the use of the space environment, and in particular the Space Shuttle, to the biotechnology and pharmaceutical industries.

  8. Detectors for single-molecule fluorescence imaging and spectroscopy

    PubMed Central

    MICHALET, X.; SIEGMUND, O.H.W.; VALLERGA, J.V.; JELINSKY, P.; MILLAUD, J.E.; WEISS, S.

    2010-01-01

    Single-molecule observation, characterization and manipulation techniques have recently come to the forefront of several research domains spanning chemistry, biology and physics. Due to the exquisite sensitivity, specificity, and unmasking of ensemble averaging, single-molecule fluorescence imaging and spectroscopy have become, in a short period of time, important tools in cell biology, biochemistry and biophysics. These methods led to new ways of thinking about biological processes such as viral infection, receptor diffusion and oligomerization, cellular signaling, protein-protein or protein-nucleic acid interactions, and molecular machines. Such achievements require a combination of several factors to be met, among which detector sensitivity and bandwidth are crucial. We examine here the needed performance of photodetectors used in these types of experiments, the current state of the art for different categories of detectors, and actual and future developments of single-photon counting detectors for single-molecule imaging and spectroscopy. PMID:20157633

  9. Radiation biology of HZE particles

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.

    1990-01-01

    The biological effects of heavy charged particle (HZE) radiation are of particular interest to travellers and planners for long duration space flights where exposure levels represent a potential health hazard. The unique feature of HZE radiation is the structured pattern of its energy deposition in targets which may be related to charge, velocity, or rate of energy loss. There are many consequences of this feature to biological endpoints when compared to effects of ionizing photons. Dose vs response and dose rate kinetics are modified, DNA and cellular repair systems are altered in their abilities to cope with damage and, the qualitative features of damage are unique for different ions. These features must be incorporated into any risk assessment system for radiation health management. HZE induced mutation, cell inactivation and altered organogenesis will be discussed emphasizing studies with the nematode Caenorhabditis elegans and cultured cells. Observations from radiobiology experiments in space will also be reviewed along with plans for future space-based studies.

  10. The marine diatom and diazotroph under future climate: Role of Iron

    NASA Astrophysics Data System (ADS)

    Li, Xuefeng; Fonseca-batista, Debany; Brouwers, Julie; Roevros, Nathalie; Dehairs, Frank; Chou, Lei

    2016-04-01

    Diatoms constitute a major group of phytoplankton, accounting for one quarter of the world's net primary productivity. Diazotrophs provide the largest input of new nitrogen (N) to the ocean and control the marine N budgets. It has been shown that iron (Fe) can be the limiting factor for diatom growth, in particular, in the HNLC (High Nutrient Low Chlorophyll) regions. This trace element can also govern the development of marine diazotrophs due to the high Fe demand necessary for biological N2 fixation. Iron plays thus an essential role in governing the marine primary productivity and the efficiency of biological carbon pump. Ocean systems are undergoing continuous modifications at varying rates and magnitudes as a result of changing climate. The objectives of our research is to evaluate 1) how climate change (dust deposition, ocean warming and acidification) can affect Fe biogeochemistry and the growth of diatoms and diazotrophs, and 2) the role of Fe in the control of biological N2 fixation under future climate scenarios. Laboratory culture experiments using Chaetoceros socialis were examined at two temperatures (13°C and 18°C) and two CO2 conditions (400 μatm and 800 μatm). The present study demonstrates clearly the influence of ocean acidification on the release of Fe upon dust deposition. It also shows that dust particles could provide a readily utilizable source of Fe and other macronutrients (dissolved phosphate and silicate) for phytoplankton growth. Elevated pCO2 concentrations may have adverse impact on the diatom growth; seawater warming may cause poleward shifts in the biogeographic distribution of diatoms. The impact of Fe on the natural N2 fixation was tested via field incubation experiments using natureal phytoplankton assemblage in the Bay of Biscay and along the Iberian Margin. N2 fixation rates in oligotrophic waters were greatly stimulated through the addition of dissolved Fe compared to the control, demonstrating the limitation of N2 fixation by Fe. Numerous factors can affect the extent of N2 fixation, but a better understanding of the major controlling factors is highly required. Semi-continuous dilution culture experiments were conducted on Trichodesmium IMS-101 under future high pCO2 and warming seawater conditions. Additionally, special attention has been given to studying the effects of mineral dust deposition which is believed to promote N2 fixation through increasing Fe availability.

  11. The Pain Experience of Hispanic Americans: A Critical Literature Review and Conceptual Model.

    PubMed

    Hollingshead, Nicole A; Ashburn-Nardo, Leslie; Stewart, Jesse C; Hirsh, Adam T

    2016-05-01

    Although the Hispanic population is a burgeoning ethnic group in the United States, little is known about their pain-related experience. To address this gap, we critically reviewed the existing literature on pain experience and management among Hispanic Americans (HAs). We focused our review on the literature on nonmalignant pain, pain behaviors, and pain treatment seeking among HAs. Pain management experiences were examined from HA patients' and health care providers' perspectives. Our literature search included variations of the term "Hispanic" with "AND pain" in PubMed, Embase, Web of Science, ScienceDirect, and PsycINFO databases. A total of 117 studies met our inclusion criteria. We organized the results into a conceptual model with separate categories for biological and/or psychological and sociocultural and/or systems-level influences on HAs' pain experience, response to pain, and seeking and receiving pain care. We also included information on health care providers' experience of treating HA patients with pain. For each category, we identified future areas of research. We conclude with a discussion of limitations and clinical implications. In this critical review of the literature we examined the pain and management experiences of the HA population. We propose a conceptual model, which highlights findings from the existing literature and future areas of research. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  12. The role of depressed metabolism in increased radio-resistance

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.

    1975-01-01

    The results of experiments on hamsters and rats to determine physiological responses to various temperature conditions are presented. The experimental methods described are considered to be applicable to future mammalian experiments in space. Renal function was examined in the golden hamster as a function of body temperature. Hamsters were also acclimated to heat and metabolic rates, body temperature, skin temperature, cardiac distribution and whole body hematocrits were measured. In addition, the effects of heat stress on the intestinal transport of sugars in the hamster and rat were studied. The biological effects of prolonged space flight and methods of simulating weightlessness are also discussed.

  13. The effects of lactate and acid on articular chondrocytes function: Implications for polymeric cartilage scaffold design.

    PubMed

    Zhang, Xiaolei; Wu, Yan; Pan, Zongyou; Sun, Heng; Wang, Junjuan; Yu, Dongsheng; Zhu, Shouan; Dai, Jun; Chen, Yishan; Tian, Naifeng; Heng, Boon Chin; Coen, Noelle D; Xu, Huazi; Ouyang, Hongwei

    2016-09-15

    Poly (lactic-co-glycolic acid) (PLGA) and poly-l-lactate acid (PLLA) are biodegradable polymers widely utilized as scaffold materials for cartilage tissue engineering. Their acid degradation products have been widely recognized as being detrimental to cell function. However, the biological effects of lactate, rather than lactic acid, on chondrocytes have never been investigated. This is the major focus of this study. The amounts of lactate and the pH value (acid) of the PLGA and PLLA degradation medium were measured. The effects of PLGA and PLLA degradation medium, as well as different lactate concentrations and timing of exposure on chondrocytes proliferation and cartilage-specific matrix synthesis were investigated by various techniques including global gene expression profiling and gene knockdown experiments. It was shown that PLGA and PLLA degradation medium differentially regulated chondrocyte proliferation and matrix synthesis. Acidic pH caused by lactate inhibited chondrocyte proliferation and matrix synthesis. The effect of lactate on chondrocyte matrix synthesis was both time and dose dependent. A lactate concentration of 100mM and exposure duration of 8h significantly enhanced matrix synthesis. Lactate could also inhibit expression of cartilage matrix degradation genes in osteoarthritic chondrocytes, such as the major aggrecanase ADAMTS5, whilst promoting matrix synthesis simultaneously. Pulsed addition of lactate was shown to be more efficient in promoting COL2A1 expression. Global gene expression data and gene knock down experiments demonstrated that lactate promote matrix synthesis through up-regulation of HIF1A. These observed differential biological effects of lactate on chondrocytes would have implications for the future design of polymeric cartilage scaffolds. Lactic acid is a widely used substrate for polymers synthesis, PLGA and PLLA in particular. Although physical and biological modifications have been made on these polymers to make them be better cartilage scaffolds, little concern has been given on the biological effect of lactic acid, the main degradation product of these polymers, on chondrocytes. Our finding illustrates the differential biological function of lactate and acid on chondrocytes matrix synthesis. These results can facilitate future design of lactate polymers-based cartilage scaffolds. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Women's decision to major in STEM fields

    NASA Astrophysics Data System (ADS)

    Conklin, Stephanie

    This paper explores the lived experiences of high school female students who choose to enter into STEM fields, and describes the influencing factors which steered these women towards majors in computer science, engineering and biology. Utilizing phenomenological methodology, this study seeks to understand the essence of women's decisions to enter into STEM fields and further describe how the decision-making process varies for women in high female enrollment fields, like biology, as compared with low enrollment fields like, computer science and engineering. Using Bloom's 3-Stage Theory, this study analyzes how relationships, experiences and barriers influenced women towards, and possibly away, from STEM fields. An analysis of women's experiences highlight that support of family, sustained experience in a STEM program during high school as well as the presence of an influential teacher were all salient factors in steering women towards STEM fields. Participants explained that influential teacher worked individually with them, modified and extended assignments and also steered participants towards coursework and experiences. This study also identifies factors, like guidance counselors as well as personal challenges, which inhibited participant's path to STEM fields. Further, through analyzing all six participants' experiences, it is clear that a linear model, like Bloom's 3-Stage Model, with limited ability to include potential barriers inhibited the ability to capture the essence of each participant's decision-making process. Therefore, a revised model with no linear progression which allows for emerging factors, like personal challenges, has been proposed; this model focuses on how interest in STEM fields begins to develop and is honed and then mastered. This study also sought to identify key differences in the paths of female students pursuing different majors. The findings of this study suggest that the path to computer science and engineering is limited. Computer science majors faced few, if any, challenges, hoped to use computers as a tool to innovate and also participated in the same computer science program. For female engineering students, the essence of their experience focused on interaction at a young age with an expert in an engineering-related field as well as a strong desire to help solve world problems using engineering. These participants were able to articulate clearly future careers. In contrast, biology majors, faced more challenges and were undecided about their future career goals. These results suggest that a longitudinal study focused on women pursuing engineering and computer science fields is warranted; this will hopefully allow these findings to be substantiated and also for refinement of the revised theoretical model.

  15. Female juvenile murderers: Biological and psychological dynamics leading to homicide.

    PubMed

    Heide, Kathleen M; Solomon, Eldra P

    2009-01-01

    The increasing involvement of girls under 18 in violent crime has been a matter of growing concern in the United States in recent years. This article reviews the arrests of female juveniles for violent crime and then focuses specifically on their involvement in homicide. Arrests of girls for murder, unlike arrests for assault, have not risen over the last 30 years, suggesting that the dynamics that propel female juveniles to engage in lethal violence differ from those contributing to assaultive behavior by this same group. A review of the literature indicates that theories as to why female adolescents kill do not take into account recent scientific findings on brain development and the biological effects of early trauma in explaining serious violent behavior by girls. Three cases, evaluated by the authors, involving female adolescents charged with murder or attempted murder, are presented. The authors focus on the biological and psychological dynamics that help explain their violent behavior. They discuss the effects of insecure attachment and child maltreatment, and trace a critical pathway between these early experiences and future risk of violent behavior. The dynamics of child maltreatment in fostering rage and violence are discussed thereafter in terms of offender accountability. The article concludes with a discussion of treatment and recommendations for future research.

  16. The Growing Legacy of Spinoffs from the International Space Station and Prospects for Future Benefits

    NASA Astrophysics Data System (ADS)

    Comstock, D.; Lockney, D.

    A multinational effort involving NASA employees and contractors across the United States and space agencies in 15 countries, the International Space Station (ISS) is humanity's home in space and has captured the world's imagination since its first component launched into orbit in 1998. While the ISS provides invaluable information about living in space--essential for future long-duration missions and colonies on the Moon and Mars--everything from the station's construction to biological experiments conducted onboard have led to spinoffs that are improving life on Earth. As the ISS nears completion, this paper highlights ISS-influenced technologies that are advancing fitness and medicine, purifying air and water, enhancing safety, and improving daily life in many other ways. This paper also examines several other promising future benefits derived from the ISS.

  17. Walking the C4 pathway: past, present, and future.

    PubMed

    Furbank, Robert T

    2017-01-01

    The year 2016 marks 50 years since the publication of the seminal paper by Hatch and Slack describing the biochemical pathway we now know as C 4 photosynthesis. This review provides insight into the initial discovery of this pathway, the clues which led Hatch and Slack and others to these definitive experiments, some of the intrigue which surrounds the international activities which led up to the discovery, and personal insights into the future of this research field. While the biochemical understanding of the basic pathways came quickly, the role of the bundle sheath intermediate CO 2 pool was not understood for a number of years, and the nature of C 4 as a biochemical CO 2 pump then linked the unique Kranz anatomy of C 4 plants to their biochemical specialization. Decades of "grind and find biochemistry" and leaf physiology fleshed out the regulation of the pathway and the differences in physiological response to the environment between C 3 and C 4 plants. The more recent advent of plant transformation then high-throughput RNA and DNA sequencing and synthetic biology has allowed us both to carry out biochemical experiments and test hypotheses in planta and to better understand the evolution-driven molecular and genetic changes which occurred in the genomes of plants in the transition from C 3 to C 4 Now we are using this knowledge in attempts to engineer C 4 rice and improve the C 4 engine itself for enhanced food security and to provide novel biofuel feedstocks. The next 50 years of photosynthesis will no doubt be challenging, stimulating, and a drawcard for the best young minds in plant biology. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Walking the C4 pathway: past, present, and future.

    PubMed

    Furbank, Robert T

    2016-07-01

    The year 2016 marks 50 years since the publication of the seminal paper by Hatch and Slack describing the biochemical pathway we now know as C4 photosynthesis. This review provides insight into the initial discovery of this pathway, the clues which led Hatch and Slack and others to these definitive experiments, some of the intrigue which surrounds the international activities which led up to the discovery, and personal insights into the future of this research field. While the biochemical understanding of the basic pathways came quickly, the role of the bundle sheath intermediate CO2 pool was not understood for a number of years, and the nature of C4 as a biochemical CO2 pump then linked the unique Kranz anatomy of C4 plants to their biochemical specialization. Decades of "grind and find biochemistry" and leaf physiology fleshed out the regulation of the pathway and the differences in physiological response to the environment between C3 and C4 plants. The more recent advent of plant transformation then high-throughput RNA and DNA sequencing and synthetic biology has allowed us both to carry out biochemical experiments and test hypotheses in planta and to better understand the evolution-driven molecular and genetic changes which occurred in the genomes of plants in the transition from C3 to C4 Now we are using this knowledge in attempts to engineer C4 rice and improve the C4 engine itself for enhanced food security and to provide novel biofuel feedstocks. The next 50 years of photosynthesis will no doubt be challenging, stimulating, and a drawcard for the best young minds in plant biology. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Graduate student training and creating new physics labs for biology students, killing two birds with one stone.

    NASA Astrophysics Data System (ADS)

    Jones, Barbara

    2001-03-01

    At UCSD biology majors are required to take 3 quarters of a calculus based physics course. This is taught in a standard format large lecture class partly by faculty and partly by freeway flyers. We are working with physics graduate students who are also participating in our PFPF (Preparing Future Physics Faculty) program to write, review, and teach new weekly labs for these biology students. This provides an experience for the grad student that is both rewarding to them and useful to the department. The grad students participate in curriculum development, they observe the students behaviour in the labs, and assess the effectiveness of different lab formats. The labs are intended to provide an interactive, hands on experience with a wide variety of equipment which is mostly both simple and inexpensive. Both students and grads find the labs to be engaging and fun. Based on group discussions the labs are modified to try to try to create the best teaching environment. The biology students benefit from the improvements both in the quality of the labs they do, and from the enthusiasm of the TAs who take an active interest in their learning. The ability to make significant changes to the material taught maintains the interest of the grad students and helps to make the labs a stable and robust environment.

  20. Better understanding of homologous recombination through a 12-week laboratory course for undergraduates majoring in biotechnology.

    PubMed

    Li, Ming; Shen, Xiaodong; Zhao, Yan; Hu, Xiaomei; Hu, Fuquan; Rao, Xiancai

    2017-07-08

    Homologous recombination, a central concept in biology, is defined as the exchange of DNA strands between two similar or identical nucleotide sequences. Unfortunately, undergraduate students majoring in biotechnology often experience difficulties in understanding the molecular basis of homologous recombination. In this study, we developed and implemented a 12-week laboratory course for biotechnology undergraduates in which gene targeting in Streptococcus suis was used to facilitate their understanding of the basic concept and process of homologous recombination. Students worked in teams of two to select a gene of interest to create a knockout mutant using methods that relied on homologous recombination. By integrating abstract knowledge and practice in the process of scientific research, students gained hands-on experience in molecular biology techniques while learning about the principle and process of homologous recombination. The learning outcomes and survey-based assessment demonstrated that students substantially enhanced their understanding of how homologous recombination could be used to study gene function. Overall, the course was very effective for helping biotechnology undergraduates learn the theory and application of homologous recombination, while also yielding positive effects in developing confidence and scientific skills for future work in research. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):329-335, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  1. ''After the Genome 5 Conference'' to be held October 6-10, 1999 in Jackson Hole, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roger Brent

    OAK B139 The postgenomic era is arriving faster than anyone had imagined--sometime during 2000 we'll have a large fraction of the human genome sequence. Heretofore, our understanding of function has come from non-industrial experiments whose conclusions were largely framed in human language. The advent of large amounts of sequence data, and of ''functional genomic'' data types such as mRNA expression data, have changed this picture. These data share the feature that individual observations and measurements are typically relatively low value adding. Such data is now being generated so rapidly that the amount of information contained in it will surpass themore » amount of biological information collected by traditional means. It is tantalizing to envision using genomic information to create a quantitative biology with a very strong data component. Unfortunately, we are very early in our understanding of how to ''compute on'' genomic information so as to extract biological knowledge from i t. In fact, some current efforts to come to grips with genomic information often resemble a computer savvy library science, where the most important issues concern categories, classification schemes, and information retrieval. When exploring new libraries, a measure of cataloging and inventory is surely inevitable. However, at some point we will need to move from library science to scholarship.We would like to achieve a quantitative and predictive understanding of biological function. We realize that making the bridge from knowledge of systems to the sets of abstractions that constitute computable entities is not easy. The After the Genome meetings were started in 1995 to help the biological community think about and prepare for the changes in biological research in the face of the oncoming flow of genomic information. The term ''After the Genome'' refers to a future in which complete inventories of the gene products of entire organisms become available.Since then, many more biologists have become cognizant of the issues raised by this future, and, in response, the organizers intend to distinguish this meeting from other ''postgenomic'' meetings by bringing together intellectuals from subject fields far outside of conventional biology with the expectation that this will help focus thinking beyond the immediate future. To this end, After the Genome 5 will bring together industrial and university researchers, including: (1) Physicists, chemists, and engineers who are devising and using new data gathering techniques, such as microarrays, protein mass spectrometry, and single molecule measurements (2) Computer scientists from fields as diverse as geology and wargames, who have experience moving from broad knowledge of systems to analysis that results in models and simulations (3) Neurobiologists and computer scientists who combine physiological experimentation and computer modeling to understand single cells and small networks of cells (4) Biologists who are trying to model genetic networks (5) All-around visionary thinkers (6) policy makers, to suggest how to convey any good ideas to organizations that can commit resources to them.« less

  2. "After the Genome 5, Conference to be held October 6-10, 1999, Jackson Hole, Wyoming"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brent, Roger

    The postgenomic era is arriving faster than anyone had imagined-- sometime during 2000 we'll have a large fraction of the human genome sequence. Heretofore, our understanding of function has come from non-industrial experiments whose conclusions were largely framed in human language. The advent of large amounts of sequence data, and of "functional genomic" data types such as mRNA expression data, have changed this picture. These data share the feature that individual observations and measurements are typically relatively low value adding. Such data is now being generated so rapidly that the amount of information contained in it will surpass the amountmore » of biological information collected by traditional means. It is tantalizing to envision using genomic information to create a quantitative biology with a very strong data component. Unfortunately, we are very early in our understanding of how to "compute on" genomic information so as to extract biological knowledge from it. In fact, some current efforts to come to grips with genomic information often resemble a computer savvy library science, where the most important issues concern categories, classification schemes, and information retrieval. When exploring new libraries, a measure of cataloging and inventory is surely inevitable. However, at some point we will need to move from library science to scholarship. We would like to achieve a quantitative and predictive understanding of biological function. We realize that making the bridge from knowledge of systems to the sets of abstractions that constitute computable entities is not easy. The After the Genome meetings were started in 1995 to help the biological community think about and prepare for the changes in biological research in the face of the oncoming flow of genomic information. The term "After the Genome" refers to a future in which complete inventories of the gene products of entire organisms become available. Since then, many more biologists have become cognizant of the issues raised by this future, and, in response, the organizers intend to distinguish this meeting from other "postgenomic" meetings by bringing together intellectuals from subject fields far outside of conventional biology with the expectation that this will help focus thinking beyond the immediate future. To this end, After the Genome 5 will bring together industrial and university researchers, including: 1) Physicists, chemists, and engineers who are devising and using new data gathering techniques, such as microarrays, protein mass spectrometry, and single molecule measurements 2) Computer scientists from fields as diverse as geology and wargames, who have experience moving from broad knowledge of systems to analysis that results in models and simulations 3) Neurobiologists and computer scientists who combine physiological experimentation and computer modeling to understand single cells and small networks of cells 4) Biologists who are trying to model genetic networks 5) All- around visionary thinkers 7) policy makers, to suggest how to convey any good ideas to organizations that can commit resources to them.« less

  3. The past, present, and future of National Aeronautics and Space Administration spaceflight diet in support of microgravity rodent experiments.

    PubMed

    Sun, Gwo-Shing; Tou, Janet C; Yu, Diane; Girten, Beverly E; Cohen, Jacob

    2014-02-01

    Rodents have been the most frequently flown animal model used to study physiological responses to the space environment. In support of future of space exploration, the National Aeronautics and Space Administration (NASA) envisions an animal research program focused on rodents. Therefore, the development of a rodent diet that is suitable for the spaceflight environment including long duration spaceflight is a high priority. Recognizing the importance of nutrition in affecting spaceflight physiological responses and ensuring reliable biomedical and biological science return, NASA developed the nutrient-upgraded rodent food bar (NuRFB) as a standard diet for rodent spaceflight. Depending on future animal habitat hardware and planned spaceflight experiments, modification of the NuRFB or development of a new diet formulation may be needed, particularly for long term spaceflights. Research in this area consists primarily of internal technical reports that are not readily accessible. Therefore, the aims of this contribution are to provide a brief history of the development of rodent spaceflight diets, to review the present diet used in rodent spaceflight studies, and to discuss some of the challenges and potential solutions for diets to be used in future long-term rodent spaceflight studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Future of Chemical Engineering: Integrating Biology into the Undergraduate ChE Curriculum

    ERIC Educational Resources Information Center

    Mosto, Patricia; Savelski, Mariano; Farrell, Stephanie H.; Hecht, Gregory B.

    2007-01-01

    Integrating biology in the chemical engineering curriculum seems to be the future for chemical engineering programs nation and worldwide. Rowan University's efforts to address this need include a unique chemical engineering curriculum with an intensive biology component integrated throughout from freshman to senior years. Freshman and Sophomore…

  5. Future Science Teachers' Understandings of Diffusion and Osmosis Concepts

    ERIC Educational Resources Information Center

    Tomazic, Iztok; Vidic, Tatjana

    2012-01-01

    The concepts of diffusion and osmosis cross the disciplinary boundaries of physics, chemistry and biology. They are important for understanding how biological systems function. Since future (pre-service) science teachers in Slovenia encounter both concepts at physics, chemistry and biology courses during their studies, we assessed the first-,…

  6. Using cell deformation and motion to predict forces and collective behavior in morphogenesis.

    PubMed

    Merkel, Matthias; Manning, M Lisa

    2017-07-01

    In multi-cellular organisms, morphogenesis translates processes at the cellular scale into tissue deformation at the scale of organs and organisms. To understand how biochemical signaling regulates tissue form and function, we must understand the mechanical forces that shape cells and tissues. Recent progress in developing mechanical models for tissues has led to quantitative predictions for how cell shape changes and polarized cell motility generate forces and collective behavior on the tissue scale. In particular, much insight has been gained by thinking about biological tissues as physical materials composed of cells. Here we review these advances and discuss how they might help shape future experiments in developmental biology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Neural systems implicated in obesity as an addictive disorder: from biological to behavioral mechanisms.

    PubMed

    Schulte, Erica M; Yokum, Sonja; Potenza, Marc N; Gearhardt, Ashley N

    2016-01-01

    Contributing factors to obesity have been identified, yet prevention and treatment efforts have had limited long-term success. It has recently been suggested that some individuals may experience an addictive-like response to certain foods, such as losing control over consumption and continued consumption despite negative consequences. In support, shared biological and behavioral features seem to exist between "food addiction" and traditional substance-use disorders. "Food addiction" may be another important contributor to obesity. The current chapter reviews existing literature regarding neural systems implicated similarly in obesity and addiction, discusses unique considerations for addictive-like eating, and proposes directions for future research regarding "food addiction" as an emerging construct for addiction medicine. © 2016 Elsevier B.V. All rights reserved.

  8. Life sciences experiments in the first Spacelab mission

    NASA Technical Reports Server (NTRS)

    Huffstetler, W. J.; Rummel, J. A.

    1978-01-01

    The development of the Shuttle Transportation System (STS) by the United States and the Spacelab pressurized modules and pallets by the European Space Agency (ESA) presents a unique multi-mission space experimentation capability to scientists and researchers of all disciplines. This capability is especially pertinent to life scientists involved in all areas of biological and behavioral research. This paper explains the solicitation, evaluation, and selection process involved in establishing life sciences experiment payloads. Explanations relative to experiment hardware development, experiment support hardware (CORE) concepts, hardware integration and test, and concepts of direct Principal Investigator involvement in the missions are presented as they are being accomplished for the first Spacelab mission. Additionally, discussions of future plans for life sciences dedicated Spacelab missions are included in an attempt to define projected capabilities for space research in the 1980s utilizing the STS.

  9. Biokinetics of Nanomaterials: the Role of Biopersistence.

    PubMed

    Laux, Peter; Riebeling, Christian; Booth, Andy M; Brain, Joseph D; Brunner, Josephine; Cerrillo, Cristina; Creutzenberg, Otto; Estrela-Lopis, Irina; Gebel, Thomas; Johanson, Gunnar; Jungnickel, Harald; Kock, Heiko; Tentschert, Jutta; Tlili, Ahmed; Schäffer, Andreas; Sips, Adriënne J A M; Yokel, Robert A; Luch, Andreas

    2017-04-01

    Nanotechnology risk management strategies and environmental regulations continue to rely on hazard and exposure assessment protocols developed for bulk materials, including larger size particles, while commercial application of nanomaterials (NMs) increases. In order to support and corroborate risk assessment of NMs for workers, consumers, and the environment it is crucial to establish the impact of biopersistence of NMs at realistic doses. In the future, such data will allow a more refined future categorization of NMs. Despite many experiments on NM characterization and numerous in vitro and in vivo studies, several questions remain unanswered including the influence of biopersistence on the toxicity of NMs. It is unclear which criteria to apply to characterize a NM as biopersistent. Detection and quantification of NMs, especially determination of their state, i.e., dissolution, aggregation, and agglomeration within biological matrices and other environments are still challenging tasks; moreover mechanisms of nanoparticle (NP) translocation and persistence remain critical gaps. This review summarizes the current understanding of NM biokinetics focusing on determinants of biopersistence. Thorough particle characterization in different exposure scenarios and biological matrices requires use of suitable analytical methods and is a prerequisite to understand biopersistence and for the development of appropriate dosimetry. Analytical tools that potentially can facilitate elucidation of key NM characteristics, such as ion beam microscopy (IBM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), are discussed in relation to their potential to advance the understanding of biopersistent NM kinetics. We conclude that a major requirement for future nanosafety research is the development and application of analytical tools to characterize NPs in different exposure scenarios and biological matrices.

  10. Artificial intelligence and synthetic biology: A tri-temporal contribution.

    PubMed

    Bianchini, Francesco

    2016-10-01

    Artificial intelligence can make numerous contributions to synthetic biology. I would like to suggest three that are related to the past, present and future of artificial intelligence. From the past, works in biology and artificial systems by Turing and von Neumann prove highly interesting to explore within the new framework of synthetic biology, especially with regard to the notions of self-modification and self-replication and their links to emergence and the bottom-up approach. The current epistemological inquiry into emergence and research on swarm intelligence, superorganisms and biologically inspired cognitive architecture may lead to new achievements on the possibilities of synthetic biology in explaining cognitive processes. Finally, the present-day discussion on the future of artificial intelligence and the rise of superintelligence may point to some research trends for the future of synthetic biology and help to better define the boundary of notions such as "life", "cognition", "artificial" and "natural", as well as their interconnections in theoretical synthetic biology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Carbonate chemistry of an in-situ free-ocean CO2 enrichment experiment (antFOCE) in comparison to short term variation in Antarctic coastal waters.

    PubMed

    Stark, J S; Roden, N P; Johnstone, G J; Milnes, M; Black, J G; Whiteside, S; Kirkwood, W; Newbery, K; Stark, S; van Ooijen, E; Tilbrook, B; Peltzer, E T; Berry, K; Roberts, D

    2018-02-12

    Free-ocean CO 2 enrichment (FOCE) experiments have been deployed in marine ecosystems to manipulate carbonate system conditions to those predicted in future oceans. We investigated whether the pH/carbonate chemistry of extremely cold polar waters can be manipulated in an ecologically relevant way, to represent conditions under future atmospheric CO 2 levels, in an in-situ FOCE experiment in Antarctica. We examined spatial and temporal variation in local ambient carbonate chemistry at hourly intervals at two sites between December and February and compared these with experimental conditions. We successfully maintained a mean pH offset in acidified benthic chambers of -0.38 (±0.07) from ambient for approximately 8 weeks. Local diel and seasonal fluctuations in ambient pH were duplicated in the FOCE system. Large temporal variability in acidified chambers resulted from system stoppages. The mean pH, Ω arag and fCO 2 values in the acidified chambers were 7.688 ± 0.079, 0.62 ± 0.13 and 912 ± 150 µatm, respectively. Variation in ambient pH appeared to be mainly driven by salinity and biological production and ranged from 8.019 to 8.192 with significant spatio-temporal variation. This experiment demonstrates the utility of FOCE systems to create conditions expected in future oceans that represent ecologically relevant variation, even under polar conditions.

  12. Development and Evaluation of a Fully-Online Introductory Biology Course With an Emphasis on the Possibility of Life Beyond Earth

    NASA Astrophysics Data System (ADS)

    Bratton, D., III; Mead, C.; Horodyskyj, L.; Anbar, A. D.

    2016-12-01

    BioBeyond, a fully-online introductory biology course, is distinguished by its driving narrative and its emphasis on education through exploration. BioBeyond applies the narrative, big-question, and active learning principles of its predecessor, Habitable Worlds, in the context of the disciplinarily constrained and higher enrollment environment of non-majors introductory biology. To align with the driving question "Are We Alone?" the course takes a novel approach to sequencing topics compared to typical introductory biology, exploring biological questions that arise from the main question in a narrative-driven format: What is life? How did it get so diverse? Was it always this way? What was the earliest life? What signatures does life leave behind? What is the future of life on Earth? Can humans survive the rigors of exploring other planets? To encourage construction and contextualization of new knowledge, critical thinking, scientific inquiry, and active learning, BioBeyond combines multiple features not often seen in introductory biology: a narrative centered around a big question, a continuous scoring system which assesses students as they learn rather than with high-stakes quizzes and tests, and, significantly, all of the learning experiences are adaptive and responsive, making use of Smart Sparrow's intelligent tutoring system. In Spring and Summer semesters of 2016, BioBeyond was deployed 34 times at 17 institutions nationwide, with another 56 classes at 17 institutions planned for Fall 2016. Each semester, feedback is collected and used to fuel a round of improvements. In addition, we are evaluating our course outcomes at five separate institutions of higher education, comparing the achievement of learning and development outcomes in BioBeyond to traditional offerings of introductory biology, using published concept inventories and surveys regarding interest in science, creative thinking, and scientific thinking. These results will also inform future development of BioBeyond and its planned sister courses.

  13. The need for experience focused counselling (EFC) with voice hearers in training and practice: a review of the literature.

    PubMed

    Schnackenberg, J K; Martin, C R

    2014-06-01

    A pathologizing paradigm to making sense of experiences such as hearing voices and schizophrenia remains dominant within mental health service provision. However, a real biological basis to the aetiology of hearing voices, and similar phenomena remains elusive. Antipsychotic medication, as the mainstay of the biological model, has not only been shown to have serious side effects, but is widely acknowledged as being of clinical benefit only to a limited number of people. In contrast, the Recovery Movement, and in particular the Hearing Voices Movement, have suggested that a normal life is possible despite having the experience of hearing voices. At its heart is the notion that it is possible to make sense of voices within the person's life context and to learn to live with them. Interestingly, it would seem that this approach remains largely confined to the user movement. This may in part be the result of the lack of widely accepted quantifiable and qualitative research in this area supporting such a stance. This review focuses on the current evidence base for the individual approach of the Hearing Voices Movement, which is known as Experience Focused Counselling or Making Sense of Voices. Future directions for research are indicated. © 2013 John Wiley & Sons Ltd.

  14. Introduction to Food Production Challenges in Space

    NASA Technical Reports Server (NTRS)

    Anderson, Molly

    2017-01-01

    Food is one of the most critical elements required for human survival. Though the time to effect may be shorter for oxygen, shelter, or water, the consequences are just as serious. Stored food has also been shown by studies performed by NASA's Evolvable Mars Campaign team to be a significant, multi-ton logistics burden for initial human exploration missions to Mars. Popular fiction and media assumes that in-situ production of food from plants will be part of future space missions. Scientific experiments have demonstrated that plant growth in space is feasible. Crew response to food and their time spent tending the plants also provide evidence for the benefit that plants can have for future missions. However, illustrations of possible options do not prove that biological systems will be cost effective or reliable. On Earth, biological systems are considered robust because they can recover with time, but success conditions for a space mission requires the safe return of the same crewmembers who began the mission, not just recovery of survivable conditions for another group of human beings.

  15. A new multi-scale method to reveal hierarchical modular structures in biological networks.

    PubMed

    Jiao, Qing-Ju; Huang, Yan; Shen, Hong-Bin

    2016-11-15

    Biological networks are effective tools for studying molecular interactions. Modular structure, in which genes or proteins may tend to be associated with functional modules or protein complexes, is a remarkable feature of biological networks. Mining modular structure from biological networks enables us to focus on a set of potentially important nodes, which provides a reliable guide to future biological experiments. The first fundamental challenge in mining modular structure from biological networks is that the quality of the observed network data is usually low owing to noise and incompleteness in the obtained networks. The second problem that poses a challenge to existing approaches to the mining of modular structure is that the organization of both functional modules and protein complexes in networks is far more complicated than was ever thought. For instance, the sizes of different modules vary considerably from each other and they often form multi-scale hierarchical structures. To solve these problems, we propose a new multi-scale protocol for mining modular structure (named ISIMB) driven by a node similarity metric, which works in an iteratively converged space to reduce the effects of the low data quality of the observed network data. The multi-scale node similarity metric couples both the local and the global topology of the network with a resolution regulator. By varying this resolution regulator to give different weightings to the local and global terms in the metric, the ISIMB method is able to fit the shape of modules and to detect them on different scales. Experiments on protein-protein interaction and genetic interaction networks show that our method can not only mine functional modules and protein complexes successfully, but can also predict functional modules from specific to general and reveal the hierarchical organization of protein complexes.

  16. How to integrate biological research into society and exclude errors in biomedical publications? Progress in theoretical and systems biology releases pressure on experimental research.

    PubMed

    Volkov, Vadim

    2014-01-01

    This brief opinion proposes measures to increase efficiency and exclude errors in biomedical research under the existing dynamic situation. Rapid changes in biology began with the description of the three dimensional structure of DNA 60 years ago; today biology has progressed by interacting with computer science and nanoscience together with the introduction of robotic stations for the acquisition of large-scale arrays of data. These changes have had an increasing influence on the entire research and scientific community. Future advance demands short-term measures to ensure error-proof and efficient development. They can include the fast publishing of negative results, publishing detailed methodical papers and excluding a strict connection between career progression and publication activity, especially for younger researchers. Further development of theoretical and systems biology together with the use of multiple experimental methods for biological experiments could also be helpful in the context of years and decades. With regards to the links between science and society, it is reasonable to compare both these systems, to find and describe specific features for biology and to integrate it into the existing stream of social life and financial fluxes. It will increase the level of scientific research and have mutual positive effects for both biology and society. Several examples are given for further discussion.

  17. Intuitive web-based experimental design for high-throughput biomedical data.

    PubMed

    Friedrich, Andreas; Kenar, Erhan; Kohlbacher, Oliver; Nahnsen, Sven

    2015-01-01

    Big data bioinformatics aims at drawing biological conclusions from huge and complex biological datasets. Added value from the analysis of big data, however, is only possible if the data is accompanied by accurate metadata annotation. Particularly in high-throughput experiments intelligent approaches are needed to keep track of the experimental design, including the conditions that are studied as well as information that might be interesting for failure analysis or further experiments in the future. In addition to the management of this information, means for an integrated design and interfaces for structured data annotation are urgently needed by researchers. Here, we propose a factor-based experimental design approach that enables scientists to easily create large-scale experiments with the help of a web-based system. We present a novel implementation of a web-based interface allowing the collection of arbitrary metadata. To exchange and edit information we provide a spreadsheet-based, humanly readable format. Subsequently, sample sheets with identifiers and metainformation for data generation facilities can be created. Data files created after measurement of the samples can be uploaded to a datastore, where they are automatically linked to the previously created experimental design model.

  18. Comprehensive experiment-clinical biochemistry: determination of blood glucose and triglycerides in normal and diabetic rats.

    PubMed

    Jiao, Li; Xiujuan, Shi; Juan, Wang; Song, Jia; Lei, Xu; Guotong, Xu; Lixia, Lu

    2015-01-01

    For second year medical students, we redesigned an original laboratory experiment and developed a combined research-teaching clinical biochemistry experiment. Using an established diabetic rat model to detect blood glucose and triglycerides, the students participate in the entire experimental process, which is not normally experienced during a standard clinical biochemistry exercise. The students are not only exposed to techniques and equipment but are also inspired to think more about the biochemical mechanisms of diseases. When linked with lecture topics about the metabolism of carbohydrates and lipids, the students obtain a better understanding of the relevance of abnormal metabolism in relation to diseases. Such understanding provides a solid foundation for the medical students' future research and for other clinical applications. © 2014 Biochemistry and Molecular Biology Education.

  19. Prosocial Involvement as a Positive Youth Development Construct: A Conceptual Review

    PubMed Central

    Lam, Ching Man

    2012-01-01

    This paper discusses the concept of prosocial involvement as a positive youth development construct. How prosocial involvement is defined and how the different theories conceptualize prosocial involvement are reviewed. Antecedents of prosocial involvement such as biological traits, personality, cognitive and emotional processes, socialization experience, culture, and their social context are examined. The relationship between prosocial involvement and adolescent developmental outcomes, together with strategies to promote prosocial involvement in adolescents, are discussed. Finally, directions for future research and practice are proposed. PMID:22649323

  20. [The immunology of cholera and the molecular biology of cholera toxin. Recent progress and future perspectives].

    PubMed

    Carrada-Bravo, T

    1994-01-01

    Vibrio cholerae has recently called the attention of researchers due to its strong immunogenicity and also because it serves as coadjunct immunomodulator of the immune response of the intestinal mucosae for the mixed added antigens as well as for those covalently linked to the toxin. The immunopathogeny of cholera is a complex phenomenon. This article presents the preliminary results of experiments conducted with laboratory rats in order to find the IgA intestinal response of rodents and humans.

  1. Implications of Present Knowledge and Past Experience for a Possible Future Chemical/Conventional Conflict

    DTIC Science & Technology

    1985-01-01

    talk, but I haven’t really sorted them out yet. I’ve been busy scratching up the data. Nonetheless, one of the things that impressed me most in my...to interven- tion and power projection in various Third World countries. Chemical weapons have central roles in all these comtemporary Soviet...percutaneous hazard as well. Since the United States has been. essentially. " out of the business " of chemical/biological offensive weaponry production since

  2. Geographic data from space

    USGS Publications Warehouse

    Alexander, Robert H.

    1964-01-01

    Space science has been called “the collection of scientific problems to which space vehicles can make some specific contributions not achievable by ground-based experiments.” Geography, the most spatial of the sciences, has now been marked as one of these “space sciences.” The National Aeronautics and Space Administration (NASA) is sponsoring an investigation to identify the Potential geographic benefits from the nation’s space program. This is part of NASA’s long-range inquiry to determine the kinds of scientific activities which might profitably be carried out on future space missions. Among such future activities which are now being planned by NASA are a series of manned earth orbital missions, many of which would be devoted to research. Experiments in physics, astronomy, geophysics, meteorology, and biology are being discussed for these long-range missions. The question which is being put to geographers is, essentially, what would it mean to geographic research to have an observation satellite (or many such satellites) orbiting the earth, gathering data about earth-surface features and environments?

  3. Latest experiences and future plans on NSLS-II insertion devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanabe, T.; Hidaka, Y.; Kitegi, C.

    National Synchrotron Light Source-II (NSLS-II) is the latest storage ring of 3 GeV energy at the Brookhaven National Laboratory (BNL). The horizontal emittance of the electron beam with the currently installed six damping wigglers is 0.9 nm.rad, which could be further reduced to 0.5 nm.rad with more insertion devices (IDs). With only one RF cavity the beam current is restricted to 200 mA. Five hundred mA operation is envisaged for next year with an addition of the second cavity. Six (plus two branches) beamlines have been commissioned in the initial phase of the project. In July 2015, three NIH fundedmore » beamlines called “Advanced Beamlines for Biological Investigations with X-rays” (ABBIX) will be added for operation. This paper describes the experiences of ID development, installation, and commissioning for the NSLS-II project as well as our future plans to improve the performance of the facility in terms of source development.« less

  4. The Mars oxidant experiment (MOx) for Mars '96

    NASA Technical Reports Server (NTRS)

    McKay, C. P.; Grunthaner, F. J.; Lane, A. L.; Herring, M.; Bartman, R. K.; Ksendzov, A.; Manning, C. M.; Lamb, J. L.; Williams, R. M.; Ricco, A. J.; hide

    1998-01-01

    The MOx instrument was developed to characterize the reactive nature of the martian soil. The objectives of MOx were: (1) to measure the rate of degradation of organics in the martian environment; (2) to determine if the reactions seen by the Viking biology experiments were caused by a soil oxidant and measure the reactivity of the soil and atmosphere: (3) to monitor the degradation, when exposed to the martian environment, of materials of potential use in future missions; and, finally, (4) to develop technologies and approaches that can be part of future soil analysis instrumentation. The basic approach taken in the MOx instrument was to place a variety of materials composed as thin films in contact with the soil and monitor the physical and chemical changes that result. The optical reflectance of the thin films was the primary sensing-mode. Thin films of organic materials, metals, and semiconductors were prepared. Laboratory simulations demonstrated the response of thin films to active oxidants.

  5. [Future directions of molecular bone cell biology].

    PubMed

    Yoneda, T

    2001-01-01

    Introduction of genetic approaches using knockout and/or transgenic mice has produced many pieces of information that can't be obtained by conventional cell biological studies and profoundly advanced our understanding of bone biology and metabolism. Here, the author will first briefly summarize the current findings in the recent bone research and subsequently attempt to predict future directions to which bone research is going to proceed with a special emphasis of osteoclast and osteoblast biology.

  6. Long-term biological investigations in space.

    PubMed

    Lotz, R G; Fuchs, H; Bertsche, U

    1975-01-01

    Missions in space within the next two decades will be of longer duration than those carried out up to the present time, and the effects of such long-term flights on biological organisms are unknown. Results of biological experiments that have been performed to date cannot be extrapolated to results in future flights because of the unknown influence of adaptation over a long period of time. Prior experiments with Axolotl, fishes, and vertebrates by our research team (in part with sounding rockets) showed that these specimens did not appear to be suitable for long-term missions on which minimization of expense, technique, and energy is required. Subsequent investigations have shown the suitability of the leech (Hirudo medicinalis), which consumes blood of mammals up to ten times its own weight (1 g) and can live more than 2 years without further food supply. Emphasis in the experiments with Hirudo medicinalis is placed on metabolic rhythm and motility. Resorption and diffusion in tissue, development, and growth under long-term effects of cosmic proton radiation and zero-gravity are other focal points. The constancy of cellular life in the mature animals is a point in favor of these specimens. We have also taken into account the synergistic effects of the space environment on the problems just mentioned. The life-support system constructed for the leech has been tested successfully in four sounding rocket flights and, on that basis, has been prepared for a long-term mission. Long-term investigations out of the terrestrial biosphere will provide us with information concerning the degree of adaptation of certain physiological and biochemical functions and as to what extent biological readjustment or repair processes can occur under the specific stress conditions of space flight.

  7. Ultrafast electron microscopy in materials science, biology, and chemistry

    NASA Astrophysics Data System (ADS)

    King, Wayne E.; Campbell, Geoffrey H.; Frank, Alan; Reed, Bryan; Schmerge, John F.; Siwick, Bradley J.; Stuart, Brent C.; Weber, Peter M.

    2005-06-01

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental knowledge for discovery-class science.

  8. Development and Evaluation of the Tigriopus Course-Based Undergraduate Research Experience: Impacts on Students' Content Knowledge, Attitudes, and Motivation in a Majors Introductory Biology Course.

    PubMed

    Olimpo, Jeffrey T; Fisher, Ginger R; DeChenne-Peters, Sue Ellen

    2016-01-01

    Within the past decade, course-based undergraduate research experiences (CUREs) have emerged as a viable mechanism to enhance novices' development of scientific reasoning and process skills in the science, technology, engineering, and mathematics disciplines. Recent evidence within the bioeducation literature suggests that student engagement in such experiences not only increases their appreciation for and interest in scientific research but also enhances their ability to "think like a scientist." Despite these critical outcomes, few studies have objectively explored CURE versus non-CURE students' development of content knowledge, attitudes, and motivation in the discipline, particularly among nonvolunteer samples. To address these concerns, we adopted a mixed-methods approach to evaluate the aforementioned outcomes following implementation of a novel CURE in an introductory cell/molecular biology course. Results indicate that CURE participants exhibited more expert-like outcomes on these constructs relative to their non-CURE counterparts, including in those areas related to self-efficacy, self-determination, and problem-solving strategies. Furthermore, analysis of end-of-term survey data suggests that select features of the CURE, such as increased student autonomy and collaboration, mediate student learning and enjoyment. Collectively, this research provides novel insights into the benefits achieved as a result of CURE participation and can be used to guide future development and evaluation of authentic research opportunities. © 2016 J. T. Olimpo et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. The Light Microscopy Module Design and Performance Demonstrations

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Snead, John H.; Griffin, DeVon W.; Hovenac, Edward A.

    2003-01-01

    The Light Microscopy Module (LMM) is a state-of-the-art space station payload to provide investigations in the fields of fluids, condensed matter physics, and biological sciences. The LMM hardware will reside inside the Fluids Integrated Rack (FIR), a multi-user facility class payload that will provide fundamental services for the LMM and future payloads. LMM and FIR will be launched in 2005 and both will reside in the Destiny module of the International Space Station (ISS). There are five experiments to be performed within the LMM. This paper will provide a description of the initial five experiments: the supporting FIR subsystems; LMM design; capabilities and key features; and a summary of performance demonstrations.

