Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa
2016-07-01
In this study, the relationship between carbon dioxide emissions, GDP, energy use, and population growth in Ghana was investigated from 1971 to 2013 by comparing the vector error correction model (VECM) and the autoregressive distributed lag (ARDL). Prior to testing for Granger causality based on VECM, the study tested for unit roots, Johansen's multivariate co-integration and performed a variance decomposition analysis using Cholesky's technique. Evidence from the variance decomposition shows that 21 % of future shocks in carbon dioxide emissions are due to fluctuations in energy use, 8 % of future shocks are due to fluctuations in GDP, and 6 % of future shocks are due to fluctuations in population. There was evidence of bidirectional causality running from energy use to GDP and a unidirectional causality running from carbon dioxide emissions to energy use, carbon dioxide emissions to GDP, carbon dioxide emissions to population, and population to energy use. Evidence from the long-run elasticities shows that a 1 % increase in population in Ghana will increase carbon dioxide emissions by 1.72 %. There was evidence of short-run equilibrium relationship running from energy use to carbon dioxide emissions and GDP to carbon dioxide emissions. As a policy implication, the addition of renewable energy and clean energy technologies into Ghana's energy mix can help mitigate climate change and its impact in the future.
Discussion of Refrigeration Cycle Using Carbon Dioxide as Refrigerant
NASA Astrophysics Data System (ADS)
Ji, Amin; Sun, Miming; Li, Jie; Yin, Gang; Cheng, Keyong; Zhen, Bing; Sun, Ying
Nowadays, the problem of the environment goes worse, it urges people to research and study new energy-saving and environment-friendly refrigerants, such as carbon dioxide, at present, people do research on carbon dioxide at home and abroad. This paper introduces the property of carbon dioxide as a refrigerant, sums up and analyses carbon dioxide refrigeration cycles, and points out the development and research direction in the future.
The Impact of Carbon Dioxide on Climate.
ERIC Educational Resources Information Center
MacDonald, Gordon J.
1979-01-01
Examines the relationship between climatic change and carbon dioxide from the historical perspective; details the contributions of carbon-based fuels to increasing carbon dioxide concentrations; and using global circulation models, discusses the future impact of the heavy reliance of our society on carbon-based fuels on climatic change. (BT)
Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide.
Walker, J C; Kasting, J F
1992-01-01
We develop a numerical simulation of the global biogeochemical cycles of carbon that works over time scales extending from years to millions of years. The ocean is represented by warm and cold shallow water reservoirs, a thermocline reservoir, and deep Atlantic, Indian, and Pacific reservoirs. The atmosphere is characterized by a single carbon reservoir and the global biota by a single biomass reservoir. The simulation includes the rock cycle, distinguishing between shelf carbonate and pelagic carbonate precipitation, with distinct lysocline depths in the three deep ocean reservoirs. Dissolution of pelagic carbonates in response to decrease in lysocline depth is included. The simulation is tuned to reproduce the observed radiocarbon record resulting from atomic weapon testing. It is tuned also to reproduce the distribution of dissolved phosphate and total dissolved carbon between the ocean reservoirs as well as the carbon isotope ratios for both 13C and 14C in ocean and atmosphere. The simulation reproduces reasonably well the historical record of carbon dioxide partial pressure as well as the atmospheric isotope ratios for 13C and 14C over the last 200 yr as these have changed in response to fossil fuel burning and land use changes, principally forest clearance. The agreements between observation and calculation involves the assumption of a carbon dioxide fertilization effect in which the rate of production of biomass increases with increasing carbon dioxide partial pressure. At present the fertilization effect of increased carbon dioxide outweighs the effects of forest clearance, so the biota comprises an overall sink of atmospheric carbon dioxide sufficiently large to bring the budget approximately into balance. This simulation is used to examine the future evolution of carbon dioxide and its sensitivity to assumptions about the rate of fossil fuel burning and of forest clearance. Over times extending up to thousands of years, the results are insensitive to the formulation of the rock cycle and to the dissolution of deep sea carbonate sediments. Atmospheric carbon dioxide continues to increase as long fossil fuel is burned at a significant rate, because the rate of fossil fuel production of carbon dioxide far exceeds the rates at which geochemical processes can remove carbon dioxide from the atmosphere. The maximum concentration of carbon dioxide achieved in the atmosphere depends on the total amount of fossil fuel burned, but only weakly on the rate of burning. The future course of atmospheric carbon dioxide is, however, very sensitive to the fate of the forests in this simulation because of the important role assigned to carbon dioxide fertilization of plant growth rate. Forest clearance drives up atmospheric carbon dioxide not only by converting biomass into atmospheric carbon dioxide but more importantly by reducing the capacity of the biota to sequester fossil fuel carbon dioxide. In this simulation, atmospheric carbon dioxide levels could be sustained indefinitely below 500 parts per million (ppm) if fossil fuel combustion rates were immediately cut from their present value of 5 x 10(14) m/y to 0.2 x 10(14) m/y (a factor of 25 reduction) and if further forest clearance were halted. If neither of these conditions is met and if we consume most of the world's fossil fuel reserves, peak carbon dioxide concentrations of 1000-2000 ppm are probable within the next few centuries.
Artist's Concept of the Orbiting Carbon Observatory
NASA Technical Reports Server (NTRS)
2008-01-01
Artist's concept of the Orbiting Carbon Observatory. The mission, scheduled to launch in early 2009, will be the first spacecraft dedicated to studying atmospheric carbon dioxide, the principal human-produced driver of climate change. It will provide the first global picture of the human and natural sources of carbon dioxide and the places where this important greenhouse gas is stored. Such information will improve global carbon cycle models as well as forecasts of atmospheric carbon dioxide levels and of how our climate may change in the future.DOE Office of Scientific and Technical Information (OSTI.GOV)
FUJITA,E.
2000-01-12
Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.
Carbon and Earth’s future climate on This Week @NASA – November 13, 2015
2015-11-13
New observations from NASA’s Orbiting Carbon Observatory-2 (OCO-2) mission is providing insight into how Earth is responding to rising levels of heat-trapping gases in the atmosphere, and what this means for our future climate. Earth’s land and ocean currently absorb about half of all carbon dioxide emissions from the burning of fossil fuels, but it’s uncertain whether the planet can keep this up in the future. Later this month, a United Nations climate meeting in Paris will focus on setting limits on future levels of human-produced carbon emissions. OCO-2 is NASA’s first satellite dedicated to measuring carbon dioxide. Also, New Horizons science update, NASA at Bay Area Science Festival, Anniversary of first spacecraft landing on a comet, Cygnus being prepared for launch, and Girls Rising in Math and Science!
Predictive Modeling of the CDRA 4BMS
NASA Technical Reports Server (NTRS)
Coker, Robert; Knox, James
2016-01-01
Fully predictive models of the Four Bed Molecular Sieve of the Carbon Dioxide Removal Assembly on the International Space Station are being developed. This virtual laboratory will be used to help reduce mass, power, and volume requirements for future missions. In this paper we describe current and planned modeling developments in the area of carbon dioxide removal to support future crewed Mars missions as well as the resolution of anomalies observed in the ISS CDRA.
The costs of photorespiration to food production now and in the future
USDA-ARS?s Scientific Manuscript database
Photorespiration is essential for C3 plants, but operates at the massive expense of fixed carbon dioxide and energy. Photorespiration is initiated when the initial enzyme of photosynthesis, Rubisco, reacts with oxygen instead of carbon dioxide and produces a toxic compound which is recycled by photo...
Moving to a low-carbon future: perspectives on nuclear and alternative power sources.
Morgan, M Granger
2007-11-01
This paper summarizes key findings from climate science to make the case that the United States (and ultimately the world) will need to dramatically reduce carbon dioxide emissions from the energy system over the next few decades. While transportation energy is an important consideration, the focus of this paper is on electric power. Today, the United States generates just over half of its electric power from coal. The average size-weighted age of the fleet of U.S. coal plants is 35 y, and many will have to be replaced in the next few years. If that capacity were to be replaced with new conventional coal plants, it would commit the nation (and the world) to many more decades of high carbon-dioxide emissions, or it would make the cost of meeting a future carbon-dioxide emission constraint much higher than it needs to be. A range of low- and no-carbon energy technologies offers great potential to create a portfolio of options that can dramatically reduce emissions. A few of the advantages and disadvantages of these technologies are discussed. Policy and regulatory advances that will be needed to move the energy system to a low-carbon future are identified.
Warming caused by cumulative carbon emissions towards the trillionth tonne.
Allen, Myles R; Frame, David J; Huntingford, Chris; Jones, Chris D; Lowe, Jason A; Meinshausen, Malte; Meinshausen, Nicolai
2009-04-30
Global efforts to mitigate climate change are guided by projections of future temperatures. But the eventual equilibrium global mean temperature associated with a given stabilization level of atmospheric greenhouse gas concentrations remains uncertain, complicating the setting of stabilization targets to avoid potentially dangerous levels of global warming. Similar problems apply to the carbon cycle: observations currently provide only a weak constraint on the response to future emissions. Here we use ensemble simulations of simple climate-carbon-cycle models constrained by observations and projections from more comprehensive models to simulate the temperature response to a broad range of carbon dioxide emission pathways. We find that the peak warming caused by a given cumulative carbon dioxide emission is better constrained than the warming response to a stabilization scenario. Furthermore, the relationship between cumulative emissions and peak warming is remarkably insensitive to the emission pathway (timing of emissions or peak emission rate). Hence policy targets based on limiting cumulative emissions of carbon dioxide are likely to be more robust to scientific uncertainty than emission-rate or concentration targets. Total anthropogenic emissions of one trillion tonnes of carbon (3.67 trillion tonnes of CO(2)), about half of which has already been emitted since industrialization began, results in a most likely peak carbon-dioxide-induced warming of 2 degrees C above pre-industrial temperatures, with a 5-95% confidence interval of 1.3-3.9 degrees C.
A Virtual Laboratory for the 4 Bed Molecular Sieve of the Carbon Dioxide Removal Assembly
NASA Technical Reports Server (NTRS)
Coker, Robert; Knox, James; O'Connor, Brian
2016-01-01
Ongoing work to improve water and carbon dioxide separation systems to be used on crewed space vehicles combines sub-scale systems testing and multi-physics simulations. Thus, as part of NASA's Advanced Exploration Systems (AES) program and the Life Support Systems Project (LSSP), fully predictive COMSOL Multiphysics models of the Four Bed Molecular Sieve (4BMS) of the Carbon Dioxide Removal Assembly (CDRA) on the International Space Station (ISS) have been developed. This Virtual Laboratory is being used to help reduce mass, power, and volume requirements for exploration missions. In this paper we describe current and planned modeling developments in the area of carbon dioxide removal to support future missions as well as the resolution of anomalies observed in the ISS CDRA.
ERIC Educational Resources Information Center
Badger, Marcus P. S.; Pancost, Richard D.; Harrison, Timothy G.
2011-01-01
The reconstruction of ancient atmospheric carbon dioxide concentrations is essential to understanding the history of the Earth and life. It is also an important guide to identifying the sensitivity of the Earth system to this greenhouse gas and, therefore, constraining its future impact on climate. However, determining the concentration of…
TECHNOLOGICAL CONSIDERATIONS FOR PLANNING THE GLOBAL CARBON FUTURE
The atmospheric level of carbon dioxide (CO2) is the dominant variable in the anthropogenic influence of future global climate change. Thus, it is critical to understand the long-term factors affecting its level, especially the longer-range technological considerations. Most rece...
Predictive Modeling of the CDRA 4BMS
NASA Technical Reports Server (NTRS)
Coker, Robert F.; Knox, James C.
2016-01-01
As part of NASA's Advanced Exploration Systems (AES) program and the Life Support Systems Project (LSSP), fully predictive models of the Four Bed Molecular Sieve (4BMS) of the Carbon Dioxide Removal Assembly (CDRA) on the International Space Station (ISS) are being developed. This virtual laboratory will be used to help reduce mass, power, and volume requirements for future missions. In this paper we describe current and planned modeling developments in the area of carbon dioxide removal to support future crewed Mars missions as well as the resolution of anomalies observed in the ISS CDRA.
Are the impacts of land use on warming underestimated in climate policy?
NASA Astrophysics Data System (ADS)
Mahowald, Natalie M.; Ward, Daniel S.; Doney, Scott C.; Hess, Peter G.; Randerson, James T.
2017-09-01
While carbon dioxide emissions from energy use must be the primary target of climate change mitigation efforts, land use and land cover change (LULCC) also represent an important source of climate forcing. In this study we compute time series of global surface temperature change separately for LULCC and non-LULCC sources (primarily fossil fuel burning), and show that because of the extra warming associated with the co-emission of methane and nitrous oxide with LULCC carbon dioxide emissions, and a co-emission of cooling aerosols with non-LULCC emissions of carbon dioxide, the linear relationship between cumulative carbon dioxide emissions and temperature has a two-fold higher slope for LULCC than for non-LULCC activities. Moreover, projections used in the Intergovernmental Panel on Climate Change (IPCC) for the rate of tropical land conversion in the future are relatively low compared to contemporary observations, suggesting that the future projections of land conversion used in the IPCC may underestimate potential impacts of LULCC. By including a ‘business as usual’ future LULCC scenario for tropical deforestation, we find that even if all non-LULCC emissions are switched off in 2015, it is likely that 1.5 °C of warming relative to the preindustrial era will occur by 2100. Thus, policies to reduce LULCC emissions must remain a high priority if we are to achieve the low to medium temperature change targets proposed as a part of the Paris Agreement. Future studies using integrated assessment models and other climate simulations should include more realistic deforestation rates and the integration of policy that would reduce LULCC emissions.
Long-Term Evolution of the Sun and our Biosphere: Causes and Effects?
NASA Astrophysics Data System (ADS)
Des Marais, D. J.
2000-05-01
The course of early biological evolution felt the environmental consequences of changes in the solar output (discussed here), as well as long-term decreases in planetary heat flow and the flux of extraterrestrial impactors. A large, early UV flux fueled the photodissociation of atmospheric water vapor, sustaining a significant hydrogen flux to space. This flux caused Earth's crust to become oxidized, relative to its mantle. Accordingly, reduced gases and aqueous solutes that were erupted volcanically into the relatively more oxidized surface environment created sources of chemical redox energy for the origin and early evolution of life. Although the solar constant has increased some 30 percent over Earth's lifetime, oceans remained remarkably stable for more than 3.8 billion years. Thus a very effective climate regulation was probably achieved by decreasing over time the atmospheric inventories of greenhouse gases such as carbon dioxide and methane. Such decreases probably had major consequences for the biosphere. Substantial early marine bicarbonate and carbon dioxide inventories sustained abundant abiotic precipitation of carbonates, with consequences for the stability and habitability of key aqueous environments. A long-term decline in carbon dioxide levels increased the bioenergetic requirements for carbon dioxide as well as other aspects of the physiology of photosynthetic microorganisms. The long-term trend of global mean surface temperature is still debated, as is the role of the sun's evolution in that trend. Future increases in the solar constant will drive atmospheric carbon dioxide levels down further, challenging plants to cope with ever-dwindling concentrations of carbon substrates. Climate regulation will be achieved by modulating an increasing abundance of high-albedo water vapor clouds. Future biological evolution defies precise predictions, however it is certain that the sun's continuing evolution will play a key role.
Composition and carbon dynamics of forests in northeastern North America in a future, warmer world
Jacqueline E. Mohan; Roger M. Cox; Louis R. Iverson
2009-01-01
Increasing temperatures, precipitation extremes, and other anthropogenic influences (pollutant deposition, increasing carbon dioxide) will influence future forest composition and productivity in the northeastern United States and eastern Canada. This synthesis of empirical and modeling studies includes tree DNA evidence suggesting tree...
The NOAA Carbon America Program A Focus on Products for Decision- Support
NASA Astrophysics Data System (ADS)
Butler, J. H.; Hofmann, D. J.; Tans, P. P.; Peters, W.; Andrews, A. E.; Sweeny, C.; Montzka, S. A.
2006-12-01
If society is to manage or reduce carbon emissions in the future, reliable and accurate information on atmospheric carbon dioxide levels for verification of emission reductions will be needed on local, regional, and global scales. The current global carbon dioxide observing network operated by NOAA/ESRL provides a foundation for monitoring and understanding carbon dioxide. For example, atmospheric measurements in Europe suggest that emissions inventories of methane are substantial underestimates. An expanded U.S. Carbon Cycle Atmospheric Observing System is being implemented. Carbon America will consist of approximately 24 aircraft and 12 tall towers obtaining concentrations of carbon gases and other trace species. This observing system needs to be capable of quantitative attribution of all major contributors to the carbon budget of the continent, both manmade and natural. Successful mitigation strategies need independent and credible assessments of their efficacy. Managing carbon emissions will require the involvement of industry, financial markets, and governments at all levels. Without good information, governments will be slow to act, private investments will likely be less than optimal, and financial markets will not develop as they might need to. The atmospheric data and the methods used to derive sources and sinks will be fully open and available in up-to-date form to scientists, the general public, and policymakers. This presentation will provide an overview of NOAA`s role in the North American Carbon Program, our current accomplishments, our plans for the future network, and the currently expected products, services, and information that derive from these and other associated studies. Today's products, while useful, will be eclipsed by those of tomorrow, which will focus heavily on regional emissions expressed on seasonal or shorter time-scales, and will provide needed information for improved predictions in the future.
High-resolution reflection seismic survey at a CCS site, Taiwan
NASA Astrophysics Data System (ADS)
Wang, Chien-Ying; Chung, Chen-Tung; Kuo, Hsuan-Yu; Wu, Ming-shyan; Kuo-Chen, Hao
2017-04-01
To control the effect of greenhouse gas on global warming, the reduction of carbon dioxide emission has become a significant international issue in recent years. The capture of carbon dioxide during its manufacturing and storing in adjacent areas are the most economical way. This research uses high-resolution seismic reflection survey to investigate the region around the world's largest coal-fired power plant at Taichung Port, Taiwan. We aim to detect proper geological structures and to evaluate the possible way to store carbon dioxide. This research uses reflection seismic survey with two mini-vibrators and 240 channels to investigate detailed underground structures. The total length of seismic lines is more than 20 kilometers. By aligning sequential seismic lines, we are able to correlate stratigraphic layers over a wide area. Two adjacent wells along the seismic line are used to identified possible formations. The TaiChung Power Plant (TCPP) at Taichung Port is our target which has more cross-tied seismic lines and a seismic line even extending into the sea water. We analyze these seismic profiles to establish the geological model for carbon dioxide storage and evaluate the possibility of storage systems. Furthermore, this research may prepare some baseline data for the future carbon dioxide injection monitoring. The result shows that the geological structures striking 8 degrees east of north and dipping 2.8 degrees to the east. This means that carbon dioxide will migrate toward the sea direction after injection. The structural layers are relatively flat without any sign of faults. Three carbon dioxide storage systems : Mushan Wuchihshan—Paling(bottom), Peiliao—Talu(middle) and Kueichulin—Chinshui(upper) system are identified. All has the proper reservoir with high porosity and capable caprocks more than 100 meters thick. The geological storage of carbon dioxide injected into TCPP site is a feasible, commercial and safe way to reduce the emission of carbon dioxide from TCPP.
4. Carbon Changes in U.S. Forests
R.A. Birdsey; L.S. Heath
1995-01-01
Global concern about increasing atmospheric concentrations of greenhouse gases, particularly carbon dioxide (CO2), and the possible consequences of future climate changes, has generated interest in understanding and quantifying the role of terrestrial ecosystems in the global carbon cycle. Recent efforts to quantify the global carbon budget have...
ScienceCast 151: NASA to Launch Carbon Observatory
2014-06-24
NASA is about to launch a satellite dedicated to the study of the greenhouse gas carbon dioxide. The Orbiting Carbon Observatory (OCO-2) will quantify global CO2 sources and sinks, and help researchers predict the future of climate change.
CDRA-4EU Testing to Assess Increased Number of ISS Crew
NASA Technical Reports Server (NTRS)
Peters, Warren T.; Knox, James C.
2017-01-01
The International Space Station (ISS) program is investigating methods to increase carbon dioxide (CO2) removal on ISS in order to support an increased number of astronauts at a future date. The Carbon Dioxide Removal Assembly - Engineering Unit (CDRA-4EU) system at NASA Marshall Space Flight Center (MSFC) was tested at maximum fan settings to evaluate CO2 removal rate and power consumption at those settings.
Nuclear Energy and Synthetic Liquid Transportation Fuels
NASA Astrophysics Data System (ADS)
McDonald, Richard
2012-10-01
This talk will propose a plan to combine nuclear reactors with the Fischer-Tropsch (F-T) process to produce synthetic carbon-neutral liquid transportation fuels from sea water. These fuels can be formed from the hydrogen and carbon dioxide in sea water and will burn to water and carbon dioxide in a cycle powered by nuclear reactors. The F-T process was developed nearly 100 years ago as a method of synthesizing liquid fuels from coal. This process presently provides commercial liquid fuels in South Africa, Malaysia, and Qatar, mainly using natural gas as a feedstock. Nuclear energy can be used to separate water into hydrogen and oxygen as well as to extract carbon dioxide from sea water using ion exchange technology. The carbon dioxide and hydrogen react to form synthesis gas, the mixture needed at the beginning of the F-T process. Following further refining, the products, typically diesel and Jet-A, can use existing infrastructure and can power conventional engines with little or no modification. We can then use these carbon-neutral liquid fuels conveniently long into the future with few adverse environmental impacts.
Barriers and Prospects of Carbon Sequestration in India.
Gupta, Anjali; Nema, Arvind K
2014-04-01
Carbon sequestration is considered a leading technology for reducing carbon dioxide (CO2) emissions from fossil-fuel based electricity generating power plants and could permit the continued use of coal and gas whilst meeting greenhouse gas targets. India will become the world's third largest emitter of CO2 by 2015. Considering the dependence of health of the Indian global economy, there is an imperative need to develop a global approach which could address the capturing and securely storing carbon dioxide emitted from an array of energy. Therefore technology such as carbon sequestration will deliver significant CO2 reductions in a timely fashion. Considerable energy is required for the capture, compression, transport and storage steps. With the availability of potential technical storage methods for carbon sequestration like forest, mineral and geological storage options with India, it would facilitate achieving stabilization goal in the near future. This paper examines the potential carbon sequestration options available in India and evaluates them with respect to their strengths, weakness, threats and future prospects.
Analysis of Surface Fluxes at Eureka Climate Observatory in Arctic
NASA Astrophysics Data System (ADS)
Grachev, Andrey; Albee, Robert; Fairall, Christopher; Hare, Jeffrey; Persson, Ola; Uttal, Taneil
2010-05-01
The Arctic region is experiencing unprecedented changes associated with increasing average temperatures (faster than the pace of the globally-averaged increase) and significant decreases in both the areal extent and thickness of the Arctic pack ice. These changes are early warning signs of shifts in the global climate system that justifies increased scientific focus on this region. The increase in atmospheric carbon dioxide has raised concerns worldwide about future climate change. Recent studies suggest that huge stores of carbon dioxide (and other climate relevant compounds) locked up in Arctic soils could be unexpectedly released due to global warming. Observational evidence suggests that atmospheric energy fluxes are a major contributor to the decrease of the Arctic pack ice, seasonal land snow cover and the warming of the surrounding land areas and permafrost layers. To better understand the atmosphere-surface exchange mechanisms, improve models, and to diagnose climate variability in the Arctic, accurate measurements are required of all components of the net surface energy budget and the carbon dioxide cycle over representative areas and over multiple years. In this study we analyze variability of turbulent fluxes including water vapor and carbon dioxide transfer based on long-term measurements made at Eureka observatory (80.0 N, 85.9 W) located near the coast of the Arctic Ocean (Canadian territory of Nunavut). Turbulent fluxes and mean meteorological data are continuously measured and reported hourly at various levels on a 10-m flux tower. Sonic anemometers are located at 3 and 8 m heights while high-speed Licor 7500 infrared gas analyzer (water moisture and carbon dioxide measurements) at 7.5 m height. According to our data, that the sensible heat flux, carbon dioxide and water vapor fluxes exhibited clear diurnal cycles in Arctic summer. This behavior is similar to the diurnal variation of the fluxes in mid-latitudes during the plants growing season, with carbon dioxide uptake from the atmosphere during the day due to photosynthesis, and carbon dioxide loss to the atmosphere due to vegetation respiration during the night. However, at Eureka vegetation was a source of carbon dioxide during sunlit periods. Thus the sign of carbon dioxide flux was controlled by air temperature even during Arctic summer.
The carbon isotopic composition of ecosystem breath
NASA Astrophysics Data System (ADS)
Ehleringer, J.
2008-05-01
At the global scale, there are repeatable annual fluctuations in the concentration and isotopic composition of atmospheric carbon dioxide, sometimes referred to as the "breathing of the planet". Vegetation components within ecosystems fix carbon dioxide through photosynthesis into stable organic compounds; simultaneously both vegetation and heterotrophic components of the ecosystem release previously fixed carbon as respiration. These two-way fluxes influencing carbon dioxide exchange between the biosphere and the atmosphere impact both the concentration and isotopic composition of carbon dioxide within the convective boundary layer. Over space, the compounding effects of gas exchange activities from ecosystems become reflected in both regional and global changes in the concentration and isotopic composition of atmospheric carbon dioxide. When these two parameters are plotted against each other, there are significant linear relationships between the carbon isotopic composition and inverse concentration of atmospheric carbon dioxide. At the ecosystem scale, these "Keeling plots" intercepts of C3-dominated ecosystems describe the carbon isotope ratio of biospheric gas exchange. Using Farquhar's model, these carbon isotope values can be translated into quantitative measures of the drought-dependent control of photosynthesis by stomata as water availability changes through time. This approach is useful in aggregating the influences of drought across regional landscapes as it provides a quantitative measure of stomatal influence on photosynthetic gas exchange at the ecosystem-to-region scales. Multi-year analyses of the drought-dependent trends across terrestrial ecosystems show a repeated pattern with water stress in all but one C3-ecosystem type. Ecosystems that are dominated by ring-porous trees appear not to exhibit a dynamic stomatal response to water stress and therefore, there is little dependence of the carbon isotope ratio of gas exchange on site water balance. The mechanistic basis for this pattern is defined; the implications of climate change on ring-porous versus diffuse-porous vegetation and therefore on future atmospheric carbon dioxide isotope-concentration patterns is discussed.
Public Perceptions of How Long Air Pollution and Carbon Dioxide Remain in the Atmosphere.
Dryden, Rachel; Morgan, M Granger; Bostrom, Ann; Bruine de Bruin, Wändi
2018-03-01
The atmospheric residence time of carbon dioxide is hundreds of years, many orders of magnitude longer than that of common air pollution, which is typically hours to a few days. However, randomly selected respondents in a mail survey in Allegheny County, PA (N = 119) and in a national survey conducted with MTurk (N = 1,013) judged the two to be identical (in decades), considerably overestimating the residence time of air pollution and drastically underestimating that of carbon dioxide. Moreover, while many respondents believed that action is needed today to avoid climate change (regardless of cause), roughly a quarter held the view that if climate change is real and serious, we will be able to stop it in the future when it happens, just as we did with common air pollution. In addition to assessing respondents' understanding of how long carbon dioxide and common air pollution stay in the atmosphere, we also explored the extent to which people correctly identified causes of climate change and how their beliefs affect support for action. With climate change at the forefront of politics and mainstream media, informing discussions of policy is increasingly important. Confusion about the causes and consequences of climate change, and especially about carbon dioxide's long atmospheric residence time, could have profound implications for sustained support of policies to achieve reductions in carbon dioxide emissions and other greenhouse gases. © 2017 Society for Risk Analysis.
Climate control of terrestrial carbon exchange across biomes and continents
Chuixiang Yi; Daniel Ricciuto; Runze Li; John Wolbeck; Xiyan Xu; Mats Nilsson; John Frank; William J. Massman
2010-01-01
Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes...
Xia, Ao; Cheng, Jun; Murphy, Jerry D
2016-01-01
Biofuels derived from biomass will play a major role in future renewable energy supplies in transport. Gaseous biofuels have superior energy balances, offer greater greenhouse gas emission reductions and produce lower pollutant emissions than liquid biofuels. Biogas derived through fermentation of wet organic substrates will play a major role in future transport systems. Biogas (which is composed of approximately 60% methane/hydrogen and 40% carbon dioxide) requires an upgrading process to reduce the carbon dioxide content to less than 3% before it is used as compressed gas in transport. This paper reviews recent developments in fermentative biogas production and upgrading as a transport fuel. Third generation gaseous biofuels may be generated using marine-based algae via two-stage fermentation, cogenerating hydrogen and methane. Alternative biological upgrading techniques, such as biological methanation and microalgal biogas upgrading, have the potential to simultaneously upgrade biogas, increase gaseous biofuel yield and reduce carbon dioxide emission. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Glen P; Marland, Gregg; Hertwich, Edgar G.
2009-01-01
Globalization and the dynamics of ecosystem sinks need be considered in post-Kyoto climate negotiations as they increasingly affect the carbon dioxide concentration in the atmosphere. Currently, the allocation of responsibility for greenhouse gas mitigation is based on territorial emissions from fossil-fuel combustion, process emissions and some land-use emissions. However, at least three additional factors can significantly alter a country's impact on climate from carbon dioxide emissions. First, international trade causes a separation of consumption from production, reducing domestic pollution at the expense of foreign producers, or vice versa. Second, international transportation emissions are not allocated to countries for the purposemore » of mitigation. Third, forest growth absorbs carbon dioxide and can contribute to both carbon sequestration and climate change protection. Here we quantify how these three factors change the carbon dioxide emissions allocated to China, Japan, Russia, USA, and European Union member countries. We show that international trade can change the carbon dioxide currently allocated to countries by up to 60% and that forest expansion can turn some countries into net carbon sinks. These factors are expected to become more dominant as fossil-fuel combustion and process emissions are mitigated and as international trade and forest sinks continue to grow. Emission inventories currently in wide-spread use help to understand the global carbon cycle, but for long-term climate change mitigation a deeper understanding of the interaction between the carbon cycle and society is needed. Restructuring international trade and investment flows to meet environmental objectives, together with the inclusion of forest sinks, are crucial issues that need consideration in the design of future climate policies. And even these additional issues do not capture the full impact of changes in the carbon cycle on the global climate system.« less
Fang, James K H; Schönberg, Christine H L; Mello-Athayde, Matheus A; Achlatis, Michelle; Hoegh-Guldberg, Ove; Dove, Sophie
2018-05-01
The bioeroding sponge Cliona orientalis is photosymbiotic with dinoflagellates of the genus Symbiodinium and is pervasive on the Great Barrier Reef. We investigated how C. orientalis responded to past and future ocean conditions in a simulated community setting. The experiment lasted over an Austral summer under four carbon dioxide emission scenarios: a pre-industrial scenario (PI), a present-day scenario (PD; control), and two future scenarios of combined ocean acidification and ocean warming, i.e., B1 (intermediate) and A1FI (extreme). The four scenarios also simulated natural variability of carbon dioxide partial pressure and temperature in seawater. Responses of C. orientalis generally remained similar between the PI and PD treatments. C. orientalis under B1 displayed a dramatic increase in lateral tissue extension, but bleached and displayed reduced rates of respiration and photosynthesis. Some B1 sponge replicates died by the end of the experiment. Under A1FI, strong bleaching and subsequent mortality of all C. orientalis replicates occurred at an early stage of the experiment. Mortality arrested bioerosion by C. orientalis under B1 and A1FI. Overall, the absolute amount of calcium carbonate eroded by C. orientalis under B1 or A1FI was similar to that under PI or PD at the end of the experiment. Although bioerosion rates were raised by short-term experimental acidification in previous studies, our findings from the photosymbiotic C. orientalis imply that the effects of bioerosion on reef carbonate budgets may only be temporary if the bioeroders cannot survive long-term in the future oceans.
The Second State of the Carbon Cycle Report: A Scientific Basis for Policy and Management Decisions
NASA Astrophysics Data System (ADS)
Birdsey, R.; Mayes, M. A.; Reed, S.; Najjar, R.; Romero-Lankao, P.
2017-12-01
The second "State of the Carbon Cycle of North America Report" (SOCCR-2) includes an overview of the North American carbon budget and future projections, the consequences of changes to the carbon budget, details of the carbon budget in major terrestrial and aquatic ecosystems (including coastal ocean waters), information about anthropogenic drivers, and implications for policy and carbon management. SOCCR-2 includes new focus areas such as soil carbon, arctic and boreal ecosystems, tribal lands, and greater emphasis on aquatic systems and the role of societal drivers and decision making on the carbon cycle. In addition, methane is considered to a greater extent than before. SOCCR-2 will contribute to the next U.S. National Climate Assessment, as well as providing information to support science-based management decisions and policies that include climate change mitigation and adaptation in Canada, the United States, and Mexico. Although the Report is still in the review process, preliminary findings indicate that North America is a net emitter of carbon dioxide and methane to the atmosphere, and that natural sinks offset about 25% of emitted carbon dioxide. Combustion of fossil fuels represents the largest source of emissions, but show a decreasing trend over the last decade and a lower share (20%) of the global total compared with the previous decade. Forests, soils, grasslands, and coastal oceans comprise the largest carbon sinks, while emissions from inland waters are a significant source of carbon dioxide. The Report also documents the lateral transfers of carbon among terrestrial ecosystems and from terrestrial to near-coastal ecosystems, to complete the carbon cycle accounting. Further, the Report explores the consequences of rising atmospheric carbon dioxide on terrestrial and oceanic systems, and the capacity of these systems to continue to act as carbon sinks based on the drivers of future carbon cycle changes, including carbon-climate feedbacks, atmospheric composition, nutrient availability, and human activity and management decisions. SOCCR-2 highlights key data gaps in carbon accounting frameworks, uncertainties in modeling and estimation approaches, and integrated frameworks for improving our understanding of the North American carbon cycle.
Swanson, Charles E; Elzey, John W; Hershberger, Robert E; Donnelly, Russell J; Pfotenhauer, John
2012-07-01
We discuss the possibility of capturing carbon dioxide from the flue gas of a coal-fired electrical power plant by cryogenically desublimating the carbon dioxide and then preparing it for transport in a pipeline to a sequestration site. Various other means have been proposed to accomplish the same goal. The problem discussed here is to estimate the "energy penalty" or "parasitic energy loss,' defined as the fraction of electrical output that will be needed to provide the refrigeration and that will then not be deliverable. We compute the energy loss (7.9-9.2% at 1 atm) based on perfect Carnot efficiency and estimate the achievable parasitic energy loss (22-26% at 1 atm) by incorporating the published coefficient of performance values for appropriately sized refrigeration or liquefaction cycles at the relevant temperatures. The analyses at 1 atm represent a starting point for future analyses using elevated pressures.
NASA Astrophysics Data System (ADS)
Swanson, Charles E.; Elzey, John W.; Hershberger, Robert E.; Donnelly, Russell J.; Pfotenhauer, John
2012-07-01
We discuss the possibility of capturing carbon dioxide from the flue gas of a coal-fired electrical power plant by cryogenically desublimating the carbon dioxide and then preparing it for transport in a pipeline to a sequestration site. Various other means have been proposed to accomplish the same goal. The problem discussed here is to estimate the “energy penalty” or “parasitic energy loss,' defined as the fraction of electrical output that will be needed to provide the refrigeration and that will then not be deliverable. We compute the energy loss (7.9-9.2% at 1 atm) based on perfect Carnot efficiency and estimate the achievable parasitic energy loss (22-26% at 1 atm) by incorporating the published coefficient of performance values for appropriately sized refrigeration or liquefaction cycles at the relevant temperatures. The analyses at 1 atm represent a starting point for future analyses using elevated pressures.
The Role of Natural Gas Power Plants with Carbon Capture and Storage in a Low-Carbon Future
Natural gas combined-cycle (NGCC) turbines with carbon capture and storage (CCS) are a promising technology for reducing carbon dioxide (CO2) emissions in the electric sector. However, the high cost and efficiency penalties associated with CCS, as well as methane leakage from nat...
Implications of Climate Mitigation for Future Agricultural Production
NASA Technical Reports Server (NTRS)
Mueller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Deryng, Delphine; Folberth, Christian; Pugh, Thomas A. M.; Schmid, Erwin
2015-01-01
Climate change is projected to negatively impact biophysical agricultural productivity in much of the world. Actions taken to reduce greenhouse gas emissions and mitigate future climate changes, are thus of central importance for agricultural production. Climate impacts are, however, not unidirectional; some crops in some regions (primarily higher latitudes) are projected to benefit, particularly if increased atmospheric carbon dioxide is assumed to strongly increase crop productivity at large spatial and temporal scales. Climate mitigation measures that are implemented by reducing atmospheric carbon dioxide concentrations lead to reductions both in the strength of climate change and in the benefits of carbon dioxide fertilization. Consequently, analysis of the effects of climate mitigation on agricultural productivity must address not only regions for which mitigation is likely to reduce or even reverse climate damages. There are also regions that are likely to see increased crop yields due to climate change, which may lose these added potentials under mitigation action. Comparing data from the most comprehensive archive of crop yield projections publicly available, we find that climate mitigation leads to overall benefits from avoided damages at the global scale and especially in many regions that are already at risk of food insecurity today. Ignoring controversial carbon dioxide fertilization effects on crop productivity, we find that for the median projection aggressive mitigation could eliminate approximately 81% of the negative impacts of climate change on biophysical agricultural productivity globally by the end of the century. In this case, the benefits of mitigation typically extend well into temperate regions, but vary by crop and underlying climate model projections. Should large benefits to crop yields from carbon dioxide fertilization be realized, the effects of mitigation become much more mixed, though still positive globally and beneficial in many food insecure countries.
