Sample records for future co2 concentrations

  1. Making C4 crops more water efficient under current and future climate: Tradeoffs between carbon gain and water loss

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Pignon, C.

    2017-12-01

    C4 plants have a carbon concentrating mechanism that has evolved under historically low CO2 concentrations of around 200 ppm. However, increases in global CO2 concentrations in recent times (current CO2 concentrations are at 400 ppm and it is projected to be 550 ppm by mid-century) have diminished the relative advantage of C4 plants over C3 plants, which lack the expensive carbon concentrating machinery. Here we show by employing model simulations that under pre-historic CO2 concentrations, C4 plants are near optimal in their stomatal behavior and nitrogen partitioning between carbon concentrating machinery and carboxylation machinery, and they are significantly supra-optimal under current and future elevated CO2 concentrations. Model simulations performed at current CO2 concentrations of 400 ppm show that, under high light conditions, decreasing stomatal conductance by 20% results in a 15% increase in water use efficiency with negligible loss in photosynthesis. Under future elevated CO2 concentrations of 550 ppm, a 40% decrease in stomatal conductance produces a 35% increase in water use efficiency. Furthermore, stomatal closure is shown to be more effective in decreasing whole canopy transpiration compared to canopy top leaf transpiration, since shaded leaves are more supra-optimal than sunlit leaves. Model simulations for optimizing nitrogen distribution in C4 leaves show that under high light conditions, C4 plants over invest in carbon concentrating machinery and under invest in carboxylation machinery. A 20% redistribution in leaf nitrogen results in a 10% increase in leaf carbon assimilation without significant increases in transpiration under current CO2 concentrations of 400 ppm. Similarly, a 40% redistribution in leaf nitrogen results in a 15% increase in leaf carbon assimilation without significant increases in transpiration under future elevated CO2 concentrations of 550 ppm. Our model optimality simulations show that C4 leaves a supra optimal in their stomatal behavior and leaf nitrogen distribution and by decreasing stomatal conductance and redistributing nitrogen away from carbon concentrating mechanism and towards carboxylation machinery, we can significantly decrease transpiration and increase carbon assimilation thereby increasing water use efficiency.

  2. Increasing atmospheric CO2 reduces metabolic and physiological differences between isoprene- and non-isoprene-emitting poplars.

    PubMed

    Way, Danielle A; Ghirardo, Andrea; Kanawati, Basem; Esperschütz, Jürgen; Monson, Russell K; Jackson, Robert B; Schmitt-Kopplin, Philippe; Schnitzler, Jörg-Peter

    2013-10-01

    Isoprene, a volatile organic compound produced by some plant species, enhances abiotic stress tolerance under current atmospheric CO2 concentrations, but its biosynthesis is negatively correlated with CO2 concentrations. We hypothesized that losing the capacity to produce isoprene would require stronger up-regulation of other stress tolerance mechanisms at low CO2 than at higher CO2 concentrations. We compared metabolite profiles and physiological performance in poplars (Populus × canescens) with either wild-type or RNAi-suppressed isoprene emission capacity grown at pre-industrial low, current atmospheric, and future high CO2 concentrations (190, 390 and 590 ppm CO2 , respectively). Suppression of isoprene biosynthesis led to significant rearrangement of the leaf metabolome, increasing stress tolerance responses such as xanthophyll cycle pigment de-epoxidation and antioxidant levels, as well as altering lipid, carbon and nitrogen metabolism. Metabolic and physiological differences between isoprene-emitting and suppressed lines diminished as growth CO2 concentrations rose. The CO2 dependence of our results indicates that the effects of isoprene biosynthesis are strongest at pre-industrial CO2 concentrations. Rising CO2 may reduce the beneficial effects of biogenic isoprene emission, with implications for species competition. This has potential consequences for future climate warming, as isoprene emitted from vegetation has strong effects on global atmospheric chemistry. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  3. Effect of increasing CO2 on the terrestrial carbon cycle

    PubMed Central

    Schimel, David; Fisher, Joshua B.

    2015-01-01

    Feedbacks from the terrestrial carbon cycle significantly affect future climate change. The CO2 concentration dependence of global terrestrial carbon storage is one of the largest and most uncertain feedbacks. Theory predicts the CO2 effect should have a tropical maximum, but a large terrestrial sink has been contradicted by analyses of atmospheric CO2 that do not show large tropical uptake. Our results, however, show significant tropical uptake and, combining tropical and extratropical fluxes, suggest that up to 60% of the present-day terrestrial sink is caused by increasing atmospheric CO2. This conclusion is consistent with a validated subset of atmospheric analyses, but uncertainty remains. Improved model diagnostics and new space-based observations can reduce the uncertainty of tropical and temperate zone carbon flux estimates. This analysis supports a significant feedback to future atmospheric CO2 concentrations from carbon uptake in terrestrial ecosystems caused by rising atmospheric CO2 concentrations. This feedback will have substantial tropical contributions, but the magnitude of future carbon uptake by tropical forests also depends on how they respond to climate change and requires their protection from deforestation. PMID:25548156

  4. Virus infection mediates the effects of elevated CO2 on plants and vectors.

    PubMed

    Trębicki, Piotr; Vandegeer, Rebecca K; Bosque-Pérez, Nilsa A; Powell, Kevin S; Dader, Beatriz; Freeman, Angela J; Yen, Alan L; Fitzgerald, Glenn J; Luck, Jo E

    2016-03-04

    Atmospheric carbon dioxide (CO2) concentration has increased significantly and is projected to double by 2100. To increase current food production levels, understanding how pests and diseases respond to future climate driven by increasing CO2 is imperative. We investigated the effects of elevated CO2 (eCO2) on the interactions among wheat (cv. Yitpi), Barley yellow dwarf virus and an important pest and virus vector, the bird cherry-oat aphid (Rhopalosiphum padi), by examining aphid life history, feeding behavior and plant physiology and biochemistry. Our results showed for the first time that virus infection can mediate effects of eCO2 on plants and pathogen vectors. Changes in plant N concentration influenced aphid life history and behavior, and N concentration was affected by virus infection under eCO2. We observed a reduction in aphid population size and increased feeding damage on noninfected plants under eCO2 but no changes to population and feeding on virus-infected plants irrespective of CO2 treatment. We expect potentially lower future aphid populations on noninfected plants but no change or increased aphid populations on virus-infected plants therefore subsequent virus spread. Our findings underscore the complexity of interactions between plants, insects and viruses under future climate with implications for plant disease epidemiology and crop production.

  5. Virus infection mediates the effects of elevated CO2 on plants and vectors

    PubMed Central

    Trębicki, Piotr; Vandegeer, Rebecca K.; Bosque-Pérez, Nilsa A.; Powell, Kevin S.; Dader, Beatriz; Freeman, Angela J.; Yen, Alan L.; Fitzgerald, Glenn J.; Luck, Jo E.

    2016-01-01

    Atmospheric carbon dioxide (CO2) concentration has increased significantly and is projected to double by 2100. To increase current food production levels, understanding how pests and diseases respond to future climate driven by increasing CO2 is imperative. We investigated the effects of elevated CO2 (eCO2) on the interactions among wheat (cv. Yitpi), Barley yellow dwarf virus and an important pest and virus vector, the bird cherry-oat aphid (Rhopalosiphum padi), by examining aphid life history, feeding behavior and plant physiology and biochemistry. Our results showed for the first time that virus infection can mediate effects of eCO2 on plants and pathogen vectors. Changes in plant N concentration influenced aphid life history and behavior, and N concentration was affected by virus infection under eCO2. We observed a reduction in aphid population size and increased feeding damage on noninfected plants under eCO2 but no changes to population and feeding on virus-infected plants irrespective of CO2 treatment. We expect potentially lower future aphid populations on noninfected plants but no change or increased aphid populations on virus-infected plants therefore subsequent virus spread. Our findings underscore the complexity of interactions between plants, insects and viruses under future climate with implications for plant disease epidemiology and crop production. PMID:26941044

  6. Virus infection mediates the effects of elevated CO2 on plants and vectors

    NASA Astrophysics Data System (ADS)

    Trębicki, Piotr; Vandegeer, Rebecca K.; Bosque-Pérez, Nilsa A.; Powell, Kevin S.; Dader, Beatriz; Freeman, Angela J.; Yen, Alan L.; Fitzgerald, Glenn J.; Luck, Jo E.

    2016-03-01

    Atmospheric carbon dioxide (CO2) concentration has increased significantly and is projected to double by 2100. To increase current food production levels, understanding how pests and diseases respond to future climate driven by increasing CO2 is imperative. We investigated the effects of elevated CO2 (eCO2) on the interactions among wheat (cv. Yitpi), Barley yellow dwarf virus and an important pest and virus vector, the bird cherry-oat aphid (Rhopalosiphum padi), by examining aphid life history, feeding behavior and plant physiology and biochemistry. Our results showed for the first time that virus infection can mediate effects of eCO2 on plants and pathogen vectors. Changes in plant N concentration influenced aphid life history and behavior, and N concentration was affected by virus infection under eCO2. We observed a reduction in aphid population size and increased feeding damage on noninfected plants under eCO2 but no changes to population and feeding on virus-infected plants irrespective of CO2 treatment. We expect potentially lower future aphid populations on noninfected plants but no change or increased aphid populations on virus-infected plants therefore subsequent virus spread. Our findings underscore the complexity of interactions between plants, insects and viruses under future climate with implications for plant disease epidemiology and crop production.

  7. Analysis of possible future atmospheric retention of fossil fuel CO/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmonds, J.A.; Reilly, J.; Trabalka, J.R.

    1984-09-01

    This report investigates the likely rates and the potential range of future CO/sub 2/ emissions, combined with knowledge of the global cycle of carbon, to estimate a possible range of future atmospheric CO/sub 2/ concentrations through the year 2075. Historic fossil fuel usage to the present, growing at a rate of 4.5% per year until 1973 and at a slower rate of 1.9% after 1973, was combined with three scenarios of projected emissions growth ranging from approximately 0.2 to 2.8% per year to provide annual CO/sub 2/ emissions data for two different carbon cycle models. The emissions scenarios were constructedmore » using an energy-economic model and by varying key parameters within the bounds of currently expected future values. The extreme values for CO/sub 2/ emissions in the year 2075 are 6.8 x 10/sup 15/ and 91 x 10/sup 15/ g C year/sup -1/. Carbon cycle model simulations used a range of year - 1800 preindustrial atmospheric concentrations of 245 to 292 ppM CO/sub 2/ and three scenarios of bioshere conversion as additional atmospheric CO/sub 2/ source terms. These simulations yield a range of possible atmospheric CO/sub 2/ concentrations in year 2075 of approximately 500 to 1500 ppM, with a median of about 700 ppM. The time at which atmospheric CO/sub 2/ would potentially double from the preindustrial level ranges from year 2025 to >2075. The practical, programmatic value of this forecast exercise is that it forces quantitative definition of the assumptions, and the uncertainties therein, which form the basis of our understanding of the natural biogeochemical cycle of carbon and both historic and future human influences on the dynamics of the global cycle. Assumptions about the possible range of future atmospheric CO/sub 2/ levels provide a basis on which to evaluate the implications of these changes on climate and the biosphere. 44 references, 17 figures, 21 tables.« less

  8. The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum).

    PubMed

    Xu, Ming

    2015-07-20

    This study examined the optimal atmospheric CO2 concentration of the CO2 fertilization effect on the growth of winter wheat with growth chambers where the CO2 concentration was controlled at 400, 600, 800, 1000, and 1200 ppm respectively. I found that initial increase in atmospheric CO2 concentration dramatically enhanced winter wheat growth through the CO2 fertilization effect. However, this CO2 fertilization effect was substantially compromised with further increase in CO2 concentration, demonstrating an optimal CO2 concentration of 889.6, 909.4, and 894.2 ppm for aboveground, belowground, and total biomass, respectively, and 967.8 ppm for leaf photosynthesis. Also, high CO2 concentrations exceeding the optima not only reduced leaf stomatal density, length and conductance, but also changed the spatial distribution pattern of stomata on leaves. In addition, high CO2 concentration also decreased the maximum carboxylation rate (Vc(max)) and the maximum electron transport rate (J(max)) of leaf photosynthesis. However, the high CO2 concentration had little effect on leaf length and plant height. The optimal CO2 fertilization effect found in this study can be used as an indicator in selecting and breeding new wheat strains in adapting to future high atmospheric CO2 concentrations and climate change. Copyright © 2015. Published by Elsevier GmbH.

  9. Ocean acidification stimulates particulate organic carbon accumulation in two Antarctic diatom species under moderate and high natural solar radiation.

    PubMed

    Heiden, Jasmin P; Thoms, Silke; Bischof, Kai; Trimborn, Scarlett

    2018-05-23

    Impacts of rising atmospheric CO 2 concentrations and increased daily irradiances from enhanced surface water stratification on phytoplankton physiology in the coastal Southern Ocean remain still unclear. Therefore, in the two Antarctic diatoms Fragilariopsis curta and Odontella weissflogii the effects of moderate and high natural solar radiation combined with either ambient or future pCO 2 on cellular particulate organic carbon (POC) contents and photophysiology were investigated. Results showed that increasing CO 2 concentrations had greater impacts on diatom physiology than exposure to increasing solar radiation. Irrespective of the applied solar radiation regime, cellular POC quotas increased with future pCO 2 in both diatoms. Lowered maximum quantum yields of photochemistry in PSII (F v /F m ) indicated a higher photosensitivity under these conditions, being counteracted by increased cellular concentrations of functional photosynthetic reaction centers. Overall, our results suggest that both bloom-forming Antarctic coastal diatoms might increase carbon contents under future pCO 2 conditions despite reduced physiological fitness. This indicates a higher potential for primary productivity by the two diatom species with important implications for the CO 2 sequestration potential of diatom communities in the future coastal Southern Ocean. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Causes and implications of persistent atmospheric carbon dioxide biases in Earth System Models

    NASA Astrophysics Data System (ADS)

    Hoffman, F. M.; Randerson, J. T.; Arora, V. K.; Bao, Q.; Cadule, P.; Ji, D.; Jones, C. D.; Kawamiya, M.; Khatiwala, S.; Lindsay, K.; Obata, A.; Shevliakova, E.; Six, K. D.; Tjiputra, J. F.; Volodin, E. M.; Wu, T.

    2014-02-01

    The strength of feedbacks between a changing climate and future CO2 concentrations is uncertain and difficult to predict using Earth System Models (ESMs). We analyzed emission-driven simulations—in which atmospheric CO2levels were computed prognostically—for historical (1850-2005) and future periods (Representative Concentration Pathway (RCP) 8.5 for 2006-2100) produced by 15 ESMs for the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Comparison of ESM prognostic atmospheric CO2 over the historical period with observations indicated that ESMs, on average, had a small positive bias in predictions of contemporary atmospheric CO2. Weak ocean carbon uptake in many ESMs contributed to this bias, based on comparisons with observations of ocean and atmospheric anthropogenic carbon inventories. We found a significant linear relationship between contemporary atmospheric CO2 biases and future CO2levels for the multimodel ensemble. We used this relationship to create a contemporary CO2 tuned model (CCTM) estimate of the atmospheric CO2 trajectory for the 21st century. The CCTM yielded CO2estimates of 600±14 ppm at 2060 and 947±35 ppm at 2100, which were 21 ppm and 32 ppm below the multimodel mean during these two time periods. Using this emergent constraint approach, the likely ranges of future atmospheric CO2, CO2-induced radiative forcing, and CO2-induced temperature increases for the RCP 8.5 scenario were considerably narrowed compared to estimates from the full ESM ensemble. Our analysis provided evidence that much of the model-to-model variation in projected CO2 during the 21st century was tied to biases that existed during the observational era and that model differences in the representation of concentration-carbon feedbacks and other slowly changing carbon cycle processes appear to be the primary driver of this variability. By improving models to more closely match the long-term time series of CO2from Mauna Loa, our analysis suggests that uncertainties in future climate projections can be reduced.

  11. Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish.

    PubMed

    Talmage, Stephanie C; Gobler, Christopher J

    2010-10-05

    The combustion of fossil fuels has enriched levels of CO(2) in the world's oceans and decreased ocean pH. Although the continuation of these processes may alter the growth, survival, and diversity of marine organisms that synthesize CaCO(3) shells, the effects of ocean acidification since the dawn of the industrial revolution are not clear. Here we present experiments that examined the effects of the ocean's past, present, and future (21st and 22nd centuries) CO(2) concentrations on the growth, survival, and condition of larvae of two species of commercially and ecologically valuable bivalve shellfish (Mercenaria mercenaria and Argopecten irradians). Larvae grown under near preindustrial CO(2) concentrations (250 ppm) displayed significantly faster growth and metamorphosis as well as higher survival and lipid accumulation rates compared with individuals reared under modern day CO(2) levels. Bivalves grown under near preindustrial CO(2) levels displayed thicker, more robust shells than individuals grown at present CO(2) concentrations, whereas bivalves exposed to CO(2) levels expected later this century had shells that were malformed and eroded. These results suggest that the ocean acidification that has occurred during the past two centuries may be inhibiting the development and survival of larval shellfish and contributing to global declines of some bivalve populations.

  12. Short-term carbon cycling responses of a mature eucalypt woodland to gradual stepwise enrichment of atmospheric CO2 concentration.

    PubMed

    Drake, John E; Macdonald, Catriona A; Tjoelker, Mark G; Crous, Kristine Y; Gimeno, Teresa E; Singh, Brajesh K; Reich, Peter B; Anderson, Ian C; Ellsworth, David S

    2016-01-01

    Projections of future climate are highly sensitive to uncertainties regarding carbon (C) uptake and storage by terrestrial ecosystems. The Eucalyptus Free-Air CO2 Enrichment (EucFACE) experiment was established to study the effects of elevated atmospheric CO2 concentrations (eCO2 ) on a native mature eucalypt woodland with low fertility soils in southeast Australia. In contrast to other FACE experiments, the concentration of CO2 at EucFACE was increased gradually in steps above ambient (+0, 30, 60, 90, 120, and 150 ppm CO2 above ambient of ~400 ppm), with each step lasting approximately 5 weeks. This provided a unique opportunity to study the short-term (weeks to months) response of C cycle flux components to eCO2 across a range of CO2 concentrations in an intact ecosystem. Soil CO2 efflux (i.e., soil respiration or Rsoil ) increased in response to initial enrichment (e.g., +30 and +60 ppm CO2 ) but did not continue to increase as the CO2 enrichment was stepped up to higher concentrations. Light-saturated photosynthesis of canopy leaves (Asat ) also showed similar stimulation by elevated CO2 at +60 ppm as at +150 ppm CO2 . The lack of significant effects of eCO2 on soil moisture, microbial biomass, or activity suggests that the increase in Rsoil likely reflected increased root and rhizosphere respiration rather than increased microbial decomposition of soil organic matter. This rapid increase in Rsoil suggests that under eCO2, additional photosynthate was produced, transported belowground, and respired. The consequences of this increased belowground activity and whether it is sustained through time in mature ecosystems under eCO2 are a priority for future research. © 2015 John Wiley & Sons Ltd.

  13. Growth and wood/bark properties of Abies faxoniana seedlings as affected by elevated CO2.

    PubMed

    Qiao, Yun-Zhou; Zhang, Yuan-Bin; Wang, Kai-Yun; Wang, Qian; Tian, Qi-Zhuo

    2008-03-01

    Growth and wood and bark properties of Abies faxoniana seedlings after one year's exposure to elevated CO2 concentration (ambient + 350 (+/- 25) micromol/mol) under two planting densities (28 or 84 plants/m(2)) were investigated in closed-top chambers. Tree height, stem diameter and cross-sectional area, and total biomass were enhanced under elevated CO2 concentration, and reduced under high planting density. Most traits of stem bark were improved under elevated CO2 concentration and reduced under high planting density. Stem wood production was significantly increased in volume under elevated CO2 concentration under both densities, and the stem wood density decreased under elevated CO2 concentration and increased under high planting density. These results suggest that the response of stem wood and bark to elevated CO2 concentration is density dependent. This may be of great importance in a future CO2 enriched world in natural forests where plant density varies considerably. The results also show that the bark/wood ratio in diameter, stem cross-sectional area and dry weight are not proportionally affected by elevated CO2 concentration under the two contrasting planting densities. This indicates that the response magnitude of stem bark and stem wood to elevated CO2 concentration are different but their response directions are the same.

  14. Intergovernmental Panel on Climate Change (IPCC)\\, Working Group 1, 1994: Modelling Results Relating Future Atmospheric CO2 Concentrations to Industrial Emissions (DB1009)

    DOE Data Explorer

    Enting, I. G.; Wigley, M. L.; Heimann, M.

    1995-01-01

    This database contains the results of various projections of the relation between future CO2 concentrations and future industrial emissions. These projections were contributed by groups from a number of countries as part of the scientific assessment for the report, "Radiative Forcing of Climate Change" (1994), issued by Working Group 1 of the Intergovernmental Panel on Climate Change. There were three types of calculations: (1) forward projections, calculating the atmospheric CO2 concentrations resulting from specified emissions scenarios; (2) inverse calculations, determining the emission rates that would be required to achieve stabilization of CO2 concentrations via specified pathways; (3) impulse response function calculations, required for determining Global Warming Potentials. The projections were extrapolations of global carbon cycle models from pre-industrial times (starting at 1765) to 2100 or 2200 A.D. There were two aspects to the exercise: (1) an assessment of the uncertainty due to uncertainties regarding the current carbon budget, and (2) an assessment of the uncertainties arising from differences between models. To separate these effects, a set of standard conditions was used to explore inter-model differences and then a series of sensitivity studies was used to explore the consequences of current uncertainties in the carbon cycle.

  15. Estimates of CO2 traffic emissions from mobile concentration measurements

    NASA Astrophysics Data System (ADS)

    Maness, H. L.; Thurlow, M. E.; McDonald, B. C.; Harley, R. A.

    2015-03-01

    We present data from a new mobile system intended to aid in the design of upcoming urban CO2-monitoring networks. Our collected data include GPS probe data, video-derived traffic density, and accurate CO2 concentration measurements. The method described here is economical, scalable, and self-contained, allowing for potential future deployment in locations without existing traffic infrastructure or vehicle fleet information. Using a test data set collected on California Highway 24 over a 2 week period, we observe that on-road CO2 concentrations are elevated by a factor of 2 in congestion compared to free-flow conditions. This result is found to be consistent with a model including vehicle-induced turbulence and standard engine physics. In contrast to surface concentrations, surface emissions are found to be relatively insensitive to congestion. We next use our model for CO2 concentration together with our data to independently derive vehicle emission rate parameters. Parameters scaling the leading four emission rate terms are found to be within 25% of those expected for a typical passenger car fleet, enabling us to derive instantaneous emission rates directly from our data that compare generally favorably to predictive models presented in the literature. The present results highlight the importance of high spatial and temporal resolution traffic data for interpreting on- and near-road concentration measurements. Future work will focus on transport and the integration of mobile platforms into existing stationary network designs.

  16. Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions

    NASA Astrophysics Data System (ADS)

    Obermeier, W. A.; Lehnert, L. W.; Kammann, C. I.; Müller, C.; Grünhage, L.; Luterbacher, J.; Erbs, M.; Moser, G.; Seibert, R.; Yuan, N.; Bendix, J.

    2017-02-01

    The increase in atmospheric greenhouse gas concentrations from anthropogenic activities is the major driver of recent global climate change. The stimulation of plant photosynthesis due to rising atmospheric carbon dioxide concentrations ([CO2]) is widely assumed to increase the net primary productivity (NPP) of C3 plants--the CO2 fertilization effect (CFE). However, the magnitude and persistence of the CFE under future climates, including more frequent weather extremes, are controversial. Here we use data from 16 years of temperate grassland grown under `free-air carbon dioxide enrichment’ conditions to show that the CFE on above-ground biomass is strongest under local average environmental conditions. The observed CFE was reduced or disappeared under wetter, drier and/or hotter conditions when the forcing variable exceeded its intermediate regime. This is in contrast to predictions of an increased CO2 fertilization effect under drier and warmer conditions. Such extreme weather conditions are projected to occur more intensely and frequently under future climate scenarios. Consequently, current biogeochemical models might overestimate the future NPP sink capacity of temperate C3 grasslands and hence underestimate future atmospheric [CO2] increase.

  17. Extreme weather conditions reduce the CO2 fertilization effect in temperate C3 grasslands

    NASA Astrophysics Data System (ADS)

    Obermeier, Wolfgang; Lehnert, Lukas; Kammann, Claudia; Müller, Christoph; Grünhage, Ludger; Luterbacher, Jürg; Erbs, Martin; Yuan, Naiming; Bendix, Jörg

    2016-04-01

    The increase in atmospheric greenhouse gas concentrations from anthropogenic activities is the major driver of global climate change. The rising atmospheric carbon dioxide (CO2) concentrations may stimulate plant photosynthesis and, thus, cause a net sink effect in the global carbon cycle. As a consequence of an enhanced photosynthesis, an increase in the net primary productivity (NPP) of C3 plants (termed CO2 fertilization) is widely assumed. This process is associated with a reduced stomatal conductance of leaves as the carbon demand of photosynthesis is met earlier. This causes a higher water-use efficiency and, hence, may reduce water stress in plants exposed to elevated CO2 concentrations ([eCO2]). However, the magnitude and persistence of the CO2 fertilization effect under a future climate including more frequent weather extremes are controversial. To test the CO2 fertilization effect for Central European grasslands, a data set comprising 16 years of biomass samples and environmental variables such as local weather and soil conditions was analysed by means of a novel approach. The data set was recorded on a "Free Air Carbon dioxide Enrichment" (FACE) experimental site which allows to quantify the CO2 fertilization effect under naturally occurring climate variations. The results indicate that the CO2 fertilization effect on the aboveground biomass is strongest under local average environmental conditions. Such intermediate regimes were defined by the mean +/- 1 standard deviation of the long-term average in the respective variable three months before harvest. The observed CO2 fertilization effect was reduced or vanished under drier, wetter and hotter conditions when the respective variable exceeded the bounds of the intermediate regimes. Comparable conditions, characterized by a higher frequency of more extreme weather conditions, are predicted for the future by climate projections. Consequently, biogeochemical models may overestimate the future NPP sink capacity of temperate C3 grasslands. Because temperate grasslands represent an important part of the Earth's terrestrial surface and therefore the global carbon cycle, atmospheric CO2 concentrations [CO2] might increase faster than currently expected.

  18. Causes and Implications of Persistent Atmospheric Carbon Dioxide Biases in Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Forrest M; Randerson, James T.; Arora, Vivek K.

    The strength of feedbacks between a changing climate and future CO2 concentrations are uncertain and difficult to predict using Earth System Models (ESMs). We analyzed emission-driven simulations--in which atmospheric CO2 levels were computed prognostically--for historical (1850-2005) and future periods (RCP 8.5 for 2006-2100) produced by 15 ESMs for the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Comparison of ESM prognostic atmospheric CO2 over the historical period with observations indicated that ESMs, on average, had a small positive bias in predictions of contemporary atmospheric CO2. Weak ocean carbon uptake in many ESMs contributed to this bias, based on comparisonsmore » with observations of ocean and atmospheric anthropogenic carbon inventories. We found a significant linear relationship between contemporary atmospheric CO2 biases and future CO2 levels for the multi-model ensemble. We used this relationship to create a contemporary CO2 tuned model (CCTM) estimate of the atmospheric CO2 trajectory for the 21st century. The CCTM yielded CO2 estimates of 600 {plus minus} 14 ppm at 2060 and 947 {plus minus} 35 ppm at 2100, which were 21 ppm and 32 ppm below the multi-model mean during these two time periods. Using this emergent constraint approach, the likely ranges of future atmospheric CO2, CO2-induced radiative forcing, and CO2-induced temperature increases for the RCP 8.5 scenario were considerably narrowed compared to estimates from the full ESM ensemble. Our analysis provided evidence that much of the model-to-model variation in projected CO2 during the 21st century was tied to biases that existed during the observational era, and that model differences in the representation of concentration-carbon feedbacks and other slowly changing carbon cycle processes appear to be the primary driver of this variability. By improving models to more closely match the long-term time series of CO2 from Mauna Loa, our analysis suggests uncertainties in future climate projections can be reduced.« less

  19. Evidence for divergence of response in Indica, Japonica, and wild rice to high CO2 x temperature interaction

    USDA-ARS?s Scientific Manuscript database

    Previous studies suggest that the intraspecific variability of rice yield response to rising carbon dioxide concentration, [CO2], could serve as a basis of selection to improve genotypes for future high CO2 conditions. However, assessment of responses to elevated [CO2] must consider air temperature,...

  20. Decadal analysis of impact of future climate on wheat production in dry Mediterranean environment: A case of Jordan.

    PubMed

    Dixit, Prakash N; Telleria, Roberto; Al Khatib, Amal N; Allouzi, Siham F

    2018-01-01

    Different aspects of climate change, such as increased temperature, changed rainfall and higher atmospheric CO 2 concentration, all have different effects on crop yields. Process-based crop models are the most widely used tools for estimating future crop yield responses to climate change. We applied APSIM crop simulation model in a dry Mediterranean climate with Jordan as sentinel site to assess impact of climate change on wheat production at decadal level considering two climate change scenarios of representative concentration pathways (RCP) viz., RCP4.5 and RCP8.5. Impact of climatic variables alone was negative on grain yield but this adverse effect was negated when elevated atmospheric CO 2 concentrations were also considered in the simulations. Crop cycle of wheat was reduced by a fortnight for RCP4.5 scenario and by a month for RCP8.5 scenario at the approach of end of the century. On an average, a grain yield increase of 5 to 11% in near future i.e., 2010s-2030s decades, 12 to 16% in mid future i.e., 2040s-2060s decades and 9 to 16% in end of century period can be expected for moderate climate change scenario (RCP4.5) and 6 to 15% in near future, 13 to 19% in mid future and 7 to 20% increase in end of century period for a drastic climate change scenario (RCP8.5) based on different soils. Positive impact of elevated CO 2 is more pronounced in soils with lower water holding capacity with moderate increase in temperatures. Elevated CO 2 had greater positive effect on transpiration use efficiency (TUE) than negative effect of elevated mean temperatures. The change in TUE was in near perfect direct relationship with elevated CO 2 levels (R 2 >0.99) and every 100-ppm atmospheric CO 2 increase resulted in TUE increase by 2kgha -1 mm -1 . Thereby, in this environment yield gains are expected in future and farmers can benefit from growing wheat. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Species and gamete-specific fertilization success of two sea urchins under near future levels of pCO2

    NASA Astrophysics Data System (ADS)

    Sung, Chan-Gyung; Kim, Tae Won; Park, Young-Gyu; Kang, Seong-Gil; Inaba, Kazuo; Shiba, Kogiku; Choi, Tae Seob; Moon, Seong-Dae; Litvin, Steve; Lee, Kyu-Tae; Lee, Jung-Suk

    2014-09-01

    Since the Industrial Revolution, rising atmospheric CO2 concentration has driven an increase in the partial pressure of CO2 in seawater (pCO2), thus lowering ocean pH. We examined the separate effects of exposure of gametes to elevated pCO2 and low pH on fertilization success of the sea urchin Strongylocentrotus nudus. Sperm and eggs were independently exposed to seawater with pCO2 levels ranging from 380 (pH 7.96-8.3) to 6000 ppmv (pH 7.15-7.20). When sperm were exposed, fertilization rate decreased drastically with increased pCO2, even at a concentration of 450 ppmv (pH range: 7.94 to 7.96). Conversely, fertilization of Hemicentrotus pulcherrimus was not significantly changed even when sperm was exposed to pCO2 concentrations as high as 750 ppmv. Exposure of S. nudus eggs to seawater with high pCO2 did not affect fertilization success, suggesting that the effect of increased pCO2 on sperm is responsible for reduced fertilization success. Surprisingly, this result was not related to sperm motility, which was insensitive to pCO2. When seawater was acidified using HCl, leaving pCO2 constant, fertilization success in S. nudus remained high (> 80%) until pH decreased to 7.3. While further studies are required to elucidate the physiological mechanism by which elevated pCO2 impairs sperm and reduces S. nudus fertilization, this study suggests that in the foreseeable future, sea urchin survival may be threatened due to lower fertilization success driven by elevated pCO2 rather than by decreased pH in seawater.

  2. The Global Carbon Cycle: It's a Small World

    NASA Astrophysics Data System (ADS)

    Ineson, Philip; Milcu, Alexander; Subke, Jens-Arne; Wildman, Dennis; Anderson, Robert; Manning, Peter; Heinemeyer, Andreas

    2010-05-01

    Predicting future atmospheric concentrations of carbon dioxide (CO2), together with the impacts of these changes on global climate, are some of the most urgent and important challenges facing mankind. Modelling is the only way in which such predictions can be made, leading to the current generation of increasingly complex computer simulations, with associated concerns about embedded assumptions and conflicting model outputs. Alongside analysis of past climates, the GCMs currently represent our only hope of establishing the importance of potential runaway positive feedbacks linking climate change and atmospheric greenhouse gases yet the incorporation of necessary biospheric responses into GCMs markedly increases the uncertainty of predictions. Analysis of the importance of the major components of the global carbon (C) cycle reveals that an understanding of the conditions under which the terrestrial biosphere could switch from an overall carbon (C) sink to a source is critical to our ability to make future climate predictions. Here we present an alternative approach to assessing the short term biotic (plant and soil) sensitivities to elevated temperature and atmospheric CO2 through the use of a purely physical analogue. Centred on the concept of materially-closed systems containing scaled-down ratios of the global C stocks for the atmosphere, vegetation and soil we show that, in these model systems, the terrestrial biosphere is able to buffer a rise of 3oC even when coupled to very strong CO2-temperature positive feedbacks. The system respiratory response appears to be extremely well linked to temperature and is critical in deciding atmospheric concentrations of CO2. Simulated anthropogenic emissions of CO2 into the model systems showed an initial corresponding increase in atmospheric CO2 but, somewhat surprisingly, CO2 concentrations levelled off at ca. 480 p.p.m.v., despite continuing additions of CO2. Experiments were performed in which reversion of atmospheric temperatures, or cessation of CO2 additions, showed rapid and proportionate decreases in atmospheric CO2 concentrations. The results indicate that short term terrestrial feedbacks are not sufficient to induce a CO2-temperature runaway scenario and suggest that predictions of atmospheric CO2 by current GCMs may under-estimate the CO2 fertilisation effect on plants and, hence, over-estimate future atmospheric CO2 increases. Perhaps, more importantly, the experiments show that the impacts of imposed elevated CO2 and temperature increase can be reversed. Whilst clearly representing a simplified version of terrestrial CO2 dynamics, it is proposed that closed system research represents a new form of test-bed for validation of processes represented within digital global CO2 models.

  3. Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle.

    PubMed

    McNeil, Ben I; Sasse, Tristan P

    2016-01-21

    High carbon dioxide (CO2) concentrations in sea-water (ocean hypercapnia) can induce neurological, physiological and behavioural deficiencies in marine animals. Prediction of the onset and evolution of hypercapnia in the ocean requires a good understanding of annual variations in oceanic CO2 concentration, but there is a lack of relevant global observational data. Here we identify global ocean patterns of monthly variability in carbon concentration using observations that allow us to examine the evolution of surface-ocean CO2 levels over the entire annual cycle under increasing atmospheric CO2 concentrations. We predict that the present-day amplitude of the natural oscillations in oceanic CO2 concentration will be amplified by up to tenfold in some regions by 2100, if atmospheric CO2 concentrations continue to rise throughout this century (according to the RCP8.5 scenario of the Intergovernmental Panel on Climate Change). The findings from our data are broadly consistent with projections from Earth system climate models. Our predicted amplification of the annual CO2 cycle displays distinct global patterns that may expose major fisheries in the Southern, Pacific and North Atlantic oceans to hypercapnia many decades earlier than is expected from average atmospheric CO2 concentrations. We suggest that these ocean 'CO2 hotspots' evolve as a combination of the strong seasonal dynamics of CO2 concentration and the long-term effective storage of anthropogenic CO2 in the oceans that lowers the buffer capacity in these regions, causing a nonlinear amplification of CO2 concentration over the annual cycle. The onset of ocean hypercapnia (when the partial pressure of CO2 in sea-water exceeds 1,000 micro-atmospheres) is forecast for atmospheric CO2 concentrations that exceed 650 parts per million, with hypercapnia expected in up to half the surface ocean by 2100, assuming a high-emissions scenario (RCP8.5). Such extensive ocean hypercapnia has detrimental implications for fisheries during the twenty-first century.

  4. Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle

    NASA Astrophysics Data System (ADS)

    McNeil, Ben I.; Sasse, Tristan P.

    2016-01-01

    High carbon dioxide (CO2) concentrations in sea-water (ocean hypercapnia) can induce neurological, physiological and behavioural deficiencies in marine animals. Prediction of the onset and evolution of hypercapnia in the ocean requires a good understanding of annual variations in oceanic CO2 concentration, but there is a lack of relevant global observational data. Here we identify global ocean patterns of monthly variability in carbon concentration using observations that allow us to examine the evolution of surface-ocean CO2 levels over the entire annual cycle under increasing atmospheric CO2 concentrations. We predict that the present-day amplitude of the natural oscillations in oceanic CO2 concentration will be amplified by up to tenfold in some regions by 2100, if atmospheric CO2 concentrations continue to rise throughout this century (according to the RCP8.5 scenario of the Intergovernmental Panel on Climate Change). The findings from our data are broadly consistent with projections from Earth system climate models. Our predicted amplification of the annual CO2 cycle displays distinct global patterns that may expose major fisheries in the Southern, Pacific and North Atlantic oceans to hypercapnia many decades earlier than is expected from average atmospheric CO2 concentrations. We suggest that these ocean ‘CO2 hotspots’ evolve as a combination of the strong seasonal dynamics of CO2 concentration and the long-term effective storage of anthropogenic CO2 in the oceans that lowers the buffer capacity in these regions, causing a nonlinear amplification of CO2 concentration over the annual cycle. The onset of ocean hypercapnia (when the partial pressure of CO2 in sea-water exceeds 1,000 micro-atmospheres) is forecast for atmospheric CO2 concentrations that exceed 650 parts per million, with hypercapnia expected in up to half the surface ocean by 2100, assuming a high-emissions scenario (RCP8.5). Such extensive ocean hypercapnia has detrimental implications for fisheries during the twenty-first century.

  5. The response of vegetation to rising CO2 concentrations plays an important role in future changes in the hydrological cycle

    NASA Astrophysics Data System (ADS)

    Hong, Tao; Dong, Wenjie; Ji, Dong; Dai, Tanlong; Yang, Shili; Wei, Ting

    2018-04-01

    The effects of increasing CO2 concentrations on plant and carbon cycle have been extensively investigated; however, the effects of changes in plants on the hydrological cycle are still not fully understood. Increases in CO2 modify the stomatal conductance and water use of plants, which may have a considerable effect on the hydrological cycle. Using the carbon-climate feedback experiments from CMIP5, we estimated the responses of plants and hydrological cycle to rising CO2 concentrations to double of pre-industrial levels without climate change forcing. The mode results show that rising CO2 concentrations had a significant influence on the hydrological cycle by changing the evaporation and transpiration of plants and soils. The increases in the area covered by plant leaves result in the increases in vegetation evaporation. Besides, the physiological effects of stomatal closure were stronger than the opposite effects of changes in plant structure caused by the increases in LAI (leaf area index), which results in the decrease of transpiration. These two processes lead to overall decreases in evaporation, and then contribute to increases in soil moisture and total runoff. In the dry areas, the stronger increase in LAI caused the stronger increases in vegetation evaporation and then lead to the overall decreases in P - E (precipitation minus evaporation) and soil moisture. However, the soil moisture in sub-arid and wet areas would increase, and this may lead to the soil moisture deficit worse in the future in the dry areas. This study highlights the need to consider the different responses of plants and the hydrological cycle to rising CO2 in dry and wet areas in future water resources management, especially in water-limited areas.

  6. Impacts of elevated CO2 concentration on the productivity and surface energy budget of the soybean and maize agroecosystem in the Midwest US

    USDA-ARS?s Scientific Manuscript database

    The physiological response of vegetation to increasing atmospheric carbon dioxide concentration ([CO2]) modifies productivity and surface energy and water fluxes. Quantifying this response is required for assessments of future climate change. Many global climate models account for this response; how...

  7. Undoing climate warming by atmospheric carbon-dioxide removal: can a holocene-like climate be restored?

    NASA Astrophysics Data System (ADS)

    MacDougall, Andrew

    2013-04-01

    Understandably, most climate modelling studies of future climate have focused on the affects of carbon emissions in the present century or the long-term fate of anthropogenically emitted carbon. These studies make an assumption: that once net anthropogenic carbon emissions cease, that humanity will make no further effort to intervene in atmospheric composition. There is a case to be made, however, that there will be a desire to return to a "safe" atmospheric concentration of CO2. Realistically this implies synthetically removing CO2 from the atmosphere and storing it is some geologically stable form. For this study experiments were conducted using the University of Victoria Earth System Climate Model (UVic ESCM) forced with novel future atmospheric trace-gas concentration pathways to explore a gradual return to pre-industrial radiative forcing. The concentration pathways follow each RCP (2.6, 4.5, 6.0, and 8.5) exactly until the peak CO2 concentration of that RCP is reached, at which point atmospheric CO2 is reduced at the same rate it increased until the 1850 concentration of CO2 is reached. Non-CO2 greenhouse gas forcing follows the prescribed RCP path until the year of peak CO2, then is subsequently linearly reduced to pre-industrial forcing. Pasture and crop areas are also gradually reduced to their pre-industrial extent. Under the middle two concentration pathways (4.5 and 6.0) a climate resembling the 20th century climate can be restored by the 25th century, although surface temperature remains above the pre-industrial temperature until at least the 30th century. Due to carbon-cycle feedbacks the quantity of carbon that must be removed from the atmosphere is larger than the quantity that was originally emitted. For concentration pathways 2.6, 4.5, and 6.0 the sequestered CO2 is 115-190% of the original cumulative carbon emissions. These results suggest that even with monumental effort to remove CO2 from the atmosphere, humanity will be living with the consequences of fossil fuel emissions for a very long time.

  8. Leaf and plant water use efficiency of C{sub 4} species grown at glacial to elevated CO{sub 2} concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polley, H.W.; Johnson, H.B.; Mayeux, H.S.

    1996-03-01

    Leaf gas exchange was measured on C{sub 4} plants grown from near glacial to current CO{sub 2} concentrations (200-350 {mu}mol mol{sup -1}) and from the current concentration to possible future levels (near 700 and 1000 {mu}mol mol{sup -1}) to test the prediction that intrinsic water use efficiency (CO{sub 2} assimilation [A]/stomatal conductance to water [g]) would rise by a similar relative amount as CO{sub 2} concentration. Studied were species differing in growth form or life history, the perennial grass Schizachyrium scoparium (little bluestem), perennial shrub Atriplex canescens (four-wing saltbush), and annual grass Schizachyrium scoparium (little bluestem), leaf A/g of themore » C{sub 4} species examined was stimulated proportionally more by a given relative increase in CO{sub 2} over subambient than by elevated concentrations. The ratio of the relative increase in A/g to that in CO{sub 2} exceeded unity in S, scoparium and A. canescens as CO{sub 2} rose from 700 to 1000 {mu}mol mol{sup -1}. At higher CO{sub 2} concentrations, A/g of the C{sub 4} perennials was similar to that expected for C{sub 3} plants. Since much of the potential response of C{sub 4} plants to CO{sub 4} perennials was similar to that expected for C{sub 3} plants. Since much of the potential response of C{sub 4} plants to CO{sub 2} often derives from higher water use efficiency (WUE), these results indicated that potential productivity of some C{sub 4} plants increased relatively more since glaciation than it will in the future. There also were large (>100%) differences in A/g and plant WUE (production/transpiration) at a given CO{sub 2} level among the plants examined that could influence the relative productivities of C{sub 4} species or growth forms and their interactions with C{sub 3} plants. 34 refs., 3 figs., 3 tabs.« less

  9. Chamber and Field Studies demonstrate Differential Amb a 1 Contents in Common Ragweed Depending on CO2 Levels

    PubMed Central

    Choi, Young-Jin; Oh, Hae-Rin; Kim, Kyu Rang; Kim, Mi-Jin; Kim, Baek-Jo; Baek, Won-Gi

    2018-01-01

    Although atmospheric carbon dioxide (CO2) has no apparent direct effect on human health, it does have direct effects on plants. The present study evaluated the influence of increased CO2 levels on the concentration of allergens from common ragweed pollen by setting up a chamber study to model future air conditions and a field study to evaluate current air conditions. For the chamber study, we established 20 ragweed plants in an open-top chamber under different CO2 levels (380–400, 500–520, 600–620, and 1,000–1,100 parts per million [ppm]). For the field study, we established ragweed plants in rural (Pocheon, Gyeonggi-do; mean CO2 320±54.8 ppm) and urban (Gangnam, Seoul; mean CO2 440±78.5 ppm) locations. Seeds of the common ragweed (Ambrosia artemisiifolia) were obtained from Daejin University. The Amb a 1 protein content of pollen extracts was quantified using a double sandwich enzyme-linked immunosorbent assay. In our chamber study, the median concentration of Amb a 1 in pollen increased with increasing in CO2 concentration (1.88 ng/µg in 380–400 ppm CO2; 3.14 ng/µg in 500–520 ppm CO2; 4.44 ng/µg in 600–620 ppm CO2; and 5.36 ng/µg in 1,000–1,100 ppm CO2). In our field study, we found no significantly different concentration of Amb a 1 between the pollen extracts at the Pocheon (mean±standard deviation, 1.63±0.3 ng/µg pollen in 320±54.8 ppm CO2) and the Gangnam (2.04±0.7 ng/µg pollen in CO2 in 440±78.5 ppm CO2) locations, although the concentration of Amb a 1 was increased in the Gangnam than in the Pocheon locations. Our results suggest that future increases in CO2 levels to more than 600 ppm will significantly elevate the Amb a 1 content in common ragweeds, although the current different CO2 levels do not cause differences in the Amb a 1 content of ragweed pollen. PMID:29676075

  10. Carbon Dioxide and Water Vapor Fluxes at Reduced and Elevated CO2 Concentrations in Southern California Chaparral

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Oechel, W. C.; Hastings, S. J.; Bryant, P. J.; Qian, Y.

    2003-12-01

    This research took two different approaches to measuring carbon and water vapor fluxes at the plot level (2 x 2 meter and 1 x 1 meter plots) to help understand and predict ecosystem responses to elevated CO2 concentrations and concomitant environmental changes. The first measurement approach utilized a CO2-controlled, ambient lit, temperature controlled (CO2LT) null-balance chamber system run in a chaparral ecosystem in southern California, with six different CO2 concentrations ranging from 250 to 750 ppm CO2 concentrations with 100 ppm difference between treatments. The second measurement approach used a free air CO2 enrichment (FACE) system operated at 550 ppm CO2 concentration. These manipulations allowed the study of responses of naturally-growing chaparral to varying levels of CO2, under both chamber and open air conditions. There was a statistically significant CO2 effect on annual NEE (net ecosystem exchange) during the period of this study, 1997 to 2000. The effects of elevated CO2 on CO2 and water vapor flux showed strong seasonal patterns. Elevated CO2 delayed the development of water stress, enhanced leaf-level photosynthesis, and decreased transpiration and conductance rates. These effects were observed regardless of water availability. Ecosystem CO2 sink strength and plant water status were significantly enhanced by elevated CO2 when water availability was restricted. Comparing the FACE treatment and the FACE control, the ecosystem was either a stronger sink or a weaker source to the atmosphere throughout the dry seasons, but there was no statistically significant difference during the wet seasons. Annual average leaf transpiration decreased with the increasing of the atmospheric CO2 concentration. Although leaf level water-use efficiency (WUE) increased with the growth CO2 concentration increase, annual evapotranspiration (ET) during these four years also increased with the increase of the atmospheric CO2 concentrations. These results indicate that chaparral or other similar ecosystems, under future elevated CO2 concentrations, might be even more water stressed than they are under current conditions.

  11. Dependence of future mortality changes on global CO2 concentrations: A review.

    PubMed

    Lee, Jae Young; Choi, Hayoung; Kim, Ho

    2018-05-01

    The heterogeneity among previous studies of future mortality projections due to climate change has often hindered comparisons and syntheses of resulting impacts. To address this challenge, the present study introduced a novel method to normalize the results from projection studies according to different baseline and projection periods and climate scenarios, thereby facilitating comparison and synthesis. This study reviewed the 15 previous studies involving projected climate change-related mortality under Representative Concentration Pathways. To synthesize their results, we first reviewed the important study design elements that affected the reported results in previous studies. Then, we normalized the reported results by CO 2 concentration in order to eliminate the effects of the baseline period, projection period, and climate scenario choices. For twenty-five locations worldwide, the normalized percentage changes in temperature-attributable mortality per 100 ppm increase in global CO 2 concentrations ranged between 41.9% and 330%, whereas those of total mortality ranged between 0.3% and 4.8%. The normalization methods presented in this work will guide future studies to provide their results in a normalized format and facilitate research synthesis to reinforce our understanding on the risk of climate change. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Control of yellow and purple nutsedge in elevated co2 environments with glyphosate and halosulfuron

    USDA-ARS?s Scientific Manuscript database

    Atmospheric concentrations of carbon dioxide (CO2) have significantly increased over the past century and are expected to continue increasing in the future. While elevated levels of CO2 will likely result in higher crop yields, weed growth is also highly likely to increase. An experiment was conduct...

  13. Constraints on High Northern Photosynthesis Increase Using Earth System Models and a Set of Independent Observations

    NASA Astrophysics Data System (ADS)

    Winkler, A. J.; Brovkin, V.; Myneni, R.; Alexandrov, G.

    2017-12-01

    Plant growth in the northern high latitudes benefits from increasing temperature (radiative effect) and CO2 fertilization as a consequence of rising atmospheric CO2 concentration. This enhanced gross primary production (GPP) is evident in large scale increase in summer time greening over the 36-year record of satellite observations. In this time period also various global ecosystem models simulate a greening trend in terms of increasing leaf area index (LAI). We also found a persistent greening trend analyzing historical simulations of Earth system models (ESM) participating in Phase 5 of the Coupled Model Intercomparison Project (CMIP5). However, these models span a large range in strength of the LAI trend, expressed as sensitivity to both key environmental factors, temperature and CO2 concentration. There is also a wide spread in magnitude of the associated increase of terrestrial GPP among the ESMs, which contributes to pronounced uncertainties in projections of future climate change. Here we demonstrate that there is a linear relationship across the CMIP5 model ensemble between projected GPP changes and historical LAI sensitivity, which allows using the observed LAI sensitivity as an "emerging constraint" on GPP estimation at future CO2 concentration. This constrained estimate of future GPP is substantially higher than the traditional multi-model mean suggesting that the majority of current ESMs may be significantly underestimating carbon fixation by vegetation in NHL. We provide three independent lines of evidence in analyzing observed and simulated CO2 amplitude as well as atmospheric CO2 inversion products to arrive at the same conclusion.

  14. Development of a three-man preprototype CO2 collection subsystem for spacecraft application

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Wynveen, R. A.; Quattrone, P. D.; Marshall, R. D.

    1977-01-01

    Future long-duration manned space missions will require regenerable carbon dioxide (CO2) collection concepts such as the Electrochemical Depolarized CO2 Concentrator (EDC). A three-man-capacity preprototype CO2 Collection Subsystem (CS-3) is being developed for eventual flight demonstration as part of the Air Revitalization System (ARS) of the Regenerative Life Support Evaluation (RLSE) experiment. The CS-3 employs an EDC to concentrate CO2 from the low partial-pressure levels required of spacecraft atmospheres to high partial-pressure levels needed for oxygen (O2) recovery through CO2 reduction processes. The CS-3 is sized to remove a nominal 3.0 kg/day (6.6 lb/day) of the CO2 to maintain the CO2 partial pressure (pCO2) of the cabin atmosphere at 400 Pa (3 mm Hg) or less. This paper presents the preprototype design, configuration, operation, and projected performance characteristics.

  15. Estimated Effects of Future Atmospheric CO2 Concentrations on Protein Intake and the Risk of Protein Deficiency by Country and Region

    PubMed Central

    Schwartz, Joel; Myers, Samuel S.

    2017-01-01

    Background: Crops grown under elevated atmospheric CO2 concentrations (eCO2) contain less protein. Crops particularly affected include rice and wheat, which are primary sources of dietary protein for many countries. Objectives: We aimed to estimate global and country-specific risks of protein deficiency attributable to anthropogenic CO2 emissions by 2050. Methods: To model per capita protein intake in countries around the world under eCO2, we first established the effect size of eCO2 on the protein concentration of edible portions of crops by performing a meta-analysis of published literature. We then estimated per-country protein intake under current and anticipated future eCO2 using global food balance sheets (FBS). We modeled protein intake distributions within countries using Gini coefficients, and we estimated those at risk of deficiency from estimated average protein requirements (EAR) weighted by population age structure. Results: Under eCO2, rice, wheat, barley, and potato protein contents decreased by 7.6%, 7.8%, 14.1%, and 6.4%, respectively. Consequently, 18 countries may lose >5% of their dietary protein, including India (5.3%). By 2050, assuming today’s diets and levels of income inequality, an additional 1.6% or 148.4 million of the world’s population may be placed at risk of protein deficiency because of eCO2. In India, an additional 53 million people may become at risk. Conclusions: Anthropogenic CO2 emissions threaten the adequacy of protein intake worldwide. Elevated atmospheric CO2 may widen the disparity in protein intake within countries, with plant-based diets being the most vulnerable. https://doi.org/10.1289/EHP41 PMID:28885977

  16. Photocatalytic CO2 conversion by polymeric carbon nitrides.

    PubMed

    Fang, Yuanxing; Wang, Xinchen

    2018-05-10

    CO2 is a vital compond for life, and its concentration significantly affects the living environment of the Earth. Extensive effort has been devoted to balance its concentration. Among the developed approaches, photocatalytic CO2 conversion is considered as an ideal option. Previous reports suggest polymeric carbon nitride (PCN) can be effectively used as a metal-free photocatalyst to convert CO2. Herein, the recent developments of PCN and the related photocatalysts for CO2 conversion are summarized from the fundamental of using PCN, and their extended applications through molecular modification and physical/chemical coupling with other substances. The concluding remarks finally indicate the future challenges of using PCN materials for relevant solar-driven applications.

  17. Effects of Elevated CO2 on the Swainsonine Chemotypes of Astragalus lentiginosus and Astragalus mollissimus.

    PubMed

    Cook, Daniel; Gardner, Dale R; Pfister, James A; Stonecipher, Clinton A; Robins, Joseph G; Morgan, Jack A

    2017-03-01

    Rapid changes in the Earth's atmosphere and climate associated with human activity can have significant impacts on agriculture including livestock production. CO 2 concentration has risen from the industrial revolution to the current time, and is expected to continue to rise. Climatic changes alter physiological processes, growth, and development in numerous plant species, potentially changing concentrations of plant secondary compounds. These physiological changes may influence plant population density, growth, fitness, and toxin concentrations and thus influence the risk of toxic plants to grazing livestock. Locoweeds, swainsonine-containing Astragalus species, are one group of plants that may be influenced by climate change. We evaluated how two different swainsonine-containing Astragalus species responded to elevated CO 2 concentrations. Measurements of biomass, crude protein, water soluble carbohydrates and swainsonine concentrations were measured in two chemotypes (positive and negative for swainsonine) of each species after growth at CO 2 levels near present day and at projected future concentrations. Biomass and water soluble carbohydrate concentrations responded positively while crude protein concentrations responded negatively to elevated CO 2 in the two species. Swainsonine concentrations were not strongly affected by elevated CO 2 in the two species. In the different chemotypes, biomass responded negatively and crude protein concentrations responded positively in the swainsonine-positive plants compared to the swainsonine-negative plants. Ultimately, changes in CO 2 and endophyte status will likely alter multiple physiological responses in toxic plants such as locoweed, but it is difficult to predict how these changes will impact plant herbivore interactions.

  18. Historical emissions critical for mapping decarbonization pathways

    NASA Astrophysics Data System (ADS)

    Majkut, J.; Kopp, R. E.; Sarmiento, J. L.; Oppenheimer, M.

    2016-12-01

    Policymakers have set a goal of limiting temperature increase from human influence on the climate. This motivates the identification of decarbonization pathways to stabilize atmospheric concentrations of CO2. In this context, the future behavior of CO2 sources and sinks define the CO2 emissions necessary to meet warming thresholds with specified probabilities. We adopt a simple model of the atmosphere-land-ocean carbon balance to reflect uncertainty in how natural CO2 sinks will respond to increasing atmospheric CO2 and temperature. Bayesian inversion is used to estimate the probability distributions of selected parameters of the carbon model. Prior probability distributions are chosen to reflect the behavior of CMIP5 models. We then update these prior distributions by running historical simulations of the global carbon cycle and inverting with observationally-based inventories and fluxes of anthropogenic carbon in the ocean and atmosphere. The result is a best-estimate of historical CO2 sources and sinks and a model of how CO2 sources and sinks will vary in the future under various emissions scenarios, with uncertainty. By linking the carbon model to a simple climate model, we calculate emissions pathways and carbon budgets consistent with meeting specific temperature thresholds and identify key factors that contribute to remaining uncertainty. In particular, we show how the assumed history of CO2 emissions from land use change (LUC) critically impacts estimates of the strength of the land CO2 sink via CO2 fertilization. Different estimates of historical LUC emissions taken from the literature lead to significantly different parameterizations of the carbon system. High historical CO2 emissions from LUC lead to a more robust CO2 fertilization effect, significantly lower future atmospheric CO2 concentrations, and an increased amount of CO2 that can be emitted to satisfy temperature stabilization targets. Thus, in our model, historical LUC emissions have a significant impact on allowable carbon budgets under temperture targets.

  19. Impact of elevated CO2 levels on control of purple and yellow nutsedge with glyphosate and halosulfuron

    USDA-ARS?s Scientific Manuscript database

    Atmospheric concentrations of carbon dioxide (CO2) have been steadily rising each year and are expected to continue increasing in the future which could have a significant impact on agricultural production. Previous research has shown that elevated CO2 increases the growth and yield of most plant sp...

  20. Nitrous Oxide Emissions in a Managed Grassland are Strongly Influenced by CO2 Concentrations Across a Range of Soil Moisture Levels

    NASA Astrophysics Data System (ADS)

    Brown, Z. A.; Hovenden, M. J.; Hunt, M.

    2017-12-01

    Though the atmosphere contains less nitrous oxide (N2O, 324 ppb) than carbon dioxide (CO2, 400 ppm­), N2O has 298 times the global warming potential of CO2 on a 100-year horizon. Nitrous oxide emissions tend to be greater in moist soils because denitrification is an anaerobic process. The rising concentration of CO2 in the atmosphere reduces plant stomatal aperture, thereby slowing transpiration and water use and leading to higher soil moisture levels. Thus, the rising CO2 concentration could stimulate N2O emissions indirectly via increasing soil moisture. Further, results from field experiments in which CO2 is elevated have demonstrated nitrification is accelerated at elevated CO2 concentrations (eCO2). Hence, N2O emissions could be substantially increased by the impacts of rising CO2 concentrations on plant and ecosystem physiology. However, the scale of this impact could be influenced by the amount of water supplied through irrigation or rainfall since both nitrification and denitrification are sensitive to soil moisture. Here, we use measurements of CO2 and N2O emissions from the TasFACE2 experiment to explore the ways in which the impact of CO2 concentration on greenhouse gas emissions is influenced by water supply in a managed temperate pasture. TasFACE2 is the world's only experiment that explicitly controls soil water availability at three different CO2 concentrations. Application of chemical nitrification inhibitor severely reduces N2O flux from soils regardless of CO2 level, water treatment and time following urea application. This inhibitor reduced soil respiration in plots exposed to ambient CO2 plots but not in eCO2 plots. N2O flux is stimulated by eCO2 but not consistently among watering treatments or seasons. Soil respiration is strongly enhanced by CO2 effect regardless of watering treatment. The results demonstrate that CO2 concentration has a sustained impact on CO2 and N2O flux across a range of water availabilities in this fertilised, ryegrass pasture. Thus, the impacts of rising CO2 concentrations on greenhouse gas emissions are not dependent upon soil water availability, with substantial impacts occurring even in drier soils. Thus, the impact of CO2 concentration on emissions might be stronger than has been believed to this point, with major ramifications for future climate.

  1. Effects of multiple climate change factors on the tall fescue-fungal endophyte symbiosis: infection frequency and tissue chemistry.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brosi, Glade; McCulley, Rebecca L; Bush, L P

    Climate change (altered CO{sub 2}, warming, and precipitation) may affect plant-microbial interactions, such as the Lolium arundinaceum-Neotyphodium coenophialum symbiosis, to alter future ecosystem structure and function. To assess this possibility, tall fescue tillers were collected from an existing climate manipulation experiment in a constructed old-field community in Tennessee (USA). Endophyte infection frequency (EIF) was determined, and infected (E+) and uninfected (E-) tillers were analysed for tissue chemistry. The EIF of tall fescue was higher under elevated CO{sub 2} (91% infected) than with ambient CO{sub 2} (81%) but was not affected by warming or precipitation treatments. Within E+ tillers, elevated CO{submore » 2} decreased alkaloid concentrations of both ergovaline and loline, by c. 30%; whereas warming increased loline concentrations 28% but had no effect on ergovaline. Independent of endophyte infection, elevated CO{sub 2} reduced concentrations of nitrogen, cellulose, hemicellulose, and lignin. These results suggest that elevated CO{sub 2}, more than changes in temperature or precipitation, may promote this grass-fungal symbiosis, leading to higher EIF in tall fescue in old-field communities. However, as all three climate factors are likely to change in the future, predicting the symbiotic response and resulting ecological consequences may be difficult and dependent on the specific atmospheric and climatic conditions encountered.« less

  2. Scrutinizing the carbon cycle and CO2 residence time in the atmosphere

    NASA Astrophysics Data System (ADS)

    Harde, Hermann

    2017-05-01

    Climate scientists presume that the carbon cycle has come out of balance due to the increasing anthropogenic emissions from fossil fuel combustion and land use change. This is made responsible for the rapidly increasing atmospheric CO2 concentrations over recent years, and it is estimated that the removal of the additional emissions from the atmosphere will take a few hundred thousand years. Since this goes along with an increasing greenhouse effect and a further global warming, a better understanding of the carbon cycle is of great importance for all future climate change predictions. We have critically scrutinized this cycle and present an alternative concept, for which the uptake of CO2 by natural sinks scales proportional with the CO2 concentration. In addition, we consider temperature dependent natural emission and absorption rates, by which the paleoclimatic CO2 variations and the actual CO2 growth rate can well be explained. The anthropogenic contribution to the actual CO2 concentration is found to be 4.3%, its fraction to the CO2 increase over the Industrial Era is 15% and the average residence time 4 years.

  3. Characterization of Carbon Dioxide Washout Measurement Techniques in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Norcross, J.; Bekdash, O.; Meginnis, I.

    2016-01-01

    Providing adequate carbon dioxide (CO2) washout is essential to the reduction of risk in performing suited operations. Long term CO2 exposure can lead to symptoms such as headache, lethargy, dizziness, and in severe cases can lead to unconsciousness and death. Thus maintaining adequate CO2 washout in both ground testing and during in flight EVAs is a requirement of current and future suit designs. It is necessary to understand the inspired CO2 of suit wearers such that future requirements for space suits appropriately address the risk of inadequate washout. Testing conducted by the EVA Physiology Laboratory at the NASA Johnson Space Center aimed to characterize a method for noninvasively measuring inspired oronasal CO2 under pressurized suited conditions in order to better inform requirements definition and verification techniques for future CO2 washout limits in space suits. Prior work conducted by the EPL examined several different wearable, respirator style, masks that could be used to sample air from the vicinity surround the nose and mouth of a suited test subject. Previously published studies utilized these masks, some being commercial products and some novel designs, to monitor CO2 under various exercise and flow conditions with mixed results for repeatability and/or consistency between subjects. Based on a meta-analysis of those studies it was decided to test a nasal cannula as it is a commercially available device that is placed directly in the flow path of the user as they breathe. A nasal cannula was used to sample air inhaled by the test subjects during both rest and exercise conditions. Eight subjects were tasked with walking on a treadmill or operating an arm ergometer to reach target metabolic rates of 1000, 2000, and 3000 BTU/hr. Suit pressure was maintained at 4.3 psid for all tests, with supply flow rates of 6, 4, and 2 actual cubic feet per minute depending on the test condition. Each test configuration was conducted twice with subjects breathing either through their nose only, or however they felt comfortable. By restricting breathing through a single orifice, we are able to more accurately define exactly what flow stream the sampled CO2 is taken from. Oronasal CO2 was monitored using real time infrared gas analyzers fed via sample tubes connected to the nasal cannula within the suit. Two additional sampling tubes were placed at the head and chin of the test subject, in an effort to capture CO2 concentrations across the entire flow stream of the Mark-III vent system (flow path is head to neck). Metabolic rate was calculated via the exhaust CO2 concentration and used to adjust subject workload on either the treadmill or arm ergometer until the target was reached. Forward work will aim to characterize the historically accepted minimum ppCO2 in suit during EVA by repeating this study in the Extravehicular Mobility Unit (EMU) space suit. This will help to define washout requirements for future suits, be they NASA (e.g. Z-2) or Commercial Crew designed. Additionally it is important to determine the functional consequences of CO2 exposure during EVA. Severe CO2 symptoms are a result of very high concentration, acute exposures. While long term, low concentration exposures have been shown to result in slight cognitive decline, symptoms resolve upon quickly returning to nominal concentrations and it remains unknown the impact that minor deficits in cognitive performance can have on EVA performance.

  4. Contemporary reliance on bicarbonate acquisition predicts increased growth of seagrass Amphibolis antarctica in a high-CO2 world

    PubMed Central

    Burnell, Owen W.; Connell, Sean D.; Irving, Andrew D.; Watling, Jennifer R.; Russell, Bayden D.

    2014-01-01

    Rising atmospheric CO2 is increasing the availability of dissolved CO2 in the ocean relative to HCO3−. Currently, many marine primary producers use HCO3− for photosynthesis, but this is energetically costly. Increasing passive CO2 uptake relative to HCO3− pathways could provide energy savings, leading to increased productivity and growth of marine plants. Inorganic carbon-uptake mechanisms in the seagrass Amphibolis antarctica were determined using the carbonic anhydrase inhibitor acetazolamide (AZ) and the buffer tris(hydroxymethyl)aminomethane (TRIS). Amphibolis antarctica seedlings were also maintained in current and forecasted CO2 concentrations to measure their physiology and growth. Photosynthesis of A. antarctica was significantly reduced by AZ and TRIS, indicating utilization of HCO3−-uptake mechanisms. When acclimated plants were switched between CO2 treatments, the photosynthetic rate was dependent on measurement conditions but not growth conditions, indicating a dynamic response to changes in dissolved CO2 concentration, rather than lasting effects of acclimation. At forecast CO2 concentrations, seedlings had a greater maximum electron transport rate (1.4-fold), photosynthesis (2.1-fold), below-ground biomass (1.7-fold) and increase in leaf number (2-fold) relative to plants in the current CO2 concentration. The greater increase in photosynthesis (measured as O2 production) compared with the electron transport rate at forecasted CO2 concentration suggests that photosynthetic efficiency increased, possibly due to a decrease in photorespiration. Thus, it appears that the photosynthesis and growth of seagrasses reliant on energetically costly HCO3− acquisition, such as A. antarctica, might increase at forecasted CO2 concentrations. Greater growth might enhance the future prosperity and rehabilitation of these important habitat-forming plants, which have experienced declines of global significance. PMID:27293673

  5. Contemporary reliance on bicarbonate acquisition predicts increased growth of seagrass Amphibolis antarctica in a high-CO2 world.

    PubMed

    Burnell, Owen W; Connell, Sean D; Irving, Andrew D; Watling, Jennifer R; Russell, Bayden D

    2014-01-01

    Rising atmospheric CO2 is increasing the availability of dissolved CO2 in the ocean relative to HCO3 (-). Currently, many marine primary producers use HCO3 (-) for photosynthesis, but this is energetically costly. Increasing passive CO2 uptake relative to HCO3 (-) pathways could provide energy savings, leading to increased productivity and growth of marine plants. Inorganic carbon-uptake mechanisms in the seagrass Amphibolis antarctica were determined using the carbonic anhydrase inhibitor acetazolamide (AZ) and the buffer tris(hydroxymethyl)aminomethane (TRIS). Amphibolis antarctica seedlings were also maintained in current and forecasted CO2 concentrations to measure their physiology and growth. Photosynthesis of A. antarctica was significantly reduced by AZ and TRIS, indicating utilization of HCO3 (-)-uptake mechanisms. When acclimated plants were switched between CO2 treatments, the photosynthetic rate was dependent on measurement conditions but not growth conditions, indicating a dynamic response to changes in dissolved CO2 concentration, rather than lasting effects of acclimation. At forecast CO2 concentrations, seedlings had a greater maximum electron transport rate (1.4-fold), photosynthesis (2.1-fold), below-ground biomass (1.7-fold) and increase in leaf number (2-fold) relative to plants in the current CO2 concentration. The greater increase in photosynthesis (measured as O2 production) compared with the electron transport rate at forecasted CO2 concentration suggests that photosynthetic efficiency increased, possibly due to a decrease in photorespiration. Thus, it appears that the photosynthesis and growth of seagrasses reliant on energetically costly HCO3 (-) acquisition, such as A. antarctica, might increase at forecasted CO2 concentrations. Greater growth might enhance the future prosperity and rehabilitation of these important habitat-forming plants, which have experienced declines of global significance.

  6. The effect of atmospheric carbon dioxide concentrations on the performance of the mangrove Avicennia germinans over a range of salinities.

    PubMed

    Reef, Ruth; Winter, Klaus; Morales, Jorge; Adame, Maria Fernanda; Reef, Dana L; Lovelock, Catherine E

    2015-07-01

    By increasing water use efficiency and carbon assimilation, increasing atmospheric CO2 concentrations could potentially improve plant productivity and growth at high salinities. To assess the effect of elevated CO2 on the salinity response of a woody halophyte, we grew seedlings of the mangrove Avicennia germinans under a combination of five salinity treatments [from 5 to 65 parts per thousand (ppt)] and three CO2 concentrations (280, 400 and 800 ppm). We measured survivorship, growth rate, photosynthetic gas exchange, root architecture and foliar nutrient and ion concentrations. The salinity optima for growth shifted higher with increasing concentrations of CO2 , from 0 ppt at 280 ppm to 35 ppt at 800 ppm. At optimal salinity conditions, carbon assimilation rates were significantly higher under elevated CO2 concentrations. However, at salinities above the salinity optima, salinity had an expected negative effect on mangrove growth and carbon assimilation, which was not alleviated by elevated CO2 , despite a significant improvement in photosynthetic water use efficiency. This is likely due to non-stomatal limitations to growth at high salinities, as indicated by our measurements of foliar ion concentrations that show a displacement of K(+) by Na(+) at elevated salinities that is not affected by CO2 . The observed shift in the optimal salinity for growth with increasing CO2 concentrations changes the fundamental niche of this species and could have significant effects on future mangrove distribution patterns and interspecific interactions. © 2014 Scandinavian Plant Physiology Society.

  7. Impact of elevated CO2 concentration on dynamics of leaf photosynthesis in Fagus sylvatica is modulated by sky conditions.

    PubMed

    Urban, Otmar; Klem, Karel; Holišová, Petra; Šigut, Ladislav; Šprtová, Mirka; Teslová-Navrátilová, Petra; Zitová, Martina; Špunda, Vladimír; Marek, Michal V; Grace, John

    2014-02-01

    It has been suggested that atmospheric CO2 concentration and frequency of cloud cover will increase in future. It remains unclear, however, how elevated CO2 influences photosynthesis under complex clear versus cloudy sky conditions. Accordingly, diurnal changes in photosynthetic responses among beech trees grown at ambient (AC) and doubled (EC) CO2 concentrations were studied under contrasting sky conditions. EC stimulated the daily sum of fixed CO2 and light use efficiency under clear sky. Meanwhile, both these parameters were reduced under cloudy sky as compared with AC treatment. Reduction in photosynthesis rate under cloudy sky was particularly associated with EC-stimulated, xanthophyll-dependent thermal dissipation of absorbed light energy. Under clear sky, a pronounced afternoon depression of CO2 assimilation rate was found in sun-adapted leaves under EC compared with AC conditions. This was caused in particular by stomata closure mediated by vapour pressure deficit. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Fungi in the future: Interannual variation and effects of atmospheric change on arbuscular mycorrhizal fungal communities

    DOE PAGES

    Cotton, T. E. Anne; Fitter, Alastair H.; Miller, R. Michael; ...

    2015-01-05

    Understanding the natural dynamics of arbuscular mycorrhizal (AM) fungi and their response to global environmental change is essential for the prediction of future plant growth and ecosystem functions. We investigated the long-term temporal dynamics and effect of elevated atmospheric carbon dioxide (CO 2) and ozone (O 3) concentrations on AM fungal communities. Molecular methods were used to characterize the AM fungal communities of soybean ( Glycine max) grown under elevated and ambient atmospheric concentrations of both CO 2 and O 3 within a free air concentration enrichment experiment in three growing seasons over 5 yr. Elevated CO 2 altered themore » community composition of AM fungi, increasing the ratio of Glomeraceae to Gigasporaceae. By contrast, no effect of elevated O 3 on AM fungal communities was detected. However, the greatest compositional differences detected were between years, suggesting that, at least in the short term, large-scale interannual temporal dynamics are stronger mediators than atmospheric CO 2 concentrations of AM fungal communities. We conclude that, although atmospheric change may significantly alter AM fungal communities, this effect may be masked by the influences of natural changes and successional patterns through time. We suggest that changes in carbon availability are important determinants of the community dynamics of AM fungi.« less

  9. Increasing leaf temperature reduces the suppression of isoprene emission by elevated CO₂ concentration.

    PubMed

    Potosnak, Mark J; Lestourgeon, Lauren; Nunez, Othon

    2014-05-15

    Including algorithms to account for the suppression of isoprene emission by elevated CO2 concentration affects estimates of global isoprene emission for future climate change scenarios. In this study, leaf-level measurements of isoprene emission were made to determine the short-term interactive effect of leaf temperature and CO2 concentration. For both greenhouse plants and plants grown under field conditions, the suppression of isoprene emission was reduced by increasing leaf temperature. For each of the four different tree species investigated, aspen (Populus tremuloides Michx.), cottonwood (Populus deltoides W. Bartram ex Marshall), red oak (Quercus rubra L.), and tundra dwarf willow (Salix pulchra Cham.), the suppression of isoprene by elevated CO2 was eliminated at increased temperature, and the maximum temperature where suppression was observed ranged from 25 to 35°C. Hypotheses proposed to explain the short-term suppression of isoprene emission by increased CO2 concentration were tested against this observation. Hypotheses related to cofactors in the methylerythritol phosphate (MEP) pathway were consistent with reduced suppression at elevated leaf temperature. Also, reduced solubility of CO2 with increased temperature can explain the reduced suppression for the phosphoenolpyruvate (PEP) carboxylase competition hypothesis. Some global models of isoprene emission include the short-term suppression effect, and should be modified to include the observed interaction. If these results are consistent at longer timescales, there are implications for predicting future global isoprene emission budgets and the reduced suppression at increased temperature could explain some of the variable responses observed in long-term CO2 exposure experiments. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Optimal function explains forest responses to global change

    Treesearch

    Roderick Dewar; Oskar Franklin; Annikki Makela; Ross E. McMurtrie; Harry T. Valentine

    2009-01-01

    Plant responses to global changes in carbon dioxide (CO2), nitrogen, and water availability are critical to future atmospheric CO2 concentrations, hydrology, and hence climate. Our understanding of those responses is incomplete, however. Multiple-resource manipulation experiments and empirical observations have revealed a...

  11. Contributions to Future Stratospheric Climate Change: An Idealized Chemistry-Climate Model Sensitivity Study

    NASA Technical Reports Server (NTRS)

    Hurwitz, M. M.; Braesicke, P.; Pyle, J. A.

    2010-01-01

    Within the framework of an idealized model sensitivity study, three of the main contributors to future stratospheric climate change are evaluated: increases in greenhouse gas concentrations, ozone recovery, and changing sea surface temperatures (SSTs). These three contributors are explored in combination and separately, to test the interactions between ozone and climate; the linearity of their contributions to stratospheric climate change is also assessed. In a simplified chemistry-climate model, stratospheric global mean temperature is most sensitive to CO2 doubling, followed by ozone depletion, then by increased SSTs. At polar latitudes, the Northern Hemisphere (NH) stratosphere is more sensitive to changes in CO2, SSTs and O3 than is the Southern Hemisphere (SH); the opposing responses to ozone depletion under low or high background CO2 concentrations, as seen with present-day SSTs, are much weaker and are not statistically significant under enhanced SSTs. Consistent with previous studies, the strength of the Brewer-Dobson circulation is found to increase in an idealized future climate; SSTs contribute most to this increase in the upper troposphere/lower stratosphere (UT/LS) region, while CO2 and ozone changes contribute most in the stratosphere and mesosphere.

  12. Leaf water use efficiency of C{sub 4} plants grown at glacial to elevated CO{sub 2} concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polley, H.W.; Johnson, H.B.; Mayeux, H.S.

    1995-09-01

    Leaf gas exchange and stable carbon isotope compositions were measured on C{sub 4} species grown from near glacial to current CO{sub 2} concentrations (200 to 350 {mu}mol/mol) and from the current concentration to levels possible in the future (700 and 1000 {mu}mol/mol) to determine effects of rising CO{sub 2} on intrinsic water use efficiency (CO{sub 2} assimilation, A/stomatal conductance to water, g) of C{sub 4} plants. The increase in A/g was proportionally greater than that in CO{sub 2} from near glacial to present concentrations in the perennial grass Schizachyrium scoparium and, in one of two years, in the annual grassmore » Zea mays, because of a corresponding decrease in the ratio of leaf intercellular (c{sub i}) to external CO{sub 2} concentration (c{sub a}). Leaf A/g increased 66% in S. scoparium and 80% in the perennial shrub Atriplex canescens from 350 to 700 {mu}mol/mol CO{sub 2}, but averaged across species declined 15% from 700 to 1000 {mu}mol/mol because of an accompanying increase in c{sub i}/c{sub a}. At each CO{sub 2} level, A/g was higher in the grass than shrub. There were substantial differences in A/g at a given CO{sub 2} concentration and in the response of A/g to CO{sub 2} among the species examined. Because much of the positive response of C{sub 4} plants to CO{sub 2} derives from higher water use efficiency, these differences could influence the relative productivities of C{sub 4} species.« less

  13. Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle

    NASA Astrophysics Data System (ADS)

    McNeil, B.

    2016-02-01

    Elevated carbon dioxide concentrations in seawater (hypercapnia) can induce neurological, physiological and behavioural deficiencies in marine animals. Prediction of the onset and evolution of hypercapnia in the ocean requires a good understanding of annual oceanic carbon dioxide variability, but relevant global observational data are sparse. Here we diagnose global ocean patterns of monthly carbon variability based on observations that allow us to examine the evolution of surface ocean CO2 levels over the entire annual cycle under increasing atmospheric CO2 concentrations. We find that some oceanic regions undergo an up to 10-fold amplification of the natural cycle of CO2 by 2100, if atmospheric carbon dioxide concentrations continue to rise throughout this century (RCP8.5). Projections from a suite of Earth System Climate Models are broadly consistent with the findings from our data based approach. Our predicted amplification in the annual CO2 cycle displays distinct global patterns that may expose major fisheries in the Southern, Pacific and North Atlantic Oceans to high CO2 events many decades earlier than expected from average atmospheric CO2 concentrations. We suggest that these ocean 'CO2 hotspots' evolve as a combination of the strong seasonal dynamics of CO2 and the long-term effective storage of anthropogenic CO2 that lowers the buffer capacity in those regions, causing a non-linear CO2 amplification over the annual cycle. The onset of ocean hypercapnia events (pCO2 >1000 µatm) is forecast for atmospheric CO2 concentrations that exceed 650 ppm, with hypercapnia spreading to up to one half of the surface ocean by the year 2100 under a high-emissions scenario (RCP8.5) with potential implications for fisheries over the coming century.

  14. Responses of calcification of massive and encrusting corals to past, present, and near-future ocean carbon dioxide concentrations.

    PubMed

    Iguchi, Akira; Kumagai, Naoki H; Nakamura, Takashi; Suzuki, Atsushi; Sakai, Kazuhiko; Nojiri, Yukihiro

    2014-12-15

    In this study, we report the acidification impact mimicking the pre-industrial, the present, and near-future oceans on calcification of two coral species (Porites australiensis, Isopora palifera) by using precise pCO2 control system which can produce acidified seawater under stable pCO2 values with low variations. In the analyses, we performed Bayesian modeling approaches incorporating the variations of pCO2 and compared the results between our modeling approach and classical statistical one. The results showed highest calcification rates in pre-industrial pCO2 level and gradual decreases of calcification in the near-future ocean acidification level, which suggests that ongoing and near-future ocean acidification would negatively impact coral calcification. In addition, it was expected that the variations of parameters of carbon chemistry may affect the inference of the best model on calcification responses to these parameters between Bayesian modeling approach and classical statistical one even under stable pCO2 values with low variations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. A marine secondary producer respires and feeds more in a high CO2 ocean.

    PubMed

    Li, Wei; Gao, Kunshan

    2012-04-01

    Climate change mediates marine chemical and physical environments and therefore influences marine organisms. While increasing atmospheric CO(2) level and associated ocean acidification has been predicted to stimulate marine primary productivity and may affect community structure, the processes that impact food chain and biological CO(2) pump are less documented. We hypothesized that copepods, as the secondary marine producer, may respond to future changes in seawater carbonate chemistry associated with ocean acidification due to increasing atmospheric CO(2) concentration. Here, we show that the copepod, Centropages tenuiremis, was able to perceive the chemical changes in seawater induced under elevated CO(2) concentration (>1700 μatm, pH<7.60) with avoidance strategy. The copepod's respiration increased at the elevated CO(2) (1000 μatm), associated acidity (pH 7.83) and its feeding rates also increased correspondingly, except for the initial acclimating period, when it fed less. Our results imply that marine secondary producers increase their respiration and feeding rate in response to ocean acidification to balance the energy cost against increased acidity and CO(2) concentration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Carbon-climate feedbacks accelerate ocean acidification

    NASA Astrophysics Data System (ADS)

    Matear, Richard J.; Lenton, Andrew

    2018-03-01

    Carbon-climate feedbacks have the potential to significantly impact the future climate by altering atmospheric CO2 concentrations (Zaehle et al. 2010). By modifying the future atmospheric CO2 concentrations, the carbon-climate feedbacks will also influence the future ocean acidification trajectory. Here, we use the CO2 emissions scenarios from four representative concentration pathways (RCPs) with an Earth system model to project the future trajectories of ocean acidification with the inclusion of carbon-climate feedbacks. We show that simulated carbon-climate feedbacks can significantly impact the onset of undersaturated aragonite conditions in the Southern and Arctic oceans, the suitable habitat for tropical coral and the deepwater saturation states. Under the high-emissions scenarios (RCP8.5 and RCP6), the carbon-climate feedbacks advance the onset of surface water under saturation and the decline in suitable coral reef habitat by a decade or more. The impacts of the carbon-climate feedbacks are most significant for the medium- (RCP4.5) and low-emissions (RCP2.6) scenarios. For the RCP4.5 scenario, by 2100 the carbon-climate feedbacks nearly double the area of surface water undersaturated with respect to aragonite and reduce by 50 % the surface water suitable for coral reefs. For the RCP2.6 scenario, by 2100 the carbon-climate feedbacks reduce the area suitable for coral reefs by 40 % and increase the area of undersaturated surface water by 20 %. The sensitivity of ocean acidification to the carbon-climate feedbacks in the low to medium emission scenarios is important because recent CO2 emission reduction commitments are trying to transition emissions to such a scenario. Our study highlights the need to better characterise the carbon-climate feedbacks and ensure we do not underestimate the projected ocean acidification.

  17. The Increasing Concentrations of Atmospheric CO2: How Much, When and Why?

    DOE Data Explorer

    Marland, Gregg [Environmental Sciences Division, Oak Ridge National Laboratory (ORNL); Boden, Tom [Environmental Sciences Division, Oak Ridge National Laboratory (ORNL)

    2009-01-01

    There is now a sense that the world community has achieved a broad consensus that: 1.) the atmospheric concentration of carbon dioxide (CO2) is increasing, 2.) this increase is due largely to the combustion of fossil fuels, and 3.) this increase is likely to lead to changes in the global climate. This consensus is sufficiently strong that virtually all countries are involved in trying to achieve a functioning agreement on how to confront, and mitigate, these changes in climate. This paper reviews the first two of these components in a quantitative way. We look at the data on the atmospheric concentration of carbon dioxide and on the magnitude of fossil-fuel combustion, and we examine the trends in both. We review the extent to which cause and effect can be demonstrated between the trends in fossil-fuel burning and the trends in atmospheric CO2 concentration. Finally, we look at scenarios for the future use of fossil fuels and what these portend for the future of atmospheric chemistry. Along the way we examine how and where fossil fuels are used on the Earth and some of the issues that are raised by any effort to reduce fossil-fuel use.

  18. An Adjoint-Based Analysis of the Sampling Footprints of Tall Tower, Aircraft and Potential Future Lidar Observations of CO2

    NASA Technical Reports Server (NTRS)

    Andrews, Arlyn; Kawa, Randy; Zhu, Zhengxin; Burris, John; Abshire, Jim

    2004-01-01

    A detailed mechanistic understanding of the sources and sinks of CO2 will be required to reliably predict future CO2 levels and climate. A commonly used technique for deriving information about CO2 exchange with surface reservoirs is to solve an 'inverse problem', where CO2 observations are used with an atmospheric transport model to find the optimal distribution of sources and sinks. Synthesis inversion methods are powerful tools for addressing this question, but the results are disturbingly sensitive to the details of the calculation. Studies done using different atmospheric transport models and combinations of surface station data have produced substantially different distributions of surface fluxes. Adjoint methods are now being developed that will more effectively incorporate diverse datasets in estimates of surface fluxes of CO2. In an adjoint framework, it will be possible to combine CO2 concentration data from longterm surface and aircraft monitoring stations with data from intensive field campaigns and with proposed future satellite observations. We have recently developed an adjoint for the GSFC 3-D Parameterized Chemistry and Transport Model (PCTM). Here, we will present results from a PCTM Adjoint study comparing the sampling footprints of tall tower, aircraft and potential future lidar observations of CO2. The vertical resolution and extent of the profiles and the observation frequency will be considered for several sites in North America.

  19. Elevated CO2 maintains grassland net carbon uptake under a future heat and drought extreme

    PubMed Central

    Roy, Jacques; Picon-Cochard, Catherine; Augusti, Angela; Benot, Marie-Lise; Thiery, Lionel; Darsonville, Olivier; Landais, Damien; Piel, Clément; Defossez, Marc; Devidal, Sébastien; Escape, Christophe; Ravel, Olivier; Fromin, Nathalie; Volaire, Florence; Milcu, Alexandru; Bahn, Michael; Soussana, Jean-François

    2016-01-01

    Extreme climatic events (ECEs) such as droughts and heat waves are predicted to increase in intensity and frequency and impact the terrestrial carbon balance. However, we lack direct experimental evidence of how the net carbon uptake of ecosystems is affected by ECEs under future elevated atmospheric CO2 concentrations (eCO2). Taking advantage of an advanced controlled environment facility for ecosystem research (Ecotron), we simulated eCO2 and extreme cooccurring heat and drought events as projected for the 2050s and analyzed their effects on the ecosystem-level carbon and water fluxes in a C3 grassland. Our results indicate that eCO2 not only slows down the decline of ecosystem carbon uptake during the ECE but also enhances its recovery after the ECE, as mediated by increases of root growth and plant nitrogen uptake induced by the ECE. These findings indicate that, in the predicted near future climate, eCO2 could mitigate the effects of extreme droughts and heat waves on ecosystem net carbon uptake. PMID:27185934

  20. Carbon Monoxide Fumigation Improved the Quality, Nutrients, and Antioxidant Activities of Postharvest Peach

    PubMed Central

    Li, Ying; Pei, Fei

    2014-01-01

    Peaches (Prunus persica cv. Yanhong) were fumigated with carbon monoxide (CO) at 0, 0.5, 5, 10, and 20 μmol/L for 2 hours. The result showed that low concentration CO (0.5–10 μmol/L) might delay the decrease of firmness and titrable acid content, restrain the increase of decay incidence, and postpone the variation of soluble solids content, but treating peaches with high concentration CO (20 μmol/L) demonstrated adverse effects. Further research exhibited that exogenous CO could induce the phenylalnine ammonialyase activity, maintain nutrient contents such as Vitamin C, total flavonoid, and polyphenol, and enhance antioxidant activity according to reducing power and 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl radical scavenging activity. Treating peaches with appropriate concentration CO was beneficial to the quality, nutrients, and antioxidant activity of postharvest peaches during storage time. Therefore, CO fumigation might probably become a novel method to preserve postharvest peach and other fruits in the future. PMID:26904651

  1. Genetic and environmental limitations on crop responses to elevated [CO2

    USDA-ARS?s Scientific Manuscript database

    While the future crop growing environment is likely to be warmer and with more variable water availability, the stimulation of C3 photosynthesis by elevated CO2 concentration provides a potential benefit of global climate change. However, experimental field studies suggest that C3 crops fall short o...

  2. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2.

    PubMed

    Wenzel, Sabrina; Cox, Peter M; Eyring, Veronika; Friedlingstein, Pierre

    2016-10-27

    Uncertainties in the response of vegetation to rising atmospheric CO 2 concentrations contribute to the large spread in projections of future climate change. Climate-carbon cycle models generally agree that elevated atmospheric CO 2 concentrations will enhance terrestrial gross primary productivity (GPP). However, the magnitude of this CO 2 fertilization effect varies from a 20 per cent to a 60 per cent increase in GPP for a doubling of atmospheric CO 2 concentrations in model studies. Here we demonstrate emergent constraints on large-scale CO 2 fertilization using observed changes in the amplitude of the atmospheric CO 2 seasonal cycle that are thought to be the result of increasing terrestrial GPP. Our comparison of atmospheric CO 2 measurements from Point Barrow in Alaska and Cape Kumukahi in Hawaii with historical simulations of the latest climate-carbon cycle models demonstrates that the increase in the amplitude of the CO 2 seasonal cycle at both measurement sites is consistent with increasing annual mean GPP, driven in part by climate warming, but with differences in CO 2 fertilization controlling the spread among the model trends. As a result, the relationship between the amplitude of the CO 2 seasonal cycle and the magnitude of CO 2 fertilization of GPP is almost linear across the entire ensemble of models. When combined with the observed trends in the seasonal CO 2 amplitude, these relationships lead to consistent emergent constraints on the CO 2 fertilization of GPP. Overall, we estimate a GPP increase of 37 ± 9 per cent for high-latitude ecosystems and 32 ± 9 per cent for extratropical ecosystems under a doubling of atmospheric CO 2 concentrations on the basis of the Point Barrow and Cape Kumukahi records, respectively.