  10. [The need for experiments using primates from a scientific point of view].

    PubMed

    Kaup, F J

    2007-03-01

    Concerning the public discussion on animal experiments using primates, various research fields are demonstrated where non-human primates are necessary for certain scientific reasons at this time. Non-human Primates are used in Germany mainly in regulatory toxicology and pharmaceutical safety studies.A small amount is disposed in different fields of biological or biomedical basic research. This includes in particular neurosciences and infection research. 2006 New and Old World monkeys were needed in Germany in 2005. No chimpanzees are used anymore as laboratory animals in Germany since many years. Several examples are presented to demonstrate that certain research fields need non-human primates as laboratory animals in the foreseeable future.

  11. Authentic Research Experience and “Big Data” Analysis in the Classroom: Maize Response to Abiotic Stress

    PubMed Central

    Makarevitch, Irina; Frechette, Cameo; Wiatros, Natalia

    2015-01-01

    Integration of inquiry-based approaches into curriculum is transforming the way science is taught and studied in undergraduate classrooms. Incorporating quantitative reasoning and mathematical skills into authentic biology undergraduate research projects has been shown to benefit students in developing various skills necessary for future scientists and to attract students to science, technology, engineering, and mathematics disciplines. While large-scale data analysis became an essential part of modern biological research, students have few opportunities to engage in analysis of large biological data sets. RNA-seq analysis, a tool that allows precise measurement of the level of gene expression for all genes in a genome, revolutionized molecular biology and provides ample opportunities for engaging students in authentic research. We developed, implemented, and assessed a series of authentic research laboratory exercises incorporating a large data RNA-seq analysis into an introductory undergraduate classroom. Our laboratory series is focused on analyzing gene expression changes in response to abiotic stress in maize seedlings; however, it could be easily adapted to the analysis of any other biological system with available RNA-seq data. Objective and subjective assessment of student learning demonstrated gains in understanding important biological concepts and in skills related to the process of science. PMID:26163561

  12. Experimental methods for studying microbial survival in extraterrestrial environments.

    PubMed

    Olsson-Francis, Karen; Cockell, Charles S

    2010-01-01

    Microorganisms can be used as model systems for studying biological responses to extraterrestrial conditions; however, the methods for studying their response are extremely challenging. Since the first high altitude microbiological experiment in 1935 a large number of facilities have been developed for short- and long-term microbial exposure experiments. Examples are the BIOPAN facility, used for short-term exposure, and the EXPOSE facility aboard the International Space Station, used for long-term exposure. Furthermore, simulation facilities have been developed to conduct microbiological experiments in the laboratory environment. A large number of microorganisms have been used for exposure experiments; these include pure cultures and microbial communities. Analyses of these experiments have involved both culture-dependent and independent methods. This review highlights and discusses the facilities available for microbiology experiments, both in space and in simulation environments. A description of the microorganisms and the techniques used to analyse survival is included. Finally we discuss the implications of microbiological studies for future missions and for space applications. Copyright 2009 Elsevier B.V. All rights reserved.

  13. MOPED enables discoveries through consistently processed proteomics data

    PubMed Central

    Higdon, Roger; Stewart, Elizabeth; Stanberry, Larissa; Haynes, Winston; Choiniere, John; Montague, Elizabeth; Anderson, Nathaniel; Yandl, Gregory; Janko, Imre; Broomall, William; Fishilevich, Simon; Lancet, Doron; Kolker, Natali; Kolker, Eugene

    2014-01-01

    The Model Organism Protein Expression Database (MOPED, http://moped.proteinspire.org), is an expanding proteomics resource to enable biological and biomedical discoveries. MOPED aggregates simple, standardized and consistently processed summaries of protein expression and metadata from proteomics (mass spectrometry) experiments from human and model organisms (mouse, worm and yeast). The latest version of MOPED adds new estimates of protein abundance and concentration, as well as relative (differential) expression data. MOPED provides a new updated query interface that allows users to explore information by organism, tissue, localization, condition, experiment, or keyword. MOPED supports the Human Proteome Project’s efforts to generate chromosome and diseases specific proteomes by providing links from proteins to chromosome and disease information, as well as many complementary resources. MOPED supports a new omics metadata checklist in order to harmonize data integration, analysis and use. MOPED’s development is driven by the user community, which spans 90 countries guiding future development that will transform MOPED into a multi-omics resource. MOPED encourages users to submit data in a simple format. They can use the metadata a checklist generate a data publication for this submission. As a result, MOPED will provide even greater insights into complex biological processes and systems and enable deeper and more comprehensive biological and biomedical discoveries. PMID:24350770

  14. Using the Light Microscopy Module (LMM) on the International Space Station (ISS), The Advanced Colloids Experiment (ACE) and MacroMolecular Biophysics (MMB)

    NASA Technical Reports Server (NTRS)

    Meyer, William; Foster, William M.; Motil, Brian J.; Sicker, Ronald; Abbott-Hearn, Amber; Chao, David; Chiaramonte, Fran; Atherton, Arthur; Beltram, Alexander; Bodzioney, Christopher M.; hide

    2016-01-01

    The Light Microscopy Module (LMM) was launched to the International Space Station (ISS) in 2009 and began science operations in 2010. It continues to support Physical and Biological scientific research on ISS. During 2016, if all goes as planned, three experiments will be completed: [1] Advanced Colloids Experiments with Heated base-2 (ACE-H2) and [2] Advanced Colloids Experiments with Temperature control (ACE-T1). Preliminary results, along with an overview of present and future LMM capabilities will be presented; this includes details on the planned data imaging processing and storage system, along with the confocal upgrade to the core microscope. [1] a consortium of universities from the State of Kentucky working through the Experimental Program to Stimulate Competitive Research (EPSCoR): Stuart Williams, Gerold Willing, Hemali Rathnayake, et al. and [2] from Chungnam National University, Daejeon, S. Korea: Chang-Soo Lee, et al.

  15. Bone, Calcium and Spaceflight: A Living Systems Experiment Relating Animals and Plants the Effects of Calcium on Plant Growth and Development

    NASA Technical Reports Server (NTRS)

    Reiss-Bubenheim, D.; Navarro, B.J.; Morey-Holton, E.; Dalton, Bonnie P. (Technical Monitor)

    1994-01-01

    This NASA-sponsored educational outreach activity provided local students with information about Ames Research Center's (ARC) role in conducting life sciences research in space. Students were introduced to the scientific method while conducting a plant experiment that correlated with the Spacelab Life Sciences-2 (SLS-2) flight animal experiment of Dr. Emily Morey-Holton entitled "Bone, Calcium and Spaceflight". Students made daily observations, collected data and reported on their findings. Students also had the opportunity to witness the STS-58 landing at Edwards Air Force Base in southern California and attended a briefing given by the Payload Commander, Dr. Rhea Seddon at ARC last month. This classroom experiment providing a hands-on learning opportunity about terrestrial and space biology and, hopefully, introduced the students to new fields of study for future endeavors.

  16. Plant biology in space: recent accomplishments and recommendations for future research.

    PubMed

    Ruyters, G; Braun, M

    2014-01-01

    Gravity has shaped the evolution of life since its origin. However, experiments in the absence of this overriding force, necessary to precisely analyse its role, e.g. for growth, development, and orientation of plants and single cells, only became possible with the advent of spaceflight. Consequently, this research has been supported especially by space agencies around the world for decades, mainly for two reasons: first, to enable fundamental research on gravity perception and transduction during growth and development of plants; and second, to successfully grow plants under microgravity conditions with the goal of establishing a bioregenerative life support system providing oxygen and food for astronauts in long-term exploratory missions. For the second time, the International Space Life Sciences Working Group (ISLSWG), comprised of space agencies with substantial life sciences programmes in the world, organised a workshop on plant biology research in space. The present contribution summarises the outcome of this workshop. In the first part, an analysis is undertaken, if and how the recommendations of the first workshop held in Bad Honnef, Germany, in 1996 have been implemented. A chapter summarising major scientific breakthroughs obtained in the last 15 years from plant research in space concludes this first part. In the second part, recommendations for future research in plant biology in space are put together that have been elaborated in the various discussion sessions during the workshop, as well as provided in written statements from the session chairs. The present paper clearly shows that plant biology in space has contributed significantly to progress in plant gravity perception, transduction and responses - processes also relevant for general plant biology, including agricultural aspects. In addition, the interplay between light and gravity effects has increasingly received attention. It also became evident that plants will play a major role as components of bioregenerative life support and energy systems that are necessary to complement physico-chemical systems in upcoming long-term exploratory missions. In order to achieve major progress in the future, however, standardised experimental conditions and more advanced analytical tools, such as state-of-the-art onboard analysis, are required. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Developmental song learning as a model to understand neural mechanisms that limit and promote the ability to learn.

    PubMed

    London, Sarah E

    2017-11-20

    Songbirds famously learn their vocalizations. Some species can learn continuously, others seasonally, and still others just once. The zebra finch (Taeniopygia guttata) learns to sing during a single developmental "Critical Period," a restricted phase during which a specific experience has profound and permanent effects on brain function and behavioral patterns. The zebra finch can therefore provide fundamental insight into features that promote and limit the ability to acquire complex learned behaviors. For example, what properties permit the brain to come "on-line" for learning? How does experience become encoded to prevent future learning? What features define the brain in receptive compared to closed learning states? This piece will focus on epigenomic, genomic, and molecular levels of analysis that operate on the timescales of development and complex behavioral learning. Existing data will be discussed as they relate to Critical Period learning, and strategies for future studies to more directly address these questions will be considered. Birdsong learning is a powerful model for advancing knowledge of the biological intersections of maturation and experience. Lessons from its study not only have implications for understanding developmental song learning, but also broader questions of learning potential and the enduring effects of early life experience on neural systems and behavior. Copyright © 2017. Published by Elsevier B.V.

  18. [Research advances of fluid bio-mechanics in bone].

    PubMed

    Chen, Zebin; Huo, Bo

    2017-04-01

    It has been found for more than one century that when experiencing mechanical loading, the structure of bone will adapt to the changing mechanical environment, which is called bone remodeling. Bone remodeling is charaterized as two processes of bone formation and bone resorption. A large number of studies have confirmed that the shear stress is resulted from interstitial fluid flow within bone cavities under mechanical loading and it is the key factor of stimulating the biological responses of bone cells. This review summarizes the major research progress during the past years, including the biological response of bone cells under fluid flow, the pressure within bone cavities, the theoretical modeling, numerical simulation and experiments about fluid flow within bone, and finally analyzes and predicts the possible tendency in this field in the future.

  19. Mind-body interactions in pain: the neurophysiology of anxious and catastrophic pain-related thoughts.

    PubMed

    Campbell, Claudia M; Edwards, Robert R

    2009-03-01

    The well-accepted biopsychosocial model proposes that the experience of pain and responses to it result from a complex interaction of biological, psychological, and social factors. However, the separation of these constructs is substantially artificial, and we presume that psychological processes have biological effects, that biological processes affect an individual's psychosocial environment, and so on. Considerable research has demonstrated that pain-coping strategies influence perceived pain intensity and physical functioning, and individual differences in styles of pain coping even shape the persistence of long-term pain complaints in some populations. A good deal of this coping research has focused on catastrophizing, which is a generally maladaptive cognitive and emotional mental set that involves feelings of helplessness when in pain, rumination about pain symptoms, and magnification of pain-related complaints. Collectively, catastrophizing has been consistently associated with heightened experiences of pain across a variety of samples. Although catastrophic thinking regarding pain-related symptoms is often classified under the "psychologic" category within the broader biopsychosocial model, we propose that catastrophizing exerts biologic effects that may account for some of its negative consequences. In general, the cognitive and affective processes captured within the construct of catastrophizing may exert effects on the neuromuscular, cardiovascular, immune, and neuroendocrine systems, and on the activity in the pain neuromatrix within the brain. The interface between pain-related neurobiology and processes such as pain-related catastrophizing represents an important avenue for future pain research.

  20. A Call to Develop Course-Based Undergraduate Research Experiences (CUREs) for Nonmajors Courses.

    PubMed

    Ballen, Cissy J; Blum, Jessamina E; Brownell, Sara; Hebert, Sadie; Hewlett, James; Klein, Joanna R; McDonald, Erik A; Monti, Denise L; Nold, Stephen C; Slemmons, Krista E; Soneral, Paula A G; Cotner, Sehoya

    2017-01-01

    Course-based undergraduate research experiences (CUREs) for non-science majors (nonmajors) are potentially distinct from CUREs for developing scientists in their goals, learning objectives, and assessment strategies. While national calls to improve science, technology, engineering, and mathematics education have led to an increase in research revealing the positive effects of CUREs for science majors, less work has specifically examined whether nonmajors are impacted in the same way. To address this gap in our understanding, a working group focused on nonmajors CUREs was convened to discuss the following questions: 1) What are our laboratory-learning goals for nonmajors? 2) What are our research priorities to determine best practices for nonmajors CUREs? 3) How can we collaborate to define and disseminate best practices for nonmajors in CUREs? We defined three broad student outcomes of prime importance to the nonmajors CURE: improvement of scientific literacy skills, proscience attitudes, and evidence-based decision making. We evaluated the state of knowledge of best practices for nonmajors, and identified research priorities for the future. The report that follows is a summary of the conclusions and future directions from our discussion. © 2017 C. J. Ballen et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Plasma Medicine: Current Achievements and Future Prospects

    NASA Astrophysics Data System (ADS)

    Laroussi, Mounir

    2012-10-01

    Research on the biomedical applications of low temperature plasmas started with small scale experiments that were simply aimed at discovering what happens to biological cells when exposed to the chemically rich environment of plasma. These early experiments took place in the mid to late 1990s. As interest in this multidisciplinary field dramatically rose, various engineering and physics groups collaborated with biologists and medical experts to investigate the use of plasma technology as a basis for innovative medical approaches to cure various diseases. However, many questions concerning the fundamental mechanisms involved in cell-plasma interaction remained unanswered. As a result various workshops were organized to gather the diverse research community in the field of plasma medicine in order to have a fruitful exchange of ideas regarding the scientific challenges that needed to be surmounted to advance and expand the field's knowledge base. The present GEC workshop continues this important tradition of scientific cooperation since there is still a significant lack of understanding of many of the biochemical and molecular pathways that come into play when biological cells are exposed to plasmas. In this talk, first background information on the various plasma devices developed in our institute will be presented. This will be followed by a summary of our work on the effects of plasmas on prokaryotic and eukaryotic cells. The talk will be concluded by presenting our vision of the future of the field and an outline of the main challenges that need to be overcome if practical medical applications are to be achieved.

  2. Seasonal carbonate chemistry covariation with temperature, oxygen, and salinity in a fjord estuary: implications for the design of ocean acidification experiments.

    PubMed

    Reum, Jonathan C P; Alin, Simone R; Feely, Richard A; Newton, Jan; Warner, Mark; McElhany, Paul

    2014-01-01

    Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall). pCO2 exceeded the 2008-2011 mean atmospheric level (392 µatm) at all depths and seasons sampled except for the near-surface waters (< 10 m) in the summer. Further, undersaturated conditions with respect to the biogenic carbonate mineral aragonite were widespread (Ωar<1). We show that pCO2 values were relatively uniform throughout the water column and across regions in winter, enriched in subsurface waters in summer, and in the fall some values exceeded 2500 µatm in near-surface waters. Carbonate chemistry covaried to differing levels with temperature and oxygen depending primarily on season and secondarily on region. Salinity, which varied little (27 to 31), was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight the wide range of carbonate chemistry conditions organisms may currently experience in this and similar coastal ecosystems.

  3. Seasonal Carbonate Chemistry Covariation with Temperature, Oxygen, and Salinity in a Fjord Estuary: Implications for the Design of Ocean Acidification Experiments

    PubMed Central

    Reum, Jonathan C. P.; Alin, Simone R.; Feely, Richard A.; Newton, Jan; Warner, Mark; McElhany, Paul

    2014-01-01

    Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall). pCO2 exceeded the 2008–2011 mean atmospheric level (392 µatm) at all depths and seasons sampled except for the near-surface waters (< 10 m) in the summer. Further, undersaturated conditions with respect to the biogenic carbonate mineral aragonite were widespread (Ωar<1). We show that pCO2 values were relatively uniform throughout the water column and across regions in winter, enriched in subsurface waters in summer, and in the fall some values exceeded 2500 µatm in near-surface waters. Carbonate chemistry covaried to differing levels with temperature and oxygen depending primarily on season and secondarily on region. Salinity, which varied little (27 to 31), was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight the wide range of carbonate chemistry conditions organisms may currently experience in this and similar coastal ecosystems. PMID:24586915

  4. Physics and biophysics experiments needed for improved risk assessment in space

    NASA Astrophysics Data System (ADS)

    Sihver, L.

    To improve the risk assessment of radiation carcinogenesis, late degenerative tissue effects, acute syndromes, synergistic effects of radiation and microgravity or other spacecraft factors, and hereditary effects, on future LEO and interplanetary space missions, the radiobiological effects of cosmic radiation before and after shielding must be well understood. However, cosmic radiation is very complex and includes low and high LET components of many different neutral and charged particles. The understanding of the radiobiology of the heavy ions, from GCRs and SPEs, is still a subject of great concern due to the complicated dependence of their biological effects on the type of ion and energy, and its interaction with various targets both outside and within the spacecraft and the human body. In order to estimate the biological effects of cosmic radiation, accurate knowledge of the physics of the interactions of both charged and non-charged high-LET particles is necessary. Since it is practically impossible to measure all primary and secondary particles from all projectile-target-energy combinations needed for a correct risk assessment in space, accurate particle and heavy ion transport codes might be a helpful instrument to overcome those difficulties. These codes have to be carefully validated to make sure they fulfill preset accuracy criteria, e.g. to be able to predict particle fluence and energy distributions within a certain accuracy. When validating the accuracy of the transport codes, both space and ground-based accelerator experiments are needed. In this paper current and future physics and biophysics experiments needed for improved risk assessment in space will be discussed. The cyclotron HIRFL (heavy ion research facility in Lanzhou) and the new synchrotron CSR (cooling storage ring), which can be used to provide ion beams for space related experiments at the Institute of Modern Physics, Chinese Academy of Sciences (IMP-CAS), will be presented together with the physical and biomedical research performed at IMP-CAS.

  5. Climate warming increases biological control agent impact on a non-target species

    PubMed Central

    Lu, Xinmin; Siemann, Evan; He, Minyan; Wei, Hui; Shao, Xu; Ding, Jianqing

    2015-01-01

    Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non-target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non-target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from perennial to annual. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non-target effect magnitude and increase non-target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species. PMID:25376303

  6. Performance study of galactic cosmic ray shield materials

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Wilson, John W.; Thibeault, Sheila A.; Nealy, John E.; Badavi, Francis F.; Kiefer, Richard L.

    1994-01-01

    The space program is faced with two difficult radiation protection issues for future long-term operations. First, retrofit of shield material or conservatism in shield design is prohibitively expensive and often impossible. Second, shielding from the cosmic heavy ions is faced with limited knowledge on the physical properties and biological responses of these radiations. The current status of space shielding technology and its impact on radiation health is discussed herein in terms of conventional protection practice and a test biological response model. The impact of biological response on the selection of optimum materials for cosmic ray shielding is presented in terms of the transmission characteristics of the shield material. Although the systematics of nuclear cross sections are able to demonstrate the relation of exposure risk to shield-material composition, the current uncertainty in-nuclear cross sections will not allow an accurate evaluation of risk reduction. This paper presents a theoretical study of risk-related factors and a pilot experiment to study the effectiveness of choice of shield materials to reduce the risk in space operations.

  7. Challenges in Analyzing the Biological Effects of Resveratrol

    PubMed Central

    Erdogan, Cihan Suleyman; Vang, Ole

    2016-01-01

    The suggested health effects (e.g., disease prevention) of dietary bioactive compounds such as resveratrol are challenging to prove in comparison to man-made drugs developed for therapeutic purposes. Dietary bioactive compounds have multiple cellular targets and therefore have a variety of biological effects. Extrapolating the biological effects of dietary compounds from in vitro and in vivo animal experiments to humans may lead to over- or under-estimation of the effect and role of these compounds. The present paper will discuss a few of these challenges and suggest directions for future research. Questions we address include: (1) Is the combinatorial effect of resveratrol and other compounds real? (2) What are the real and relevant doses of resveratrol after administration? and (3) Is it possible to estimate the preventive effect of resveratrol by clinical trials using standard experimental designs? The examples concerning resveratrol taken from the scientific literature are mainly from 2010 and later. The challenges pointed out in this review are similar to most naturally occurring bioactive compounds. PMID:27294953

  8. Climate warming increases biological control agent impact on a non-target species.

    PubMed

    Lu, Xinmin; Siemann, Evan; He, Minyan; Wei, Hui; Shao, Xu; Ding, Jianqing

    2015-01-01

    Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non-target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non-target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from perennial to annual. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non-target effect magnitude and increase non-target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species. © 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  9. Reverse engineering of gene regulatory networks.

    PubMed

    Cho, K H; Choo, S M; Jung, S H; Kim, J R; Choi, H S; Kim, J

    2007-05-01

    Systems biology is a multi-disciplinary approach to the study of the interactions of various cellular mechanisms and cellular components. Owing to the development of new technologies that simultaneously measure the expression of genetic information, systems biological studies involving gene interactions are increasingly prominent. In this regard, reconstructing gene regulatory networks (GRNs) forms the basis for the dynamical analysis of gene interactions and related effects on cellular control pathways. Various approaches of inferring GRNs from gene expression profiles and biological information, including machine learning approaches, have been reviewed, with a brief introduction of DNA microarray experiments as typical tools for measuring levels of messenger ribonucleic acid (mRNA) expression. In particular, the inference methods are classified according to the required input information, and the main idea of each method is elucidated by comparing its advantages and disadvantages with respect to the other methods. In addition, recent developments in this field are introduced and discussions on the challenges and opportunities for future research are provided.

  10. Crossing the Threshold: Bringing Biological Variation to the Foreground

    PubMed Central

    Batzli, Janet M.; Knight, Jennifer K.; Hartley, Laurel M.; Maskiewicz, April Cordero; Desy, Elizabeth A.

    2016-01-01

    Threshold concepts have been referred to as “jewels in the curriculum”: concepts that are key to competency in a discipline but not taught explicitly. In biology, researchers have proposed the idea of threshold concepts that include such topics as variation, randomness, uncertainty, and scale. In this essay, we explore how the notion of threshold concepts can be used alongside other frameworks meant to guide instructional and curricular decisions, and we examine the proposed threshold concept of variation and how it might influence students’ understanding of core concepts in biology focused on genetics and evolution. Using dimensions of scientific inquiry, we outline a schema that may allow students to experience and apply the idea of variation in such a way that it transforms their future understanding and learning of genetics and evolution. We encourage others to consider the idea of threshold concepts alongside the Vision and Change core concepts to provide a lens for targeted instruction and as an integrative bridge between concepts and competencies. PMID:27856553

  11. Evaluation of Emerging Energy-Efficient Heterogeneous Computing Platforms for Biomolecular and Cellular Simulation Workloads.

    PubMed

    Stone, John E; Hallock, Michael J; Phillips, James C; Peterson, Joseph R; Luthey-Schulten, Zaida; Schulten, Klaus

    2016-05-01

    Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers.

  12. A Response to "BIO 2010: Transforming Undergraduate Education for Future Research Biologists," from the Perspective of the Biochemistry and Molecular Biology Major Program at Kenyon College

    ERIC Educational Resources Information Center

    Slonczewski, Joan L.; Marusak, Rosemary

    2004-01-01

    The National Research Council completed a major study of undergraduate biology education, "BIO 2010-Transforming Undergraduate Education For Future Research Biologists (BIO 2010)," funded by the Howard Hughes Medical Institute and the National Institutes of Health. The "BIO 2010" report recommends that biology pedagogy should use an…

  13. Plant synthetic biology.

    PubMed

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Individual Differences in Pain: Understanding the Mosaic that Makes Pain Personal

    PubMed Central

    Fillingim, Roger B.

    2016-01-01

    The experience of pain is characterized by tremendous inter-individual variability. Multiple biological and psychosocial variables contribute to these individual differences in pain, including demographic variables, genetic factors, and psychosocial processes. For example, sex, age and ethnic group differences in the prevalence of chronic pain conditions have been widely reported. Moreover, these demographic factors have been associated with responses to experimentally-induced pain. Similarly, both genetic and psychosocial factors contribute to clinical and experimental pain responses. Importantly, these different biopsychosocial influences interact with each other in complex ways to sculpt the experience of pain. Some genetic associations with pain have been found to vary across sex and ethnic group. Moreover, genetic factors also interact with psychosocial factors, including stress and pain catastrophizing, to influence pain. The individual and combined influences of these biological and psychosocial variables results in a unique mosaic of factors that contributes pain in each individual. Understanding these mosaics is critically important in order to provide optimal pain treatment, and future research to further elucidate the nature of these biopsychosocial interactions is needed in order to provide more informed and personalized pain care. PMID:27902569

  15. Relevance and limitations of crowding, fractal, and polymer models to describe nuclear architecture.

    PubMed

    Huet, Sébastien; Lavelle, Christophe; Ranchon, Hubert; Carrivain, Pascal; Victor, Jean-Marc; Bancaud, Aurélien

    2014-01-01

    Chromosome architecture plays an essential role for all nuclear functions, and its physical description has attracted considerable interest over the last few years among the biophysics community. These researches at the frontiers of physics and biology have been stimulated by the demand for quantitative analysis of molecular biology experiments, which provide comprehensive data on chromosome folding, or of live cell imaging experiments that enable researchers to visualize selected chromosome loci in living or fixed cells. In this review our goal is to survey several nonmutually exclusive models that have emerged to describe the folding of DNA in the nucleus, the dynamics of proteins in the nucleoplasm, or the movements of chromosome loci. We focus on three classes of models, namely molecular crowding, fractal, and polymer models, draw comparisons, and discuss their merits and limitations in the context of chromosome structure and dynamics, or nuclear protein navigation in the nucleoplasm. Finally, we identify future challenges in the roadmap to a unified model of the nuclear environment. © 2014 Elsevier Inc. All rights reserved.

  16. Impacting the Science Community through Teacher Development: Utilizing Virtual Learning.

    PubMed

    Boulay, Rachel; van Raalte, Lisa

    2014-01-01

    Commitment to the STEM (science, technology, engineering, math) pipeline is slowly declining despite the need for professionals in the medical field. Addressing this, the John A. Burns School of Medicine developed a summer teacher-training program with a supplemental technology-learning component to improve science teachers' knowledge and skills of Molecular Biology. Subsequently, students' skills, techniques, and application of molecular biology are impacted. Science teachers require training that will prepare them for educating future professionals and foster interest in the medical field. After participation in the program and full access to the virtual material, twelve high school science teachers completed a final written reflective statement to evaluate their experiences. Using thematic analysis, knowledge and classroom application were investigated in this study. Results were two-fold: teachers identified difference areas of gained knowledge from the teacher-training program and teachers' reporting various benefits in relation to curricula development after participating in the program. It is concluded that participation in the program and access to the virtual material will impact the science community by updating teacher knowledge and positively influencing students' experience with science.

  17. The rationale for fundamental research in space biology: Introduction and background

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W.; Krauss, Robert W.

    1993-01-01

    With the construction of Space Station Freedom, NASA will have available a new platform for experiments in space that promises many advantages over those already flown. Biologists are poised to take advantage of the greater space, the increased power, and especially the long duration of the station for a cascade of innovative experiments in fundamental science that are long overdue. The unique space environment will provide new dimensions for approaching some of the most challenging problems still facing modern biology. Solutions to basic questions about living systems, which may now be grown through many generations in space, will not only explain abnormalities already observed there, but will add to our understanding of how life functions on Earth. Much will be learned about evolution that has built us the way we are, but also about what it has in store for the Earth's species in the future. NASA must not lose this opportunity to contribute to the welfare of the peoples of the Earth while at the same time create knowledge that will enable human exploration of space in the decades ahead.

  18. Biological age as a useful index to predict seventeen-year survival and mortality in Koreans.

    PubMed

    Yoo, Jinho; Kim, Yangseok; Cho, Eo Rin; Jee, Sun Ha

    2017-01-05

    Many studies have been conducted to quantitatively estimate biological age using measurable biomarkers. Biological age should function as a valid proxy for aging, which is closely related with future work ability, frailty, physical fitness, and/or mortality. A validation study using cohort data found biological age to be a superior index for disease-related mortality than chronological age. The purpose of this study is to demonstrate the validity of biological age as a useful index to predict a person's risk of death in the future. The data consists of 13,106 cases of death from 557,940 Koreans at 20-93 years old, surveyed from 1994 to 2011. Biological ages were computed using 15 biomarkers measured in general health check-ups using an algorithm based on principal component analysis. The influence of biological age on future mortality was analyzed using Cox proportional hazards regression considering gender, chronological age, and event type. In the living subjects, the average biological age was almost the same as the average chronological age. In the deceased, the biological age was larger than the chronological age: largest increment of biological age over chronological age was observed when their baseline chronological age was within 50-59 years. The death rate significantly increased as biological age became larger than chronological age (linear trend test, p value < 0.0001). The largest hazard ratio was observed in subjects whose baseline chronological age was within 50-59 years when the cause was death from non-cancerous diseases (HR = 1.30, 95% confidence intervals = 1.26 - 1.34). The survival probability, over the 17 year term of the study, was significantly decreased in the people whose biological age was larger than chronological age (log rank test, p value < 0.001). Biological age could be used to predict future risk of death, and its effect size varied according to gender, chronological age, and cause of death.

  19. Ground-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studies

    PubMed Central

    Shimbo, Miki; Kudo, Takashi; Hamada, Michito; Jeon, Hyojung; Imamura, Yuki; Asano, Keigo; Okada, Risa; Tsunakawa, Yuki; Mizuno, Seiya; Yagami, Ken-ichi; Ishikawa, Chihiro; Li, Haiyan; Shiga, Takashi; Ishida, Junji; Hamada, Juri; Murata, Kazuya; Ishimaru, Tomohiro; Hashimoto, Misuzu; Fukamizu, Akiyoshi; Yamane, Mutsumi; Ikawa, Masahito; Morita, Hironobu; Shinohara, Masahiro; Asahara, Hiroshi; Akiyama, Taishin; Akiyama, Nobuko; Sasanuma, Hiroki; Yoshida, Nobuaki; Zhou, Rui; Wang, Ying-Ying; Ito, Taito; Kokubu, Yuko; Noguchi, Taka-aki K.; Ishimine, Hisako; Kurisaki, Akira; Shiba, Dai; Mizuno, Hiroyasu; Shirakawa, Masaki; Ito, Naoki; Takeda, Shin; Takahashi, Satoru

    2016-01-01

    The Japan Aerospace Exploration Agency developed the mouse Habitat Cage Unit (HCU) for installation in the Cell Biology Experiment Facility (CBEF) onboard the Japanese Experimental Module (“Kibo”) on the International Space Station. The CBEF provides “space-based controls” by generating artificial gravity in the HCU through a centrifuge, enabling a comparison of the biological consequences of microgravity and artificial gravity of 1 g on mice housed in space. Therefore, prior to the space experiment, a ground-based study to validate the habitability of the HCU is necessary to conduct space experiments using the HCU in the CBEF. Here, we investigated the ground-based effect of a 32-day housing period in the HCU breadboard model on male mice in comparison with the control cage mice. Morphology of skeletal muscle, the thymus, heart, and kidney, and the sperm function showed no critical abnormalities between the control mice and HCU mice. Slight but significant changes caused by the HCU itself were observed, including decreased body weight, increased weights of the thymus and gastrocnemius, reduced thickness of cortical bone of the femur, and several gene expressions from 11 tissues. Results suggest that the HCU provides acceptable conditions for mouse phenotypic analysis using CBEF in space, as long as its characteristic features are considered. Thus, the HCU is a feasible device for future space experiments. PMID:26822934

  20. Ground-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studies.

    PubMed

    Shimbo, Miki; Kudo, Takashi; Hamada, Michito; Jeon, Hyojung; Imamura, Yuki; Asano, Keigo; Okada, Risa; Tsunakawa, Yuki; Mizuno, Seiya; Yagami, Ken-Ichi; Ishikawa, Chihiro; Li, Haiyan; Shiga, Takashi; Ishida, Junji; Hamada, Juri; Murata, Kazuya; Ishimaru, Tomohiro; Hashimoto, Misuzu; Fukamizu, Akiyoshi; Yamane, Mutsumi; Ikawa, Masahito; Morita, Hironobu; Shinohara, Masahiro; Asahara, Hiroshi; Akiyama, Taishin; Akiyama, Nobuko; Sasanuma, Hiroki; Yoshida, Nobuaki; Zhou, Rui; Wang, Ying-Ying; Ito, Taito; Kokubu, Yuko; Noguchi, Taka-Aki K; Ishimine, Hisako; Kurisaki, Akira; Shiba, Dai; Mizuno, Hiroyasu; Shirakawa, Masaki; Ito, Naoki; Takeda, Shin; Takahashi, Satoru

    2016-05-20

    The Japan Aerospace Exploration Agency developed the mouse Habitat Cage Unit (HCU) for installation in the Cell Biology Experiment Facility (CBEF) onboard the Japanese Experimental Module ("Kibo") on the International Space Station. The CBEF provides "space-based controls" by generating artificial gravity in the HCU through a centrifuge, enabling a comparison of the biological consequences of microgravity and artificial gravity of 1 g on mice housed in space. Therefore, prior to the space experiment, a ground-based study to validate the habitability of the HCU is necessary to conduct space experiments using the HCU in the CBEF. Here, we investigated the ground-based effect of a 32-day housing period in the HCU breadboard model on male mice in comparison with the control cage mice. Morphology of skeletal muscle, the thymus, heart, and kidney, and the sperm function showed no critical abnormalities between the control mice and HCU mice. Slight but significant changes caused by the HCU itself were observed, including decreased body weight, increased weights of the thymus and gastrocnemius, reduced thickness of cortical bone of the femur, and several gene expressions from 11 tissues. Results suggest that the HCU provides acceptable conditions for mouse phenotypic analysis using CBEF in space, as long as its characteristic features are considered. Thus, the HCU is a feasible device for future space experiments.

  1. A Biopsychological Model of Anti-drug PSA Processing: Developing Effective Persuasive Messages.

    PubMed

    Hohman, Zachary P; Keene, Justin Robert; Harris, Breanna N; Niedbala, Elizabeth M; Berke, Collin K

    2017-11-01

    For the current study, we developed and tested a biopsychological model to combine research on psychological tension, the Limited Capacity Model of Motivated Mediated Message Processing, and the endocrine system to predict and understand how people process anti-drug PSAs. We predicted that co-presentation of pleasant and unpleasant information, vs. solely pleasant or unpleasant, will trigger evaluative tension about the target behavior in persuasive messages and result in a biological response (increase in cortisol, alpha amylase, and heart rate). In experiment 1, we assessed the impact of co-presentation of pleasant and unpleasant information in persuasive messages on evaluative tension (conceptualized as attitude ambivalence), in experiment 2, we explored the impact of co-presentation on endocrine system responses (salivary cortisol and alpha amylase), and in experiment 3, we assessed the impact of co-presentation on heart rate. Across all experiments, we demonstrated that co-presentation of pleasant and unpleasant information, vs. solely pleasant or unpleasant, in persuasive communications leads to increases in attitude ambivalence, salivary cortisol, salivary alpha amylase, and heart rate. Taken together, the results support the initial paths of our biopsychological model of persuasive message processing and indicate that including both pleasant and unpleasant information in a message impacts the viewer. We predict that increases in evaluative tension and biological responses will aid in memory and cognitive processing of the message. However, future research is needed to test that hypothesis.

  2. Electrophoresis experiments in microgravity

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.; Rhodes, Percy H.

    1991-01-01

    The use of the microgravity environment to separate and purify biological cells and proteins has been a major activity since the beginning of the NASA Microgravity Science and Applications program. Purified populations of cells are needed for research, transplantation and analysis of specific cell constituents. Protein purification is a necessary step in research areas such as genetic engineering where the new protein has to be separated from the variety of other proteins synthesized from the microorganism. Sufficient data are available from the results of past electrophoresis experiments in space to show that these experiments were designed with incomplete knowledge of the fluid dynamics of the process including electrohydrodynamics. However, electrophoresis is still an important separation tool in the laboratory and thermal convection does limit its performance. Thus, there is a justification for electrophoresis but the emphasis of future space experiments must be directed toward basic research with model experiments to understand the microgravity environment and fluid analysis to test the basic principles of the process.

  3. NASA Space Biology Plant Research for 2010-2020

    NASA Technical Reports Server (NTRS)

    Levine, H. G.; Tomko, D. L.; Porterfield, D. M.

    2012-01-01

    The U.S. National Research Council (NRC) recently published "Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era" (http://www.nap.edu/catalog.php?record id=13048), and NASA completed a Space Biology Science Plan to develop a strategy for implementing its recommendations ( http://www.nasa.gov/exploration/library/esmd documents.html). The most important recommendations of the NRC report on plant biology in space were that NASA should: (1) investigate the roles of microbial-plant systems in long-term bioregenerative life support systems, and (2) establish a robust spaceflight program of research analyzing plant growth and physiological responses to the multiple stimuli encountered in spaceflight environments. These efforts should take advantage of recently emerged analytical technologies (genomics, transcriptomics, proteomics, metabolomics) and apply modern cellular and molecular approaches in the development of a vigorous flight-based and ground-based research program. This talk will describe NASA's strategy and plans for implementing these NRC Plant Space Biology recommendations. New research capabilities for Plant Biology, optimized by providing state-of-the-art automated technology and analytical techniques to maximize scientific return, will be described. Flight experiments will use the most appropriate platform to achieve science results (e.g., ISS, free flyers, sub-orbital flights) and NASA will work closely with its international partners and other U.S. agencies to achieve its objectives. One of NASA's highest priorities in Space Biology is the development research capabilities for use on the International Space Station and other flight platforms for studying multiple generations of large plants. NASA will issue recurring NASA Research Announcements (NRAs) that include a rapid turn-around model to more fully engage the biology community in designing experiments to respond to the NRC recommendations. In doing so, NASA's Space Biology research will optimize ISS research utilization, develop and demonstrate technology and hardware that will enable new science, and contribute to the base of fundamental knowledge that will facilitate development of new tools for human space exploration and Earth applications. By taking these steps, NASA will energize the Space Biology user community and advance our knowledge of the effect of the space flight environment on living systems.

  4. Proteomics and Systems Biology: Current and Future Applications in the Nutritional Sciences1

    PubMed Central

    Moore, J. Bernadette; Weeks, Mark E.

    2011-01-01

    In the last decade, advances in genomics, proteomics, and metabolomics have yielded large-scale datasets that have driven an interest in global analyses, with the objective of understanding biological systems as a whole. Systems biology integrates computational modeling and experimental biology to predict and characterize the dynamic properties of biological systems, which are viewed as complex signaling networks. Whereas the systems analysis of disease-perturbed networks holds promise for identification of drug targets for therapy, equally the identified critical network nodes may be targeted through nutritional intervention in either a preventative or therapeutic fashion. As such, in the context of the nutritional sciences, it is envisioned that systems analysis of normal and nutrient-perturbed signaling networks in combination with knowledge of underlying genetic polymorphisms will lead to a future in which the health of individuals will be improved through predictive and preventative nutrition. Although high-throughput transcriptomic microarray data were initially most readily available and amenable to systems analysis, recent technological and methodological advances in MS have contributed to a linear increase in proteomic investigations. It is now commonplace for combined proteomic technologies to generate complex, multi-faceted datasets, and these will be the keystone of future systems biology research. This review will define systems biology, outline current proteomic methodologies, highlight successful applications of proteomics in nutrition research, and discuss the challenges for future applications of systems biology approaches in the nutritional sciences. PMID:22332076

  5. Biological effects of anthropogenic contaminants in the San Francisco Estuary

    USGS Publications Warehouse

    Thompson, B.; Adelsbach, T.; Brown, C.; Hunt, J.; Kuwabara, J.; Neale, J.; Ohlendorf, H.; Schwarzbach, S.; Spies, R.; Taberski, K.

    2007-01-01

    Concentrations of many anthropogenic contaminants in the San Francisco Estuary exist at levels that have been associated with biological effects elsewhere, so there is a potential for them to cause biological effects in the Estuary. The purpose of this paper is to summarize information about biological effects on the Estuary's plankton, benthos, fish, birds, and mammals, gathered since the early 1990s, focusing on key accomplishments. These studies have been conducted at all levels of biological organization (sub-cellular through communities), but have included only a small fraction of the organisms and contaminants of concern in the region. The studies summarized provide a body of evidence that some contaminants are causing biological impacts in some biological resources in the Estuary. However, no general patterns of effects were apparent in space and time, and no single contaminant was consistently related to effects among the biota considered. These conclusions reflect the difficulty in demonstrating biological effects due specifically to contamination because there is a wide range of sensitivity to contaminants among the Estuary's many organisms. Additionally, the spatial and temporal distribution of contamination in the Estuary is highly variable, and levels of contamination covary with other environmental factors, such as freshwater inflow or sediment-type. Federal and State regulatory agencies desire to develop biological criteria to protect the Estuary's biological resources. Future studies of biological effects in San Francisco Estuary should focus on the development of meaningful indicators of biological effects, and on key organism and contaminants of concern in long-term, multifaceted studies that include laboratory and field experiments to determine cause and effect to adequately inform management and regulatory decisions. ?? 2006 Elsevier Inc. All rights reserved.

  6. Recent findings and future directions for interpolar mitotic kinesin inhibitors in cancer therapy

    PubMed Central

    Myers, Stephanie M.; Collins, Ian

    2016-01-01

    The kinesin class of microtubule-associated motor proteins present attractive anti-cancer targets owing to their roles in key functions in dividing cells. Two interpolar mitotic kinesins Eg5 and HSET have opposing motor functions in mitotic spindle assembly with respect to microtubule movement, but both offer opportunities to develop cancer selective therapeutic agents. Here, we summarize the progress to date in developing inhibitors of Eg5 and HSET, with an emphasis on structural biology insights into the binding modes of allosteric inhibitors, compound selectivity and mechanisms of action of different chemical scaffolds. We discuss translation of preclinical studies to clinical experience with Eg5 inhibitors, recent findings on potential resistance mechanisms, and explore the implications for future anticancer drug development against these targets. PMID:26976726

  7. Recent findings and future directions for interpolar mitotic kinesin inhibitors in cancer therapy.

    PubMed

    Myers, Stephanie M; Collins, Ian

    2016-01-01

    The kinesin class of microtubule-associated motor proteins present attractive anticancer targets owing to their roles in key functions in dividing cells. Two interpolar mitotic kinesins Eg5 and HSET have opposing motor functions in mitotic spindle assembly with respect to microtubule movement, but both offer opportunities to develop cancer selective therapeutic agents. Here, we summarize the progress to date in developing inhibitors of Eg5 and HSET, with an emphasis on structural biology insights into the binding modes of allosteric inhibitors, compound selectivity and mechanisms of action of different chemical scaffolds. We discuss translation of preclinical studies to clinical experience with Eg5 inhibitors, recent findings on potential resistance mechanisms and explore the implications for future anticancer drug development against these targets.

  8. Invited review: gravitational biology of the neuromotor systems: a perspective to the next era

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; Roy, R. R.

    2000-01-01

    Earth's gravity has had a significant impact on the designs of the neuromotor systems that have evolved. Early indications are that gravity also plays a key role in the ontogenesis of some of these design features. The purpose of the present review is not to assess and interpret a body of knowledge in the usual sense of a review but to look ahead, given some of the general concepts that have evolved and observations made to date, which can guide our future approach to gravitational biology. We are now approaching an era in gravitational biology during which well-controlled experiments can be conducted for sustained periods in a microgravity environment. Thus it is now possible to study in greater detail the role of gravity in phylogenesis and ontogenesis. Experiments can range from those conducted on the simplest levels of organization of the components that comprise the neuromotor system to those conducted on the whole organism. Generally, the impact of Earth's gravitational environment on living systems becomes more complex as the level of integration of the biological phenomenon of interest increases. Studies of the effects of gravitational vectors on neuromotor systems have and should continue to provide unique insight into these mechanisms that control and maintain neural control systems designed to function in Earth's gravitational environment. A number of examples are given of how a gravitational biology perspective can lead to a clearer understanding of neuromotor disorders. Furthermore, the technologies developed for spaceflight studies have contributed and should continue to contribute to studies of motor dysfunctions, such as spinal cord injury and stroke. Disorders associated with energy support and delivery systems and how these functions are altered by sedentary life styles at 1 G and by space travel in a microgravity environment are also discussed.

  9. In Situ Biological Contamination Studies of the Moon: Implications for Planetary Protection and Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Williams, David R.; Kminek, Gerhard; Rummel, John D.

    2010-01-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moan, and future human exploration of Mars and other destinations, including possibly asteroids. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require careful operations, and that all systems be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there a different planetary protection category for human missions, although preliminary C SPAR policy guidelines for human missions to Mars have been developed. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future: Mars surface exploration plans for a human mission to Mars.

  10. A Biosocial Education Future?

    ERIC Educational Resources Information Center

    Youdell, Deborah

    2016-01-01

    This paper explores how social justice orientated education research might engage with emerging ideas and approaches from the new biological sciences, and suggests a biosocial future for empirical education research that connects molecular biology--epigenetics, nutrigenomics and neuroscience--with sociology of education. In beginning to consider…

  11. Can Man Control His Biological Evolution? A Symposium on Genetic Engineering. Man's Responsibility to His Future

    ERIC Educational Resources Information Center

    Hoagland, Hudson

    1972-01-01

    Biological evolution can be carried out in the laboratory. With new knowledge available in genetics, possibilities are raised that genetic characters can be transferred in the future to embryos according to a predetermined plan. (PS)

  12. Cognitive theory and brain fact: Insights for the future of cognitive neuroscience. Comment on “Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition” by W. Tecumseh Fitch

    NASA Astrophysics Data System (ADS)

    Bowling, Daniel

    2014-09-01

    A central challenge in neuroscience is to understand the relationship between the mechanistic operation of the nervous system and the psychological phenomena we experience everyday (e.g., perception, memory, attention, emotion, and consciousness). Supported by revolutionary advances in technology, knowledge of neural mechanisms has grown dramatically over recent decades, but with few exceptions our understanding of how these mechanisms relate to psychological phenomena remains poor.

  13. Serial killers with military experience: applying learning theory to serial murder.

    PubMed

    Castle, Tammy; Hensley, Christopher

    2002-08-01

    Scholars have endeavored to study the motivation and causality behind serial murder by researching biological, psychological, and sociological variables. Some of these studies have provided support for the relationship between these variables and serial murder. However, the study of serial murder continues to be an exploratory rather than explanatory research topic. This article examines the possible link between serial killers and military service. Citing previous research using social learning theory for the study of murder, this article explores how potential serial killers learn to reinforce violence, aggression, and murder in military boot camps. As with other variables considered in serial killer research, military experience alone cannot account for all cases of serial murder. Future research should continue to examine this possible link.

  14. Development of Experiment Kits for Processing Biological Samples In-Flight on SLS-2

    NASA Technical Reports Server (NTRS)

    Jaquez, R.; Savage, P. D.; Hinds, W. E.; Evans, J.; Dubrovin, L.

    1994-01-01

    The design of the hematology experiment kits for SLS-2 has resulted in a modular, flexible configuration which maximizes crew efficiency and minimizes error and confusion when dealing with over 1200 different components over the course of the mission. The kit layouts proved to be very easy to use and their packaging design provided for positive, secure containment of the many small components. The secondary Zero(Tm) box enclosure also provided an effective means for transport of the kits within the Spacelab and for grouping individual kits by flight day usage. The kits are readily adaptable to use on future flights by simply replacing the inner components as required and changing the labelling scheme to match new mission requirements.