Natural gas combined-cycle (NGCC) turbines with carbon capture and storage (CCS) are a promising technology for reducing carbon dioxide (CO2) emissions in the electric sector. However, the high cost and efficiency penalties associated with CCS, as well as methane leakage from nat...
Larsen, Peter E; Cseke, Leland J; Miller, R Michael; Collart, Frank R
2014-10-21
Rising atmospheric levels of carbon dioxide and ozone will impact productivity and carbon sequestration in forest ecosystems. The scale of this process and the potential economic consequences provide an incentive for the development of models to predict the types and rates of ecosystem responses and feedbacks that result from and influence of climate change. In this paper, we use phenotypic and molecular data derived from the Aspen Free Air CO2 Enrichment site (Aspen-FACE) to evaluate modeling approaches for ecosystem responses to changing conditions. At FACE, it was observed that different aspen clones exhibit clone-specific responses to elevated atmospheric levels of carbon dioxide and ozone. To identify the molecular basis for these observations, we used artificial neural networks (ANN) to examine above and below-ground community phenotype responses to elevated carbon dioxide, elevated ozone and gene expression profiles. The aspen community models generated using this approach identified specific genes and subnetworks of genes associated with variable sensitivities for aspen clones. The ANN model also predicts specific co-regulated gene clusters associated with differential sensitivity to elevated carbon dioxide and ozone in aspen species. The results suggest ANN is an effective approach to predict relevant gene expression changes resulting from environmental perturbation and provides useful information for the rational design of future biological experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ma, Shuang-Chen; Gao, Li; Ma, Jing-Xiang; Jin, Xin; Yao, Juan-Juan; Zhao, Yi
2012-06-01
This paper describes the research background and chemistry of desulfurization and denitrification technology using microwave irradiation. Microwave-induced catalysis combined with activated carbon adsorption and reduction can reduce nitric oxide to nitrogen and sulfur dioxide to sulfur from flue gas effectively. This paper also highlights the main drawbacks of this technology and discusses future development trends. It is reported that the removal of sulfur dioxide and nitric oxide using microwave irradiation has broad prospects for development in the field of air pollution control.
Sorbent Structural Testing on Carbon Dioxide Removal Sorbents for Advanced Exploration Systems
NASA Technical Reports Server (NTRS)
Watson, David; Knox, James C.; West, Phillip; Bush, Richard
2016-01-01
Long term space missions require carbon dioxide removal systems that can function with minimal downtime required for maintenance, low power consumption and maximum efficiency for CO2 removal. A major component of such a system are the sorbents used for the CO2 and desiccant beds. Sorbents must not only have adequate CO2 and H2O removal properties, but they must have the mechanical strength to prevent structural breakdown due to pressure and temperature changes during operation and regeneration, as well as resistance to breakdown due to moisture in the system from cabin air. As part of the studies used to select future CO2 sorbent materials, mechanical tests are performed on various zeolite sorbents to determine mechanical performance while dry and at various humidified states. Tests include single pellet crush, bulk crush and attrition tests. We have established a protocol for testing sorbents under dry and humid conditions, and previously tested the sorbents used on the International Space Station carbon dioxide removal assembly. This paper reports on the testing of a series of commercial sorbents considered as candidates for use on future exploration missions.
Optimization of an Atmospheric Carbon Source for Extremophile Cyanobacteria
NASA Astrophysics Data System (ADS)
Beaubien, Courtney
This thesis examines the use of the moisture swing resin materials employed at the Center for Negative Carbon Emissions (CNCE) in order to provide carbon dioxide from ambient air to photobioreactors containing extremophile cyanobacteria cultured at the Arizona Center for Algae Technology and Innovation (AzCATI). For this purpose, a carbon dioxide feeding device was designed, built, and tested. The results indicate how much resin should be used with a given volume of algae medium: approximately 500 grams of resin can feed 1% CO2 at about three liters per minute to a ten liter medium of the Galdieria sulphuraria 5587.1 strain for one hour (equivalent to about 0.1 grams of carbon dioxide per hour per seven grams of algae). Using the resin device, the algae grew within their normal growth range: 0.096 grams of ash-free dry weight per liter over a six hour period. Future applications in which the resin-to-algae process can be utilized are discussed.
Jingfeng Xiaoa; Qianlai Zhuang; Beverly E. Law; Dennis D. Baldocchi; Jiquan Chen; al. et.
2011-01-01
More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we report a...
Regional Disparities in the Beneficial Effects of Rising CO2 Emissions on Crop Water Productivity
NASA Technical Reports Server (NTRS)
Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Meuller, Christoph; Pugh, Thomas A. M.; Boote, Kenneth J.; Conway, Declan; Ruane, Alex C.; Gerten, Dieter; Jones, James W.;
2016-01-01
Rising atmospheric carbon dioxide concentrations are expected to enhance photosynthesis and reduce crop water use. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments and global crop models to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated carbon dioxide and associated climate change projected for a high-end greenhouse gas emissions scenario. We find carbon dioxide effects increase global CWP by 10[0;47]%-27[7;37]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rain fed wheat). If realized in the fields, the effects of elevated carbon dioxide could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4-17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modeling the effects of rising carbon dioxide across crop and hydrological modeling communities.
Development of Carbon Dioxide Removal Systems for Advanced Exploration Systems 2016-2017
NASA Technical Reports Server (NTRS)
Knox, James C.; Peters, Warren; Cmarik, Gregory E.; Watson, David; Coker, Robert; Miller, Lee
2017-01-01
A long-term goal for NASA is to enable crewed missions to Mars: first to the vicinity of Mars, and then to the Mars surface. These missions present new challenges for all aspects of spacecraft design in comparison with the International Space Station, as resupply is unavailable in the transit phase, and early return is not possible. Additionally, mass, power, and volume must be minimized for all phases to reduce propulsion needs. In this paper we describe current and planned developments in the area of carbon dioxide removal to support future crewed Mars missions. Activities are also described that apply to both the resolution of anomalies observed in the ISS CDRA and the design of life support systems for future missions.
NASA Astrophysics Data System (ADS)
Lauer, Stephen; Hoover, Scott; Lawrence, Lori; Paparistodemou, Christos; Taylor, Doug
1993-04-01
Three constituents of the Martian atmosphere, methane, carbon dioxide, and oxygen, can be used for internal combustion in engines utilized for future space exploration on Mars. These three gases, considered as the test case in this research, will be examined to determine required flow rates needed for combustion and optimization of engine performance. Results of the test case are examined in relation to a base case of methane and air for comparative purposes. Testing of exhaust temperatures, cylinder pressure, and exhaust gas analysis were performed for the base case and test case. Also described is a study utilizing a zirconia cell to convert carbon dioxide into usable oxygen to help support future Mars missions.
NASA Technical Reports Server (NTRS)
Lauer, Stephen; Hoover, Scott; Lawrence, Lori; Paparistodemou, Christos; Taylor, Doug
1993-01-01
Three constituents of the Martian atmosphere, methane, carbon dioxide, and oxygen, can be used for internal combustion in engines utilized for future space exploration on Mars. These three gases, considered as the test case in this research, will be examined to determine required flow rates needed for combustion and optimization of engine performance. Results of the test case are examined in relation to a base case of methane and air for comparative purposes. Testing of exhaust temperatures, cylinder pressure, and exhaust gas analysis were performed for the base case and test case. Also described is a study utilizing a zirconia cell to convert carbon dioxide into usable oxygen to help support future Mars missions.
Optimized heat exchange in a CO2 de-sublimation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Larry; Terrien, Paul; Tessier, Pascal
The present invention is a process for removing carbon dioxide from a compressed gas stream including cooling the compressed gas in a first heat exchanger, introducing the cooled gas into a de-sublimating heat exchanger, thereby producing a first solid carbon dioxide stream and a first carbon dioxide poor gas stream, expanding the carbon dioxide poor gas stream, thereby producing a second solid carbon dioxide stream and a second carbon dioxide poor gas stream, combining the first solid carbon dioxide stream and the second solid carbon dioxide stream, thereby producing a combined solid carbon dioxide stream, and indirectly exchanging heat betweenmore » the combined solid carbon dioxide stream and the compressed gas in the first heat exchanger.« less
Carbon Dioxide Management on the International Space Station
NASA Technical Reports Server (NTRS)
Burlingame, Katie
2016-01-01
The International Space Station (ISS) is a manned laboratory operating in orbit around the Earth that was built and is currently operated by several countries across the world. The ISS is a platform for novel scientific research as well as a testbed for technologies that will be required for the next step in space exploration. In order for astronauts to live on ISS for an extended period of time, it is vital that on board systems consistently provide a clean atmosphere. One contaminant that must be removed from the atmosphere is carbon dioxide (CO2). CO2 levels on ISS are higher than those on Earth and can cause crew members to experience symptoms such as headaches, lethargy and mental slowness. A variety of systems exist on ISS to remove carbon dioxide, including adsorbent technologies which can be reused and testbed technologies for future space vehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sagar, A.D.
Automobiles are a source of considerable pollution at the global level, including a significant fraction of the total greenhouse gas emissions. Alternative fuels have received some attention as potential options to curtail the carbon dioxide emissions from motor vehicles. This article discusses the feasibility and desirability (from a technical as well as a broader environmental perspective) of the large-scale production and use of alternative fuels as a strategy to mitigate automotive carbon dioxide emissions. Other options such as improving vehicle efficiency and switching to more efficient modes of passenger transportation are also discussed. These latter options offer an effective andmore » immediate way to tackle the greenhouse and other pollutant emission from automobiles, especially as the limitations of currently available alternative fuels and the technological and other constraints for potential future alternatives are revealed.« less
Aines, Roger D.; Bourcier, William L.; Viani, Brian
2013-01-29
A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.
The forest-bioenergy-carbon connection
Jay O' Laughlin
2010-01-01
Burning wood for energy is a back-to-the-future approach for solving modern problems. The burning of fossil fuels for energy and resultant carbon emissions are global concerns: âThe world needs ever increasing energy supplies to sustain economic growth and development. But energy resources are under pressure and carbon dioxide (CO2) emissions from todayâs energy use...
Carbon dioxide removal and the futures market
NASA Astrophysics Data System (ADS)
Coffman, D.'Maris; Lockley, Andrew
2017-01-01
Futures contracts are exchange-traded financial instruments that enable parties to fix a price in advance, for later performance on a contract. Forward contracts also entail future settlement, but they are traded directly between two parties. Futures and forwards are used in commodities trading, as producers seek financial security when planning production. We discuss the potential use of futures contracts in Carbon Dioxide Removal (CDR) markets; concluding that they have one principal advantage (near-term price security to current polluters), and one principal disadvantage (a combination of high price volatility and high trade volume means contracts issued by the private sector may cause systemic economic risk). Accordingly, we note the potential for the development of futures markets in CDR, but urge caution about the prospects for market failure. In particular, we consider the use of regulated markets: to ensure contracts are more reliable, and that moral hazard is minimised. While regulation offers increased assurances, we identify major insufficiencies with this approach—finding it generally inadequate. In conclusion, we suggest that only governments can realistically support long-term CDR futures markets. We note existing long-term CDR plans by governments, and suggest the use of state-backed futures for supporting these assurances.
The utility of the historical record in assessing future carbon budgets
NASA Astrophysics Data System (ADS)
Millar, R.; Friedlingstein, P.; Allen, M. R.
2017-12-01
It has long been known that the cumulative emissions of carbon dioxide (CO2) is the most physically relevant determiner of long-lived anthropogenic climate change, with an approximately linear relationship between CO2-induced global mean surface warming and cumulative emissions. The historical observational record offers a way to constrain the relationship between cumulative carbon dioxide emission and global mean warming using observations to date. Here we show that simple regression analysis indicates that the 1.5°C carbon budget would be exhausted after nearly three decades of current emissions, substantially in excess of many estimates from Earth System Models. However, there are many reasons to be cautious about carbon budget assessments from the historical record alone. Accounting for the uncertainty in non-CO2 radiative forcing using a simple climate model and a standard optimal fingerprinting detection attribution technique gives substantial uncertainty in the contribution of CO2 warming to date, and hence the transient climate response to cumulative emissions. Additionally, the existing balance between CO2 and non-CO2 forcing may change in the future under ambitious mitigation scenarios as non-CO2 emissions become more (or less) important to global mean temperature changes. Natural unforced variability can also have a substantial impact on estimates of remaining carbon budgets. By examining all warmings of a given magnitude in both the historical record and past and future ESM simulations we quantify the impact unforced climate variability may have on estimates of remaining carbon budgets, derived as a function of estimated non-CO2 warming and future emission scenario. In summary, whilst the historical record can act as a useful test of climate models, uncertainties in the response to future cumulative emissions remain large and extrapolations of future carbon budgets from the historical record alone should be treated with caution.
Ammann, Elizabeth C. B.; Lynch, Victoria H.
1967-01-01
The oxygen production of a photosynthetic gas exchanger containing Chlorella pyrenoidosa (1% packed cell volume) was measured when various concentrations of carbon dioxide were present within the culture unit. The internal carbon dioxide concentrations were obtained by manipulating the entrance gas concentration and the flow rate. Carbon dioxide percentages were monitored by means of electrodes placed directly in the nutrient medium. The concentration of carbon dioxide in the nutrient medium which produced maximal photosynthesis was in the range of 1.5 to 2.5% by volume. Results were unaffected by either the level of carbon dioxide in the entrance gas or the rate of gas flow. Entrance gases containing 2% carbon dioxide flowing at 320 ml/min, 3% carbon dioxide at 135 ml/min, and 4% carbon dioxide at 55 ml/min yielded optimal carbon dioxide concentrations in the particular unit studied. By using carbon dioxide electrodes implanted directly in the gas exchanger to optimize the carbon dioxide concentration throughout the culture medium, it should be possible to design more efficient large-scale units. PMID:4382391
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberg, Daniel; Bielen, Dave; Eichman, Josh
Electrification of end-use services in the transportation, buildings, and industrial sectors coupled with decarbonization of electricity generation has been identified as one of the key pathways to achieving a low-carbon future in the United States. By lowering the carbon intensity of the electricity generation and substituting electricity for higher-emissions fossil fuels in end-use sectors, significant reductions in carbon dioxide emissions can be achieved. This report describes a preliminary analysis that examines the potential impacts of widespread electrification on the U.S. energy sector. We develop a set of exploratory scenarios under which electrification is aggressively pursued across all end-use sectors andmore » examine the impacts of achieving these electrification levels on electricity load patterns, total fossil energy consumption, carbon dioxide emissions, and the evolution of the U.S. power system.« less
Glycerol Dehydration to Acrolein Catalyzed by ZSM‐5 Zeolite in Supercritical Carbon Dioxide Medium
Zou, Bin; Ren, Shoujie
2016-01-01
Abstract Supercritical carbon dioxide (SC‐CO2) has been used for the first time as a reaction medium for the dehydration of glycerol to acrolein catalyzed by a solid acid. Unprecedented catalyst stability over 528 hours of time‐on‐stream was achieved and the rate of coke deposition on the zeolite catalyst was the lowest among extensive previous studies, showing potential for industrial application. Coking pathways in SC‐CO2 were also elucidated for future development. The results have potential implications for other dehydration reactions catalyzed by solid acids. PMID:27796088
Measurement of carbon capture efficiency and stored carbon leakage
Keeling, Ralph F.; Dubey, Manvendra K.
2013-01-29
Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.
Carbon Dioxide Embolism during Laparoscopic Surgery
Park, Eun Young; Kwon, Ja-Young
2012-01-01
Clinically significant carbon dioxide embolism is a rare but potentially fatal complication of anesthesia administered during laparoscopic surgery. Its most common cause is inadvertent injection of carbon dioxide into a large vein, artery or solid organ. This error usually occurs during or shortly after insufflation of carbon dioxide into the body cavity, but may result from direct intravascular insufflation of carbon dioxide during surgery. Clinical presentation of carbon dioxide embolism ranges from asymptomatic to neurologic injury, cardiovascular collapse or even death, which is dependent on the rate and volume of carbon dioxide entrapment and the patient's condition. We reviewed extensive literature regarding carbon dioxide embolism in detail and set out to describe the complication from background to treatment. We hope that the present work will improve our understanding of carbon dioxide embolism during laparoscopic surgery. PMID:22476987
Tana Wood; Molly A. Cavaleri; Sasha C. Reed
2012-01-01
Tropical forests play a major role in regulating global carbon (C) fluxes and stocks, and even small changes to C cycling in this productive biome could dramatically affect atmospheric carbon dioxide (CO2) concentrations. Temperature is expected to increase over all land surfaces in the future, yet we have a surprisingly poor understanding of how tropical forests will...
Michell L. Thomey; Paulette L. Ford; Matt C. Reeves; Deborah M. Finch; Marcy E. Litvak; Scott L. Collins
2014-01-01
Reducing atmospheric carbon dioxide (CO2) concentration through enhanced terrestrial carbon storage may help slow or reverse the rate of global climate change. As a result, Federal land management agencies, such as the U.S. Department of Agriculture Forest Service and U.S. Department of the Interior Bureau of Land Management, are implementing management policies to...
NASA Astrophysics Data System (ADS)
Bajracharya, Suman; Srikanth, Sandipam; Mohanakrishna, Gunda; Zacharia, Renju; Strik, David PBTB; Pant, Deepak
2017-07-01
Carbon dioxide (CO2) utilization/recycling for the production of chemicals and gaseous/liquid energy-carriers is a way to moderate the rising CO2 in the atmosphere. One of the possible solutions for the CO2 sequestration is the electrochemical reduction of this stable molecule to useful fuel/products. Nevertheless, the surface chemistry of CO2 reduction is a challenge due to the presence of large energy barriers, requiring noticeable catalysis. The recent approach of microbial electrocatalysis of CO2 reduction has promising prospects to reduce the carbon level sustainably, taking full advantage of CO2-derived chemical commodities. We review the currently investigated bioelectrochemical approaches that could possibly be implemented to enable the handling of CO2 emissions. This review covers the most recent advances in the bioelectrochemical approaches of CO2 transformations in terms of biocatalysts development and process design. Furthermore, the extensive research on carbon fixation and conversion to different value added chemicals is reviewed. The review concludes by detailing the key challenges and future prospects that could enable economically feasible microbial electrosynthesis technology.
Future Sulfur Dioxide Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Steven J.; Pitcher, Hugh M.; Wigley, Tom M.
2005-12-01
The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latestmore » version of the MiniCAM model. The implications, and requirements, for IA modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In all cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.« less
Carbon dioxide conversion over carbon-based nanocatalysts.
Khavarian, Mehrnoush; Chai, Siang-Piao; Mohamed, Abdul Rahman
2013-07-01
The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity.
Olah, George A; Goeppert, Alain; Prakash, G K Surya
2009-01-16
Nature's photosynthesis uses the sun's energy with chlorophyll in plants as a catalyst to recycle carbon dioxide and water into new plant life. Only given sufficient geological time can new fossil fuels be formed naturally. In contrast, chemical recycling of carbon dioxide from natural and industrial sources as well as varied human activities or even from the air itself to methanol or dimethyl ether (DME) and their varied products can be achieved via its capture and subsequent reductive hydrogenative conversion. The present Perspective reviews this new approach and our research in the field over the last 15 years. Carbon recycling represents a significant aspect of our proposed Methanol Economy. Any available energy source (alternative energies such as solar, wind, geothermal, and atomic energy) can be used for the production of needed hydrogen and chemical conversion of CO(2). Improved new methods for the efficient reductive conversion of CO(2) to methanol and/or DME that we have developed include bireforming with methane and ways of catalytic or electrochemical conversions. Liquid methanol is preferable to highly volatile and potentially explosive hydrogen for energy storage and transportation. Together with the derived DME, they are excellent transportation fuels for internal combustion engines (ICE) and fuel cells as well as convenient starting materials for synthetic hydrocarbons and their varied products. Carbon dioxide thus can be chemically transformed from a detrimental greenhouse gas causing global warming into a valuable, renewable and inexhaustible carbon source of the future allowing environmentally neutral use of carbon fuels and derived hydrocarbon products.
Research Progress in Carbon Dioxide Storage and Enhanced Oil Recovery
NASA Astrophysics Data System (ADS)
Wang, Keliang; Wang, Gang; Lu, Chunjing
2018-02-01
With the rapid development of global economy, human beings have become highly dependent upon fossil fuel such as coal and petroleum. Much fossil fuel is consumed in industrial production and human life. As a result, carbon dioxide emissions have been increasing, and the greenhouse effects thereby generated are posing serious threats to environment of the earth. These years, increasing average global temperature, frequent extreme weather events and climatic changes cause material disasters to the world. After scientists’ long-term research, ample evidences have proven that emissions of greenhouse gas like carbon dioxide have brought about tremendous changes to global climate. To really reduce carbon dioxide emissions, governments of different countries and international organizations have invested much money and human resources in performing research related to carbon dioxide emissions. Manual underground carbon dioxide storage and carbon dioxide-enhanced oil recovery are schemes with great potential and prospect for reducing carbon dioxide emissions. Compared with other schemes for reducing carbon dioxide emissions, aforementioned two schemes exhibit high storage capacity and yield considerable economic benefits, so they have become research focuses for reducing carbon dioxide emissions. This paper introduces the research progress in underground carbon dioxide storage and enhanced oil recovery, pointing out the significance and necessity of carbon dioxide-driven enhanced oil recovery.
NASA Astrophysics Data System (ADS)
Bernadowski, Timothy Adam, Jr.
Carbon dioxide in the Martian atmosphere can be converted to oxygen during high temperature electrolysis for use in life-support and fuel systems on manned missions to the red planet. During electrolysis of carbon dioxide to produce oxygen, carbon can deposit on the electrolysis cell resulting in lower efficiency and possibly cell damage. This would be detrimental, especially when the oxygen product is used as the key element of a space life support system. In this thesis, a theoretical model was developed to predict hazardous carbon deposition conditions under various operating conditions within the Martian atmosphere. The model can be used as a guide to determine the ideal operating conditions of the high-temperature oxygen production system. A parallel experimental investigation is underway to evaluate the accuracy of the theoretical model. The experimental design, cell fabrication, and some preliminary results as well as future work recommendations are also presented in this thesis.
Oxygen Generation from Carbon Dioxide for Advanced Life Support
NASA Technical Reports Server (NTRS)
Bishop, Sean; Duncan, Keith; Hagelin-Weaver, Helena; Neal, Luke; Sanchez, Jose; Paul, Heather L.; Wachsman, Eric
2007-01-01
The partial electrochemical reduction of carbon dioxide (CO2) using ceramic oxygen generators (COGs) is well known and widely studied. However, complete reduction of metabolically produced CO2 (into carbon and oxygen) has the potential of reducing oxygen storage weight for life support if the oxygen can be recovered. Recently, the University of Florida devel- oped novel ceramic oxygen generators employing a bilayer elec- trolyte of gadolinia-doped ceria and erbia-stabilized bismuth ox- ide (ESB) for NASA's future exploration of Mars. The results showed that oxygen could be reliably produced from CO2 at temperatures as low as 400 C. The strategy discussed here for advanced life support systems employs a catalytic layer com- bined with a COG cell so that CO2 is reduced all the way to solid carbon and oxygen without carbon buildup on the COG cell and subsequent deactivation.
NASA Technical Reports Server (NTRS)
Lee, Stuart M. C.; Siconolfi, Steven F.
1994-01-01
The current environmental control device in the shuttle uses lithium hydroxide (LiOH) filter canisters to remove carbon dioxide (CO2) from the cabin air, requiring several bulky filter canisters that can only be used once and must be changed frequently. To alleviate a stowage problem and decrease launch weight, the Crew and Thermal Systems Division (CTSD) at the NASA Johnson Space Center has been researching a system to be used on future shuttle missions. This system uses two beds of solid amine material to absorb CO2 and water, later desorbing them to space vacuum. In this way the air scrubbing medium is regenerable and reusable. To identify the efficacy of this regenerable CO2 removal system (RCRS), CTSD began investigations in the shuttle mockup. The purpose of this investigation was to support the CTSD program by determining mean levels of carbon dioxide and water vapor production in normal, healthy males and females age-matched with the astronaut corps. Subjects' responses were measured at rest and during exercise at intensity levels equivalent to normal shuttle operation activities. The results were used to assess the adjustments made to RCRS and are reported as a reference for future investigations in shuttle environmental control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, D.E.
1991-05-01
Experiments were performed to determine the effects of carbon dioxide on plants and on the insects feeding on these plants. Current progress is reported for the following experiments: Response of a Specialist-Feeding Insect Herbivore to Carbon Dioxide Induced Changes in Its Hostplant; Growth and Reproduction of Grasshoppers Feeding on a C{sub 4} Grass Under Elevated Carbon Dioxide; Elevated Carbon Dioxide and Temperature Effects on Growth and Defense of Big Sagebrush; Sagebrush and Grasshopper Responses to Atmospheric Carbon Dioxide Concentration; Biomass Allocation Patterns of Defoliated Sagebrush Grown Under Two Levels of Carbon Dioxide; and Sagebrush Carbon Allocation Patterns and Grasshopper Nutrition:more » The Influence of Carbon Dioxide Enrichment and Soil Mineral Limitation.« less
21 CFR 868.1400 - Carbon dioxide gas analyzer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon dioxide...
21 CFR 868.1400 - Carbon dioxide gas analyzer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon dioxide...
46 CFR 108.627 - Carbon dioxide alarm.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 108.627 Section 108.627 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide alarm. Each carbon dioxide alarm must be identified by marking: “WHEN ALARM SOUNDS VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED” next to...
46 CFR 169.732 - Carbon dioxide alarm.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 169.732 Section 169.732 Shipping... Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide alarm. Each carbon dioxide alarm must be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” ...
46 CFR 35.40-7 - Carbon dioxide alarm-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Carbon dioxide alarm-T/ALL. 35.40-7 Section 35.40-7... Requirements-TB/ALL. § 35.40-7 Carbon dioxide alarm—T/ALL. Adjacent to all carbon dioxide fire extinguishing... AT ONCE. CARBON DIOXIDE BEING RELEASED.” ...
21 CFR 868.1400 - Carbon dioxide gas analyzer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon dioxide...
46 CFR 169.732 - Carbon dioxide alarm.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide alarm. 169.732 Section 169.732 Shipping... Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide alarm. Each carbon dioxide alarm must be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” ...
21 CFR 868.1400 - Carbon dioxide gas analyzer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon dioxide...
21 CFR 862.1160 - Bicarbonate/carbon dioxide test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Bicarbonate/carbon dioxide test system. 862.1160... Systems § 862.1160 Bicarbonate/carbon dioxide test system. (a) Identification. A bicarbonate/carbon dioxide test system is a device intended to measure bicarbonate/carbon dioxide in plasma, serum, and whole...
Ranucci, Marco; Carboni, Giovanni; Cotza, Mauro; de Somer, Filip
2017-01-01
Carbon dioxide production during cardiopulmonary bypass derives from both the aerobic metabolism and the buffering of lactic acid produced by tissues under anaerobic conditions. Therefore, carbon dioxide removal monitoring is an important measure of the adequacy of perfusion and oxygen delivery. However, routine monitoring of carbon dioxide removal is not widely applied. The present article reviews the main physiological and pathophysiological sources of carbon dioxide, the available techniques to assess carbon dioxide production and removal and the clinically relevant applications of carbon dioxide-related variables as markers of the adequacy of perfusion during cardiopulmonary bypass.
Experimental evidence for chemo-mechanical coupling during carbon mineralization in ultramafic rocks
NASA Astrophysics Data System (ADS)
Lisabeth, H. P.; Zhu, W.; Kelemen, P. B.; Ilgen, A.
2017-09-01
Storing carbon dioxide in the subsurface as carbonate minerals has the benefit of long-term stability and immobility. Ultramafic rock formations have been suggested as a potential reservoir for this type of storage due to the availability of cations to react with dissolved carbon dioxide and the fast reaction rates associated with minerals common in ultramafic formations; however, the rapid reactions have the potential to couple with the mechanical and hydraulic behavior of the rocks and little is known about the extent and mechanisms of this coupling. In this study, we argue that the dissolution of primary minerals and the precipitation of secondary minerals along pre-existing fractures in samples lead to reductions in both the apparent Young's modulus and shear strength of aggregates, accompanied by reduction in permeability. Hydrostatic and triaxial deformation experiments were run on dunite samples saturated with de-ionized water and carbon dioxide-rich solutions while stress, strain, permeability and pore fluid chemistry were monitored. Sample microstructures were examined after reaction and deformation using scanning electron microscopy (SEM). The results show that channelized dissolution and carbonate mineral precipitation in the samples saturated with carbon dioxide-rich solutions modify the structure of grain boundaries, leading to the observed reductions in stiffness, strength and permeability. A geochemical model was run to help interpret fluid chemical data, and we find that the apparent reaction rates in our experiments are faster than rates calculated from powder reactors, suggesting mechanically enhanced reaction rates. In conclusion, we find that chemo-mechanical coupling during carbon mineralization in dunites leads to substantial modification of mechanical and hydraulic behavior that needs to be accounted for in future modeling efforts of in situ carbon mineralization projects.
46 CFR 35.40-8 - Carbon dioxide warning signs-T/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Carbon dioxide warning signs-T/ALL. 35.40-8 Section 35... Marking Requirements-TB/ALL § 35.40-8 Carbon dioxide warning signs—T/ALL. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into which carbon...
46 CFR 35.40-8 - Carbon dioxide warning signs-T/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Carbon dioxide warning signs-T/ALL. 35.40-8 Section 35... Marking Requirements-TB/ALL § 35.40-8 Carbon dioxide warning signs—T/ALL. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into which carbon...
NASA Astrophysics Data System (ADS)
Davis, Nicholas A.; Seidel, Dian J.; Birner, Thomas; Davis, Sean M.; Tilmes, Simone
2016-08-01
Model simulations of future climates predict a poleward expansion of subtropical arid climates at the edges of Earth's tropical belt, which would have significant environmental and societal impacts. This expansion may be related to the poleward shift of the Hadley cell edges, where subsidence stabilizes the atmosphere and suppresses precipitation. Understanding the primary drivers of tropical expansion is hampered by the myriad forcing agents in most model projections of future climate. While many previous studies have examined the response of idealized models to simplified climate forcings and the response of comprehensive climate models to more complex climate forcings, few have examined how comprehensive climate models respond to simplified climate forcings. To shed light on robust processes associated with tropical expansion, here we examine how the tropical belt width, as measured by the Hadley cell edges, responds to simplified forcings in the Geoengineering Model Intercomparison Project (GeoMIP). The tropical belt expands in response to a quadrupling of atmospheric carbon dioxide concentrations and contracts in response to a reduction in the solar constant, with a range of a factor of 3 in the response among nine models. Models with more surface warming and an overall stronger temperature response to quadrupled carbon dioxide exhibit greater tropical expansion, a robust result in spite of inter-model differences in the mean Hadley cell width, parameterizations, and numerical schemes. Under a scenario where the solar constant is reduced to offset an instantaneous quadrupling of carbon dioxide, the Hadley cells remain at their preindustrial width, despite the residual stratospheric cooling associated with elevated carbon dioxide levels. Quadrupled carbon dioxide produces greater tropical belt expansion in the Southern Hemisphere than in the Northern Hemisphere. This expansion is strongest in austral summer and autumn. Ozone depletion has been argued to cause this pattern of changes in observations and model experiments, but the results here indicate that seasonally and hemispherically asymmetric tropical expansion can be a basic response of the general circulation to climate forcings.
Lin, Yi-Han; Suen, Shing-Yi; Yang, Hongta
2017-11-15
With significant impacts of carbon dioxide on global climate change, carbon dioxide sensing is of great importance. However, most of the existing sensing technologies are prone to interferences from carbon monoxide, or suffer from the use of sophisticated instruments. This research reports the development of reproducible carbon dioxide sensor using roll-to-roll compatible doctor blade coated three-dimensional macroporous photonic crystals. The pores are functionalized with amine groups to allow the reaction with carbon dioxide in the presence of humidity. The adsorption of carbon dioxide leads to red-shift and amplitude reduction of the optical stop bands, resulting in carbon dioxide detection with visible readout. The dependences of the diffraction wavelength on carbon dioxide partial pressure for various amine-functionalized photonic crystals and different humidities in the environment are systematically investigated. In addition, the reproducibility of carbon dioxide sensing has also been demonstrated in this research. Copyright © 2017 Elsevier Inc. All rights reserved.
46 CFR 78.47-9 - Carbon dioxide alarm.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide alarm. 78.47-9 Section 78.47-9 Shipping... and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” (b) [Reserved] ...
46 CFR 196.37-9 - Carbon dioxide alarm.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 196.37-9 Section 196.37-9 Shipping... Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING...
46 CFR 76.15-20 - Carbon dioxide storage.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If the...
46 CFR 97.37-9 - Carbon dioxide alarm.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 97.37-9 Section 97.37-9 Shipping... Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING...
49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.
Code of Federal Regulations, 2010 CFR
2010-10-01
... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with both...
46 CFR 196.37-9 - Carbon dioxide alarm.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide alarm. 196.37-9 Section 196.37-9 Shipping... Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING...
49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.
Code of Federal Regulations, 2014 CFR
2014-10-01
... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with both...
Sensitivity of climate mitigation strategies to natural disturbances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Page, Yannick LB; Hurtt, George; Thomson, Allison M.
2013-02-19
The present and future concentration of atmospheric carbon dioxide depends on both anthropogenic and natural sources and sinks of carbon. Most proposed climate mitigation strategies rely on a progressive transition to carbon12 efficient technologies to reduce industrial emissions, substantially supported by policies to maintain or enhance the terrestrial carbon stock in forests and other ecosystems. This strategy may be challenged if terrestrial sequestration capacity is affected by future climate feedbacks, but how and to what extent is little understood. Here, we show that climate mitigation strategies are highly sensitive to future natural disturbance rates (e.g. fires, hurricanes, droughts), because ofmore » potential effect of disturbances on the terrestrial carbon balance. Generally, altered disturbance rates affect the pace of societal and technological transitions required to achieve the mitigation target, with substantial consequences on the energy sector and on the global economy. Understanding the future dynamics and consequences of natural disturbances on terrestrial carbon balance is thus essential for developing robust climate mitigation strategies and policies« less
NASA Carbon Sleuth Begins Year Two
2015-10-29
Global average carbon dioxide concentrations as seen by NASA’s Orbiting Carbon Observatory-2 mission, June 1-15, 2015. OCO-2 measures carbon dioxide from the top of Earth's atmosphere to its surface. Higher carbon dioxide concentrations are in red, with lower concentrations in yellows and greens. Scientists poring over data from OCO-2 mission are seeing patterns emerge as they seek answers to questions about atmospheric carbon dioxide. Among the most striking features visible in the first year of OCO-2 data is the increase in carbon dioxide in the northern hemisphere during winter, when trees are not removing carbon dioxide, followed by its decrease in spring, as trees start to grow and remove carbon dioxide from the atmosphere. http://photojournal.jpl.nasa.gov/catalog/PIA20039
Carbon Dioxide Removal and the futures market
NASA Astrophysics Data System (ADS)
Lockley, A.; Coffman, D.
2016-12-01
Futures contracts are exchange-traded financial instruments that enable parties to fix a price in advance, for performance on a contract at some later date. Forward contracts also entail future settlement, but they are traded over-the-counter between two independent parties. Both futures and forward contracts are commonly used in commodities trading, as producers seek financial security when planning production. We discuss the use of potential use of exchange-traded futures contracts in Carbon Dioxide Removal (CDR) markets. We conclude that they have one principal advantage (in that they give near-term price security to current polluters), and one principal disadvantage (in that a combination of high price volatility and high trade volume means contracts issued by the private sector may cause systemic economic risk). Accordingly, we note the potential for the development of futures markets in CDR, but urge great caution in the use of this approach. In particular, we consider the use of regulated markets: to ensure contracts are more reliable, and that moral hazard is minimised. Whilst regulation offers generally increased assurances, we identify major insufficiencies with this approach - finding it generally inadequate. In conclusion, we suggest that only governments can realistically support long-term CDR futures markets. We note existing long-term CDR plans by governments, and suggest the use of state-backed futures for supporting these assurances.
Climate Change Impacts on Forest Succession and Future Productivity
NASA Astrophysics Data System (ADS)
Mohan, J. E.; Melillo, J. M.; Clark, J. S.; Schlesinger, W. H.