  3. The possible evolution and future of CO2-concentrating mechanisms.

    PubMed

    Raven, John A; Beardall, John; Sánchez-Baracaldo, Patricia

    2017-06-01

    CO2-concentrating mechanisms (CCMs), based either on active transport of inorganic carbon (biophysical CCMs) or on biochemistry involving supplementary carbon fixation into C4 acids (C4 and CAM), play a major role in global primary productivity. However, the ubiquitous CO2-fixing enzyme in autotrophs, Rubisco, evolved at a time when atmospheric CO2 levels were very much higher than today and O2 was very low and, as CO2 and O2 approached (by no means monotonically), today's levels, at some time subsequently many organisms evolved a CCM that increased the supply of CO2 and decreased Rubisco oxygenase activity. Given that CO2 levels and other environmental factors have altered considerably between when autotrophs evolved and the present day, and are predicted to continue to change into the future, we here examine the drivers for, and possible timing of, evolution of CCMs. CCMs probably evolved when CO2 fell to 2-16 times the present atmospheric level, depending on Rubisco kinetics. We also assess the effects of other key environmental factors such as temperature and nutrient levels on CCM activity and examine the evidence for evolutionary changes in CCM activity and related cellular processes as well as limitations on continuity of CCMs through environmental variations. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO2.

    PubMed

    McNeil, Ben I; Matear, Richard J

    2008-12-02

    Southern Ocean acidification via anthropogenic CO(2) uptake is expected to be detrimental to multiple calcifying plankton species by lowering the concentration of carbonate ion (CO(3)(2-)) to levels where calcium carbonate (both aragonite and calcite) shells begin to dissolve. Natural seasonal variations in carbonate ion concentrations could either hasten or dampen the future onset of this undersaturation of calcium carbonate. We present a large-scale Southern Ocean observational analysis that examines the seasonal magnitude and variability of CO(3)(2-) and pH. Our analysis shows an intense wintertime minimum in CO(3)(2-) south of the Antarctic Polar Front and when combined with anthropogenic CO(2) uptake is likely to induce aragonite undersaturation when atmospheric CO(2) levels reach approximately 450 ppm. Under the IPCC IS92a scenario, Southern Ocean wintertime aragonite undersaturation is projected to occur by the year 2030 and no later than 2038. Some prominent calcifying plankton, in particular the Pteropod species Limacina helicina, have important veliger larval development during winter and will have to experience detrimental carbonate conditions much earlier than previously thought, with possible deleterious flow-on impacts for the wider Southern Ocean marine ecosystem. Our results highlight the critical importance of understanding seasonal carbon dynamics within all calcifying marine ecosystems such as continental shelves and coral reefs, because natural variability may potentially hasten the onset of future ocean acidification.

  5. Effect of rising atmospheric carbon dioxide concentration on the protein composition of cereal grain.

    PubMed

    Wroblewitz, Stefanie; Hüther, Liane; Manderscheid, Remy; Weigel, Hans-Joachim; Wätzig, Hermann; Dänicke, Sven

    2014-07-16

    The present study investigates effects of rising atmospheric CO2 concentration on protein composition of maize, wheat, and barley grain, especially on the fractions prolamins and glutelins. Cereals were grown at different atmospheric CO2 concentrations to simulate future climate conditions. Influences of two nitrogen fertilization levels were studied for wheat and barley. Enriched CO2 caused an increase of globulin and B-hordein of barley. In maize, the content of globulin, α-zein, and LMW polymers decreased, whereas total glutelin, zein, δ-zein, and HMW polymers rose. Different N supplies resulted in variations of barley subfractions and wheat globulin. Other environmental influences showed effects on the content of nearly all fractions and subfractions. Variations in starch-protein bodies caused by different CO2 treatments could be visualized by scanning electron microscopy. In conclusion, climate change would have impacts on structural composition of proteins and, consequently, on the nutritional value of cereals.

  6. CO2 studies remain key to understanding a future world.

    PubMed

    Becklin, Katie M; Walker, S Michael; Way, Danielle A; Ward, Joy K

    2017-04-01

    Contents 34 I. 34 II. 36 III. 37 IV. 37 V. 38 38 References 38 SUMMARY: Characterizing plant responses to past, present and future changes in atmospheric carbon dioxide concentration ([CO 2 ]) is critical for understanding and predicting the consequences of global change over evolutionary and ecological timescales. Previous CO 2 studies have provided great insights into the effects of rising [CO 2 ] on leaf-level gas exchange, carbohydrate dynamics and plant growth. However, scaling CO 2 effects across biological levels, especially in field settings, has proved challenging. Moreover, many questions remain about the fundamental molecular mechanisms driving plant responses to [CO 2 ] and other global change factors. Here we discuss three examples of topics in which significant questions in CO 2 research remain unresolved: (1) mechanisms of CO 2 effects on plant developmental transitions; (2) implications of rising [CO 2 ] for integrated plant-water dynamics and drought tolerance; and (3) CO 2 effects on symbiotic interactions and eco-evolutionary feedbacks. Addressing these and other key questions in CO 2 research will require collaborations across scientific disciplines and new approaches that link molecular mechanisms to complex physiological and ecological interactions across spatiotemporal scales. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  7. No way out? The double-bind in seeking global prosperity along with mitigated climate change

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.

    2011-04-01

    In a prior study (Garrett, 2011), I introduced a simple thermodynamics-based economic growth model. By treating civilization as a whole, it was found that the global economy's current rate of energy consumption can be tied through a constant to its current accumulation of wealth. The value of the constant is λ = 9.7 ± 0.3 milliwatts per 1990 US dollar. Here, this model is coupled to a linear formulation for the evolution of atmospheric CO2 concentrations. Despite the model's extreme simplicity, multi-decadal hindcasts of trajectories in gross world product (GWP) and CO2 agree closely with recent observations. Extending the model to the future, the model implies that the well-known IPCC SRES scenarios substantially underestimate how much CO2 levels will rise for a given level of future economic prosperity. Instead, what is shown is that, like a long-term natural disaster, future greenhouse warming should be expected to retard the real growth of wealth through inflationary pressures. Because wealth is tied to rates of energy consumption through the constant λ, it follows that dangerous climate change should be a negative feedback on CO2 emission rates, and therefore the ultimate extent of greenhouse warming. Nonetheless, if atmospheric CO2 concentrations are to remain below a "dangerous" level of 450 ppmv (Hansen et al., 2007), there will have to be some combination of an unrealistically rapid rate of energy decarbonization and a near immediate collapse of civilization wealth. Effectively, civilization is in a double-bind. If civilization does not collapse quickly this century, then CO2 levels will likely end up exceeding 1000 ppmv; but, if CO2 levels rise by this much, then the danger is that civilization will gradually tend towards collapse.

  8. Efficacy of glyphosate and halosulfuron for control of purple and yellow nutsedge in elevated CO2 environments

    USDA-ARS?s Scientific Manuscript database

    Carbon dioxide (CO2) concentrations in the earth’s atmosphere have continually increased each year since the beginning of the Industrial revolution and are expected to continue rising in the future, which could have a dramatic impact on agricultural production. Previous research has shown that eleva...

  9. Can rising CO2 concentrations in the atmosphere mitigate the impact of drought years on tree growth?

    NASA Astrophysics Data System (ADS)

    Achim, Alexis; Plumpton, Heather; Auty, David; Ogee, Jerome; MacCarthy, Heather; Bert, Didier; Domec, Jean-Christophe; Oren, Ram; Wingate, Lisa

    2015-04-01

    Atmospheric CO2 concentrations and nitrogen deposition rates have increased substantially over the last century and are expected to continue unabated. As a result, terrestrial ecosystems will experience warmer temperatures and some may even experience droughts of a more intense and frequent nature that could lead to widespread forest mortality. Thus there is mounting pressure to understand and predict how forest growth will be affected by such environmental interactions in the future. In this study we used annual tree growth data from the Duke Free Air CO2 Enrichment (FACE) experiment to determine the effects of elevated atmospheric CO2 concentration (+200 ppm) and Nitrogen fertilisation (11.2 g of N m-2 yr-1) on the stem biomass increments of mature loblolly pine (Pinus taeda L.) trees from 1996 to 2010. A non-linear mixed-effects model was developed to provide estimates of annual ring specific gravity in all trees using cambial age and annual ring width as explanatory variables. Elevated CO2 did not have a significant effect on annual ring specific gravity, but N fertilisation caused a slight decrease of approximately 2% compared to the non-fertilised in both the ambient and CO2-elevated plots. When basal area increments were multiplied by wood specific gravity predictions to provide estimates of stem biomass, there was a 40% increase in the CO2-elevated plots compared to those in ambient conditions. This difference remained relatively stable until the application of the fertilisation treatment, which caused a further increase in biomass increments that peaked after three years. Unexpectedly the magnitude of this second response was similar in the CO2-elevated and ambient plots (about 25% in each after 3 years), suggesting that there was no interaction between the concentration of CO2 and the availability of soil N on biomass increments. Importantly, during drier years when annual precipitation was less than 1000 mm we observed a significant decrease in annual increments across all treatments. However, the relative difference in growth between CO2-elevated and ambient plots was greater during drought years, providing evidence that tree growth in the future might become less sensitive to water shortages under elevated CO2 conditions.

  10. Effects of future climate change, CO2 enrichment, and vegetation structure variation on hydrological processes in China

    USGS Publications Warehouse

    Zhu, Qiuan; Jiang, Hong; Peng, Changhui; Liu, Jinxun; Fang, Xiuqin; Wei, Xiaohua; Liu, Shirong; Zhou, Guomo

    2012-01-01

    Investigating the relationship between factors (climate change, atmospheric CO2 concentrations enrichment, and vegetation structure) and hydrological processes is important for understanding and predicting the interaction between the hydrosphere and biosphere. The Integrated Biosphere Simulator (IBIS) was used to evaluate the effects of climate change, rising CO2, and vegetation structure on hydrological processes in China at the end of the 21st century. Seven simulations were implemented using the assemblage of the IPCC climate and CO2 concentration scenarios, SRES A2 and SRES B1. Analysis results suggest that (1) climate change will have increasing effects on runoff, evapotranspiration (ET), transpiration (T), and transpiration ratio (transpiration/evapotranspiration, T/E) in most hydrological regions of China except in the southernmost regions; (2) elevated CO2 concentrations will have increasing effects on runoff at the national scale, but at the hydrological region scale, the physiology effects induced by elevated CO2 concentration will depend on the vegetation types, climate conditions, and geographical background information with noticeable decreasing effects shown in the arid Inland region of China; (3) leaf area index (LAI) compensation effect and stomatal closure effect are the dominant factors on runoff in the arid Inland region and southern moist hydrological regions, respectively; (4) the magnitudes of climate change (especially the changing precipitation pattern) effects on the water cycle are much larger than those of the elevated CO2 concentration effects; however, increasing CO2 concentration will be one of the most important modifiers to the water cycle; (5) the water resource condition will be improved in northern China but depressed in southernmost China under the IPCC climate change scenarios, SRES A2 and SRES B1.

  11. Predicting the response of the Amazon rainforest to persistent drought conditions under current and future climates: a major challenge for global land surface models

    NASA Astrophysics Data System (ADS)

    Joetzjer, E.; Delire, C.; Douville, H.; Ciais, P.; Decharme, B.; Fisher, R.; Christoffersen, B.; Calvet, J. C.; da Costa, A. C. L.; Ferreira, L. V.; Meir, P.

    2014-08-01

    While a majority of Global Climate Models project dryer and longer dry seasons over the Amazon under higher CO2 levels, large uncertainties surround the response of vegetation to persistent droughts in both present-day and future climates. We propose a detailed evaluation of the ability of the ISBACC Land Surface Model to capture drought effects on both water and carbon budgets, comparing fluxes and stocks at two recent ThroughFall Exclusion (TFE) experiments performed in the Amazon. We also explore the model sensitivity to different Water Stress Function (WSF) and to an idealized increase in CO2 concentration and/or temperature. In spite of a reasonable soil moisture simulation, ISBACC struggles to correctly simulate the vegetation response to TFE whose amplitude and timing is highly sensitive to the WSF. Under higher CO2 concentration, the increased Water Use Efficiency (WUE) mitigates the ISBACC's sensitivity to drought. While one of the proposed WSF formulation improves the response of most ISBACC fluxes, except respiration, a parameterization of drought-induced tree mortality is missing for an accurate estimate of the vegetation response. Also, a better mechanistic understanding of the forest responses to drought under a warmer climate and higher CO2 concentration is clearly needed.

  12. Subtle biological responses to increased CO2 concentrations by Phaeocystis globosa Scherffel, a harmful algal bloom species

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Smith, Walker O.; Wang, Xiaodong; Li, Shaoshan

    2010-05-01

    Recent investigations into the role of carbon dioxide on phytoplankton growth and composition have clearly shown differential effects among species and assemblages, suggesting that increases in oceanic CO2 may play a critical role in structuring lower trophic levels of marine systems in the future. Furthermore, alarming increases in the occurrence of harmful algal blooms (HABs) in coastal waters have been observed, and while not uniform among systems, appear in some manner to be linked to human impacts (eutrophication) on coastal systems. Models of HABs are in their infancy and do not at present include sophisticated biological effects or their environmental controls. Here we show that subtle biological responses occur in the HAB species Phaeocystis globosa Scherffel as a result of CO2 enrichment induced by gentle bubbling. The alga, which has a polymorphic life history involving the formation of both colonies and solitary cells, exhibited altered growth rates of colonial and solitary forms at [CO2] of 750 ppm, as well as increased colony formation. In addition, substantial modifications of elemental and photosynthetic constituents of the cells (C cell-1, N cell-1, potential quantum yield, chl a cell-1) occurred under elevated CO2 concentrations compared to those found at present CO2 levels. In contrast, other individual and population variables (e.g., colony diameter, total chlorophyll concentration, carbon/nitrogen ratio) were unaffected by increased CO2. Our results suggest that predictions of the future impacts of Phaeocystis blooms on coastal ecosystems and local biogeochemistry need to carefully examine the subtle biological responses of this alga in addition to community and ecosystem effects.

  13. Historical Pattern and Future Trajectories of Terrestrial N2O Emission driven by Multi-factor Global Changes

    NASA Astrophysics Data System (ADS)

    Lu, C.; Tian, H.; Yang, J.; Zhang, B.; Xu, R.

    2015-12-01

    Nitrous oxide (N2O) is among the most important greenhouse gases only next to carbon dioxide (CO2) and methane (CH4) due to its long life time and high radiative forcing (with a global warming potential 265 times as much as CO2 at 100-year time horizon). The Atmospheric concentration of N2O has increased by 20% since pre-industrial era, and this increase plays a significant role in shaping anthropogenic climate change. However, compared to CO2- and CH4-related research, fewer studies have been performed in assessing and predicting the spatiotemporal patterns of N2O emission from natural and agricultural soils. Here we used a coupled biogeochemical model, DLEM, to quantify the historical and future changes in global terrestrial N2O emissions resulting from natural and anthropogenic perturbations including climate variability, atmospheric CO2 concentration, nitrogen deposition, land use and land cover changes, and agricultural land management practices (i.e., synthetic nitrogen fertilizer use, manure application, and irrigation etc.) over the period 1900-2099. We focused on inter-annual variation and long-term trend of terrestrial N2O emission driven by individual and combined environmental changes during historical and future periods. The sensitivity of N2O emission to climate, atmospheric composition, and human activities has been examined at biome-, latitudinal, continental and global scales. Future projections were conducted to identify the hot spots and hot time periods of global N2O emission under two emission scenarios (RCP2.6 and RCP8.5). It provides a modeling perspective for understanding human-induced N2O emission growth and developing potential management strategies to mitigate further atmospheric N2O increase and climate warming.

  14. The effects of CO2 and nutrient fertilisation on the growth and temperature response of the mangrove Avicennia germinans.

    PubMed

    Reef, Ruth; Slot, Martijn; Motro, Uzi; Motro, Michal; Motro, Yoav; Adame, Maria F; Garcia, Milton; Aranda, Jorge; Lovelock, Catherine E; Winter, Klaus

    2016-08-01

    In order to understand plant responses to both the widespread phenomenon of increased nutrient inputs to coastal zones and the concurrent rise in atmospheric CO2 concentrations, CO2-nutrient interactions need to be considered. In addition to its potential stimulating effect on photosynthesis and growth, elevated CO2 affects the temperature response of photosynthesis. The scarcity of experiments testing how elevated CO2 affects the temperature response of tropical trees hinders our ability to model future primary productivity. In a glasshouse study, we examined the effects of elevated CO2 (800 ppm) and nutrient availability on seedlings of the widespread mangrove Avicennia germinans. We assessed photosynthetic performance, the temperature response of photosynthesis, seedling growth and biomass allocation. We found large synergistic gains in both growth (42 %) and photosynthesis (115 %) when seedlings grown under elevated CO2 were supplied with elevated nutrient concentrations relative to their ambient growing conditions. Growth was significantly enhanced under elevated CO2 only under high-nutrient conditions, mainly in above-ground tissues. Under low-nutrient conditions and elevated CO2, root volume was more than double that of seedlings grown under ambient CO2 levels. Elevated CO2 significantly increased the temperature optimum for photosynthesis by ca. 4 °C. Rising CO2 concentrations are likely to have a significant positive effect on the growth rate of A. germinans over the next century, especially in areas where nutrient availability is high.

  15. Elevated [CO2] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen.

    PubMed

    Sun, Zhihong; Hüve, Katja; Vislap, Vivian; Niinemets, Ülo

    2013-12-01

    Isoprene emissions importantly protect plants from heat stress, but the emissions become inhibited by instantaneous increase of [CO2], and it is currently unclear how isoprene-emitting plants cope with future more frequent and severe heat episodes under high [CO2]. Hybrid aspen (Populus tremula x Populus tremuloides) saplings grown under ambient [CO2] of 380 μmol mol(-1) and elevated [CO2] of 780 μmol mol(-1) were used to test the hypothesis that acclimation to elevated [CO2] reduces the inhibitory effect of high [CO2] on emissions. Elevated-[CO2]-grown plants had greater isoprene emission capacity and a stronger increase of isoprene emissions with increasing temperature. High temperatures abolished the instantaneous [CO2] sensitivity of isoprene emission, possibly due to removing the substrate limitation resulting from curbed cycling of inorganic phosphate. As a result, isoprene emissions were highest in elevated-[CO2]-grown plants under high measurement [CO2]. Overall, elevated growth [CO2] improved heat resistance of photosynthesis, in particular, when assessed under high ambient [CO2] and the improved heat resistance was associated with greater cellular sugar and isoprene concentrations. Thus, contrary to expectations, these results suggest that isoprene emissions might increase in the future.

  16. Elevated [CO2] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen

    PubMed Central

    Niinemets, Ülo

    2013-01-01

    Isoprene emissions importantly protect plants from heat stress, but the emissions become inhibited by instantaneous increase of [CO2], and it is currently unclear how isoprene-emitting plants cope with future more frequent and severe heat episodes under high [CO2]. Hybrid aspen (Populus tremula x Populus tremuloides) saplings grown under ambient [CO2] of 380 μmol mol−1 and elevated [CO2] of 780 μmol mol−1 were used to test the hypothesis that acclimation to elevated [CO2] reduces the inhibitory effect of high [CO2] on emissions. Elevated-[CO2]-grown plants had greater isoprene emission capacity and a stronger increase of isoprene emissions with increasing temperature. High temperatures abolished the instantaneous [CO2] sensitivity of isoprene emission, possibly due to removing the substrate limitation resulting from curbed cycling of inorganic phosphate. As a result, isoprene emissions were highest in elevated-[CO2]-grown plants under high measurement [CO2]. Overall, elevated growth [CO2] improved heat resistance of photosynthesis, in particular, when assessed under high ambient [CO2] and the improved heat resistance was associated with greater cellular sugar and isoprene concentrations. Thus, contrary to expectations, these results suggest that isoprene emissions might increase in the future. PMID:24153419

  17. CO/sub 2/ and Spaceship Earth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terra, S.

    1978-01-01

    Atmospheric CO/sub 2/ concentrations have increased so rapidly since the start of the industrial revolution that the threat of climatic and economic disruptions may require limitations on future fossil-energy production. The greenhouse effect by which longwave radiation is absorbed by CO/sub 2/ and reradiated back to earth, will raise the earth's temperature. Other factors can be traced to a warming trend caused by an increase in nitrous oxides from agricultural activity and a cooling tendency as the added warmth increases evaporation and cloud formation. Several national and international studies of CO/sub 2/ effects are underway and legislation for further datamore » and research has been proposed in Congress. While scientists agree that CO/sub 2/ levels are increasing, they disagree on the nature of the long-term effects on climate, crop production, deglaciation, and the impact of forest and other biological matter. Simulation models for projecting future conditions need to include transients to predict the effects of CO/sub 2/ level changes.« less

  18. Comprehensive analysis of differentially expressed genes reveals the molecular response to elevated CO2 levels in two sea buckthorn cultivars.

    PubMed

    Zhang, Guoyun; Zhang, Tong; Liu, Juanjuan; Zhang, Jianguo; He, Caiyun

    2018-06-20

    Atmospheric carbon dioxide (CO 2 ) concentration increases every year. It is critical to understand the elevated CO 2 response molecular mechanisms of plants using genomic techniques. Hippophae rhamnoides L. is a high stress resistance plant species widely distributed in Europe and Asia. However, the molecular mechanism of elevated CO 2 response in H. rhamnoides has been limited. In this study, transcriptomic analysis of two sea buckthorn cultivars under different CO 2 concentrations was performed, based on the next-generation illumina sequencing platform and de novo assembly. We identified 4740 differentially expressed genes in sea buckthorn response to elevated CO 2 concentrations. According to the gene ontology (GO) results, photosystem I, photosynthesis and chloroplast thylakoid membrane were the main enriched terms in 'xiangyang' sea buckthorn. In 'zhongguo' sea buckthorn, photosynthesis was also the main significantly enriched term. However, the number of photosynthesis related differentially expressed genes were different between two sea buckthorn cultivars. Our GO and pathway analyses indicated that the expression levels of the transcription factors WRKY, MYB and NAC were significantly different between the two sea buckthorn cultivars. This study provides a reliable transcriptome sequence resource and is a valuable resource for genetic and genomic researches for plants under high CO 2 concentration in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. CO2 volume fluxes outgassing from champagne glasses: the impact of champagne ageing.

    PubMed

    Liger-Belair, Gérard; Villaume, Sandra; Cilindre, Clara; Jeandet, Philippe

    2010-02-15

    It was demonstrated that CO(2) volume fluxes outgassing from a flute poured with a young champagne (elaborated in 2007) are much higher than those outgassing from the same flute poured with an older champagne (elaborated in the early 1990s). The difference in dissolved-CO(2) concentrations between the two types of champagne samples was found to be a crucial parameter responsible for differences in CO(2) volume fluxes outgassing from one champagne to another. Nevertheless, it was shown that, for a given identical dissolved-CO(2) concentration in both champagne types, the CO(2) volume flux outgassing from the flute poured with the old champagne is, in average, significantly lower than that outgassing from the flute poured with the young one. Therefore, CO(2) seems to "escape" more easily from the young champagne than from the older one. The diffusion coefficient of CO(2) in both champagne types was pointed as a key parameter to thoroughly determine in the future, in order to unravel our experimental observation. Copyright 2009 Elsevier B.V. All rights reserved.

  20. Study on O2 generation and CO2 absorption capability of four co-cultured salad plants in an enclosed system

    NASA Astrophysics Data System (ADS)

    Guo, Shuangsheng; Ai, Weidang; Tang, Yongkang; Cheng, Quanyong; Shen, Yunze; Qin, Lifeng; Ma, Jialu; Zhu, Jingtao; Ren, Jin

    2014-06-01

    The ability to generate O2 and absorb CO2 of several co-cultured vegetable plants in an enclosed system was studied to provide theoretical reference for the future man-plant integrated tests. Four kinds of salad plants (Lactuca sativa L. var. Dasusheng, Lactuca sativa L. var. Youmaicai, Gynura bicolor and Cichorium endivia L.) were grown in the CELSS Integration Test Platform (CITP). The environmental factors including O2 and CO2 concentration were continuously monitored on-line and the plant biomass was measured at the end of the test. The changing rules of O2 and CO2 concentration in the system were basically understood and it was found that the O2 generated by the plants could satisfy the respiratory needs of 1.75 persons by calculation. It was also found that the plants could absorb the CO2 breathed out by 2 persons when the light intensity was raised to 550 mmol m-2 s-1 PPF. The results showed that the co-cultured plants hold good compatibility and excellent O2-generating and CO2-absorbing capability. They could also supply some fresh edible vegetable for a 2-person crew.

  1. Effects of different CO2 concentration on growth and photosynthetic of rain tree plants (Albizia saman jacq.Merr)

    NASA Astrophysics Data System (ADS)

    Fathurrahman, F.; Nizam, M. S.; Wan Juliana, W. A.; Doni, Febri; NorLailatul, W. M.; Che Radziah, C. M. Z.

    2016-11-01

    A preliminary study was conducted to determine the effect of elevated carbon dioxide (CO2) in rain tree growth under controllable growth chamber. The tolerance towards CO2 absorption in the photosynthesis process for the growth of tree rain is still unknown. In this study, rain tree seedlings were incubated for three months in a growth chamber with three different CO2 concentration treatment: GC1 (300 ppm), GC2 (600 ppm) and GC3 (900 ppm) at similar condition of temperature (28°C), humidity (60%) and lighting (1200 lux). The results showed that increased CO2 significantly increase the growth rate and chlorophyll content in rain tree. The results of this study add to the further understanding of how the improvement of the growth and physiological characteristics of rain tree was affected by CO2 enrichment treatment. This research can for used for global warming mitigation in the future.

  2. Carbon Cycle Model of a Hawaiian Barrier Reef under Rising Ocean Acidification and Temperature Conditions of the Anthropocene

    NASA Astrophysics Data System (ADS)

    Drupp, P. S.; Mackenzie, F. T.; De Carlo, E. H.; Guidry, M.

    2015-12-01

    A CO2-carbonic acid system biogeochemical box model (CRESCAM, Coral Reef and Sediment Carbonate Model) of the barrier reef flat in Kaneohe Bay, Hawai'i was developed to determine how increasing temperature and dissolved inorganic carbon (DIC) content of open ocean source waters, resulting from rising anthropogenic CO2 emissions and ocean acidification, affect the CaCO3budget of coral reef ecosystems. CRESCAM consists of 17 reservoirs and 59 fluxes, including a surface water column domain, a two-layer permeable sediment domain, and a coral framework domain. Physical, chemical, and biological processes such as advection, carbonate precipitation/dissolution, and net ecosystem production and calcification were modeled. The initial model parameters were constrained by experimental and field data from previous coral reef studies, mostly in Kaneohe Bay over the past 50 years. The field studies include data collected by our research group for both the water column and sediment-porewater system.The model system, initially in a quasi-steady state condition estimated for the early 21st century, was perturbed using future projections to the year 2100 of the Anthropocene of atmospheric CO2 ­concentrations, temperature, and source water DIC. These perturbations were derived from the most recent (2013) IPCC's Representative Concentration Pathway (RCP) scenarios, which predict CO2 atmospheric concentrations and temperature anomalies out to 2100. A series of model case studies were also performed whereby one or more parameters (e.g., coral calcification response to declining surface water pH) were altered to investigate potential future outcomes. Our model simulations predict that although the Kaneohe Bay barrier reef will likely see a significant decline in NEC over the coming century, it is unlikely to reach a state of net erosion - a result contrary to several global coral reef model projections. In addition, we show that depending on the future response of NEP and NEC to OA and rising temperatures, the surface waters could switch from being a present-day source of CO2 to the atmosphere to a future sink. This ecosystem specific model can be applied to any reef system where data are available to constrain the initial model state and is a powerful tool for examining future changes in coral reef carbon budgets.

  3. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2

    Treesearch

    John E Drake; Anne Gallet-Budynek; Kirsten S Hofmockel; Emily S Bernhardt; Sharon A Billings; Robert B Jackson; Kurt S Johnsen; al. et.

    2011-01-01

    The earth’s future climate state is highly dependent upon changes in terrestrial C storage in response to rising concentrations of atmospheric CO2. Here we show that consistently enhanced rates of net primary production (NPP) are sustained by a C-cascade through the root-microbe-soil system; increases in the flux of C belowground under elevated CO2 stimulated microbial...

  4. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Hameed, S.; Hogan, J. S.

    1980-01-01

    Tropospheric ozone and methane might increase in the future as the result of increasing anthropogenic emissions of CO, NOx and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test this possible climatic impact, a zonal energy-balance climate model has been combined with a vertically-averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4 and NOx. The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NOx and CH4, and that future increases in these emissions could enhance global warming due to increasing atmospheric CO2.

  5. Interactive effects of preindustrial, current and future atmospheric CO2 concentrations and temperature on soil fungi associated with two Eucalyptus species.

    PubMed

    Anderson, Ian C; Drigo, Barbara; Keniry, Kerry; Ghannoum, Oula; Chambers, Susan M; Tissue, David T; Cairney, John W G

    2013-02-01

    Soil microbial processes have a central role in global fluxes of the key biogenic greenhouse gases and are likely to respond rapidly to climate change. Whether climate change effects on microbial processes lead to a positive or negative feedback for terrestrial ecosystem resilience is unclear. In this study, we investigated the interactive effects of [CO(2)] and temperature on soil fungi associated with faster-growing Eucalyptus saligna and slower-growing Eucalyptus sideroxylon, and fungi that colonised hyphal in-growth bags. Plants were grown in native soil under controlled soil moisture conditions, while subjecting the above-ground compartment to defined atmospheric conditions differing in CO(2) concentrations (290, 400, 650 μL L(-1)) and temperature (26 and 30 °C). Terminal restriction fragment length polymorphism and sequencing methods were used to examine effects on the structure of the soil fungal communities. There was no significant effect of host plant or [CO(2)]/temperature treatment on fungal species richness (α diversity); however, there was a significant effect on soil fungal community composition (β diversity) which was strongly influenced by eucalypt species. Interestingly, β diversity of soil fungi associated with both eucalypt species was significantly influenced by the elevated [CO(2) ]/high temperature treatment, suggesting that the combination of future predicted levels of atmospheric [CO(2)] and projected increases in global temperature will significantly alter soil fungal community composition in eucalypt forest ecosystems, independent of eucalypt species composition. These changes may arise through direct effects of changes in [CO(2)] and temperature on soil fungi or through indirect effects, which is likely the case in this study given the plant-dependent nature of our observations. This study highlights the role of plant species in moderating below-ground responses to future predicted changes to [CO(2)] and temperature and the importance of considering integrated plant-soil system responses. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  6. Southern Ocean acidification: A tipping point at 450-ppm atmospheric CO2

    PubMed Central

    McNeil, Ben I.; Matear, Richard J.

    2008-01-01

    Southern Ocean acidification via anthropogenic CO2 uptake is expected to be detrimental to multiple calcifying plankton species by lowering the concentration of carbonate ion (CO32−) to levels where calcium carbonate (both aragonite and calcite) shells begin to dissolve. Natural seasonal variations in carbonate ion concentrations could either hasten or dampen the future onset of this undersaturation of calcium carbonate. We present a large-scale Southern Ocean observational analysis that examines the seasonal magnitude and variability of CO32− and pH. Our analysis shows an intense wintertime minimum in CO32− south of the Antarctic Polar Front and when combined with anthropogenic CO2 uptake is likely to induce aragonite undersaturation when atmospheric CO2 levels reach ≈450 ppm. Under the IPCC IS92a scenario, Southern Ocean wintertime aragonite undersaturation is projected to occur by the year 2030 and no later than 2038. Some prominent calcifying plankton, in particular the Pteropod species Limacina helicina, have important veliger larval development during winter and will have to experience detrimental carbonate conditions much earlier than previously thought, with possible deleterious flow-on impacts for the wider Southern Ocean marine ecosystem. Our results highlight the critical importance of understanding seasonal carbon dynamics within all calcifying marine ecosystems such as continental shelves and coral reefs, because natural variability may potentially hasten the onset of future ocean acidification. PMID:19022908

  7. Seagrass (Posidonia oceanica) seedlings in a high-CO2 world: from physiology to herbivory.

    PubMed

    Hernán, Gema; Ramajo, Laura; Basso, Lorena; Delgado, Antonio; Terrados, Jorge; Duarte, Carlos M; Tomas, Fiona

    2016-12-01

    Under future increased CO 2 concentrations, seagrasses are predicted to perform better as a result of increased photosynthesis, but the effects in carbon balance and growth are unclear and remain unexplored for early life stages such as seedlings, which allow plant dispersal and provide the potential for adaptation under changing environmental conditions. Furthermore, the outcome of the concomitant biochemical changes in plant-herbivore interactions has been poorly studied, yet may have important implications in plant communities. In this study we determined the effects of experimental exposure to current and future predicted CO 2 concentrations on the physiology, size and defense strategies against herbivory in the earliest life stage of the Mediterranean seagrass Posidonia oceanica. The photosynthetic performance of seedlings, assessed by fluorescence, improved under increased pCO 2 conditions after 60 days, although these differences disappeared after 90 days. Furthermore, these plants exhibited bigger seeds and higher carbon storage in belowground tissues, having thus more resources to tolerate and recover from stressors. Of the several herbivory resistance traits measured, plants under high pCO 2 conditions had a lower leaf N content but higher sucrose. These seedlings were preferred by herbivorous sea urchins in feeding trials, which could potentially counteract some of the positive effects observed.

  8. Carbon dioxide and climate: a second assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    For over a century, concern has been expressed that increases in atmospheric carbon dioxide (CO/sub 2/) concentration could affect global climate by changing the heat balance of the atmosphere and Earth. Observations reveal steadily increasing concentrations of CO/sub 2/, and experiments with numerical climate models indicate that continued increase would eventually produce significant climatic change. Comprehensive assessment of the issue will require projection of future CO/sub 2/ emissions and study of the disposition of this excess carbon in the atmosphere, ocean, and biota; the effect on climate; and the implications for human welfare. This study focuses on one aspect, estimationmore » of the effect on climate of assumed future increases in atmospheric CO/sub 2/. Conclusions are drawn principally from present-day numerical models of the climate system. To address the significant role of the oceans, the study also makes use of observations of the distributions of anthropogenic tracers other than CO/sub 2/. The rapid scientific developments in these areas suggest that periodic reassessments will be warranted. The starting point for the study was a similar 1979 review by a Climate Research Board panel chaired by the late Jule G. Charney. The present study has not found any new results that necessitate substantial revision of the conclusions of the Charney report.« less

  9. Seagrass (Posidonia oceanica) seedlings in a high-CO2 world: from physiology to herbivory

    NASA Astrophysics Data System (ADS)

    Hernán, Gema; Ramajo, Laura; Basso, Lorena; Delgado, Antonio; Terrados, Jorge; Duarte, Carlos M.; Tomas, Fiona

    2016-12-01

    Under future increased CO2 concentrations, seagrasses are predicted to perform better as a result of increased photosynthesis, but the effects in carbon balance and growth are unclear and remain unexplored for early life stages such as seedlings, which allow plant dispersal and provide the potential for adaptation under changing environmental conditions. Furthermore, the outcome of the concomitant biochemical changes in plant-herbivore interactions has been poorly studied, yet may have important implications in plant communities. In this study we determined the effects of experimental exposure to current and future predicted CO2 concentrations on the physiology, size and defense strategies against herbivory in the earliest life stage of the Mediterranean seagrass Posidonia oceanica. The photosynthetic performance of seedlings, assessed by fluorescence, improved under increased pCO2 conditions after 60 days, although these differences disappeared after 90 days. Furthermore, these plants exhibited bigger seeds and higher carbon storage in belowground tissues, having thus more resources to tolerate and recover from stressors. Of the several herbivory resistance traits measured, plants under high pCO2 conditions had a lower leaf N content but higher sucrose. These seedlings were preferred by herbivorous sea urchins in feeding trials, which could potentially counteract some of the positive effects observed.

  10. Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change

    PubMed Central

    Han, Xingguo; Sun, Xue; Wang, Cheng; Wu, Mengxiong; Dong, Da; Zhong, Ting; Thies, Janice E.; Wu, Weixiang

    2016-01-01

    Elevated global temperatures and increased concentrations of carbon dioxide (CO2) in the atmosphere associated with climate change will exert profound effects on rice cropping systems, particularly on their greenhouse gas emitting potential. Incorporating biochar into paddy soil has been shown previously to reduce methane (CH4) emission from paddy rice under ambient temperature and CO2. We examined the ability of rice straw-derived biochar to reduce CH4 emission from paddy soil under elevated temperature and CO2 concentrations expected in the future. Adding biochar to paddy soil reduced CH4 emission under ambient conditions and significantly reduced emissions by 39.5% (ranging from 185.4 mg kg−1 dry weight soil, dws season−1 to 112.2 mg kg−1 dws season−1) under simultaneously elevated temperature and CO2. Reduced CH4 release was mainly attributable to the decreased activity of methanogens along with the increased CH4 oxidation activity and pmoA gene abundance of methanotrophs. Our findings highlight the valuable services of biochar amendment for CH4 control from paddy soil in a future that will be shaped by climate change. PMID:27090814

  11. Prospects for improving CO2 fixation in C3-crops through understanding C4-Rubisco biogenesis and catalytic diversity.

    PubMed

    Sharwood, Robert E; Ghannoum, Oula; Whitney, Spencer M

    2016-06-01

    By operating a CO2 concentrating mechanism, C4-photosynthesis offers highly successful solutions to remedy the inefficiency of the CO2-fixing enzyme Rubisco. C4-plant Rubisco has characteristically evolved faster carboxylation rates with low CO2 affinity. Owing to high CO2 concentrations in bundle sheath chloroplasts, faster Rubisco enhances resource use efficiency in C4 plants by reducing the energy and carbon costs associated with photorespiration and lowering the nitrogen investment in Rubisco. Here, we show that C4-Rubisco from some NADP-ME species, such as maize, are also of potential benefit to C3-photosynthesis under current and future atmospheric CO2 pressures. Realizing this bioengineering endeavour necessitates improved understanding of the biogenesis requirements and catalytic variability of C4-Rubisco, as well as the development of transformation capabilities to engineer Rubisco in a wider variety of food and fibre crops. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Competitive interactions between native and invasive exotic plant species are altered under elevated carbon dioxide.

    PubMed

    Manea, Anthony; Leishman, Michelle R

    2011-03-01

    We hypothesized that the greater competitive ability of invasive exotic plants relative to native plants would increase under elevated CO(2) because they typically have traits that confer the ability for fast growth when resources are not limiting and thus are likely to be more responsive to elevated CO(2). A series of competition experiments under ambient and elevated CO(2) glasshouse conditions were conducted to determine an index of relative competition intensity for 14 native-invasive exotic species-pairs. Traits including specific leaf area, leaf mass ratio, leaf area ratio, relative growth rate, net assimilation rate and root weight ratio were measured. Competitive rankings within species-pairs were not affected by CO(2) concentration: invasive exotic species were more competitive in 9 of the 14 species-pairs and native species were more competitive in the remaining 5 species-pairs, regardless of CO(2) concentration. However, there was a significant interaction between plant type and CO(2) treatment due to reduced competitive response of native species under elevated compared with ambient CO(2) conditions. Native species had significantly lower specific leaf area and leaf area ratio under elevated compared with ambient CO(2). We also compared traits of more-competitive with less-competitive species, regardless of plant type, under both CO(2) treatments. More-competitive species had smaller leaf weight ratio and leaf area ratio, and larger relative growth rate and net assimilation rate under both ambient and elevated CO(2) conditions. These results suggest that growth and allocation traits can be useful predictors of the outcome of competitive interactions under both ambient and elevated CO(2) conditions. Under predicted future atmospheric CO(2) conditions, competitive rankings among species may not change substantially, but the relative success of invasive exotic species may be increased. Thus, under future atmospheric CO(2) conditions, the ecological and economic impact of some invasive exotic plants may be even greater than under current conditions.

  13. Modelling the influence of predicted future climate change on the risk of wind damage within New Zealand's planted forests.

    PubMed

    Moore, John R; Watt, Michael S

    2015-08-01

    Wind is the major abiotic disturbance in New Zealand's planted forests, but little is known about how the risk of wind damage may be affected by future climate change. We linked a mechanistic wind damage model (ForestGALES) to an empirical growth model for radiata pine (Pinus radiata D. Don) and a process-based growth model (cenw) to predict the risk of wind damage under different future emissions scenarios and assumptions about the future wind climate. The cenw model was used to estimate site productivity for constant CO2 concentration at 1990 values and for assumed increases in CO2 concentration from current values to those expected during 2040 and 2090 under the B1 (low), A1B (mid-range) and A2 (high) emission scenarios. Stand development was modelled for different levels of site productivity, contrasting silvicultural regimes and sites across New Zealand. The risk of wind damage was predicted for each regime and emission scenario combination using the ForestGALES model. The sensitivity to changes in the intensity of the future wind climate was also examined. Results showed that increased tree growth rates under the different emissions scenarios had the greatest impact on the risk of wind damage. The increase in risk was greatest for stands growing at high stand density under the A2 emissions scenario with increased CO2 concentration. The increased productivity under this scenario resulted in increased tree height, without a corresponding increase in diameter, leading to more slender trees that were predicted to be at greater risk from wind damage. The risk of wind damage was further increased by the modest increases in the extreme wind climate that are predicted to occur. These results have implications for the development of silvicultural regimes that are resilient to climate change and also indicate that future productivity gains may be offset by greater losses from disturbances. © 2015 John Wiley & Sons Ltd.

  14. The influence of oxygen concentration on the combustion of a fuel/oxidizer mixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biteau, H.; Institut National de l'Environnement Industriel et des Risques, Parc Technologique Alata, Verneuil en Halatte; Fuentes, A.

    2010-04-15

    The aim of the present study is to investigate the influence of the O{sub 2} concentration on the combustion behaviour of a fuel/oxidizer mixture. The material tested is a ternary mixture of lactose, starch, and potassium nitrate, which has already been used in an attempt to estimate heat release rate using the FM-Global Fire Propagation Apparatus. It provides a well-controlled combustion chamber to study the evolution of the combustion products when varying the O{sub 2} concentration, between air and low oxidizer conditions. Different chemical behaviours have been exhibited. When the O{sub 2} concentration was reduced beyond 18%, large variations weremore » observed in the CO{sub 2} and CO concentrations. This critical O{sub 2} concentration seems to be the limit before which the material only uses its own oxidizer to react. On the other hand, mass loss did not highlight this change in chemical reactions and remained similar whatever the test conditions. This presumes that the oxidation of CO into CO{sub 2} are due to reactions occurring in the gas phase especially for large O{sub 2} concentrations. This actual behaviour can be verified using a simplified flammability limit model adapted for the current work. Finally, a sensitivity analysis has been carried out to underline the influence of CO concentration in the evaluation of heat release rate using typical calorimetric methods. The results of this study provide a critical basis for the investigation of the combustion of a fuel/oxidizer mixture and for the validation of future numerical models. (author)« less

  15. Experimental vs. modeled water use in mature Norway spruce (Picea abies) exposed to elevated CO(2).

    PubMed

    Leuzinger, Sebastian; Bader, Martin K-F

    2012-01-01

    Rising levels of atmospheric CO(2) have often been reported to reduce plant water use. Such behavior is also predicted by standard equations relating photosynthesis, stomatal conductance, and atmospheric CO(2) concentration, which form the core of dynamic global vegetation models (DGVMs). Here, we provide first results from a free air CO(2) enrichment (FACE) experiment with naturally growing, mature (35 m) Picea abies (L.) (Norway spruce) and compare them to simulations by the DGVM LPJ-GUESS. We monitored sap flow, stem water deficit, stomatal conductance, leaf water potential, and soil moisture in five 35-40 m tall CO(2)-treated (550 ppm) trees over two seasons. Using LPJ-GUESS, we simulated this experiment using climate data from a nearby weather station. While the model predicted a stable reduction of transpiration of between 9% and 18% (at concentrations of 550-700 ppm atmospheric CO(2)), the combined evidence from various methods characterizing water use in our experimental trees suggest no changes in response to future CO(2) concentrations. The discrepancy between the modeled and the experimental results may be a scaling issue: while dynamic vegetation models correctly predict leaf-level responses, they may not sufficiently account for the processes involved at the canopy and ecosystem scale, which could offset the first-order stomatal response.

  16. Ocean Acidification Differentially Affects the Photosynthesis of Key New England Macrophytes

    NASA Astrophysics Data System (ADS)

    Fachon, E.; Ets-Hokin, J. M.; Donham, E. M.; Price, N.

    2016-02-01

    While the influence of anthropogenic CO2 emissions on seawater chemistry is detrimental to calcification among CaCO3 reliant organisms such as commercially important shellfish species, non-calcareous macrophytes like seagrasses and seaweeds can experience enhanced growth under elevated pCO2 conditions and may be a substantial, if ephemeral, CO2 sink. Most marine macrophytes rely on enzyme conversion of HCO3- to supply the inorganic carbon necessary for photosynthesis; the ability to down-regulate this energetically expensive carbon acquisition under high pCO2 conditions could determine future species success. We exposed four commercially and ecologically relevant New England macrophytes (Saccharina latissima, Fucus vesiculosus, Ulva lactuca, and Zostera marina) to pre-industrial (280 uatm), present (400 and 520 utam - recorded in Casco Bay) and future (640, 880 and 1120 uatm - as predicted by the IPCC) pCO2 levels in 1.5 hr long respirometry assays after 72 hrs acclimation. CO2 consumption, photosynthetic quotient (Q = CO2 consumed:O2 evolved), and change in carbonate saturation state (Ωcalcite) were calculated for each sample using differences in initial and final carbonate chemistry and dissolved oxygen concentrations. All species experienced increases in rate of CO2 uptake and Q under elevated pCO2 treatments, but response level differed across species. Saccharina latissima had the greatest relative effect on all parameters measured, consuming 4 times more carbon at high pCO2 levels than the lowest performing species. While all macrophytes were able to raise Ωcalcite, the magnitude of change decreased at higher pCO2 levels, suggesting a limitation to the degree to which photosynthesis can locally raise calcification potential for sensitive native or farmed populations of shellfish in the future. The varied responses observed across species have implications for future community structures and for phytoremediation efforts.

  17. Predicting the response of the Amazon rainforest to persistent drought conditions under current and future climates: a major challenge for global land surface models

    NASA Astrophysics Data System (ADS)

    Joetzjer, E.; Delire, C.; Douville, H.; Ciais, P.; Decharme, B.; Fisher, R.; Christoffersen, B.; Calvet, J. C.; da Costa, A. C. L.; Ferreira, L. V.; Meir, P.

    2014-12-01

    While a majority of global climate models project drier and longer dry seasons over the Amazon under higher CO2 levels, large uncertainties surround the response of vegetation to persistent droughts in both present-day and future climates. We propose a detailed evaluation of the ability of the ISBACC (Interaction Soil-Biosphere-Atmosphere Carbon Cycle) land surface model to capture drought effects on both water and carbon budgets, comparing fluxes and stocks at two recent throughfall exclusion (TFE) experiments performed in the Amazon. We also explore the model sensitivity to different water stress functions (WSFs) and to an idealized increase in CO2 concentration and/or temperature. In spite of a reasonable soil moisture simulation, ISBACC struggles to correctly simulate the vegetation response to TFE whose amplitude and timing is highly sensitive to the WSF. Under higher CO2 concentrations, the increased water-use efficiency (WUE) mitigates the sensitivity of ISBACC to drought. While one of the proposed WSF formulations improves the response of most ISBACC fluxes, except respiration, a parameterization of drought-induced tree mortality is missing for an accurate estimate of the vegetation response. Also, a better mechanistic understanding of the forest responses to drought under a warmer climate and higher CO2 concentration is clearly needed.

  18. Potential sources of variability in mesocosm experiments on the response of phytoplankton to ocean acidification

    NASA Astrophysics Data System (ADS)

    Moreno de Castro, Maria; Schartau, Markus; Wirtz, Kai

    2017-04-01

    Mesocosm experiments on phytoplankton dynamics under high CO2 concentrations mimic the response of marine primary producers to future ocean acidification. However, potential acidification effects can be hindered by the high standard deviation typically found in the replicates of the same CO2 treatment level. In experiments with multiple unresolved factors and a sub-optimal number of replicates, post-processing statistical inference tools might fail to detect an effect that is present. We propose that in such cases, data-based model analyses might be suitable tools to unearth potential responses to the treatment and identify the uncertainties that could produce the observed variability. As test cases, we used data from two independent mesocosm experiments. Both experiments showed high standard deviations and, according to statistical inference tools, biomass appeared insensitive to changing CO2 conditions. Conversely, our simulations showed earlier and more intense phytoplankton blooms in modeled replicates at high CO2 concentrations and suggested that uncertainties in average cell size, phytoplankton biomass losses, and initial nutrient concentration potentially outweigh acidification effects by triggering strong variability during the bloom phase. We also estimated the thresholds below which uncertainties do not escalate to high variability. This information might help in designing future mesocosm experiments and interpreting controversial results on the effect of acidification or other pressures on ecosystem functions.

  19. Chemistry and decomposition of litter from Populus tremuloides Michaux grown at elevated atmospheric CO2and varying N availability

    Treesearch

    John S. King; Kurt S. Pregitzer; Donald R. Zak; Mark E. Kubiske; Jennifer A. Ashby; William E. Holmes

    2001-01-01

    It has been hypothesized that greater production of total nonstructural carbohydrates (TNC) in foliage grown under elevated atmospheric carbon dioxide (CO2) will result in higher concentrations of defensive compounds in tree leaf litter, possibly leading to reduced rates of decomposition and nutrient cycling in forest ecosystems of the future....

  20. Gas exchange, growth, and defense responses of invasive Alliaria petiolata (Brassicaceae) and native Geum vernum (Rosaceae) to elevated atmospheric CO2 and warm spring temperatures.

    PubMed

    Anderson, Laurel J; Cipollini, Don

    2013-08-01

    Global increases in atmospheric CO2 and temperature may interact in complex ways to influence plant physiology and growth, particularly for species that grow in cool, early spring conditions in temperate forests. Plant species may also vary in their responses to environmental changes; fast-growing invasives may be more responsive to rising CO2 than natives and may increase production of allelopathic compounds under these conditions, altering species' competitive interactions. We examined growth and physiological responses of Alliaria petiolata, an allelopathic, invasive herb, and Geum vernum, a co-occurring native herb, to ambient and elevated spring temperatures and atmospheric CO2 conditions in a factorial growth chamber experiment. At 5 wk, leaves were larger at high temperature, and shoot biomass increased under elevated CO2 only at high temperature in both species. As temperatures gradually warmed to simulate seasonal progression, G. vernum became responsive to CO2 at both temperatures, whereas A. petiolata continued to respond to elevated CO2 only at high temperature. Elevated CO2 increased thickness and decreased nitrogen concentrations in leaves of both species. Alliaria petiolata showed photosynthetic downregulation at elevated CO2, whereas G. vernum photosynthesis increased at elevated temperature. Flavonoid and cyanide concentrations decreased significantly in A. petiolata leaves in the elevated CO2 and temperature treatment. Total glucosinolate concentrations and trypsin inhibitor activities did not vary among treatments. Future elevated spring temperatures and CO2 will interact to stimulate growth for A. petiolata and G. vernum, but there may be reduced allelochemical effects in A. petiolata.

  1. Hydrological and biogeochemical constraints on terrestrial carbon cycle feedbacks

    NASA Astrophysics Data System (ADS)

    Mystakidis, Stefanos; Seneviratne, Sonia I.; Gruber, Nicolas; Davin, Edouard L.

    2017-01-01

    The feedbacks between climate, atmospheric CO2 concentration and the terrestrial carbon cycle are a major source of uncertainty in future climate projections with Earth systems models. Here, we use observation-based estimates of the interannual variations in evapotranspiration (ET), net biome productivity (NBP), as well as the present-day sensitivity of NBP to climate variations, to constrain globally the terrestrial carbon cycle feedbacks as simulated by models that participated in the fifth phase of the coupled model intercomparison project (CMIP5). The constraints result in a ca. 40% lower response of NBP to climate change and a ca. 30% reduction in the strength of the CO2 fertilization effect relative to the unconstrained multi-model mean. While the unconstrained CMIP5 models suggest an increase in the cumulative terrestrial carbon storage (477 PgC) in response to an idealized scenario of 1%/year atmospheric CO2 increase, the constraints imply a ca. 19% smaller change. Overall, the applied emerging constraint approach offers a possibility to reduce uncertainties in the projections of the terrestrial carbon cycle, which is a key determinant of the future trajectory of atmospheric CO2 concentration and resulting climate change.

  2. Effects of soil water content and elevated CO2 concentration on the monoterpene emission rate of Cryptomeria japonica.

    PubMed

    Mochizuki, Tomoki; Amagai, Takashi; Tani, Akira

    2018-09-01

    Monoterpenes emitted from plants contribute to the formation of secondary pollution and affect the climate system. Monoterpene emission rates may be affected by environmental changes such as increasing CO 2 concentration caused by fossil fuel burning and drought stress induced by climate change. We measured monoterpene emissions from Cryptomeria japonica clone saplings grown under different CO 2 concentrations (control: ambient CO 2 level, elevated CO 2 : 1000μmolmol -1 ). The saplings were planted in the ground and we did not artificially control the SWC. The relationship between the monoterpene emissions and naturally varying SWC was investigated. The dominant monoterpene was α-pinene, followed by sabinene. The monoterpene emission rates were exponentially correlated with temperature for all measurements and normalized (35°C) for each measurement day. The daily normalized monoterpene emission rates (E s0.10 ) were positively and linearly correlated with SWC under both control and elevated CO 2 conditions (control: r 2 =0.55, elevated CO 2 : r 2 =0.89). The slope of the regression line of E s0.10 against SWC was significantly higher under elevated CO 2 than under control conditions (ANCOVA: P<0.01), indicating that the effect of CO 2 concentration on monoterpene emission rates differed by soil water status. The monoterpene emission rates estimated by considering temperature and SWC (Improved G93 algorithm) better agreed with the measured monoterpene emission rates, when compared with the emission rates estimated by considering temperature alone (G93 algorithm). Our results demonstrated that the combined effects of SWC and CO 2 concentration are important for controlling the monoterpene emissions from C. japonica clone saplings. If these relationships can be applied to the other coniferous tree species, our results may be useful to improve accuracy of monoterpene emission estimates from the coniferous forests as affected by climate change in the present and foreseeable future. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Effects of climate, CO2 concentration, nitrogen deposition, and stand age changes on the carbon budget of China's forests

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Ju, W.; Zhang, F.; Mao, D.; Wang, X.

    2017-12-01

    Forests play an irreplaceable role in the Earth's terrestrial carbon budget which retard the atmospheric CO2 buildup. Understanding the factors controlling forest carbon budget is critical for reducing uncertainties in projections of future climate. The relative importance of climate, atmospheric CO2 concentration, nitrogen deposition, and stand age changes on carbon budget, however, remains unclear for China's forests. In this study, we quantify individual contribution of these drivers to the trends of forest carbon budget in China from 1901 to 2012 by integrating national datasets, the updated Integrated Terrestrial Ecosystem Carbon Cycle (InTEC) model and factorial simulations. Results showed that the average carbon sink in China's forests from 1982 to 2012 was 186.9 Tg C yr-1 with 68% (127.6 Tg C yr-1) of the sink in living biomass because of the integrated effects of climate, atmospheric CO2 concentration, nitrogen deposition, and stand age factors. Compared with the simulation of all factors combined, the estimated carbon sink during 1901-2012 would be reduced by 41.8 Tg C yr-1 if climate change, atmospheric CO2 concentration and nitrogen deposition factors were omitted, and reduced by 25.0 Tg C yr-1 if stand age factor was omitted. In most decades, these factors increased forest carbon sinks with the largest of 101.3, 62.9, and 44.0 Tg C yr-1 from 2000 to 2012 contributed by stand age, CO2 concentration and nitrogen deposition, respectively. During 1901-2012, climate change, CO2 concentration, nitrogen deposition and stand age contributed -13.3, 21.4, 15.4 and 25.0 Tg C yr-1 to the averaged carbon sink of China's forests, respectively. Our study also showed diverse regional patterns of forest carbon budget related to the importance of driving factors. Stand age effect was the largest in most regions, but the effects of CO2 concentration and nitrogen deposition were dominant in southern China.

  4. Estimated lag time in global carbon emissions and CO2 concentrations produced by commercial nuclear power through 2009 with projections through 2030.

    PubMed

    Coleman, Neil M; Abramson, Lee R; Coleman, Fiona A B

    2012-03-01

    This study examines the past and future impact of nuclear reactors on anthropogenic carbon emissions to the atmosphere. If nuclear power had never been commercially developed, what additional global carbon emissions would have occurred? More than 44 y of global nuclear power have caused a lag time of at least 1.2 y in carbon emissions and CO2 concentrations through the end of 2009. This lag time incorporates the contribution of life cycle carbon emissions due to the construction and operation of nuclear plants. Cumulative global carbon emissions would have been about 13 Gt greater through 2009, and the mean annual CO2 concentration at Mauna Loa would have been ~2.7 ppm greater than without nuclear power. This study finds that an additional 14–17 Gt of atmospheric carbon emissions could be averted by the global use of nuclear power through 2030, for a cumulative total of 27–30 Gt averted during the period 1965–2030. This result is based on International Atomic Energy Agency projections of future growth in nuclear power from 2009–2030, modified by the recent loss or permanent shutdown of 14 reactors in Japan and Germany

  5. Pulsed 2-micron Laser Transmitter For Carbon Dioxide Sensing From Space

    NASA Astrophysics Data System (ADS)

    Singh, U. N.; Yu, J.; Bai, Y.; Petros, M.

    2011-12-01

    Carbon dioxide (CO2) has been recognized as one of the most important greenhouse gases. It is essential for the study of global warming to accurately measure the CO2 concentration in the atmosphere and continuously record its variation. Studies of the carbon cycle are limited by the tools available to precisely measure CO2 concentrations by remote sensing. Active sensing, using the Integrated Path Differential Absorption (IPDA) approach, permits measurements day and night, at all latitudes and seasons. The development of a high pulse energy 2-μm laser transmitter for high-precision CO2 measurements from space leverages years of NASA investment in solid-state laser technology. Under NASA Laser Risk Reduction Program, funded by Earth Science Technology Office, researchers at NASA Langley Research Center developed an injection seeded, high repetition rate, Q-switched Ho:YLF laser transmitter for CO2 Differential Absorption Lidar/IPDA (profile/column) measurements from ground and airborne platforms. This master-slave laser system has high optical-to-optical efficiency and seeding success rate. NASA LaRC's 2-micron pulsed laser transmitter possesses advantages over current passive and CW active sensors. First, the pulsed format provides a built-in means for determining range to the scattering target and effectively filtering out the scattering from thin clouds and aerosols, thus eliminating a source of measurement bias. Second, by concentrating the laser energy into a pulse, sufficient backscatter signal strength can be obtained from aerosol scattering rather than relying on a hard target at a known distance. Third, the absorption line at the 2.05 μm band is ideally suited for the CO2 concentration measurement. In particular, the weighting function of 2 μm is optimum for measurement in the lower troposphere where the sources and sinks of CO2 are located. The planned laser transmitter development will lead to a Tm:Fiber pumped Ho:YLF laser transmitter capable of delivering 65 mJ at 50 Hz at on-line wavelength and 50 mJ at 50 Hz at off-line wavelength. The planned laser technology development and performance capabilities are a major step forward in the laser transmitter requirements called out in recent comprehensive system studies, e.g., the European Space Agency (ESA) exploration mission studies, A-SCOPE, for future CO2 column density measurements from space. The planned laser technology development is relevant to NASA's earth science priorities, such as NASA ASCENDS mission for space-based CO2 column density measurements. This presentation will provide an overview of the current status of laser transmitter development and describe future technology development to meet the transmitter requirement for a space-based column averaged measurement of CO2 concentration.

  6. Canopy warming caused photosynthetic acclimation and reduced seed yield in maize grown at ambient and elevated [CO2 ].

    PubMed

    Ruiz-Vera, Ursula M; Siebers, Matthew H; Drag, David W; Ort, Donald R; Bernacchi, Carl J

    2015-11-01

    Rising atmospheric CO2 concentration ([CO2 ]) and attendant increases in growing season temperature are expected to be the most important global change factors impacting production agriculture. Although maize is the most highly produced crop worldwide, few studies have evaluated the interactive effects of elevated [CO2 ] and temperature on its photosynthetic physiology, agronomic traits or biomass, and seed yield under open field conditions. This study investigates the effects of rising [CO2 ] and warmer temperature, independently and in combination, on maize grown in the field throughout a full growing season. Free-air CO2 enrichment (FACE) technology was used to target atmospheric [CO2 ] to 200 μmol mol(-1) above ambient [CO2 ] and infrared heaters to target a plant canopy increase of 3.5 °C, with actual season mean heating of ~2.7 °C, mimicking conditions predicted by the second half of this century. Photosynthetic gas-exchange parameters, leaf nitrogen and carbon content, leaf water potential components, and developmental measurements were collected throughout the season, and biomass and yield were measured at the end of the growing season. As predicted for a C4 plant, elevated [CO2 ] did not stimulate photosynthesis, biomass, or yield. Canopy warming caused a large shift in aboveground allocation by stimulating season-long vegetative biomass and decreasing reproductive biomass accumulation at both CO2 concentrations, resulting in decreased harvest index. Warming caused a reduction in photosynthesis due to down-regulation of photosynthetic biochemical parameters and the decrease in the electron transport rate. The reduction in seed yield with warming was driven by reduced photosynthetic capacity and by a shift in aboveground carbon allocation away from reproduction. This field study portends that future warming will reduce yield in maize, and this will not be mitigated by higher atmospheric [CO2 ] unless appropriate adaptation traits can be introduced into future cultivars. © 2015 John Wiley & Sons Ltd.

  7. Bio-Energy Retains Its Mitigation Potential Under Elevated CO2

    PubMed Central

    Bellassen, Valentin; Njakou Djomo, Sylvestre; Lukac, Martin; Calfapietra, Carlo; Janssens, Ivan A.; Hoosbeek, Marcel R.; Viovy, Nicolas; Churkina, Galina; Scarascia-Mugnozza, Giuseppe; Ceulemans, Reinhart

    2010-01-01

    Background If biofuels are to be a viable substitute for fossil fuels, it is essential that they retain their potential to mitigate climate change under future atmospheric conditions. Elevated atmospheric CO2 concentration [CO2] stimulates plant biomass production; however, the beneficial effects of increased production may be offset by higher energy costs in crop management. Methodology/Main Findings We maintained full size poplar short rotation coppice (SRC) systems under both current ambient and future elevated [CO2] (550 ppm) and estimated their net energy and greenhouse gas balance. We show that a poplar SRC system is energy efficient and produces more energy than required for coppice management. Even more, elevated [CO2] will increase the net energy production and greenhouse gas balance of a SRC system with 18%. Managing the trees in shorter rotation cycles (i.e., 2 year cycles instead of 3 year cycles) will further enhance the benefits from elevated [CO2] on both the net energy and greenhouse gas balance. Conclusions/Significance Adapting coppice management to the future atmospheric [CO2] is necessary to fully benefit from the climate mitigation potential of bio-energy systems. Further, a future increase in potential biomass production due to elevated [CO2] outweighs the increased production costs resulting in a northward extension of the area where SRC is greenhouse gas neutral. Currently, the main part of the European terrestrial carbon sink is found in forest biomass and attributed to harvesting less than the annual growth in wood. Because SRC is intensively managed, with a higher turnover in wood production than conventional forest, northward expansion of SRC is likely to erode the European terrestrial carbon sink. PMID:20657833

  8. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2.

    PubMed

    Friend, Andrew D; Lucht, Wolfgang; Rademacher, Tim T; Keribin, Rozenn; Betts, Richard; Cadule, Patricia; Ciais, Philippe; Clark, Douglas B; Dankers, Rutger; Falloon, Pete D; Ito, Akihiko; Kahana, Ron; Kleidon, Axel; Lomas, Mark R; Nishina, Kazuya; Ostberg, Sebastian; Pavlick, Ryan; Peylin, Philippe; Schaphoff, Sibyll; Vuichard, Nicolas; Warszawski, Lila; Wiltshire, Andy; Woodward, F Ian

    2014-03-04

    Future climate change and increasing atmospheric CO2 are expected to cause major changes in vegetation structure and function over large fractions of the global land surface. Seven global vegetation models are used to analyze possible responses to future climate simulated by a range of general circulation models run under all four representative concentration pathway scenarios of changing concentrations of greenhouse gases. All 110 simulations predict an increase in global vegetation carbon to 2100, but with substantial variation between vegetation models. For example, at 4 °C of global land surface warming (510-758 ppm of CO2), vegetation carbon increases by 52-477 Pg C (224 Pg C mean), mainly due to CO2 fertilization of photosynthesis. Simulations agree on large regional increases across much of the boreal forest, western Amazonia, central Africa, western China, and southeast Asia, with reductions across southwestern North America, central South America, southern Mediterranean areas, southwestern Africa, and southwestern Australia. Four vegetation models display discontinuities across 4 °C of warming, indicating global thresholds in the balance of positive and negative influences on productivity and biomass. In contrast to previous global vegetation model studies, we emphasize the importance of uncertainties in projected changes in carbon residence times. We find, when all seven models are considered for one representative concentration pathway × general circulation model combination, such uncertainties explain 30% more variation in modeled vegetation carbon change than responses of net primary productivity alone, increasing to 151% for non-HYBRID4 models. A change in research priorities away from production and toward structural dynamics and demographic processes is recommended.

  9. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2

    PubMed Central

    Friend, Andrew D.; Lucht, Wolfgang; Rademacher, Tim T.; Keribin, Rozenn; Betts, Richard; Cadule, Patricia; Ciais, Philippe; Clark, Douglas B.; Dankers, Rutger; Falloon, Pete D.; Ito, Akihiko; Kahana, Ron; Kleidon, Axel; Lomas, Mark R.; Nishina, Kazuya; Ostberg, Sebastian; Pavlick, Ryan; Peylin, Philippe; Schaphoff, Sibyll; Vuichard, Nicolas; Warszawski, Lila; Wiltshire, Andy; Woodward, F. Ian

    2014-01-01

    Future climate change and increasing atmospheric CO2 are expected to cause major changes in vegetation structure and function over large fractions of the global land surface. Seven global vegetation models are used to analyze possible responses to future climate simulated by a range of general circulation models run under all four representative concentration pathway scenarios of changing concentrations of greenhouse gases. All 110 simulations predict an increase in global vegetation carbon to 2100, but with substantial variation between vegetation models. For example, at 4 °C of global land surface warming (510–758 ppm of CO2), vegetation carbon increases by 52–477 Pg C (224 Pg C mean), mainly due to CO2 fertilization of photosynthesis. Simulations agree on large regional increases across much of the boreal forest, western Amazonia, central Africa, western China, and southeast Asia, with reductions across southwestern North America, central South America, southern Mediterranean areas, southwestern Africa, and southwestern Australia. Four vegetation models display discontinuities across 4 °C of warming, indicating global thresholds in the balance of positive and negative influences on productivity and biomass. In contrast to previous global vegetation model studies, we emphasize the importance of uncertainties in projected changes in carbon residence times. We find, when all seven models are considered for one representative concentration pathway × general circulation model combination, such uncertainties explain 30% more variation in modeled vegetation carbon change than responses of net primary productivity alone, increasing to 151% for non-HYBRID4 models. A change in research priorities away from production and toward structural dynamics and demographic processes is recommended. PMID:24344265

  10. Warming trumps CO2: future climate conditions suppress carbon fluxes in two dominant boreal tree species

    NASA Astrophysics Data System (ADS)

    Way, D.; Dusenge, M. E.; Madhavji, S.

    2017-12-01

    Increases in CO2 are expected to raise air temperatures in northern latitudes by up to 8 °C by the end of the century. Boreal forests in these regions play a large role in the global carbon cycle, and the responses of boreal tree species to climate drivers will thus have considerable impacts on the trajectory of future CO2 increases. We grew two dominant North American boreal tree species at a range of future climate conditions to assess how carbon fluxes were altered by high CO2 and warming. Black spruce (Picea mariana) and tamarack (Larix laricina) were grown from seed under either ambient (400 ppm) or elevated CO2 concentrations (750 ppm) and either ambient temperatures, moderate warming (ambient +4 °C), or extreme warming (ambient +8 °C) for six months. We measured temperature responses of net photosynthesis, maximum rates of Rubisco carboxylation (Vcmax) and electron transport (Jmax) and dark respiration to determine acclimation to the climate treatments. Overall, growth temperature had a strong effect on carbon fluxes, while there were no significant effects of growth CO2. In both species, the photosynthetic thermal optimum increased and maximum photosynthetic rates were reduced in warm-grown seedlings, but the strength of these changes varied between species. Vcmax and Jmax were also reduced in warm-grown seedlings, and this correlated with reductions in leaf N concentrations. Warming increased the activation energy for Vcmax and the thermal optimum for Jmax in both species. Respiration acclimated to elevated growth temperatures, but there were no treatment effects on the Q10 of respiration (the increase in respiration for a 10 °C increase in leaf temperature). Our results show that climate warming is likely to reduce carbon fluxes in these boreal conifers, and that photosynthetic parameters used to model photosynthesis in dynamic global vegetation models acclimate to increased temperatures, but show little response to elevated CO2.

  11. Projected near-future levels of temperature and pCO2 reduce coral fertilization success.

    PubMed

    Albright, Rebecca; Mason, Benjamin

    2013-01-01

    Increases in atmospheric carbon dioxide (pCO2) are projected to contribute to a 1.1-6.4°C rise in global average surface temperatures and a 0.14-0.35 reduction in the average pH of the global surface ocean by 2100. If realized, these changes are expected to have negative consequences for reef-building corals including increased frequency and severity of coral bleaching and reduced rates of calcification and reef accretion. Much less is known regarding the independent and combined effects of temperature and pCO2 on critical early life history processes such as fertilization. Here we show that increases in temperature (+3°C) and pCO2 (+400 µatm) projected for this century negatively impact fertilization success of a common Indo-Pacific coral species, Acropora tenuis. While maximum fertilization did not differ among treatments, the sperm concentration required to obtain 50% of maximum fertilization increased 6- to 8- fold with the addition of a single factor (temperature or CO2) and nearly 50- fold when both factors interact. Our results indicate that near-future changes in temperature and pCO2 narrow the range of sperm concentrations that are capable of yielding high fertilization success in A. tenuis. Increased sperm limitation, in conjunction with adult population decline, may have severe consequences for coral reproductive success. Impaired sexual reproduction will further challenge corals by inhibiting population recovery and adaptation potential.

  12. Projected Near-Future Levels of Temperature and pCO2 Reduce Coral Fertilization Success

    PubMed Central

    Albright, Rebecca; Mason, Benjamin

    2013-01-01

    Increases in atmospheric carbon dioxide (pCO2) are projected to contribute to a 1.1–6.4°C rise in global average surface temperatures and a 0.14–0.35 reduction in the average pH of the global surface ocean by 2100. If realized, these changes are expected to have negative consequences for reef-building corals including increased frequency and severity of coral bleaching and reduced rates of calcification and reef accretion. Much less is known regarding the independent and combined effects of temperature and pCO2 on critical early life history processes such as fertilization. Here we show that increases in temperature (+3°C) and pCO2 (+400 µatm) projected for this century negatively impact fertilization success of a common Indo-Pacific coral species, Acropora tenuis. While maximum fertilization did not differ among treatments, the sperm concentration required to obtain 50% of maximum fertilization increased 6- to 8- fold with the addition of a single factor (temperature or CO2) and nearly 50- fold when both factors interact. Our results indicate that near-future changes in temperature and pCO2 narrow the range of sperm concentrations that are capable of yielding high fertilization success in A. tenuis. Increased sperm limitation, in conjunction with adult population decline, may have severe consequences for coral reproductive success. Impaired sexual reproduction will further challenge corals by inhibiting population recovery and adaptation potential. PMID:23457572

  13. Impact of anthropogenic CO2 on the CaCO3 system in the oceans.

    PubMed

    Feely, Richard A; Sabine, Christopher L; Lee, Kitack; Berelson, Will; Kleypas, Joanie; Fabry, Victoria J; Millero, Frank J

    2004-07-16

    Rising atmospheric carbon dioxide (CO2) concentrations over the past two centuries have led to greater CO2 uptake by the oceans. This acidification process has changed the saturation state of the oceans with respect to calcium carbonate (CaCO3) particles. Here we estimate the in situ CaCO3 dissolution rates for the global oceans from total alkalinity and chlorofluorocarbon data, and we also discuss the future impacts of anthropogenic CO2 on CaCO3 shell-forming species. CaCO3 dissolution rates, ranging from 0.003 to 1.2 micromoles per kilogram per year, are observed beginning near the aragonite saturation horizon. The total water column CaCO3 dissolution rate for the global oceans is approximately 0.5 +/- 0.2 petagrams of CaCO3-C per year, which is approximately 45 to 65% of the export production of CaCO3.

  14. Long-term Iron and Phosphorus Co-limitation Fundamentally Restructures Protein Biochemistry of High CO2-adapted Trichodesmium

    NASA Astrophysics Data System (ADS)

    Hutchins, D. A.; Walworth, N. G.; Fu, F.; Webb, E. A.; Saito, M. A.; Moran, D. M.; McIlvin, M.; Lee, M. D.

    2016-02-01

    Because the globally-distributed diazotrophic cyanobacterium Trichodesmium is a critical new-nitrogen source to nutrient-deplete marine ecosystems, it is crucial to understand its evolutionary responses to global-change factors as they interact with other important environmental controls such as iron and phosphorus limitation. We grew Trichodesmium under multiple iron and phosphorus (co)-limitation scenarios for 1 year following 7 years of adaptation to both present (380-ppm) and future (750-ppm) CO2 concentrations, and discovered a complex metabolic response specific to Fe/P co-limitation, which includes increased growth rates, whole-cell biochemical restructuring, and cell biomass reduction. The interaction of increasing CO2 with this nutrient co-limited state induced an additional set of comprehensive metabolic shifts away from those seen under present day CO2, characterized by upregulation of a new complement of proteins involved in broad cellular functions, core metabolism, and growth. This restructuring reveals a unique co-limited phenotype under Fe/P "balancing" co-limitation, which fundamentally alters traditional interpretations of interactive nutrient limitations and their subsequent controls on key global biogeochemical processes in both the present and future ocean.

  15. Biogeochemical responses of the carbon cycle to natural and human perturbations: Past, present, and future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ver, L.M.B.; Mackenzie, F.T.; Lerman, A.

    In the past three centuries, human perturbations of the environment have affected the biogeochemical behavior of the global carbon cycle and that of the other three nutrient elements closely coupled to carbon: nitrogen, phosphorus, and sulfur. The partitioning of anthropogenic CO{sub 2} among its various sinks in the past, for the present, and for projections into the near future is controlled by the interactions of these four elemental cycles within the major environmental domains of the land, atmosphere, coastal oceanic zone, and open ocean. The authors analyze the past, present, and future behavior of the global carbon cycle using themore » Terrestrial-Ocean-aTmosphere Ecosystem Model (TOTEM), a unique process-based model of the four global coupled biogeochemical cycles of carbon, nitrogen, phosphorus, and sulfur. They find that during the past 300 yrs, anthropogenic CO{sub 2} was mainly stored in the atmosphere and in the open ocean. Human activities on land caused an enhanced loss of mass from the terrestrial organic matter reservoirs (phytomass and humus) mainly through deforestation and consequently increased humus remineralization, erosion, and transport to the coastal margins by rivers and runoff. Photosynthetic uptake by the terrestrial phytomass was enhanced owing to fertilization by increasing atmospheric CO{sub 2} concentrations and supported by nutrients remineralized from organic matter. TOTEM results indicate that through most of the past 300 yrs, the loss of C from deforestation and other land-use activities was greater than the gain from the enhanced photosynthetic uptake. Since pre-industrial time (since 1700), the net flux of CO{sub 2} from the coastal waters has decreased by 40%, from 0.20 Gt C/yr to 0.12 Gt C/yr. TOTEM analyses of atmospheric CO{sub 2} concentrations for the 21st century were based on the fossil-fuel emission projections of IPCC (business as usual scenario) and of the more restrictive UN 1997 Kyoto Protocol. By the mid-21st century, the projected atmospheric CO{sub 2} concentrations range from about 550 ppmv (TOTEM, based on IPCC projected emissions) to 510 ppmv (IPCC projection) and to 460 ppmv (TOTEM, based on the Kyoto Protocol reduced emissions).« less

  16. pCO2 effects on species composition and growth of an estuarine phytoplankton community

    NASA Astrophysics Data System (ADS)

    Grear, Jason S.; Rynearson, Tatiana A.; Montalbano, Amanda L.; Govenar, Breea; Menden-Deuer, Susanne

    2017-05-01

    The effects of ongoing changes in ocean carbonate chemistry on plankton ecology have important implications for food webs and biogeochemical cycling. However, conflicting results have emerged regarding species-specific responses to pCO2 enrichment and thus community responses have been difficult to predict. To assess community level effects (e.g., production) of altered carbonate chemistry, studies are needed that capitalize on the benefits of controlled experiments but also retain features of intact ecosystems that may exacerbate or ameliorate the effects observed in single-species or single cohort experiments. We performed incubations of natural plankton communities from Narragansett Bay, RI, USA in winter at ambient bay temperatures (5-13 °C), light and nutrient concentrations. Three levels of controlled and constant CO2 concentrations were imposed, simulating past, present and future conditions at mean pCO2 levels of 224, 361, and 724 μatm respectively. Samples for carbonate analysis, chlorophyll a, plankton size-abundance, and plankton species composition were collected daily and phytoplankton growth rates in three different size fractions (<5, 5-20, and >20 μm) were measured at the end of the 7-day incubation period. Community composition changed during the incubation period with major increases in relative diatom abundance, which were similar across pCO2 treatments. At the end of the experiment, 24-hr growth responses to pCO2 levels varied as a function of cell size. The smallest size fraction (<5 μm) grew faster at the elevated pCO2 level. In contrast, the 5-20 μm size fraction grew fastest in the Present treatment and there were no significant differences in growth rate among treatments in the >20 μm size fraction. Cell size distribution shifted toward smaller cells in both the Past and Future treatments but remained unchanged in the Present treatment. Similarity in Past and Future treatments for cell size distribution and growth rate (5-20 μm size fraction) illustrate non-monotonic effects of altered pCO2 on ecological indicators and may be related to opposing physiological effects of high CO2 and low pH both within and among species. Interaction of these effects with other factors (e.g., nutrients, light, temperature, grazing, initial species composition) may explain variability among published studies. The absence of clear treatment-specific effects at the community level suggests that extrapolation of species-specific responses or experiments with only present day and future pCO2 treatments levels could produce misleading predictions of ocean acidification impacts on plankton production.

  17. Photosynthesis, Productivity, and Yield of Maize Are Not Affected by Open-Air Elevation of CO2 Concentration in the Absence of Drought1[OA

    PubMed Central

    Leakey, Andrew D.B.; Uribelarrea, Martin; Ainsworth, Elizabeth A.; Naidu, Shawna L.; Rogers, Alistair; Ort, Donald R.; Long, Stephen P.

    2006-01-01

    While increasing temperatures and altered soil moisture arising from climate change in the next 50 years are projected to decrease yield of food crops, elevated CO2 concentration ([CO2]) is predicted to enhance yield and offset these detrimental factors. However, C4 photosynthesis is usually saturated at current [CO2] and theoretically should not be stimulated under elevated [CO2]. Nevertheless, some controlled environment studies have reported direct stimulation of C4 photosynthesis and productivity, as well as physiological acclimation, under elevated [CO2]. To test if these effects occur in the open air and within the Corn Belt, maize (Zea mays) was grown in ambient [CO2] (376 μmol mol−1) and elevated [CO2] (550 μmol mol−1) using Free-Air Concentration Enrichment technology. The 2004 season had ideal growing conditions in which the crop did not experience water stress. In the absence of water stress, growth at elevated [CO2] did not stimulate photosynthesis, biomass, or yield. Nor was there any CO2 effect on the activity of key photosynthetic enzymes, or metabolic markers of carbon and nitrogen status. Stomatal conductance was lower (−34%) and soil moisture was higher (up to 31%), consistent with reduced crop water use. The results provide unique field evidence that photosynthesis and production of maize may be unaffected by rising [CO2] in the absence of drought. This suggests that rising [CO2] may not provide the full dividend to North American maize production anticipated in projections of future global food supply. PMID:16407441

  18. CO2 DIAL system: construction, measurements, and future development

    NASA Astrophysics Data System (ADS)

    Vicenik, Jiri

    1999-07-01

    A miniature CO2 DIAL system has been constructed. Dimension of the system are 500 X 450 X 240 mm, its mass is only 28 kg. The system consists of two tunable TEA CO2 lasers, receiving optics, IR detector, signal processing electronics and single chip microcomputer with display. The lasers are tuned manually by means of micrometric screw and are capable to generate pulses on more than 50 CO2 laser lines. The output energy is 50 mJ. The system was tested using various toxic gases and simulants, mostly at range 300 m, most of the measurements were done using pyrodetector in the receiver. The system shows good sensitivity, but it exhibits substantial instability of zero concentration. In the next stage the work will be concentrated on use of high-sensitivity MCT detector in the receiver and implementation of automatic tuning of lasers to the system.

  19. Development of a Next-Generation Membrane-Integrated Adsorption Processor for CO2 Removal and Compression for Closed-Loop Air Revitalization Systems

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila; LeVan, Douglas

    2002-01-01

    The current CO2 removal technology of NASA is very energy intensive and contains many non-optimized subsystems. This paper discusses the concept of a next-generation, membrane integrated, adsorption processor for CO2 removal nd compression in closed-loop air revitalization systems. This processor will use many times less power than NASA's current CO2 removal technology and will be capable of maintaining a lower CO2 concentration in the cabin than that can be achieved by the existing CO2 removal systems. The compact, consolidated, configuration of gas dryer, CO2 separator, and CO2 compressor will allow continuous recycling of humid air in the cabin and supply of compressed CO2 to the reduction unit for oxygen recovery. The device has potential application to the International Space Station and future, long duration, transit, and planetary missions.

  20. Future CO2 Emissions and Climate Change from Existing Energy Infrastructure

    NASA Astrophysics Data System (ADS)

    Davis, S. J.; Caldeira, K.; Matthews, D.

    2010-12-01

    If current greenhouse gas (GHG) concentrations remain constant, the world would be committed to several centuries of increasing global mean temperatures and sea level rise. By contrast, near elimination of anthropogenic CO2 emissions would be required to produce diminishing GHG concentrations consistent with stabilization of mean temperatures. Yet long-lived energy and transportation infrastructure now operating can be expected to contribute substantial CO2 emissions over the next 50 years. Barring widespread retrofitting of existing power plants with carbon capture and storage (CCS) technologies or the early decommissioning of serviceable infrastructure, these “committed emissions” represent infrastructural inertia which may be the primary contributor to total future warming commitment. With respect to GHG emissions, infrastructural inertia may be thought of as having two important and overlapping components: (i) infrastructure that directly releases GHGs to the atmosphere, and (ii) infrastructure that contributes to the continued production of devices that emit GHGs to the atmosphere. For example, the interstate highway and refueling infrastructure in the United States facilitates continued production of gasoline-powered automobiles. Here, we focus only on the warming commitment from infrastructure that directly releases CO2 to the atmosphere. Essentially, we answer the question: What if no additional CO2-emitting devices (e.g., power plants, motor vehicles) were built, but all the existing CO2-emitting devices were allowed to live out their normal lifetimes? What CO2 levels and global mean temperatures would we attain? Of course, the actual lifetime of devices may be strongly influenced by economic and policy constraints. For instance, a ban on new CO2-emitting devices would create tremendous incentive to prolong the lifetime of existing devices. Thus, our scenarios are not realistic, but offer a means of gauging the threat of climate change from existing devices relative to those devices that have yet to be built. We developed scenarios of global CO2 emissions from the energy sector using datasets of power plants and motor vehicles worldwide, as well as estimates of fossil fuel emissions produced directly by industry, households, businesses, and other forms of transport. We estimated lifetimes and annual emissions of infrastructure from historical data. We projected changes in CO2 and temperature in response to our calculated emissions using an intermediate-complexity coupled climate-carbon model (UVic ESCM). We calculate cumulative future emissions of 496 (282 to 701) gigatonnes of CO2 from combustion of fossil fuels by existing infrastructure between 2010 and 2060, forcing mean warming of 1.3°C (1.1 to 1.4°C) above the preindustrial era and atmospheric concentrations of CO2 less than 430 parts per million (ppm). Because these conditions would likely avoid many key impacts of climate change, we conclude that sources of the most threatening emissions have yet to be built. However, CO2-emitting infrastructure will expand unless extraordinary efforts are undertaken to develop alternatives.

  1. Experimental vs. modeled water use in mature Norway spruce (Picea abies) exposed to elevated CO2

    PubMed Central

    Leuzinger, Sebastian; Bader, Martin K.-F.

    2012-01-01

    Rising levels of atmospheric CO2 have often been reported to reduce plant water use. Such behavior is also predicted by standard equations relating photosynthesis, stomatal conductance, and atmospheric CO2 concentration, which form the core of dynamic global vegetation models (DGVMs). Here, we provide first results from a free air CO2 enrichment (FACE) experiment with naturally growing, mature (35 m) Picea abies (L.) (Norway spruce) and compare them to simulations by the DGVM LPJ-GUESS. We monitored sap flow, stem water deficit, stomatal conductance, leaf water potential, and soil moisture in five 35–40 m tall CO2-treated (550 ppm) trees over two seasons. Using LPJ-GUESS, we simulated this experiment using climate data from a nearby weather station. While the model predicted a stable reduction of transpiration of between 9% and 18% (at concentrations of 550–700 ppm atmospheric CO2), the combined evidence from various methods characterizing water use in our experimental trees suggest no changes in response to future CO2 concentrations. The discrepancy between the modeled and the experimental results may be a scaling issue: while dynamic vegetation models correctly predict leaf-level responses, they may not sufficiently account for the processes involved at the canopy and ecosystem scale, which could offset the first-order stomatal response. PMID:23087696

  2. Vegetative biomass predicts inflorescence production along a CO2 concentration gradient in mesic grassland

    NASA Astrophysics Data System (ADS)

    Fay, P. A.; Collins, H.; Polley, W.

    2016-12-01

    Atmospheric CO2 concentration will likely exceed 500 µL L-1 by 2050, often increasing plant community productivity in part by increasing abundance of species favored by increased CA . Whether increased abundance translates to increased inflorescence production is poorly understood, and is important because it indicates the potential effects of CO2 enrichment on genetic variability and the potential for evolutionary change in future generations. We examined whether the responses of inflorescence production to CO2 enrichment in four C4 grasses and a C3 forb were predicted their vegetative biomass, and by soil moisture, soil nitrogen, or light availability. Inflorescence production was studied in a long-term CO2 concentration gradient spanning pre-industrial to anticipated mid-21st century values (250 - 500 µL L-1) maintained on clay, silty clay and sandy loam soils common in the U.S. Southern Plains. We expected that CO2 enrichment would increase inflorescence production, and more so with higher water, nitrogen, or light availability. However, structural equation modeling revealed that vegetative biomass was the single consistent direct predictor of flowering for all species (p < 0.001). Vegetative biomass increased, decreased, or did not respond to CO2 enrichment depending on the species. For the increasing species Sorghastrum nutans (C4 grass) and Solidago canadensis (C3 forb), direct CO2 effects on flowering were only weakly mediated by indirect effects of soil water content and soil NO3-N availability. For the decreasing species (Bouteloua curtipendula, C4 grass), the negative CO2-flowering relationship was cancelled (p = 0.39) by indirect effects of increased SWC and NO3-N on clay and silty clay soils. For the species with no CO2 response, inflorescence production was predicted only by direct water content (p < 0.0001, Schizachyrium scoparius, C4 grass) or vegetative biomass (p = 0.0009, Tridens albescens, C4 grass) effects. Light availability was unrelated to inflorescence production. Changes in inflorescence production are thus closely tied to direct and indirect effects of CO2 enrichment on vegetative biomass, and may either increase, decrease, or leave unchanged the potential for genetic variability and evolutionary change in future generations in response to global change drivers.

  3. [Evaluating the response of yield and evapotranspiration of winter wheat and the adaptation by adjusting crop variety to climate change in Huang-Huai-Hai Plain].

    PubMed

    Hu, Shi; Mo, Xing-guo; Lin, Zhong-hui

    2015-04-01

    Based on the multi-model datasets of three representative concentration pathway (RCP) emission scenarios from IPCC5, the response of yield and accumulative evapotranspiration (ET) of winter wheat to climate change in the future were assessed by VIP model. The results showed that if effects of CO2 enrichment were excluded, temperature rise would lead to a reduction in the length of the growing period for wheat under the three climate change scenarios, and the wheat yield and ET presented a decrease tendency. The positive effect of atmospheric CO2 enrichment could offset most negative effect introduced by temperature rising, indicating that atmospheric CO2 enrichment would be the prime reason of the wheat yield rising in future. In 2050s, wheat yield would increase 14.8% (decrease 2.5% without CO2 fertilization) , and ET would decrease 2.1% under RCP4.5. By adoption of new crop variety with enhanced requirement on accumulative temperature, the wheat yield would increase more significantly with CO2 fertilization, but the water consumption would also increase. Therefore, cultivar breeding new irrigation techniques and agronomical management should be explored under the challenges of climate change in the future.

  4. Plant growth responses to elevated atmospheric CO2 are increased by phosphorus sufficiency but not by arbuscular mycorrhizas.

    PubMed

    Jakobsen, Iver; Smith, Sally E; Smith, F Andrew; Watts-Williams, Stephanie J; Clausen, Signe S; Grønlund, Mette

    2016-11-01

    Capturing the full growth potential in crops under future elevated CO 2 (eCO 2 ) concentrations would be facilitated by improved understanding of eCO 2 effects on uptake and use of mineral nutrients. This study investigates interactions of eCO 2 , soil phosphorus (P), and arbuscular mycorrhizal (AM) symbiosis in Medicago truncatula and Brachypodium distachyon grown under the same conditions. The focus was on eCO 2 effects on vegetative growth, efficiency in acquisition and use of P, and expression of phosphate transporter (PT) genes. Growth responses to eCO 2 were positive at P sufficiency, but under low-P conditions they ranged from non-significant in M. truncatula to highly significant in B. distachyon Growth of M. truncatula was increased by AM at low P conditions at both CO 2 levels and eCO 2 ×AM interactions were sparse. Elevated CO 2 had small effects on P acquisition, but enhanced conversion of tissue P into biomass. Expression of PT genes was influenced by eCO 2 , but effects were inconsistent across genes and species. The ability of eCO 2 to partly mitigate P limitation-induced growth reductions in B. distachyon was associated with enhanced P use efficiency, and requirements for P fertilizers may not increase in such species in future CO 2 -rich climates. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Impact of CO 2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO 2 Leakage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulliver, Djuna M.; Gregory, Kelvin B.; Lowry, Gregory V.

    Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO 2) emissions to the atmosphere. During this process, CO 2 is injected as super critical carbon dioxide (SC-CO 2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO 2 in subsurface geologic formations could unintentionally lead to CO 2 leakage into overlying freshwater aquifers. Introduction of CO 2 into these subsurface environments will greatly increase the CO 2 concentration and will create CO 2 concentration gradients that drivemore » changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO 2 gradients will impact these communities. The overarching goal of this project is to understand how CO 2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO 2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO 2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO 2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO 2 injection/leakage plume where CO 2 concentrations are highest. At CO 2 exposures expected downgradient from the CO 2 plume, selected microorganisms emerged as dominant in the CO 2 exposed conditions. Results suggest that the altered microbial community was site specific and highly dependent on pH. The site-dependent results suggest a limited ability to predict the emerging dominant species for other CO 2-exposed environments. This study improves the understanding of how a subsurface microbial community may respond to conditions expected from GCS and CO 2 leakage. This is the first step for understanding how a CO 2-altered microbial community may impact injectivity, permanence of stored CO 2, and subsurface water quality. Future work with microbial communities from new subsurface sites would increase the current understanding of this project. Additionally, incorporation of metagenomic methods would increase understanding of potential microbial processes that may be prevalent in CO 2 exposed environments.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotton, T. E. Anne; Fitter, Alastair H.; Miller, R. Michael

    Understanding the natural dynamics of arbuscular mycorrhizal (AM) fungi and their response to global environmental change is essential for the prediction of future plant growth and ecosystem functions. We investigated the long-term temporal dynamics and effect of elevated atmospheric carbon dioxide (CO 2) and ozone (O 3) concentrations on AM fungal communities. Molecular methods were used to characterize the AM fungal communities of soybean ( Glycine max) grown under elevated and ambient atmospheric concentrations of both CO 2 and O 3 within a free air concentration enrichment experiment in three growing seasons over 5 yr. Elevated CO 2 altered themore » community composition of AM fungi, increasing the ratio of Glomeraceae to Gigasporaceae. By contrast, no effect of elevated O 3 on AM fungal communities was detected. However, the greatest compositional differences detected were between years, suggesting that, at least in the short term, large-scale interannual temporal dynamics are stronger mediators than atmospheric CO 2 concentrations of AM fungal communities. We conclude that, although atmospheric change may significantly alter AM fungal communities, this effect may be masked by the influences of natural changes and successional patterns through time. We suggest that changes in carbon availability are important determinants of the community dynamics of AM fungi.« less

  7. Lightweight, Room-Temperature CO2 Gas Sensor Based on Rare-Earth Metal-Free Composites-An Impedance Study.

    PubMed

    Willa, Christoph; Schmid, Alexander; Briand, Danick; Yuan, Jiayin; Koziej, Dorota

    2017-08-02

    We report a light, flexible, and low-power poly(ionic liquid)/alumina composite CO 2 sensor. We monitor the direct-current resistance changes as a function of CO 2 concentration and relative humidity and demonstrate fast and reversible sensing kinetics. Moreover, on the basis of the alternating-current impedance measurements we propose a sensing mechanism related to proton conduction and gas diffusion. The findings presented herein will promote the development of organic/inorganic composite CO 2 gas sensors. In the future, such sensors will be useful for numerous practical applications ranging from indoor air quality control to the monitoring of manufacturing processes.

  8. Impact of CO 2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO 2 Leakage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulliver, Djuna; Gregory, Kelvin B.; Lowry, Gregorgy V.

    Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO 2) emissions to the atmosphere. During this process, CO 2 is injected as super critical carbon dioxide (SC-CO 2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO 2 in subsurface geologic formations could unintentionally lead to CO 2 leakage into overlying freshwater aquifers. Introduction of CO 2 into these subsurface environments will greatly increase the CO 22 concentration and will create CO 2 concentration gradients that drivemore » changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO 2 gradients will impact these communities. The overarching goal of this project is to understand how CO 2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO 2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO 2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO 2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO 2 injection/leakage plume where CO 2 concentrations are highest. At CO 2 exposures expected downgradient from the CO 2 plume, selected microorganisms emerged as dominant in the CO 2 exposed conditions. Results suggest that the altered microbial community was site specific and highly dependent on pH. The site-dependent results suggest a limited ability to predict the emerging dominant species for other CO 2 exposed environments. This study improves the understanding of how a subsurface microbial community may respond to conditions expected from GCS and CO 2 leakage. This is the first step for understanding how a CO 2-altered microbial community may impact injectivity, permanence of stored CO 2, and subsurface water quality. Future work with microbial communities from new subsurface sites would increase the current understanding of this project. Additionally, incorporation of metagenomic methods would increase understanding of potential microbial processes that may be prevalent in CO 2 exposed environments.« less

  9. Long-term leaf production response to elevated atmospheric carbon dioxide and tropospheric ozone

    Treesearch

    Alan F. Talhelm; Kurt S. Pregitzer; Christian P. Giardina

    2011-01-01

    Elevated concentrations of atmospheric CO2 and tropospheric O3 will profoundly influence future forest productivity, but our understanding of these influences over the long-term is poor. Leaves are key indicators of productivity and we measured the mass, area, and nitrogen concentration of leaves collected in litter traps...

  10. Increasing atmospheric [CO2] from glacial through future levels affects drought tolerance via impacts on leaves, xylem and their integrated function

    PubMed Central

    Medeiros, Juliana S.; Ward, Joy K.

    2013-01-01

    Summary Changes in atmospheric carbon dioxide concentration ([CO2]) affect plant carbon/water trade-offs, with implications for drought tolerance. Leaf-level studies often indicate that drought tolerance may increase with rising [CO2], but integrated leaf and xylem responses are not well understood in this respect. In addition, the influence of low [CO2] of the last glacial period on drought tolerance and xylem properties is not well understood.We investigated the interactive effects of a broad range of [CO2] and plant water potentials on leaf function, xylem structure and function and the integration of leaf and xylem function in Phaseolus vulgaris.Elevated [CO2] decreased vessel implosion strength, reduced conduit specific hydraulic conductance, and compromised leaf specific xylem hydraulic conductance under moderate drought. By contrast, at glacial [CO2], transpiration was maintained under moderate drought via greater conduit specific and leaf specific hydraulic conductance in association with increased vessel implosion strength.Our study involving the integration of leaf and xylem responses suggests that increasing [CO2] does not improve drought tolerance. We show that under glacial conditions changes in leaf and xylem properties could increase drought tolerance, while under future conditions greater productivity may only occur when higher water use can be accommodated. PMID:23668237

  11. Rising atmospheric CO2 leads to large impact of biology on Southern Ocean CO2 uptake via changes of the Revelle factor

    PubMed Central

    Hauck, J; Völker, C

    2015-01-01

    The Southern Ocean is a key region for global carbon uptake and is characterized by a strong seasonality with the annual CO2 uptake being mediated by biological carbon drawdown in summer. Here we show that the contribution of biology to CO2 uptake will become even more important until 2100. This is the case even if biological production remains unaltered and can be explained by the decreasing buffer capacity of the ocean as its carbon content increases. The same amount of biological carbon drawdown leads to a more than twice as large reduction in CO2(aq) concentration and hence to a larger CO2 gradient between ocean and atmosphere that drives the gas exchange. While the winter uptake south of 44°S changes little, the summer uptake increases largely and is responsible for the annual mean response. The combination of decreasing buffer capacity and strong seasonality of biological carbon drawdown introduces a strong and increasing seasonality in the anthropogenic carbon uptake. Key Points Decrease of buffer capacity leads to stronger summer CO2 uptake in the future Biology will contribute more to future CO2 uptake in Southern Ocean Seasonality affects anthropogenic carbon uptake strongly PMID:26074650

  12. Hydrological effects of the increased CO2 and climate change in the Upper Mississippi River Basin using a modified SWAT

    USGS Publications Warehouse

    Wu, Y.; Liu, S.; Abdul-Aziz, O. I.

    2012-01-01

    Increased atmospheric CO2 concentration and climate change may significantly impact the hydrological and meteorological processes of a watershed system. Quantifying and understanding hydrological responses to elevated ambient CO2 and climate change is, therefore, critical for formulating adaptive strategies for an appropriate management of water resources. In this study, the Soil and Water Assessment Tool (SWAT) model was applied to assess the effects of increased CO2 concentration and climate change in the Upper Mississippi River Basin (UMRB). The standard SWAT model was modified to represent more mechanistic vegetation type specific responses of stomatal conductance reduction and leaf area increase to elevated CO2 based on physiological studies. For estimating the historical impacts of increased CO2 in the recent past decades, the incremental (i.e., dynamic) rises of CO2 concentration at a monthly time-scale were also introduced into the model. Our study results indicated that about 1–4% of the streamflow in the UMRB during 1986 through 2008 could be attributed to the elevated CO2 concentration. In addition to evaluating a range of future climate sensitivity scenarios, the climate projections by four General Circulation Models (GCMs) under different greenhouse gas emission scenarios were used to predict the hydrological effects in the late twenty-first century (2071–2100). Our simulations demonstrated that the water yield would increase in spring and substantially decrease in summer, while soil moisture would rise in spring and decline in summer. Such an uneven distribution of water with higher variability compared to the baseline level (1961–1990) may cause an increased risk of both flooding and drought events in the basin.

  13. The global pyrogenic carbon cycle and its impact on the level of atmospheric CO2 over past and future centuries.

    PubMed

    Landry, Jean-Sébastien; Matthews, H Damon

    2017-08-01

    The incomplete combustion of vegetation and dead organic matter by landscape fires creates recalcitrant pyrogenic carbon (PyC), which could be consequential for the global carbon budget if changes in fire regime, climate, and atmospheric CO 2 were to substantially affect gains and losses of PyC on land and in oceans. Here, we included global PyC cycling in a coupled climate-carbon model to assess the role of PyC in historical and future simulations, accounting for uncertainties through five sets of parameter estimates. We obtained year-2000 global stocks of (Central estimate, likely uncertainty range in parentheses) 86 (11-154), 47 (2-64), and 1129 (90-5892) Pg C for terrestrial residual PyC (RPyC), marine dissolved PyC, and marine particulate PyC, respectively. PyC cycling decreased atmospheric CO 2 only slightly between 1751 and 2000 (by 0.8 Pg C for the Central estimate) as PyC-related fluxes changed little over the period. For 2000 to 2300, we combined Representative Concentration Pathways (RCPs) 4.5 and 8.5 with stable or continuously increasing future fire frequencies. For the increasing future fire regime, the production of new RPyC generally outpaced the warming-induced accelerated loss of existing RPyC, so that PyC cycling decreased atmospheric CO 2 between 2000 and 2300 for most estimates (by 4-8 Pg C for Central). For the stable fire regime, however, PyC cycling usually increased atmospheric CO 2 (by 1-9 Pg C for Central), and only the most extreme choice of parameters maximizing PyC production and minimizing PyC decomposition led to atmospheric CO 2 decreases under RCPs 4.5 and 8.5 (by 5-8 Pg C). Our results suggest that PyC cycling will likely reduce the future increase in atmospheric CO 2 if landscape fires become much more frequent; however, in the absence of a substantial increase in fire frequency, PyC cycling might contribute to, rather than mitigate, the future increase in atmospheric CO 2 . © 2016 John Wiley & Sons Ltd.

  14. Predation of freshwater fish in environments with elevated carbon dioxide

    USGS Publications Warehouse

    Midway, Stephen R.; Hasler, Caleb T.; Wagner, Tyler; Suski, Cory D.

    2017-01-01

    Carbon dioxide (CO2) in fresh-water environments is poorly understood, yet in marine environments CO2 can affect fish behaviour, including predator–prey relationships. To examine changes in predator success in elevated CO2, we experimented with predatory Micropterus salmoides and Pimephales promelas prey. We used a two-factor fully crossed experimental design; one factor was 4-day (acclimation) CO2 concentration and the second factor CO2 concentration during 20-min predation experiments. Both factors had three treatment levels, including ambient partial pressure of CO2(pCO2; 0–1000 μatm), low pCO2 (4000–5000 μatm) and high pCO2 (8000–10 000 μatm). Micropterus salmoides was exposed to both factors, whereas P. promelas was not exposed to the acclimation factor. In total, 83 of the 96 P. promelas were consumed (n = 96 trials) and we saw no discernible effect of CO2 on predator success or time to predation. Failed strikes and time between failed strikes were too infrequent to model. Compared with marine systems, our findings are unique in that we not only saw no changes in prey capture success with increasing CO2, but we also used CO2 treatments that were substantially higher than those in past experiments. Our work demonstrated a pronounced resiliency of freshwater predators to elevated CO2 exposure, and a starting point for future work in this area.

  15. Ocean acidification in a geoengineering context

    PubMed Central

    Williamson, Phillip; Turley, Carol

    2012-01-01

    Fundamental changes to marine chemistry are occurring because of increasing carbon dioxide (CO2) in the atmosphere. Ocean acidity (H+ concentration) and bicarbonate ion concentrations are increasing, whereas carbonate ion concentrations are decreasing. There has already been an average pH decrease of 0.1 in the upper ocean, and continued unconstrained carbon emissions would further reduce average upper ocean pH by approximately 0.3 by 2100. Laboratory experiments, observations and projections indicate that such ocean acidification may have ecological and biogeochemical impacts that last for many thousands of years. The future magnitude of such effects will be very closely linked to atmospheric CO2; they will, therefore, depend on the success of emission reduction, and could also be constrained by geoengineering based on most carbon dioxide removal (CDR) techniques. However, some ocean-based CDR approaches would (if deployed on a climatically significant scale) re-locate acidification from the upper ocean to the seafloor or elsewhere in the ocean interior. If solar radiation management were to be the main policy response to counteract global warming, ocean acidification would continue to be driven by increases in atmospheric CO2, although with additional temperature-related effects on CO2 and CaCO3 solubility and terrestrial carbon sequestration. PMID:22869801

  16. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise

    USGS Publications Warehouse

    Langley, J.A.; McKee, K.L.; Cahoon, D.R.; Cherry, J.A.; Megonigala, J.P.

    2009-01-01

    Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity drives organic matter dynamics and is sensitive to global change factors, such as rising atmospheric CO2 concentration. It remains unknown how global change will influence organic mechanisms that determine future tidal wetland viability. Here, we present experimental evidence that plant response to elevated atmospheric [CO2] stimulates biogenic mechanisms of elevation gain in a brackish marsh. Elevated CO2 (ambient + 340 ppm) accelerated soil elevation gain by 3.9 mm yr−1in this 2-year field study, an effect mediated by stimulation of below-ground plant productivity. Further, a companion greenhouse experiment revealed that the CO2 effect was enhanced under salinity and flooding conditions likely to accompany future SLR. Our results indicate that by stimulating biogenic contributions to marsh elevation, increases in the greenhouse gas, CO2, may paradoxically aid some coastal wetlands in counterbalancing rising seas.

  17. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise.

    PubMed

    Langley, J Adam; McKee, Karen L; Cahoon, Donald R; Cherry, Julia A; Megonigal, J Patrick

    2009-04-14

    Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity drives organic matter dynamics and is sensitive to global change factors, such as rising atmospheric CO(2) concentration. It remains unknown how global change will influence organic mechanisms that determine future tidal wetland viability. Here, we present experimental evidence that plant response to elevated atmospheric [CO(2)] stimulates biogenic mechanisms of elevation gain in a brackish marsh. Elevated CO(2) (ambient + 340 ppm) accelerated soil elevation gain by 3.9 mm yr(-1) in this 2-year field study, an effect mediated by stimulation of below-ground plant productivity. Further, a companion greenhouse experiment revealed that the CO(2) effect was enhanced under salinity and flooding conditions likely to accompany future SLR. Our results indicate that by stimulating biogenic contributions to marsh elevation, increases in the greenhouse gas, CO(2), may paradoxically aid some coastal wetlands in counterbalancing rising seas.

  18. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise

    PubMed Central

    Langley, J. Adam; McKee, Karen L.; Cahoon, Donald R.; Cherry, Julia A.; Megonigal, J. Patrick

    2009-01-01

    Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity drives organic matter dynamics and is sensitive to global change factors, such as rising atmospheric CO2 concentration. It remains unknown how global change will influence organic mechanisms that determine future tidal wetland viability. Here, we present experimental evidence that plant response to elevated atmospheric [CO2] stimulates biogenic mechanisms of elevation gain in a brackish marsh. Elevated CO2 (ambient + 340 ppm) accelerated soil elevation gain by 3.9 mm yr−1 in this 2-year field study, an effect mediated by stimulation of below-ground plant productivity. Further, a companion greenhouse experiment revealed that the CO2 effect was enhanced under salinity and flooding conditions likely to accompany future SLR. Our results indicate that by stimulating biogenic contributions to marsh elevation, increases in the greenhouse gas, CO2, may paradoxically aid some coastal wetlands in counterbalancing rising seas. PMID:19325121

  19. Adsorption separation of carbon dioxide from flue gas by a molecularly imprinted adsorbent.

    PubMed

    Zhao, Yi; Shen, Yanmei; Ma, Guoyi; Hao, Rongjie

    2014-01-01

    CO2 separation by molecularly imprinted adsorbent from coal-fired flue gas after desulfurization system has been studied. The adsorbent was synthesized by molecular imprinted technique, using ethanedioic acid, acrylamide, and ethylene glycol dimethacrylate as the template, functional monomer, and cross-linker, respectively. According to the conditions of coal-fired flue gas, the influencing factors, including adsorption temperature, desorption temperature, gas flow rate, and concentrations of CO2, H2O, O2, SO2, and NO, were studied by fixed bed breakthrough experiments. The experimental conditions were optimized to gain the best adsorption performance and reduce unnecessary energy consumption in future practical use. The optimized adsorption temperature, desorption temperature, concentrations of CO2, and gas flow rate are 60 °C, 80 °C, 13%, and 170 mL/min, respectively, which correspond to conditions of practical flue gases to the most extent. The CO2 adsorption performance was nearly unaffected by H2O, O2, and NO in the flue gas, and was promoted by SO2 within the emission limit stipulated in the Chinese emission standards of air pollutants for a thermal power plant. The maximum CO2 adsorption capacity, 0.57 mmol/g, was obtained under the optimized experimental conditions, and the SO2 concentration was 150 mg/m(3). The influence mechanisms of H2O, O2, SO2, and NO on CO2 adsorption capacity were investigated by infrared spectroscopic analysis.

  20. Seeking potential contributions to future carbon budget in conterminous US forests considering disturbances

    Treesearch

    Fangmin Zhang; Yude Pan; Richard A. Birdsey; Jing M. Chen; Alexa Dugan

    2017-01-01

    Currently, US forests constitute a large carbon sink, comprising about 9 % of the global terrestrial carbon sink. Wildfire is the most significant disturbance influencing carbon dynamics in US forests. Our objective is to estimate impacts of climate change, CO2 concentration, and nitrogen deposition on the future net biome productivity (NBP) of...

  1. Contrasting responses of leaf stomatal characteristics to climate change: a considerable challenge to predict carbon and water cycles.

    PubMed

    Yan, Weiming; Zhong, Yangquanwei; Shangguan, Zhouping

    2017-09-01

    Stomata control the cycling of water and carbon between plants and the atmosphere; however, no consistent conclusions have been drawn regarding the response of stomatal frequency to climate change. Here, we conducted a meta-analysis of 1854 globally obtained data series to determine the response of stomatal frequency to climate change, which including four plant life forms (over 900 species), at altitudes ranging from 0 to 4500 m and over a time span of more than one hundred thousand years. Stomatal frequency decreased with increasing CO 2 concentration and increased with elevated temperature and drought stress; it was also dependent on the species and experimental conditions. The response of stomatal frequency to climate change showed a trade-off between stomatal control strategies and environmental factors, such as the CO 2 concentration, temperature, and soil water availability. Moreover, threshold effects of elevated CO 2 and temperature on stomatal frequency were detected, indicating that the response of stomatal density to increasing CO 2 concentration will decrease over the next few years. The results also suggested that the stomatal index may be more reliable than stomatal density for determination of the historic CO 2 concentration. Our findings indicate that the contrasting responses of stomata to climate change bring a considerable challenge in predicting future water and carbon cycles. © 2017 John Wiley & Sons Ltd.

  2. Thermodynamic balance of photosynthesis and transpiration at increasing CO2 concentrations and rapid light fluctuations.

    PubMed

    Marín, Dolores; Martín, Mercedes; Serrot, Patricia H; Sabater, Bartolomé

    2014-02-01

    Experimental and theoretical flux models have been developed to reveal the influence of sun flecks and increasing CO2 concentrations on the energy and entropy balances of the leaf. The rapid and wide range of fluctuations in light intensity under field conditions were simulated in a climatic gas exchange chamber and we determined the energy and entropy balance of the leaf based on radiation and gas exchange measurements. It was estimated that the energy of photosynthetic active radiation (PAR) accounts for half of transpiration, which is the main factor responsible for the exportation of the entropy generated in photosynthesis (Sg) out of the leaf in order to maintain functional the photosynthetic machinery. Although the response of net photosynthetic production to increasing concentrations of CO2 under fluctuating light is similar to that under continuous light, rates of transpiration respond slowly to changes of light intensity and are barely affected by the concentration of CO2 in the range of 260-495 ppm, in which net photosynthesis increases by more than 100%. The analysis of the results confirms that future increases of CO2 will improve the efficiency of the conversion of radiant energy into biomass, but will not reduce the contribution of plant transpiration to the leaf thermal balance. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  3. Mesozooplankton community development at elevated CO2 concentrations: results from a mesocosm experiment in an Arctic fjord

    NASA Astrophysics Data System (ADS)

    Niehoff, B.; Schmithüsen, T.; Knüppel, N.; Daase, M.; Czerny, J.; Boxhammer, T.

    2013-03-01

    The increasing CO2 concentration in the atmosphere caused by burning fossil fuels leads to increasing pCO2 and decreasing pH in the world ocean. These changes may have severe consequences for marine biota, especially in cold-water ecosystems due to higher solubility of CO2. However, studies on the response of mesozooplankton communities to elevated CO2 are still lacking. In order to test whether abundance and taxonomic composition change with pCO2, we have sampled nine mesocosms, which were deployed in Kongsfjorden, an Arctic fjord at Svalbard, and were adjusted to eight CO2 concentrations, initially ranging from 185 μatm to 1420 μatm. Vertical net hauls were taken weekly over about one month with an Apstein net (55 μm mesh size) in all mesocosms and the surrounding fjord. In addition, sediment trap samples, taken every second day in the mesocosms, were analysed to account for losses due to vertical migration and mortality. The taxonomic analysis revealed that meroplanktonic larvae (Cirripedia, Polychaeta, Bivalvia, Gastropoda, and Decapoda) dominated in the mesocosms while copepods (Calanus spp., Oithona similis, Acartia longiremis and Microsetella norvegica) were found in lower abundances. In the fjord copepods prevailed for most of our study. With time, abundance and taxonomic composition developed similarly in all mesocosms and the pCO2 had no significant effect on the overall community structure. Also, we did not find significant relationships between the pCO2 level and the abundance of single taxa. Changes in heterogeneous communities are, however, difficult to detect, and the exposure to elevated pCO2 was relatively short. We therefore suggest that future mesocosm experiments should be run for longer periods.

  4. Photosynthesis and antioxidant defense system of Gynura Bicolor DC grown at different elevated CO2 levels

    NASA Astrophysics Data System (ADS)

    Wang, Minjuan; Liu, Hong; Fu, Yuming

    Atmospheric carbon dioxide concentration [CO _{2}] will increase in the future and will affect global climate and ecosystem productivity. However, this is not clearly an area that requires further study on the most appropriate [CO _{2}] selection for plant growth and quality in a closed, controlled environment. The aim of this study was to determine the variation of photosynthetic characteristics and antioxidant status under five CO _{2} concentration (400, 800, 1200, 2000 and 3000 umol mol (-1) ) on the leaf of Gynura bicolor DC. Here the results show that net photosynthetic rate(Pn), Chl content, edible biomass(EB), leaf blade width(LBW), root weight(RW), fructose(Fru) and sucrose(Suc) of Gynura bicolor DC increased under elevated [CO _{2}] of 800 umol mol (-1) , 1200 umol mol (-1) and 2000 umol mol (-1) . On the contrary, photosynthesis and biomass production declined significantly at 3000 umol mol (-1) CO _{2}, While Lipid peroxidation (LPO), malondialdehyde (MDA) and hydrogen peroxide (H _{2}O _{2}) achieved the highest levels. Furthermore, the contents of glutathione (GSH), vitamin C (VC), and vitamin E (VE), and total antioxidant capacity (T-AOC), the activity of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) reached the highest level at 2000 umol mol ({-1) }CO _{2}. Results imply that a significant increase in growth and antioxidant defense system of Gynura bicolor DC occurred under 800-2000 umol mol (-1) of CO _{2} concentration provided a theoretical basis for the application for plants selection in Bioregeneration Life Support System (BLSS) and a closed controlled environment.

  5. Mechanisms of glacial-to-future atmospheric CO2 effects on plant immunity.

    PubMed

    Williams, Alex; Pétriacq, Pierre; Schwarzenbacher, Roland E; Beerling, David J; Ton, Jurriaan

    2018-04-01

    The impacts of rising atmospheric CO 2 concentrations on plant disease have received increasing attention, but with little consensus emerging on the direct mechanisms by which CO 2 shapes plant immunity. Furthermore, the impact of sub-ambient CO 2 concentrations, which plants have experienced repeatedly over the past 800 000 yr, has been largely overlooked. A combination of gene expression analysis, phenotypic characterisation of mutants and mass spectrometry-based metabolic profiling was used to determine development-independent effects of sub-ambient CO 2 (saCO 2 ) and elevated CO 2 (eCO 2 ) on Arabidopsis immunity. Resistance to the necrotrophic Plectosphaerella cucumerina (Pc) was repressed at saCO 2 and enhanced at eCO 2 . This CO 2 -dependent resistance was associated with priming of jasmonic acid (JA)-dependent gene expression and required intact JA biosynthesis and signalling. Resistance to the biotrophic oomycete Hyaloperonospora arabidopsidis (Hpa) increased at both eCO 2 and saCO 2 . Although eCO 2 primed salicylic acid (SA)-dependent gene expression, mutations affecting SA signalling only partially suppressed Hpa resistance at eCO 2 , suggesting additional mechanisms are involved. Induced production of intracellular reactive oxygen species (ROS) at saCO 2 corresponded to a loss of resistance in glycolate oxidase mutants and increased transcription of the peroxisomal catalase gene CAT2, unveiling a mechanism by which photorespiration-derived ROS determined Hpa resistance at saCO 2 . By separating indirect developmental impacts from direct immunological effects, we uncover distinct mechanisms by which CO 2 shapes plant immunity and discuss their evolutionary significance. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  6. Quantify the loss of major ions induced by CO2 enrichment and nitrogen addition in subtropical model forest ecosystems

    NASA Astrophysics Data System (ADS)

    Liu, Juxiu; Zhang, Deqiang; Huang, Wenjuan; Zhou, Guoyi; Li, Yuelin; Liu, Shizhong

    2014-04-01

    Previous studies have reported that atmospheric CO2 enrichment would increase the ion concentrations in the soil water. However, none of these studies could exactly quantify the amount of ion changes in the soil water induced by elevated CO2 and all of these experiments were carried out only in the temperate areas. Using an open-top chamber design, we studied the effects of CO2 enrichment alone and together with nitrogen (N) addition on soil water chemistry in the subtropics. Three years of exposure to an atmospheric CO2 concentration of 700 ppm resulted in accelerated base cation loss via leaching water below the 70 cm soil profile. The total of base cation (K+ + Na+ + Ca2+ + Mg2+) loss in the elevated CO2 treatment was higher than that of the control by 220%, 115%, and 106% in 2006, 2007, and 2008, respectively. The N treatment decreased the effect of high CO2 treatment on the base cation loss in the leachates. Compared to the control, N addition induced greater metal cation (Al3+ and Mn2+) leaching loss in 2008 and net Al3+ and Mn2+ loss in the high N treatment increased by 100% and 67%, respectively. However, the CO2 treatment decreased the effect of high N treatment on the metal cation loss. Changes of ion export followed by the exposure to the elevated CO2, and N treatments were related to both ion concentrations and leached water amount. We hypothesize that forests in subtropical China might suffer from nutrient limitation and some poisonous metal activation in plant biomass under future global change.

  7. Carbon Pools in a Temperate Heathland Resist Changes in a Future Climate

    NASA Astrophysics Data System (ADS)

    Ambus, P.; Reinsch, S.; Nielsen, P. L.; Michelsen, A.; Schmidt, I. K.; Mikkelsen, T. N.

    2014-12-01

    The fate of recently plant assimilated carbon was followed into ecosystem carbon pools and fluxes in a temperate heathland after a 13CO2 pulse in the early growing season in a 6-year long multi-factorial climate change experiment. Eight days after the pulse, recently assimilated carbon was significantly higher in storage organs (rhizomes) of the grass Deschampsia flexuosa under elevated atmospheric CO2 concentration. Experimental drought induced a pronounced utilization of recently assimilated carbon belowground (roots, microbes, dissolved organic carbon) potentially counterbalancing limited nutrient availability. The fate of recently assimilated carbon was not affected by moderate warming. The full factorial combination of elevated CO2, warming and drought simulating future climatic conditions as expected for Denmark in 2075 did not change short-term carbon turnover significantly compared to ambient conditions. Overall, climate factors interacted in an unexpected way resulting in strong resilience of the heathland in terms of short-term carbon turnover in a future climate.

  8. Impact of Elevated CO2 on Trace Element Release from Aquifer Sediments of the San Joaquin Valley, CA

    NASA Astrophysics Data System (ADS)

    Fox, P. M.; Nico, P. S.; Davis, J. A.; Spycher, N.

    2014-12-01

    Carbon capture and storage (CCS) is a promising technique for mitigating climate change by storing large volumes of carbon dioxide in deep saline aquifers. In California, the thick marine sediments of the Central and Salinas Valleys have been identified as prime targets for future CO2 storage. However, the potential impacts on water quality of overlying drinking-water aquifers must be studied before CCS can be implemented. In this study, we compare trace element release from San Joaquin Valley aquifer sediments with a wide range of textural and redox properties. Kinetic batch experiments were performed with artificial groundwater continuously equilibrated under CO2-saturated (at 1 atm) and background CO2 (0.002-0.006 atm) conditions, resulting in a shift of nearly 3 pH units. In addition, the reversibility of trace element release was studied by sequentially lowering the CO2 from 1.0 atm to 0.5 atm to background concentrations (0.002-0.006 atm) for CO2-saturated systems in order to mimic the dissipation of a CO2 plume in the aquifer. During exposure to high CO2, a number of elements displayed enhanced release compared to background CO2 experiments (Ca, Mg, Li, Si, B, As, Sr, Ni, Fe, Mn, V, Ti, and Co) with concentrations of As, Fe, and Mn exceeding EPA maximum contaminant levels in some cases. On the other hand, Mo and U showed suppressed release. Most intriguing, many of the elements showing enhanced release displayed at least some degree of irreversibility when CO2 concentrations were decreased to background levels. In fact, in some cases (i.e., for V), an element showed further release when CO2 concentrations were decreased. These results suggest that there may be longer-term effects on groundwater quality that persist even after the CO2 plume has dissipated. Several different mechanisms of trace element release including ion exchange, desorption, and carbonate mineral dissolution are explored. Preliminary modeling results suggest that carbonate mineral dissolution can play a key role in driving trace element release even in sediments where carbonates are in low abundance.

  9. Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps

    NASA Astrophysics Data System (ADS)

    Munday, Philip L.; Cheal, Alistair J.; Dixson, Danielle L.; Rummer, Jodie L.; Fabricius, Katharina E.

    2014-06-01

    Experiments have shown that the behaviour of reef fishes can be seriously affected by projected future carbon dioxide (CO2) concentrations in the ocean. However, whether fish can acclimate to elevated CO2 over the longer term, and the consequences of altered behaviour on the structure of fish communities, are unknown. We used marine CO2 seeps in Papua New Guinea as a natural laboratory to test these questions. Here we show that juvenile reef fishes at CO2 seeps exhibit behavioural abnormalities similar to those seen in laboratory experiments. Fish from CO2 seeps were attracted to predator odour, did not distinguish between odours of different habitats, and exhibited bolder behaviour than fish from control reefs. High CO2 did not, however, have any effect on metabolic rate or aerobic performance. Contrary to expectations, fish diversity and community structure differed little between CO2 seeps and nearby control reefs. Differences in abundances of some fishes could be driven by the different coral community at CO2 seeps rather than by the direct effects of high CO2. Our results suggest that recruitment of juvenile fish from outside the seeps, along with fewer predators within the seeps, is currently sufficient to offset any negative effects of high CO2 within the seeps. However, continuous exposure does not reduce the effect of high CO2 on behaviour in natural reef habitat, and this could be a serious problem for fish communities in the future when ocean acidification becomes widespread as a result of continued uptake of anthropogenic CO2 emissions.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, D.E.

    Assay procedures for analysis of four groups of allelochemicals in Artemisia tridentata, big sagebrush, were established. Growth of Artemisia under high and low light at three CO/sub 2/ levels demonstrated that this species also undegoes a ''dilution'' of the leaf nitrogen content and is useful as test species for herbivory response to CO/sub 2/ induced effects. The initiial experiment also showed that high irradiance is a necessary growth condition. Plants from a single population of A. Tridentata were grown at the Duke Phytotron in three CO/sub 2/ regimed and fed to two species of grasshoppers. Sagabrush plants grew more andmore » had lower leaf nitrogen contents as CO/sub 2/ concentration increased. However, the plants had on average lowere leaf carbon as well as lower leaf niitrogen contents with elevated CO/sub 2/. The source of the lower leaf nutritional value does not appear to be solely an increase in carbon content. Grasshopper consumption was greater on leaves from elevated future and from reduced historical CO/sub 2/ regimes, compared to the current concentration. The increased consumption of leaves from elevated CO/sub 2/ is in agreement with previous results. Grasshopper consumption was significantly related to leaf allelochemical content, but not to leaf nitrogen content. The consumption difference among CO/sub 2/ regimes appeared to result from allelochemical differences, which in turn may result from genetic variation or from CO/sub 2/ treatments. 17 refs., 2 figs., 4 tabs.« less

  11. Potential Impact of the National Plan for Future Electric Power Supply on Air Quality in Korea

    NASA Astrophysics Data System (ADS)

    Shim, C.; Hong, J.

    2014-12-01

    Korean Ministry of Trade, Industry and Energy (MOTIE) announced the national plan for Korea's future electric power supply (2013 - 2027) in 2013. According to the plan, the national demand for electricity will be increased by 60% compared to that of 2010 and primary energy sources for electric generation will still lean on the fossil fuels such as petroleum, LNG, and coal, which would be a potential threat to air quality of Korea. This study focused on two subjects: (1) How the spatial distribution of the primary air pollutant's emissions (i.e., NOx, SOx, CO, PM) will be changed and (2) How the primary emission changes will influence on the national ambient air quality including ozone in 2027. We used GEOS-Chem model simulation with modification of Korean emissions inventory (Clean Air Policy Support System (CAPSS)) to simulate the current and future air quality in Korea. The national total emissions of CO, NOx, SOx, PM in year 2027 will be increased by 3%, 8%, 13%, 2%, respectively compared to 2010 and there are additional concern that the future location of the power plants will be closer to the Seoul Metropolitan Area (SMA), where there are approximately 20 million population vulnerable to the potentially worsened air quality. While there are slight increase of concentration of CO, NOx, SOx, and PM in 2027, the O3 concentration is expected to be similar to the level of 2010. Those results may imply the characteristics of air pollution in East Asia such as potentially severe O3 titration and poorer O3/CO or O3/NOx ratio. Furthermore, we will discuss on the impact of transboundary pollution transport from China in the future, which is one of the large factors to control the air quality of Korea.

  12. Ecosystem service impacts of future changes in CO2, climate, and land use as simulated by a coupled vegetation/land-use model system

    NASA Astrophysics Data System (ADS)

    Rabin, S. S.; Alexander, P.; Henry, R.; Anthoni, P.; Pugh, T.; Rounsevell, M.; Arneth, A.

    2017-12-01

    In a future of increasing atmospheric carbon dioxide (CO2) concentrations, changing climate, increasing human populations, and changing socioeconomic dynamics, the global agricultural system will need to adapt in order to feed the world. Global modeling can help to explore what these adaptations will look like, and their potential impacts on ecosystem services. To do so, however, the complex interconnections among the atmosphere, terrestrial ecosystems, and society mean that these various parts of the Earth system must be examined as an interconnected whole. With the goal of answering these questions, a model system has been developed that couples a biologically-representative global vegetation model, LPJ-GUESS, with the PLUMv2 land use model. LPJ-GUESS first simulates—at 0.5º resolution across the world—the potential yield of various crops and pasture under a range of management intensities for a time step given its atmospheric CO2 level and climatic forcings. These potential yield simulations are fed into PLUMv2, which uses them in conjunction with endogenous agricultural commodity demand and prices to produce land use and management inputs (fertilizer and irrigation water) at a sub-national level for the next time step. This process is performed through 2100 for a range of future climate and societal scenarios—the Representative Concentration Pathways (RCPs) and the Shared Socioeconomic Pathways (SSPs), respectively—providing a thorough exploration of possible trajectories of land use and land cover change. The land use projections produced by PLUMv2 are fed back into LPJ-GUESS to simulate the future impacts of land use change, along with increasing CO2 and climate change, on terrestrial ecosystems. This integrated analysis examines the resulting impacts on regulating and provisioning ecosystem services affecting biophysics (albedo); carbon, nitrogen, and water cycling; and the emission of biogenic volatile organic compounds (BVOCs).

  13. Lightweight, Room-Temperature CO2 Gas Sensor Based on Rare-Earth Metal-Free Composites—An Impedance Study

    PubMed Central

    2017-01-01

    We report a light, flexible, and low-power poly(ionic liquid)/alumina composite CO2 sensor. We monitor the direct-current resistance changes as a function of CO2 concentration and relative humidity and demonstrate fast and reversible sensing kinetics. Moreover, on the basis of the alternating-current impedance measurements we propose a sensing mechanism related to proton conduction and gas diffusion. The findings presented herein will promote the development of organic/inorganic composite CO2 gas sensors. In the future, such sensors will be useful for numerous practical applications ranging from indoor air quality control to the monitoring of manufacturing processes. PMID:28726384

  14. Distribution, origin and prediction of carbon dioxide in petroleum reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thrasher, J.; Fleet, A.J.

    1995-08-01

    High concentrations of carbon dioxide (CO{sub 2}) in petroleum reservoirs can significantly reduce the value of the discovery, by diluting any hydrocarbons, and by increasing production costs because of the increased likelihood of corrosion and scale formation. Huge volumes of CO{sub 2} have been found, for example in the Indonesian Natuna d-Alpha structure (estimated 240 tcf gas, of which around 70% is CO{sub 2}). This study reviews the possible sources of CO{sub 2} in the petroleum system, and the geological and geochemical data from some CO{sub 2} {open_quotes}polluted{close_quotes} reservoirs, to improve future predictions of the exploration risk of finding significantmore » CO{sub 2}. A number of case studies show that the most common geological circumstances for the occurrence of high concentrations of CO{sub 2} include: carbonates associated with post-trap igneous activity (e.g. Ibleo Platform, Sicily); reservoir close to hot basement (e.g. Cooper-Eromanga Basin, Australia) and deep faults close to traps (e.g. Gulf of Thailand). Less common circumstances for high proportions of CO{sub 2} in gas include: post-trap igneous activity and coals (e.g. Taranaki, New Zealand) and reservoirs associated with pre-oil window coaly kerogen (e.g. Malay Trough), although the volumes of CO{sub 2} generated from kerogen are usually low relative to volumes of hydrocarbons generated from kerogen.« less

  15. Recent advances in catalytic hydrogenation of carbon dioxide.

    PubMed

    Wang, Wei; Wang, Shengping; Ma, Xinbin; Gong, Jinlong

    2011-07-01

    Owing to the increasing emissions of carbon dioxide (CO(2)), human life and the ecological environment have been affected by global warming and climate changes. To mitigate the concentration of CO(2) in the atmosphere various strategies have been implemented such as separation, storage, and utilization of CO(2). Although it has been explored for many years, hydrogenation reaction, an important representative among chemical conversions of CO(2), offers challenging opportunities for sustainable development in energy and the environment. Indeed, the hydrogenation of CO(2) not only reduces the increasing CO(2) buildup but also produces fuels and chemicals. In this critical review we discuss recent developments in this area, with emphases on catalytic reactivity, reactor innovation, and reaction mechanism. We also provide an overview regarding the challenges and opportunities for future research in the field (319 references).

  16. Seasonal dynamics of soil CO2 efflux and soil profile CO2 concentrations in arboretum of Moscow botanical garden

    NASA Astrophysics Data System (ADS)

    Goncharova, Olga; Udovenko, Maria; Matyshak, Georgy

    2016-04-01

    To analyse and predict recent and future climate change on a global scale exchange processes of greenhouse gases - primarily carbon dioxide - over various ecosystems are of rising interest. In order to upscale land-use dependent sources and sinks of CO2, knowledge of the local variability of carbon fluxes is needed. Among terrestrial ecosystems, urban areas play an important role because most of anthropogenic emissions of carbon dioxide originate from these areas. On the other hand, urban soils have the potential to store large amounts of soil organic carbon and, thus, contribute to mitigating increases in atmospheric CO2 concentrations. Research objectives: 1) estimate the seasonal dynamics of carbon dioxide production (emission - closed chamber technique and profile concentration - soil air sampling tubes method) by soils of Moscow State University Botanical Garden Arboretum planted with Picea obovata and Pinus sylvestris, 1) identification the factors that control CO2 production. The study was conducted with 1-2 weeks intervals between October 2013 and November 2015 at two sites. Carbon dioxide soil surface efflux during the year ranged from 0 to 800 mgCO2/(m2hr). Efflux values above 0 mgCO2/(m2hr) was observed during the all cold period except for only 3 weeks. Soil CO2 concentration ranged from 1600-3000 ppm in upper 10-cm layer to 10000-40000 ppm at a depth of 60 cm. The maximum concentrations of CO2 were recorded in late winter and late summer. We associate it with high biological activity (both heterotrophic and autotrophic) during the summer, and with physical gas jamming in the winter. The high value of annual CO2 production of the studied soils is caused by high organic matter content, slightly alkaline reaction, good structure and texture of urban soils. Differences in soil CO2 production by spruce and pine urban forest soils (in the pine forest 1.5-2.0 times higher) are caused by urban soil profiles construction, but not temperature regimes. Seasonal dynamics of CO2 production are the same for both soils and associated with seasonal changes in climatic parameters (temperature and moisture). CO2 efflux in the annual cycle correlates well with the soil temperature at a depth of 10 cm (r2 = 0.7). In the dry summer months, efflux largely depends on soil moisture. Soil CO2 efflux decreased by 1.5 - 2 times during the dry season.

  17. Impacts of elevated atmospheric CO2 on nutrient content of important food crops

    NASA Astrophysics Data System (ADS)

    Dietterich, Lee H.; Zanobetti, Antonella; Kloog, Itai; Huybers, Peter; Leakey, Andrew D. B.; Bloom, Arnold J.; Carlisle, Eli; Fernando, Nimesha; Fitzgerald, Glenn; Hasegawa, Toshihiro; Holbrook, N. Michele; Nelson, Randall L.; Norton, Robert; Ottman, Michael J.; Raboy, Victor; Sakai, Hidemitsu; Sartor, Karla A.; Schwartz, Joel; Seneweera, Saman; Usui, Yasuhiro; Yoshinaga, Satoshi; Myers, Samuel S.

    2015-07-01

    One of the many ways that climate change may affect human health is by altering the nutrient content of food crops. However, previous attempts to study the effects of increased atmospheric CO2 on crop nutrition have been limited by small sample sizes and/or artificial growing conditions. Here we present data from a meta-analysis of the nutritional contents of the edible portions of 41 cultivars of six major crop species grown using free-air CO2 enrichment (FACE) technology to expose crops to ambient and elevated CO2 concentrations in otherwise normal field cultivation conditions. This data, collected across three continents, represents over ten times more data on the nutrient content of crops grown in FACE experiments than was previously available. We expect it to be deeply useful to future studies, such as efforts to understand the impacts of elevated atmospheric CO2 on crop macro- and micronutrient concentrations, or attempts to alleviate harmful effects of these changes for the billions of people who depend on these crops for essential nutrients.

  18. Impacts of elevated atmospheric CO2 on nutrient content of important food crops

    PubMed Central

    Dietterich, Lee H.; Zanobetti, Antonella; Kloog, Itai; Huybers, Peter; Leakey, Andrew D. B.; Bloom, Arnold J.; Carlisle, Eli; Fernando, Nimesha; Fitzgerald, Glenn; Hasegawa, Toshihiro; Holbrook, N. Michele; Nelson, Randall L.; Norton, Robert; Ottman, Michael J.; Raboy, Victor; Sakai, Hidemitsu; Sartor, Karla A.; Schwartz, Joel; Seneweera, Saman; Usui, Yasuhiro; Yoshinaga, Satoshi; Myers, Samuel S.

    2015-01-01

    One of the many ways that climate change may affect human health is by altering the nutrient content of food crops. However, previous attempts to study the effects of increased atmospheric CO2 on crop nutrition have been limited by small sample sizes and/or artificial growing conditions. Here we present data from a meta-analysis of the nutritional contents of the edible portions of 41 cultivars of six major crop species grown using free-air CO2 enrichment (FACE) technology to expose crops to ambient and elevated CO2 concentrations in otherwise normal field cultivation conditions. This data, collected across three continents, represents over ten times more data on the nutrient content of crops grown in FACE experiments than was previously available. We expect it to be deeply useful to future studies, such as efforts to understand the impacts of elevated atmospheric CO2 on crop macro- and micronutrient concentrations, or attempts to alleviate harmful effects of these changes for the billions of people who depend on these crops for essential nutrients. PMID:26217490

  19. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    NASA Technical Reports Server (NTRS)

    Hameed, S.; Cess, R. D.; Hogan, J. S.

    1980-01-01

    Recent modeling of atmospheric chemical processes (Logan et al, 1978; Hameed et al, 1979) suggests that tropospheric ozone and methane might significantly increase in the future as the result of increasing anthropogenic emissions of CO, NO(x), and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test the possible climatic impact of changes in tropospheric chemical composition, a zonal energy-balance climate model has been combined with a vertically averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4, and NO(x). The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NO(x) and CH4, and that future increases in these emissions could augment global warming due to increasing atmospheric CO2.

  20. Effect of ocean acidification and elevated fCO2 on trace gas production by a Baltic Sea summer phytoplankton community

    NASA Astrophysics Data System (ADS)

    Webb, Alison L.; Leedham-Elvidge, Emma; Hughes, Claire; Hopkins, Frances E.; Malin, Gill; Bach, Lennart T.; Schulz, Kai; Crawfurd, Kate; Brussaard, Corina P. D.; Stuhr, Annegret; Riebesell, Ulf; Liss, Peter S.

    2016-08-01

    The Baltic Sea is a unique environment as the largest body of brackish water in the world. Acidification of the surface oceans due to absorption of anthropogenic CO2 emissions is an additional stressor facing the pelagic community of the already challenging Baltic Sea. To investigate its impact on trace gas biogeochemistry, a large-scale mesocosm experiment was performed off Tvärminne Research Station, Finland, in summer 2012. During the second half of the experiment, dimethylsulfide (DMS) concentrations in the highest-fCO2 mesocosms (1075-1333 µatm) were 34 % lower than at ambient CO2 (350 µatm). However, the net production (as measured by concentration change) of seven halocarbons analysed was not significantly affected by even the highest CO2 levels after 5 weeks' exposure. Methyl iodide (CH3I) and diiodomethane (CH2I2) showed 15 and 57 % increases in mean mesocosm concentration (3.8 ± 0.6 increasing to 4.3 ± 0.4 pmol L-1 and 87.4 ± 14.9 increasing to 134.4 ± 24.1 pmol L-1 respectively) during Phase II of the experiment, which were unrelated to CO2 and corresponded to 30 % lower Chl a concentrations compared to Phase I. No other iodocarbons increased or showed a peak, with mean chloroiodomethane (CH2ClI) concentrations measured at 5.3 (±0.9) pmol L-1 and iodoethane (C2H5I) at 0.5 (±0.1) pmol L-1. Of the concentrations of bromoform (CHBr3; mean 88.1 ± 13.2 pmol L-1), dibromomethane (CH2Br2; mean 5.3 ± 0.8 pmol L-1), and dibromochloromethane (CHBr2Cl, mean 3.0 ± 0.5 pmol L-1), only CH2Br2 showed a decrease of 17 % between Phases I and II, with CHBr3 and CHBr2Cl showing similar mean concentrations in both phases. Outside the mesocosms, an upwelling event was responsible for bringing colder, high-CO2, low-pH water to the surface starting on day t16 of the experiment; this variable CO2 system with frequent upwelling events implies that the community of the Baltic Sea is acclimated to regular significant declines in pH caused by up to 800 µatm fCO2. After this upwelling, DMS concentrations declined, but halocarbon concentrations remained similar or increased compared to measurements prior to the change in conditions. Based on our findings, with future acidification of Baltic Sea waters, biogenic halocarbon emissions are likely to remain at similar values to today; however, emissions of biogenic sulfur could significantly decrease in this region.

  1. Species characteristics and intraspecific variation in growth and photosynthesis of Cryptomeria japonica under elevated O3 and CO2.

    PubMed

    Hiraoka, Yuichiro; Iki, Taiichi; Nose, Mine; Tobita, Hiroyuki; Yazaki, Kenichi; Watanabe, Atsushi; Fujisawa, Yoshitake; Kitao, Mitsutoshi

    2017-06-01

    In order to predict the effects of future atmospheric conditions on forest productivity, it is necessary to clarify the physiological responses of major forest tree species to high concentrations of ozone (O3) and carbon dioxide (CO2). Furthermore, intraspecific variation of these responses should also be examined in order to predict productivity gains through tree improvements in the future. We investigated intraspecific variation in growth and photosynthesis of Cryptomeria japonica D. Don, a major silviculture species in Japan, in response to elevated concentrations of O3 (eO3) and CO2 (eCO2), separately and in combination. Cuttings of C. japonica were grown and exposed to two levels of O3 (ambient and twice-ambient levels) in combination with two levels of CO2 (ambient and 550 µmol mol-1 in the daytime) for two growing seasons in a free-air CO2 enrichment experiment. There was no obvious negative effect of eO3 on growth or photosynthetic traits of the C. japonica clones, but a positive effect was observed for annual height increments in the first growing season. Dry mass production and the photosynthetic rate increased under eCO2 conditions, while the maximum carboxylation rate decreased. Significant interaction effects of eO3 and eCO2 on growth and photosynthetic traits were not observed. Clonal effects on growth and photosynthetic traits were significant, but the interactions between clones and O3 and/or CO2 treatments were not. Spearman's rank correlation coefficients between growth traits under ambient conditions and for each treatment were significantly positive, implying that clonal ranking in growth abilities might not be affected by either eO3 or eCO2. The knowledge obtained from this study will be helpful for species selection in afforestation programs, to continue and to improve current programs involving this species, and to accurately predict the CO2 fixation capacity of Japanese forests. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. No way out? The double-bind in seeking global prosperity alongside mitigated climate change

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.

    2012-01-01

    In a prior study (Garrett, 2011), I introduced a simple economic growth model designed to be consistent with general thermodynamic laws. Unlike traditional economic models, civilization is viewed only as a well-mixed global whole with no distinction made between individual nations, economic sectors, labor, or capital investments. At the model core is a hypothesis that the global economy's current rate of primary energy consumption is tied through a constant to a very general representation of its historically accumulated wealth. Observations support this hypothesis, and indicate that the constant's value is λ = 9.7 ± 0.3 milliwatts per 1990 US dollar. It is this link that allows for treatment of seemingly complex economic systems as simple physical systems. Here, this growth model is coupled to a linear formulation for the evolution of globally well-mixed atmospheric CO2 concentrations. While very simple, the coupled model provides faithful multi-decadal hindcasts of trajectories in gross world product (GWP) and CO2. Extending the model to the future, the model suggests that the well-known IPCC SRES scenarios substantially underestimate how much CO2 levels will rise for a given level of future economic prosperity. For one, global CO2 emission rates cannot be decoupled from wealth through efficiency gains. For another, like a long-term natural disaster, future greenhouse warming can be expected to act as an inflationary drag on the real growth of global wealth. For atmospheric CO2 concentrations to remain below a "dangerous" level of 450 ppmv (Hansen et al., 2007), model forecasts suggest that there will have to be some combination of an unrealistically rapid rate of energy decarbonization and nearly immediate reductions in global civilization wealth. Effectively, it appears that civilization may be in a double-bind. If civilization does not collapse quickly this century, then CO2 levels will likely end up exceeding 1000 ppmv; but, if CO2 levels rise by this much, then the risk is that civilization will gradually tend towards collapse.

  3. Action of Gibberellins on Growth and Metabolism of Arabidopsis Plants Associated with High Concentration of Carbon Dioxide1[W

    PubMed Central

    Ribeiro, Dimas M.; Araújo, Wagner L.; Fernie, Alisdair R.; Schippers, Jos H.M.; Mueller-Roeber, Bernd

    2012-01-01

    Although the positive effect of elevated CO2 concentration [CO2] on plant growth is well known, it remains unclear whether global climate change will positively or negatively affect crop yields. In particular, relatively little is known about the role of hormone pathways in controlling the growth responses to elevated [CO2]. Here, we studied the impact of elevated [CO2] on plant biomass and metabolism in Arabidopsis (Arabidopsis thaliana) in relation to the availability of gibberellins (GAs). Inhibition of growth by the GA biosynthesis inhibitor paclobutrazol (PAC) at ambient [CO2] (350 µmol CO2 mol−1) was reverted by elevated [CO2] (750 µmol CO2 mol−1). Thus, we investigated the metabolic adjustment and modulation of gene expression in response to changes in growth of plants imposed by varying the GA regime in ambient and elevated [CO2]. In the presence of PAC (low-GA regime), the activities of enzymes involved in photosynthesis and inorganic nitrogen assimilation were markedly increased at elevated [CO2], whereas the activities of enzymes of organic acid metabolism were decreased. Under ambient [CO2], nitrate, amino acids, and protein accumulated upon PAC treatment; however, this was not the case when plants were grown at elevated [CO2]. These results suggest that only under ambient [CO2] is GA required for the integration of carbohydrate and nitrogen metabolism underlying optimal biomass determination. Our results have implications concerning the action of the Green Revolution genes in future environmental conditions. PMID:23090585

  4. Effects of elevated CO2 concentrations and fly ash amended soils on trace element accumulation and translocation among roots, stems and seeds of Glycine max (L.) Merr.

    PubMed

    Rodriguez, J H; Klumpp, A; Fangmeier, A; Pignata, M L

    2011-03-15

    The carbon dioxide (CO(2)) levels of the global atmosphere and the emissions of heavy metals have risen in recent decades, and these increases are expected to produce an impact on crops and thereby affect yield and food safety. In this study, the effects of elevated CO(2) and fly ash amended soils on trace element accumulation and translocation in the root, stem and seed compartments in soybean [Glycine max (L.) Merr.] were evaluated. Soybean plants grown in fly ash (FA) amended soil (0, 1, 10, 15, and 25% FA) at two CO(2) regimes (400 and 600 ppm) in controlled environmental chambers were analyzed at the maturity stage for their trace element contents. The concentrations of Br, Co, Cu, Fe, Mn, Ni, Pb and Zn in roots, stems and seeds in soybeans were investigated and their potential risk to the health of consumers was estimated. The results showed that high levels of CO(2) and lower concentrations of FA in soils were associated with an increase in biomass. For all the elements analyzed except Pb, their accumulation in soybean plants was higher at elevated CO(2) than at ambient concentrations. In most treatments, the highest concentrations of Br, Co, Cu, Fe, Mn, and Pb were found in the roots, with a strong combined effect of elevated CO(2) and 1% of FA amended soils on Pb accumulation (above maximum permitted levels) and translocation to seeds being observed. In relation to non-carcinogenic risks, target hazard quotients (TQHs) were significant in a Chinese individual for Mn, Fe and Pb. Also, the increased health risk due to the added effects of the trace elements studied was significant for Chinese consumers. According to these results, soybean plants grown for human consumption under future conditions of elevated CO(2) and FA amended soils may represent a toxicological hazard. Therefore, more research should be carried out with respect to food consumption (plants and animals) under these conditions and their consequences for human health. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Ferromagnetism in doped or undoped spintronics nanomaterials

    NASA Astrophysics Data System (ADS)

    Qiang, You

    2010-10-01

    Much interest has been sparked by the discovery of ferromagnetism in a range of oxide doped and undoped semiconductors. The development of ferromagnetic oxide semiconductor materials with giant magnetoresistance (GMR) offers many advantages in spintronics devices for future miniaturization of computers. Among them, TM-doped ZnO is an extensively studied n-type wide-band-gap (3.36 eV) semiconductor with a tremendous interest as future mini-computer, blue light emitting, and solar cells. In this talk, Co-doped ZnO and Co-doped Cu2O semiconductor nanoclusters are successfully synthesized by a third generation sputtering-gas-aggregation cluster technique. The Co-doped nanoclusters are ferromagnetic with Curie temperature above room temperature. Both of Co-doped nanoclusters show positive magnetoresistance (PMR) at low temperature, but the amplitude of the PMRs shows an anomalous difference. For similar Co doping concentration at 5 K, PMR is greater than 800% for Co-doped ZnO but only 5% for Co-doped Cu2O nanoclusters. Giant PMR in Co-doped ZnO which is attributed to large Zeeman splitting effect has a linear dependence on applied magnetic field with very high sensitivity, which makes it convenient for the future spintronics applications. The small PMR in Co-doped Cu2O is related to its vanishing density of states at Fermi level. Undoped Zn/ZnO core-shell nanoparticle gives high ferromagnetic properties above room temperature due to the defect induced magnetization at the interface.

  6. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO 2 concentration data

    DOE PAGES

    Ogle, Stephen; Davis, Kenneth J.; Lauvaux, Thomas; ...

    2015-03-10

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country’s contribution to GHG concentrations in the atmosphere. Verification could include a variety of evidence, but arguably the most convincing verification would be confirmation of a change in GHG concentrations in the atmosphere that is consistent with reported emissions to the UNFCCC. We report here on a case study evaluating this option based on a prototype atmospheric CO2 measurement network deployed in the Mid-Continent Region of themore » conterminous United States. We found that the atmospheric CO2 measurement data did verify the accuracy of the emissions inventory within the confidence limits of the emissions estimates, suggesting that this technology could be further developed and deployed more widely in the future for verifying reported emissions.« less

  7. Responses of tropical native and invader C4 grasses to water stress, clipping and increased atmospheric CO2 concentration.

    PubMed

    Baruch, Zdravko; Jackson, Robert B

    2005-10-01

    The invasion of African grasses into Neotropical savannas has altered savanna composition, structure and function. The projected increase in atmospheric CO(2) concentration has the potential to further alter the competitive relationship between native and invader grasses. The objective of this study was to quantify the responses of two populations of a widespread native C(4) grass (Trachypogon plumosus) and two African C(4) grass invaders (Hyparrhenia rufa and Melinis minutiflora) to high CO(2) concentration interacting with two primary savanna stressors: drought and herbivory. Elevated CO(2) increased the competitive potential of invader grasses in several ways. Germination and seedling size was promoted in introduced grasses. Under high CO(2), the relative growth rate of young introduced grasses was twice that of native grass (0.58 g g(-1) week(-1) vs 0.25 g g(-1) week(-1)). This initial growth advantage was maintained throughout the course of the study. Well-watered and unstressed African grasses also responded more to high CO(2) than did the native grass (biomass increases of 21-47% compared with decreases of 13-51%). Observed higher water and nitrogen use efficiency of invader grasses may aid their establishment and competitive strength in unfertile sites, specially if the climate becomes drier. In addition, high CO(2) promoted lower leaf N content more in the invader grasses. The more intensive land use, predicted to occur in this region, may interact with high CO(2) to favor the African grasses, as they generally recovered faster after simulated herbivory. The superiority of invader grasses under high CO(2) suggests further increases in their competitive strength and a potential increased rate of displacement of the native savannas in the future by grasslands dominated by introduced African species.

  8. An alpine treeline in a carbon dioxide-rich world: synthesis of a nine-year free-air carbon dioxide enrichment study.

    PubMed

    Dawes, Melissa A; Hagedorn, Frank; Handa, Ira Tanya; Streit, Kathrin; Ekblad, Alf; Rixen, Christian; Körner, Christian; Hättenschwiler, Stephan

    2013-03-01

    We evaluated the impacts of elevated CO2 in a treeline ecosystem in the Swiss Alps in a 9-year free-air CO2 enrichment (FACE) study. We present new data and synthesize plant and soil results from the entire experimental period. Light-saturated photosynthesis (A max) of ca. 35-year-old Larix decidua and Pinus uncinata was stimulated by elevated CO2 throughout the experiment. Slight down-regulation of photosynthesis in Pinus was consistent with starch accumulation in needle tissue. Above-ground growth responses differed between tree species, with a 33 % mean annual stimulation in Larix but no response in Pinus. Species-specific CO2 responses also occurred for abundant dwarf shrub species in the understorey, where Vaccinium myrtillus showed a sustained shoot growth enhancement (+11 %) that was not apparent for Vaccinium gaultherioides or Empetrum hermaphroditum. Below ground, CO2 enrichment did not stimulate fine root or mycorrhizal mycelium growth, but increased CO2 effluxes from the soil (+24 %) indicated that enhanced C assimilation was partially offset by greater respiratory losses. The dissolved organic C (DOC) concentration in soil solutions was consistently higher under elevated CO2 (+14 %), suggesting accelerated soil organic matter turnover. CO2 enrichment hardly affected the C-N balance in plants and soil, with unaltered soil total or mineral N concentrations and little impact on plant leaf N concentration or the stable N isotope ratio. Sustained differences in plant species growth responses suggest future shifts in species composition with atmospheric change. Consistently increased C fixation, soil respiration and DOC production over 9 years of CO2 enrichment provide clear evidence for accelerated C cycling with no apparent consequences on the N cycle in this treeline ecosystem.

  9. Spectrophotometric Determination of Carbonate Ion Concentrations: Elimination of Instrument-Dependent Offsets and Calculation of In Situ Saturation States.

    PubMed

    Sharp, Jonathan D; Byrne, Robert H; Liu, Xuewu; Feely, Richard A; Cuyler, Erin E; Wanninkhof, Rik; Alin, Simone R

    2017-08-15

    This work describes an improved algorithm for spectrophotometric determinations of seawater carbonate ion concentrations ([CO 3 2- ] spec ) derived from observations of ultraviolet absorbance spectra in lead-enriched seawater. Quality-control assessments of [CO 3 2- ] spec data obtained on two NOAA research cruises (2012 and 2016) revealed a substantial intercruise difference in average Δ[CO 3 2- ] (the difference between a sample's [CO 3 2- ] spec value and the corresponding [CO 3 2- ] value calculated from paired measurements of pH and dissolved inorganic carbon). Follow-up investigation determined that this discordance was due to the use of two different spectrophotometers, even though both had been properly calibrated. Here we present an essential methodological refinement to correct [CO 3 2- ] spec absorbance data for small but significant instrumental differences. After applying the correction (which, notably, is not necessary for pH determinations from sulfonephthalein dye absorbances) to the shipboard absorbance data, we fit the combined-cruise data set to produce empirically updated parameters for use in processing future (and historical) [CO 3 2- ] spec absorbance measurements. With the new procedure, the average Δ[CO 3 2- ] offset between the two aforementioned cruises was reduced from 3.7 μmol kg -1 to 0.7 μmol kg -1 , which is well within the standard deviation of the measurements (1.9 μmol kg -1 ). We also introduce an empirical model to calculate in situ carbonate ion concentrations from [CO 3 2- ] spec . We demonstrate that these in situ values can be used to determine calcium carbonate saturation states that are in good agreement with those determined by more laborious and expensive conventional methods.

  10. A first-order analysis of the potential role of CO2 fertilization to affect the global carbon budget: A comparison of four terrestrial biosphere models

    USGS Publications Warehouse

    Kicklighter, D.W.; Bruno, M.; Donges, S.; Esser, G.; Heimann, Martin; Helfrich, J.; Ift, F.; Joos, F.; Kaduk, J.; Kohlmaier, G.H.; McGuire, A.D.; Melillo, J.M.; Meyer, R.; Moore, B.; Nadler, A.; Prentice, I.C.; Sauf, W.; Schloss, A.L.; Sitch, S.; Wittenberg, U.; Wurth, G.

    1999-01-01

    We compared the simulated responses of net primary production, heterotrophic respiration, net ecosystem production and carbon storage in natural terrestrial ecosystems to historical (1765 to 1990) and projected (1990 to 2300) changes of atmospheric CO2 concentration of four terrestrial biosphere models: the Bern model, the Frankfurt Biosphere Model (FBM), the High-Resolution Biosphere Model (HRBM) and the Terrestrial Ecosystem Model (TEM). The results of the model intercomparison suggest that CO2 fertilization of natural terrestrial vegetation has the potential to account for a large fraction of the so-called 'missing carbon sink' of 2.0 Pg C in 1990. Estimates of this potential are reduced when the models incorporate the concept that CO2 fertilization can be limited by nutrient availability. Although the model estimates differ on the potential size (126 to 461 Pg C) of the future terrestrial sink caused by CO2 fertilization, the results of the four models suggest that natural terrestrial ecosystems will have a limited capacity to act as a sink of atmospheric CO2 in the future as a result of physiological constraints and nutrient constraints on NPP. All the spatially explicit models estimate a carbon sink in both tropical and northern temperate regions, but the strength of these sinks varies over time. Differences in the simulated response of terrestrial ecosystems to CO2 fertilization among the models in this intercomparison study reflect the fact that the models have highlighted different aspects of the effect of CO2 fertilization on carbon dynamics of natural terrestrial ecosystems including feedback mechanisms. As interactions with nitrogen fertilization, climate change and forest regrowth may play an important role in simulating the response of terrestrial ecosystems to CO2 fertilization, these factors should be included in future analyses. Improvements in spatially explicit data sets, whole-ecosystems experiments and the availability of net carbon exchange measurements across the globe will also help to improve future evaluations of the role of CO2 fertilization on terrestrial carbon storage.

  11. Estimating climate change, CO2 and technology development effects on wheat yield in northeast Iran

    NASA Astrophysics Data System (ADS)

    Bannayan, M.; Mansoori, H.; Rezaei, E. Eyshi

    2014-04-01

    Wheat is the main food for the majority of Iran's population. Precise estimation of wheat yield change in future is essential for any possible revision of management strategies. The main objective of this study was to evaluate the effects of climate change, CO2 concentration, technology development and their integrated effects on wheat production under future climate change. This study was performed under two scenarios of the IPCC Special Report on Emission Scenarios (SRES): regional economic (A2) and global environmental (B1). Crop production was projected for three future time periods (2020, 2050 and 2080) in comparison with a baseline year (2005) for Khorasan province located in the northeast of Iran. Four study locations in the study area included Mashhad, Birjand, Bojnourd and Sabzevar. The effect of technology development was calculated by fitting a regression equation between the observed wheat yields against historical years considering yield potential increase and yield gap reduction as technology development. Yield relative increase per unit change of CO2 concentration (1 ppm-1) was considered 0.05 % and was used to implement the effect of elevated CO2. The HadCM3 general circulation model along with the CSM-CERES-Wheat crop model were used to project climate change effects on wheat crop yield. Our results illustrate that, among all the factors considered, technology development provided the highest impact on wheat yield change. Highest wheat yield increase across all locations and time periods was obtained under the A2 scenario. Among study locations, Mashhad showed the highest change in wheat yield. Yield change compared to baseline ranged from -28 % to 56 % when the integration of all factors was considered across all locations. It seems that achieving higher yield of wheat in future may be expected in northeast Iran assuming stable improvements in production technology.

  12. Estimating climate change, CO2 and technology development effects on wheat yield in northeast Iran.

    PubMed

    Bannayan, M; Mansoori, H; Rezaei, E Eyshi

    2014-04-01

    Wheat is the main food for the majority of Iran's population. Precise estimation of wheat yield change in future is essential for any possible revision of management strategies. The main objective of this study was to evaluate the effects of climate change, CO2 concentration, technology development and their integrated effects on wheat production under future climate change. This study was performed under two scenarios of the IPCC Special Report on Emission Scenarios (SRES): regional economic (A2) and global environmental (B1). Crop production was projected for three future time periods (2020, 2050 and 2080) in comparison with a baseline year (2005) for Khorasan province located in the northeast of Iran. Four study locations in the study area included Mashhad, Birjand, Bojnourd and Sabzevar. The effect of technology development was calculated by fitting a regression equation between the observed wheat yields against historical years considering yield potential increase and yield gap reduction as technology development. Yield relative increase per unit change of CO2 concentration (1 ppm(-1)) was considered 0.05 % and was used to implement the effect of elevated CO2. The HadCM3 general circulation model along with the CSM-CERES-Wheat crop model were used to project climate change effects on wheat crop yield. Our results illustrate that, among all the factors considered, technology development provided the highest impact on wheat yield change. Highest wheat yield increase across all locations and time periods was obtained under the A2 scenario. Among study locations, Mashhad showed the highest change in wheat yield. Yield change compared to baseline ranged from -28 % to 56 % when the integration of all factors was considered across all locations. It seems that achieving higher yield of wheat in future may be expected in northeast Iran assuming stable improvements in production technology.

  13. Mapping the Spatial Distribution of CO2 release from Kīlauea Volcano, Hawaii, USA

    NASA Astrophysics Data System (ADS)

    Elias, T.; Werner, C. A.; Kern, C.; Sutton, A. J.; Hauri, E. H.; Kelly, P. J.

    2014-12-01

    Kīlauea Volcano is a large emitter of volcanic CO2 with emission rates ranging from 7500-30,000 t/d. However, Kīlauea presents a challenging situation for CO2 emission rate measurement in that the main source of SO2 is the active vent in Halema'uma'u Crater, whereas CO2 emits mainly from a large (> 1km2) diffuse region east of the vent. Previous researchers recognized this issue and advocated for the use of a plume-integrated concentration ratio paired with the SO2 emission to determine CO2 emission rates; however, this worked best prior to the opening of the summit vent in 2008, or when SO2emission was still diffuse as opposed to focused degassing from the vent. We used two techniques to study the spatial distribution and temporal variability of CO2 release from the summit caldera in July, 2014. Eddy covariance measurements made at 14 locations in the area of diffuse emission resulted in elevated fluxes that generally ranged from 500 to > 5000 g/m2d, or typical of other volcanic and hydrothermal areas worldwide. MultiGas measurements of the CO2 and SO2 concentration in air at 1-m above the ground identified approximately seven areas of elevated area of CO2 degassing in the caldera. The CO2 concentrations in air were spatially well correlated to approximately 100 m and displayed anisotropy that was consistent with the measured wind direction. Areas of highest CO2 concentration correlated with the areas of highest flux using the eddy covariance method and were found near the middle of the caldera approximately 1 km NE of the active vent. This area overlies the inferred location of the shallow summit reservoir, and is characterized by linear fractures with adhered sublimate deposits at the surface. A few of the fractures are visibly fuming, but much of the degassing in the area is not apparent. Future work includes monitoring the fluxes in this area over time, and attempting to quantify emission rates from the areas of measured flux.

  14. Shellfish Face Uncertain Future in High CO2 World: Influence of Acidification on Oyster Larvae Calcification and Growth in Estuaries

    PubMed Central

    Miller, A. Whitman; Reynolds, Amanda C.; Sobrino, Cristina; Riedel, Gerhardt F.

    2009-01-01

    Background Human activities have increased atmospheric concentrations of carbon dioxide by 36% during the past 200 years. One third of all anthropogenic CO2 has been absorbed by the oceans, reducing pH by about 0.1 of a unit and significantly altering their carbonate chemistry. There is widespread concern that these changes are altering marine habitats severely, but little or no attention has been given to the biota of estuarine and coastal settings, ecosystems that are less pH buffered because of naturally reduced alkalinity. Methodology/Principal Findings To address CO2-induced changes to estuarine calcification, veliger larvae of two oyster species, the Eastern oyster (Crassostrea virginica), and the Suminoe oyster (Crassostrea ariakensis) were grown in estuarine water under four pCO2 regimes, 280, 380, 560 and 800 µatm, to simulate atmospheric conditions in the pre-industrial era, present, and projected future concentrations in 50 and 100 years respectively. CO2 manipulations were made using an automated negative feedback control system that allowed continuous and precise control over the pCO2 in experimental aquaria. Larval growth was measured using image analysis, and calcification was measured by chemical analysis of calcium in their shells. C. virginica experienced a 16% decrease in shell area and a 42% reduction in calcium content when pre-industrial and end of 21st century pCO2 treatments were compared. C. ariakensis showed no change to either growth or calcification. Both species demonstrated net calcification and growth, even when aragonite was undersaturated, a result that runs counter to previous expectations for invertebrate larvae that produce aragonite shells. Conclusions and Significance Our results suggest that temperate estuarine and coastal ecosystems are vulnerable to the expected changes in water chemistry due to elevated atmospheric CO2 and that biological responses to acidification, especially calcifying biota, will be species-specific and therefore much more variable and complex than reported previously. PMID:19478855

  15. Carbon assimilation in Eucalyptus urophylla grown under high atmospheric CO2 concentrations: A proteomics perspective.

    PubMed

    Santos, Bruna Marques Dos; Balbuena, Tiago Santana

    2017-01-06

    Photosynthetic organisms may be drastically affected by the future climate projections of a considerable increase in CO 2 concentrations. Growth under a high concentration of CO 2 could stimulate carbon assimilation-especially in C3-type plants. We used a proteomics approach to test the hypothesis of an increase in the abundance of the enzymes involved in carbon assimilation in Eucalyptus urophylla plants grown under conditions of high atmospheric CO 2 . Our strategy allowed the profiling of all Calvin-Benson cycle enzymes and associated protein species. Among the 816 isolated proteins, those involved in carbon fixation were found to be the most abundant ones. An increase in the abundance of six key enzymes out of the eleven core enzymes involved in carbon fixation was detected in plants grown at a high CO 2 concentration. Proteome changes were corroborated by the detection of a decrease in the stomatal aperture and in the vascular bundle area in Eucalyptus urophylla plantlets grown in an environment of high atmospheric CO 2 . Our proteomics approach indicates a positive metabolic response regarding carbon fixation in a CO 2 -enriched atmosphere. The slight but significant increase in the abundance of the Calvin enzymes suggests that stomatal closure did not prevent an increase in the carbon assimilation rates. The sample enrichment strategy and data analysis used here enabled the identification of all enzymes and most protein isoforms involved in the Calvin-Benson-Bessham cycle in Eucalyptus urophylla. Upon growth in CO 2 -enriched chambers, Eucalyptus urophylla plantlets responded by reducing the vascular bundle area and stomatal aperture size and by increasing the abundance of six of the eleven core enzymes involved in carbon fixation. Our proteome approach provides an estimate on how a commercially important C3-type plant would respond to an increase in CO 2 concentrations. Additionally, confirmation at the protein level of the predicted genes involved in carbon assimilation may be used in plant transformation strategies aiming to increase plant adaptability to climate changes or to increase plant productivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. West African Monsoon dynamics in idealized simulations: the competitive roles of SST warming and CO2

    NASA Astrophysics Data System (ADS)

    Gaetani, Marco; Flamant, Cyrille; Hourdin, Frederic; Bastin, Sophie; Braconnot, Pascale; Bony, Sandrine

    2015-04-01

    The West African Monsoon (WAM) is affected by large climate variability at different timescales, from interannual to multidecadal, with strong environmental and socio-economic impacts associated to climate-related rainfall variability, especially in the Sahelian belt. State-of-the-art coupled climate models still show poor ability in correctly simulating the WAM past variability and also a large spread is observed in future climate projections. In this work, the July-to-September (JAS) WAM variability in the period 1979-2008 is studied in AMIP-like simulations (SST-forced) from CMIP5. The individual roles of global SST warming and CO2 concentration increasing are investigated through idealized experiments simulating a 4K warmer SST and a 4x CO2 concentration, respectively. Results show a dry response in Sahel to SST warming, with dryer conditions over western Sahel. On the contrary, wet conditions are observed when CO2 is increased, with the strongest response over central-eastern Sahel. The precipitation changes are associated to modifications in the regional atmospheric circulation: dry (wet) conditions are associated with reduced (increased) convergence in the lower troposphere, a southward (northward) shift of the African Easterly Jet, and a weaker (stronger) Tropical Easterly Jet. The co-variability between global SST and WAM precipitation is also investigated, highlighting a reorganization of the main co-variability modes. Namely, in the 4xCO2 simulation the influence of Tropical Pacific is dominant, while it is reduced in the 4K simulation, which also shows an increased coupling with the eastern Pacific and the Indian Ocean. The above results suggest a competitive action of SST warming and CO2 increasing on the WAM climate variability, with opposite effects on precipitation. The combination of the observed positive and negative response in precipitation, with wet conditions in central-eastern Sahel and dry conditions in western Sahel, is consistent with the future precipitation trends over West Africa resulting from CMIP5 coupled simulations. It is argued that the large spread in CMIP5 future projections may be related to the weight given to SST warming and direct CO2 effect by individual models. The capability of climate models in reproducing the SST-precipitation relationship appears to be crucial in this respect.

  17. Bioinorganic modeling chemistry of carbon monoxide dehydrogenases: description of model complexes, current status and possible future scopes.

    PubMed

    Majumdar, Amit

    2014-08-28

    Carbon monoxide dehydrogenases (CODHs) use CO as their sole source of carbon and energy and are found in both aerobic and anaerobic carboxidotrophic bacteria. Reversible transformation of CO to CO2 is catalyzed by a bimetallic [Mo-(μ2-S)-Cu] system in aerobic and by a highly asymmetric [Ni-Fe-S] cluster in anaerobic CODH active sites. The CODH activity in the microorganisms effects the removal of almost 10(8) tons of CO annually from the lower atmosphere and earth and thus help to maintain a sub-toxic concentration of CO. Despite an appreciable amount of work, the mechanism of CODH activity is not clearly understood yet. Moreover, biomimetic chemistry directed towards the active sites of CODHs faces several synthetic challenges. The synthetic problems associated with the modeling chemistry and strategies adopted to overcome those problems are discussed along with their limitations. A critical analysis of the exciting results delineating the present status of CODH modeling chemistry and its future prospects are presented.

  18. Bicarbonate uptake by Southern Ocean phytoplankton

    NASA Astrophysics Data System (ADS)

    Cassar, Nicolas; Laws, Edward A.; Bidigare, Robert R.; Popp, Brian N.

    2004-06-01

    Marine phytoplankton have the potential to significantly buffer future increases in atmospheric carbon dioxide levels. However, in order for CO2 fertilization to have an effect on carbon sequestration to the deep ocean, the increase in dissolved CO2 must stimulate primary productivity; that is, marine phototrophs must be CO2 limited [, 1993]. Estimation of the extent of bicarbonate (HCO3-) uptake in the oceans is therefore required to determine whether the anthropogenic carbon sources will enhance carbon flux to the deep ocean. Using short-term 14CO2-disequilibrium experiments during the Southern Ocean Iron Experiment (SOFeX), we show that HCO3- uptake by Southern Ocean phytoplankton is significant. Since the majority of dissolved inorganic carbon (DIC) in the ocean is in the form of bicarbonate, the biological pump may therefore be insensitive to anthropogenic CO2. Approximately half of the DIC uptake observed was attributable to direct HCO3- uptake, the other half being direct CO2 uptake mediated either by passive diffusion or active uptake mechanisms. The increase in growth rates and decrease in CO2 concentration associated with the iron fertilization did not trigger any noticeable changes in the mode of DIC acquisition, indicating that under most environmental conditions the carbon concentrating mechanism (CCM) is constitutive. A low-CO2 treatment induced an increase in uptake of CO2, which we attributed to increased extracellular carbonic anhydrase activity, at the expense of direct HCO3- transport across the plasmalemma. Isotopic disequilibrium experimental results are consistent with Southern Ocean carbon stable isotope fractionation data from this and other studies. Although iron fertilization has been shown to significantly enhance phytoplankton growth and may potentially increase carbon flux to the deep ocean, an important source of the inorganic carbon taken up by phytoplankton in this study was HCO3-, whose concentration is negligibly affected by the anthropogenic rise in CO2. We conclude that biological productivity in this region of the world's ocean is unlikely to be directly regulated by natural or anthropogenic variations in atmospheric CO2 concentrations because of the presence of a constitutive CCM.

  19. On the detection of carbon monoxide as an anti-biosignature in exoplanetary atmospheres

    NASA Astrophysics Data System (ADS)

    Wang, Yuwei; Tian, Feng; Li, Tong; Hu, Yongyun

    2016-03-01

    Recent works suggest that oxygen can be maintained on lifeless exoplanets in the habitable zones of M dwarfs as the results of photochemical reactions. However, the same photochemical models also predict high concentrations of carbon monoxide (CO) in the corresponding atmospheres. Here we use a line-by-line radiative transfer model to investigate the observation requirements of O2 and CO in such atmospheres. The results show that photochemically produced CO can be readily detected at 1.58, 2.34, and 4.67 μm. We suggest that future missions aiming at characterization of exoplanetary atmospheres consider detections of CO as an anti-biosignature.

  20. Experimental evaluation of main emissions during coal processing waste combustion.

    PubMed

    Dmitrienko, Margarita A; Legros, Jean C; Strizhak, Pavel A

    2018-02-01

    The total volume of the coal processing wastes (filter cakes) produced by Russia, China, and India is as high as dozens of millions of tons per year. The concentrations of CO and CO 2 in the emissions from the combustion of filter cakes have been measured directly for the first time. They are the biggest volume of coal processing wastes. There have been many discussions about using these wastes as primary or secondary components of coal-water slurries (CWS) and coal-water slurries containing petrochemicals (CWSP). Boilers have already been operationally tested in Russia for the combustion of CWSP based on filter cakes. In this work, the concentrations of hazardous emissions have been measured at temperatures ranging from 500 to 1000°С. The produced CO and CO 2 concentrations are shown to be practically constant at high temperatures (over 900°С) for all the coal processing wastes under study. Experiments have shown the feasibility to lowering the combustion temperatures of coal processing wastes down to 750-850°С. This provides sustainable combustion and reduces the CO and CO 2 emissions 1.2-1.7 times. These relatively low temperatures ensure satisfactory environmental and energy performance of combustion. Using CWS and CWSP instead of conventional solid fuels significantly reduces NO x and SO x emissions but leaves CO and CO 2 emissions practically at the same level as coal powder combustion. Therefore, the environmentally friendly future (in terms of all the main atmospheric emissions: CO, CO 2 , NO x , and SO x ) of both CWS and CWSP technologies relies on low-temperature combustion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A window into the future of the Earth, hidden in the jungles of Costa Rica's volcanoes

    NASA Astrophysics Data System (ADS)

    Fisher, J. B.; Schwandner, F. M.; Asner, G. P.; Schimel, D.; Norby, R. J.; Keller, M.; Pavlick, R.; Braverman, A. J.; Pieri, D. C.; Diaz, J. A.; Gutierrez, M.; Duarte, E. A.; Lewicki, J. L.; Manning, C. E.; Deering, C. D.; Seibt, U.; Miller, G. R.; Drewry, D.; Chambers, J.

    2017-12-01

    The CO2 fertilization response of the terrestrial biosphere contributes among the largest sensitivities and uncertainties across projections of the Earth's future. The source of that uncertainty can be pinpointed to the largest fluxes in the biosphere: the tropics. Free Air CO2 Enrichment (FACE) experiments have contributed immensely to our understanding of short-term CO2 fertilization, but, outside of a small pilot study in development, have been absent in the tropics. This is largely due to numerous hurdles of not only conducting such experiments in challenging environments, but also due to the need to expand their extent considerably to encompass the enormous diversity of species-level responses, in addition to the need for multi-decadal scale responses. As such, we have remained at a critical impasse in our ability to advance understanding of the response of the tropical biosphere to increasing CO2. Recent discoveries have found a cluster of volcanoes degassing CO2 into tropical ecosystems in Costa Rica at concentrations similar to future Earth atmosphere levels. The degassing has been occurring persistently from 10s to 100s of years over 10s to 100s of square kilometers, at different levels depending on the volcano. Fortuitously, this provides a natural "experiment" across a range of conditions needed to assess a widespread and long-lived tropical ecosystem response to elevated CO2: tree species will have had time to shift in composition, traits, structure, and function. Nonetheless, due both to the challenges with assessing these changes on the ground, and heterogeneity causing problems with coarse-scale satellite remote sensing observations, this "window" into the future of the Earth has remained veiled. Here, we describe an airborne-based plan designed to uncover this gem hidden in the jungles of Costa Rica's volcanoes.

  2. Preliminary Reactive Geochemical Transport Modeling Study on Changes in Water Chemistry Induced by CO2 Injection at Frio Pilot Test Site

    NASA Astrophysics Data System (ADS)

    Xu, T.; Kharaka, Y.; Benson, S.

    2006-12-01

    A total of 1600 tons of CO2 were injected into the Frio ~{!0~}C~{!1~} sandstone layer at a depth of 1500 m over a period of 10 days. The pilot, located near Dayton, Texas, employed one injection well and one observation well, separated laterally by about 30 m. Each well was perforated over 6 m in the upper portion of the 23-m thick sandstone. Fluid samples were taken from both wells before, during, and after the injection. Following CO2 breakthrough, observations indicate drops in pH (6.5 to 5.7), pronounced increases in concentrations of HCO3- (100 to 3000 mg/L), in Fe (30 to 1100), and dissolved organic carbon. Numerical modeling was used in this study to understand changes of aqueous HCO3- and Fe caused by CO2 injection. The general multiphase reactive geochemical transport simulator TOUGHREACT was used, which includes new fluid property module ECO2N with an accurate description of the thermophysical properties of mixtures of water, brine, and CO2 at conditions of interest for CO2 storage. A calibrated 1-D radial well flow model was employed for the present reactive geochemical transport simulations. Mineral composition used was taken from literatures relevant to Frio sandstone. Increases in HCO3- concentration were well reproduced by an initial simulation. Several scenarios were used to capture increases in Fe concentration including (1) dissolution of carbonate minerals, (2) dissolution of iron oxyhydroxides, (3) de-sorption of previously coated Fe. Future modeling, laboratory and field investigations are proposed to better understand the CO2-brine-mineral interactions at the Frio site. Results from this study could have broad implication for subsurface storage of CO2 and potential water quality impacts.

  3. Physiological acclimation dampens initial effects of elevated temperature and atmospheric CO2 concentration in mature boreal Norway spruce.

    PubMed

    Lamba, Shubhangi; Hall, Marianne; Räntfors, Mats; Chaudhary, Nitin; Linder, Sune; Way, Danielle; Uddling, Johan; Wallin, Göran

    2018-02-01

    Physiological processes of terrestrial plants regulate the land-atmosphere exchange of carbon, water, and energy, yet few studies have explored the acclimation responses of mature boreal conifer trees to climate change. Here we explored the acclimation responses of photosynthesis, respiration, and stomatal conductance to elevated temperature and/or CO 2 concentration ([CO 2 ]) in a 3-year field experiment with mature boreal Norway spruce. We found that elevated [CO 2 ] decreased photosynthetic carboxylation capacity (-23% at 25 °C) and increased shoot respiration (+64% at 15 °C), while warming had no significant effects. Shoot respiration, but not photosynthetic capacity, exhibited seasonal acclimation. Stomatal conductance at light saturation and a vapour pressure deficit of 1 kPa was unaffected by elevated [CO 2 ] but significantly decreased (-27%) by warming, and the ratio of intercellular to ambient [CO 2 ] was enhanced (+17%) by elevated [CO 2 ] and decreased (-12%) by warming. Many of these responses differ from those typically observed in temperate tree species. Our results show that long-term physiological acclimation dampens the initial stimulation of plant net carbon assimilation to elevated [CO 2 ], and of plant water use to warming. Models that do not account for these responses may thus overestimate the impacts of climate change on future boreal vegetation-atmosphere interactions. © 2017 John Wiley & Sons Ltd.

  4. Rangeland -- Plant responses to elevated CO sub 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owensby, C.E.; Coyne, P.I.; Ham, J.M.

    1992-01-01

    Several broad conclusions which can be drawn from the work that was accomplished during the first 3-year phase of the study is described. In prairie ecosystems dominated by C{sub 4} grasses, it is likely that elevated atmospheric CO{sub 2} will increase ecosystem level productivity, with a greater increase in belowground productivity. The increased productivity will primarily result from increased water use efficiency due to the anti-transpirant action of CO{sub 2}. Fumigation chambers are directly confounded with elevated CO{sub 2} effects, in that both reduce evapotranspiration. The reduced evapotranspiration of the fumigation chamber is primarily through reduced wind speeds and reducedmore » radiation. In very dry years, fumigation chamber effects are negligible, but in years with normal precipitation, chamber effects and elevated CO{sub 2} effects are essentially equal with respect to reduced evapotranspiration effects. Increased production under elevated CO{sub 2} results in reduced nitrogen concentration in the herbage and increased fiber concentrations. Consequently, digestibility of the herbage is reduced, and microbial degradation of surface litter and soil organic matter is slowed. On the negative side, ruminant productivity will likely be reduced substantially, but increased carbon storage in the soil may buffer against future rise in atmospheric CO{sub 2}. Tallgrass prairie will not likely change greatly in botanical composition, since the C{sub 4} dominants responded to elevated CO{sub 2} more than the C{sub 3} subdominants.« less

  5. A predictive estimation method for carbon dioxide transport by data-driven modeling with a physically-based data model

    NASA Astrophysics Data System (ADS)

    Jeong, Jina; Park, Eungyu; Han, Weon Shik; Kim, Kue-Young; Jun, Seong-Chun; Choung, Sungwook; Yun, Seong-Taek; Oh, Junho; Kim, Hyun-Jun

    2017-11-01

    In this study, a data-driven method for predicting CO2 leaks and associated concentrations from geological CO2 sequestration is developed. Several candidate models are compared based on their reproducibility and predictive capability for CO2 concentration measurements from the Environment Impact Evaluation Test (EIT) site in Korea. Based on the data mining results, a one-dimensional solution of the advective-dispersive equation for steady flow (i.e., Ogata-Banks solution) is found to be most representative for the test data, and this model is adopted as the data model for the developed method. In the validation step, the method is applied to estimate future CO2 concentrations with the reference estimation by the Ogata-Banks solution, where a part of earlier data is used as the training dataset. From the analysis, it is found that the ensemble mean of multiple estimations based on the developed method shows high prediction accuracy relative to the reference estimation. In addition, the majority of the data to be predicted are included in the proposed quantile interval, which suggests adequate representation of the uncertainty by the developed method. Therefore, the incorporation of a reasonable physically-based data model enhances the prediction capability of the data-driven model. The proposed method is not confined to estimations of CO2 concentration and may be applied to various real-time monitoring data from subsurface sites to develop automated control, management or decision-making systems.

  6. Potential effects of elevated atmospheric carbon dioxide (CO2) on coastal wetlands

    USGS Publications Warehouse

    McKee, Karen

    2006-01-01

    Carbon dioxide (CO2) concentration in the atmosphere has steadily increased from 280 parts per million (ppm) in preindustrial times to 381 ppm today and is predicted by some models to double within the next century. Some of the important pathways whereby changes in atmospheric CO2 may impact coastal wetlands include changes in temperature, rainfall, and hurricane intensity (fig. 1). Increases in CO2 can contribute to global warming, which may (1) accelerate sea-level rise through melting of polar ice fields and steric expansion of oceans, (2) alter rainfall patterns and salinity regimes, and (3) change the intensity and frequency of tropical storms and hurricanes. Sea-level rise combined with changes in storm activity may affect erosion and sedimentation rates and patterns in coastal wetlands and maintenance of soil elevations.Feedback loops between plant growth and hydroedaphic conditions also contribute to maintenance of marsh elevations through accumulation of organic matter. Although increasing CO2 concentration may contribute to global warming and climate changes, it may also have a direct impact on plant growth and development by stimulating photosynthesis or improving water use efficiency. Scientists with the U.S. Geological Survey are examining responses of wetland plants to elevated CO2 concentration and other factors. This research will lead to a better understanding of future changes in marsh species composition, successional rates and patterns, ecological functioning, and vulnerability to sea-level rise and other global change factors.