  15. Astronaut Shane Kimbrough Visits Marshall Space Flight Center

    NASA Image and Video Library

    2017-08-31

    NASA astronaut Shane Kimbrough presents highlights from his Expedition 49-50 mission aboard the International Space Station Sept. 19 to students from theU.S. Space & Rocket Center's Space Camp and team members at NASA's Marshall Space Flight Center. While serving as commander of the station, Kimbrough conducted four spacewalks, during which he installed new batteries and relay boxes, and helped move a pressurized mating adapter for future commercial crew spacecraft visiting the outpost. He also contributed to hundreds of experiments in biology, biotechnology, physical science and Earthobservations. One of these experiments was the Microgravity Expanded Stem Cells investigation, results of which could lead to the treatment of diseases andinjury in space and provide a way to improve stem cell production for medical therapies on Earth.

  16. Towards monitoring real-time cellular response using an integrated microfluidics-MALDI/nESI-ion mobility-mass spectrometry platform

    PubMed Central

    Enders, Jeffrey R.; Marasco, Christina C.; Kole, Ayeeshik; Nguyen, Bao; Sundarapandian, Sevugarajan; Seale, Kevin T.; Wikswo, John P.; McLean, John A.

    2014-01-01

    The combination of microfluidic cell trapping devices with ion mobility-mass spectrometry offers the potential for elucidating in real time the dynamic responses of small populations of cells to paracrine signals, changes in metabolite levels, and delivery of drugs and toxins. Preliminary experiments examining peptides in methanol and recording the interactions of yeast and Jurkat cells with their superfusate have identified instrumental setup and control parameters and on-line desalting procedures. Numerous initial experiments demonstrate and validate this new instrumental platform. Future outlooks and potential applications are addressed, specifically how this instrumentation may be used for fully automated systems biology studies of the significantly interdependent, dynamic internal workings of cellular metabolic and signaling pathways. PMID:21073240

  17. Feasibility of an integrated X-ray instrument for Mars exobiology and geology. [Abstract only

    NASA Technical Reports Server (NTRS)

    Fonda, M. L.; Schwartz, D. E.; Koppel, L. N.; Franco, E. D.; Kerner, J. A.

    1994-01-01

    By employing an integrated X-ray instrument on a future Mars mission, data obtained will greatly augment those returned by Viking; details relevant to the possibility of the origin and evolution of life on Mars will be acquired. An integrated combined X Ray Fluorescence/X Ray Detection (XRF/XRD) instrument has been breadboarded and demonstrated to accommodate important exobiology and geology experiment objectives outlined for Mars Environmental Survey (MESUR) and future Mars missions. Among others, primary objectives for the exploration of Mars include: the intense study of local areas on Mars to 'establish the chemical, mineralogical, and petrological character of different components of the surface material; to determine the distribution, abundance and sources and sinks of volatile materials, including an assessment of the biologic potential, now and during past epochs; and to establish the global chemical and physical characteristics of the Martian surface'. The XRF/XRD breadboard instrument identifies and quantifies soil surface elemental, mineralogical, and petrological characteristics and acquires data necessary to address questions on volatile abundance and distribution. Additionally, the breadboard is able to characterize the biogenic element constituents of soil samples providing information on the biologic potential of the Mars environment.

  18. Is there Complex Trauma Experience typology for Australian's experiencing extreme social disadvantage and low housing stability?

    PubMed

    Keane, Carol A; Magee, Christopher A; Kelly, Peter J

    2016-11-01

    Traumatic childhood experiences predict many adverse outcomes in adulthood including Complex-PTSD. Understanding complex trauma within socially disadvantaged populations has important implications for policy development and intervention implementation. This paper examined the nature of complex trauma experienced by disadvantaged individuals using a latent class analysis (LCA) approach. Data were collected through the large-scale Journeys Home Study (N=1682), utilising a representative sample of individuals experiencing low housing stability. Data on adverse childhood experiences, adulthood interpersonal trauma and relevant covariates were collected through interviews at baseline (Wave 1). Latent class analysis (LCA) was conducted to identify distinct classes of childhood trauma history, which included physical assault, neglect, and sexual abuse. Multinomial logistic regression investigated childhood relevant factors associated with class membership such as biological relationship of primary carer at age 14 years and number of times in foster care. Of the total sample (N=1682), 99% reported traumatic adverse childhood experiences. The most common included witnessing of violence, threat/experience of physical abuse, and sexual assault. LCA identified six distinct childhood trauma history classes including high violence and multiple traumas. Significant covariate differences between classes included: gender, biological relationship of primary carer at age 14 years, and time in foster care. Identification of six distinct childhood trauma history profiles suggests there might be unique treatment implications for individuals living in extreme social disadvantage. Further research is required to examine the relationship between these classes of experience, consequent impact on adulthood engagement, and future transitions though homelessness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Albedo feedbacks to future climate via climate change impacts on dryland biocrusts.

    PubMed

    Rutherford, William A; Painter, Thomas H; Ferrenberg, Scott; Belnap, Jayne; Okin, Gregory S; Flagg, Cody; Reed, Sasha C

    2017-03-10

    Drylands represent the planet's largest terrestrial biome and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil surface communities of lichens, mosses, and/or cyanobacteria ‒ comprise up to 70% of dryland cover and help govern fundamental ecosystem functions, including soil stabilization and carbon uptake. Drylands are expected to experience significant changes in temperature and precipitation regimes, and such alterations may impact biocrust communities by promoting rapid mortality of foundational species. In turn, biocrust community shifts affect land surface cover and roughness-changes that can dramatically alter albedo. We tested this hypothesis in a full-factorial warming (+4 °C above ambient) and altered precipitation (increased frequency of 1.2 mm monsoon-type watering events) experiment on the Colorado Plateau, USA. We quantified changes in shortwave albedo via multi-angle, solar-reflectance measurements. Warming and watering treatments each led to large increases in albedo (>30%). This increase was driven by biophysical factors related to treatment effects on cyanobacteria cover and soil surface roughness following treatment-induced moss and lichen mortality. A rise in dryland surface albedo may represent a previously unidentified feedback to future climate.

  20. Albedo feedbacks to future climate via climate change impacts on dryland biocrusts

    NASA Astrophysics Data System (ADS)

    Rutherford, William A.; Painter, Thomas H.; Ferrenberg, Scott; Belnap, Jayne; Okin, Gregory S.; Flagg, Cody; Reed, Sasha C.

    2017-03-01

    Drylands represent the planet’s largest terrestrial biome and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil surface communities of lichens, mosses, and/or cyanobacteria ‒ comprise up to 70% of dryland cover and help govern fundamental ecosystem functions, including soil stabilization and carbon uptake. Drylands are expected to experience significant changes in temperature and precipitation regimes, and such alterations may impact biocrust communities by promoting rapid mortality of foundational species. In turn, biocrust community shifts affect land surface cover and roughness—changes that can dramatically alter albedo. We tested this hypothesis in a full-factorial warming (+4 °C above ambient) and altered precipitation (increased frequency of 1.2 mm monsoon-type watering events) experiment on the Colorado Plateau, USA. We quantified changes in shortwave albedo via multi-angle, solar-reflectance measurements. Warming and watering treatments each led to large increases in albedo (>30%). This increase was driven by biophysical factors related to treatment effects on cyanobacteria cover and soil surface roughness following treatment-induced moss and lichen mortality. A rise in dryland surface albedo may represent a previously unidentified feedback to future climate.

  1. Albedo feedbacks to future climate via climate change impacts on dryland biocrusts

    USGS Publications Warehouse

    Rutherford, William A.; Painter, Thomas H.; Ferrenberg, Scott; Belnap, Jayne; Okin, Gregory S.; Flagg, Cody B.; Reed, Sasha C.

    2017-01-01

    Drylands represent the planet’s largest terrestrial biome and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil surface communities of lichens, mosses, and/or cyanobacteria ‒ comprise up to 70% of dryland cover and help govern fundamental ecosystem functions, including soil stabilization and carbon uptake. Drylands are expected to experience significant changes in temperature and precipitation regimes, and such alterations may impact biocrust communities by promoting rapid mortality of foundational species. In turn, biocrust community shifts affect land surface cover and roughness—changes that can dramatically alter albedo. We tested this hypothesis in a full-factorial warming (+4 °C above ambient) and altered precipitation (increased frequency of 1.2 mm monsoon-type watering events) experiment on the Colorado Plateau, USA. We quantified changes in shortwave albedo via multi-angle, solar-reflectance measurements. Warming and watering treatments each led to large increases in albedo (>30%). This increase was driven by biophysical factors related to treatment effects on cyanobacteria cover and soil surface roughness following treatment-induced moss and lichen mortality. A rise in dryland surface albedo may represent a previously unidentified feedback to future climate.

  2. Impact of hydrothermalism on the ocean iron cycle

    PubMed Central

    Resing, Joseph

    2016-01-01

    As the iron supplied from hydrothermalism is ultimately ventilated in the iron-limited Southern Ocean, it plays an important role in the ocean biological carbon pump. We deploy a set of focused sensitivity experiments with a state of the art global model of the ocean to examine the processes that regulate the lifetime of hydrothermal iron and the role of different ridge systems in governing the hydrothermal impact on the Southern Ocean biological carbon pump. Using GEOTRACES section data, we find that stabilization of hydrothermal iron is important in some, but not all regions. The impact on the Southern Ocean biological carbon pump is dominated by poorly explored southern ridge systems, highlighting the need for future exploration in this region. We find inter-basin differences in the isopycnal layer onto which hydrothermal Fe is supplied between the Atlantic and Pacific basins, which when combined with the inter-basin contrasts in oxidation kinetics suggests a muted influence of Atlantic ridges on the Southern Ocean biological carbon pump. Ultimately, we present a range of processes, operating at distinct scales, that must be better constrained to improve our understanding of how hydrothermalism affects the ocean cycling of iron and carbon. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035256

  3. Impact of hydrothermalism on the ocean iron cycle.

    PubMed

    Tagliabue, Alessandro; Resing, Joseph

    2016-11-28

    As the iron supplied from hydrothermalism is ultimately ventilated in the iron-limited Southern Ocean, it plays an important role in the ocean biological carbon pump. We deploy a set of focused sensitivity experiments with a state of the art global model of the ocean to examine the processes that regulate the lifetime of hydrothermal iron and the role of different ridge systems in governing the hydrothermal impact on the Southern Ocean biological carbon pump. Using GEOTRACES section data, we find that stabilization of hydrothermal iron is important in some, but not all regions. The impact on the Southern Ocean biological carbon pump is dominated by poorly explored southern ridge systems, highlighting the need for future exploration in this region. We find inter-basin differences in the isopycnal layer onto which hydrothermal Fe is supplied between the Atlantic and Pacific basins, which when combined with the inter-basin contrasts in oxidation kinetics suggests a muted influence of Atlantic ridges on the Southern Ocean biological carbon pump. Ultimately, we present a range of processes, operating at distinct scales, that must be better constrained to improve our understanding of how hydrothermalism affects the ocean cycling of iron and carbon.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2016 The Author(s).

  4. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming

    PubMed Central

    Harvey, Ben P; Gwynn-Jones, Dylan; Moore, Pippa J

    2013-01-01

    Ocean acidification and warming are considered two of the greatest threats to marine biodiversity, yet the combined effect of these stressors on marine organisms remains largely unclear. Using a meta-analytical approach, we assessed the biological responses of marine organisms to the effects of ocean acidification and warming in isolation and combination. As expected biological responses varied across taxonomic groups, life-history stages, and trophic levels, but importantly, combining stressors generally exhibited a stronger biological (either positive or negative) effect. Using a subset of orthogonal studies, we show that four of five of the biological responses measured (calcification, photosynthesis, reproduction, and survival, but not growth) interacted synergistically when warming and acidification were combined. The observed synergisms between interacting stressors suggest that care must be made in making inferences from single-stressor studies. Our findings clearly have implications for the development of adaptive management strategies particularly given that the frequency of stressors interacting in marine systems will be likely to intensify in the future. There is now an urgent need to move toward more robust, holistic, and ecologically realistic climate change experiments that incorporate interactions. Without them accurate predictions about the likely deleterious impacts to marine biodiversity and ecosystem functioning over the next century will not be possible. PMID:23610641

  5. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming.

    PubMed

    Harvey, Ben P; Gwynn-Jones, Dylan; Moore, Pippa J

    2013-04-01

    Ocean acidification and warming are considered two of the greatest threats to marine biodiversity, yet the combined effect of these stressors on marine organisms remains largely unclear. Using a meta-analytical approach, we assessed the biological responses of marine organisms to the effects of ocean acidification and warming in isolation and combination. As expected biological responses varied across taxonomic groups, life-history stages, and trophic levels, but importantly, combining stressors generally exhibited a stronger biological (either positive or negative) effect. Using a subset of orthogonal studies, we show that four of five of the biological responses measured (calcification, photosynthesis, reproduction, and survival, but not growth) interacted synergistically when warming and acidification were combined. The observed synergisms between interacting stressors suggest that care must be made in making inferences from single-stressor studies. Our findings clearly have implications for the development of adaptive management strategies particularly given that the frequency of stressors interacting in marine systems will be likely to intensify in the future. There is now an urgent need to move toward more robust, holistic, and ecologically realistic climate change experiments that incorporate interactions. Without them accurate predictions about the likely deleterious impacts to marine biodiversity and ecosystem functioning over the next century will not be possible.

  6. Competency-based reforms of the undergraduate biology curriculum: integrating the physical and biological sciences.

    PubMed

    Thompson, Katerina V; Chmielewski, Jean; Gaines, Michael S; Hrycyna, Christine A; LaCourse, William R

    2013-06-01

    The National Experiment in Undergraduate Science Education project funded by the Howard Hughes Medical Institute is a direct response to the Scientific Foundations for Future Physicians report, which urged a shift in premedical student preparation from a narrow list of specific course work to a more flexible curriculum that helps students develop broad scientific competencies. A consortium of four universities is working to create, pilot, and assess modular, competency-based curricular units that require students to use higher-order cognitive skills and reason across traditional disciplinary boundaries. Purdue University; the University of Maryland, Baltimore County; and the University of Miami are each developing modules and case studies that integrate the biological, chemical, physical, and mathematical sciences. The University of Maryland, College Park, is leading the effort to create an introductory physics for life sciences course that is reformed in both content and pedagogy. This course has prerequisites of biology, chemistry, and calculus, allowing students to apply strategies from the physical sciences to solving authentic biological problems. A comprehensive assessment plan is examining students' conceptual knowledge of physics, their attitudes toward interdisciplinary approaches, and the development of specific scientific competencies. Teaching modules developed during this initial phase will be tested on multiple partner campuses in preparation for eventual broad dissemination.

  7. Deaf, Hard-of-Hearing, and Hearing Signing Undergraduates’ Attitudes toward Science in Inquiry-Based Biology Laboratory Classes

    PubMed Central

    Gormally, Cara

    2017-01-01

    For science learning to be successful, students must develop attitudes toward support future engagement with challenging social issues related to science. This is especially important for increasing participation of students from underrepresented populations. This study investigated how participation in inquiry-based biology laboratory classes affected students’ attitudes toward science, focusing on deaf, hard-of-hearing, and hearing signing students in bilingual learning environments (i.e., taught in American Sign Language and English). Analysis of reflection assignments and interviews revealed that the majority of students developed positive attitudes toward science and scientific attitudes after participating in inquiry-based biology laboratory classes. Attitudinal growth appears to be driven by student value of laboratory activities, repeated direct engagement with scientific inquiry, and peer collaboration. Students perceived that hands-on experimentation involving peer collaboration and a positive, welcoming learning environment were key features of inquiry-based laboratories, affording attitudinal growth. Students who did not perceive biology as useful for their majors, careers, or lives did not develop positive attitudes. Students highlighted the importance of the climate of the learning environment for encouraging student contribution and noted both the benefits and pitfalls of teamwork. Informed by students’ characterizations of their learning experiences, recommendations are made for inquiry-based learning in college biology. PMID:28188279

  8. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk.

    PubMed

    Warren, Helen R; Evangelou, Evangelos; Cabrera, Claudia P; Gao, He; Ren, Meixia; Mifsud, Borbala; Ntalla, Ioanna; Surendran, Praveen; Liu, Chunyu; Cook, James P; Kraja, Aldi T; Drenos, Fotios; Loh, Marie; Verweij, Niek; Marten, Jonathan; Karaman, Ibrahim; Lepe, Marcelo P Segura; O'Reilly, Paul F; Knight, Joanne; Snieder, Harold; Kato, Norihiro; He, Jiang; Tai, E Shyong; Said, M Abdullah; Porteous, David; Alver, Maris; Poulter, Neil; Farrall, Martin; Gansevoort, Ron T; Padmanabhan, Sandosh; Mägi, Reedik; Stanton, Alice; Connell, John; Bakker, Stephan J L; Metspalu, Andres; Shields, Denis C; Thom, Simon; Brown, Morris; Sever, Peter; Esko, Tõnu; Hayward, Caroline; van der Harst, Pim; Saleheen, Danish; Chowdhury, Rajiv; Chambers, John C; Chasman, Daniel I; Chakravarti, Aravinda; Newton-Cheh, Christopher; Lindgren, Cecilia M; Levy, Daniel; Kooner, Jaspal S; Keavney, Bernard; Tomaszewski, Maciej; Samani, Nilesh J; Howson, Joanna M M; Tobin, Martin D; Munroe, Patricia B; Ehret, Georg B; Wain, Louise V

    2017-03-01

    Elevated blood pressure is the leading heritable risk factor for cardiovascular disease worldwide. We report genetic association of blood pressure (systolic, diastolic, pulse pressure) among UK Biobank participants of European ancestry with independent replication in other cohorts, and robust validation of 107 independent loci. We also identify new independent variants at 11 previously reported blood pressure loci. In combination with results from a range of in silico functional analyses and wet bench experiments, our findings highlight new biological pathways for blood pressure regulation enriched for genes expressed in vascular tissues and identify potential therapeutic targets for hypertension. Results from genetic risk score models raise the possibility of a precision medicine approach through early lifestyle intervention to offset the impact of blood pressure-raising genetic variants on future cardiovascular disease risk.

  9. Interplay of migratory and division forces as a generic mechanism for stem cell patterns

    NASA Astrophysics Data System (ADS)

    Hannezo, Edouard; Coucke, Alice; Joanny, Jean-François

    2016-02-01

    In many adult tissues, stem cells and differentiated cells are not homogeneously distributed: stem cells are arranged in periodic "niches," and differentiated cells are constantly produced and migrate out of these niches. In this article, we provide a general theoretical framework to study mixtures of dividing and actively migrating particles, which we apply to biological tissues. We show in particular that the interplay between the stresses arising from active cell migration and stem cell division give rise to robust stem cell patterns. The instability of the tissue leads to spatial patterns which are either steady or oscillating in time. The wavelength of the instability has an order of magnitude consistent with the biological observations. We also discuss the implications of these results for future in vitro and in vivo experiments.

  10. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk

    PubMed Central

    Ntalla, Ioanna; Surendran, Praveen; Liu, Chunyu; Cook, James P; Kraja, Aldi T; Drenos, Fotios; Loh, Marie; Verweij, Niek; Marten, Jonathan; Karaman, Ibrahim; Segura Lepe, Marcelo P; O’Reilly, Paul F; Knight, Joanne; Snieder, Harold; Kato, Norihiro; He, Jiang; Tai, E Shyong; Said, M Abdullah; Porteous, David; Alver, Maris; Poulter, Neil; Farrall, Martin; Gansevoort, Ron T; Padmanabhan, Sandosh; Mägi, Reedik; Stanton, Alice; Connell, John; Bakker, Stephan J L; Metspalu, Andres; Shields, Denis C; Thom, Simon; Brown, Morris; Sever, Peter; Esko, Tõnu; Hayward, Caroline; van der Harst, Pim; Saleheen, Danish; Chowdhury, Rajiv; Chambers, John C; Chasman, Daniel I; Chakravarti, Aravinda; Newton-Cheh, Christopher; Lindgren, Cecilia M; Levy, Daniel; Kooner, Jaspal S; Keavney, Bernard; Tomaszewski, Maciej; Samani, Nilesh J; Howson, Joanna M M; Tobin, Martin D; Munroe, Patricia B; Ehret, Georg B; Wain, Louise V

    2017-01-01

    Elevated blood pressure is the leading heritable risk factor for cardiovascular disease worldwide. We report genetic association of blood pressure (systolic, diastolic, pulse pressure) among UK Biobank participants of European ancestry with independent replication in other cohorts, and robust validation of 107 independent loci. We also identify new independent variants at 11 previously reported blood pressure loci. Combined with results from a range of in silico functional analyses and wet bench experiments, our findings highlight new biological pathways for blood pressure regulation enriched for genes expressed in vascular tissues and identify potential therapeutic targets for hypertension. Results from genetic risk score models raise the possibility of a precision medicine approach through early lifestyle intervention to offset the impact of blood pressure raising genetic variants on future cardiovascular disease risk. PMID:28135244

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kufareva, Irina; Gustavsson, Martin; Zheng, Yi

    Chemokines and their cell surface G protein–coupled receptors are critical for cell migration, not only in many fundamental biological processes but also in inflammatory diseases and cancer. Recent X-ray structures of two chemokines complexed with full-length receptors provided unprecedented insight into the atomic details of chemokine recognition and receptor activation, and computational modeling informed by new experiments leverages these insights to gain understanding of many more receptor:chemokine pairs. In parallel, chemokine receptor structures with small molecules reveal the complicated and diverse structural foundations of small molecule antagonism and allostery, highlight the inherent physicochemical challenges of receptor:chemokine interfaces, and suggest novelmore » epitopes that can be exploited to overcome these challenges. The structures and models promote unique understanding of chemokine receptor biology, including the interpretation of two decades of experimental studies, and will undoubtedly assist future drug discovery endeavors.« less

  12. The role of mesocosm studies in ecological risk analysis

    USGS Publications Warehouse

    Boyle, Terence P.; Fairchild, James F.

    1997-01-01

    Mesocosms have been primarily used as research tools for the evaluation of the fate and effects of xenobiotic chemicals at the population, community, and ecosystem levels of biological organization. This paper provides suggestions for future applications of mesocosm research. Attention should be given to the configuration of mesocosm parameters to explicitly study regional questions of ecological interest. The initial physical, chemical, and biological conditions within mesocosms should be considered as factors shaping the final results of experiments. Certain fundamental questions such as the ecological inertia and resilience of systems with different initial ecological properties should be addressed. Researchers should develop closer working relationships with mathematical modelers in linking computer models to the outcomes of mesocosm studies. Mesocosm tests, linked with models, could enable managers and regulators to forecast the regional consequences of chemicals released into the environment.

  13. A fractal model for nuclear organization: current evidence and biological implications

    PubMed Central

    Bancaud, Aurélien; Lavelle, Christophe; Huet, Sébastien; Ellenberg, Jan

    2012-01-01

    Chromatin is a multiscale structure on which transcription, replication, recombination and repair of the genome occur. To fully understand any of these processes at the molecular level under physiological conditions, a clear picture of the polymorphic and dynamic organization of chromatin in the eukaryotic nucleus is required. Recent studies indicate that a fractal model of chromatin architecture is consistent with both the reaction-diffusion properties of chromatin interacting proteins and with structural data on chromatin interminglement. In this study, we provide a critical overview of the experimental evidence that support a fractal organization of chromatin. On this basis, we discuss the functional implications of a fractal chromatin model for biological processes and propose future experiments to probe chromatin organization further that should allow to strongly support or invalidate the fractal hypothesis. PMID:22790985

  14. The challenges of informatics in synthetic biology: from biomolecular networks to artificial organisms

    PubMed Central

    Ramoni, Marco F.

    2010-01-01

    The field of synthetic biology holds an inspiring vision for the future; it integrates computational analysis, biological data and the systems engineering paradigm in the design of new biological machines and systems. These biological machines are built from basic biomolecular components analogous to electrical devices, and the information flow among these components requires the augmentation of biological insight with the power of a formal approach to information management. Here we review the informatics challenges in synthetic biology along three dimensions: in silico, in vitro and in vivo. First, we describe state of the art of the in silico support of synthetic biology, from the specific data exchange formats, to the most popular software platforms and algorithms. Next, we cast in vitro synthetic biology in terms of information flow, and discuss genetic fidelity in DNA manipulation, development strategies of biological parts and the regulation of biomolecular networks. Finally, we explore how the engineering chassis can manipulate biological circuitries in vivo to give rise to future artificial organisms. PMID:19906839

  15. How to use Hydra as a model system to teach biology in the classroom.

    PubMed

    Bossert, Patricia; Galliot, Brigitte

    2012-01-01

    As scientists it is our duty to fight against obscurantism and loss of rational thinking if we want politicians and citizens to freely make the most intelligent choices for the future generations. With that aim, the scientific education and training of young students is an obvious and urgent necessity. We claim here that Hydra provides a highly versatile but cheap model organism to study biology at any age. Teachers of biology have the unenviable task of motivating young people, who with many other motivations that are quite valid, nevertheless must be guided along a path congruent with a 'syllabus' or a 'curriculum'. The biology of Hydra spans the history of biology as an experimental science from Trembley's first manipulations designed to determine if the green polyp he found was plant or animal to the dissection of the molecular cascades underpinning, regeneration, wound healing, stemness, aging and cancer. It is described here in terms designed to elicit its wider use in classrooms. Simple lessons are outlined in sufficient detail for beginners to enter the world of 'Hydra biology'. Protocols start with the simplest observations to experiments that have been pretested with students in the USA and in Europe. The lessons are practical and can be used to bring 'life', but also rational thinking into the study of life for the teachers of students from elementary school through early university.

  16. Scientific experiments in the flight of the 1977 biological satellite (draft plan)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The physiological, biological, radiobiological and radiophysical experiments planned for the 1977 biological satellite are described. The biological experiments will involve rats, higher and lower plants, insects and other biological specimens carried on the biosatellite. The responses of these organisms to weightlessness, artificial gravity, cosmic radiation particles and general flight factors will be studied. The radiophysical experiments will investigate certain properties of cosmic radiation as well as the possibility of creating electrostatic and dielectric radiation shields under actual space-flight conditions.

  17. The search for life's origins: Progress and future directions in planetary biology and chemical evolution

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The current state is reviewed of the study of chemical evolution and planetary biology and the probable future is discussed of the field, at least for the near term. To this end, the report lists the goals and objectives of future research and makes detailed, comprehensive recommendations for accomplishing them, emphasizing those issues that were inadequately discussed in earlier Space Studies Board reports.

  18. Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol.

    PubMed

    Xiu, Zhi-Long; Zeng, An-Ping

    2008-04-01

    1,3-Propanediol and 2,3-butanediol are two promising chemicals which have a wide range of applications and can be biologically produced. The separation of these diols from fermentation broth makes more than 50% of the total costs in their microbial production. This review summarizes the present state of methods studied for the recovery and purification of biologically produced diols, with particular emphasis on 1,3-propoanediol. Previous studies on the separation of 1,3-propanediol primarily include evaporation, distillation, membrane filtration, pervaporation, ion exchange chromatography, liquid-liquid extraction, and reactive extraction. Main methods for the recovery of 2,3-butanediol include steam stripping, pervaporation, and solvent extraction. No single method has proved to be simple and efficient, and improvements are especially needed with regard to yield, purity, and energy consumption. Perspectives for an improved downstream processing of biologically produced diols, especially 1,3-propanediol are discussed based on our own experience and recent work. It is argued that separation technologies such as aqueous two-phase extraction with short chain alcohols, pervaporation, reverse osmosis, and in situ extractive or pervaporative fermentations deserve more attention in the future.

  19. Partial Gravity Biological Tether Experiment on the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Wallace, S.; Graham, L.

    2018-02-01

    A tether-based partial gravity bacterial biological experiment represents a viable biological experiment to investigate the fundamental internal cellular processes between altered levels of gravity and cellular adaption.

  20. Learning Biology with Plant Pathology.

    ERIC Educational Resources Information Center

    Carroll, Juliet E.

    This monograph contains 10 plant pathology experiments that were written to correspond to portions of a biology curriculum. Each experiment is suitable to a biology topic and designed to encourage exploration of those biological concepts being taught. Experiments include: (1) The Symptoms and Signs of Disease; (2) Koch's Postulates; (3)…

  1. NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies.

    PubMed

    Beheshti, Afshin; Miller, Jack; Kidane, Yared; Berrios, Daniel; Gebre, Samrawit G; Costes, Sylvain V

    2018-06-01

    Accurate assessment of risks of long-term space missions is critical for human space exploration. It is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from galactic cosmic rays (GCR) is a major health risk factor for astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently, there are gaps in our knowledge of the health risks associated with chronic low-dose, low-dose-rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The NASA GeneLab project ( https://genelab.nasa.gov/ ) aims to provide a detailed library of omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information on radiation exposure for ground-based studies, GeneLab is adding detailed, curated dosimetry information for spaceflight experiments. GeneLab is the first comprehensive omics database for space-related research from which an investigator can generate hypotheses to direct future experiments, utilizing both ground and space biological radiation data. The GLDS is continually expanding as omics-related data are generated by the space life sciences community. Here we provide a brief summary of the space radiation-related data available at GeneLab.

  2. The Neurolab mission and biomedical engineering: a partnership for the future.

    PubMed

    Liskowsky, D R; Frey, M A; Sulzman, F M; White, R J; Likowsky, D R

    1996-01-01

    Over the last five years, with the advent of flights of U.S. Shuttle/Spacelab missions dedicated entirely to life sciences research, the opportunities for conducting serious studies that use a fully outfitted space laboratory to better understand basic biological processes have increased. The last of this series of Shuttle/Spacelab missions, currently scheduled for 1998, is dedicated entirely to neuroscience and behavioral research. The mission, named Neurolab, includes a broad range of experiments that build on previous research efforts, as well as studies related to less mature areas of space neuroscience. The Neurolab mission provides the global scientific community with the opportunity to use the space environment for investigations that exploit microgravity to increase our understanding of basic processes in neuroscience. The results from this premier mission should lead to a significant advancement in the field as a whole and to the opening of new lines of investigation for future research. Experiments under development for this mission will utilize human subjects as well as a variety of other species. The capacity to carry out detailed experiments on both human and animal subjects in space allows a diverse complement of studies that investigate functional changes and their underlying molecular, cellular, and physiological mechanisms. In order to conduct these experiments, a wide array of biomedical instrumentation will be used, including some instruments and devices being developed especially for the mission.

  3. The Neurolab mission and biomedical engineering: a partnership for the future

    NASA Technical Reports Server (NTRS)

    Liskowsky, D. R.; Frey, M. A.; Sulzman, F. M.; White, R. J.; Likowsky, D. R.

    1996-01-01

    Over the last five years, with the advent of flights of U.S. Shuttle/Spacelab missions dedicated entirely to life sciences research, the opportunities for conducting serious studies that use a fully outfitted space laboratory to better understand basic biological processes have increased. The last of this series of Shuttle/Spacelab missions, currently scheduled for 1998, is dedicated entirely to neuroscience and behavioral research. The mission, named Neurolab, includes a broad range of experiments that build on previous research efforts, as well as studies related to less mature areas of space neuroscience. The Neurolab mission provides the global scientific community with the opportunity to use the space environment for investigations that exploit microgravity to increase our understanding of basic processes in neuroscience. The results from this premier mission should lead to a significant advancement in the field as a whole and to the opening of new lines of investigation for future research. Experiments under development for this mission will utilize human subjects as well as a variety of other species. The capacity to carry out detailed experiments on both human and animal subjects in space allows a diverse complement of studies that investigate functional changes and their underlying molecular, cellular, and physiological mechanisms. In order to conduct these experiments, a wide array of biomedical instrumentation will be used, including some instruments and devices being developed especially for the mission.

  4. Pharmacogenomic Biomarkers: an FDA Perspective on Utilization in Biological Product Labeling.

    PubMed

    Schuck, Robert N; Grillo, Joseph A

    2016-05-01

    Precision medicine promises to improve both the efficacy and safety of therapeutic products by better informing why some patients respond well to a drug, and some experience adverse reactions, while others do not. Pharmacogenomics is a key component of precision medicine and can be utilized to select optimal doses for patients, more precisely identify individuals who will respond to a treatment and avoid serious drug-related toxicities. Since pharmacogenomic biomarker information can help inform drug dosing, efficacy, and safety, pharmacogenomic data are critically reviewed by FDA staff to ensure effective use of pharmacogenomic strategies in drug development and appropriate incorporation into product labels. Pharmacogenomic information may be provided in drug or biological product labeling to inform health care providers about the impact of genotype on response to a drug through description of relevant genomic markers, functional effects of genomic variants, dosing recommendations based on genotype, and other applicable genomic information. The format and content of labeling for biologic drugs will generally follow that of small molecule drugs; however, there are notable differences in pharmacogenomic information that might be considered useful for biologic drugs in comparison to small molecule drugs. Furthermore, the rapid entry of biologic drugs for treatment of rare genetic diseases and molecularly defined subsets of common diseases will likely lead to increased use of pharmacogenomic information in biologic drug labels in the near future. In this review, we outline the general principles of therapeutic product labeling and discuss the utilization of pharmacogenomic information in biologic drug labels.

  5. Light Microscopy Module: International Space Station Premier Automated Microscope

    NASA Technical Reports Server (NTRS)

    Sicker, Ronald J.; Foster, William M.; Motil, Brian J.; Meyer, William V.; Chiaramonte, Francis P.; Abbott-Hearn, Amber; Atherton, Arthur; Beltram, Alexander; Bodzioney, Christopher; Brinkman, John; hide

    2016-01-01

    The Light Microscopy Module (LMM) was launched to the International Space Station (ISS) in 2009 and began hardware operations in 2010. It continues to support Physical and Biological scientific research on ISS. During 2016, if all goes as planned, three experiments will be completed: [1] Advanced Colloids Experiments with Heated base-2 (ACE-H2) and [2] Advanced Colloids Experiments with Temperature control (ACE-T1). Preliminary results, along with an overview of present and future LMM capabilities will be presented; this includes details on the planned data imaging processing and storage system, along with the confocal upgrade to the core microscope. [1] a consortium of universities from the State of Kentucky working through the Experimental Program to Stimulate Competitive Research (EPSCoR): Stuart Williams, Gerold Willing, Hemali Rathnayake, et al. and [2] from Chungnam National University, Daejeon, S. Korea: Chang-Soo Lee, et al.

  6. Intelligent software for laboratory automation.

    PubMed

    Whelan, Ken E; King, Ross D

    2004-09-01

    The automation of laboratory techniques has greatly increased the number of experiments that can be carried out in the chemical and biological sciences. Until recently, this automation has focused primarily on improving hardware. Here we argue that future advances will concentrate on intelligent software to integrate physical experimentation and results analysis with hypothesis formulation and experiment planning. To illustrate our thesis, we describe the 'Robot Scientist' - the first physically implemented example of such a closed loop system. In the Robot Scientist, experimentation is performed by a laboratory robot, hypotheses concerning the results are generated by machine learning and experiments are allocated and selected by a combination of techniques derived from artificial intelligence research. The performance of the Robot Scientist has been evaluated by a rediscovery task based on yeast functional genomics. The Robot Scientist is proof that the integration of programmable laboratory hardware and intelligent software can be used to develop increasingly automated laboratories.

  7. Mechanisms of Dynamic Nuclear Polarization in Insulating Solids

    PubMed Central

    Can, T.V.; Ni, Q.Z.; Griffin, R.G.

    2015-01-01

    Dynamic nuclear polarization (DNP) is a technique used to enhance signal intensities in NMR experiments by transferring the high polarization of electrons to their surrounding nuclei. The past decade has witnessed a renaissance in the development of DNP, especially at high magnetic fields, and its application in several areas including biophysics, chemistry, structural biology and materials science. Recent technical and theoretical advances have expanded our understanding of established experiments: for example, the cross effect DNP in samples spinning at the magic angle. Furthermore, new experiments suggest that our understanding of the Overhauser effect and its applicability to insulating solids needs to be re-examined. In this article, we summarize important results of the past few years and provide quantum mechanical explanations underlying these results. We also discuss future directions of DNP and current limitations, including the problem of resolution in protein spectra recorded at 80–100 K. PMID:25797002

  8. The pain experience of Hispanic Americans: A critical literature review and conceptual model

    PubMed Central

    Hollingshead, Nicole A.; Ashburn-Nardo, Leslie; Stewart, Jesse C.; Hirsh, Adam T.

    2015-01-01

    Although Hispanics are a burgeoning ethnic group in the United States, little is known about their pain-related experience. In order to address this gap, we critically reviewed the existing literature on the pain experience and management among Hispanic Americans (HAs). We focused our review to the literature on non-malignant pain, pain behaviors, and pain treatment seeking among HAs. Pain management experiences were examined from HA patients’ and healthcare providers’ perspectives. Our literature search included variations of the term “Hispanic” with “AND pain” in PubMed, Embase, Web of Science, ScienceDirect, and PsycINFO databases. A total of 117 studies met our inclusion criteria. We organized the results into a conceptual model with separate categories for biological/psychological and sociocultural/systems-level influences on HAs’ pain experience, response to pain, and seeking and receiving pain care. We also included information on healthcare providers’ experience of treating HA patients with pain. For each category, we identified future areas of research. We conclude with a discussion of limitations and clinical implications. PMID:26831836

  9. Exploring local adaptation and the ocean acidification seascape - studies in the California Current Large Marine Ecosystem

    NASA Astrophysics Data System (ADS)

    Hofmann, G. E.; Evans, T. G.; Kelly, M. W.; Padilla-Gamiño, J. L.; Blanchette, C. A.; Washburn, L.; Chan, F.; McManus, M. A.; Menge, B. A.; Gaylord, B.; Hill, T. M.; Sanford, E.; LaVigne, M.; Rose, J. M.; Kapsenberg, L.; Dutton, J. M.

    2013-07-01

    The California Current Large Marine Ecosystem (CCLME), a temperate marine region dominated by episodic upwelling, is predicted to experience rapid environmental change in the future due to ocean acidification. Aragonite saturation state within the California Current System is predicted to decrease in the future, with near-permanent undersaturation conditions expected by the year 2050. Thus, the CCLME is a critical region to study due to the rapid rate of environmental change that resident organisms will experience and because of the economic and societal value of this coastal region. Recent efforts by a research consortium - the Ocean Margin Ecosystems Group for Acidification Studies (OMEGAS) - has begun to characterize a portion of the CCLME; both describing the mosaic of pH in coastal waters and examining the responses of key calcification-dependent benthic marine organisms to natural variation in pH and to changes in carbonate chemistry that are expected in the coming decades. In this review, we present the OMEGAS strategy of co-locating sensors and oceanographic observations with biological studies on benthic marine invertebrates, specifically measurements of functional traits such as calcification-related processes and genetic variation in populations that are locally adapted to conditions in a particular region of the coast. Highlighted in this contribution are (1) the OMEGAS sensor network that spans the west coast of the US from central Oregon to southern California, (2) initial findings of the carbonate chemistry amongst the OMEGAS study sites, (3) an overview of the biological data that describes the acclimatization and the adaptation capacity of key benthic marine invertebrates within the CCLME.

  10. Geographical CO2 sensitivity of phytoplankton correlates with ocean buffer capacity.

    PubMed

    Richier, Sophie; Achterberg, Eric P; Humphreys, Matthew P; Poulton, Alex J; Suggett, David J; Tyrrell, Toby; Moore, C Mark

    2018-05-25

    Accumulation of anthropogenic CO 2 is significantly altering ocean chemistry. A range of biological impacts resulting from this oceanic CO 2 accumulation are emerging, however the mechanisms responsible for observed differential susceptibility between organisms and across environmental settings remain obscure. A primary consequence of increased oceanic CO 2 uptake is a decrease in the carbonate system buffer capacity, which characterises the system's chemical resilience to changes in CO 2 , generating the potential for enhanced variability in pCO 2 and the concentration of carbonate [CO 3 2- ], bicarbonate [HCO 3 - ] and protons [H + ] in the future ocean. We conducted a meta-analysis of 17 shipboard manipulation experiments performed across three distinct geographical regions that encompassed a wide range of environmental conditions from European temperate seas to Arctic and Southern oceans. These data demonstrated a correlation between the magnitude of natural phytoplankton community biological responses to short-term CO 2 changes and variability in the local buffer capacity across ocean basin scales. Specifically, short-term suppression of small phytoplankton (<10 μm) net growth rates were consistently observed under enhanced pCO 2 within experiments performed in regions with higher ambient buffer capacity. The results further highlight the relevance of phytoplankton cell size for the impacts of enhanced pCO 2 in both the modern and future ocean. Specifically, cell-size related acclimation and adaptation to regional environmental variability, as characterised by buffer capacity, likely influences interactions between primary producers and carbonate chemistry over a range of spatio-temporal scales. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. The Soldier-Cyborg Transformation: A Framework for Analysis of Social and Ethical Issues of Future Warfare

    DTIC Science & Technology

    1998-05-26

    attitude about the use of chemical and biologic weapons , one must question the deterrent value of WMD. With perhaps the 19 exception of nuclear...ENHANCING, TRANSFORMING AND TRANSCENDING 1 TRENDS AND PREDICTIONS ABOUT FUTURE WARFARE 3 CHANGING DEMOGRAPHICS 8 THE BIOLOGIC SHIFT 10 STRATEGIC...without widespread loss of life. Thus, low lethality weapons and distant applications of precisely- applied force are mandatory to make future

  12. The contribution of physics to Nuclear Medicine: physicians' perspective on future directions.

    PubMed

    Mankoff, David A; Pryma, Daniel A

    2014-12-01

    Advances in Nuclear Medicine physics enabled the specialty of Nuclear Medicine and directed research in other aspects of radiotracer imaging, ultimately leading to Nuclear Medicine's emergence as an important component of current medical practice. Nuclear Medicine's unique ability to characterize in vivo biology without perturbing it will assure its ongoing role in a practice of medicine increasingly driven by molecular biology. However, in the future, it is likely that advances in molecular biology and radiopharmaceutical chemistry will increasingly direct future developments in Nuclear Medicine physics, rather than relying on physics as the primary driver of advances in Nuclear Medicine. Working hand-in-hand with clinicians, chemists, and biologists, Nuclear Medicine physicists can greatly enhance the specialty by creating more sensitive and robust imaging devices, by enabling more facile and sophisticated image analysis to yield quantitative measures of regional in vivo biology, and by combining the strengths of radiotracer imaging with other imaging modalities in hybrid devices, with the overall goal to enhance Nuclear Medicine's ability to characterize regional in vivo biology.

  13. Authentic Research Experience and "Big Data" Analysis in the Classroom: Maize Response to Abiotic Stress.

    PubMed

    Makarevitch, Irina; Frechette, Cameo; Wiatros, Natalia

    2015-01-01

    Integration of inquiry-based approaches into curriculum is transforming the way science is taught and studied in undergraduate classrooms. Incorporating quantitative reasoning and mathematical skills into authentic biology undergraduate research projects has been shown to benefit students in developing various skills necessary for future scientists and to attract students to science, technology, engineering, and mathematics disciplines. While large-scale data analysis became an essential part of modern biological research, students have few opportunities to engage in analysis of large biological data sets. RNA-seq analysis, a tool that allows precise measurement of the level of gene expression for all genes in a genome, revolutionized molecular biology and provides ample opportunities for engaging students in authentic research. We developed, implemented, and assessed a series of authentic research laboratory exercises incorporating a large data RNA-seq analysis into an introductory undergraduate classroom. Our laboratory series is focused on analyzing gene expression changes in response to abiotic stress in maize seedlings; however, it could be easily adapted to the analysis of any other biological system with available RNA-seq data. Objective and subjective assessment of student learning demonstrated gains in understanding important biological concepts and in skills related to the process of science. © 2015 I. Makarevitch et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. Biological Dual-Use Research and Synthetic Biology of Yeast.

    PubMed

    Cirigliano, Angela; Cenciarelli, Orlando; Malizia, Andrea; Bellecci, Carlo; Gaudio, Pasquale; Lioj, Michele; Rinaldi, Teresa

    2017-04-01

    In recent years, the publication of the studies on the transmissibility in mammals of the H5N1 influenza virus and synthetic genomes has triggered heated and concerned debate within the community of scientists on biological dual-use research; these papers have raised the awareness that, in some cases, fundamental research could be directed to harmful experiments, with the purpose of developing a weapon that could be used by a bioterrorist. Here is presented an overview regarding the dual-use concept and its related international agreements which underlines the work of the Australia Group (AG) Export Control Regime. It is hoped that the principles and activities of the AG, that focuses on export control of chemical and biological dual-use materials, will spread and become well known to academic researchers in different countries, as they exchange biological materials (i.e. plasmids, strains, antibodies, nucleic acids) and scientific papers. To this extent, and with the aim of drawing the attention of the scientific community that works with yeast to the so called Dual-Use Research of Concern, this article reports case studies on biological dual-use research and discusses a synthetic biology applied to the yeast Saccharomyces cerevisiae, namely the construction of the first eukaryotic synthetic chromosome of yeast and the use of yeast cells as a factory to produce opiates. Since this organism is considered harmless and is not included in any list of biological agents, yeast researchers should take simple actions in the future to avoid the sharing of strains and advanced technology with suspicious individuals.

  15. Unusual Sleep Experiences, Dissociation, and Schizotypy: Evidence for a Common Domain

    PubMed Central

    Koffel, Erin; Watson, David

    2009-01-01

    This paper reviews studies that have examined associations between unusual sleep experiences (including nightmares, vivid dreaming, narcolepsy symptoms, and complex nighttime behaviors) and dissociation and schizotypy. Using correlational studies and structural analyses, evidence is provided that unusual sleep experiences, dissociation, and schizotypy belong to a common domain. It is demonstrated that unusual sleep experiences show specificity to dissociation and schizotypy compared to other daytime symptoms (e.g., anxiety, depression, substance use) and other sleep disturbances (e.g., insomnia, lassitude/fatigue). The paper also outlines the methodological limitations of the existing evidence and makes suggestions for future research. Finally, three models for the overlap of daytime and nighttime symptoms are reviewed, including biological abnormalities, trauma, and personality traits. Although further research is needed, it is suggested that daytime and nighttime symptoms result from problems with sleep-wake state boundaries, which may be precipitated by stress or trauma. In addition, association between daytime and nighttime symptoms can be attributed to the higher order personality trait of Oddity. PMID:19581031

  16. A replicated climate change field experiment reveals rapid evolutionary response in an ecologically important soil invertebrate.

    PubMed

    Bataillon, Thomas; Galtier, Nicolas; Bernard, Aurelien; Cryer, Nicolai; Faivre, Nicolas; Santoni, Sylvain; Severac, Dany; Mikkelsen, Teis N; Larsen, Klaus S; Beier, Claus; Sørensen, Jesper G; Holmstrup, Martin; Ehlers, Bodil K

    2016-07-01

    Whether species can respond evolutionarily to current climate change is crucial for the persistence of many species. Yet, very few studies have examined genetic responses to climate change in manipulated experiments carried out in natural field conditions. We examined the evolutionary response to climate change in a common annelid worm using a controlled replicated experiment where climatic conditions were manipulated in a natural setting. Analyzing the transcribed genome of 15 local populations, we found that about 12% of the genetic polymorphisms exhibit differences in allele frequencies associated to changes in soil temperature and soil moisture. This shows an evolutionary response to realistic climate change happening over short-time scale, and calls for incorporating evolution into models predicting future response of species to climate change. It also shows that designed climate change experiments coupled with genome sequencing offer great potential to test for the occurrence (or lack) of an evolutionary response. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  17. The experience of art: insights from neuroimaging.