2012-12-01
Change in ecosystem carbon (C) dynamics with forest succession is a long-studied topic in ecology, and secondary forests currently comprise a significant proportion of the global land base. Although mature forests are generally more important for conserving species and habitats, early successional trees and stands typically have higher rates of productivity, including net ecosystem productivity (NEP), which represents carbon available for sequestration. Secondary forests undergoing successional development are thus major players in the current global carbon cycle, yet how forests will function in the future under warmer conditions with higher atmospheric carbon dioxide (CO2) concentrations is unknown. Future forest C dynamics will depend, in part, on future species composition. Data from "Forests of the Future" research in a number of global change experiments provide insights into how forests may look in terms of dominant species composition, and thus function, in a future world. Studies at Free-Air Carbon Dioxide (FACE) experiments at Duke Forest and other facilities, plus climate warming experiments such as those at the Harvard Forest, suggest a common underlying principle of vegetation responses to environmental manipulation: Namely, that shade-tolerant woody species associating with arbuscular mycorrhizal (AM) fungi show greater growth stimulation than ectomycorrhizal-associating (ECM) trees which are more common in temperate and boreal forests (Fig. 1 of relative growth rates standardized by pre-treatment rates). This may be due in part to the role of AM fungi in obtaining soil phosphorus and inorganic forms of nitrogen for plant associates. In combination, these results suggest a shift in future forest composition towards less-productive tree species that generally acquire atmospheric CO2 at lower annual rates, as well as a competitive advantage extended to woody vines such as poison ivy. Due to higher atmospheric CO2 and warmer temperatures, forests of the future may become less-productive than those of today.
Carbon dioxide separation using adsorption with steam regeneration
Elliott, Jeannine Elizabeth; Copeland, Robert James; Leta, Daniel P.; McCall, Patrick P.; Bai, Chuansheng; DeRites, Bruce A.
2016-11-29
A process for separating a carbon dioxide from a gas stream is disclosed. The process can include passing the gas stream over a sorbent that adsorbs the carbon dioxide by concentration swing adsorption and adsorptive displacement. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing adsorption and desorptive displacement. A carbon dioxide separation system is also disclosed. Neither the system nor the process rely on temperature swing or pressure swing adsorption.
Space Suit Portable Life Support System Rapid Cycle Amine Repackaging and Sub-Scale Test Results
NASA Technical Reports Server (NTRS)
Paul, Heather L.; Rivera, Fatonia L.
2010-01-01
NASA is developing technologies to meet requirements for an extravehicular activity (EVA) Portable Life Support System (PLSS) for exploration. The PLSS Ventilation Subsystem transports clean, conditioned oxygen to the pressure garment for space suit pressurization and human consumption, and recycles the ventilation gas, removing carbon dioxide, humidity, and trace contaminants. This paper provides an overview of the development efforts conducted at the NASA Johnson Space Center to redesign the Rapid Cycle Amine (RCA) canister and valve assembly into a radial flow, cylindrical package for carbon dioxide and humidity control of the PLSS ventilation loop. Future work is also discussed.
Glycerol Dehydration to Acrolein Catalyzed by ZSM-5 Zeolite in Supercritical Carbon Dioxide Medium.
Zou, Bin; Ren, Shoujie; Ye, X Philip
2016-12-08
Supercritical carbon dioxide (SC-CO 2 ) has been used for the first time as a reaction medium for the dehydration of glycerol to acrolein catalyzed by a solid acid. Unprecedented catalyst stability over 528 hours of time-on-stream was achieved and the rate of coke deposition on the zeolite catalyst was the lowest among extensive previous studies, showing potential for industrial application. Coking pathways in SC-CO 2 were also elucidated for future development. The results have potential implications for other dehydration reactions catalyzed by solid acids. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Measuring the Spectral Expression of Carbon Dioxide in the Solar Reflected Spectrum with AVIRIS
NASA Technical Reports Server (NTRS)
Green, Robert O.
2001-01-01
Carbon dioxide is a low-concentration, but important, component of the Earth's atmosphere. This gas absorbs electromagnetic radiation (EMR) in several regions of the spectrum. Absorption of energy by carbon dioxide adds heat to the atmosphere. In the world today, the burning of fossil fuels and other anthropogenic processes adds carbon dioxide to the atmosphere. Other natural processes in the Earth's system both add and remove carbon dioxide. Overall, measurements of atmospheric carbon dioxide at selected sites around the globe show an increased carbon dioxide concentration in the atmosphere. A figure shows the measured carbon dioxide from Mauna Loa, Hawaii, from 1958 to 2000. Overall, the concentration has increased from 315 to 365 ppm at this site over this period. (There is also a yearly cycle to the concentration that is timed with and hypothesized to be related to the vegetation growing season in the Northern Hemisphere.) The overall expected effect of this increase of atmospheric carbon dioxide is trapping of heat in the atmosphere and global warming. While this overall relationship between carbon dioxide and global warming seems straightforward, many of the specific details relating to regional and local sources and sinks and gradients of carbon dioxide are not well understood. A remote sensing capability to measure carbon dioxide could provide important inputs for scientific research to better understand the distribution and change in atmospheric carbon dioxide at detailed spatial and temporal levels. In pursuit of this remote sensing of carbon dioxide objective, this paper analyzes the expression of carbon dioxide in the spectral range measured by the Airborne Visible/Infrared Imagery Spectrometer (AVIRIS). Based on these analyses, a spectral-fitting algorithm that uses AVIRIS measured spectra and MODTRAN radiative-transfer code modeled spectra to derive total column carbon dioxide abundance has been developed. This algorithm has been applied to an AVIRIS data set acquired over Pasadena, California, in 1999 and a data set acquired over the Pacific Ocean near Hawaii in 2000 with promising results. This is ongoing research; the current initial analyses, measurements, and results are reported in this paper.
21 CFR 184.1240 - Carbon dioxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and....1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No. 124-38-9) occurs as a..., sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon dioxide is prepared as a byproduct...
49 CFR 173.217 - Carbon dioxide, solid (dry ice).
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... marked on two sides “WARNING CO2 SOLID (DRY ICE).” (2) Other packagings containing solid carbon dioxide...
49 CFR 173.217 - Carbon dioxide, solid (dry ice).
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... marked on two sides “WARNING CO2 SOLID (DRY ICE).” (2) Other packagings containing solid carbon dioxide...
49 CFR 173.217 - Carbon dioxide, solid (dry ice).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... marked on two sides “WARNING CO2 SOLID (DRY ICE).” (2) Other packagings containing solid carbon dioxide...
49 CFR 173.217 - Carbon dioxide, solid (dry ice).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... marked on two sides “WARNING CO2 SOLID (DRY ICE).” (2) Other packagings containing solid carbon dioxide...
49 CFR 173.217 - Carbon dioxide, solid (dry ice).
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... marked on two sides “WARNING CO2 SOLID (DRY ICE).” (2) Other packagings containing solid carbon dioxide...
27 CFR 24.245 - Use of carbon dioxide in still wine.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Use of carbon dioxide in... Use of carbon dioxide in still wine. The addition of carbon dioxide to (and retention in) still wine... of carbon dioxide per 100 milliliters of wine or where the variation results from the use of methods...
Orr, James C; Fabry, Victoria J; Aumont, Olivier; Bopp, Laurent; Doney, Scott C; Feely, Richard A; Gnanadesikan, Anand; Gruber, Nicolas; Ishida, Akio; Joos, Fortunat; Key, Robert M; Lindsay, Keith; Maier-Reimer, Ernst; Matear, Richard; Monfray, Patrick; Mouchet, Anne; Najjar, Raymond G; Plattner, Gian-Kasper; Rodgers, Keith B; Sabine, Christopher L; Sarmiento, Jorge L; Schlitzer, Reiner; Slater, Richard D; Totterdell, Ian J; Weirig, Marie-France; Yamanaka, Yasuhiro; Yool, Andrew
2005-09-29
Today's surface ocean is saturated with respect to calcium carbonate, but increasing atmospheric carbon dioxide concentrations are reducing ocean pH and carbonate ion concentrations, and thus the level of calcium carbonate saturation. Experimental evidence suggests that if these trends continue, key marine organisms--such as corals and some plankton--will have difficulty maintaining their external calcium carbonate skeletons. Here we use 13 models of the ocean-carbon cycle to assess calcium carbonate saturation under the IS92a 'business-as-usual' scenario for future emissions of anthropogenic carbon dioxide. In our projections, Southern Ocean surface waters will begin to become undersaturated with respect to aragonite, a metastable form of calcium carbonate, by the year 2050. By 2100, this undersaturation could extend throughout the entire Southern Ocean and into the subarctic Pacific Ocean. When live pteropods were exposed to our predicted level of undersaturation during a two-day shipboard experiment, their aragonite shells showed notable dissolution. Our findings indicate that conditions detrimental to high-latitude ecosystems could develop within decades, not centuries as suggested previously.
46 CFR 108.431 - Carbon dioxide systems: General.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure carbon dioxide fire extinguishing systems. (b) Low pressure systems, that is, those in which the carbon dioxide...
IMPROVEMENTS IN OR RELATING TO THE PRODUCTION OF SINTERED URANIUM DIOXIDE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, L.E.; Harrison, J.D.L.; Brett, N.H.
A method is described for producing a dense sintered body of uranium dioxide or a mixture thereof with plutonium dioxide. Compacted uranium dioxide or a compacted uranium dioxide-plutonium dioxide mixture is heated to at least 1300 deg C in an atmosphere of carbon dioxide or carbon dioxide mixed with carbon monoxide. (R.J.S.)
Designed amyloid fibers as materials for selective carbon dioxide capture
Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M.; Eisenberg, David S.
2014-01-01
New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture. PMID:24367077
46 CFR 35.40-7 - Carbon dioxide and clean agent alarms-T/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Carbon dioxide and clean agent alarms-T/ALL. 35.40-7... Marking Requirements-TB/ALL § 35.40-7 Carbon dioxide and clean agent alarms—T/ALL. Each carbon dioxide or...: “WHEN ALARM SOUNDS VACATE AT ONCE. [CARBON DIOXIDE/CLEAN AGENT—as appropriate] BEING RELEASED.” [USCG...
27 CFR 24.245 - Use of carbon dioxide in still wine.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Use of carbon dioxide in... Use of carbon dioxide in still wine. The addition of carbon dioxide to (and retention in) still wine... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than 0...
46 CFR 35.40-7 - Carbon dioxide and clean agent alarms-T/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Carbon dioxide and clean agent alarms-T/ALL. 35.40-7... Marking Requirements-TB/ALL § 35.40-7 Carbon dioxide and clean agent alarms—T/ALL. Each carbon dioxide or...: “WHEN ALARM SOUNDS VACATE AT ONCE. [CARBON DIOXIDE/CLEAN AGENT—as appropriate] BEING RELEASED.” [USCG...
Unconventional fossil-based fuels : economic and environmental trade-offs
DOT National Transportation Integrated Search
2008-01-01
Both high import payments for petroleum motor fuels and concerns regarding emissions of carbon dioxide (CO2) are motivating interest in possible fuel substitutes. In this report, RAND researchers assess the potential future production levels, product...
Carbon dioxide dangers demonstration model
Venezky, Dina; Wessells, Stephen
2010-01-01
Carbon dioxide is a dangerous volcanic gas. When carbon dioxide seeps from the ground, it normally mixes with the air and dissipates rapidly. However, because carbon dioxide gas is heavier than air, it can collect in snowbanks, depressions, and poorly ventilated enclosures posing a potential danger to people and other living things. In this experiment we show how carbon dioxide gas displaces oxygen as it collects in low-lying areas. When carbon dioxide, created by mixing vinegar and baking soda, is added to a bowl with candles of different heights, the flames are extinguished as if by magic.
Energy efficient solvent regeneration process for carbon dioxide capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Shaojun; Meyer, Howard S.; Li, Shiguang
A process for removing carbon dioxide from a carbon dioxide-loaded solvent uses two stages of flash apparatus. Carbon dioxide is flashed from the solvent at a higher temperature and pressure in the first stage, and a lower temperature and pressure in the second stage, and is fed to a multi-stage compression train for high pressure liquefaction. Because some of the carbon dioxide fed to the compression train is already under pressure, less energy is required to further compress the carbon dioxide to a liquid state, compared to conventional processes.
Development of Carbon Dioxide Removal Systems for Advanced Exploration Systems 2015-2016
NASA Technical Reports Server (NTRS)
Knox, James C.; Coker, Robert; Howard, David; Peters, Warren; Watson, David; Cmarik, Gregory; Miller, Lee A.
2016-01-01
A long-term goal for NASA is to enable crewed missions to Mars: first to the vicinity of Mars, and then to the Mars surface. These missions present new challenges for all aspects of spacecraft design in comparison with the International Space Station, as resupply is unavailable in the transit phase, and early return is not possible. Additionally, mass, power, and volume must be minimized for all phases to reduce propulsion needs. Mass reduction is particularly crucial for Mars surface landing and liftoff due to the challenges inherent in these operations for even much smaller payloads. In this paper we describe current and planned developments in the area of carbon dioxide removal to support future crewed Mars missions. Activities are also described that apply to both the resolution of anomalies observed in the ISS CDRA and the design of life support systems for future missions.
Development of Carbon Dioxide Removal Systems for Advanced Exploration Systems 2014-2015
NASA Technical Reports Server (NTRS)
Knox, James C.; Coker, Robert; Huff, Timothy L.; Gatens, Robyn; Miller, Lee A.; Stanley, Christine
2015-01-01
A long-term goal for NASA is to enable crewed missions to Mars: first to the vicinity of Mars, and then to the Mars surface. These missions present new challenges for all aspects of spacecraft design in comparison with the International Space Station, as resupply is unavailable in the transit phase, and early return is not possible. Additionally, mass, power, and volume must be minimized for all phases to reduce propulsion needs. Mass reduction is particularly crucial for Mars surface landing and liftoff due to the challenges inherent in these operations for even much smaller payloads. In this paper we describe current and planned developments in the area of carbon dioxide removal to support future crewed Mars missions. Activities are also described that apply to both the resolution of anomalies observed in the ISS CDRA and the design of life support systems for future missions.
ERIC Educational Resources Information Center
Foster, John; And Others
1986-01-01
Presents a set of laboratory experiments that can assist students in the detection of carbon dioxide. Offers a variation of the supported drop method of carbon dioxide detection that provides readily visible positive results. Includes background information on carbon dioxide. (ML)
Method of immobilizing carbon dioxide from gas streams
Holladay, David W.; Haag, Gary L.
1979-01-01
This invention is a method for rapidly and continuously immobilizing carbon dioxide contained in various industrial off-gas streams, the carbon dioxide being immobilized as dry, stable, and substantially water-insoluble particulates. Briefly, the method comprises passing the gas stream through a fixed or fluidized bed of hydrated barium hydroxide to remove and immobilize the carbon dioxide by converting the bed to barium carbonate. The method has several important advantages: it can be conducted effectively at ambient temperature; it provides a very rapid reaction rate over a wide range of carbon dioxide concentrations; it provides high decontamination factors; and it has a high capacity for carbon dioxide. The invention is especially well suited for the removal of radioactive carbon dioxide from off-gases generated by nuclear-fuel reprocessing facilities and nuclear power plants.
Carbon dioxide transport over complex terrain
Sun, Jielun; Burns, Sean P.; Delany, A.C.; Oncley, S.P.; Turnipseed, A.; Stephens, B.; Guenther, A.; Anderson, D.E.; Monson, R.
2004-01-01
The nocturnal transport of carbon dioxide over complex terrain was investigated. The high carbon dioxide under very stable conditions flows to local low-ground. The regional drainage flow dominates the carbon dioxide transport at the 6 m above the ground and carbon dioxide was transported to the regional low ground. The results show that the local drainage flow was sensitive to turbulent mixing associated with local wind shear.
46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Carbon dioxide and halon fire extinguishing systems. 147... dioxide and halon fire extinguishing systems. (a) Carbon dioxide or halon cylinders forming part of a...) Carbon dioxide or halon cylinders must be rejected for further service when they— (1) Leak; (2) Are...
46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Carbon dioxide and halon fire extinguishing systems. 147... dioxide and halon fire extinguishing systems. (a) Carbon dioxide or halon cylinders forming part of a...) Carbon dioxide or halon cylinders must be rejected for further service when they— (1) Leak; (2) Are...
Capillary Structures for Exploration Life Support (Capillary Structures)
2017-07-10
iss052e013081 (7/10/2017) --- The Capillary Structures for Exploration Life Support (Capillary Structures) investigation studies a new method using structures of specific shapes to manage fluid and gas mixtures. The investigation studies water recycling and carbon dioxide removal, benefiting future efforts to design lightweight, more reliable life support systems for future space missions.
Mills, Christopher D; McCamley, Chere; Swan, Michael P
2018-03-07
To determine the effect of carbon dioxide insufflation on the most important outcome measure of colonoscopic quality: adenoma detection rate (ADR). Bowel cancer is the second most common cause of cancer deaths in males and females in Australia. Carbon dioxide has in recent times become the insufflation methodology of choice for screening colonoscopy for bowel cancer, as this has been shown to have significant advantages when compared with traditional air insufflation. Endoscopies performed over a period of 9 months immediately before and after the implementation of carbon dioxide insufflation at endoscopy centers were eligible for inclusion. The difference in ADR between the carbon dioxide and air insufflation methods was statistically significant, with an increased ADR in the carbon dioxide group. The superiority of carbon dioxide insufflation was sustained with a logistic regression model, which showed ADR was significantly impacted by insufflation method. Carbon dioxide insufflation is known to reduce abdominal pain, postprocedural duration of abdominal pain, abdominal distension, and analgesic requirements. This study represents for the first time the beneficial effect of carbon dioxide insufflation upon the key quality colonoscopy indicator of ADR.
Carbon dioxide elimination and regeneration of resources in a microwave plasma torch.
Uhm, Han S; Kwak, Hyoung S; Hong, Yong C
2016-04-01
Carbon dioxide gas as a working gas produces a stable plasma-torch by making use of 2.45 GHz microwaves. The temperature of the torch flame is measured by making use of optical spectroscopy and a thermocouple device. Two distinctive regions are exhibited, a bright, whitish region of a high-temperature zone and a bluish, dimmer region of a relatively low-temperature zone. The bright, whitish region is a typical torch based on plasma species where an analytical investigation indicates dissociation of a substantial fraction of carbon dioxide molecules, forming carbon monoxides and oxygen atoms. The emission profiles of the oxygen atoms and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. Various hydrocarbon materials may be introduced into the carbon dioxide torch, regenerating new resources and reducing carbon dioxide concentration in the torch. As an example, coal powders in the carbon dioxide torch are converted into carbon monoxide according to the reaction of CO2 + C → 2CO, reducing a substantial amount of carbon dioxide concentration in the torch. In this regards, the microwave plasma torch may be one of the best ways of converting the carbon dioxides into useful new materials. Copyright © 2015 Elsevier Ltd. All rights reserved.
Irreversible climate change due to carbon dioxide emissions.
Solomon, Susan; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre
2009-02-10
The severity of damaging human-induced climate change depends not only on the magnitude of the change but also on the potential for irreversibility. This paper shows that the climate change that takes place due to increases in carbon dioxide concentration is largely irreversible for 1,000 years after emissions stop. Following cessation of emissions, removal of atmospheric carbon dioxide decreases radiative forcing, but is largely compensated by slower loss of heat to the ocean, so that atmospheric temperatures do not drop significantly for at least 1,000 years. Among illustrative irreversible impacts that should be expected if atmospheric carbon dioxide concentrations increase from current levels near 385 parts per million by volume (ppmv) to a peak of 450-600 ppmv over the coming century are irreversible dry-season rainfall reductions in several regions comparable to those of the "dust bowl" era and inexorable sea level rise. Thermal expansion of the warming ocean provides a conservative lower limit to irreversible global average sea level rise of at least 0.4-1.0 m if 21st century CO(2) concentrations exceed 600 ppmv and 0.6-1.9 m for peak CO(2) concentrations exceeding approximately 1,000 ppmv. Additional contributions from glaciers and ice sheet contributions to future sea level rise are uncertain but may equal or exceed several meters over the next millennium or longer.
Bayrakli, Ismail; Öztürk, Önder; Akman, Hatice
2016-12-01
The objective of the present study was to investigate whether analysis of carbon dioxide, acetone and/or butanol present in human breath can be used as a simple and noninvasive diagnosis method for obstructive sleep apnea syndrome (OSAS). For this purpose, overnight changes in the concentrations of these breath molecules were measured before and after sleep in 10 patients who underwent polysomnography and were diagnosed with OSAS, and were compared with the levels of these biomarkers determined after sleep in 10 healthy subjects. The concentrations of exhaled carbon dioxide were measured using external cavity laser-based off-axis cavity enhanced absorption spectroscopy, whereas the levels of exhaled acetone and butanol were determined using thermal desorption gas chromatography mass spectrometry. We observed no significant changes in the levels of exhaled acetone and carbon dioxide in OSAS patients after sleep compared with pre-sleep values and compared with those in healthy control subjects. However, for the first time, to our knowledge, analyses of expired air showed an increased concentration of butanol after sleep compared with that before sleep and compared with that in healthy subjects. These results suggest that butanol can be established as a potential biomarker to enable the convenient and noninvasive diagnosis of OSAS in the future. Copyright © 2016 John Wiley & Sons, Ltd.
Irreversible climate change due to carbon dioxide emissions
Solomon, Susan; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre
2009-01-01
The severity of damaging human-induced climate change depends not only on the magnitude of the change but also on the potential for irreversibility. This paper shows that the climate change that takes place due to increases in carbon dioxide concentration is largely irreversible for 1,000 years after emissions stop. Following cessation of emissions, removal of atmospheric carbon dioxide decreases radiative forcing, but is largely compensated by slower loss of heat to the ocean, so that atmospheric temperatures do not drop significantly for at least 1,000 years. Among illustrative irreversible impacts that should be expected if atmospheric carbon dioxide concentrations increase from current levels near 385 parts per million by volume (ppmv) to a peak of 450–600 ppmv over the coming century are irreversible dry-season rainfall reductions in several regions comparable to those of the “dust bowl” era and inexorable sea level rise. Thermal expansion of the warming ocean provides a conservative lower limit to irreversible global average sea level rise of at least 0.4–1.0 m if 21st century CO2 concentrations exceed 600 ppmv and 0.6–1.9 m for peak CO2 concentrations exceeding ≈1,000 ppmv. Additional contributions from glaciers and ice sheet contributions to future sea level rise are uncertain but may equal or exceed several meters over the next millennium or longer. PMID:19179281
NASA Technical Reports Server (NTRS)
Luna, Bernadette; Somi, George; Winchester, J. Parker; Grose, Jeffrey; Mulloth, Lila; Perry, Jay L.
2010-01-01
Designers of future space vehicles envision simplifying the Atmosphere Revitalization (AR) system by combining the functions of trace contaminant (TC) control and carbon dioxide removal into one swing-bed system. Flow rates and bed sizes of the TC and CO2 systems have historically been very different. There is uncertainty about the ability of trace contaminant sorbents to adsorb adequately in high-flow or short bed length configurations, and to desorb adequately during short vacuum exposures. There is also concern about ambient ammonia levels in the absence of a condensing heat exchanger. In addition, new materials and formulations have become commercially available, formulations never evaluated by NASA for purposes of trace contaminant control. The optimal air revitalization system for future missions may incorporate a swing-bed system for carbon dioxide (CO2) and partial trace contaminant control, with a reduced-size, low-power, targeted trace contaminant system supplying the remaining contaminant removal capability. This paper describes the results of a comparative experimental investigation into materials for trace contaminant control that might be part of such a system. Ammonia sorbents and low temperature carbon monoxide (CO) oxidation catalysts are the foci. The data will be useful to designers of AR systems for future flexible path missions. This is a continuation of work presented in a prior year, with extended test results.
NASA Technical Reports Server (NTRS)
Luna, Bernadette; Somi, George; Winchester, J. Parker; Grose, Jeffrey; Mulloth, Lila; Perry, Jay L.
2013-01-01
Designers of future space vehicles envision simplifying the Atmosphere Revitalization (AR) system by combining the functions of trace contaminant (TC) control and carbon dioxide removal into one swing-bed system. Flow rates and bed sizes of the TC and CO2 systems have historically been very different. There is uncertainty about the ability of trace contaminant sorbents to adsorb adequately in high-flow or short bed length configurations, and to desorb adequately during short vacuum exposures. There is also concern about ambient ammonia levels in the absence of a condensing heat exchanger. In addition, new materials and formulations have become commercially available, formulations never evaluated by NASA for purposes of trace contaminant control. The optimal air revitalization system for future missions may incorporate a swing-bed system for carbon dioxide (CO2) and partial trace contaminant control, with a reduced-size, low-power, targeted trace contaminant system supplying the remaining contaminant removal capability. This paper describes the results of a comparative experimental investigation into materials for trace contaminant control that might be part of such a system. Ammonia sorbents and low temperature carbon monoxide (CO) oxidation catalysts are the foci. The data will be useful to designers of AR systems for future flexible path missions. This is a continuation of work presented in a prior year, with extended test results.
Carbon dioxide-soluble polymers and swellable polymers for carbon dioxide applications
DeSimone, Joseph M.; Birnbaum, Eva; Carbonell, Ruben G.; Crette, Stephanie; McClain, James B.; McCleskey, T. Mark; Powell, Kimberly R.; Romack, Timothy J.; Tumas, William
2004-06-08
A method for carrying out a catalysis reaction in carbon dioxide comprising contacting a fluid mixture with a catalyst bound to a polymer, the fluid mixture comprising at least one reactant and carbon dioxide, wherein the reactant interacts with the catalyst to form a reaction product. A composition of matter comprises carbon dioxide and a polymer and a reactant present in the carbon dioxide. The polymer has bound thereto a catalyst at a plurality of chains along the length of the polymer, and wherein the reactant interacts with the catalyst to form a reaction product.
Testing a Regenerative Carbon Dioxide and Moisture Removal Technology
NASA Technical Reports Server (NTRS)
Barta, Daniel J.; Button, Amy; Sweterlitsch, Jeffrey J.; Curley, Suzanne
2010-01-01
The National Aeronautics and Space Administration supported the development of a new vacuum-desorbed regenerative carbon dioxide and humidity control technology for use in short duration human spacecraft. The technology was baselined for use in the Orion Crew Exploration Vehicle s Environmental Control and Life Support System (ECLSS). Termed the Carbon Dioxide And Moisture Removal Amine Swing-bed (CAMRAS), the unit was developed by Hamilton Sundstrand and has undergone extensive testing at Johnson Space Center. The tests were performed to evaluate performance characteristics under range of operating conditions and human loads expected in future spacecraft applications, as part of maturation to increase its readiness for flight. Early tests, conducted at nominal atmospheric pressure, used human metabolic simulators to generate loads, with later tests making us of human test subjects. During these tests many different test cases were performed, involving from 1 to 6 test subjects, with different activity profiles (sleep, nominal and exercise). These tests were conducted within the airlock portion of a human rated test chamber sized to simulate the Orion cabin free air volume. More recently, a test was completed that integrated the CAMRAS with a simulated suit loop using prototype umbilicals and was conducted at reduced atmospheric pressure and elevated oxygen levels. This paper will describe the facilities and procedures used to conduct these and future tests, and provide a summary of findings.
Do fossil plants signal palaeoatmospheric carbon dioxide concentration in the geological past?
McElwain, J. C.
1998-01-01
Fossil, subfossil, and herbarium leaves have been shown to provide a morphological signal of the atmospheric carbon dioxide environment in which they developed by means of their stomatal density and index. An inverse relationship between stomatal density/index and atmospheric carbon dioxide concentration has been documented for all the studies to date concerning fossil and subfossil material. Furthermore, this relationship has been demonstrated experimentally by growing plants under elevated and reducedcarbon dioxide concentrations. To date, the mechanism that controls the stomatal density response to atmospheric carbon dioxide concentration remains unknown. However, stomatal parameters of fossil plants have been successfully used as a proxy indicator of palaeo-carbon dioxide levels. This paper presents new estimates of palaeo-atmospheric carbon dioxide concentrations for the Middle Eocene (Lutetian), based on the stomatal ratios of fossil Lauraceae species from Bournemouth in England. Estimates of atmospheric carbon dioxide concentrations derived from stomatal data from plants of the Early Devonian, Late Carboniferous, Early Permian and Middle Jurassic ages are reviewed in the light of new data. Semi-quantitative palaeo-carbon dioxide estimates based on the stomatal ratio (a ratio of the stomatal index of a fossil plant to that of a selected nearest living equivalent) have in the past relied on the use of a Carboniferous standard. The application of a new standard based on the present-day carbon dioxide level is reported here for comparison. The resultant ranges of palaeo-carbon dioxide estimates made from standardized fossil stomatal ratio data are in good agreement with both carbon isotopic data from terrestrial and marine sources and long-term carbon cycle modelling estimates for all the time periods studied. These data indicate elevated atmospheric carbon dioxide concentrations during the Early Devonian, Middle Jurassic and Middle Eocene, and reduced concentrations during the Late Carboniferous and Early Permian. Such data are important in demonstrating the long-term responses of plants to changing carbon dioxide concentrations and in contributing to the database needed for general circulation model climatic analogues.
Technical and economical evaluation of carbon dioxide capture and conversion to methanol process
NASA Astrophysics Data System (ADS)
Putra, Aditya Anugerah; Juwari, Handogo, Renanto
2017-05-01
Phenomenon of global warming, which is indicated by increasing of earth's surface temperature, is caused by high level of greenhouse gases level in the atmosphere. Carbon dioxide, which increases year by year because of high demand of energy, gives the largest contribution in greenhouse gases. One of the most applied solution to mitigate carbon dioxide level is post-combustion carbon capture technology. Although the technology can absorb up to 90% of carbon dioxide produced, some worries occur that captured carbon dioxide that is stored underground will be released over time. Utilizing captured carbon dioxide could be a promising solution. Captured carbon dioxide can be converted into more valuable material, such as methanol. This research will evaluate the conversion process of captured carbon dioxide to methanol, technically and economically. From the research, it is found that technically methanol can be made from captured carbon dioxide. Product gives 25.6905 kg/s flow with 99.69% purity of methanol. Economical evaluation of the whole conversion process shows that the process is economically feasible. The capture and conversion process needs 176,101,157.69 per year for total annual cost and can be overcome by revenue gained from methanol product sales.
21 CFR 868.2480 - Cutaneous carbon dioxide (PcCO 2) monitor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cutaneous carbon dioxide (PcCO 2) monitor. 868... dioxide (PcCO 2) monitor. (a) Identification. A cutaneous carbon dioxide (PcCO2) monitor is a noninvasive... relative changes in a hemodynamically stable patient's cutaneous carbon dioxide tension as an adjunct to...
21 CFR 868.2480 - Cutaneous carbon dioxide (PcCO 2) monitor.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cutaneous carbon dioxide (PcCO 2) monitor. 868... dioxide (PcCO 2) monitor. (a) Identification. A cutaneous carbon dioxide (PcCO2) monitor is a noninvasive... relative changes in a hemodynamically stable patient's cutaneous carbon dioxide tension as an adjunct to...
40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?
Code of Federal Regulations, 2010 CFR
2010-07-01
... systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I... sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the outlet of the air pollution... according to the “Monitoring Requirements” in § 60.13. (c) You must monitor the oxygen (or carbon dioxide...
40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?
Code of Federal Regulations, 2011 CFR
2011-07-01
... systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I... sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the outlet of the air pollution... according to the “Monitoring Requirements” in § 60.13. (c) You must monitor the oxygen (or carbon dioxide...
Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch.
Kwak, Hyoung S; Uhm, Han S; Hong, Yong C; Choi, Eun H
2015-12-17
A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10(-3), nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10(-7), nO2/nN = 5.39 × 10(-5), where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch.
Carbon dioxide laser for de-epithelialization of periodontal flaps.
Centty, I G; Blank, L W; Levy, B A; Romberg, E; Barnes, D M
1997-08-01
Regeneration of mineralized and soft connective tissue components of the attachment apparatus is the main goal in the treatment of periodontal diseases. Often, apical migration of epithelium (long junctional epithelium) effectively prevents the formation of bone and connective tissue attachment after periodontal surgery. The purpose of the present study was to compare conventional periodontal surgery combined with carbon dioxide laser and conventional periodontal surgery alone with respect to epithelial elimination and degree of necrosis of mucoperiosteal flaps. After signing a consent form, five patients with at least two comparable bilateral periodontal defects needing pocket elimination surgery participated in this study. The investigators randomly divided each side into test and control sites. Each patient received oral hygiene instruction and initial therapy prior to surgery. At surgery, the test site received a sulcular incision and carbon dioxide laser de-epithelialization of the outer and inner aspects of the flap. The control group received reverse bevel incision only. The surgeon performed open flap debridement on all teeth. At the time of surgery, the surgeon did a biopsy of each site and submitted specimens for histologic evaluation. A matched pairs t-test was used to analyze the data. The results show significant differences between the carbon dioxide laser and reverse bevel incision with respect to sulcular (P < or = 0.025) and gingival (external) (P < or = 0.01) flap surface epithelial elimination and tissue necrosis (P < or = 0.005). These results should be replicated with a larger number of subjects. The carbon dioxide laser eliminated sulcular and gingival (external) epithelium without disturbing underlying connective tissue. This finding supports the concept that the carbon dioxide wavelength has little or no effect on tissues beyond the target. However, neither laser nor blade eliminated all the epithelium. Researchers observed chronic inflammation in the control and test sites, with a predominance of plasma cells. Lining the sulcular and gingival (external) lased areas, investigators found coagulation necrosis covered by fibrin and coagulated blood. The laser appears to effectively remove epithelium at the time of surgery; however, future long-term, well-controlled quantitative histologic studies are needed to evaluate the effect of repeated carbon dioxide laser de-epithelialization of the gingival (external) surface of mucoperiosteal flaps at intervals during the healing period.
Carbon Dioxide Removal via Passive Thermal Approaches
NASA Technical Reports Server (NTRS)
Lawson, Michael; Hanford, Anthony; Conger, Bruce; Anderson, Molly
2011-01-01
A paper describes a regenerable approach to separate carbon dioxide from other cabin gases by means of cooling until the carbon dioxide forms carbon dioxide ice on the walls of the physical device. Currently, NASA space vehicles remove carbon dioxide by reaction with lithium hydroxide (LiOH) or by adsorption to an amine, a zeolite, or other sorbent. Use of lithium hydroxide, though reliable and well-understood, requires significant mass for all but the shortest missions in the form of lithium hydroxide pellets, because the reaction of carbon dioxide with lithium hydroxide is essentially irreversible. This approach is regenerable, uses less power than other historical approaches, and it is almost entirely passive, so it is more economical to operate and potentially maintenance- free for long-duration missions. In carbon dioxide removal mode, this approach passes a bone-dry stream of crew cabin atmospheric gas through a metal channel in thermal contact with a radiator. The radiator is pointed to reject thermal loads only to space. Within the channel, the working stream is cooled to the sublimation temperature of carbon dioxide at the prevailing cabin pressure, leading to formation of carbon dioxide ice on the channel walls. After a prescribed time or accumulation of carbon dioxide ice, for regeneration of the device, the channel is closed off from the crew cabin and the carbon dioxide ice is sublimed and either vented to the environment or accumulated for recovery of oxygen in a fully regenerative life support system.
Initial public perceptions of deep geological and oceanic disposal of carbon dioxide.
Palmgren, Claire R; Morgan, M Granger; Bruine de Bruin, Wändi; Keith, David W
2004-12-15
Two studies were conducted to gauge likely public perceptions of proposals to avoid releasing carbon dioxide from power plants to the atmosphere by injecting it into deep geological formations or the deep ocean. Following a modified version of the mental model interview method, Study 1 involved face-to-face interviews with 18 nontechnical respondents. Respondents shared their beliefs after receiving basic information about the technologies and again after getting specific details. Many interviewees wanted to frame the issue in the broader context of alternative strategies for carbon management, but public understanding of mitigation strategies is limited. The second study, administered to a sample of 126 individuals, involved a closed-form survey that measured the prevalence of general beliefs revealed in study 1 and also assessed the respondent's views of these technologies. Study results suggest that the public may develop misgivings about deep injection of carbon dioxide because it can be seen as temporizing and perhaps creating future problems. Ocean injection was seen as more problematic than geological injection. An approach to public communication and regulation that is open and respectful of public concerns is likely to be a prerequisite to the successful adoption of this technology.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta
2017-01-01
The societal benefits of understanding climate change through identification of global carbon dioxide sources and sinks led to the desired NASA's active sensing of carbon dioxide emissions over nights, days, and seasons (ASCENDS) space-based missions of global carbon dioxide measurements. For more than 15 years, NASA Langley Research Center (LaRC) have developed several carbon dioxide active remote sensors using the differential absorption lidar (DIAL) technique operating at the two-micron wavelength. Currently, an airborne two-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development. This IPDA lidar measures carbon dioxide as well as water vapor, the dominant interfering molecule on carbon dioxide remote sensing. Advancement of this triple-pulse IPDA lidar development is presented.
Capacitance‐Assisted Sustainable Electrochemical Carbon Dioxide Mineralisation
Lamb, Katie J.; Dowsett, Mark R.; Chatzipanagis, Konstantinos; Scullion, Zhan Wei; Kröger, Roland; Lee, James D.