  7. Effects of elevated nutrients and CO2 emission scenarios on three coral reef macroalgae.

    PubMed

    Bender-Champ, Dorothea; Diaz-Pulido, Guillermo; Dove, Sophie

    2017-05-01

    Coral reef macroalgae are expected to thrive in the future under conditions that are deleterious to the health of reef-building corals. Here we examined how macroalgae would be affected by exposure to future CO 2 emission scenarios (pCO 2 and temperature), enriched nutrients and combinations of both. The species tested, Laurencia intricata (Rhodophyta), Turbinaria ornata and Chnoospora implexa (both Phaeophyceae), have active carbon-concentrating mechanisms but responded differently to the treatments. L. intricata showed high mortality under nutrient enriched RCP4.5 ("reduced" CO 2 emission) and RCP8.5 ("business-as-usual" CO 2 emission) and grew best under pre-industrial (PI) conditions, where it could take up carbon using external carbonic anhydrase combined, potentially, with proton extrusion. T. ornata's growth rate showed a trend for reduction under RCP8.5 but was unaffected by nutrient enrichment. In C. implexa, highest growth was observed under PI conditions, but highest net photosynthesis occurred under RCP8.5, suggesting that under RCP8.5, carbon is stored and respired at greater rates while it is directed to growth under PI conditions. None of the species showed growth enhancement under future scenarios, nutrient enrichment or combinations of both. This leads to the conclusion that under such conditions these species are unlikely to pose an increasing threat to coral reefs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Materials-Related Aspects of Thermochemical Water and Carbon Dioxide Splitting: A Review

    PubMed Central

    Roeb, Martin; Neises, Martina; Monnerie, Nathalie; Call, Friedemann; Simon, Heike; Sattler, Christian; Schmücker, Martin; Pitz-Paal, Robert

    2012-01-01

    Thermochemical multistep water- and CO2-splitting processes are promising options to face future energy problems. Particularly, the possible incorporation of solar power makes these processes sustainable and environmentally attractive since only water, CO2 and solar power are used; the concentrated solar energy is converted into storable and transportable fuels. One of the major barriers to technological success is the identification of suitable active materials like catalysts and redox materials exhibiting satisfactory durability, reactivity and efficiencies. Moreover, materials play an important role in the construction of key components and for the implementation in commercial solar plants. The most promising thermochemical water- and CO2-splitting processes are being described and discussed with respect to further development and future potential. The main materials-related challenges of those processes are being analyzed. Technical approaches and development progress in terms of solving them are addressed and assessed in this review.

  9. Carbon Dioxide Physiological Forcing Dominates Projected Eastern Amazonian Drying

    NASA Astrophysics Data System (ADS)

    Richardson, T. B.; Forster, P. M.; Andrews, T.; Boucher, O.; Faluvegi, G.; Fläschner, D.; Kasoar, M.; Kirkevâg, A.; Lamarque, J.-F.; Myhre, G.; Olivié, D.; Samset, B. H.; Shawki, D.; Shindell, D.; Takemura, T.; Voulgarakis, A.

    2018-03-01

    Future projections of east Amazonian precipitation indicate drying, but they are uncertain and poorly understood. In this study we analyze the Amazonian precipitation response to individual atmospheric forcings using a number of global climate models. Black carbon is found to drive reduced precipitation over the Amazon due to temperature-driven circulation changes, but the magnitude is uncertain. CO2 drives reductions in precipitation concentrated in the east, mainly due to a robustly negative, but highly variable in magnitude, fast response. We find that the physiological effect of CO2 on plant stomata is the dominant driver of the fast response due to reduced latent heating and also contributes to the large model spread. Using a simple model, we show that CO2 physiological effects dominate future multimodel mean precipitation projections over the Amazon. However, in individual models temperature-driven changes can be large, but due to little agreement, they largely cancel out in the model mean.

  10. Host Plant Physiology and Mycorrhizal Functioning Shift across a Glacial through Future [CO2] Gradient1[OPEN

    PubMed Central

    Mullinix, George W.R.; Ward, Joy K.

    2016-01-01

    Rising atmospheric carbon dioxide concentration ([CO2]) may modulate the functioning of mycorrhizal associations by altering the relative degree of nutrient and carbohydrate limitations in plants. To test this, we grew Taraxacum ceratophorum and Taraxacum officinale (native and exotic dandelions) with and without mycorrhizal fungi across a broad [CO2] gradient (180–1,000 µL L−1). Differential plant growth rates and vegetative plasticity were hypothesized to drive species-specific responses to [CO2] and arbuscular mycorrhizal fungi. To evaluate [CO2] effects on mycorrhizal functioning, we calculated response ratios based on the relative biomass of mycorrhizal (MBio) and nonmycorrhizal (NMBio) plants (RBio = [MBio − NMBio]/NMBio). We then assessed linkages between RBio and host physiology, fungal growth, and biomass allocation using structural equation modeling. For T. officinale, RBio increased with rising [CO2], shifting from negative to positive values at 700 µL L−1. [CO2] and mycorrhizal effects on photosynthesis and leaf growth rates drove shifts in RBio in this species. For T. ceratophorum, RBio increased from 180 to 390 µL L−1 and further increases in [CO2] caused RBio to shift from positive to negative values. [CO2] and fungal effects on plant growth and carbon sink strength were correlated with shifts in RBio in this species. Overall, we show that rising [CO2] significantly altered the functioning of mycorrhizal associations. These symbioses became more beneficial with rising [CO2], but nonlinear effects may limit plant responses to mycorrhizal fungi under future [CO2]. The magnitude and mechanisms driving mycorrhizal-CO2 responses reflected species-specific differences in growth rate and vegetative plasticity, indicating that these traits may provide a framework for predicting mycorrhizal responses to global change. PMID:27573369

  11. Interactive effects of near-future temperature increase and ocean acidification on physiology and gonad development in adult Pacific sea urchin, Echinometra sp . A

    NASA Astrophysics Data System (ADS)

    Uthicke, S.; Liddy, M.; Nguyen, H. D.; Byrne, M.

    2014-09-01

    Increased atmospheric CO2 will have a twofold impact on future marine ecosystems, increasing global sea surface temperatures and uptake of CO2 (Ocean Acidification). Many experiments focus on the investigation of one of these stressors, but under realistic future climate predictions, these stressors may have interactive effects on individuals. Here, we investigate the effect of warming and acidification in combination. We test for interactive effects of potential near-future (2100) temperature (+2 to 3 °C) and pCO2 (~860-940 μAtm) levels on the physiology of the tropical echinoid Echinometra sp . A. The greatest reduction in growth was under simultaneous temperature and pH/ pCO2 stress (marginally significant temperature × pH/ pCO2 interaction). This was mirrored by the physiological data, with highest metabolic activity (measured as respiration and ammonium excretion) occurring at the increased temperature and pCO2 treatment, although this was not significant for excretion. The perivisceral coelomic fluid pH was ~7.5-7.6, as typical for echinoids, and showed no significant changes between treatments. Indicative of active calcification, internal magnesium and calcium concentrations were reduced compared to the external medium, but were not different between treatments. Gonad weight was lower at the higher temperature, and this difference was more distinct and statistically significant for males. The condition of the gonads assessed by histology declined in increased temperature and low pH treatments. The Echinometra grew in all treatments indicating active calcification of their magnesium calcite tests even as carbonate mineral saturation decreased. Our results indicate that the interactive temperature and pH effects are more important for adult echinoids than individual stressors. Although adult specimens grow and survive in near-future conditions, higher energy demands may influence gonad development and thus population maintenance.

  12. Climate versus carbon dioxide controls on biomass burning: a model analysis of the glacial-interglacial contrast

    NASA Astrophysics Data System (ADS)

    Calvo, M. Martin; Prentice, I. C.; Harrison, S. P.

    2014-11-01

    Climate controls fire regimes through its influence on the amount and types of fuel present and their dryness. CO2 concentration constrains primary production by limiting photosynthetic activity in plants. However, although fuel accumulation depends on biomass production, and hence on CO2 concentration, the quantitative relationship between atmospheric CO2 concentration and biomass burning is not well understood. Here a fire-enabled dynamic global vegetation model (the Land surface Processes and eXchanges model, LPX) is used to attribute glacial-interglacial changes in biomass burning to an increase in CO2, which would be expected to increase primary production and therefore fuel loads even in the absence of climate change, vs. climate change effects. Four general circulation models provided last glacial maximum (LGM) climate anomalies - that is, differences from the pre-industrial (PI) control climate - from the Palaeoclimate Modelling Intercomparison Project Phase~2, allowing the construction of four scenarios for LGM climate. Modelled carbon fluxes from biomass burning were corrected for the model's observed prediction biases in contemporary regional average values for biomes. With LGM climate and low CO2 (185 ppm) effects included, the modelled global flux at the LGM was in the range of 1.0-1.4 Pg C year-1, about a third less than that modelled for PI time. LGM climate with pre-industrial CO2 (280 ppm) yielded unrealistic results, with global biomass burning fluxes similar to or even greater than in the pre-industrial climate. It is inferred that a substantial part of the increase in biomass burning after the LGM must be attributed to the effect of increasing CO2 concentration on primary production and fuel load. Today, by analogy, both rising CO2 and global warming must be considered as risk factors for increasing biomass burning. Both effects need to be included in models to project future fire risks.

  13. 21st Century Carbon-Climate Change as Simulated by the Canadian Earth System Model CanESM1

    NASA Astrophysics Data System (ADS)

    Curry, C.; Christian, J. R.; Arora, V.; Boer, G. J.; Denman, K. L.; Flato, G. M.; Scinocca, J. F.; Merryfield, W. J.; Lee, W. G.; Yang, D.

    2009-12-01

    The Canadian Earth System Model CanESM1 is a fully coupled climate/carbon-cycle model with prognostic ocean and terrestrial components. The model has been used to simulate the 1850-2000 climate using historical greenhouse gas emissions, and future climates using IPCC emission scenarios. Modelled globally averaged CO2 concentration, land and ocean carbon uptake compare well with observation-based values at year 2000, as do the annual cycle and latitudinal distribution of CO2, instilling confidence that the model is suitable for future projections of carbon cycle behaviour in a changing climate. Land use change emissions are calculated explicitly using an observation-based time series of fractional coverage of different plant functional types. A more complete description of the model may be found in Arora et al. (2009). Differences in the land-atmosphere CO2 flux from the present to the future period under the SRES A2 emissions scenario show an increase in land sinks by a factor of 7.5 globally, mostly the result of CO2 fertilization. By contrast, the magnitude of the global ocean CO2 sink increases by a factor of only 2.3 by 2100. Expressed as a fraction of total emissions, ocean carbon uptake decreases throughout the 2000-2100 period, while land carbon uptake increases until around 2050, then declines. The result is an increase in airborne CO2 fraction after the mid-21st century, reaching a value of 0.55 by 2100. The simulated decline in ocean carbon uptake over the 21st century occurs despite steadily rising atmospheric CO2. This behaviour is usually attributed to climate-induced changes in surface temperature and salinity that reduce CO2 solubility, and increasing ocean stratification that weakens the biological pump. However, ocean biological processes such as dinitrogen fixation and calcification may also play an important role. Although not well understood at present, improved parameterizations of these processes will increase confidence in projections of future trends in CO2 uptake.

  14. Cross site analysis of forested watersheds in the northeastern U.S. to climate change and increasing CO2 over the 21st century using a dynamic biogeochemical model (PnET-BGC)

    NASA Astrophysics Data System (ADS)

    Pourmokhtarian, A.; Driscoll, C. T.; Campbell, J. L.; Hayhoe, K.

    2011-12-01

    Effects of global climate change will be manifested differently across land areas with differing biogeographic characteristics. Understanding the nuances of forest watershed response to future climate change and the characteristics that drive this varied response is critical to assessments of effects. To assess the impacts of climate change, a multi-faceted approach is required that is capable of resolving multiple climatic drivers and other anthropogenic stressors likely to simultaneously affect ecosystems over the coming decades. Dynamic hydrochemical models are useful tools to understand and predict the interactive effects of climate change, atmospheric CO2, and atmospheric deposition on the hydrology and water quality of forested watersheds. In this study, we used the biogeochemical model, PnET-BGC, to assess, compare and contrast the effects of potential future changes in temperature, precipitation, solar radiation and atmospheric CO2 on pools, concentrations, and fluxes of major elements at four forested watersheds in the northeastern U.S.; the Hubbard Brook Experimental Forest in New Hampshire, East Bear Brook in Maine, Sleepers River Watershed in Vermont, and Huntington Wildlife Forest in New York. Future emissions scenarios were developed from monthly output from three atmosphere-ocean general circulation models (HadCM3, GFDL, PCM) in conjunction with potential lower and upper bounds of projected atmospheric CO2 (550 and 970 ppm by 2099, respectively). These climate projections indicate that over the 21st century, average air temperature will increase at all sites with simultaneous increases in annual average precipitation. The modeling results suggest that under future climatic conditions peak discharge in spring will transition from April to March due to less snowmelt and an extended growing season. Higher temperature and a decrease in the ratio of snow to rain, regardless of overall increase in total precipitation, will minimize snowpack development. Over the summer period, higher rates of evapotranspiration are predicted to decrease streamflow. Model results show that under elevated temperature, net soil nitrogen mineralization and nitrification markedly increase, resulting in acidification of soil and streamwater, although the extent varies with site land disturbance history. The watershed responses of other major elements such as SO42- and Ca2+, and chemical characteristics such as pH and ANC varied based on future climate scenario and site characteristics. Also we assessed changes in seasonal patterns of concentrations of NO3-, SO42-, Ca2+, DOC, pH, and ANC under all climate change scenarios with and without CO2 effects on vegetation over the period of 2070-2100. These results suggest that even though climate change will likely alter the overall element concentrations and fluxes, the relative seasonal patterns will not be highly altered.

  15. Elevated CO2 plus chronic warming reduce nitrogen uptake and levels or activities of nitrogen-uptake and -assimilatory proteins in tomato roots.

    PubMed

    Jayawardena, Dileepa M; Heckathorn, Scott A; Bista, Deepesh R; Mishra, Sasmita; Boldt, Jennifer K; Krause, Charles R

    2017-03-01

    Atmospheric CO 2 enrichment is expected to often benefit plant growth, despite causing global warming and nitrogen (N) dilution in plants. Most plants primarily procure N as inorganic nitrate (NO 3 - ) or ammonium (NH 4 + ), using membrane-localized transport proteins in roots, which are key targets for improving N use. Although interactive effects of elevated CO 2 , chronic warming and N form on N relations are expected, these have not been studied. In this study, tomato (Solanum lycopersicum) plants were grown at two levels of CO 2 (400 or 700 ppm) and two temperature regimes (30 or 37°C), with NO 3 - or NH 4 + as the N source. Elevated CO 2 plus chronic warming severely inhibited plant growth, regardless of N form, while individually they had smaller effects on growth. Although %N in roots was similar among all treatments, elevated CO 2 plus warming decreased (1) N-uptake rate by roots, (2) total protein concentration in roots, indicating an inhibition of N assimilation and (3) shoot %N, indicating a potential inhibition of N translocation from roots to shoots. Under elevated CO 2 plus warming, reduced NO 3 - -uptake rate per g root was correlated with a decrease in the concentration of NO 3 - -uptake proteins per g root, reduced NH 4 + uptake was correlated with decreased activity of NH 4 + -uptake proteins and reduced N assimilation was correlated with decreased concentration of N-assimilatory proteins. These results indicate that elevated CO 2 and chronic warming can act synergistically to decrease plant N uptake and assimilation; hence, future global warming may decrease both plant growth and food quality (%N). © 2016 Scandinavian Plant Physiology Society.

  16. The effects of elevated CO2 and eutrophication on surface elevation gain in a European salt marsh.

    PubMed

    Reef, Ruth; Spencer, Tom; Mӧller, Iris; Lovelock, Catherine E; Christie, Elizabeth K; McIvor, Anna L; Evans, Ben R; Tempest, James A

    2017-02-01

    Salt marshes can play a vital role in mitigating the effects of global environmental change by dissipating incident storm wave energy and, through accretion, tracking increasing water depths consequent upon sea level rise. Atmospheric CO 2 concentrations and nutrient availability are two key variables that can affect the biological processes that contribute to marsh surface elevation gain. We measured the effects of CO 2 concentrations and nutrient availability on surface elevation change in intact mixed-species blocks of UK salt marsh using six open-top chambers receiving CO 2 -enriched (800 ppm) or ambient (400 ppm) air. We found more rapid surface elevation gain in elevated CO 2 conditions: an average increase of 3.4 mm over the growing season relative to ambient CO 2 . Boosted regression analysis to determine the relative influence of different parameters on elevation change identified that a 10% reduction in microbial activity in elevated CO 2 -grown blocks had a positive influence on elevation. The biomass of Puccinellia maritima also had a positive influence on elevation, while other salt marsh species (e.g. Suaeda maritima) had no influence or a negative impact on elevation. Reduced rates of water use by the vegetation in the high CO 2 treatment could be contributing to elevation gain, either directly through reduced soil shrinkage or indirectly by decreasing microbial respiration rates due to lower redox levels in the soil. Eutrophication did not influence elevation change in either CO 2 treatment despite doubling aboveground biomass. The role of belowground processes (transpiration, root growth and decomposition) in the vertical adjustment of European salt marshes, which are primarily minerogenic in composition, could increase as atmospheric CO 2 concentrations rise and should be considered in future wetland models for the region. Elevated CO 2 conditions could enhance resilience in vulnerable systems such as those with low mineral sediment supply or where migration upwards within the tidal frame is constrained. © 2016 John Wiley & Sons Ltd.

  17. How will SOA change in the future?: SOA IN THE FUTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Guangxing; Penner, Joyce E.; Zhou, Cheng

    2016-02-17

    Secondary organic aerosol (SOA) plays a significant role in the Earth system by altering its radiative balance. Here we use an Earth system model coupled with an explicit SOA formation module to estimate the response of SOA concentrations to changes in climate, anthropogenic emissions, and human land use in the future. We find that climate change is the major driver for SOA change under the representative concentration pathways for the 8.5 future scenario. Climate change increases isoprene emission rate by 18% with the effect of temperature increases outweighing that of the CO2 inhibition effect. Annual mean global SOA mass ismore » increased by 25% as a result of climate change. However, anthropogenic emissions and land use change decrease SOA. The net effect is that future global SOA burden in 2100 is nearly the same as that of the present day. The SOA concentrations over the Northern Hemisphere are predicted to decline in the future due to the control of sulfur emissions.« less

  18. Sensitivity of ocean acidification and oxygen to the uncertainty in climate change

    NASA Astrophysics Data System (ADS)

    Cao, Long; Wang, Shuangjing; Zheng, Meidi; Zhang, Han

    2014-05-01

    Due to increasing atmospheric CO2 concentrations and associated climate change, the global ocean is undergoing substantial physical and biogeochemical changes. Among these, changes in ocean oxygen and carbonate chemistry have great implication for marine biota. There is considerable uncertainty in the projections of future climate change, and it is unclear how the uncertainty in climate change would also affect the projection of oxygen and carbonate chemistry. To investigate this issue, we use an Earth system model of intermediate complexity to perform a set of simulations, including that which involves no radiative effect of atmospheric CO2 and those which involve CO2-induced climate change with climate sensitivity varying from 0.5 °C to 4.5 °C. Atmospheric CO2 concentration is prescribed to follow RCP 8.5 pathway and its extensions. Climate change affects carbonate chemistry and oxygen mainly through its impact on ocean temperature, ocean ventilation, and concentration of dissolved inorganic carbon and alkalinity. It is found that climate change mitigates the decrease of carbonate ions at the ocean surface but has negligible effect on surface ocean pH. Averaged over the whole ocean, climate change acts to decrease oxygen concentration but mitigates the CO2-induced reduction of carbonate ion and pH. In our simulations, by year 2500, every degree increase of climate sensitivity warms the ocean by 0.8 °C and reduces ocean-mean dissolved oxygen concentration by 5.0%. Meanwhile, every degree increase of climate sensitivity buffers CO2-induced reduction in ocean-mean carbonate ion concentration and pH by 3.4% and 0.02 units, respectively. Our study demonstrates different sensitivities of ocean temperature, carbonate chemistry, and oxygen, in terms of both the sign and magnitude to the amount of climate change, which have great implications for understanding the response of ocean biota to climate change.

  19. Effects of CO2 Physiological Forcing on Amazon Climate

    NASA Astrophysics Data System (ADS)

    Halladay, K.; Good, P.; Kay, G.; Betts, R.

    2014-12-01

    Earth system models provide us with an opportunity to examine the complex interactions and feedbacks between land surface, vegetation and atmosphere. A more thorough understanding of these interactions is essential in reducing uncertainty surrounding the potential impacts of climate and environmental change on the future state and extent of the Amazon rainforest. This forest is a important resource for the region and globally in terms of ecosystem services, hydrology and biodiversity. We aim to investigate the effect of CO2 physiological forcing on the Amazon rainforest and its feedback on regional climate by using the CMIP5 idealised 1% CO2 simulations with a focus on HadGEM2-ES. In these simulations, the atmospheric CO2 concentration is increased by 1% per year for 140 years, reaching around 1150ppm at the end of the simulation. The use of idealised simulations allows the effect of CO2 to be separated from other forcings and the sensitivities to be quantified. In particular, it enables non-linear feedbacks to be identified. In addition to the fully coupled 1% CO2 simulation, in which all schemes respond to the forcing, we use simulations in which (a) only the biochemistry scheme sees the rising CO2 concentration, and (b) in which rising CO2 is only seen by the radiation scheme. With these simulations we examine the degree to which CO2 effects are additive or non-linear when in combination. We also show regional differences in climate and vegetation response, highlighting areas of increased sensitivity.

  20. Effects of Ocean Acidification and Flow on Oxygen and pH Conditions of Developing Squid (Doryteuthis pealeii) Egg Cases

    NASA Astrophysics Data System (ADS)

    Panyi, A.; Long, M. H.; Mooney, T. A.

    2016-02-01

    While young animals found future cohorts and populations, these early life stages are often particularly susceptible to conditions of the local environment in which they develop. The oxygen and pH of this critical developmental environment is likely impacted by the nearby physical conditions and the animals own respirations. Yet, in nearly all cases, this microenvironment is unknown, limiting our understanding of animal tolerances to current and future OA and hypoxic conditions. This study investigated the oxygen and pH environment adjacent to and within the egg cases of a keystone species, the longfin squid, Doryteuthis pealeii, under ambient and elevated CO2 (400 and 2200 ppm), and across differing water flow rates (0, 1, and 10 cm/s) using microprobes. Under both CO2 treatments, oxygen and pH in the egg case centers dropped dramatically across development to levels generally considered metabolically stressful even for adults. In the ambient CO2 trial, oxygen concentrations reached a minimum of 4.351 µmol/L, and pH reached a minimum of 7.36. In the elevated CO2 trial, oxygen concentrations reached a minimum of 9.910 µmol/L, and pH reached a minimum of 6.79. Flow appeared to alleviate these conditions, with highest O2 concentrations in the egg cases exposed to 10 cm/s flow in both CO2 trials, across all age classes measured. Surprisingly, all tested egg cases successfully hatched, demonstrating that developing D. pealeii embryos have a strong tolerance for low oxygen and pH, but there were more unsuccessful embryos counted in the 0 and 1 cm/s flow conditions. Further climate change could place young, keystone squid outside of their physiological limits, but water flow may play a key role in mitigating developmental stress to egg case bound embryos by increasing available oxygen.

  1. Projected Future Vegetation Changes for the Northwest United States and Southwest Canada at a Fine Spatial Resolution Using a Dynamic Global Vegetation Model.

    PubMed

    Shafer, Sarah L; Bartlein, Patrick J; Gray, Elizabeth M; Pelltier, Richard T

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0-58.0°N latitude by 136.6-103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070-2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.

  2. Insect-plant-pathogen interactions as shaped by future climate: effects on biology, distribution, and implications for agriculture.

    PubMed

    Trębicki, Piotr; Dáder, Beatriz; Vassiliadis, Simone; Fereres, Alberto

    2017-12-01

    Carbon dioxide (CO 2 ) is the main anthropogenic gas which has drastically increased since the industrial revolution, and current concentrations are projected to double by the end of this century. As a consequence, elevated CO 2 is expected to alter the earths' climate, increase global temperatures and change weather patterns. This is likely to have both direct and indirect impacts on plants, insect pests, plant pathogens and their distribution, and is therefore problematic for the security of future food production. This review summarizes the latest findings and highlights current knowledge gaps regarding the influence of climate change on insect, plant and pathogen interactions with an emphasis on agriculture and food production. Direct effects of climate change, including increased CO 2 concentration, temperature, patterns of rainfall and severe weather events that impact insects (namely vectors of plant pathogens) are discussed. Elevated CO 2 and temperature, together with plant pathogen infection, can considerably change plant biochemistry and therefore plant defense responses. This can have substantial consequences on insect fecundity, feeding rates, survival, population size, and dispersal. Generally, changes in host plant quality due to elevated CO 2 (e.g., carbon to nitrogen ratios in C3 plants) negatively affect insect pests. However, compensatory feeding, increased population size and distribution have also been reported for some agricultural insect pests. This underlines the importance of additional research on more targeted, individual insect-plant scenarios at specific locations to fully understand the impact of a changing climate on insect-plant-pathogen interactions. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  3. Consequences of simulating terrestrial N dynamics for projecting future terrestrial C storage

    NASA Astrophysics Data System (ADS)

    Zaehle, S.; Friend, A. D.; Friedlingstein, P.

    2009-04-01

    We present results of a new land surface model, O-CN, which includes a process-based coupling between the terrestrial cycling of energy, water, carbon, and nitrogen. The model represents the controls of the terrestrial nitrogen (N) cycling on carbon (C) pools and fluxes through photosynthesis, respiration, changes in allocation patterns, as well as soil organic matter decomposition, and explicitly accounts for N leaching and gaseous losses. O-CN has been shown to give realistic results in comparison to observations at a wide range of scales, including in situ flux measurements, productivity databases, and atmospheric CO2 concentration data. Notably, O-CN simulates realistic responses of net primary productivity, foliage area, and foliage N content to elevated atmospheric [CO2] as evidenced at free air carbon dioxide enrichment (FACE) sites (Duke, Oak Ridge). We re-examine earlier model-based assessments of the terrestrial C sequestration potential using a global transient O-CN simulation driven by increases in atmospheric [CO2], N deposition and climatic changes over the 21st century. We find that accounting for terrestrial N cycling about halves the potential to store C in response to increases in atmospheric CO2 concentrations; mainly due to a reduction of the net C uptake in temperate and boreal forests. Nitrogen deposition partially alleviates the effect of N limitation, but is by far not sufficient to compensate for the effect completely. These findings underline the importance of an accurate representation of nutrient limitations in future projections of the terrestrial net CO2 exchanges and therefore land-climate feedback studies.

  4. Effects of soil pyrene contamination on growth and phenolics in Norway spruce (Picea abies) are modified by elevated temperature and CO2.

    PubMed

    Zhang, Yaodan; Virjamo, Virpi; Du, Wenchao; Yin, Ying; Nissinen, Katri; Nybakken, Line; Guo, Hongyan; Julkunen-Tiitto, Riitta

    2018-05-01

    With the constant accumulation of polycyclic aromatic hydrocarbons (PAHs) in soil and increasing temperature and CO 2 levels, plants will inevitably be exposed to combined stress. Studies on the effects of such combined stresses are needed to develop mitigation and adaptation measures. Here, we investigated the effects of soil pyrene contamination (50 mg kg -1 ) on growth and phenolics of 1-year-old Norway spruce seedlings from five different origins in Finland at elevated temperature (+ 2 °C) and CO 2 (+ 360 ppm). Pyrene significantly decreased spruce height growth (0-48%), needle biomass (0-44%), stem biomass (0-43%), and total phenolic concentrations in needles (2-13%) and stems (1-19%) compared to control plants. Elevated temperature alone did not affect growth but led to lower concentrations of total phenolics in needles (5-29%) and stems (5-18%) in both soil treatments. By contrast, elevated CO 2 led to higher needle biomass (0-39%) in pyrene-spiked soils and higher concentrations of stem phenolics (0-18%) in pyrene-spiked and control soils compared to ambient treatments. The decrease in height growth and phenolic concentrations caused by pyrene was greater at elevated temperature, while elevated CO 2 only marginally modified the response. Seedlings from different origins showed different responses to the combined environmental stressors. The changes in growth and in the quantity and quality of phenolics in this study suggest that future climate changes will aggravate the negative influence of soil pyrene pollution on northern conifer forest ecosystems.

  5. Development of a Low-Power CO2 Removal and Compression System for Closed-Loop Air Revitalization in Future Spacecraft

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Rosen, Micha; Affleck, David; LeVan, M. Douglas; Moate, Joe R.

    2005-01-01

    The current CO2 removal technology of NASA is very energy intensive and contains many non-optimized subsystems. This paper discusses the design and prototype development of a two-stage CO2 removal and compression system that will utilize much less power than NASA s current CO2 removal technology. This integrated system contains a Nafion membrane followed by a residual water adsorber that performs the function of the desiccant beds in the four-bed molecular sieve (4BMS) system of the International Space Station (ISS). The membrane and the water adsorber are followed by a two-stage CO2 removal and compression subsystem that satisfies the operations of the CO2 adsorbent beds of the 4BMS aid the interface compressor for the Sabatier reactor connection. The two-stage compressor will utilize the principles of temperature-swing adsorption (TSA) compression technology for CO2 removal and compression. The similarities in operation and cycle times of the CO2 removal (first stage) and compression (second stage) operations will allow thermal coupling of the processes to maximize the efficiency of the system. In addition to the low-power advantage, this processor will maintain a lower CO2 concentration in the cabin than that can be achieved by the existing CO2 removal systems. The compact, consolidated, configuration of membrane gas dryer and CO2 separator and compressor will allow continuous recycling of humid air in the cabin and supply of compressed CO2 to the reduction unit for oxygen recovery. The device has potential application to the International Space Station and future, long duration, transit, and planetary missions.

  6. Geographical CO2 sensitivity of phytoplankton correlates with ocean buffer capacity.

    PubMed

    Richier, Sophie; Achterberg, Eric P; Humphreys, Matthew P; Poulton, Alex J; Suggett, David J; Tyrrell, Toby; Moore, C Mark

    2018-05-25

    Accumulation of anthropogenic CO 2 is significantly altering ocean chemistry. A range of biological impacts resulting from this oceanic CO 2 accumulation are emerging, however the mechanisms responsible for observed differential susceptibility between organisms and across environmental settings remain obscure. A primary consequence of increased oceanic CO 2 uptake is a decrease in the carbonate system buffer capacity, which characterises the system's chemical resilience to changes in CO 2 , generating the potential for enhanced variability in pCO 2 and the concentration of carbonate [CO 3 2- ], bicarbonate [HCO 3 - ] and protons [H + ] in the future ocean. We conducted a meta-analysis of 17 shipboard manipulation experiments performed across three distinct geographical regions that encompassed a wide range of environmental conditions from European temperate seas to Arctic and Southern oceans. These data demonstrated a correlation between the magnitude of natural phytoplankton community biological responses to short-term CO 2 changes and variability in the local buffer capacity across ocean basin scales. Specifically, short-term suppression of small phytoplankton (<10 μm) net growth rates were consistently observed under enhanced pCO 2 within experiments performed in regions with higher ambient buffer capacity. The results further highlight the relevance of phytoplankton cell size for the impacts of enhanced pCO 2 in both the modern and future ocean. Specifically, cell-size related acclimation and adaptation to regional environmental variability, as characterised by buffer capacity, likely influences interactions between primary producers and carbonate chemistry over a range of spatio-temporal scales. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. The ocean carbon sink - impacts, vulnerabilities and challenges

    NASA Astrophysics Data System (ADS)

    Heinze, C.; Meyer, S.; Goris, N.; Anderson, L.; Steinfeldt, R.; Chang, N.; Le Quéré, C.; Bakker, D. C. E.

    2015-06-01

    Carbon dioxide (CO2) is, next to water vapour, considered to be the most important natural greenhouse gas on Earth. Rapidly rising atmospheric CO2 concentrations caused by human actions such as fossil fuel burning, land-use change or cement production over the past 250 years have given cause for concern that changes in Earth's climate system may progress at a much faster pace and larger extent than during the past 20 000 years. Investigating global carbon cycle pathways and finding suitable adaptation and mitigation strategies has, therefore, become of major concern in many research fields. The oceans have a key role in regulating atmospheric CO2 concentrations and currently take up about 25% of annual anthropogenic carbon emissions to the atmosphere. Questions that yet need to be answered are what the carbon uptake kinetics of the oceans will be in the future and how the increase in oceanic carbon inventory will affect its ecosystems and their services. This requires comprehensive investigations, including high-quality ocean carbon measurements on different spatial and temporal scales, the management of data in sophisticated databases, the application of Earth system models to provide future projections for given emission scenarios as well as a global synthesis and outreach to policy makers. In this paper, the current understanding of the ocean as an important carbon sink is reviewed with respect to these topics. Emphasis is placed on the complex interplay of different physical, chemical and biological processes that yield both positive and negative air-sea flux values for natural and anthropogenic CO2 as well as on increased CO2 (uptake) as the regulating force of the radiative warming of the atmosphere and the gradual acidification of the oceans. Major future ocean carbon challenges in the fields of ocean observations, modelling and process research as well as the relevance of other biogeochemical cycles and greenhouse gases are discussed.

  8. Carbon monoxide: present and future indications for a medical gas

    PubMed Central

    Choi, Augustine M. K.

    2013-01-01

    Gaseous molecules continue to hold new promise in molecular medicine as experimental and clinical therapeutics. The low molecular weight gas carbon monoxide (CO), and similar gaseous molecules (e.g., H2S, nitric oxide) have been implicated as potential inhalation therapies in inflammatory diseases. At high concentration, CO represents a toxic inhalation hazard, and is a common component of air pollution. CO is also produced endogenously as a product of heme degradation catalyzed by heme oxygenase enzymes. CO binds avidly to hemoglobin, causing hypoxemia and decreased oxygen delivery to tissues at high concentrations. At physiological concentrations, CO may have endogenous roles as a signal transduction molecule in the regulation of neural and vascular function and cellular homeostasis. CO has been demonstrated to act as an effective anti-inflammatory agent in preclinical animal models of inflammation, acute lung injury, sepsis, ischemia/reperfusion injury, and organ transplantation. Additional experimental indications for this gas include pulmonary fibrosis, pulmonary hypertension, metabolic diseases, and preeclampsia. The development of chemical CO releasing compounds constitutes a novel pharmaceutical approach to CO delivery with demonstrated effectiveness in sepsis models. Current and pending clinical evaluation will determine the usefulness of this gas as a therapeutic in human disease. PMID:23525151

  9. Metal-CO2 Batteries on the Road: CO2 from Contamination Gas to Energy Source.

    PubMed

    Xie, Zhaojun; Zhang, Xin; Zhang, Zhang; Zhou, Zhen

    2017-04-01

    Rechargeable nonaqueous metal-air batteries attract much attention for their high theoretical energy density, especially in the last decade. However, most reported metal-air batteries are actually operated in a pure O 2 atmosphere, while CO 2 and moisture in ambient air can significantly impact the electrochemical performance of metal-O 2 batteries. In the study of CO 2 contamination on metal-O 2 batteries, it has been gradually found that CO 2 can be utilized as the reactant gas alone; namely, metal-CO 2 batteries can work. On the other hand, investigations on CO 2 fixation are in focus due to the potential threat of CO 2 on global climate change, especially for its steadily increasing concentration in the atmosphere. The exploitation of CO 2 in energy storage systems represents an alternative approach towards clean recycling and utilization of CO 2 . Here, the aim is to provide a timely summary of recent achievements in metal-CO 2 batteries, and inspire new ideas for new energy storage systems. Moreover, critical issues associated with reaction mechanisms and potential directions for future studies are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Climate vs. carbon dioxide controls on biomass burning: a model analysis of the glacial-interglacial contrast

    NASA Astrophysics Data System (ADS)

    Calvo, M. Martin; Prentice, I. C.; Harrison, S. P.

    2014-02-01

    Climate controls fire regimes through its influence on the amount and types of fuel present and their dryness; CO2 availability, in turn, constrains primary production by limiting photosynthetic activity in plants. However, although fuel accumulation depends on biomass production, and hence CO2 availability, the links between atmospheric CO2 and biomass burning are not well known. Here a fire-enabled dynamic global vegetation model (the Land surface Processes and eXchanges model, LPX) is used to attribute glacial-interglacial changes in biomass burning to CO2 increase, which would be expected to increase primary production and therefore fuel loads even in the absence of climate change, vs. climate change effects. Four general circulation models provided Last Glacial Maximum (LGM) climate anomalies - that is, differences from the pre-industrial (PI) control climate - from the Palaeoclimate Modelling Intercomparison Project Phase 2, allowing the construction of four scenarios for LGM climate. Modelled carbon fluxes in biomass burning were corrected for the model's observed biases in contemporary biome-average values. With LGM climate and low CO2 (185 ppm) effects included, the modelled global flux was 70 to 80% lower at the LGM than in PI time. LGM climate with pre-industrial CO2 (280 ppm) however yielded unrealistic results, with global and Northern Hemisphere biomass burning fluxes greater than in the pre-industrial climate. Using the PI CO2 concentration increased the modelled LGM biomass burning fluxes for all climate models and latitudinal bands to between four and ten times their values under LGM CO2 concentration. It is inferred that a substantial part of the increase in biomass burning after the LGM must be attributed to the effect of increasing CO2 concentration on productivity and fuel load. Today, by analogy, both rising CO2 and global warming must be considered as risk factors for increasing biomass burning. Both effects need to be included in models to project future fire risks.

  11. Materials Science Research Rack-1 Fire Suppressant Distribution Test Report

    NASA Technical Reports Server (NTRS)

    Wieland, P. O.

    2002-01-01

    Fire suppressant distribution testing was performed on the Materials Science Research Rack-1 (MSRR-1), a furnace facility payload that will be installed in the U.S. Lab module of the International Space Station. Unlike racks that were tested previously, the MSRR-1 uses the Active Rack Isolation System (ARIS) to reduce vibration on experiments, so the effects of ARIS on fire suppressant distribution were unknown. Two tests were performed to map the distribution of CO2 fire suppressant throughout a mockup of the MSRR-1 designed to have the same component volumes and flowpath restrictions as the flight rack. For the first test, the average maximum CO2 concentration for the rack was 60 percent, achieved within 45 s of discharge initiation, meeting the requirement to reach 50 percent throughout the rack within 1 min. For the second test, one of the experiment mockups was removed to provide a worst-case configuration, and the average maximum CO2 concentration for the rack was 58 percent. Comparing the results of this testing with results from previous testing leads to several general conclusions that can be used to evaluate future racks. The MSRR-1 will meet the requirements for fire suppressant distribution. Primary factors that affect the ability to meet the CO2 distribution requirements are the free air volume in the rack and the total area and distribution of openings in the rack shell. The length of the suppressant flowpath and degree of tortuousness has little correlation with CO2 concentration. The total area of holes in the rack shell could be significantly increased. The free air volume could be significantly increased. To ensure the highest maximum CO2 concentration, the PFE nozzle should be inserted to the stop on the nozzle.

  12. Studies of breakeven prices and electricity supply potentials of nuclear fusion by a long-term world energy and environment model

    NASA Astrophysics Data System (ADS)

    Tokimatsu, K.; Asaoka, Y.; Konishi, S.; Fujino, J.; Ogawa, Y.; Okano, K.; Nishio, S.; Yoshida, T.; Hiwatari, R.; Yamaji, K.

    2002-11-01

    In response to social demand, this paper investigates the breakeven price (BP) and potential electricity supply of nuclear fusion energy in the 21st century by means of a world energy and environment model. We set the following objectives in this paper: (i) to reveal the economics of the introduction conditions of nuclear fusion; (ii) to know when tokamak-type nuclear fusion reactors are expected to be introduced cost-effectively into future energy systems; (iii) to estimate the share in 2100 of electricity produced by the presently designed reactors that could be economically selected in the year. The model can give in detail the energy and environment technologies and price-induced energy saving, and can illustrate optimal energy supply structures by minimizing the costs of total discounted energy systems at a discount rate of 5%. The following parameters of nuclear fusion were considered: cost of electricity (COE) in the nuclear fusion introduction year, annual COE reduction rates, regional introduction year, and regional nuclear fusion capacity projection. The investigations are carried out for three nuclear fusion projections one of which includes tritium breeding constraints, four future CO2 concentration constraints, and technological assumptions on fossil fuels, nuclear fission, CO2 sequestration, and anonymous innovative technologies. It is concluded that: (1) the BPs are from 65 to 125 mill kW-1 h-1 depending on the introduction year of nuclear fusion under the 550 ppmv CO2 concentration constraints; those of a business-as-usual (BAU) case are from 51 to 68 mill kW-1h-1. Uncertainties resulting from the CO2 concentration constraints and the technological options influenced the BPs by plus/minus some 10 30 mill kW-1h-1, (2) tokamak-type nuclear fusion reactors (as presently designed, with a COE range around 70 130 mill kW-1h-1) would be favourably introduced into energy systems after 2060 based on the economic criteria under the 450 and 550 ppmv CO2 concentration constraint, but not selected under the BAU case and 650 ppmv CO2 concentration constraint, and (3) the share of electricity in 2100 produced by the presently designed tokamak-type nuclear fusion reactors (introduced after 2060) is well below 30%. It should be noted that these conclusions are based upon varieties of uncertainties in scenarios and data assumptions on nuclear fusion as well as technological options.

  13. Nitrogen deposition and greenhouse gas emissions from grasslands: uncertainties and future directions

    USDA-ARS?s Scientific Manuscript database

    Increases in atmospheric nitrogen deposition (Ndep) can strongly affect the greenhouse gas (GHG; CO2, CH4 and N2O) sink capacity of terrestrial ecosystems. Grasslands play an important role in determining the concentration of GHGs in the atmosphere. Robust predictions of the net GHG sink strength of...

  14. Free-air CO2 enrichment (FACE) reduces the inhibitory effect of soil nitrate on N2 fixation of Pisum sativum.

    PubMed

    Butterly, Clayton R; Armstrong, Roger; Chen, Deli; Tang, Caixian

    2016-01-01

    Additional carbohydrate supply resulting from enhanced photosynthesis under predicted future elevated CO2 is likely to increase symbiotic nitrogen (N) fixation in legumes. This study examined the interactive effects of atmospheric CO2 and nitrate (NO3(-)) concentration on the growth, nodulation and N fixation of field pea (Pisum sativum) in a semi-arid cropping system. Field pea was grown for 15 weeks in a Vertosol containing 5, 25, 50 or 90 mg NO3(-)-N kg(-1) under either ambient CO2 (aCO2; 390 ppm) or elevated CO2 (eCO2; 550 ppm) using free-air CO2 enrichment (SoilFACE). Under aCO2, field pea biomass was significantly lower at 5 mg NO3(-)-N kg(-1) than at 90 mg NO3(-)-N kg(-1) soil. However, increasing the soil N level significantly reduced nodulation of lateral roots but not the primary root, and nodules were significantly smaller, with 85% less nodule mass in the 90 NO3(-)-N kg(-1) than in the 5 mg NO3(-)-N kg(-1) treatment, highlighting the inhibitory effects of NO3(-). Field pea grown under eCO2 had greater biomass (approx. 30%) than those grown under aCO2, and was not affected by N level. Overall, the inhibitory effects of NO3(-) on nodulation and nodule mass appeared to be reduced under eCO2 compared with aCO2, although the effects of CO2 on root growth were not significant. Elevated CO2 alleviated the inhibitory effect of soil NO3(-) on nodulation and N2 fixation and is likely to lead to greater total N content of field pea growing under future elevated CO2 environments. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Tolerance of allogromiid Foraminifera to severely elevated carbon dioxide concentrations: Implications to future ecosystem functioning and paleoceanographic interpretations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernhard, Joan M.; Mollo-Christensen, Elizabeth; Eisenkolb, Nadine

    2009-02-01

    Increases in the partial pressure of carbon dioxide (pCO2) in the atmosphere will significantly affect a wide variety of terrestrial fauna and flora. Because of tight atmospheric oceanic coupling, shallow-water marine species are also expected to be affected by increases in atmospheric carbon dioxide concentrations. One proposed way to slow increases in atmospheric pCO2 is to sequester CO2 in the deep sea. Thus, over the next few centuries marine species will be exposed to changing seawater chemistry caused by ocean atmospheric exchange and/or deep-ocean sequestration. This initial case study on one allogromiid foraminiferal species (Allogromia laticollaris) was conducted to beginmore » to ascertain the effect of elevated pCO2 on benthic Foraminifera, which are a major meiofaunal constituent of shallow- and deep-water marine communities. Cultures of this thecate foraminiferan protist were used for 10-14-day experiments. Experimental treatments were executed in an incubator that controlled CO2 (15000; 30 000; 60 000; 90 000; 200 000 ppm), temperature and humidity; atmospheric controls (i.e., ~375 ppm CO2) were executed simultaneously. Although the experimental elevated pCO2 values are far above foreseeable surface water pCO2, they were selected to represent the spectrum of conditions expected for the benthos if deep-sea CO2 sequestration becomes a reality. Survival was assessed in two independent ways: pseudopodial presence/absence and measurement of adenosine triphosphate (ATP), which is an indicator of cellular energy. Substantial proportions of A. laticollaris populations survived 200 000 ppm CO2 although the mean of the median [ATP] of survivors was statistically lower for this treatment than for that of atmospheric control specimens. After individuals that had been incubated in 200 000 ppm CO2 for 12 days were transferred to atmospheric conditions for ~24 h, the [ATP] of live specimens (survivors) approximated those of the comparable atmospheric control treatment. Incubation in 200 000 ppm CO2 also resulted in reproduction by some individuals. Results suggest that certain Foraminifera are able to tolerate deep-sea CO2 sequestration and perhaps thrive as a result of elevated pCO2 that is predicted for the next few centuries, in a high-pCO2 world. Thus, allogromiid foraminiferal blooms may result from climate change. Furthermore, because allogromiids consume a variety of prey, it is likely that they will be major players in ecosystem dynamics of future coastal sedimentary environments.« less

  16. Tolerance of allogromiid Foraminifera to severely elevated carbon dioxide concentrations: Implications to future ecosystem functioning and paleoceanographic interpretations

    NASA Astrophysics Data System (ADS)

    Bernhard, Joan M.; Mollo-Christensen, Elizabeth; Eisenkolb, Nadine; Starczak, Victoria R.

    2009-02-01

    Increases in the partial pressure of carbon dioxide (pCO 2) in the atmosphere will significantly affect a wide variety of terrestrial fauna and flora. Because of tight atmospheric-oceanic coupling, shallow-water marine species are also expected to be affected by increases in atmospheric carbon dioxide concentrations. One proposed way to slow increases in atmospheric pCO 2 is to sequester CO 2 in the deep sea. Thus, over the next few centuries marine species will be exposed to changing seawater chemistry caused by ocean-atmospheric exchange and/or deep-ocean sequestration. This initial case study on one allogromiid foraminiferal species ( Allogromia laticollaris) was conducted to begin to ascertain the effect of elevated pCO 2 on benthic Foraminifera, which are a major meiofaunal constituent of shallow- and deep-water marine communities. Cultures of this thecate foraminiferan protist were used for 10-14-day experiments. Experimental treatments were executed in an incubator that controlled CO 2 (15 000; 30 000; 60 000; 90 000; 200 000 ppm), temperature and humidity; atmospheric controls (i.e., ~ 375 ppm CO 2) were executed simultaneously. Although the experimental elevated pCO 2 values are far above foreseeable surface water pCO 2, they were selected to represent the spectrum of conditions expected for the benthos if deep-sea CO 2 sequestration becomes a reality. Survival was assessed in two independent ways: pseudopodial presence/absence and measurement of adenosine triphosphate (ATP), which is an indicator of cellular energy. Substantial proportions of A. laticollaris populations survived 200 000 ppm CO 2 although the mean of the median [ATP] of survivors was statistically lower for this treatment than for that of atmospheric control specimens. After individuals that had been incubated in 200 000 ppm CO 2 for 12 days were transferred to atmospheric conditions for ~ 24 h, the [ATP] of live specimens (survivors) approximated those of the comparable atmospheric control treatment. Incubation in 200 000 ppm CO 2 also resulted in reproduction by some individuals. Results suggest that certain Foraminifera are able to tolerate deep-sea CO 2 sequestration and perhaps thrive as a result of elevated pCO 2 that is predicted for the next few centuries, in a high-pCO 2 world. Thus, allogromiid foraminiferal "blooms" may result from climate change. Furthermore, because allogromiids consume a variety of prey, it is likely that they will be major players in ecosystem dynamics of future coastal sedimentary environments.

  17. Historical Carbon Dioxide Emissions Caused by Land-Use Changes are Possibly Larger than Assumed

    NASA Technical Reports Server (NTRS)

    Arneth, A.; Sitch, S.; Pongratz, J.; Stocker, B. D.; Ciais, P.; Poulter, B.; Bayer, A. D.; Bondeau, A.; Calle, L.; Chini, L. P.; hide

    2017-01-01

    The terrestrial biosphere absorbs about 20% of fossil-fuel CO2 emissions. The overall magnitude of this sink is constrained by the difference between emissions, the rate of increase in atmospheric CO2 concentrations, and the ocean sink. However, the land sink is actually composed of two largely counteracting fluxes that are poorly quantified: fluxes from land-use change andCO2 uptake by terrestrial ecosystems. Dynamic global vegetation model simulations suggest that CO2 emissions from land-use change have been substantially underestimated because processes such as tree harvesting and land clearing from shifting cultivation have not been considered. As the overall terrestrial sink is constrained, a larger net flux as a result of land-use change implies that terrestrial uptake of CO2 is also larger, and that terrestrial ecosystems might have greater potential to sequester carbon in the future. Consequently, reforestation projects and efforts to avoid further deforestation could represent important mitigation pathways, with co-benefits for biodiversity. It is unclear whether a larger land carbon sink can be reconciled with our current understanding of terrestrial carbon cycling. Our possible underestimation of the historical residual terrestrial carbon sink adds further uncertainty to our capacity to predict the future of terrestrial carbon uptake and losses.

  18. CO2 Reduction: From the Electrochemical to Photochemical Approach

    PubMed Central

    Wu, Jinghua; Huang, Yang; Ye, Wen

    2017-01-01

    Abstract Increasing CO2 concentration in the atmosphere is believed to have a profound impact on the global climate. To reverse the impact would necessitate not only curbing the reliance on fossil fuels but also developing effective strategies capture and utilize CO2 from the atmosphere. Among several available strategies, CO2 reduction via the electrochemical or photochemical approach is particularly attractive since the required energy input can be potentially supplied from renewable sources such as solar energy. In this Review, an overview on these two different but inherently connected approaches is provided and recent progress on the development, engineering, and understanding of CO2 reduction electrocatalysts and photocatalysts is summarized. First, the basic principles that govern electrocatalytic or photocatalytic CO2 reduction and their important performance metrics are discussed. Then, a detailed discussion on different CO2 reduction electrocatalysts and photocatalysts as well as their generally designing strategies is provided. At the end of this Review, perspectives on the opportunities and possible directions for future development of this field are presented. PMID:29201614

  19. Is the perceived resiliency of fish larvae to ocean acidification masking more subtle effects?

    NASA Astrophysics Data System (ADS)

    Pope, E. C.; Ellis, R. P.; Scolamacchia, M.; Scolding, J. W. S.; Keay, A.; Chingombe, P.; Shields, R. J.; Wilcox, R.; Speirs, D. C.; Wilson, R. W.; Lewis, C.; Flynn, K. J.

    2013-10-01

    Ocean acidification, caused by rising concentrations of carbon dioxide (CO2), is widely considered to be a major global threat to marine ecosystems. To investigate the potential effects of ocean acidification on the early life stages of a commercially important fish species, European sea bass (Dicentrarchus labrax), 12 000 larvae were incubated from hatch through metamorphosis under a matrix of two temperatures (17 and 19 °C) and two seawater pCO2s (400 and 750 μatm) and sampled regularly for 42 days. Calculated daily mortality was significantly affected by both temperature and pCO2, with both increased temperature and elevated pCO2 associated with lower daily mortality and a significant interaction between these two factors. There was no significant pCO2 effect noted on larval morphology during this period but larvae raised at 19 °C possessed significantly larger eyes and lower carbon:nitrogen ratios at the end of the study compared to those raised under 17 °C. These results suggest that D. labrax larvae are resilient to near-future oceanic conditions. However, when the incubation was continued to post-metamorphic (juvenile) animals (day 67-69), fish raised under a combination of 19 °C and 750 μatm pCO2 were significantly heavier and exhibited lower aerobic scopes than those incubated at 19 °C and 400 μatm. Most other studies investigating the effects of near-future oceanic conditions on the early life stages of marine fish have used incubations of relatively short durations and suggested these animals are resilient to ocean acidification. We propose the durations of these other studies may be insufficient for more subtle effects, such as those observed in this study, to become apparent. These findings may have important implications for both sea bass in a changing ocean and also for the interpretation of results from other studies that have shown resiliency in marine teleosts exposed to higher atmospheric concentrations of CO2.

  20. Toward Reducing Uncertainties in Biospheric Carbon Uptake in the American West: An Atmospheric Perspective

    NASA Astrophysics Data System (ADS)

    Lin, J. C.; Stephens, B. B.; Mallia, D.; Wu, D.; Jacobson, A. R.

    2015-12-01

    Despite the need for an understanding of terrestrial biospheric carbon fluxes to account for carbon cycle feedbacks and predict future CO2 concentrations, knowledge of such fluxes at the regional scale remains poor. This is particularly true in mountainous areas, where lack of observations combined with difficulties in their interpretation lead to significant uncertainties. Yet mountainous regions are also where significant forest cover and biomass are found—areas that have the potential to serve as carbon sinks. In particular, understanding carbon fluxes in the American West is of critical importance for the U.S. carbon budget, as the large area and biomass indicate potential for carbon sequestration. However, disturbances such as drought, insect outbreak, and wildfires in this region can introduce significant perturbations to the carbon cycle and thereby affect the amount of carbon sequestered by vegetation in the Rockies. To date, there have been few atmospheric CO2 observations in the American Rockies due to a combination of difficulties associated with logistics and interpretation of the measurements in the midst of complex terrain. Among the few sites are those associated with NCAR's Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON). As CO2 observations in mountainous areas increase in the future, it is imperative that they can be properly interpreted to yield information about biospheric carbon fluxes. In this paper, we will present CO2 observations from RACCOON, along with atmospheric simulations that attempt to extract information about biospheric carbon fluxes in the Western U.S. from these observations. We show that atmospheric models can significantly misinterpret the CO2 observations, leading to large errors in the retrieved biospheric fluxes, due to erroneous atmospheric flows. Recommendations for ways to minimize such errors and properly link the CO2 concentrations to biospheric fluxes are discussed.

  1. [Removal of CO2 from simulated flue gas of power plants by membrane-based gas absorption processes].

    PubMed

    Yang, Ming-Fen; Fang, Meng-Xiang; Zhang, Wei-Feng; Wang, Shu-Yuan; Xu, Zhi-Kang; Luo, Zhong-Yang; Cen, Ke-Fa

    2005-07-01

    Three typical absorbents such as aqueous of aminoacetic acid potassium (AAAP), monoethanolamine (MEA) and methyldiethanolamine(MDEA) are selected to investigate the performance of CO2 separation from flue gas via membrane contactors made of hydrophobic hollow fiber polypropylene porous membrane. Impacts of absorbents, concentrations and flow rates of feeding gas and absorbent solution, cyclic loading of CO2 on the removal rate and the mass transfer velocity of CO2 are discussed. The results demonstrate that the mass transfer velocity was 7.1 mol x (m2 x s)(-1) for 1 mol x L(-1) MEA with flow rate of 0.1 m x s(-1) and flue gas with that of 0.211 m x s(-1). For 1 mol L(-1) AAAP with flow rate of 0.05 m x s(-1) and flue gas of 0.211 m x s(-1), CO2 removal rate (eta) was 93.2 % and eta was 98% for 4 mol x L(-1) AAAP under the same conditions. AAAP being absorbent, eta was higher than 90% in a wider range of concentrations of CO2. It indicates that membrane-based absorption process is a widely-applied and promising way of CO2 removal from flue gas of power plants, which not only appropriates for CO2 removal of flue gas of widely-used PF and NGCC, but also for that of flue gas of IGCC can be utilized widely in future.

  2. Increasing pCO2 correlates with low concentrations of intracellular dimethylsulfoniopropionate in the sea anemone Anemonia viridis

    PubMed Central

    Borell, Esther M; Steinke, Michael; Horwitz, Rael; Fine, Maoz

    2014-01-01

    Marine anthozoans maintain a mutualistic symbiosis with dinoflagellates that are prolific producers of the algal secondary metabolite dimethylsulfoniopropionate (DMSP), the precursor of the climate-cooling trace gas dimethyl sulfide (DMS). Surprisingly, little is known about the physiological role of DMSP in anthozoans and the environmental factors that regulate its production. Here, we assessed the potential functional role of DMSP as an antioxidant and determined how future increases in seawater pCO2 may affect DMSP concentrations in the anemone Anemonia viridis along a natural pCO2 gradient at the island of Vulcano, Italy. There was no significant difference in zooxanthellae genotype and characteristics (density of zooxanthellae, and chlorophyll a) as well as protein concentrations between anemones from three stations along the gradient, V1 (3232 μatm CO2), V2 (682 μatm) and control (463 μatm), which indicated that A. viridis can acclimate to various seawater pCO2. In contrast, DMSP concentrations in anemones from stations V1 (33.23 ± 8.30 fmol cell−1) and V2 (34.78 ± 8.69 fmol cell−1) were about 35% lower than concentrations in tentacles from the control station (51.85 ± 12.96 fmol cell−1). Furthermore, low tissue concentrations of DMSP coincided with low activities of the antioxidant enzyme superoxide dismutase (SOD). Superoxide dismutase activity for both host (7.84 ± 1.37 U·mg−1 protein) and zooxanthellae (2.84 ± 0.41 U·mg−1 protein) at V1 was 40% lower than at the control station (host: 13.19 ± 1.42; zooxanthellae: 4.72 ± 0.57 U·mg−1 protein). Our results provide insight into coastal DMSP production under predicted environmental change and support the function of DMSP as an antioxidant in symbiotic anthozoans. PMID:24634728

  3. Increasing pCO2 correlates with low concentrations of intracellular dimethylsulfoniopropionate in the sea anemone Anemonia viridis.

    PubMed

    Borell, Esther M; Steinke, Michael; Horwitz, Rael; Fine, Maoz

    2014-02-01

    Marine anthozoans maintain a mutualistic symbiosis with dinoflagellates that are prolific producers of the algal secondary metabolite dimethylsulfoniopropionate (DMSP), the precursor of the climate-cooling trace gas dimethyl sulfide (DMS). Surprisingly, little is known about the physiological role of DMSP in anthozoans and the environmental factors that regulate its production. Here, we assessed the potential functional role of DMSP as an antioxidant and determined how future increases in seawater pCO2 may affect DMSP concentrations in the anemone Anemonia viridis along a natural pCO2 gradient at the island of Vulcano, Italy. There was no significant difference in zooxanthellae genotype and characteristics (density of zooxanthellae, and chlorophyll a) as well as protein concentrations between anemones from three stations along the gradient, V1 (3232 μatm CO2), V2 (682 μatm) and control (463 μatm), which indicated that A. viridis can acclimate to various seawater pCO2. In contrast, DMSP concentrations in anemones from stations V1 (33.23 ± 8.30 fmol cell(-1)) and V2 (34.78 ± 8.69 fmol cell(-1)) were about 35% lower than concentrations in tentacles from the control station (51.85 ± 12.96 fmol cell(-1)). Furthermore, low tissue concentrations of DMSP coincided with low activities of the antioxidant enzyme superoxide dismutase (SOD). Superoxide dismutase activity for both host (7.84 ± 1.37 U·mg(-1) protein) and zooxanthellae (2.84 ± 0.41 U·mg(-1) protein) at V1 was 40% lower than at the control station (host: 13.19 ± 1.42; zooxanthellae: 4.72 ± 0.57 U·mg(-1) protein). Our results provide insight into coastal DMSP production under predicted environmental change and support the function of DMSP as an antioxidant in symbiotic anthozoans.

  4. Measurement of Atmospheric CO2 Column Concentrations to Cloud Tops With a Pulsed Multi-Wavelength Airborne Lidar

    NASA Technical Reports Server (NTRS)

    Mao, Jianping; Ramanathan, Anand; Abshire, James B.; Kawa, Stephan R.; Riris, Haris; Allan, Graham R.; Rodriguez, Michael R.; Hasselbrack, William E.; Sun, Xiaoli; Numata, Kenji; hide

    2018-01-01

    We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA) lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was approx. 5% for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 micro-s wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90% of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  5. Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar

    NASA Astrophysics Data System (ADS)

    Mao, Jianping; Ramanathan, Anand; Abshire, James B.; Kawa, Stephan R.; Riris, Haris; Allan, Graham R.; Rodriguez, Michael; Hasselbrack, William E.; Sun, Xiaoli; Numata, Kenji; Chen, Jeff; Choi, Yonghoon; Yang, Mei Ying Melissa

    2018-01-01

    We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA) lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was ˜ 5 % for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 µs wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90 % of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  6. Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity

    NASA Astrophysics Data System (ADS)

    Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Müller, Christoph; Pugh, Thomas A. M.; Boote, Kenneth J.; Conway, Declan; Ruane, Alex C.; Gerten, Dieter; Jones, James W.; Khabarov, Nikolay; Olin, Stefan; Schaphoff, Sibyll; Schmid, Erwin; Yang, Hong; Rosenzweig, Cynthia

    2016-08-01

    Rising atmospheric CO2 concentrations ([CO2]) are expected to enhance photosynthesis and reduce crop water use. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments and global crop models to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated [CO2] and associated climate change projected for a high-end greenhouse gas emissions scenario. We find CO2 effects increase global CWP by 10[047]%-27[737]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rainfed wheat). If realized in the fields, the effects of elevated [CO2] could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4-17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modelling the effects of rising [CO2] across crop and hydrological modelling communities.

  7. Crop productivity changes in 1.5 °C and 2 °C worlds under climate sensitivity uncertainty

    NASA Astrophysics Data System (ADS)

    Schleussner, Carl-Friedrich; Deryng, Delphine; Müller, Christoph; Elliott, Joshua; Saeed, Fahad; Folberth, Christian; Liu, Wenfeng; Wang, Xuhui; Pugh, Thomas A. M.; Thiery, Wim; Seneviratne, Sonia I.; Rogelj, Joeri

    2018-06-01

    Following the adoption of the Paris Agreement, there has been an increasing interest in quantifying impacts at discrete levels of global mean temperature (GMT) increase such as 1.5 °C and 2 °C above pre-industrial levels. Consequences of anthropogenic greenhouse gas emissions on agricultural productivity have direct and immediate relevance for human societies. Future crop yields will be affected by anthropogenic climate change as well as direct effects of emissions such as CO2 fertilization. At the same time, the climate sensitivity to future emissions is uncertain. Here we investigate the sensitivity of future crop yield projections with a set of global gridded crop models for four major staple crops at 1.5 °C and 2 °C warming above pre-industrial levels, as well as at different CO2 levels determined by similar probabilities to lead to 1.5 °C and 2 °C, using climate forcing data from the Half a degree Additional warming, Prognosis and Projected Impacts project. For the same CO2 forcing, we find consistent negative effects of half a degree warming on productivity in most world regions. Increasing CO2 concentrations consistent with these warming levels have potentially stronger but highly uncertain effects than 0.5 °C warming increments. Half a degree warming will also lead to more extreme low yields, in particular over tropical regions. Our results indicate that GMT change alone is insufficient to determine future impacts on crop productivity.

  8. Water balance and N-metabolism in broccoli (Brassica oleracea L. var. Italica) plants depending on nitrogen source under salt stress and elevated CO2.

    PubMed

    Zaghdoud, Chokri; Carvajal, Micaela; Ferchichi, Ali; Del Carmen Martínez-Ballesta, María

    2016-11-15

    Elevated [CO2] and salinity in the soils are considered part of the effects of future environmental conditions in arid and semi-arid areas. While it is known that soil salinization decreases plant growth, an increased atmospheric [CO2] may ameliorate the negative effects of salt stress. However, there is a lack of information about the form in which inorganic nitrogen source may influence plant performance under both conditions. Single factor responses and the interactive effects of two [CO2] (380 and 800ppm), three different NO3(-)/NH4(+) ratios in the nutrient solution (100/0, 50/50 and 0/100, with a total N concentration of 3.5mM) and two NaCl concentrations (0 and 80mM) on growth, leaf gas exchange parameters in relation to root hydraulic conductance and N-assimilating enzymes of broccoli (Brassica oleracea L. var. Italica) plants were determined. The results showed that a reduced NO3(-) or co-provision of NO3(-) and NH4(+) could be an optimal source of inorganic N for broccoli plants. In addition, elevated [CO2] ameliorated the effect of salt exposure on the plant growth through an enhanced rate of photosynthesis, even at low N-concentration. However, NO3(-) or NO3(-)/NH4(+) co-provision display differential plant response to salt stress regarding water balance, which was associated to N metabolism. The results may contribute to our understanding of N-fertilization modes under increasing atmospheric [CO2] to cope with salt stress, where variations in N nutrition significantly influenced plant response. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Introduction. Pliocene climate, processes and problems

    USGS Publications Warehouse

    Haywood, A.M.; Dowsett, H.J.; Valdes, P.J.; Lunt, D.J.; Francis, J.E.; Sellwood, B.W.

    2009-01-01

    Climate predictions produced by numerical climate models, often referred to as general circulation models (GCMs), suggest that by the end of the twenty-first century global mean annual surface air temperatures will increase by 1.1-6.4??C. Trace gas records from ice cores indicate that atmospheric concentrations of CO2 are already higher than at any time during the last 650000 years. In the next 50 years, atmospheric CO2 concentrations are expected to reach a level not encountered since an epoch of time known as the Pliocene. Uniformitarianism is a key principle of geological science, but can the past also be a guide to the future? To what extent does an examination of the Pliocene geological record enable us to successfully understand and interpret this guide? How reliable are the 'retrodictions' of Pliocene climates produced by GCMs and what does this tell us about the accuracy of model predictions for the future? These questions provide the scientific rationale for this Theme Issue. ?? 2008 The Royal Society.

  10. Simulated ocean acidification reveals winners and losers in coastal phytoplankton.

    PubMed

    Bach, Lennart T; Alvarez-Fernandez, Santiago; Hornick, Thomas; Stuhr, Annegret; Riebesell, Ulf

    2017-01-01

    The oceans absorb ~25% of the annual anthropogenic CO2 emissions. This causes a shift in the marine carbonate chemistry termed ocean acidification (OA). OA is expected to influence metabolic processes in phytoplankton species but it is unclear how the combination of individual physiological changes alters the structure of entire phytoplankton communities. To investigate this, we deployed ten pelagic mesocosms (volume ~50 m3) for 113 days at the west coast of Sweden and simulated OA (pCO2 = 760 μatm) in five of them while the other five served as controls (380 μatm). We found: (1) Bulk chlorophyll a concentration and 10 out of 16 investigated phytoplankton groups were significantly and mostly positively affected by elevated CO2 concentrations. However, CO2 effects on abundance or biomass were generally subtle and present only during certain succession stages. (2) Some of the CO2-affected phytoplankton groups seemed to respond directly to altered carbonate chemistry (e.g. diatoms) while others (e.g. Synechococcus) were more likely to be indirectly affected through CO2 sensitive competitors or grazers. (3) Picoeukaryotic phytoplankton (0.2-2 μm) showed the clearest and relatively strong positive CO2 responses during several succession stages. We attribute this not only to a CO2 fertilization of their photosynthetic apparatus but also to an increased nutrient competitiveness under acidified (i.e. low pH) conditions. The stimulating influence of high CO2/low pH on picoeukaryote abundance observed in this experiment is strikingly consistent with results from previous studies, suggesting that picoeukaryotes are among the winners in a future ocean.

  11. Simulated ocean acidification reveals winners and losers in coastal phytoplankton

    PubMed Central

    Alvarez-Fernandez, Santiago; Hornick, Thomas; Stuhr, Annegret; Riebesell, Ulf

    2017-01-01

    The oceans absorb ~25% of the annual anthropogenic CO2 emissions. This causes a shift in the marine carbonate chemistry termed ocean acidification (OA). OA is expected to influence metabolic processes in phytoplankton species but it is unclear how the combination of individual physiological changes alters the structure of entire phytoplankton communities. To investigate this, we deployed ten pelagic mesocosms (volume ~50 m3) for 113 days at the west coast of Sweden and simulated OA (pCO2 = 760 μatm) in five of them while the other five served as controls (380 μatm). We found: (1) Bulk chlorophyll a concentration and 10 out of 16 investigated phytoplankton groups were significantly and mostly positively affected by elevated CO2 concentrations. However, CO2 effects on abundance or biomass were generally subtle and present only during certain succession stages. (2) Some of the CO2-affected phytoplankton groups seemed to respond directly to altered carbonate chemistry (e.g. diatoms) while others (e.g. Synechococcus) were more likely to be indirectly affected through CO2 sensitive competitors or grazers. (3) Picoeukaryotic phytoplankton (0.2–2 μm) showed the clearest and relatively strong positive CO2 responses during several succession stages. We attribute this not only to a CO2 fertilization of their photosynthetic apparatus but also to an increased nutrient competitiveness under acidified (i.e. low pH) conditions. The stimulating influence of high CO2/low pH on picoeukaryote abundance observed in this experiment is strikingly consistent with results from previous studies, suggesting that picoeukaryotes are among the winners in a future ocean. PMID:29190760

  12. Leaf Area Index Drives Soil Water Availability and Extreme Drought-Related Mortality under Elevated CO2 in a Temperate Grassland Model System

    PubMed Central

    Manea, Anthony; Leishman, Michelle R.

    2014-01-01

    The magnitude and frequency of climatic extremes, such as drought, are predicted to increase under future climate change conditions. However, little is known about how other factors such as CO2 concentration will modify plant community responses to these extreme climatic events, even though such modifications are highly likely. We asked whether the response of grasslands to repeat extreme drought events is modified by elevated CO2, and if so, what are the underlying mechanisms? We grew grassland mesocosms consisting of 10 co-occurring grass species common to the Cumberland Plain Woodland of western Sydney under ambient and elevated CO2 and subjected them to repeated extreme drought treatments. The 10 species included a mix of C3, C4, native and exotic species. We hypothesized that a reduction in the stomatal conductance of the grasses under elevated CO2 would be offset by increases in the leaf area index thus the retention of soil water and the consequent vulnerability of the grasses to extreme drought would not differ between the CO2 treatments. Our results did not support this hypothesis: soil water content was significantly lower in the mesocosms grown under elevated CO2 and extreme drought-related mortality of the grasses was greater. The C4 and native grasses had significantly higher leaf area index under elevated CO2 levels. This offset the reduction in the stomatal conductance of the exotic grasses as well as increased rainfall interception, resulting in reduced soil water content in the elevated CO2 mesocosms. Our results suggest that projected increases in net primary productivity globally of grasslands in a high CO2 world may be limited by reduced soil water availability in the future. PMID:24632832

  13. Leaf area index drives soil water availability and extreme drought-related mortality under elevated CO2 in a temperate grassland model system.

    PubMed

    Manea, Anthony; Leishman, Michelle R

    2014-01-01

    The magnitude and frequency of climatic extremes, such as drought, are predicted to increase under future climate change conditions. However, little is known about how other factors such as CO2 concentration will modify plant community responses to these extreme climatic events, even though such modifications are highly likely. We asked whether the response of grasslands to repeat extreme drought events is modified by elevated CO2, and if so, what are the underlying mechanisms? We grew grassland mesocosms consisting of 10 co-occurring grass species common to the Cumberland Plain Woodland of western Sydney under ambient and elevated CO2 and subjected them to repeated extreme drought treatments. The 10 species included a mix of C3, C4, native and exotic species. We hypothesized that a reduction in the stomatal conductance of the grasses under elevated CO2 would be offset by increases in the leaf area index thus the retention of soil water and the consequent vulnerability of the grasses to extreme drought would not differ between the CO2 treatments. Our results did not support this hypothesis: soil water content was significantly lower in the mesocosms grown under elevated CO2 and extreme drought-related mortality of the grasses was greater. The C4 and native grasses had significantly higher leaf area index under elevated CO2 levels. This offset the reduction in the stomatal conductance of the exotic grasses as well as increased rainfall interception, resulting in reduced soil water content in the elevated CO2 mesocosms. Our results suggest that projected increases in net primary productivity globally of grasslands in a high CO2 world may be limited by reduced soil water availability in the future.

  14. A Review of Human Health and Ecological Risks due to CO2 Exposure

    NASA Astrophysics Data System (ADS)

    Hepple, R. P.; Benson, S. M.

    2001-05-01

    This paper presents an overview of the human health and ecological consequences of exposure to elevated levels of carbon dioxide (CO2) in the context of geologic carbon sequestration. The purpose of this effort is to provide a baseline of information to guide future efforts in risk assessment for CO2 sequestration. Scenarios for hazardous CO2 exposure include surface facility leaks, leaks from abandoned or aging wells, and leakage from geologic CO2 storage structures. Amounts of carbon in various reservoirs, systems, and applications were summarized, and the levels of CO2 encountered in nature and everyday life were compared along with physiologically relevant concentrations. Literature pertaining to CO2 occupational exposure limits, regulations, monitoring, and ecological consequences was reviewed. The OSHA, NIOSH, and ACGIH occupational exposure standards are 0.5% CO2 averaged over a 40 hour week, 3% average for a short-term (15 minute) exposure, and 4% as the maximum instantaneous limit considered immediately dangerous to life and health. All three conditions must be satisfied at all times. Any detrimental effects of low-level CO2 exposure are reversible, including the long-term metabolic compensation required by chronic exposure to 3% CO2. Breathing rate doubles at 3% CO2 and is four times the normal rate at 5% CO2. According to occupational exposure and controlled atmosphere research into CO2 toxicology, CO2 is hazardous via direct toxicity at levels above 5%, concentrations not encountered in nature outside of volcanic settings and water-logged soils. Small leaks do not present any danger to people unless the CO2 does not disperse quickly enough through atmospheric mixing but accumulates instead in depressions and confined spaces. These dangers are the result of CO2 being more dense than air. Carbon dioxide is regulated for diverse purposes but never as a toxic substance. Catastrophic incidents involving large amounts and/or rapid release of CO2 such as Lake Nyos in Cameroon, Mammoth Mountain in California, Dieng Volcanic Complex in Java, Indonesia, and industrial accidents with CO2 fire suppression systems teach that slow leakage rates and effective dilution must be proven to ensure human and environmental safety. Monitoring CO2 levels in occupational settings is done with reliable IR sensors. Remote sensing of low levels of CO2 over long distances cannot be done easily yet, although LIDAR, an airborne laser technique under development, may have good potential. The environmental impacts of elevated CO2 levels on vegetation are being investigated now in free-air CO2 enrichment studies. In general, persistent elevated CO2 levels cause a change in species composition, favoring C3 plants over C4 or CAM. The ecological effects of catastrophic releases are severe but depend upon (a) release rate and amount, (b) surface topography and rate of atmospheric mixing (c) exposure concentrations and duration, (d) the respiratory mechanism of the form of life under discussion, (e) its tolerance for oxygen deprivation, and (f) its ability to maintain homeostatic pH levels. Suppression of root respiration due to elevated soil-gas CO2 concentrations and acidifiction of the root zone are known mechanisms of tree-kill. Soil-gas CO2 in the tree-kill areas at Mammoth Mountain exceeded 20-30% at 15 cm depth. Surface masses of concentrated CO2 probably smother the canopy through oxygen deprivation, but the precise mechanism is not known. Lake Nyos and Mammoth Mountain reveal that catastrophic releases can result in complete dead zones.

  15. A predictive estimation method for carbon dioxide transport by data-driven modeling with a physically-based data model.

    PubMed

    Jeong, Jina; Park, Eungyu; Han, Weon Shik; Kim, Kue-Young; Jun, Seong-Chun; Choung, Sungwook; Yun, Seong-Taek; Oh, Junho; Kim, Hyun-Jun

    2017-11-01

    In this study, a data-driven method for predicting CO 2 leaks and associated concentrations from geological CO 2 sequestration is developed. Several candidate models are compared based on their reproducibility and predictive capability for CO 2 concentration measurements from the Environment Impact Evaluation Test (EIT) site in Korea. Based on the data mining results, a one-dimensional solution of the advective-dispersive equation for steady flow (i.e., Ogata-Banks solution) is found to be most representative for the test data, and this model is adopted as the data model for the developed method. In the validation step, the method is applied to estimate future CO 2 concentrations with the reference estimation by the Ogata-Banks solution, where a part of earlier data is used as the training dataset. From the analysis, it is found that the ensemble mean of multiple estimations based on the developed method shows high prediction accuracy relative to the reference estimation. In addition, the majority of the data to be predicted are included in the proposed quantile interval, which suggests adequate representation of the uncertainty by the developed method. Therefore, the incorporation of a reasonable physically-based data model enhances the prediction capability of the data-driven model. The proposed method is not confined to estimations of CO 2 concentration and may be applied to various real-time monitoring data from subsurface sites to develop automated control, management or decision-making systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Methods to validate the accuracy of an indirect calorimeter in the in-vitro setting.

    PubMed

    Oshima, Taku; Ragusa, Marco; Graf, Séverine; Dupertuis, Yves Marc; Heidegger, Claudia-Paula; Pichard, Claude

    2017-12-01

    The international ICALIC initiative aims at developing a new indirect calorimeter according to the needs of the clinicians and researchers in the field of clinical nutrition and metabolism. The project initially focuses on validating the calorimeter for use in mechanically ventilated acutely ill adult patient. However, standard methods to validate the accuracy of calorimeters have not yet been established. This paper describes the procedures for the in-vitro tests to validate the accuracy of the new indirect calorimeter, and defines the ranges for the parameters to be evaluated in each test to optimize the validation for clinical and research calorimetry measurements. Two in-vitro tests have been defined to validate the accuracy of the gas analyzers and the overall function of the new calorimeter. 1) Gas composition analysis allows validating the accuracy of O 2 and CO 2 analyzers. Reference gas of known O 2 (or CO 2 ) concentration is diluted by pure nitrogen gas to achieve predefined O 2 (or CO 2 ) concentration, to be measured by the indirect calorimeter. O 2 and CO 2 concentrations to be tested were determined according to their expected ranges of concentrations during calorimetry measurements. 2) Gas exchange simulator analysis validates O 2 consumption (VO 2 ) and CO 2 production (VCO 2 ) measurements. CO 2 gas injection into artificial breath gas provided by the mechanical ventilator simulates VCO 2 . Resulting dilution of O 2 concentration in the expiratory air is analyzed by the calorimeter as VO 2 . CO 2 gas of identical concentration to the fraction of inspired O 2 (FiO 2 ) is used to simulate identical VO 2 and VCO 2 . Indirect calorimetry results from publications were analyzed to determine the VO 2 and VCO 2 values to be tested for the validation. O 2 concentration in respiratory air is highest at inspiration, and can decrease to 15% during expiration. CO 2 concentration can be as high as 5% in expired air. To validate analyzers for measurements of FiO 2 up to 70%, ranges of O 2 and CO 2 concentrations to be tested were defined as 15-70% and 0.5-5.0%, respectively. The mean VO 2 in 426 adult mechanically ventilated patients was 270 ml/min, with 2 standard deviation (SD) ranges of 150-391 ml/min. Thus, VO 2 and VCO 2 to be simulated for the validation were defined as 150, 250, and 400 ml/min. The procedures for the in-vitro tests of the new indirect calorimeter and the ranges for the parameters to be evaluated in each test have been defined to optimize the validation of accuracy for clinical and research indirect calorimetry measurements. The combined methods will be used to validate the accuracy of the new indirect calorimeter developed by the ICALIC initiative, and should become the standard method to validate the accuracy of any future indirect calorimeters. Copyright © 2017 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  17. Spectrophotometric Measurements of the Carbonate Ion Concentration: Aragonite Saturation States in the Mediterranean Sea and Atlantic Ocean.

    PubMed

    Fajar, Noelia M; García-Ibáñez, Maribel I; SanLeón-Bartolomé, Henar; Álvarez, Marta; Pérez, Fiz F

    2015-10-06

    Measurements of ocean pH, alkalinity, and carbonate ion concentrations ([CO3(2-)]) during three cruises in the Atlantic Ocean and one in the Mediterranean Sea were used to assess the reliability of the recent spectrophotometric [CO3(2-)] methodology and to determine aragonite saturation states. Measurements of [CO3(2-)] along the Atlantic Ocean showed high consistency with the [CO3(2-)] values calculated from pH and alkalinity, with negligible biases (0.4 ± 3.4 μmol·kg(-1)). In the warm, salty, high alkalinity and high pH Mediterranean waters, the spectrophotometric [CO3(2-)] methodology underestimates the measured [CO3(2-)] (4.0 ± 5.0 μmol·kg(-1)), with anomalies positively correlated to salinity. These waters also exhibited high in situ [CO3(2-)] compared to the expected aragonite saturation. The very high buffering capacity allows the Mediterranean Sea waters to remain over the saturation level of aragonite for long periods of time. Conversely, the relatively thick layer of undersaturated waters between 500 and 1000 m depths in the Tropical Atlantic is expected to progress to even more negative undersaturation values. Moreover, the northern North Atlantic presents [CO3(2-)] slightly above the level of aragonite saturation, and the expected anthropogenic acidification could result in reductions of the aragonite saturation levels during future decades, acting as a stressor for the large population of cold-water-coral communities.

  18. Rangeland -- Plant responses to elevated CO{sub 2}. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owensby, C.E.; Coyne, P.I.; Ham, J.M.

    1992-10-01

    Several broad conclusions which can be drawn from the work that was accomplished during the first 3-year phase of the study is described. In prairie ecosystems dominated by C{sub 4} grasses, it is likely that elevated atmospheric CO{sub 2} will increase ecosystem level productivity, with a greater increase in belowground productivity. The increased productivity will primarily result from increased water use efficiency due to the anti-transpirant action of CO{sub 2}. Fumigation chambers are directly confounded with elevated CO{sub 2} effects, in that both reduce evapotranspiration. The reduced evapotranspiration of the fumigation chamber is primarily through reduced wind speeds and reducedmore » radiation. In very dry years, fumigation chamber effects are negligible, but in years with normal precipitation, chamber effects and elevated CO{sub 2} effects are essentially equal with respect to reduced evapotranspiration effects. Increased production under elevated CO{sub 2} results in reduced nitrogen concentration in the herbage and increased fiber concentrations. Consequently, digestibility of the herbage is reduced, and microbial degradation of surface litter and soil organic matter is slowed. On the negative side, ruminant productivity will likely be reduced substantially, but increased carbon storage in the soil may buffer against future rise in atmospheric CO{sub 2}. Tallgrass prairie will not likely change greatly in botanical composition, since the C{sub 4} dominants responded to elevated CO{sub 2} more than the C{sub 3} subdominants.« less

  19. Impacts of elevated atmospheric CO₂ on nutrient content of important food crops.

    PubMed

    Dietterich, Lee H; Zanobetti, Antonella; Kloog, Itai; Huybers, Peter; Leakey, Andrew D B; Bloom, Arnold J; Carlisle, Eli; Fernando, Nimesha; Fitzgerald, Glenn; Hasegawa, Toshihiro; Holbrook, N Michele; Nelson, Randall L; Norton, Robert; Ottman, Michael J; Raboy, Victor; Sakai, Hidemitsu; Sartor, Karla A; Schwartz, Joel; Seneweera, Saman; Usui, Yasuhiro; Yoshinaga, Satoshi; Myers, Samuel S

    2015-01-01

    One of the many ways that climate change may affect human health is by altering the nutrient content of food crops. However, previous attempts to study the effects of increased atmospheric CO2 on crop nutrition have been limited by small sample sizes and/or artificial growing conditions. Here we present data from a meta-analysis of the nutritional contents of the edible portions of 41 cultivars of six major crop species grown using free-air CO2 enrichment (FACE) technology to expose crops to ambient and elevated CO2 concentrations in otherwise normal field cultivation conditions. This data, collected across three continents, represents over ten times more data on the nutrient content of crops grown in FACE experiments than was previously available. We expect it to be deeply useful to future studies, such as efforts to understand the impacts of elevated atmospheric CO2 on crop macro- and micronutrient concentrations, or attempts to alleviate harmful effects of these changes for the billions of people who depend on these crops for essential nutrients.

  20. The Southern Ocean as a constraint to reduce uncertainty in future ocean carbon sinks

    DOE PAGES

    Kessler, A.; Tjiputra, J.

    2016-04-07

    Earth system model (ESM) simulations exhibit large biases compares to observation-based estimates of the present ocean CO 2 sink. The inter-model spread in projections increases nearly 2-fold by the end of the 21st century and therefore contributes significantly to the uncertainty of future climate projections. In this study, the Southern Ocean (SO) is shown to be one of the hot-spot regions for future uptake of anthropogenic CO 2, characterized by both the solubility pump and biologically mediated carbon drawdown in the spring and summer. Here, we show, by analyzing a suite of fully interactive ESMs simulations from the Coupled Model Intercomparisonmore » Project phase 5 (CMIP5) over the 21st century under the high-CO 2 Representative Concentration Pathway (RCP) 8.5 scenario, that the SO is the only region where the atmospheric CO 2 uptake rate continues to increase toward the end of the 21st century. Furthermore, our study discovers a strong inter-model link between the contemporary CO 2 uptake in the Southern Ocean and the projected global cumulated uptake over the 21st century. This strong correlation suggests that models with low (high) carbon uptake rate in the contemporary SO tend to simulate low (high) uptake rate in the future. None the less, our analysis also shows that none of the models fully capture the observed biophysical mechanisms governing the CO 2 fluxes in the SO. The inter-model spread for the contemporary CO 2 uptake in the Southern Ocean is attributed to the variations in the simulated seasonal cycle of surface pCO 2. Two groups of model behavior have been identified. The first one simulates anomalously strong SO carbon uptake, generally due to both too strong a net primary production and too low a surface pCO 2 in December–January. The second group simulates an opposite CO 2 flux seasonal phase, which is driven mainly by the bias in the sea surface temperature variability. Furthermore, we show that these biases are persistent throughout the 21st century, which highlights the urgent need for a sustained and comprehensive biogeochemical monitoring system in the Southern Ocean to better constrain key processes represented in current model systems.« less

  1. The Southern Ocean as a constraint to reduce uncertainty in future ocean carbon sinks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kessler, A.; Tjiputra, J.

    Earth system model (ESM) simulations exhibit large biases compares to observation-based estimates of the present ocean CO 2 sink. The inter-model spread in projections increases nearly 2-fold by the end of the 21st century and therefore contributes significantly to the uncertainty of future climate projections. In this study, the Southern Ocean (SO) is shown to be one of the hot-spot regions for future uptake of anthropogenic CO 2, characterized by both the solubility pump and biologically mediated carbon drawdown in the spring and summer. Here, we show, by analyzing a suite of fully interactive ESMs simulations from the Coupled Model Intercomparisonmore » Project phase 5 (CMIP5) over the 21st century under the high-CO 2 Representative Concentration Pathway (RCP) 8.5 scenario, that the SO is the only region where the atmospheric CO 2 uptake rate continues to increase toward the end of the 21st century. Furthermore, our study discovers a strong inter-model link between the contemporary CO 2 uptake in the Southern Ocean and the projected global cumulated uptake over the 21st century. This strong correlation suggests that models with low (high) carbon uptake rate in the contemporary SO tend to simulate low (high) uptake rate in the future. None the less, our analysis also shows that none of the models fully capture the observed biophysical mechanisms governing the CO 2 fluxes in the SO. The inter-model spread for the contemporary CO 2 uptake in the Southern Ocean is attributed to the variations in the simulated seasonal cycle of surface pCO 2. Two groups of model behavior have been identified. The first one simulates anomalously strong SO carbon uptake, generally due to both too strong a net primary production and too low a surface pCO 2 in December–January. The second group simulates an opposite CO 2 flux seasonal phase, which is driven mainly by the bias in the sea surface temperature variability. Furthermore, we show that these biases are persistent throughout the 21st century, which highlights the urgent need for a sustained and comprehensive biogeochemical monitoring system in the Southern Ocean to better constrain key processes represented in current model systems.« less

  2. Direct and indirect effects of high pCO2 on algal grazing by coral reef herbivores from the Gulf of Aqaba (Red Sea)

    NASA Astrophysics Data System (ADS)

    Borell, E. M.; Steinke, M.; Fine, M.

    2013-12-01

    Grazing on marine macroalgae is a key structuring process for coral reef communities. However, ocean acidification from rising atmospheric CO2 concentrations is predicted to adversely affect many marine animals, while seaweed communities may benefit and prosper. We tested how exposure to different pCO2 (400, 1,800 and 4,000 μatm) may affect grazing on the green alga Ulva lactuca by herbivorous fish and sea urchins from the coral reefs in the northern Gulf of Aqaba (Red Sea), either directly, by changing herbivore behaviour, or indirectly via changes in algal palatability. We also determined the effects of pCO2 on algal tissue concentrations of protein and the grazing-deterrent secondary metabolite dimethylsulfoniopropionate (DMSP). Grazing preferences and overall consumption were tested in a series of multiple-choice feeding experiments in the laboratory and in situ following exposure for 14 d (algae) and 28 d (herbivores). 4,000 μatm had a significant effect on the biochemical composition and palatability of U. lactuca. No effects were observed at 1,800 relative to 400 μatm (control). Exposure of U. lactuca to 4,000 μatm resulted in a significant decrease in protein and increase in DMSP concentration. This coincided with a reduced preference for these algae by the sea urchin Tripneustes gratilla and different herbivorous fish species in situ (Acanthuridae, Siganidae and Pomacanthidae). No feeding preferences were observed for the rabbitfish Siganus rivulatus under laboratory conditions. Exposure to elevated pCO2 had no direct effect on the overall algal consumption by T. gratilla and S. rivulatus. Our results show that CO2 has the potential to alter algal palatability to different herbivores which could have important implications for algal abundance and coral community structure. The fact that pCO2 effects were observed only at a pCO2 of 4,000 μatm, however, indicates that algal-grazer interactions may be resistant to predicted pCO2 concentrations in the near future.

  3. Methodological advances: using greenhouses to simulate climate change scenarios.

    PubMed

    Morales, F; Pascual, I; Sánchez-Díaz, M; Aguirreolea, J; Irigoyen, J J; Goicoechea, N; Antolín, M C; Oyarzun, M; Urdiain, A

    2014-09-01

    Human activities are increasing atmospheric CO2 concentration and temperature. Related to this global warming, periods of low water availability are also expected to increase. Thus, CO2 concentration, temperature and water availability are three of the main factors related to climate change that potentially may influence crops and ecosystems. In this report, we describe the use of growth chamber - greenhouses (GCG) and temperature gradient greenhouses (TGG) to simulate climate change scenarios and to investigate possible plant responses. In the GCG, CO2 concentration, temperature and water availability are set to act simultaneously, enabling comparison of a current situation with a future one. Other characteristics of the GCG are a relative large space of work, fine control of the relative humidity, plant fertirrigation and the possibility of light supplementation, within the photosynthetic active radiation (PAR) region and/or with ultraviolet-B (UV-B) light. In the TGG, the three above-mentioned factors can act independently or in interaction, enabling more mechanistic studies aimed to elucidate the limiting factor(s) responsible for a given plant response. Examples of experiments, including some aimed to study photosynthetic acclimation, a phenomenon that leads to decreased photosynthetic capacity under long-term exposures to elevated CO2, using GCG and TGG are reported. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Surface geothermal exploration in the Canary Islands by means of soil CO_{2} degassing surveys

    NASA Astrophysics Data System (ADS)

    García-Merino, Marta; Rodríguez, Fátima; Padrón, Eleazar; Melián, Gladys; Asensio-Ramos, María; Barrancos, José; Hernández, Pedro A.; Pérez, Nemesio M.