    PubMed

    Nadal, Marcos

    2013-01-01

    The experience of art is a complex one. It emerges from the interaction of multiple cognitive and affective processes. Neuropsychological and neuroimaging studies are revealing the broadly distributed network of brain regions upon which it relies. This network can be divided into three functional components: (i) prefrontal, parietal, and temporal cortical regions support evaluative judgment, attentional processing, and memory retrieval; (ii) the reward circuit, including cortical, subcortical regions, and some of its regulators, is involved in the generation of pleasurable feelings and emotions, and the valuation and anticipation of reward; and (iii) attentional modulation of activity in low-, mid-, and high-level cortical sensory regions enhances the perceptual processing of certain features, relations, locations, or objects. Understanding how these regions act in concert to produce unique and moving art experiences and determining the impact of personal and cultural meaning and context on this network the biological foundation of the experience of art--remain future challenges. © 2013 Elsevier B.V. All rights reserved.

  18. Restorative retinal laser therapy: Present state and future directions.

    PubMed

    Chhablani, Jay; Roh, Young Jung; Jobling, Andrew I; Fletcher, Erica L; Lek, Jia Jia; Bansal, Pooja; Guymer, Robyn; Luttrull, Jeffrey K

    Because of complications and side effects, conventional laser therapy has taken a back seat to drugs in the treatment of macular diseases. Despite this, research on new laser modalities remains active. In particular, various approaches are being pursued to preserve and improve retinal structure and function. These include micropulsing, various exposure titration algorithms, and real-time temperature feedback control of short-pulse continuous wave lasers, and ultra-short-pulse nanosecond lasers. Some of these approaches are at the preclinical stage of development, whereas others are available for clinical use. Cell biology is providing important insights into the mechanisms of action of retinal laser treatment. We outline the technological bases of current laser platforms, their basic science, therapeutic concepts, clinical experience, and future directions for retinal laser treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Some comments on interpretations of Viking biological experiments.

    PubMed

    Aksyonov, S I

    1979-07-01

    Data from Viking experiments are analyzed from a biological viewpoint. The lack of organic matter in Martian soil could be due to the specificity of regions with optimal landing conditions. All data of labeled release experiments may be explained by assuming the existence of psychrophilic organisms, cultivated at temperatures above optimal ones, and other factors of a biological origin. The biological interpretation does not contradict the results of other life search experiments.

  20. Biological and Mechanical Effects of Micro-Nanostructured Titanium Surface on an Osteoblastic Cell Line In vitro and Osteointegration In vivo.

    PubMed

    Hao, Jingzu; Li, Ying; Li, Baoe; Wang, Xiaolin; Li, Haipeng; Liu, Shimin; Liang, Chunyong; Wang, Hongshui

    2017-09-01

    Hybrid micro-nanostructure implant surface was produced on titanium (Ti) surface by acid etching and anodic oxidation to improve the biological and mechanical properties. The biological properties of the micro-nanostructure were investigated by simulated body fluid (SBF) soaking test and MC3T3-E1 cell co-culture experiment. The cell proliferation, spreading, and bone sialoprotein (BSP) gene expression were examined by MTT, SEM, and reverse transcription-polymerase chain reaction (RT-PCR), respectively. In addition, the mechanical properties were evaluated by instrumented nanoindentation test and friction-wear test. Furthermore, the effect of the micro-nanostructure surface on implant osteointegration was examined by in vivo experiment. The results showed that the formation of bone-like apatite was accelerated on the micro-nanostructured Ti surface after immersion in simulated body fluid, and the proliferation, spreading, and BSP gene expression of the MC3T3-E1 cells were also upregulated on the modified surface. The micro-nanostructured Ti surface displayed decreased friction coefficient, stiffness value, and Young's modulus which were much closer to those of the cortical bone, compared to the polished Ti surface. This suggested much better mechanical match to the surrounding bone tissue of the micro-nanostructured Ti surface. Furthermore, the in vivo animal experiment showed that after implantation in the rat femora, the micro-nanostructure surface displayed higher bonding strength between bone tissues and implant; hematoxylin and eosin (H&E) staining suggested that much compact osteoid tissue was observed at the interface of Micro-nano-Ti-bone than polished Ti-bone interface after implantation. Based on these results mentioned above, it was concluded that the improved biological and mechanical properties of the micro-nanostructure endowed Ti surface with good biocompatibility and better osteointegration, implying the enlarged application of the micro-nanostructure surface Ti implants in future.

  1. Evaluation of Emerging Energy-Efficient Heterogeneous Computing Platforms for Biomolecular and Cellular Simulation Workloads

    PubMed Central

    Stone, John E.; Hallock, Michael J.; Phillips, James C.; Peterson, Joseph R.; Luthey-Schulten, Zaida; Schulten, Klaus

    2016-01-01

    Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers. PMID:27516922

  2. Systems biology for molecular life sciences and its impact in biomedicine.

    PubMed

    Medina, Miguel Ángel

    2013-03-01

    Modern systems biology is already contributing to a radical transformation of molecular life sciences and biomedicine, and it is expected to have a real impact in the clinical setting in the next years. In this review, the emergence of systems biology is contextualized with a historic overview, and its present state is depicted. The present and expected future contribution of systems biology to the development of molecular medicine is underscored. Concerning the present situation, this review includes a reflection on the "inflation" of biological data and the urgent need for tools and procedures to make hidden information emerge. Descriptions of the impact of networks and models and the available resources and tools for applying them in systems biology approaches to molecular medicine are provided as well. The actual current impact of systems biology in molecular medicine is illustrated, reviewing two cases, namely, those of systems pharmacology and cancer systems biology. Finally, some of the expected contributions of systems biology to the immediate future of molecular medicine are commented.

  3. Retrieval of past and future positive and negative autobiographical experiences.

    PubMed

    García-Bajos, Elvira; Migueles, Malen

    2017-09-01

    We studied retrieval-induced forgetting for past or future autobiographical experiences. In the study phase, participants were given cues to remember past autobiographical experiences or to think about experiences that may occur in the future. In both conditions, half of the experiences were positive and half negative. In the retrieval-practice phase, for past and future experiences, participants retrieved either half of the positive or negative experiences using cued recall, or capitals of the world (control groups). Retrieval practice produced recall facilitation and enhanced memory for the practised positive and negative past and future experiences. While retrieval practice on positive experiences did not impair the recall of other positive experiences, we found inhibition for negative past and future experiences when participants practised negative experiences. Furthermore, retrieval practice on positive future experiences inhibited negative future experiences. These positivity biases for autobiographical memory may have practical implications for treatment of emotional disorders.

  4. Model-based redesign of global transcription regulation

    PubMed Central

    Carrera, Javier; Rodrigo, Guillermo; Jaramillo, Alfonso

    2009-01-01

    Synthetic biology aims to the design or redesign of biological systems. In particular, one possible goal could be the rewiring of the transcription regulation network by exchanging the endogenous promoters. To achieve this objective, we have adapted current methods to the inference of a model based on ordinary differential equations that is able to predict the network response after a major change in its topology. Our procedure utilizes microarray data for training. We have experimentally validated our inferred global regulatory model in Escherichia coli by predicting transcriptomic profiles under new perturbations. We have also tested our methodology in silico by providing accurate predictions of the underlying networks from expression data generated with artificial genomes. In addition, we have shown the predictive power of our methodology by obtaining the gene profile in experimental redesigns of the E. coli genome, where rewiring the transcriptional network by means of knockouts of master regulators or by upregulating transcription factors controlled by different promoters. Our approach is compatible with most network inference methods, allowing to explore computationally future genome-wide redesign experiments in synthetic biology. PMID:19188257

  5. Computational challenges of structure-based approaches applied to HIV.

    PubMed

    Forli, Stefano; Olson, Arthur J

    2015-01-01

    Here, we review some of the opportunities and challenges that we face in computational modeling of HIV therapeutic targets and structural biology, both in terms of methodology development and structure-based drug design (SBDD). Computational methods have provided fundamental support to HIV research since the initial structural studies, helping to unravel details of HIV biology. Computational models have proved to be a powerful tool to analyze and understand the impact of mutations and to overcome their structural and functional influence in drug resistance. With the availability of structural data, in silico experiments have been instrumental in exploiting and improving interactions between drugs and viral targets, such as HIV protease, reverse transcriptase, and integrase. Issues such as viral target dynamics and mutational variability, as well as the role of water and estimates of binding free energy in characterizing ligand interactions, are areas of active computational research. Ever-increasing computational resources and theoretical and algorithmic advances have played a significant role in progress to date, and we envision a continually expanding role for computational methods in our understanding of HIV biology and SBDD in the future.

  6. [The confrontation of sexuality in the professional practice of future physicians: the viewpoint of medical interns].

    PubMed

    Salinas Urbina, Addis Abeba; Jarillo Soto, Edgar Carlos

    2013-03-01

    The subject of sexuality in academic and service institutions is perceived through predominantly biological conceptual perspectives, blurring the subjective component that is imbued in social and cultural processes. The meanings that medical staff construct around sexuality have implications in their professional development and practice. This work presents results from a qualitative study into the meaning of sexuality among medical interns from the Universidad Autónoma Metropolitana-Xochimilco. In-depth interviews were conducted with students during their community service. This group was selected because they had finished their studies and were performing an independent and autonomous professional practice. The results, which were analyzed based on Grounded Theory, revealed three dichotomies: biology vs. social construction, individual vs. professional and theoretical learning vs. experiences in the community. The most relevant aspect revealed was the antagonism found between a medical intern's biology-centered academic knowledge and the challenge posed by their patients' reproductive and sexual health needs. The interns recognize that they lack the necessary skills to face issues of sexuality in their professional practice.

  7. Fluorescent Protein Approaches in Alpha Herpesvirus Research

    PubMed Central

    Hogue, Ian B.; Bosse, Jens B.; Engel, Esteban A.; Scherer, Julian; Hu, Jiun-Ruey; del Rio, Tony; Enquist, Lynn W.

    2015-01-01

    In the nearly two decades since the popularization of green fluorescent protein (GFP), fluorescent protein-based methodologies have revolutionized molecular and cell biology, allowing us to literally see biological processes as never before. Naturally, this revolution has extended to virology in general, and to the study of alpha herpesviruses in particular. In this review, we provide a compendium of reported fluorescent protein fusions to herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV) structural proteins, discuss the underappreciated challenges of fluorescent protein-based approaches in the context of a replicating virus, and describe general strategies and best practices for creating new fluorescent fusions. We compare fluorescent protein methods to alternative approaches, and review two instructive examples of the caveats associated with fluorescent protein fusions, including describing several improved fluorescent capsid fusions in PRV. Finally, we present our future perspectives on the types of powerful experiments these tools now offer. PMID:26610544

  8. Astronomy Meets Biology: EFOSC2 and the Chirality of Life

    NASA Astrophysics Data System (ADS)

    Sterzik, M.; Bagnulo, S.; Azua, A.; Salinas, F.; Alfaro, J.; Vicuna, R.

    2010-12-01

    Homochirality, i.e., the exclusive use of L-amino acids and D-sugar in biological material, induces circular polarisation in the diffuse reflectance spectra of biotic material. Polarimetry may therefore become an interesting remote sensing technique in the future search for extraterrestrial life. We have explored this technique and performed a laboratory experiment making an exotic use of an astronomical instrument. During a period when EFOSC2 was detached from the Nasmyth focus to host a visitor instrument at the NTT, we have observed various samples of biotic and abiotic material and measured their linear and circular polarisation spectra. Among the various targets, we have included samples of the hypolithic cyanobacteria species Chroococcidiopsis isolated from the Coastal Range of the Atacama Desert. To our knowledge, these are the first and highest precision measurements of circular polarisation using living material and obtained with an astronomical instrument.

  9. Childhood Adversity and Epigenetic Regulation of Glucocorticoid Signaling Genes: Associations in Children and Adults

    PubMed Central

    Tyrka, Audrey R.; Ridout, Kathryn K.; Parade, Stephanie H.

    2017-01-01

    Early childhood experiences have lasting effects on development, including the risk for psychiatric disorders. Research examining the biologic underpinnings of these associations has revealed the impact of childhood maltreatment on the physiologic stress response and activity of the hypothalamic pituitary adrenal (HPA) axis. A growing body of literature supports the hypothesis that environmental exposures mediate their biological effects via epigenetic mechanisms. Methylation, which is thought to be the most stable form of epigenetic change, is a likely mechanism by which early life exposures has lasting effects. In this review, we present recent evidence related to epigenetic regulation of genes involved in HPA axis regulation, namely the glucocorticoid receptor gene (NR3C1) and FK506 binding protein 51 (FKBP5), after childhood adversity and associations with risk for psychiatric disorders. Implications for the development of interventions and future research are discussed. PMID:27691985

  10. Research Techniques Made Simple: Bioinformatics for Genome-Scale Biology.

    PubMed

    Foulkes, Amy C; Watson, David S; Griffiths, Christopher E M; Warren, Richard B; Huber, Wolfgang; Barnes, Michael R

    2017-09-01

    High-throughput biology presents unique opportunities and challenges for dermatological research. Drawing on a small handful of exemplary studies, we review some of the major lessons of these new technologies. We caution against several common errors and introduce helpful statistical concepts that may be unfamiliar to researchers without experience in bioinformatics. We recommend specific software tools that can aid dermatologists at varying levels of computational literacy, including platforms with command line and graphical user interfaces. The future of dermatology lies in integrative research, in which clinicians, laboratory scientists, and data analysts come together to plan, execute, and publish their work in open forums that promote critical discussion and reproducibility. In this article, we offer guidelines that we hope will steer researchers toward best practices for this new and dynamic era of data intensive dermatology. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Estimating the Size of Onion Epidermal Cells from Diffraction Patterns

    NASA Astrophysics Data System (ADS)

    Groff, Jeffrey R.

    2012-10-01

    Bioscience and premedical profession students are a major demographic served by introductory physics courses at many colleges and universities. Exposing these students to biological applications of physical principles will help them to appreciate physics as a useful tool for their future professions. Here I describe an experiment suitable for introductory physics where principles of wave optics are applied to probe the size of onion epidermal cells. The epidermis tissue is composed of cells of relatively uniform size and shape (Fig. 1) so the tissue acts like a one-dimensional transmission diffraction grating. The diffraction patterns generated when a laser beam passes through the tissue (Fig. 2) are analyzed and an estimate of the average width of individual onion epidermal cells is calculated. The results are compared to direct measurements taken using a light microscope. The use of microscopes and plant-cell tissue slides creates opportunities for cross-discipline collaboration between physics and biology instructors.

  12. The face, the future, and dental practice: how research in craniofacial biology will influence patient care.

    PubMed

    Townsend, G C; Brook, A H

    2014-06-01

    It has been a privilege to assemble a group of Australian and international researchers to produce a special issue of the Australian Dental Journal that reflects the cutting edge of research in different aspects of craniofacial biology, and also considers how these advances will influence future education and practice within dentistry. The aim of this special issue is to provide a collection of concept papers and critical reviews on key topics that cover both fundamental and applied research in craniofacial biology and to consider the clinical implications. To do this, four questions have been addressed that lead to the four sections of this issue. These are: How have we come to the present exciting position in craniofacial biology with breakthroughs over the past 50 years? What are current fundamental research topics that are helping us to understand more about craniofacial and general development, possibly leading to future clinical developments? What are the current applied research topics that will influence future clinical practice? Looking forward, what new developments in craniofacial biology may come about that will change the face of dental education and practice? The refereed papers in this special issue are grouped into the four sections that seek to respond to these demanding questions. © 2014 Australian Dental Association.

  13. [Ecological memory and its potential applications in ecology: a review].

    PubMed

    Sun, Zhong-yu; Ren, Hai

    2011-03-01

    Ecological memory (EM) is defined as the capability of the past states or experiences of a community to influence the present or future ecological responses of the community. As a relatively new concept, EM has received considerable attention in the study of ecosystem structure and function, such as community succession, ecological restoration, biological invasion, and natural resource management. This review summarized the definition, components, and categories of EM, and discussed the possible mechanisms and affecting factors of EM. Also, the potential applications of EM were proposed, in order to further understand the mechanisms of community succession and to guide ecological restoration.

  14. Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research

    NASA Astrophysics Data System (ADS)

    Rogger, M.; Agnoletti, M.; Alaoui, A.; Bathurst, J. C.; Bodner, G.; Borga, M.; Chaplot, V.; Gallart, F.; Glatzel, G.; Hall, J.; Holden, J.; Holko, L.; Horn, R.; Kiss, A.; Kohnová, S.; Leitinger, G.; Lennartz, B.; Parajka, J.; Perdigão, R.; Peth, S.; Plavcová, L.; Quinton, J. N.; Robinson, M.; Salinas, J. L.; Santoro, A.; Szolgay, J.; Tron, S.; van den Akker, J. J. H.; Viglione, A.; Blöschl, G.

    2017-07-01

    Research gaps in understanding flood changes at the catchment scale caused by changes in forest management, agricultural practices, artificial drainage, and terracing are identified. Potential strategies in addressing these gaps are proposed, such as complex systems approaches to link processes across time scales, long-term experiments on physical-chemical-biological process interactions, and a focus on connectivity and patterns across spatial scales. It is suggested that these strategies will stimulate new research that coherently addresses the issues across hydrology, soil and agricultural sciences, forest engineering, forest ecology, and geomorphology.

  15. Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research

    PubMed Central

    Agnoletti, M.; Alaoui, A.; Bathurst, J. C.; Bodner, G.; Borga, M.; Chaplot, V.; Gallart, F.; Glatzel, G.; Hall, J.; Holden, J.; Holko, L.; Horn, R.; Kiss, A.; Kohnová, S.; Leitinger, G.; Lennartz, B.; Parajka, J.; Perdigão, R.; Peth, S.; Plavcová, L.; Quinton, J. N.; Robinson, M.; Salinas, J. L.; Santoro, A.; Szolgay, J.; Tron, S.; van den Akker, J. J. H.; Viglione, A.; Blöschl, G.

    2017-01-01

    Abstract Research gaps in understanding flood changes at the catchment scale caused by changes in forest management, agricultural practices, artificial drainage, and terracing are identified. Potential strategies in addressing these gaps are proposed, such as complex systems approaches to link processes across time scales, long‐term experiments on physical‐chemical‐biological process interactions, and a focus on connectivity and patterns across spatial scales. It is suggested that these strategies will stimulate new research that coherently addresses the issues across hydrology, soil and agricultural sciences, forest engineering, forest ecology, and geomorphology. PMID:28919651

  16. SOLID2: An Antibody Array-Based Life-Detector Instrument in a Mars Drilling Simulation Experiment (MARTE)

    NASA Astrophysics Data System (ADS)

    Parro, Víctor; Fernández-Calvo, Patricia; Rodríguez Manfredi, José A.; Moreno-Paz, Mercedes; Rivas, Luis A.; García-Villadangos, Miriam; Bonaccorsi, Rosalba; González-Pastor, José Eduardo; Prieto-Ballesteros, Olga; Schuerger, Andrew C.; Davidson, Mark; Gómez-Elvira, Javier; Stoker, Carol R.

    2008-10-01

    A field prototype of an antibody array-based life-detector instrument, Signs Of LIfe Detector (SOLID2), has been tested in a Mars drilling mission simulation called MARTE (Mars Astrobiology Research and Technology Experiment). As one of the analytical instruments on the MARTE robotic drilling rig, SOLID2 performed automatic sample processing and analysis of ground core samples (0.5 g) with protein microarrays that contained 157 different antibodies. Core samples from different depths (down to 5.5 m) were analyzed, and positive reactions were obtained in antibodies raised against the Gram-negative bacterium Leptospirillum ferrooxidans, a species of the genus Acidithiobacillus (both common microorganisms in the Río Tinto area), and extracts from biofilms and other natural samples from the Río Tinto area. These positive reactions were absent when the samples were previously subjected to a high-temperature treatment, which indicates the biological origin and structural dependency of the antibody-antigen reactions. We conclude that an antibody array-based life-detector instrument like SOLID2 can detect complex biological material, and it should be considered as a potential analytical instrument for future planetary missions that search for life.

  17. Unsupervised Biomedical Named Entity Recognition: Experiments with Clinical and Biological Texts

    PubMed Central

    Zhang, Shaodian; Elhadad, Nóemie

    2013-01-01

    Named entity recognition is a crucial component of biomedical natural language processing, enabling information extraction and ultimately reasoning over and knowledge discovery from text. Much progress has been made in the design of rule-based and supervised tools, but they are often genre and task dependent. As such, adapting them to different genres of text or identifying new types of entities requires major effort in re-annotation or rule development. In this paper, we propose an unsupervised approach to extracting named entities from biomedical text. We describe a stepwise solution to tackle the challenges of entity boundary detection and entity type classification without relying on any handcrafted rules, heuristics, or annotated data. A noun phrase chunker followed by a filter based on inverse document frequency extracts candidate entities from free text. Classification of candidate entities into categories of interest is carried out by leveraging principles from distributional semantics. Experiments show that our system, especially the entity classification step, yields competitive results on two popular biomedical datasets of clinical notes and biological literature, and outperforms a baseline dictionary match approach. Detailed error analysis provides a road map for future work. PMID:23954592

  18. SOLID2: an antibody array-based life-detector instrument in a Mars Drilling Simulation Experiment (MARTE).

    PubMed

    Parro, Víctor; Fernández-Calvo, Patricia; Rodríguez Manfredi, José A; Moreno-Paz, Mercedes; Rivas, Luis A; García-Villadangos, Miriam; Bonaccorsi, Rosalba; González-Pastor, José Eduardo; Prieto-Ballesteros, Olga; Schuerger, Andrew C; Davidson, Mark; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    A field prototype of an antibody array-based life-detector instrument, Signs Of LIfe Detector (SOLID2), has been tested in a Mars drilling mission simulation called MARTE (Mars Astrobiology Research and Technology Experiment). As one of the analytical instruments on the MARTE robotic drilling rig, SOLID2 performed automatic sample processing and analysis of ground core samples (0.5 g) with protein microarrays that contained 157 different antibodies. Core samples from different depths (down to 5.5 m) were analyzed, and positive reactions were obtained in antibodies raised against the Gram-negative bacterium Leptospirillum ferrooxidans, a species of the genus Acidithiobacillus (both common microorganisms in the Río Tinto area), and extracts from biofilms and other natural samples from the Río Tinto area. These positive reactions were absent when the samples were previously subjected to a high-temperature treatment, which indicates the biological origin and structural dependency of the antibody-antigen reactions. We conclude that an antibody array-based life-detector instrument like SOLID2 can detect complex biological material, and it should be considered as a potential analytical instrument for future planetary missions that search for life.

  19. International Space Station Science Research Accomplishments During the Assembly Years: An Analysis of Results from 2000-2008

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.; Robinson, Julie A.; Tate-Brown, Judy; Thumm, Tracy; Crespo-Richey, Jessica; Baumann, David; Rhatigan, Jennifer

    2009-01-01

    This report summarizes research accomplishments on the International Space Station (ISS) through the first 15 Expeditions. When research programs for early Expeditions were established, five administrative organizations were executing research on ISS: bioastronautics research, fundamental space biology, physical science, space product development, and space flight. The Vision for Space Exploration led to changes in NASA's administrative structures, so we have grouped experiments topically by scientific themes human research for exploration, physical and biological sciences, technology development, observing the Earth, and educating and inspiring the next generation even when these do not correspond to the administrative structure at the time at which they were completed. The research organizations at the time at which the experiments flew are preserved in the appendix of this document. These investigations on the ISS have laid the groundwork for research planning for Expeditions to come. Humans performing scientific investigations on ISS serve as a model for the goals of future Exploration missions. The success of a wide variety of investigations is an important hallmark of early research on ISS. Of the investigations summarized here, some are completed with results released, some are completed with preliminary results, and some remain ongoing.

  20. Clinacanthus nutans: A review of the medicinal uses, pharmacology and phytochemistry.

    PubMed

    Alam, Ariful; Ferdosh, Sahena; Ghafoor, Kashif; Hakim, Abdul; Juraimi, Abdul Shukor; Khatib, Alfi; Sarker, Zaidul I

    2016-04-01

    Clinacanthus nutans Lindau is known as snake grass belonging to the Acanthaceae family. This plant has diverse and potential medicinal uses in traditional herbal medicine for treating skin rashes, insects and snake bites, lesions caused by herpes simplex virus, diabetes, and gout in Malaysia, Indonesia, Thailand and China. Phytochemical investigations documented the varied contents of bioactive compounds from this plant namely flavonoids, glycosides, glycoglycerolipids, cerebrosides and monoacylmonogalatosylglycerol. The pharmacological experiment proved that various types of extracts and pure compounds from this species exhibited a broad range of biological properties such as anti-inflammatory, antiviral, antioxidant, and anti-diabetic activities. The findings of toxicity study showed that extracts from this plant did not show any toxicity thus it can be used as strong therapeutic agents for specific diseased conditions. However, further experiments on chemical components and their mode of action showing biological activities are required to elucidate the complete phytochemical profile and assess to confirm their suitability for future drugs. This review summarizes the medicinal uses, phytochemistry and pharmacology of this plant in order to explore its therapeutic potential and gaps necessitating for prospected research work. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  1. Improving Toxicity Assessment of Pesticide Mixtures: The Use of Polar Passive Sampling Devices Extracts in Microalgae Toxicity Tests

    PubMed Central

    Kim Tiam, Sandra; Fauvelle, Vincent; Morin, Soizic; Mazzella, Nicolas

    2016-01-01

    Complexity of contaminants exposure needs to be taking in account for an appropriate evaluation of risks related to mixtures of pesticides released in the ecosystems. Toxicity assessment of such mixtures can be made through a variety of toxicity tests reflecting different level of biological complexity. This paper reviews the recent developments of passive sampling techniques for polar compounds, especially Polar Organic Chemical Integrative Samplers (POCIS) and Chemcatcher® and the principal assessment techniques using microalgae in laboratory experiments. The progresses permitted by the coupled use of such passive samplers and ecotoxicology testing as well as their limitations are presented. Case studies combining passive sampling devices (PSD) extracts and toxicity assessment toward microorganisms at different biological scales from single organisms to communities level are presented. These case studies, respectively, aimed (i) at characterizing the “toxic potential” of waters using dose-response curves, and (ii) at performing microcosm experiments with increased environmental realism in the toxicant exposure in term of cocktail composition and concentration. Finally perspectives and limitations of such approaches for future applications in the area of environmental risk assessment are discussed. PMID:27667986

  2. Preference for point-light human biological motion in newborns: contribution of translational displacement.

    PubMed

    Bidet-Ildei, Christel; Kitromilides, Elenitsa; Orliaguet, Jean-Pierre; Pavlova, Marina; Gentaz, Edouard

    2014-01-01

    In human newborns, spontaneous visual preference for biological motion is reported to occur at birth, but the factors underpinning this preference are still in debate. Using a standard visual preferential looking paradigm, 4 experiments were carried out in 3-day-old human newborns to assess the influence of translational displacement on perception of human locomotion. Experiment 1 shows that human newborns prefer a point-light walker display representing human locomotion as if on a treadmill over random motion. However, no preference for biological movement is observed in Experiment 2 when both biological and random motion displays are presented with translational displacement. Experiments 3 and 4 show that newborns exhibit preference for translated biological motion (Experiment 3) and random motion (Experiment 4) displays over the same configurations moving without translation. These findings reveal that human newborns have a preference for the translational component of movement independently of the presence of biological kinematics. The outcome suggests that translation constitutes the first step in development of visual preference for biological motion. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  3. Father Involvement and Young, Rural African American Men's Engagement in Substance Misuse and Multiple Sexual Partnerships.

    PubMed

    Barton, Allen W; Kogan, Steven M; Cho, Junhan; Brown, Geoffrey L

    2015-12-01

    This study was designed to examine the associations of biological father and social father involvement during childhood with African American young men's development and engagement in risk behaviors. With a sample of 505 young men living in the rural South of the United States, a dual mediation model was tested in which retrospective reports of involvement from biological fathers and social fathers were linked to young men's substance misuse and multiple sexual partnerships through men's relational schemas and future expectations. Results from structural equation modeling indicated that levels of involvement from biological fathers and social fathers predicted young men's relational schemas; only biological fathers' involvement predicted future expectations. In turn, future expectations predicted levels of substance misuse, and negative relational schemas predicted multiple sexual partnerships. Biological fathers' involvement evinced significant indirect associations with young men's substance misuse and multiple sexual partnerships through both schemas and expectations; social fathers' involvement exhibited an indirect association with multiple sexual partnerships through relational schemas. Findings highlight the unique influences of biological fathers and social fathers on multiple domains of African American young men's psychosocial development that subsequently render young men more or less likely to engage in risk behaviors.

  4. Growing Spaceships?

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    2013-01-01

    NASA currently has a program called the Space Synthetic Biology Project. Synthetic Biology or SynBio is the design and construction of new biological functions and systems not found in nature. Four NASA field centers, along with experts from industry and academia, have been partnering on the Space Synthetic Biology Project and are working on new breakthroughs in this increasingly useful pursuit, which is part a science discipline and part engineering. Led by researchers at NASA s Ames Research Center, the team is studying how this powerful new tool can help NASA now and in the future. The project was created to harness biology in reliable, robust, engineered systems to support the agency s exploration and science missions, to improve life on Earth and to help shape NASA's future. The program also is intended to contribute foundational tools to the synthetic biology research community.

  5. Developing strategies for automated remote plant production systems: Environmental control and monitoring of the Arthur Clarke Mars Greenhouse in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Bamsey, M.; Berinstain, A.; Graham, T.; Neron, P.; Giroux, R.; Braham, S.; Ferl, R.; Paul, A.-L.; Dixon, M.

    2009-12-01

    The Arthur Clarke Mars Greenhouse is a unique research facility dedicated to the study of greenhouse engineering and autonomous functionality under extreme operational conditions, in preparation for extraterrestrial biologically-based life support systems. The Arthur Clarke Mars Greenhouse is located at the Haughton Mars Project Research Station on Devon Island in the Canadian High Arctic. The greenhouse has been operational since 2002. Over recent years the greenhouse has served as a controlled environment facility for conducting scientific and operationally relevant plant growth investigations in an extreme environment. Since 2005 the greenhouse has seen the deployment of a refined nutrient control system, an improved imaging system capable of remote assessment of basic plant health parameters, more robust communication and power systems as well as the implementation of a distributed data acquisition system. Though several other Arctic greenhouses exist, the Arthur Clarke Mars Greenhouse is distinct in that the focus is on autonomous operation as opposed to strictly plant production. Remote control and autonomous operational experience has applications both terrestrially in production greenhouses and extraterrestrially where future long duration Moon/Mars missions will utilize biological life support systems to close the air, food and water loops. Minimizing crew time is an important goal for any space-based system. The experience gained through the remote operation of the Arthur Clarke Mars Greenhouse is providing the experience necessary to optimize future plant production systems and minimize crew time requirements. Internal greenhouse environmental data shows that the fall growth season (July-September) provides an average photosynthetic photon flux of 161.09 μmol m -2 s -1 (August) and 76.76 μmol m -2 s -1 (September) with approximately a 24 h photoperiod. The spring growth season provides an average of 327.51 μmol m -2 s -1 (May) and 339.32 μmol m -2 s -1 (June) demonstrating that even at high latitudes adequate light is available for crop growth during 4-5 months of the year. The Canadian Space Agency Development Greenhouse [now operational] serves as a test-bed for evaluating new systems prior to deployment in the Arthur Clarke Mars Greenhouse. This greenhouse is also used as a venue for public outreach relating to biological life support research and its corresponding terrestrial spin-offs.

  6. Student Teachers' Conceptions of Teaching Biology

    ERIC Educational Resources Information Center

    Subramaniam, Karthigeyan

    2014-01-01

    The purpose of this qualitative study was to investigate prospective biology teachers' conceptions of teaching biology and identify how these conceptions revealed their strategies for helping their future students' learning of biology. The study utilized drawings, narratives and interviews to investigate the nature of the prospective biology…

  7. Estimation of Biological Effects of Tritium.

    PubMed

    Umata, Toshiyuki

    2017-01-01

    Nuclear fusion technology is expected to create new energy in the future. However, nuclear fusion requires a large amount of tritium as a fuel, leading to concern about the exposure of radiation workers to tritium beta radiation. Furthermore, countermeasures for tritium-polluted water produced in decommissioning of the reactor at Fukushima Daiichi Nuclear Power Station may potentially cause health problems in radiation workers. Although, internal exposure to tritium at a low dose/low dose rate can be assumed, biological effect of tritium exposure is not negligible, because tritiated water (HTO) intake to the body via the mouth/inhalation/skin would lead to homogeneous distribution throughout the whole body. Furthermore, organically-bound tritium (OBT) stays in the body as parts of the molecules that comprise living organisms resulting in long-term exposure, and the chemical form of tritium should be considered. To evaluate the biological effect of tritium, the effect should be compared with that of other radiation types. Many studies have examined the relative biological effectiveness (RBE) of tritium. Hence, we report the RBE, which was obtained with radiation carcinogenesis classified as a stochastic effect, and serves as a reference for cancer risk. We also introduce the outline of the tritium experiment and the principle of a recently developed animal experimental system using transgenic mouse to detect the biological influence of radiation exposure at a low dose/low dose rate.

  8. Crossing the Threshold: Bringing Biological Variation to the Foreground.

    PubMed

    Batzli, Janet M; Knight, Jennifer K; Hartley, Laurel M; Maskiewicz, April Cordero; Desy, Elizabeth A

    2016-01-01

    Threshold concepts have been referred to as "jewels in the curriculum": concepts that are key to competency in a discipline but not taught explicitly. In biology, researchers have proposed the idea of threshold concepts that include such topics as variation, randomness, uncertainty, and scale. In this essay, we explore how the notion of threshold concepts can be used alongside other frameworks meant to guide instructional and curricular decisions, and we examine the proposed threshold concept of variation and how it might influence students' understanding of core concepts in biology focused on genetics and evolution. Using dimensions of scientific inquiry, we outline a schema that may allow students to experience and apply the idea of variation in such a way that it transforms their future understanding and learning of genetics and evolution. We encourage others to consider the idea of threshold concepts alongside the Vision and Change core concepts to provide a lens for targeted instruction and as an integrative bridge between concepts and competencies. © 2016 J. M. Batzli et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Development and Evaluation of the Tigriopus Course-Based Undergraduate Research Experience: Impacts on Students’ Content Knowledge, Attitudes, and Motivation in a Majors Introductory Biology Course

    PubMed Central

    Olimpo, Jeffrey T.; Fisher, Ginger R.; DeChenne-Peters, Sue Ellen

    2016-01-01

    Within the past decade, course-based undergraduate research experiences (CUREs) have emerged as a viable mechanism to enhance novices’ development of scientific reasoning and process skills in the science, technology, engineering, and mathematics disciplines. Recent evidence within the bioeducation literature suggests that student engagement in such experiences not only increases their appreciation for and interest in scientific research but also enhances their ability to “think like a scientist.” Despite these critical outcomes, few studies have objectively explored CURE versus non-CURE students’ development of content knowledge, attitudes, and motivation in the discipline, particularly among nonvolunteer samples. To address these concerns, we adopted a mixed-methods approach to evaluate the aforementioned outcomes following implementation of a novel CURE in an introductory cell/molecular biology course. Results indicate that CURE participants exhibited more expert-like outcomes on these constructs relative to their non-CURE counterparts, including in those areas related to self-efficacy, self-determination, and problem-solving strategies. Furthermore, analysis of end-of-term survey data suggests that select features of the CURE, such as increased student autonomy and collaboration, mediate student learning and enjoyment. Collectively, this research provides novel insights into the benefits achieved as a result of CURE participation and can be used to guide future development and evaluation of authentic research opportunities. PMID:27909022

  10. The German ISS-Experiment Cellular Responses to Radiation in Space (CERASP): The Effects of Single and Combined Space Flight Conditions on Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Baumstark-Khan, C.; Hellweg, C. E.; Arenz, A.

    The combined action of ionizing radiation and microgravity will continue to influence future space missions with special risks for astronauts on the Moon surface or for long duration missions to Mars Previous space flight experiments have reported additive neither sensitization nor protection as well as synergistic increased radiation effect under microgravity interactions of radiation and microgravity in different cell systems Although a direct effect of microgravity on enzymatic mechanisms can be excluded on thermo dynamical reasons modifications of cellular repair can not be excluded as such processes are under the control of cellular signal transduction systems which are controlled by environmental parameters presumably also by gravity DNA repair studies in space on bacteria yeast cells and human fibroblasts which were irradiated before flight gave contradictory results from inhibition of repair by microgravity to enhancement whereas others did not detect any influence of microgravity on repair At the Radiation Biology Department of the German Aerospace Center DLR recombinant bacterial and mammalian cell systems were developed as reporters for cellular signal transduction modulation by genotoxic environmental conditions The space experiment CERASP Cellular Responses to Radiation in Space to be performed at the International Space Station ISS will make use of such reporter cell lines thereby supplying basic information on the cellular response to radiation applied in microgravity One of the biological endpoints will be survival

  11. Design of a comprehensive biochemistry and molecular biology experiment: phase variation caused by recombinational regulation of bacterial gene expression.

    PubMed

    Sheng, Xiumei; Xu, Shungao; Lu, Renyun; Isaac, Dadzie; Zhang, Xueyi; Zhang, Haifang; Wang, Huifang; Qiao, Zheng; Huang, Xinxiang

    2014-01-01

    Scientific experiments are indispensable parts of Biochemistry and Molecular Biology. In this study, a comprehensive Biochemistry and Molecular Biology experiment about Salmonella enterica serovar Typhi Flagellar phase variation has been designed. It consisted of three parts, namely, inducement of bacterial Flagellar phase variation, antibody agglutination test, and PCR analysis. Phase variation was observed by baterial motility assay and identified by antibody agglutination test and PCR analysis. This comprehensive experiment can be performed to help students improve their ability to use the knowledge acquired in Biochemistry and Molecular Biology. Copyright © 2014 by The International Union of Biochemistry and Molecular Biology.

  12. Cosmic-ray interaction data for designing biological experiments in space

    NASA Astrophysics Data System (ADS)

    Straume, T.; Slaba, T. C.; Bhattacharya, S.; Braby, L. A.

    2017-05-01

    There is growing interest in flying biological experiments beyond low-Earth orbit (LEO) to measure biological responses potentially relevant to those expected during a human mission to Mars. Such experiments could be payloads onboard precursor missions, including unmanned private-public partnerships, as well as small low-cost spacecraft (satellites) designed specifically for biosentinel-type missions. It is the purpose of this paper to provide physical cosmic-ray interaction data and related information useful to biologists who may be planning such experiments. It is not the objective here to actually design such experiments or provide radiobiological response functions, which would be specific for each experiment and biological endpoint. Nuclide-specific flux and dose rates were calculated using OLTARIS and these results were used to determine particle traversal rates and doses in hypothetical biological targets. Comparisons are provided between GCR in interplanetary space and inside the ISS. Calculated probabilistic estimates of dose from solar particle events are also presented. Although the focus here is on biological experiments, the information provided may be useful for designing other payloads as well if the space radiation environment is a factor to be considered.

  13. Annual Research Review: Resilient functioning in maltreated children: Past, present, and future perspectives

    PubMed Central

    Cicchetti, Dante

    2012-01-01

    Through a process of probabilistic epigenesis, child maltreatment progressively contributes to compromised adaptation on a variety of developmental domains central to successful adjustment. These developmental failures pose significant risk for the emergence of psychopathology across the life course. In addition to the psychological consequences of maltreatment, a growing body of research has documented the deleterious effects of abuse and neglect on biological processes. Nonetheless, not all maltreated children develop maladaptively. Indeed, some percentage of maltreated children develop in a resilient fashion despite the significant adversity and stress they experience. The literature on the determinants of resilience in maltreated children is selectively reviewed and criteria for the inclusion of the studies are delineated. The majority of the research on the contributors to resilient functioning has focused on a single level of analysis and on psychosocial processes. Multilevel investigations have begun to appear, resulting in several studies on the processes to resilient functioning that integrate biological/genetic and psychological domains. Much additional research on the determinants of resilient functioning must be completed before we possess adequate knowledge based on a multiple levels of analysis approach that is commensurate with the complexity inherent in this dynamic developmental process. Suggestions for future research on the development of resilient functioning in maltreated children are proffered and intervention implications are discussed. PMID:22928717

  14. Biology of an Enzyme: A Research-Like Experience for Introductory Biology Students.

    ERIC Educational Resources Information Center

    Towle, David W.

    1992-01-01

    Presents a series of laboratory exercises designed to introduce students to a realistic experience in biological research that is feasible with large numbers of beginning biology majors. The exercises center on the study of alkaline phosphatase. (DDR)

  15. Relevance in the science classroom: A multidimensional analysis

    NASA Astrophysics Data System (ADS)

    Hartwell, Matthew F.

    While perceived relevance is considered a fundamental component of adaptive learning, the experience of relevance and its conceptual definition have not been well described. The mixed-methods research presented in this dissertation aimed to clarify the conceptual meaning of relevance by focusing on its phenomenological experience from the students' perspective. Following a critical literature review, I propose an identity-based model of perceived relevance that includes three components: a contextual target, an identity target, and a connection type, or lens. An empirical investigation of this model that consisted of two general phases was implemented in four 9th grade-biology classrooms. Participants in Phase 1 (N = 118) completed a series of four open-ended writing activities focused on eliciting perceived personal connections to academic content. Exploratory qualitative content analysis of a 25% random sample of the student responses was used to identify the main meaning-units of the proposed model as well as different dimensions of student relevance perceptions. These meaning-units and dimensions provided the basis for the construction of a conceptual mapping sentence capturing students' perceived relevance, which was then applied in a confirmatory analysis to all other student responses. Participants in Phase 2 (N = 139) completed a closed survey designed based on the mapping sentence to assess their perceived relevance of a biology unit. The survey also included scales assessing other domain-level motivational processes. Exploratory factor analysis and non-metric multidimensional scaling indicated a coherent conceptual structure, which included a primary interpretive relevance dimension. Comparison of the conceptual structure across various groups (randomly-split sample, gender, academic level, domain-general motivational profiles) provided support for its ubiquity and insight into variation in the experience of perceived relevance among students of different groups. The findings combine to support a multidimensional perspective of relevance in the 9th grade biology classroom; offering researchers a useful model for future investigation and educators with insights into the students' classroom experience.

  16. Biology Education Research: Lessons and Future Directions

    ERIC Educational Resources Information Center

    Singer, Susan R.; Nielsen, Natalie R.; Schweingruber, Heidi A.

    2013-01-01

    Biologists have long been concerned about the quality of undergraduate biology education. Over time, however, biology faculty members have begun to study increasingly sophisticated questions about teaching and learning in the discipline. These scholars, often called biology education researchers, are part of a growing field of inquiry called…

  17. Biocoder: A programming language for standardizing and automating biology protocols

    PubMed Central

    2010-01-01

    Background Published descriptions of biology protocols are often ambiguous and incomplete, making them difficult to replicate in other laboratories. However, there is increasing benefit to formalizing the descriptions of protocols, as laboratory automation systems (such as microfluidic chips) are becoming increasingly capable of executing them. Our goal in this paper is to improve both the reproducibility and automation of biology experiments by using a programming language to express the precise series of steps taken. Results We have developed BioCoder, a C++ library that enables biologists to express the exact steps needed to execute a protocol. In addition to being suitable for automation, BioCoder converts the code into a readable, English-language description for use by biologists. We have implemented over 65 protocols in BioCoder; the most complex of these was successfully executed by a biologist in the laboratory using BioCoder as the only reference. We argue that BioCoder exposes and resolves ambiguities in existing protocols, and could provide the software foundations for future automation platforms. BioCoder is freely available for download at http://research.microsoft.com/en-us/um/india/projects/biocoder/. Conclusions BioCoder represents the first practical programming system for standardizing and automating biology protocols. Our vision is to change the way that experimental methods are communicated: rather than publishing a written account of the protocols used, researchers will simply publish the code. Our experience suggests that this practice is tractable and offers many benefits. We invite other researchers to leverage BioCoder to improve the precision and completeness of their protocols, and also to adapt and extend BioCoder to new domains. PMID:21059251

  18. Macromolecular Crystallization in Microgravity

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Helliwell, John R.

    2004-01-01

    The key concepts that attracted crystal growers, macromolecular or solid state, to microgravity research is that density difference fluid flows and sedimentation of the growing crystals are greatly reduced. Thus, defects and flaws in the crystals can be reduced, even eliminated, and crystal volume can be increased. Macromolecular crystallography differs from the field of crystalline semiconductors. For the latter, crystals are harnessed for their electrical behaviors. A crystal of a biological macromolecule is used instead for diffraction experiments (X-ray or neutron) to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal of a biological macromolecule then the more molecular structure detail that can be extracted. This structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences with major potential in understanding disease pathologies. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry, and mathematics meet to enable insight to the basic fundamentals of life. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment, and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyze the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural advances. Finally, limitations and alternatives to microgravity and future directions for this research are covered.

  19. Scientific experiments on the flight of the 1979 biological satellite, draft plan

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The various physiological, biological, radiobiological, and radiation physics experiments to be conducted onboard the 1979 biological satellite are described. These experiments deal with the effects of space flight on living organisms, measurement of radiation, and possible methods of shielding spacecraft against such radiation.

  20. Neuroscience in the residency curriculum: the psychoanalytic psychotherapy perspective.

    PubMed

    Watson, Brendon O; Michels, Robert

    2014-04-01

    Educators of future psychiatrists tend to teach an array of approaches to the mind and brain, including among them the neurobiologic perspective and the psychoanalytic perspective. These may be considered at opposite ends of many spectra, including the fact that psychoanalysis takes a large-scale and treatment-oriented perspective and has helped countless patients over the years, while neuroscience has tended to be reductionistic, focused on understanding, and has helped very few people. A tension, therefore, exists for the educator in teaching neuroscience: is it wise to spend valuable time and energy teaching this interesting but, thus far, impractical field to future practitioners? Here, we argue that neuroscience is re-orienting itself towards more psychoanalytically relevant questions and is likely, in future years, to give new insights into the nature of basic drives and social relations. We additionally argue for balance on the part of providers in both acknowledging biologic underpinnings for clinical phenomena and yet continuing to take a stance oriented towards appropriate change. Given the burgeoning new focus within neuroscience on topics directly relating to the human internal experience and the novel challenges in both understanding those advances and appropriately using them, we encourage educators to continue to give future psychiatrists the educational foundation they need to follow neuroscientific discoveries into the future.

  1. Forward Contamination of the Moon and Mars: Implications for Future Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Kminek, Gerhard; Rummel, John D.

    2004-01-01

    NASA and ESA have outlined new visions for solar system exploration that will include a series of lunar robotic missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require that all spacecraft and instrumentation be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under COSPAR's current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft. Nonetheless, future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.

  2. Semi-automated operation of Mars Climate Simulation chamber - MCSC modelled for biological experiments

    NASA Astrophysics Data System (ADS)

    Tarasashvili, M. V.; Sabashvili, Sh. A.; Tsereteli, S. L.; Aleksidze, N. D.; Dalakishvili, O.

    2017-10-01

    The Mars Climate Simulation Chamber (MCSC) (GEO PAT 12 522/01) is designed for the investigation of the possible past and present habitability of Mars, as well as for the solution of practical tasks necessary for the colonization and Terraformation of the Planet. There are specific tasks such as the experimental investigation of the biological parameters that allow many terrestrial organisms to adapt to the imitated Martian conditions: chemistry of the ground, atmosphere, temperature, radiation, etc. MCSC is set for the simulation of the conduction of various biological experiments, as well as the selection of extremophile microorganisms for the possible Settlement, Ecopoesis and/or Terraformation purposes and investigation of their physiological functions. For long-term purposes, it is possible to cultivate genetically modified organisms (e.g., plants) adapted to the Martian conditions for future Martian agriculture to sustain human Mars missions and permanent settlements. The size of the chamber allows preliminary testing of the functionality of space-station mini-models and personal protection devices such as space-suits, covering and building materials and other structures. The reliability of the experimental biotechnological materials can also be tested over a period of years. Complex and thorough research has been performed to acquire the most appropriate technical tools for the accurate engineering of the MCSC and precious programmed simulation of Martian environmental conditions. This paper describes the construction and technical details of the equipment of the MCSC, which allows its semi-automated, long-term operation.