2017-01-01
Abstract An electrochemical cell comprising a novel dual‐component graphite and Earth‐crust abundant metal anode, a hydrogen producing cathode and an aqueous sodium chloride electrolyte was constructed and used for carbon dioxide mineralisation. Under an atmosphere of 5 % carbon dioxide in nitrogen, the cell exhibited both capacitive and oxidative electrochemistry at the anode. The graphite acted as a supercapacitive reagent concentrator, pumping carbon dioxide into aqueous solution as hydrogen carbonate. Simultaneous oxidation of the anodic metal generated cations, which reacted with the hydrogen carbonate to give mineralised carbon dioxide. Whilst conventional electrochemical carbon dioxide reduction requires hydrogen, this cell generates hydrogen at the cathode. Carbon capture can be achieved in a highly sustainable manner using scrap metal within the anode, seawater as the electrolyte, an industrially relevant gas stream and a solar panel as an effective zero‐carbon energy source. PMID:29171724
NASA Technical Reports Server (NTRS)
Abney, Morgan; Barta, Daniel
2015-01-01
The Next Generation Life Support Spacecraft Oxygen Recovery (SCOR) project element is dedicated to developing technology that enables oxygen recovery from metabolically produced carbon dioxide in space habitats. The state-of-the-art system on the International Space Station uses Sabatier technology to recover (is) approximately 50% oxygen from carbon dioxide. The remaining oxygen required for crew respiration is supplied from Earth. For long duration manned missions beyond low-Earth orbit, resupply of oxygen becomes economically and logistically prohibitive. To mitigate these challenges, the SCOR project element is targeting development of technology to increase the recovery of oxygen to 75% or more, thereby reducing the total oxygen resupply required for future missions.
Taylor, Craig D.; Ljungdahl, Per O.; Molongoski, John J.
1981-01-01
A technique for the simultaneous determination of [35S]sulfide and [14C]carbon dioxide produced in anaerobic aqueous samples dual-labeled with [35S]sulfate and a 14C-organic substrate is described. The method involves the passive distillation of sulfide and carbon dioxide from an acidified water sample and their subsequent separation by selective chemical absorption. The recovery of sulfide was 93% for amounts ranging from 0.35 to 50 μmol; recovery of carbon dioxide was 99% in amounts up to 20 μmol. Within these delineated ranges of total sulfide and carbon dioxide, 1 nmol of [35S]sulfide and 7.5 nmol of [14C]carbon dioxide were separated and quantified. Correction factors were formulated for low levels of radioisotopic cross-contamination by sulfide, carbon dioxide, and volatile organic acids. The overall standard error of the method was ±4% for sulfide and ±6% for carbon dioxide. PMID:16345742
Natural deep eutectic solvents (NADES) as green solvents for carbon dioxide capture
NASA Astrophysics Data System (ADS)
Mulia, Kamarza; Putri, Sylvania; Krisanti, Elsa; Nasruddin
2017-03-01
This study was conducted to determine the effectiveness of Natural Deep Eutectic Solvent (NADES), consisting of choline chloride and a hydrogen bonding donor (HBD) compound, in terms of carbon dioxide absorption. Solubility of carbon dioxide in NADES was found to be influenced HBD compound used and choline chloride to HBD ratio, carbon dioxide pressure, and contact time. HBD and choline/HBD ratios used were 1,2-propanediol (1:2), glycerol (1:2), and malic acid (1:1). The carbon dioxide absorption measurement was conducted using an apparatus that utilizes the volumetric method. Absorption curves were obtained up to pressures of 30 bar, showing a linear relationship between the amount absorbed and the final pressure of carbon dioxide. The choline and 1,2-propanediol eutectic mixture absorbs the highest amount of carbon dioxide, approaching 0.1 mole-fraction at 3.0 MPa and 50°C. We found that NADES ability to absorb carbon dioxide correlates with its polarity as tested using Nile Red as a solvatochromic probe.
NASA Astrophysics Data System (ADS)
Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, Chandrasekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.
2016-12-01
Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.
21 CFR 184.1240 - Carbon dioxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon...
21 CFR 184.1240 - Carbon dioxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon...
21 CFR 184.1240 - Carbon dioxide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon...
21 CFR 868.5300 - Carbon dioxide absorbent.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of an...
21 CFR 868.5300 - Carbon dioxide absorbent.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of an...
21 CFR 868.5300 - Carbon dioxide absorbent.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of an...
46 CFR 193.15-20 - Carbon dioxide storage.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-20 Carbon dioxide storage. (a...
46 CFR 193.15-20 - Carbon dioxide storage.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-20 Carbon dioxide storage. (a...
U.S. Energy-Related Carbon Dioxide Emissions
2017-01-01
U.S. Energy Information Administration releases its online analysis of 2016 energy-related carbon dioxide emissions today. It indicates U.S. carbon dioxide emissions from the consumption of fossil fuels were 5,170 million metric tons carbon dioxide in 2016, a decrease of 1.7 percent from the 2015 level. Energy-related carbon dioxide emissions have declined in six of the last ten years. This analysis is based on data contained in the August 2017 Monthly Energy Review.
Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch
Kwak, Hyoung S.; Uhm, Han S.; Hong, Yong C.; Choi, Eun H.
2015-01-01
A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10−3, nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10−7, nO2/nN = 5.39 × 10−5, where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. PMID:26674957
NEW BIOGENIC VOC EMISSIONS MODEL
We intend to develop new prognostic models for the prediction of biogenic volatile organic compound emissions from forest ecosystems in the face of possible future changes in the climate and the concentration of carbon dioxide in the atmosphere. These models will b...
An Overview of Algae Biofuel Production and Potential Environmental Impact
Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas)...
NASA Technical Reports Server (NTRS)
Mulloth, Lila M.; Rosen, Micha; Affleck, David; LeVan, M. Douglas; Wang, Yuan
2005-01-01
The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby dosing the air-loop. We have developed a temperature-swing adsorption compressor (TSAC) that is energy efficient, quiet, and has no rapidly moving parts for performing these tasks. The TSAC is a solid-state compressor that has the capability to remove CO2 from a low- pressure source, and subsequently store, compress, and deliver at a higher pressure as required by a processor. The TSAC is an ideal interface device for CO2 removal and reduction units in the air revitalization loop of a spacecraft for oxygen recovery. This paper discusses the design and testing of a TSAC for carbon dioxide that has application in the ISS and future spacecraft for closing the air revitalization loop.
Shahrokhi, A; Burghele, B D; Fábián, F; Kovács, T
2015-12-01
The influence of high geogenic carbon dioxide concentrations on monitoring devices might present a significant challenge to the measurement of radon concentrations in environments with a high level of carbon dioxide concentration such as volcano sites, mofettes, caves, etc. In this study, the influence of carbon dioxide concentration on several different types of radon monitor devices - including Alpha Spectrometry (Sarad RTM 2200, EQF 3220, RAD7), Ionizing Chamber (AlphaGUARD PQ2000 PRO) and Active Cell (Active scintillation cell, Pylon 300A) - was examined to represent new aspects of radon measuring in environments with carbon dioxide. In light of the results, all measuring devices were exposed to variable conditions affected by carbon dioxide concentration, except for the AlphaGUARD, which was kept in a steady state throughout the experiment. It was observed that alpha spectroscopy devices were affected by carbon dioxide, since measured radon concentrations decreased in the presence of 70% and 90% carbon dioxide concentrations by 26.5 ± 2% and 14.5 ± 2.5% for EQF 3220, and 32 ± 2% and 35.5 ± 2% for RTM 2200. However, the ionizing chamber instrument was unaffected by changes in carbon dioxide concentration. It was determined that the RAD7 performed relatively inefficiently in the presence of carbon dioxide concentrations higher than 67% by an overall efficiency factor of approximately 0.52, confirming that it is not an admissible radon monitor instrument in environments with high carbon dioxide concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Utilizing Diffusion Theory to predict carbon dioxide concentration in an indoor environment
NASA Astrophysics Data System (ADS)
Kramer, Andrew R.
This research details a new method of relating sources of carbon dioxide to carbon dioxide concentration in a room operating in a reduced ventilation mode by utilizing Diffusion Theory. The theoretical basis of this research involved solving Fick's Second Law of Diffusion in spherical coordinates for a source of carbon dioxide flowing at a constant rate and located in the center of an impermeable spherical boundary. The solution was developed using a Laplace Transformation. A spherical diffusion test chamber was constructed and used to validate and benchmark the developed theory. The method was benchmarked by using Dispersion Coefficients for large carbon dioxide flow rates due to diffusion induced convection. The theoretical model was adapted to model a room operating with restricted ventilation in the presence of a known, constant source of carbon dioxide. The room was modeled as a sphere of volume equal to the room and utilized a Dispersion Coefficient that is consistent with published values. The developed Diffusion Model successfully predicted the spatial concentration of carbon dioxide in a room operating in a reduced ventilation mode in the presence of a source of carbon dioxide. The flow rates of carbon dioxide that were used in the room are comparable to the average flow rate of carbon dioxide from a person during quiet breathing, also known as the Tidal Breathing. This indicates the Diffusion Model developed from this research has the potential to correlate carbon dioxide concentration with static occupancy levels which can lead to energy savings through a reduction in air exchange rates when low occupancy is detected.
NASA Technical Reports Server (NTRS)
Hagedorn, Norman H. (Inventor)
1993-01-01
An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.
Capacitance-Assisted Sustainable Electrochemical Carbon Dioxide Mineralisation.
Lamb, Katie J; Dowsett, Mark R; Chatzipanagis, Konstantinos; Scullion, Zhan Wei; Kröger, Roland; Lee, James D; Aguiar, Pedro M; North, Michael; Parkin, Alison
2018-01-10
An electrochemical cell comprising a novel dual-component graphite and Earth-crust abundant metal anode, a hydrogen producing cathode and an aqueous sodium chloride electrolyte was constructed and used for carbon dioxide mineralisation. Under an atmosphere of 5 % carbon dioxide in nitrogen, the cell exhibited both capacitive and oxidative electrochemistry at the anode. The graphite acted as a supercapacitive reagent concentrator, pumping carbon dioxide into aqueous solution as hydrogen carbonate. Simultaneous oxidation of the anodic metal generated cations, which reacted with the hydrogen carbonate to give mineralised carbon dioxide. Whilst conventional electrochemical carbon dioxide reduction requires hydrogen, this cell generates hydrogen at the cathode. Carbon capture can be achieved in a highly sustainable manner using scrap metal within the anode, seawater as the electrolyte, an industrially relevant gas stream and a solar panel as an effective zero-carbon energy source. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
21 CFR 582.1240 - Carbon dioxide.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is generally...
40 CFR 86.124-78 - Carbon dioxide analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Complete Heavy-Duty Vehicles; Test Procedures § 86.124-78 Carbon dioxide analyzer calibration. Prior to its introduction into service and monthly thereafter the NDIR carbon dioxide analyzer shall be calibrated: (a...
40 CFR 86.524-78 - Carbon dioxide analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.524-78 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service and monthly thereafter the NDIR carbon dioxide...
21 CFR 884.1300 - Uterotubal carbon dioxide insufflator and accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Uterotubal carbon dioxide insufflator and... Gynecological Diagnostic Devices § 884.1300 Uterotubal carbon dioxide insufflator and accessories. (a) Identification. A uterotubal carbon dioxide insufflator and accessories is a device used to test the patency...
27 CFR 24.319 - Carbon dioxide record.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted to...
46 CFR 95.15-60 - Odorizing units.
Code of Federal Regulations, 2012 CFR
2012-10-01
... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-60 Odorizing units. Each carbon dioxide... the scent of wintergreen, the detection of which will serve as an indication that carbon dioxide gas is present in a protected area and any other area into which the carbon dioxide may migrate. “Altered...
21 CFR 582.1240 - Carbon dioxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is generally...
21 CFR 582.1240 - Carbon dioxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is generally...
46 CFR 76.15-60 - Odorizing units.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Carbon Dioxide Extinguishing Systems, Details § 76.15-60 Odorizing units. Each carbon dioxide... the scent of wintergreen, the detection of which will serve as an indication that carbon dioxide gas is present in a protected area and any other area into which the carbon dioxide may migrate. “Altered...
27 CFR 24.319 - Carbon dioxide record.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY ALCOHOL WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted to...
27 CFR 24.319 - Carbon dioxide record.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY ALCOHOL WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted to...
27 CFR 24.319 - Carbon dioxide record.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted to...
46 CFR 193.15-17 - Odorizing units.
Code of Federal Regulations, 2014 CFR
2014-10-01
... EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-17 Odorizing units. Each carbon dioxide extinguishing system installed or altered after July 9, 2013, must have an approved... carbon dioxide gas is present in a protected area and any other area into which the carbon dioxide may...
40 CFR 86.124-78 - Carbon dioxide analyzer calibration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Carbon dioxide analyzer calibration... Complete Heavy-Duty Vehicles; Test Procedures § 86.124-78 Carbon dioxide analyzer calibration. Prior to its introduction into service and monthly thereafter the NDIR carbon dioxide analyzer shall be calibrated: (a...
46 CFR 193.15-17 - Odorizing units.
Code of Federal Regulations, 2013 CFR
2013-10-01
... EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-17 Odorizing units. Each carbon dioxide extinguishing system installed or altered after July 9, 2013, must have an approved... carbon dioxide gas is present in a protected area and any other area into which the carbon dioxide may...
46 CFR 76.15-60 - Odorizing units.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Carbon Dioxide Extinguishing Systems, Details § 76.15-60 Odorizing units. Each carbon dioxide... the scent of wintergreen, the detection of which will serve as an indication that carbon dioxide gas is present in a protected area and any other area into which the carbon dioxide may migrate. “Altered...
21 CFR 582.1240 - Carbon dioxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is generally...
21 CFR 884.1300 - Uterotubal carbon dioxide insufflator and accessories.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Uterotubal carbon dioxide insufflator and... Gynecological Diagnostic Devices § 884.1300 Uterotubal carbon dioxide insufflator and accessories. (a) Identification. A uterotubal carbon dioxide insufflator and accessories is a device used to test the patency...
46 CFR 76.15-60 - Odorizing units.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Carbon Dioxide Extinguishing Systems, Details § 76.15-60 Odorizing units. Each carbon dioxide... the scent of wintergreen, the detection of which will serve as an indication that carbon dioxide gas is present in a protected area and any other area into which the carbon dioxide may migrate. “Altered...
40 CFR 86.124-78 - Carbon dioxide analyzer calibration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Carbon dioxide analyzer calibration... Complete Heavy-Duty Vehicles; Test Procedures § 86.124-78 Carbon dioxide analyzer calibration. Prior to its introduction into service and monthly thereafter the NDIR carbon dioxide analyzer shall be calibrated: (a...
21 CFR 884.1300 - Uterotubal carbon dioxide insufflator and accessories.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Uterotubal carbon dioxide insufflator and... Gynecological Diagnostic Devices § 884.1300 Uterotubal carbon dioxide insufflator and accessories. (a) Identification. A uterotubal carbon dioxide insufflator and accessories is a device used to test the patency...
27 CFR 24.319 - Carbon dioxide record.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted to... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Carbon dioxide record. 24...
21 CFR 582.1240 - Carbon dioxide.
Code of Federal Regulations, 2011 CFR
2011-04-01
....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is generally... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS...
46 CFR 76.15-20 - Carbon dioxide storage.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 3 2013-10-01 2013-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as...
46 CFR 95.15-20 - Carbon dioxide storage.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a...
46 CFR 76.15-20 - Carbon dioxide storage.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 3 2011-10-01 2011-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as...
46 CFR 95.15-20 - Carbon dioxide storage.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a...
46 CFR 76.15-20 - Carbon dioxide storage.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 3 2012-10-01 2012-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as...
46 CFR 95.15-20 - Carbon dioxide storage.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a...
46 CFR 76.15-20 - Carbon dioxide storage.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 3 2014-10-01 2014-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as...
Potential Changes in Tree Species Richness and Forest Community Types following Climate Change
Louis R. Iverson; Anantha M. Prasad
2001-01-01
Potential changes in tree species richness and forest community types were evaluated for the eastern United States according to five scenarios of future climate change resulting from a doubling of atmospheric carbon dioxide (CO2). DISTRIB, an empirical model that uses a regression tree analysis approach, was used to generate suitable habitat, or potential future...
Marine mollusc predator-escape behaviour altered by near-future carbon dioxide levels
Watson, Sue-Ann; Lefevre, Sjannie; McCormick, Mark I.; Domenici, Paolo; Nilsson, Göran E.; Munday, Philip L.
2014-01-01
Ocean acidification poses a range of threats to marine invertebrates; however, the potential effects of rising carbon dioxide (CO2) on marine invertebrate behaviour are largely unknown. Marine gastropod conch snails have a modified foot and operculum allowing them to leap backwards rapidly when faced with a predator, such as a venomous cone shell. Here, we show that projected near-future seawater CO2 levels (961 µatm) impair this escape behaviour during a predator–prey interaction. Elevated-CO2 halved the number of snails that jumped from the predator, increased their latency to jump and altered their escape trajectory. Physical ability to jump was not affected by elevated-CO2 indicating instead that decision-making was impaired. Antipredator behaviour was fully restored by treatment with gabazine, a GABA antagonist of some invertebrate nervous systems, indicating potential interference of neurotransmitter receptor function by elevated-CO2, as previously observed in marine fishes. Altered behaviour of marine invertebrates at projected future CO2 levels could have potentially far-reaching implications for marine ecosystems. PMID:24225456
Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions
NASA Astrophysics Data System (ADS)
Obermeier, W. A.; Lehnert, L. W.; Kammann, C. I.; Müller, C.; Grünhage, L.; Luterbacher, J.; Erbs, M.; Moser, G.; Seibert, R.; Yuan, N.; Bendix, J.
2017-02-01
The increase in atmospheric greenhouse gas concentrations from anthropogenic activities is the major driver of recent global climate change. The stimulation of plant photosynthesis due to rising atmospheric carbon dioxide concentrations ([CO2]) is widely assumed to increase the net primary productivity (NPP) of C3 plants--the CO2 fertilization effect (CFE). However, the magnitude and persistence of the CFE under future climates, including more frequent weather extremes, are controversial. Here we use data from 16 years of temperate grassland grown under `free-air carbon dioxide enrichment’ conditions to show that the CFE on above-ground biomass is strongest under local average environmental conditions. The observed CFE was reduced or disappeared under wetter, drier and/or hotter conditions when the forcing variable exceeded its intermediate regime. This is in contrast to predictions of an increased CO2 fertilization effect under drier and warmer conditions. Such extreme weather conditions are projected to occur more intensely and frequently under future climate scenarios. Consequently, current biogeochemical models might overestimate the future NPP sink capacity of temperate C3 grasslands and hence underestimate future atmospheric [CO2] increase.
1992-08-12
AD-A254 538 OFFICE OF NAVAL RESEARCH FINAL REPORT FCR Contract N00014-87-K-0465 R&T Code 413j006 "Transition Organometallic Heterobimetallic ix...ransition Organometallic Heterobimetallic P-Carbon Dioxide and p-FormateComplexes in Homogeneous Carbon Dioxide Fixation 12. PERSONAL AUTHOR(S) Alan R...J. L. Shibley, and A. R. Cutler, J. Organomet. Chem. 1989,378, 421.* "Characterization of the Heterobimetallic ±(r011-C: T12 -O,O’) Carbon Dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, C.S.; Smith, M.D.
The effect of dissolved carbon dioxide on the specific growth rate and the penicillin production rate of Penicillium chrysogenum was examined experimentally. The dissolved carbon dioxide was found to inhibit the specific growth rate and the penicillin production rate when the aerated submerged penicillin fermentation was exposed to influent gases of 12.6 and 20% carbon dioxide, respectively. Upon exposure to influent gases of 3 and 5% carbon dioxide, no pronounced metabolic inhibition was noted.
Fischer-Tropsch synthesis in supercritical phase carbon dioxide: Recycle rates
NASA Astrophysics Data System (ADS)
Soti, Madhav
With increasing oil prices and attention towards the reduction of anthropogenic CO2, the use of supercritical carbon dioxide for Fischer Tropsch Synthesis (FTS) is showing promise in fulfilling the demand of clean liquid fuels. The evidence of consumption of carbon dioxide means that it need not to be removed from the syngas feed to the Fischer Tropsch reactor after the gasification process. Over the last five years, research at SIUC have shown that FTS in supercritical CO2reduces the selectivities for methane, enhances conversion, reduces the net CO2produces in the coal to liquid fuels process and increase the life of the catalyst. The research has already evaluated the impact of various operating and feed conditions on the FTS for the once through process. We believe that the integration of unreacted feed recycle would enhance conversion, increase the yield and throughput of liquid fuels for the same reactor size. The proposed research aims at evaluating the impact of recycle of the unreacted feed gas along with associated product gases on the performance of supercritical CO2FTS. The previously identified conditions will be utilized and various recycle ratios will be evaluated in this research once the recycle pump and associated fittings have been integrated to the supercritical CO2FTS. In this research two different catalysts (Fe-Zn-K, Fe-Co-Zn-K) were analyzed under SC-FTS in different recycle rate at 350oC and 1200 psi. The use of recycle was found to improve conversion from 80% to close to 100% with both catalysts. The experiment recycle rate at 4.32 and 4.91 was clearly surpassing theoretical recycle curve. The steady state reaction rate constant was increased to 0.65 and 0.8 min-1 for recycle rate of 4.32 and 4.91 respectively. Carbon dioxide selectivity was decreased for both catalyst as it was converting to carbon monoxide. Carbon dioxide consumption was increased from 0.014 to 0.034 mole fraction. This concluded that CO2is being used in the system and converting which created the concentration of the feed gas higher inside the reactor. The research has provided the best conditions for the enhanced conversion while minimizing CO2formation. Though this research was not able to provide the optimal recycle rate it have created the path for the future research to proceed in the right direction. This reduction and utilization of CO2will help to reduce the cost of carbon dioxide removal and saves the environment from carbon dioxide emission.
Carbon dioxide stripping in aquaculture. part 1: terminology and reporting
Colt, John; Watten, Barnaby; Pfeiffer, Tim
2012-01-01
The removal of carbon dioxide gas in aquacultural systems is much more complex than for oxygen or nitrogen gas because of liquid reactions of carbon dioxide and their kinetics. Almost all published carbon dioxide removal information for aquaculture is based on the apparent removal value after the CO2(aq) + HOH ⇔ H2CO3 reaction has reached equilibrium. The true carbon dioxide removal is larger than the apparent value, especially for high alkalinities and seawater. For low alkalinity freshwaters (<2000 μeq/kg), the difference between the true and apparent removal is small and can be ignored for many applications. Analytical and reporting standards are recommended to improve our understanding of carbon dioxide removal.
ECOSYSTEM IMPACTS OF GEOENGINEERING: A Review for Developing a Science Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Lynn M; Jackson, Robert B; Norby, Richard J
2012-01-01
Geoengineering methods are intended to reduce the magnitude of climate change, which is already having demonstrable effects on ecosystem structure and functioning. Two different types of activities have been proposed: solar radiation management (SRM), or sunlight reflection methods, which involves reflecting a small percentage of solar light back into space to offset the warming due to greenhouse gases, and carbon dioxide removal (CDR), which includes a range of engineered and biological processes to remove carbon dioxide (CO2) from the atmosphere. This report evaluates some of the possible impacts of CDR and SRM on the physical climate and their subsequent influencemore » on ecosystems, which include the risks and uncertainties associated with new kinds of purposeful perturbations to the Earth. Therefore, the question considered in this review is whether CDR and SRM methods would exacerbate or alleviate the deleterious impacts on ecosystems associated with climate changes that might occur in the foreseeable future.Geoengineering methods are intended to reduce the magnitude of climate change, which is already having demonstrable effects on ecosystem structure and functioning. Two different types of activities have been proposed: solar radiation management (SRM), or sunlight reflection methods, which involves reflecting a small percentage of solar light back into space to offset the warming due to greenhouse gases, and carbon dioxide removal (CDR), which includes a range of engineered and biological processes to remove carbon dioxide (CO2) from the atmosphere. This report evaluates some of the possible impacts of CDR and SRM on the physical climate and their subsequent influence on ecosystems, which include the risks and uncertainties associated with new kinds of purposeful perturbations to the Earth. Therefore, the question considered in this review is whether CDR and SRM methods would exacerbate or alleviate the deleterious impacts on ecosystems associated with climate changes that might occur in the foreseeable future.« less
Tseng, Shih-Chang; Hung, Shiu-Wan
2014-01-15
Incorporating sustainability into supply chain management has become a critical issue driven by pressures from governments, customers, and various stakeholder groups over the past decade. This study proposes a strategic decision-making model considering both the operational costs and social costs caused by the carbon dioxide emissions from operating such a supply chain network for sustainable supply chain management. This model was used to evaluate carbon dioxide emissions and operational costs under different scenarios in an apparel manufacturing supply chain network. The results showed that the higher the social cost rate of carbon dioxide emissions, the lower the amount of the emission of carbon dioxide. The results also suggested that a legislation that forces the enterprises to bear the social costs of carbon dioxide emissions resulting from their economic activities is an effective approach to reducing carbon dioxide emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pang, Hong; Masuda, Takuya; Ye, Jinhua
2018-01-18
The photoelectrochemical (PEC) carbon dioxide reduction process stands out as a promising avenue for the conversion of solar energy into chemical feedstocks, among various methods available for carbon dioxide mitigation. Semiconductors derived from cheap and abundant elements are interesting candidates for catalysis. Whether employed as intrinsic semiconductors or hybridized with metallic cocatalysts, biocatalysts, and metal molecular complexes, semiconductor photocathodes exhibit good performance and low overpotential during carbon dioxide reduction. Apart from focusing on carbon dioxide reduction materials and chemistry, PEC cells towards standalone devices that use photohybrid electrodes or solar cells have also been a hot topic in recent research. An overview of the state-of-the-art progress in PEC carbon dioxide reduction is presented and a deep understanding of the catalysts of carbon dioxide reduction is also given. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of carbon dioxide on Penicillium chrysogenum: an autoradiographic study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, A.G.; Ho, C.S.
Previous research has shown that dissolved carbon dioxide causes significant changes in submerged penicillin fermentations, such as stunted, swollen hyphae, increased branching, lower growth rates, and lower penicillin productivity. Influent carbon dioxide levels of 5 and 10% were shown through the use of autoradiography to cause an increase in chitin synthesis in submerged cultures of Penicillium chrysogenum. At an influent 5% carbon dioxide level, chitin synthesis is ca. 100% greater in the subapical region of P. chrysogenum hyphae than that of the control, in which there was no influent carbon dioxide. Influent carbon dioxide of 10% caused an increase ofmore » 200% in chitin synthesis. It is believed that the cell wall must be plasticized before branching can occur and that high amounts of dissolved carbon dioxide cause the cell to lose control of the plasticizing effect, thus the severe morphological changes occur.« less
The Formation of Ethane from Carbon Dioxide under Cold Plasma
NASA Astrophysics Data System (ADS)
Zhang, Xiu-ling; Zhang, Lin; Dai, Bin; Gong, Wei-min; Liu, Chang-hou
2001-04-01
Pulsed-corona plasma has been used as a new method for ethane dehydrogenation at low temperature and normal pressure using carbon dioxide as an oxidant in this paper. The effect of carbon dioxide content in the feed, power input, and flow rate of the reactants on the ethane dehydrogenation has been investigated. The experimental results show that the conversion of ethane increases with the increase in the amount of carbon dioxide in the feed. The yield of ethylene and acetylene decreases with the increase in the yield of carbon monoxide, indicating that the increased carbon dioxide leads to the part of ethylene and acetylene being oxidized to carbon monoxide. Power input is primarily an electrical parameter in pulsed-corona plasma, which plays an important role in reactant conversion and product formation. When the power input reaches 16 W, ethane conversion is 41.0% and carbon dioxide conversion is 26.3%. The total yield of ethylene and acetylene is 15.6%. The reduced flow rate of feed improves the conversion of ethane, carbon dioxide and the yield of acetylene, and induces carbon deposit as well.
21 CFR 868.2480 - Cutaneous carbon dioxide (PcCO2) monitor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cutaneous carbon dioxide (PcCO2) monitor. 868.2480... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2480 Cutaneous carbon dioxide (PcCO2) monitor. (a) Identification. A cutaneous carbon dioxide (PcCO2) monitor is a noninvasive heated...
40 CFR 180.1049 - Carbon dioxide; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Carbon dioxide; exemption from the... Exemptions From Tolerances § 180.1049 Carbon dioxide; exemption from the requirement of a tolerance. The insecticide carbon dioxide is exempted from the requirement of a tolerance when used after harvest in modified...
21 CFR 868.5310 - Carbon dioxide absorber.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in a...
21 CFR 868.5310 - Carbon dioxide absorber.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in a...
21 CFR 201.161 - Carbon dioxide and certain other gases.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Carbon dioxide and certain other gases. 201.161... (CONTINUED) DRUGS: GENERAL LABELING Other Exemptions § 201.161 Carbon dioxide and certain other gases. (a) Carbon dioxide, cyclopropane, ethylene, helium, and nitrous oxide gases intended for drug use are...
27 CFR 26.222 - Still wines containing carbon dioxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine...
27 CFR 26.222 - Still wines containing carbon dioxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine...
40 CFR 180.1049 - Carbon dioxide; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Carbon dioxide; exemption from the... Exemptions From Tolerances § 180.1049 Carbon dioxide; exemption from the requirement of a tolerance. The insecticide carbon dioxide is exempted from the requirement of a tolerance when used after harvest in modified...
21 CFR 201.161 - Carbon dioxide and certain other gases.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Carbon dioxide and certain other gases. 201.161... (CONTINUED) DRUGS: GENERAL LABELING Other Exemptions § 201.161 Carbon dioxide and certain other gases. (a) Carbon dioxide, cyclopropane, ethylene, helium, and nitrous oxide gases intended for drug use are...
21 CFR 868.5310 - Carbon dioxide absorber.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in a...
27 CFR 26.222 - Still wines containing carbon dioxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine...
21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...
21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...
21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...
21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...
21 CFR 868.5310 - Carbon dioxide absorber.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a devic...
46 CFR 169.565 - Fixed carbon dioxide system.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Fixed carbon dioxide system. 169.565 Section 169.565 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and Firefighting Equipment Firefighting Equipment § 169.565 Fixed carbon dioxide system. (a) The number of pounds of carbon dioxide...
46 CFR 108.431 - Carbon dioxide systems: General.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a)...
46 CFR 169.565 - Fixed carbon dioxide system.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Fixed carbon dioxide system. 169.565 Section 169.565 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and Firefighting Equipment Firefighting Equipment § 169.565 Fixed carbon dioxide system. (a) The number of pounds of carbon dioxide...
46 CFR 108.431 - Carbon dioxide systems: General.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a)...
21 CFR 868.1400 - Carbon dioxide gas analyzer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868.1400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer...
46 CFR 193.15-20 - Carbon dioxide storage.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-20 Carbon dioxide storage. (a) Except as provided in...
46 CFR 108.627 - Carbon dioxide alarm.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide alarm. 108.627 Section 108.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide alarm. Each carbon dioxide alarm must be identified by marking: “WHEN ALARM...
46 CFR 108.431 - Carbon dioxide systems: General.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a)...
46 CFR 108.431 - Carbon dioxide systems: General.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a)...
46 CFR 169.565 - Fixed carbon dioxide system.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Fixed carbon dioxide system. 169.565 Section 169.565 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and Firefighting Equipment Firefighting Equipment § 169.565 Fixed carbon dioxide system. (a) The number of pounds of carbon dioxide...
21 CFR 868.5300 - Carbon dioxide absorbent.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide absorbent. 868.5300 Section 868.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a...
21 CFR 868.5300 - Carbon dioxide absorbent.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide absorbent. 868.5300 Section 868.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a...
21 CFR 868.5310 - Carbon dioxide absorber.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a devic...
27 CFR 26.222 - Still wines containing carbon dioxide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine...
Process for sequestering carbon dioxide and sulfur dioxide
Maroto-Valer, M Mercedes [State College, PA; Zhang, Yinzhi [State College, PA; Kuchta, Matthew E [State College, PA; Andresen, John M [State College, PA; Fauth, Dan J [Pittsburgh, PA
2009-10-20
A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.
Johnson, M. M.; Hill, S. L.; Piddock, Laura J. V.
1999-01-01
The in vitro activities of erythromycin, azithromycin, and clarithromycin against 178 clinical isolates from the lower respiratory tract of patients with chronic obstructive pulmonary disease were determined by an agar dilution method. The plates were incubated in air alone or in 5% carbon dioxide. The MICs measured in air alone were lower for most isolates than those measured in 5% carbon dioxide, illustrating the “pH effect” of incubation in carbon dioxide. Testing of isolates in 5% carbon dioxide on pH-adjusted medium (pH 8.4) resulted in MICs of one or two doubling dilutions lower than those obtained on agar with a neutral pH. A bioassay of the three agents incubated in air and in 5% carbon dioxide resulted in a significant loss of activity of all three agents in the carbon dioxide-enriched atmosphere. However, this loss-of-activity effect was significantly reduced when the bioassay medium was adjusted to pH 8.4 prior to incubation in 5% carbon dioxide. PMID:10428903
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven R. Sherman; Collin J. Knight
Residual sodium is defined as sodium metal that remains behind in pipes, vessels, and tanks after the bulk sodium metal has been melted and drained from such components. The residual sodium has the same chemical properties as bulk sodium, and differs from bulk sodium only in the thickness of the sodium deposit. Typically, sodium is considered residual when the thickness of the deposit is less than 5-6 cm. This residual sodium must be removed or deactivated when a pipe, vessel, system, or entire reactor is permanently taken out of service, in order to make the component or system safer and/ormore » to comply with decontamination and decomissioning regulations. As an alternative to the established residual sodium deactivation techniques (steam-and-nitrogen, wet vapor nitrogen, etc.), a technique involving the use of moisture and carbon dioxide has been developed. With this technique, sodium metal is converted into sodium bicarbonate by reacting it with humid carbon dioxide. Hydrogen is emitted as a by-product. This technique was first developed in the laboratory by exposing sodium samples to humidifed carbon dioxide under controlled conditions, and then demonstrated on a larger scale by treating residual sodium within the Experimental Breeder Reactor II (EBR-II) secondary cooling system, followed by the primary cooling system, respectively. The EBR-II facility is located at the Idaho National Laboratory (INL) in southeastern Idaho, USA. This report is Part 2 of a two-part report. This second report provides a supplement to the first report and describes the application of the humdidified carbon dioxide technique ("carbonation") to the EBR-II primary tank, primary cover gas systems, and the intermediate heat exchanger. Future treatment plans are also provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caulfield, F.; Bunce, J.A.
1994-08-01
Beet armyworm, Spodoptera exigua (Huebner), larvae were placed on sugarbeet (Beta vulgaris L.) and pigweed (Amaranthus hybridus L.) plants in outdoor chambers in which the plants were growing at either the ambient ([approximately] 350 [mu]l liter[sup [minus]1]) or ambient plus 350 [mu]l liter[sup [minus]1] ([approximately] 700 [mu]l liter[sup [minus]1]) carbon dioxide concentration. A series of experiments was performed to determine if larvae reduced plant growth differently at the two carbon dioxide concentrations in either species and if the insect growth or survival differed with carbon dioxide concentration. Leaf nitrogen, water, starch, and soluble carbohydrate contents were measured to assess carbonmore » dioxide concentration effects on leaf quality. Insect feeding significantly reduced plant growth in sugarbeet plants at 350 [mu]l liter[sup [minus]1] but not at 700 [mu]l liter[sup [minus]1] nor in pigweed at either carbon dioxide concentration. Larval survival was greater on sugarbeet plants at the elevated carbon dioxide concentration. Increased survival occurred only if the insects were at the elevated carbon dioxide concentration and consumed leaf material grown at the elevated concentration. Leaf quality was only marginally affected by growth at elevated carbon dioxide concentration in these experiments. The results indicate that in designing experiments to predict effects of elevated atmospheric carbon dioxide concentrations on plant-insect interactions, both plants and insects should be exposed to the experimental carbon dioxide concentrations, as well as to as realistic environmental conditions as possible.« less
40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Carbon monoxide and carbon dioxide... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND... Test Procedures § 86.316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon...
Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.
2016-01-01
Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts. PMID:27958290
A carbon dioxide stripping model for mammalian cell culture in manufacturing scale bioreactors.