    2017-04-01

    With the exception of the Teide fumaroles, there is not any evidence of hydrothermal fluid discharges in the surficial environment of the Canary Islands, the only Spanish territory with potential high enthalpy geothermal resources. Here we show the results of several diffuse CO2 degassing surveys carried out at five mining licenses in Tenerife and Gran Canaria with the aim of sorting the possible geothermal potential of these five mining licenses. The primary objective of the study was to reduce the uncertainty inherent to the selection of the areas with highest geothermal potential for future exploration works. The yardstick used to classify the different areas was the contribution of volcano-hydrothermal CO2 in the diffuse CO2 degassing at each study area. Several hundreds of measurements of diffuse CO2 emission, soil CO2 concentration and isotopic composition were performed at each mining license. Based in three different endmembers (biogenic, atmospheric and deep-seated CO2) with different CO2 concentrations (100, 0.04 and 100%, respectively) and isotopic compositions (-24, -8 and -3 per mil vs. VPDB respectively) a mass balance to distinguish the different contribution of each endmember in the soil CO2 at each sampling site was made. The percentage of the volcano-hydrothermal contribution in the current diffuse CO2 degassing was in the range 0-19%. The Abeque mining license, that comprises part of the north-west volcanic rift of Tenerife, seemed to show the highest geothermal potential, with an average of 19% of CO2 being released from deep sources, followed by Atidama (south east of Gran Canaria) and Garehagua (southern volcanic rift of Tenerife), with 17% and 12% respectively.

  5. Climate change and the middle atmosphere. I - The doubled CO2 climate

    NASA Technical Reports Server (NTRS)

    Rind, D.; Prather, M. J.; Suozzo, R.; Balachandran, N. K.

    1990-01-01

    The effect of doubling the atmospheric content of CO2 on the middle-atmosphere climate is investigated using the GISS global climate model. In the standard experiment, the CO2 concentration is doubled both in the stratosphere and troposphere, and the SSTs are increased to match those of the doubled CO2 run of the GISS model. Results show that the doubling of CO2 leads to higher temperatures in the troposphere, and lower temperatures in the stratosphere, with a net result being a decrease of static stability for the atmosphere as a whole. The middle atmosphere dynamical differences found were on the order of 10-20 percent of the model values for the current climate. These differences, along with the calculated temperature differences of up to about 10 C, may have a significant impact on the chemistry of the future atmosphere, including that of stratospheric ozone, the polar ozone 'hole', and basic atmospheric composition.

  6. Studies of long-life pulsed CO2 laser with Pt/SnO2 catalyst

    NASA Technical Reports Server (NTRS)

    Sidney, Barry D.

    1987-01-01

    Closed-cycle CO2 laser testing with and without a catalyst and with and without CO addition indicate that a catalyst is necessary for long-term operation. Initial results indicate that CO addition with a catalyst may prove optimal, but a precise gas mix has not yet been determined. A long-term run of 10 to the 6th power pulses using 1.3% added CO and a 2% Pt on SnO2 catalyst yields an efficiency of about 95% of open-cycle steady-state power. A simple mathematical analysis yields results which may be sufficient for determining optimum running conditions. Future plans call for testing various catalysts in the laser and longer tests, 10 to the 7th power pulses. A Gas Chromatograph will be installed to measure gas species concentration and the analysis will be slightly modified to include neglected but possibly important parameters.

  7. Do the rich always become richer? Characterizing the leaf physiological response of the high-yielding rice cultivar Takanari to free-air CO2 enrichment.

    PubMed

    Chen, Charles P; Sakai, Hidemitsu; Tokida, Takeshi; Usui, Yasuhiro; Nakamura, Hirofumi; Hasegawa, Toshihiro

    2014-02-01

    The development of crops which are well suited to growth under future environmental conditions such as higher atmospheric CO2 concentrations ([CO2]) is essential to meeting the challenge of ensuring food security in the face of the growing human population and changing climate. A high-yielding indica rice variety (Oryza sativa L. cv. Takanari) has been recently identified as a potential candidate for such breeding, due to its high productivity in present [CO2]. To test if it could further increase its productivity under elevated [CO2] (eCO2), Takanari was grown in the paddy field under season-long free-air CO2 enrichment (FACE, approximately 200 µmol mol(-1) above ambient [CO2]) and its leaf physiology was compared with the representative japonica variety 'Koshihikari'. Takanari showed consistently higher midday photosynthesis and stomatal conductance than Koshihikari under both ambient and FACE growth conditions over 2 years. Maximum ribulose-1,5-bisphosphate carboxylation and electron transport rates were higher for Takanari at the mid-grain filling stage in both years. Mesophyll conductance was higher in Takanari than in Koshihikari at the late grain-filling stage. In contrast to Koshihikari, Takanari grown under FACE conditions showed no decrease in total leaf nitrogen on an area basis relative to ambient-grown plants. Chl content was higher in Takanari than in Koshihikari at the same leaf nitrogen level. These results indicate that Takanari maintains its superiority over Koshihikari in regards to its leaf-level productivity when grown in elevated [CO2] and it may be a valuable resource for rice breeding programs which seek to increase crop productivity under current and future [CO2].

  8. Do the Rich Always Become Richer? Characterizing the Leaf Physiological Response of the High-Yielding Rice Cultivar Takanari to Free-Air CO2 Enrichment

    PubMed Central

    Chen, Charles P.; Sakai, Hidemitsu; Tokida, Takeshi; Usui, Yasuhiro; Nakamura, Hirofumi; Hasegawa, Toshihiro

    2014-01-01

    The development of crops which are well suited to growth under future environmental conditions such as higher atmospheric CO2 concentrations ([CO2]) is essential to meeting the challenge of ensuring food security in the face of the growing human population and changing climate. A high-yielding indica rice variety (Oryza sativa L. cv. Takanari) has been recently identified as a potential candidate for such breeding, due to its high productivity in present [CO2]. To test if it could further increase its productivity under elevated [CO2] (eCO2), Takanari was grown in the paddy field under season-long free-air CO2 enrichment (FACE, approximately 200 µmol mol−1 above ambient [CO2]) and its leaf physiology was compared with the representative japonica variety ‘Koshihikari’. Takanari showed consistently higher midday photosynthesis and stomatal conductance than Koshihikari under both ambient and FACE growth conditions over 2 years. Maximum ribulose-1,5-bisphosphate carboxylation and electron transport rates were higher for Takanari at the mid-grain filling stage in both years. Mesophyll conductance was higher in Takanari than in Koshihikari at the late grain-filling stage. In contrast to Koshihikari, Takanari grown under FACE conditions showed no decrease in total leaf nitrogen on an area basis relative to ambient-grown plants. Chl content was higher in Takanari than in Koshihikari at the same leaf nitrogen level. These results indicate that Takanari maintains its superiority over Koshihikari in regards to its leaf-level productivity when grown in elevated [CO2] and it may be a valuable resource for rice breeding programs which seek to increase crop productivity under current and future [CO2]. PMID:24443497

  9. Interactive effects of elevated CO2 concentration and irrigation on photosynthetic parameters and yield of maize in Northeast China.

    PubMed

    Meng, Fanchao; Zhang, Jiahua; Yao, Fengmei; Hao, Cui

    2014-01-01

    Maize is one of the major cultivated crops of China, having a central role in ensuring the food security of the country. There has been a significant increase in studies of maize under interactive effects of elevated CO2 concentration ([CO2]) and other factors, yet the interactive effects of elevated [CO2] and increasing precipitation on maize has remained unclear. In this study, a manipulative experiment in Jinzhou, Liaoning province, Northeast China was performed so as to obtain reliable results concerning the later effects. The Open Top Chambers (OTCs) experiment was designed to control contrasting [CO2] i.e., 390, 450 and 550 µmol·mol(-1), and the experiment with 15% increasing precipitation levels was also set based on the average monthly precipitation of 5-9 month from 1981 to 2010 and controlled by irrigation. Thus, six treatments, i.e. C550W+15%, C550W0, C450W+15%, C450W0, C390W+15% and C390W0 were included in this study. The results showed that the irrigation under elevated [CO2] levels increased the leaf net photosynthetic rate (Pn) and intercellular CO2 concentration (Ci) of maize. Similarly, the stomatal conductance (Gs) and transpiration rate (Tr) decreased with elevated [CO2], but irrigation have a positive effect on increased of them at each [CO2] level, resulting in the water use efficiency (WUE) higher in natural precipitation treatment than irrigation treatment at elevated [CO2] levels. Irradiance-response parameters, e.g., maximum net photosynthetic rate (Pnmax) and light saturation points (LSP) were increased under elevated [CO2] and irrigation, and dark respiration (Rd) was increased as well. The growth characteristics, e.g., plant height, leaf area and aboveground biomass were enhanced, resulting in an improved of yield and ear characteristics except axle diameter. The study concluded by reporting that, future elevated [CO2] may favor to maize when coupled with increasing amount of precipitation in Northeast China.

  10. Interactive Effects of Elevated CO2 Concentration and Irrigation on Photosynthetic Parameters and Yield of Maize in Northeast China

    PubMed Central

    Meng, Fanchao; Zhang, Jiahua; Yao, Fengmei; Hao, Cui

    2014-01-01

    Maize is one of the major cultivated crops of China, having a central role in ensuring the food security of the country. There has been a significant increase in studies of maize under interactive effects of elevated CO2 concentration ([CO2]) and other factors, yet the interactive effects of elevated [CO2] and increasing precipitation on maize has remained unclear. In this study, a manipulative experiment in Jinzhou, Liaoning province, Northeast China was performed so as to obtain reliable results concerning the later effects. The Open Top Chambers (OTCs) experiment was designed to control contrasting [CO2] i.e., 390, 450 and 550 µmol·mol−1, and the experiment with 15% increasing precipitation levels was also set based on the average monthly precipitation of 5–9 month from 1981 to 2010 and controlled by irrigation. Thus, six treatments, i.e. C550W+15%, C550W0, C450W+15%, C450W0, C390W+15% and C390W0 were included in this study. The results showed that the irrigation under elevated [CO2] levels increased the leaf net photosynthetic rate (P n) and intercellular CO2 concentration (C i) of maize. Similarly, the stomatal conductance (G s) and transpiration rate (T r) decreased with elevated [CO2], but irrigation have a positive effect on increased of them at each [CO2] level, resulting in the water use efficiency (WUE) higher in natural precipitation treatment than irrigation treatment at elevated [CO2] levels. Irradiance-response parameters, e.g., maximum net photosynthetic rate (P nmax) and light saturation points (LSP) were increased under elevated [CO2] and irrigation, and dark respiration (R d) was increased as well. The growth characteristics, e.g., plant height, leaf area and aboveground biomass were enhanced, resulting in an improved of yield and ear characteristics except axle diameter. The study concluded by reporting that, future elevated [CO2] may favor to maize when coupled with increasing amount of precipitation in Northeast China. PMID:24848097

  11. Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios

    NASA Astrophysics Data System (ADS)

    Stocker, Benjamin D.; Roth, Raphael; Joos, Fortunat; Spahni, Renato; Steinacher, Marco; Zaehle, Soenke; Bouwman, Lex; Xu-Ri; Prentice, Iain Colin

    2013-07-01

    Atmospheric concentrations of the three important greenhouse gases (GHGs) CO2, CH4 and N2O are mediated by processes in the terrestrial biosphere that are sensitive to climate and CO2. This leads to feedbacks between climate and land and has contributed to the sharp rise in atmospheric GHG concentrations since pre-industrial times. Here, we apply a process-based model to reproduce the historical atmospheric N2O and CH4 budgets within their uncertainties and apply future scenarios for climate, land-use change and reactive nitrogen (Nr) inputs to investigate future GHG emissions and their feedbacks with climate in a consistent and comprehensive framework. Results suggest that in a business-as-usual scenario, terrestrial N2O and CH4 emissions increase by 80 and 45%, respectively, and the land becomes a net source of C by AD 2100. N2O and CH4 feedbacks imply an additional warming of 0.4-0.5°C by AD 2300; on top of 0.8-1.0°C caused by terrestrial carbon cycle and Albedo feedbacks. The land biosphere represents an increasingly positive feedback to anthropogenic climate change and amplifies equilibrium climate sensitivity by 22-27%. Strong mitigation limits the increase of terrestrial GHG emissions and prevents the land biosphere from acting as an increasingly strong amplifier to anthropogenic climate change.

  12. Quantitative Estimation of the Climatic Effects of Carbon Transferred by International Trade.

    PubMed

    Wei, Ting; Dong, Wenjie; Moore, John; Yan, Qing; Song, Yi; Yang, Zhiyong; Yuan, Wenping; Chou, Jieming; Cui, Xuefeng; Yan, Xiaodong; Wei, Zhigang; Guo, Yan; Yang, Shili; Tian, Di; Lin, Pengfei; Yang, Song; Wen, Zhiping; Lin, Hui; Chen, Min; Feng, Guolin; Jiang, Yundi; Zhu, Xian; Chen, Juan; Wei, Xin; Shi, Wen; Zhang, Zhiguo; Dong, Juan; Li, Yexin; Chen, Deliang

    2016-06-22

    Carbon transfer via international trade affects the spatial pattern of global carbon emissions by redistributing emissions related to production of goods and services. It has potential impacts on attribution of the responsibility of various countries for climate change and formulation of carbon-reduction policies. However, the effect of carbon transfer on climate change has not been quantified. Here, we present a quantitative estimate of climatic impacts of carbon transfer based on a simple CO2 Impulse Response Function and three Earth System Models. The results suggest that carbon transfer leads to a migration of CO2 by 0.1-3.9 ppm or 3-9% of the rise in the global atmospheric concentrations from developed countries to developing countries during 1990-2005 and potentially reduces the effectiveness of the Kyoto Protocol by up to 5.3%. However, the induced atmospheric CO2 concentration and climate changes (e.g., in temperature, ocean heat content, and sea-ice) are very small and lie within observed interannual variability. Given continuous growth of transferred carbon emissions and their proportion in global total carbon emissions, the climatic effect of traded carbon is likely to become more significant in the future, highlighting the need to consider carbon transfer in future climate negotiations.

  13. Contributions of mobile, stationary and biogenic sources to air pollution in the Amazon rainforest: a numerical study with the WRF-Chem model

    NASA Astrophysics Data System (ADS)

    Abou Rafee, Sameh A.; Martins, Leila D.; Kawashima, Ana B.; Almeida, Daniela S.; Morais, Marcos V. B.; Souza, Rita V. A.; Oliveira, Maria B. L.; Souza, Rodrigo A. F.; Medeiros, Adan S. S.; Urbina, Viviana; Freitas, Edmilson D.; Martin, Scot T.; Martins, Jorge A.

    2017-06-01

    This paper evaluates the contributions of the emissions from mobile, stationary and biogenic sources on air pollution in the Amazon rainforest by using the Weather Research and Forecasting with Chemistry (WRF-Chem) model. The analyzed air pollutants were CO, NOx, SO2, O3, PM2. 5, PM10 and volatile organic compounds (VOCs). Five scenarios were defined in order to evaluate the emissions by biogenic, mobile and stationary sources, as well as a future scenario to assess the potential air quality impact of doubled anthropogenic emissions. The stationary sources explain the highest concentrations for all air pollutants evaluated, except for CO, for which the mobile sources are predominant. The anthropogenic sources considered resulted an increasing in the spatial peak-temporal average concentrations of pollutants in 3 to 2780 times in relation to those with only biogenic sources. The future scenario showed an increase in the range of 3 to 62 % in average concentrations and 45 to 109 % in peak concentrations depending on the pollutant. In addition, the spatial distributions of the scenarios has shown that the air pollution plume from the city of Manaus is predominantly transported west and southwest, and it can reach hundreds of kilometers in length.

  14. 4. Carbon Changes in U.S. Forests

    Treesearch

    R.A. Birdsey; L.S. Heath

    1995-01-01

    Global concern about increasing atmospheric concentrations of greenhouse gases, particularly carbon dioxide (CO2), and the possible consequences of future climate changes, has generated interest in understanding and quantifying the role of terrestrial ecosystems in the global carbon cycle. Recent efforts to quantify the global carbon budget have...

  15. A modeling tool to evaluate regional coral reef responses to changes in climate and ocean chemistry

    USGS Publications Warehouse

    Buddemeier, R.W.; Jokiel, P.L.; Zimmerman, K.M.; Lane, D.R.; Carey, J.M.; Bohling, Geoffrey C.; Martinich, J.A.

    2008-01-01

    We developed a spreadsheet-based model for the use of managers, conservationists, and biologists for projecting the effects of climate change on coral reefs at local-to-regional scales. The COMBO (Coral Mortality and Bleaching Output) model calculates the impacts to coral reefs from changes in average SST and CO2 concentrations, and from high temperature mortality (bleaching) events. The model uses a probabilistic assessment of the frequency of high temperature events under a future climate to address scientific uncertainties about potential adverse effects. COMBO offers data libraries and default factors for three selected regions (Hawai'i, Great Barrier Reef, and Caribbean), but it is structured with user-selectable parameter values and data input options, making possible modifications to reflect local conditions or to incorporate local expertise. Preliminary results from sensitivity analyses and simulation examples for Hawai'i demonstrate the relative importance of high temperature events, increased average temperature, and increased CO2 concentration on the future status of coral reefs; Illustrate significant interactions among variables; and allow comparisons of past environmental history with future predictions. ?? 2008, by the American Society of Limnology and Oceanugraphy, Inc.

  16. Rise of nano effects in electrode during electrocatalytic CO2 conversion.

    PubMed

    Yang, Ki Dong; Lee, Chan Woo; Jang, Jun Ho; Ha, Tak Rae; Nam, Ki Tae

    2017-09-01

    The electrocatalytic conversion of CO 2 into value-added fuels has received increasing attention as a promising way to mitigate the atmospheric CO 2 concentration and close the broken carbon-cycle. Early studies, focused on polycrystalline metal electrodes, outlined in detail the overall trends in the catalytic activity and product selectivity of pure metals; however, several inherent limitations were found, such as low current density and high overpotential, which hindered electrocatalytic CO 2 reduction from practical application. Fortunately, the recent development of precisely synthesized nanocatalysts has led to several breakthroughs in catalytic CO 2 conversion. By carefully controlling the thermodynamic adsorption energies and flow dynamics of reaction intermediates, nanosized electrocatalysts afford more versatile and energetically efficient routes to convert CO 2 into desired chemicals. In this article, we review the state-of-the-art nanocatalysts applied for CO 2 conversion and discuss newly found phenomena at the local environment near the catalyst surface. The mechanistic understanding of these findings can provide insight into the future design of catalysts for the efficient and selective reduction of CO 2 .

  17. Dissolution of Uranium(IV) Oxide in Solutions of Ammonium Carbonate and Hydrogen Peroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Steven C.; Peper, Shane M.; Douglas, Matthew

    2009-09-12

    Understanding the dissolution characteristics of uranium oxides is of fundamental scientific interest. Bench scale experiments were conducted to determine the optimal dissolution parameters of uranium(IV) oxide (UO2) powder in solutions of ammonium carbonate [(NH4)2CO3] and hydrogen peroxide (H2O2). Experimental parameters included variable peroxide and carbonate concentrations, and temperature. Results indicate the dissolution rate of UO2 in 1 M (NH4)2CO3 increases linearly with peroxide concentration ranging from 0.05 – 2 M (1:1 to 40:1 mol ratio H2O2:U), with no apparent maximum rate reached under the limited conditions used in our study. Temperature ranging studies show the dissolution rate of UO2 inmore » 1 M (NH4)2CO3 and 0.1 M H2O2 (2:1 mol ratio H2O2:U) increases linearly from 15 °C to 60 °C, again with no apparent maximum rate reached. Dissolution of UO2 in solutions with constant [H2O2] and [(NH4)2CO3] ranging from 0.5 to 2 M showed no difference in rate; however dissolution was significantly reduced in 0.05 M (NH4)2CO3 solution. The results of this study demonstrate the influence of [H2O2], [(NH4)2CO3], and temperature on the dissolution of UO2 in peroxide-containing (NH4)2CO3 solutions. Future studies are planned to elucidate the solution and solid state complexes in these systems.« less

  18. Evaluating the effects of future climate change and elevated CO2 on the water use efficiency in terrestrial ecosystems of China

    USGS Publications Warehouse

    Zhu, Q.; Jiang, H.; Peng, C.; Liu, J.; Wei, X.; Fang, X.; Liu, S.; Zhou, G.; Yu, S.

    2011-01-01

    Water use efficiency (WUE) is an important variable used in climate change and hydrological studies in relation to how it links ecosystem carbon cycles and hydrological cycles together. However, obtaining reliable WUE results based on site-level flux data remains a great challenge when scaling up to larger regional zones. Biophysical, process-based ecosystem models are powerful tools to study WUE at large spatial and temporal scales. The Integrated BIosphere Simulator (IBIS) was used to evaluate the effects of climate change and elevated CO2 concentrations on ecosystem-level WUE (defined as the ratio of gross primary production (GPP) to evapotranspiration (ET)) in relation to terrestrial ecosystems in China for 2009–2099. Climate scenario data (IPCC SRES A2 and SRES B1) generated from the Third Generation Coupled Global Climate Model (CGCM3) was used in the simulations. Seven simulations were implemented according to the assemblage of different elevated CO2 concentrations scenarios and different climate change scenarios. Analysis suggests that (1) further elevated CO2concentrations will significantly enhance the WUE over China by the end of the twenty-first century, especially in forest areas; (2) effects of climate change on WUE will vary for different geographical regions in China with negative effects occurring primarily in southern regions and positive effects occurring primarily in high latitude and altitude regions (Tibetan Plateau); (3) WUE will maintain the current levels for 2009–2099 under the constant climate scenario (i.e. using mean climate condition of 1951–2006 and CO2concentrations of the 2008 level); and (4) WUE will decrease with the increase of water resource restriction (expressed as evaporation ratio) among different ecosystems.

  19. Atmospheric CO2 Concentration Measurements with Clouds from an Airborne Lidar

    NASA Astrophysics Data System (ADS)

    Mao, J.; Abshire, J. B.; Kawa, S. R.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.; Numata, K.; Chen, J. R.; Sun, X.; DiGangi, J. P.; Choi, Y.

    2017-12-01

    Globally distributed atmospheric CO2 concentration measurements with high precision, low bias and full seasonal sampling are crucial to advance carbon cycle sciences. However, two thirds of the Earth's surface is typically covered by clouds, and passive remote sensing approaches from space are limited to cloud-free scenes. NASA Goddard is developing a pulsed, integrated-path differential absorption (IPDA) lidar approach to measure atmospheric column CO2 concentrations, XCO2, from space as a candidate for NASA's ASCENDS mission. Measurements of time-resolved laser backscatter profiles from the atmosphere also allow this technique to estimate XCO2 and range to cloud tops in addition to those to the ground with precise knowledge of the photon path-length. We demonstrate this measurement capability using airborne lidar measurements from summer 2017 ASCENDS airborne science campaign in Alaska. We show retrievals of XCO2 to ground and to a variety of cloud tops. We will also demonstrate how the partial column XCO2 to cloud tops and cloud slicing approach help resolving vertical and horizontal gradient of CO2 in cloudy conditions. The XCO2 retrievals from the lidar are validated against in situ measurements and compared to the Goddard Parameterized Chemistry Transport Model (PCTM) simulations. Adding this measurement capability to the future lidar mission for XCO2 will provide full global and seasonal data coverage and some information about vertical structure of CO2. This unique facility is expected to benefit atmospheric transport process studies, carbon data assimilation in models, and global and regional carbon flux estimation.

  20. Rising atmospheric CO2 concentration may imply higher risk of Fusarium mycotoxin contamination of wheat grains.

    PubMed

    Bencze, Szilvia; Puskás, Katalin; Vida, Gyula; Karsai, Ildikó; Balla, Krisztina; Komáromi, Judit; Veisz, Ottó

    2017-08-01

    Increasing atmospheric CO 2 concentration not only has a direct impact on plants but also affects plant-pathogen interactions. Due to economic and health-related problems, special concern was given thus in the present work to the effect of elevated CO 2 (750 μmol mol -1 ) level on the Fusarium culmorum infection and mycotoxin contamination of wheat. Despite the fact that disease severity was found to be not or little affected by elevated CO 2 in most varieties, as the spread of Fusarium increased only in one variety, spike grain number and/or grain weight decreased significantly at elevated CO 2 in all the varieties, indicating that Fusarium infection generally had a more dramatic impact on the grain yield at elevated CO 2 than at the ambient level. Likewise, grain deoxynivalenol (DON) content was usually considerably higher at elevated CO 2 than at the ambient level in the single-floret inoculation treatment, suggesting that the toxin content is not in direct relation to the level of Fusarium infection. In the whole-spike inoculation, DON production did not change, decreased or increased depending on the variety × experiment interaction. Cooler (18 °C) conditions delayed rachis penetration while 20 °C maximum temperature caused striking increases in the mycotoxin contents, resulting in extremely high DON values and also in a dramatic triggering of the grain zearalenone contamination at elevated CO 2 . The results indicate that future environmental conditions, such as rising CO 2 levels, may increase the threat of grain mycotoxin contamination.

  1. Effect of Ocean Acidification on Organic and Inorganic Speciation of Trace Metals.

    PubMed

    Stockdale, Anthony; Tipping, Edward; Lofts, Stephen; Mortimer, Robert J G

    2016-02-16

    Rising concentrations of atmospheric carbon dioxide are causing acidification of the oceans. This results in changes to the concentrations of key chemical species such as hydroxide, carbonate and bicarbonate ions. These changes will affect the distribution of different forms of trace metals. Using IPCC data for pCO2 and pH under four future emissions scenarios (to the year 2100) we use a chemical speciation model to predict changes in the distribution of organic and inorganic forms of trace metals. Under a scenario where emissions peak after the year 2100, predicted free ion Al, Fe, Cu, and Pb concentrations increase by factors of up to approximately 21, 2.4, 1.5, and 2.0 respectively. Concentrations of organically complexed metal typically have a lower sensitivity to ocean acidification induced changes. Concentrations of organically complexed Mn, Cu, Zn, and Cd fall by up to 10%, while those of organically complexed Fe, Co, and Ni rise by up to 14%. Although modest, these changes may have significance for the biological availability of metals given the close adaptation of marine microorganisms to their environment.

  2. The impact of seawater saturation state and bicarbonate ion concentration on calcification by new recruits of two Atlantic corals

    NASA Astrophysics Data System (ADS)

    de Putron, S. J.; McCorkle, D. C.; Cohen, A. L.; Dillon, A. B.

    2011-06-01

    Rising concentrations of atmospheric CO2 are changing the carbonate chemistry of the oceans, a process known as ocean acidification (OA). Absorption of this CO2 by the surface oceans is increasing the amount of total dissolved inorganic carbon (DIC) and bicarbonate ion (HCO3 -) available for marine calcification yet is simultaneously lowering the seawater pH and carbonate ion concentration ([CO3 2-]), and thus the saturation state of seawater with respect to aragonite (Ωar). We investigated the relative importance of [HCO3 -] versus [CO3 2-] for early calcification by new recruits (primary polyps settled from zooxanthellate larvae) of two tropical coral species, Favia fragum and Porites astreoides. The polyps were reared over a range of Ωar values, which were manipulated by both acid-addition at constant pCO2 (decreased total [HCO3 -] and [CO3 2-]) and by pCO2 elevation at constant alkalinity (increased [HCO3 -], decreased [CO3 2-]). Calcification after 2 weeks was quantified by weighing the complete skeleton (corallite) accreted by each polyp over the course of the experiment. Both species exhibited the same negative response to decreasing [CO3 2-] whether Ωar was lowered by acid-addition or by pCO2 elevation—calcification did not follow total DIC or [HCO3 -]. Nevertheless, the calcification response to decreasing [CO3 2-] was nonlinear. A statistically significant decrease in calcification was only detected between Ωar = <2.5 and Ωar = 1.1-1.5, where calcification of new recruits was reduced by 22-37% per 1.0 decrease in Ωar. Our results differ from many previous studies that report a linear coral calcification response to OA, and from those showing that calcification increases with increasing [HCO3 -]. Clearly, the coral calcification response to OA is variable and complex. A deeper understanding of the biomineralization mechanisms and environmental conditions underlying these variable responses is needed to support informed predictions about future OA impacts on corals and coral reefs.

  3. Seeking potential contributions to future carbon budget in conterminous US forests considering disturbances

    NASA Astrophysics Data System (ADS)

    Zhang, Fangmin; Pan, Yude; Birdsey, Richard A.; Chen, Jing M.; Dugan, Alexa

    2017-11-01

    Currently, US forests constitute a large carbon sink, comprising about 9 % of the global terrestrial carbon sink. Wildfire is the most significant disturbance influencing carbon dynamics in US forests. Our objective is to estimate impacts of climate change, CO2 concentration, and nitrogen deposition on the future net biome productivity (NBP) of US forests until the end of twenty-first century under a range of disturbance conditions. We designate three forest disturbance scenarios under one future climate scenario to evaluate factor impacts for the future period (2011-2100): (1) no wildfires occur but forests continue to age (Saging), (2) no wildfires occur and forest ages are fixed in 2010 (Sfixed_nodis), and (3) wildfires occur according to a historical pattern, consequently changing forest age (Sdis_age_change). Results indicate that US forests remain a large carbon sink in the late twenty-first century under the Sfixed_nodis scenario; however, they become a carbon source under the Saging and Sdis_age_change scenarios. During the period of 2011 to 2100, climate is projected to have a small direct effect on NBP, while atmospheric CO2 concentration and nitrogen deposition have large positive effects on NBP regardless of the future climate and disturbance scenarios. Meanwhile, responses to past disturbances under the Sfixed_nodis scenario increase NBP regardless of the future climate scenarios. Although disturbance effects on NBP under the Saging and Sdis_age_change scenarios decrease with time, both scenarios experience an increase in NBP prior to the 2050s and then a decrease in NBP until the end of the twenty-first century. This study indicates that there is potential to increase or at least maintain the carbon sink of conterminous US forests at the current level if future wildfires are reduced and age structures are maintained at a productive mix. The effects of CO2 on the future carbon sink may overwhelm effects of other factors at the end of the twenty-first century. Although our model in conjunction with multiple disturbance scenarios may not reflect the true conditions of future forests, it provides a range of potential conditions as well as a useful guide to both current and future forest carbon management.

  4. Increasing Mississippi river discharge throughout the twenty-first century influenced by changes in climate, land use and atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Tao, B.; Tian, H.; Ren, W.; Yang, J.; Yang, Q.; He, R.; Cai, W. J.; Lohrenz, S. E.

    2014-12-01

    Previous studies have demonstrated that changes in temperature and precipitation (hereafter climate change) would influence river discharge, but the relative importance of climate change, land use, and elevated atmospheric CO2 have not yet been fully investigated. Here we examined how river discharge in the Mississippi River basin in the 21st century might be influenced by these factors using the Dynamic Land Ecosystem Model driven by atmospheric CO2, downscaled GCMs climate and land use scenarios. Our results suggest that river discharge would be substantially enhanced (10.7-59.8%) by the 2090s compared to the recent decade (2000s), though large discrepancies exist among different climate, atmospheric CO2, and land use change scenarios. Our factorial analyses further indicate that the combined effects of land use change and human-induced atmospheric CO2 elevation on river discharge would outweigh climate change effect under the high emission scenario (A2) of Intergovernmental Panel for Climate Change. Our study offers the first attempt to project potential changes in river discharge in response to multiple future environmental changes. It demonstrates the importance of land use change and atmospheric CO2 concentrations in projecting future changes in hydrologic processes. The projected increase river discharge implies that riverine fluxes of carbon, nutrients and pesticide from the MRB to the coastal regions would increase in the future, and thus may influence the states of ocean acidification and hypoxia and deteriorate ocean water quality. Further efforts will also be needed to account for additional environmental factors (such as nitrogen deposition, tropospheric ozone pollution, dam construction, etc.) in projecting changes in the hydrological cycle.

  5. Enhanced photosynthetic efficiency in trees world-wide by rising atmospheric CO2 levels

    NASA Astrophysics Data System (ADS)

    Ehlers, Ina; Wieloch, Thomas; Groenendijk, Peter; Vlam, Mart; van der Sleen, Peter; Zuidema, Pieter A.; Robertson, Iain; Schleucher, Jürgen

    2014-05-01

    The atmospheric CO2 concentration is increasing rapidly due to anthropogenic emissions but the effect on the Earth's biosphere is poorly understood. The ability of the biosphere to fix CO2 through photosynthesis will determine future atmospheric CO2 concentrations as well as future productivity of crops and forests. Manipulative CO2 enrichment experiments (e.g. FACE) are limited to (i) short time spans, (ii) few locations and (iii) large step increases in [CO2]. Here, we apply new stable isotope methodology to tree-ring archives, to study the effect of increasing CO2 concentrations retrospectively during the past centuries. We cover the whole [CO2] increase since industrialization, and sample trees with global distribution. Instead of isotope ratios of whole molecules, we use intramolecular isotope distributions, a new tool for tree-ring analysis with decisive advantages. In experiments on annual plants, we have found that the intramolecular distribution of deuterium (equivalent to ratios of isotopomer abundances) in photosynthetic glucose depends on growth [CO2] and reflects the metabolic flux ratio of photosynthesis to photorespiration. By applying this isotopomer methodology to trees from Oak Ridge FACE experiment, we show that this CO2 response is present in trees on the leaf level. This CO2 dependence constitutes a physiological signal, which is transferred to the wood of the tree rings. In trees from 13 locations on all continents the isotopomer ratio of tree-ring cellulose is correlated to atmospheric [CO2] during the past 200 years. The shift of the isotopomer ratio is universal for all 12 species analyzed, including both broad-leafed trees and conifers. Because the trees originate from sites with widely differing D/H ratios of precipitation, the generality of the response demonstrates that the signal is independent of the source isotope ratio, because it is encoded in an isotopomer abundance ratio. This decoupling of climate signals and physiological signals is a fundamental advantage of isotopomer ratios (Augusti et al., Chem. Geol 2008). These results demonstrate that increasing [CO2] has reduced the ratio of photorespiration to photosynthesis on a global scale. Photorespiration is a side reaction that decreases the C gain of plants; the suppression of photorespiration in all analyzed trees indicates that increasing atmospheric [CO2] is enhancing the photosynthetic efficiency of trees world-wide. The consensus response of the trees agrees with the response of annual plants in greenhouse experiments, with three important conclusions. First, the generality of the isotopomer shift confirms that the CO2 response reflects the ratio of photosynthesis to photorespiration, and that it creates a robust signal in tree rings. Second, the agreement between greenhouse-grown plants and trees indicates that there has not been an acclimation response of the trees during the past centuries. Third, the results show that the regulation of tree gas exchange has during past centuries been governed by the same rules as observed in manipulative experiments, in contradiction to recent reports (Keenan et al., Nature 2013).

  6. [Influence of elevated atmospheric CO2 concentration on photosynthesis and leaf nitrogen partition in process of photosynthetic carbon cycle in Musa paradisiaca].

    PubMed

    Sun, G; Zhao, P; Zeng, X; Peng, S

    2001-06-01

    The photosynthetic rate (Pn) in leaves of Musa paradisiaca grown under elevated CO2 concentration (700 +/- 56 microliters.L-1) for one week was 5.14 +/- 0.32 mumol.m-2.s-1, 22.1% higher than that under ambient CO2 concentration, while under elevated CO2 concentration for 8 week, the Pn decreased by 18.1%. It can be inferred that the photosynthetic acclimation to elevated CO2 concentration and the Pn inhibition occurred in leaves of M. paradisiaca. The respiration rate in light (Rd) was lower in leaves under higher CO2 concentration, compared with that under ambient CO2 concentration. If the respiration in light was not included, the difference in CO2 compensation point for the leaves of both plants was not significant. Under higher CO2 concentration for 8 weeks, the maximum carboxylation rate(Vcmax) and electron transportation rate (J) in leaves decreased respectively by 30.5% and 14.8%, compared with that under ambient CO2 concentration. The calculated apparent quantum yield (alpha) in leaves under elevated CO2 concentration according to the initial slope of Pn/PAR was reduced to 0.014 +/- 0.010 molCO2.mol-1 quanta, compared with the value of 0.025 +/- 0.005 molCO2.mol-1 quanta in the control. The efficiency of light energy conversion also decreased from 0.203 to 0.136 electrons.quanta-1 in plants under elevated CO2 concentration. A lower partitioning coefficient for leaf nitrogen in Rubisco, bioenergetics and thylakoid light-harvesting components was observed in plants under higher CO2 concentration. The results indicated that the multi-process of photosynthesis was suppressed significantly by a long-term (8 weeks) higher CO2 concentration incubation.

  7. Tropical CO2 seeps reveal the impact of ocean acidification on coral reef invertebrate recruitment.

    PubMed

    Allen, Ro; Foggo, Andrew; Fabricius, Katharina; Balistreri, Annalisa; Hall-Spencer, Jason M

    2017-11-30

    Rising atmospheric CO 2 concentrations are causing ocean acidification by reducing seawater pH and carbonate saturation levels. Laboratory studies have demonstrated that many larval and juvenile marine invertebrates are vulnerable to these changes in surface ocean chemistry, but challenges remain in predicting effects at community and ecosystem levels. We investigated the effect of ocean acidification on invertebrate recruitment at two coral reef CO 2 seeps in Papua New Guinea. Invertebrate communities differed significantly between 'reference' (median pH7.97, 8.00), 'high CO 2 ' (median pH7.77, 7.79), and 'extreme CO 2 ' (median pH7.32, 7.68) conditions at each reef. There were also significant reductions in calcifying taxa, copepods and amphipods as CO 2 levels increased. The observed shifts in recruitment were comparable to those previously described in the Mediterranean, revealing an ecological mechanism by which shallow coastal systems are affected by near-future levels of ocean acidification. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. [Study on the change of dune CO2 concentration in the autumn at Minqin in Tengger desert].

    PubMed

    Shao, Tian-Jie; Zhao, Jing-Bo; Yu, Ke-Ke; Dong, Zhi-Bao

    2010-12-01

    In order to find out the CO2 concentration of the desert area, the influence of it on the CO2 in the atmosphere and the role that it played on the global carbon cycle, the research team utilized in September 2009 infrared CO2 monitor to observe the CO2 concentration of the 12 drill holes day and night in Minqin desert area in the Tengger desert. The difference of various observation spots' CO2 concentration of the desert area in the Tengger desert area is relatively big. The CO2 concentration at night is low but high in the daytime and the CO2 concentration at each observation spot changes from 310 x 10(-6) to 2 630 x 10(-6). The CO2 concentration is also obviously different in depth and the CO2 concentration at different depths in order of size is as follows: 4 m(3m) > 2 m > 1m. Compared with Xi' an area where is in the temperate and semi-humid region, the CO2 concentration of the desert area in Tengger desert is very low. The diurnal variation of CO2 concentration of the desert area in Tengger desert is obvious, and from the day 09:00 am to 09:00 am the next day, the CO2 concentrations at different depths which rang from 1 m to 4 m present the regularity that it changes from low to high, and then from high to low. The diurnal variation in temperature is the main reason that causes the change of the CO2 concentration in the sand layer, both of which have the positive correlation. The sand layer's CO2 concentration with higher water content is obviously higher than that with lower water content. The moisture content of sand layer is the main factor of the CO2 concentration. The CO2 concentration above 4m in the desert area is higher than that above the surface, which maybe indicates that the CO2 from the highest desert area is also the resource of CO2 in the atmosphere.

  9. CO2-Assisted Conversion of Crystal Two-Dimensional Molybdenum Oxide to Amorphism with Plasmon Resonances.

    PubMed

    Liu, Wei; Xu, Qun

    2018-04-20

    Localized surface plasmon resonances (LSPRs) of ultra-thin two-dimensional (2D) nanomaterials opened a new regime in plasmonics in the last several years. 2D plasmonic materials are yet concentrated on the crystal structure, amorphous materials are hardly reported because of their limited preparation methods rather than undesired plasmonic properties. Taking molybdenum oxides as an example, herein, we elaborate the 2D amorphous plasmons prepared with the assistance of supercritical CO2. In brief, we examine the reported characteristic plasmonic properties of molybdenum oxides, and applications of supercritical CO2 in formations of 2D layer materials as well as introduced phase and disorder engineering based on our researchs. Furthermore, we propose our perspective on the development of 2D plasmons, especially for amorphous layer materials in the future. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century

    USGS Publications Warehouse

    Balshi, M. S.; McGuire, Anthony David; Duffy, P.; Flannigan, M.; Kicklighter, David W.; Melillo, J.

    2009-01-01

    The boreal forest contains large reserves of carbon. Across this region, wildfires influence the temporal and spatial dynamics of carbon storage. In this study, we estimate fire emissions and changes in carbon storage for boreal North America over the 21st century. We use a gridded data set developed with a multivariate adaptive regression spline approach to determine how area burned varies each year with changing climatic and fuel moisture conditions. We apply the process-based Terrestrial Ecosystem Model to evaluate the role of future fire on the carbon dynamics of boreal North America in the context of changing atmospheric carbon dioxide (CO2) concentration and climate in the A2 and B2 emissions scenarios of the CGCM2 global climate model. Relative to the last decade of the 20th century, decadal total carbon emissions from fire increase by 2.5–4.4 times by 2091–2100, depending on the climate scenario and assumptions about CO2fertilization. Larger fire emissions occur with warmer climates or if CO2 fertilization is assumed to occur. Despite the increases in fire emissions, our simulations indicate that boreal North America will be a carbon sink over the 21st century if CO2 fertilization is assumed to occur in the future. In contrast, simulations excluding CO2 fertilization over the same period indicate that the region will change to a carbon source to the atmosphere, with the source being 2.1 times greater under the warmer A2 scenario than the B2 scenario. To improve estimates of wildfire on terrestrial carbon dynamics in boreal North America, future studies should incorporate the role of dynamic vegetation to represent more accurately post-fire successional processes, incorporate fire severity parameters that change in time and space, account for human influences through increased fire suppression, and integrate the role of other disturbances and their interactions with future fire regime.

  11. Laboratory batch experiments and geochemical modelling of water-rock-supercritical CO2 reactions in Southern San Joaquin Valley, California oil field sediments: Implications for future carbon capture and sequestration projects.

    NASA Astrophysics Data System (ADS)

    Mickler, P. J.; Rivas, C.; Freeman, S.; Tan, T. W.; Baron, D.; Horton, R. A.

    2015-12-01

    Storage of CO2 as supercritical liquid in oil reservoirs has been proposed for enhanced oil recovery and a way to lower atmospheric CO2 levels. The fate of CO2 after injection requires an understanding of mineral dissolution/precipitation reactions occurring between the formation minerals and the existing formation brines at formation temperatures and pressures in the presence of supercritical CO2. In this study, core samples from three potential storage formations, the Vedder Fm. (Rio Bravo oil field), Stevens Fm. (Elk Hills oil field) and Temblor Fm. (McKittrick oil field) were reacted with a synthetic brine and CO2(sc) at reservoir temperature (110°C) and pressure (245-250 bar). A combination of petrographic, SEM-EDS and XRD analyses, brine chemistry, and PHREEQ-C modelling were used to identify geochemical reactions altering aquifer mineralogy. XRD and petrographic analyses identified potentially reactive minerals including calcite and dolomite (~2%), pyrite (~1%), and feldspars (~25-60%). Despite the low abundance, calcite dissolution and pyrite oxidation were dominant geochemical reactions. Feldspar weathering produced release rates ~1-2 orders of magnitude slower than calcite dissolution. Calcite dissolution increased the aqueous concentrations of Ca, HCO3, Mg, Mn and Sr. Silicate weathering increased the aqueous concentrations of Si and K. Plagioclase weathering likely increased aqueous Ca concentrations. Pyrite oxidation, despite attempts to remove O2 from the experiment, increased the aqueous concentration of Fe and SO4. SEM-EDS analysis of post-reaction samples identified mixed-layered illite-smectites associated with feldspar grains suggesting clay mineral precipitation in addition to calcite, pyrite and feldspar dissolution. The Vedder Fm. sample underwent complete disaggregation during the reaction due to cement dissolution. This may adversely affect Vedder Formation CCS projects by impacting injection well integrity.

  12. Will Renewable Energy Save Our Planet?

    NASA Astrophysics Data System (ADS)

    Bojić, Milorad

    2010-06-01

    This paper discusses some important fundamental issues behind application of renewable energy (RE) to evaluate its impact as a climate change mitigation technology. The discussed issues are the following: definition of renewable energy, concentration of RE by weight and volume, generation of electrical energy and its power at unit area, electrical energy demand per unit area, life time approach vs. layman approach, energy return time, energy return ratio, CO2 return time, energy mix for RES production and use, geographical distribution of RES use, huge scale of energy shift from RES to non-RES, increase in energy consumption, Thermodynamic equilibrium of earth, and probable solutions for energy future of our energy and environmental crisis of today. The future solution (that would enable to human civilization further welfare, and good living, but with lower release of CO2 in atmosphere) may not be only RES. This will rather be an energy mix that may contain nuclear energy, non-nuclear renewable energy, or fossil energy with CO2 sequestration, efficient energy technologies, energy saving, and energy consumption decrease.

  13. Mitigation strategies and unforseen consequences: A systematic assessment of the adaption of upper midwest agriculture to future climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doering, O.; Lowenberg-DeBoer, J.; Habeck, M.

    1997-12-31

    Our starting point is the assumption of global climate change that doubles CO{sub 2} in the Upper Midwest by 2050. This work then concentrates on determining agriculture in the Upper Midwest successfully adapts to such a climate change.

  14. The impacts of climate change and belowground herbivory on aphids via primary metabolites

    NASA Astrophysics Data System (ADS)

    Ryalls, James M. W.

    Global climate and atmospheric change (summarised as climate change for brevity) may alter patterns of crop damage by insect herbivores, but little is known about how multiple climate change factors, acting in tandem, shape such interactions. Crucially, the specific plant-mediated mechanisms underpinning these effects remain largely unknown. Moreover, research into the effects of climate change on leguminous plant species, which have the ability to fix atmospheric nitrogen (N2) via their association with root nodule-dwelling rhizobial bacteria, and their associated insect herbivores, is surprisingly scarce considering their increasing importance in terrestrial ecosystems worldwide. Using a model legume, lucerne, otherwise known as alfalfa, Medicago sativa (Fabaceae), and a model pest species, the pea aphid, Acyrthosiphon pisum (Hemiptera: Aphididae), this work addresses how predicted changes in carbon dioxide (CO2) concentrations, temperature and rainfall patterns as well as interactions with other organisms, including the root-feeding weevil Sitona discoideus (Coleoptera: Curculionidae), might shape legume-feeding aphid populations in the future. Recent literature on the impacts of climate change on aphids and the biology and trophic interactions of lucerne aphids specifically were synthesised in chapters one and two, respectively. These chapters highlighted the importance of the interactions between multiple abiotic and biotic variables in shaping aphid population dynamics. Empirical research chapters three to six, using up to five lucerne genotypes (i.e. cultivars) in glasshouse and field experiments, addressed how A. pisum responded to the isolated and combined effects of climate change and root herbivory. In particular, chapter three determined the effects of elevated temperatures (eT) and elevated atmospheric CO2 concentrations (eCO2) on root-feeding S. discoideus larvae and their interaction with A. pisum. Chapter four addressed whether the effects of eT, eCO2 and simulated root damage on aphids could be explained by changes in plant amino acid concentrations. Chapter five built on the mechanistic findings from chapter four to determine whether specific groups of amino acids were responsible for driving the effects of eT and eCO2 on aphid fecundity, longevity and intrinsic rate of increase (rm). Chapter six extended this research to the field to determine the plant-mediated effects of water stress and root herbivory on aphids in a mixed grass-legume system. Lucerne demonstrated an over compensatory growth response to root herbivory by S. discoideus larvae by increasing net root biomass and nodulation by 31% and 45%, respectively. eT negated the positive effects of eCO2 on weevil larval development, as well as on a number of lucerne characteristics (e.g. nodulation and amino acid concentrations) and aphid performance parameters (e.g. population growth, fecundity and rm). Root herbivory by S. discoideus negatively impacted aphids in general, although effects were dependent on feeding duration and herbivore arrival sequence (i.e. whether aphids fed on the plant before or after root herbivory). While drought negatively impacted aphid abundance, potentially via reduced phloem turgor and sap viscosity, the effects of eT, eCO2 and root herbivory on aphids were often driven by concentrations of specific amino acid groups. Nitrogen (N) leached from lacerated lucerne root nodules by S. discoideus led to increased concentrations of N in a neighbouring grass, Phalaris aquatica (Poaceae), with knock-on effects on plant competition and community dynamics. The opposing effects of eT and eCO2 on plant characteristics and both aboveground and belowground herbivores demonstrates the importance of combining trophic complexity with multiple climatic factors as a means of gaining realistic insights into how insect and plant communities will respond under future conditions. Identifying the specific amino acid changes underpinning aphid responses to climate change and root herbivory offers the potential for breeding aphid resistance traits into lucerne cultivars and informing adaptation strategies against future threats. Changes in precipitation patterns and plant-mediated indirect aboveground-belowground herbivore interactions can alter the outcome of competition between N-fixing legumes and non-N-fixing grasses, with important implications for plant community structure and productivity. Avenues for future research are explored and other causal agents of changes in aphid performance are discussed, which may further elucidate the mechanisms underpinning climate change and belowground herbivory impacts on aphid pests.

  15. Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification

    PubMed Central

    Zhang, Han; Cao, Long

    2016-01-01

    Ocean uptake of anthropogenic CO2 reduces pH and saturation state of calcium carbonate materials of seawater, which could reduce the calcification rate of some marine organisms, triggering a negative feedback on the growth of atmospheric CO2. We quantify the effect of this CO2-calcification feedback by conducting a series of Earth system model simulations that incorporate different parameterization schemes describing the dependence of calcification rate on saturation state of CaCO3. In a scenario with SRES A2 CO2 emission until 2100 and zero emission afterwards, by year 3500, in the simulation without CO2-calcification feedback, model projects an accumulated ocean CO2 uptake of 1462 PgC, atmospheric CO2 of 612 ppm, and surface pH of 7.9. Inclusion of CO2-calcification feedback increases ocean CO2 uptake by 9 to 285 PgC, reduces atmospheric CO2 by 4 to 70 ppm, and mitigates the reduction in surface pH by 0.003 to 0.06, depending on the form of parameterization scheme used. It is also found that the effect of CO2-calcification feedback on ocean carbon uptake is comparable and could be much larger than the effect from CO2-induced warming. Our results highlight the potentially important role CO2-calcification feedback plays in ocean carbon cycle and projections of future atmospheric CO2 concentrations. PMID:26838480

  16. CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression

    NASA Astrophysics Data System (ADS)

    Kutzbach, L.; Schneider, J.; Sachs, T.; Giebels, M.; Nykänen, H.; Shurpali, N. J.; Martikainen, P. J.; Alm, J.; Wilmking, M.

    2007-07-01

    Closed (non-steady state) chambers are widely used for quantifying carbon dioxide (CO2) fluxes between soils or low-stature canopies and the atmosphere. It is well recognised that covering a soil or vegetation by a closed chamber inherently disturbs the natural CO2 fluxes by altering the concentration gradients between the soil, the vegetation and the overlying air. Thus, the driving factors of CO2 fluxes are not constant during the closed chamber experiment, and no linear increase or decrease of CO2 concentration over time within the chamber headspace can be expected. Nevertheless, linear regression has been applied for calculating CO2 fluxes in many recent, partly influential, studies. This approach was justified by keeping the closure time short and assuming the concentration change over time to be in the linear range. Here, we test if the application of linear regression is really appropriate for estimating CO2 fluxes using closed chambers over short closure times and if the application of nonlinear regression is necessary. We developed a nonlinear exponential regression model from diffusion and photosynthesis theory. This exponential model was tested with four different datasets of CO2 flux measurements (total number: 1764) conducted at three peatland sites in Finland and a tundra site in Siberia. The flux measurements were performed using transparent chambers on vegetated surfaces and opaque chambers on bare peat surfaces. Thorough analyses of residuals demonstrated that linear regression was frequently not appropriate for the determination of CO2 fluxes by closed-chamber methods, even if closure times were kept short. The developed exponential model was well suited for nonlinear regression of the concentration over time c(t) evolution in the chamber headspace and estimation of the initial CO2 fluxes at closure time for the majority of experiments. CO2 flux estimates by linear regression can be as low as 40% of the flux estimates of exponential regression for closure times of only two minutes and even lower for longer closure times. The degree of underestimation increased with increasing CO2 flux strength and is dependent on soil and vegetation conditions which can disturb not only the quantitative but also the qualitative evaluation of CO2 flux dynamics. The underestimation effect by linear regression was observed to be different for CO2 uptake and release situations which can lead to stronger bias in the daily, seasonal and annual CO2 balances than in the individual fluxes. To avoid serious bias of CO2 flux estimates based on closed chamber experiments, we suggest further tests using published datasets and recommend the use of nonlinear regression models for future closed chamber studies.

  17. Influences of the (NH2)2CO concentration on magnetic photocatalytic composites

    NASA Astrophysics Data System (ADS)

    Liŭ, Dan; Li, Ziheng; Wang, Wenquan; Liú, Dan; Wang, Guoqiang; Lin, Junhong; He, Yingqiao; Li, Xiangru

    2016-11-01

    Magnetic photocatalytic Fe3O4@TiO2 composites have been fabricated by changing the concentration of (NH2)2CO. Samples were named as low (NH2)2CO concentration group which the (NH2)2CO concentration in the synthesis process was below 2.25 mol/L and high (NH2)2CO concentration group which the (NH2)2CO concentration was above 2.5 mol/L. Photocatalytic degradation experiments of methyl orange showed that the final degradation rates of low (NH2)2CO concentration group samples were higher than that of high (NH2)2CO concentration group, even better than P25 at the same test conditions. And it was interesting that samples of low (NH2)2CO concentration group had smaller values of BET surface areas than that of high (NH2)2CO concentration group. It indicated that the improvement of photocatalytic activity which was effected by BET surface areas was not obvious. There were two main factors enhancing the photocatalytic property of low (NH2)2CO concentration group: First, diffusing reflection spectra showed that the low (NH2)2CO concentration group samples had lower reflectivity, this suggested that the structure improved the efficiency of light absorption; Second, NH4+ would take up the active sites on the surface of the TiO2 particles, the FT-IR test results showed that the samples of the low (NH2)2CO concentration group samples bonded less NH4+, thus leading to the higher photocatalytic activity. It had enlightenment role for optimizing the performance of photocatalytic materials.

  18. Impact of elevated CO2, water table, and temperature changes on CO2 and CH4 fluxes from arctic tundra soils

    NASA Astrophysics Data System (ADS)

    Zona, Donatella; Haynes, Katherine; Deutschman, Douglas; Bryant, Emma; McEwing, Katherine; Davidson, Scott; Oechel, Walter

    2015-04-01

    Large uncertainties still exist on the response of tundra C emissions to future climate due, in part, to the lack of understanding of the interactive effects of potentially controlling variables on C emissions from Arctic ecosystems. In this study we subjected 48 soil cores (without active vegetation) from dominant arctic wetland vegetation types, to a laboratory manipulation of elevated atmospheric CO2, elevated temperature, and altered water table, representing current and future conditions in the Arctic for two growing seasons. To our knowledge this experiment comprised the most extensively replicated manipulation of intact soil cores in the Arctic. The hydrological status of the soil was the most dominant control on both soil CO2 and CH4 emissions. Despite higher soil CO2 emission occurring in the drier plots, substantial CO2 respiration occurred under flooded conditions, suggesting significant anaerobic respirations in these arctic tundra ecosystems. Importantly, a critical control on soil CO2 and CH4 fluxes was the original vascular plant cover. The dissolved organic carbon (DOC) concentration was correlated with cumulative CH4 emissions but not with cumulative CO2 suggesting C quality influenced CH4 production but not soil CO2 emissions. An interactive effect between increased temperature and elevated CO2 on soil CO2 emissions suggested a potential shift of the soils microbial community towards more efficient soil organic matter degraders with warming and elevated CO2. Methane emissions did not decrease over the course of the experiment, even with no input from vegetation. This result indicated that CH4 emissions are not carbon limited in these C rich soils. Overall CH4 emissions represented about 49% of the sum of total C (C-CO2 + C-CH4) emission in the wet treatments, and 15% in the dry treatments, representing a dominant component of the overall C balance from arctic soils.

  19. Host Plant Physiology and Mycorrhizal Functioning Shift across a Glacial through Future [CO2] Gradient.

    PubMed

    Becklin, Katie M; Mullinix, George W R; Ward, Joy K

    2016-10-01

    Rising atmospheric carbon dioxide concentration ([CO 2 ]) may modulate the functioning of mycorrhizal associations by altering the relative degree of nutrient and carbohydrate limitations in plants. To test this, we grew Taraxacum ceratophorum and Taraxacum officinale (native and exotic dandelions) with and without mycorrhizal fungi across a broad [CO 2 ] gradient (180-1,000 µL L -1 ). Differential plant growth rates and vegetative plasticity were hypothesized to drive species-specific responses to [CO 2 ] and arbuscular mycorrhizal fungi. To evaluate [CO 2 ] effects on mycorrhizal functioning, we calculated response ratios based on the relative biomass of mycorrhizal (M Bio ) and nonmycorrhizal (NM Bio ) plants (R Bio = [M Bio - NM Bio ]/NM Bio ). We then assessed linkages between R Bio and host physiology, fungal growth, and biomass allocation using structural equation modeling. For T. officinale, R Bio increased with rising [CO 2 ], shifting from negative to positive values at 700 µL L -1 [CO 2 ] and mycorrhizal effects on photosynthesis and leaf growth rates drove shifts in R Bio in this species. For T. ceratophorum, R Bio increased from 180 to 390 µL L -1 and further increases in [CO 2 ] caused R Bio to shift from positive to negative values. [CO 2 ] and fungal effects on plant growth and carbon sink strength were correlated with shifts in R Bio in this species. Overall, we show that rising [CO 2 ] significantly altered the functioning of mycorrhizal associations. These symbioses became more beneficial with rising [CO 2 ], but nonlinear effects may limit plant responses to mycorrhizal fungi under future [CO 2 ]. The magnitude and mechanisms driving mycorrhizal-CO 2 responses reflected species-specific differences in growth rate and vegetative plasticity, indicating that these traits may provide a framework for predicting mycorrhizal responses to global change. © 2016 American Society of Plant Biologists. All Rights Reserved.

  20. Ocean Acidification Affects the Cytoskeleton, Lysozymes, and Nitric Oxide of Hemocytes: A Possible Explanation for the Hampered Phagocytosis in Blood Clams, Tegillarca granosa.

    PubMed

    Su, Wenhao; Rong, Jiahuan; Zha, Shanjie; Yan, Maocang; Fang, Jun; Liu, Guangxu

    2018-01-01

    An enormous amount of anthropogenic carbon dioxide (CO 2 ) has been dissolved into the ocean, leading to a lower pH and changes in the chemical properties of seawater, which has been termed ocean acidification (OA). The impacts of p CO 2 -driven acidification on immunity have been revealed recently in various marine organisms. However, the mechanism causing the reduction in phagocytosis still remains unclear. Therefore, the impacts of p CO 2 -driven OA at present and near-future levels (pH values of 8.1, 7.8, and 7.4) on the rate of phagocytosis, the abundance of cytoskeleton components, the levels of nitric oxide (NO), and the concentration and activity of lysozymes (LZM) of hemocytes were investigated in a commercial bivalve species, the blood clam ( Tegillarca granosa ). In addition, the effects of OA on the expression of genes regulating actin skeleton and nitric oxide synthesis 2 ( NOS2 ) were also analyzed. The results obtained showed that the phagocytic rate, cytoskeleton component abundance, concentration and activity of LZM of hemocytes were all significantly reduced after a 2-week exposure to the future OA scenario of a pH of 7.4. On the contrary, a remarkable increase in the concentration of NO compared to that of the control was detected in clams exposed to OA. Furthermore, the expression of genes regulating the actin cytoskeleton and NOS were significantly up-regulated after OA exposure. Though the mechanism causing phagocytosis seemed to be complicated based on the results obtained in the present study and those reported previously, our results suggested that OA may reduce the phagocytosis of hemocytes by (1) decreasing the abundance of cytoskeleton components and therefore hampering the cytoskeleton-mediated process of engulfment, (2) reducing the concentration and activity of LZM and therefore constraining the degradation of the engulfed pathogen through an oxygen-independent pathway, and (3) inducing the production of NO, which may negatively regulate immune responses.

  1. Forecasting carbon budget under climate change and CO2 fertilization for subtropical region in China using integrated biosphere simulator (IBIS) model

    USGS Publications Warehouse

    Zhu, Q.; Jiang, H.; Liu, J.; Peng, C.; Fang, X.; Yu, S.; Zhou, G.; Wei, X.; Ju, W.

    2011-01-01

    The regional carbon budget of the climatic transition zone may be very sensitive to climate change and increasing atmospheric CO2 concentrations. This study simulated the carbon cycles under these changes using process-based ecosystem models. The Integrated Biosphere Simulator (IBIS), a Dynamic Global Vegetation Model (DGVM), was used to evaluate the impacts of climate change and CO2 fertilization on net primary production (NPP), net ecosystem production (NEP), and the vegetation structure of terrestrial ecosystems in Zhejiang province (area 101,800 km2, mainly covered by subtropical evergreen forest and warm-temperate evergreen broadleaf forest) which is located in the subtropical climate area of China. Two general circulation models (HADCM3 and CGCM3) representing four IPCC climate change scenarios (HC3AA, HC3GG, CGCM-sresa2, and CGCM-sresb1) were used as climate inputs for IBIS. Results show that simulated historical biomass and NPP are consistent with field and other modelled data, which makes the analysis of future carbon budget reliable. The results indicate that NPP over the entire Zhejiang province was about 55 Mt C yr-1 during the last half of the 21st century. An NPP increase of about 24 Mt C by the end of the 21st century was estimated with the combined effects of increasing CO2 and climate change. A slight NPP increase of about 5 Mt C was estimated under the climate change alone scenario. Forests in Zhejiang are currently acting as a carbon sink with an average NEP of about 2.5 Mt C yr-1. NEP will increase to about 5 Mt C yr-1 by the end of the 21st century with the increasing atmospheric CO2 concentration and climate change. However, climate change alone will reduce the forest carbon sequestration of Zhejiang's forests. Future climate warming will substantially change the vegetation cover types; warm-temperate evergreen broadleaf forest will be gradually substituted by subtropical evergreen forest. An increasing CO2 concentration will have little contribution to vegetation changes. Simulated NPP shows geographic patterns consistent with temperature to a certain extent, and precipitation is not the limiting factor for forest NPP in the subtropical climate conditions. There is no close relationship between the spatial pattern of NEP and climate condition.

  2. Forecasting carbon budget under climate change and CO 2 fertilization for subtropical region in China using integrated biosphere simulator (IBIS) model

    USGS Publications Warehouse

    Zhu, Q.; Jiang, H.; Liu, J.; Peng, C.; Fang, X.; Yu, S.; Zhou, G.; Wei, X.; Ju, W.

    2011-01-01

    The regional carbon budget of the climatic transition zone may be very sensitive to climate change and increasing atmospheric CO 2 concentrations. This study simulated the carbon cycles under these changes using process-based ecosystem models. The Integrated Biosphere Simulator (IBIS), a Dynamic Global Vegetation Model (DGVM), was used to evaluate the impacts of climate change and CO 2 fertilization on net primary production (NPP), net ecosystem production (NEP), and the vegetation structure of terrestrial ecosystems in Zhejiang province (area 101,800 km 2, mainly covered by subtropical evergreen forest and warm-temperate evergreen broadleaf forest) which is located in the subtropical climate area of China. Two general circulation models (HADCM3 and CGCM3) representing four IPCC climate change scenarios (HC3AA, HC3GG, CGCM-sresa2, and CGCM-sresb1) were used as climate inputs for IBIS. Results show that simulated historical biomass and NPP are consistent with field and other modelled data, which makes the analysis of future carbon budget reliable. The results indicate that NPP over the entire Zhejiang province was about 55 Mt C yr -1 during the last half of the 21 st century. An NPP increase of about 24 Mt C by the end of the 21 st century was estimated with the combined effects of increasing CO 2 and climate change. A slight NPP increase of about 5 Mt C was estimated under the climate change alone scenario. Forests in Zhejiang are currently acting as a carbon sink with an average NEP of about 2.5 Mt C yr -1. NEP will increase to about 5 Mt C yr -1 by the end of the 21 st century with the increasing atmospheric CO 2 concentration and climate change. However, climate change alone will reduce the forest carbon sequestration of Zhejiang's forests. Future climate warming will substantially change the vegetation cover types; warm-temperate evergreen broadleaf forest will be gradually substituted by subtropical evergreen forest. An increasing CO 2 concentration will have little contribution to vegetation changes. Simulated NPP shows geographic patterns consistent with temperature to a certain extent, and precipitation is not the limiting factor for forest NPP in the subtropical climate conditions. There is no close relationship between the spatial pattern of NEP and climate condition.

  3. pCO2 effects on species composition and growth of an ...

    EPA Pesticide Factsheets

    The effects of ongoing changes in ocean carbonate chemistry on plankton ecology have important implications for food webs and biogeochemical cycling. However, conflicting results have emerged regarding species-specific responses to pCO2 enrichment and thus community responses have been difficult to predict. To assess community level effects (e.g., production) of altered carbonate chemistry, studies are needed that capitalize on the benefits of controlled experiments but also retain features of intact ecosystems that may exacerbate or ameliorate the effects observed in single-species or single cohort experiments. We performed incubations of natural plankton communities from Narragansett Bay, RI, USA in winter at ambient bay temperatures (5–13 °C), light and nutrient concentrations under three levels of controlled and constant CO2 concentrations, simulating past, present and future conditions at mean pCO2 levels of 224, 361, and 724 μatm respectively. Samples for carbonate analysis, chlorophyll a, plankton size-abundance, and plankton species composition were collected daily and phytoplankton growth rates in three different size fractions (20 μm) were measured at the end of the 7-day incubation period. Community composition changed during the incubation period with major increases in relative diatom abundance, which were similar across pCO2 treatments. At the end of the experiment, 24-hr growth responses to pCO2 levels varied as a function of cell size. The s

  4. Does the stress tolerance of mixed grassland communities change in a future climate? A test with heavy metal stress (zinc pollution).

    PubMed

    Van den Berge, Joke; Naudts, Kim; Janssens, Ivan A; Ceulemans, Reinhart; Nijs, Ivan

    2011-12-01

    Will species that are sensitive/tolerant to Zn pollution still have the same sensitivity/tolerance in a future climate? To answer this question we analysed the response of constructed grassland communities to five levels of zinc (Zn) supply, ranging from 0 to 354 mg Zn kg(-1) dry soil, under a current climate and a future climate (elevated CO2 and warming). Zn concentrations increased in roots and shoots with Zn addition but this increase did not differ between climates. Light-saturated net CO2 assimilation rate (A(sat)) of the species, on the other hand, responded differently to Zn addition depending on climate. Still, current and future climate communities have comparable biomass responses to Zn, i.e., no change in root biomass and a 13% decrease of above-ground biomass. Provided that the different response of A(sat) in a future climate will not compromise productivity and survival on the long term, sensitivity is not altered by climate change. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. High-Thermal- and Air-Stability Cathode Material with Concentration-Gradient Buffer for Li-Ion Batteries.

    PubMed

    Shi, Ji-Lei; Qi, Ran; Zhang, Xu-Dong; Wang, Peng-Fei; Fu, Wei-Gui; Yin, Ya-Xia; Xu, Jian; Wan, Li-Jun; Guo, Yu-Guo

    2017-12-13

    Delivery of high capacity with high thermal and air stability is a great challenge in the development of Ni-rich layered cathodes for commercialized Li-ion batteries (LIBs). Herein we present a surface concentration-gradient spherical particle with varying elemental composition from the outer end LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) to the inner end LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA). This cathode material with the merit of NCM concentration-gradient protective buffer and the inner NCA core shows high capacity retention of 99.8% after 200 cycles at 0.5 C. Furthermore, this cathode material exhibits much improved thermal and air stability compared with bare NCA. These results provide new insights into the structural design of high-performance cathodes with high energy density, long life span, and storage stability materials for LIBs in the future.

  6. An investigation of evapotranspiration rates within mid-western agricultural systems in response to elevated carbon dioxide and ozone concentrations and climate change

    NASA Astrophysics Data System (ADS)

    Abdullah, W. F.; Lombardozzi, D.; Levis, S.; Bonan, G. B.

    2013-12-01

    Warith Featherstone Abdullah, Danica Lombardozzi, Samuel Levis and Gordon Bonan Jackson State University Dept. of Physics, Atmospheric Sciences & Geosciences National Center for Atmospheric Research Climate & Global Dynamics Because the human population is expected to surpass 8 billion by the year 2050, food security is a pressing issue. In the face of elevated temperatures associated with climate change (CC), elevated carbon dioxide (CO2) and elevated ozone (O3) concentrations, food productivity is uncertain. Plant stomata must be open to gain carbon which simultaneously causes water loss. Research suggests rising temperatures, elevated CO2 and elevated O3 in the future may impact plant stomata and change the rate plants lose water and take up carbon, affecting plant productivity and crop yields. Evapotranspiration (ET), latent heat fluxes, leaf carbon and net primary productivity (NPP) were analyzed in U.S Mid-west where crop density is greatest. Four simulations were run using the National Center for Atmospheric Research (NCAR) Community Land Model version 4 (CLM4) component of the Community Earth System Model (CESM) with an extended carbon-nitrogen model (CN). Analyses were based on June-July-August seasonal averages through 2080-2100 to compare the individual effects of CC, elevated CO2 and O3, and combined effects of all drivers. Results from model projections show increased ET with CC and all drivers combined, but only small changes from O3 or CO2 alone. Further results show that NPP was reduced with CC and O3 alone, but increased with CO2 alone and only slightly reduced with interacting components. The combined driver simulation, which most accurately represents future global change, suggests deteriorating water usage efficiency, thus potentially decreasing carbon uptake and crop production. However, further research is needed for verification. Midwest seasonal summation estimates for net primary productivity calculated by CLM4CN model. Climate change, CO2 and O3 levels are predicted using IPCC RCP8.5 scenarios.

  7. Historic Patterns of CO{sub 2} Emissions from Fossil Fuels: Implications for Stabilization of Emissions

    DOE R&D Accomplishments Database

    Andres, R. J.; Marland, G.

    1994-06-01

    This paper examines the historical record of greenhouse gas emissions since 1950, reviews the prospects for emissions into the future, and projects what would be the short-term outcome if the stated targets of the FCCC were in fact achieved. The examination focuses on the most important of the greenhouse gases, CO{sub 2}. The extensive record of historic CO{sub 2} emissions is explored to ascertain if it is an adequate basis for useful extrapolation into the near future. Global carbon dioxide emissions from fossil fuel consumption have been documented. Emissions grew at 4.3% per year from 1950 until the time of the 1973 oil crisis. Another disruption in growth followed the oil price increases of 1979. Global total emissions have been increasing steadily since the 1982-1983 minimum and have grown by more than 20% since then. At present, emission Of CO{sub 2} from fossil fuel burning is dominated by a few countries: the U.S., the former Soviet Union, China, the developed countries of Europe and Japan. Only 20 countries emit 84% of emissions from all countries. However, rates of growth in many of the developed countries are now very low. In contrast, energy use has grown rapidly over the last 20 years in some of the large, developing economies. Emissions from fossil fuel consumption are now nearly 4 times those from land use change and are the primary cause of measured increases in the atmospheric concentration of CO{sub 2}. The increasing concentration of atmospheric CO{sub 2} has led to rising concern about the possibility of impending changes in the global climate system. In an effort to limit or mitigate potential negative effects of global climate change, 154 countries signed the United Nations Framework Convention on Climate Change (FCCC) in Rio de Janeiro in June, 1992. The FCCC asks all countries to conduct an inventory of their current greenhouse gas emissions setting non-binding targets.

  8. Tree ring evidence for limited direct CO2 fertilization of forests over the 20th century

    NASA Astrophysics Data System (ADS)

    Gedalof, Ze'ev; Berg, Aaron A.

    2010-09-01

    The effect that rising atmospheric CO2 levels will have on forest productivity and water use efficiency remains uncertain, yet it has critical implications for future rates of carbon sequestration and forest distributions. Efforts to understand the effect that rising CO2 will have on forests are largely based on growth chamber studies of seedlings, and the relatively small number of FACE sites. Inferences from these studies are limited by their generally short durations, artificial growing conditions, unnatural step-increases in CO2 concentrations, and poor replication. Here we analyze the global record of annual radial tree growth, derived from the International Tree ring Data Bank (ITRDB), for evidence of increasing growth rates that cannot be explained by climatic change alone, and for evidence of decreasing sensitivity to drought. We find that approximately 20 percent of sites globally exhibit increasing trends in growth that cannot be attributed to climatic causes, nitrogen deposition, elevation, or latitude, which we attribute to a direct CO2 fertilization effect. No differences were found between species in their likelihood to exhibit growth increases attributable to CO2 fertilization, although Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa), the two most commonly sampled species in the ITRDB, exhibit a CO2 fertilization signal at frequencies very near their upper and lower confidence limits respectively. Overall these results suggest that CO2 fertilization of forests will not counteract emissions or slow warming in any substantial fashion, but do suggest that future forest dynamics may differ from those seen today depending on site conditions and individual species' responses to elevated CO2.

  9. In situ measurements of H2O, CH4 and CO2 in the upper troposphere and the lower stratosphere (UT-LS) with the baloonborne picoSDLA and AMULSE tunable diode laser spectrometers during the 2014 and 2015 "Stratoscience" campaigns

    NASA Astrophysics Data System (ADS)

    Miftah-El-Khair, Zineb; Joly, Lilian; Decarpenterie, Thomas; Cousin, Julien; Dumelié, Nicolas; Grouiez, Bruno; Albo, Grégory; Chauvin, Nicolas; Maamary, Rabih; Amarouche, Nadir; Durry, Georges

    2016-04-01

    H2O, CH4 and CO2 are major greenhouse gases with a strong impact on climate. The concentrations of CO2 and CH4 have dramatically increased since the beginning of the industrialization era due to anthropogenic activities, contributing thereby to the global warming. Anthropogenic activities as fossil fuels, ruminant, and biomass burning constitute the major sources of carbon dioxide and methane. The increase of H2O concentration in the stratosphere could cause a cooling of this atmospheric region, impacting the recovery of the ozone layer. Therefore, having information and data about the vertical distribution of H2O, CO2 and CH4 is very useful to improve our knowledge of the future of our climate. We have developed, with the help of French space agency (CNES) and CNRS, two laser diode sensors PicoSDLA and AMULSE devoted to the in situ measurements of H2O, CH4 and CO2 from balloon platforms. These instruments were operated from open stratospheric balloons in Timmins, CA, in August 2014 and 2015. We report and discuss the instrumental achievements of both sensors during these flights in the UT-LS. Aknowledgments: The authors acknowledge financial supports from CNES, CNRS and the region Champagne-Ardenne.

  10. Cobalt toxicity in humans-A review of the potential sources and systemic health effects.

    PubMed

    Leyssens, Laura; Vinck, Bart; Van Der Straeten, Catherine; Wuyts, Floris; Maes, Leen

    2017-07-15

    Cobalt (Co) and its compounds are widely distributed in nature and are part of numerous anthropogenic activities. Although cobalt has a biologically necessary role as metal constituent of vitamin B 12 , excessive exposure has been shown to induce various adverse health effects. This review provides an extended overview of the possible Co sources and related intake routes, the detection and quantification methods for Co intake and the interpretation thereof, and the reported health effects. The Co sources were allocated to four exposure settings: occupational, environmental, dietary and medical exposure. Oral intake of Co supplements and internal exposure through metal-on-metal (MoM) hip implants deliver the highest systemic Co concentrations. The systemic health effects are characterized by a complex clinical syndrome, mainly including neurological (e.g. hearing and visual impairment), cardiovascular and endocrine deficits. Recently, a biokinetic model has been proposed to characterize the dose-response relationship and effects of chronic exposure. According to the model, health effects are unlikely to occur at blood Co concentrations under 300μg/l (100μg/l respecting a safety factor of 3) in healthy individuals, hematological and endocrine dysfunctions are the primary health endpoints, and chronic exposure to acceptable doses is not expected to pose considerable health hazards. However, toxic reactions at lower doses have been described in several cases of malfunctioning MoM hip implants, which may be explained by certain underlying pathologies that increase the individual susceptibility for Co-induced systemic toxicity. This may be associated with a decrease in Co bound to serum proteins and an increase in free ionic Co 2+ . As the latter is believed to be the primary toxic form, monitoring of the free fraction of Co 2+ might be advisable for future risk assessment. Furthermore, future research should focus on longitudinal studies in the clinical setting of MoM hip implant patients to further elucidate the dose-response discrepancies. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Kinetic modeling of hydrogen production rate by photoautotrophic cyanobacterium A. variabilis ATCC 29413 as a function of both CO2 concentration and oxygen production rate.

    PubMed

    Salleh, Siti Fatihah; Kamaruddin, Azlina; Uzir, Mohamad Hekarl; Mohamed, Abdul Rahman; Shamsuddin, Abdul Halim

    2017-02-07

    Hydrogen production by cyanobacteria could be one of the promising energy resources in the future. However, there is very limited information regarding the kinetic modeling of hydrogen production by cyanobacteria available in the literature. To provide an in-depth understanding of the biological system involved during the process, the Haldane's noncompetitive inhibition equation has been modified to determine the specific hydrogen production rate (HPR) as a function of both dissolved CO 2 concentration (C TOT ) and oxygen production rate (OPR). The highest HPR of 15 [Formula: see text] was found at x CO2 of 5% vol/vol and the rate consequently decreased when the C TOT and OPR were 0.015 k mol m -3 and 0.55 mL h -1 , respectively. The model provided a fairly good estimation of the HPR with respect to the experimental data collected.

  12. Effects of ocean acidification on the physiological performance and carbon production of the Antarctic sea ice diatom Nitzschia sp. ICE-H.

    PubMed

    Qu, Chang-Feng; Liu, Fang-Ming; Zheng, Zhou; Wang, Yi-Bin; Li, Xue-Gang; Yuan, Hua-Mao; Li, Ning; An, Mei-Ling; Wang, Xi-Xi; He, Ying-Ying; Li, Lu-Lu; Miao, Jin-Lai

    2017-07-15

    Ocean acidification (OA) resulting from increasing atmospheric CO 2 strongly influences marine ecosystems, particularly in the polar ocean due to greater CO 2 solubility. Here, we grew the Antarctic sea ice diatom Nitzschia sp. ICE-H in a semicontinuous culture under low (~400ppm) and high (1000ppm) CO 2 levels. Elevated CO 2 resulted in a stimulated physiological response including increased growth rates, chlorophyll a contents, and nitrogen and phosphorus uptake rates. Furthermore, high CO 2 enhanced cellular particulate organic carbon production rates, indicating a greater shift from inorganic to organic carbon. However, the cultures grown in high CO 2 conditions exhibited a decrease in both extracellular and intracellular carbonic anhydrase activity, suggesting that the carbon concentrating mechanisms of Nitzschia sp. ICE-H may be suppressed by elevated CO 2 . Our results revealed that OA would be beneficial to the survival of this sea ice diatom strain, with broad implications for global carbon cycles in the future ocean. Copyright © 2017. Published by Elsevier Ltd.

  13. Changes in gas exchange characteristics during the life span of giant sequoia: implications for response to current and future concentrations of atmospheric ozone.

    PubMed

    Grulke, N. E.; Miller, P. R.

    1994-01-01

    Native stands of giant sequoia (Sequoiadendron giganteum Bucholz) are being exposed to relatively high concentrations of atmospheric ozone produced in urban and agricultural areas upwind. The expected change in environmental conditions over the next 100 years is likely to be unprecedented in the life span (about 2,500 years) of giant sequoia. We determined changes in physiological responses of three age classes of giant sequoia (current-year, 12-, and 125-year-old) to differing concentrations of ozone, and assessed age-related differences in sensitivity to pollutants by examining physiological changes (gas exchange, water use efficiency) across the life span of giant sequoia (current-year, 2-, 5-, 20-, 125-, and > 2,000-year-old trees). The CO(2) exchange rate (CER) was greater in current-year (12.1 micro mol CO(2) m(-2) s(-1)) and 2-year-old seedlings (4.8 micro mol CO(2) m(-2) s(-1)) than in all older trees (3.0 micro mol CO(2) m(-2) s(-1), averaged across the four older age classes). Dark respiration was highest for current-year seedlings (-6.5 +/- 0.7 micro mol CO(2) m(-2) s(-1)) and was increased twofold in symptomatic individuals exposed to elevated ozone concentrations. Stomatal conductance (g(s)) was greater in current-year (355 mmol H(2)O m(-2) s(-1)) and 2-year-old seedlings (200 mmol H(2)O m(-2) s(-1)) than in all older trees (50 mmol H(2)O m(-2) s(-1)), indicating that the ozone concentration in substomatal cavities is higher in young seedlings than in trees. Significant changes in water use efficiency, as indicated by C(i)/C(a), occurred in trees between ages 5 and 20 years. We conclude that giant sequoias seedlings are sensitive to atmospheric ozone until they are about 5 years old. Low conductance, high water use efficiency, and compact mesophyll all contribute to a natural ozone tolerance, or defense, or both, in foliage of older trees.

  14. Paleobotany and Global Change: Important Lessons for Species to Biomes from Vegetation Responses to Past Global Change.

    PubMed

    McElwain, Jennifer C

    2018-04-29

    Human carbon use during the next century will lead to atmospheric carbon dioxide concentrations (pCO 2 ) that have been unprecedented for the past 50-100+ million years according to fossil plant-based CO 2 estimates. The paleobotanical record of plants offers key insights into vegetation responses to past global change, including suitable analogs for Earth's climatic future. Past global warming events have resulted in transient poleward migration at rates that are equivalent to the lowest climate velocities required for current taxa to keep pace with climate change. Paleobiome reconstructions suggest that the current tundra biome is the biome most threatened by global warming. The common occurrence of paleoforests at high polar latitudes when pCO 2 was above 500 ppm suggests that the advance of woody shrub and tree taxa into tundra environments may be inevitable. Fossil pollen studies demonstrate the resilience of wet tropical forests to global change up to 700 ppm CO 2 , contrary to modeled predictions of the future. The paleobotanical record also demonstrates a high capacity for functional trait evolution as an additional strategy to migration and maintenance of a species' climate envelope in response to global change.

  15. FutureGen 2.0 Monitoring Program: An Overview of the Monitoring Approach and Technologies Selected for Implementation

    DOE PAGES

    Vermeul, Vince R.; Strickland, Chris E.; Thorne, Paul D.; ...

    2014-12-31

    The FutureGen 2.0 Project will design and build a first-of-its-kind, near-zero emissions coal-fueled power plant with carbon capture and storage (CCS). To assess storage site performance and meet the regulatory requirements of the Class VI Underground Injection Control (UIC) Program for CO2 Geologic Sequestration, the FutureGen 2.0 project will implement a suite of monitoring technologies designed to 1) evaluate CO2 mass balance and 2) detect any unforeseen loss in CO2 containment. The monitoring program will include direct monitoring of the injection stream and reservoir, and early-leak-detection monitoring directly above the primary confining zone. It will also implement an adaptive monitoringmore » strategy whereby monitoring results are continually evaluated and the monitoring network is modified as required, including the option to drill additional wells in out-years. Wells will be monitored for changes in CO2 concentration and formation pressure, and other geochemical/isotopic signatures that provide indication of CO2 or brine leakage. Indirect geophysical monitoring technologies that were selected for implementation include passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture logging. Near-surface monitoring approaches that have been initiated include surficial aquifer and surface- water monitoring, soil-gas monitoring, atmospheric monitoring, and hyperspectral data acquisition for assessment of vegetation conditions. Initially, only the collection of baseline data sets is planned; the need for additional near- surface monitoring will be continually evaluated throughout the design and operational phases of the project, and selected approaches may be reinstituted if conditions warrant. Given the current conceptual understanding of the subsurface environment, early and appreciable impacts to near-surface environments are not expected.« less

  16. Emissions of volatile organic compounds from hybrid poplar depend on CO2 concentration and genotype

    NASA Astrophysics Data System (ADS)

    Eller, A. S.; de Gouw, J. A.; Monson, R. K.

    2010-12-01

    Hybrid poplar is a fast-growing tree species that is likely to be an important source of biomass for the production of cellulose-based biofuels and may influence regional atmospheric chemistry through the emission of volatile organic compounds (VOCs). We used proton-transfer reaction mass spectrometry to measure VOC emissions from the leaves of four different hybrid poplar genotypes grown under ambient (400 ppm) and elevated (650 ppm) carbon dioxide concentration (CO2). The purpose of this experiment was to determine whether VOC emissions are different among genotypes and whether these emissions are likely to change as atmospheric CO2 rises. Methanol and isoprene made up over 90% of the VOC emissions and were strongly dependent on leaf age, with young leaves producing primarily methanol and switching to isoprene production as they matured. Monoterpene emissions were small, but tended to be higher in young leaves. Plants grown under elevated CO2 emitted smaller quantities of both methanol and isoprene, but the magnitude of the effect was dependent on genotype. Isoprene emission rates from mature leaves dropped from ~35 to ~28 nmol m-2 s-1 when plants were grown under elevated CO2. Emissions from individuals grown under ambient CO2 varied more based on genotype than those grown under elevated CO2, which means that we might expect smaller differences between genotypes in the future. Genotype and CO2 also affected how much carbon (C) individuals allocated to the production of VOCs. The emission rate of C from VOCs was 0.5 - 2% of the rate at which C was assimilated via net photosynthesis. The % C emitted was strongly related to genotype; clones from crosses between Populus deltoides and P. trichocarpa (T x D) allocated a greater % of their C to VOC emissions than clones from crosses of P. deltoids and P. nigra (D x N). Individuals from all four genotypes allocated a smaller % of their C to the emission of VOCs when they were grown under elevated CO2. These results illustrate that even in closely related individuals there are inherent differences in VOC emissions that are not due to simple differences in metabolic rates and that elevated CO2 reduces these inherent differences. Even though VOC rates were lower under elevated CO2 they were still much higher than emissions reported for switchgrass, another biofuel species, which means that future regional air quality around biofuel plantations will be influenced by the choice of biofuel species.

  17. [Direct Observation on the Temporal and Spatial Patterns of the CO2 Concentration in the Atmospheric of Nanjing Urban Canyon in Summer].

    PubMed

    Gao, Yun-qiu; Liu, Shou-dong; Hu, Ning; Wang, Shu-min; Deng, Li-chen; Yu, Zhou; Zhang, Zhen; Li, Xu-hui

    2015-07-01

    Direct observation of urban atmospheric CO2 concentration is vital for the research in the contribution of anthropogenic activity to the atmospheric abundance since cities are important CO2 sources. The observations of the atmospheric CO2 concentration at multiple sites/heights can help us learn more about the temporal and spatial patterns and influencing mechanisms. In this study, the CO2 concentration was observed at 5 sites (east, west, south, north and middle) in the main city area of Nanjing from July 18 to 25, 2014, and the vertical profile of atmospheric CO2 concentration was measured in the middle site at 3 heights (30 m, 65 m and 110 m). The results indicated that: (1) An obvious vertical CO2 gradient was found, with higher CO2 concentration [molar fraction of 427. 3 x 10(-6) (±18. 2 x 10(-6))] in the lower layer due to the strong influences of anthropogenic emissions, and lower CO2 concentration in the upper layers [411. 8 x 10(-6) (±15. 0 x 10(-6)) and 410. 9 x 10(-6) (±14. 6 x 10(-6)) at 65 and 110 m respectively] for the well-mixed condition. The CO2 concentration was higher and the vertical gradient was larger when the atmosphere was stable. (2) The spatial distribution pattern of CO2 concentration was dominated by wind and atmospheric stability. During the observation, the CO2 concentration in the southwest was higher than that in the northeast region with the CO2 concentration difference of 7. 8 x 10(-6), because the northwest wind was prevalent. And the CO2 concentration difference reduced with increasing wind speed since stronger wind diluted CO2 more efficiently. The more stable the atmosphere was, the higher the CO2 concentration was. (3) An obvious diurnal variation of CO2 concentration was shown in the 5 sites. A peak value occurred during the morning rush hours, the valley value occurred around 17:00 (Local time) and another high value occurred around 19:00 because of evening rush hour sometimes.

  18. Interactive effects of temperature, food and skeletal mineralogy mediate biological responses to ocean acidification in a widely distributed bryozoan.

    PubMed

    Swezey, Daniel S; Bean, Jessica R; Ninokawa, Aaron T; Hill, Tessa M; Gaylord, Brian; Sanford, Eric

    2017-04-26

    Marine invertebrates with skeletons made of high-magnesium calcite may be especially susceptible to ocean acidification (OA) due to the elevated solubility of this form of calcium carbonate. However, skeletal composition can vary plastically within some species, and it is largely unknown how concurrent changes in multiple oceanographic parameters will interact to affect skeletal mineralogy, growth and vulnerability to future OA. We explored these interactive effects by culturing genetic clones of the bryozoan Jellyella tuberculata (formerly Membranipora tuberculata ) under factorial combinations of dissolved carbon dioxide (CO 2 ), temperature and food concentrations. High CO 2 and cold temperature induced degeneration of zooids in colonies. However, colonies still maintained high growth efficiencies under these adverse conditions, indicating a compensatory trade-off whereby colonies degenerate more zooids under stress, redirecting energy to the growth and maintenance of new zooids. Low-food concentration and elevated temperatures also had interactive effects on skeletal mineralogy, resulting in skeletal calcite with higher concentrations of magnesium, which readily dissolved under high CO 2 For taxa that weakly regulate skeletal magnesium concentration, skeletal dissolution may be a more widespread phenomenon than is currently documented and is a growing concern as oceans continue to warm and acidify. © 2017 The Author(s).