  3. BioMEMS and Lab-on-a-Chip Course Education at West Virginia University

    PubMed Central

    Liu, Yuxin

    2011-01-01

    With the rapid growth of Biological/Biomedical MicroElectroMechanical Systems (BioMEMS) and microfluidic-based lab-on-a-chip (LOC) technology to biological and biomedical research and applications, demands for educated and trained researchers and technicians in these fields are rapidly expanding. Universities are expected to develop educational plans to address these specialized needs in BioMEMS, microfluidic and LOC science and technology. A course entitled BioMEMS and Lab-on-a-Chip was taught recently at the senior undergraduate and graduate levels in the Department of Computer Science and Electrical Engineering at West Virginia University (WVU). The course focused on the basic principles and applications of BioMEMS and LOC technology to the areas of biomedicine, biology, and biotechnology. The course was well received and the enrolled students had diverse backgrounds in electrical engineering, material science, biology, mechanical engineering, and chemistry. Student feedback and a review of the course evaluations indicated that the course was effective in achieving its objectives. Student presentations at the end of the course were a highlight and a valuable experience for all involved. The course proved successful and will continue to be offered regularly. This paper provides an overview of the course as well as some development and future improvements. PMID:25586697

  4. TAKASAGO-6 apparatus for cryogenic coherent X-ray diffraction imaging of biological non-crystalline particles using X-ray free electron laser at SACLA.

    PubMed

    Kobayashi, Amane; Sekiguchi, Yuki; Takayama, Yuki; Oroguchi, Tomotaka; Shirahama, Keiya; Torizuka, Yasufumi; Manoda, Masahiro; Nakasako, Masayoshi; Yamamoto, Masaki

    2016-05-01

    Coherent X-ray diffraction imaging (CXDI) is a technique for structure analyses of non-crystalline particles with dimensions ranging from micrometer to sub-micrometer. We have developed a diffraction apparatus named TAKASAGO-6 for use in single-shot CXDI experiments of frozen-hydrated non-crystalline biological particles at cryogenic temperature with X-ray free electron laser pulses provided at a repetition rate of 30 Hz from the SPring-8 Angstrom Compact free-electron LAser. Specimen particles are flash-cooled after being dispersed on thin membranes supported by specially designed disks. The apparatus is equipped with a high-speed translation stage with a cryogenic pot for raster-scanning of the disks at a speed higher than 25 μm/33 ms. In addition, we use devices assisting the easy transfer of cooled specimens from liquid-nitrogen storages to the cryogenic pot. In the current experimental procedure, more than 20 000 diffraction patterns can be collected within 1 h. Here we report the key components and performance of the diffraction apparatus. Based on the efficiency of the diffraction data collection and the structure analyses of metal particles, biological cells, and cellular organelles, we discuss the future application of this diffraction apparatus for structure analyses of biological specimens.

  5. Current Status and Recommendations for the Future of Research, Teaching, and Testing in the Biological Sciences of Radiation Oncology: Report of the American Society for Radiation Oncology Cancer Biology/Radiation Biology Task Force, Executive Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallner, Paul E., E-mail: pwallner@theabr.org; Anscher, Mitchell S.; Barker, Christopher A.

    In early 2011, a dialogue was initiated within the Board of Directors (BOD) of the American Society for Radiation Oncology (ASTRO) regarding the future of the basic sciences of the specialty, primarily focused on the current state and potential future direction of basic research within radiation oncology. After consideration of the complexity of the issues involved and the precise nature of the undertaking, in August 2011, the BOD empanelled a Cancer Biology/Radiation Biology Task Force (TF). The TF was charged with developing an accurate snapshot of the current state of basic (preclinical) research in radiation oncology from the perspective ofmore » relevance to the modern clinical practice of radiation oncology as well as the education of our trainees and attending physicians in the biological sciences. The TF was further charged with making suggestions as to critical areas of biological basic research investigation that might be most likely to maintain and build further the scientific foundation and vitality of radiation oncology as an independent and vibrant medical specialty. It was not within the scope of service of the TF to consider the quality of ongoing research efforts within the broader radiation oncology space, to presume to consider their future potential, or to discourage in any way the investigators committed to areas of interest other than those targeted. The TF charge specifically precluded consideration of research issues related to technology, physics, or clinical investigations. This document represents an Executive Summary of the Task Force report.« less

  6. Current status and recommendations for the future of research, teaching, and testing in the biological sciences of radiation oncology: report of the American Society for Radiation Oncology Cancer Biology/Radiation Biology Task Force, executive summary.

    PubMed

    Wallner, Paul E; Anscher, Mitchell S; Barker, Christopher A; Bassetti, Michael; Bristow, Robert G; Cha, Yong I; Dicker, Adam P; Formenti, Silvia C; Graves, Edward E; Hahn, Stephen M; Hei, Tom K; Kimmelman, Alec C; Kirsch, David G; Kozak, Kevin R; Lawrence, Theodore S; Marples, Brian; McBride, William H; Mikkelsen, Ross B; Park, Catherine C; Weidhaas, Joanne B; Zietman, Anthony L; Steinberg, Michael

    2014-01-01

    In early 2011, a dialogue was initiated within the Board of Directors (BOD) of the American Society for Radiation Oncology (ASTRO) regarding the future of the basic sciences of the specialty, primarily focused on the current state and potential future direction of basic research within radiation oncology. After consideration of the complexity of the issues involved and the precise nature of the undertaking, in August 2011, the BOD empanelled a Cancer Biology/Radiation Biology Task Force (TF). The TF was charged with developing an accurate snapshot of the current state of basic (preclinical) research in radiation oncology from the perspective of relevance to the modern clinical practice of radiation oncology as well as the education of our trainees and attending physicians in the biological sciences. The TF was further charged with making suggestions as to critical areas of biological basic research investigation that might be most likely to maintain and build further the scientific foundation and vitality of radiation oncology as an independent and vibrant medical specialty. It was not within the scope of service of the TF to consider the quality of ongoing research efforts within the broader radiation oncology space, to presume to consider their future potential, or to discourage in any way the investigators committed to areas of interest other than those targeted. The TF charge specifically precluded consideration of research issues related to technology, physics, or clinical investigations. This document represents an Executive Summary of the Task Force report. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. BioBlocks: Programming Protocols in Biology Made Easier.

    PubMed

    Gupta, Vishal; Irimia, Jesús; Pau, Iván; Rodríguez-Patón, Alfonso

    2017-07-21

    The methods to execute biological experiments are evolving. Affordable fluid handling robots and on-demand biology enterprises are making automating entire experiments a reality. Automation offers the benefit of high-throughput experimentation, rapid prototyping, and improved reproducibility of results. However, learning to automate and codify experiments is a difficult task as it requires programming expertise. Here, we present a web-based visual development environment called BioBlocks for describing experimental protocols in biology. It is based on Google's Blockly and Scratch, and requires little or no experience in computer programming to automate the execution of experiments. The experiments can be specified, saved, modified, and shared between multiple users in an easy manner. BioBlocks is open-source and can be customized to execute protocols on local robotic platforms or remotely, that is, in the cloud. It aims to serve as a de facto open standard for programming protocols in Biology.

  8. Biological instrumentation for the Viking 1975 mission to Mars.

    PubMed

    Klein, H P; Vishniac, W

    1972-01-01

    A brief introduction is given on why Mars is of interest from a biological point of view, along with an overview of the Viking 1975 mission. Details are given about the four biology instruments aboard the spacecraft and the experiments for which they are to be used. These are: the carbon assimilation experiment to determine whether the soil is biologically active, by incubation in presence of 14C-labelled CO and CO2 (known to be present in the Martian atmosphere); the label release experiment to detect metabolic activity by the release of radioactive CO2, from 14C-labelled simple organic substrates; the gas exchange experiment to detect biological activity by repeated gas chromatography analysis of soil samples; the light scattering experiment, where increase of scattering and decrease of light transmission would indicate the growth of organisms. Examples are given of data obtained with terrestrial soils in these experiments.

  9. Opportunities in Biological Sciences Careers.

    ERIC Educational Resources Information Center

    Winter, Charles A.

    This book offers a panoramic view of the diversity of careers which the future may offer to those trained in the biological sciences. It discusses the scope and organization of the biological sciences, focusing on the various specialties such as microbiology, genetics, entomology, ecology, wildlife biology, and the biomedical sciences such as…

  10. Exploring local adaptation and the ocean acidification seascape - studies in the California Current Large Marine Ecosystem

    NASA Astrophysics Data System (ADS)

    Hofmann, G. E.; Evans, T. G.; Kelly, M. W.; Padilla-Gamiño, J. L.; Blanchette, C. A.; Washburn, L.; Chan, F.; McManus, M. A.; Menge, B. A.; Gaylord, B.; Hill, T. M.; Sanford, E.; LaVigne, M.; Rose, J. M.; Kapsenberg, L.; Dutton, J. M.

    2014-02-01

    The California Current Large Marine Ecosystem (CCLME), a temperate marine region dominated by episodic upwelling, is predicted to experience rapid environmental change in the future due to ocean acidification. The aragonite saturation state within the California Current System is predicted to decrease in the future with near-permanent undersaturation conditions expected by the year 2050. Thus, the CCLME is a critical region to study due to the rapid rate of environmental change that resident organisms will experience and because of the economic and societal value of this coastal region. Recent efforts by a research consortium - the Ocean Margin Ecosystems Group for Acidification Studies (OMEGAS) - has begun to characterize a portion of the CCLME; both describing the spatial mosaic of pH in coastal waters and examining the responses of key calcification-dependent benthic marine organisms to natural variation in pH and to changes in carbonate chemistry that are expected in the coming decades. In this review, we present the OMEGAS strategy of co-locating sensors and oceanographic observations with biological studies on benthic marine invertebrates, specifically measurements of functional traits such as calcification-related processes and genetic variation in populations that are locally adapted to conditions in a particular region of the coast. Highlighted in this contribution are (1) the OMEGAS sensor network that spans the west coast of the US from central Oregon to southern California, (2) initial findings of the carbonate chemistry amongst the OMEGAS study sites, and (3) an overview of the biological data that describes the acclimatization and the adaptation capacity of key benthic marine invertebrates within the CCLME.

  11. Biology of lung cancer: genetic mutation, epithelial-mesenchymal transition, and cancer stem cells.

    PubMed

    Aoi, Takashi

    2016-09-01

    At present, most cases of unresectable cancer cannot be cured. Genetic mutations, EMT, and cancer stem cells are three major issues linked to poor prognosis in such cases, all connected by inter- and intra-tumor heterogeneity. Issues on inter-/intra-tumor heterogeneity of genetic mutation could be resolved with recent and future technologies of deep sequencers, whereas, regarding such issues as the "same genome, different epigenome/phenotype", we expect to solve many of these problems in the future through further research in stem cell biology. We herein review and discuss the three major issues in the biology of cancers, especially from the standpoint of stem cell biology.

  12. The Future of Cell Biology: Emerging Model Organisms.

    PubMed

    Goldstein, Bob; King, Nicole

    2016-11-01

    Most current research in cell biology uses just a handful of model systems including yeast, Arabidopsis, Drosophila, Caenorhabditis elegans, zebrafish, mouse, and cultured mammalian cells. And for good reason - for many biological questions, the best system for the question is likely to be found among these models. However, in some cases, and particularly as the questions that engage scientists broaden, the best system for a question may be a little-studied organism. Modern research tools are facilitating a renaissance for unusual and interesting organisms as emerging model systems. As a result, we predict that an ever-expanding breadth of model systems may be a hallmark of future cell biology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Biological challenges of true space settlement

    NASA Astrophysics Data System (ADS)

    Mankins, John C.; Mankins, Willa M.; Walter, Helen

    2018-05-01

    "Space Settlements" - i.e., permanent human communities beyond Earth's biosphere - have been discussed within the space advocacy community since the 1970s. Now, with the end of the International Space Station (ISS) program fast approaching (planned for 2024-2025) and the advent of low cost Earth-to-orbit (ETO) transportation in the near future, the concept is coming once more into mainstream. Considerable attention has been focused on various issues associated with the engineering and human health considerations of space settlement such as artificial gravity and radiation shielding. However, relatively little attention has been given to the biological implications of a self-sufficient space settlement. Three fundamental questions are explored in this paper: (1) what are the biological "foundations" of truly self-sufficient space settlements in the foreseeable future, (2) what is the minimum scale for such self-sustaining human settlements, and (3) what are the integrated biologically-driven system requirements for such settlements? The paper examines briefly the implications of the answers to these questions in relevant potential settings (including free space, the Moon and Mars). Finally, this paper suggests relevant directions for future research and development in order for such space settlements to become viable in the future.

  14. Case studies of community college non-science majors: Effects of self-regulatory interventions on biology self-efficacy and biological literacy

    NASA Astrophysics Data System (ADS)

    Maurer, Matthew J.

    Science literacy has been at the heart of current reform efforts in science education. The focus on developing essential skills needed for individual ability to be literate in science has been at the forefront of most K--12 science curricula. Reform efforts have begun to stretch into the postsecondary arena as well, with an ever increasing dialogue regarding the need for attention to science literacy by college students, especially non-science majors. This study set out to investigate how the use of self-regulatory interventions (specifically, goal setting, concept mapping, and reflective writing) affected student biology self-efficacy and biological literacy. This study employed a qualitative research design, analyzing three case studies. Participants in the study received ten self-regulatory interventions as a set of portfolio assignments. Portfolio work was qualitatively analyzed and coded for self-efficacy, as well as evidence of biological literacy. A biology self-efficacy survey was administered pre- and post- to provide a means of self-efficacy data triangulation. Literacy data was supported via a biological literacy rubric, constructed specifically for this study. Results indicated that mastery experiences were the source of biology self-efficacy. Self-efficacy for specific tasks increased over time, and changes in self-efficacy were corroborated by the self-efficacy survey. Students were found to express biological literacy at nominal, functional, or conceptual levels depending on the specific task. This was supported by data from the biological literacy rubric scores. Final conclusions and implications for the study indicated the need for further research with more samples of students in similar and different contexts. Given the fact that the literature in this area is sparse, the results obtained here have only begun to delve into this area of research. Generalization to other biology courses or contexts outside of the one presented in this study was cautioned until future studies can be conducted.

  15. NASA GeneLab Concept of Operations

    NASA Technical Reports Server (NTRS)

    Thompson, Terri; Gibbs, Kristina; Rask, Jon; Coughlan, Joseph; Smith, Jeffrey

    2014-01-01

    NASA's GeneLab aims to greatly increase the number of scientists that are using data from space biology investigations on board ISS, emphasizing a systems biology approach to the science. When completed, GeneLab will provide the integrated software and hardware infrastructure, analytical tools and reference datasets for an assortment of model organisms. GeneLab will also provide an environment for scientists to collaborate thereby increasing the possibility for data to be reused for future experimentation. To maximize the value of data from life science experiments performed in space and to make the most advantageous use of the remaining ISS research window, GeneLab will apply an open access approach to conducting spaceflight experiments by generating, and sharing the datasets derived from these biological studies in space.Onboard the ISS, a wide variety of model organisms will be studied and returned to Earth for analysis. Laboratories on the ground will analyze these samples and provide genomic, transcriptomic, metabolomic and proteomic data. Upon receipt, NASA will conduct data quality control tasks and format raw data returned from the omics centers into standardized, annotated information sets that can be readily searched and linked to spaceflight metadata. Once prepared, the biological datasets, as well as any analysis completed, will be made public through the GeneLab Space Bioinformatics System webb as edportal. These efforts will support a collaborative research environment for spaceflight studies that will closely resemble environments created by the Department of Energy (DOE), National Center for Biotechnology Information (NCBI), and other institutions in additional areas of study, such as cancer and environmental biology. The results will allow for comparative analyses that will help scientists around the world take a major leap forward in understanding the effect of microgravity, radiation, and other aspects of the space environment on model organisms. These efforts will speed the process of scientific sharing, iteration, and discovery.

  16. Near-shore Antarctic pH variability has implications for the design of ocean acidification experiments

    PubMed Central

    Kapsenberg, Lydia; Kelley, Amanda L.; Shaw, Emily C.; Martz, Todd R.; Hofmann, Gretchen E.

    2015-01-01

    Understanding how declining seawater pH caused by anthropogenic carbon emissions, or ocean acidification, impacts Southern Ocean biota is limited by a paucity of pH time-series. Here, we present the first high-frequency in-situ pH time-series in near-shore Antarctica from spring to winter under annual sea ice. Observations from autonomous pH sensors revealed a seasonal increase of 0.3 pH units. The summer season was marked by an increase in temporal pH variability relative to spring and early winter, matching coastal pH variability observed at lower latitudes. Using our data, simulations of ocean acidification show a future period of deleterious wintertime pH levels potentially expanding to 7–11 months annually by 2100. Given the presence of (sub)seasonal pH variability, Antarctica marine species have an existing physiological tolerance of temporal pH change that may influence adaptation to future acidification. Yet, pH-induced ecosystem changes remain difficult to characterize in the absence of sufficient physiological data on present-day tolerances. It is therefore essential to incorporate natural and projected temporal pH variability in the design of experiments intended to study ocean acidification biology.

  17. Growing up in a world with AIDS: social advantages of having AIDS in Brazil.

    PubMed

    Abadía-Barrero, C E

    2002-06-01

    Could HIV/AIDS become a positive factor for a child's life? This contradiction is explored in this paper based on anthropological fieldwork and research in Brazil. I used participant observation and informal interviewing both with children living with HIV/AIDS and uninfected street children to obtain qualitative data. Brazil is known as a country leader in social responses towards the AIDS epidemic. Not only has access to antiretroviral medications been assured, but also a series of help networks guarantee that the human rights of HIV-infected people be respected. Children and adolescents benefit equally from these social gains. As such, many children born to HIV-positive women have reached adolescence and have 'normal' lives. This article explores the life experiences of children and adolescents infected by HIV and compares them to the life experiences of street children. Even though the AIDS epidemic is linked to death, infected children and adolescents dream about their lives and futures. Contradictorily, street children, who have not acquired the virus and are considered healthy from a biological stand point, have no prospective plans and answer without hope to questions about the future.

  18. Bruton's tyrosine kinase inhibitors in B-cell lymphoma: current experience and future perspectives.

    PubMed

    Seiler, T; Dreyling, M

    2017-08-01

    The Bruton tyrosine kinase (BTK) is a central hub in the B cell receptor (BCR) pathway and strongly influences B cell maturation, differentiation and proliferation. Not surprisingly, BTK plays an essential role in the pathogenesis of various B cell lymphomas. Inhibitors of BTK have broadened our therapeutic options in several B cell lymphomas and already are an integral element in the treatment of Mantle Cell Lymphoma (MCL), chronic lymphocytic leukemia (CLL) and Waldenström's marcoglobulinemia. Several second generation BTK inhibitors are in clinical development and might further improve tolerability and efficacy of therapy in advanced stage CLL and MCL. Areas covered: This review illustrates the mechanism of action of BTK inhibitors and provides a comprehensive summary of key clinical trials in the development of BTK inhibitors. Characteristics of second generation BTK-inhibitors are described. Expert opinion: With accumulation of clinical experience after drug approval, longer patient follow-up and larger numbers of treated patients, future development will focus on the identification of intelligent treatment combinations. Individual selection of patients with distinct biologically properties might guide treatment decisions. While BTK inhibitors are moving to earlier treatment lines, the incorporation of these drugs into a comprehensive therapeutic strategy is still difficult to date.

  19. Cell and Particle Interactions and Aggregation During Electrophoretic Motion

    NASA Technical Reports Server (NTRS)

    Davis, Robert H.

    2000-01-01

    The objectives of this research were (i) to perform experiments for observing and quantifying electrophoretic aggregation, (ii) to develop a theoretical description to appropriately analyze and compare with the experimental results, (iii) to study the combined effects of electrophoretic and gravitational aggregation of large particles, and the combined effects of electrophoretic and Brownian aggregation of small particles, and (iv) to perform a preliminary design of a potential future flight experiment involving electrophoretic aggregation. Electrophoresis refers to the motion of charged particles, droplets or molecules in response to an applied electric field. Electrophoresis is commonly used for analysis and separation of biological particles or molecules. When particles have different surface charge densities or potentials, they will migrate at different velocities in an electric field. This differential migration leads to the possibility that they will collide and aggregate, thereby preventing separation.

  20. Space processing economics

    NASA Technical Reports Server (NTRS)

    Bredt, J. H.

    1974-01-01

    Two types of space processing operations may be considered economically justified; they are manufacturing operations that make profits and experiment operations that provide needed applied research results at lower costs than those of alternative methods. Some examples from the Skylab experiments suggest that applied research should become cost effective soon after the space shuttle and Spacelab become operational. In space manufacturing, the total cost of space operations required to process materials must be repaid by the value added to the materials by the processing. Accurate estimates of profitability are not yet possible because shuttle operational costs are not firmly established and the markets for future products are difficult to estimate. However, approximate calculations show that semiconductor products and biological preparations may be processed on a scale consistent with market requirements and at costs that are at least compatible with profitability using the Shuttle/Spacelab system.

  1. Functions in Biological Kind Classification

    ERIC Educational Resources Information Center

    Lombrozo, Tania; Rehder, Bob

    2012-01-01

    Biological traits that serve functions, such as a zebra's coloration (for camouflage) or a kangaroo's tail (for balance), seem to have a special role in conceptual representations for biological kinds. In five experiments, we investigate whether and why functional features are privileged in biological kind classification. Experiment 1…

  2. Covariation of metabolic rates and cell size in coccolithophores

    NASA Astrophysics Data System (ADS)

    Aloisi, G.

    2015-08-01

    Coccolithophores are sensitive recorders of environmental change. The size of their coccosphere varies in the ocean along gradients of environmental conditions and provides a key for understanding the fate of this important phytoplankton group in the future ocean. But interpreting field changes in coccosphere size in terms of laboratory observations is hard, mainly because the marine signal reflects the response of multiple morphotypes to changes in a combination of environmental variables. In this paper I examine the large corpus of published laboratory experiments with coccolithophores looking for relations between environmental conditions, metabolic rates and cell size (a proxy for coccosphere size). I show that growth, photosynthesis and, to a lesser extent, calcification covary with cell size when pCO2, irradiance, temperature, nitrate, phosphate and iron conditions change. With the exception of phosphate and temperature, a change from limiting to non-limiting conditions always results in an increase in cell size. An increase in phosphate or temperature (below the optimum temperature for growth) produces the opposite effect. The magnitude of the coccosphere-size changes observed in the laboratory is comparable to that observed in the ocean. If the biological reasons behind the environment-metabolism-size link are understood, it will be possible to use coccosphere-size changes in the modern ocean and in marine sediments to investigate the fate of coccolithophores in the future ocean. This reasoning can be extended to the size of coccoliths if, as recent experiments are starting to show, coccolith size reacts to environmental change proportionally to coccosphere size. The coccolithophore database is strongly biased in favour of experiments with the coccolithophore Emiliania huxleyi (E. huxleyi; 82 % of database entries), and more experiments with other species are needed to understand whether these observations can be extended to coccolithophores in general. I introduce a simple model that simulates the growth rate and the size of cells forced by nitrate and phosphate concentrations. By considering a simple rule that allocates the energy flow from nutrient acquisition to cell structure (biomass) and cell maturity (biological complexity, eventually leading to cell division), the model is able to reproduce the covariation of growth rate and cell size observed in laboratory experiments with E. huxleyi when these nutrients become limiting. These results support ongoing efforts to interpret coccosphere and coccolith size measurements in the context of climate change.

  3. Design of a Comprehensive Biochemistry and Molecular Biology Experiment: Phase Variation Caused by Recombinational Regulation of Bacterial Gene Expression

    ERIC Educational Resources Information Center

    Sheng, Xiumei; Xu, Shungao; Lu, Renyun; Isaac, Dadzie; Zhang, Xueyi; Zhang, Haifang; Wang, Huifang; Qiao, Zheng; Huang, Xinxiang

    2014-01-01

    Scientific experiments are indispensable parts of Biochemistry and Molecular Biology. In this study, a comprehensive Biochemistry and Molecular Biology experiment about "Salmonella enterica" serovar Typhi Flagellar phase variation has been designed. It consisted of three parts, namely, inducement of bacterial Flagellar phase variation,…

  4. Cosmic-ray interaction data for designing biological experiments in space.

    PubMed

    Straume, T; Slaba, T C; Bhattacharya, S; Braby, L A

    2017-05-01

    There is growing interest in flying biological experiments beyond low-Earth orbit (LEO) to measure biological responses potentially relevant to those expected during a human mission to Mars. Such experiments could be payloads onboard precursor missions, including unmanned private-public partnerships, as well as small low-cost spacecraft (satellites) designed specifically for biosentinel-type missions. It is the purpose of this paper to provide physical cosmic-ray interaction data and related information useful to biologists who may be planning such experiments. It is not the objective here to actually design such experiments or provide radiobiological response functions, which would be specific for each experiment and biological endpoint. Nuclide-specific flux and dose rates were calculated using OLTARIS and these results were used to determine particle traversal rates and doses in hypothetical biological targets. Comparisons are provided between GCR in interplanetary space and inside the ISS. Calculated probabilistic estimates of dose from solar particle events are also presented. Although the focus here is on biological experiments, the information provided may be useful for designing other payloads as well if the space radiation environment is a factor to be considered. Published by Elsevier Ltd.

  5. The future of terrestrial mammals in the Mediterranean basin under climate change

    PubMed Central

    Maiorano, Luigi; Falcucci, Alessandra; Zimmermann, Niklaus E.; Psomas, Achilleas; Pottier, Julien; Baisero, Daniele; Rondinini, Carlo; Guisan, Antoine; Boitani, Luigi

    2011-01-01

    The Mediterranean basin is considered a hotspot of biological diversity with a long history of modification of natural ecosystems by human activities, and is one of the regions that will face extensive changes in climate. For 181 terrestrial mammals (68% of all Mediterranean mammals), we used an ensemble forecasting approach to model the future (approx. 2100) potential distribution under climate change considering five climate change model outputs for two climate scenarios. Overall, a substantial number of Mediterranean mammals will be severely threatened by future climate change, particularly endemic species. Moreover, we found important changes in potential species richness owing to climate change, with some areas (e.g. montane region in central Italy) gaining species, while most of the region will be losing species (mainly Spain and North Africa). Existing protected areas (PAs) will probably be strongly influenced by climate change, with most PAs in Africa, the Middle East and Spain losing a substantial number of species, and those PAs gaining species (e.g. central Italy and southern France) will experience a substantial shift in species composition. PMID:21844047

  6. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite

    USGS Publications Warehouse

    Balci, N.; Shanks, Wayne C.; Mayer, B.; Mandernack, K.W.

    2007-01-01

    To better understand reaction pathways of pyrite oxidation and biogeochemical controls on ??18O and ??34S values of the generated sulfate in acid mine drainage (AMD) and other natural environments, we conducted a series of pyrite oxidation experiments in the laboratory. Our biological and abiotic experiments were conducted under aerobic conditions by using O2 as an oxidizing agent and under anaerobic conditions by using dissolved Fe(III)aq as an oxidant with varying ??18OH2O values in the presence and absence of Acidithiobacillus ferrooxidans. In addition, aerobic biological experiments were designed as short- and long-term experiments where the final pH was controlled at ???2.7 and 2.2, respectively. Due to the slower kinetics of abiotic sulfide oxidation, the aerobic abiotic experiments were only conducted as long term with a final pH of ???2.7. The ??34SSO4 values from both the biological and abiotic anaerobic experiments indicated a small but significant sulfur isotope fractionation (???-0.7???) in contrast to no significant fractionation observed from any of the aerobic experiments. Relative percentages of the incorporation of water-derived oxygen and dissolved oxygen (O2) to sulfate were estimated, in addition to the oxygen isotope fractionation between sulfate and water, and dissolved oxygen. As expected, during the biological and abiotic anaerobic experiments all of the sulfate oxygen was derived from water. The percentage incorporation of water-derived oxygen into sulfate during the oxidation experiments by O2 varied with longer incubation and lower pH, but not due to the presence or absence of bacteria. These percentages were estimated as 85%, 92% and 87% from the short-term biological, long-term biological and abiotic control experiments, respectively. An oxygen isotope fractionation effect between sulfate and water (??18 OSO4 s(-) H2 O) of ???3.5??? was determined for the anaerobic (biological and abiotic) experiments. This measured ??18 OSO42 - s(-) H2 O value was then used to estimate the oxygen isotope fractionation effects (??18 OSO42 - s(-) O2) between sulfate and dissolved oxygen in the aerobic experiments which were -10.0???, -10.8???, and -9.8??? for the short-term biological, long-term biological and abiotic control experiments, respectively. Based on the similarity between ??18OSO4 values in the biological and abiotic experiments, it is suggested that ??18OSO4 values cannot be used to distinguish biological and abiotic mechanisms of pyrite oxidation. The results presented here suggest that Fe(III)aq is the primary oxidant for pyrite at pH < 3, even in the presence of dissolved oxygen, and that the main oxygen source of sulfate is water-oxygen under both aerobic and anaerobic conditions. ?? 2007 Elsevier Ltd. All rights reserved.

  7. A Biochemistry and Molecular Biology Experiment and Evaluation System for Biotechnology Specialty Students: An Effective Evaluation System to Improve the Biochemistry and Molecular Biology Experiment Teaching

    ERIC Educational Resources Information Center

    Li, Suxia; Wu, Haizhen; Zhao, Jian; Ou, Ling; Zhang, Yuanxing

    2010-01-01

    In an effort to achieve high success in knowledge and technique acquisition as a whole, a biochemistry and molecular biology experiment was established for high-grade biotechnology specialty students after they had studied essential theory and received proper technique training. The experiment was based on cloning and expression of alkaline…

  8. Where statistics and molecular microarray experiments biology meet.

    PubMed

    Kelmansky, Diana M

    2013-01-01

    This review chapter presents a statistical point of view to microarray experiments with the purpose of understanding the apparent contradictions that often appear in relation to their results. We give a brief introduction of molecular biology for nonspecialists. We describe microarray experiments from their construction and the biological principles the experiments rely on, to data acquisition and analysis. The role of epidemiological approaches and sample size considerations are also discussed.

  9. Antiproton radiotherapy.

    PubMed

    Bassler, Niels; Alsner, Jan; Beyer, Gerd; DeMarco, John J; Doser, Michael; Hajdukovic, Dragan; Hartley, Oliver; Iwamoto, Keisuke S; Jäkel, Oliver; Knudsen, Helge V; Kovacevic, Sandra; Møller, Søren Pape; Overgaard, Jens; Petersen, Jørgen B; Solberg, Timothy D; Sørensen, Brita S; Vranjes, Sanja; Wouters, Bradly G; Holzscheiter, Michael H

    2008-01-01

    Antiprotons are interesting as a possible future modality in radiation therapy for the following reasons: When fast antiprotons penetrate matter, protons and antiprotons have near identical stopping powers and exhibit equal radiobiology well before the Bragg-peak. But when the antiprotons come to rest at the Bragg-peak, they annihilate, releasing almost 2 GeV per antiproton-proton annihilation. Most of this energy is carried away by energetic pions, but the Bragg-peak of the antiprotons is still locally augmented with approximately 20-30 MeV per antiproton. Apart from the gain in physical dose, an increased relative biological effect also has been observed, which can be explained by the fact that some of the secondary particles from the antiproton annihilation exhibit high-LET properties. Finally, the weakly interacting energetic pions, which are leaving the target volume, may provide a real time feedback on the exact location of the annihilation peak. We have performed dosimetry experiments and investigated the radiobiological properties using the antiproton beam available at CERN, Geneva. Dosimetry experiments were carried out with ionization chambers, alanine pellets and radiochromic film. Radiobiological experiments were done with V79 WNRE Chinese hamster cells. The radiobiological experiments were repeated with protons and carbon ions at TRIUMF and GSI, respectively, for comparison. Several Monte Carlo particle transport codes were investigated and compared with our experimental data obtained at CERN. The code that matched our data best was used to generate a set of depth dose data at several energies, including secondary particle-energy spectra. This can be used as base data for a treatment planning software such as TRiP. Our findings from the CERN experiments indicate that the biological effect of antiprotons in the plateau region may be reduced by a factor of 4 for the same biological target dose in a spread-out Bragg-peak, when comparing with protons. The extension of TRiP to handle antiproton beams is currently in progress. This will enable us to perform planning studies, where the potential clinical consequences can be examined, and compared to those of other beam modalities such as protons, carbon ions, or IMRT photons.

  10. Real-time biomimetic Central Pattern Generators in an FPGA for hybrid experiments

    PubMed Central

    Ambroise, Matthieu; Levi, Timothée; Joucla, Sébastien; Yvert, Blaise; Saïghi, Sylvain

    2013-01-01

    This investigation of the leech heartbeat neural network system led to the development of a low resources, real-time, biomimetic digital hardware for use in hybrid experiments. The leech heartbeat neural network is one of the simplest central pattern generators (CPG). In biology, CPG provide the rhythmic bursts of spikes that form the basis for all muscle contraction orders (heartbeat) and locomotion (walking, running, etc.). The leech neural network system was previously investigated and this CPG formalized in the Hodgkin–Huxley neural model (HH), the most complex devised to date. However, the resources required for a neural model are proportional to its complexity. In response to this issue, this article describes a biomimetic implementation of a network of 240 CPGs in an FPGA (Field Programmable Gate Array), using a simple model (Izhikevich) and proposes a new synapse model: activity-dependent depression synapse. The network implementation architecture operates on a single computation core. This digital system works in real-time, requires few resources, and has the same bursting activity behavior as the complex model. The implementation of this CPG was initially validated by comparing it with a simulation of the complex model. Its activity was then matched with pharmacological data from the rat spinal cord activity. This digital system opens the way for future hybrid experiments and represents an important step toward hybridization of biological tissue and artificial neural networks. This CPG network is also likely to be useful for mimicking the locomotion activity of various animals and developing hybrid experiments for neuroprosthesis development. PMID:24319408

  11. Organics on Mars?

    NASA Astrophysics Data System (ADS)

    ten Kate, Inge L.

    2010-08-01

    Organics are expected to exist on Mars based on meteorite infall, in situ production, and any possible biological sources. Yet they have not been detected on the martian surface; are they there, or are we not capable enough to detect them? The Viking gas chromatograph-mass spectrometer did not detect organics in the headspace of heated soil samples with a detection limit of parts per billion. This null result strongly influenced the interpretation of the reactivity seen in the Viking biology experiments and led to the conclusion that life was not present and, instead, that there was some chemical reactivity in the soil. The detection of perchlorates in the martian soil by instruments on the Phoenix lander and the reports of methane in the martian atmosphere suggest that it may be time to reconsider the question of organics. The high-temperature oxidizing properties of perchlorate will promote combustion of organics in pyrolytic experiments and may have affected the ability of both Phoenix's organic analysis experiment and the Viking mass spectrometer experiments to detect organics. So the question of organics on Mars remains open. A primary focus of the upcoming Mars Science Laboratory will be the detection and identification of organic molecules by means of thermal volatilization, followed by gas chromatography - mass spectrometry - as was done on Viking. However, to enhance organic detectability, some of the samples will be processed with liquid derivatization agents that will dissolve organics from the soil before pyrolysis, which may separate them from the soil perchlorates. Nonetheless, the problem of organics on Mars is not solved, and for future missions other organic detection techniques should therefore be considered as well.

  12. Organics on Mars?

    PubMed

    ten Kate, Inge L

    2010-01-01

    Organics are expected to exist on Mars based on meteorite infall, in situ production, and any possible biological sources. Yet they have not been detected on the martian surface; are they there, or are we not capable enough to detect them? The Viking gas chromatograph-mass spectrometer did not detect organics in the headspace of heated soil samples with a detection limit of parts per billion. This null result strongly influenced the interpretation of the reactivity seen in the Viking biology experiments and led to the conclusion that life was not present and, instead, that there was some chemical reactivity in the soil. The detection of perchlorates in the martian soil by instruments on the Phoenix lander and the reports of methane in the martian atmosphere suggest that it may be time to reconsider the question of organics. The high-temperature oxidizing properties of perchlorate will promote combustion of organics in pyrolytic experiments and may have affected the ability of both Phoenix's organic analysis experiment and the Viking mass spectrometer experiments to detect organics. So the question of organics on Mars remains open. A primary focus of the upcoming Mars Science Laboratory will be the detection and identification of organic molecules by means of thermal volatilization, followed by gas chromatography-mass spectrometry--as was done on Viking. However, to enhance organic detectability, some of the samples will be processed with liquid derivatization agents that will dissolve organics from the soil before pyrolysis, which may separate them from the soil perchlorates. Nonetheless, the problem of organics on Mars is not solved, and for future missions other organic detection techniques should therefore be considered as well.

  13. Comparative transcriptomics indicate changes in cell wall organization and stress response in seedlings during spaceflight.

    PubMed

    Johnson, Christina M; Subramanian, Aswati; Pattathil, Sivakumar; Correll, Melanie J; Kiss, John Z

    2017-08-21

    Plants will play an important role in the future of space exploration as part of bioregenerative life support. Thus, it is important to understand the effects of microgravity and spaceflight on gene expression in plant development. We analyzed the transcriptome of Arabidopsis thaliana using the Biological Research in Canisters (BRIC) hardware during Space Shuttle mission STS-131. The bioinformatics methods used included RMA (robust multi-array average), MAS5 (Microarray Suite 5.0), and PLIER (probe logarithmic intensity error estimation). Glycome profiling was used to analyze cell wall composition in the samples. In addition, our results were compared to those of two other groups using the same hardware on the same mission (BRIC-16). In our BRIC-16 experiments, we noted expression changes in genes involved in hypoxia and heat shock responses, DNA repair, and cell wall structure between spaceflight samples compared to the ground controls. In addition, glycome profiling supported our expression analyses in that there was a difference in cell wall components between ground control and spaceflight-grown plants. Comparing our studies to those of the other BRIC-16 experiments demonstrated that, even with the same hardware and similar biological materials, differences in results in gene expression were found among these spaceflight experiments. A common theme from our BRIC-16 space experiments and those of the other two groups was the downregulation of water stress response genes in spaceflight. In addition, all three studies found differential regulation of genes associated with cell wall remodeling and stress responses between spaceflight-grown and ground control plants. © 2017 Botanical Society of America.

  14. Technology and the Nature of Man: Biological Considerations. An Occasional Paper on Man/Society/Technology.

    ERIC Educational Resources Information Center

    Sherwood, Lauralee

    This seminar paper explores biological aspects of the man-technology relationship. From man's beginning and continuing into the future, technology is interwoven extensively in the biological fabric of man. Five facets of the biology-technology interaction are examined: (1) technological innovations enabling man to learn about his biological…

  15. The future of Arctic benthos: Expansion, invasion, and biodiversity

    NASA Astrophysics Data System (ADS)

    Renaud, Paul E.; Sejr, Mikael K.; Bluhm, Bodil A.; Sirenko, Boris; Ellingsen, Ingrid H.

    2015-12-01

    One of the logical predictions for a future Arctic characterized by warmer waters and reduced sea-ice is that new taxa will expand or invade Arctic seafloor habitats. Specific predictions regarding where this will occur and which taxa are most likely to become established or excluded are lacking, however. We synthesize recent studies and conduct new analyses in the context of climate forecasts and a paleontological perspective to make concrete predictions as to relevant mechanisms, regions, and functional traits contributing to future biodiversity changes. Historically, a warmer Arctic is more readily invaded or transited by boreal taxa than it is during cold periods. Oceanography of an ice-free Arctic Ocean, combined with life-history traits of invading taxa and availability of suitable habitat, determine expansion success. It is difficult to generalize as to which taxonomic groups or locations are likely to experience expansion, however, since species-specific, and perhaps population-specific autecologies, will determine success or failure. Several examples of expansion into the Arctic have been noted, and along with the results from the relatively few Arctic biological time-series suggest inflow shelves (Barents and Chukchi Seas), as well as West Greenland and the western Kara Sea, are most likely locations for expansion. Apparent temperature thresholds were identified for characteristic Arctic and boreal benthic fauna suggesting strong potential for range constrictions of Arctic, and expansions of boreal, fauna in the near future. Increasing human activities in the region could speed introductions of boreal fauna and reduce the value of a planktonic dispersal stage. Finally, shelf regions are likely to experience a greater impact, and also one with greater potential consequences, than the deep Arctic basin. Future research strategies should focus on monitoring as well as compiling basic physiological and life-history information of Arctic and boreal taxa, and integrate that with projections of human activities and likely ecosystem consequences to facilitate development of management strategies now and in the future.

  16. Factors associated with occupational exposure to biological material among nursing professionals.

    PubMed

    Negrinho, Nádia Bruna da Silva; Malaguti-Toffano, Silmara Elaine; Reis, Renata Karina; Pereira, Fernanda Maria Vieira; Gir, Elucir

    2017-01-01

    to identify factors associated with occupational exposure to biological material among nursing professionals. a cross-sectional study was conducted in a high complexity hospital of a city in the state of São Paulo, Brazil. Nursing professionals were interviewed from March to November 2015. All ethical aspects were observed. among the 226 professionals interviewed, 17.3% suffered occupational exposure to potentially contaminated biological material, with 61.5% being percutaneous. Factors such as age (p=0.003), professional experience in nursing (p=0.015), and experience at the institution (p=0.032) were associated with the accidents with biological material. most accidents with biological material among nursing professionals were percutaneous. Age, professional experience, and experience at the institution were considered factors associated with occupational exposure.

  17. Experiences of Familial Acceptance–Rejection Among Transwomen of Color

    PubMed Central

    Koken, Juline A.; Bimbi, David S.; Parsons, Jeffrey T.

    2010-01-01

    Because of the stigma associated with transgenderism, many transwomen (biological males who identify as female or transgender) experience rejection or abuse at the hands of their parents and primary caregivers as children and adolescents. The Parental Acceptance–Rejection (PAR) theory indicates that a child's experience of rejection may have a significant impact on their adult lives. The purpose of this study was to conduct a qualitative analysis of adult transwomen of color's experiences with caregivers, guided by PAR theory. Twenty transwomen of color completed semi-structured interviews exploring the reaction of their parents and primary caregivers to their gender. While many participants reported that at least one parent or close family member responded with warmth and acceptance, the majority confronted hostility and aggression; reports of neglect and undifferentiated rejection were also common. Many transwomen were forced out of their homes as adolescents or chose to leave, increasing their risk of homelessness, poverty, and associated negative sequelae. Future research is needed to explore how families come to terms with having a transgender child and how best to promote acceptance of such children. PMID:20001144

  18. Experiences of Judeo-Christian Students in Undergraduate Biology

    PubMed Central

    Barnes, M. Elizabeth; Truong, Jasmine M.; Brownell, Sara E.

    2017-01-01

    A major research thrust in science, technology, engineering, and mathematics (STEM) education is focused on how to retain students as STEM majors. The accumulation of seemingly insignificant negative experiences in STEM classes can, over time, lead STEM students to have a low sense of belonging in their disciplines, and this can lead to lower retention. In this paper, we explore how Judeo-Christian students in biology have experiences related to their religious identities that could impact their retention in biology. In 28 interviews with Judeo-Christian students taking undergraduate biology classes, students reported a religious identity that can conflict with the secular culture and content of biology. Some students felt that, because they are religious, they fall within a minority in their classes and would not be seen as credible within the biology community. Students reported adverse experiences when instructors had negative dispositions toward religion and when instructors were rigid in their instructional practices when teaching evolution. These data suggest that this may be a population susceptible to experiences of cultural conflict between their religious identities and their STEM identities, which could have implications for retention. We argue that more research should explore how Judeo-Christian students’ experiences in biology classes influence their sense of belonging and retention. PMID:28232586

  19. Regenerative Chemical Biology: Current Challenges and Future Potential

    PubMed Central

    Ao, Ada; Hao, Jijun; Hong, Charles C.

    2011-01-01

    The enthusiasm surrounding the clinical potential of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) is tempered by the fact that key issues regarding their safety, efficacy, and long-term benefits have thus far been suboptimal. Small molecules can potentially relieve these problems at major junctions of stem cell biology and regenerative therapy. In this review, we will introduce recent advances in these important areas and the first-generation of small molecules used in the regenerative context. Current chemical biology studies will provide the archetype for future interdisciplinary collaborations, and improve clinical benefits of cell-based therapies. PMID:21513877

  20. Survey of cell biology experiments in reduced gravity

    NASA Technical Reports Server (NTRS)

    Taylor, G. R.

    1977-01-01

    The effects of spaceflight on terrestrial cell systems are discussed. With some important exceptions, static cell systems carried aboard U.S.A. and U.S.S.R. space flights have failed to reveal space related anomalies. Some sophisticated devices which were developed for viewing directly, or continuously recording, the growth of cells, tissue cultures and eggs in flight, are described and the results summarized. The unique presence of high energy, multicharged (HZE) particles and full-range ultraviolet irradiation in space prompted evaluation of the response of single cells to these factors. Summary results and general conclusions are presented. Potential areas of research in future space flights are identified.

  1. Contradictory results in interferon research

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.

    1984-01-01

    Several reports on immunologically related interferon research, both in the areas of basic science and clinical research, are briefly reviewed, and it is noted that in many cases the results obtained are contradictory. It is argued, however, that the contradictory results are not surprising since interferon is a biological response modifier and has been known to produce opposite results even when the same interferon prepartion is used. It is emphasized that dosage, timing, route, and other experimental conditions are essential factors in planning immunological studies with interferon. Careful planning of future experiments with interferon should be required to prevent the possible generation of effects that are opposite to those expected.

  2. Application of Zebrafish Model to Environmental Toxicology.

    PubMed

    Komoike, Yuta; Matsuoka, Masato

    2016-01-01

    Recently, a tropical freshwater fish, the zebrafish, has been generally used as a useful model organism in various fields of life science worldwide. The zebrafish model has also been applied to environmental toxicology; however, in Japan, it has not yet become widely used. In this review, we will introduce the biological and historical backgrounds of zebrafish as an animal model and their breeding. We then present the current status of toxicological experiments using zebrafish that were treated with some important environmental contaminants, including cadmium, organic mercury, 2,3,7,8-tetrachlorodibenzo-p-dioxin, and tributyltin. Finally, the future possible application of genetically modified zebrafish to the study of environmental toxicology is discussed.

  3. Biosphere 2 test module experimentation program

    NASA Technical Reports Server (NTRS)

    Alling, Abigail; Leigh, Linda S.; Maccallum, Taber; Alvarez-Romo, Norberto

    1990-01-01

    The Biosphere 2 Test Module is a facility which has the capability to do either short or long term closures: five month closures with plants were conducted. Also conducted were investigations of specific problems, such as trace gas purification by bioregenerative systems by in-putting a fixed concentration of a gas and observing its uptake over time. In other Test Module experiments, the concentration of one gas was changed to observe what effects this has on other gases present or on the system. The science of biospherics which encompasses the study of closed biological systems provides an opening into the future in space as well as in the Earth's biosphere.

  4. The remarkable vision of Robert Hooke (1635-1703): first observer of the microbial world.

    PubMed

    Gest, Howard

    2005-01-01

    Robert Hooke played important roles in the early development of the Royal Society of London. As Curator of Experiments of the Society, he became a pioneering microscopist, prolific inventor, astronomer, geologist, architect, and an effective surveyor of the City of London following the Great Fire of 1666. Hooke's Micrographia (1665) revealed the microscopic structures of numerous biological and inorganic objects and became an important source of information for later studies. Aside from the body of detailed observations reported and depicted in Micrographia, the Preface is in itself an extraordinary document that exhibits Hooke's fertile mind, philosophical insights, and rare ability to look into the future.

  5. 'More than skin-deep': biological essentialism in response to a distinctiveness threat in a stigmatized fan community.