Xing, Zizhuo; Lewis, Amanda M; Borys, Michael C; Li, Zheng Jian
2017-06-01
Control of carbon dioxide within the optimum range is important in mammalian bioprocesses at the manufacturing scale in order to ensure robust cell growth, high protein yields, and consistent quality attributes. The majority of bioprocess development work is done in laboratory bioreactors, in which carbon dioxide levels are more easily controlled. Some challenges in carbon dioxide control can present themselves when cell culture processes are scaled up, because carbon dioxide accumulation is a common feature due to longer gas-residence time of mammalian cell culture in large scale bioreactors. A carbon dioxide stripping model can be used to better understand and optimize parameters that are critical to cell culture processes at the manufacturing scale. The prevailing carbon dioxide stripping models in literature depend on mass transfer coefficients and were applicable to cell culture processes with low cell density or at stationary/cell death phase. However, it was reported that gas bubbles are saturated with carbon dioxide before leaving the culture, which makes carbon dioxide stripping no longer depend on a mass transfer coefficient in the new generation cell culture processes characterized by longer exponential growth phase, higher peak viable cell densities, and higher specific production rate. Here, we present a new carbon dioxide stripping model for manufacturing scale bioreactors, which is independent of carbon dioxide mass transfer coefficient, but takes into account the gas-residence time and gas CO 2 saturation time. The model was verified by CHO cell culture processes with different peak viable cell densities (7 to 12 × 10 6 cells mL -1 ) for two products in 5,000-L and 25,000-L bioreactors. The model was also applied to a next generation cell culture process to optimize cell culture conditions and reduce carbon dioxide levels at manufacturing scale. The model provides a useful tool to understand and better control cell culture carbon dioxide profiles for process development, scale up, and characterization. Biotechnol. Bioeng. 2017;114: 1184-1194. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ryan, Charles; Mead, Anna; Lakkaraju, Prasad; Kaczur, Jerry; Bennett, Christopher; Dobbins, Tabbetha
Research on conversion of carbon dioxide into chemicals and fuels has the potential to address three problems of global relevance. (a) By removing carbon dioxide from the atmosphere, we are able to reduce the amount of greenhouse gases in the atmosphere, (b) by converting carbon dioxide into fuels, we are providing pathways for renewable energy sources, (c) by converting carbon dioxide into C2 and higher order compounds, and we are able to generate valuable precursors for organic synthesis. Formate salts are formed by the electrochemical reduction of carbon dioxide in aqueous media. However, in order to increase the utilization of carbon dioxide, methods need to be developed for the conversion of formate into compounds containing two carbon atoms such as oxalate or oxalic acid. Recently, we examined the thermal conversion of sodium formate into sodium oxalate utilizing a hydride ion catalyst. The proposed mechanism for this reaction involves the carbon dioxide dianion. Currently at NASA Goddard Space Flight Center.
Oxygen and Carbon Dioxide Fluxes from Barley Shoots Depend on Nitrate Assimilation 1
Bloom, Arnold J.; Caldwell, Richard M.; Finazzo, John; Warner, Robert L.; Weissbart, Joseph
1989-01-01
A custom oxygen analyzer in conjunction with an infrared carbon dioxide analyzer and humidity sensors permitted simultaneous measurements of oxygen, carbon dioxide, and water vapor fluxes from the shoots of intact barley plants (Hordeum vulgare L. cv Steptoe). The oxygen analyzer is based on a calciazirconium sensor and can resolve concentration differences to within 2 microliters per liter against the normal background of 210,000 microliters per liter. In wild-type plants receiving ammonium as their sole nitrogen source or in nitrate reductase-deficient mutants, photosynthetic and respiratory fluxes of oxygen equaled those of carbon dioxide. By contrast, wild-type plants exposed to nitrate had unequal oxygen and carbon dioxide fluxes: oxygen evolution at high light exceeded carbon dioxide consumption by 26% and carbon dioxide evolution in the dark exceeded oxygen consumption by 25%. These results indicate that a substantial portion of photosynthetic electron transport or respiration generates reductant for nitrate assimilation rather than for carbon fixation or mitochondrial electron transport. PMID:16667024
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thistle, D
2008-09-30
Since the industrial revolution, the burning of fossil fuel has produced carbon dioxide at an increasing rate. Present atmospheric concentration is about ~1.5 times the preindustrial level and is rising. Because carbon dioxide is a greenhouse gas, its increased concentration in the atmosphere is thought to be a cause of global warming. If so, the rate of global warming could be slowed if industrial carbon dioxide were not released into the atmosphere. One suggestion has been to sequester it in the deep ocean, but theory predicts that deep-sea species will be intolerant of the increased concentrations of carbon dioxide andmore » the increased acidity it would cause. The aim of our research was to test for consequences of carbon dioxide sequestration on deep-sea, sediment-dwelling meiofauna. Recent technical advances allowed us to test for effects in situ at depths proposed for sequestration. The basic experimental unit was an open-topped container into which we pumped ~20 L of liquid carbon dioxide. The liquid carbon dioxide mixed with near-bottom sea water, which produced carbon dioxide-rich sea water that flowed out over the near-by seabed. We did 30-day experiments at several locations and with different numbers of carbon dioxide-filled containers. Harpacticoid copepods (Crustacea) were our test taxon. In an experiment we did during a previous grant period, we found that large numbers of individuals exposed to carbon dioxide-rich sea water had been killed (Thistle et al. 2004). During the present grant period, we analyzed the species-level data in greater detail and discovered that, although individuals of many species had been killed by exposure to carbon dioxide-rich sea water, individuals of some species had not (Thistle et al. 2005). This result suggests that seabed sequestration of carbon dioxide will not just reduce the abundance of the meiofauna but will change the composition of the community. In another experiment, we found that some harpacticoid species swim away from an advancing front of carbon dioxide-rich sea water (Thistle et al. 2007). This result demonstrates a second way that deep-sea meiofauna react negatively to carbon dioxide-rich sea water. In summary, we used in situ experiments to show that carbon dioxide-rich sea water triggers an escape response in some harpacticoid species. It kills most individuals of most harpacticoid species that do not flee, but a few species seem to be unaffected. Proposals to reduce global warming by sequestering industrial carbon dioxide in the deep ocean should take note of these environmental consequences when pros and cons are weighed.« less
Roshan, Gholamreza; Moghbel, Masumeh; Grab, Stefan
2012-12-12
The rapid rise of Caspian Sea water level (about 2.25 meters since 1978) has caused much concern to all five surrounding countries, primarily because flooding has destroyed or damaged buildings and other engineering structures, roads, beaches and farm lands in the coastal zone. Given that climate, and more specifically climate change, is a primary factor influencing oscillations in Caspian Sea water levels, the effect of different climate change scenarios on future Caspian Sea levels was simulated. Variations in environmental parameters such as temperature, precipitation, evaporation, atmospheric carbon dioxide and water level oscillations of the Caspian sea and surrounding regions, are considered for both past (1951-2006) and future (2025-2100) time frames. The output of the UKHADGEM general circulation model and five alternative scenarios including A1CAI, BIASF, BIMES WRE450 and WRE750 were extracted using the MAGICC SCENGEN Model software (version 5.3). The results suggest that the mean temperature of the Caspian Sea region (Bandar-E-Anzali monitoring site) has increased by ca. 0.17°C per decade under the impacts of atmospheric carbon dioxide changes (r=0.21). The Caspian Sea water level has increased by ca. +36cm per decade (r=0.82) between the years 1951-2006. Mean results from all modeled scenarios indicate that the temperature will increase by ca. 3.64°C and precipitation will decrease by ca. 10% (182 mm) over the Caspian Sea, whilst in the Volga river basin, temperatures are projected to increase by ca. 4.78°C and precipitation increase by ca. 12% (58 mm) by the year 2100. Finally, statistical modeling of the Caspian Sea water levels project future water level increases of between 86 cm and 163 cm by the years 2075 and 2100, respectively.
2012-01-01
The rapid rise of Caspian Sea water level (about 2.25 meters since 1978) has caused much concern to all five surrounding countries, primarily because flooding has destroyed or damaged buildings and other engineering structures, roads, beaches and farm lands in the coastal zone. Given that climate, and more specifically climate change, is a primary factor influencing oscillations in Caspian Sea water levels, the effect of different climate change scenarios on future Caspian Sea levels was simulated. Variations in environmental parameters such as temperature, precipitation, evaporation, atmospheric carbon dioxide and water level oscillations of the Caspian sea and surrounding regions, are considered for both past (1951-2006) and future (2025-2100) time frames. The output of the UKHADGEM general circulation model and five alternative scenarios including A1CAI, BIASF, BIMES WRE450 and WRE750 were extracted using the MAGICC SCENGEN Model software (version 5.3). The results suggest that the mean temperature of the Caspian Sea region (Bandar-E-Anzali monitoring site) has increased by ca. 0.17°C per decade under the impacts of atmospheric carbon dioxide changes (r=0.21). The Caspian Sea water level has increased by ca. +36cm per decade (r=0.82) between the years 1951-2006. Mean results from all modeled scenarios indicate that the temperature will increase by ca. 3.64°C and precipitation will decrease by ca. 10% (182 mm) over the Caspian Sea, whilst in the Volga river basin, temperatures are projected to increase by ca. 4.78°C and precipitation increase by ca. 12% (58 mm) by the year 2100. Finally, statistical modeling of the Caspian Sea water levels project future water level increases of between 86 cm and 163 cm by the years 2075 and 2100, respectively. PMID:23369617
Solar electricity and solar fuels
NASA Astrophysics Data System (ADS)
Spiers, David J.
1989-04-01
The nature of solar radiation and its variation with location is described. The distribution of energy in the solar spectrum places immediate limits on the theoretical efficiency of conversion processes, since practical absorbers cannot convert all wavelengths received to useful energy. The principles of solar energy conversion methods are described. Absorption of solar energy can give rise to direct electrical generation, heating, or chemical change. Electrical generation from sunlight can be achieved by photovoltaic systems directly or by thermal systems which use solar heat to drive a heat engine and generator. The technology used and under research for promising ways of producing electricity or fuel from solar energy is described. Photovoltaic technology is established today for remote area, small power applications, and photovoltaic module sales alone are over 100 million dollars per year at present. The photovoltaic market has grown steadily since the mid-1970's, as prices have fallen continuously. Future energy options are briefly described. The merits of a sustainable energy economy, based on renewable energy resources, including solar energy, are emphasized, as this seems to provide the only hope of eliminating the problems caused by the build-up of atmospheric carbon dioxide, acid rain pollution and nuclear waste disposal. There is no doubt that clean fuels which were derived from solar energy and either did not involve carbon dioxide and used atmospheric carbon dioxide as the source dioxide as the source of carbon would be a worthy ideal. Methods described could one day achieve this.
NASA Astrophysics Data System (ADS)
Newcomer, Adam
Increasing demand for electricity and an aging fleet of generators are the principal drivers behind an increasing need for a large amount of capital investments in the US electric power sector in the near term. The decisions (or lack thereof) by firms, regulators and policy makers in response to this challenge have long lasting consequences, incur large economic and environmental risks, and must be made despite large uncertainties about the future operating and business environment. Capital investment decisions are complex: rates of return are not guaranteed; significant uncertainties about future environmental legislation and regulations exist at both the state and national levels---particularly about carbon dioxide emissions; there is an increasing number of shareholder mandates requiring public utilities to reduce their exposure to potentially large losses from stricter environmental regulations; and there are significant concerns about electricity and fuel price levels, supplies, and security. Large scale, low carbon electricity generation facilities using coal, such as integrated gasification combined cycle (IGCC) facilities coupled with carbon capture and sequestration (CCS) technologies, have been technically proven but are unprofitable in the current regulatory and business environment where there is no explicit or implicit price on carbon dioxide emissions. The paper examines two separate scenarios that are actively discussed by policy and decision makers at corporate, state and national levels: a future US electricity system where coal plays a role; and one where the role of coal is limited or nonexistent. The thesis intends to provide guidance for firms and policy makers and outline applications and opportunities for public policies and for private investment decisions to limit financial risks of electricity generation capital investments under carbon constraints.
46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph (b...
46 CFR 35.40-7 - Carbon dioxide alarm-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Carbon dioxide alarm-T/ALL. 35.40-7 Section 35.40-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL. § 35.40-7 Carbon dioxide alarm—T/ALL. Adjacent to all carbon dioxide fire extinguishing...
46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph (b...
46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph (b...
46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph (b...
27 CFR 27.42a - Still wines containing carbon dioxide.
Code of Federal Regulations, 2011 CFR
2011-04-01
.... Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine; except that a tolerance to this maximum limitation, not to exceed 0.009 gram of carbon dioxide per 100 milliliters of wine, will be allowed where the amount of carbon dioxide in excess of 0.392 gram per 100...
27 CFR 24.245 - Use of carbon dioxide in still wine.
Code of Federal Regulations, 2014 CFR
2014-04-01
... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than 0.009 grams per 100 milliliters to the maximum limitation of carbon dioxide in still wine will be allowed where the amount of carbon dioxide in excess of 0.392 grams per 100 milliliters is due to...
27 CFR 27.42a - Still wines containing carbon dioxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
.... Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine; except that a tolerance to this maximum limitation, not to exceed 0.009 gram of carbon dioxide per 100 milliliters of wine, will be allowed where the amount of carbon dioxide in excess of 0.392 gram per 100...
27 CFR 27.42a - Still wines containing carbon dioxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
.... Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine; except that a tolerance to this maximum limitation, not to exceed 0.009 gram of carbon dioxide per 100 milliliters of wine, will be allowed where the amount of carbon dioxide in excess of 0.392 gram per 100...
27 CFR 27.42a - Still wines containing carbon dioxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
.... Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine; except that a tolerance to this maximum limitation, not to exceed 0.009 gram of carbon dioxide per 100 milliliters of wine, will be allowed where the amount of carbon dioxide in excess of 0.392 gram per 100...
27 CFR 27.42a - Still wines containing carbon dioxide.
Code of Federal Regulations, 2010 CFR
2010-04-01
.... Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine; except that a tolerance to this maximum limitation, not to exceed 0.009 gram of carbon dioxide per 100 milliliters of wine, will be allowed where the amount of carbon dioxide in excess of 0.392 gram per 100...
27 CFR 24.245 - Use of carbon dioxide in still wine.
Code of Federal Regulations, 2012 CFR
2012-04-01
... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than 0.009 grams per 100 milliliters to the maximum limitation of carbon dioxide in still wine will be allowed where the amount of carbon dioxide in excess of 0.392 grams per 100 milliliters is due to...
21 CFR 201.161 - Carbon dioxide and certain other gases.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Carbon dioxide and certain other gases. 201.161 Section 201.161 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL LABELING Other Exemptions § 201.161 Carbon dioxide and certain other gases. (a) Carbon dioxide, cyclopropane, ethylene,...
46 CFR 108.627 - Carbon dioxide and clean agent alarms.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide and clean agent alarms. 108.627 Section 108.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide and clean agent alarms. Each carbon dioxide alarm must be...
46 CFR 169.732 - Carbon dioxide and clean agent alarms.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Carbon dioxide and clean agent alarms. 169.732 Section 169.732 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide and clean agent alarms. (a) Each carbon dioxide o...
46 CFR 169.732 - Carbon dioxide and clean agent alarms.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Carbon dioxide and clean agent alarms. 169.732 Section 169.732 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide and clean agent alarms. (a) Each carbon dioxide o...
46 CFR 108.627 - Carbon dioxide and clean agent alarms.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide and clean agent alarms. 108.627 Section 108.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide and clean agent alarms. Each carbon dioxide alarm must be...
46 CFR 97.37-9 - Carbon dioxide alarm.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide alarm. 97.37-9 Section 97.37-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN...
46 CFR 95.15-20 - Carbon dioxide storage.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a) Except as provided in paragraph (b) of this...
46 CFR 78.47-9 - Carbon dioxide alarm.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 3 2011-10-01 2011-10-01 false Carbon dioxide alarm. 78.47-9 Section 78.47-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM...
46 CFR 169.732 - Carbon dioxide and clean agent alarms.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Carbon dioxide and clean agent alarms. 169.732 Section 169.732 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide and clean agent alarms. (a) Each carbon dioxide o...
46 CFR 95.15-20 - Carbon dioxide storage.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a) Except as provided in paragraph (b) of this...
21 CFR 201.161 - Carbon dioxide and certain other gases.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Carbon dioxide and certain other gases. 201.161 Section 201.161 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL LABELING Other Exemptions § 201.161 Carbon dioxide and certain other gases. (a) Carbon dioxide, cyclopropane, ethylene,...
46 CFR 131.815 - Carbon dioxide and clean agent alarms.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide and clean agent alarms. 131.815 Section 131.815 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.815 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent fire...
46 CFR 131.815 - Carbon dioxide and clean agent alarms.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide and clean agent alarms. 131.815 Section 131.815 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.815 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent fire...
46 CFR 131.815 - Carbon dioxide and clean agent alarms.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide and clean agent alarms. 131.815 Section 131.815 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.815 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent fire...
46 CFR 108.627 - Carbon dioxide and clean agent alarms.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide and clean agent alarms. 108.627 Section 108.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide and clean agent alarms. Each carbon dioxide alarm must be...
Carbon dioxide absorbent and method of using the same
Perry, Robert James; O'Brien, Michael Joseph
2015-12-29
In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.
Carbon dioxide absorbent and method of using the same
Perry, Robert James; O'Brien, Michael Joseph
2014-06-10
In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.
Carbon dioxide absorbent and method of using the same
Perry, Robert James [Niskayuna, NY; Lewis, Larry Neil [Scotia, NY; O'Brien, Michael Joseph [Clifton Park, NY; Soloveichik, Grigorii Lev [Latham, NY; Kniajanski, Sergei [Clifton Park, NY; Lam, Tunchiao Hubert [Clifton Park, NY; Lee, Julia Lam [Niskayuna, NY; Rubinsztajn, Malgorzata Iwona [Ballston Spa, NY
2011-10-04
In accordance with one aspect, the present invention provides an amino-siloxane composition comprising at least one of structures I, II, III, IV or V said compositions being useful for the capture of carbon dioxide from gas streams such as power plant flue gases. In addition, the present invention provides methods of preparing the amino-siloxane compositions are provided. Also provided are methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention as species which react with carbon dioxide to form an adduct with carbon dioxide. The reaction of the amino-siloxane compositions provided by the present invention with carbon dioxide is reversible and thus, the method provides for multicycle use of said compositions.
Novel Technique and Technologies for Active Optical Remote Sensing of Greenhouse Gases
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta
2017-01-01
The societal benefits of understanding climate change through identification of global carbon dioxide sources and sinks led to the desired NASA's active sensing of carbon dioxide emissions over nights, days, and seasons (ASCENDS) space-based missions of global carbon dioxide measurements. For more than 15 years, NASA Langley Research Center (LaRC) have developed several carbon dioxide active remote sensors using the differential absorption lidar (DIAL) technique operating at the two-micron wavelength. Currently, an airborne two-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development. This IPDA lidar measures carbon dioxide as well as water vapor, the dominant interfering molecule on carbon dioxide remote sensing. Advancement of this triple-pulse IPDA lidar development is presented.
Carbon sequestration in depleted oil shale deposits
Burnham, Alan K; Carroll, Susan A
2014-12-02
A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.
Zhao, Xin; Han, Meng; Ding, Lili; Calin, Adrian Cantemir
2018-01-01
The accurate forecast of carbon dioxide emissions is critical for policy makers to take proper measures to establish a low carbon society. This paper discusses a hybrid of the mixed data sampling (MIDAS) regression model and BP (back propagation) neural network (MIDAS-BP model) to forecast carbon dioxide emissions. Such analysis uses mixed frequency data to study the effects of quarterly economic growth on annual carbon dioxide emissions. The forecasting ability of MIDAS-BP is remarkably better than MIDAS, ordinary least square (OLS), polynomial distributed lags (PDL), autoregressive distributed lags (ADL), and auto-regressive moving average (ARMA) models. The MIDAS-BP model is suitable for forecasting carbon dioxide emissions for both the short and longer term. This research is expected to influence the methodology for forecasting carbon dioxide emissions by improving the forecast accuracy. Empirical results show that economic growth has both negative and positive effects on carbon dioxide emissions that last 15 quarters. Carbon dioxide emissions are also affected by their own change within 3 years. Therefore, there is a need for policy makers to explore an alternative way to develop the economy, especially applying new energy policies to establish a low carbon society.
NASA Astrophysics Data System (ADS)
Ehleringer, J. R.; Hopkins, F. M.; Xu, X.; Barnette, J.; Randerson, J. T.; Bush, S.; Lai, C.
2013-12-01
Carbon-14 analyses of mature deciduous tree leaves (aspen and cottonwood) were used to measure the increases in atmospheric carbon dioxide within the expansive urbanizing Salt Lake Valley, Utah, USA associated with fossil fuel combustion. Our objectives were twofold: to understand the fine scale spatial structure of elevated carbon dioxide levels in this urban environment and to relate these observations to actual carbon dioxide observations collected using both long-term monitoring sites and a mobile measurement vehicle. Paired observations of aspen and cottonwood at sites across the valley showed that there was no significant difference in carbon-14 values, allowing spatial pattern evaluations at sites where one but not the other species was present. Statistically significant patterns were observed over a two-year measurement period, with elevated carbon dioxide levels associated with carbon-14 depleted leaves, particularly in regions with higher vehicle travel. Carbon-14 content of leaves was significantly lower on 4-lane roads than on nearby 2-lane roads in both residential and commercial zones, consistent with atmospheric carbon dioxide observations. The analysis of spatial patterns in the carbon-14 in leaves was then used to evaluate how well these observations compared to instantaneous and long-term observations of carbon dioxide using traditional infrared gas analyzer approaches.
Terrestrial Carbon Sequestration in National Parks: Values for the Conterminous United States
Richardson, Leslie A.; Huber, Christopher; Zhu, Zhi-Liang; Koontz, Lynne
2015-01-01
Lands managed by the National Park Service (NPS) provide a wide range of beneficial services to the American public. This study quantifies the ecosystem service value of carbon sequestration in terrestrial ecosystems within NPS units in the conterminous United States for which data were available. Combining annual net carbon balance data with spatially explicit NPS land unit boundaries and social cost of carbon estimates, this study calculates the net metric tons of carbon dioxide sequestered annually by park unit under baseline conditions, as well as the associated economic value to society. Results show that, in aggregate, NPS lands in the conterminous United States are a net carbon sink, sequestering more than 14.8 million metric tons of carbon dioxide annually. The associated societal value of this service is estimated at approximately $582.5 million per year. While this analysis provides a broad overview of the annual value of carbon sequestration on NPS lands averaged over a five year baseline period, it should be noted that carbon fluxes fluctuate from year to year, and there can be considerable variation in net carbon balance and its associated value within a given park unit. Future research could look in-depth at the spatial heterogeneity of carbon flux within specific NPS land units.
Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures
Aines, Roger D.; Bourcier, William L.
2014-08-19
A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.
Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures
Aines, Roger D.; Bourcier, William L.
2010-11-09
A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.
Thermal Protection System Aerothermal Screening Tests in HYMETS Facility
NASA Technical Reports Server (NTRS)
Szalai, Christine E.; Beck, Robin A. S.; Gasch, Matthew J.; Alumni, Antonella I.; Chavez-Garcia, Jose F.; Splinter, Scott C.; Gragg, Jeffrey G.; Brewer, Amy
2011-01-01
The Entry, Descent, and Landing (EDL) Technology Development Project has been tasked to develop Thermal Protection System (TPS) materials for insertion into future Mars Entry Systems. A screening arc jet test of seven rigid ablative TPS material candidates was performed in the Hypersonic Materials Environmental Test System (HYMETS) facility at NASA Langley Research Center, in both an air and carbon dioxide test environment. Recession, mass loss, surface temperature, and backface thermal response were measured for each test specimen. All material candidates survived the Mars aerocapture relevant heating condition, and some materials showed a clear increase in recession rate in the carbon dioxide test environment. These test results supported subsequent down-selection of the most promising material candidates for further development.
USDA-ARS?s Scientific Manuscript database
Evaluating variability of rice response to concurrent increases in CO2 and temperature forecasted for future climates is a prerequisite step towards characterizing the genetic architecture underlying this response. Expanding on previous single cultivar studies, we evaluated eleven biogeographically ...
Optimal function explains forest responses to global change
Roderick Dewar; Oskar Franklin; Annikki Makela; Ross E. McMurtrie; Harry T. Valentine
2009-01-01
Plant responses to global changes in carbon dioxide (CO2), nitrogen, and water availability are critical to future atmospheric CO2 concentrations, hydrology, and hence climate. Our understanding of those responses is incomplete, however. Multiple-resource manipulation experiments and empirical observations have revealed a...
An Overview of Algae Biofuel Production and Potential Environmental Impact (Journal Article)
Algae are one of the most potentially significant sources of biofuels in the future of renewable energy. A feedstock with almost unlimited applicability, algae can metabolize various waste streams (such as municipal wastewater, and carbon dioxide from power generation) and produc...
Climate Change Impacts on US Agriculture and Forestry: Implications of Global Climate Stabilization
Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. Although there have been n...
Hutchins, David A.; Walworth, Nathan G.; Webb, Eric A.; Saito, Mak A.; Moran, Dawn; McIlvin, Matthew R.; Gale, Jasmine; Fu, Fei-Xue
2015-01-01
Nitrogen fixation rates of the globally distributed, biogeochemically important marine cyanobacterium Trichodesmium increase under high carbon dioxide (CO2) levels in short-term studies due to physiological plasticity. However, its long-term adaptive responses to ongoing anthropogenic CO2 increases are unknown. Here we show that experimental evolution under extended selection at projected future elevated CO2 levels results in irreversible, large increases in nitrogen fixation and growth rates, even after being moved back to lower present day CO2 levels for hundreds of generations. This represents an unprecedented microbial evolutionary response, as reproductive fitness increases acquired in the selection environment are maintained after returning to the ancestral environment. Constitutive rate increases are accompanied by irreversible shifts in diel nitrogen fixation patterns, and increased activity of a potentially regulatory DNA methyltransferase enzyme. High CO2-selected cell lines also exhibit increased phosphorus-limited growth rates, suggesting a potential advantage for this keystone organism in a more nutrient-limited, acidified future ocean. PMID:26327191
NASA Astrophysics Data System (ADS)
Hutchins, David A.; Walworth, Nathan G.; Webb, Eric A.; Saito, Mak A.; Moran, Dawn; McIlvin, Matthew R.; Gale, Jasmine; Fu, Fei-Xue
2015-09-01
Nitrogen fixation rates of the globally distributed, biogeochemically important marine cyanobacterium Trichodesmium increase under high carbon dioxide (CO2) levels in short-term studies due to physiological plasticity. However, its long-term adaptive responses to ongoing anthropogenic CO2 increases are unknown. Here we show that experimental evolution under extended selection at projected future elevated CO2 levels results in irreversible, large increases in nitrogen fixation and growth rates, even after being moved back to lower present day CO2 levels for hundreds of generations. This represents an unprecedented microbial evolutionary response, as reproductive fitness increases acquired in the selection environment are maintained after returning to the ancestral environment. Constitutive rate increases are accompanied by irreversible shifts in diel nitrogen fixation patterns, and increased activity of a potentially regulatory DNA methyltransferase enzyme. High CO2-selected cell lines also exhibit increased phosphorus-limited growth rates, suggesting a potential advantage for this keystone organism in a more nutrient-limited, acidified future ocean.
Hydrodynamic Controls on Carbon Dioxide Efflux from Inland Waters
NASA Astrophysics Data System (ADS)
Long, H. E.; Waldron, S.; Hoey, T.; Newton, J.; Quemin, S.
2013-12-01
Intensive research has been undertaken on carbon dioxide efflux from lakes, estuaries and oceans, but much less attention has been given to rivers and streams, especially lower order streams. River systems are often over-saturated with carbon dioxide and so tend to act as sources of carbon dioxide to the atmosphere. It has been thought that rivers act as pipes carrying this terrestrial carbon to the oceans. However, recent studies have shown that a significant amount of the carbon is reprocessed within the system in a series of transformations and losses. Fluvial evasion of carbon dioxide is now recognised to be a significant component of carbon cycles, however the factors controlling carbon dioxide efflux and its magnitude remain poorly understood and quantified. This research aims to quantify, and better understand the controls on, freshwater carbon dioxide evasion. Data are presented here from field measurements that commenced in Sept 2013 in two contrasting Scottish rivers: the River Kelvin which has a large (335 km.sq) part-urban catchment with predominantly non-peat soils and Drumtee Water, a small (9.6 km.sq) rural catchment of peat soils and agricultural land. Using a floating chamber with the headspace connected to an infrared gas analyser to measure changes in carbon dioxide concentration, efflux rates from 0.22 - 47.4 μmol CO2/m.sq/sec were measured, these close to the middle of the range of previously reported values. At one site on the River Kelvin in May 2013 an influx of -0.61 - -3.53 μmol CO2/m.sq/sec was recorded. Whereas previous research finds carbon dioxide efflux to increase with decreasing river size and a more organic-rich soil catchment, here the controls on carbon dioxide evasion are similar across the contrasting catchments. Carbon dioxide evasion shows seasonality, with maximum fluxes in the summer months being up to twice as high as the winter maxima. Linear regression demonstrates that evasion increases with increased flow velocity, water surface disturbance indicated by Froude number, and turbulent mixing indicated by Reynolds number. Similar relationships with season, flow velocity and turbulence have been reported previously, but there is little known about the mechanisms involved. When comparing spot carbon dioxide efflux measurements to river stage time series data, carbon dioxide efflux is more sensitive to an increase in stage at more turbulent measurement points. Further investigation of the mechanisms will be obtained by measurement of DIC concentration and isotopic composition to assess the controls of carbon source versus degassing, and the analysis of the interactions between hydraulic and seasonal controls and carbon dioxide fluxes extended.
Gases for establishing pneumoperitoneum during laparoscopic abdominal surgery.
Yu, Tianwu; Cheng, Yao; Wang, Xiaomei; Tu, Bing; Cheng, Nansheng; Gong, Jianping; Bai, Lian
2017-06-21
This is an update of the review published in 2013.Laparoscopic surgery is now widely performed to treat various abdominal diseases. Currently, carbon dioxide is the most frequently used gas for insufflation of the abdominal cavity (pneumoperitoneum). Although carbon dioxide meets most of the requirements for pneumoperitoneum, the absorption of carbon dioxide may be associated with adverse events. People with high anaesthetic risk are more likely to experience cardiopulmonary complications and adverse events, for example hypercapnia and acidosis, which has to be avoided by hyperventilation. Therefore, other gases have been introduced as alternatives to carbon dioxide for establishing pneumoperitoneum. To assess the safety, benefits, and harms of different gases (i.e. carbon dioxide, helium, argon, nitrogen, nitrous oxide, and room air) used for establishing pneumoperitoneum in participants undergoing laparoscopic general abdominal or gynaecological pelvic surgery. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, 2016, Issue 9), Ovid MEDLINE (1950 to September 2016), Ovid Embase (1974 to September 2016), Science Citation Index Expanded (1970 to September 2016), Chinese Biomedical Literature Database (CBM) (1978 to September 2016), ClinicalTrials.gov (September 2016), and World Health Organization International Clinical Trials Registry Platform (September 2016). We included randomised controlled trials (RCTs) comparing different gases for establishing pneumoperitoneum in participants (irrespective of age, sex, or race) undergoing laparoscopic abdominal or gynaecological pelvic surgery under general anaesthesia. Two review authors identified the trials for inclusion, collected the data, and assessed the risk of bias independently. We performed the meta-analyses using Review Manager 5. We calculated risk ratio (RR) for dichotomous outcomes (or Peto odds ratio for very rare outcomes), and mean difference (MD) or standardised mean difference (SMD) for continuous outcomes with 95% confidence intervals (CI). We used GRADE to rate the quality of evidence, MAIN RESULTS: We included nine RCTs, randomising 519 participants, comparing different gases for establishing pneumoperitoneum: nitrous oxide (three trials), helium (five trials), or room air (one trial) was compared to carbon dioxide. Three trials randomised participants to nitrous oxide pneumoperitoneum (100 participants) or carbon dioxide pneumoperitoneum (96 participants). None of the trials was at low risk of bias. There was insufficient evidence to determine the effects of nitrous oxide and carbon dioxide on cardiopulmonary complications (RR 2.00, 95% CI 0.38 to 10.43; two studies; 140 participants; very low quality of evidence), or surgical morbidity (RR 1.01, 95% CI 0.18 to 5.71; two studies; 143 participants; very low quality of evidence). There were no serious adverse events related to either nitrous oxide or carbon dioxide pneumoperitoneum (three studies; 196 participants; very low quality of evidence). We could not combine data from two trials (140 participants) which individually showed lower pain scores (a difference of about one visual analogue score on a scale of 1 to 10 with lower numbers indicating less pain) with nitrous oxide pneumoperitoneum at various time points on the first postoperative day, and this was rated asvery low quality .Four trials randomised participants to helium pneumoperitoneum (69 participants) or carbon dioxide pneumoperitoneum (75 participants) and one trial involving 33 participants did not state the number of participants in each group. None of the trials was at low risk of bias. There was insufficient evidence to determine the effects of helium or carbon dioxide on cardiopulmonary complications (RR 1.46, 95% CI 0.35 to 6.12; three studies; 128 participants; very low quality of evidence) or pain scores (visual analogue score on a scale of 1 to 10 with lower numbers indicating less pain; MD 0.49 cm, 95% CI -0.28 to 1.26; two studies; 108 participants; very low quality of evidence). There were three serious adverse events (subcutaneous emphysema) related to helium pneumoperitoneum (three studies; 128 participants; very low quality of evidence).One trial randomised participants to room air pneumoperitoneum (70 participants) or carbon dioxide pneumoperitoneum (76 participants). The trial was at unclear risk of bias. There were no cardiopulmonary complications or serious adverse events observed related to either room air or carbon dioxide pneumoperitoneum (both outcomes very low quality of evidence). The evidence of lower hospital costs and reduced pain during the first postoperative day with room air pneumoperitoneum compared with carbon dioxide pneumoperitoneum (a difference of about one visual analogue score on a scale of 1 to 10 with lower numbers indicating less pain, was rated as very low quality of evidence. The quality of the current evidence is very low. The effects of nitrous oxide and helium pneumoperitoneum compared with carbon dioxide pneumoperitoneum are uncertain. Evidence from one trial of small sample size suggests that room air pneumoperitoneum may decrease hospital costs in people undergoing laparoscopic abdominal surgery. The safety of nitrous oxide, helium, and room air pneumoperitoneum has yet to be established.Further trials on this topic are needed, and should compare various gases (i.e. nitrous oxide, helium, argon, nitrogen, and room air) with carbon dioxide under standard pressure pneumoperitoneum with cold gas insufflation for people with high anaesthetic risk. Future trials should include outcomes such as complications, serious adverse events, quality of life, and pain.
Solubility of Carbon Dioxide in Water.
ERIC Educational Resources Information Center
Bush, Pat; And Others
1992-01-01
Describes an activity measuring the amount of dissolved carbon dioxide in carbonated water at different temperatures. The amount of carbon dioxide is measured by the amount of dilute ammonia solution needed to produce a pH indicator color change. (PR)
Microbial Fuel Cell-driven caustic potash production from wastewater for carbon sequestration.
Gajda, Iwona; Greenman, John; Melhuish, Chris; Santoro, Carlo; Ieropoulos, Ioannis
2016-09-01
This work reports on the novel formation of caustic potash (KOH) directly on the MFC cathode locking carbon dioxide into potassium bicarbonate salt (kalicinite) while producing, instead of consuming electrical power. Using potassium-rich wastewater as a fuel for microorganisms to generate electricity in the anode chamber, has resulted in the formation of caustic catholyte directly on the surface of the cathode electrode. Analysis of this liquid has shown to be highly alkaline (pH>13) and act as a CO2 sorbent. It has been later mineralised to kalicinite thus locking carbon dioxide into potassium bicarbonate salt. This work demonstrates an electricity generation method as a simple, cost-effective and environmentally friendly route towards CO2 sequestration that perhaps leads to a carbon negative economy. Moreover, it shows a potential application for both electricity production and nutrient recovery in the form of minerals from nutrient-rich wastewater streams such as urine for use as fertiliser in the future. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Mark D.; McGrail, B. Peter; Schaef, Herbert T.
2006-07-08
The principal mechanisms for the geologic sequestration of carbon dioxide in deep saline formations include geological structural trapping, hydrological entrapment of nonwetting fluids, aqueous phase dissolution and ionization, and geochemical sorption and mineralization. In sedimentary saline formations the dominant mechanisms are structural and dissolution trapping, with moderate to weak contributions from hydrological and geochemical trapping; where, hydrological trapping occurs during the imbibition of aqueous solution into pore spaces occupied by gaseous carbon dioxide, and geochemical trapping is controlled by generally slow reaction kinetics. In addition to being globally abundant and vast, deep basaltic lava formations offer mineralization kinetics that makemore » geochemical trapping a dominate mechanism for trapping carbon dioxide in these formations. For several decades the United States Department of Energy has been investigating Columbia River basalt in the Pacific Northwest as part of its environmental programs and options for natural gas storage. Recently this nonpotable and extensively characterized basalt formation is being reconsidered as a potential reservoir for geologic sequestration of carbon dioxide. The reservoir has an estimated storage capacity of 100 giga tonnes of carbon dioxide and comprises layered basalt flows with sublayering that generally alternates between low permeability massive and high permeability breccia. Chemical analysis of the formation shows 10 wt% Fe, primarily in the +2 valence. The mineralization reaction that makes basalt formations attractive for carbon dioxide sequestration is that of calcium, magnesium, and iron silicates reacting with dissolved carbon dioxide, producing carbonate minerals and amorphous quartz. Preliminary estimates of the kinetics of the silicate-to-carbonate reactions have been determined experimentally and this research is continuing to determine effects of temperature, pressure, rock composition and mineral assemblages on the reaction rates. This study numerically investigates the injection, migration and sequestration of supercritical carbon dioxide in deep Columbia River basalt formations using the multifluid subsurface flow and reactive transport simulator STOMP-CO2 with its ECKEChem module. Simulations are executed on high resolution multiple stochastic realizations of the layered basalt systems and demonstrate the migration behavior through layered basalt formations and the mineralization of dissolved carbon dioxide. Reported results include images of the migration behavior, distribution of carbonate formation, quantities of injected and sequestered carbon dioxide, and percentages of the carbon dioxide sequestered by different mechanisms over time.« less
Ye, Lingting; Zhang, Minyi; Huang, Ping; Guo, Guocong; Hong, Maochun; Li, Chunsen; Irvine, John T. S.; Xie, Kui
2017-01-01
Sustainable future energy scenarios require significant efficiency improvements in both electricity generation and storage. High-temperature solid oxide cells, and in particular carbon dioxide electrolysers, afford chemical storage of available electricity that can both stabilize and extend the utilization of renewables. Here we present a double doping strategy to facilitate CO2 reduction at perovskite titanate cathode surfaces, promoting adsorption/activation by making use of redox active dopants such as Mn linked to oxygen vacancies and dopants such as Ni that afford metal nanoparticle exsolution. Combined experimental characterization and first-principle calculations reveal that the adsorbed and activated CO2 adopts an intermediate chemical state between a carbon dioxide molecule and a carbonate ion. The dual doping strategy provides optimal performance with no degradation being observed after 100 h of high-temperature operation and 10 redox cycles, suggesting a reliable cathode material for CO2 electrolysis. PMID:28300066
A synthetic pathway for the fixation of carbon dioxide in vitro.