  19. Interactive effects of temperature, food and skeletal mineralogy mediate biological responses to ocean acidification in a widely distributed bryozoan

    PubMed Central

    Bean, Jessica R.; Ninokawa, Aaron T.; Hill, Tessa M.; Gaylord, Brian; Sanford, Eric

    2017-01-01

    Marine invertebrates with skeletons made of high-magnesium calcite may be especially susceptible to ocean acidification (OA) due to the elevated solubility of this form of calcium carbonate. However, skeletal composition can vary plastically within some species, and it is largely unknown how concurrent changes in multiple oceanographic parameters will interact to affect skeletal mineralogy, growth and vulnerability to future OA. We explored these interactive effects by culturing genetic clones of the bryozoan Jellyella tuberculata (formerly Membranipora tuberculata) under factorial combinations of dissolved carbon dioxide (CO2), temperature and food concentrations. High CO2 and cold temperature induced degeneration of zooids in colonies. However, colonies still maintained high growth efficiencies under these adverse conditions, indicating a compensatory trade-off whereby colonies degenerate more zooids under stress, redirecting energy to the growth and maintenance of new zooids. Low-food concentration and elevated temperatures also had interactive effects on skeletal mineralogy, resulting in skeletal calcite with higher concentrations of magnesium, which readily dissolved under high CO2. For taxa that weakly regulate skeletal magnesium concentration, skeletal dissolution may be a more widespread phenomenon than is currently documented and is a growing concern as oceans continue to warm and acidify. PMID:28424343

  20. Detection of CO2 leakage by the surface-soil CO2-concentration monitoring (SCM) system in a small scale CO2 release test

    NASA Astrophysics Data System (ADS)

    Chae, Gitak; Yu, Soonyoung; Sung, Ki-Sung; Choi, Byoung-Young; Park, Jinyoung; Han, Raehee; Kim, Jeong-Chan; Park, Kwon Gyu

    2015-04-01

    Monitoring of CO2 release through the ground surface is essential to testify the safety of CO2 storage projects. We conducted a feasibility study of the multi-channel surface-soil CO2-concentration monitoring (SCM) system as a soil CO2 monitoring tool with a small scale injection. In the system, chambers are attached onto the ground surface, and NDIR sensors installed in each chamber detect CO2 in soil gas released through the soil surface. Before injection, the background CO2 concentrations were measured. They showed the distinct diurnal variation, and were positively related with relative humidity, but negatively with temperature. The negative relation of CO2 measurements with temperature and the low CO2 concentrations during the day imply that CO2 depends on respiration. The daily variation of CO2 concentrations was damped with precipitation, which can be explained by dissolution of CO2 and gas release out of pores through the ground surface with recharge. For the injection test, 4.2 kg of CO2 was injected 1 m below the ground for about 30 minutes. In result, CO2 concentrations increased in all five chambers, which were located less than 2.5 m of distance from an injection point. The Chamber 1, which is closest to the injection point, showed the largest increase of CO2 concentrations; while Chamber 2, 3, and 4 showed the peak which is 2 times higher than the average of background CO2. The CO2 concentrations increased back after decreasing from the peak around 4 hours after the injection ended in Chamber 2, 4, and 5, which indicated that CO2 concentrations seem to be recovered to the background around 4 hours after the injection ended. To determine the leakage, the data in Chamber 2 and 5, which had low increase rates in the CO2 injection test, were used for statistical analysis. The result shows that the coefficient of variation (CV) of CO2 measurements for 30 minutes is efficient to determine a leakage signal, with reflecting the abnormal change in CO2 concentrations. The CV of CO2 measurements for 30 minutes exceeded 5% about 5 minutes before the maximum CO2 concentration was detected. The contributions of this work are as follows: (1) SCM is an efficient monitoring tool to detect the CO2 release through the ground surface. (2) The statistical analysis method to determine the leakage and a monitoring frequency are provided, with analyzing background concentrations and CO2 increases in a small-scale injection test. (3) The 5% CV of CO2 measurements for 30 minutes can be used for the early warning in CO2 storage sites.

  1. Leaf Dynamics of Panicum maximum under Future Climatic Changes

    PubMed Central

    Britto de Assis Prado, Carlos Henrique; Haik Guedes de Camargo-Bortolin, Lívia; Castro, Érique; Martinez, Carlos Alberto

    2016-01-01

    Panicum maximum Jacq. ‘Mombaça’ (C4) was grown in field conditions with sufficient water and nutrients to examine the effects of warming and elevated CO2 concentrations during the winter. Plants were exposed to either the ambient temperature and regular atmospheric CO2 (Control); elevated CO2 (600 ppm, eC); canopy warming (+2°C above regular canopy temperature, eT); or elevated CO2 and canopy warming (eC+eT). The temperatures and CO2 in the field were controlled by temperature free-air controlled enhancement (T-FACE) and mini free-air CO2 enrichment (miniFACE) facilities. The most green, expanding, and expanded leaves and the highest leaf appearance rate (LAR, leaves day-1) and leaf elongation rate (LER, cm day-1) were observed under eT. Leaf area and leaf biomass were higher in the eT and eC+eT treatments. The higher LER and LAR without significant differences in the number of senescent leaves could explain why tillers had higher foliage area and leaf biomass in the eT treatment. The eC treatment had the lowest LER and the fewest expanded and green leaves, similar to Control. The inhibitory effect of eC on foliage development in winter was indicated by the fewer green, expanded, and expanding leaves under eC+eT than eT. The stimulatory and inhibitory effects of the eT and eC treatments, respectively, on foliage raised and lowered, respectively, the foliar nitrogen concentration. The inhibition of foliage by eC was confirmed by the eC treatment having the lowest leaf/stem biomass ratio and by the change in leaf biomass-area relationships from linear or exponential growth to rectangular hyperbolic growth under eC. Besides, eC+eT had a synergist effect, speeding up leaf maturation. Therefore, with sufficient water and nutrients in winter, the inhibitory effect of elevated CO2 on foliage could be partially offset by elevated temperatures and relatively high P. maximum foliage production could be achieved under future climatic change. PMID:26894932

  2. Projected future vegetation changes for the northwest United States and southwest Canada at a fine spatial resolution using a dynamic global vegetation model.

    USGS Publications Warehouse

    Shafer, Sarah; Bartlein, Patrick J.; Gray, Elizabeth M.; Pelltier, Richard T.

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0–58.0°N latitude by 136.6–103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070–2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.

  3. Projected Future Vegetation Changes for the Northwest United States and Southwest Canada at a Fine Spatial Resolution Using a Dynamic Global Vegetation Model

    PubMed Central

    Shafer, Sarah L.; Bartlein, Patrick J.; Gray, Elizabeth M.; Pelltier, Richard T.

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0–58.0°N latitude by 136.6–103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070–2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas. PMID:26488750

  4. Early growth interactions between a mangrove and an herbaceous salt marsh species are not affected by elevated CO2 or drought

    NASA Astrophysics Data System (ADS)

    Howard, Rebecca J.; Stagg, Camille L.; Utomo, Herry S.

    2018-07-01

    Increasing atmospheric carbon dioxide (CO2) concentrations are likely to influence future distributions of plants and plant community structure in many regions of the world through effects on photosynthetic rates. In recent decades the encroachment of woody mangrove species into herbaceous marshes has been documented along the U.S. northern Gulf of Mexico coast. These species shifts have been attributed primarily to rising sea levels and warming winter temperatures, but the role of elevated CO2 and water availability may become more prominent drivers of species interactions under future climate conditions. Drought has been implicated as a major factor contributing to salt marsh vegetation dieback in this region. In this greenhouse study we examined the effects of CO2 concentration (∼380 ppm, ∼700 ppm) and water regime (drought, saturated, flooded) on early growth of Avicennia germinans, a C3 mangrove species, and Spartina alterniflora, a C4 grass. Plants were grown in monocultures and in a mixed-species assemblage. We found that neither species responded to elevated CO2 over the 10-month duration of the experiment, and there were few interactions between experimental factors. Two effects of water regime were documented: lower A. germinans pneumatophore biomass under drought conditions, and lower belowground biomass under flooded conditions regardless of planting assemblage. Evidence of interspecific interactions was noted. Competition for aboveground resources (e.g., light) was indicated by lower S. alterniflora stem biomass in mixed-species assemblage compared to biomass in S. alterniflora monocultures. Pneumatophore biomass of A. germinans was reduced when grown in monoculture compared to the mixed-species assemblage, indicating competition for belowground resources. These interactions provide insight into how these species may respond following major disturbance events that lead to vegetation dieback. Site variation in propagule availability and physico-chemical conditions will determine plant community composition and structure following such disturbances when these two species co-occur.

  5. Spring leaf flush in aspen (Populus tremuloides) clones is altered by long-term growth at elevated carbon dioxide and elevated ozone concentration.

    PubMed

    McGrath, Justin M; Karnosky, David F; Ainsworth, Elizabeth A

    2010-04-01

    Early spring leaf out is important to the success of deciduous trees competing for light and space in dense forest plantation canopies. In this study, we investigated spring leaf flush and how long-term growth at elevated carbon dioxide concentration ([CO(2)]) and elevated ozone concentration ([O(3)]) altered leaf area index development in a closed Populus tremuloides (aspen) canopy. This work was done at the Aspen FACE experiment where aspen clones have been grown since 1997 in conditions simulating the [CO(2)] and [O(3)] predicted for approximately 2050. The responses of two clones were compared during the first month of spring leaf out when CO(2) fumigation had begun, but O(3) fumigation had not. Trees in elevated [CO(2)] plots showed a stimulation of leaf area index (36%), while trees in elevated [O(3)] plots had lower leaf area index (-20%). While individual leaf area was not significantly affected by elevated [CO(2)], the photosynthetic operating efficiency of aspen leaves was significantly improved (51%). There were no significant differences in the way that the two aspen clones responded to elevated [CO(2)]; however, the two clones responded differently to long-term growth at elevated [O(3)]. The O(3)-sensitive clone, 42E, had reduced individual leaf area when grown at elevated [O(3)] (-32%), while the tolerant clone, 216, had larger mature leaf area at elevated [O(3)] (46%). These results indicate a clear difference between the two clones in their long-term response to elevated [O(3)], which could affect competition between the clones, and result in altered genotypic composition in future atmospheric conditions. Published by Elsevier Ltd.

  6. Impact of elevated levels of atmospheric CO2 and herbivory on flavonoids of soybean (Glycine max Linnaeus).

    PubMed

    O'Neill, Bridget F; Zangerl, Arthur R; Dermody, Orla; Bilgin, Damla D; Casteel, Clare L; Zavala, Jorge A; DeLucia, Evan H; Berenbaum, May R

    2010-01-01

    Atmospheric levels of carbon dioxide (CO2) have been increasing steadily over the last century. Plants grown under elevated CO2 conditions experience physiological changes, particularly in phytochemical content, that can influence their suitability as food for insects. Flavonoids are important plant defense compounds and antioxidants that can have a large effect on leaf palatability and herbivore longevity. In this study, flavonoid content was examined in foliage of soybean (Glycine max Linnaeus) grown under ambient and elevated levels of CO2 and subjected to damage by herbivores in three feeding guilds: leaf skeletonizer (Popillia japonica Newman), leaf chewer (Vanessa cardui Linnaeus), and phloem feeder (Aphis glycines Matsumura). Flavonoid content also was examined in foliage of soybean grown under ambient and elevated levels of O3 and subjected to damage by the leaf skeletonizer P. japonica. The presence of the isoflavones genistein and daidzein and the flavonols quercetin and kaempferol was confirmed in all plants examined, as were their glycosides. All compounds significantly increased in concentration as the growing season progressed. Concentrations of quercetin glycosides were higher in plants grown under elevated levels of CO2. The majority of compounds in foliage were induced in response to leaf skeletonization damage but remained unchanged in response to non-skeletonizing feeding or phloem-feeding. Most compounds increased in concentration in plants grown under elevated levels of O3. Insects feeding on G. max foliage growing under elevated levels of CO2 may derive additional antioxidant benefits from their host plants as a consequence of the change in ratios of flavonoid classes. This nutritional benefit could lead to increased herbivore longevity and increased damage to soybean (and perhaps other crop plants) in the future.

  7. Growth and nutritive value of cassava (Manihot esculenta Cranz.) are reduced when grown in elevated CO.

    PubMed

    Gleadow, Roslyn M; Evans, John R; McCaffery, Stephanie; Cavagnaro, Timothy R

    2009-11-01

    Global food security in a changing climate depends on both the nutritive value of staple crops as well as their yields. Here, we examined the direct effect of atmospheric CO(2) on cassava (Manihot esculenta Cranz., manioc), a staple for 750 million people worldwide. Cassava is poor in nutrients and contains high levels of cyanogenic glycosides that break down to release toxic hydrogen cyanide when damaged. We grew cassava at three concentrations of CO(2) (C(a): 360, 550 and 710 ppm) supplied together with nutrient solution containing either 1 mM or 12 mM nitrogen. We found that total plant biomass and tuber yield (number and mass) decreased linearly with increasing C(a). In the worst-case scenario, tuber mass was reduced by an order of magnitude in plants grown at 710 ppm compared with 360 ppm CO(2). Photosynthetic parameters were consistent with the whole plant biomass data. It is proposed that since cassava stomata are highly sensitive to other environmental variables, the decrease in assimilation observed here might, in part, be a direct effect of CO(2) on stomata. Total N (used here as a proxy for protein content) and cyanogenic glycoside concentrations of the tubers were not significantly different in the plants grown at elevated CO(2). By contrast, the concentration of cyanogenic glycosides in the edible leaves nearly doubled in the highest C(a). If leaves continue to be used as a protein supplement, they will need to be more thoroughly processed in the future. With increasing population density, declining soil fertility, expansion into marginal farmland, together with the predicted increase in extreme climatic events, reliance on robust crops such as cassava will increase. The responses to CO(2) shown here point to the possibility that there could be severe food shortages in the coming decades unless CO(2) emissions are dramatically reduced, or alternative cultivars or crops are developed.

  8. New advances in 2-μm high-power dual-frequency single-mode Q-switched Ho:YLF laser for dial and IPDA application

    NASA Astrophysics Data System (ADS)

    Gibert, F.; Edouart, D.; Cénac, C.; Le Mounier, F.; Dumas, A.

    2017-11-01

    In the absence of climate change policies, the fossil fuel emissions are projected to increase in the next decades. Depending on how the current carbon sinks change in the future, the atmospheric CO2 concentration is predicted to be between 700-1000 ppmv by 2100, and global mean surface temperature between 1.1-6.4°C, with related changes in sea-level, extreme events and ecosystem drifts. Keeping the atmospheric CO2 concentration at a level that prevents dangerous interference with the climate system poses an unprecedent but necessary challenge to humanity. Beyond this point, global climate change would be very difficult and costly to deal with. There are two main approaches that are currently analysed: (1) to reduce emissions; (2) to capture CO2 and store it, i.e. sequestration. For these two ways, some monitoring at different scales ultimately from space would be needed. Lidar remote sensing is a powerful technique that enables measurements at various space and time resolution.

  9. Effects of elevated atmospheric CO2 concentrations, clipping regimen and differential day/night atmospheric warming on tissue nitrogen concentrations of a perennial pasture grass

    PubMed Central

    Volder, Astrid; Gifford, Roger M.; Evans, John R.

    2015-01-01

    Forecasting the effects of climate change on nitrogen (N) cycling in pastures requires an understanding of changes in tissue N. We examined the effects of elevated atmospheric CO2 concentration, atmospheric warming and simulated grazing (clipping frequency) on aboveground and belowground tissue N concentrations and C : N ratios of a C3 pasture grass. Phalaris aquatica L. cv. ‘Holdfast’ was grown in the field in six transparent temperature gradient tunnels (18 × 1.5 × 1.5 m each), three at ambient atmospheric CO2 and three at 759 p.p.m. CO2. Within each tunnel, there were three air temperature treatments: ambient control, +2.2/+4.0 °C above ambient day/night warming and +3.0 °C continuous warming. A frequent and an infrequent clipping treatment were applied to each warming × CO2 combination. Green leaf N concentrations were decreased by elevated CO2 and increased by more frequent clipping. Both warming treatments increased leaf N concentrations under ambient CO2 concentrations, but did not significantly alter leaf N concentrations under elevated CO2 concentrations. Nitrogen resorption from leaves was decreased under elevated CO2 conditions as well as by more frequent clipping. Fine root N concentrations decreased strongly with increasing soil depth and were further decreased at the 10–60 cm soil depths by elevated CO2 concentrations. The interaction between the CO2 and warming treatments showed that leaf N concentration was affected in a non-additive manner. Changes in leaf C : N ratios were driven by changes in N concentration. Overall, the effects of CO2, warming and clipping treatments on aboveground tissue N concentrations were much greater than on belowground tissue. PMID:26272874

  10. Characterization of information requirements for studies of CO/sub 2/ effects: water resources, agriculture, fisheries, forests and human health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, M R

    1985-12-01

    The report discusses how climate change and vegetative response will affect selected areas of our way of life as a result of increased carbon dioxide concentrations. Needs for future research are identified. Separate abstracts have been prepared for individual chapters. (ACR)

  11. Carbon dioxide and water exchange of a soybean stand grown in the biomass production chamber

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    1990-01-01

    Soybean plants were grown under metal halide lamps in NASA's biomass production chamber (BPC). Experiments were conducted to determine whole stand rates of carbon dioxide exchange and transpiration as influenced by time of day, CO2 concentration, irradiance, and temperature. Plants were grown at a population of 24 plants/sq m, a daily cycle of 12 hr light/12 hr dark, and average temperature regime of 26 C light/20 C dark, and a CO2 concentration enriched and maintained at 1000 ppm during the photoperiod. A distinct diurnal pattern in the rate of stand transpiration was measured at both ambient and enriched (1000 ppm) concentration of CO2. Data generated in this study represent true whole stand responses to key developmental and environmental variables and will be valuable in database construction for future working CELSS. Crop growth studies in the BPC were conducted with a high degree of environmental control, gas tightness during growth, and have used large plant stands. These characteristics have placed it in a unique position internationally as a research tool and as a preprototype subcomponent to a fully integrated CELSS. The results from the experiments are presented.

  12. Effects of elevated CO(2) concentration and nutrition on net photosynthesis, stomatal conductance and needle respiration of field-grown Norway spruce trees.

    PubMed

    Roberntz, Peter; Stockfors, Jan

    1998-04-01

    To study the effects of elevated CO(2) on gas exchange, nonstructural carbohydrate and nutrient concentrations in current-year foliage of 30-year-old Norway spruce (Picea abies (L.) Karst.) trees, branches were enclosed in ventilated, transparent plastic bags and flushed with ambient air (mean 370 &mgr;mol CO(2) mol(-1); control) or ambient air + 340 &mgr;mol CO(2) mol(-1) (elevated CO(2)) during two growing seasons. One branch bag was installed on each of 24 selected trees from control and fertilized plots. To reduce the effect of variation among trees, results from each treated branch were compared with those from a control branch on the same whorl of the same tree. Elevated CO(2) increased rates of light-saturated photosynthesis on average by 55% when measured at the treatment CO(2) concentration. The increase was larger in shoots with high needle nitrogen concentrations than in shoots with low needle nitrogen concentrations. However, shoots grown in elevated CO(2) showed a decrease in photosynthetic capacity compared with shoots grown in ambient CO(2). When measured at the internal CO(2) concentration of 200 &mgr;mol CO(2) mol(-1), photosynthetic rates of branches in the elevated CO(2) treatments were reduced by 8 to 32%. The elevated CO(2) treatment caused a 9 to 20% reduction in carboxylation efficiency and an 18% increase in respiration rates. In response to elevated CO(2), starch, fructose and glucose concentrations in the needles increased on average 33%, whereas concentrations of potassium, nitrogen, phosphorus, magnesium and boron decreased. Needle nitrogen concentrations explained 50-60% of the variation in photosynthesis and CO(2) acclimation was greater at low nitrogen concentrations than at high nitrogen concentrations. We conclude that the enhanced photosynthetic rates found in shoots exposed to elevated CO(2) increased carbohydrate concentrations, which may have a negative feedback on the photosynthetic apparatus and stimulate cyanide-resistant respiration. We also infer that the decrease in nutrient concentrations of needles exposed to elevated CO(2) was the result of retranslocation of nutrients to other parts of the branch or tree.

  13. Driving CO2 to a Quasi-Condensed Phase at the Interface between a Nanoparticle Surface and a Metal-Organic Framework at 1 bar and 298 K.

    PubMed

    Lee, Hiang Kwee; Lee, Yih Hong; Morabito, Joseph V; Liu, Yejing; Koh, Charlynn Sher Lin; Phang, In Yee; Pedireddy, Srikanth; Han, Xuemei; Chou, Lien-Yang; Tsung, Chia-Kuang; Ling, Xing Yi

    2017-08-23

    We demonstrate a molecular-level observation of driving CO 2 molecules into a quasi-condensed phase on the solid surface of metal nanoparticles (NP) under ambient conditions of 1 bar and 298 K. This is achieved via a CO 2 accumulation in the interface between a metal-organic framework (MOF) and a metal NP surface formed by coating NPs with a MOF. Using real-time surface-enhanced Raman scattering spectroscopy, a >18-fold enhancement of surface coverage of CO 2 is observed at the interface. The high surface concentration leads CO 2 molecules to be in close proximity with the probe molecules on the metal surface (4-methylbenzenethiol), and transforms CO 2 molecules into a bent conformation without the formation of chemical bonds. Such linear-to-bent transition of CO 2 is unprecedented at ambient conditions in the absence of chemical bond formation, and is commonly observed only in pressurized systems (>10 5 bar). The molecular-level observation of a quasi-condensed phase induced by MOF coating could impact the future design of hybrid materials in diverse applications, including catalytic CO 2 conversion and ambient solid-gas operation.

  14. Dominant factors controlling glacial and interglacial variations in the treeline elevation in tropical Africa

    PubMed Central

    Wu, Haibin; Guiot, Joël; Brewer, Simon; Guo, Zhengtang; Peng, Changhui

    2007-01-01

    The knowledge of tropical palaeoclimates is crucial for understanding global climate change, because it is a test bench for general circulation models that are ultimately used to predict future global warming. A longstanding issue concerning the last glacial maximum in the tropics is the discrepancy between the decrease in sea-surface temperatures reconstructed from marine proxies and the high-elevation decrease in land temperatures estimated from indicators of treeline elevation. In this study, an improved inverse vegetation modeling approach is used to quantitatively reconstruct palaeoclimate and to estimate the effects of different factors (temperature, precipitation, and atmospheric CO2 concentration) on changes in treeline elevation based on a set of pollen data covering an altitudinal range from 100 to 3,140 m above sea level in Africa. We show that lowering of the African treeline during the last glacial maximum was primarily triggered by regional drying, especially at upper elevations, and was amplified by decreases in atmospheric CO2 concentration and perhaps temperature. This contrasts with scenarios for the Holocene and future climates, in which the increase in treeline elevation will be dominated by temperature. Our results suggest that previous temperature changes inferred from tropical treeline shifts may have been overestimated for low-CO2 glacial periods, because the limiting factors that control changes in treeline elevation differ between glacial and interglacial periods. PMID:17535920

  15. Dominant factors controlling glacial and interglacial variations in the treeline elevation in tropical Africa.

    PubMed

    Wu, Haibin; Guiot, Joël; Brewer, Simon; Guo, Zhengtang; Peng, Changhui

    2007-06-05

    The knowledge of tropical palaeoclimates is crucial for understanding global climate change, because it is a test bench for general circulation models that are ultimately used to predict future global warming. A longstanding issue concerning the last glacial maximum in the tropics is the discrepancy between the decrease in sea-surface temperatures reconstructed from marine proxies and the high-elevation decrease in land temperatures estimated from indicators of treeline elevation. In this study, an improved inverse vegetation modeling approach is used to quantitatively reconstruct palaeoclimate and to estimate the effects of different factors (temperature, precipitation, and atmospheric CO(2) concentration) on changes in treeline elevation based on a set of pollen data covering an altitudinal range from 100 to 3,140 m above sea level in Africa. We show that lowering of the African treeline during the last glacial maximum was primarily triggered by regional drying, especially at upper elevations, and was amplified by decreases in atmospheric CO(2) concentration and perhaps temperature. This contrasts with scenarios for the Holocene and future climates, in which the increase in treeline elevation will be dominated by temperature. Our results suggest that previous temperature changes inferred from tropical treeline shifts may have been overestimated for low-CO(2) glacial periods, because the limiting factors that control changes in treeline elevation differ between glacial and interglacial periods.

  16. Grassland species differentially regulate proline concentrations under future climate conditions: an integrated biochemical and modelling approach.

    PubMed

    AbdElgawad, Hamada; De Vos, Dirk; Zinta, Gaurav; Domagalska, Malgorzata A; Beemster, Gerrit T S; Asard, Han

    2015-10-01

    Proline (Pro) is a versatile metabolite playing a role in the protection of plants against environmental stresses. To gain a deeper understanding of the regulation of Pro metabolism under predicted future climate conditions, including drought stress, elevated temperature and CO2 , we combined measurements in contrasting grassland species (two grasses and two legumes) at multiple organisational levels, that is, metabolite concentrations, enzyme activities and gene expression. Drought stress (D) activates Pro biosynthesis and represses its catabolism, and elevated temperature (DT) further elevated its content. Elevated CO2 attenuated the DT effect on Pro accumulation. Computational pathway control analysis allowed a mechanistic understanding of the regulatory changes in Pro metabolism. This analysis indicates that the experimentally observed coregulation of multiple enzymes is more effective in modulating Pro concentrations than regulation of a single step. Pyrroline-5-carboxylate synthetase (P5CS) and pyrroline-5-carboxylate reductase (P5CR) play a central role in grasses (Lolium perenne, Poa pratensis), and arginase (ARG), ornithine aminotransferase (OAT) and P5CR play a central role in legumes (Medicago lupulina, Lotus corniculatus). Different strategies in the regulation of Pro concentrations under stress conditions were observed. In grasses the glutamate pathway is activated predominantly, and in the legumes the ornithine pathway, possibly related to differences in N-nutritional status. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. Toward a Comprehensive Carbon Budget for North America: Potential Applications of Adjoint Methods with Diverse Datasets

    NASA Technical Reports Server (NTRS)

    Andrews, A.

    2002-01-01

    A detailed mechanistic understanding of the sources and sinks of CO2 will be required to reliably predict future COS levels and climate. A commonly used technique for deriving information about CO2 exchange with surface reservoirs is to solve an "inverse problem," where CO2 observations are used with an atmospheric transport model to find the optimal distribution of sources and sinks. Synthesis inversion methods are powerful tools for addressing this question, but the results are disturbingly sensitive to the details of the calculation. Studies done using different atmospheric transport models and combinations of surface station data have produced substantially different distributions of surface fluxes. Adjoint methods are now being developed that will more effectively incorporate diverse datasets in estimates of surface fluxes of CO2. In an adjoint framework, it will be possible to combine CO2 concentration data from long-term surface monitoring stations with data from intensive field campaigns and with proposed future satellite observations. A major advantage of the adjoint approach is that meteorological and surface data, as well as data for other atmospheric constituents and pollutants can be efficiently included in addition to observations of CO2 mixing ratios. This presentation will provide an overview of potentially useful datasets for carbon cycle research in general with an emphasis on planning for the North American Carbon Project. Areas of overlap with ongoing and proposed work on air quality/air pollution issues will be highlighted.

  18. Field Testing of Cryogenic Carbon Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayre, Aaron; Frankman, Dave; Baxter, Andrew

    Sustainable Energy Solutions has been developing Cryogenic Carbon Capture™ (CCC) since 2008. In that time two processes have been developed, the External Cooling Loop and Compressed Flue Gas Cryogenic Carbon Capture processes (CCC ECL™ and CCC CFG™ respectively). The CCC ECL™ process has been scaled up to a 1TPD CO2 system. In this process the flue gas is cooled by an external refrigerant loop. SES has tested CCC ECL™ on real flue gas slip streams from subbituminous coal, bituminous coal, biomass, natural gas, shredded tires, and municipal waste fuels at field sites that include utility power stations, heating plants, cementmore » kilns, and pilot-scale research reactors. The CO2 concentrations from these tests ranged from 5 to 22% on a dry basis. CO2 capture ranged from 95-99+% during these tests. Several other condensable species were also captured including NO2, SO2 and PMxx at 95+%. NO was also captured at a modest rate. The CCC CFG™ process has been scaled up to a .25 ton per day system. This system has been tested on real flue gas streams including subbituminous coal, bituminous coal and natural gas at field sites that include utility power stations, heating plants, and pilot-scale research reactors. CO2 concentrations for these tests ranged from 5 to 15% on a dry basis. CO2 capture ranged from 95-99+% during these tests. Several other condensable species were also captured including NO2, SO2 and PMxx at 95+%. NO was also captured at 90+%. Hg capture was also verified and the resulting effluent from CCC CFG™ was below a 1ppt concentration. This paper will focus on discussion of the capabilities of CCC, the results of field testing and the future steps surrounding the development of this technology.« less

  19. Increasing drought and diminishing benefits of elevated carbon dioxide for soybean yields across the US Midwest.

    PubMed

    Jin, Zhenong; Ainsworth, Elizabeth A; Leakey, Andrew D B; Lobell, David B

    2018-02-01

    Elevated atmospheric CO 2 concentrations ([CO 2 ]) are expected to increase C3 crop yield through the CO 2 fertilization effect (CFE) by stimulating photosynthesis and by reducing stomatal conductance and transpiration. The latter effect is widely believed to lead to greater benefits in dry rather than wet conditions, although some recent experimental evidence challenges this view. Here we used a process-based crop model, the Agricultural Production Systems sIMulator (APSIM), to quantify the contemporary and future CFE on soybean in one of its primary production area of the US Midwest. APSIM accurately reproduced experimental data from the Soybean Free-Air CO 2 Enrichment site showing that the CFE declined with increasing drought stress. This resulted from greater radiation use efficiency (RUE) and above-ground biomass production at elevated [CO 2 ] that outpaced gains in transpiration efficiency (TE). Using an ensemble of eight climate model projections, we found that drought frequency in the US Midwest is projected to increase from once every 5 years currently to once every other year by 2050. In addition to directly driving yield loss, greater drought also significantly limited the benefit from rising [CO 2 ]. This study provides a link between localized experiments and regional-scale modeling to highlight that increased drought frequency and severity pose a formidable challenge to maintaining soybean yield progress that is not offset by rising [CO 2 ] as previously anticipated. Evaluating the relative sensitivity of RUE and TE to elevated [CO 2 ] will be an important target for future modeling and experimental studies of climate change impacts and adaptation in C3 crops. © 2017 John Wiley & Sons Ltd.

  20. Seasonal variability and long-term evolution of tropospheric composition in the tropics and Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Wai, K. M.; Wu, S.; Kumar, A.; Liao, H.

    2014-05-01

    Impacts on tropospheric composition in the tropics and the Southern Hemisphere from biomass burning and other emission sources are studied using a global chemical transport model, surface measurements and satellite retrievals. Seasonal variations in observed CO at remote island sites are examined. Easter Island (eastern Pacific Ocean) is impacted indirectly by the hemispheric zonal transport of CO due to the burning in southern Africa/South America, via the westerlies. An increasing trend in CO by 0.33 ppb yr-1 in the past decade at Ascension Island is attributed to the combined effects of South American/southern Africa burnings and the increases in CH4 level. Compared to Easter Island and Ascension Island, much less contribution from biomass burning to atmospheric CO is found at the island of Mahé (western Indian Ocean), where the total CO peaks in January-February, reflecting the contributions of anthropogenic emissions from India. We also examine the 2000-2050 changes in atmospheric composition in the tropics and the Southern Hemisphere driven by future changes in emissions and climate. Changes in solar radiation (UV) over South Atlantic Ocean (SAO) in future January have dominant effects on the O3 distribution. More than 55% of O3 concentrations over the SAO in both present-day and future September are not directly affected by the emissions (including lightning) over the adjacent two continents but are attributable to the transport of O3 from surrounding areas due to CO and CH4 oxidation and stratospheric intrusion. High NOx emissions in both continents in 2050s increase PAN concentrations over remote oceans at the higher southern latitudes (> 35° S) as far as those near Australia, affecting the O3 budget over there. Future changes in biomass burning and anthropogenic NOx emissions in southern Africa lead to a new area of high O3 concentrations near South Africa. The resulted O3 outflow to the Indian Ocean is pronounced due to the effects of the persistent anticyclone. A general reduction in future OH radical concentrations is predicted over the remote marine boundary layer in the tropics and the Southern Hemisphere, as a result of the increases in CH4 and CO emissions.

  1. Formulating Energy Policies Related to Fossil Fuel Use: Critical Uncertainties in the Global Carbon Cycle

    DOE R&D Accomplishments Database

    Post, W. M.; Dale, V. H.; DeAngelis, D. L.; Mann, L. K.; Mulholland, P. J.; O`Neill, R. V.; Peng, T. -H.; Farrell, M. P.

    1990-02-01

    The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Four reservoirs can be identified, including the atmosphere, terrestrial biosphere, oceans, and sediments. Atmospheric CO{sub 2} concentration is determined by characteristics of carbon fluxes among major reservoirs of the global carbon cycle. The objective of this paper is to document the knowns, and unknowns and uncertainties associated with key questions that if answered will increase the understanding of the portion of past, present, and future atmospheric CO{sub 2} attributable to fossil fuel burning. Documented atmospheric increases in CO{sub 2} levels are thought to result primarily from fossil fuel use and, perhaps, deforestation. However, the observed atmospheric CO{sub 2} increase is less than expected from current understanding of the global carbon cycle because of poorly understood interactions among the major carbon reservoirs.

  2. Aridity under conditions of increased CO2

    NASA Astrophysics Data System (ADS)

    Greve, Peter; Roderick, Micheal L.; Seneviratne, Sonia I.

    2016-04-01

    A string of recent of studies led to the wide-held assumption that aridity will increase under conditions of increasing atmospheric CO2 concentrations and associated global warming. Such results generally build upon analyses of changes in the 'aridity index' (the ratio of potential evaporation to precipitation) and can be described as a direct thermodynamic effect on atmospheric water demand due to increasing temperatures. However, there is widespread evidence that contradicts the 'warmer is more arid' interpretation, leading to the 'global aridity paradox' (Roderick et al. 2015, WRR). Here we provide a comprehensive assessment of modeled changes in a broad set of dryness metrics (primarily based on a range of measures of water availability) over a large range of realistic atmospheric CO2 concentrations. We use an ensemble of simulations from of state-of-the-art climate models to analyse both equilibrium climate experiments and transient historical simulations and future projections. Our results show that dryness is, under conditions of increasing atmospheric CO2 concentrations and related global warming, generally decreasing at global scales. At regional scales we do, however, identify areas that undergo changes towards drier conditions, located primarily in subtropical climate regions and the Amazon Basin. Nonetheless, the majority of regions, especially in tropical and mid- to northern high latitudes areas, display wetting conditions in a warming world. Our results contradict previous findings and highlight the need to comprehensively assess all aspects of changes in hydroclimatological conditions at the land surface. Roderick, M. L., P. Greve, and G. D. Farquhar (2015), On the assessment of aridity with changes in atmospheric CO2, Water Resour. Res., 51, 5450-5463

  3. CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression

    NASA Astrophysics Data System (ADS)

    Kutzbach, L.; Schneider, J.; Sachs, T.; Giebels, M.; Nykänen, H.; Shurpali, N. J.; Martikainen, P. J.; Alm, J.; Wilmking, M.

    2007-11-01

    Closed (non-steady state) chambers are widely used for quantifying carbon dioxide (CO2) fluxes between soils or low-stature canopies and the atmosphere. It is well recognised that covering a soil or vegetation by a closed chamber inherently disturbs the natural CO2 fluxes by altering the concentration gradients between the soil, the vegetation and the overlying air. Thus, the driving factors of CO2 fluxes are not constant during the closed chamber experiment, and no linear increase or decrease of CO2 concentration over time within the chamber headspace can be expected. Nevertheless, linear regression has been applied for calculating CO2 fluxes in many recent, partly influential, studies. This approach has been justified by keeping the closure time short and assuming the concentration change over time to be in the linear range. Here, we test if the application of linear regression is really appropriate for estimating CO2 fluxes using closed chambers over short closure times and if the application of nonlinear regression is necessary. We developed a nonlinear exponential regression model from diffusion and photosynthesis theory. This exponential model was tested with four different datasets of CO2 flux measurements (total number: 1764) conducted at three peatlands sites in Finland and a tundra site in Siberia. Thorough analyses of residuals demonstrated that linear regression was frequently not appropriate for the determination of CO2 fluxes by closed-chamber methods, even if closure times were kept short. The developed exponential model was well suited for nonlinear regression of the concentration over time c(t) evolution in the chamber headspace and estimation of the initial CO2 fluxes at closure time for the majority of experiments. However, a rather large percentage of the exponential regression functions showed curvatures not consistent with the theoretical model which is considered to be caused by violations of the underlying model assumptions. Especially the effects of turbulence and pressure disturbances by the chamber deployment are suspected to have caused unexplainable curvatures. CO2 flux estimates by linear regression can be as low as 40% of the flux estimates of exponential regression for closure times of only two minutes. The degree of underestimation increased with increasing CO2 flux strength and was dependent on soil and vegetation conditions which can disturb not only the quantitative but also the qualitative evaluation of CO2 flux dynamics. The underestimation effect by linear regression was observed to be different for CO2 uptake and release situations which can lead to stronger bias in the daily, seasonal and annual CO2 balances than in the individual fluxes. To avoid serious bias of CO2 flux estimates based on closed chamber experiments, we suggest further tests using published datasets and recommend the use of nonlinear regression models for future closed chamber studies.

  4. Sensitivity of Ocean Chemistry and Oxygen Change to the Uncertainty in Climate Change

    NASA Astrophysics Data System (ADS)

    Cao, L.; Wang, S.; Zheng, M.; Zhang, H.

    2014-12-01

    With increasing atmospheric CO2 and climate change, global ocean is undergoing substantial physical and biogeochemical changes. In particular, changes in ocean oxygen and carbonate chemistry have great implication for marine biota. There is considerable uncertainty in the projections of future climate change, and it is unclear how the uncertainty in climate change would affect the projection of ocean oxygen and carbonate chemistry. To examine the effect of climate change on ocean oxygen and carbonate chemistry, we used an Earth system model of intermediate complexity to perform simulations that are driven by atmospheric CO2 concentration pathway of RCP 8.5 with climate sensitivity varying from 0.0°C to 4.5 °C. Climate change affects carbonate chemistry and oxygen mainly through its impact on ocean temperature, ocean ventilation, and concentration of dissolved inorganic carbon and alkalinity. Our simulations show that climate change mitigates the decrease of carbonate ions at the ocean surface but has negligible effect on surface ocean pH. Averaged over the whole ocean, climate change acts to decrease oxygen concentration but mitigates the CO2-induced reduction of carbonate ion and pH. In our simulations, by year 2500, every degree increase of climate sensitivity warms the ocean by 0.8 °C and reduces ocean-mean dissolved oxygen concentration by 5.0%. Meanwhile, every degree increase of climate sensitivity buffers CO2-induced reduction in ocean-mean carbonate ion concentration and pH by 3.4% and 0.02 units, respectively. Our study demonstrates different sensitivities of ocean temperature, carbonate chemistry, and oxygen, in terms of both the sign and magnitude, to the amount of climate change, which have great implications for understanding the response of ocean biota to climate change.

  5. Trichodesmium’s strategies to alleviate phosphorus limitation in the future acidified oceans.

    PubMed

    Spungin, Dina; Berman-Frank, Ilana; Levitan, Orly

    2014-06-01

    Global warming may exacerbate inorganic nutrient limitation, including phosphorus (P), in the surface waters of tropical oceans that are home to extensive blooms of the marine diazotrophic cyanobacterium, Trichodesmium. We examined the combined effects of P limitation and pCO(2), forecast under ocean acidification scenarios, on Trichodesmium erythraeum IMS101 cultures. We measured nitrogen acquisition,glutamine synthetase activity, C uptake rates, intracellular Adenosine Triphosphate (ATP) concentration and the pool sizes of related key proteins. Here, we present data supporting the idea that cellular energy re-allocation enables the higher growth and N(2) fixation rates detected in Trichodesmium cultured under high pCO(2). This is reflected in altered protein abundance and metabolic pools. Also modified are particulate organic carbon and nitrogen production rates,enzymatic activities, and cellular ATP concentrations. We suggest that adjusting these cellular pathways to changing environmental conditions enables Trichodesmium to compensate for low P availability and to thrive in acidified oceans. Moreover, elevated pCO(2) could provide Trichodesmium with a competitive dominance that would extend its niche, particularly in P-limited regions of the tropical and subtropical oceans.

  6. Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species.

    PubMed

    Borum, Jens; Pedersen, Ole; Kotula, Lukasz; Fraser, Matthew W; Statton, John; Colmer, Timothy D; Kendrick, Gary A

    2016-06-01

    Photosynthesis of most seagrass species seems to be limited by present concentrations of dissolved inorganic carbon (DIC). Therefore, the ongoing increase in atmospheric CO2 could enhance seagrass photosynthesis and internal O2 supply, and potentially change species competition through differential responses to increasing CO2 availability among species. We used short-term photosynthetic responses of nine seagrass species from the south-west of Australia to test species-specific responses to enhanced CO2 and changes in HCO3 (-) . Net photosynthesis of all species except Zostera polychlamys were limited at pre-industrial compared to saturating CO2 levels at light saturation, suggesting that enhanced CO2 availability will enhance seagrass performance. Seven out of the nine species were efficient HCO3 (-) users through acidification of diffusive boundary layers, production of extracellular carbonic anhydrase, or uptake and internal conversion of HCO3 (-) . Species responded differently to near saturating CO2 implying that increasing atmospheric CO2 may change competition among seagrass species if co-occurring in mixed beds. Increasing CO2 availability also enhanced internal aeration in the one species assessed. We expect that future increases in atmospheric CO2 will have the strongest impact on seagrass recruits and sparsely vegetated beds, because densely vegetated seagrass beds are most often limited by light and not by inorganic carbon. © 2015 John Wiley & Sons Ltd.

  7. Interactions between iron and organic matter may influence the fate of permafrost carbon in the Arctic

    NASA Astrophysics Data System (ADS)

    Cory, R. M.; Trusiak, A.; Ward, C.; Kling, G. W.; Tfaily, M.; Paša-Tolić, L.; Noel, V.; Bargar, J.

    2017-12-01

    The ongoing thawing of permafrost soils is the only environmental change that allows tremendous stores of organic carbon (C) to be converted into carbon dioxide (CO2) on decadal time scales, thus providing a positive and accelerating feedback to global warming. Evidence suggests that iron enhances abiotic reactions that convert dissolved organic matter (DOM) to CO2 in dark soils and in sunlit surface waters depending on its redox state and association with DOM (i.e., iron-DOM complexation). However, the complexation of iron in surface waters and soils remains too poorly understood to predict how iron influences the rates of oxidation of DOM to CO2. To address this knowledge gap, we characterized iron-DOM complexation in iron-rich soil and surface waters of the Arctic, in combination with measurements of DOM oxidation to CO2. These waters contain high concentrations of dissolved iron and DOM (up to 1 and 2 mM, respectively), and low concentrations of other potential ligands for iron such as sulfide, carbonate, chloride, or bromide. Ultra-high resolution mass spectrometry (FT-ICR MS) was used to identify ligands for iron within the DOM pool, and synchrotron based X-ray analysis (XAS and EXAFS) was used to assess iron's oxidation state, to detect iron complexation, and to constrain the chemical composition of the complexes. Across a natural gradient of dissolved iron and DOM concentrations, many potential ligands were identified within DOM that are expected to complex with iron (e.g., aromatic acids). EXAFS showed substantial complexation of reduced ferrous iron (Fe(II)) to DOM in arctic soil waters, on the basis of comparison to Fe(II)-DOM reference spectra. Identification of iron complexed to DOM in soil waters is consistent with strongly co-varying iron and DOM concentrations in arctic soil and surface waters, and supports our hypothesis that complexation of iron by DOM influences dark and light redox reactions that oxidize DOM to CO2. Understanding the molecular controls on the biogeochemical reactions that convert permafrost carbon to CO2 is critical for understanding the role of the Arctic in current and future climate change.

  8. Analyzing the carbon cycle with the local ensemble transform Kalman filter, online transport model and real observation data

    NASA Astrophysics Data System (ADS)

    Maki, T.; Sekiyama, T. T.; Shibata, K.; Miyazaki, K.; Miyoshi, T.; Yamada, K.; Yokoo, Y.; Iwasaki, T.

    2011-12-01

    In the current carbon cycle analysis, inverse modeling plays an important role. However, it requires enormous computational resources when we deal with more flux regions and more observations. The local ensemble transform Kalman filter (LETKF) is an alternative approach to reduce such problems. We constructed a carbon cycle analysis system with the LETKF and MRI (Meteorological Research Institute) online transport model (MJ98-CDTM). In MJ98-CDTM, an off-line transport model (CDTM) is directly coupled with the MRI/JMA GCM (MJ98). We further improved vertical transport processes in MJ98-CDTM from previous study. The LETKF includes enhanced features such as smoother to assimilate future observations, adaptive inflation and bias correction scheme. In this study, we use CO2 observations of surface data (continuous and flask), aircraft data (CONTRAIL) and satellite data (GOSAT), although we plan to assimilate AIRS tropospheric CO2 data. We developed a quality control system. We estimated 3-day-mean CO2 flux at a resolution of T42. Here, only CO2 concentrations and fluxes are analyzed whereas meteorological fields are nudged by the Japanese reanalysis (JCDAS). The horizontal localization length scale and assimilation window are chosen to be 1000 km and 3 days, respectively. The results indicate that the assimilation system works properly, better than free transport model run when we validate with independent CO2 concentration observational data and CO2 analysis data.

  9. An Experimental Study of Effects in Soils by Potential CO2 Seepage

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Caramanna, G.; Nathanail, P.; Steven, M.; Maroto-Valer, M.

    2011-12-01

    Potential CO2 seepage during a CCS project will not only reduce its performing efficiency, but can also impact the local environment. Though scientists announce with confidence that CCS is a safe technology to store CO2 deep underground, it is essential to study the effects of CO2 seepage, to avoid any possible influences on soils. As a simplified environment, laboratory experiments can easily be controlled and vital to be studied to be compared with more complex natural analogues and modelling works. Recent research focuses on the effects on ecosystems of CO2 leakage. However, the impacts of long-term, low level exposure for both surface and subsurface ecosystems, as well as soil geochemistry changes are currently not clear. Moreover, previous work has focussed on pure CO2 leakage only and its impacts on the ecosystem. However, in a more realistic scenario the gas coming from a capture process may contain impurities, such as SO2, which are more dangerous than pure CO2 and could cause more severe consequences. Therefore, it is critical to assess the potential additional risks caused by CO2 leakage with impurities. Accordingly, both a batch and a continuous flow reactor were designed and used to study potential impacts caused by the CO2 seepage, focusing on soil geochemistry changes, due to different concentrations of CO2/SO2 mixtures. Stage 1- Batch experiments. In this stage, a soil sample was collected from the field and exposed to a controlled CO2/SO2 gas mixtures (100% CO2 and CO2:SO2=99:1). The water soluble fractions were measured before and after incubation. With 100% CO2 incubation it was found that: 1) the pH in the soil sample did not change significantly; 2) for soils with different moisture levels, greater moisture in the soil results in higher CO2 uptake during incubation; and 3) for sandy soils, small changes in CaCl2-exchangeable metal concentration, were observed after CO2 incubation. However, the increased concentration of toxic elements is still below plant tolerance limits. With a gas mixture of 99% CO2 and 1% SO2, it was found that: 1) pH changed significantly from 5.54 to ~3.00; 2) consistent but minor changes were found in some of the nutrients; and 3) high concentrations of the toxic element, Al, were found, at approximately ~200 mg/l compared to an initial value of <0.1 mg/l. Stage 2- A continuous flow reactor. At this stage, a continuous vertical flow reactor was designed and used to assess the impact in soil caused by different mixtures of CO2/SO2. With limestone sand and 100% CO2, it was found that: 1) pH dropped quickly at the first hour and stabilised around 6.10 until CO2 injecting was stopped; 2) limestone had strong buffering capacity but only after stopping CO2 injection; 3) a change was found for soil permeability and porosity during the gas injecting process; 4) with saturated soil, a dome was always formed at the top of the soil column at the end of each experiment. More experiments are planned in the near future.

  10. The combined effects of acidification and hypoxia on pH and aragonite saturation in the coastal waters of the California current ecosystem and the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Feely, Richard A.; Okazaki, Remy R.; Cai, Wei-Jun; Bednaršek, Nina; Alin, Simone R.; Byrne, Robert H.; Fassbender, Andrea

    2018-01-01

    Inorganic carbon chemistry data from the surface and subsurface waters of the West Coast of North America have been compared with similar data from the northern Gulf of Mexico to demonstrate how future changes in CO2 emissions will affect chemical changes in coastal waters affected by respiration-induced hypoxia ([O2] ≤ 60 μmol kg-1). In surface waters, the percentage change in the carbon parameters due to increasing CO2 emissions are very similar for both regions even though the absolute decrease in aragonite saturation is much higher in the warmer waters of the Gulf of Mexico. However, in subsurface waters the changes are enhanced due to differences in the initial oxygen concentration and the changes in the buffer capacity (i.e., increasing Revelle Factor) with increasing respiration from the oxidation of organic matter, with the largest impacts on pH and CO2 partial pressure (pCO2) occurring in the colder West Coast waters. As anthropogenic CO2 concentrations begin to build up in subsurface waters, increased atmospheric CO2 will expose organisms to hypercapnic conditions (pCO2 >1000 μatm) within subsurface depths. Since the maintenance of the extracellular pH appears as the first line of defense against external stresses, many biological response studies have been focused on pCO2-induced hypercapnia. The extent of subsurface exposure will occur sooner and be more widespread in colder waters due to their capacity to hold more dissolved oxygen and the accompanying weaker acid-base buffer capacity. Under present conditions, organisms in the West Coast are exposed to hypercapnic conditions when oxygen concentrations are near 100 μmol kg-1 but will experience hypercapnia at oxygen concentrations of 260 μmol kg-1 by year 2100 under the highest elevated-CO2 conditions. Hypercapnia does not occur at present in the Gulf of Mexico but will occur at oxygen concentrations of 170 μmol kg-1 by the end of the century under similar conditions. The aragonite saturation horizon is currently above the hypoxic zone in the West Coast. With increasing atmospheric CO2, it is expected to shoal up close to surface waters under the IPCC Representative Concentration Pathway (RCP) 8.5 in West Coast waters, while aragonite saturation state will exhibit steeper gradients in the Gulf of Mexico. This study demonstrates how different biological thresholds (e.g., hypoxia, CaCO3 undersaturation, hypercapnia) will vary asymmetrically because of local initial conditions that are affected differently with increasing atmospheric CO2. The direction of change in amplitude of hypercapnia will be similar in both ecosystems, exposing both biological communities from the West Coast and Gulf of Mexico to intensification of stressful conditions. However, the region of lower Revelle factors (i.e., the Gulf of Mexico), currently provides an adequate refuge habitat that might no longer be the case under the most severe RCP scenarios.

  11. Elevated CO2 alters distribution of nodal leaf area and enhances nitrogen uptake contributing to yield increase of soybean cultivars grown in Mollisols.

    PubMed

    Jin, Jian; Li, Yansheng; Liu, Xiaobing; Wang, Guanghua; Tang, Caixian; Yu, Zhenhua; Wang, Xiaojuan; Herbert, Stephen J

    2017-01-01

    Understanding how elevated CO2 affects dynamics of nodal leaf growth and N assimilation is crucial for the construction of high-yielding canopy via breeding and N management to cope with the future climate change. Two soybean cultivars were grown in two Mollisols differing in soil organic carbon (SOC), and exposed to ambient CO2 (380 ppm) or elevated CO2 (580 ppm) throughout the growth stages. Elevated CO2 induced 4-5 more nodes, and nearly doubled the number of branches. Leaf area duration at the upper nodes from R5 to R6 was 4.3-fold greater and that on branches 2.4-fold higher under elevated CO2 than ambient CO2, irrespective of cultivar and soil type. As a result, elevated CO2 markedly increased the number of pods and seeds at these corresponding positions. The yield response to elevated CO2 varied between the cultivars but not soils. The cultivar-specific response was likely attributed to N content per unit leaf area, the capacity of C sink in seeds and N assimilation. Elevated CO2 did not change protein concentration in seeds of either cultivar. These results indicate that elevated CO2 increases leaf area towards the upper nodes and branches which in turn contributes yield increase.

  12. CO2 enrichment and N addition increase nutrient loss from decomposing leaf litter in subtropical model forest ecosystems

    PubMed Central

    Liu, Juxiu; Fang, Xiong; Deng, Qi; Han, Tianfeng; Huang, Wenjuan; Li, Yiyong

    2015-01-01

    As atmospheric CO2 concentration increases, many experiments have been carried out to study effects of CO2 enrichment on litter decomposition and nutrient release. However, the result is still uncertain. Meanwhile, the impact of CO2 enrichment on nutrients other than N and P are far less studied. Using open-top chambers, we examined effects of elevated CO2 and N addition on leaf litter decomposition and nutrient release in subtropical model forest ecosystems. We found that both elevated CO2 and N addition increased nutrient (C, N, P, K, Ca, Mg and Zn) loss from the decomposing litter. The N, P, Ca and Zn loss was more than tripled in the chambers exposed to both elevated CO2 and N addition than those in the control chambers after 21 months of treatment. The stimulation of nutrient loss under elevated CO2 was associated with the increased soil moisture, the higher leaf litter quality and the greater soil acidity. Accelerated nutrient release under N addition was related to the higher leaf litter quality, the increased soil microbial biomass and the greater soil acidity. Our results imply that elevated CO2 and N addition will increase nutrient cycling in subtropical China under the future global change. PMID:25608664

  13. Export of Dissolved Methane and Carbon Dioxide with Effluents from Municipal Wastewater Treatment Plants.

    PubMed

    Alshboul, Zeyad; Encinas-Fernández, Jorge; Hofmann, Hilmar; Lorke, Andreas

    2016-06-07

    Inland waters play an important role for regional and global scale carbon cycling and are significant sources of the atmospheric greenhouse gases methane (CH4) and carbon dioxide (CO2). Although most studies considered the input of terrestrially derived organic and inorganic carbon as the main sources for these emissions, anthropogenic sources have rarely been investigated. Municipal wastewater treatment plants (WWTPs) could be additional sources of carbon by discharging the treated wastewater into the surrounding aquatic ecosystems. Here we analyze seasonally resolved measurements of dissolved CH4 and CO2 concentrations in effluents and receiving streams at nine WWTPs in Germany. We found that effluent addition significantly altered the physicochemical properties of the streamwater. Downstream of the WWTPs, the concentrations of dissolved CH4 and CO2 were enhanced and the atmospheric fluxes of both gases increased by a factor of 1.2 and 8.6, respectively. The CH4 exported with discharged effluent, however, accounted for only a negligible fraction (0.02%) of the estimated total CH4 emissions during the treatment process. The CH4 concentration in the effluent water was linearly related to the organic load of the wastewater, which can provide an empirical basis for future attempts to add WWTPs inputs to regional-scale models for inland water-carbon fluxes.

  14. A Global Perspective of Atmospheric CO2 Concentrations

    NASA Technical Reports Server (NTRS)

    Putman, William M.; Ott, Lesley; Darmenov, Anton; daSilva, Arlindo

    2016-01-01

    Carbon dioxide (CO2) is the most important greenhouse gas affected by human activity. About half of the CO2 emitted from fossil fuel combustion remains in the atmosphere, contributing to rising temperatures, while the other half is absorbed by natural land and ocean carbon reservoirs. Despite the importance of CO2, many questions remain regarding the processes that control these fluxes and how they may change in response to a changing climate. The Orbiting Carbon Observatory-2 (OCO-2), launched on July 2, 2014, is NASA's first satellite mission designed to provide the global view of atmospheric CO2 needed to better understand both human emissions and natural fluxes. This visualization shows how column CO2 mixing ratio, the quantity observed by OCO-2, varies throughout the year. By observing spatial and temporal gradients in CO2 like those shown, OCO-2 data will improve our understanding of carbon flux estimates. But, CO2 observations can't do that alone. This visualization also shows that column CO2 mixing ratios are strongly affected by large-scale weather systems. In order to fully understand carbon flux processes, OCO-2 observations and atmospheric models will work closely together to determine when and where observed CO2 came from. Together, the combination of high-resolution data and models will guide climate models towards more reliable predictions of future conditions.

  15. pCO2 Effects on Species Composition and Growth of an Estuarine Phytoplankton Community

    NASA Astrophysics Data System (ADS)

    Grear, J. S.; Rynearson, T. A.; Montalbano, A. L.; Govenar, B. W.; Menden-Deuer, S.

    2016-02-01

    Ocean and coastal waters are experiencing changes in carbonate chemistry, including pH, in response to increasing atmospheric CO2 concentration and the microbial degradation of organic matter associated with nutrient enrichment. The effects of this change on plankton communities have important implications for food webs and biogeochemical cycling. However, conflicting results have emerged regarding responses of phytoplankton species and communities to experimental CO2 enrichment. We performed winter "ecostat" incubations of natural plankton communities from lower Narragansett Bay at ambient bay temperatures (5-13 C), light, and nutrients under three levels of CO2 enrichment simulating past, present and future conditions (mean pCO2 levels were 224, 361, and 724 uatm). Major increases in relative diatom abundance occurred during the experiment but were similar across pCO2 treatments. At the end of the experiment, 24-hr growth responses to pCO2 varied as a function of cell size. The smallest size fraction (<5 µm) grew faster at the elevated pCO2 level. In contrast, the 5-20 µm size fraction grew fastest in the Present treatment and there were no significant differences in growth rate among treatments in the > 20 µm size fraction. Cell size distribution shifted toward smaller cells in both the Past and Future treatments but remained unchanged in the Present treatment. These non-monotonic effects of increasing pCO2 may be related to opposing physiological effects of high CO2 vs low pH both within and among species. Interaction of these effects with other factors (e.g., nutrients, light, temperature, grazing, initial species composition) may explain variability among published studies. The absence of clear treatment-specific effects at the community level suggest that extrapolation of species-specific responses would produce misleading predictions of ocean acidification impacts on plankton production.

  16. Proposal to Simultaneously Profile Wind and CO2 on Earth and Mars With 2-micron Pulsed Lidar Technologies

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Koch, Grady J.; Kavaya, Michael J.; Amzajerdian, Farzin; Ismail, Syed; Emmitt, David

    2005-01-01

    2-micron lidar technology has been in use and under continued improvement for many years toward wind measurements. But the 2-micron wavelength region is also rich in absorption lines of CO2 (and H2O to a lesser extent) that can be exploited with the differential absorption lidar (DIAL) technique to make species concentration measurements. A coherent detection receiver offers the possibility of making combined wind and DIAL measurements with wind derived from frequency shift of the backscatter spectrum and species concentration derived from power of the backscatter spectrum. A combined wind and CO2 measurement capability is of interest for applications on both Earth and Mars. CO2 measurements in the Earth atmosphere are of importance to studies of the global carbon cycle. Data on vertically-resolved CO2 profiles over large geographical observations areas are of particular interest that could potentially be made by deploying a lidar on an aircraft or satellite. By combining CO2 concentration with wind measurements an even more useful data product could be obtained in the calculation of CO2 flux. A challenge to lidar in this application is that CO2 concentration measurements must be made with a high level of precision and accuracy to better than 1%. The Martian atmosphere also presents wind and CO2 measurement problems that could be met with a combined DIAL/Doppler lidar. CO2 concentration in this scenario would be used to calculate atmospheric density since the Martian atmosphere is composed of 95% CO2. The lack of measurements of Mars atmospheric density in the 30-60 km range, dust storm formation and movements, and horizontal wind patterns in the 0-20 km range pose significant risks to aerocapture, and entry, descent, and landing of future robotic and human Mars missions. Systematic measurement of the Mars atmospheric density and winds will be required over several Mars years, supplemented with day-of-entry operational measurements. To date, there have been 5 successful robotic landings on Mars. Atmospheric density and wind reconstruction has been performed for 3 of these entries (the two Viking landers and Mars Pathfinder). At present, all Mars atmospheric density and wind models have these 3 entries (at widely scattered positions and seasons) as their basis, supplemented by coarse orbital measurements of atmospheric opacity and temperature. This lack of data leads to a large uncertainty in prediction of the Mars atmospheric density and winds in the altitude regime where deceleration of landers will occur. This uncertainty will have a dramatically large impact on mass, cost and risk. The precision and accuracy for application to Mars is not as stringent as Earth, but Mars does pose a challenge in needing a high level of wavelength stability and control in order to reference wavelength to the narrow linewidths found in the low atmospheric pressure of Mars, as illustrated in Figure 1.

  17. Hydrogen production from food wastes and gas post-treatment by CO{sub 2} adsorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redondas, V.; Gomez, X., E-mail: xagomb@unileon.es; Garcia, S.

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The dark fermentation process of food wastes was studied over an extended period. Black-Right-Pointing-Pointer Decreasing the HRT of the process negatively affected the specific gas production. Black-Right-Pointing-Pointer Adsorption of CO{sub 2} was successfully attained using a biomass type activated carbon. Black-Right-Pointing-Pointer H{sub 2} concentration in the range of 85-95% was obtained for the treated gas-stream. - Abstract: The production of H{sub 2} by biological means, although still far from being a commercially viable proposition, offers great promise for the future. Purification of the biogas obtained may lead to the production of highly concentrated H{sub 2} streams appropriate formore » industrial application. This research work evaluates the dark fermentation of food wastes and assesses the possibility of adsorbing CO{sub 2} from the gas stream by means of a low cost biomass-based adsorbent. The reactor used was a completely stirred tank reactor run at different hydraulic retention times (HRTs) while the concentration of solids of the feeding stream was kept constant. The results obtained demonstrate that the H{sub 2} yields from the fermentation of food wastes were affected by modifications in the hydraulic retention time (HRT) due to incomplete hydrolysis. The decrease in the duration of fermentation had a negative effect on the conversion of the substrate into soluble products. This resulted in a lower amount of soluble substrate being available for metabolisation by H{sub 2} producing microflora leading to a reduction in specific H{sub 2} production. Adsorption of CO{sub 2} from a gas stream generated from the dark fermentation process was successfully carried out. The data obtained demonstrate that the column filled with biomass-derived activated carbon resulted in a high degree of hydrogen purification. Co-adsorption of H{sub 2}S onto the activated carbon also took place, there being no evidence of H{sub 2}S present in the bio-H{sub 2} exiting the column. Nevertheless, the concentration of H{sub 2}S was very low, and this co-adsorption did not affect the CO{sub 2} capture capacity of the activated carbon.« less

  18. CO2 Fluxes and Concentrations in a Residential Area in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Weissert, L. F.; Salmond, J. A.; Turnbull, J. C.; Schwendenmann, L.

    2014-12-01

    While cities are generally major sources of anthropogenic carbon dioxide (CO2) emissions, recent research has shown that parts of urban areas may also act as CO2 sinks due to CO2 uptake by vegetation. However, currently available results are related to a large degree of uncertainty due to the limitations of the applied methods and the limited number of studies available from urban areas, particularly from the southern hemisphere. In this study, we explore the potential of eddy covariance and tracer measurements (13C and 14C isotopes of CO2) to quantify and partition CO2 fluxes and concentrations in a residential urban area in Auckland, New Zealand. Based on preliminary results from autumn and winter (March to July 2014) the residential area is a small source of CO2 (0.11 mol CO2 m-2 day-1). CO2 fluxes and concentrations follow a distinct diurnal cycle with a morning peak between 7:00 and 9:00 (max: 0.25 mol CO2 m-2 day-1/412 ppm) and midday low with negative CO2 fluxes (min: -0.17 mol CO2 m-2 day-1/392 ppm) between 10:00 and 15:00 local time, likely due to photosynthetic CO2 uptake by local vegetation. Soil CO2 efflux may explain that CO2 concentrations increase and remain high (401 ppm) throughout the night. Mean diurnal winter δ13C values are in anti-phase with CO2 concentrations and vary between -9.0 - -9.7‰. The depletion of δ13C compared to clean atmospheric air (-8.2‰) is likely a result of local CO2 sources dominated by gasoline combustion (appr. 60%) during daytime. A sector analysis (based on prevailing wind) of CO2 fluxes and concentrations indicates lower CO2 fluxes and concentrations from the vegetation-dominated sector, further demonstrating the influence of vegetation on local CO2 concentrations. These results provide an insight into the temporal and spatial variability CO2 fluxes/concentrations and potential CO2 sinks and sources from a city in the southern hemisphere and add valuable information to the global database of urban CO2 fluxes.

  19. δ13C from diatoms record a CO2 decline since the late Miocene

    NASA Astrophysics Data System (ADS)

    Mejia, Luz Maria; Mendez-Vicente, Ana; Abrevaya, Lorena; Lawrence, Kira; Ladlow, Caroline; Bolton, Clara; Cacho, Isabel; Stoll, Heather

    2017-04-01

    Since the partial pressure of atmospheric carbon dioxide (pCO2) is a key climate regulator, accurate climate modelling producing scenarios comparable to proxy evidence requires reliable and accurate CO2 reconstructions as input parameters. The carbon isotopic fractionation by phytoplankton (ɛp), specifically measured from coccolith calcite, has been widely used to estimate past CO2 variations. Over the last 14 Ma, CO2 records calculated from coccolith δ13C suggest a decoupling of greenhouse gas forcing and sea surface temperature (SST) variations, which in the extratropics show a decrease of up to 17 °C, while CO2 concentrations estimated by coccolith ɛp remain rather constant. Phytoplankton ɛp does not only depend on the carbon availability in seawater and therefore on CO2 concentrations, but also on the cellular carbon demand, which is in part controlled by the diffusive supply rate of CO2 to the cell (i.e. cell size and geometry). Since the cell size of coccolithophores changed significantly over the last 13 Ma, it is likely that the stable CO2 concentrations previously reconstructed by coccolith ɛp where no size corrections were conducted, are rather inaccurate. In contrast, uncertainties due to the cell size variation effect can be eliminated from ɛp records calculated from δ13C measurements of the organic matter trapped inside diatom frustules, as diatoms with restricted cell size and geometries can be produced by careful frustule separation techniques (i.e. microfiltration and settling). Here we reconstruct ɛp from pennate diatoms <10 µm from the Eastern Equatorial Pacific Ocean at Ocean Drilling Program Site 846 over the last 13 Ma. Various productivity indicators (i.e. opal content, alkenone concentration and coccolith Sr/Ca) were used to estimate the potential effects of growth rate variation in our samples. Our pennate diatom ɛp record shows a decline of 5.2 ‰ during the past 11 Ma, which implies a pCO2 decline from 454 (+/-41) to 250 (+/-15) ppmv between 11 and 6 Ma. This magnitude of CO2 change is likely to be a minimum estimate, as it does not consider potential increases in the active carbon uptake by diatoms. As opposed to previous coccolith-based ɛp CO2 records, our record suggest a decreasing greenhouse forcing related to the cooling observed during this time period, giving new insights of climate sensitivity and carbon cycle feedbacks during the last 13 Ma, which should be included into numerical models to produce more accurate reconstructions of past climate and better approximations to future climate variations.

  20. The effect of CO2 availability on the growth, iron oxidation and CO2-fixation rates of pure cultures of Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans.

    PubMed

    Bryan, C G; Davis-Belmar, C S; van Wyk, N; Fraser, M K; Dew, D; Rautenbach, G F; Harrison, S T L

    2012-07-01

    Understanding how bioleaching systems respond to the availability of CO(2) is essential to developing operating conditions that select for optimum microbial performance. Therefore, the effect of inlet gas and associated dissolved CO(2) concentration on the growth, iron oxidation and CO(2) -fixation rates of pure cultures of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum was investigated in a batch stirred tank system. The minimum inlet CO(2) concentrations required to promote the growth of At. ferrooxidans and L. ferriphilum were 25 and 70 ppm, respectively, and corresponded to dissolved CO(2) concentrations of 0.71 and 1.57 µM (at 30°C and 37°C, respectively). An actively growing culture of L. ferriphilum was able to maintain growth at inlet CO(2) concentrations less than 30 ppm (0.31-0.45 µM in solution). The highest total new cell production and maximum specific growth rates from the stationary phase inocula were observed with CO(2) inlet concentrations less than that of air. In contrast, the amount of CO(2) fixed per new cell produced increased with increasing inlet CO(2) concentrations above 100 ppm. Where inlet gas CO(2) concentrations were increased above that of air the additional CO(2) was consumed by the organisms but did not lead to increased cell production or significantly increase performance in terms of iron oxidation. It is proposed that At. ferrooxidans has two CO(2) uptake mechanisms, a high affinity system operating at low available CO(2) concentrations, which is subject to substrate inhibition and a low affinity system operating at higher available CO(2) concentrations. L. ferriphilum has a single uptake system characterised by a moderate CO(2) affinity. At. ferrooxidans performed better than L. ferriphilum at lower CO(2) availabilities, and was less affected by CO(2) starvation. Finally, the results demonstrate the limitations of using CO(2) uptake or ferrous iron oxidation data as indirect measures of cell growth and performance across varying physiological conditions. Copyright © 2012 Wiley Periodicals, Inc.

  1. Leaf and canopy scale drivers of genotypic variation in soybean response to elevated carbon dioxide concentration

    USDA-ARS?s Scientific Manuscript database

    The atmospheric [CO2] in which crops grow today is greater than at any point in their domestication history, and represents an opportunity for positive effects on seed yield that can counteract the negative effects of greater heat and drought this century. In order to maximize yields under future at...

  2. Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO2 concentration

    Treesearch

    J.-C. Domec; K. Schafer; R. Oren; H. Kim; H. McCarthy

    2010-01-01

    Anatomical and physiological acclimation to water stress of the tree hydraulic system involves trade-offs between maintenance of stomatal conductance and loss of hydraulic conductivity, with short-term impacts on photosynthesis and long-term consequences to survival and growth.

  3. Effects of elevated dissolved carbon dioxide and perfluorooctane sulfonic acid, given singly and in combination, on steroidogenic and biotransformation pathways of Atlantic cod.

    PubMed

    Preus-Olsen, Gunnhild; Olufsen, Marianne O; Pedersen, Sindre Andre; Letcher, Robert J; Arukwe, Augustine

    2014-10-01

    In the aquatic environments, the predicted changes in water temperature, pO2 and pCO2 could result in hypercapnic and hypoxic conditions for aquatic animals. These conditions are thought to affect several basic cellular and physiological mechanisms. Yet, possible adverse effects of elevated CO2 (hypercapnia) on teleost fish, as well as combined effects with emerging and legacy environmental contaminants are poorly investigated. In this study, juvenile Atlantic cod (Gadus morhua) were divided into groups and exposed to three different water bath PFOS exposure regimes (0 (control), 100 and 200 μg L(-1)) for 5 days at 1h/day, followed by three different CO2-levels (normocapnia, moderate (0.3%) and high (0.9%)). The moderate CO2 level is the predicted near future (within year 2300) level, while 0.9% represent severe hypercapnia. Tissue samples were collected at 3, 6 and 9 days after initiated CO2 exposure. Effects on the endocrine and biotransformation systems were examined by analyzing levels of sex steroid hormones (E2, T, 11-KT) and transcript expression of estrogen responsive genes (ERα, Vtg-α, Vtg-β, ZP2 and ZP3). In addition, transcripts for genes encoding xenobiotic metabolizing enzymes (cyp1a and cyp3a) and hypoxia-inducible factor (HIF-1α) were analyzed. Hypercapnia alone produced increased levels of sex steroid hormones (E2, T, 11-KT) with concomitant mRNA level increase of estrogen responsive genes, while PFOS produced weak and time-dependent effects on E2-inducible gene transcription. Combined PFOS and hypercapnia exposure produced increased effects on sex steroid levels as compared to hypercapnia alone, with transcript expression patterns that are indicative of time-dependent interactive effects. Exposure to hypercapnia singly or in combination with PFOS produced modulations of the biotransformation and hypoxic responses that were apparently concentration- and time-dependent. Loading plots of principal component analysis (PCA) produced a significant grouping of individual scores according to the exposure scenarios at day 6 and 9. Overall, the PCA analysis produced a unique clustering of variables that signifies a positive correlation between exposure to high PFOS concentration and mRNA expression of E2 responsive genes. Notably, this pattern was not evident for individuals exposed to PFOS concentrations in combination with elevated CO2 scenarios. To our knowledge, the present study is the first of its kind, to evaluate such effects using combined exposure to a perfluoroalkyl sulfonate and elevated levels of CO2 saturation, representative of future oceanic climate change, in any fish species or lower vertebrate. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. AmazonFACE: Assessing the Effects of Increasing Atmospheric CO2 on the Resilience of the Amazon Forest through Integrative Model-Experiment Research

    NASA Astrophysics Data System (ADS)

    Lapola, D. M.

    2015-12-01

    The existence, magnitude and duration of a supposed "CO2 fertilization" effect in tropical forests remains largely undetermined, despite being suggested for nearly 20 years as a key knowledge gap for understanding the future resilience of Amazonian forests and its impact on the global carbon cycle. Reducing this uncertainty is critical for assessing the future of the Amazon region as well as its vulnerability to climate change. The AmazonFACE (Free-Air CO2 Enrichment) research program is an integrated model-experiment initiative of unprecedented scope in an old-growth Amazon forest near Manaus, Brazil - the first of its kind in tropical forest. The experimental treatment will simulate an atmospheric CO2 concentration [CO2] of the future in order to address the question: "How will rising atmospheric CO2 affect the resilience of the Amazon forest, the biodiversity it harbors, and the ecosystem services it provides, in light of projected climatic changes?" AmazonFACE is divided into three phases: (I) pre-experimental ecological characterization of the research site; (II) pilot experiment comprised of two 30-m diameter plots, with one treatment plot maintained at elevated [CO2] (ambient +200 ppmv), and the other control plot at ambient [CO2]; and (III) a fully-replicated long-term experiment comprised of four pairs of control/treatment FACE plots maintained for 10 years. A team of scientists from Brazil, USA, Australia and Europe will employ state-of-the-art methods to study the forest inside these plots in terms of carbon metabolism and cycling, water use, nutrient cycling, forest community composition, and interactions with environmental stressors. All project phases also encompass ecosystem-modeling activities in a way such that models provide hypothesis to be verified in the experiment, which in turn will feed models to ultimately produce more accurate projections of the environment. Resulting datasets and analyses will be a valuable resource for a broad community, especially ecosystem and climate modelers, and policy-makers.

  5. The AmazonFACE research program: assessing the effects of increasing atmospheric CO2 on the ecology and resilience of the Amazon forest

    NASA Astrophysics Data System (ADS)

    Lapola, David; Quesada, Carlos; Norby, Richard; Araújo, Alessandro; Domingues, Tomas; Hartley, Iain; Kruijt, Bart; Lewin, Keith; Meir, Patrick; Ometto, Jean; Rammig, Anja

    2016-04-01

    The existence, magnitude and duration of a supposed "CO2 fertilization" effect in tropical forests remains largely undetermined, despite being suggested for nearly 20 years as a key knowledge gap for understanding the future resilience of Amazonian forests and its impact on the global carbon cycle. Reducing this uncertainty is critical for assessing the future of the Amazon region as well as its vulnerability to climate change. The AmazonFACE (Free-Air CO2 Enrichment) research program is an integrated model-experiment initiative of unprecedented scope in an old-growth Amazon forest near Manaus, Brazil - the first of its kind in tropical forest. The experimental treatment will simulate an atmospheric CO2 concentration [CO2] of the future in order to address the question: "How will rising atmospheric CO2 affect the resilience of the Amazon forest, the biodiversity it harbors, and the ecosystem services it provides, in light of projected climatic changes?" AmazonFACE is divided into three phases: (I) pre-experimental ecological characterization of the research site; (II) pilot experiment comprised of two 30-m diameter plots, with one treatment plot maintained at elevated [CO2] (ambient +200 ppmv), and the other control plot at ambient [CO2]; and (III) a fully-replicated long-term experiment comprised of four pairs of control/treatment FACE plots maintained for 10 years. A team of scientists from Brazil, USA, Australia and Europe will employ state-of-the-art methods to study the forest inside these plots in terms of carbon metabolism and cycling, water use, nutrient cycling, forest community composition, and interactions with environmental stressors. All project phases also encompass ecosystem-modeling activities in a way such that models provide hypothesis to be verified in the experiment, which in turn will feed models to ultimately produce more accurate projections of the environment. Resulting datasets and analyses will be a valuable resource for a broad community, especially ecosystem and climate modelers, and policy-makers.

  6. Sensitivity of burned area in Europe to climate change, atmospheric CO2 levels, and demography: A comparison of two fire-vegetation models

    NASA Astrophysics Data System (ADS)

    Wu, Minchao; Knorr, Wolfgang; Thonicke, Kirsten; Schurgers, Guy; Camia, Andrea; Arneth, Almut

    2015-11-01

    Global environmental changes and human activity influence wildland fires worldwide, but the relative importance of the individual factors varies regionally and their interplay can be difficult to disentangle. Here we evaluate projected future changes in burned area at the European and sub-European scale, and we investigate uncertainties in the relative importance of the determining factors. We simulated future burned area with LPJ-GUESS-SIMFIRE, a patch-dynamic global vegetation model with a semiempirical fire model, and LPJmL-SPITFIRE, a dynamic global vegetation model with a process-based fire model. Applying a range of future projections that combine different scenarios for climate changes, enhanced CO2 concentrations, and population growth, we investigated the individual and combined effects of these drivers on the total area and regions affected by fire in the 21st century. The two models differed notably with respect to the dominating drivers and underlying processes. Fire-vegetation interactions and socioeconomic effects emerged as important uncertainties for future burned area in some European regions. Burned area of eastern Europe increased in both models, pointing at an emerging new fire-prone region that should gain further attention for future fire management.

  7. Development of a coupled FLEXPART-TM5 CO2 inverse modeling system

    NASA Astrophysics Data System (ADS)

    Monteil, Guillaume; Scholze, Marko

    2017-04-01

    Inverse modeling techniques are used to derive information on surface CO2 fluxes from measurements of atmospheric CO2 concentrations. The principle is to use an atmospheric transport model to compute the CO2 concentrations corresponding to a prior estimate of the surface CO2 fluxes. From the mismatches between observed and modeled concentrations, a correction of the flux estimate is computed, that represents the best statistical compromise between the prior knowledge and the new information brought in by the observations. Such "top-down" CO2 flux estimates are useful for a number of applications, such as the verification of CO2 emission inventories reported by countries in the framework of international greenhouse gas emission reduction treaties (Paris agreement), or for the validation and improvement of the bottom-up models used in future climate predictions. Inverse modeling CO2 flux estimates are limited in resolution (spatial and temporal) by the lack of observational constraints and by the very heavy computational cost of high-resolution inversions. The observational limitation is however being lifted, with the expansion of regional surface networks such as ICOS in Europe, and with the launch of new satellite instruments to measure tropospheric CO2 concentrations. To make an efficient use of these new observations, it is necessary to step up the resolution of atmospheric inversions. We have developed an inverse modeling system, based on a coupling between the TM5 and the FLEXPART transport models. The coupling follows the approach described in Rodenbeck et al., 2009: a first global, coarse resolution, inversion is performed using TM5-4DVAR, and is used to provide background constraints to a second, regional, fine resolution inversion, using FLEXPART as a transport model. The inversion algorithm is adapted from the 4DVAR algorithm used by TM5, but has been developed to be model-agnostic: it would be straightforward to replace TM5 and/or FLEXPART by other transport models, thus making it well suited to study transport model uncertainties. We will present preliminary European CO2 inversions using ICOS observations, and comparisons with TM5-4DVAR and TM3-STILT inversions. Reference: Rödenbeck, C., Gerbig, C., Trusilova, K., & Heimann, M. (2009). A two-step scheme for high-resolution regional atmospheric trace gas inversions based on independent models. Atmospheric Chemistry and Physics Discussions, 9(1), 1727-1756. http://doi.org/10.5194/acpd-9-1727-2009

  8. Are there pre-Quaternary geological analogues for a future greenhouse warming?

    USGS Publications Warehouse

    Haywood, A.M.; Ridgwell, A.; Lunt, D.J.; Hill, D.J.; Pound, M.J.; Dowsett, H.J.; Dolan, A.M.; Francis, J.E.; Williams, M.

    2011-01-01

    Given the inherent uncertainties in predicting how climate and environments will respond to anthropogenic emissions of greenhouse gases, it would be beneficial to society if science could identify geological analogues to the human race's current grand climate experiment. This has been a focus of the geological and palaeoclimate communities over the last 30 years, with many scientific papers claiming that intervals in Earth history can be used as an analogue for future climate change. Using a coupled ocean-atmosphere modelling approach, we test this assertion for the most probable pre-Quaternary candidates of the last 100 million years: the Mid- and Late Cretaceous, the Palaeocene-Eocene Thermal Maximum (PETM), the Early Eocene, as well as warm intervals within the Miocene and Pliocene epochs. These intervals fail as true direct analogues since they either represent equilibrium climate states to a long-term CO2 forcing-whereas anthropogenic emissions of greenhouse gases provide a progressive (transient) forcing on climate-or the sensitivity of the climate system itself to CO2 was different. While no close geological analogue exists, past warm intervals in Earth history provide a unique opportunity to investigate processes that operated during warm (high CO2) climate states. Palaeoclimate and environmental reconstruction/modelling are facilitating the assessment and calculation of the response of global temperatures to increasing CO2 concentrations in the longer term (multiple centuries); this is now referred to as the Earth System Sensitivity, which is critical in identifying CO2 thresholds in the atmosphere that must not be crossed to avoid dangerous levels of climate change in the long term. Palaeoclimatology also provides a unique and independent way to evaluate the qualities of climate and Earth system models used to predict future climate. ?? 2011 The Royal Society.

  9. Are there pre-Quaternary geological analogues for a future greenhouse warming?

    PubMed

    Haywood, Alan M; Ridgwell, Andy; Lunt, Daniel J; Hill, Daniel J; Pound, Matthew J; Dowsett, Harry J; Dolan, Aisling M; Francis, Jane E; Williams, Mark

    2011-03-13

    Given the inherent uncertainties in predicting how climate and environments will respond to anthropogenic emissions of greenhouse gases, it would be beneficial to society if science could identify geological analogues to the human race's current grand climate experiment. This has been a focus of the geological and palaeoclimate communities over the last 30 years, with many scientific papers claiming that intervals in Earth history can be used as an analogue for future climate change. Using a coupled ocean-atmosphere modelling approach, we test this assertion for the most probable pre-Quaternary candidates of the last 100 million years: the Mid- and Late Cretaceous, the Palaeocene-Eocene Thermal Maximum (PETM), the Early Eocene, as well as warm intervals within the Miocene and Pliocene epochs. These intervals fail as true direct analogues since they either represent equilibrium climate states to a long-term CO(2) forcing--whereas anthropogenic emissions of greenhouse gases provide a progressive (transient) forcing on climate--or the sensitivity of the climate system itself to CO(2) was different. While no close geological analogue exists, past warm intervals in Earth history provide a unique opportunity to investigate processes that operated during warm (high CO(2)) climate states. Palaeoclimate and environmental reconstruction/modelling are facilitating the assessment and calculation of the response of global temperatures to increasing CO(2) concentrations in the longer term (multiple centuries); this is now referred to as the Earth System Sensitivity, which is critical in identifying CO(2) thresholds in the atmosphere that must not be crossed to avoid dangerous levels of climate change in the long term. Palaeoclimatology also provides a unique and independent way to evaluate the qualities of climate and Earth system models used to predict future climate.

  10. Inverse modeling of fossil fuel CO2 emissions at urban scale using OCO-2 retrievals of total column CO2

    NASA Astrophysics Data System (ADS)

    Ye, X.; Lauvaux, T.; Kort, E. A.; Lin, J. C.; Oda, T.; Yang, E.; Wu, D.

    2016-12-01

    Rapid economic development has given rise to a steady increase of global carbon emissions, which have accumulated in the atmosphere for the past 200 years. Urbanization has concentrated about 70% of the global fossil-fuel CO2 emissions in large metropolitan areas distributed around the world, which represents the most significant anthropogenic contribution to climate change. However, highly uncertain quantifications of urban CO2 emissions are commonplace for numerous cities because of poorly-documented inventories of energy consumption. Therefore, accurate estimates of carbon emissions from global observing systems are a necessity if mitigation strategies are meant to be implemented at global scales. Space-based observations of total column averaged CO2 concentration (XCO2) provide a very promising and powerful tool to quantify urban CO2 fluxes. For the first time, measurements from the Orbiting Carbon Observatory 2 (OCO-2) mission are assimilated in a high resolution inverse modeling system to quantify fossil-fuel CO2 emissions of multiple cities around the globe. The Open-source Data Inventory for Anthropogenic CO2 (ODIAC) emission inventory is employed as a first guess, while the atmospheric transport is simulated using the WRF-Chem model at 1-km resolution. Emission detection and quantification is performed with an Ensemble Kalman Filter method. We demonstrate here the potential of the inverse approach for assimilating thousands of OCO-2 retrievals along tracks near metropolitan areas. We present the detection potential of the system with real-case applications near power plants and present inverse emissions using actual OCO-2 measurements on various urban landscapes. Finally, we will discuss the potential of OCO-2-like satellite instruments for monitoring temporal variations of fossil-fuel CO2 emissions over multiple years, which can provide valuable insights for future satellite observation strategies.

  11. CO2 Acquisition Membrane (CAM) Project

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    2003-01-01

    The CO2 Acquisition Membrane (CAM) project was performed to develop, test, and analyze thin film membrane materials for separation and purification of carbon dioxide (CO2) from mixtures of gases, such as those found in the Martian atmosphere. The membranes developed in this project are targeted toward In Situ Resource Utilization (ISRU) applications, such as In Situ Propellant Production (ISPP) and In Situ Consumables Production (ISCP). These membrane materials may be used in a variety of ISRU systems, for example as the atmospheric inlet filter for an ISPP process to enhance the concentration of CO2 for use as a reactant gas, to passively separate argon and nitrogen trace gases from CO2 for habitat pressurization, to provide a system for removal of CO2 from breathing gases in a closed environment, or within a process stream to selectively separate CO2 from other gaseous components. The membranes identified and developed for CAM were evaluated for use in candidate ISRU processes and other gas separation applications, and will help to lay the foundation for future unmanned sample return and human space missions. CAM is a cooperative project split among three institutions: Lockheed Martin Astronautics (LMA), the Colorado School of Mines (CSM), and Marshall Space Flight Center (MSFC).

  12. Impact of future climate change on wheat production in relation to plant-available water capacity in a semiaridenvironment

    NASA Astrophysics Data System (ADS)

    Yang, Yanmin; Liu, De Li; Anwar, Muhuddin Rajin; Zuo, Heping; Yang, Yonghui

    2014-02-01

    Conceptions encompassing climate change are irreversible rise of atmospheric carbon dioxide (CO2) concentration, increased temperature, and changes in rainfall both in spatial- and temporal-scales worldwide. This will have a major impact on wheat production, particularly if crops are frequently exposed to a sequence, frequency, and intensity of specific weather events like high temperature during growth period. However, the process of wheat response to climate change is complex and compounded by interactions among atmospheric CO2 concentration, climate variables, soil, nutrition, and agronomic management. In this study, we use the Agricultural Production Systems sIMulator (APSIM)-wheat model, driven by statistically downscaled climate projections of 18 global circulation models (GCMs) under the 2007 Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 CO2 emission scenario to examine impact on future wheat yields across key wheat growing regions considering different soil types in New South Wales (NSW) of Australia. The response of wheat yield, yield components, and phenology vary across sites and soil types, but yield is closely related to plant available water capacity (PAWC). Results show a decreasing yield trend during the period of 2021-2040 compared to the baseline period of 1961-1990. Across different wheat-growing regions in NSW, grain yield difference in the future period (2021-2040) over the baseline (1961-1990) varies from +3.4 to -14.7 %, and in most sites, grain number is decreased, while grain size is increased in future climate. Reduction of wheat yield is mainly due to shorter growth duration, where average flowering and maturing time are advanced by an average of 11 and 12 days, respectively. In general, larger negative impacts of climate change are exhibited in those sites with higher PAWC. Current wheat cultivars with shorter growing season properties are viable in the future climate, but breading for early sowing wheat varieties with longer growing duration will be a desirable adaptation strategy for mitigating the impact of changing climate on wheat yield.

  13. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Zhenong; Zhuang, Qianlai; Wang, Jiali

    Heat and drought stresses are two emerging climatic threats to the US maize and soybean production, yet their impacts on yields are collectively determined by the magnitude of climate change and rising atmospheric CO2 concentration. Here we present a study that quantified the current and future yield responses of US rainfed maize and soybean to climate extremes, and for the first time characterized spatial shifts in the relative importance of temperature, heat and drought stress. Crop yields are simulated using the Agricultural Production Systems sIMulator (APSIM), driven by the high-resolution (12 km) Weather Research and Forecasting (WRF) Model downscaled futuremore » climate scenarios at two time slices (1995-2005 and 2085-2094). Our results show that climatic yield gaps and interannual variability are greater in the core production area than in the remaining US by the late 21st century under both Representative Concentration Pathway (RCP) 4.5 and RCP8.5 scenarios, and the magnitude of change is highly dependent on the current climate sensitivity and vulnerability. Elevated CO2 partially offsets the climatic yield gaps and reduces interannual yield variability, and effect is more prominent in soybean than in maize. We demonstrate that drought will continue to be the largest threat to US rainfed maize and soybean production, although its dominant role gradually gives way to other impacts of heat extremes. We also reveal that shifts in the geographic distributions of dominant stressors are characterized by increases in the concurrent stress, especially for the US Midwest. These findings imply the importance of considering drought and extreme heat simultaneously for future agronomic adaptation and mitigation strategies, particularly for breeding programs and crop management.« less

  14. Development of new measuring technique using sound velocity for CO2 concentration in Cameroonian volcanic lakes

    NASA Astrophysics Data System (ADS)

    Sanemasa, M.; Saiki, K.; Kaneko, K.; Ohba, T.; Kusakabe, M.; Tanyileke, G.; Hell, J.

    2012-12-01

    1. Introduction Limnic eruptions at Lakes Monoun and Nyos in Cameroon, which are sudden degassing of magmatic CO2 dissolved in the lake water, occurred in 1984 and 1986, respectively. The disasters killed about 1800 people around the lakes. Because of ongoing CO2 accumulation in the bottom water of the lakes, tragedy of limnic eruptions will possibly occur again. To prevent from further disasters, artificial degassing of CO2 from the lake waters has been undergoing. Additionally, CO2 monitoring of the lake waters is needed. Nevertheless, CO2 measurement is done only once or twice a year because current methods of CO2 measurement, which require chemical analysis of water samples, are not suitable for frequent measurement. In engineering field, on the other hand, a method to measure salt concentration using sound velocity has been proposed (Kleis and Sanchez, 1990). This method allows us to evaluate solute concentration fast. We applied the method to dissolved CO2 and examined the correlation between sound velocity and CO2 concentration in laboratory experiment. Furthermore, using the obtained correlation, we tried to estimate the CO2 concentration of waters in the Cameroonian lakes. 2. Laboratory experiment We examined the correlation between sound velocity and CO2 concentration. A profiler (Minos X, made by AML oceanography) and pure water were packed in cylindrical stainless vessel and high-pressure CO2 gas was injected to produce carbonated water. The profiler recorded temperature, pressure and sound velocity. Change of sound velocity was defined as difference of sound velocity between carbonated water and pure water under the same temperature and pressure conditions. CO2 concentration was calculated by Henry's law. The result indicated that the change of sound velocity [m s-1] is proportional to CO2 concentration [mmol kg-1], and the coefficient is 0.021 [m kg s-1 mmol-1]. 3. Field application Depth profiles of sound velocity, pressure, and temperature of Lakes Nyos and Monoun were measured in March 2012, and CO2 concentration was calculated using the results of laboratory experiment. The CO2 concentration profiles by Sound Velocity Method were compared to estimated profile of 2012 by chemical analysis with correction using results of Kusakabe et al., 2008. The CO2 concentration profile estimated by Sound Velocity Method looks overestimated. This may be the effect of bicarbonate salt little existed in laboratory experiment. The change of sound velocity was evaluated as a linear function of CO2 and bicarbonate ion concentration by multiple regression analysis. Coefficient for the change of sound velocity of CO2 concentration in Lake Nyos agrees with the laboratory experiment within the precision of 10%. On the other hand, in Lake Monoun, the difference of coefficient is larger than 50%. In Lake Monoun, CO2 concentration may be estimated incorrectly because CO2/bicarbonate ratio seems to have changed. From these results, we concluded that Sound Velocity Method is useful to measure CO2 concentration quantitatively as far as the CO2/bicarbonate ratio does not change. The method is also applicable as an early diagnosis when the CO2 profile changes by a sudden CO2 injection to the lakes.