    PubMed

    Plante, Courtney N; Roberts, Sharon E; Snider, Jamie S; Schroy, Catherine; Reysen, Stephen; Gerbasi, Kathleen

    2015-06-01

    We investigated how group distinctiveness threats affect essentialist beliefs about group membership in a stigmatized fan community. An experiment conducted on 817 members of the fan community revealed that highly identified fans who perceived significant stigmatization were the most likely to endorse essentialist beliefs about group membership when exposed to a distinctiveness threat via comparison to a highly similar (vs. dissimilar) outgroup. These results bridge essentialism research and research on distinctiveness threat by demonstrating the mutability of group essentialism beliefs as a defensive response to distinctiveness threats. Implications for future research are discussed. © 2014 The British Psychological Society.

  6. High-Content Screening for Quantitative Cell Biology.

    PubMed

    Mattiazzi Usaj, Mojca; Styles, Erin B; Verster, Adrian J; Friesen, Helena; Boone, Charles; Andrews, Brenda J

    2016-08-01

    High-content screening (HCS), which combines automated fluorescence microscopy with quantitative image analysis, allows the acquisition of unbiased multiparametric data at the single cell level. This approach has been used to address diverse biological questions and identify a plethora of quantitative phenotypes of varying complexity in numerous different model systems. Here, we describe some recent applications of HCS, ranging from the identification of genes required for specific biological processes to the characterization of genetic interactions. We review the steps involved in the design of useful biological assays and automated image analysis, and describe major challenges associated with each. Additionally, we highlight emerging technologies and future challenges, and discuss how the field of HCS might be enhanced in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The Biology Major Capstone Experience: Measurements of Accountability

    ERIC Educational Resources Information Center

    Davis, Thomas A.

    2011-01-01

    Loras College senior biology and biology research majors are required to take a comprehensive exam, give an oral presentation, write this talk into their thesis and participate in an exit interview with a non-biology faculty member before they graduate. Details of these capstone experiences will be discussed further. Other capstone experiences…

  8. NASDA next-generation aquatic habitat for space shuttle and ISS

    NASA Astrophysics Data System (ADS)

    Masukawa, M.; Ochiai, T.; Kamigaichi, S.; Uchida, S.; Kono, Y.; Takamatsu, T.; Sakimura, T.

    The National Space Development Agency of Japan (NASDA) has more than 20 years of experience developing aquatic animal experiment facilities. These include the Vestibular Function Experiment Unit (VFEU), Aquatic Animal Experiment Unit (AAEU) and another VFEU for marine fish. Each facility had functions such as life support for up to 15 days, water quality control system, gas exchange by artificial lung, video observation through a window by a crewmember, day/night cycle control, feeding system for medaka (AAEU only), and more. We are now studying the next -generation aquatic animal experiment facility or the Aquatic Habitat (AQH) for both Space Shuttle and Space Station use. AQH will have many new capabilities missing in earlier facilities. The following functions are of particular importance: long-term life support for up to 90 days, multigeneration breeding (for medaka and zebrafish), automatic feeding system adaptable for young of fish and amphibians, water quality control for long-term experiments, air-water interface, a computer-driven specimen-monitoring system housed in the facilities, and a specimen sampling system including eggs. A prototype breeding system and the specimen-monitoring system were designed and tested. The prototype breeding system consists of a closed water loop, two 700ml fish chambers with LED lighting, a small artificial lung, and a nitrification bacteria filter. Medaka adult fish were able to mate and spawn in this small breeding system, and the young could grow to adult fish. The water quality control system also worked successfully. For amphibians, the breeding test using tadpoles of xenopus is also starting. We have many difficult technological problems to resolve, but development of AQH is going well. In this paper, we will introduce the results of the component-level test and the concept of AQH. In the future, many space biological experiments will be conducted, especially in the areas of developmental biology, neurophisiology, and the effect of microgravity over multiple generations, through the use of aquatic animals and AQH.

  9. Designing synthetic biology.

    PubMed

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  10. Digital biology and chemistry.

    PubMed

    Witters, Daan; Sun, Bing; Begolo, Stefano; Rodriguez-Manzano, Jesus; Robles, Whitney; Ismagilov, Rustem F

    2014-09-07

    This account examines developments in "digital" biology and chemistry within the context of microfluidics, from a personal perspective. Using microfluidics as a frame of reference, we identify two areas of research within digital biology and chemistry that are of special interest: (i) the study of systems that switch between discrete states in response to changes in chemical concentration of signals, and (ii) the study of single biological entities such as molecules or cells. In particular, microfluidics accelerates analysis of switching systems (i.e., those that exhibit a sharp change in output over a narrow range of input) by enabling monitoring of multiple reactions in parallel over a range of concentrations of signals. Conversely, such switching systems can be used to create new kinds of microfluidic detection systems that provide "analog-to-digital" signal conversion and logic. Microfluidic compartmentalization technologies for studying and isolating single entities can be used to reconstruct and understand cellular processes, study interactions between single biological entities, and examine the intrinsic heterogeneity of populations of molecules, cells, or organisms. Furthermore, compartmentalization of single cells or molecules in "digital" microfluidic experiments can induce switching in a range of reaction systems to enable sensitive detection of cells or biomolecules, such as with digital ELISA or digital PCR. This "digitizing" offers advantages in terms of robustness, assay design, and simplicity because quantitative information can be obtained with qualitative measurements. While digital formats have been shown to improve the robustness of existing chemistries, we anticipate that in the future they will enable new chemistries to be used for quantitative measurements, and that digital biology and chemistry will continue to provide further opportunities for measuring biomolecules, understanding natural systems more deeply, and advancing molecular and cellular analysis. Microfluidics will impact digital biology and chemistry and will also benefit from them if it becomes massively distributed.

  11. Deaf, Hard-of-Hearing, and Hearing Signing Undergraduates' Attitudes toward Science in Inquiry-Based Biology Laboratory Classes.

    PubMed

    Gormally, Cara

    2017-01-01

    For science learning to be successful, students must develop attitudes toward support future engagement with challenging social issues related to science. This is especially important for increasing participation of students from underrepresented populations. This study investigated how participation in inquiry-based biology laboratory classes affected students' attitudes toward science, focusing on deaf, hard-of-hearing, and hearing signing students in bilingual learning environments (i.e., taught in American Sign Language and English). Analysis of reflection assignments and interviews revealed that the majority of students developed positive attitudes toward science and scientific attitudes after participating in inquiry-based biology laboratory classes. Attitudinal growth appears to be driven by student value of laboratory activities, repeated direct engagement with scientific inquiry, and peer collaboration. Students perceived that hands-on experimentation involving peer collaboration and a positive, welcoming learning environment were key features of inquiry-based laboratories, affording attitudinal growth. Students who did not perceive biology as useful for their majors, careers, or lives did not develop positive attitudes. Students highlighted the importance of the climate of the learning environment for encouraging student contribution and noted both the benefits and pitfalls of teamwork. Informed by students' characterizations of their learning experiences, recommendations are made for inquiry-based learning in college biology. © 2017 C. Gormally. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Defining the "like" in "begetting the like": The development of inductive inference in the domain of biology

    NASA Astrophysics Data System (ADS)

    Lo, Ya-Fen

    There are evidences that very young children consider linguistic labels when making similarity judgment and inductive inferences. However, it remains unclear how labels contribute to young children's similarity judgment and inductive inferences. It has been demonstrated that labels facilitate categorical memberships about objects in young children's similarity judgment and inductive inferences. It is also suggested that young children should rely on several sources of information when making similarity judgment and inductive inferences. Three experiments were conducted to examine these interpretations, in which biological information, labeling information, and perceptual similarity information were varied in a systematic manner. Three- to eleven-year-old children were asked to judge which of two Test animals a baby animals would share biological properties with. In Experiment 1, preschool children demonstrated a basic understanding of the importance of biological information for generalizing biological properties. In Experiment 2, when the labeling information became available, young children relied on linguistic labels rather than on biological information when generalizing biological properties. At the same time, 9- to 11-year-old children relied consistently on biological information. Experiment 3 supported the results of Experiment 2 and suggested that in addition to labels, perceptual similarity also contributed to children's inductive inferences.

  13. An experimental and finite element poroelastic creep response analysis of an intervertebral hydrogel disc model in axial compression.

    PubMed

    Silva, P; Crozier, S; Veidt, M; Pearcy, M J

    2005-07-01

    A hydrogel intervertebral disc (IVD) model consisting of an inner nucleus core and an outer anulus ring was manufactured from 30 and 35% by weight Poly(vinyl alcohol) hydrogel (PVA-H) concentrations and subjected to axial compression in between saturated porous endplates at 200 N for 11 h, 30 min. Repeat experiments (n=4) on different samples (N=2) show good reproducibility of fluid loss and axial deformation. An axisymmetric nonlinear poroelastic finite element model with variable permeability was developed using commercial finite element software to compare axial deformation and predicted fluid loss with experimental data. The FE predictions indicate differential fluid loss similar to that of biological IVDs, with the nucleus losing more water than the anulus, and there is overall good agreement between experimental and finite element predicted fluid loss. The stress distribution pattern indicates important similarities with the biological IVD that includes stress transference from the nucleus to the anulus upon sustained loading and renders it suitable as a model that can be used in future studies to better understand the role of fluid and stress in biological IVDs.

  14. Construction of dose response calibration curves for dicentrics and micronuclei for X radiation in a Serbian population.

    PubMed

    Pajic, J; Rakic, B; Jovicic, D; Milovanovic, A

    2014-10-01

    Biological dosimetry using chromosome damage biomarkers is a valuable dose assessment method in cases of radiation overexposure with or without physical dosimetry data. In order to estimate dose by biodosimetry, any biological dosimetry service have to have its own dose response calibration curve. This paper reveals the results obtained after irradiation of blood samples from fourteen healthy male and female volunteers in order to establish biodosimetry in Serbia and produce dose response calibration curves for dicentrics and micronuclei. Taking into account pooled data from all the donors, the resultant fitted curve for dicentrics is: Ydic=0.0009 (±0.0003)+0.0421 (±0.0042)×D+0.0602 (±0.0022)×D(2); and for micronuclei: Ymn=0.0104 (±0.0015)+0.0824 (±0.0050)×D+0.0189 (±0.0017)×D(2). Following establishment of the dose response curve, a validation experiment was carried out with four blood samples. Applied and estimated doses were in good agreement. On this basis, the results reported here give us confidence to apply both calibration curves for future biological dosimetry requirements in Serbia. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Climate modelling of mass-extinction events: a review

    NASA Astrophysics Data System (ADS)

    Feulner, Georg

    2009-07-01

    Despite tremendous interest in the topic and decades of research, the origins of the major losses of biodiversity in the history of life on Earth remain elusive. A variety of possible causes for these mass-extinction events have been investigated, including impacts of asteroids or comets, large-scale volcanic eruptions, effects from changes in the distribution of continents caused by plate tectonics, and biological factors, to name but a few. Many of these suggested drivers involve or indeed require changes of Earth's climate, which then affect the biosphere of our planet, causing a global reduction in the diversity of biological species. It can be argued, therefore, that a detailed understanding of these climatic variations and their effects on ecosystems are prerequisites for a solution to the enigma of biological extinctions. Apart from investigations of the paleoclimate data of the time periods of mass extinctions, climate-modelling experiments should be able to shed some light on these dramatic events. Somewhat surprisingly, however, only a few comprehensive modelling studies of the climate changes associated with extinction events have been undertaken. These studies will be reviewed in this paper. Furthermore, the role of modelling in extinction research in general and suggestions for future research are discussed.

  16. Application of a temperature-dependent fluorescent dye (Rhodamine B) to the measurement of radiofrequency radiation-induced temperature changes in biological samples.

    PubMed

    Chen, Yuen Y; Wood, Andrew W

    2009-10-01

    We have applied a non-contact method for studying the temperature changes produced by radiofrequency (RF) radiation specifically to small biological samples. A temperature-dependent fluorescent dye, Rhodamine B, as imaged by laser scanning confocal microscopy (LSCM) was used to do this. The results were calibrated against real-time temperature measurements from fiber optic probes, with a calibration factor of 3.4% intensity change degrees C(-1) and a reproducibility of +/-6%. This non-contact method provided two-dimensional and three-dimensional images of temperature change and distributions in biological samples, at a spatial resolution of a few micrometers and with an estimated absolute precision of around 1.5 degrees C, with a differential precision of 0.4 degree C. Temperature rise within tissue was found to be non-uniform. Estimates of specific absorption rate (SAR) from absorbed power measurements were greater than those estimated from rate of temperature rise, measured at 1 min intervals, probably because this interval is too long to permit accurate estimation of initial temperature rise following start of RF exposure. Future experiments will aim to explore this.

  17. Teaching evolutionary biology: Pressures, stress, and coping

    NASA Astrophysics Data System (ADS)

    Griffith, Joyce A.; Brem, Sarah K.

    2004-10-01

    Understanding what teachers need to be more comfortable and confident in their profession is crucial to the future of effective teachers and scientific literacy in public schools. This study focuses on the experiences of Arizona biology teachers in teaching evolution, using a clinical model of stress to identify sources of pressure, the resulting stresses, and coping strategies they employ to alleviate these stresses. We conducted focus groups, one-on-one interviews, and written surveys with 15 biology teachers from the Phoenix area. On the basis of their responses, teachers were clustered into three categories: Conflicted, who struggle with their own beliefs and the possible impact of their teaching, Selective, who carefully avoid difficult topics and situations, and Scientists, who see no place for controversial social issues in their science classroom. Teachers from each group felt that they could be more effective in teaching evolution if they possessed the most up-to-date information about evolution and genomics, a safe space in which to reflect on the possible social and personal implications with their peers, and access to richer lesson plans for teaching evolution that include not only science but personal stories regarding how the lessons arose, and what problems and opportunities they created.

  18. Perception of Biological Motion in Schizophrenia and Healthy Individuals: A Behavioral and fMRI Study

    PubMed Central

    Kim, Jejoong; Park, Sohee; Blake, Randolph

    2011-01-01

    Background Anomalous visual perception is a common feature of schizophrenia plausibly associated with impaired social cognition that, in turn, could affect social behavior. Past research suggests impairment in biological motion perception in schizophrenia. Behavioral and functional magnetic resonance imaging (fMRI) experiments were conducted to verify the existence of this impairment, to clarify its perceptual basis, and to identify accompanying neural concomitants of those deficits. Methodology/Findings In Experiment 1, we measured ability to detect biological motion portrayed by point-light animations embedded within masking noise. Experiment 2 measured discrimination accuracy for pairs of point-light biological motion sequences differing in the degree of perturbation of the kinematics portrayed in those sequences. Experiment 3 measured BOLD signals using event-related fMRI during a biological motion categorization task. Compared to healthy individuals, schizophrenia patients performed significantly worse on both the detection (Experiment 1) and discrimination (Experiment 2) tasks. Consistent with the behavioral results, the fMRI study revealed that healthy individuals exhibited strong activation to biological motion, but not to scrambled motion in the posterior portion of the superior temporal sulcus (STSp). Interestingly, strong STSp activation was also observed for scrambled or partially scrambled motion when the healthy participants perceived it as normal biological motion. On the other hand, STSp activation in schizophrenia patients was not selective to biological or scrambled motion. Conclusion Schizophrenia is accompanied by difficulties discriminating biological from non-biological motion, and associated with those difficulties are altered patterns of neural responses within brain area STSp. The perceptual deficits exhibited by schizophrenia patients may be an exaggerated manifestation of neural events within STSp associated with perceptual errors made by healthy observers on these same tasks. The present findings fit within the context of theories of delusion involving perceptual and cognitive processes. PMID:21625492

  19. NASA space biology accomplishments, 1982

    NASA Technical Reports Server (NTRS)

    Halstead, T. W.; Pleasant, L. G.

    1983-01-01

    Summaries of NASA's Space Biology Program projects are provided. The goals, objectives, accomplishments, and future plans of each project are described in this publication as individual technical summaries.

  20. 3D in vitro technology for drug discovery.

    PubMed

    Hosseinkhani, Hossein

    2012-02-01

    Three-dimensional (3D) in vitro systems that can mimic organ and tissue structure and function in vivo, will be of great benefit for a variety of biological applications from basic biology to toxicity testing and drug discovery. There have been several attempts to generate 3D tissue models but most of these models require costly equipment, and the most serious disadvantage in them is that they are too far from the mature human organs in vivo. Because of these problems, research and development in drug discovery, toxicity testing and biotech industries are highly expensive, and involve sacrifice of countless animals and it takes several years to bring a single drug/product to the market or to find the toxicity or otherwise of chemical entities. Our group has been actively working on several alternative models by merging biomaterials science, nanotechnology and biological principles to generate 3D in vitro living organs, to be called "Human Organs-on-Chip", to mimic natural organ/tissues, in order to reduce animal testing and clinical trials. We have fabricated a novel type of mechanically and biologically bio-mimicking collagen-based hydrogel that would provide for interconnected mini-wells in which 3D cell/organ culture of human samples in a manner similar to human organs with extracellular matrix (ECM) molecules would be possible. These products mimic the physical, chemical, and biological properties of natural organs and tissues at different scales. This paper will review the outcome of our several experiments so far in this direction and the future perspectives.

  1. Biological risk factors for suicidal behaviors: a meta-analysis

    PubMed Central

    Chang, B P; Franklin, J C; Ribeiro, J D; Fox, K R; Bentley, K H; Kleiman, E M; Nock, M K

    2016-01-01

    Prior studies have proposed a wide range of potential biological risk factors for future suicidal behaviors. Although strong evidence exists for biological correlates of suicidal behaviors, it remains unclear if these correlates are also risk factors for suicidal behaviors. We performed a meta-analysis to integrate the existing literature on biological risk factors for suicidal behaviors and to determine their statistical significance. We conducted a systematic search of PubMed, PsycInfo and Google Scholar for studies that used a biological factor to predict either suicide attempt or death by suicide. Inclusion criteria included studies with at least one longitudinal analysis using a biological factor to predict either of these outcomes in any population through 2015. From an initial screen of 2541 studies we identified 94 cases. Random effects models were used for both meta-analyses and meta-regression. The combined effect of biological factors produced statistically significant but relatively weak prediction of suicide attempts (weighted mean odds ratio (wOR)=1.41; CI: 1.09–1.81) and suicide death (wOR=1.28; CI: 1.13–1.45). After accounting for publication bias, prediction was nonsignificant for both suicide attempts and suicide death. Only two factors remained significant after accounting for publication bias—cytokines (wOR=2.87; CI: 1.40–5.93) and low levels of fish oil nutrients (wOR=1.09; CI: 1.01–1.19). Our meta-analysis revealed that currently known biological factors are weak predictors of future suicidal behaviors. This conclusion should be interpreted within the context of the limitations of the existing literature, including long follow-up intervals and a lack of tests of interactions with other risk factors. Future studies addressing these limitations may more effectively test for potential biological risk factors. PMID:27622931

  2. Biology School Textbooks and Their Role for Students' Success in Learning Sciences

    ERIC Educational Resources Information Center

    Pop-Pacurar, Irina; Ciascai, Liliana

    2010-01-01

    What is the quality of the Romanian biology textbooks? The article gives answers to this question by watching the evolution of a textbook and by suggesting an exercise for analyzing and assessing the alternative biology textbooks. The opportunity of this analysis has been offered to students, future teachers of biology, around the time when they…

  3. The effects of academic literacy instruction on engagement and conceptual understanding of biology of ninth-grade students

    NASA Astrophysics Data System (ADS)

    Larson, Susan C.

    Academic language, discourse, vocabulary, motivation, and comprehension of complex texts and concepts are keys to learning subject-area content. The need for a disciplinary literacy approach in high school classrooms accelerates as students become increasing disengaged in school and as content complexity increases. In the present quasi-experimental mixed-method study, a ninth-grade biology unit was designed with an emphasis on promoting academic literacy skills, discourse, meaningful constructivist learning, interest development, and positive learning experiences in order to learn science content. Quantitative and qualitative analyses on a variety of measures completed by 222 students in two high schools revealed that those who received academic literacy instruction in science class performed at significantly higher levels of conceptual understanding of biology content, academic language and vocabulary use, reasoned thought, engagement, and quality of learning experience than control-group students receiving traditionally-organized instruction. Academic literacy was embedded into biology instruction to engage students in meaning-making discourses of science to promote learning. Academic literacy activities were organized according the phases of interest development to trigger and sustain interest and goal-oriented engagement throughout the unit. Specific methods included the Generative Vocabulary Matrix (GVM), scenario-based writing, and involvement in a variety of strategically-placed discourse activities to sustain or "boost" engagement for learning. Traditional instruction for the control group included teacher lecture, whole-group discussion, a conceptual organizer, and textbook reading. Theoretical foundations include flow theory, sociocultural learning theory, and interest theory. Qualitative data were obtained from field notes and participants' journals. Quantitative survey data were collected and analyzed using the Experience Sampling Method (ESM) to measure cognitive and emotional states, revealing patterns of engagement, quality of experience, and flow over the course of the instructional unit. Conceptual understanding was measured using the state persuasive writing rubric to analyze science essays in which students supported a claim with scientific evidence. The study contributes an Engagement Model of Academic Literacy for Learning (EngageALL), a Rubric for Academic Persuasive Writing (RAPW), a unique classification system for analyzing academic vocabulary, and suggestions for situated professional development around a research-based planning framework. A discussion addresses a new direction for future research that explores academic identity development.

  4. Radiation Information for Designing and Interpreting Biological Experiments Onboard Missions Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Straume, T.; Slaba, T.; Bhattacharya, S.; Braby, L. A.

    2017-01-01

    There is growing interest in flying biological experiments beyond low-Earth orbit (LEO) to measure biological responses potentially relevant to those expected during a human mission to Mars. Such experiments could be payloads onboard precursor missions, including unmanned private-public partnerships, as well as small low-cost spacecraft (satellites) designed specifically for biosentinel type missions. Designing such experiments requires knowledge of the radiation environment and its interactions with both the spacecraft and the experimental payload. Information is provided here that is useful for designing such experiments.

  5. Practices and exploration on competition of molecular biological detection technology among students in food quality and safety major.

    PubMed

    Chang, Yaning; Peng, Yuke; Li, Pengfei; Zhuang, Yingping

    2017-07-08

    With the increasing importance in the application of the molecular biological detection technology in the field of food safety, strengthening education in molecular biology experimental techniques is more necessary for the culture of the students in food quality and safety major. However, molecular biology experiments are not always in curricula of Food quality and safety Majors. This paper introduced a project "competition of molecular biological detection technology for food safety among undergraduate sophomore students in food quality and safety major", students participating in this project needed to learn the fundamental molecular biology experimental techniques such as the principles of molecular biology experiments and genome extraction, PCR and agarose gel electrophoresis analysis, and then design the experiments in groups to identify the meat species in pork and beef products using molecular biological methods. The students should complete the experimental report after basic experiments, write essays and make a presentation after the end of the designed experiments. This project aims to provide another way for food quality and safety majors to improve their knowledge of molecular biology, especially experimental technology, and enhances them to understand the scientific research activities as well as give them a chance to learn how to write a professional thesis. In addition, in line with the principle of an open laboratory, the project is also open to students in other majors in East China University of Science and Technology, in order to enhance students in other majors to understand the fields of molecular biology and food safety. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):343-350, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  6. Assessing signal-to-noise in quantitative proteomics: multivariate statistical analysis in DIGE experiments.

    PubMed

    Friedman, David B

    2012-01-01

    All quantitative proteomics experiments measure variation between samples. When performing large-scale experiments that involve multiple conditions or treatments, the experimental design should include the appropriate number of individual biological replicates from each condition to enable the distinction between a relevant biological signal from technical noise. Multivariate statistical analyses, such as principal component analysis (PCA), provide a global perspective on experimental variation, thereby enabling the assessment of whether the variation describes the expected biological signal or the unanticipated technical/biological noise inherent in the system. Examples will be shown from high-resolution multivariable DIGE experiments where PCA was instrumental in demonstrating biologically significant variation as well as sample outliers, fouled samples, and overriding technical variation that would not be readily observed using standard univariate tests.

  7. Stories of staying and leaving: A mixed methods analysis of biology undergraduate choice, persistence, and departure

    NASA Astrophysics Data System (ADS)

    Lang, Sarah Adrienne

    Using a sequential, explanatory mixed methods design, this dissertation study compared students who persist in the biology major (persisters) with students who leave the biology major (switchers) in terms of how their pre-college experiences, college biology experiences, and biology performance figured into their choice of biology and their persistence in or departure from the biology major. This study combined (1) quantitative comparisons of biology persisters and switchers via a questionnaire developed for the study and survival analysis of a larger population of biology freshmen with (2) qualitative comparison of biology switchers and persisters via semi-structured life story interviews and homogenous focus groups. 319 students (207 persisters and 112 switchers) participated in the questionnaire and 36 students (20 persisters and 16 switchers) participated in life story and focus group interviews. All participants were undergraduates who entered The University of Texas at Austin as biology freshmen in the fall semesters of 2000 through 2004. Findings of this study suggest: (1) Regardless of eventual major, biology students enter college with generally the same suite of experiences, sources of personal encouragement, and reasons for choosing the biology major; (2) Despite the fact that they have also had poor experiences in the major, biology persisters do not actively decide to stay in the biology major; they simply do not leave; (3) Based upon survival analysis, biology students are most at-risk of leaving the biology major during the first two years of college and if they are African-American or Latino, women, or seeking a Bachelor of Arts degree (rather than a Bachelor of Science); (4) Biology switchers do not leave biology due to preference for other disciplines; they leave due to difficulties or dissatisfaction with aspects of the biology major, including their courses, faculty, and peers; (5) Biology performance has a differential effect on persistence in the biology major, depending on how well students perform in comparison to other courses or other students.

  8. Sacred Cows and Stubborn Mules: The Imperative to Reform the US Code

    DTIC Science & Technology

    2013-02-14

    National Guard have also added specialized domestic military missions like the Chemical, Biological , Radiological and Nuclear (CBRN) Response Enterprise...lists cyber and EMP as exigent future threats, adding that the most predictable future megatrend is empowerment. “Individuals and small groups will...and include a Defense CBRN Response Force (DCRF) and two CBRN Response Elements (CRE). The US Marines also maintain two Chemical, Biological Incident

  9. ["Biology and the future of man", 18-24 September 1974: The history of a future].

    PubMed

    Daled, Pierre-Frédéric

    2015-01-01

    This article sketches the context of the 1960s and 1970s during which was held in Paris in 1974 the international conference "Biology and the future of man", and shows by this reminder that the Paris conference was a precursor moment in Europe in terms of academic answers to ethical questions that were emerging in the USA. At its extent, the Paris conference was a pioneer in the history of "bioethics" and "environmental ethics". Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  10. Workshop Introduction: Systems Biology and Biological Models

    EPA Science Inventory

    As we consider the future of toxicity testing, the importance of applying biological models to this problem is clear. Modeling efforts exist along a continuum with respect to the level of organization (e.g. cell, tissue, organism) linked to the resolution of the model. Generally,...

  11. Light Microsopy Module, International Space Station Premier Automated Microscope

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Sicker, Ronald J.; Chiaramonte, Francis P.; Brown, Daniel F.; O'Toole, Martin A.; Foster, William M.; Motil, Brian J.; Abbot-Hearn, Amber Ashley; Atherton, Arthur Johnson; Beltram, Alexander; hide

    2015-01-01

    The Light Microscopy Module (LMM) was launched to the International Space Station (ISS) in 2009 and began science operations in 2010. It continues to support Physical and Biological scientific research on ISS. During 2015, if all goes as planned, five experiments will be completed: [1] Advanced Colloids Experiments with a manual sample base -3 (ACE-M-3), [2] the Advanced Colloids Experiment with a Heated Base -1 (ACE-H-1), [3] (ACE-H-2), [4] the Advanced Plant Experiment -03 (APEX-03), and [5] the Microchannel Diffusion Experiment (MDE). Preliminary results, along with an overview of present and future LMM capabilities will be presented; this includes details on the planned data imaging processing and storage system, along with the confocal upgrade to the core microscope. [1] New York University: Paul Chaikin, Andrew Hollingsworth, and Stefano Sacanna, [2] University of Pennsylvania: Arjun Yodh and Matthew Gratale, [3] a consortium of universities from the State of Kentucky working through the Experimental Program to Stimulate Competitive Research (EPSCoR): Stuart Williams, Gerold Willing, Hemali Rathnayake, et al., [4] from the University of Florida and CASIS: Anna-Lisa Paul and Rob Ferl, and [5] from the Methodist Hospital Research Institute from CASIS: Alessandro Grattoni and Giancarlo Canavese.

  12. ISPyB: an information management system for synchrotron macromolecular crystallography.

    PubMed

    Delagenière, Solange; Brenchereau, Patrice; Launer, Ludovic; Ashton, Alun W; Leal, Ricardo; Veyrier, Stéphanie; Gabadinho, José; Gordon, Elspeth J; Jones, Samuel D; Levik, Karl Erik; McSweeney, Seán M; Monaco, Stéphanie; Nanao, Max; Spruce, Darren; Svensson, Olof; Walsh, Martin A; Leonard, Gordon A

    2011-11-15

    Individual research groups now analyze thousands of samples per year at synchrotron macromolecular crystallography (MX) resources. The efficient management of experimental data is thus essential if the best possible experiments are to be performed and the best possible data used in downstream processes in structure determination pipelines. Information System for Protein crystallography Beamlines (ISPyB), a Laboratory Information Management System (LIMS) with an underlying data model allowing for the integration of analyses down-stream of the data collection experiment was developed to facilitate such data management. ISPyB is now a multisite, generic LIMS for synchrotron-based MX experiments. Its initial functionality has been enhanced to include improved sample tracking and reporting of experimental protocols, the direct ranking of the diffraction characteristics of individual samples and the archiving of raw data and results from ancillary experiments and post-experiment data processing protocols. This latter feature paves the way for ISPyB to play a central role in future macromolecular structure solution pipelines and validates the application of the approach used in ISPyB to other experimental techniques, such as biological solution Small Angle X-ray Scattering and spectroscopy, which have similar sample tracking and data handling requirements.

  13. The Future of Biologic Coatings for Orthopaedic Implants

    PubMed Central

    Goodman, Stuart B.; Yao, Zhenyu; Keeney, Michael; Yang, Fan

    2013-01-01

    Implants are widely used for othopaedic applications such as fixing fractures, repairing nonunions, obtaining a joint arthrodesis, total joint arthroplasty, spinal reconstruction, and soft tissue anchorage. Previously, orthopaedic implants were designed simply as mechanical devices; the biological aspects of the implant were a byproduct of stable internal/external fixation of the device to the surrounding bone or soft tissue. More recently, biologic coatings have been incorporated into orthopaedic implants in order to modulate the surrounding biological environment. This opinion article reviews current and potential future use of biologic coatings for orthopaedic implants to facilitate osseointegration and mitigate possible adverse tissue responses including the foreign body reaction and implant infection. While many of these coatings are still in the preclinical testing stage, bioengineers, material scientists and surgeons continue to explore surface coatings as a means of improving clinical outcome of patients undergoing orthopaedic surgery. PMID:23391496

  14. Designing microarray and RNA-Seq experiments for greater systems biology discovery in modern plant genomics.

    PubMed

    Yang, Chuanping; Wei, Hairong

    2015-02-01

    Microarray and RNA-seq experiments have become an important part of modern genomics and systems biology. Obtaining meaningful biological data from these experiments is an arduous task that demands close attention to many details. Negligence at any step can lead to gene expression data containing inadequate or composite information that is recalcitrant for pattern extraction. Therefore, it is imperative to carefully consider experimental design before launching a time-consuming and costly experiment. Contemporarily, most genomics experiments have two objectives: (1) to generate two or more groups of comparable data for identifying differentially expressed genes, gene families, biological processes, or metabolic pathways under experimental conditions; (2) to build local gene regulatory networks and identify hierarchically important regulators governing biological processes and pathways of interest. Since the first objective aims to identify the active molecular identities and the second provides a basis for understanding the underlying molecular mechanisms through inferring causality relationships mediated by treatment, an optimal experiment is to produce biologically relevant and extractable data to meet both objectives without substantially increasing the cost. This review discusses the major issues that researchers commonly face when embarking on microarray or RNA-seq experiments and summarizes important aspects of experimental design, which aim to help researchers deliberate how to generate gene expression profiles with low background noise but with more interaction to facilitate novel biological discoveries in modern plant genomics. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  15. The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students

    NASA Astrophysics Data System (ADS)

    Livengood, Timothy A.; Goldstein, J. J.; Vanhala, H. A. T.; Johnson, M.; Hulslander, M.

    2012-10-01

    The Student Spaceflight Experiments Program (SSEP) has flown 42 experiments to space, on behalf of students from middle school through community college, on 3 missions: each of the last 2 Space Shuttle flights, and the first SpaceX resupply flight to the International Space Station (ISS). SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. Over 9000 students participated in the initial 3 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 2 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches (that also fly to space). Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory.

  16. Developing student collaborations across disciplines, distances, and institutions.

    PubMed

    Knisley, Jeff; Behravesh, Esfandiar

    2010-01-01

    Because quantitative biology requires skills and concepts from a disparate collection of different disciplines, the scientists of the near future will increasingly need to rely on collaborations to produce results. Correspondingly, students in disciplines impacted by quantitative biology will need to be taught how to create and engage in such collaborations. In response to this important curricular need, East Tennessee State University and Georgia Technological University/Emory University cooperated in an unprecedented curricular experiment in which theoretically oriented students at East Tennessee State designed biophysical models that were implemented and tested experimentally by biomedical engineers at the Wallace H. Coulter Department of Biomedical Engineering at Georgia Technological University and Emory University. Implementing the collaborations between two institutions allowed an assessment of the student collaborations from before the groups of students had met for the first time until after they had finished their projects, thus providing insight about the formation and conduct of such collaborations that could not have been obtained otherwise.

  17. Towards improved biomonitoring tools for an intensified sustainable multi-use environment.

    PubMed

    van der Meer, Jan Roelof

    2016-09-01

    The increasing use of our environment for multiple contrasting activities (e.g. fisheries, tourism) will have to be accompanied by improved monitoring of environmental quality, to avoid transboundary conflicts and ensure long-term sustainable intensified usage. Biomonitoring approaches are appropriate for this, since they can integrate biological effects of environmental exposure rather than measure individual compound concentrations. Recent advances in biomonitoring concepts and tools focus on single-cell assays and purified biological components that can be miniaturized and integrated in automated systems. Despite these advances, we are still very far from being able to deploy bioassays routinely in environmental monitoring, mostly because of lack of experience in interpreting responses and insufficient robustness of the biosensors for their environmental application. Further future challenges include broadening the spectrum of detectable compounds by biosensors, accelerate response times and combining sample pretreatment strategies with bioassays. © 2016 The Author. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  18. Intentionally flawed manuscripts as means for teaching students to critically evaluate scientific papers.

    PubMed

    Ferenc, Jaroslav; Červenák, Filip; Birčák, Erik; Juríková, Katarína; Goffová, Ivana; Gorilák, Peter; Huraiová, Barbora; Plavá, Jana; Demecsová, Loriana; Ďuríková, Nikola; Galisová, Veronika; Gazdarica, Matej; Puškár, Marek; Nagy, Tibor; Nagyová, Soňa; Mentelová, Lucia; Slaninová, Miroslava; Ševčovicová, Andrea; Tomáška, Ľubomír

    2018-01-01

    As future scientists, university students need to learn how to avoid making errors in their own manuscripts, as well as how to identify flaws in papers published by their peers. Here we describe a novel approach on how to promote students' ability to critically evaluate scientific articles. The exercise is based on instructing teams of students to write intentionally flawed manuscripts describing the results of simple experiments. The teams are supervised by instructors advising the students during manuscript writing, choosing the 'appropriate' errors, monitoring the identification of errors made by the other team and evaluating the strength of their arguments in support of the identified errors. We have compared the effectiveness of the method with a journal club-type seminar. Based on the results of our assessment we propose that the described seminar may effectively complement the existing approaches to teach critical scientific thinking. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):22-30, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  19. Developing Student Collaborations across Disciplines, Distances, and Institutions

    PubMed Central

    Behravesh, Esfandiar

    2010-01-01

    Because quantitative biology requires skills and concepts from a disparate collection of different disciplines, the scientists of the near future will increasingly need to rely on collaborations to produce results. Correspondingly, students in disciplines impacted by quantitative biology will need to be taught how to create and engage in such collaborations. In response to this important curricular need, East Tennessee State University and Georgia Technological University/Emory University cooperated in an unprecedented curricular experiment in which theoretically oriented students at East Tennessee State designed biophysical models that were implemented and tested experimentally by biomedical engineers at the Wallace H. Coulter Department of Biomedical Engineering at Georgia Technological University and Emory University. Implementing the collaborations between two institutions allowed an assessment of the student collaborations from before the groups of students had met for the first time until after they had finished their projects, thus providing insight about the formation and conduct of such collaborations that could not have been obtained otherwise. PMID:20810970

  20. Culturally Diverse Undergraduate Researchers' Academic Outcomes and Perceptions of Their Research Mentoring Relationships

    NASA Astrophysics Data System (ADS)

    Byars-Winston, Angela M.; Branchaw, Janet; Pfund, Christine; Leverett, Patrice; Newton, Joseph

    2015-10-01

    Few studies have empirically investigated the specific factors in mentoring relationships between undergraduate researchers (mentees) and their mentors in the biological and life sciences that account for mentees' positive academic and career outcomes. Using archival evaluation data from more than 400 mentees gathered over a multi-year period (2005-2011) from several undergraduate biology research programs at a large, Midwestern research university, we validated existing evaluation measures of the mentored research experience and the mentor-mentee relationship. We used a subset of data from mentees (77% underrepresented racial/ethnic minorities) to test a hypothesized social cognitive career theory model of associations between mentees' academic outcomes and perceptions of their research mentoring relationships. Results from path analysis indicate that perceived mentor effectiveness indirectly predicted post-baccalaureate outcomes via research self-efficacy beliefs. Findings are discussed with implications for developing new and refining existing tools to measure this impact, programmatic interventions to increase the success of culturally diverse research mentees and future directions for research.

  1. Particle Radiation Therapy for Gastrointestinal Malignancies

    PubMed Central

    Meyer, Jeffrey J.; Willett, Christopher G.

    2007-01-01

    Treatment-related toxicity is common in the radiotherapeutic management of cancers of the gastrointestinal tract. These toxicities can diminish treatment efficacy by necessitating treatment breaks, limiting the radiation dose that can be delivered, and hindering concomitant use of chemotherapy and targeted drug agents. Many efforts have focused on widening the gap between the likelihood of tumor control and the likelihood of toxicities associated with radiation. Use of particles that exhibit a Bragg peak phenomenon in their interactions with tissue, such as protons, heavier ions like carbon ions, and pions, is one means of concentrating radiation dose in tumors and away from normal tissues. Neutron beams have also been used in the treatment of gastrointestinal cancers in an effort to take advantage of their potent biologic effects. This report reviews basic particle radiation physics and biology, as well as the clinical experience with protons, heavier ions, pions, and neutrons in the treatment of various gastrointestinal malignancies. Potential future directions in clinical research with particle therapy are discussed. PMID:19360149

  2. Crambescin C1 Exerts a Cytoprotective Effect on HepG2 Cells through Metallothionein Induction

    PubMed Central

    Roel, María; Rubiolo, Juan A.; Ternon, Eva; Thomas, Olivier P.; Vieytes, Mercedes R.; Botana, Luis M.

    2015-01-01

    The Mediterranean marine sponge Crambe crambe is the source of two families of guanidine alkaloids known as crambescins and crambescidins. Some of the biological effects of crambescidins have been previously reported while crambescins have undergone little study. Taking this into account, we performed comparative transcriptome analysis to examine the effect of crambescin-C1 (CC1) on human tumor hepatocarcinoma cells HepG2 followed by validation experiments to confirm its predicted biological activities. We report herein that, while crambescin-A1 has a minor effect on these cells, CC1 protects them against oxidative injury by means of metallothionein induction even at low concentrations. Additionally, at high doses, CC1 arrests the HepG2 cell cycle in G0/G1 and thus inhibits tumor cell proliferation. The findings presented here provide the first detailed approach regarding the different effects of crambescins on tumor cells and provide a basis for future studies on other possible cellular mechanisms related to these bioactivities. PMID:26225985

  3. Biogeochemical and biological impacts of diazotroph blooms in a low-nutrient, low-chlorophyll ecosystem: synthesis from the VAHINE mesocosm experiment (New Caledonia)

    NASA Astrophysics Data System (ADS)

    Bonnet, Sophie; Baklouti, Melika; Gimenez, Audrey; Berthelot, Hugo; Berman-Frank, Ilana

    2016-08-01

    In marine ecosystems, biological N2 fixation provides the predominant external source of nitrogen (N; 140 ± 50 Tg N yr-1), contributing more than atmospheric and riverine inputs to the N supply. Yet the fate and magnitude of the newly fixed N, or diazotroph-derived N (hereafter named DDN) in marine ecosystems is poorly understood. Moreover, whether the DDN is preferentially and directly exported out of the photic zone, recycled by the microbial loop and/or transferred into larger organisms remains unclear. These questions were investigated in the framework of the VAHINE (VAriability of vertical and tropHIc transfer of diazotroph derived N in the south wEst Pacific) project. Triplicate large volume ( ˜ 50 m3) mesocosms were deployed in the tropical south-west Pacific coastal ocean (New Caledonia). The mesocosms were intentionally fertilized with ˜ 0.8 µM dissolved inorganic phosphorus (DIP) at the start of the experiment to stimulate diazotrophy. A total of 47 stocks, fluxes, enzymatic activities and diversity parameters were measured daily inside and outside the mesocosms by the 40 scientists involved in the project. The experiment lasted for 23 days and was characterized by two distinct and successive diazotroph blooms: a dominance of diatom-diazotroph associations (DDAs) during the first half of the experiment (days 2-14) followed by a bloom of unicellular cyanobacterial lineage C (UCYN-C during the second half of the experiment (days 15-23). These conditions provided a unique opportunity to compare the DDN transfer and export efficiency associated with different diazotrophs. Here we summarize the major experimental and modelling results obtained during the project and described in the VAHINE special issue, in particular those regarding the evolution of the main standing stocks, fluxes and biological characteristics over the 23-day experiment, the contribution of N2 fixation to export fluxes, the DDN released to dissolved pool and its transfer to the planktonic food web (bacteria, phytoplankton, zooplankton). We then apply our Eco3M modelling platform to further infer the fate of DDN in the ecosystem and the role of N2 fixation on productivity, food web structure and carbon export. Recommendations for future work are finally provided in the conclusion section.

  4. Within-season increase in parental investment in a long-lived bird species: investment shifts to maximize successful reproduction?

    PubMed

    Schneider, N A; Griesser, M

    2015-01-01

    In nest-building species predation of nest contents is a main cause of reproductive failure and parents have to trade off reproductive investment against antipredatory behaviours. While this trade-off is modified by lifespan (short-lived species prioritize current reproduction; long-lived species prioritize future reproduction), it may vary within a breeding season, but this idea has only been tested in short-lived species. Yet, life history theory does not make any prediction how long-lived species should trade off current against future reproductive investment within a season. Here, we investigated this trade-off through predator-exposure experiments in a long-lived bird species, the brown thornbill. We exposed breeding pairs that had no prior within-season reproductive success to the models of a nest predator and a predator of adults during their first or second breeding attempt. Overall, parents reduced their feeding rate in the presence of a predator, but parents feeding second broods were more risk sensitive and almost ceased feeding when exposed to both types of predators. However, during second breeding attempts, parents had larger clutches and a higher feeding rate in the absence of predators than during first breeding attempts and approached both types of predators closer when mobbing. Our results suggest that the trade-off between reproductive investment and risk-taking can change in a long-lived species within a breeding season depending on both prior nest predation and renesting opportunities. These patterns correspond to those in short-lived species, raising the question of whether a within-season shift in reproductive investment trade-offs is independent of lifespan. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  5. Breaking the cycle: future faculty begin teaching with learner-centered strategies after professional development.

    PubMed

    Ebert-May, Diane; Derting, Terry L; Henkel, Timothy P; Middlemis Maher, Jessica; Momsen, Jennifer L; Arnold, Bryan; Passmore, Heather A

    2015-01-01

    The availability of reliable evidence for teaching practices after professional development is limited across science, technology, engineering, and mathematics disciplines, making the identification of professional development "best practices" and effective models for change difficult. We aimed to determine the extent to which postdoctoral fellows (i.e., future biology faculty) believed in and implemented evidence-based pedagogies after completion of a 2-yr professional development program, Faculty Institutes for Reforming Science Teaching (FIRST IV). Postdocs (PDs) attended a 2-yr training program during which they completed self-report assessments of their beliefs about teaching and gains in pedagogical knowledge and experience, and they provided copies of class assessments and video recordings of their teaching. The PDs reported greater use of learner-centered compared with teacher-centered strategies. These data were consistent with the results of expert reviews of teaching videos. The majority of PDs (86%) received video ratings that documented active engagement of students and implementation of learner-centered classrooms. Despite practice of higher-level cognition in class sessions, the items used by the PDs on their assessments of learning focused on lower-level cognitive skills. We attributed the high success of the FIRST IV program to our focus on inexperienced teachers, an iterative process of teaching practice and reflection, and development of and teaching a full course. © 2015 D. Ebert-May et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Effect of increased temperature, CO2, and iron on nitrate uptake and primary productivity in the coastal Ross Sea

    NASA Astrophysics Data System (ADS)

    Bronk, D. A.; Spackeen, J.; Sipler, R. E.; Bertrand, E. M.; Roberts, Q. N.; Xu, K.; Baer, S. E.; McQuaid, J.; Zhu, Z.; Walworth, N. G.; Hutchins, D. A.; Allen, A. E.

    2016-02-01

    Western Antarctic Seas are rapidly changing as a result of elevated concentrations of CO2 and rising sea surface temperatures. It is critical to determine how the structure and function of microbial communities will be impacted by these changes in the future because the Southern Ocean has seasonally high rates of primary production, is an important sink for anthropogenic CO2, and supports a diverse assemblage of higher trophic level organisms. During the Austral summer of 2013 and 2015, a collaborative research group conducted a series of experiments to understand how the individual and combined effects of temperature, CO2, and iron impact Ross Sea microorganisms. Our project used a variety of approaches, including batch experiments, semi-continuous experiments, and continuous-culturing over extended time intervals, to determine how future changes may shift Ross Sea microbial communities and how nutrient cycling and carbon biogeochemistry may subsequently be altered. Chemical and biological parameters were measured throughout the experiments to assess changes in community composition and nutrient cycling, including uptake rate measurements of nitrate and bicarbonate by different size fractions of microorganisms. Relative to the control, nitrate uptake rates significantly increased when temperature and iron were elevated indicating that temperature and iron are important physical drivers that influence nutrient cycling. Elevations in temperature and iron independently and synergistically produced higher rates than elevated CO2. Our nutrient uptake results also suggest that the physiology of large microorganisms will be more impacted by climate change variables than small microorganisms.

  7. Experiences in fragment-based drug discovery.

    PubMed

    Murray, Christopher W; Verdonk, Marcel L; Rees, David C

    2012-05-01

    Fragment-based drug discovery (FBDD) has become established in both industry and academia as an alternative approach to high-throughput screening for the generation of chemical leads for drug targets. In FBDD, specialised detection methods are used to identify small chemical compounds (fragments) that bind to the drug target, and structural biology is usually employed to establish their binding mode and to facilitate their optimisation. In this article, we present three recent and successful case histories in FBDD. We then re-examine the key concepts and challenges of FBDD with particular emphasis on recent literature and our own experience from a substantial number of FBDD applications. Our opinion is that careful application of FBDD is living up to its promise of delivering high quality leads with good physical properties and that in future many drug molecules will be derived from fragment-based approaches. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Co-Parenting Relationship Experiences of Black Adolescent Mothers in Active Romantic Partnerships With the Fathers of Their Children.