Schwander, Thomas; Schada von Borzyskowski, Lennart; Burgener, Simon; Cortina, Niña Socorro; Erb, Tobias J
2016-11-18
Carbon dioxide (CO 2 ) is an important carbon feedstock for a future green economy. This requires the development of efficient strategies for its conversion into multicarbon compounds. We describe a synthetic cycle for the continuous fixation of CO 2 in vitro. The crotonyl-coenzyme A (CoA)/ethylmalonyl-CoA/hydroxybutyryl-CoA (CETCH) cycle is a reaction network of 17 enzymes that converts CO 2 into organic molecules at a rate of 5 nanomoles of CO 2 per minute per milligram of protein. The CETCH cycle was drafted by metabolic retrosynthesis, established with enzymes originating from nine different organisms of all three domains of life, and optimized in several rounds by enzyme engineering and metabolic proofreading. The CETCH cycle adds a seventh, synthetic alternative to the six naturally evolved CO 2 fixation pathways, thereby opening the way for in vitro and in vivo applications. Copyright © 2016, American Association for the Advancement of Science.
46 CFR 35.40-10 - Steam, foam, carbon dioxide, or clean agent fire smothering apparatus-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Steam, foam, carbon dioxide, or clean agent fire... TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-10 Steam, foam, carbon dioxide, or clean agent fire smothering apparatus—TB/ALL. Each steam, foam, carbon dioxide, or clean agent...
46 CFR 35.40-10 - Steam, foam, carbon dioxide, or clean agent fire smothering apparatus-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Steam, foam, carbon dioxide, or clean agent fire... TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-10 Steam, foam, carbon dioxide, or clean agent fire smothering apparatus—TB/ALL. Each steam, foam, carbon dioxide, or clean agent...
46 CFR 97.37-9 - Carbon dioxide and clean agent alarms.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide and clean agent alarms. 97.37-9 Section 97.37-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent...
46 CFR 78.47-9 - Carbon dioxide and clean agent alarms.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 3 2013-10-01 2013-10-01 false Carbon dioxide and clean agent alarms. 78.47-9 Section 78.47-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent fire...
46 CFR 78.47-9 - Carbon dioxide and clean agent alarms.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 3 2012-10-01 2012-10-01 false Carbon dioxide and clean agent alarms. 78.47-9 Section 78.47-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent fire...
TES/Aura L2 Carbon Dioxide (CO2) Nadir V6 (TL2CO2N)
Atmospheric Science Data Center
2018-01-18
TES/Aura L2 Carbon Dioxide (CO2) Nadir (TL2CO2N) News: TES News ... Level: L2 Platform: TES/Aura L2 Carbon Dioxide Spatial Coverage: 5.2 x 8.5 km nadir ... Contact User Services Parameters: Carbon Dioxide Legacy: Retired data product , click here ...
46 CFR 97.37-9 - Carbon dioxide and clean agent alarms.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide and clean agent alarms. 97.37-9 Section 97.37-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent...
46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph (b) of this section, the cylinders...
46 CFR 97.37-9 - Carbon dioxide and clean agent alarms.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide and clean agent alarms. 97.37-9 Section 97.37-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent...
46 CFR 78.47-9 - Carbon dioxide and clean agent alarms.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 3 2014-10-01 2014-10-01 false Carbon dioxide and clean agent alarms. 78.47-9 Section 78.47-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent fire...
TES/Aura L2 Carbon Dioxide (CO2) Nadir V6 (TL2CO2NS)
Atmospheric Science Data Center
2018-01-22
TES/Aura L2 Carbon Dioxide (CO2) Nadir (TL2CO2NS) News: TES News ... Level: L2 Platform: TES/Aura L2 Carbon Dioxide Spatial Coverage: 5.3 x 8.5 km nadir ... Contact ASDC User Services Parameters: Carbon Dioxide Legacy: Retired data product , click here ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... carbon dioxide instead of oxygen as a diluent gas? 60.1745 Section 60.1745 Protection of Environment... choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous emission monitoring...
Code of Federal Regulations, 2012 CFR
2012-07-01
... carbon dioxide instead of oxygen as a diluent gas? 60.1745 Section 60.1745 Protection of Environment... choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous emission monitoring...
Code of Federal Regulations, 2014 CFR
2014-07-01
... carbon dioxide instead of oxygen as a diluent gas? 60.1745 Section 60.1745 Protection of Environment... choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous emission monitoring...
Code of Federal Regulations, 2011 CFR
2011-07-01
... carbon dioxide instead of oxygen as a diluent gas? 60.1745 Section 60.1745 Protection of Environment... choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous emission monitoring...
Code of Federal Regulations, 2013 CFR
2013-07-01
... carbon dioxide instead of oxygen as a diluent gas? 60.1745 Section 60.1745 Protection of Environment... choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous emission monitoring...
James, P.B.; Hansen, G.B.; Titus, T.N.
2005-01-01
The seasonal CO2 cycle on Mars refers to the exchange of carbon dioxide between dry ice in the seasonal polar caps and gaseous carbon dioxide in the atmosphere. This review focuses on breakthroughs in understanding the process involving seasonal carbon dioxide phase changes that have occurred as a result of observations by Mars Global Surveyor. ?? 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa
2017-03-01
In this study, the impact of energy, agriculture, macroeconomic and human-induced indicators on environmental pollution from 1971 to 2011 is investigated using the statistically inspired modification of partial least squares (SIMPLS) regression model. There was evidence of a linear relationship between energy, agriculture, macroeconomic and human-induced indicators and carbon dioxide emissions. Evidence from the SIMPLS regression shows that a 1% increase in crop production index will reduce carbon dioxide emissions by 0.71%. Economic growth increased by 1% will reduce carbon dioxide emissions by 0.46%, which means that an increase in Ghana's economic growth may lead to a reduction in environmental pollution. The increase in electricity production from hydroelectric sources by 1% will reduce carbon dioxide emissions by 0.30%; thus, increasing renewable energy sources in Ghana's energy portfolio will help mitigate carbon dioxide emissions. Increasing enteric emissions by 1% will increase carbon dioxide emissions by 4.22%, and a 1% increase in the nitrogen content of manure management will increase carbon dioxide emissions by 6.69%. The SIMPLS regression forecasting exhibited a 5% MAPE from the prediction of carbon dioxide emissions.
Dutta, Prabir K [Worthington, OH; Lee, Inhee [Columbus, OH; Akbar, Sheikh A [Hilliard, OH
2011-11-15
The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waldhoff, Stephanie T.; Anthoff, David; Rose, Steven K.
We use FUND 3.8 to estimate the social cost of four greenhouse gases: carbon dioxide, methane, nitrous oxide, and sulphur hexafluoride emissions. The damage potential for each gas—the ratio of the social cost of the non-carbon dioxide greenhouse gas to the social cost of carbon dioxide—is also estimated. The damage potentials are compared to several metrics, focusing in particular on the global warming potentials, which are frequently used to measure the trade-off between gases in the form of carbon dioxide equivalents. We find that damage potentials could be significantly higher than global warming potentials. This finding implies that previous papersmore » have underestimated the relative importance of reducing non-carbon dioxide greenhouse gas emissions from an economic damage perspective. We show results for a range of sensitivity analyses: carbon dioxide fertilization on agriculture productivity, terrestrial feedbacks, climate sensitivity, discounting, equity weighting, and socioeconomic and emissions scenarios. The sensitivity of the results to carbon dioxide fertilization is a primary focus as it is an important element of climate change that has not been considered in much of the previous literature. We estimate that carbon dioxide fertilization has a large positive impact that reduces the social cost of carbon dioxide with a much smaller effect on the other greenhouse gases. As a result, our estimates of the damage potentials of methane and nitrous oxide are much higher compared to estimates that ignore carbon dioxide fertilization. As a result, our base estimates of the damage potential for methane and nitrous oxide that include carbon dioxide fertilization are twice their respective global warming potentials. Our base estimate of the damage potential of sulphur hexafluoride is similar to the one previous estimate, both almost three times the global warming potential.« less
NASA Astrophysics Data System (ADS)
Suleman, Humbul; Maulud, Abdulhalim Shah; Man, Zakaria
2017-12-01
In this study, the solubilities of carbon dioxide in aqueous mixtures of monoethanolamine (MEA) and diethanolamine (DEA) were determined using a high pressure vapor-liquid equilibrium apparatus. The carbon dioxide loadings (mole of CO2/mole of amine mixture) were reported for a wide range of temperature (303.15, 323.15, 343.15 K) and pressure (100 - 4100 kPa). The carbon dioxide solubility shows an increase with increase in pressure and amine concentration and a decrease with increase in temperature in the aqueous blends of MEA and DEA. At carbon dioxide loadings above 1.0, the carbon dioxide solubility becomes a weak function of pressure and follows the general trend of carbon dioxide solubility in aqueous alkanolamines. The new experimental data points determined in this study were correlated by using a recently developed, enhanced Kent-Eisenberg model. An average absolute relative error of 9.4 % was observed between the model results and experimental data, indicating good correlative capability of the thermodynamic model.
Apparatus and method for removing solvent from carbon dioxide in resin recycling system
Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA
2009-01-06
A two-step resin recycling system and method solvent that produces essentially contaminant-free synthetic resin material. The system and method includes one or more solvent wash vessels to expose resin particles to a solvent, the solvent contacting the resin particles in the one or more solvent wash vessels to substantially remove contaminants on the resin particles. A separator is provided to separate the solvent from the resin particles after removal from the one or more solvent wash vessels. The resin particles are next exposed to carbon dioxide in a closed loop carbon dioxide system. The closed loop system includes a carbon dioxide vessel where the carbon dioxide is exposed to the resin, substantially removing any residual solvent remaining on the resin particles after separation. A separation vessel is also provided to separate the solvent from the solvent laden carbon dioxide. Both the carbon dioxide and the solvent are reused after separation in the separation vessel.
Choi, Woosung; Min, Kyungmin; Kim, Chaehoon; Ko, Young Soo; Jeon, Jae Wan; Seo, Hwimin; Park, Yong-Ki; Choi, Minkee
2016-01-01
Amine-containing adsorbents have been extensively investigated for post-combustion carbon dioxide capture due to their ability to chemisorb low-concentration carbon dioxide from a wet flue gas. However, earlier studies have focused primarily on the carbon dioxide uptake of adsorbents, and have not demonstrated effective adsorbent regeneration and long-term stability under such conditions. Here, we report the versatile and scalable synthesis of a functionalized-polyethyleneimine (PEI)/silica adsorbent which simultaneously exhibits a large working capacity (2.2 mmol g−1) and long-term stability in a practical temperature swing adsorption process (regeneration under 100% carbon dioxide at 120 °C), enabling the separation of concentrated carbon dioxide. We demonstrate that the functionalization of PEI with 1,2-epoxybutane reduces the heat of adsorption and facilitates carbon dioxide desorption (>99%) during regeneration compared with unmodified PEI (76%). Moreover, the functionalization significantly improves long-term adsorbent stability over repeated temperature swing adsorption cycles due to the suppression of urea formation and oxidative amine degradation. PMID:27572662
A titanium-based zeolitic thiophene-benzimidazolate framework has been designed for the direct synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide. The developed catalyst activates carbon dioxide and delivers over 16% yield of DMC without the use of any dehydra...
Developing a Carbon Observing System
NASA Astrophysics Data System (ADS)
Moore, B., III
2015-12-01
There is a clear need to better understand and predict future climate change, so that science can more confidently inform climate policy, including adaptation planning and future mitigation strategies. Understanding carbon cycle feedbacks, and the relationship between emissions (fossil and land use) and the resulting atmospheric carbon dioxide (CO2) and methane (CH4) concentrations in a changing climate has been recognized as an important goal by the IPCC. The existing surface greenhouse gas observing networks provide accurate and precise measurements of background values, but they are not configured to target the extended, complex and dynamic regions of the carbon budget. Space Agencies around the globe are committed to CO2 and CH4 observations: GOSAT-1/2, OCO-2/3, MERLin, TanSat, and CarbonSat. In addition to these Low Earth Orbit (LEO) missions, a new mission in Geostationary Orbit (GEO), geoCARB, which would provide mapping-like measurements of carbon dioxide, methane, and carbon monoxide concentrations over major land areas, has been recently proposed to the NASA Venture Program. These pioneering missions do not provide the spatial/temporal coverage to answer the key carbon-climate questions at process relevant scales nor do they address the distribution and quantification of anthropogenic sources at urban scales. They do demonstrate, however, that a well-planned future system of system integrating space-based LEO and GEO missions with extensive in situ observations could provide the accuracy, spatial resolution, and coverage needed to address critical open issues in the carbon-climate system. Dr. Diana Wickland devoted enormous energy in developing a comprehensive apprioach to understand the global carbon cycle; she understood well that an integrated, coordinated, international approach is needed. This shines through in her recent contribution in co-chairing the team that produced the "CEOS Strategy for Carbon Observations from Space." A NASA-funded community workshop in March 2015 addressed issues and prioritzed a set of research and observational needs in the study of the Carbon-Climate System. This paper will refect upon the past 30 plus years of carbon research supported by NASA and Dr. Wickland's role, and it will conclude with the findings of the March 2015 Workshop.
Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from Carbon Dioxide
NASA Technical Reports Server (NTRS)
Coutts, Janelle; Hintze, Paul E.; Muscatello, Anthony C.; Gibson, Tracy L.; Captain, James G.; Lunn, Griffin M.; Devor, Robert W.; Bauer, Brint; Parks, Steve
2016-01-01
Oxygen recovery from respiratory carbon dioxide is an important aspect of human spaceflight. Methods exist to sequester the carbon dioxide, but production of oxygen needs further development. The current International Space Station Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50 because half of the hydrogen used in the Sabatier reactor is lost as methane, which is vented overboard. The Bosch reaction, which converts carbon dioxide to oxygen and solid carbon is capable of recovering all the oxygen from carbon dioxide, and is the only real alternative to the Sabatier reaction. However, the last reaction in the cycle, the Boudouard reaction, produces solid carbon and the resulting carbon buildup will eventually foul the nickel or iron catalyst, reducing reactor life and increasing consumables. To minimize this fouling and increase efficiency, a number of self-cleaning catalyst designs have been created. This paper will describe recent results evaluating one of the designs.
Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from Carbon Dioxide
NASA Technical Reports Server (NTRS)
Hintze, Paul E.; Muscatello, Anthony C.; Meier, Anne J.; Gibson, Tracy L.; Captain, James G.; Lunn, Griffin M.; Devor, Robert W.
2016-01-01
Oxygen recovery from respiratory carbon dioxide is an important aspect of human spaceflight. Methods exist to sequester the carbon dioxide, but production of oxygen needs further development. The current International Space Station Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50% because half of the hydrogen used in the Sabatier reactor is lost as methane, which is vented overboard. The Bosch reaction, which converts carbon dioxide to oxygen and solid carbon is capable of recovering all the oxygen from carbon dioxide, and is the only real alternative to the Sabatier reaction. However, the last reaction in the cycle, the Boudouard reaction, produces solid carbon and the resulting carbon buildup will eventually foul the nickel or iron catalyst, reducing reactor life and increasing consumables. To minimize this fouling and increase efficiency, a number of self-cleaning catalyst designs have been created. This paper will describe recent results evaluating one of the designs.
Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from Carbon Dioxide
NASA Technical Reports Server (NTRS)
Hintze, Paul E.; Muscatello, Anthony C.; Gibson, Tracy L.; Captain, James G.; Lunn, Griffin M.; Devor, Robert W.; Bauer, Brint; Parks, Steve
2016-01-01
Oxygen recovery from respiratory carbon dioxide is an important aspect of human spaceflight. Methods exist to sequester the carbon dioxide, but production of oxygen needs further development. The current International Space Station Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50% because half of the hydrogen used in the Sabatier reactor is lost as methane which is vented overboard. The Bosch reaction, which converts carbon dioxide to oxygen and solid carbon, is capable of recovering all the oxygen from carbon dioxide, and it is a promising alternative to the Sabatier reaction. However, the last reaction in the cycle, the Boudouard reaction, produces solid carbon, and the resulting carbon buildup eventually fouls the catalyst, reducing reactor life and increasing consumables. To minimize this fouling and increase efficiency, a number of self-cleaning catalyst designs have been created. This paper will describe recent results evaluating one of the designs.
Primary discussion of a carbon sink in the oceans
NASA Astrophysics Data System (ADS)
Ma, Caihua; You, Kui; Ji, Dechun; Ma, Weiwei; Li, Fengqi
2015-04-01
As a consequence of global warming and rising sea levels, the oceans are becoming a matter of concern for more and more people because these changes will impact the growth of living organisms as well as people's living standards. In particular, it is extremely important that the oceans absorb massive amounts of carbon dioxide. This paper takes a pragmatic approach to analyzing the oceans with respect to the causes of discontinuities in oceanic variables of carbon dioxide sinks. We report on an application of chemical, physical and biological methods to analyze the changes of carbon dioxide in oceans. Based on the relationships among the oceans, land, atmosphere and sediment with respect to carbon dioxide, the foundation of carbon dioxide in shell-building and ocean acidification, the changes in carbon dioxide in the oceans and their impact on climate change, and so on, a vital conclusion can be drawn from this study. Specifically, under the condition that the oceans are not disturbed by external forces, the oceans are a large carbon dioxide sink. The result can also be inferred by the formula: C=A-B and G=E+F when the marine ecosystem can keep a natural balance and the amount of carbon dioxide emission is limited within the carrying capacity of the oceans.
Enhanced open ocean storage of CO2 from shelf sea pumping.
Thomas, Helmuth; Bozec, Yann; Elkalay, Khalid; de Baar, Hein J W
2004-05-14
Seasonal field observations show that the North Sea, a Northern European shelf sea, is highly efficient in pumping carbon dioxide from the atmosphere to the North Atlantic Ocean. The bottom topography-controlled stratification separates production and respiration processes in the North Sea, causing a carbon dioxide increase in the subsurface layer that is ultimately exported to the North Atlantic Ocean. Globally extrapolated, the net uptake of carbon dioxide by coastal and marginal seas is about 20% of the world ocean's uptake of anthropogenic carbon dioxide, thus enhancing substantially the open ocean carbon dioxide storage.
A hybrid absorption–adsorption method to efficiently capture carbon
Liu, Huang; Liu, Bei; Lin, Li-Chiang; Chen, Guangjin; Wu, Yuqing; Wang, Jin; Gao, Xueteng; Lv, Yining; Pan, Yong; Zhang, Xiaoxin; Zhang, Xianren; Yang, Lanying; Sun, Changyu; Smit, Berend; Wang, Wenchuan
2014-01-01
Removal of carbon dioxide is an essential step in many energy-related processes. Here we report a novel slurry concept that combines specific advantages of metal-organic frameworks, ion liquids, amines and membranes by suspending zeolitic imidazolate framework-8 in glycol-2-methylimidazole solution. We show that this approach may give a more efficient technology to capture carbon dioxide compared to conventional technologies. The carbon dioxide sorption capacity of our slurry reaches 1.25 mol l−1 at 1 bar and the selectivity of carbon dioxide/hydrogen, carbon dioxide/nitrogen and carbon dioxide/methane achieves 951, 394 and 144, respectively. We demonstrate that the slurry can efficiently remove carbon dioxide from gas mixtures at normal pressure/temperature through breakthrough experiments. Most importantly, the sorption enthalpy is only −29 kJ mol−1, indicating that significantly less energy is required for sorbent regeneration. In addition, from a technological point of view, unlike solid adsorbents slurries can flow and be pumped. This allows us to use a continuous separation process with heat integration. PMID:25296559
Bamberger, C.E.; Robinson, P.R.
A thermochemical cyclic process for producing hydrogen from water comprises reacting ceric oxide with monobasic or dibasic alkali metal phosphate to yield a solid reaction product, oxygen and water. The solid reaction product, alkali metal carbonate or bicarbonate, and water, are reacted to yield hydrogen, ceric oxide, carbon dioxide and trialkali metal phosphate. Ceric oxide is recycled. Trialkali metal phosphate, carbon dioxide and water are reacted to yield monobasic or dibasic alkali metal phosphate and alkali metal bicarbonate, which are recycled. The cyclic process can be modified for producing carbon monoxide from carbon dioxide by reacting the alkali metal cerous phosphate and alkali metal carbonate or bicarbonate in the absence of water to produce carbon monoxide, ceric oxide, carbon dioxide and trialkali metal phosphate. Carbon monoxide can be converted to hydrogen by the water gas shift reaction.
Bamberger, Carlos E.; Robinson, Paul R.
1980-01-01
A thermochemical cyclic process for producing hydrogen from water comprises reacting ceric oxide with monobasic or dibasic alkali metal phosphate to yield a solid reaction product, oxygen and water. The solid reaction product, alkali metal carbonate or bicarbonate, and water, are reacted to yield hydrogen, ceric oxide, carbon dioxide and trialkali metal phosphate. Ceric oxide is recycled. Trialkali metal phosphate, carbon dioxide and water are reacted to yield monobasic or dibasic alkali metal phosphate and alkali metal bicarbonate, which are recycled. The cylic process can be modified for producing carbon monoxide from carbon dioxide by reacting the alkali metal cerous phosphate and alkali metal carbonate or bicarbonate in the absence of water to produce carbon monoxide, ceric oxide, carbon dioxide and trialkali metal phosphate. Carbon monoxide can be converted to hydrogen by the water gas shift reaction.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Dioxide Extinguishing Systems, Details § 76.15-1 Application. (a) Where a carbon dioxide extinguishing... “high pressure system”, i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems”, i.e., those in which the carbon dioxide is stored in liquid...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Dioxide Extinguishing Systems, Details § 76.15-1 Application. (a) Where a carbon dioxide extinguishing... “high pressure system”, i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems”, i.e., those in which the carbon dioxide is stored in liquid...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Dioxide Extinguishing Systems, Details § 76.15-1 Application. (a) Where a carbon dioxide extinguishing... “high pressure system”, i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems”, i.e., those in which the carbon dioxide is stored in liquid...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Dioxide Extinguishing Systems, Details § 76.15-1 Application. (a) Where a carbon dioxide extinguishing... “high pressure system”, i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems”, i.e., those in which the carbon dioxide is stored in liquid...
[Simplified identification and filter device of carbon dioxide].
Mei, Xue-qin; Zhang, Yi-ping
2009-11-01
This paper presents the design and implementation ways of a simplified device to identify and filter carbon dioxide. The gas went through the test interface which had wet litmus paper before entering the abdominal cavity. Carbon dioxide dissolving in water turned acidic, making litmus paper change color to identify carbon dioxide, in order to avoid malpractice by connecting the wrong gas when making Endoscopic surgery.
46 CFR 35.40-7 - Carbon dioxide and clean agent alarms-T/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Carbon dioxide and clean agent alarms-T/ALL. 35.40-7 Section 35.40-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-7 Carbon dioxide and clean agent alarms—T/ALL. Each carbon dioxide or clean agent fire extinguishing alarm...
Code of Federal Regulations, 2012 CFR
2012-07-01
... carbon dioxide instead of oxygen as a diluent gas? 62.15200 Section 62.15200 Protection of Environment... I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous...
Code of Federal Regulations, 2010 CFR
2010-07-01
... carbon dioxide instead of oxygen as a diluent gas? 62.15200 Section 62.15200 Protection of Environment... I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous...
Code of Federal Regulations, 2011 CFR
2011-07-01
... carbon dioxide instead of oxygen as a diluent gas? 62.15200 Section 62.15200 Protection of Environment... I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous...
Code of Federal Regulations, 2014 CFR
2014-07-01
... carbon dioxide instead of oxygen as a diluent gas? 62.15200 Section 62.15200 Protection of Environment... I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous...
Code of Federal Regulations, 2013 CFR
2013-07-01
... carbon dioxide instead of oxygen as a diluent gas? 62.15200 Section 62.15200 Protection of Environment... I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous...
Classroom Demonstration: Combustion of Diamond to Carbon Dioxide Followed by Reduction to Graphite
ERIC Educational Resources Information Center
Miyauchi, Takuya; Kamata, Masahiro
2012-01-01
An educational demonstration shows the combustion of carbon to carbon dioxide and then the reduction of carbon dioxide to carbon. A melee diamond is the source of the carbon and the reaction is carried out in a closed flask. The demonstration helps students to realize that diamonds are made of carbon and that atoms do not change or vanish in…
Physiological attributes of 11 Northwest conifer species
Ronni L. Korol
2001-01-01
The quantitative description and simulation of the fundamental processes that characterize forest growth are increasing in importance in forestry research. Predicting future forest growth, however, is compounded by the various combinations of temperature, humidity, precipitation, and atmospheric carbon dioxide concentration that may occur. One method of integrating new...
NASA Technical Reports Server (NTRS)
2005-01-01
NASA s Langley Research Center scientists developed a family of catalysts for low- temperature oxidation of carbon monoxide and other gases. The catalysts provide oxidation of both carbon monoxide and formaldehyde at room temperature without requiring any energy input, just a suitable flow of gas through them. Originally designed as part of an atmospheric satellite project, where the catalysts were intended to recycle and recapture carbon dioxide to enhance the operational life of carbon dioxide lasers, the entire system was made to be rugged, long-lived, and fail-safe. The low-temperature oxidation catalysts can be produced and coated onto various catalyst supports, including porous ceramic monoliths and beads, which means that they can be integrated into existing designs, made to fit in limited space, and fashioned into a variety of geometrically different products. Although the satellite project was never launched, the resulting catalysts are doing great things here on Earth, with current applications in the high-speed motor sports arena as air purifiers, so professional racecar drivers do not get carbon monoxide poisoning. Future benefits may extend even further.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Brant M.; Kaiser, Ralf I.; Strazzulla, Giovanni, E-mail: brantmj@hawaii.edu
Carbon dioxide (CO{sub 2}) has been detected on the surface of several icy moons of Jupiter and Saturn via observation of the ν{sub 3} band with the Near-Infrared Mapping Spectrometer on board the Galileo spacecraft and the Visible-Infrared Mapping Spectrometer on board the Cassini spacecraft. Interestingly, the CO{sub 2} band for several of these moons exhibits a blueshift along with a broader profile than that seen in laboratory studies and other astrophysical environments. As such, numerous attempts have been made in order to clarify this abnormal behavior; however, it currently lacks an acceptable physical or chemical explanation. We present amore » rather surprising result pertaining to the synthesis of carbon dioxide in a polar environment. Here, carbonic acid was synthesized in a water (H{sub 2}O)-carbon dioxide (CO{sub 2}) (1:5) ice mixture exposed to ionizing radiation in the form of 5 keV electrons. The irradiated ice mixture was then annealed, producing pure carbonic acid which was then subsequently irradiated, recycling water and carbon dioxide. However, the observed carbon dioxide ν{sub 3} band matches almost exactly with that observed on Callisto; subsequent temperature program desorption studies reveal that carbon dioxide synthesized under these conditions remains in solid form until 160 K, i.e., the sublimation temperature of water. Consequently, our results suggest that carbon dioxide on Callisto as well as other icy moons is indeed complexed with water rationalizing the shift in peak frequency, broad profile, and the solid state existence on these relatively warm moons.« less
Fixation of carbon dioxide into dimethyl carbonate over ...
A titanium-based zeolitic thiophene-benzimidazolate framework has been designed for the direct synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide. The developed catalyst activates carbon dioxide and delivers over 16% yield of DMC without the use of any dehydrating agent or requirement for azeotropic distillation. Prepared for submission to Nature Scientific reports.
DOE R&D Accomplishments Database
Badin, E. J.; Calvin, M.
1950-02-01
A comparison of the rates of fixation of Carbon 14 dioxide in algae for the processes of photosynthesis, photoreduction and the hydrogen-oxygen-carbon dioxide dark reaction has been made. For the same series of experiments, rates of incorporation of tracer carbon into the separate soluble components using the radiogram method have been determined. The mechanism of carbon dioxide uptake has been shown to occur via two distinct paths. In all cases studied, essentially the same compounds appear radioactive. The distribution with time, however, differs markedly.
Life on Mars: Past, Present, and Future
NASA Technical Reports Server (NTRS)
McKay, Chris
2006-01-01
Mars has evidence for past liquid water, presence of an atmosphere with CO2 and N2, and potential for preservation of evidence of life. Composition of the Martian atmosphere is 95.3% Carbon dioxide, 2.7% Nitrogen, 1.6% Argon, 0.3-0.1% Water Vapor, 0.13% Oxygen, and 0.07% Carbon Monoxide. Current Mars missions include: Mars Global Surveyor, Mars Odyssey, Mars Exploration Rovers, Mars Express, and Mars Reconnaissance Orbiter,
Contribution of air conditioning adoption to future energy use under global warming.
Davis, Lucas W; Gertler, Paul J
2015-05-12
As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change.
Contribution of air conditioning adoption to future energy use under global warming
Davis, Lucas W.; Gertler, Paul J.
2015-01-01
As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change. PMID:25918391
NASA Astrophysics Data System (ADS)
Ibrahim, Anis; Haniff Harun, Mohd; Yusup, Yusri
2017-04-01
A study presents the measurements of carbon dioxide and latent and sensible heat fluxes above a mature oil palm plantation on mineral soil in Keratong, Pahang, Peninsular Malaysia. The sampling campaign was conducted over an 25-month period, from September 2013 to February 2015 and May 2016 to November 2016, using the eddy covariance method. The main aim of this work is to assess carbon dioxide and energy fluxes over this plantation at different time scales, seasonal and diurnal, and determine the effects of season and relevant meteorological parameters on the latter fluxes. Energy balance closure analyses gave a slope between latent and sensible heat fluxes and total incoming energy to be 0.69 with an R2 value of 0.86 and energy balance ratio of 0.80. The averaged net radiation was 108 W m-2. The results show that at the diurnal scale, carbon dioxide, latent and sensible heat fluxes exhibited a clear diurnal trend where carbon dioxide flux was at its minimum - 3.59 μmol m-2 s-1 in the mid-afternoon and maximum in the morning while latent and sensible behaved conversely to the carbon dioxide flux. The average carbon dioxide flux was - 0.37 μmol m-2 s-1. At the seasonal timescale, carbon dioxide fluxes did not show any apparent trend except during the Northeast Monsoon where the highest variability of the monthly means of carbon dioxide occurred.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kern, F.H.; Ungerleider, R.M.; Quill, T.J.
1991-04-01
We examined the relationship of changes in partial pressure of carbon dioxide on cerebral blood flow responsiveness in 20 pediatric patients undergoing hypothermic cardiopulmonary bypass. Cerebral blood flow was measured during steady-state hypothermic cardiopulmonary bypass with the use of xenon 133 clearance methodology at two different arterial carbon dioxide tensions. During these measurements there was no significant change in mean arterial pressure, nasopharyngeal temperature, pump flow rate, or hematocrit value. Cerebral blood flow was found to be significantly greater at higher arterial carbon dioxide tensions (p less than 0.01), so that for every millimeter of mercury rise in arterial carbonmore » dioxide tension there was a 1.2 ml.100 gm-1.min-1 increase in cerebral blood flow. Two factors, deep hypothermia (18 degrees to 22 degrees C) and reduced age (less than 1 year), diminished the effect carbon dioxide had on cerebral blood flow responsiveness but did not eliminate it. We conclude that cerebral blood flow remains responsive to changes in arterial carbon dioxide tension during hypothermic cardiopulmonary bypass in infants and children; that is, increasing arterial carbon dioxide tension will independently increase cerebral blood flow.« less
Non-equilibrium condensation of supercritical carbon dioxide in a converging-diverging nozzle
NASA Astrophysics Data System (ADS)
Ameli, Alireza; Afzalifar, Ali; Turunen-Saaresti, Teemu
2017-03-01
Carbon dioxide (CO2) is a promising alternative as a working fluid for future energy conversion and refrigeration cycles. CO2 has low global warming potential compared to refrigerants and supercritical CO2 Brayton cycle ought to have better efficiency than today’s counter parts. However, there are several issues concerning behaviour of supercritical CO2 in aforementioned applications. One of these issues arises due to non-equilibrium condensation of CO2 for some operating conditions in supercritical compressors. This paper investigates the non-equilibrium condensation of carbon dioxide in the course of an expansion from supercritical stagnation conditions in a converging-diverging nozzle. An external look-up table was implemented, using an in-house FORTRAN code, to calculate the fluid properties in supercritical, metastable and saturated regions. This look-up table is coupled with the flow solver and the non-equilibrium condensation model is introduced to the solver using user defined expressions. Numerical results are compared with the experimental measurements. In agreement with the experiment, the distribution of Mach number in the nozzle shows that the flow becomes supersonic in upstream region near the throat where speed of sound is minimum also the equilibrium reestablishment occurs at the outlet boundary condition.
Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA
2010-02-23
A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.
Revisiting the emissions-energy-trade nexus: evidence from the newly industrializing countries.
Ahmed, Khalid; Shahbaz, Muhammad; Kyophilavong, Phouphet
2016-04-01
This paper applies Pedroni's panel cointegration approach to explore the causal relationship between trade openness, carbon dioxide emissions, energy consumption, and economic growth for the panel of newly industrialized economies (i.e., Brazil, India, China, and South Africa) over the period of 1970-2013. Our panel cointegration estimation results found majority of the variables cointegrated and confirm the long-run association among the variables. The Granger causality test indicates bidirectional causality between carbon dioxide emissions and energy consumption. A unidirectional causality is found running from trade openness to carbon dioxide emission and energy consumption and economic growth to carbon dioxide emissions. The results of causality analysis suggest that the trade liberalization in newly industrialized economies induces higher energy consumption and carbon dioxide emissions. Furthermore, the causality results are checked using an innovative accounting approach which includes forecast-error variance decomposition test and impulse response function. The long-run coefficients are estimated using fully modified ordinary least square (FMOLS) method, and results conclude that the trade openness and economic growth reduce carbon dioxide emissions in the long run. The results of FMOLS test sound the existence of environmental Kuznets curve hypothesis. It means that trade liberalization induces carbon dioxide emission with increased national output, but it offsets that impact in the long run with reduced level of carbon dioxide emissions.
Carbon dioxide stripping in aquaculture -- part II: development of gas transfer models
Colt, John; Watten, Barnaby; Pfeiffer, Tim
2012-01-01
The basic mass transfer equation for gases such as oxygen and carbon dioxide can be derived from integration of the driving force equation. Because of the physical characteristics of the gas transfer processes, slightly different models are used for aerators tested under the non steady-state procedures, than for packed columns, or weirs. It is suggested that the standard condition for carbon dioxide should be 20 °C, 1 atm, CCO2=20 mg/kg, and XCO2=0.000285. The selection of the standard condition for carbon dioxide based on a fixed mole fraction ensures that standardized carbon dioxide transfer rates will be comparable even though the value of C*CO2 in the atmosphere is increasing with time. The computation of mass transfer for carbon dioxide is complicated by the impact of water depth and gas phase enrichment on the saturation concentration within the unit, although the importance of either factor depends strongly on the specific type of aerator. For some types of aerators, the most accurate gas phase model remains to be determined for carbon dioxide. The assumption that carbon dioxide can be treated as a non-reactive gas in packed columns may apply for cold acidic waters but not for warm alkaline waters.
Environment and Materials Stewardship | NREL
dioxide equivalent of natural gas in heating facilities and experiments; 105metric tons of carbon dioxide equivalent in fleet and equipment; 15 metric tons of carbon dioxide equivalent in fluorinated gases and refrigerants; and 10 metric tons of carbon dioxide equivalent in dry ice use in laboratories. Scope 2 accounts
40 CFR 62.15175 - What continuous emission monitoring systems must I install for gaseous pollutants?
Code of Federal Regulations, 2010 CFR
2010-07-01
..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I municipal waste combustion unit, also install, calibrate... emission monitoring system for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the...
40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I municipal waste combustion unit, also install, calibrate... emission monitoring systems for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the...
40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?
Code of Federal Regulations, 2010 CFR
2010-07-01
..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I municipal waste combustion unit, also install, calibrate... emission monitoring systems for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the...