  15. Effects of CO2 Concentration on Rubisco Activity, Amount, and Photosynthesis in Soybean Leaves 1

    PubMed Central

    Campbell, William J.; Allen, L. H.; Bowes, George

    1988-01-01

    Growth at an elevated CO2 concentration resulted in an enhanced capacity for soybean (Glycine max L. Merr. cv Bragg) leaflet photosynthesis. Plants were grown from seed in outdoor controlled-environment chambers under natural solar irradiance. Photosynthetic rates, measured during the seed filling stage, were up to 150% greater with leaflets grown at 660 compared to 330 microliters of CO2 per liter when measured across a range of intercellular CO2 concentrations and irradiance. Soybean plants grown at elevated CO2 concentrations had heavier pod weights per plant, 44% heavier with 660 compared to 330 microliters of CO2 per liter grown plants, and also greater specific leaf weights. Ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) activity showed no response (mean activity of 96 micromoles of CO2 per square meter per second expressed on a leaflet area basis) to short-term (∼1 hour) exposures to a range of CO2 concentrations (110-880 microliters per liter), nor was a response of activity (mean activity of 1.01 micromoles of CO2 per minute per milligram of protein) to growth CO2 concentration (160-990 microliters per liter) observed. The amount of rubisco protein was constant, as growth CO2 concentration was varied, and averaged 55% of the total leaflet soluble protein. Although CO2 is required for activation of rubisco, results indicated that within the range of CO2 concentrations used (110-990 microliters per liter), rubisco activity in soybean leaflets, in the light, was not regulated by CO2. PMID:16666460

  16. Critical insolation-CO2 relation for diagnosing past and future glacial inception.

    PubMed

    Ganopolski, A; Winkelmann, R; Schellnhuber, H J

    2016-01-14

    The past rapid growth of Northern Hemisphere continental ice sheets, which terminated warm and stable climate periods, is generally attributed to reduced summer insolation in boreal latitudes. Yet such summer insolation is near to its minimum at present, and there are no signs of a new ice age. This challenges our understanding of the mechanisms driving glacial cycles and our ability to predict the next glacial inception. Here we propose a critical functional relationship between boreal summer insolation and global carbon dioxide (CO2) concentration, which explains the beginning of the past eight glacial cycles and might anticipate future periods of glacial inception. Using an ensemble of simulations generated by an Earth system model of intermediate complexity constrained by palaeoclimatic data, we suggest that glacial inception was narrowly missed before the beginning of the Industrial Revolution. The missed inception can be accounted for by the combined effect of relatively high late-Holocene CO2 concentrations and the low orbital eccentricity of the Earth. Additionally, our analysis suggests that even in the absence of human perturbations no substantial build-up of ice sheets would occur within the next several thousand years and that the current interglacial would probably last for another 50,000 years. However, moderate anthropogenic cumulative CO2 emissions of 1,000 to 1,500 gigatonnes of carbon will postpone the next glacial inception by at least 100,000 years. Our simulations demonstrate that under natural conditions alone the Earth system would be expected to remain in the present delicately balanced interglacial climate state, steering clear of both large-scale glaciation of the Northern Hemisphere and its complete deglaciation, for an unusually long time.

  17. Competing Influences of Anthropogenic Warming, ENSO, and Plant Physiology on Future Terrestrial Aridity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonfils, Céline; Anderson, Gemma; Santer, Benjamin D.

    The 2011–16 California drought illustrates that drought-prone areas do not always experience relief once a favorable phase of El Niño–Southern Oscillation (ENSO) returns. In the twenty-first century, such an expectation is unrealistic in regions where global warming induces an increase in terrestrial aridity larger than the changes in aridity driven by ENSO variability. This premise is also flawed in areas where precipitation supply cannot offset the global warming–induced increase in evaporative demand. Here, atmosphere-only experiments are analyzed to identify land regions where aridity is currently sensitive to ENSO and where projected future changes in mean aridity exceed the range causedmore » by ENSO variability. Insights into the drivers of these changes in aridity are obtained using simulations with the incremental addition of three different factors to the current climate: ocean warming, vegetation response to elevated CO 2 levels, and intensified CO 2 radiative forcing. The effect of ocean warming overwhelms the range of ENSO-driven temperature variability worldwide, increasing potential evapotranspiration (PET) in most ENSO-sensitive regions. Additionally, about 39% of the regions currently sensitive to ENSO will likely receive less precipitation in the future, independent of the ENSO phase. Consequently aridity increases in 67%–72% of the ENSO-sensitive area. When both radiative and physiological effects are considered, the area affected by arid conditions rises to 75%–79% when using PET-derived measures of aridity, but declines to 41% when an aridity indicator for total soil moisture is employed. This reduction mainly occurs because plant stomatal resistance increases under enhanced CO 2 concentrations, resulting in improved plant water-use efficiency, and hence reduced evapotranspiration and soil desiccation. Imposing CO 2-invariant stomatal resistance may overestimate future drying in PET-derived indices.« less

  18. Competing Influences of Anthropogenic Warming, ENSO, and Plant Physiology on Future Terrestrial Aridity

    DOE PAGES

    Bonfils, Céline; Anderson, Gemma; Santer, Benjamin D.; ...

    2017-07-27

    The 2011–16 California drought illustrates that drought-prone areas do not always experience relief once a favorable phase of El Niño–Southern Oscillation (ENSO) returns. In the twenty-first century, such an expectation is unrealistic in regions where global warming induces an increase in terrestrial aridity larger than the changes in aridity driven by ENSO variability. This premise is also flawed in areas where precipitation supply cannot offset the global warming–induced increase in evaporative demand. Here, atmosphere-only experiments are analyzed to identify land regions where aridity is currently sensitive to ENSO and where projected future changes in mean aridity exceed the range causedmore » by ENSO variability. Insights into the drivers of these changes in aridity are obtained using simulations with the incremental addition of three different factors to the current climate: ocean warming, vegetation response to elevated CO 2 levels, and intensified CO 2 radiative forcing. The effect of ocean warming overwhelms the range of ENSO-driven temperature variability worldwide, increasing potential evapotranspiration (PET) in most ENSO-sensitive regions. Additionally, about 39% of the regions currently sensitive to ENSO will likely receive less precipitation in the future, independent of the ENSO phase. Consequently aridity increases in 67%–72% of the ENSO-sensitive area. When both radiative and physiological effects are considered, the area affected by arid conditions rises to 75%–79% when using PET-derived measures of aridity, but declines to 41% when an aridity indicator for total soil moisture is employed. This reduction mainly occurs because plant stomatal resistance increases under enhanced CO 2 concentrations, resulting in improved plant water-use efficiency, and hence reduced evapotranspiration and soil desiccation. Imposing CO 2-invariant stomatal resistance may overestimate future drying in PET-derived indices.« less

  19. Effect of CO2 enrichment on the glucosinolate contents under different nitrogen levels in bolting stem of Chinese kale (Brassica alboglabra L.).

    PubMed

    La, Gui-xiao; Fang, Ping; Teng, Yi-bo; Li, Ya-juan; Lin, Xian-yong

    2009-06-01

    The effects of CO(2) enrichment on the growth and glucosinolate (GS) concentrations in the bolting stem of Chinese kale (Brassica alboglabra L.) treated with three nitrogen (N) concentrations (5, 10, and 20 mmol/L) were investigated. Height, stem thickness, and dry weights of the total aerial parts, bolting stems, and roots, as well as the root to shoot ratio, significantly increased as CO(2) concentration was elevated from 350 to 800 microl/L at each N concentration. In the edible part of the bolting stem, 11 individual GSs were identified, including 7 aliphatic and 4 indolyl GSs. GS concentration was affected by the elevated CO(2) concentration, N concentration, and CO(2)xN interaction. At 5 and 10 mmol N/L, the concentrations of aliphatic GSs and total GSs significantly increased, whereas those of indolyl GSs were not affected, by elevated atmospheric CO(2). However, at 20 mmol N/L, elevated CO(2) had no significant effects on the concentrations of total GSs and total indolyl GSs, but the concentrations of total aliphatic GSs significantly increased. Moreover, the bolting stem carbon (C) content increased, whereas the N and sulfur (S) contents decreased under elevated CO(2) concentration in the three N treatments, resulting in changes in the C/N and N/S ratios. Also the C/N ratio is not a reliable predictor of change of GS concentration, while the changes in N and S contents and the N/S ratio at the elevated CO(2) concentration may influence the GS concentration in Chinese kale bolting stems. The results demonstrate that high nitrogen supply is beneficial for the growth of Chinese kale, but not for the GS concentration in bolting stems, under elevated CO(2) condition.

  20. Potential impacts of climate change on carbon dynamics in a rain-fed agro-ecosystem on the Loess Plateau of China.

    PubMed

    Qiu, Linjing; Hao, Mingde; Wu, Yiping

    2017-01-15

    Although many studies have been conducted on crop yield in rain-fed agriculture, the possible impacts of climate change on the carbon (C) dynamics of rain-fed rotation systems, particularly their direction and magnitude at the long-term scale, are still poorly understood. In this study, the sensitivity of C dynamics of a typical rotation system to elevated CO 2 and changed temperature and precipitation were first tested using the CENTURY model, based on data collected from a 30-year field experiment of a corn-wheat-wheat-millet (CWWM) rotation system in the tableland of the Loess Plateau. The possible responses of crop biomass C and soil organic C (SOC) accumulation were then evaluated under scenarios representing the Representative Concentration Pathways (RCPs) 4.5 and 8.5. The results indicated that elevated CO 2 and increased precipitation exerted positive effect on biomass C in CWWM rotation system, while increasing the temperature by 1°C, 2°C and 4°C had negative effects on biomass C due to opposite responses of corn and winter wheat to warming. SOC accumulation was enhanced by increased CO 2 concentration and precipitation but impaired by increased temperature. Under future RCP scenarios with dynamic CO 2 , the biomass C of corn exhibited decrease during the period of 2046-2075 under RCP4.5 and the period of 2016-2075 under RCP8.5 due to reduced precipitation and a warmer climate. In contrast, winter wheat would benefit from increased CO 2 and temperature and was projected to have larger biomass C under both RCP scenarios. Although the climate condition had large differences between RCP4.5 and RCP8.5, the projected SOC had similar trends under two scenarios due to CO 2 fertilizer effect and precipitation fluctuation. These results implied that crop biomass C and SOC accumulation in a warmer environment are strongly related to precipitation, and increase in field water storage should be emphasized in coping with future climate. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Contribution of Co2+ in increasing chlorophyll a concentration of Nannochloropsis salina in controlled Conwy medium

    NASA Astrophysics Data System (ADS)

    Hala, Y.; Taba, P.; Suryati, E.; Kasih, P.; Firman, N. F.

    2018-03-01

    A research in determining the contribution of Co2+ on the increase of chlorophyll a concentration of Nannochloropsis salina has been caried out. The cultivation of N. salina was conducted in the Conwy medium with a salinity of 5%o and 25%o and various Co2+ concentration (2, 4, and 8 ppm). In this research, Co2+ was exposed early in the cultivation of N. salina. The growth of N. salina was observed daily by counting the number of populations using a haemocytometer while the chlorophyll a concentration was determined by a Uv-Vis spectrophotometer. The results showed that the growth of N. salina in the control was higher than that in the medium containing Co2+. The optimum growth time was achieved on 15th days (5%) and 8th days (25%). In the cultivation medium with a salinity of 5%, Co2+ with a concentration of 2 ppm increased the chlorophyll a level while Co2+ with concentrations of 4 and 8 ppm decreased it. In the medium of cultivation with a salinity of 25%, the increase in chlorophyll a level was observed at Co2+ concentrations of 2 and 4 ppm whereas the decrease in chlorophyl a level was given at a concentration of 8 ppm. It can be concluded that at low concentrations, Co2+ increased the concentration of chlorophyll a in N. salina.

  2. Interactive Effects of Elevated CO2 and N Fertilization on Yield and Quality of Tomato Grown Under Reduced Irrigation Regimes

    PubMed Central

    Wei, Zhenhua; Du, Taisheng; Li, Xiangnan; Fang, Liang; Liu, Fulai

    2018-01-01

    The interactive effects of CO2 elevation, N fertilization, and reduced irrigation regimes on fruit yield (FY) and quality in tomato (Solanum lycopersicum L.) were investigated in a split-root pot experiment. The plants were grown in two separate climate-controlled greenhouse cells at atmospheric [CO2] of 400 and 800 ppm, respectively. In each cell, the plants were fertilized at either 100 or 200 mg N kg-1 soil and were either irrigated to full water holding capacity [i.e., a volumetric soil water content of 18%; full irrigation (FI)], or using 70% water of FI to the whole pot [deficit irrigation (DI)] or alternately to only half of the pot [partial root-zone irrigation (PRI)]. The yield and fruit quality attributes mainly from sugars (sucrose, fructose, and glucose) and organic acids (OAs; citric acid and malic acid) to various ionic (NH4+, K+, Mg2+, Ca2+, NO3-, SO42-, and PO43-) concentrations in fruit juice were determined. The results indicated that lower N supply reduced fruit number and yield, whereas it enhanced some of the quality attributes of fruit as indicated by greater firmness and higher concentrations of sugars and OAs. Elevated [CO2] (e[CO2]) attenuated the negative influence of reduced irrigation (DI and PRI) on FY. Principal component analysis revealed that the reduced irrigation regimes, especially PRI, in combination with e[CO2] could synergistically improve the comprehensive quality of tomato fruits at high N supply. These findings provide useful knowledge for sustaining tomato FY and quality in a future drier and CO2-enriched environment. PMID:29636756

  3. Chimney stoves modestly improved indoor air quality measurements compared with traditional open fire stoves: results from a small-scale intervention study in rural Peru.

    PubMed

    Hartinger, S M; Commodore, A A; Hattendorf, J; Lanata, C F; Gil, A I; Verastegui, H; Aguilar-Villalobos, M; Mäusezahl, D; Naeher, L P

    2013-08-01

    Nearly half of the world's population depends on biomass fuels to meet domestic energy needs, producing high levels of pollutants responsible for substantial morbidity and mortality. We compare carbon monoxide (CO) and particulate matter (PM2.5) exposures and kitchen concentrations in households with study-promoted intervention (OPTIMA-improved stoves and control stoves) in San Marcos Province, Cajamarca Region, Peru. We determined 48-h indoor air concentration levels of CO and PM2.5 in 93 kitchen environments and personal exposure, after OPTIMA-improved stoves had been installed for an average of 7 months. PM2.5 and CO measurements did not differ significantly between OPTIMA-improved stoves and control stoves. Although not statistically significant, a post hoc stratification of OPTIMA-improved stoves by level of performance revealed mean PM2.5 and CO levels of fully functional OPTIMA-improved stoves were 28% lower (n = 20, PM2.5, 136 μg/m(3) 95% CI 54-217) and 45% lower (n = 25, CO, 3.2 ppm, 95% CI 1.5-4.9) in the kitchen environment compared with the control stoves (n = 34, PM2.5, 189 μg/m(3), 95% CI 116-261; n = 44, CO, 5.8 ppm, 95% CI 3.3-8.2). Likewise, although not statistically significant, personal exposures for OPTIMA-improved stoves were 43% and 17% lower for PM2.5 (n = 23) and CO (n = 25), respectively. Stove maintenance and functionality level are factors worthy of consideration for future evaluations of stove interventions. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Chimney stoves modestly improved indoor air quality measurements compared with traditional open fire stoves: results from a small-scale intervention study in rural Peru

    PubMed Central

    Hartinger, S.M.; Commodore, A.A.; Hattendorf, J.; Lanata, C.F.; Gil, A.I.; Verastegui, H.; Aguilar-Villalobos, M.; Mäusezahl, D.; Naeher, L.P.

    2015-01-01

    Nearly half of the world’s population depends on biomass fuels to meet domestic energy needs, producing high levels of pollutants responsible for substantial morbidity and mortality. We compare carbon monoxide (CO) and particulate matter (PM2.5) exposures and kitchen concentrations in households with study promoted intervention (OPTIMA-improved) stoves and control stoves in San Marcos Province, Cajamarca Region, Peru. We determined 48hr indoor air concentration levels of CO and PM2.5 in 93 kitchen environments and personal exposure, after OPTIMA-improved stoves had been installed for an average of seven months. PM2.5 and CO measurements did not differ significantly between OPTIMA-improved stoves and control stoves. Although not statistically significant, a post-hoc stratification of OPTIMA-improved stoves by level of performance revealed mean PM2.5 and CO levels of fully functional OPTIMA-improved stoves were 28% lower (n=20, PM2.5, 136μg/m3 95%CI 54–217) and 45% lower (n=25, CO, 3.2ppm, 95%CI 1.5–4.9) in the kitchen environment compared to the control stoves (n=34, PM2.5, 189μg/m3, 95%CI 116–261; n=44, CO, 5.8ppm, 95%CI 3.3–8-2). Likewise, although not statistically significant, personal exposures for OPTIMA-improved stoves were 43% and 167% lower for PM2.5 (n=23) and CO (n=25) respectively. Stove maintenance and functionality level are factors worthy of consideration for future evaluations of stove interventions. PMID:23311877

  5. Sensitivity Studies for Space-Based Global Measurements of Atmospheric Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Mao, Jian-Ping; Kawa, S. Randolph; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    Carbon dioxide (CO2) is well known as the primary forcing agent of global warming. Although the climate forcing due to CO2 is well known, the sources and sinks of CO2 are not well understood. Currently the lack of global atmospheric CO2 observations limits our ability to diagnose the global carbon budget (e.g., finding the so-called "missing sink") and thus limits our ability to understand past climate change and predict future climate response. Space-based techniques are being developed to make high-resolution and high-precision global column CO2 measurements. One of the proposed techniques utilizes the passive remote sensing of Earth's reflected solar radiation at the weaker vibration-rotation band of CO2 in the near infrared (approx. 1.57 micron). We use a line-by-line radiative transfer model to explore the potential of this method. Results of sensitivity studies for CO2 concentration variation and geophysical conditions (i.e., atmospheric temperature, surface reflectivity, solar zenith angle, aerosol, and cirrus cloud) will be presented. We will also present sensitivity results for an O2 A-band (approx. 0.76 micron) sensor that will be needed along with CO2 to make surface pressure and cloud height measurements.

  6. Effect of salinity and sodicity stresses on physiological response and productivity in Helianthus annuus.

    PubMed

    Farghaly, Fatma Aly; Radi, Abeer Ahmed; Abdel-Wahab, Dalia Ahmed; Hamada, Afaf Mohamed

    2016-06-01

    Soil salinity and sodicity (alkalinity) are serious land degradation issues worldwide that are predicted to increase in the future. The objective of the present study is to distinguish the effects of NaCl and Na(2)CO(3) salinity in two concentrations on the growth, lipoxygenase (LOX) activity, membrane integrity, total lipids, yield parameters and fatty acids (FAs) composition of seeds of sunflower cultivar Sakha 53. Plant growth, LOX activity and malondialdehyde (MDA) content were reduced by salts stresses. On the contrary, salinity and alkalinity stress induced stimulatory effects on membrane permeability, leakage of UV-metabolites from leaves and total lipids of sunflower shoots and roots. Crop yield (plant height, head diameter, seed index and number of seeds for each head) that is known as a hallmark of plant stress was decreased by increasing concentrations of NaCl and Na(2)CO(3) in the growth media. Fatty acid methyl esters (FAME) composition of salt-stressed sunflower seeds varied with different levels of NaCl and Na(2)CO(3).

  7. Acid-base physiology, neurobiology and behaviour in relation to CO2-induced ocean acidification.

    PubMed

    Tresguerres, Martin; Hamilton, Trevor J

    2017-06-15

    Experimental exposure to ocean and freshwater acidification affects the behaviour of multiple aquatic organisms in laboratory tests. One proposed cause involves an imbalance in plasma chloride and bicarbonate ion concentrations as a result of acid-base regulation, causing the reversal of ionic fluxes through GABA A receptors, which leads to altered neuronal function. This model is exclusively based on differential effects of the GABA A receptor antagonist gabazine on control animals and those exposed to elevated CO 2 However, direct measurements of actual chloride and bicarbonate concentrations in neurons and their extracellular fluids and of GABA A receptor properties in aquatic organisms are largely lacking. Similarly, very little is known about potential compensatory mechanisms, and about alternative mechanisms that might lead to ocean acidification-induced behavioural changes. This article reviews the current knowledge on acid-base physiology, neurobiology, pharmacology and behaviour in relation to marine CO 2 -induced acidification, and identifies important topics for future research that will help us to understand the potential effects of predicted levels of aquatic acidification on organisms. © 2017. Published by The Company of Biologists Ltd.

  8. The Monitoring of Sallow CO2 Leakage From the CO2 Release Experiment in South Korea

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Han, S. H.; Kim, S.; Son, Y.

    2017-12-01

    This study was conducted to analyze the in-soil CO2 gas diffusion from the K-COSEM shallow CO2 release experiment. The study site consisting of five zones was built in Eumseong, South Korea, and approximately 1.8 t CO2 were injected from the perforated release well at Zones 1 to 4 from June 1 to 30, 2016. In-soil CO2 concentrations were measured once a day at 15 cm and 60 cm depths at 0 m, 2.5 m, 5.0 m, and 10.0 m away from the CO2 releasing well using a portable gas analyzer (GA5000) from May 11 to July 27, 2016. On June 4, CO2 leakage was simultaneously detected at 15 cm (8.8 %) and 60 cm (44.0 %) depths at 0 m from the well at Zone 3, and were increased up to about 30 % and 70 %, respectively. During the CO2 injection period, CO2 concentrations measured at 15 cm depth were significantly lower than those measured at 60 cm depth because of the atmospheric pressure effect. After stopping the CO2 injection, CO2 concentrations gradually decreased until July 27, but were still higher than the natural background concentration. This result suggested the possibility of long-term CO2 leakage. In addition, low levels of CO2 leakage were determined using CO2 regression analysis and CO2:O2 ratio. CO2 concentrations measured at 60 cm depth at 0 m from the well at Zones 1 to 4 consistently showed sigmoid increasing patterns with the injection time (R2=0.60-0.99). O2 concentrations at 15 cm and 60 cm depths from the CO2 release experiment were reached 0 % at about 76 % and 84 % of CO2 concentrations, respectively, whereas, those from biological reaction approached 0 % when CO2 increased to about 21 %. Therefore, deep underground monitoring would be able to detect CO2 leakage faster than near-surface monitoring, and CO2 regression and CO2:O2 ratio analyses seemed to be useful as clear indicators of CO2 leakage.

  9. Pseudorandom Noise Code-Based Technique for Thin Cloud Discrimination with CO2 and O2 Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Prasad, Narasimha S.; Flood, Michael A.

    2011-01-01

    NASA Langley Research Center is working on a continuous wave (CW) laser based remote sensing scheme for the detection of CO2 and O2 from space based platforms suitable for ACTIVE SENSING OF CO2 EMISSIONS OVER NIGHTS, DAYS, AND SEASONS (ASCENDS) mission. ASCENDS is a future space-based mission to determine the global distribution of sources and sinks of atmospheric carbon dioxide (CO2). A unique, multi-frequency, intensity modulated CW (IMCW) laser absorption spectrometer (LAS) operating at 1.57 micron for CO2 sensing has been developed. Effective aerosol and cloud discrimination techniques are being investigated in order to determine concentration values with accuracies less than 0.3%. In this paper, we discuss the demonstration of a pseudo noise (PN) code based technique for cloud and aerosol discrimination applications. The possibility of using maximum length (ML)-sequences for range and absorption measurements is investigated. A simple model for accomplishing this objective is formulated, Proof-of-concept experiments carried out using SONAR based LIDAR simulator that was built using simple audio hardware provided promising results for extension into optical wavelengths.

  10. Impact of global warming and rising CO2 levels on coral reef fishes: what hope for the future?

    PubMed

    Munday, Philip L; McCormick, Mark I; Nilsson, Göran E

    2012-11-15

    Average sea-surface temperature and the amount of CO(2) dissolved in the ocean are rising as a result of increasing concentrations of atmospheric CO(2). Many coral reef fishes appear to be living close to their thermal optimum, and for some of them, even relatively moderate increases in temperature (2-4°C) lead to significant reductions in aerobic scope. Reduced aerobic capacity could affect population sustainability because less energy can be devoted to feeding and reproduction. Coral reef fishes seem to have limited capacity to acclimate to elevated temperature as adults, but recent research shows that developmental and transgenerational plasticity occur, which might enable some species to adjust to rising ocean temperatures. Predicted increases in P(CO(2)), and associated ocean acidification, can also influence the aerobic scope of coral reef fishes, although there is considerable interspecific variation, with some species exhibiting a decline and others an increase in aerobic scope at near-future CO(2) levels. As with thermal effects, there are transgenerational changes in response to elevated CO(2) that could mitigate impacts of high CO(2) on the growth and survival of reef fishes. An unexpected discovery is that elevated CO(2) has a dramatic effect on a wide range of behaviours and sensory responses of reef fishes, with consequences for the timing of settlement, habitat selection, predator avoidance and individual fitness. The underlying physiological mechanism appears to be the interference of acid-base regulatory processes with brain neurotransmitter function. Differences in the sensitivity of species and populations to global warming and rising CO(2) have been identified that will lead to changes in fish community structure as the oceans warm and becomes more acidic; however, the prospect for acclimation and adaptation of populations to these threats also needs to be considered. Ultimately, it will be the capacity for species to adjust to environmental change over coming decades that will determine the impact of climate change on marine ecosystems.

  11. Observations of changes in the dissolved CO2 system in the North Sea, in four summers of the 2001-2011 decade

    NASA Astrophysics Data System (ADS)

    Clargo, Nicola; Salt, Lesley; Thomas, Helmuth; de Baar, Hein

    2015-04-01

    Since the industrial revolution, atmospheric concentrations of carbon dioxide (CO2) have risen dramatically, largely due to the combustion of fossil fuels, changes in land-use patterns and the production of cement. The oceans have absorbed a large amount of this CO2, with resulting impacts on ocean chemistry. Coastal seas play a significant role in the mitigation of anthropogenic atmospheric CO2 as they contribute approximately 10-30% of global primary productivity despite accounting for only 7% of the surface area. The North Sea is a perfect natural laboratory in which to study the CO2 system as it consists of two biogeochemically distinct regions displaying both oceanic and relatively coastal behaviour. It has also been identified as a continental shelf pump with respect to CO2, transporting it to the deeper waters of the North Atlantic. Large scale forcing has been shown to have a significant impact on the CO2 system over varying time scales, often masking the effects of anthropogenic influence. Here, we present data from the North Sea spanning the 2001-2011 decade. In order to investigate the dynamics of the dissolved CO2 system in this region in the face of climate change, four basin-wide cruises were conducted during the summers of 2001, 2005, 2008 and 2011. The acquired Dissolved Inorganic Carbon (DIC) and alkalinity data were then used to fully resolve the carbon system in order to assess trends over the 2001-2011 decade. We find significant interannual variability, but with a consistent, notable trend in decreasing pH. We found that surface alkalinity remained relatively constant over the decade, whereas DIC increased, indicating that the pH decline is DIC-driven. We also found that the partial pressure of CO2 (pCO2) increased faster than concurrent atmospheric CO2 concentrations, and that the CO2 buffering capacity of the North Sea decreased over the decade, with implications for future CO2 uptake.

  12. Elevated CO2 can modify the response to a water status gradient in a steppe grass: from cell organelles to photosynthetic capacity to plant growth.

    PubMed

    Jiang, Yanling; Xu, Zhenzhu; Zhou, Guangsheng; Liu, Tao

    2016-07-12

    The atmospheric CO2 concentration is rising continuously, and abnormal precipitation may occur more frequently in the future. Although the effects of elevated CO2 and drought on plants have been well reported individually, little is known about their interaction, particularly over a water status gradient. Here, we aimed to characterize the effects of elevated CO2 and a water status gradient on the growth, photosynthetic capacity, and mesophyll cell ultrastructure of a dominant grass from a degraded grassland. Elevated CO2 stimulated plant biomass to a greater extent under moderate changes in water status than under either extreme drought or over-watering conditions. Photosynthetic capacity and stomatal conductance were also enhanced by elevated CO2 under moderate drought, but inhibited with over-watering. Severe drought distorted mesophyll cell organelles, but CO2 enrichment partly alleviated this effect. Intrinsic water use efficiency (WUEi) and total biomass water use efficiency (WUEt) were increased by elevated CO2, regardless of water status. Plant structural traits were also found to be tightly associated with photosynthetic potentials. The results indicated that CO2 enrichment alleviated severe and moderate drought stress, and highlighted that CO2 fertilization's dependency on water status should be considered when projecting key species' responses to climate change in dry ecosystems.

  13. Impacts of CO2 concentration on growth, lipid accumulation, and carbon-concentrating-mechanism-related gene expression in oleaginous Chlorella.

    PubMed

    Fan, Jianhua; Xu, Hui; Luo, Yuanchan; Wan, Minxi; Huang, Jianke; Wang, Weiliang; Li, Yuanguang

    2015-03-01

    Biodiesel production by microalgae with photosynthetic CO2 biofixation is thought to be a feasible way in the field of bioenergy and carbon emission reduction. Knowledge of the carbon-concentrating mechanism plays an important role in improving microalgae carbon fixation efficiency. However, little information is available regarding the dramatic changes of cells suffered upon different environmental factors, such as CO2 concentration. The aim of this study was to investigate the growth, lipid accumulation, carbon fixation rate, and carbon metabolism gene expression under different CO2 concentrations in oleaginous Chlorella. It was found that Chlorella pyrenoidosa grew well under CO2 concentrations ranging from 1 to 20 %. The highest biomass and lipid productivity were 4.3 g/L and 107 mg/L/day under 5 % CO2 condition. Switch from high (5 %) to low (0.03 %, air) CO2 concentration showed significant inhibitory effect on growth and CO2 fixation rate. The amount of the saturated fatty acids was increased obviously along with the transition. Low CO2 concentration (0.03 %) was suitable for the accumulation of saturated fatty acids. Reducing the CO2 concentration could significantly decrease the polyunsaturated degree in fatty acids. Moreover, the carbon-concentrating mechanism-related gene expression revealed that most of them, especially CAH2, LCIB, and HLA3, had remarkable change after 1, 4, and 24 h of the transition, which suggests that Chlorella has similar carbon-concentrating mechanism with Chlamydomonas reinhardtii. The findings of the present study revealed that C. pyrenoidosa is an ideal candidate for mitigating CO2 and biodiesel production and is appropriate as a model for mechanism research of carbon sequestration.

  14. Transcriptome and key genes expression related to carbon fixation pathways in Chlorella PY-ZU1 cells and their growth under high concentrations of CO2.

    PubMed

    Huang, Yun; Cheng, Jun; Lu, Hongxiang; He, Yong; Zhou, Junhu; Cen, Kefa

    2017-01-01

    The biomass yield of Chlorella PY-ZU1 drastically increased when cultivated under high CO 2 condition compared with that cultivated under air condition. However, less attention has been given to the microalgae photosynthetic mechanisms response to different CO 2 concentrations. The genetic reasons for the higher growth rate, CO 2 fixation rate, and photosynthetic efficiency of microalgal cells under higher CO 2 concentration have not been clearly defined yet. In this study, the Illumina sequencing and de novo transcriptome assembly of Chlorella PY-ZU1 cells cultivated under 15% CO 2 were performed and compared with those of cells grown under air. It was found that carbonic anhydrase (CAs, enzyme for interconversion of bicarbonate to CO 2 ) dramatically decreased to near 0 in 15% CO 2 -grown cells, which indicated that CO 2 molecules directly permeated into cells under high CO 2 stress without CO 2 -concentrating mechanism. Extrapolating from the growth conditions and quantitative Real-Time PCR of CCM-related genes, the K m (CO 2 ) (the minimum intracellular CO 2 concentration that rubisco required) of Chlorella PY-ZU1 might be in the range of 80-192 μM. More adenosine triphosphates was saved for carbon fixation-related pathways. The transcript abundance of rubisco (the most important enzyme of CO 2 fixation reaction) was 16.3 times higher in 15% CO 2 -grown cells than that under air. Besides, the transcript abundances of most key genes involved in carbon fixation pathways were also enhanced in 15% CO 2 -grown cells. Carbon fixation and nitrogen metabolism are the two most important metabolisms in the photosynthetic cells. These genes related to the two most metabolisms with significantly differential expressions were beneficial for microalgal growth (2.85 g L -1 ) under 15% CO 2 concentration. Considering the micro and macro growth phenomena of Chlorella PY-ZU1 under different concentrations of CO 2 (0.04-60%), CO 2 transport pathways responses to different CO 2 (0.04-60%) concentrations was reconstructed.

  15. Characterizing the changes in biopolymer composition in roots of photosynthetically divergent grasses exposed to future climates

    NASA Astrophysics Data System (ADS)

    Suseela, V.; Tharayil, N.; Pendall, E.

    2014-12-01

    A majority of carbon in soil is derived from plant roots, yet roots remain remarkably less explored. Root tissues are abundant in heteropolymers such as suberin, lignin and tannins which are energetically demanding to depolymerize, thus facilitating the accrual of carbon in soil. Most biopolymers are operationally/functionally defined and their function is regulated by the identity of monomers and the linkages connecting these monomers. The structural chemistry of these biopolymers could vary with the environmental conditions experienced during their formative stage thus altering the potential for soil carbon sequestration. We examined the biopolymer composition in the roots of a C3 (Hesperostipa comata) and a C4 (Bouteloua gracilis) grass species exposed to a factorial combination of warming and elevated CO2 at the Prairie Heating and CO2 Enrichment (PHACE) experiment, Wyoming, USA. The grass roots were subjected to a sequential solvent extraction and base hydrolysis to delineate various operational fractions within the polydisperse matrix. The extracted fractions were analyzed using various chromatography mass spectrometry platforms. Warming and elevated CO2 increased the total suberin content and the amount of ω-hydroxy acids in C4 grass species while in C3 species there was a trend of increasing concentration of α,ω-dioic acids in roots exposed to elevated CO2 compared to ambient CO2 treatment. Our results highlight the effect of warming and elevated CO2 on the chemical composition of heteropolymers in roots that may potentially alter root function and rate of decomposition leading to changes in soil carbon in a future warmer world.

  16. Variable conductivity and embolism in roots, trunks and branches of tree species growing under future atmospheric CO2 concentration (DUKE FACE site): impacts on whole-plant hydraulic performance and carbon assimilation

    NASA Astrophysics Data System (ADS)

    domec, J.; Palmroth, S.; Oren, R.; Johnson, D. M.; Ward, E. J.; McCulloh, K.; Gonzalez, C.; Warren, J.

    2013-12-01

    Anatomical and physiological acclimation to water stress of the tree hydraulic system involves tradeoffs between maintenance of stomatal conductance and loss of hydraulic conductivity, with short-term impacts on photosynthesis and long-term consequences to survival and growth. Here we study the role of variations in root, trunk and branch maximum hydraulic specific conductivity (Ks-max) under high and low soil moisture in determining whole-tree hydraulic conductance (Ktree) and in mediating stomatal control of gas exchange in loblolly pine trees growing under ambient and elevated CO2 (CO2a and CO2e). We hypothesized that Ktree would adjust to CO2e, through an increase in root and branch Ks-max in response to anatomical adjustments. Embolism in roots explained the loss of Ktree and therefore indirectly constituted a hydraulic signal involved in stomatal regulation and in the reduction of canopy conductance and carbon assimilation. Across roots, trunk and branches, the increase in Ks-max was associated with a decrease resistance to drought, a consequence of structural acclimation such as larger conduits and lower wood density. In loblolly pine, higher xylem dysfunction under CO2e might impact tree performance in a future climate when increased evaporative demand could cause a greater loss of hydraulic function. The results contributed to our knowledge of the physiological and morphological mechanisms underpinning the responses of tree species to drought and more generally to global change.

  17. Increasing canopy photosynthesis in rice can be achieved without a large increase in water use-A model based on free-air CO2 enrichment.

    PubMed

    Ikawa, Hiroki; Chen, Charles P; Sikma, Martin; Yoshimoto, Mayumi; Sakai, Hidemitsu; Tokida, Takeshi; Usui, Yasuhiro; Nakamura, Hirofumi; Ono, Keisuke; Maruyama, Atsushi; Watanabe, Tsutomu; Kuwagata, Tsuneo; Hasegawa, Toshihiro

    2018-03-01

    Achieving higher canopy photosynthesis rates is one of the keys to increasing future crop production; however, this typically requires additional water inputs because of increased water loss through the stomata. Lowland rice canopies presently consume a large amount of water, and any further increase in water usage may significantly impact local water resources. This situation is further complicated by changing the environmental conditions such as rising atmospheric CO 2 concentration ([CO 2 ]). Here, we modeled and compared evapotranspiration of fully developed rice canopies of a high-yielding rice cultivar (Oryza sativa L. cv. Takanari) with a common cultivar (cv. Koshihikari) under ambient and elevated [CO 2 ] (A-CO 2 and E-CO 2 , respectively) via leaf ecophysiological parameters derived from a free-air CO 2 enrichment (FACE) experiment. Takanari had 4%-5% higher evapotranspiration than Koshihikari under both A-CO 2 and E-CO 2 , and E-CO 2 decreased evapotranspiration of both varieties by 4%-6%. Therefore, if Takanari was cultivated under future [CO 2 ] conditions, the cost for water could be maintained at the same level as for cultivating Koshihikari at current [CO 2 ] with an increase in canopy photosynthesis by 36%. Sensitivity analyses determined that stomatal conductance was a significant physiological factor responsible for the greater canopy photosynthesis in Takanari over Koshihikari. Takanari had 30%-40% higher stomatal conductance than Koshihikari; however, the presence of high aerodynamic resistance in the natural field and lower canopy temperature of Takanari than Koshihikari resulted in the small difference in evapotranspiration. Despite the small difference in evapotranspiration between varieties, the model simulations showed that Takanari clearly decreased canopy and air temperatures within the planetary boundary layer compared to Koshihikari. Our results indicate that lowland rice varieties characterized by high-stomatal conductance can play a key role in enhancing productivity and moderating heat-induced damage to grain quality in the coming decades, without significantly increasing crop water use. © 2017 John Wiley & Sons Ltd.

  18. Methods and apparatus for measuring small leaks from carbon dioxide sequestration facilities

    DOEpatents

    Nelson, Jr., David D.; Herndon, Scott C.

    2018-01-02

    In one embodiment, a CO.sub.2 leak detection instrument detects leaks from a site (e.g., a CO.sub.2 sequestration facility) using rapid concentration measurements of CO.sub.2, O.sub.2 and optionally water concentration that are achieved, for example, using laser spectroscopy (e.g. direct absorption laser spectroscopy). Water vapor in the sample gas may not be removed, or only partially removed. The sample gas may be collected using a multiplexed inlet assembly from a plurality of locations. CO.sub.2 and O.sub.2 concentrations may be corrected based on the water concentration. A resulting dataset of the CO.sub.2 and O.sub.2 concentrations is analyzed over time intervals to detect any changes in CO.sub.2 concentration that are not anti-correlated with O.sub.2 concentration, and to identify a potential CO.sub.2 leak in response thereto. The analysis may include determining eddy covariance flux measurements of sub-surface potential carbon.

  19. Biomass and toxicity responses of poison ivy (Toxicodendron radicans) to elevated atmospheric CO2.

    PubMed

    Mohan, Jacqueline E; Ziska, Lewis H; Schlesinger, William H; Thomas, Richard B; Sicher, Richard C; George, Kate; Clark, James S

    2006-06-13

    Contact with poison ivy (Toxicodendron radicans) is one of the most widely reported ailments at poison centers in the United States, and this plant has been introduced throughout the world, where it occurs with other allergenic members of the cashew family (Anacardiaceae). Approximately 80% of humans develop dermatitis upon exposure to the carbon-based active compound, urushiol. It is not known how poison ivy might respond to increasing concentrations of atmospheric carbon dioxide (CO(2)), but previous work done in controlled growth chambers shows that other vines exhibit large growth enhancement from elevated CO(2). Rising CO(2) is potentially responsible for the increased vine abundance that is inhibiting forest regeneration and increasing tree mortality around the world. In this 6-year study at the Duke University Free-Air CO(2) Enrichment experiment, we show that elevated atmospheric CO(2) in an intact forest ecosystem increases photosynthesis, water use efficiency, growth, and population biomass of poison ivy. The CO(2) growth stimulation exceeds that of most other woody species. Furthermore, high-CO(2) plants produce a more allergenic form of urushiol. Our results indicate that Toxicodendron taxa will become more abundant and more "toxic" in the future, potentially affecting global forest dynamics and human health.

  20. Biomass and toxicity responses of poison ivy (Toxicodendron radicans) to elevated atmospheric CO2

    PubMed Central

    Mohan, Jacqueline E.; Ziska, Lewis H.; Schlesinger, William H.; Thomas, Richard B.; Sicher, Richard C.; George, Kate; Clark, James S.

    2006-01-01

    Contact with poison ivy (Toxicodendron radicans) is one of the most widely reported ailments at poison centers in the United States, and this plant has been introduced throughout the world, where it occurs with other allergenic members of the cashew family (Anacardiaceae). Approximately 80% of humans develop dermatitis upon exposure to the carbon-based active compound, urushiol. It is not known how poison ivy might respond to increasing concentrations of atmospheric carbon dioxide (CO2), but previous work done in controlled growth chambers shows that other vines exhibit large growth enhancement from elevated CO2. Rising CO2 is potentially responsible for the increased vine abundance that is inhibiting forest regeneration and increasing tree mortality around the world. In this 6-year study at the Duke University Free-Air CO2 Enrichment experiment, we show that elevated atmospheric CO2 in an intact forest ecosystem increases photosynthesis, water use efficiency, growth, and population biomass of poison ivy. The CO2 growth stimulation exceeds that of most other woody species. Furthermore, high-CO2 plants produce a more allergenic form of urushiol. Our results indicate that Toxicodendron taxa will become more abundant and more “toxic” in the future, potentially affecting global forest dynamics and human health. PMID:16754866

  1. Significance of the oceanic CO2 sink for national carbon accounts

    PubMed Central

    McNeil, Ben I

    2006-01-01

    Background Under the United Nations convention on the law of the sea (1982), each participating country maintains exclusive economic and environmental rights within the oceanic region extending 200 nm from its coastline, known as the Exclusive Economic Zone (EEZ). Although the ocean within each EEZ has a vast capacity to absorb anthropogenic CO2 and therefore potentially be used as a carbon sink, it is not mentioned within the Kyoto Protocol most likely due to inadequate quantitative estimates. Here, I use two methods to estimate the anthropogenic CO2 storage and uptake for a typically large EEZ (Australia). Results Depending on whether the Antarctic territory is included I find that during the 1990s between 30–40% of Australia's fossil-fuel CO2 emissions were absorbed by its own EEZ. Conclusion This example highlights the potential significance of the EEZ carbon sink for national carbon accounts. However, this 'natural anthropogenic CO2 sink' could be used as a disincentive for certain nations to reduce their anthropogenic CO2 emissions, which would ultimately dampen global efforts to reduce atmospheric CO2 concentrations. Since the oceanic anthropogenic CO2 sink has limited ability to be controlled by human activities, current and future international climate change policies should have an explicit 'EEZ' clause excluding its use within national carbon accounts. PMID:16930461

  2. LAI is the major cause of divergence in CO2 fertilization effect in land surface models

    NASA Astrophysics Data System (ADS)

    Li, Q.; Luo, Y.; Lu, X.; Wang, Y.; Huang, X.; Lin, G., Sr.

    2017-12-01

    Concentration-carbon feedback (β), also called CO2 fertilization effect, is an important feedback between terrestrial ecosystems and atmosphere to alleviate global climate change. However, models participating in C4MIP and CMIP5 predicted diverse CO2 fertilization effects under future CO2 inceasing scenarios. Hence identifing the key processes dominating the divergence of β in land surface models is of significance. We calculated CO2 fertilization effects from leaf level, canopy gross productivity level, net ecosystem productivity level and ecosystem carbon stock level in Community Atmosphere Biosphere Land Exchange (CABLE) model. Our results identified LAI is the key factor dominating the divergence of β among C3 plants in CABLE model. Saturation of the ecosystem productivity to increasing CO2 is not only regulated by leaf-level response, but also the response of LAI to increasing CO2. The greatest variation among C3 plants at ecosystem level suggests that other processes such as different allocation patterns and soil carbon dynamics of various vegetation types are also responsible for the divergence. Our results indicate that processes regarding to LAI need to be better calibrated according to experiments and observations in order to better represent the response of ecosystem productivity to increasing CO2.

  3. Amelioration of boron toxicity in sweet pepper as affected by calcium management under an elevated CO2 concentration.

    PubMed

    Piñero, María Carmen; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2017-04-01

    We investigated B tolerance in sweet pepper plants (Capsicum annuun L.) under an elevated CO 2 concentration, combined with the application of calcium as a nutrient management amelioration technique. The data show that high B affected the roots more than the aerial parts, since there was an increase in the shoot/root ratio, when plants were grown with high B levels; however, the impact was lessened when the plants were grown at elevated CO 2 , since the root FW reduction caused by excess B was less marked at the high CO 2 concentration (30.9% less). Additionally, the high B concentration affected the membrane permeability of roots, which increased from 39 to 54% at ambient CO 2 concentration, and from 38 to 51% at elevated CO 2 concentration, producing a cation imbalance in plants, which was differentially affected by the CO 2 supply. The Ca surplus in the nutrient solution reduced the nutritional imbalance in sweet pepper plants produced by the high B concentration, at both CO 2 concentrations. The medium B concentration treatment (toxic according to the literature) did not result in any toxic effect. Hence, there is a need to review the literature on critical and toxic B levels taking into account increases in atmospheric CO 2 .

  4. CO 2 Absorption and Magnesium Carbonate Precipitation in MgCl 2–NH 3–NH 4Cl Solutions: Implications for Carbon Capture and Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Chen; Wang, Han; Li, Gen

    CO 2 absorption and carbonate precipitation are the two core processes controlling the reaction rate and path of CO 2 mineral sequestration. Whereas previous studies have focused on testing reactive crystallization and precipitation kinetics, much less attention has been paid to absorption, the key process determining the removal efficiency of CO 2. In this study, adopting a novel wetted wall column reactor, we systematically explore the rates and mechanisms of carbon transformation from CO 2 gas to carbonates in MgCl 2–NH 3–NH 4Cl solutions. We find that reactive diffusion in liquid film of the wetted wall column is the rate-limitingmore » step of CO 2 absorption when proceeding chiefly through interactions between CO 2(aq) and NH 3(aq). We further quantified the reaction kinetic constant of the CO 2–NH 3 reaction. Our results indicate that higher initial concentration of NH 4Cl ( ≥2mol∙L -1) leads to the precipitation of roguinite [(NH 4) 2Mg(CO 3) 2∙4H 2O], while nesquehonite appears to be the dominant Mg-carbonate without NH 4Cl addition. We also noticed dypingite formation via phase transformation in hot water. This study provides new insight into the reaction kinetics of CO 2 mineral carbonation that indicates the potential of this technique for future application to industrial-scale CO 2 sequestration.« less

  5. CO 2 Absorption and Magnesium Carbonate Precipitation in MgCl 2–NH 3–NH 4Cl Solutions: Implications for Carbon Capture and Storage

    DOE PAGES

    Zhu, Chen; Wang, Han; Li, Gen; ...

    2017-09-19

    CO 2 absorption and carbonate precipitation are the two core processes controlling the reaction rate and path of CO 2 mineral sequestration. Whereas previous studies have focused on testing reactive crystallization and precipitation kinetics, much less attention has been paid to absorption, the key process determining the removal efficiency of CO 2. In this study, adopting a novel wetted wall column reactor, we systematically explore the rates and mechanisms of carbon transformation from CO 2 gas to carbonates in MgCl 2–NH 3–NH 4Cl solutions. We find that reactive diffusion in liquid film of the wetted wall column is the rate-limitingmore » step of CO 2 absorption when proceeding chiefly through interactions between CO 2(aq) and NH 3(aq). We further quantified the reaction kinetic constant of the CO 2–NH 3 reaction. Our results indicate that higher initial concentration of NH 4Cl ( ≥2mol∙L -1) leads to the precipitation of roguinite [(NH 4) 2Mg(CO 3) 2∙4H 2O], while nesquehonite appears to be the dominant Mg-carbonate without NH 4Cl addition. We also noticed dypingite formation via phase transformation in hot water. This study provides new insight into the reaction kinetics of CO 2 mineral carbonation that indicates the potential of this technique for future application to industrial-scale CO 2 sequestration.« less

  6. Measuring H2O and CO2 Emissions in the Mud Volcano region of Yellowstone using Open Path FTIR

    NASA Astrophysics Data System (ADS)

    Moyer, D. K.; Sealing, C. R.; Carn, S. A.; Vanderkluysen, L.

    2017-12-01

    Magma degassing is an important factor in many aspects of monitoring active volcanic zones and mitigating associated hazards. The monitoring of these emissions in concentration, flux, and species ratios is important for detecting signs of unrest as well as understanding the natural cycle and budget of volatile species. However, standard gas measurement methods suffer from either low temporal resolution (e.g., direct sampling of fumaroles) or are limited to measuring a small range of species (e.g., MiniDOAS, MultiGAS). In order to establish a carbon budget of active gas sources at a volcano with a dynamic hydrothermal system, we carried out a survey of mud pots and fumaroles at Yellowstone National Park using Open-Path Fourier Transform Infrared Spectroscopy, or OP-FTIR, which allows for a temporal resolution as low as one measurement every 10 seconds. We placed an active infrared (IR) source behind the target gas plume and identified gas species from the presence of their absorption feature in measured spectra in the 2.5 to 25 µm range. From these, we derived pathlength concentrations for a wide range of gases, including: water vapor, carbon dioxide, and methane. During our September 2016 campaign in the Mud Volcano thermal area, we measured CO2 concentrations of 400 ppm in emissions from the Churning Cauldron acid-sulfate mud pot, with an H2O/CO2 ratio of 8; at Sulphur Cauldron and One Hundred Springs Plain, CO2 concentrations reached 200 ppm above background atmospheric values. We derived a CO2 flux of 8.15 T/d, 0.43 T/d and .00025 T/d, respectively, at these three acid-sulfate sources, within range of gas channeling-based estimates from the late 1990s. Previous accumulation chamber studies estimate the CO2 soil diffuse degassing in the Mud Volcano thermal region at 283.15 T/d, indicating that mud pots are minor contributors of CO2 emissions in this area, representing 3% of diffuse emissions. Due to the high acquisition rate and the abundance of water droplets in the plume, spectra were too noisy to reliably detect methane at these locations. Future work will focus on the measurement of trace gases at these same locations by increasing the acquisition time.

  7. Interactive Effects of CO2 and O2 in Soil on Root and Top Growth of Barley and Peas

    PubMed Central

    Geisler, G.

    1967-01-01

    Barley and pea plants were grown under several regimens of different compositions of soil atmosphere, the O2 concentration varying from 0 to 21% and the CO2 concentration from 0 to 8%. In absence of CO2, the effect of O2 on root length in barley was characterized by equal root lengths within the range of 21 to 7% O2 and a steep decline between 7 and 0%. In peas, while showing the same general response, the decline occurred between 14 and 7% O2. Root numbers of the seminal roots of barley decreased already with reduction in O2 concentration from 21 to 14%. Dry matter production was affected somewhat differently by O2 and CO2 concentration. Dry matter production in barley was reduced at 14% O2 while root length decreased between 7 and 0%. In peas, dry matter production was favored by low CO2 concentrations except where there was no oxygen. At 21% O2, increasing CO2 concentrations did not seem to affect root length up to concentrations of 2% CO2. At 8% CO2, root length was decreased. The inter-active effects of CO2 and O2 are characterized by a reduced susceptibility to CO2 at O2 values below 7%, and a very deleterious effect of 8% CO2 at 7% O2. PMID:16656508

  8. Synthesis of sub-millimeter calcite from aqueous solution

    NASA Astrophysics Data System (ADS)

    Reimi, M. A.; Morrison, J. M.; Burns, P. C.

    2011-12-01

    A novel aqueous synthesis that leads to the formation of calcite (CaCO3) crystals, up to 500μm in diameter, will be used to facilitate the study of contaminant transport in aqueous environmental systems. Existing processes tend to be complicated and often yield nanometer-sized or amorphous CaCO3. The synthesis method presented here, which involves slow mixing of concentrated solutions of CaCl2 ¬and (NH4)2CO3, produces single crystals of rhombohedral calcite in 2 to 4 days. Variations on the experimental method, including changes in pH and solution concentration, were explored to optimize the synthesis. Scanning Electron Microscope images show the differences in size and purity observed when the crystals are grown at pH values ranging from 2 to 6. The crystals grown from solutions of pH 2 were large (up to 500 micrometers in diameter) with minimal polycrystalline calcium carbonate, while crystals grown from solutions with pH values beyond 4 were smaller (up to 100 micrometers in diameter) with significant polycrystalline calcium carbonate. The synthesis method, materials characterization, and use in future actinide contaminant studies will be discussed.

  9. Effects of raised CO2 concentration on the egg production rate and early development of two marine copepods (Acartia steueri and Acartia erythraea).

    PubMed

    Kurihara, Haruko; Shimode, Shinji; Shirayama, Yoshihisa

    2004-11-01

    Direct injection of CO(2) into the deep ocean is receiving increasing attention as a way to mitigate increasing atmospheric CO(2) concentration. To assess the potential impact of the environmental change associated with CO(2) sequestration in the ocean, we studied the lethal and sub-lethal effects of raised CO(2) concentration in seawater on adult and early stage embryos of marine planktonic copepods. We found that the reproduction rate and larval development of copepods are very sensitive to increased CO(2) concentration. The hatching rate tended to decrease, and nauplius mortality rate to increase, with increased CO(2) concentration. These results suggest that the marine copepod community will be negatively affected by the disposal of CO(2). This could decrease on the carbon export flux to the deep ocean and change the biological pump. Clearly, further studies are needed to determine whether ocean CO(2) injection is an acceptable strategy to reduce anthropogenic CO(2).

  10. Uncertainty of Wheat Water Use: Simulated Patterns and Sensitivity to Temperature and CO2

    NASA Technical Reports Server (NTRS)

    Cammarano, Davide; Roetter, Reimund P.; Asseng, Senthold; Ewert, Frank; Wallach, Daniel; Martre, Pierre; Hatfield, Jerry L.; Jones, James W.; Rosenzweig, Cynthia E.; Ruane, Alex C.; hide

    2016-01-01

    Projected global warming and population growth will reduce future water availability for agriculture. Thus, it is essential to increase the efficiency in using water to ensure crop productivity. Quantifying crop water use (WU; i.e. actual evapotranspiration) is a critical step towards this goal. Here, sixteen wheat simulation models were used to quantify sources of model uncertainty and to estimate the relative changes and variability between models for simulated WU, water use efficiency (WUE, WU per unit of grain dry mass produced), transpiration efficiency (Teff, transpiration per kg of unit of grain yield dry mass produced), grain yield, crop transpiration and soil evaporation at increased temperatures and elevated atmospheric carbon dioxide concentrations ([CO2]). The greatest uncertainty in simulating water use, potential evapotranspiration, crop transpiration and soil evaporation was due to differences in how crop transpiration was modelled and accounted for 50 of the total variability among models. The simulation results for the sensitivity to temperature indicated that crop WU will decline with increasing temperature due to reduced growing seasons. The uncertainties in simulated crop WU, and in particularly due to uncertainties in simulating crop transpiration, were greater under conditions of increased temperatures and with high temperatures in combination with elevated atmospheric [CO2] concentrations. Hence the simulation of crop WU, and in particularly crop transpiration under higher temperature, needs to be improved and evaluated with field measurements before models can be used to simulate climate change impacts on future crop water demand.

  11. A CO2 concentration gradient facility for testing CO2 enrichment and soil effects on grassland ecosystem function

    USDA-ARS?s Scientific Manuscript database

    Continuing increases in atmospheric CO2 concentrations mandate techniques for examining impacts on terrestrial ecosystems. Most experiments examine only two or a few levels of CO2 concentration and a single soil type, but if CO2 can be varied as a gradient from subambient to superambient concentra...

  12. Effects of CO 2 concentration and moisture content of sugar-free media on the tissue-cultured plantlets in a large growth chamber

    NASA Astrophysics Data System (ADS)

    Qu, Y. H.; Lin, C.; Zhou, W.; Li, Y.; Chen, B.; Chen, G. Q.

    2009-01-01

    The dynamic fluctuations of CO 2 concentration in the tissue culture growth chamber after transplantation of petunia, chrysanthemum and tomato plantlets were recorded with a real-time control system to determine the critical CO 2 concentration levels of 35 μl l -1 at which CO 2 enrichment is needed. The experimental data showed that the tissue-cultured plantlets of petunia, chrysanthemum and tomato had the same CO 2 concentration dynamics. The results indicated that CO 2 enrichment was proper on the second day after transplantation. Petunia plantlets were used to conduct experiments under PPFD of 80 μmol m -2 s -1, and CO 2 concentrations of 350 ± 50 μl l -1, 650 ± 50 μl l -1 and 950 ± 50 μl l -1 as well as medium moisture contents of 60%, 70% and 80%, with the result that plantlets grew better under CO 2 concentration of 650 ± 50 μl l -1 than under the other two concentrations with all the different media water contents. Three media water contents under the same CO 2 concentration produced plantlets with the same quality. The impacts of CO 2 concentrations on plantlets are more important than those of the media water contents. Sugar-free tissue culture, as compared with the conventional culture, showed that CO 2 enrichment to 350 ± 50 μl l -1 can promote the growth of the cultured plantlets. Sugar-free tissue culture produced healthy plantlets with thick roots, almost equivalent to the common plantlets.

  13. Environmental biogeography of near-surface phytoplankton in the southeast Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Hardy, John; Hanneman, Andrew; Behrenfeldt, Michael; Horner, Rita

    1996-10-01

    Biogeographic interpretation of large-scale phytoplankton distribution patterns in relation to surface hydrography is essential to understanding pelagic food web dynamics and biogeochemical processes influencing global climate. We examined the abundance and biomass of phytoplankton in relation to physical and chemical parameters in the southeast Pacific Ocean. Samples were collected along longitude 110°W, between 10°N and 60°S during late austral summer. Patterns of taxa abundance and hydrographic variables were interpreted by principal components analysis. Five distinct phytohydrographic regions were identified: (i) a north equatorial region of moderate productivity dominated by small flagellates, low nitrate and low-to-moderate pCO 2; (ii) a south equatorial region characterized by high primary productivity dominated by diatoms, high nutrient levels, and relatively high pCO 2; (iii) a central gyre region characterized by low productivity dominated by small flagellates, low nitrate, and high pCO 2; (iv) a sub-Antarctic region with moderate productivity dominated by coccolithophores, moderate nitrate concentrations, and low pCO 2; and (v) an Antarctic region with high productivity dominated by diatoms, very high nitrate, and low pCO 2. Productivity and average phytoplankton cell size were positively correlated with nitrate concentration. Total phytoplankton abundance was negatively correlated with pCO 2, photosynthetically active radiation, and ultraviolet-B radiation. The interaction between phytoplankton carbon assimilation, atmospheric CO2, and the inhibitory effect of ultraviolet radiation could have implications for the global climate. These data suggest that the effects would be greatest at southern mid-latitudes (40-50°S) where present phytoplankton production and predicted future increases in UV-B are both relatively high.

  14. [Characteristics of atmospheric CO2 concentration and variation of carbon source & sink at Lin'an regional background station].

    PubMed

    Pu, Jing-Jiao; Xu, Hong-Hui; Kang, Li-Li; Ma, Qian-Li

    2011-08-01

    Characteristics of Atmospheric CO2 concentration obtained by Flask measurements were analyzed at Lin'an regional background station from August 2006 to July 2009. According to the simulation results of carbon tracking model, the impact of carbon sources and sinks on CO2 concentration was evaluated in Yangtze River Delta. The results revealed that atmospheric CO2 concentrations at Lin'an regional background station were between 368.3 x 10(-6) and 414.8 x 10(-6). The CO2 concentration varied as seasons change, with maximum in winter and minimum in summer; the annual difference was about 20.5 x 10(-6). The long-term trend of CO2 concentration showed rapid growth year by year; the average growth rate was about 3.2 x 10(-6)/a. CO2 flux of Yangtze River Delta was mainly contributed by fossil fuel burning, terrestrial biosphere exchange and ocean exchange, while the contribution of fire emission was small. CO2 flux from fossil fuel burning played an important role in carbon source; terrestrial biosphere and ocean were important carbon sinks in this area. Seasonal variations of CO2 concentration at Lin'an regional background station were consistent with CO2 fluxes from fossil fuel burning and terrestrial biosphere exchange.

  15. Detection of CO2 leaks from carbon capture and storage sites to the atmosphere with combined CO2 and O2 measurements

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Charlotte; Meijer, Harro A. J.

    2015-04-01

    One of the main issues in carbon capture and storage (CCS) is the possibility of leakage of CO2 from the storage reservoir to the atmosphere, both from a public health and a climate change combat perspective. Detecting these leaks in the atmosphere is difficult due to the rapid mixing of the emitted CO2 with the surrounding air masses and the high natural variability of the atmospheric CO2 concentration. Instead of measuring only the CO2 concentration of the atmosphere, its isotopes or chemical tracers that are released together with the CO2, our method uses O2 measurements in addition to CO2 measurements to detect a leak from a CCS site. CO2 and O2 are coupled in most processes on earth. In photosynthesis, plants take up CO2 and release O2 at the same time. In respiration and fossil fuel burning, O2 is consumed while CO2 is released. In case of a leak from a CCS site, however, there is no relationship between CO2 and O2. A CO2 leak can therefore be distinguished from other sources of CO2 by looking at the atmospheric CO2-O2 ratio. A natural increase of the CO2 concentration is accompanied by a drop in the O2 concentration, while an increase in the CO2 concentration caused by a leak from a CCS site does not have any effect on the O2 concentration. To demonstrate this leak detection strategy we designed and built a transportable CO2 and O2 measurement system, that is capable of measuring the relatively minute (ppm's variations on a 21% concentration) changes in the O2 concentration. The system comprises of three cases that contain the instrumentation and gas handling equipment, the gas cylinders used as reference and calibration gases and a drying system, respectively. Air is pumped to the system from an air inlet that is placed in a small tower in the field. At the conference, we will demonstrate the success of leak detection with our system by showing measurements of several CO2 release experiments, where CO2 was released at a small distance from the air inlet of our instrument.

  16. Assessing air quality and climate impacts of future ground freight choice in United States

    NASA Astrophysics Data System (ADS)

    Liu, L.; Bond, T. C.; Smith, S.; Lee, B.; Ouyang, Y.; Hwang, T.; Barkan, C.; Lee, S.; Daenzer, K.

    2013-12-01

    The demand for freight transportation has continued to increase due to the growth of domestic and international trade. Emissions from ground freight (truck and railways) account for around 7% of the greenhouse gas emissions, 4% of the primary particulate matter emission and 25% of the NOx emissions in the U.S. Freight railways are generally more fuel efficient than trucks and cause less congestion. Freight demand and emissions are affected by many factors, including economic activity, the spatial distribution of demand, freight modal choice and routing decision, and the technology used in each modal type. This work links these four critical aspects of freight emission system to project the spatial distribution of emissions and pollutant concentration from ground freight transport in the U.S. between 2010 and 2050. Macroeconomic scenarios are used to forecast economic activities. Future spatial structure of employment and commodity demand in major metropolitan areas are estimated using spatial models and a shift-share model, respectively. Freight flow concentration and congestion patterns in inter-regional transportation networks are predicted from a four-step freight demand forecasting model. An asymptotic vehicle routing model is also developed to estimate delivery ton-miles for intra-regional freight shipment in metropolitan areas. Projected freight activities are then converted into impacts on air quality and climate. CO2 emissions are determined using a simple model of freight activity and fuel efficiency, and compared with the projected CO2 emissions from the Second Generation Model. Emissions of air pollutants including PM, NOx and CO are calculated with a vehicle fleet model SPEW-Trend, which incorporates the dynamic change of technologies. Emissions are projected under three economic scenarios to represent different plausible futures. Pollutant concentrations are then estimated using tagged chemical tracers in an atmospheric model with the emissions serving as input.

  17. Climate Change and Insect Pests: Resistance Is Not Futile?

    PubMed

    Johnson, Scott N; Züst, Tobias

    2018-05-01

    Chemical signals produced by plants when attacked by herbivores play a crucial role in efficient plant defence. A recent study suggests that herbivore-specific R-gene resistance may be enhanced by elevated atmospheric CO 2 concentrations. Understanding how climate change affects plant resistance to herbivorous pests could be essential for future food security. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. The future distribution of the savannah biome: model-based and biogeographic contingency

    PubMed Central

    Scheiter, Simon; Langan, Liam; Trabucco, Antonio; Higgins, Steven I.

    2016-01-01

    The extent of the savannah biome is expected to be profoundly altered by climatic change and increasing atmospheric CO2 concentrations. Contrasting projections are given when using different modelling approaches to estimate future distributions. Furthermore, biogeographic variation within savannahs in plant function and structure is expected to lead to divergent responses to global change. Hence the use of a single model with a single savannah tree type will likely lead to biased projections. Here we compare and contrast projections of South American, African and Australian savannah distributions from the physiologically based Thornley transport resistance statistical distribution model (TTR-SDM)—and three versions of a dynamic vegetation model (DVM) designed and parametrized separately for specific continents. We show that attempting to extrapolate any continent-specific model globally biases projections. By 2070, all DVMs generally project a decrease in the extent of savannahs at their boundary with forests, whereas the TTR-SDM projects a decrease in savannahs at their boundary with aridlands and grasslands. This difference is driven by forest and woodland expansion in response to rising atmospheric CO2 concentrations in DVMs, unaccounted for by the TTR-SDM. We suggest that the most suitable models of the savannah biome for future development are individual-based dynamic vegetation models designed for specific biogeographic regions. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’. PMID:27502376

  19. The future distribution of the savannah biome: model-based and biogeographic contingency.

    PubMed

    Moncrieff, Glenn R; Scheiter, Simon; Langan, Liam; Trabucco, Antonio; Higgins, Steven I

    2016-09-19

    The extent of the savannah biome is expected to be profoundly altered by climatic change and increasing atmospheric CO2 concentrations. Contrasting projections are given when using different modelling approaches to estimate future distributions. Furthermore, biogeographic variation within savannahs in plant function and structure is expected to lead to divergent responses to global change. Hence the use of a single model with a single savannah tree type will likely lead to biased projections. Here we compare and contrast projections of South American, African and Australian savannah distributions from the physiologically based Thornley transport resistance statistical distribution model (TTR-SDM)-and three versions of a dynamic vegetation model (DVM) designed and parametrized separately for specific continents. We show that attempting to extrapolate any continent-specific model globally biases projections. By 2070, all DVMs generally project a decrease in the extent of savannahs at their boundary with forests, whereas the TTR-SDM projects a decrease in savannahs at their boundary with aridlands and grasslands. This difference is driven by forest and woodland expansion in response to rising atmospheric CO2 concentrations in DVMs, unaccounted for by the TTR-SDM. We suggest that the most suitable models of the savannah biome for future development are individual-based dynamic vegetation models designed for specific biogeographic regions.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'. © 2016 The Author(s).

  20. Atmospheric and geogenic CO2 within the crown and root of spruce (Picea abies L. Karst.) growing in a mofette area

    NASA Astrophysics Data System (ADS)

    Vodnik, D.; Thomalla, A.; Ferlan, M.; Levanič, T.; Eler, K.; Ogrinc, N.; Wittmann, C.; Pfanz, H.

    2018-06-01

    Mofettes are often investigated in ecology, either as extreme sites, natural analogues to future conditions under climate change, or model ecosystems for environmental impact assessments of carbon capture and storage systems. Much of this research, however, inadequately addresses the complexity of the gas environment at these sites, mainly focusing on aboveground CO2-enrichment. In the current research, the gaseous environment of Norway spruce (Picea abies (L) Karst.) trees growing at the Stavešinske slepice mofette (NE Slovenia) were studied by measuring both soil ([CO2]soil) and atmospheric CO2 concentrations ([CO2]air). Within the studied site (800 m2), soil CO2 enrichment was spatially heterogeneous; about 25% of the area was characterized by very high [CO2]soil (>40%) and hypoxic conditions. Aboveground gas measurements along vertical profiles not only revealed substantially elevated [CO2]air close to the ground (height up to 1.5 m), but also in the upper heights (20-25 m; crown layer). On the basis δ13C of CO2, it was shown that elevated CO2 relates to a geogenic source. Trees grown in high [CO2]soil were characterized by decreased radial growth; the δ13C of their wood was less negative than in trees growing in normal soil. Unfavorable gaseous soil conditions should generally be accepted as being by far the most important factor affecting (i.e. disturbing) the growth of mofette trees.

  1. Biogeologic Carbon Sequestration - a Cost-Effective Proposal

    NASA Astrophysics Data System (ADS)

    Shaw, G. H.; Kuhns, R.

    2009-05-01

    Carbon sequestration has been proposed as a strategy for reducing the impact of carbon dioxide emissions from burning of fossil fuels. There are two main routes: 1) capture CO2 emissions from power plants or other large point sources followed by some form of "burial/sequestration", and 2) extraction of CO2 from the ambient atmosphere (involving substantial concentration relative to atmospheric levels) also followed by burial/sequestration. In either case the goal is to achieve significant long-term isolation of CO2 at an economically sustainable price, perhaps measured by some "market price" for CO2, such as the European carbon futures market, where the price is now (2/3/09) about 14-15/tonne of CO2. The second approach, removal of CO2 from the atmosphere, has the potential benefit of reversing the previous buildup of atmospheric CO2, and perhaps even providing a means to "adjust" terrestrial climate by regulating atmospheric CO2 concentrations. For the present, ideas of planetary "geo-engineering" are not as popular as reducing the impact of continued CO2 emissions. In fact, the energy and capital costs of extraction from a dilute atmosphere appear to make this approach uneconomical. Proposals to fertilize the open ocean suffer from concerns about long term ecosystem effects, to say nothing of a lack of verifiability. There is, however, an approach using biological systems that can not only extract significant amounts of CO2, but can do so cost-effectively. Lakes are known in which primary productivity approaches or exceeds 1gm C/cm2-yr. This equates to removal of 35,000 tonnes of CO2 per km2 per year, with a "market value" of about 500,000/yr. Such productivity only occurs under highly eutrophic conditions, and presumably requires significant nutrient additions. As such it would be unthinkable to pursue this technique on a large scale in extant lakes. If, however, it is possible to produce one or more large artificial lakes under acceptable conditions it is conceivable that this approach to carbon sequestration could prove invaluable in both the near and long term.

  2. Temporal variations of atmospheric CO2 and CO at Ahmedabad in western India

    NASA Astrophysics Data System (ADS)

    Chandra, Naveen; Lal, Shyam; Venkataramani, S.; Patra, Prabir K.; Sheel, Varun

    2016-05-01

    About 70 % of the anthropogenic carbon dioxide (CO2) is emitted from the megacities and urban areas of the world. In order to draw effective emission mitigation policies for combating future climate change as well as independently validating the emission inventories for constraining their large range of uncertainties, especially over major metropolitan areas of developing countries, there is an urgent need for greenhouse gas measurements over representative urban regions. India is a fast developing country, where fossil fuel emissions have increased dramatically in the last three decades and are predicted to continue to grow further by at least 6 % per year through to 2025. The CO2 measurements over urban regions in India are lacking. To overcome this limitation, simultaneous measurements of CO2 and carbon monoxide (CO) have been made at Ahmedabad, a major urban site in western India, using a state-of-the-art laser-based cavity ring down spectroscopy technique from November 2013 to May 2015. These measurements enable us to understand the diurnal and seasonal variations in atmospheric CO2 with respect to its sources (both anthropogenic and biospheric) and biospheric sinks. The observed annual average concentrations of CO2 and CO are 413.0 ± 13.7 and 0.50 ± 0.37 ppm respectively. Both CO2 and CO show strong seasonality with lower concentrations (400.3 ± 6.8 and 0.19 ± 0.13 ppm) during the south-west monsoon and higher concentrations (419.6 ± 22.8 and 0.72 ± 0.68 ppm) during the autumn (SON) season. Strong diurnal variations are also observed for both the species. The common factors for the diurnal cycles of CO2 and CO are vertical mixing and rush hour traffic, while the influence of biospheric fluxes is also seen in the CO2 diurnal cycle. Using CO and CO2 covariation, we differentiate the anthropogenic and biospheric components of CO2 and found significant contributions of biospheric respiration and anthropogenic emissions in the late night (00:00-05:00 h, IST) and evening rush hours (18:00-22:00 h) respectively. We compute total yearly emissions of CO to be 69.2 ± 0.07 Gg for the study region using the observed CO : CO2 correlation slope and bottom-up CO2 emission inventory. This calculated emission of CO is 52 % larger than the estimated emission of CO by the emissions database for global atmospheric research (EDGAR) inventory. The observations of CO2 have been compared with an atmospheric chemistry-transport model (ACTM), which incorporates various components of CO2 fluxes. ACTM is able to capture the basic variabilities, but both diurnal and seasonal amplitudes are largely underestimated compared to the observations. We attribute this underestimation by the model to uncertainties in terrestrial biosphere fluxes and coarse model resolution. The fossil fuel signal from the model shows fairly good correlation with observed CO2 variations, which supports the overall dominance of fossil fuel emissions over the biospheric fluxes in this urban region.

  3. Effect of CO2 enrichment on the glucosinolate contents under different nitrogen levels in bolting stem of Chinese kale (Brassica alboglabra L.)*

    PubMed Central

    La, Gui-xiao; Fang, Ping; Teng, Yi-bo; Li, Ya-juan; Lin, Xian-yong

    2009-01-01

    The effects of CO2 enrichment on the growth and glucosinolate (GS) concentrations in the bolting stem of Chinese kale (Brassica alboglabra L.) treated with three nitrogen (N) concentrations (5, 10, and 20 mmol/L) were investigated. Height, stem thickness, and dry weights of the total aerial parts, bolting stems, and roots, as well as the root to shoot ratio, significantly increased as CO2 concentration was elevated from 350 to 800 μl/L at each N concentration. In the edible part of the bolting stem, 11 individual GSs were identified, including 7 aliphatic and 4 indolyl GSs. GS concentration was affected by the elevated CO2 concentration, N concentration, and CO2×N interaction. At 5 and 10 mmol N/L, the concentrations of aliphatic GSs and total GSs significantly increased, whereas those of indolyl GSs were not affected, by elevated atmospheric CO2. However, at 20 mmol N/L, elevated CO2 had no significant effects on the concentrations of total GSs and total indolyl GSs, but the concentrations of total aliphatic GSs significantly increased. Moreover, the bolting stem carbon (C) content increased, whereas the N and sulfur (S) contents decreased under elevated CO2 concentration in the three N treatments, resulting in changes in the C/N and N/S ratios. Also the C/N ratio is not a reliable predictor of change of GS concentration, while the changes in N and S contents and the N/S ratio at the elevated CO2 concentration may influence the GS concentration in Chinese kale bolting stems. The results demonstrate that high nitrogen supply is beneficial for the growth of Chinese kale, but not for the GS concentration in bolting stems, under elevated CO2 condition. PMID:19489111

  4. Quantifying the influence of CO2 seasonality on future aragonite undersaturation onset

    NASA Astrophysics Data System (ADS)

    Sasse, T. P.; McNeil, B. I.; Matear, R. J.; Lenton, A.

    2015-10-01

    Ocean acidification is a predictable consequence of rising atmospheric carbon dioxide (CO2), and is highly likely to impact the entire marine ecosystem - from plankton at the base of the food chain to fish at the top. Factors which are expected to be impacted include reproductive health, organism growth and species composition and distribution. Predicting when critical threshold values will be reached is crucial for projecting the future health of marine ecosystems and for marine resources planning and management. The impacts of ocean acidification will be first felt at the seasonal scale, however our understanding how seasonal variability will influence rates of future ocean acidification remains poorly constrained due to current model and data limitations. To address this issue, we first quantified the seasonal cycle of aragonite saturation state utilizing new data-based estimates of global ocean-surface dissolved inorganic carbon and alkalinity. This seasonality was then combined with earth system model projections under different emissions scenarios (representative concentration pathways; RCPs 2.6, 4.5 and 8.5) to provide new insights into future aragonite undersaturation onset. Under a high emissions scenario (RCP 8.5), our results suggest accounting for seasonality will bring forward the initial onset of month-long undersaturation by 17 ± 10 years compared to annual-mean estimates, with differences extending up to 35 ± 16 years in the North Pacific due to strong regional seasonality. This earlier onset will result in large-scale undersaturation once atmospheric CO2 reaches 496 ppm in the North Pacific and 511 ppm in the Southern Ocean, independent of emission scenario. This work suggests accounting for seasonality is critical to projecting the future impacts of ocean acidification on the marine environment.

  5. Current and future carbon budget at Takayama site, Japan, evaluated by a regional climate model and a process-based terrestrial ecosystem model.

    PubMed

    Kuribayashi, Masatoshi; Noh, Nam-Jin; Saitoh, Taku M; Ito, Akihiko; Wakazuki, Yasutaka; Muraoka, Hiroyuki

    2017-06-01

    Accurate projection of carbon budget in forest ecosystems under future climate and atmospheric carbon dioxide (CO 2 ) concentration is important to evaluate the function of terrestrial ecosystems, which serve as a major sink of atmospheric CO 2 . In this study, we examined the effects of spatial resolution of meteorological data on the accuracies of ecosystem model simulation for canopy phenology and carbon budget such as gross primary production (GPP), ecosystem respiration (ER), and net ecosystem production (NEP) of a deciduous forest in Japan. Then, we simulated the future (around 2085) changes in canopy phenology and carbon budget of the forest by incorporating high-resolution meteorological data downscaled by a regional climate model. The ecosystem model overestimated GPP and ER when we inputted low-resolution data, which have warming biases over mountainous landscape. But, it reproduced canopy phenology and carbon budget well, when we inputted high-resolution data. Under the future climate, earlier leaf expansion and delayed leaf fall by about 10 days compared with the present state was simulated, and also, GPP, ER and NEP were estimated to increase by 25.2%, 23.7% and 35.4%, respectively. Sensitivity analysis showed that the increase of NEP in June and October would be mainly caused by rising temperature, whereas that in July and August would be largely attributable to CO 2 fertilization. This study suggests that the downscaling of future climate data enable us to project more reliable carbon budget of forest ecosystem in mountainous landscape than the low-resolution simulation due to the better predictions of leaf expansion and shedding.

  6. Elevated temperature drives kelp microbiome dysbiosis, while elevated carbon dioxide induces water microbiome disruption

    PubMed Central

    Morris, Megan M.; Brown, Matt; Doane, Michael; Edwards, Matthew S.; Michael, Todd P.; Dinsdale, Elizabeth A.

    2018-01-01

    Global climate change includes rising temperatures and increased pCO2 concentrations in the ocean, with potential deleterious impacts on marine organisms. In this case study we conducted a four-week climate change incubation experiment, and tested the independent and combined effects of increased temperature and partial pressure of carbon dioxide (pCO2), on the microbiomes of a foundation species, the giant kelp Macrocystis pyrifera, and the surrounding water column. The water and kelp microbiome responded differently to each of the climate stressors. In the water microbiome, each condition caused an increase in a distinct microbial order, whereas the kelp microbiome exhibited a reduction in the dominant kelp-associated order, Alteromondales. The water column microbiomes were most disrupted by elevated pCO2, with a 7.3 fold increase in Rhizobiales. The kelp microbiome was most influenced by elevated temperature and elevated temperature in combination with elevated pCO2. Kelp growth was negatively associated with elevated temperature, and the kelp microbiome showed a 5.3 fold increase Flavobacteriales and a 2.2 fold increase alginate degrading enzymes and sulfated polysaccharides. In contrast, kelp growth was positively associated with the combination of high temperature and high pCO2 ‘future conditions’, with a 12.5 fold increase in Planctomycetales and 4.8 fold increase in Rhodobacteriales. Therefore, the water and kelp microbiomes acted as distinct communities, where the kelp was stabilizing the microbiome under changing pCO2 conditions, but lost control at high temperature. Under future conditions, a new equilibrium between the kelp and the microbiome was potentially reached, where the kelp grew rapidly and the commensal microbes responded to an increase in mucus production. PMID:29474389

  7. Mitigating operating room fires: development of a carbon dioxide fire prevention device.

    PubMed

    Culp, William C; Kimbrough, Bradly A; Luna, Sarah; Maguddayao, Aris J

    2014-04-01

    Operating room fires are sentinel events that present a real danger to surgical patients and occur at least as frequently as wrong-sided surgery. For fire to occur, the 3 points of the fire triad must be present: an oxidizer, an ignition source, and fuel source. The electrosurgical unit (ESU) pencil triggers most operating room fires. Carbon dioxide (CO2) is a gas that prevents ignition and suppresses fire by displacing oxygen. We hypothesize that a device can be created to reduce operating room fires by generating a cone of CO2 around the ESU pencil tip. One such device was created by fabricating a divergent nozzle and connecting it to a CO2 source. This device was then placed over the ESU pencil, allowing the tip to be encased in a cone of CO2 gas. The device was then tested in 21%, 50%, and 100% oxygen environments. The ESU was activated at 50 W cut mode while placing the ESU pencil tip on a laparotomy sponge resting on an aluminum test plate for up to 30 seconds or until the sponge ignited. High-speed videography was used to identify time of ignition. Each test was performed in each oxygen environment 5 times with the device activated (CO2 flow 8 L/min) and with the device deactivated (no CO2 flow-control). In addition, 3-dimensional spatial mapping of CO2 concentrations was performed with a CO2 sampling device. The median ± SD [range] ignition time of the control group in 21% oxygen was 2.9 s ± 0.44 [2.3-3.0], in 50% oxygen 0.58 s ± 0.12 [0.47-0.73], and in 100% oxygen 0.48 s ± 0.50 [0.03-1.27]. Fires were ignited with each control trial (15/15); no fires ignited when the device was used (0/15, P < 0.0001). The CO2 concentration at the end of the ESU pencil tip was 95%, while the average CO2 concentration 1 to 1.4 cm away from the pencil tip on the bottom plane was 64%. In conclusion, an operating room fire prevention device can be created by using a divergent nozzle design through which CO2 passes, creating a cone of fire suppressant. This device as demonstrated in a flammability model effectively reduced the risk of fire. CO2 3-dimensional spatial mapping suggests effective fire reduction at least 1 cm away from the tip of the ESU pencil at 8 L/min CO2 flow. Future testing should determine optimum CO2 flow rates and ideal nozzle shapes. Use of this device may substantially reduce the risk of patient injury due to operating room fires.

  8. Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center.

    PubMed

    Zhao, Suping; Yu, Ye; Yin, Daiying; He, Jianjun; Liu, Na; Qu, Jianjun; Xiao, Jianhua

    2016-01-01

    Long-term air quality data with high temporal and spatial resolutions are needed to understand some important processes affecting the air quality and corresponding environmental and health effects. The annual and diurnal variations of each criteria pollutant including PM2.5 and PM10 (particulate matter with aerodynamic diameter less than 2.5 μm and 10 μm, respectively), CO (carbon monoxide), NO2 (nitrogen dioxide), SO2 (sulfur dioxide) and O3 (ozone) in 31 provincial capital cities between April 2014 and March 2015 were investigated by cluster analysis to evaluate current air pollution situations in China, and the cities were classified as severely, moderately, and slightly polluted cities according to the variations. The concentrations of air pollutants in winter months were significantly higher than those in other months with the exception of O3, and the cities with the highest CO and SO2 concentrations were located in northern China. The annual variation of PM2.5 concentrations in northern cities was bimodal with comparable peaks in October 2014 and January 2015, while that in southern China was unobvious with slightly high PM2.5 concentrations in winter months. The concentrations of particulate matter and trace gases from primary emissions (SO2 and CO) and NO2 were low in the afternoon (~16:00), while diurnal variation of O3 concentrations was opposite to that of other pollutants with the highest values in the afternoon. The most polluted cities were mainly located in North China Plain, while slightly polluted cities mostly focus on southern China and the cities with high altitude such as Lasa. This study provides a basis for the formulation of future urban air pollution control measures in China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Long open-path instrument for simultaneously monitoring of methane, CO2 and water vapor

    NASA Astrophysics Data System (ADS)

    Simeonov, Valentin; Parlange, Marc

    2013-04-01

    A new, long open-path instrument for monitoring of path-averaged methane, CO2 and water vapor concentrations will be presented. The instrument is built on the monostatic scheme (transceiver -distant retroreflector). A VCSEL with a central wavelength of 1654 nm is used as a light source. The receiver is built around a 20 cm Newtonian telescope. The design optical path length is 2000 m but can be further extended. To avoid distortions in the shape of the spectral lines caused by atmospheric turbulences they are scanned within 1 µs. The expected concentration resolution for the above mentioned path length is of the order of 2 ppb for methane, 100 ppb for CO2 and 100 ppm for water vapor. The instrument is developed at the Swiss Federal Institute of Technology - Lausanne (EPFL) Switzerland and will be used within the GAW+ CH program for long-term monitoring of background methane and CO2 concentrations in the Swiss Alps. The initial calibration validation tests at EPFL were completed in December 2012 and the instrument will be installed at the beginning of 2013 at the High Altitude Research Station Jungfraujoch (HARSJ). The HARSJ is located at 3580 m ASL and is one of the 24 global GAW stations. One of the goals of the project is to compare path-averaged to the ongoing point measurements of methane in order to identify possible influence of the station. Future deployments of a copy of the instrument include the Canadian arctic and Siberian wetlands. The instrument can be used for ground truthing of satellite observation as well.

  10. Combining Space Geodesy, Seismology, and Geochemistry for Monitoring Verification and Accounting of CO 2 in Sequestration Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swart, Peter K.; Dixon, Tim

    2014-09-30

    A series of surface geophysical and geochemical techniques are tested in order to demonstrate and validate low cost approaches for Monitoring, Verification and Accounting (MVA) of the integrity of deep reservoirs for CO 2 storage. These techniques are (i) surface deformation by GPS; ii) surface deformation by InSAR; iii) passive source seismology via broad band seismometers; and iv) soil gas monitoring with a cavity ring down spectrometer for measurement of CO 2 concentration and carbon isotope ratio. The techniques were tested at an active EOR (Enhanced Oil Recovery) site in Texas. Each approach has demonstrated utility. Assuming Carbon Capture, Utilizationmore » and Storage (CCUS) activities become operational in the future, these techniques can be used to augment more expensive down-hole techniques.« less

  11. Early growth interactions between a mangrove and an herbaceous salt marsh species are not affected by elevated CO2 or drought

    USGS Publications Warehouse

    Howard, Rebecca J.; Stagg, Camille L.; Utomo, Herry S.

    2018-01-01

    Increasing atmospheric carbon dioxide (CO2) concentrations are likely to influence future distributions of plants and plant community structure in many regions of the world through effects on photosynthetic rates. In recent decades the encroachment of woody mangrove species into herbaceous marshes has been documented along the U.S. northern Gulf of Mexico coast. These species shifts have been attributed primarily to rising sea levels and warming winter temperatures, but the role of elevated CO2 and water availability may become more prominent drivers of species interactions under future climate conditions. Drought has been implicated as a major factor contributing to salt marsh vegetation dieback in this region. In this greenhouse study we examined the effects of CO2 concentration (∼380 ppm, ∼700 ppm) and water regime (drought, saturated, flooded) on early growth of Avicennia germinans, a C3 mangrove species, and Spartina alterniflora, a C4 grass. Plants were grown in monocultures and in a mixed-species assemblage. We found that neither species responded to elevated CO2 over the 10-month duration of the experiment, and there were few interactions between experimental factors. Two effects of water regime were documented: lower A. germinanspneumatophore biomass under drought conditions, and lower belowground biomass under flooded conditions regardless of planting assemblage. Evidence of interspecific interactions was noted. Competition for aboveground resources (e.g., light) was indicated by lower S. alterniflora stem biomass in mixed-species assemblage compared to biomass in S. alterniflora monocultures. Pneumatophore biomass of A. germinans was reduced when grown in monoculture compared to the mixed-species assemblage, indicating competition for belowground resources. These interactions provide insight into how these species may respond following major disturbance events that lead to vegetation dieback. Site variation in propagule availability and physico-chemical conditions will determine plant community composition and structure following such disturbances when these two species co-occur.

  12. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Arora, V. K.; Scinocca, J. F.; Boer, G. J.; Christian, J. R.; Denman, K. L.; Flato, G. M.; Kharin, V. V.; Lee, W. G.; Merryfield, W. J.

    2011-03-01

    The response of the second-generation Canadian earth system model (CanESM2) to historical (1850-2005) and future (2006-2100) natural and anthropogenic forcing is assessed using the newly-developed representative concentration pathways (RCPs) of greenhouse gases (GHGs) and aerosols. Allowable emissions required to achieve the future atmospheric CO2 concentration pathways, are reported for the RCP 2.6, 4.5 and 8.5 scenarios. For the historical 1850-2005 period, cumulative land plus ocean carbon uptake and, consequently, cumulative diagnosed emissions compare well with observation-based estimates. The simulated historical carbon uptake is somewhat weaker for the ocean and stronger for the land relative to their observation-based estimates. The simulated historical warming of 0.9°C compares well with the observation-based estimate of 0.76 ± 0.19°C. The RCP 2.6, 4.5 and 8.5 scenarios respectively yield warmings of 1.4, 2.3, and 4.9°C and cumulative diagnosed fossil fuel emissions of 182, 643 and 1617 Pg C over the 2006-2100 period. The simulated warming of 2.3°C over the 1850-2100 period in the RCP 2.6 scenario, with the lowest concentration of GHGs, is slightly larger than the 2°C warming target set to avoid dangerous climate change by the 2009 UN Copenhagen Accord. The results of this study suggest that limiting warming to roughly 2°C by the end of this century is unlikely since it requires an immediate ramp down of emissions followed by ongoing carbon sequestration in the second half of this century.

  13. [Diurnal and seasonal variations of surface atmospheric CO2 concentration in the river estuarine marsh].

    PubMed

    Zhang, Lin-Hai; Tong, Chuan; Zeng, Cong-Sheng

    2014-03-01

    Characteristics of diurnal and seasonal variations of surface atmospheric CO2 concentration were analyzed in the Minjiang River estuarine marsh from December 2011 to November 2012. The results revealed that both the diurnal and seasonal variation of surface atmospheric CO2 concentration showed single-peak patterns, with the valley in the daytime and the peak value at night for the diurnal variations, and the maxima in winter and minima in summer for the seasonal variation. Diurnal amplitude of CO2 concentration varied from 16.96 micromol x mol(-1) to 38.30 micromol x mol(-1). The seasonal averages of CO2 concentration in spring, summer, autumn and winter were (353.74 +/- 18.35), (327.28 +/- 8.58), (354.78 +/- 14.76) and (392.82 +/- 9.71) micromol x mol(-1), respectively, and the annual mean CO2 concentration was (357.16 +/- 26.89) micromol x mol(-1). The diurnal CO2 concentration of surface atmospheric was strongly negatively correlated with temperature, wind speed, photosynthetically active radiation and total solar radiation (P < 0.05). The diurnal concentration of CO2 was negatively related with tidal level in January, but significantly positively related in July.

  14. CO2 convective dissolution controlled by temporal changes in free-phase CO2 properties

    NASA Astrophysics Data System (ADS)

    Jafari Raad, S. M.; Emami-Meybodi, H.; Hassanzadeh, H.