    PubMed

    Nelson, LaRon E; Thach, Chia T; Shelton, Melissa M; Boyer, Cherrie B

    2015-08-01

    We conducted an interpretive description of co-parenting relationship experiences of romantically involved Black adolescent mothers and fathers with shared biological children. The study was conducted in Brooklyn, New York, using data from individual in-depth interviews with adolescent mothers and fathers (n = 10). Four themes were identified: (a) putting our heads together; (b) balancing childhood and parenthood; (c) less money, more problems; and (d) if we use condoms, it is for contraception. The co-parenting couples managed very complex relationships, but their mutual interest in the welfare of their children was a relational asset. Co-parents had sparse financial resources but used a moral economy strategy to provide mutual support. Future research is needed that focuses on identifying other co-parent relationship assets and integrating and evaluating their utility for enhancing interventions for adolescent families. © The Author(s) 2014.

  9. Rational Design of Glycomimetic Compounds Targeting the Saccharomyces cerevisiae Transglycosylase Gas2.

    PubMed

    Delso, Ignacio; Valero-González, Jessika; Marca, Eduardo; Tejero, Tomás; Hurtado-Guerrero, Ramón; Merino, Pedro

    2016-02-01

    The transglycosylase Saccharomyces cerevisiae Gas2 (ScGas2) belongs to a large family of enzymes that are key players in yeast cell wall remodeling. Despite its biologic importance, no studies on the synthesis of substrate-based compounds as potential inhibitors have been reported. We have synthesized a series of docking-guided glycomimetics that were evaluated by fluorescence spectroscopy and saturation-transfer difference (STD) NMR experiments, revealing that a minimum of three glucose units linked via a β-(1,3) linkage are required for achieving molecular recognition at the binding donor site. The binding mode of our compounds is further supported by STD-NMR experiments using the active site-mutants Y107Q and Y244Q. Our results are important for both understanding of ScGas2-substrate interactions and setting up the basis for future design of glycomimetics as new antifungal agents. © 2015 John Wiley & Sons A/S.

  10. An in vivo Investigation into Temperature-Controlled Stratification of Sub-Seafloor Populations

    NASA Astrophysics Data System (ADS)

    McClelland, H. L. O.; Morono, Y.; Fike, D. A.; Bradley, A. S.

    2017-12-01

    The deep subsurface is characterized by a paucity of carbon substrates and biologically exploitable chemical potential energy. These metabolic challenges can be exacerbated by high temperatures, due to increased costs of cellular maintenance. Though sparse, microbial life persists in such environments, however, the degree to which temperature gradients result in the stratification extremophilic sub-seafloor populations is poorly understood. During Expedition 370, we established a matrix of incubation experiments with sediment samples taken from 8 depths corresponding to in situ temperatures of approximately 37, 50, 60, 70, 80, 90, 100 and 110°C, which were incubated in oxygen-free, acetate- and sulfate- supplemented, artificial seawater at temperatures of 37, 50, 60, 70 and 80°C. Substrates include large isotopic labels. Following separation from the sediment, cells were analyzed using SIMS, allowing estimates of biomass synthesis rates. We are interested in discussing potential future experiments and collaborations using this resource.

  11. Metaphor and music emotion: Ancient views and future directions.

    PubMed

    Pannese, Alessia; Rappaz, Marc-André; Grandjean, Didier

    2016-08-01

    Music is often described in terms of emotion. This notion is supported by empirical evidence showing that engaging with music is associated with subjective feelings, and with objectively measurable responses at the behavioural, physiological, and neural level. Some accounts, however, reject the idea that music may directly induce emotions. For example, the 'paradox of negative emotion', whereby music described in negative terms is experienced as enjoyable, suggests that music might move the listener through indirect mechanisms in which the emotional experience elicited by music does not always coincide with the emotional label attributed to it. Here we discuss the role of metaphor as a potential mediator in these mechanisms. Drawing on musicological, philosophical, and neuroscientific literature, we suggest that metaphor acts at key stages along and between physical, biological, cognitive, and contextual processes, and propose a model of music experience in which metaphor mediates between language, emotion, and aesthetic response. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. High Resolution Tissue Imaging Using the Single-probe Mass Spectrometry under Ambient Conditions

    NASA Astrophysics Data System (ADS)

    Rao, Wei; Pan, Ning; Yang, Zhibo

    2015-06-01

    Ambient mass spectrometry imaging (MSI) is an emerging field with great potential for the detailed spatial analysis of biological samples with minimal pretreatment. We have developed a miniaturized sampling and ionization device, the Single-probe, which uses in-situ surface micro-extraction to achieve high detection sensitivity and spatial resolution during MSI experiments. The Single-probe was coupled to a Thermo LTQ Orbitrap XL mass spectrometer and was able to create high spatial and high mass resolution MS images at 8 ± 2 and 8.5 μm on flat polycarbonate microscope slides and mouse kidney sections, respectively, which are among the highest resolutions available for ambient MSI techniques. Our proof-of-principle experiments indicate that the Single-probe MSI technique has the potential to obtain ambient MS images with very high spatial resolutions with minimal sample preparation, which opens the possibility for subcellular ambient tissue MSI to be performed in the future.

  13. Neurosciences research in space - Future directions

    NASA Technical Reports Server (NTRS)

    Sulzman, Frank M.; Wolfe, James W.

    1991-01-01

    In order to gain a better understanding of the effects of long-duration space missions on the central nervous system, near-term research, to take place from 1990-1995, will be directed at investigating the acute effects of microgravity and the 'space adaptation syndrome'. These include experiments scheduled for the Spacelab Life Sciences 1 which is designed to evaluate changes in the visual, vestibular, and proprioceptive systems. An extensive series of experiments, collectively termed Microgravity Vestibular Investigations (MVI), is also planned for the IML-1 mission to be flown in 1992. The IML-2 mission will emphasize behavior and performance, biological rhythms, and further vestibular studies. Mid-term goals, projected to be achieved from 1995-2000, include the use of new technology such as magnetic recording techniques. Long-term goals are also discussed including studies dealing with neuronal plasticity and sensory substitution, augmentation, and robotic telepresence.

  14. [The future of inflammatory bowel disease from the perspective of Digestive Disease Week 2012].

    PubMed

    Gomollón, Fernando

    2012-09-01

    The new information presented in Digestive Disease Week has allowed us to speculate on the future of inflammatory bowel disease. Manipulation of diet and the microbioma will probably play an increasingly important role in the treatment of this disease and, in the long term, in its prevention. Biological agents will probably be used earlier and more widely; new information on levels of biological agents, mucosal healing and new comparative studies will also allow these agents to be used in a more precise and personalized way. In addition to infliximab, adalimumab, natalizumab and certolizumab, other biological agents will be employed; among the first of these to be used will be ustekinumab, golimumab and vedolizumab. In the near future, biological agents will be used as frequently in ulcerative colitis as in Crohn's disease. New healthcare models will be developed that will progressively include greater participation among patients and nurses. The ability to predict new diagnostic and prognostic models will allow decisions to be more individualized. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  15. The effects of problem-based learning on the self-efficacy and attitudes of beginning biology majors

    NASA Astrophysics Data System (ADS)

    Rajab, Adel Mohammad

    The problem of low persistence of science majors has resulted in calls for changes in undergraduate instruction toward environments that foster positive self-efficacy among beginning science majors. Low science self-efficacy and poor attitudes toward science may contribute to high attrition rates of science majors. Classroom environments that foster positive self-efficacy development include pedagogies that promote authentic learning contexts and involve collaborative learning teams. Problem-based learning (PBL) is an instructional model that attempts to create both conditions and may provide every source of information needed for the development of self-efficacy (i.e., mastery experiences, vicarious experiences, verbal persuasion, and physiological states) as postulated by Albert Bandura. The degree to which these sources of self-efficacy are delivered to individuals within a PBL group may depend on how the group members interact and how students perceive the PBL process itself. This study examined the development of biology self-efficacy and attitudes among biology majors in a PBL setting and in a traditional lecture-based setting. Specifically, this project investigated changes in students' biology self-efficacy beliefs, mediating aspects of PBL in self-efficacy development, the relationship between PBL processes and group collective efficacy, the predictive nature of entering self-efficacy levels on attitudes toward PBL and mid-term grades, and changes in student attitudes toward biology. The study design was quasi-experimental and included quantitative pre- and post-surveys, qualitative interviews, and classroom observations. Findings revealed that students enrolled in a PBL class exhibited greater gains in biology self-efficacy and were likely to report more favorable attitudes toward biology compared to students enrolled in a traditional class. The aspects of PBL that most accounted for these findings were students' ownership of the learning process, their deep understanding of the material, and their perceptions of the utility of PBL for their futures. Other aspects of PBL that may have contributed to the self-efficacy and attitudes of PBL students were the interactions of students in their PBL groups. Furthermore, students had favorable attitudes toward PBL regardless of their pre-treatment self-efficacy and achievement levels. Thus PBL may be useful for both high-achieving and low achieving students.

  16. TAKASAGO-6 apparatus for cryogenic coherent X-ray diffraction imaging of biological non-crystalline particles using X-ray free electron laser at SACLA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka

    Coherent X-ray diffraction imaging (CXDI) is a technique for structure analyses of non-crystalline particles with dimensions ranging from micrometer to sub-micrometer. We have developed a diffraction apparatus named TAKASAGO-6 for use in single-shot CXDI experiments of frozen-hydrated non-crystalline biological particles at cryogenic temperature with X-ray free electron laser pulses provided at a repetition rate of 30 Hz from the SPring-8 Angstrom Compact free-electron LAser. Specimen particles are flash-cooled after being dispersed on thin membranes supported by specially designed disks. The apparatus is equipped with a high-speed translation stage with a cryogenic pot for raster-scanning of the disks at a speedmore » higher than 25 μm/33 ms. In addition, we use devices assisting the easy transfer of cooled specimens from liquid-nitrogen storages to the cryogenic pot. In the current experimental procedure, more than 20 000 diffraction patterns can be collected within 1 h. Here we report the key components and performance of the diffraction apparatus. Based on the efficiency of the diffraction data collection and the structure analyses of metal particles, biological cells, and cellular organelles, we discuss the future application of this diffraction apparatus for structure analyses of biological specimens.« less

  17. NASA Workshop on Biological Adaptation

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily (Editor); Tischler, Marc (Editor)

    1988-01-01

    A workshop was convened to review the current program in Space Biology Biological Adaptation Research and its objectives and to identify future research directions. Two research areas emerged from these deliberations: gravitational effects on structures and biomineralization and gravity affected regulatory mechanisms. The participants also recommended that research concentrate on rapidly growing animals, since gravity effects may be more pronounced during growth and development. Both research areas were defined and future research directions were identified. The recommendations of the workshop will assist the Life Sciences Division of NASA in it assessment and long-range planning of these areas of space biology. Equally important, the workshop was intended to stimulate thought and research among those attending so that they would, in turn, interest, excite, and involve other members of the academic community in research efforts relevant to these programs.

  18. Fundamental plant biology enabled by the space shuttle.

    PubMed

    Paul, Anna-Lisa; Wheeler, Ray M; Levine, Howard G; Ferl, Robert J

    2013-01-01

    The relationship between fundamental plant biology and space biology was especially synergistic in the era of the Space Shuttle. While all terrestrial organisms are influenced by gravity, the impact of gravity as a tropic stimulus in plants has been a topic of formal study for more than a century. And while plants were parts of early space biology payloads, it was not until the advent of the Space Shuttle that the science of plant space biology enjoyed expansion that truly enabled controlled, fundamental experiments that removed gravity from the equation. The Space Shuttle presented a science platform that provided regular science flights with dedicated plant growth hardware and crew trained in inflight plant manipulations. Part of the impetus for plant biology experiments in space was the realization that plants could be important parts of bioregenerative life support on long missions, recycling water, air, and nutrients for the human crew. However, a large part of the impetus was that the Space Shuttle enabled fundamental plant science essentially in a microgravity environment. Experiments during the Space Shuttle era produced key science insights on biological adaptation to spaceflight and especially plant growth and tropisms. In this review, we present an overview of plant science in the Space Shuttle era with an emphasis on experiments dealing with fundamental plant growth in microgravity. This review discusses general conclusions from the study of plant spaceflight biology enabled by the Space Shuttle by providing historical context and reviews of select experiments that exemplify plant space biology science.

  19. Changing health behaviors to improve health outcomes after angioplasty: a randomized trial of net present value versus future value risk communication.

    PubMed

    Charlson, M E; Peterson, J C; Boutin-Foster, C; Briggs, W M; Ogedegbe, G G; McCulloch, C E; Hollenberg, J; Wong, C; Allegrante, J P

    2008-10-01

    Patients who have undergone angioplasty experience difficulty modifying at-risk behaviors for subsequent cardiac events. The purpose of this study was to test whether an innovative approach to framing of risk, based on 'net present value' economic theory, would be more effective in behavioral intervention than the standard 'future value approach' in reducing cardiovascular morbidity and mortality following angioplasty. At baseline, all patients completed a health assessment, received an individualized risk profile and selected risk factors for modification. The intervention randomized patients into two varying methods for illustrating positive effects of behavior change. For the experimental group, each selected risk factor was assigned a numeric biologic age (the net present value) that approximated the relative potential to improve current health status and quality of life when modifying that risk factor. In the control group, risk reduction was framed as the value of preventing future health problems. Ninety-four percent of patients completed 2-year follow-up. There was no difference between the rates of death, stroke, myocardial infarction, Class II-IV angina or severe ischemia (on non-invasive testing) between the net present value group and the future value group. Our results show that a net present risk communication intervention did not result in significant differences in health outcomes.

  20. The joint US-USSR biological satellite program

    NASA Technical Reports Server (NTRS)

    Souza, K. A.

    1979-01-01

    The joint US-USSR biological satellite missions carried out in 1975 and 1977 using Cosmos 782 and Cosmos 936 spacecraft, respectively, is reviewed. The experimental equipment and the biological specimens aboard the aircraft are considered, and it is noted that Cosmos 782, unlike Cosmos 936, carried no centrifuges for rats, although it did contain a centrifuge where a variety of biological specimens, including carrot tissue and fruit flies, were subjected to artificial gravity during space flight. The ground control groups, designed for biological experiments under simulated space-conditions, are taken into account. The U.S. experiments aboard the aircraft are described, with attention given to the experiments with rats, fish embryos, plants, and insects. Results of the experiments are noted, including the finding that space flight factors, especially weightlessness, have a measurable effect on the erythropoietic and musculoskeletal systems of rats

  1. Experiences of Judeo-Christian Students in Undergraduate Biology.

    PubMed

    Barnes, M Elizabeth; Truong, Jasmine M; Brownell, Sara E

    2017-01-01

    A major research thrust in science, technology, engineering, and mathematics (STEM) education is focused on how to retain students as STEM majors. The accumulation of seemingly insignificant negative experiences in STEM classes can, over time, lead STEM students to have a low sense of belonging in their disciplines, and this can lead to lower retention. In this paper, we explore how Judeo-Christian students in biology have experiences related to their religious identities that could impact their retention in biology. In 28 interviews with Judeo-Christian students taking undergraduate biology classes, students reported a religious identity that can conflict with the secular culture and content of biology. Some students felt that, because they are religious, they fall within a minority in their classes and would not be seen as credible within the biology community. Students reported adverse experiences when instructors had negative dispositions toward religion and when instructors were rigid in their instructional practices when teaching evolution. These data suggest that this may be a population susceptible to experiences of cultural conflict between their religious identities and their STEM identities, which could have implications for retention. We argue that more research should explore how Judeo-Christian students' experiences in biology classes influence their sense of belonging and retention. © 2017 M. E. Barnes et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Tracking metastatic breast cancer: the future of biology in biosensors.

    PubMed

    Lim, Y C; Wiegmans, A P

    2016-04-01

    Circulating tumour cells associated with breast cancer (brCTCs) represent cells that have the capability to establish aggressive secondary metastatic tumours. The isolation and characterization of CTCs from blood in a single device is the future of oncology diagnosis and treatment. The methods of enrichment of CTCs have primarily utilized simple biological interactions with bimodal reporting with biased high purity and low numbers or low purity and high background. In this review, we will discuss the advances in microfluidics that has allowed the use of more complex selection criteria and biological methods to identify CTC populations. We will also discuss a potential new method of selection based on the response of the oncogenic DNA repair pathways within brCTCs. This method would allow insight into not only the oncogenic signalling at play but the chemoresistance mechanisms that could guide future therapeutic intervention at any stage of disease progression.

  3. LOH- RadGene experiment at Cell Biology Experiment Facility (CBEF)

    NASA Image and Video Library

    2009-02-20

    ISS018-E-034090 (20 Feb. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, uses a communication system near the Cell Biology Experiment Facility (CBEF) in the Kibo laboratory of the International Space Station.

  4. Biomedical experiments. Part A: Biostack experiment

    NASA Technical Reports Server (NTRS)

    Buecker, H.; Horneck, G.; Reinholz, E.; Scheuermann, W.; Ruether, W.; Graul, E. H.; Planel, H.; Soleilhavoup, J. P.; Cuer, P.; Kaiser, R.

    1972-01-01

    The biostack experiment is described which was designed to study the biologic effects of individual heavy nuclei of galactic cosmic radiation during space flight outside the magnetosphere of the earth. Specifically, the biostack experiment was designed to promote research on the effects of high energy/high Z particles of galactic cosmic radiation on a broad spectrum of biologic systems, from the molecular to the highly organized and developed forms of life. The experiment was considered unique and scientifically meritorious because of its potential yield of information - currently unavailable on earth - on the interaction of biologic systems with the heavy particles of galactic cosmic radiation.

  5. CFEL-ASG Software Suite (CASS): usage for free-electron laser experiments with biological focus.

    PubMed

    Foucar, Lutz

    2016-08-01

    CASS [Foucar et al. (2012). Comput. Phys. Commun. 183 , 2207-2213] is a well established software suite for experiments performed at any sort of light source. It is based on a modular design and can easily be adapted for use at free-electron laser (FEL) experiments that have a biological focus. This article will list all the additional functionality and enhancements of CASS for use with FEL experiments that have been introduced since the first publication. The article will also highlight some advanced experiments with biological aspects that have been performed.

  6. Teaching Biology for a Sustainable Future

    ERIC Educational Resources Information Center

    Musante, Susan

    2011-01-01

    Students at Calvin College in Grand Rapids, Michigan, can now take an innovative biology course in which an integrated, interdisciplinary, problem-based approach is used--one that the scientific community itself is promoting. The first course in a four-semester sequence, Biology 123--The Living World: Concepts and Connections--explores real-world…

  7. ‘Antarctic biology in the 21st century - Advances in, and beyond the international polar year 2007-2008’

    NASA Astrophysics Data System (ADS)

    Stoddart, Michael

    2010-08-01

    The International Polar Year 2007-2008 (IPY) has provided an opportunity for biology to show itself as an important part of Antarctic science in a manner in which it was not seen during earlier Polar Years. Of the 15 endorsed biological projects in Antarctica, 7 included more than 20 scientists and could be deemed truly international. Four were conducted in the marine environment, and one each in the fields of biological invasions, microbial ecology, and terrestrial ecology, and one was SCAR’s over-arching ‘Evolution and Biodiversity in the Antarctic’. The marine projects have left a robust legacy of data for future research into the consequences of environmental change, and into future decisions about marine protected areas. Studies on introductions of exotic organisms reveal an ever-present threat to the warmer parts of the high-latitude Southern Ocean, or parts which might become warmer with climate change. Studies on microbial ecology reveal great complexity of ecosystems with high numbers of unknown species. Terrestrial research has shown how vulnerable the Antarctic is to accidental introductions, and how productive the soils can be under changed climate conditions. Antarctic biology has come-of-age during IPY 2007-2008 and the campaign has set the scene for future research.

  8. The Kosmos-1129 biosatellite. [experiments in biological effects of space flight

    NASA Technical Reports Server (NTRS)

    Nikitin, S. A.

    1980-01-01

    A number of experiments, designed by participating specialists from several countries, are described. The experiments included studies in biorhythm, stress, body parts, behavior, ontogenesis, and gravitational preference. The biological subjects of the experiments were retrieved immediately after the landing of the satellite and examined in a field laboratory.

  9. Organizing High School Biology Experiences around Contemporary Bioethical Issues: An STS Approach.

    ERIC Educational Resources Information Center

    Dass, Pradeep Maxwell

    1997-01-01

    The need for a citizenry capable of comprehending and tackling contemporary issues related to science and technology demands science education experiences that are fundamentally different from traditional experiences in school science. Argues that high school biology experiences organized around contemporary bioethical issues can meet this need.…

  10. Parallel labeling experiments and metabolic flux analysis: Past, present and future methodologies.

    PubMed

    Crown, Scott B; Antoniewicz, Maciek R

    2013-03-01

    Radioactive and stable isotopes have been applied for decades to elucidate metabolic pathways and quantify carbon flow in cellular systems using mass and isotope balancing approaches. Isotope-labeling experiments can be conducted as a single tracer experiment, or as parallel labeling experiments. In the latter case, several experiments are performed under identical conditions except for the choice of substrate labeling. In this review, we highlight robust approaches for probing metabolism and addressing metabolically related questions though parallel labeling experiments. In the first part, we provide a brief historical perspective on parallel labeling experiments, from the early metabolic studies when radioisotopes were predominant to present-day applications based on stable-isotopes. We also elaborate on important technical and theoretical advances that have facilitated the transition from radioisotopes to stable-isotopes. In the second part of the review, we focus on parallel labeling experiments for (13)C-metabolic flux analysis ((13)C-MFA). Parallel experiments offer several advantages that include: tailoring experiments to resolve specific fluxes with high precision; reducing the length of labeling experiments by introducing multiple entry-points of isotopes; validating biochemical network models; and improving the performance of (13)C-MFA in systems where the number of measurements is limited. We conclude by discussing some challenges facing the use of parallel labeling experiments for (13)C-MFA and highlight the need to address issues related to biological variability, data integration, and rational tracer selection. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Antenatal physical activity: a qualitative study exploring women's experiences and the acceptability of antenatal walking groups.

    PubMed

    Currie, Sinéad; Gray, Cindy; Shepherd, Ashley; McInnes, Rhona J

    2016-07-22

    Regular physical activity (PA) can be beneficial to pregnant women, however, many women do not adhere to current PA guidelines during the antenatal period. Patient and public involvement is essential when designing antenatal PA interventions in order to uncover the reasons for non-adherence and non-engagement with the behaviour, as well as determining what type of intervention would be acceptable. The aim of this research was to explore women's experiences of PA during a recent pregnancy, understand the barriers and determinants of antenatal PA and explore the acceptability of antenatal walking groups for further development. Seven focus groups were undertaken with women who had given birth within the past five years. Focus groups were transcribed and analysed using a grounded theory approach. Relevant and related behaviour change techniques (BCTs), which could be applied to future interventions, were identified using the BCT taxonomy. Women's opinions and experiences of PA during pregnancy were categorised into biological/physical (including tiredness and morning sickness), psychological (fear of harm to baby and self-confidence) and social/environmental issues (including access to facilities). Although antenatal walking groups did not appear popular, women identified some factors which could encourage attendance (e.g. childcare provision) and some which could discourage attendance (e.g. walking being boring). It was clear that the personality of the walk leader would be extremely important in encouraging women to join a walking group and keep attending. Behaviour change technique categories identified as potential intervention components included social support and comparison of outcomes (e.g. considering pros and cons of behaviour). Women's experiences and views provided a range of considerations for future intervention development, including provision of childcare, involvement of a fun and engaging leader and a range of activities rather than just walking. These experiences and views relate closely to the Health Action Process Model which, along with BCTs, could be used to develop future interventions. The findings of this study emphasise the importance of involving the target population in intervention development and present the theoretical foundation for building an antenatal PA intervention to encourage women to be physically active throughout their pregnancies.

  12. Mars Greenhouse Experiment Module: An Experiment to Grow Flowers on Mars

    NASA Technical Reports Server (NTRS)

    MacCallum, T. K.; Poynter, J. E.; McKay, C. P.

    2000-01-01

    NASA has entered a new phase of in-depth exploration of the planets where robotic exploration of the Solar System is focusing on in-situ missions that pave the way for human exploration. Creating a human presence on Mars will require specialized knowledge and experience concerning the Martian environment and validated technologies that will provide life-supporting consumables. An understanding of the response of terrestrial organisms to the Martian environment with respect to potential deleterious effects on crew health and changes to biological processes will be paramount. In response to these challenges an innovative selfcontained flight experiment is proposed, which is designed to assess the biocompatibility of the Martian environment by germinating seeds and following their growth through to flowering. The experiment, dubbed Mars Greenhouse Experiment Module (Mars GEM), will be accomplished in a sealed pressurized growth chamber or 'Mars Greenhouse'. Seeds will be grown in Martian soil and the Mars Greenhouse will provide ultraviolet-radiation protected, thermal-controlled environment for plant growth that actively controls the CO2 (required nutrient) and O2 (generated by the plants) levels in the chamber. The simple, but visually dramatic, demonstration of the potential to grow a plant in a man-made environment on the surface of Mars should establish a strong connection between current robotic missions and future human habitation on Mars.

  13. X-rays in the Cryo-EM Era: Structural Biology’s Dynamic Future

    PubMed Central

    Shoemaker, Susannah C.; Ando, Nozomi

    2018-01-01

    Over the past several years, single-particle cryo-electron microscopy (cryo-EM) has emerged as a leading method for elucidating macromolecular structures at near-atomic resolution, rivaling even the established technique of X-ray crystallography. Cryo-EM is now able to probe proteins as small as hemoglobin (64 kDa), while avoiding the crystallization bottleneck entirely. The remarkable success of cryo-EM has called into question the continuing relevance of X-ray methods, particularly crystallography. To say that the future of structural biology is either cryo-EM or crystallography, however, would be misguided. Crystallography remains better suited to yield precise atomic coordinates of macromolecules under a few hundred kDa in size, while the ability to probe larger, potentially more disordered assemblies is a distinct advantage of cryo-EM. Likewise, crystallography is better equipped to provide high-resolution dynamic information as a function of time, temperature, pressure, and other perturbations, whereas cryo-EM offers increasing insight into conformational and energy landscapes, particularly as algorithms to deconvolute conformational heterogeneity become more advanced. Ultimately, the future of both techniques depends on how their individual strengths are utilized to tackle questions on the frontiers of structural biology. Structure determination is just one piece of a much larger puzzle: a central challenge of modern structural biology is to relate structural information to biological function. In this perspective, we share insight from several leaders in the field and examine the unique and complementary ways in which X-ray methods and cryo-EM can shape the future of structural biology. PMID:29227642

  14. Transport calculations and accelerator experiments needed for radiation risk assessment in space.

    PubMed

    Sihver, Lembit

    2008-01-01

    The major uncertainties on space radiation risk estimates in humans are associated to the poor knowledge of the biological effects of low and high LET radiation, with a smaller contribution coming from the characterization of space radiation field and its primary interactions with the shielding and the human body. However, to decrease the uncertainties on the biological effects and increase the accuracy of the risk coefficients for charged particles radiation, the initial charged-particle spectra from the Galactic Cosmic Rays (GCRs) and the Solar Particle Events (SPEs), and the radiation transport through the shielding material of the space vehicle and the human body, must be better estimated Since it is practically impossible to measure all primary and secondary particles from all possible position-projectile-target-energy combinations needed for a correct risk assessment in space, accurate particle and heavy ion transport codes must be used. These codes are also needed when estimating the risk for radiation induced failures in advanced microelectronics, such as single-event effects, etc., and the efficiency of different shielding materials. It is therefore important that the models and transport codes will be carefully benchmarked and validated to make sure they fulfill preset accuracy criteria, e.g. to be able to predict particle fluence, dose and energy distributions within a certain accuracy. When validating the accuracy of the transport codes, both space and ground based accelerator experiments are needed The efficiency of passive shielding and protection of electronic devices should also be tested in accelerator experiments and compared to simulations using different transport codes. In this paper different multipurpose particle and heavy ion transport codes will be presented, different concepts of shielding and protection discussed, as well as future accelerator experiments needed for testing and validating codes and shielding materials.

  15. Infusing Outdoor Field Experiences into the Secondary Biology Curriculum.

    ERIC Educational Resources Information Center

    Owens, Ginny

    1984-01-01

    To offer students biological field experiences, teachers should use their own basic skills, be enthusiastic motivators, participate in community programs/courses/workshops to acquire additional skills/knowledge for outdoor biological education, plan outdoor excursions with safety considerations in mind, and use available resources for classroom…

  16. Biological Clocks & Circadian Rhythms

    ERIC Educational Resources Information Center

    Robertson, Laura; Jones, M. Gail

    2009-01-01

    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  17. Development and verification of hardware for life science experiments in the Japanese Experiment Module "Kibo" on the International Space Station.

    PubMed

    Ishioka, Noriaki; Suzuki, Hiromi; Asashima, Makoto; Kamisaka, Seiichiro; Mogami, Yoshihiro; Ochiai, Toshimasa; Aizawa-Yano, Sachiko; Higashibata, Akira; Ando, Noboru; Nagase, Mutsumu; Ogawa, Shigeyuki; Shimazu, Toru; Fukui, Keiji; Fujimoto, Nobuyoshi

    2004-03-01

    Japan Aerospace Exploration Agency (JAXA) has developed a cell biology experiment facility (CBEF) and a clean bench (CB) as a common hardware in which life science experiments in the Japanese Experiment Module (JEM known as "Kibo") of the International Space Station (ISS) can be performed. The CBEF, a CO2 incubator with a turntable that provides variable gravity levels, is the basic hardware required to carry out the biological experiments using microorganisms, cells, tissues, small animals, plants, etc. The CB provides a closed aseptic operation area for life science and biotechnology experiments in Kibo. A phase contrast and fluorescence microscope is installed inside CB. The biological experiment units (BEU) are designed to run individual experiments using the CBEF and the CB. A plant experiment unit (PEU) and two cell experiment units (CEU type1 and type2) for the BEU have been developed.

  18. Vision and Change in Biology Undergraduate Education: Vision and Change from the Funding Front

    ERIC Educational Resources Information Center

    Holm, Bethany; Carter, Virginia Celeste; Woodin, Terry

    2011-01-01

    The purpose of this short article is to (a) briefly summarize the findings of two important recent resources concerning the future of biology in the 21st century; one, Vision and Change, A Call to Action [AAAS, 2009. AAAS, Washington, DC], concerned with undergraduate education in biology, the other, A New Biology for the 21st Century [National…

  19. Dentistry in the future--on the role and goal of basic research in oral biology.

    PubMed

    Mäkinen, K K

    1993-01-01

    Examination of the state of affairs of oral biology cannot be endeavoured without considering the mutual interactions and interdependencies of sciences, and without considering the impact human acts will exert on these developments. Oral biology deals with the biochemical, chemical, molecular biologic, general biologic and physical aspects of all processes that take place in the oral cavity, in the masticatory organ, and in tissues and body fluids that are associated with the above processes. Oral biology also reaps the harvest sown by (other) basic sciences. From the methodological point of view, oral biology is indistinguishable from basic sciences; it is the anatomical object that makes it specific. Oral biology cannot be regarded as "big science" (i.e. compared with the human genome project, space research, AIDS research etc.). This fact may preserve the attractiveness of oral biology. Important science--this concerns oral biology as well--still emerges in smaller settings, although there are omens that large research cartels will swallow larger and larger portions of research appropriations. A key to staying competitive is to use new science sources and--in some cases--to join bigger groups. Once upon a time oral biologists--or scientists in general--assumed that a record of solid accomplishments was sufficient to maintain research support. Today, in several countries, politics and public visibility unfortunately determine the funding privileges. Provided that human operations on earth will render future development of sciences possible, the future of oral biology will depend 1) on concomitant development in the above basic fields, and 2) on innovations in the individual psyches. This combination will unravel the structure of genes involved in the development and metabolism of oral processes, clone important salivary and connective tissue proteins, and control most important oral diseases. To achieve these goals, oral biology must attract young talent and funding must be made available. There is no shortcut, however. Individual efforts and persistent labouring at the laboratory bench will still remain prerequisites. Although successful prevention of certain oral diseases, such as dental caries, may be possible in certain regions of the Earth, the prospects are much gloomier globally.

  20. Nicholas Metropolis Award for Outstanding Doctoral Thesis Work in Computational Physics Talk: Understanding Nano-scale Electronic Systems via Large-scale Computation

    NASA Astrophysics Data System (ADS)

    Cao, Chao

    2009-03-01

    Nano-scale physical phenomena and processes, especially those in electronics, have drawn great attention in the past decade. Experiments have shown that electronic and transport properties of functionalized carbon nanotubes are sensitive to adsorption of gas molecules such as H2, NO2, and NH3. Similar measurements have also been performed to study adsorption of proteins on other semiconductor nano-wires. These experiments suggest that nano-scale systems can be useful for making future chemical and biological sensors. Aiming to understand the physical mechanisms underlying and governing property changes at nano-scale, we start off by investigating, via first-principles method, the electronic structure of Pd-CNT before and after hydrogen adsorption, and continue with coherent electronic transport using non-equilibrium Green’s function techniques combined with density functional theory. Once our results are fully analyzed they can be used to interpret and understand experimental data, with a few difficult issues to be addressed. Finally, we discuss a newly developed multi-scale computing architecture, OPAL, that coordinates simultaneous execution of multiple codes. Inspired by the capabilities of this computing framework, we present a scenario of future modeling and simulation of multi-scale, multi-physical processes.

  1. A test to verify the biocompatibility of a method for plant culture in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Brown, A. H.; Chapman, D. K.

    1984-01-01

    We report a pioneering attempt to use the NASA Shuttle Orbiter Middeck locker facility to acquire data on plant growth in near weightlessness. The information was needed to confirm the suitability of a plant culture system to be used in an experiment scheduled for the first Spacelab mission. The test was designed to measure germination and early seedling growth in a series of soil mixtures covering a range of water contents. Empirical determination of growth dependence on moisture content was required because both in theory and from Soviet flight experience it seemed possible that the dependence function in near weightlessness could be critically different from what we had measured on Earth. Such a difference could invalidate the future test in Spacelab 1 of gravity dependence of the differential growth process, circumnutation. After two failed attempts sufficient measurements were obtained from the third Shuttle Orbiter flight test to confirm the biocompatibility of the plant culture system--viz. soil moisture content variations had the same effect in near weightlessness as at 1 g. A number of supplemental observations about middeck locker conditions in Shuttle flight are presented. These may prove helpful to would-be experimenters who will plan to take advantage of future Shuttle flight opportunities for biological research.

  2. Interface evaluation for soft robotic manipulators

    NASA Astrophysics Data System (ADS)

    Moore, Kristin S.; Rodes, William M.; Csencsits, Matthew A.; Kwoka, Martha J.; Gomer, Joshua A.; Pagano, Christopher C.

    2006-05-01

    The results of two usability experiments evaluating an interface for the operation of OctArm, a biologically inspired robotic arm modeled after an octopus tentacle, are reported. Due to the many degrees-of-freedom (DOF) for the operator to control, such 'continuum' robotic limbs provide unique challenges for human operators because they do not map intuitively. Two modes have been developed to control the arm and reduce the DOF under the explicit direction of the operator. In coupled velocity (CV) mode, a joystick controls changes in arm curvature. In end-effector (EE) mode, a joystick controls the arm by moving the position of an endpoint along a straight line. In Experiment 1, participants used the two modes to grasp objects placed at different locations in a virtual reality modeling language (VRML). Objective measures of performance and subjective preferences were recorded. Results revealed lower grasp times and a subjective preference for the CV mode. Recommendations for improving the interface included providing additional feedback and implementation of an error recovery function. In Experiment 2, only the CV mode was tested with improved training of participants and several changes to the interface. The error recovery function was implemented, allowing participants to reverse through previously attained positions. The mean time to complete the trials in the second usability test was reduced by more than 4 minutes compared with the first usability test, confirming the interface changes improved performance. The results of these tests will be incorporated into future versions of the arm and improve future usability tests.

  3. A novel integration of spectral-domain optical-coherence-tomography and laser-ablation system for precision treatment.

    PubMed

    Fan, Yingwei; Zhang, Boyu; Chang, Wei; Zhang, Xinran; Liao, Hongen

    2018-03-01

    Complete resection of diseased lesions reduces the recurrence of cancer, making it critical for surgical treatment. However, precisely resecting residual tumors is a challenge during operation. A novel integrated spectral-domain optical-coherence-tomography (SD-OCT) and laser-ablation therapy system for soft-biological-tissue resection is proposed. This is a prototype optical integrated diagnosis and therapeutic system as well as an optical theranostics system. We develop an optical theranostics system, which integrates SD-OCT, a laser-ablation unit, and an automatic scanning platform. The SD-OCT image of biological tissue provides an intuitive and clear view for intraoperative diagnosis and monitoring in real time. The effect of laser ablation is analyzed using a quantitative mathematical model. The automatic endoscopic scanning platform combines an endoscopic probe and an SD-OCT sample arm to provide optical theranostic scanning motion. An optical fiber and a charge-coupled device camera are integrated into the endoscopic probe, allowing detection and coupling of the OCT-aiming beam and laser spots. The integrated diagnostic and therapeutic system combines SD-OCT imaging and laser-ablation modules with an automatic scanning platform. OCT imaging, laser-ablation treatment, and the integration and control of diagnostic and therapeutic procedures were evaluated by performing phantom experiments. Furthermore, SD-OCT-guided laser ablation provided precision laser ablation and resection for the malignant lesions in soft-biological-tissue-lesion surgery. The results demonstrated that the appropriate laser-radiation power and duration time were 10 W and 10 s, respectively. In the laser-ablation evaluation experiment, the error reached approximately 0.1 mm. Another validation experiment was performed to obtain OCT images of the pre- and post-ablated craters of ex vivo porcine brainstem. We propose an optical integrated diagnosis and therapeutic system. The primary experimental results show the high efficiency and feasibility of our theranostics system, which is promising for realizing accurate resection of tumors in vivo and in situ in the future.

  4. Rapid Turn Around BRIC-PDFU Payload: A New Paradigm for Spaceflight Experiments

    NASA Technical Reports Server (NTRS)

    Levine, Howard G.; Slater, K. A.; Cox, D. R.

    2010-01-01

    In 2009, NASA's Fundamental Space Biology program provided an opportunity for investigators to propose for a quick-turn-around multi-user spaceflight experiment that focused on the model plant species Arabidopsis thaliana. This was a passive payload with no on-orbit power or communications available. An NRA was rapidly written (8/09), released (NNH09ZTT004N; 9/09), proposals were received (11/09) and peer reviewed with 3 PI groups selected for flight (1/10): (1) A-L Paul, University of Florida, (2) E. Blancaflor, Noble Foundation, (3) J. Kiss, Miami University. The investigators flew Arabidopsis seeds or callus cultures of their choosing (plated onto 60 mm diameter Petri dishes containing agarsolidified media) on the STS-131 Space Shuttle mission (launched 4/5/10) and the resulting plant tissues returned to earth on 4/20/10. Each petri dish was placed inside its own Petri Dish Fixation Unit (PDFU), which was assembled and loaded with either formaldehyde, glutaraldehyde or RNAlater for crew-facilitated on-orbit fixation. Five PDFUs plus a temperature data logger were loaded into each of 8 BRIC-PDFUs (Biological Research In Canisters PDFU). All eight BRIC-PDFUs were loaded into a half tray along with actuator equipment that the crew used for the fixations. Pre-flight turn-over was 28 hours prior to launch. The BRIC-PDFU assemblies were removed from the orbiter and handed over to the investigator teams for processing 5-6 hours after landing. This payload demonstrated a rapid response turnaround for flying multiple peer-reviewed science investigations using previously flown hardware and minimal ISS-resources. The approach used reduced both hardware/certification and PI costs. The time waiting for a flight opportunity for the selected Pls was minimal. This new paradigm for spaceflight experiments may provide a model for future flight research opportunities. The ultimate goal is to fly as many investigators as rapidly as possible and reinvigorate the space biology community while obtaining high-quality, peer-reviewed science.

  5. Molecular communication and networking: opportunities and challenges.

    PubMed

    Nakano, Tadashi; Moore, Michael J; Wei, Fang; Vasilakos, Athanasios V; Shuai, Jianwei

    2012-06-01

    The ability of engineered biological nanomachines to communicate with biological systems at the molecular level is anticipated to enable future applications such as monitoring the condition of a human body, regenerating biological tissues and organs, and interfacing artificial devices with neural systems. From the viewpoint of communication theory and engineering, molecular communication is proposed as a new paradigm for engineered biological nanomachines to communicate with the natural biological nanomachines which form a biological system. Distinct from the current telecommunication paradigm, molecular communication uses molecules as the carriers of information; sender biological nanomachines encode information on molecules and release the molecules in the environment, the molecules then propagate in the environment to receiver biological nanomachines, and the receiver biological nanomachines biochemically react with the molecules to decode information. Current molecular communication research is limited to small-scale networks of several biological nanomachines. Key challenges to bridge the gap between current research and practical applications include developing robust and scalable techniques to create a functional network from a large number of biological nanomachines. Developing networking mechanisms and communication protocols is anticipated to introduce new avenues into integrating engineered and natural biological nanomachines into a single networked system. In this paper, we present the state-of-the-art in the area of molecular communication by discussing its architecture, features, applications, design, engineering, and physical modeling. We then discuss challenges and opportunities in developing networking mechanisms and communication protocols to create a network from a large number of bio-nanomachines for future applications.

  6. Evolution to Space

    NASA Technical Reports Server (NTRS)

    Cohen, Jacob

    2013-01-01

    This presentation will discuss recent space exploration results (LCROSS, KEPLER, etc.), increase access to space and the small and cube satellites platform as it relates to the future of space exploration. It will highlight the concept of modularization and the use of biology, and specifically synthetic biology in the future. The presentation will be a general public presentation. When speaking to a younger audience, I will discuss my background. All slides contain only public information. No technical ITAR/Export controlled material will be discussed.

  7. DomeGene Sample Removal from Cell Biology Experiment Facility (CBEF)

    NASA Image and Video Library

    2009-03-28

    ISS018-E-044268 (28 March 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18/19 flight engineer, works on an experiment at the Saibo biological experiment rack in the Kibo laboratory of the International Space Station.

  8. The role of adalimumab in rheumatic and autoimmune disorders: comparison with other biologic agents

    PubMed Central

    Reimold, Andreas M

    2012-01-01

    Adalimumab (ADA) is a biologic medication that dampens inflammatory pathways by binding to the cytokine tumor necrosis factor alpha. The US Food and Drug Administration has approved ADA as a medication for use in rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn’s disease, psoriasis, and juvenile idiopathic arthritis. This year marks 10 years of clinical experience with ADA. Long-term extension studies of some of the initial clinical trials, as well as data from large patient registries, are demonstrating ongoing benefit for responders. Potential side effects such as increased risk of infection, lymphoma, congestive heart failure, and demyelination continue to be examined, as the available data are not unanimous in showing an increase in incidence. In balancing both the advantages and the disadvantages of using ADA, the drug’s overall effectiveness and its availability for use in patients with hepatic or renal comorbidities are weighed against the high cost. ADA is expected to have a leading role in the treatment of rheumatoid arthritis and other inflammatory conditions for years to come. Future studies will need to address the optimal sequence of disease-modifying antirheumatic drugs and biologics to use, combinations of disease-modifying antirheumatic drugs and biologics, and head-to-head comparisons of biologics in clinical trials. For those who go into clinical remission on an anti-tumor necrosis factor medication, unanswered questions remain about identifying the patients who can maintain the remission off all drugs, or at least off injected medication. Given the cost of biologic drugs, even studies that increase the interval between drug doses in well-controlled patients could provide financial benefits. PMID:27790010

  9. Genotoxicity testing on the international space station: Preparatory work on the SOS-LUX test as part of the space experiment TRIPLE-LUX

    NASA Astrophysics Data System (ADS)

    Stojicic, Nevena; Walrafen, David; Baumstark-Khan, Christa; Rabbow, Elke; Rettberg, Petra; Weisshaar, Maria-Paz; Horneck, Gerda

    Harmful environmental factors - namely ionizing radiation - will continue to influence future manned space missions. The Radiation Biology Unit at the German Aerospace Center (DLR) develops cellular monitoring systems, which include bacterial and mammalian cell systems capable of recognizing DNA damage as a consequence of the presence of genotoxic conditions. Such a bioassay is the SOS-LUX test, which represents the radiobiological part of the German space experiment "Gene, immune and cellular responses to single and combined space flight conditions (TRIPLE-LUX)" which has been selected by the IDI/USRA Peer Review Panel for NASA/ESA to be performed on the International Space Station (ISS). It will supply basic information on the genotoxic response to radiation applied in microgravity. The biological end-point under investigation will depend on the bacterial SOS response brought about by genetically modified bacteria that are transformed with the pSWITCH plasmid (constructed from the plasmids pPLS-1 and pGFPuv). The luminescent/fluorescent bioassay SWITCH (SWITCH: Salmonella Weighting of Induced Toxicity Cyto/GenoTox for Human Health) as successor of the SOS-LUX test for rapid toxicity (genotoxicity and cytotoxicity) testing, makes use of two sensing and reporting systems for the two biological endpoints under investigation: the SOS-LUX test and the LAC- Fluoro test. The SWITCH plasmid carries the promoterless lux operon of Photobacterium leiognathi as reporter element under the control of the DNA-damage-dependent SOS promoter of ColD as sensor element (for genotoxicity testing) and the sequences for a hybrid protein consisting of β-galactosidase and GFPuv of Aequorea victoria as reporter element under the control of the (in Salmonella constitutively active) LAC promoter of Escherichia coli as sensor element (for cytotoxicity testing). The system has worked properly for terrestrial applications during the first experiments. Experiments using X-rays and UV radiation of various qualities (from UVC to UVA) have given insights into cellular mechanisms relevant for estimation of health risks, resulting from exposure of astronauts to the extraordinary radiation environment of space.

  10. Fueling the Future with Fungal Genomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, Igor V.; Cullen, Daniel; Hibbett, David

    Fungi play important roles across the range of current and future biofuel production processes. From crop/feedstock health to plant biomass saccharification, enzyme production to bioprocesses for producing ethanol, higher alcohols or future hydrocarbon biofuels, fungi are involved. Research and development are underway to understand the underlying biological processes and improve them to make bioenergy production efficient on an industrial scale. Genomics is the foundation of the systems biology approach that is being used to accelerate the research and development efforts across the spectrum of topic areas that impact biofuels production. In this review, we discuss past, current and future advancesmore » made possible by genomic analyses of the fungi that impact plant/feedstock health, degradation of lignocellulosic biomass and fermentation of sugars to ethanol, hydrocarbon biofuels and renewable chemicals.« less

  11. A Bright Future for Serial Femtosecond Crystallography with XFELs.

    PubMed

    Johansson, Linda C; Stauch, Benjamin; Ishchenko, Andrii; Cherezov, Vadim

    2017-09-01

    X-ray free electron lasers (XFELs) have the potential to revolutionize macromolecular structural biology due to the unique combination of spatial coherence, extreme peak brilliance, and short duration of X-ray pulses. A recently emerged serial femtosecond (fs) crystallography (SFX) approach using XFEL radiation overcomes some of the biggest hurdles of traditional crystallography related to radiation damage through the diffraction-before-destruction principle. Intense fs XFEL pulses enable high-resolution room-temperature structure determination of difficult-to-crystallize biological macromolecules, while simultaneously opening a new era of time-resolved structural studies. Here, we review the latest developments in instrumentation, sample delivery, data analysis, crystallization methods, and applications of SFX to important biological questions, and conclude with brief insights into the bright future of structural biology using XFELs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The Influence of Prey Assemblage Composition on Learning in Sunfish: Do Fish Learn?

    ERIC Educational Resources Information Center

    Darling, Ruth A.