40 CFR 62.15175 - What continuous emission monitoring systems must I install for gaseous pollutants?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I municipal waste combustion unit, also install, calibrate... emission monitoring system for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the...
Selective free radical reactions using supercritical carbon dioxide.
Cormier, Philip J; Clarke, Ryan M; McFadden, Ryan M L; Ghandi, Khashayar
2014-02-12
We report herein a means to modify the reactivity of alkenes, and particularly to modify their selectivity toward reactions with nonpolar reactants (e.g., nonpolar free radicals) in supercritical carbon dioxide near the critical point. Rate constants for free radical addition of the light hydrogen isotope muonium to ethylene, vinylidene fluoride, and vinylidene chloride in supercritical carbon dioxide are compared over a range of pressures and temperatures. Near carbon dioxide's critical point, the addition to ethylene exhibits critical speeding up, while the halogenated analogues display critical slowing. This suggests that supercritical carbon dioxide as a solvent may be used to tune alkene chemistry in near-critical conditions.
40 CFR 91.320 - Carbon dioxide analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... monthly thereafter, or within one month prior to the certification test, calibrate the NDIR carbon dioxide... the analyzer to optimize performance. (2) Zero the carbon dioxide analyzer with either purified synthetic air or zero-grade nitrogen. (3) Calibrate on each normally used operating range with carbon...
EFFECTS OF CARBON DIOXIDE AND OZONE ON GROWTH AND BIOMASS ALLOCATION IN PINUS PONDEROSA
The future productivity of forests will be affected by combinations of elevated atmospheric CO2 and O3. Because productivity of forests will, in part, be determined by growth of young trees, we evaluated shoot growth and biomass responses of Pinus ponderosa seedlings exposed to ...
USDA-ARS?s Scientific Manuscript database
Perennial horticultural crop production will be impacted by climate change effects on temperature, water availability, solar radiation, air pollution, and carbon dioxide. Horticultural crop value is derived from both the quantity and the quality of the harvested product; both of which are affected ...
Carbon dioxide removal and tradeable put options at scale
NASA Astrophysics Data System (ADS)
Lockley, Andrew; Coffman, D.’Maris
2018-05-01
Options are derivative contracts that give the purchaser the right to buy (call options) or sell (put options) a given underlying asset at a particular price at a future date. The purchaser of a put option may exercise the right to sell the asset to the issuer at any point in the future before the expiration of the contract. These rights may be contracted directly between two parties (i.e. over-the-counter), or may be sold publicly on formal exchanges, such as the Chicago Board Options Exchange. If the latter, they are called tradeable put options (TPOs) because they can be bought and sold by third-parties via a secondary market. The World Bank has a Pilot Auction Facility for methane and carbon mediation which uses TPOs in carbon-relevant markets, giving producers (of e.g. forest restoration) a floor price for their product [1]. This enables long-term producer planning. We discuss the potentially broader use of these options contracts in carbon dioxide removal (CDR) markets generally and at scale. We conclude that they can, if priced correctly, encourage rapid investment both in CDR technology and in operational capacity. TPOs could do this without creating the same type of systemic risk associated with other instruments (e.g. long-dated futures). Nevertheless, the widespread use of such instruments potentially creates novel risks. These include the political risk of premature closure [2] (conventionally rendered as ‘counting your chickens before they are hatched’) and the economic risk of overpaying for carbon removal services. These instruments require careful structuring, and do not inoculate the CDR market against regulatory disruption, or political pressure. Accordingly, we note the potential for the development of TPO markets in CDR, but we urge caution in respect of identified risks.
Carbon dioxide capture process with regenerable sorbents
Pennline, Henry W.; Hoffman, James S.
2002-05-14
A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.
Development of a prototype regenerable carbon dioxide absorber
NASA Technical Reports Server (NTRS)
Onischak, M.
1976-01-01
Design information was obtained for a new, regenerable carbon dioxide control system for extravehicular activity life support systems. Solid potassium carbonate was supported in a thin porous sheet form and fabricated into carbon dioxide absorber units. Carbon dioxide and water in the life support system atmosphere react with the potassium carbonate and form potassium bicarbonate. The bicarbonate easily reverts to the carbonate by heating to 150 deg C. The methods of effectively packing the sorbent material into EVA-sized units and the effects of inlet concentrations, flowrate, and temperature upon performance were investigated. The cycle life of the sorbent upon the repeated thermal regenerations was demonstrated through 90 cycles.
Relative Permeabilities of Plastic Films to Water and Carbon Dioxide
Woolley, Joseph T.
1967-01-01
The permeabilities of several types of plastic films to water and to carbon dioxide were measured. No material was found to have a carbon dioxide permeability as great as its water permeability. PMID:16656548
NASA Technical Reports Server (NTRS)
Liebermeister, C.
1978-01-01
Investigations are cited and explained for carbon dioxide production during fever and its relationship with heat production. The general topics of discussion are: (1) carbon dioxide production for alternating fever attacks; (2) heat balance during the perspiration phase; (3) heat balance during the chill phase; (4) the theory of fever; and (5) chill phase for other fever attacks.
Hydraulic studies of drilling microbores with supercritical steam, nitrogen and carbon dioxide
Ken Oglesby
2010-01-01
Hydraulic studies of drilling microbores at various depths and with various hole sizes, tubing, fluids and rates showed theoretical feasibility. WELLFLO SIMULATIONS REPORT STEP 4: DRILLING 10,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE STEP 5: DRILLING 20,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE STEP 6: DRILLING 30,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE Mehmet Karaaslan, MSI
Carbon Dioxide Detection and Indoor Air Quality Control.
Bonino, Steve
2016-04-01
When building ventilation is reduced, energy is saved because it is not necessary to heat or cool as much outside air. Reduced ventilation can result in higher levels of carbon dioxide, which may cause building occupants to experience symptoms. Heating or cooling for ventilation air can be enhanced by a DCV system, which can save energy while providing a comfortable environment. Carbon dioxide concentrations within a building are often used to indicate whether adequate fresh air is being supplied to the building. These DCV systems use carbon dioxide sensors in each space or in the return air and adjust the ventilation based on carbon dioxide concentration; the higher the concentration, the more people occupy the space relative to the ventilation rate. With a carbon dioxide sensor DCV system, the fresh air ventilation rate varies based on the number ofpeople in the space, saving energy while maintaining a safe and comfortable environment.
Advanced air revitalization system modeling and testing
NASA Technical Reports Server (NTRS)
Dall-Baumann, Liese; Jeng, Frank; Christian, Steve; Edeer, Marybeth; Lin, Chin
1990-01-01
To support manned lunar and Martian exploration, an extensive evaluation of air revitalization subsystems (ARS) is being conducted. The major operations under study include carbon dioxide removal and reduction; oxygen and nitrogen production, storage, and distribution; humidity and temperature control; and trace contaminant control. A comprehensive analysis program based on a generalized block flow model was developed to facilitate the evaluation of various processes and their interaction. ASPEN PLUS was used in modelling carbon dioxide removal and reduction. Several life support test stands were developed to test new and existing technologies for their potential applicability in space. The goal was to identify processes which use compact, lightweight equipment and maximize the recovery of oxygen and water. The carbon dioxide removal test stands include solid amine/vacuum desorption (SAVD), regenerative silver oxide chemisorption, and electrochemical carbon dioxide concentration (EDC). Membrane-based carbon dioxide removal and humidity control, catalytic reduction of carbon dioxide, and catalytic oxidation of trace contaminants were also investigated.
Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA
2011-10-11
Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.
Geologic map showing springs rich in carbon dioxide or or chloride in California
Barnes, Ivan; Irwin, William P.; Gibson, H.A.
1975-01-01
Carbon dioxide- and chloride-rich springs occur in all geologic provinces in California, but are most abundant in the Coast Ranges and the Great Valley. The carbon-dioxide-rich springs issue mainly from Franciscan terrane; they also are rich in boron and are of the metamorphic type (White, 1957). Based on isotopic data, either the carbon dioxide or the water, or both, may be of metamorphic origin. Because of high magnesium values, the water of many of the carbon-dioxide-rich springs is thought to have passed through serpentinite. The chloride-rich waters are most common in rocks of the Great Valley sequence. Nearly all are more dilute than present-day sea water. The similarity in isotopic compositions of the metamorphic carbon-dioxide-rich water and the chloride-rich water may indicate a similar extent of water-rock interaction.
Raie, Diana S.; Mhatre, Eisha; El-Desouki, Doaa S.; Labena, Ahmed; El-Ghannam, Gamal; Farahat, Laila A.; Youssef, Tareq; Fritzsche, Wolfgang; Kovács, Ákos T.
2018-01-01
The present work was targeted to design a surface against cell seeding and adhering of bacteria, Bacillus subtilis. A multi-walled carbon nanotube/titanium dioxide nano-power was produced via simple mixing of carbon nanotube and titanium dioxide nanoparticles during the sol-gel process followed by heat treatment. Successfully, quercetin was immobilized on the nanocomposite via physical adsorption to form a quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite. The adhesion of bacteria on the coated-slides was verified after 24 h using confocal laser-scanning microscopy. Results indicated that the quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite had more negativity and higher recovery by glass surfaces than its counterpart. Moreover, coating surfaces with the quercetin-modified nanocomposite lowered both hydrophilicity and surface-attached bacteria compared to surfaces coated with the multi-walled carbon nanotubes/titanium dioxide nanocomposite. PMID:29346268
Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA
2012-04-10
A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.
Ruthenium-catalysed alkoxycarbonylation of alkenes with carbon dioxide.
Wu, Lipeng; Liu, Qiang; Fleischer, Ivana; Jackstell, Ralf; Beller, Matthias
2014-01-01
Alkene carbonylations represent a major technology for the production of value-added bulk and fine chemicals. Nowadays, all industrial carbonylation processes make use of highly toxic and flammable carbon monoxide. Here we show the application of abundantly available carbon dioxide as C1 building block for the alkoxycarbonylations of industrially important olefins in the presence of a convenient and inexpensive ruthenium catalyst system. In our system, carbon dioxide works much better than the traditional combination of carbon monoxide and alcohols. The unprecedented in situ formation of carbon monoxide from carbon dioxide and alcohols permits an efficient synthesis of carboxylic acid esters, which can be used as detergents and polymer-building blocks. Notably, this transformation allows the catalytic formation of C-C bonds with carbon dioxide as C1 source and avoids the use of sensitive and/or expensive reducing agents (for example, Grignard reagents, diethylzinc or triethylaluminum).
Encapsulated liquid sorbents for carbon dioxide capture
NASA Astrophysics Data System (ADS)
Vericella, John J.; Baker, Sarah E.; Stolaroff, Joshuah K.; Duoss, Eric B.; Hardin, James O.; Lewicki, James; Glogowski, Elizabeth; Floyd, William C.; Valdez, Carlos A.; Smith, William L.; Satcher, Joe H.; Bourcier, William L.; Spadaccini, Christopher M.; Lewis, Jennifer A.; Aines, Roger D.
2015-02-01
Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.
W.A. Parish Post Combustion CO 2 Capture and Sequestration Project Final Public Design Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armpriester, Anthony
The Petra Nova Project is a commercial scale post-combustion carbon dioxide capture project that is being developed by a joint venture between NRG Energy (NRG) and JX Nippon Oil and Gas Exploration (JX). The project is designed to separate and capture carbon dioxide from an existing coal-fired unit's flue gas slipstream at NRG's W.A. Parish Generation Station located southwest of Houston, Texas. The captured carbon dioxide will be transported by pipeline and injected into the West Ranch oil field to boost oil production. The project, which is partially funded by financial assistance from the U.S. Department of Energy will usemore » Mitsubishi Heavy Industries of America, Inc.'s Kansai Mitsubishi Carbon Dioxide Recovery (KM-CDR(R)) advanced amine-based carbon dioxide absorption technology to treat and capture at least 90% of the carbon dioxide from a 240 megawatt equivalent flue gas slipstream off of Unit 8 at W.A. Parish. The project will capture approximately 5,000 tons of carbon dioxide per day or 1.5 million tons per year that Unit 8 would otherwise emit, representing the largest commercial scale deployment of post-combustion carbon dioxide capture at a coal power plant to date. The joint venture issued full notice to proceed in July 2014 and when complete, the project is expected to be the world's largest post-combustion carbon dioxide capture facility on an existing coal plant. The detailed engineering is sufficiently complete to prepare and issue the Final Public Design Report.« less
"No future without a past" or "History will teach us nothing"?
NASA Astrophysics Data System (ADS)
Zeebe, R. E.
2012-12-01
.In 1947, Harold Clayton Urey published a landmark paper on the thermodynamic properties of isotopic substances. With his work, Urey paved the way for the reconstruction of paleotemperatures based on small differences in the distribution of stable isotopes in compounds such as sedimentary calcium carbonate. Cesare Emiliani (a student of Urey) followed in Urey's footsteps and in 1955 provided temperature reconstructions over several glacial cycles based on stable isotopes - as Urey had proposed. Emiliani is today considered the father of Paleoceanography. Over the past 60 years, the field has grown immensely and has provided unique and fundamental knowledge about the functioning of the Earth system and Earth's climatic history. In this presentation, I will explain why studying the climate of the past is fun and important. I will make the case that studying past climate events is indispensable to predicting future climate change resulting from human activities ("No future without a past"). If mankind continues on the current path of carbon emissions, atmospheric carbon dioxide concentrations will reach levels probably unprecedented during the past 30 million years. The rate of anthropogenic carbon input is likely unprecedented during the past 56 million years. Recent evidence from paleoclimate archives reveals dramatic and long-lived consequences for Earth's climate and environment following large and rapid carbon release into the ocean-atmosphere system. While the evidence for the close link between rising atmospheric carbon dioxide levels and past climate change is unequivocal, such lessons from the past seem to be largely ignored at the moment ("History will teach us nothing"?). Currently, there is no indication that mankind will start reducing carbon emissions any time soon. In 1973, Emiliani warned: "If the present climatic balance is not maintained, we may soon be confronted with either a runaway glaciation or runaway deglaciation." The past forty years of climate research have shown that the latter scenario is overwhelmingly more likely.
Extraction of Carbon Dioxide and Hydrogen from Seawater and Hydrocarbon Production Therefrom
2016-04-05
extracted from the acidified seawater. Optionally, the ion exchange reaction can be conducted under conditions which produce hydrogen as well as carbon dioxide. The carbon dioxide and hydrogen may be used to produce hydrocarbons.
International Space Station Carbon Dioxide Removal Assembly Testing
NASA Technical Reports Server (NTRS)
Knox, James C.
2000-01-01
Performance testing of the International Space Station Carbon Dioxide Removal Assembly flight hardware in the United States Laboratory during 1999 is described. The CDRA exceeded carbon dioxide performance specifications and operated flawlessly. Data from this test is presented.
Method for enhanced oil recovery
Comberiati, Joseph R.; Locke, Charles D.; Kamath, Krishna I.
1980-01-01
The present invention is directed to an improved method for enhanced recovery of oil from relatively "cold" reservoirs by carbon dioxide flooding. In oil reservoirs at a temperature less than the critical temperature of 87.7.degree. F. and at a pore pressure greater than the saturation pressure of carbon dioxide at the temperature of the reservoir, the carbon dioxide remains in the liquid state which does not satisfactorily mix with the oil. However, applicants have found that carbon dioxide can be vaporized in situ in the reservoir by selectively reducing the pore pressure in the reservoir to a value less than the particular saturated vapor pressure so as to greatly enhance the mixing of the carbon dioxide with the oil.
Decreased abundance of crustose coralline algae due to ocean acidification
Kuffner, Ilsa B.; Andersson, Andreas J; Jokiel, Paul L.; Rodgers, Ku'ulei S.; Mackenzie, Fred T.
2008-01-01
Owing to anthropogenic emissions, atmospheric concentrations of carbon dioxide could almost double between 2006 and 2100 according to business-as-usual carbon dioxide emission scenarios1. Because the ocean absorbs carbon dioxide from the atmosphere2, 3, 4, increasing atmospheric carbon dioxide concentrations will lead to increasing dissolved inorganic carbon and carbon dioxide in surface ocean waters, and hence acidification and lower carbonate saturation states2, 5. As a consequence, it has been suggested that marine calcifying organisms, for example corals, coralline algae, molluscs and foraminifera, will have difficulties producing their skeletons and shells at current rates6, 7, with potentially severe implications for marine ecosystems, including coral reefs6, 8, 9, 10, 11. Here we report a seven-week experiment exploring the effects of ocean acidification on crustose coralline algae, a cosmopolitan group of calcifying algae that is ecologically important in most shallow-water habitats12, 13, 14. Six outdoor mesocosms were continuously supplied with sea water from the adjacent reef and manipulated to simulate conditions of either ambient or elevated seawater carbon dioxide concentrations. The recruitment rate and growth of crustose coralline algae were severely inhibited in the elevated carbon dioxide mesocosms. Our findings suggest that ocean acidification due to human activities could cause significant change to benthic community structure in shallow-warm-water carbonate ecosystems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-1 Application. (a) Where a carbon dioxide... are based on a “high pressure system,” i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems,” i. e., those in which the carbon...
Code of Federal Regulations, 2012 CFR
2012-10-01
... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-1 Application. (a) Where a carbon dioxide... are based on a “high pressure system,” i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems,” i. e., those in which the carbon...
Code of Federal Regulations, 2013 CFR
2013-10-01
... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-1 Application. (a) Where a carbon dioxide... are based on a “high pressure system,” i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems,” i. e., those in which the carbon...
Code of Federal Regulations, 2014 CFR
2014-10-01
... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-1 Application. (a) Where a carbon dioxide... are based on a “high pressure system,” i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems,” i. e., those in which the carbon...
Carbon Dioxide and the Greenhouse Effect: A Problem Evaluation Activity.
ERIC Educational Resources Information Center
Brewer, Carol A.; Beiswenger, Jane M.
1993-01-01
Describes exercises to examine the global carbon cycle. Students are asked to predict consequences of increased carbon dioxide emissions into the atmosphere and to suggest ways to mitigate problems associated with these higher levels of atmospheric carbon dioxide. A comparison modeling exercise examines some of the variables related to the success…
Lu, Wanjun; Guo, Huirong; Chou, I.-Ming; Burruss, R.C.; Li, Lanlan
2013-01-01
Accurate values of diffusion coefficients for carbon dioxide in water and brine at reservoir conditions are essential to our understanding of transport behavior of carbon dioxide in subsurface pore space. However, the experimental data are limited to conditions at low temperatures and pressures. In this study, diffusive transfer of carbon dioxide in water at pressures up to 45 MPa and temperatures from 268 to 473 K was observed within an optical capillary cell via time-dependent Raman spectroscopy. Diffusion coefficients were estimated by the least-squares method for the measured variations in carbon dioxide concentration in the cell at various sample positions and time. At the constant pressure of 20 MPa, the measured diffusion coefficients of carbon dioxide in water increase with increasing temperature from 268 to 473 K. The relationship between diffusion coefficient of carbon dioxide in water [D(CO2) in m2/s] and temperature (T in K) was derived with Speedy–Angell power-law approach as: D(CO2)=D0[T/Ts-1]m where D0 = 13.942 × 10−9 m2/s, Ts = 227.0 K, and m = 1.7094. At constant temperature, diffusion coefficients of carbon dioxide in water decrease with pressure increase. However, this pressure effect is rather small (within a few percent).
A new look at atmospheric carbon dioxide
NASA Astrophysics Data System (ADS)
Hofmann, David J.; Butler, James H.; Tans, Pieter P.
Carbon dioxide is increasing in the atmosphere and is of considerable concern in global climate change because of its greenhouse gas warming potential. The rate of increase has accelerated since measurements began at Mauna Loa Observatory in 1958 where carbon dioxide increased from less than 1 part per million per year (ppm yr -1) prior to 1970 to more than 2 ppm yr -1 in recent years. Here we show that the anthropogenic component (atmospheric value reduced by the pre-industrial value of 280 ppm) of atmospheric carbon dioxide has been increasing exponentially with a doubling time of about 30 years since the beginning of the industrial revolution (˜1800). Even during the 1970s, when fossil fuel emissions dropped sharply in response to the "oil crisis" of 1973, the anthropogenic atmospheric carbon dioxide level continued increasing exponentially at Mauna Loa Observatory. Since the growth rate (time derivative) of an exponential has the same characteristic lifetime as the function itself, the carbon dioxide growth rate is also doubling at the same rate. This explains the observation that the linear growth rate of carbon dioxide has more than doubled in the past 40 years. The accelerating growth rate is simply the outcome of exponential growth in carbon dioxide with a nearly constant doubling time of about 30 years (about 2%/yr) and appears to have tracked human population since the pre-industrial era.
Thompson, Michael; Gamage, Dananjali; Hirotsu, Naoki; Martin, Anke; Seneweera, Saman
2017-01-01
Plant responses to atmospheric carbon dioxide will be of great concern in the future, as carbon dioxide concentrations ([CO2]) are predicted to continue to rise. Elevated [CO2] causes increased photosynthesis in plants, which leads to greater production of carbohydrates and biomass. Which organ the extra carbohydrates are allocated to varies between species, but also within species. These carbohydrates are a major energy source for plant growth, but they also act as signaling molecules and have a range of uses beyond being a source of carbon and energy. Currently, there is a lack of information on how the sugar sensing and signaling pathways of plants are affected by the higher content of carbohydrates produced under elevated [CO2]. Particularly, the sugar signaling pathways of roots are not well understood, along with how they are affected by elevated [CO2]. At elevated [CO2], some plants allocate greater amounts of sugars to roots where they are likely to act on gene regulation and therefore modify nutrient uptake and transport. Glucose and sucrose also promote root growth, an effect similar to what occurs under elevated [CO2]. Sugars also crosstalk with hormones to regulate root growth, but also affect hormone biosynthesis. This review provides an update on the role of sugars as signaling molecules in plant roots and thus explores the currently known functions that may be affected by elevated [CO2]. PMID:28848452
Thompson, Michael; Gamage, Dananjali; Hirotsu, Naoki; Martin, Anke; Seneweera, Saman
2017-01-01
Plant responses to atmospheric carbon dioxide will be of great concern in the future, as carbon dioxide concentrations ([CO 2 ]) are predicted to continue to rise. Elevated [CO 2 ] causes increased photosynthesis in plants, which leads to greater production of carbohydrates and biomass. Which organ the extra carbohydrates are allocated to varies between species, but also within species. These carbohydrates are a major energy source for plant growth, but they also act as signaling molecules and have a range of uses beyond being a source of carbon and energy. Currently, there is a lack of information on how the sugar sensing and signaling pathways of plants are affected by the higher content of carbohydrates produced under elevated [CO 2 ]. Particularly, the sugar signaling pathways of roots are not well understood, along with how they are affected by elevated [CO 2 ]. At elevated [CO 2 ], some plants allocate greater amounts of sugars to roots where they are likely to act on gene regulation and therefore modify nutrient uptake and transport. Glucose and sucrose also promote root growth, an effect similar to what occurs under elevated [CO 2 ]. Sugars also crosstalk with hormones to regulate root growth, but also affect hormone biosynthesis. This review provides an update on the role of sugars as signaling molecules in plant roots and thus explores the currently known functions that may be affected by elevated [CO 2 ].
Thickness Map of Buried Carbon-Dioxide Deposit
2011-04-21
NASA Mars Reconnaissance Orbiter color-codes thickness estimates in a newly found, buried deposit of frozen carbon dioxide, dry ice, near the south pole of Mars contains ~30 times more carbon dioxide than previously estimated to be frozen near the pole.
Organic syntheses employing supercritical carbon dioxide as a reaction solvent
NASA Technical Reports Server (NTRS)
Barstow, Leon E. (Inventor); Ward, Glen D. (Inventor); Bier, Milan (Inventor)
1991-01-01
Chemical reactions are readily carried out using supercritical carbon dioxide as the reaction medium. Supercritical carbon dioxide is of special value as a reaction medium in reactions for synthesizing polypeptides, for sequencing polypeptides, or for amino acid analysis.
Organic syntheses employing supercritical carbon dioxide as a reaction solvent
NASA Technical Reports Server (NTRS)
Barstow, Leon E. (Inventor); Ward, Glen D. (Inventor); Bier, Milan (Inventor)
1993-01-01
Chemical reactions are readily carried out using supercritical carbon dioxide as the reaction medium. Supercritical carbon dioxide is of special value as a reaction medium in reactions for synthesizing polypeptides, for sequencing polypeptides, or for amino acid analysis.
Selective Formation of Trimethylene Carbonate (TMC): Atmospheric Pressure Carbon Dioxide Utilization
Buckley, Benjamin R; Patel, Anish P; Wijayantha, K G Upul
2015-01-01
Carbon dioxide utilisation (CDU) is currently gaining increased interest due to the abundance of CO2 and its possible application as a C1 building block. We herein report the first example of atmospheric pressure carbon dioxide incorporation into oxetane to selectively form trimethylene carbonate (TMC), which is a significant challenge as TMC is thermodynamically less favoured than its corresponding co-polymer. PMID:26213485
Buckley, Benjamin R; Patel, Anish P; Wijayantha, K G Upul
2015-01-01
Carbon dioxide utilisation (CDU) is currently gaining increased interest due to the abundance of CO 2 and its possible application as a C 1 building block. We herein report the first example of atmospheric pressure carbon dioxide incorporation into oxetane to selectively form trimethylene carbonate (TMC), which is a significant challenge as TMC is thermodynamically less favoured than its corresponding co-polymer.
Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa
2017-01-01
Achieving a long-term food security and preventing hunger include a better nutrition through sustainable systems of production, distribution, and consumption. Nonetheless, the quest for an alternative to increasing global food supply to meet the growing demand has led to the use of poor agricultural practices that promote climate change. Given the contribution of the agricultural ecosystem towards greenhouse gas (GHG) emissions, this study investigated the causal nexus between carbon dioxide emissions and agricultural ecosystem by employing a data spanning from 1961 to 2012. Evidence from long-run elasticity shows that a 1 % increase in the area of rice paddy harvested will increase carbon dioxide emissions by 1.49 %, a 1 % increase in biomass-burned crop residues will increase carbon dioxide emissions by 1.00 %, a 1 % increase in cereal production will increase carbon dioxide emissions by 1.38 %, and a 1 % increase in agricultural machinery will decrease carbon dioxide emissions by 0.09 % in the long run. There was a bidirectional causality between carbon dioxide emissions, cereal production, and biomass-burned crop residues. The Granger causality shows that the agricultural ecosystem in Ghana is sensitive to climate change vulnerability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pienkos, P.
2012-09-01
Combustion flue gases are a major contributor to carbon dioxide emissions into the Earth's atmosphere, a factor that has been linked to the possible global climate change. It is, therefore, critical to begin thinking seriously about ways to reduce this influx into the atmosphere. Using carbon dioxide from fossil fuel combustion as a feedstock for the growth, photosynthetic microorganisms can provide a large sink for carbon assimilation as well as a feedstock for the production of significant levels of biofuels. Combining microalgal farming with fossil fuel energy production has great potential to diminish carbon dioxide releases into the atmosphere, asmore » well as contribute to the production of biofuels (e.g., biodiesel, renewable diesel and gasoline and jet fuel) as well as valuable co-products such as animal feeds and green chemicals. CO2 capture may be a regulatory requirement in future new coal or natural gas power plants and will almost certainly become an opportunity for commerce, the results of such studies may provide industries in the US and Canada with both regulatory relief and business opportunities as well as the ability to meet environmental and regulatory requirements, and to produce large volumes of fuels and co-products.« less
Methods and systems for producing syngas
Hawkes, Grant L; O& #x27; Brien, James E; Stoots, Carl M; Herring, J. Stephen; McKellar, Michael G; Wood, Richard A; Carrington, Robert A; Boardman, Richard D
2013-02-05
Methods and systems are provided for producing syngas utilizing heat from thermochemical conversion of a carbonaceous fuel to support decomposition of at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells. Simultaneous decomposition of carbon dioxide and water or steam by one or more solid-oxide electrolysis cells may be employed to produce hydrogen and carbon monoxide. A portion of oxygen produced from at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells is fed at a controlled flow rate in a gasifier or combustor to oxidize the carbonaceous fuel to control the carbon dioxide to carbon monoxide ratio produced.
Ocean Fertilization for Sequestration of Carbon Dioxide from the Atmosphere
NASA Astrophysics Data System (ADS)
Boyd, Philip W.
The ocean is a major sink for both preindustrial and anthropogenic carbon dioxide. Both physically and biogeochemically driven pumps, termed the solubility and biological pump, respectively Fig.5.1) are responsible for the majority of carbon sequestration in the ocean's interior [1]. The solubility pump relies on ocean circulation - specifically the impact of cooling of the upper ocean at high latitudes both enhances the solubility of carbon dioxide and the density of the waters which sink to great depth (the so-called deepwater formation) and thereby sequester carbon in the form of dissolved inorganic carbon (Fig.5.1). The biological pump is driven by the availability of preformed plant macronutrients such as nitrate or phosphate which are taken up by phytoplankton during photosynthetic carbon fixation. A small but significant proportion of this fixed carbon sinks into the ocean's interior in the form of settling particles, and in order to maintain equilibrium carbon dioxide from the atmosphere is transferred across the air-sea interface into the ocean (the so-called carbon drawdown) thereby decreasing atmospheric carbon dioxide (Fig.5.1).Fig.5.1
Open-cycle magnetohydrodynamic power plant with CO.sub.2 recycling
Berry, Gregory F.
1991-01-01
A method of converting the chemical energy of fossil fuel to electrical and mechanical energy with a MHD generator. The fossil fuel is mixed with preheated oxygen and carbon dioxide and a conducting seed of potassium carbonate to form a combustive and electrically conductive mixture which is burned in a combustion chamber. The burned combustion mixture is passed through a MHD generator to generate electrical energy. The burned combustion mixture is passed through a diffuser to restore the mixture approximately to atmospheric pressure, leaving a spent combustion mixture which is used to heat oxygen from an air separation plant and recycled carbon dioxide for combustion in a high temperature oxygen preheater and for heating water/steam for producing superheated steam. Relatively pure carbon dioxide is separated from the spent combustion mixture for further purification or for exhaust, while the remainder of the carbon dioxide is recycled from the spent combustion mixture to a carbon dioxide purification plant for removal of water and any nitrous oxides present, leaving a greater than 98% pure carbon dioxide. A portion of the greater then 98% pure carbon dioxide stream is recovered and the remainder is recycled to combine with the oxygen for preheating and combination with the fossil fuel to form a combustion mixture.
Method of determining pH by the alkaline absorption of carbon dioxide
Hobbs, David T.
1992-01-01
A method for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction.
Supercritical carbon dioxide: a solvent like no other
Peach, Jocelyn
2014-01-01
Summary Supercritical carbon dioxide (scCO2) could be one aspect of a significant and necessary movement towards green chemistry, being a potential replacement for volatile organic compounds (VOCs). Unfortunately, carbon dioxide has a notoriously poor solubilising power and is famously difficult to handle. This review examines attempts and breakthroughs in enhancing the physicochemical properties of carbon dioxide, focusing primarily on factors that impact solubility of polar and ionic species and attempts to enhance scCO2 viscosity. PMID:25246947
NASA Astrophysics Data System (ADS)
Khasanov, M. K.; Stolpovsky, M. V.; Gimaltdinov, I. K.
2018-05-01
In this article, in a flat-one-dimensional approximation, a mathematical model is presented for injecting warm carbon dioxide into a methane hydrate formation of finite length. It is established that the model of formation of hydrate of carbon dioxide in the absence of an area saturated with methane and water, under certain parameters, leads to thermodynamic contradiction. The mathematical model of carbon dioxide injection with formation of the region saturated with methane and water is constructed.
Improving carbon fixation pathways
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ducat, DC; Silver, PA
2012-08-01
A recent resurgence in basic and applied research on photosynthesis has been driven in part by recognition that fulfilling future food and energy requirements will necessitate improvements in crop carbon-fixation efficiencies. Photosynthesis in traditional terrestrial crops is being reexamined in light of molecular strategies employed by photosynthetic microbes to enhance the activity of the Calvin cycle. Synthetic biology is well-situated to provide original approaches for compartmentalizing and enhancing photosynthetic reactions in a species independent manner. Furthermore, the elucidation of alternative carbon-fixation routes distinct from the Calvin cycle raises possibilities that novel pathways and organisms can be utilized to fix atmosphericmore » carbon dioxide into useful materials.« less
Maia, Luisa B; Fonseca, Luis; Moura, Isabel; Moura, José J G
2016-07-20
Carbon dioxide accumulation is a major concern for the ecosystems, but its abundance and low cost make it an interesting source for the production of chemical feedstocks and fuels. However, the thermodynamic and kinetic stability of the carbon dioxide molecule makes its activation a challenging task. Studying the chemistry used by nature to functionalize carbon dioxide should be helpful for the development of new efficient (bio)catalysts for atmospheric carbon dioxide utilization. In this work, the ability of Desulfovibrio desulfuricans formate dehydrogenase (Dd FDH) to reduce carbon dioxide was kinetically and mechanistically characterized. The Dd FDH is suggested to be purified in an inactive form that has to be activated through a reduction-dependent mechanism. A kinetic model of a hysteretic enzyme is proposed to interpret and predict the progress curves of the Dd FDH-catalyzed reactions (initial lag phase and subsequent faster phase). Once activated, Dd FDH is able to efficiently catalyze, not only the formate oxidation (kcat of 543 s(-1), Km of 57.1 μM), but also the carbon dioxide reduction (kcat of 46.6 s(-1), Km of 15.7 μM), in an overall reaction that is thermodynamically and kinetically reversible. Noteworthy, both Dd FDH-catalyzed formate oxidation and carbon dioxide reduction are completely inactivated by cyanide. Current FDH reaction mechanistic proposals are discussed and a different mechanism is here suggested: formate oxidation and carbon dioxide reduction are proposed to proceed through hydride transfer and the sulfo group of the oxidized and reduced molybdenum center, Mo(6+)═S and Mo(4+)-SH, are suggested to be the direct hydride acceptor and donor, respectively.
Le Quere, C. [University of East Anglia, Norwich UK; Moriarty, R. [University of East Anglia, Norwich UK; Andrew, R. M. [Univ. of Oslo (Norway); Canadell, J. G. [Commonwealth Scientific and Industrial Research Organization (CSIRO) Oceans and Atmosphere, Canberra ACT (Australia); Sitch, S. [University of Exeter, Exter UK; Boden, T. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) Carbon Dioxide Information Analysis Center (CDIAC); al., et
2015-01-01
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations.
Development of a low cost unmanned aircraft system for atmospheric carbon dioxide leak detection
NASA Astrophysics Data System (ADS)
Mitchell, Taylor Austin
Carbon sequestration, the storage of carbon dioxide gas underground, has the potential to reduce global warming by removing a greenhouse gas from the atmosphere. These storage sites, however, must first be monitored to detect if carbon dioxide is leaking back out to the atmosphere. As an alternative to traditional large ground-based sensor networks to monitor CO2 levels for leaks, unmanned aircraft offer the potential to perform in-situ atmospheric leak detection over large areas for a fraction of the cost. This project developed a proof-of-concept sensor system to map relative carbon dioxide levels to detect potential leaks. The sensor system included a Sensair K-30 FR CO2 sensor, GPS, and altimeter connected an Arduino microcontroller which logged data to an onboard SD card. Ground tests were performed to verify and calibrate the system including wind tunnel tests to determine the optimal configuration of the system for the quickest response time (4-8 seconds based upon flowrate). Tests were then conducted over a controlled release of CO 2 in addition to over controlled rangeland fires which released carbon dioxide over a large area as would be expected from a carbon sequestration source. 3D maps of carbon dioxide were developed from the system telemetry that clearly illustrated increased CO2 levels from the fires. These tests demonstrated the system's ability to detect increased carbon dioxide concentrations in the atmosphere.
Green hydrophilic interaction chromatography using ethanol-water-carbon dioxide mixtures.
Pereira, Alberto dos Santos; Girón, Ana Jiménez; Admasu, Engdawork; Sandra, Pat
2010-03-01
In hydrophilic interaction chromatography (HILIC), best results are obtained with high concentrations of acetonitrile. In the framework of green chromatography, different concentrations of carbon dioxide were added to the mobile phases acetonitrile-water and ethanol-water and the impact on retention and separation in HILIC using bare silica as stationary phase was explored. The features of HILIC using enhanced-fluidity mobile phases are illustrated with the analysis of the nucleobases and a mixture containing the nucleobases and cortisol, flurbiprofen, theophylline and caffeine. For both organic constituents, the elution window is widened in function of the carbon dioxide concentration and selectivity changes. At high concentrations of carbon dioxide in ethanol, separations were similar to those obtained with acetonitrile without carbon dioxide addition.
Membrane loop process for separating carbon dioxide for use in gaseous form from flue gas
Wijmans, Johannes G; Baker, Richard W; Merkel, Timothy C
2014-10-07
The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream, to a destination where it is used or confined, preferably in an environmentally benign manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Selow, E.R.; Cobden, P.D.; Verbraeken, P.A.