    1999-01-01

    Presents a biology laboratory experiment designed to examine the ability of fish to improve their foraging rate with experience. This project is appropriate for ecology and animal behavior courses as well as introductory biology courses with a component that provides students with experience in designing and conducting scientific experiments.…

  13. Digital hardware implementation of a stochastic two-dimensional neuron model.

    PubMed

    Grassia, F; Kohno, T; Levi, T

    2016-11-01

    This study explores the feasibility of stochastic neuron simulation in digital systems (FPGA), which realizes an implementation of a two-dimensional neuron model. The stochasticity is added by a source of current noise in the silicon neuron using an Ornstein-Uhlenbeck process. This approach uses digital computation to emulate individual neuron behavior using fixed point arithmetic operation. The neuron model's computations are performed in arithmetic pipelines. It was designed in VHDL language and simulated prior to mapping in the FPGA. The experimental results confirmed the validity of the developed stochastic FPGA implementation, which makes the implementation of the silicon neuron more biologically plausible for future hybrid experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Super-resolution from single photon emission: toward biological application

    NASA Astrophysics Data System (ADS)

    Moreva, E.; Traina, P.; Forneris, J.; Ditalia Tchernij, S.; Guarina, L.; Franchino, C.; Picollo, F.; Ruo Berchera, I.; Brida, G.; Degiovanni, I. P.; Carabelli, V.; Olivero, P.; Genovese, M.

    2017-08-01

    Properties of quantum light represent a tool for overcoming limits of classical optics. Several experiments have demonstrated this advantage ranging from quantum enhanced imaging to quantum illumination. In this work, experimental demonstration of quantum-enhanced resolution in confocal fluorescence microscopy will be presented. This is achieved by exploiting the non-classical photon statistics of fluorescence emission of single nitrogen-vacancy (NV) color centers in diamond. By developing a general model of super-resolution based on the direct sampling of the kth-order autocorrelation function of the photoluminescence signal, we show the possibility to resolve, in principle, arbitrarily close emitting centers. Finally, possible applications of NV-based fluorescent nanodiamonds in biosensing and future developments will be presented.

  15. The gravitational plant physiology facility-Description of equipment developed for biological research in spacelab

    NASA Technical Reports Server (NTRS)

    Heathcote, D. G.; Chapman, D. K.; Brown, A. H.; Lewis, R. F.

    1994-01-01

    In January 1992, the NASA Suttle mission STS 42 carried a facility designed to perform experiments on plant gravi- and photo-tropic responses. This equipment, the Gravitational Plant Physiology Facility (GPPF) was made up of a number of interconnected units mounted within a Spacelab double rack. The details of these units and the plant growth containers designed for use in GPPF are described. The equipment functioned well during the mission and returned a substantial body of time-lapse video data on plant responses to tropistic stimuli under conditions of orbital microgravity. GPPF is maintained by NASA Ames Research Center, and is flight qualifiable for future spacelab missions.

  16. Gravity effects on reproduction, development, and aging

    NASA Technical Reports Server (NTRS)

    Miquel, Jaime; Souza, Kenneth A.

    1991-01-01

    The effects of various levels of gravity force (obtained by rotation in clinostats or by centrifugation) and the near-weightlessness condition aboard orbiting spacecraft on the fertilization, embryonic development, maturation, and aging of animals are examined. Results obtained from the American and Soviet spaceborne biology experiments are presented including those on mammals, amphibians, fish, birds, invertebrates, and protozoa. Theoretical issues related to the effect of gravity on various physiological systems are discused together with the future research goals concerning human life in space. It is noted that life in space (after adaptation to near-weightlessness) might be significantly prolonged due to a reduction in metabolic rate and a concomitant decrease in oxygen radical reactions.

  17. Transhumanism: How Far Is Too Far?

    PubMed

    Thompson, Joel

    2017-07-01

    Transhumanism promises us freedom from the biological limitations inherent in our nature. It aims to enhance physical, emotional and cognitive capacities thus opening up new possibilities and horizons of experience. Since many transhumanist aspirations resemble those within the domain of religion, this paper compares Christian ethics to transhumanist ethics with respect to the body and the environment and offers a critique of transhumanism. Three areas of contention are discussed: the modification of our given human nature, the radical extension of our lifespans and our relationship to the natural environment. It argues that in these three areas, the underlying values being transmitted to future generations about the body and the environment are incompatible with Christian principles.

  18. Paediatric Pain Management: Using Complementary and Alternative Medicine.

    PubMed

    Evans, Subhadra; Tsao, Jennie C I; Zeltzer, Lonnie K

    2008-09-01

    Children undergo acute painful procedures and many also experience chronic pain.Due to their developing systems, infants and children may be at greater risk than adults for protracted pain sensitivity.There is a need to manage acute and chronic paediatric pain to reduce children's suffering and to prevent future pain problems.Consistent with a biopsychosocial perspective, complementary and alternative medicine (CAM) should be considered in management of acute and chronic paediatric pain.Although research is limited for paediatric pain, CAM interventions receiving the most empirical attention include hypnotherapy, acupuncture and music therapy. Evidence also exists for the therapeutic benefits of yoga, massage, humor therapy and the use of certain biological based therapies.

  19. An applied test of the social learning theory of deviance to college alcohol use.

    PubMed

    DeMartino, Cynthia H; Rice, Ronald E; Saltz, Robert

    2015-04-01

    Several hypotheses about influences on college drinking derived from the social learning theory of deviance were tested and confirmed. The effect of ethnicity on alcohol use was completely mediated by differential association and differential reinforcement, whereas the effect of biological sex on alcohol use was partially mediated. Higher net positive reinforcements to costs for alcohol use predicted increased general use, more underage use, and more frequent binge drinking. Two unexpected finding were the negative relationship between negative expectations and negative experiences, and the substantive difference between nondrinkers and general drinkers compared with illegal or binge drinkers. The discussion considers implications for future campaigns based on Akers's deterrence theory.

  20. The financial consequences of too many men: sex ratio effects on saving, borrowing, and spending.

    PubMed

    Griskevicius, Vladas; Tybur, Joshua M; Ackerman, Joshua M; Delton, Andrew W; Robertson, Theresa E; White, Andrew E

    2012-01-01

    The ratio of males to females in a population is an important factor in determining behavior in animals. We propose that sex ratio also has pervasive effects in humans, such as by influencing economic decisions. Using both historical data and experiments, we examined how sex ratio influences saving, borrowing, and spending in the United States. Findings show that male-biased sex ratios (an abundance of men) lead men to discount the future and desire immediate rewards. Male-biased sex ratios decreased men's desire to save for the future and increased their willingness to incur debt for immediate expenditures. Sex ratio appears to influence behavior by increasing the intensity of same-sex competition for mates. Accordingly, a scarcity of women led people to expect men to spend more money during courtship, such as by paying more for engagement rings. These findings demonstrate experimentally that sex ratio influences human decision making in ways consistent with evolutionary biological theory. Implications for sex ratio effects across cultures are discussed.

  1. Current status and future prospects of an automated sample exchange system PAM for protein crystallography

    NASA Astrophysics Data System (ADS)

    Hiraki, M.; Yamada, Y.; Chavas, L. M. G.; Matsugaki, N.; Igarashi, N.; Wakatsuki, S.

    2013-03-01

    To achieve fully-automated and/or remote data collection in high-throughput X-ray experiments, the Structural Biology Research Centre at the Photon Factory (PF) has installed PF automated mounting system (PAM) for sample exchange robots at PF macromolecular crystallography beamlines BL-1A, BL-5A, BL-17A, AR-NW12A and AR-NE3A. We are upgrading the experimental systems, including the PAM for stable and efficient operation. To prevent human error in automated data collection, we installed a two-dimensional barcode reader for identification of the cassettes and sample pins. Because no liquid nitrogen pipeline in the PF experimental hutch is installed, the users commonly add liquid nitrogen using a small Dewar. To address this issue, an automated liquid nitrogen filling system that links a 100-liter tank to the robot Dewar has been installed on the PF macromolecular beamline. Here we describe this new implementation, as well as future prospects.

  2. The Financial Consequences of Too Many Men: Sex Ratio Effects on Saving, Borrowing, and Spending

    PubMed Central

    Griskevicius, Vladas; Tybur, Joshua M.; Ackerman, Joshua M.; Delton, Andrew W.; Robertson, Theresa E.; White, Andrew E.

    2012-01-01

    The ratio of males to females in a population is an important factor in determining behavior in animals. We propose that sex ratio also has pervasive effects in humans, such as by influencing economic decisions. Using both historical data and experiments, we examined how sex ratio influences saving, borrowing, and spending in the United States. Findings show that male-biased sex ratios (an abundance of men) lead men to discount the future and desire immediate rewards. Male-biased sex ratios decreased men’s desire to save for the future and increased their willingness to incur debt for immediate expenditures. Sex ratio appears to influence behavior by increasing the intensity of same-sex competition for mates. Accordingly, a scarcity of women led people to expect men to spend more money during courtship, such as by paying more for engagement rings. These findings demonstrate experimentally that sex ratio influences human decision making in ways consistent with evolutionary biological theory. Implications for sex ratio effects across cultures are discussed. PMID:21767031

  3. Climate Variability, Climate Change and Fisheries

    NASA Astrophysics Data System (ADS)

    Glantz, Michael H.

    2005-08-01

    As we approach the end of the twentieth century, public and scientific attention is focusing increasingly on the detection and assessment of changes in our environment. This unique volume addresses the potential implications of global warming for fisheries and the societies which depend on them. Using a æforecasting by analogy' approach, which draws upon experiences from the recent past in coping with regional fluctuations in the abundance or availability of living marine resources, it is shown how we might be able to assess our ability to respond to the consequences of future environmental changes induced by a potential global warming. The book takes the form of a series of integrated case studies from around the globe, which are presented by an interdisciplinary group of leading researchers. This important and thought-provoking volume will be of interest to a wide range of scientists working in the fields of biology, marine and environmental science, climatology, economics and anthropology, as well as resource managers and policy makers concerned with the health and future of living marine resources.

  4. Biotechnology: Genetically Engineered Pathogens (The Counterproliferation Papers, Future Warfare Series No. 53)

    DTIC Science & Technology

    2010-06-01

    ENGINEERED PATHOGENS ....... 8 Binary biological weapons ...the crossroads of radicalism and technology. When the spread of chemical and biological and nuclear weapons , along with ballistic missile...and individuals, given the opportunity to employ biological weapons , will most likely use it to inflict harm and terror on the United States and its

  5. A Profile of Public School Biology Teachers in the USA.

    ERIC Educational Resources Information Center

    Lindauer, Ivo E.; Queitzsch, Mary L.

    1996-01-01

    Uses data from the National Center for Educational Statistics' Schools and Staffing Survey (SASS) to present a profile of biology teachers. Discusses background of biology teachers, preparation in the physical and life sciences, who does the preparation, and expected future trends. Compares data with results reported for chemistry, earth science,…

  6. Population Biology, Conservation Biology, and the Future of Humanity.

    ERIC Educational Resources Information Center

    Ehrlich, Paul R.

    1987-01-01

    Recounts some of the progress that has been made in the field of population biology. Presents some of the important advances made in the field, along with some of their applications to societal problems. Calls for more cooperation between population scientists and social scientists, and more environmental education for the public. (TW)

  7. Biologically based technologies for control of soil-borne plant pathogens of cucumber and oilseed rape

    USDA-ARS?s Scientific Manuscript database

    Sustainable intensification of food production is necessary if we are to feed the world’s future population and maintain the resources required to produce this food. Biologically based technologies for disease control, such as microbial biological control agents and cover crops, can be integral to ...

  8. Biological treatment strategies for disc degeneration: potentials and shortcomings

    PubMed Central

    Nerlich, Andreas G.; Boos, Norbert

    2006-01-01

    Recent advances in molecular biology, cell biology and material sciences have opened a new emerging field of techniques for the treatment of musculoskeletal disorders. These new treatment modalities aim for biological repair of the affected tissues by introducing cell-based tissue replacements, genetic modifications of resident cells or a combination thereof. So far, these techniques have been successfully applied to various tissues such as bone and cartilage. However, application of these treatment modalities to cure intervertebral disc degeneration is in its very early stages and mostly limited to experimental studies in vitro or in animal studies. We will discuss the potential and possible shortcomings of current approaches to biologically cure disc degeneration by gene therapy or tissue engineering. Despite the increasing number of studies examining the therapeutic potential of biological treatment strategies, a practicable solution to routinely cure disc degeneration might not be available in the near future. However, knowledge gained from these attempts might be applied in a foreseeable future to cure the low back pain that often accompanies disc degeneration and therefore be beneficial for the patient. PMID:16983559

  9. A taxonomy of visualization tasks for the analysis of biological pathway data.

    PubMed

    Murray, Paul; McGee, Fintan; Forbes, Angus G

    2017-02-15

    Understanding complicated networks of interactions and chemical components is essential to solving contemporary problems in modern biology, especially in domains such as cancer and systems research. In these domains, biological pathway data is used to represent chains of interactions that occur within a given biological process. Visual representations can help researchers understand, interact with, and reason about these complex pathways in a number of ways. At the same time, these datasets offer unique challenges for visualization, due to their complexity and heterogeneity. Here, we present taxonomy of tasks that are regularly performed by researchers who work with biological pathway data. The generation of these tasks was done in conjunction with interviews with several domain experts in biology. These tasks require further classification than is provided by existing taxonomies. We also examine existing visualization techniques that support each task, and we discuss gaps in the existing visualization space revealed by our taxonomy. Our taxonomy is designed to support the development and design of future biological pathway visualization applications. We conclude by suggesting future research directions based on our taxonomy and motivated by the comments received by our domain experts.

  10. Is it ethical to prevent secondary use of stored biological samples and data derived from consenting research participants? The case of Malawi.

    PubMed

    Mungwira, Randy G; Nyangulu, Wongani; Misiri, James; Iphani, Steven; Ng'ong'ola, Ruby; Chirambo, Chawanangwa M; Masiye, Francis; Mfutso-Bengo, Joseph

    2015-12-02

    This paper discusses the contentious issue of reuse of stored biological samples and data obtained from research participants in past clinical research to answer future ethical and scientifically valid research questions. Many countries have regulations and guidelines that guide the use and exportation of stored biological samples and data. However, there are variations in regulations and guidelines governing the reuse of stored biological samples and data in Sub-Saharan Africa including Malawi. The current research ethics regulations and guidelines in Malawi do not allow indefinite storage and reuse of biological samples and data for future unspecified research. This comes even though the country has managed to answer pertinent research questions using stored biological samples and data. We acknowledge the limited technical expertise and equipment unavailable in Malawi that necessitates exportation of biological samples and data and the genuine concern raised by the regulatory authorities about the possible exploitation of biological samples and data by researchers. We also acknowledge that Malawi does not have bio-banks for storing biological samples and data for future research purposes. This creates room for possible exploitation of biological samples and data collected from research participants in primary research projects in Malawi. However, research ethics committees require completion and approval of material transfer agreements and data transfer agreements for biological samples and data collected for research purposes respectively and this requirement may partly address the concern raised by the regulatory authorities. Our concern though is that there is no such requirement for biological samples and data collected from patients for clinical or diagnostic purposes. In conclusion, we propose developing a medical data and material transfer agreement for biological samples and data collected from patients for clinical or diagnostic purposes in both public and private health facilities that may end up in research centers outside Malawi. We also propose revision of the current research ethics regulations and guidelines in Malawi in order to allow secondary use of biological samples and data collected from primary research projects as a way of maximizing the use of collected samples and data. Finally, we call for consultation of all stakeholders within the Malawi research community when regulatory authorities are developing policies that govern research in Malawi.

  11. Integrative Analysis of Omics Big Data.

    PubMed

    Yu, Xiang-Tian; Zeng, Tao

    2018-01-01

    The diversity and huge omics data take biology and biomedicine research and application into a big data era, just like that popular in human society a decade ago. They are opening a new challenge from horizontal data ensemble (e.g., the similar types of data collected from different labs or companies) to vertical data ensemble (e.g., the different types of data collected for a group of person with match information), which requires the integrative analysis in biology and biomedicine and also asks for emergent development of data integration to address the great changes from previous population-guided to newly individual-guided investigations.Data integration is an effective concept to solve the complex problem or understand the complicate system. Several benchmark studies have revealed the heterogeneity and trade-off that existed in the analysis of omics data. Integrative analysis can combine and investigate many datasets in a cost-effective reproducible way. Current integration approaches on biological data have two modes: one is "bottom-up integration" mode with follow-up manual integration, and the other one is "top-down integration" mode with follow-up in silico integration.This paper will firstly summarize the combinatory analysis approaches to give candidate protocol on biological experiment design for effectively integrative study on genomics and then survey the data fusion approaches to give helpful instruction on computational model development for biological significance detection, which have also provided newly data resources and analysis tools to support the precision medicine dependent on the big biomedical data. Finally, the problems and future directions are highlighted for integrative analysis of omics big data.

  12. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances.

    PubMed

    Wagner, James M; Alper, Hal S

    2016-04-01

    Coupling the tools of synthetic biology with traditional molecular genetic techniques can enable the rapid prototyping and optimization of yeast strains. While the era of yeast synthetic biology began in the well-characterized model organism Saccharomyces cerevisiae, it is swiftly expanding to include non-conventional yeast production systems such as Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. These yeasts already have roles in the manufacture of vaccines, therapeutic proteins, food additives, and biorenewable chemicals, but recent synthetic biology advances have the potential to greatly expand and diversify their impact on biotechnology. In this review, we summarize the development of synthetic biological tools (including promoters and terminators) and enabling molecular genetics approaches that have been applied in these four promising alternative biomanufacturing platforms. An emphasis is placed on synthetic parts and genome editing tools. Finally, we discuss examples of synthetic tools developed in other organisms that can be adapted or optimized for these hosts in the near future. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Fueling the future with fungal genomics

    Treesearch

    Igor.V. Grigoriev; Daniel Cullen; Stephen B. Goodwin; David Hibbett; Thomas W. Jeffries; Christian P. Kubicek; Cheryl Kuske; Jon K. Magnuson; Francis Martin; Joseph W. Spatafora; Adrian Tsang; Scott E. Baker

    2011-01-01

    Fungi play important roles across the range of current and future biofuel production processes. From crop/feedstock health to plant biomass saccharification, enzyme production to bioprocesses for producing ethanol, higher alcohols, or future hydrocarbon biofuels, fungi are involved. Research and development are underway to understand the underlying biological processes...

  14. Plant biology in space: proceedings of the International Workshop, Bad Honnef, Germany, June 24-27, 1996

    NASA Technical Reports Server (NTRS)

    Scott, T. K. (Principal Investigator)

    1997-01-01

    Papers presented at the International Workshop on Plant Biology in Space include reviews, reports, and perspectives related to plant gravitational biology. Presentations focused on nine subject areas: gravitropism in unicellular plants, gravitropism in fungi, cell development, gravity perception in multicellular plants, gravity responses in multicellular plants, plant reproduction, evaluation of a clinostat for weightlessness simulation, biological life support systems, and future research.

  15. Exploring the biophysical properties of phytosterols in the plasma membrane for novel cancer prevention strategies.

    PubMed

    Fakih, Omar; Sanver, Didem; Kane, David; Thorne, James L

    2018-05-03

    Cancer is a global problem with no sign that incidences are reducing. The great costs associated with curing cancer, through developing novel treatments and applying patented therapies, is an increasing burden to developed and developing nations alike. These financial and societal problems will be alleviated by research efforts into prevention, or treatments that utilise off-patent or repurposed agents. Phytosterols are natural components of the diet found in an array of seeds, nuts and vegetables and have been added to several consumer food products for the management of cardio-vascular disease through their ability to lower LDL-cholesterol levels. In this review, we provide a connected view between the fields of structural biophysics and cellular and molecular biology to evaluate the growing evidence that phytosterols impair oncogenic pathways in a range of cancer types. The current state of understanding of how phytosterols alter the biophysical properties of plasma membrane is described, and the potential for phytosterols to be repurposed from cardio-vascular to oncology therapeutics. Through an overview of the types of biophysical and molecular biology experiments that have been performed to date, this review informs the reader of the molecular and biophysical mechanisms through which phytosterols could have anti-cancer properties via their interactions with the plasma cell membrane. We also outline emerging and under-explored areas such as computational modelling, improved biomimetic membranes and ex vivo tissue evaluation. Focus of future research in these areas should improve understanding, not just of phytosterols in cancer cell biology but also to give insights into the interaction between the plasma membrane and the genome. These fields are increasingly providing meaningful biological and clinical data but iterative experiments between molecular biology assays, biosynthetic membrane studies and computational membrane modelling improve and refine our understanding of the role of different sterol components of the plasma membrane. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  16. Student perception of relevance of biology content to everyday life: A study in higher education biology courses

    NASA Astrophysics Data System (ADS)

    Himschoot, Agnes Rose

    The purpose of this mixed method case study was to examine the effects of methods of instruction on students' perception of relevance in higher education non-biology majors' courses. Nearly ninety percent of all students in a liberal arts college are required to take a general biology course. It is proposed that for many of those students, this is the last science course they will take for life. General biology courses are suspected of discouraging student interest in biology with large enrollment, didactic instruction, covering a huge amount of content in one semester, and are charged with promoting student disengagement with biology by the end of the course. Previous research has been aimed at increasing student motivation and interest in biology as measured by surveys and test results. Various methods of instruction have been tested and show evidence of improved learning gains. This study focused on students' perception of relevance of biology content to everyday life and the methods of instruction that increase it. A quantitative survey was administered to assess perception of relevance pre and post instruction over three topics typically taught in a general biology course. A second quantitative survey of student experiences during instruction was administered to identify methods of instruction used in the course lecture and lab. While perception of relevance dropped in the study, qualitative focus groups provided insight into the surprising results by identifying topics that are more relevant than the ones chosen for the study, conveying the affects of the instructor's personal and instructional skills on student engagement, explanation of how active engagement during instruction promotes understanding of relevance, the roll of laboratory in promoting students' understanding of relevance as well as identifying external factors that affect student engagement. The study also investigated the extent to which gender affected changes in students' perception of relevance. The results of this study will inform instructors' pedagogical and logistical choices in the design and implementation of higher education biology courses for non-biology majors. Recommendations for future research will include refining the study to train instructors in methods of instruction that promote student engagement as well as to identify biology topics that are more relevant to students enrolled in non-major biology courses.

  17. Biological satellite Kosmos-936

    NASA Technical Reports Server (NTRS)

    Vedeshin, L. A.

    1978-01-01

    A description is given of physiological experiments performed on the biological satellite Kosmos-936. Other experiments to determine the electrostatic and dielectric responses to the effects of cosmic radiation are discussed.

  18. Synthetic biology and its regulation in the European Union.

    PubMed

    Buhk, Hans-Jörg

    2014-12-25

    The term synthetic biology is used increasingly, but without a clear definition. Most of the recent research carried out in this field is genetic engineering, as defined by current GMO-legislation in the EU. Synthetic biology has developed its own language. In vitro synthesis of DNA also carries the label synthetic biology. It is important to analyze whether present and future activities of synthetic biology are within the scope of existing EU-legislation. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Translational environmental biology: cell biology informing conservation.

    PubMed

    Traylor-Knowles, Nikki; Palumbi, Stephen R

    2014-05-01

    Typically, findings from cell biology have been beneficial for preventing human disease. However, translational applications from cell biology can also be applied to conservation efforts, such as protecting coral reefs. Recent efforts to understand the cell biological mechanisms maintaining coral health such as innate immunity and acclimatization have prompted new developments in conservation. Similar to biomedicine, we urge that future efforts should focus on better frameworks for biomarker development to protect coral reefs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. After the Genome IV: Envisioning Biology in the Year 2010

    NASA Technical Reports Server (NTRS)

    Brent, Roger

    1999-01-01

    The After the Genome meetings were started in 1995 to help the biological community think about and prepare for the changes in biological research in the face of genomic information. This workshop brings together intellectuals from subject fields far outside of conventional biology with the expectation that this will help focus thinking beyond the immediate future. Hence the subtitle for this year's meeting: "Envisioning Biology in the Year 2010". Accordingly, the organizers brought together a broadly multi-disciplinary group of thinkers and working scientists.

  1. The Viking biological investigation - Preliminary results

    NASA Technical Reports Server (NTRS)

    Klein, H. P.; Oyama, V. I.; Berdahl, B. J.; Horowitz, N. H.; Hobby, G. L.; Levin, G. V.; Straat, P. A.; Lederberg, J.; Rich, A.; Hubbard, J. S.

    1976-01-01

    A preliminary progress report is presented for the Viking biological investigation through its first month. The carbon assimilation, gas exchange, and labeled release experiments are described in detail, and the chronology of the experiments is outlined. For the first experiment, it is found that a small amount of gas was converted into organic material in one sample and that heat treatment of a duplicate sample prevented such conversion. In the second experiment, a substantial amount of O2 was detected along with significant increases in CO2 and small changes in N2. In the third experiment, a significant amount of radioactive gas was evolved from one sample, but not from a duplicate heat-treated sample. Possible biological and nonbiological interpretations are considered for these results. It is concluded that while the experiments provide clear evidence for the occurrence of chemical reactions and while the results do not violate any prima facie criteria for biological processes, a definitive answer cannot yet be given to the question of whether life exists on Mars.

  2. A Practical Workbook for CXC Biology. Series of Caribbean Volunteer Publications, No. 1.

    ERIC Educational Resources Information Center

    Voluntary Services Overseas, Castries (St. Lucia).

    This workbook for teaching a biology course is organized into three sections: (1) teacher guidelines; (2) suggested experiments; and (3) apparatus requirements and evaluation schemes. Some of the topics covered in the 30 biology experiments contained in this book include soil analysis, geotropism, bowfly larvae, germination, seed dispersal, flower…

  3. Using History and Philosophy as the Capstone to a Biology Major

    ERIC Educational Resources Information Center

    Haave, Neil C.

    2017-01-01

    Capstone experiences have high educational impact with a number of approaches for biology. In most capstones, students produce a major project, typically as an undergraduate research experience, with a primary goal to integrate students' learning. At Augustana, our senior biology capstone uses history and philosophy to frame students' reflections…

  4. Why proteomics is not the new genomics and the future of mass spectrometry in cell biology.

    PubMed

    Sidoli, Simone; Kulej, Katarzyna; Garcia, Benjamin A

    2017-01-02

    Mass spectrometry (MS) is an essential part of the cell biologist's proteomics toolkit, allowing analyses at molecular and system-wide scales. However, proteomics still lag behind genomics in popularity and ease of use. We discuss key differences between MS-based -omics and other booming -omics technologies and highlight what we view as the future of MS and its role in our increasingly deep understanding of cell biology. © 2017 Sidoli et al.

  5. Molecular and cellular biology of cerebral arteriovenous malformations: a review of current concepts and future trends in treatment.

    PubMed

    Rangel-Castilla, Leonardo; Russin, Jonathan J; Martinez-Del-Campo, Eduardo; Soriano-Baron, Hector; Spetzler, Robert F; Nakaji, Peter

    2014-09-01

    Arteriovenous malformations (AVMs) are classically described as congenital static lesions. However, in addition to rupturing, AVMs can undergo growth, remodeling, and regression. These phenomena are directly related to cellular, molecular, and physiological processes. Understanding these relationships is essential to direct future diagnostic and therapeutic strategies. The authors performed a search of the contemporary literature to review current information regarding the molecular and cellular biology of AVMs and how this biology will impact their potential future management. A PubMed search was performed using the key words "genetic," "molecular," "brain," "cerebral," "arteriovenous," "malformation," "rupture," "management," "embolization," and "radiosurgery." Only English-language papers were considered. The reference lists of all papers selected for full-text assessment were reviewed. Current concepts in genetic polymorphisms, growth factors, angiopoietins, apoptosis, endothelial cells, pathophysiology, clinical syndromes, medical treatment (including tetracycline and microRNA-18a), radiation therapy, endovascular embolization, and surgical treatment as they apply to AVMs are discussed. Understanding the complex cellular biology, physiology, hemodynamics, and flow-related phenomena of AVMs is critical for defining and predicting their behavior, developing novel drug treatments, and improving endovascular and surgical therapies.

  6. Metahabilitation: Transforming Life Crises: A Story of Enhanced Recovery Involving Addiction and Dependency.

    PubMed

    2015-01-01

    Individuals experience crisis when their estimation of resources needed to successfully manage traumatic situations such as addiction and dependency is greater than their perception of resources available. Some recovery models are limited in their perspective on enhanced outcomes, failing to put the individual in a position of strength and on the path to a positive, more meaningful future. Rehabilitation can be too general, failing to incorporate personal experiences of trauma into the therapeutic plan. Recovery models must address these insufficiencies and promote an individual's biological, psychological, and spiritual abilities to transform and experience higher levels of functioning-actually brought about by traumas and personal life crises such as addictions and dependencies. These conditions become vehicles, providing opportunities to creatively restructure the self and find significant existential meaning. A heuristic study revealed insights into advanced recovery. The results identified limitations of current rehabilitative models and informed the development of the unique recovery concept and process: metahabilitation. A case study provides an overview and shows the model as it applies to addiction and dependency.

  7. Assessment of Course-Based Undergraduate Research Experiences: A Meeting Report

    PubMed Central

    Auchincloss, Lisa Corwin; Laursen, Sandra L.; Branchaw, Janet L.; Eagan, Kevin; Graham, Mark; Hanauer, David I.; Lawrie, Gwendolyn; McLinn, Colleen M.; Pelaez, Nancy; Rowland, Susan; Towns, Marcy; Trautmann, Nancy M.; Varma-Nelson, Pratibha; Weston, Timothy J.; Dolan, Erin L.

    2014-01-01

    The Course-Based Undergraduate Research Experiences Network (CUREnet) was initiated in 2012 with funding from the National Science Foundation program for Research Coordination Networks in Undergraduate Biology Education. CUREnet aims to address topics, problems, and opportunities inherent to integrating research experiences into undergraduate courses. During CUREnet meetings and discussions, it became apparent that there is need for a clear definition of what constitutes a CURE and systematic exploration of what makes CUREs meaningful in terms of student learning. Thus, we assembled a small working group of people with expertise in CURE instruction and assessment to: 1) draft an operational definition of a CURE, with the aim of defining what makes a laboratory course or project a “research experience”; 2) summarize research on CUREs, as well as findings from studies of undergraduate research internships that would be useful for thinking about how students are influenced by participating in CUREs; and 3) identify areas of greatest need with respect to CURE assessment, and directions for future research on and evaluation of CUREs. This report summarizes the outcomes and recommendations of this meeting. PMID:24591501

  8. Integrated genome browser: visual analytics platform for genomics.

    PubMed

    Freese, Nowlan H; Norris, David C; Loraine, Ann E

    2016-07-15

    Genome browsers that support fast navigation through vast datasets and provide interactive visual analytics functions can help scientists achieve deeper insight into biological systems. Toward this end, we developed Integrated Genome Browser (IGB), a highly configurable, interactive and fast open source desktop genome browser. Here we describe multiple updates to IGB, including all-new capabilities to display and interact with data from high-throughput sequencing experiments. To demonstrate, we describe example visualizations and analyses of datasets from RNA-Seq, ChIP-Seq and bisulfite sequencing experiments. Understanding results from genome-scale experiments requires viewing the data in the context of reference genome annotations and other related datasets. To facilitate this, we enhanced IGB's ability to consume data from diverse sources, including Galaxy, Distributed Annotation and IGB-specific Quickload servers. To support future visualization needs as new genome-scale assays enter wide use, we transformed the IGB codebase into a modular, extensible platform for developers to create and deploy all-new visualizations of genomic data. IGB is open source and is freely available from http://bioviz.org/igb aloraine@uncc.edu. © The Author 2016. Published by Oxford University Press.

  9. Patient Understanding of the Risks and Benefits of Biologic Therapies in Inflammatory Bowel Disease: Insights from a Large-scale Analysis of Social Media Platforms.

    PubMed

    Martinez, Bibiana; Dailey, Francis; Almario, Christopher V; Keller, Michelle S; Desai, Mansee; Dupuy, Taylor; Mosadeghi, Sasan; Whitman, Cynthia; Lasch, Karen; Ursos, Lyann; Spiegel, Brennan M R

    2017-07-01

    Few studies have examined inflammatory bowel disease (IBD) patients' knowledge and understanding of biologic therapies outside traditional surveys. Here, we used social media data to examine IBD patients' understanding of the risks and benefits associated with biologic therapies and how this affects decision-making. We collected posts from Twitter and e-forum discussions from >3000 social media sites posted between June 27, 2012 and June 27, 2015. Guided by natural language processing, we identified posts with specific IBD keywords that discussed the risks and/or benefits of biologics. We then manually coded the resulting posts and performed qualitative analysis using ATLAS.ti software. A hierarchical coding structure was developed based on the keyword list and relevant themes were identified through manual coding. We examined 1598 IBD-related posts, of which 452 (28.3%) centered on the risks and/or benefits of biologics. There were 5 main themes: negative experiences and concerns with biologics (n = 247; 54.6%), decision-making surrounding biologic use (n = 169; 37.4%), positive experiences with biologics (n = 168; 37.2%), information seeking from peers (n = 125; 27.7%), and cost (n = 38; 8.4%). Posts describing negative experiences primarily commented on side effects from biologics, concerns about potential side effects and increased cancer risk, and pregnancy safety concerns. Posts on decision-making focused on nonbiologic treatment options, hesitation to initiate biologics, and concerns about changing or discontinuing regimens. Social media reveals a wide range of themes governing patients' experience and choice with IBD biologics. The complexity of navigating their risk-benefit profiles suggests merit in creating online tailored decision tools to support IBD patients' decision-making with biologic therapies.

  10. Criterion learning in rule-based categorization: Simulation of neural mechanism and new data

    PubMed Central

    Helie, Sebastien; Ell, Shawn W.; Filoteo, J. Vincent; Maddox, W. Todd

    2015-01-01

    In perceptual categorization, rule selection consists of selecting one or several stimulus-dimensions to be used to categorize the stimuli (e.g, categorize lines according to their length). Once a rule has been selected, criterion learning consists of defining how stimuli will be grouped using the selected dimension(s) (e.g., if the selected rule is line length, define ‘long’ and ‘short’). Very little is known about the neuroscience of criterion learning, and most existing computational models do not provide a biological mechanism for this process. In this article, we introduce a new model of rule learning called Heterosynaptic Inhibitory Criterion Learning (HICL). HICL includes a biologically-based explanation of criterion learning, and we use new category-learning data to test key aspects of the model. In HICL, rule selective cells in prefrontal cortex modulate stimulus-response associations using pre-synaptic inhibition. Criterion learning is implemented by a new type of heterosynaptic error-driven Hebbian learning at inhibitory synapses that uses feedback to drive cell activation above/below thresholds representing ionic gating mechanisms. The model is used to account for new human categorization data from two experiments showing that: (1) changing rule criterion on a given dimension is easier if irrelevant dimensions are also changing (Experiment 1), and (2) showing that changing the relevant rule dimension and learning a new criterion is more difficult, but also facilitated by a change in the irrelevant dimension (Experiment 2). We conclude with a discussion of some of HICL’s implications for future research on rule learning. PMID:25682349

  11. Criterion learning in rule-based categorization: simulation of neural mechanism and new data.

    PubMed

    Helie, Sebastien; Ell, Shawn W; Filoteo, J Vincent; Maddox, W Todd

    2015-04-01

    In perceptual categorization, rule selection consists of selecting one or several stimulus-dimensions to be used to categorize the stimuli (e.g., categorize lines according to their length). Once a rule has been selected, criterion learning consists of defining how stimuli will be grouped using the selected dimension(s) (e.g., if the selected rule is line length, define 'long' and 'short'). Very little is known about the neuroscience of criterion learning, and most existing computational models do not provide a biological mechanism for this process. In this article, we introduce a new model of rule learning called Heterosynaptic Inhibitory Criterion Learning (HICL). HICL includes a biologically-based explanation of criterion learning, and we use new category-learning data to test key aspects of the model. In HICL, rule selective cells in prefrontal cortex modulate stimulus-response associations using pre-synaptic inhibition. Criterion learning is implemented by a new type of heterosynaptic error-driven Hebbian learning at inhibitory synapses that uses feedback to drive cell activation above/below thresholds representing ionic gating mechanisms. The model is used to account for new human categorization data from two experiments showing that: (1) changing rule criterion on a given dimension is easier if irrelevant dimensions are also changing (Experiment 1), and (2) showing that changing the relevant rule dimension and learning a new criterion is more difficult, but also facilitated by a change in the irrelevant dimension (Experiment 2). We conclude with a discussion of some of HICL's implications for future research on rule learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Generalized theory of semiflexible polymers.

    PubMed

    Wiggins, Paul A; Nelson, Philip C

    2006-03-01

    DNA bending on length scales shorter than a persistence length plays an integral role in the translation of genetic information from DNA to cellular function. Quantitative experimental studies of these biological systems have led to a renewed interest in the polymer mechanics relevant for describing the conformational free energy of DNA bending induced by protein-DNA complexes. Recent experimental results from DNA cyclization studies have cast doubt on the applicability of the canonical semiflexible polymer theory, the wormlike chain (WLC) model, to DNA bending on biologically relevant length scales. This paper develops a theory of the chain statistics of a class of generalized semiflexible polymer models. Our focus is on the theoretical development of these models and the calculation of experimental observables. To illustrate our methods, we focus on a specific, illustrative model of DNA bending. We show that the WLC model generically describes the long-length-scale chain statistics of semiflexible polymers, as predicted by renormalization group arguments. In particular, we show that either the WLC or our present model adequately describes force-extension, solution scattering, and long-contour-length cyclization experiments, regardless of the details of DNA bend elasticity. In contrast, experiments sensitive to short-length-scale chain behavior can in principle reveal dramatic departures from the linear elastic behavior assumed in the WLC model. We demonstrate this explicitly by showing that our toy model can reproduce the anomalously large short-contour-length cyclization factors recently measured by Cloutier and Widom. Finally, we discuss the applicability of these models to DNA chain statistics in the context of future experiments.

  13. Grassland responses to increased rainfall depend on the timescale of forcing.

    PubMed

    Sullivan, Martin J P; Thomsen, Meredith A; Suttle, K B

    2016-04-01

    Forecasting impacts of future climate change is an important challenge to biologists, both for understanding the consequences of different emissions trajectories and for developing adaptation measures that will minimize biodiversity loss. Existing variation provides a window into the effects of climate on species and ecosystems, but in many places does not encompass the levels or timeframes of forcing expected under directional climatic change. Experiments help us to fill in these uncertainties, simulating directional shifts to examine outcomes of new levels and sustained changes in conditions. Here, we explore the translation between short-term responses to climate variability and longer-term trajectories that emerge under directional climatic change. In a decade-long experiment, we compare effects of short-term and long-term forcings across three trophic levels in grassland plots subjected to natural and experimental variation in precipitation. For some biological responses (plant productivity), responses to long-term extension of the rainy season were consistent with short-term responses, while for others (plant species richness, abundance of invertebrate herbivores and predators), there was pronounced divergence of long-term trajectories from short-term responses. These differences between biological responses mean that sustained directional changes in climate can restructure ecological relationships characterizing a system. Importantly, a positive relationship between plant diversity and productivity turned negative under one scenario of climate change, with a similar change in the relationship between plant productivity and consumer biomass. Inferences from experiments such as this form an important part of wider efforts to understand the complexities of climate change responses. © 2016 John Wiley & Sons Ltd.

  14. Volumetric Stress-Strain Analysis of Optohydrodynamically Suspended Biological Cells

    PubMed Central

    Liang, Yu; Saha, Asit K.

    2011-01-01

    Ongoing investigations are exploring the biomechanical properties of isolated and suspended biological cells in pursuit of understanding single-cell mechanobiology. An optical tweezer with minimal applied laser power has positioned biologic cells at the geometric center of a microfluidic cross-junction, creating a novel optohydrodynamic trap. The resulting fluid flow environment facilitates unique multiaxial loading of single cells with site-specific normal and shear stresses resulting in a physical albeit extensional state. A recent two-dimensional analysis has explored the cytoskeletal strain response due to these fluid-induced stresses [Wilson and Kohles, 2010, “Two-Dimensional Modeling of Nanomechanical Stresses-Strains in Healthy and Diseased Single-Cells During Microfluidic Manipulation,” J Nanotechnol Eng Med, 1(2), p. 021005]. Results described a microfluidic environment having controlled nanometer and piconewton resolution. In this present study, computational fluid dynamics combined with multiphysics modeling has further characterized the applied fluid stress environment and the solid cellular strain response in three dimensions to accompany experimental cell stimulation. A volumetric stress-strain analysis was applied to representative living cell biomechanical data. The presented normal and shear stress surface maps will guide future microfluidic experiments as well as provide a framework for characterizing cytoskeletal structure influencing the stress to strain response. PMID:21186894

  15. Cross-continent comparisons reveal differing environmental drivers of growth of the coral reef fish, Lutjanus bohar

    NASA Astrophysics Data System (ADS)

    Ong, Joyce J. L.; Rountrey, Adam N.; Marriott, Ross J.; Newman, Stephen J.; Meeuwig, Jessica J.; Meekan, Mark G.

    2017-03-01

    Biochronologies provide important insights into the growth responses of fishes to past variability in physical and biological environments and, in so doing, allow modelling of likely responses to climate change in the future. We examined spatial variability in the key drivers of inter-annual growth patterns of a widespread, tropical snapper, Lutjanus bohar, at similar tropical latitudes on the north-western and north-eastern coasts of the continent of Australia. For this study, we developed biochronologies from otoliths that provided proxies of somatic growth and these were analysed using mixed-effects models to examine the historical drivers of growth. Our analyses demonstrated that growth patterns of fish were driven by different climatic and biological factors in each region, including Pacific Ocean climate indices, regional sea level and the size structure of the fish community. Our results showed that the local oceanographic and biological context of reef systems strongly influenced the growth of L. bohar and that a single age-related growth trend cannot be assumed for separate populations of this species that are likely to experience different environmental conditions. Generalised predictions about the growth response of fishes to climate change will thus require adequate characterisation of the spatial variability in growth determinants likely to be found throughout the range of species that have cosmopolitan distributions.

  16. Global transcriptomic analysis suggests carbon dioxide as an environmental stressor in spaceflight: A systems biology GeneLab case study.

    PubMed

    Beheshti, Afshin; Cekanaviciute, Egle; Smith, David J; Costes, Sylvain V

    2018-03-08

    Spaceflight introduces a combination of environmental stressors, including microgravity, ionizing radiation, changes in diet and altered atmospheric gas composition. In order to understand the impact of each environmental component on astronauts it is important to investigate potential influences in isolation. Rodent spaceflight experiments involve both standard vivarium cages and animal enclosure modules (AEMs), which are cages used to house rodents in spaceflight. Ground control AEMs are engineered to match the spaceflight environment. There are limited studies examining the biological response invariably due to the configuration of AEM and vivarium housing. To investigate the innate global transcriptomic patterns of rodents housed in spaceflight-matched AEM compared to standard vivarium cages we utilized publicly available data from the NASA GeneLab repository. Using a systems biology approach, we observed that AEM housing was associated with significant transcriptomic differences, including reduced metabolism, altered immune responses, and activation of possible tumorigenic pathways. Although we did not perform any functional studies, our findings revealed a mild hypoxic phenotype in AEM, possibly due to atmospheric carbon dioxide that was increased to match conditions in spaceflight. Our investigation illustrates the process of generating new hypotheses and informing future experimental research by repurposing multiple space-flown datasets.

  17. The retinoblastoma tumor suppressor and stem cell biology.

    PubMed

    Sage, Julien

    2012-07-01

    Stem cells play a critical role during embryonic development and in the maintenance of homeostasis in adult individuals. A better understanding of stem cell biology, including embryonic and adult stem cells, will allow the scientific community to better comprehend a number of pathologies and possibly design novel approaches to treat patients with a variety of diseases. The retinoblastoma tumor suppressor RB controls the proliferation, differentiation, and survival of cells, and accumulating evidence points to a central role for RB activity in the biology of stem and progenitor cells. In some contexts, loss of RB function in stem or progenitor cells is a key event in the initiation of cancer and determines the subtype of cancer arising from these pluripotent cells by altering their fate. In other cases, RB inactivation is often not sufficient to initiate cancer but may still lead to some stem cell expansion, raising the possibility that strategies aimed at transiently inactivating RB might provide a novel way to expand functional stem cell populations. Future experiments dedicated to better understanding how RB and the RB pathway control a stem cell's decisions to divide, self-renew, or give rise to differentiated progeny may eventually increase our capacity to control these decisions to enhance regeneration or help prevent cancer development.

  18. Brain age and other bodily 'ages': implications for neuropsychiatry.

    PubMed

    Cole, James H; Marioni, Riccardo E; Harris, Sarah E; Deary, Ian J

    2018-06-11

    As our brains age, we tend to experience cognitive decline and are at greater risk of neurodegenerative disease and dementia. Symptoms of chronic neuropsychiatric diseases are also exacerbated during ageing. However, the ageing process does not affect people uniformly; nor, in fact, does the ageing process appear to be uniform even within an individual. Here, we outline recent neuroimaging research into brain ageing and the use of other bodily ageing biomarkers, including telomere length, the epigenetic clock, and grip strength. Some of these techniques, using statistical approaches, have the ability to predict chronological age in healthy people. Moreover, they are now being applied to neurological and psychiatric disease groups to provide insights into how these diseases interact with the ageing process and to deliver individualised predictions about future brain and body health. We discuss the importance of integrating different types of biological measurements, from both the brain and the rest of the body, to build more comprehensive models of the biological ageing process. Finally, we propose seven steps for the field of brain-ageing research to take in coming years. This will help us reach the long-term goal of developing clinically applicable statistical models of biological processes to measure, track and predict brain and body health in ageing and disease.

  19. Incentives for market penetration of biosimilars in Belgium and in five European countries.

    PubMed

    Swartenbroekx, N; Farfan-Portet; Espín, J; Gerkens, S

    2014-12-01

    Biosimilars are products similar to a biological already authorized and no longer protected by a patent. As the biological product, they contain a biological substance produced by or derived from a living organism. Alike with generics, biosimilars are potential tool to ensure savings for health systems. The current lack of market penetration of biosimilars may be seen by national authorities as a lost opportunity in terms of cost- containment. The objective of this paper is therefore to analyze the current situation in Belgium and to identify potential measures to stimulate biosimilar uptake in Belgium through an analysis of the experience in five European countries: France, Germany, The Netherlands, Spain and Sweden. This international comparison was performed using a two steps analysis: a structured review of the literature followed by a validation from experts in each country. Potential incentives and constraints were identified, i.e., prescription quotas/target, clinical guidelines, primary substitution, reference price system, fixed payment and public tendering. However, the literature reviewed provided little evaluation of the effectiveness of these policies in terms of biosimilar uptake or potential savings. The impact of these policies on biosimilar related savings is currently based on expectation and assumptions. Such kind of studies is therefore essential in the future.

  20. Research on stored biological samples: views of African American and White American cancer patients.

    PubMed

    Pentz, Rebecca D; Billot, Laurent; Wendler, David

    2006-04-01

    Proposals on consent for research with biological samples should be informed by empirical studies of individuals' views. Studies to date queried mostly white research subjects. The aim of this study was to compare the views of two groups of patients: cancer patients at a university clinic (Winship Cancer Institute at Emory Healthcare) and cancer patients at an inner city county hospital (Grady) who were given the option of tissue banking. Overall, 315/452 (70%) patients completed the survey. The Grady cohort was 86% African American; the Winship cohort was 82% White. The vast majority (95%) of individuals in both cohorts agreed to provide a biological sample for future research. Both cohorts were willing for their samples to be used to study cancer and other diseases, including Alzheimer disease. Few participants preferred to control the disease to be studied (10%) or wished to be contacted again for consent for each future research project (11%). In our sample, almost all clinical patients, regardless of site of care, ethnicity or socioeconomic status, were willing to provide a biological sample for research purposes and allow investigators to determine the research to be done without contacting the patients again. These findings support the recommendation to offer individuals a simplified consent with a one-time binary choice whether to provide biological samples for future research. Copyright 2006 Wiley-Liss, Inc.

Top