2009-05-15
A novel route for precombustion decarbonization is the sorption-enhanced water-gas shift (SEWGS) process. In this process carbon dioxide is removed from a synthesis gas at elevated temperature by adsorption. Simultaneously, carbon monoxide is converted to carbon dioxide by the water-gas shift reaction. The periodic adsorption and desorption of carbon dioxide is induced by a pressure swing cycle, and the cyclic capacity can be amplified by purging with steam. From previous studies is it known that for SEWGS applications, hydrotalcite-based materials are particularly attractive as sorbent, and commercial high-temperature shift catalysts can be used for the conversion of carbon monoxide. Tabletsmore » of a potassium promoted hydrotalcite-based material are characterized in both breakthrough and cyclic experiments in a 2 m tall fixed-bed reactor. When exposed to a mixture of carbon dioxide, steam, and nitrogen at 400{sup o}C, the material shows a breakthrough capacity of 1.4 mmol/g. In subsequent experiments the material was mixed with tablets of promoted iron-chromium shift catalyst and exposed to a mixture of carbon dioxide, carbon monoxide, steam, hydrogen, and nitrogen. It is demonstrated that carbon monoxide conversion can be enhanced to 100% in the presence of a carbon dioxide sorbent. At breakthrough, carbon monoxide and carbon dioxide simultaneously appear at the end of the bed. During more than 300 cycles of adsorption/reaction and desorption, the capture rate, and carbon monoxide conversion are confirmed to be stable. Two different cycle types are investigated: one cycle with a CO{sub 2} rinse step and one cycle with a steam rinse step. The performance of both SEWGS cycles are discussed.« less
Effects of climate change on forest insect and disease outbreaks
David W. Williams; Robert P. Long; Philip M. Wargo; Andrew M. Liebhold
2000-01-01
General circulation models (GCMs) predict dramatic future changes in climate for the northeastern and north central United States under doubled carbon dioxide (CO2) levels (Hansen et al., 1984; Manabe and Wetherald, 1987; Wilson and Mitchell, 1987; Cubasch and Cess, 1990; Mitchell et al., 1990). January temperatures are projected to rise as much...
USDA-ARS?s Scientific Manuscript database
Carbon dioxide (CO2) concentrations in the earth’s atmosphere have continually increased each year since the beginning of the Industrial revolution and are expected to continue rising in the future, which could have a dramatic impact on agricultural production. Previous research has shown that eleva...
Control of yellow and purple nutsedge in elevated co2 environments with glyphosate and halosulfuron
USDA-ARS?s Scientific Manuscript database
Atmospheric concentrations of carbon dioxide (CO2) have significantly increased over the past century and are expected to continue increasing in the future. While elevated levels of CO2 will likely result in higher crop yields, weed growth is also highly likely to increase. An experiment was conduct...
Managing the Future: Public Policy, Scientific Uncertainty, and Global Warming.
ERIC Educational Resources Information Center
Jamieson, Dale
Due to the injection of carbon dioxide and various other gasses into the atmosphere, the world of the 21st century may well have a climate that is beyond the parameters of human existence. Physical science produces information regarding the physical effects of increasing concentrations of "greenhouse" gasses. Once this information is…
Long-term leaf production response to elevated atmospheric carbon dioxide and tropospheric ozone
Alan F. Talhelm; Kurt S. Pregitzer; Christian P. Giardina
2011-01-01
Elevated concentrations of atmospheric CO2 and tropospheric O3 will profoundly influence future forest productivity, but our understanding of these influences over the long-term is poor. Leaves are key indicators of productivity and we measured the mass, area, and nitrogen concentration of leaves collected in litter traps...
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, M R
1985-12-01
The report discusses how climate change and vegetative response will affect selected areas of our way of life as a result of increased carbon dioxide concentrations. Needs for future research are identified. Separate abstracts have been prepared for individual chapters. (ACR)
Current progress towards the metabolic engineering of plant oil for hydroxy fatty acids production
USDA-ARS?s Scientific Manuscript database
Vegetable oil is not only edible but also can be used for industrial purposes. The industrial demand for vegetable oil will increase with the future depletion of fossil fuels and environmental problems such as climate change, caused by increased carbon dioxide in the air. Some plants accumulate high...
49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102-1 Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon dioxide, refrigerated liquid...
49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102-1 Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon dioxide, refrigerated liquid...
49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102-1 Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon dioxide, refrigerated liquid...
46 CFR 193.15-35 - Enclosure openings.
Code of Federal Regulations, 2010 CFR
2010-10-01
... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces which are protected by carbon dioxide extinguishing systems provisions... to that space. (b) Where natural ventilation is provided for spaces protected by a carbon dioxide...
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-30 Alarms. (a) Spaces which are protected by a carbon dioxide... such spaces which will be automatically sounded when the carbon dioxide is admitted to the space. The...
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-30 Alarms. (a) Spaces which are protected by a carbon dioxide... such spaces which will be automatically sounded when the carbon dioxide is admitted to the space. The...
40 CFR 86.1524 - Carbon dioxide analyzer calibration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Carbon dioxide analyzer calibration. 86.1524 Section 86.1524 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Test Procedures § 86.1524 Carbon dioxide analyzer calibration. (a) The calibration requirements for the...
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-30 Alarms. (a) Spaces which are protected by a carbon dioxide... such spaces which will be automatically sounded when the carbon dioxide is admitted to the space. The...
46 CFR 34.15-30 - Alarms-T/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing...) which are protected by a carbon dioxide extinguishing system and are normally accessible to persons on... the carbon dioxide is admitted to the space. The alarm shall be conspicuously and centrally located...
40 CFR 86.1524 - Carbon dioxide analyzer calibration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Carbon dioxide analyzer calibration. 86.1524 Section 86.1524 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Procedures § 86.1524 Carbon dioxide analyzer calibration. (a) The calibration requirements for the dilute...
46 CFR 34.15-30 - Alarms-T/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing...) which are protected by a carbon dioxide extinguishing system and are normally accessible to persons on... the carbon dioxide is admitted to the space. The alarm shall be conspicuously and centrally located...
46 CFR 34.15-30 - Alarms-T/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing...) which are protected by a carbon dioxide extinguishing system and are normally accessible to persons on... the carbon dioxide is admitted to the space. The alarm shall be conspicuously and centrally located...
46 CFR 193.15-35 - Enclosure openings.
Code of Federal Regulations, 2014 CFR
2014-10-01
... EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces which are protected by carbon dioxide extinguishing... carbon dioxide extinguishing system, provisions shall be made for easily and effectively closing off the...
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-30 Alarms. (a) Spaces which are protected by a carbon dioxide... such spaces which will be automatically sounded when the carbon dioxide is admitted to the space. The...
46 CFR 193.15-35 - Enclosure openings.
Code of Federal Regulations, 2013 CFR
2013-10-01
... EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces which are protected by carbon dioxide extinguishing... carbon dioxide extinguishing system, provisions shall be made for easily and effectively closing off the...
46 CFR 193.15-35 - Enclosure openings.
Code of Federal Regulations, 2011 CFR
2011-10-01
... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces which are protected by carbon dioxide extinguishing systems provisions... to that space. (b) Where natural ventilation is provided for spaces protected by a carbon dioxide...
Simon, Julianna C.; Wang, Yak-Nam; Cunitz, Bryan W.; Thiel, Jeffrey; Starr, Frank; Liu, Ziyue; Bailey, Michael R.
2016-01-01
Bone demineralization, dehydration, and stasis put astronauts at an increased risk of forming kidney stones in space. The color-Doppler ultrasound “twinkling artifact”, which highlights kidney stones with color, can make stones readily detectable with ultrasound; however our previous results suggest twinkling is caused by microbubbles on the stone surface which could be affected by the elevated levels of carbon dioxide found on space vehicles. Four pigs were implanted with kidney stones and imaged with ultrasound while the anesthetic carrier gas oscillated between oxygen and air containing 0.8% carbon dioxide. Upon exposing pigs to 0.8% carbon dioxide, twinkling was significantly reduced after 9–25 minutes and recovered when the carrier gas returned to oxygen. These trends repeated when pigs were again exposed to 0.8% carbon dioxide followed by oxygen. The reduction of twinkling from exposure to elevated carbon dioxide may make kidney stone detection with twinkling difficult in current space vehicles. PMID:28190622
2015-12-01
frequency combs. Ultrasensitive detection of methane, isotopic carbon dioxide, carbon monoxide, formaldehyde, acetylene, and ethylene was performed in...rmaldehyde, acetylene, and ethylene was perfo rmed in the spectral range 2.5- 5 11111 using intracav ity spectroscopy in broadband optical parametric osc...trace point detection of methane, carbon dioxide, isotopic (13C02) carbon dioxide, carbon monoxide, ethylene , acetylene, and formaldehyde and
High performance hydrophobic solvent, carbon dioxide capture
Nulwala, Hunaid; Luebke, David
2017-05-09
Methods and compositions useful, for example, for physical solvent carbon capture. A method comprising: contacting at least one first composition comprising carbon dioxide with at least one second composition to at least partially dissolve the carbon dioxide of the first composition in the second composition, wherein the second composition comprises at least one siloxane compound which is covalently modified with at least one non-siloxane group comprising at least one heteroatom. Polydimethylsiloxane (PDMS) materials and ethylene-glycol based materials have high carbon dioxide solubility but suffer from various problems. PDMS is hydrophobic but suffers from low selectivity. Ethylene-glycol based systems have good solubility and selectivity, but suffer from high affinity to water. Solvents were developed which keep the desired combinations of properties, and result in a simplified, overall process for carbon dioxide removal from a mixed gas stream.
Jorgenson, Andrew K; Clark, Brett
2013-01-01
This study examines the regional and temporal differences in the statistical relationship between national-level carbon dioxide emissions and national-level population size. The authors analyze panel data from 1960 to 2005 for a diverse sample of nations, and employ descriptive statistics and rigorous panel regression modeling techniques. Initial descriptive analyses indicate that all regions experienced overall increases in carbon emissions and population size during the 45-year period of investigation, but with notable differences. For carbon emissions, the sample of countries in Asia experienced the largest percent increase, followed by countries in Latin America, Africa, and lastly the sample of relatively affluent countries in Europe, North America, and Oceania combined. For population size, the sample of countries in Africa experienced the largest percent increase, followed countries in Latin America, Asia, and the combined sample of countries in Europe, North America, and Oceania. Findings for two-way fixed effects panel regression elasticity models of national-level carbon emissions indicate that the estimated elasticity coefficient for population size is much smaller for nations in Africa than for nations in other regions of the world. Regarding potential temporal changes, from 1960 to 2005 the estimated elasticity coefficient for population size decreased by 25% for the sample of Africa countries, 14% for the sample of Asia countries, 6.5% for the sample of Latin America countries, but remained the same in size for the sample of countries in Europe, North America, and Oceania. Overall, while population size continues to be the primary driver of total national-level anthropogenic carbon dioxide emissions, the findings for this study highlight the need for future research and policies to recognize that the actual impacts of population size on national-level carbon emissions differ across both time and region.
Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middleton, Bobby; Pasch, James Jay; Kruizenga, Alan Michael
2016-01-01
This report outlines the thermodynamics of a supercritical carbon dioxide (sCO 2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO 2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related tomore » both Helium and to sCO 2 , as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO 2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO 2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation« less
Carbon dioxide and climate: a second assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
For over a century, concern has been expressed that increases in atmospheric carbon dioxide (CO/sub 2/) concentration could affect global climate by changing the heat balance of the atmosphere and Earth. Observations reveal steadily increasing concentrations of CO/sub 2/, and experiments with numerical climate models indicate that continued increase would eventually produce significant climatic change. Comprehensive assessment of the issue will require projection of future CO/sub 2/ emissions and study of the disposition of this excess carbon in the atmosphere, ocean, and biota; the effect on climate; and the implications for human welfare. This study focuses on one aspect, estimationmore » of the effect on climate of assumed future increases in atmospheric CO/sub 2/. Conclusions are drawn principally from present-day numerical models of the climate system. To address the significant role of the oceans, the study also makes use of observations of the distributions of anthropogenic tracers other than CO/sub 2/. The rapid scientific developments in these areas suggest that periodic reassessments will be warranted. The starting point for the study was a similar 1979 review by a Climate Research Board panel chaired by the late Jule G. Charney. The present study has not found any new results that necessitate substantial revision of the conclusions of the Charney report.« less
Herbivore responses to plants grown in enriched carbon dioxide atmospheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, D.E.
1990-05-01
Our initial study of sagebrush and grasshopper responses to elevated and historical carbon dioxide atmospheres is complete and has been accepted for publication. The study on Biomass Allocation Patterns of Defoliated Sagebrush Grown Under Two Levels of Carbon Dioxide has completed and the manuscript has been submitted for publication. We have completed the study of plant growth under two nutrient and carbon dioxide regimes and grasshopper feeding responses. The study of a specialist feeding caterpillar, the cabbage butterfly, and a mustard hostplant has recently been completed. We were able to identify the principal allelochemicals of the mustard plants, butenyl andmore » pentenyl isothiocyanates, by combined gas chromatography and mass spectrometry. Measurement of these chemicals has been a critical component of this study since these compounds contain nitrogen and sulphur and act as a feeding stimulant to the caterpillar. This insect responds to elevated carbon dioxide by consuming more leaves and we can now say that this is not due to a change in the feeding stimulants. Reduced leaf protein content is a critical factor for even specialist feeding insect herbivores under elevated carbon dioxide conditions. The study on Grasshopper Population Responses to Enriched Carbon Dioxide Concentration is currently in progress at the Duke University Phytotron. We have changed hostplant species in order to complement the investigations of carbon dioxide effects on tallgrass prairie. Specifically, we are using big bluestem, Andropogon geradii, as the host plant to feed to the grasshoppers. This experiment will be completed in July 1990.« less
Modeling carbon dioxide, pH, and un-ionized ammonia relationships in serial reuse systems
Colt, J.; Watten, B.; Rust, M.
2009-01-01
In serial reuse systems, excretion of metabolic carbon dioxide has a significant impact on ambient pH, carbon dioxide, and un-ionized ammonia concentrations. This impact depends strongly on alkalinity, water flow rate, feeding rate, and loss of carbon dioxide to the atmosphere. A reduction in pH from metabolic carbon dioxide can significantly reduce the un-ionized ammonia concentration and increase the carbon dioxide concentrations compared to those parameters computed from influent pH. The ability to accurately predict pH in serial reuse systems is critical to their design and effective operation. A trial and error solution to the alkalinity-pH system was used to estimate important water quality parameters in serial reuse systems. Transfer of oxygen and carbon dioxide across the air-water interface, at overflow weirs, and impacts of substrate-attached algae and suspended bacteria were modeled. Gas transfer at the weirs was much greater than transfer across the air-water boundary. This simulation model can rapidly estimate influent and effluent concentrations of dissolved oxygen, carbon dioxide, and un-ionized ammonia as a function of water temperature, elevation, water flow, and weir type. The accuracy of the estimates strongly depends on assumed pollutional loading rates and gas transfer at the weirs. The current simulation model is based on mean daily loading rates; the impacts of daily variation loading rates are discussed. Copies of the source code and executable program are available free of charge.
Modeling Carbon Dioxide, pH and Un-Ionized Ammonia Relationships in Serial Reuse Systems
Watten, Barnaby J.; Rust, Michael; Colt, John
2009-01-01
In serial reuse systems, excretion of metabolic carbon dioxide has a significant impact on ambient pH, carbon dioxide, and un-ionized ammonia concentrations. This impact depends strongly on alkalinity, water flow rate, feeding rate, and loss of carbon dioxide to the atmosphere. A reduction in pH from metabolic carbon dioxide can significantly reduce the un-ionized ammonia concentration and increase the carbon dioxide concentrations compared to those parameters computed from influent pH. The ability to accurately predict pH in serial reuse systems is critical to their design and effective operation. A trial and error solution to the alkalinity–pH system was used to estimate important water quality parameters in serial reuse systems. Transfer of oxygen and carbon dioxide across the air–water interface, at overflow weirs, and impacts of substrate-attached algae and suspended bacteria were modeled. Gas transfer at the weirs was much greater than transfer across the air–water boundary. This simulation model can rapidly estimate influent and effluent concentrations of dissolved oxygen, carbon dioxide, and un-ionized ammonia as a function of water temperature, elevation, water flow, and weir type. The accuracy of the estimates strongly depends on assumed pollutional loading rates and gas transfer at the weirs. The current simulation model is based on mean daily loading rates; the impacts of daily variation loading rates are discussed. Copies of the source code and executable program are available free of charge.
Kumar, Manoj; Francisco, Joseph S
2017-09-07
High-level theoretical calculations suggest that a Criegee intermediate preferably interacts with carbon dioxide compared to two other greenhouse gases, nitrous oxide and methane. The results also suggest that the interaction between Criegee intermediates and carbon dioxide involves a cycloaddition reaction, which results in the formation of a cyclic carbonate-type adduct with a barrier of 6.0-14.0 kcal/mol. These results are in contrast to a previous assumption that the reaction occurs barrierlessly. The subsequent decomposition of the cyclic adduct into formic acid and carbon dioxide follows both concerted and stepwise mechanisms. The latter mechanism has been overlooked previously. Under formic acid catalysis, the concerted decomposition of the cyclic carbonate may be favored under tropospheric conditions. Considering that there is a strong nexus between carbon dioxide levels in the atmosphere and global warming, the high reactivity of Criegee intermediates could be utilized for designing efficient carbon capture technologies.
Nilsson, Robert; Bauer, Fredric; Mesfun, Sennai; Hulteberg, Christian; Lundgren, Joakim; Wännström, Sune; Rova, Ulrika; Berglund, Kris Arvid
2014-06-01
This paper presents a novel process for n-butanol production which combines a fermentation consuming carbon dioxide (succinic acid fermentation) with subsequent catalytic reduction steps to add hydrogen to form butanol. Process simulations in Aspen Plus have been the basis for the techno-economic analyses performed. The overall economy for the novel process cannot be justified, as production of succinic acid by fermentation is too costly. Though, succinic acid price is expected to drop drastically in a near future. By fully integrating the succinic acid fermentation with the catalytic conversion the need for costly recovery operations could be reduced. The hybrid process would need 22% less raw material than the butanol fermentation at a succinic acid fermentation yield of 0.7g/g substrate. Additionally, a carbon dioxide fixation of up to 13ktonnes could be achieved at a plant with an annual butanol production of 10ktonnes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Mauzerall, D. L.; Naik, V.; Horowitz, L. W.; Schwarzkopf, D.; Ramaswamy, V.; Oppenheimer, M.
2005-05-01
Carbon dioxide emissions from fossil-fuel consumption are presented for the five Asian countries that are among the global leaders in anthropogenic carbon emissions: China (13% of global total), Japan (5% of global total), India (5% of global total), South Korea (2% of global total), and Indonesia (1% of global total). Together, these five countries represent over a quarter of the world's fossil-fuel based carbon emissions. Moreover, these countries are rapidly developing and energy demand has grown dramatically in the last two decades. A method is developed to estimate the spatial and seasonal flux of fossil-fuel consumption, thereby greatly improving the temporal and spatial resolution of anthropogenic carbon dioxide emissions. Currently, only national annual data for anthropogenic carbon emissions are available, and as such, no understanding of seasonal or sub-national patterns of emissions are possible. This methodology employs fuel distribution data from representative sectors of the fossil-fuel market to determine the temporal and spatial patterns of fuel consumption. These patterns of fuel consumption are then converted to patterns of carbon emissions. The annual total emissions estimates produced by this method are consistent to those maintained by the United Nations. Improved estimates of temporal and spatial resolution of the human based carbon emissions allows for better projections about future energy demands, carbon emissions, and ultimately the global carbon cycle.
Tuning Organic Carbon Dioxide Absorbents for Carbonation and Decarbonation
Rajamanickam, Ramachandran; Kim, Hyungsoo; Park, Ji-Woong
2015-01-01
The reaction of carbon dioxide with a mixture of a superbase and alcohol affords a superbase alkylcarbonate salt via a process that can be reversed at elevated temperatures. To utilize the unique chemistry of superbases for carbon capture technology, it is essential to facilitate carbonation and decarbonation at desired temperatures in an easily controllable manner. Here, we demonstrate that the thermal stabilities of the alkylcarbonate salts of superbases in organic solutions can be tuned by adjusting the compositions of hydroxylic solvent and polar aprotic solvent mixtures, thereby enabling the best possible performances to be obtained from the various carbon dioxide capture agents based on these materials. The findings provides valuable insights into the design and optimization of organic carbon dioxide absorbents. PMID:26033537
Global Coupled Carbon and Nitrogen Models: Successes, Failures and What next?
NASA Astrophysics Data System (ADS)
Holland, E. A.
2011-12-01
Over the last few years, there has been a great deal of progress in modeling coupled terrestrial global carbon and nitrogen cycles and their roles in Earth System models. The collection of recent models provides some surprising results and insights. A critical question for Earth system models is: How do the coupled C/N model results impact atmospheric carbon dioxide concentrations compared to carbon only models? Some coupled models predict increased atmospheric carbon dioxide concentrations, the result expected from nitrogen-limited photosynthesis uptake of carbon dioxide, while others predict little change or decreased carbon dioxide uptake with a coupled carbon and nitrogen cycle. With this range of impacts for climate critical atmospheric carbon dioxide concentrations, there is clearly a need for additional comparison of measurements and models. Randerson et al.'s CLAMP study provided important constraints and comparison for primarily for aboveground carbon uptake. However, nitrogen supply is largely determined decomposition and soil processes. I will present comparisons of NCAR's CESM results with soil and litter carbon and nitrogen fluxes and standing stocks. These belowground data sets of both carbon and nitrogen provide important benchmarks for coupled C/N models.
USDA-ARS?s Scientific Manuscript database
Background: Although the association between rising levels of carbon dioxide, the principle anthropogenic greenhouse gas, and pollen production has been established, few data are available regarding the function of rising carbon dioxide on quantitative or qualitative changes in allergenic fungal sp...
46 CFR 34.15-35 - Enclosure openings-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide... of the carbon dioxide system shall automatically shut down any mechanical ventilation to that space. This will not be required where the carbon dioxide system is a secondary system in addition to another...
46 CFR 34.15-10 - Controls-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing... valves shall be used to direct the carbon dioxide into the proper space. If cylinders are used to protect... and a separate control releasing at least the required amount of carbon dioxide. These two controls...
46 CFR 95.15-35 - Enclosure openings.
Code of Federal Regulations, 2010 CFR
2010-10-01
... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces other than cargo and similar spaces which are protected by a carbon dioxide... protected by a carbon dioxide extinguishing system, provisions shall be made for easily and effectively...
46 CFR 76.15-35 - Enclosure openings.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Carbon Dioxide Extinguishing Systems, Details § 76.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces other than cargo and similar spaces which are protected by a carbon dioxide... protected by a carbon dioxide extinguishing system, provisions shall be made for easily and effectively...
46 CFR 34.15-50 - Lockout valves-T/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide... carbon dioxide extinguishing system protecting a space over 6,000 cubic feet in volume and installed or... or spaces, making it impossible for carbon dioxide to discharge in the event of equipment failure...
46 CFR 34.15-35 - Enclosure openings-T/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide... of the carbon dioxide system shall automatically shut down any mechanical ventilation to that space. This will not be required where the carbon dioxide system is a secondary system in addition to another...
46 CFR 34.15-10 - Controls-T/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing... valves shall be used to direct the carbon dioxide into the proper space. If cylinders are used to protect... and a separate control releasing at least the required amount of carbon dioxide. These two controls...
46 CFR 34.15-10 - Controls-T/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing... valves shall be used to direct the carbon dioxide into the proper space. If cylinders are used to protect... and a separate control releasing at least the required amount of carbon dioxide. These two controls...
46 CFR 95.15-35 - Enclosure openings.
Code of Federal Regulations, 2011 CFR
2011-10-01
... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces other than cargo and similar spaces which are protected by a carbon dioxide... protected by a carbon dioxide extinguishing system, provisions shall be made for easily and effectively...
46 CFR 34.15-50 - Lockout valves-T/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide... carbon dioxide extinguishing system protecting a space over 6,000 cubic feet in volume and installed or... or spaces, making it impossible for carbon dioxide to discharge in the event of equipment failure...
46 CFR 76.15-35 - Enclosure openings.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Carbon Dioxide Extinguishing Systems, Details § 76.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces other than cargo and similar spaces which are protected by a carbon dioxide... protected by a carbon dioxide extinguishing system, provisions shall be made for easily and effectively...
46 CFR 76.15-35 - Enclosure openings.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Carbon Dioxide Extinguishing Systems, Details § 76.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces other than cargo and similar spaces which are protected by a carbon dioxide... protected by a carbon dioxide extinguishing system, provisions shall be made for easily and effectively...
46 CFR 34.15-10 - Controls-T/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing... valves shall be used to direct the carbon dioxide into the proper space. If cylinders are used to protect... and a separate control releasing at least the required amount of carbon dioxide. These two controls...
46 CFR 95.15-35 - Enclosure openings.
Code of Federal Regulations, 2012 CFR
2012-10-01
... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces other than cargo and similar spaces which are protected by a carbon dioxide... protected by a carbon dioxide extinguishing system, provisions shall be made for easily and effectively...
46 CFR 34.15-35 - Enclosure openings-T/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide... of the carbon dioxide system shall automatically shut down any mechanical ventilation to that space. This will not be required where the carbon dioxide system is a secondary system in addition to another...
40 CFR 86.224-94 - Carbon dioxide analyzer calibration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Carbon dioxide analyzer calibration. 86.224-94 Section 86.224-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.224-94 Carbon dioxide...
46 CFR 34.15-50 - Lockout valves-T/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide... carbon dioxide extinguishing system protecting a space over 6,000 cubic feet in volume and installed or... or spaces, making it impossible for carbon dioxide to discharge in the event of equipment failure...
46 CFR 76.15-35 - Enclosure openings.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Carbon Dioxide Extinguishing Systems, Details § 76.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces other than cargo and similar spaces which are protected by a carbon dioxide... protected by a carbon dioxide extinguishing system, provisions shall be made for easily and effectively...
46 CFR 34.15-35 - Enclosure openings-T/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide... of the carbon dioxide system shall automatically shut down any mechanical ventilation to that space. This will not be required where the carbon dioxide system is a secondary system in addition to another...
9 CFR 313.5 - Chemical; carbon dioxide.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Chemical; carbon dioxide. 313.5 Section 313.5 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... INSPECTION AND CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.5 Chemical; carbon dioxide. The slaughtering...
9 CFR 313.5 - Chemical; carbon dioxide.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Chemical; carbon dioxide. 313.5 Section 313.5 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... INSPECTION AND CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.5 Chemical; carbon dioxide. The slaughtering...
9 CFR 313.5 - Chemical; carbon dioxide.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Chemical; carbon dioxide. 313.5 Section 313.5 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... INSPECTION AND CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.5 Chemical; carbon dioxide. The slaughtering...
46 CFR 169.565 - Fixed carbon dioxide system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Fixed carbon dioxide system. 169.565 Section 169.565 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and Firefighting Equipment Firefighting Equipment § 169.565 Fixed carbon dioxide system. (a) The...
40 CFR 86.224-94 - Carbon dioxide analyzer calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.224-94 Carbon dioxide...
46 CFR 34.15-35 - Enclosure openings-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide... of the carbon dioxide system shall automatically shut down any mechanical ventilation to that space. This will not be required where the carbon dioxide system is a secondary system in addition to another...
46 CFR 76.15-35 - Enclosure openings.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Carbon Dioxide Extinguishing Systems, Details § 76.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces other than cargo and similar spaces which are protected by a carbon dioxide... protected by a carbon dioxide extinguishing system, provisions shall be made for easily and effectively...
46 CFR 108.626 - Carbon dioxide warning signs.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 108.626 Section 108.626 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.626 Carbon dioxide warning signs. Each...
46 CFR 131.817 - Carbon dioxide warning signs.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 131.817 Section 131.817 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.817 Carbon dioxide warning signs. Each entrance...
46 CFR 131.817 - Carbon dioxide warning signs.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 131.817 Section 131.817 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.817 Carbon dioxide warning signs. Each entrance...
46 CFR 131.817 - Carbon dioxide warning signs.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 131.817 Section 131.817 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.817 Carbon dioxide warning signs. Each entrance...
46 CFR 108.626 - Carbon dioxide warning signs.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 108.626 Section 108.626 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.626 Carbon dioxide warning signs. Each...
46 CFR 108.626 - Carbon dioxide warning signs.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 108.626 Section 108.626 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.626 Carbon dioxide warning signs. Each...
Ocean acidification in a geoengineering context
Williamson, Phillip; Turley, Carol
2012-01-01
Fundamental changes to marine chemistry are occurring because of increasing carbon dioxide (CO2) in the atmosphere. Ocean acidity (H+ concentration) and bicarbonate ion concentrations are increasing, whereas carbonate ion concentrations are decreasing. There has already been an average pH decrease of 0.1 in the upper ocean, and continued unconstrained carbon emissions would further reduce average upper ocean pH by approximately 0.3 by 2100. Laboratory experiments, observations and projections indicate that such ocean acidification may have ecological and biogeochemical impacts that last for many thousands of years. The future magnitude of such effects will be very closely linked to atmospheric CO2; they will, therefore, depend on the success of emission reduction, and could also be constrained by geoengineering based on most carbon dioxide removal (CDR) techniques. However, some ocean-based CDR approaches would (if deployed on a climatically significant scale) re-locate acidification from the upper ocean to the seafloor or elsewhere in the ocean interior. If solar radiation management were to be the main policy response to counteract global warming, ocean acidification would continue to be driven by increases in atmospheric CO2, although with additional temperature-related effects on CO2 and CaCO3 solubility and terrestrial carbon sequestration. PMID:22869801
Greenhouse Gas Fluxes at the Tablelands, NL, Canada: A Site of Active Serpentinization
NASA Astrophysics Data System (ADS)
Morrill, P. L.; Morrissey, L. S.; Cumming, E.
2016-12-01
Active sites of serpentinization have been proposed as sites for carbon capture and storage (CCS) projects. However, in addition to their ability to convert carbon dioxide to carbonate rock, sites of serpentinization also have the potential release methane, which is a more power greenhouse gas than carbon dioxide. Very little is known about the natural flux of carbon dioxide sequestered and methane released into the atmosphere from active sites of serpentinization. In this study we measured carbon dioxide, methane, and nitrous oxide gas fluxes at a pool of ultra-basic water discharging from serpentinized rock in Winterhouse Canyon, Gros Morne, Newfoundland. We found that the flux of methane released was 4.6 x 10-7 mol/m2/min and the carbon dioxide sequestered was 1.9 x 10-5 mol/m2/min, while the concentrations of nitrous oxide showed little change. Based on these fluxes we calculated predictive climate change parameters such as net radiative forcing and global warming potential which predicted that despite the methane being released the site still had an overall long-term atmospheric cooling effect based on the natural rate of carbon dioxide sequestration.
Roberts-Ashby, Tina L.; Brennan, Sean T.; Merrill, Matthew D.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.
2015-08-26
This report presents five storage assessment units (SAUs) that have been identified as potentially suitable for geologic carbon dioxide sequestration within a 35,075-square-mile area that includes the entire onshore and State-water portions of the South Florida Basin. Platform-wide, thick successions of laterally extensive carbonates and evaporites deposited in highly cyclic depositional environments in the South Florida Basin provide several massive, porous carbonate reservoirs that are separated by evaporite seals. For each storage assessment unit identified within the basin, the areal distribution of the reservoir-seal couplet identified as suitable for geologic Carbon dioxide sequestration is presented, along with a description of the geologic characteristics that influence the potential carbon dioxide storage volume and reservoir performance. On a case-by-case basis, strategies for estimating the pore volume existing within structurally and (or) stratigraphically closed traps are also discussed. Geologic information presented in this report has been employed to calculate potential storage capacities for carbon dioxide sequestration in the storage assessment units assessed herein, although complete assessment results are not contained in this report.
Combined goal gasifier and fuel cell system and method
Gmeindl, Frank D.; Geisbrecht, Rodney A.
1990-01-01
A molten carbonate fuel cell is combined with a catalytic coal or coal char gasifier for providing the reactant gases comprising hydrogen, carbon monoxide and carbon dioxide used in the operation of the fuel cell. These reactant gases are stripped of sulfur compounds and particulate material and are then separated in discrete gas streams for conveyance to appropriate electrodes in the fuel cell. The gasifier is arranged to receive the reaction products generated at the anode of the fuel cell by the electricity-producing electrochemical reaction therein. These reaction products from the anode are formed primarily of high temperature steam and carbon dioxide to provide the steam, the atmosphere and the heat necessary to endothermically pyrolyze the coal or char in the presence of a catalyst. The reaction products generated at the cathode are substantially formed of carbon dioxide which is used to heat air being admixed with the carbon dioxide stream from the gasifier for providing the oxygen required for the reaction in the fuel cell and for driving an expansion device for energy recovery. A portion of this carbon dioxide from the cathode may be recycled into the fuel cell with the air-carbon dioxide mixture.
Understanding the Effectiveness of Carbon Dioxide Removal to Reduce the Impacts of Climate Change.
NASA Astrophysics Data System (ADS)
Scott, V.; Tett, S. F.; Brander, M.
2017-12-01
The current Nationally Determined Contributions to the Paris Agreement suggest exceeding the emissions budgets corresponding to the below 2°C and 1.5°C temperature targets. To address this the future application of Carbon Dioxide Removal (CDR) is proposed to recapture excess emissions at a later time, so keeping the total net emissions within budget. This assumes that the climate change impact of CO2 emitted now can be fully compensated by a matched CO2 removal in the future. However, the impacts from this pathway of emissions budget overshoot and subsequent recapture may differ from those resulting from a pathway where emissions are held within budget with no temporary overshoot. These pathway dependent impacts could give rise to different climatic and societal futures despite the total net emissions being the same. Using a low resolution fully coupled Earth System Model with an interactive carbon cycle, we present an investigation into the pathway dependence of climate change impacts and how these relate to the scale and duration of the emissions budget overshoot and subsequent recapture. From this we discuss the effectiveness of CDR in avoiding climate change impacts relative to more immediate emissions reductions. We consider how this relative effectiveness might be reflected in GHG accounting methods and national GHG accounts, and explore the implications for Article 2 of the Paris Agreement, where holding temperatures to the targets is recognised to "significantly reduce the risks and impacts of climate change".
Recent advances in catalytic hydrogenation of carbon dioxide.
Wang, Wei; Wang, Shengping; Ma, Xinbin; Gong, Jinlong
2011-07-01
Owing to the increasing emissions of carbon dioxide (CO(2)), human life and the ecological environment have been affected by global warming and climate changes. To mitigate the concentration of CO(2) in the atmosphere various strategies have been implemented such as separation, storage, and utilization of CO(2). Although it has been explored for many years, hydrogenation reaction, an important representative among chemical conversions of CO(2), offers challenging opportunities for sustainable development in energy and the environment. Indeed, the hydrogenation of CO(2) not only reduces the increasing CO(2) buildup but also produces fuels and chemicals. In this critical review we discuss recent developments in this area, with emphases on catalytic reactivity, reactor innovation, and reaction mechanism. We also provide an overview regarding the challenges and opportunities for future research in the field (319 references).
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong
2016-01-01
For more than 15 years, NASA Langley Research Center (LaRC) has contributed in developing several 2-micron carbon dioxide active remote sensors using the DIAL technique. Currently, an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development at NASA LaRC. This paper focuses on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of wavelength control, packaging and lidar integration. In addition, receiver development updates will also be presented, including telescope integration, detection systems and data acquisition electronics. Future plan for IPDA lidar system for ground integration, testing and flight validation will be presented.
Carbon fuel cells with carbon corrosion suppression
Cooper, John F [Oakland, CA
2012-04-10
An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Miller, Lee A.; Williams, Tom
2010-01-01
The Carbon Dioxide Reduction Assembly (CRA) designed and developed for the International Space Station (ISS) represents the state-of-the-art in carbon dioxide reduction (CDRe) technology. The CRA produces water and methane by reducing carbon dioxide with hydrogen via the Sabatier reaction. The water is recycled to the Oxygen Generation Assembly (OGA) and the methane is vented overboard resulting in a net loss of hydrogen. The proximity to earth and the relative ease of logistics resupply from earth allow for a semi-closed system on ISS. However, long-term manned space flight beyond low earth orbit (LEO) dictates a more thoroughly closed-loop system involving significantly higher recovery of hydrogen, and subsequent recovery of oxygen, to minimize costs associated with logistics resupply beyond LEO. The open-loop ISS system for CDRe can be made closed-loop for follow-on missions by further processing methane to recover hydrogen. For this purpose, a process technology has been developed that employs a microwave-generated plasma to reduce methane to hydrogen and acetylene resulting in 75% theoretical recovery of hydrogen. In 2009, a 1-man equivalent Plasma Pyrolysis Assembly (PPA) was delivered to the National Aeronautics and Space Administration (NASA) for technical evaluation. The PPA has been integrated with a Sabatier Development Unit (SDU). The integrated process configuration incorporates a sorbent bed to eliminate residual carbon dioxide and water vapor in the Sabatier methane product stream before it enters the PPA. This paper provides detailed information on the stand-alone and integrated performance of both the PPA and SDU. Additionally, the integrated test stand design and anticipated future work are discussed.