    2017-12-01

    Understanding the factors that control CO2 convective dissolution, which is one of the permanent trapping mechanisms, in the deep saline aquifer is crucial in the long-term fate of the injected CO2. The present study investigates the effects of temporal changes in the solubility of CO2 at the free-phase CO2/brine interface on the onset of natural convection and the subsequent convective mixing by conducting linear stability analyses (LSA) and direct numerical simulations (DNS). A time-dependent concentration boundary is considered for the free-phase CO2/brine interface where the CO2 concentration first decreases with the time and then remains constant. The LSA results show that the temporal variation in the concentration increases the onset of natural convection up to two orders of magnitude. In addition, the critical Rayleigh number significantly increases as CO2 concentration decreases. In other words, size and pressure of the injected CO2 affect the commencement of convective mixing. Based on LSA results, several scaling relations are proposed to correlate critical Rayleigh number, critical time, and its corresponding wavenumbers with time-dependent boundary's parameters, such as concentration decline rate and equilibrium concentration ratio. The DNS results reveal that the convective fingering patterns are significantly influenced by the variation of CO2 concentration at the interface. These findings improve our understanding of CO2 solubility trapping and are particularly important in estimation of potential storage capacity, risk assessment, and storage sites characterization and screening. Keywords: CO2 sequestration; natural convection; solubility trapping; time-dependent boundary condition; numerical simulation; stability analysis

  15. Bundle-sheath leakiness in C4 photosynthesis: a careful balancing act between CO2 concentration and assimilation.

    PubMed

    Kromdijk, Johannes; Ubierna, Nerea; Cousins, Asaph B; Griffiths, Howard

    2014-07-01

    Crop species with the C4 photosynthetic pathway are generally characterized by high productivity, especially in environmental conditions favouring photorespiration. In comparison with the ancestral C3 pathway, the biochemical and anatomical modifications of the C4 pathway allow spatial separation of primary carbon acquisition in mesophyll cells and subsequent assimilation in bundle-sheath cells. The CO2-concentrating C4 cycle has to operate in close coordination with CO2 reduction via the Calvin-Benson-Bassham (CBB) cycle in order to keep the C4 pathway energetically efficient. The gradient in CO2 concentration between bundle-sheath and mesophyll cells facilitates diffusive leakage of CO2. This rate of bundle-sheath CO2 leakage relative to the rate of phosphoenolpyruvate carboxylation (termed leakiness) has been used to probe the balance between C4 carbon acquisition and subsequent reduction as a result of environmental perturbations. When doing so, the correct choice of equations to derive leakiness from stable carbon isotope discrimination (Δ(13)C) during gas exchange is critical to avoid biased results. Leakiness responses to photon flux density, either short-term (during measurements) or long-term (during growth and development), can have important implications for C4 performance in understorey light conditions. However, recent reports show leakiness to be subject to considerable acclimation. Additionally, the recent discovery of two decarboxylating C4 cycles operating in parallel in Zea mays suggests that flexibility in the transported C4 acid and associated decarboxylase could also aid in maintaining C4/CBB balance in a changing environment. In this paper, we review improvements in methodology to estimate leakiness, synthesize reports on bundle-sheath leakiness, discuss different interpretations, and highlight areas where future research is necessary. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. The effects of CO2 on phytoplankton community structure in the Amazon River Plume

    NASA Astrophysics Data System (ADS)

    Chen, T. L.; Goes, J. I.; Gomes, H. R.; McKee, K. T.

    2013-12-01

    The Amazon River Plume results from an enormous discharge of freshwater and organic matter into the Atlantic Ocean. It is a unique environment with a natural pCO2 gradient in the surface waters of the plume that range from 130-950 μatm. The response of coastal marine phytoplankton to increased anthropogenic CO2 emission is still unknown, hence the Amazon River Plume gradient can serve as a natural laboratory to examine the potential influence of atmospheric CO2 increases and ocean acidification on phytoplankton community composition. A two pronged study was undertaken: the first in which shipboard samples from a 2010 cruise to the Amazon River Plume were analyzed to examine the distribution of 3 major phytoplankton groups (diatoms, diatom-diazotroph associations [DDAs], and the diazotroph Trichodesmium spp.) with respect to the natural pCO2 gradient; the second in which the growth response of Thalassiosira weisflogii, a representative diatom species, was examined under experimentally manipulated CO2 conditions. Cruise data analysis showed that diatoms were found with higher cell counts around 150 μatm; DDAs seemed to dominate waters within the narrow range of 350-400 μatm CO2; and the diazotroph Trichodesmium spp. grew in a wide range of pCO2 conditions, but with higher cell counts at upwards of 500 μatm. Phytoplankton group distributions along the CO2 gradient may be due to differences in their carbon-concentrating mechanism (CCMs) efficiencies. The CO2 manipulation apparatus was assembled such that the cells were grown under three different CO2 environments. Differential growth of T. weisflogii was observed at 150, 400, and 800 ppm CO2 treatment. T. weisflogii grew at all three CO2 concentrations, reflecting diatoms' physiological flexibility and efficient CCMs. Absorption spectra analysis of pigments and Fast Repetition Rate Fluorometer analysis indicate potential changes in photosynthetic machinery with different CO2 treatments. Future CO2 manipulation experiments on representative DDA and diazotroph species will be undertaken to compare the growth responses of the 3 major phytoplankton groups to changes in CO2. Additionally, analysis on fatty acid compositions with different CO2 treatments will be done to assess potential changes in nutritive value for higher trophic levels. Underway pCO2 measurements with overlaid cell counts from the 2010 cruise data CO2 manipulation experiment data- growth curve (in vivo chlorophyll a fluorescence) for the 3 CO2 treatments

  17. Informing climate models with rapid chamber measurements of forest carbon uptake.

    PubMed

    Metcalfe, Daniel B; Ricciuto, Daniel; Palmroth, Sari; Campbell, Catherine; Hurry, Vaughan; Mao, Jiafu; Keel, Sonja G; Linder, Sune; Shi, Xiaoying; Näsholm, Torgny; Ohlsson, Klas E A; Blackburn, M; Thornton, Peter E; Oren, Ram

    2017-05-01

    Models predicting ecosystem carbon dioxide (CO 2 ) exchange under future climate change rely on relatively few real-world tests of their assumptions and outputs. Here, we demonstrate a rapid and cost-effective method to estimate CO 2 exchange from intact vegetation patches under varying atmospheric CO 2 concentrations . We find that net ecosystem CO 2 uptake (NEE) in a boreal forest rose linearly by 4.7 ± 0.2% of the current ambient rate for every 10 ppm CO 2 increase, with no detectable influence of foliar biomass, season, or nitrogen (N) fertilization. The lack of any clear short-term NEE response to fertilization in such an N-limited system is inconsistent with the instantaneous downregulation of photosynthesis formalized in many global models. Incorporating an alternative mechanism with considerable empirical support - diversion of excess carbon to storage compounds - into an existing earth system model brings the model output into closer agreement with our field measurements. A global simulation incorporating this modified model reduces a long-standing mismatch between the modeled and observed seasonal amplitude of atmospheric CO 2 . Wider application of this chamber approach would provide critical data needed to further improve modeled projections of biosphere-atmosphere CO 2 exchange in a changing climate. © 2016 John Wiley & Sons Ltd.

  18. Essays on energy derivatives pricing and financial risk management =

    NASA Astrophysics Data System (ADS)

    Madaleno, Mara Teresa da Silva

    This thesis consists of an introductory chapter (essay I) and five more empirical essays on electricity markets and CO2 spot price behaviour, derivatives pricing analysis and hedging. Essay I presents the structure of the thesis and electricity markets functioning and characteristics, as well as the type of products traded, to be analyzed on the following essays. In the second essay we conduct an empirical study on co-movements in electricity markets resorting to wavelet analysis, discussing long-term dynamics and markets integration. Essay three is about hedging performance and multiscale relationships in the German electricity spot and futures markets, also using wavelet analysis. We concentrate the investigation on the relationship between coherence evolution and hedge ratio analysis, on a time-frequency-scale approach, between spot and futures which conditions the effectiveness of the hedging strategy. Essays four, five and six are interrelated between them and with the other two previous essays given the nature of the commodity analyzed, CO2 emission allowances, traded in electricity markets. Relationships between electricity prices, primary energy fuel prices and carbon dioxide permits are analyzed on essay four. The efficiency of the European market for allowances is examined taking into account markets heterogeneity. Essay five analyzes stylized statistical properties of the recent traded asset CO2 emission allowances, for spot and futures returns, examining also the relation linking convenience yield and risk premium, for the German European Energy Exchange (EEX) between October 2005 and October 2009. The study was conducted through empirical estimations of CO2 allowances risk premium, convenience yield, and their relation. Future prices from an ex-post perspective are examined to show evidence for significant negative risk premium, or else a positive forward premium. Finally, essay six analyzes emission allowances futures hedging effectiveness, providing evidence for utility gains increases with investor’s preference over risk. Deregulation of electricity markets has led to higher uncertainty in electricity prices and by presenting these essays we try to shed new lights about structuring, pricing and hedging in this type of markets.

  19. Carbon Monoxide in Exhaled Breath Testing and Therapeutics

    PubMed Central

    Ryter, Stefan W.; Choi, Augustine M.K.

    2013-01-01

    Carbon monoxide (CO), a low molecular weight gas, is a ubiquitous environmental product of organic combustion, which is also produced endogenously in the body, as the byproduct of heme metabolism. CO binds to hemoglobin, resulting in decreased oxygen delivery to bodily tissues at toxicological concentrations. At physiological concentrations, CO may have endogenous roles as a potential signaling mediator in vascular function and cellular homeostasis. Exhaled CO (eCO), similar to exhaled nitric oxide (eNO), has been evaluated as a candidate breath biomarker of pathophysiological states, including smoking status, and inflammatory diseases of the lung and other organs. eCO values have been evaluated as potential indicators of inflammation in asthma, stable COPD and exacerbations, cystic fibrosis, lung cancer, or during surgery or critical care. The utility of eCO as a marker of inflammation, and potential diagnostic value remains incompletely characterized. Among other candidate “medicinal gases” with therapeutic potential, (e.g., NO and H2S), CO has been shown to act as an effective anti-inflammatory agent in preclinical animal models of inflammatory disease, acute lung injury, sepsis, ischemia/reperfusion injury and organ graft rejection. Current and future clinical trials will evaluate the clinical applicability of this gas as a biomarker and/or therapeutic in human disease. PMID:23446063

  20. Modeling Closed Equilibrium Systems of H2O-Dissolved CO2-Solid CaCO3.

    PubMed

    Tenno, Toomas; Uiga, Kalev; Mashirin, Alexsey; Zekker, Ivar; Rikmann, Ergo

    2017-04-27

    In many places in the world, including North Estonia, the bedrock is limestone, which consists mainly of CaCO 3 . Equilibrium processes in water involving dissolved CO 2 and solid CaCO 3 play a vital role in many biological and technological systems. The solubility of CaCO 3 in water is relatively low. Depending on the concentration of dissolved CO 2 , the solubility of CaCO 3 changes, which determines several important ground- and wastewater parameters, for example, Ca 2+ concentration and pH. The distribution of ions and molecules in the closed system solid H 2 O-dissolved CO 2 -solid CaCO 3 is described in terms of a structural scheme. Mathematical models were developed for the calculation of pH and concentrations of ions and molecules (Ca 2+ , CO 3 2- , HCO 3 - , H 2 CO 3 , CO 2 , H + , and OH - ) in the closed equilibrium system at different initial concentrations of CO 2 in the water phase using an iteration method. The developed models were then experimentally validated.

  1. Evidence that elevated CO2 levels can indirectly increase rhizosphere denitrifier activity

    NASA Technical Reports Server (NTRS)

    Smart, D. R.; Ritchie, K.; Stark, J. M.; Bugbee, B.

    1997-01-01

    We examined the influence of elevated CO2 concentration on denitrifier enzyme activity in wheat rhizoplanes by using controlled environments and solution culture techniques. Potential denitrification activity was from 3 to 24 times higher on roots that were grown under an elevated CO2 concentration of 1,000 micromoles of CO2 mol-1 than on roots grown under ambient levels of CO2. Nitrogen loss, as determined by a nitrogen mass balance, increased with elevated CO2 levels in the shoot environment and with a high NO3- concentration in the rooting zone. These results indicated that aerial CO2 concentration can play a role in rhizosphere denitrifier activity.

  2. "Days of future passed" - climate change and carbon cycle history (Jean Baptiste Lamarck Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Weissert, Helmut

    2013-04-01

    With the beginning of the fossil fuel age in the 19th century mankind has become an important geological agent on a global scale. For the first time in human history action of man has an impact on global biogeochemical cycles. Increasing CO2 concentrations will result in a perturbation of global carbon cycling coupled with climate change. Investigations of past changes in carbon cycling and in climate will improve our predictions of future climate. Increasing atmospheric CO2 concentrations will drive climate into a mode of operation, which may resemble climate conditions in the deep geological past. Pliocene climate will give insight into 400ppm world with higher global sea level than today. Doubling of pre-industrial atmospheric CO2 levels will shift the climate system into a state resembling greenhouse climate in the Early Cenozoic or even in the Cretaceous. Carbon isotope geochemistry serves as tool for tracing the pathway of the carbon cycle through geological time. Globally registered negative C-isotope anomalies in the C-isotope record are interpreted as signatures of rapid addition (103 to a few 104 years) of CO2 to the ocean-atmosphere system. Positive C-isotope excursions following negative spikes record the slow post-perturbation recovery of the biosphere at time scales of 105 to 106 years. Duration of C-cycle perturbations in earth history cannot be directly compared with rapid perturbation characterizing the Anthropocene. However, the investigation of greenhouse pulses in the geological past provides insight into different climate states, it allows to identify tipping points in past climate systems and it offers the opportunity to learn about response reactions of the biosphere to rapid changes in global carbon cycling. Sudden injection of massive amounts of carbon dioxide into the atmosphere is recorded in C-isotope record of the Early Cretaceous. The Aptian carbon cycle perturbation triggered changes in temperature and in global hydrological cycling. Changes in physical and chemical oceanography are reflected in widespread black shale deposition ("Oceanic Anoxic Event 1a"), in carbonate platform drowning and in biocalcification crises. "Days of future passed" (Moody Blues, 1967) reminds us that the past provides essential information needed for decisions to be made in the interest of mankind's future.

  3. Impacts of Human Induced Nitrogen Deposition on Ecosystem Carbon Sequestration and Water Balance in China

    NASA Astrophysics Data System (ADS)

    Sheng, M.; Yang, D.; Tang, J.; Lei, H.

    2017-12-01

    Enhanced plant biomass accumulation in response to elevated atmospheric CO2 concentration could dampen the future rate of increase in CO2 levels and associated climate warming. However, many experiments around the world reported that nitrogen availability could limit the sustainability of the ecosystems' response to elevated CO2. In the recent 20 years, atmospheric nitrogen deposition, primarily from fossil fuel combustion, has increased sharply about 25% in China and meanwhile, China has the highest carbon emission in the world, implying a large opportunity to increase vegetation greenness and ecosystem carbon sequestration. Moreover, the water balance of the ecosystem will also change. However, in the future, the trajectory of increasing nitrogen deposition from fossil fuel use is to be controlled by the government policy that shapes the energy and industrial structure. Therefore, the historical and future trajectories of nitrogen deposition are likely very different, and it is imperative to understand how changes in nitrogen deposition will impact the ecosystem carbon sequestration and water balance in China. We here use the Community Land Model (CLM 4.5) to analyze how the change of nitrogen deposition has influenced and will influence the ecosystem carbon and water cycle in China at a high spatial resolution (0.1 degree). We address the following questions: 1) what is the contribution of the nitrogen deposition on historical vegetation greenness? 2) How does the change of nitrogen deposition affect the carbon sequestration? 3) What is its influence to water balance? And 4) how different will be the influence of the nitrogen deposition on ecosystem carbon and water cycling in the future?

  4. European sea bass show behavioural resilience to near-future ocean acidification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duteil, M.; Pope, E. C.; Pérez-Escudero, A.

    Ocean acidification (OA)-caused by rising concentrations of carbon dioxide (CO 2)-is thought to be a major threat to marine ecosystems and has been shown to induce behavioural alterations in fish. Here we show behavioural resilience to near-future OA in a commercially important and migratory marine finfish, the Sea bass (Dicentrarchus labrax). Sea bass were raised from eggs at 19 °C in ambient or near-future OA (1000 μatm pCO 2) conditions and n = 270 fish were observed 59-68 days post-hatch using automated tracking from video. Fish reared under ambient conditions, OA conditions, and fish reared in ambient conditions but testedmore » in OA water showed statistically similar movement patterns, and reacted to their environment and interacted with each other in comparable ways. Thus our findings indicate behavioural resilience to near-future OA in juvenile sea bass. Moreover, simulated agent-based models indicate that our analysis methods are sensitive to subtle changes in fish behaviour. Lastly, it is now important to determine whether the absences of any differences persist under more ecologically relevant circumstances and in contexts which have a more direct bearing on individual fitness.« less

  5. European sea bass show behavioural resilience to near-future ocean acidification

    DOE PAGES

    Duteil, M.; Pope, E. C.; Pérez-Escudero, A.; ...

    2016-11-02

    Ocean acidification (OA)-caused by rising concentrations of carbon dioxide (CO 2)-is thought to be a major threat to marine ecosystems and has been shown to induce behavioural alterations in fish. Here we show behavioural resilience to near-future OA in a commercially important and migratory marine finfish, the Sea bass (Dicentrarchus labrax). Sea bass were raised from eggs at 19 °C in ambient or near-future OA (1000 μatm pCO 2) conditions and n = 270 fish were observed 59-68 days post-hatch using automated tracking from video. Fish reared under ambient conditions, OA conditions, and fish reared in ambient conditions but testedmore » in OA water showed statistically similar movement patterns, and reacted to their environment and interacted with each other in comparable ways. Thus our findings indicate behavioural resilience to near-future OA in juvenile sea bass. Moreover, simulated agent-based models indicate that our analysis methods are sensitive to subtle changes in fish behaviour. Lastly, it is now important to determine whether the absences of any differences persist under more ecologically relevant circumstances and in contexts which have a more direct bearing on individual fitness.« less

  6. Significance of CO2 donor on the production of succinic acid by Actinobacillus succinogenes ATCC 55618

    PubMed Central

    2011-01-01

    Background Succinic acid is a building-block chemical which could be used as the precursor of many industrial products. The dissolved CO2 concentration in the fermentation broth could strongly regulate the metabolic flux of carbon and the activity of phosphoenolpyruvate (PEP) carboxykinase, which are the important committed steps for the biosynthesis of succinic acid by Actinobacillus succinogenes. Previous reports showed that succinic acid production could be promoted by regulating the supply of CO2 donor in the fermentation broth. Therefore, the effects of dissolved CO2 concentration and MgCO3 on the fermentation process should be investigated. In this article, we studied the impacts of gaseous CO2 partial pressure, dissolved CO2 concentration, and the addition amount of MgCO3 on succinic acid production by Actinobacillus succinogenes ATCC 55618. We also demonstrated that gaseous CO2 could be removed when MgCO3 was fully supplied. Results An effective CO2 quantitative mathematical model was developed to calculate the dissolved CO2 concentration in the fermentation broth. The highest succinic acid production of 61.92 g/L was obtained at 159.22 mM dissolved CO2 concentration, which was supplied by 40 g/L MgCO3 at the CO2 partial pressure of 101.33 kPa. When MgCO3 was used as the only CO2 donor, a maximal succinic acid production of 56.1 g/L was obtained, which was just decreased by 7.03% compared with that obtained under the supply of gaseous CO2 and MgCO3. Conclusions Besides the high dissolved CO2 concentration, the excessive addition of MgCO3 was beneficial to promote the succinic acid synthesis. This was the first report investigating the replaceable of gaseous CO2 in the fermentation of succinic acid. The results obtained in this study may be useful for reducing the cost of succinic acid fermentation process. PMID:22040346

  7. Carbon source-sink limitations differ between two species with contrasting growth strategies.

    PubMed

    Burnett, Angela C; Rogers, Alistair; Rees, Mark; Osborne, Colin P

    2016-11-01

    Understanding how carbon source and sink strengths limit plant growth is a critical knowledge gap that hinders efforts to maximize crop yield. We investigated how differences in growth rate arise from source-sink limitations, using a model system comparing a fast-growing domesticated annual barley (Hordeum vulgare cv. NFC Tipple) with a slow-growing wild perennial relative (Hordeum bulbosum). Source strength was manipulated by growing plants at sub-ambient and elevated CO 2 concentrations ([CO 2 ]). Limitations on vegetative growth imposed by source and sink were diagnosed by measuring relative growth rate, developmental plasticity, photosynthesis and major carbon and nitrogen metabolite pools. Growth was sink limited in the annual but source limited in the perennial. RGR and carbon acquisition were higher in the annual, but photosynthesis responded weakly to elevated [CO 2 ] indicating that source strength was near maximal at current [CO 2 ]. In contrast, photosynthetic rate and sink development responded strongly to elevated [CO 2 ] in the perennial, indicating significant source limitation. Sink limitation was avoided in the perennial by high sink plasticity: a marked increase in tillering and root:shoot ratio at elevated [CO 2 ], and lower non-structural carbohydrate accumulation. Alleviating sink limitation during vegetative development could be important for maximizing growth of elite cereals under future elevated [CO 2 ]. © 2016 John Wiley & Sons Ltd.

  8. The oxycoal process with cryogenic oxygen supply.

    PubMed

    Kather, Alfons; Scheffknecht, Günter

    2009-09-01

    Due to its large reserves, coal is expected to continue to play an important role in the future. However, specific and absolute CO2 emissions are among the highest when burning coal for power generation. Therefore, the capture of CO2 from power plants may contribute significantly in reducing global CO2 emissions. This review deals with the oxyfuel process, where pure oxygen is used for burning coal, resulting in a flue gas with high CO2 concentrations. After further conditioning, the highly concentrated CO2 is compressed and transported in the liquid state to, for example, geological storages. The enormous oxygen demand is generated in an air-separation unit by a cryogenic process, which is the only available state-of-the-art technology. The generation of oxygen and the purification and liquefaction of the CO2-enriched flue gas consumes significant auxiliary power. Therefore, the overall net efficiency is expected to be lowered by 8 to 12 percentage points, corresponding to a 21 to 36% increase in fuel consumption. Oxygen combustion is associated with higher temperatures compared with conventional air combustion. Both the fuel properties as well as limitations of steam and metal temperatures of the various heat exchanger sections of the steam generator require a moderation of the temperatures during combustion and in the subsequent heat-transfer sections. This is done by means of flue gas recirculation. The interdependencies among fuel properties, the amount and the temperature of the recycled flue gas, and the resulting oxygen concentration in the combustion atmosphere are investigated. Expected effects of the modified flue gas composition in comparison with the air-fired case are studied theoretically and experimentally. The different atmosphere resulting from oxygen-fired combustion gives rise to various questions related to firing, in particular, with regard to the combustion mechanism, pollutant reduction, the risk of corrosion, and the properties of the fly ash or the deposits that form. In particular, detailed nitrogen and sulphur chemistry was investigated by combustion tests in a laboratory-scale facility. Oxidant staging, in order to reduce NO formation, turned out to work with similar effectiveness as for conventional air combustion. With regard to sulphur, a considerable increase in the SO2 concentration was found, as expected. However, the H2S concentration in the combustion atmosphere increased as well. Further results were achieved with a pilot-scale test facility, where acid dew points were measured and deposition probes were exposed to the combustion environment. Besides CO2 and water vapour, the flue gas contains impurities like sulphur species, nitrogen oxides, argon, nitrogen, and oxygen. The CO2 liquefaction is strongly affected by these impurities in terms of the auxiliary power requirement and the CO2 capture rate. Furthermore, the impurity of the liquefied CO2 is affected as well. Since the requirements on the liquid CO2 with regard to geological storage or enhanced oil recovery are currently undefined, the effects of possible flue gas treatment and the design of the liquefaction plant are studied over a wide range.

  9. The oxycoal process with cryogenic oxygen supply

    NASA Astrophysics Data System (ADS)

    Kather, Alfons; Scheffknecht, Günter

    2009-09-01

    Due to its large reserves, coal is expected to continue to play an important role in the future. However, specific and absolute CO2 emissions are among the highest when burning coal for power generation. Therefore, the capture of CO2 from power plants may contribute significantly in reducing global CO2 emissions. This review deals with the oxyfuel process, where pure oxygen is used for burning coal, resulting in a flue gas with high CO2 concentrations. After further conditioning, the highly concentrated CO2 is compressed and transported in the liquid state to, for example, geological storages. The enormous oxygen demand is generated in an air-separation unit by a cryogenic process, which is the only available state-of-the-art technology. The generation of oxygen and the purification and liquefaction of the CO2-enriched flue gas consumes significant auxiliary power. Therefore, the overall net efficiency is expected to be lowered by 8 to 12 percentage points, corresponding to a 21 to 36% increase in fuel consumption. Oxygen combustion is associated with higher temperatures compared with conventional air combustion. Both the fuel properties as well as limitations of steam and metal temperatures of the various heat exchanger sections of the steam generator require a moderation of the temperatures during combustion and in the subsequent heat-transfer sections. This is done by means of flue gas recirculation. The interdependencies among fuel properties, the amount and the temperature of the recycled flue gas, and the resulting oxygen concentration in the combustion atmosphere are investigated. Expected effects of the modified flue gas composition in comparison with the air-fired case are studied theoretically and experimentally. The different atmosphere resulting from oxygen-fired combustion gives rise to various questions related to firing, in particular, with regard to the combustion mechanism, pollutant reduction, the risk of corrosion, and the properties of the fly ash or the deposits that form. In particular, detailed nitrogen and sulphur chemistry was investigated by combustion tests in a laboratory-scale facility. Oxidant staging, in order to reduce NO formation, turned out to work with similar effectiveness as for conventional air combustion. With regard to sulphur, a considerable increase in the SO2 concentration was found, as expected. However, the H2S concentration in the combustion atmosphere increased as well. Further results were achieved with a pilot-scale test facility, where acid dew points were measured and deposition probes were exposed to the combustion environment. Besides CO2 and water vapour, the flue gas contains impurities like sulphur species, nitrogen oxides, argon, nitrogen, and oxygen. The CO2 liquefaction is strongly affected by these impurities in terms of the auxiliary power requirement and the CO2 capture rate. Furthermore, the impurity of the liquefied CO2 is affected as well. Since the requirements on the liquid CO2 with regard to geological storage or enhanced oil recovery are currently undefined, the effects of possible flue gas treatment and the design of the liquefaction plant are studied over a wide range.

  10. Shifting terrestrial feedbacks from CO2 fertilization to global warming

    NASA Astrophysics Data System (ADS)

    Peñuelas, Josep; Ciais, Philippe; Janssens, Ivan; Canadell, Josep; Obersteiner, Michael; Piao, Shilong; Vautard, Robert; Sardans Jordi Sardans, Jordi

    2016-04-01

    Humans are increasingly fertilizing the planet. Our activities are increasing atmospheric concentrations of carbon dioxide, nitrogen inputs to ecosystems and global temperatures. Individually and combined, they lead to biospheric availability of carbon and nitrogen, enhanced metabolic activity, and longer growing seasons. Plants can consequently grow more and take up more carbon that can be stored in ecosystem carbon pools, thus enhancing carbon sinks for atmospheric CO2. Data on the increased strength of carbon sinks are, however, inconclusive: Some data (eddy covariance, short-term experiments on elevated CO2 and nutrient fertilization) suggest that biospheric carbon uptake is already effectively increasing but some other data suggest it is not, or are not general and conclusive (tree-ring, forest inventory). The combined land-ocean CO2 sink flux per unit of excess atmospheric CO2 above preindustrial levels declined over 1959-2012 by a factor of about 1/3, implying that CO2 sinks increased more slowly than excess CO2. We will discuss the available data, and the discussion will drive us to revisit our projections for enhanced carbon sinks. We will reconsider the performance of the modulators of increased carbon uptake in a CO2 fertilized and warmed world: nutrients, climate, land use and pollution. Nutrient availability in particular plays a crucial role. A simple mass-balance approach indicates that limited phosphorus availability and the corresponding N:P imbalances can jointly reduce the projected future carbon storage by natural ecosystems during this century. We then present a new paradigm: we are shifting from a fertilization to a warming era. Compared to the historical period, future impacts of warming will be larger than the benefits of CO2 fertilization given nutrient limitations, management and disturbance (which reduces C stocks and thus sequestration potential) and because CO2 will decrease by 2050 in RCP2.6, meaning loss of CO2 fertilization, and CO2 stabilizes by 2060 in RCP4.5. So in light of the Paris agreement, it is more important to investigate climate change impacts on carbon stocks than to expect a continuation of increasing sink due to CO2 fertilization, which will have only a small role or disappear in RCP2.6 during this century.

  11. Extreme Halophiles and Carbon Monoxide: Looking Through Windows at Earth's Past and Towards a Future on Mars

    NASA Astrophysics Data System (ADS)

    King, G.

    2015-12-01

    Carbon monoxide, which is ubiquitous on Earth, is the 2nd most abundant molecule in the universe. Members of the domain Bacteria have long been known to oxidize it, and activities of CO oxidizers in soils have been known for several decades to contribute to tropospheric CO regulation. Nonetheless, the diversity of CO oxidizers and their evolutionary history remain largely unknown. A molybdenum-dependent dehydrogenase (Mo-CODH) couples CO oxidation by most terrestrial and marine bacteria to either O2 or nitrate. Molybdenum dependence, the requirement for O2 and previous phylogenetic inferences have all supported a relatively late evolution for "aerobic" CO oxidation, presumably after the Great Oxidation Event (GOE) about 2.3 Gya. Although conundrums remain, recent discoveries suggest that Mo-CODH might have evolved before the GOE, and prior to the Bacteria-Archaea split. New phylogenetic analyses incorporating sequences from extremely halophilic CO-oxidizing Euryarchaeota isolated from salterns in the Atacama Desert, brines on Hawai`i and from the Bonneville Salt Flat suggest that Mo-CODH was present in an ancestor shared by Bacteria and Archaea. This observation is consistent with results of phylogenetic histories of genes involved in Mo-cofactor synthesis, and findings by others that Mo-nitrogenase was likely active > 3 Gya. Thus, analyses of Mo-dependent CO oxidizers provide a window on the past by raising questions about the availability of Mo and non-O2 electron acceptors. Extremely halophilic CO oxidizers also provide insights relevant for understanding the potential for extraterrestrial life. CO likely occurred at high concentrations in Mars' early atmosphere, and it occurs presently at about 800 ppm. At such high concentrations, CO represents one of the most abundant energy sources available for near-surface regolith. However, use of CO by an extant or transplanted Mars microbiota would require tolerance of low water potentials and high salt concentrations. Assays with both novel isolates and a variety of saline brines, sediments and soils show that extreme halophiles use CO in solutions of saturated NaCl (5.4 M) and at water potentials as low as -118 MPa. The latter observations are consistent with metabolic activity for conditions inferred for the recurrent slope lineae on Mars.

  12. Harvesting Duke FACE: improving estimates of productivity and biomass under elevated CO2

    NASA Astrophysics Data System (ADS)

    McCarthy, H. R.; Oren, R.; Kim, D.; Tor-ngern, P.; Johnsen, K. H.; Maier, C. A.

    2013-12-01

    Free air CO2 enrichment experiments (FACE) have greatly advanced our knowledge on the impacts of increasing atmospheric CO2 concentrations in developing and mature ecosystems. These experiments have provided years of data on changes in physiology and ecosystem functions, such as photosynthesis, water use, net primary productivity (NPP), ecosystem carbon storage, and nutrient cycling. As these experiments come to a close, there has also been the opportunity to add critically lacking biometric data, which can be obtained only through destructive measurements. After 15 years of CO2 elevation at the Duke Forest FACE, a 28 year old pine plantation with a hardwood understory, a vast array of biometric data was obtained through harvesting of >1150 trees in both elevated and ambient CO2 plots. Harvested trees included pines and hardwoods, understory and overstory trees. The harvest provided direct assessments of leaf, stem and branch biomass, as well as the vertical distribution of these masses. In combination with leaf and wood level properties (e.g. specific leaf area, wood density), it was possible to explore potential CO2 effects on allometric relationships between plant parts, and stem and canopy shape and distribution. Although stimulatory effects of elevated CO2 on NPP are well established in this forest (averaging 27%), harvest results thus far indicate few changes in basic allometric relationships, such as height-diameter relationships, proportion of mass contained in different plant parts (stems vs. leaves vs. branches), distribution of leaves within the canopy and stem shape. The coupling of site-specific biometric relationships with long-term data on tree growth and mortality will reduce current sources of uncertainty in estimates of NPP and carbon storage under future increased CO2 conditions. Recent efforts in data-model synthesis have demonstrated the critical need for such data as constraints and initial values in ecosystem and earth system models; these outcomes suggest that we are well positioned to represent future forest growth and function.

  13. A product of its environment: the epaulette shark (Hemiscyllium ocellatum) exhibits physiological tolerance to elevated environmental CO2

    PubMed Central

    Heinrich, Dennis D. U.; Rummer, Jodie L.; Morash, Andrea J.; Watson, Sue-Ann; Simpfendorfer, Colin A.; Heupel, Michelle R.; Munday, Philip L.

    2014-01-01

    Ocean acidification, resulting from increasing anthropogenic CO2 emissions, is predicted to affect the physiological performance of many marine species. Recent studies have shown substantial reductions in aerobic performance in some teleost fish species, but no change or even enhanced performance in others. Notably lacking, however, are studies on the effects of near-future CO2 conditions on larger meso and apex predators, such as elasmobranchs. The epaulette shark (Hemiscyllium ocellatum) lives on shallow coral reef flats and in lagoons, where it may frequently encounter short-term periods of environmental hypoxia and elevated CO2, especially during nocturnal low tides. Indeed, H. ocellatum is remarkably tolerant to short periods (hours) of hypoxia, and possibly hypercapnia, but nothing is known about its response to prolonged exposure. We exposed H. ocellatum individuals to control (390 µatm) or one of two near-future CO2 treatments (600 or 880 µatm) for a minimum of 60 days and then measured key aspects of their respiratory physiology, namely the resting oxygen consumption rate, which is used to estimate resting metabolic rate, and critical oxygen tension, a proxy for hypoxia sensitivity. Neither of these respiratory attributes was affected by the long-term exposure to elevated CO2. Furthermore, there was no change in citrate synthase activity, a cellular indicator of aerobic energy production. Plasma bicarbonate concentrations were significantly elevated in sharks exposed to 600 and 880 µatm CO2 treatments, indicating that acidosis was probably prevented by regulatory changes in acid–base relevant ions. Epaulette sharks may therefore possess adaptations that confer tolerance to CO2 levels projected to occur in the ocean by the end of this century. It remains uncertain whether other elasmobranchs, especially pelagic species that do not experience such diurnal fluctuations in their environment, will be equally tolerant. PMID:27293668

  14. Improving the representation of photosynthesis in Earth system models

    NASA Astrophysics Data System (ADS)

    Rogers, A.; Medlyn, B. E.; Dukes, J.; Bonan, G. B.; von Caemmerer, S.; Dietze, M.; Kattge, J.; Leakey, A. D.; Mercado, L. M.; Niinemets, U.; Prentice, I. C. C.; Serbin, S.; Sitch, S.; Way, D. A.; Zaehle, S.

    2015-12-01

    Continued use of fossil fuel drives an accelerating increase in atmospheric CO2 concentration ([CO2]) and is the principal cause of global climate change. Many of the observed and projected impacts of rising [CO2] portend increasing environmental and economic risk, yet the uncertainty surrounding the projection of our future climate by Earth System Models (ESMs) is unacceptably high. Improving confidence in our estimation of future [CO2] is essential if we seek to project global change with greater confidence. There are critical uncertainties over the long term response of terrestrial CO2 uptake to global change, more specifically, over the size of the terrestrial carbon sink and over its sensitivity to rising [CO2] and temperature. Reducing the uncertainty associated with model representation of the largest CO2 flux on the planet is therefore an essential part of improving confidence in projections of global change. Here we have examined model representation of photosynthesis in seven process models including several global models that underlie the representation of photosynthesis in the land surface model component of ESMs that were part of the recent Fifth Assessment Report from the IPCC. Our approach was to focus on how physiological responses are represented by these models, and to better understand how structural and parametric differences drive variation in model responses to light, CO2, nutrients, temperature, vapor pressure deficit and soil moisture. We challenged each model to produce leaf and canopy responses to these factors to help us identify areas in which current process knowledge and emerging data sets could be used to improve model skill, and also identify knowledge gaps in current understanding that directly impact model outputs. We hope this work will provide a roadmap for the scientific activity that is necessary to advance process representation, parameterization and scaling of photosynthesis in the next generation of Earth System Models.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klasen, Elizabeth M.; Wills, Beatriz; Naithani, Neha

    Household air pollution from the burning of biomass fuels is recognized as the third greatest contributor to the global burden of disease. Incomplete combustion of biomass fuels releases a complex mixture of carbon monoxide (CO), particulate matter (PM) and other toxins into the household environment. Some investigators have used indoor CO concentrations as a reliable surrogate of indoor PM concentrations; however, the assumption that indoor CO concentration is a reasonable proxy of indoor PM concentration has been a subject of controversy. We sought to describe the relationship between indoor PM{sub 2.5} and CO concentrations in 128 households across three resource-poormore » settings in Peru, Nepal, and Kenya. We simultaneously collected minute-to-minute PM{sub 2.5} and CO concentrations within a meter of the open-fire stove for approximately 24 h using the EasyLog-USB-CO data logger (Lascar Electronics, Erie, PA) and the personal DataRAM-1000AN (Thermo Fisher Scientific Inc., Waltham, MA), respectively. We also collected information regarding household construction characteristics, and cooking practices of the primary cook. Average 24 h indoor PM{sub 2.5} and CO concentrations ranged between 615 and 1440 μg/m{sup 3}, and between 9.1 and 35.1 ppm, respectively. Minute-to-minute indoor PM{sub 2.5} concentrations were in a safe range (<25 μg/m{sup 3}) between 17% and 65% of the time, and exceeded 1000 μg/m{sup 3} between 8% and 21% of the time, whereas indoor CO concentrations were in a safe range (<7 ppm) between 46% and 79% of the time and exceeded 50 ppm between 4%, and 20% of the time. Overall correlations between indoor PM{sub 2.5} and CO concentrations were low to moderate (Spearman ρ between 0.59 and 0.83). There was also poor agreement and evidence of proportional bias between observed indoor PM{sub 2.5} concentrations vs. those estimated based on indoor CO concentrations, with greater discordance at lower concentrations. Our analysis does not support the notion that indoor CO concentration is a surrogate marker for indoor PM{sub 2.5} concentration across all settings. Both are important markers of household air pollution with different health and environmental implications and should therefore be independently measured. - Highlights: • We summarized indoor PM2.5 and CO concentrations across three resource-poor settings. • Overall correlations between indoor PM2.5 and CO were low to moderate. • Agreement between observed indoor PM2.5 vs. those estimated based on indoor CO was poor.« less

  16. Climate Change Impacts on Forest Succession and Future Productivity

    NASA Astrophysics Data System (ADS)

    Mohan, J. E.; Melillo, J. M.; Clark, J. S.; Schlesinger, W. H.

    2012-12-01

    Change in ecosystem carbon (C) dynamics with forest succession is a long-studied topic in ecology, and secondary forests currently comprise a significant proportion of the global land base. Although mature forests are generally more important for conserving species and habitats, early successional trees and stands typically have higher rates of productivity, including net ecosystem productivity (NEP), which represents carbon available for sequestration. Secondary forests undergoing successional development are thus major players in the current global carbon cycle, yet how forests will function in the future under warmer conditions with higher atmospheric carbon dioxide (CO2) concentrations is unknown. Future forest C dynamics will depend, in part, on future species composition. Data from "Forests of the Future" research in a number of global change experiments provide insights into how forests may look in terms of dominant species composition, and thus function, in a future world. Studies at Free-Air Carbon Dioxide (FACE) experiments at Duke Forest and other facilities, plus climate warming experiments such as those at the Harvard Forest, suggest a common underlying principle of vegetation responses to environmental manipulation: Namely, that shade-tolerant woody species associating with arbuscular mycorrhizal (AM) fungi show greater growth stimulation than ectomycorrhizal-associating (ECM) trees which are more common in temperate and boreal forests (Fig. 1 of relative growth rates standardized by pre-treatment rates). This may be due in part to the role of AM fungi in obtaining soil phosphorus and inorganic forms of nitrogen for plant associates. In combination, these results suggest a shift in future forest composition towards less-productive tree species that generally acquire atmospheric CO2 at lower annual rates, as well as a competitive advantage extended to woody vines such as poison ivy. Due to higher atmospheric CO2 and warmer temperatures, forests of the future may become less-productive than those of today.

  17. Atmospheric Fossil Fuel CO2 Tracing By 14C In Some Chinese Cities

    NASA Astrophysics Data System (ADS)

    Zhou, W.; Niu, Z.; Zhu, Y., Sr.

    2016-12-01

    CO2 plays an important role in global climate as a primary greenhouse gas in the atmosphere. Moreover, it has been shown that more than 70% of global fossil fuel CO2 (CO2ff) emissions are concentrated in urban areas (Duren and Miller, 2012). Our study focuses on atmospheric CO2ff concentrations in 15 Chinese cities using accelerator mass spectrometer (AMS) to measure 14C. Our objectives are: (1) to document atmospheric CO2ff concentrations in a variety of urban environments, (2) to differentiate the spatial-temporal variations in CO2ff among these cities, and (3) to ascertain the factors that control the observed variations. For about two years (winter 2014 to winter 2016), the CO2ff concentrations we observed from all sites varied from 5.1±4.5 ppm to 65.8±39.0 ppm. We observed that inland cities display much higher CO2ff concentrations and overall temporal variations than coastal cities in winter, and that northern cities have higher CO2ff concentrations than those of southern cities in winter. For inland cities relatively high CO2ff values are observed in winter and low values in summer; while seasonal variations are not distinct in the coastal cities. No significant (p > 0.05) differences in CO2ff values are found between weekdays and weekends as was shown previously in Xi'an (Zhou et al., 2014). Diurnal CO2ff variations are plainly evident, with high values between midnight and 4:00 am, and during morning and afternoon rush hours (Niu et al., 2016). The high CO2ff concentrations in northern inland cities in winter results mainly from the substantial consumption of fossil fuels for heating. The high CO2ff concentrations seen in diurnal measurements result mainly from variations in atmospheric dispersion, and from vehicle emissions related to traffic flows. The inter-annual variations in CO2ff in cities could provide a useful reference for local governments to develop policy around the effect of energy conservation and emission reduction strategies.

  18. Future possible crop yield scenarios under multiple SSP and RCP scenarios.

    NASA Astrophysics Data System (ADS)

    Sakurai, G.; Yokozawa, M.; Nishimori, M.; Okada, M.

    2016-12-01

    Understanding the effect of future climate change on global crop yields is one of the most important tasks for global food security. Future crop yields would be influenced by climatic factors such as the changes of temperature, precipitation and atmospheric carbon dioxide concentration. On the other hand, the effect of the changes of agricultural technologies such as crop varieties, pesticide and fertilizer input on crop yields have large uncertainty. However, not much is available on the contribution ratio of each factor under the future climate change scenario. We estimated the future global yields of four major crops (maize, soybean, rice and wheat) under three Shared Socio Economic Pathways (SSPs) and four Representative Concentration Pathways (RCPs). For this purpose, firstly, we estimated a parameter of a process based model (PRYSBI2) using a Bayesian method for each 1.125 degree spatial grid. The model parameter is relevant to the agricultural technology (we call "technological parameter" here after). Then, we analyzed the relationship between the values of technological parameter and GDP values. We found that the estimated values of the technological parameter were positively correlated with the GDP. Using the estimated relationship, we predicted future crop yield during 2020 and 2100 under SSP1, SSP2 and SSP3 scenarios and RCP 2.6, 4.5, 6.0 and 8.5. The estimated crop yields were different among SSP scenarios. However, we found that the yield difference attributable to SSPs were smaller than those attributable to CO2 fertilization effects and climate change. Particularly, the estimated effect of the change of atmospheric carbon dioxide concentration on global yields was more than four times larger than that of GDP for C3 crops.

  19. Atmospheric CO2 at Waliguan station in China: Transport climatology, temporal patterns and source-sink region representativeness

    NASA Astrophysics Data System (ADS)

    Cheng, Siyang; An, Xingqin; Zhou, Lingxi; Tans, Pieter P.; Jacobson, Andy

    2017-06-01

    In order to explore where the source and sink have the greatest impact on CO2 background concentration at Waliguan (WLG) station, a statistical method is here proposed to calculate the representative source-sink region. The key to this method is to find the best footprint threshold, and the study is carried out in four parts. Firstly, transport climatology, expressed by total monthly footprint, was simulated by FLEXPART on a 7-day time scale. Surface CO2 emissions in Eurasia frequently transported to WLG station. WLG station was mainly influenced by the westerlies in winter and partly controlled by the Southeast Asian monsoon in summer. Secondly, CO2 concentrations, simulated by CT2015, were processed and analyzed through data quality control, screening, fitting and comparing. CO2 concentrations displayed obvious seasonal variation, with the maximum and minimum concentration appearing in April and August, respectively. The correlation of CO2 fitting background concentrations was R2 = 0.91 between simulation and observation. The temporal patterns were mainly correlated with CO2 exchange of biosphere-atmosphere, human activities and air transport. Thirdly, for the monthly CO2 fitting background concentrations from CT2015, a best footprint threshold was found based on correlation analysis and numerical iteration using the data of footprints and emissions. The grid cells where monthly footprints were greater than the best footprint threshold were the best threshold area corresponding to representative source-sink region. The representative source-sink region of maximum CO2 concentration in April was primarily located in Qinghai province, but the minimum CO2 concentration in August was mainly influenced by emissions in a wider region. Finally, we briefly presented the CO2 source-sink characteristics in the best threshold area. Generally, the best threshold area was a carbon sink. The major source and sink were relatively weak owing to less human activities and vegetation types in this high altitude area. CO2 concentrations were more influenced by human activities when air mass passed through many urban areas in summer. Therefore, the combination of footprints and emissions is an effective approach for assessing the source-sink region representativeness of CO2 background concentration.

  20. Carbon dioxide consumption of the microalga Scenedesmus obtusiusculus under transient inlet CO2 concentration variations.

    PubMed

    Cabello, Juan; Morales, Marcia; Revah, Sergio

    2017-04-15

    The extensive microalgae diversity offers considerable versatility for a wide range of biotechnological applications in environmental and production processes. Microalgal cultivation is based on CO 2 fixation via photosynthesis and, consequently, it is necessary to evaluate, in a short time and reliable way, the effect of the CO 2 gas concentration on the consumption rate and establish the tolerance range of different strains and the amount of inorganic carbon that can be incorporated into biomass in order to establish the potential for industrial scale application. Dynamic experiments allow calculating the short-term microalgal photosynthetic activity of strains in photobioreactors. In this paper, the effect of step-changes in CO 2 concentration fed to a 20L bubble column photobioreactor on the CO 2 consumption rate of Scenedesmus obtusiusculus was evaluated at different operation times. The highest apparent CO 2 consumption rate (336μmolm -2 s -1 and 5.6% of CO 2 ) was 6530mg CO2 g b -1 d -1 and it decreased to 222mg CO2 g b -1 d -1 when biomass concentration increased of 0.5 to 3.1g b L -1 and 5.6% of CO 2 was fed. For low CO 2 concentrations (<3.8%) the pH remained close to the optimal value (7.5 and 8). The CO 2 consumption rates show that S. obtusiusculus was not limited by CO 2 availability for concentrations above of 3.8%. The CO 2 mass balance showed that 90% of the C-CO 2 transferred was used for S. obtusiusculus growth. Copyright © 2017. Published by Elsevier B.V.

  1. Tunable diode lasers application for fully automated absolute measurements of CO and CO2 concentrations in human breath

    NASA Astrophysics Data System (ADS)

    Moskalenko, Konstantin L.; Sobolev, Nikolai V.; Adamovskay, Inna A.; Stepanov, Eugene V.; Nadezhdinskii, Alexander I.; McKenna-Lawlor, Susan

    1994-01-01

    Measurements of carbon monoxide and carbon dioxide concentrations by registration of high resolution absorption spectra are described. A fully automated diode laser system developed to simultaneously measure CO and CO2, with sensitivity for CO up to 50 ppb and CO2 up to 0.1 vol%, is described. Calculation of CO and CO2 concentrations was carried out on the base of a priori date on strength and broadening coefficients of detected absorption lines. Test procedures of such diode laser systems are described. Possible reasons affected on accuracy and reliability of obtained data (e.g., the value of diode lasers spontaneous radiation, the stability of CO content in a cell, etc.) for absolute and relative calibration procedure are discussed. The physiological level of CO concentration in the breath of non smokers and smokers under different ambient conditions of CO concentrations in the atmosphere (in Moscow and in Maynooth) are compared. Recent results on statistical studies of the behavior of CO concentrations as a function of breath holding time are represented.

  2. Microbial association with the dynamics of particulate organic carbon in response to the amendment of elevated CO2-derived wheat residue into a Mollisol.

    PubMed

    Wang, Yanhong; Yu, Zhenhua; Li, Yansheng; Wang, Guanghua; Liu, Junjie; Liu, Judong; Liu, Xiaobing; Jin, Jian

    2017-12-31

    As the chemical quality of crop residue is likely to be affected by elevated CO 2 (eCO 2 ), residue amendments may influence soil organic carbon (SOC) sequestration. However, in Mollisols, the dynamics of the SOC fractions in response to amendment with wheat residue produced under eCO 2 and the corresponding microbial community composition remain unknown. Such investigation is essential to residue management, which affects the soil quality and productivity of future farming systems. To narrow this knowledge gap, 13 C-labeled shoot and root residue derived from ambient CO 2 (aCO 2 ) or eCO 2 were amended into Mollisols and incubated for 200days. The soil was sampled during the incubation period to determine the residue-C retained in the three SOC fractions, i.e., coarse intra-aggregate particulate organic C (coarse iPOC), fine iPOC and mineral-associated organic C (MOC). The soil bacterial community was assessed using a MiSeq sequencing instrument. The results showed that the increase in SOC concentrations attributable to the application of the wheat residue primarily occurred in the coarse iPOC fraction. Compared with the aCO 2 -derived shoot residue, the amendment of eCO 2 -derived shoot residue resulted in greater SOC concentrations, whereas no significant differences (P>0.05) were observed between the aCO 2 - and eCO 2 -derived roots. Principal coordinates analysis (PCoA) showed that the residue amendment significantly (P≤0.05) altered the bacterial community composition compared with the non-residue amendment. Additionally, the bacterial community in the aCO 2 -derived shoot treatment differed from those in the other residue treatments until day 200 of the incubation period. The eCO 2 -derived shoot treatment significantly increased (P≤0.05) the relative abundances of the genera Acidobacteriaceae_(Subgroup_1)_uncultured, Bryobacter, Candidatus_Solibacter, Gemmatimonas and Nitrosomonadaceae_uncultured, whereas the opposite trend was observed in Nonomuraea, Actinomadura, Streptomyces and Arthrobacter (P≤0.05). These results imply that the response of the microbial community to the eCO 2 -derived shoot treatment is associated with its contribution to the POC fractions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Grape yield and quality responses to simulated year 2100 expected climatic conditions under different soil textures.

    PubMed

    Leibar, Urtzi; Pascual, Inmaculada; Morales, Fermín; Aizpurua, Ana; Unamunzaga, Olatz

    2017-06-01

    The influence of global warming on grape quality is a great concern among grapegrowers and enologists. The effects of simulated year 2100 expected CO 2 , temperature and relative humidity (RH) conditions (FCC; 700 µmol CO 2 mol -1 air, 28/18 °C day/night and 33/53% RH, day/night) versus the current situation (Curr; 390 µmol CO 2 mol -1 air, 24/14 °C and 45/65% RH); well-irrigated versus expected future water deficit and three soils with different clay contents (41, 19 and 8%) on yield and berry quality of grapevine cv. Tempranillo were evaluated. FCC shortened the time between fruit set and veraison and between fruit set and maturity by up to 7 and 10 days, respectively. This faster maturity led to higher must pH and tonality and reduced malic and tartaric acid concentrations, total anthocyanin concentration and colour intensity. Water deficit delayed ripeness for up to 9 days and reduced vegetative growth and malic acid concentration of grapes. However, this malic acid reduction did not occur with the clayey soils. These soils induced the lowest root fresh weight and berries with lower total anthocyanin concentration. Among the adaptation techniques to cope with the described effects on fruit composition, soil selection should be considered with attention in addition to irrigation practices. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Measurement carbon dioxide concentration does not affect root respiration of nine tree species in the field

    Treesearch

    Andrew J. Burton; Kurt S. Pregitzer

    2002-01-01

    Inhibition of respiration has been reported as a short-term response of tree roots to elevated measurement CO2 concentration ([CO2]), calling into question the validity of root respiration rates determined at CO2 concentrations that differ from the soil [CO2] in the rooting zone...

  5. Gene expression responses of paper birch to elevated O3 and CO2 during leaf maturation and senescence

    NASA Astrophysics Data System (ADS)

    Kontunen-Soppela, S.; Parviainen, J.; Ruhanen, H.; Brosché, M.; Keinanen, M.; Thakur, R. C.; Kolehmainen, M.; Kangasjarvi, J.; Oksanen, E.; Karnosky, D. F.; Vapaavuori, E.

    2009-12-01

    Forest trees are exposed to increasing concentrations of O3 and CO2 simultaneously. The rise of concentration in these gases causes changes in the gene expression of trees, which can be small in acclimated trees, but yet pivotal for the metabolism of the trees. We have studied the response of paper birch (Betula papyrifera) leaf gene expression to elevated O3 and CO2 concentrations during leaf maturation and senescence. The hypotheses were:(1) Elevated O3 induces oxidative stress in leaves. During long O3-exposure repair mechanisms are activated. Because chemical defense requires energy and carbon uptake is reduced, leaf senescence is activated earlier. Alternatively, the senescence-associated processes, remobilization and storage of carbohydrates and nutrients, may not be completed. (2) In the combination of elevated CO2+O3, the O3-caused damages are not seen or they are smaller, due to closure of the stomata under elevated CO2 and decreased O3 uptake by the leaves. On the other hand, elevated CO2 may provide energy and increase defense chemicals, enabling leaves to repair the O3-caused damages. Gene expression responses of paper birch leaves to elevated O3 and CO2 were studied with microarray analyses. Samples were collected from the long-term O3 and CO2 fumigation experiment Aspen FACE in Rhinelander, WI, USA (http://aspenface.mtu.edu/). The site contains 12 FACE rings receiving CO2, O3, CO2+O3, and ambient air (controls). Birches have been exposed to elevated CO2 (550ppm) and O3 (1.5X ambient) since 1998. Leaf samples were collected in July, August and September 2004. The cDNA-microarrays used for hybridizations consisted of Populus euphratica ESTs representing ca 6500 different genes. In order to detect similar gene expression patterns within samplings and treatments, the microarray data was analyzed with multivariate methods; clustering with Self-Organizing Map, finding optimal cluster grouping by K-means clustering and visualizing the results with Sammon's mapping. Most of the alterations in the gene expression in comparison to ambient rings were caused by O3, alone and in combination with elevated CO2. O3 reduced photosynthesis and carbon assimilation and induced defense to oxidative stress resulting in earlier leaf senescence. Transport and proteolysis gene expressions were activated, indicating that at least some remobilization of nutrients for storage was completed. The combined CO2+O3 treatment resembled the O3 treatment, indicating that elevated CO2 is not able to totally alleviate the harmful effects of elevated O3. Some specific gene expression changes in the combined O3+CO2 treatment showed that experiments with O3 or CO2-exposure alone are not sufficient to predict plant responses to these gases together, and that field experiments with multiple variables are essential in order to understand responses to future environmental conditions.

  6. Oxygen Inhibition of Photosynthesis and Stimulation of Photorespiration in Soybean Leaf Cells

    PubMed Central

    Servaites, Jerome C.; Ogren, William L.

    1978-01-01

    The occurrence of photorespiration in soybean (Glycine max [L.] Merr.) leaf cells was demonstrated by the presence of an O2-dependent CO2 compensation concentration, a nonlinear time course for photosynthetic 14CO2 uptake at low CO2 and high O2 concentrations, and an O2 stimulation of glycine and serine synthesis which was reversed by high CO2 concentration. The compensation concentration was a linear function of O2 concentration and increased as temperature increased. At atmospheric CO2 concentration, 21% O2 inhibited photosynthesis at 25 C by 27%. Oxygen inhibition of photosynthesis was competitive with respect to CO2 and increased with increasing temperature. The Km (CO2) of photosynthesis was also temperature-dependent, increasing from 12 μm CO2 at 15 C to 38 μm at 35 C. In contrast, the Ki (O2) was similar at all temperatures. Oxygen inhibition of photosynthesis was independent of irradiance except at 10 mm bicarbonate and 100% O2, where inhibition decreased with increasing irradiance up to the point of light saturation of photosynthesis. Concomitant with increasing O2 inhibition of photosynthesis was an increased incorporation of carbon into glycine and serine, intermediates of the photorespiratory pathway, and a decreased incorporation into starch. The effects of CO2 and O2 concentration and temperature on soybean cell photosynthesis and photorespiration provide further evidence that these processes are regulated by the kinetic properties of ribulose-1,5-diphosphate carboxylase with respect to CO2 and O2. PMID:16660238

  7. Long-term trends in airborne SO2 in an air quality monitoring station in Seoul, Korea, from 1987 to 2013.

    PubMed

    Khan, Azmatullah; Kim, Ki-Hyun; Szulejko, Jan E; Brown, Richard J C; Jeon, Eui-Chan; Oh, Jong-Min; Shin, Yong Soon; Adelodun, Adedeji A

    2017-08-01

    Atmospheric concentration of sulfur dioxide (SO 2 ) was intermittently measured at an air quality monitoring (AQM) station in the Yong-san district of Seoul, Korea, between 1987 and 2013. The SO 2 level was compared with other important pollutants concurrently measured, including methane (CH 4 ), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO 2 ), ozone (O 3 ), and particulate matter (PM 10 ). If split into three different periods (period 1, 1987-1988, period 2, 1999-2000, and period 3, 2004-2013), the respective mean [SO 2 ] values (6.57 ± 4.29, 6.30 ± 2.44, and 5.29 ± 0.63 ppb) showed a slight reduction across the entire study period. The concentrations of SO 2 are found to be strongly correlated with other pollutants such as CO (r = 0.614, p = 0.02), which tracked reductions in reported emissions due to tighter emissions standards enacted by the South Korean government. There was also a clear seasonal trend in the SO 2 level, especially in periods 2 and 3, reflecting the combined effects of domestic heating by coal briquettes and meteorological conditions. Although only a 16% concentration reduction was achieved during the 27-year study duration, this is significant if one considers rapid urbanization, an 83.2% increase in population, and rapid industrialization that took place during that period. Since 1970, a network of air quality monitoring (AQM) stations has been operated by the Korean Ministry of Environment (KMOE) for routine nationwide monitoring of air pollutant concentrations in urban/suburban areas. To date, the information obtained from these stations has provided a platform for analyzing long-term trends of major pollutant species. In this study, we examined the long-term trends of SO 2 levels and relevant environmental parameters monitored continuously in the Yong-san district of Seoul between 1987 and 2013. The data were analyzed over various time scales (i.e., monthly, seasonal, and annual intervals). The results obtained from this study will allow us to assess the effectiveness of abatement strategy and to predict future concentrations trends in association with future abatement strategies and technologies.

  8. Challenges for present and future estimates of anthropogenic carbon in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Goyet, C.; Touratier, F.

    One of the main challenges we face today is to determine the evolution of the penetration of anthropogenic CO2 into the Indian Ocean and its impacts on marine and human life. Anthropogenic CO2 reaches the ocean via air-sea interactions as well as riverine inputs. It is then stored in the ocean and follows the oceanic circulation. As the carbon dioxide from the atmosphere penetrates into the sea, it reacts with water and acidifies the ocean. Consequently, the whole marine ecosystem is perturbed, thus potentially affecting the food web, which has, in turn, a direct impact on seafood supply for humans. Naturally, this will mainly affect the growing number of people living in coastal areas. Although anthropogenic CO2 in the ocean is identical with natural CO2 and therefore cannot be detected alone, many approaches are available today to estimate it. Since most of the results of these methods are globally in agreement, here we chose one of these methods, the tracer using oxygen, total inorganic carbon, and total alkalinity (TrOCA) approach, to compute the 3-D distribution of the anthropogenic CO2 concentrations throughout the Indian Ocean. The results of this distribution clearly illustrate the contrast between the Arabian Sea and the Bay of Bengal. They further show the importance of the southern part of this ocean that carries some anthropogenic CO2 at great depths. In order to determine the future anthropogenic impacts on the Indian Ocean, it is urgent and necessary to understand the present state. As the seawater temperature increases, how and how fast will the ocean circulation change? What will the impacts on seawater properties be? Many people are living on the bordering coasts, how will they be affected?

  9. Detecting Patterns of Changing Carbon Uptake in Alaska Using Sustained In Situ and Remote Sensing CO2 Observations

    NASA Astrophysics Data System (ADS)

    Parazoo, N.; Miller, C. E.; Commane, R.; Wofsy, S. C.; Koven, C.; Lawrence, D. M.; Lindaas, J.; Chang, R. Y. W.; Sweeney, C.

    2015-12-01

    The future trajectory of Arctic ecosystems as a carbon sink or source is of global importance due to vast quantities of carbon in permafrost soils. Over the last few years, a sustained set of airborne (NOAA-PFA, NOAA-ACG, and CARVE) and satellite (OCO-2 and GOSAT) atmospheric CO2 mole fraction measurements have provided unprecedented space and time scale sampling density across Alaska, making it possible to study the Arctic carbon cycle in more detail than ever before. Here, we use a synthesis of airborne and satellite CO2 over the 2009-2013 period with simulated concentrations from CLM4.5 and GEOS-Chem to examine the extent to which regional-scale carbon cycle changes in Alaska can be distinguished from interannual variability and long-range transport. We show that observational strategies focused on sustained profile measurements spanning continental interiors provide key insights into magnitude, duration, and variability of Summer sink activity, but that cold season sources are currently poorly resolved due to lack of sustained spatial sampling. Consequently, although future CO2 budgets dominated by enhanced cold season emission sources under climate warming and permafrost thaw scenarios are likely to produce substantial changes to near-surface CO2 gradients and seasonal cycle amplitude, they are unlikely to be detected by current observational strategies. We conclude that airborne and ground-based networks that provide more spatial coverage in year round profiles will help compensate for systematic sampling gaps in NIR passive satellite systems and provide essential constraints for Arctic carbon cycle changes.

  10. Effect of CO2 Concentration on Growth and Biochemical Composition of Newly Isolated Indigenous Microalga Scenedesmus bajacalifornicus BBKLP-07.

    PubMed

    Patil, Lakkanagouda; Kaliwal, Basappa

    2017-05-01

    Photosynthetic mitigation of CO 2 through microalgae is gaining great importance due to its higher photosynthetic ability compared to plants, and the biomass can be commercially exploited for various applications. CO 2 fixation capability of the newly isolated freshwater microalgae Scenedesmus bajacalifornicus BBKLP-07 was investigated using a 1-l photobioreactor. The cultivation was carried at varying concentration of CO 2 ranging from 5 to 25%, and the temperature and light intensities were kept constant. A maximum CO 2 fixation rate was observed at 15% CO 2 concentration. Characteristic growth parameters such as biomass productivity, specific growth rate, and maximum biomass yield, and biochemical parameters such as carbohydrate, protein, lipid, chlorophyll, and carotenoid were determined and discussed. It was observed that the effect of CO 2 concentration on growth and biochemical composition was quite significant. The maximum biomass productivity was 0.061 ± 0.0007 g/l/day, and the rate of CO 2 fixation was 0.12 ± 0.002 g/l/day at 15% CO 2 concentration. The carbohydrate and lipid content were maximum at 25% CO 2 with 26.19 and 25.81% dry cell weight whereas protein, chlorophyll, and carotenoid contents were 32.89% dry cell weight, 25.07 μg/ml and 6.15 μg/ml respectively at 15% CO 2 concentration.

  11. Validation of double-pulse 1572 nm integrated path differential absorption lidar measurement of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Du, Juan; Liu, Jiqiao; Bi, Decang; Ma, Xiuhua; Hou, Xia; Zhu, Xiaolei; Chen, Weibiao

    2018-04-01

    A ground-based double-pulse 1572 nm integrated path differential absorption (IPDA) lidar was developed for carbon dioxide (CO2) column concentrations measurement. The lidar measured the CO2 concentrations continuously by receiving the scattered echo signal from a building about 1300 m away. The other two instruments of TDLAS and in-situ CO2 analyzer measured the CO2 concentrations on the same time. A CO2 concentration measurement of 430 ppm with 1.637 ppm standard error was achieved.

  12. Tropical forest carbon balance in a warmer world: a critical review spanning microbial- to ecosystem-scale processes

    Treesearch

    Tana Wood; Molly A. Cavaleri; Sasha C. Reed

    2012-01-01

    Tropical forests play a major role in regulating global carbon (C) fluxes and stocks, and even small changes to C cycling in this productive biome could dramatically affect atmospheric carbon dioxide (CO2) concentrations. Temperature is expected to increase over all land surfaces in the future, yet we have a surprisingly poor understanding of how tropical forests will...

  13. Review of climate change impacts on future carbon stores and management of warm deserts of the United States

    Treesearch

    Michell L. Thomey; Paulette L. Ford; Matt C. Reeves; Deborah M. Finch; Marcy E. Litvak; Scott L. Collins

    2014-01-01

    Reducing atmospheric carbon dioxide (CO2) concentration through enhanced terrestrial carbon storage may help slow or reverse the rate of global climate change. As a result, Federal land management agencies, such as the U.S. Department of Agriculture Forest Service and U.S. Department of the Interior Bureau of Land Management, are implementing management policies to...

  14. The Impact of CO2-Driven Vegetation Changes on Wildfire Risk

    NASA Astrophysics Data System (ADS)

    Skinner, C. B.; Poulsen, C. J.

    2017-12-01

    While wildfires are a key component of natural ecological restoration and succession, they also pose tremendous risks to human life, health, and property. Wildfire frequency is expected to increase in many regions as the radiative effects of elevated CO2 drive warmer surface air temperatures, earlier spring snow melt, and more frequent meteorological drought. However, high CO2 concentrations will also directly impact vegetation growth and physiology, potentially altering wildfire characteristics through changes in fuel amount and surface hydrology. Depending on the biome and time of year, these vegetation-driven responses may mitigate or enhance radiative-driven wildfire changes. In this study, we use a suite of earth system models from the Coupled Model Intercomparison Project 5 with active biogeophysics and biogeochemistry to understand how the vegetation response to high CO2 (CO2 quadrupling) contributes to future changes in wildfire risk across the globe. Across the models, projected CO2 fertilization enhances aboveground biomass (about a 30% leaf area index (LAI) increase averaged across the globe) during the spring and summer months, increasing the availability of wildfire fuel across all biomes. Despite greater LAI, models robustly project widespread reductions in summer season transpiration (about -15% averaged across the globe) in response to reduced stomatal conductance from CO2 physiological forcing. Reduced transpiration warms summer season near surface temperatures and lowers relative humidity across vegetated regions of the mid-to-high latitudes, heightening the risk of wildfire occurrence. However, as transpiration goes down in response to greater plant water use efficiency, a larger fraction of soil water remains in the soil, potentially halting the spread of wildfires in some regions. Given the myriad ways in which the vegetation response to CO2 may alter wildfire risk, and the robustness of the responses across models, an explicit simulation of the wildfire response to CO2-driven vegetation change with the Community Earth System Model will be presented. The results suggest that many atmosphere-centric statistical wildfire metrics do not capture the many processes that will shape future wildfire risk in a high CO2 world and highlight the need for process-based fire modeling.

  15. Species-specific effects of near-future CO2 on the respiratory performance of two tropical prey fish and their predator

    PubMed Central

    Couturier, Christine S.; Stecyk, Jonathan A. W.; Rummer, Jodie L.; Munday, Philip L.; Nilsson, Göran E.

    2013-01-01

    Ocean surface CO2 levels are increasing in line with rising atmospheric CO2 and could exceed 900 μatm by year 2100, with extremes above 2000 μatm in some coastal habitats. The imminent increase in ocean pCO2 is predicted to have negative consequences for marine fishes, including reduced aerobic performance, but variability among species could be expected. Understanding interspecific responses to ocean acidification is important for predicting the consequences of ocean acidification on communities and ecosystems. In the present study, the effects of exposure to near-future seawater CO2 (860 μatm) on resting (Ṁ O2rest) and maximum (Ṁ O2max) oxygen consumption rates were determined for three tropical coral reef fish species interlinked through predator-prey relationships: juvenile Pomacentrus moluccensis and P. amboinensis, and one of their predators: adult Pseudochromis fuscus. Contrary to predictions, one of the prey species, P. amboinensis, displayed a 28 – 39 % increase in Ṁ O2max after both an acute and four-day exposure to near-future CO2 seawater, while maintaining Ṁ O2rest. By contrast, the same treatment had no significant effects on Ṁ O2rest or Ṁ O2max of the other two species. However, acute exposure of P. amboinensis to 1400 and 2400 μatm CO2 resulted in Ṁ O2max returning to control values. Overall, the findings suggest that: (1) the metabolic costs of living in a near-future CO2 seawater environment were insignificant for the species examined at rest; (2) the ṀO2max response of tropical reef species to near-future CO2 seawater can be dependent on the severity of external hypercapnia; and (3) near-future ocean pCO2 may not be detrimental to aerobic scope of all fish species and it may even augment aerobic scope of some species. The present results also highlight that close phylogenetic relatedness and living in the same environment, does not necessarily imply similar physiological responses to near-future CO2. PMID:23916817

  16. The role of CO2 variability and exposure time for biological impacts of ocean acidification

    NASA Astrophysics Data System (ADS)

    Shaw, Emily C.; Munday, Philip L.; McNeil, Ben I.

    2013-09-01

    impacts of ocean acidification have mostly been studied using future levels of CO2 without consideration of natural variability or how this modulates both duration and magnitude of CO2 exposure. Here we combine results from laboratory studies on coral reef fish with diurnal in situ CO2 data from a shallow coral reef, to demonstrate how natural variability alters exposure times for marine organisms under increasingly high-CO2 conditions. Large in situ CO2 variability already results in exposure of coral reef fish to short-term CO2 levels higher than laboratory-derived critical CO2 levels (~600 µatm). However, we suggest that the in situ exposure time is presently insufficient to induce negative effects observed in laboratory studies. Our results suggest that both exposure time and the magnitude of CO2 levels will be important in determining the response of organisms to future ocean acidification, where both will increase markedly with future increases in CO2.

  17. Temporal dynamics of CO2 fluxes and profiles over a Central European city

    NASA Astrophysics Data System (ADS)

    Vogt, R.; Christen, A.; Rotach, M. W.; Roth, M.; Satyanarayana, A. N. V.

    2006-02-01

    In Summer 2002 eddy covariance flux measurements of CO2 were performed over a dense urban surface. The month-long measurements were carried out in the framework of the Basel Urban Boundary Layer Experiment (BUBBLE). Two Li7500 open path analysers were installed at z/z H = 1.0 and 2.2 above a street canyon with z H the average building height of 14.6 m and z the height above street level. Additionally, profiles of CO2 concentration were sampled at 10 heights from street level up to 2 z H . The minimum and maximum of the average diurnal course of CO2 concentration at 2 z H were 362 and 423 ppmv in late afternoon and early morning, respectively. Daytime CO2 concentrations were not correlated to local sources, e.g. the minimum occurred together with the maximum in traffic load. During night-time CO2 is in general accumulated, except when inversion development is suppressed by frontal passages. CO2 concentrations were always decreasing with height and correspondingly, the fluxes on average always directed upward. At z/z H = 2.2 low values of about 3 µmol m-2 s-1 were measured during the second half of the night. During daytime average values reached up to 14 µmol m-2 s-1. The CO2 fluxes are well correlated with the traffic load, with their maxima occurring together in late afternoon. Daytime minimum CO2 concentrations fell below regional background values. Besides vertical mixing and entrainment, it is suggested that this is also due to advection of rural air with reduced CO2 concentration. Comparison with other urban observations shows a large range of differences among urban sites in terms of both CO2 fluxes and concentrations.

  18. High Resolution Modelling of Crop Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Mirmasoudi, S. S.; Byrne, J. M.; MacDonald, R. J.; Lewis, D.

    2014-12-01

    Crop production is one of the most vulnerable sectors to climatic variability and change. Increasing atmospheric CO2 concentration and other greenhouse gases are causing increases in global temperature. In western North America, water supply is largely derived from mountain snowmelt. Climate change will have a significant impact on mountain snowpack and subsequently, the snow-derived water supply. This will strain water supplies and increase water demand in areas with substantial irrigation agriculture. Increasing temperatures may create heat stress for some crops regardless of soil water supply, and increasing surface O3 and other pollutants may damage crops and ecosystems. CO2 fertilization may or may not be an advantage in future. This work is part of a larger study that will address a series of questions based on a range of future climate scenarios for several watersheds in western North America. The key questions are: (1) how will snowmelt and rainfall runoff vary in future; (2) how will seasonal and inter-annual soil water supply vary, and how might that impacts food supplies; (3) how might heat stress impact (some) crops even with adequate soil water; (4) will CO2 fertilization alter crop yields; and (5) will pollution loads, particularly O3, cause meaningful changes to crop yields? The Generate Earth Systems Science (GENESYS) Spatial Hydrometeorological Model is an innovative, efficient, high-resolution model designed to assess climate driven changes in mountain snowpack derived water supplies. We will link GENESYS to the CROPWAT crop model system to assess climate driven changes in water requirement and associated crop productivity for a range of future climate scenarios. Literature bases studies will be utilised to develop approximate crop response functions for heat stress, CO2 fertilization and for O3 damages. The overall objective is to create modeling systems that allows meaningful assessment of agricultural productivity at a watershed scale under a range of climate scenarios.

  19. Reducing the cost of Ca-based direct air capture of CO2.

    PubMed

    Zeman, Frank

    2014-10-07

    Direct air capture, the chemical removal of CO2 directly from the atmosphere, may play a role in mitigating future climate risk or form the basis of a sustainable transportation infrastructure. The current discussion is centered on the estimated cost of the technology and its link to "overshoot" trajectories, where atmospheric CO2 levels are actively reduced later in the century. The American Physical Society (APS) published a report, later updated, estimating the cost of a one million tonne CO2 per year air capture facility constructed today that highlights several fundamental concepts of chemical air capture. These fundamentals are viewed through the lens of a chemical process that cycles between removing CO2 from the air and releasing the absorbed CO2 in concentrated form. This work builds on the APS report to investigate the effect of modifications to the air capture system based on suggestions in the report and subsequent publications. The work shows that reduced carbon electricity and plastic packing materials (for the contactor) may have significant effects on the overall price, reducing the APS estimate from $610 to $309/tCO2 avoided. Such a reduction does not challenge postcombustion capture from point sources, estimated at $80/tCO2, but does make air capture a feasible alternative for the transportation sector and a potential negative emissions technology. Furthermore, air capture represents atmospheric reductions rather than simply avoided emissions.

  20. The impact of elevated carbon dioxide on the phosphorus nutrition of plants: a review

    PubMed Central

    Jin, Jian; Tang, Caixian; Sale, Peter

    2015-01-01

    Background Increasing attention is being focused on the influence of rapid increases in atmospheric CO2 concentration on nutrient cycling in ecosystems. An understanding of how elevated CO2 affects plant utilization and acquisition of phosphorus (P) will be critical for P management to maintain ecosystem sustainability in P-deficient regions. Scope This review focuses on the impact of elevated CO2 on plant P demand, utilization in plants and P acquisition from soil. Several knowledge gaps on elevated CO2-P associations are highlighted. Conclusions Significant increases in P demand by plants are likely to happen under elevated CO2 due to the stimulation of photosynthesis, and subsequent growth responses. Elevated CO2 alters P acquisition through changes in root morphology and increases in rooting depth. Moreover, the quantity and composition of root exudates are likely to change under elevated CO2, due to the changes in carbon fluxes along the glycolytic pathway and the tricarboxylic acid cycle. As a consequence, these root exudates may lead to P mobilization by the chelation of P from sparingly soluble P complexes, by the alteration of the biochemical environment and by changes to microbial activity in the rhizosphere. Future research on chemical, molecular, microbiological and physiological aspects is needed to improve understanding of how elevated CO2 might affect the use and acquisition of P by plants. PMID:26113632

  1. Delayed flowering is associated with lack of photosynthetic acclimation in Pigeon pea (Cajanus cajan L.) grown under elevated CO₂.

    PubMed

    Sreeharsha, Rachapudi Venkata; Sekhar, Kalva Madhana; Reddy, Attipalli Ramachandra

    2015-02-01

    In the present study, we investigated the likely consequences of future atmospheric CO2 concentrations [CO2] on growth, physiology and reproductive phenology of Pigeonpea. A short duration Pigeonpea cultivar (ICPL 15011) was grown without N fertilizer from emergence to final harvest in CO2 enriched atmosphere (open top chambers; 550μmolmol(-1)) for two seasons. CO2 enrichment improved both net photosynthetic rates (Asat) and foliar carbohydrate content by 36 and 43%, respectively, which further reflected in dry biomass after harvest, showing an increment of 29% over the control plants. Greater carboxylation rates of Rubisco (Vcmax) and photosynthetic electron transport rates (Jmax) in elevated CO2 grown plants measured during different growth periods, clearly demonstrated lack of photosynthetic acclimation. Further, chlorophyll a fluorescence measurements as indicated by Fv/Fm and ΔF/Fm' ratios justified enhanced photosystem II efficiency. Mass and number of root nodules were significantly high in elevated CO2 grown plants showing 58% increase in nodule mass ratio (NMR) which directly correlated with Pn. Growth under high CO2 showed significant ontogenic changes including delayed flowering. In conclusion, our data demonstrate that the lack of photosynthetic acclimation and increased carbohydrate-nitrogen reserves modulate the vegetative and reproductive growth patterns in Pigeonpea grown under elevated CO2. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Effects of elevated CO2 on fine root biomass are reduced by aridity but enhanced by soil nitrogen: A global assessment.

    PubMed

    Piñeiro, Juan; Ochoa-Hueso, Raúl; Delgado-Baquerizo, Manuel; Dobrick, Silvan; Reich, Peter B; Pendall, Elise; Power, Sally A

    2017-11-10

    Plant roots play a crucial role in regulating key ecosystem processes such as carbon (C) sequestration and nutrient solubilisation. Elevated (e)CO 2 is expected to alter the biomass of fine, coarse and total roots to meet increased demand for other resources such as water and nitrogen (N), however, the magnitude and direction of observed changes vary considerably between ecosystems. Here, we assessed how climate and soil properties mediate root responses to eCO 2 by comparing 24 field-based CO 2 experiments across the globe including a wide range of ecosystem types. We calculated response ratios (i.e. effect size) and used structural equation modelling (SEM) to achieve a system-level understanding of how aridity, mean annual temperature and total soil nitrogen simultaneously drive the response of total, coarse and fine root biomass to eCO 2 . Models indicated that increasing aridity limits the positive response of fine and total root biomass to eCO 2 , and that fine (but not coarse or total) root responses to eCO 2 are positively related to soil total N. Our results provide evidence that consideration of factors such as aridity and soil N status is crucial for predicting plant and ecosystem-scale responses to future changes in atmospheric CO 2 concentrations, and thus feedbacks to climate change.

  3. Effect of venous (gut) CO2 loading on intrapulmonary gas fractions and ventilation in the tegu lizard.

    PubMed

    Ballam, G O; Donaldson, L A

    1988-01-01

    Studies were conducted to determine regional pulmonary gas concentrations in the tegu lizard lung. Additionally, changes in pulmonary gas concentrations and ventilatory patterns caused by elevating venous levels of CO2 by gut infusion were measured. It was found that significant stratification of lung gases was present in the tegu and that dynamic fluctuations of CO2 concentration varied throughout the length of the lung. Mean FCO2 was greater and FO2 less in the posterior regions of the lung. In the posterior regions gas concentrations remained nearly constant, whereas in the anterior regions large swings were observed with each breath. In the most anterior sections of the lung near the bronchi, CO2 and O2 concentrations approached atmospheric levels during inspiration and posterior lung levels during expiration. During gut loading of CO2, the rate of rise of CO2 during the breathing pause increased. The mean level of CO2 also increased. Breathing rate and tidal volume increased to produce a doubling of VE. These results indicate that the method of introduction of CO2 into the tegu respiratory system determines the ventilatory response. If the CO2 is introduced into the venous blood a dramatic increase in ventilation is observed. If the CO2 is introduced into the inspired air a significant decrease in ventilation is produced. The changes in pulmonary CO2 environment caused by inspiratory CO2 loading are different from those caused by venous CO2 loading. We hypothesize that the differences in pulmonary CO2 environment caused by either inspiratory CO2 loading or fluctuations in venous CO2 concentration act differently on the IPC. The differing response of the IPC to the two methods of CO2 loading is the cause of the opposite ventilatory response seen during either venous or inspiratory loading.

  4. Effects of elevated temperature and CO2 concentration on photosynthesis of the alpine plants in Zoige Plateau, China

    NASA Astrophysics Data System (ADS)

    Zijuan, Zhou; Peixi, Su; Rui, Shi; Tingting, Xie

    2017-04-01

    Increasing temperature and carbon dioxide concentration are the important aspects of global climate change. Alpine ecosystem response to global change was more sensitive and rapid than other ecosystems. Increases in temperature and atmospheric CO2concentrations have strong impacts on plant physiology. Photosynthesis is the basis for plant growth and the decisive factor for the level of productivity, and also is a very sensitive physiological process to climate change. In this study, we examined the interactive effects of elevated temperature and atmospheric CO2 concentration on the light response of photosynthesis in two alpine plants Elymus nutans and Potentilla anserine, which were widely distributed in alpine meadow in the Zoige Plateau, China. We set up as follows: the control (Ta 20˚ C, CO2 380μmolṡmol-1), elevated temperature (Ta 25˚ C, CO2 380 μmolṡmol-1), elevated CO2 concentration (Ta 20˚ C, CO2 700μmolṡmol-1), elevated temperature and CO2 concentration (Ta 25˚ C, CO2 700μmolṡmol-1). The results showed that compared to P. anserine, E. nutans had a higher maximum net photosynthetic rate (Pnmax), light saturation point (LSP) and apparent quantum yield (AQY) in the control. Elevated temperature increased the Pnmaxand LSP values in P. anserine, while Pnmaxand LSP were decreased in E. nutans. Elevated CO2 increased the Pnmaxand LSP values in E. nutans and P. anserine, while the light compensation point (LCP) decreased; Elevated both temperature and CO2, the Pnmaxand LSP were all increased for E. nutans and P. anserine, but did not significantly affect AQY. We concluded that although elevated temperature had a photoinhibition for E. nutans, the interaction of short-term elevated CO2 concentration and temperature can improve the photosynthetic capacity of alpine plants. Key Words: elevated temperature; CO2 concentration; light response; alpine plants

  5. In-lake carbon dioxide concentration patterns in four distinct phases in relation to ice cover dynamics

    NASA Astrophysics Data System (ADS)

    Denfeld, B. A.; Wallin, M.; Sahlee, E.; Sobek, S.; Kokic, J.; Chmiel, H.; Weyhenmeyer, G. A.

    2014-12-01

    Global carbon dioxide (CO2) emission estimates from inland waters include emissions at ice melt that are based on simple assumptions rather than evidence. To account for CO2 accumulation below ice and potential emissions into the atmosphere at ice melt we combined continuous CO2 concentrations with spatial CO2 sampling in an ice-covered small boreal lake. From early ice cover to ice melt, our continuous surface water CO2 concentration measurements at 2 m depth showed a temporal development in four distinct phases: In early winter, CO2 accumulated continuously below ice, most likely due to biological in-lake and catchment inputs. Thereafter, in late winter, CO2 concentrations remained rather constant below ice, as catchment inputs were minimized and vertical mixing of hypolimnetic water was cut off. As ice melt began, surface water CO2 concentrations were rapidly changing, showing two distinct peaks, the first one reflecting horizontal mixing of CO2 from surface and catchment waters, the second one reflecting deep water mixing. We detected that 83% of the CO2 accumulated in the water during ice cover left the lake at ice melt which corresponded to one third of the total CO2 storage. Our results imply that CO2 emissions at ice melt must be accurately integrated into annual CO2 emission estimates from inland waters. If up-scaling approaches assume that CO2 accumulates linearly under ice and at ice melt all CO2 accumulated during ice cover period leaves the lake again, present estimates may overestimate CO2 emissions from small ice covered lakes. Likewise, neglecting CO2 spring outbursts will result in an underestimation of CO2 emissions from small ice covered lakes.

  6. Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jianping; Kawa, Stephen R.; Weaver, Clark J.

    2010-01-01

    We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.

  7. Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jiamping,; Kawa, Stephan R.; Weaver, Clark J.

    2011-01-01

    We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.

  8. Pseudorandom Noise Code-Based Technique for Cloud and Aerosol Discrimination Applications

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Prasad, Narasimha S.; Flood, Michael A.; Harrison, Fenton Wallace

    2011-01-01

    NASA Langley Research Center is working on a continuous wave (CW) laser based remote sensing scheme for the detection of CO2 and O2 from space based platforms suitable for ACTIVE SENSING OF CO2 EMISSIONS OVER NIGHTS, DAYS, AND SEASONS (ASCENDS) mission. ASCENDS is a future space-based mission to determine the global distribution of sources and sinks of atmospheric carbon dioxide (CO2). A unique, multi-frequency, intensity modulated CW (IMCW) laser absorption spectrometer (LAS) operating at 1.57 micron for CO2 sensing has been developed. Effective aerosol and cloud discrimination techniques are being investigated in order to determine concentration values with accuracies less than 0.3%. In this paper, we discuss the demonstration of a PN code based technique for cloud and aerosol discrimination applications. The possibility of using maximum length (ML)-sequences for range and absorption measurements is investigated. A simple model for accomplishing this objective is formulated, Proof-of-concept experiments carried out using SONAR based LIDAR simulator that was built using simple audio hardware provided promising results for extension into optical wavelengths. Keywords: ASCENDS, CO2 sensing, O2 sensing, PN codes, CW lidar

  9. Effects of elevated CO2 on maize defense against mycotoxigenic Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Elevated atmospheric carbon dioxide concentration ([CO2]) increased maize susceptibility to Fusarium verticillioides stalk rot. Even though the pathogen biomass accumulated to significantly higher levels at double ambient [CO2] (2x[CO2]), the projected [CO2] concentration to occur at the end of this...

  10. Diffuse CO2 degassing studies to reveal hidden geothermal resources in oceanic volcanic islands: The Canarian archipelago case study

    NASA Astrophysics Data System (ADS)

    Rodríguez, F.; Perez, N. M.; García-Merino, M.; Padron, E.; Melián, G.; Asensio-Ramos, M.; Hernandez Perez, P. A.; Padilla, G.; Barrancos, J.; Cótchico, M. A.

    2016-12-01

    The Canary Islands, owing to their recent volcanism, are the only Spanish territory with potential high enthalpy geothermal resources. The final goal of geothermal exploration in a specific area is to locate and define the size, shape, structure of hidden geothermal resources, and determine their characteristics (fluid type, temperature, chemical composition an ability to produce energy). At those areas where there is not any evidence of endogenous fluids manifestations at surface, that traditionally evidence the presence of an active geothermal system) the geochemical methods for geothermal exploration must include soil gas surveys. This is the case of five mining licenses for geothermal exploration in the Canay Islands, four in Tenerife and one in Gran Canaria Island. We report herein the results of diffuse CO2 emission studies in the five mining licenses during 2011-2014. The primary objective of the study was to sort the possible geothermal potential of these five mining licenses, thus reducing the uncertainty inherent to the selection of the areas with highest geothermal potential for future exploration works. The criterion used to sort the different areas was the contribution of volcano-hydrothermal CO2 in the degassing at each study area. Several hundreds of measurements of diffuse CO2 emission, soil CO2 concentration and isotopic composition were performed at each study area. Based in three different endmembers (biogenic, atmospheric and deep-seated CO2) with different CO2 concentrations (100, 0.04 and 100% respectively) and isotopic compositions (-20, -8 and -3 per mil vs. VPDB respectively) a mass balance to distinguish the different contribution of each endmember in the soil CO2 at each sampling site was made. The percentage of the volcano-hydrothermal contribution in the current diffuse CO2 degassing was in the range 2-19%.The Abeque mining license, that comprises part of the north-west volcanic rift of Tenerife, seemed to show the highest geothermal potential, with an average of 19% of CO2 being released from deep sources, followed by Atidama (south east of Gran Canaria) and Garehagua (southern volcanic rift of Tenerife), with 17% and 12% respectively.

  11. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen

    USGS Publications Warehouse

    Kane, E.S.; Chivers, M.R.; Turetsky, M.R.; Treat, C.C.; Petersen, D.G.; Waldrop, M.; Harden, J.W.; McGuire, A.D.

    2013-01-01

    To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2 production potential at 10 cm depth (14.1 ± 0.9 μmol C g−1 d−1) was as high as aerobic CO2 production potential (10.6 ± 1.5 μmol C g−1 d−1), while CH4 production was low (mean of 7.8 ± 1.5 nmol C g−1 d−1). Denitrification enzyme activity indicated a very high denitrification potential (197 ± 23 μg N g−1 d−1), but net NO-3 reduction suggested this was a relatively minor pathway for anaerobic CO2 production. Abundances of denitrifier genes (nirK and nosZ) did not change across water table treatments. SO2-4 reduction also did not appear to be an important pathway for anaerobic CO2 production. The net accumulation of acetate and formate as decomposition end products in the raised water table treatment suggested that fermentation was a significant pathway for carbon mineralization, even in the presence of NO-3. Dissolved organic carbon (DOC) concentrations were the strongest predictors of potential anaerobic and aerobic CO2 production. Across all water table treatments, the CO2:CH4 ratio increased with initial DOC leachate concentrations. While the field water table treatment did not have a significant effect on mean CO2 or CH4 production potential, the CO2:CH4 ratio was highest in shallow peat incubations from the drained treatment. These data suggest that with continued drying or with a more variable water table, anaerobic CO2 production may be favored over CH4 production in this rich fen. Future research examining the potential for dissolved organic substances to facilitate anaerobic respiration, or alternative redox processes that limit the effectiveness of organic acids as substrates in anaerobic metabolism, would help explain additional uncertainty concerning carbon mineralization in this system.

  12. Evaluation of CO2 Efflux From Soils: A New Method Using Streamwater CO2 Measurements, Field Data and a Watershed Model

    NASA Astrophysics Data System (ADS)

    Sullivan, A. B.; Mulholland, P. J.; Jones, J. B.

    2001-05-01

    Headwater streams are almost always supersaturated with CO2 compared to concentrations expected in equilibrium with atmospheric CO2. Direct measurements of CO2 in two streams in eastern Tennessee with different bedrock lithologies (Walker Branch, Upper Gum Hollow Branch) over a year revealed levels of supersaturation of two to five times atmospheric CO2. Highest levels were generally found during the summer months. Springs discharging into the stream had dissolved CO2 concentration up to an order of magnitude higher than that in streamwater. These levels of supersaturation are a reflection of the high concentrations of CO2 in soil produced by root respiration and organic matter decomposition. The hydrologic connection between soil CO2 and streamwater CO2 forms the basis of our method to determine soil CO2 concentrations and efflux from the soil to the atmosphere. The method starts with streamwater measurements of CO2. Then corrections are made for evasion from the stream surface using injections of a conservative solute tracer and volatile gas, and for instream metabolism using a dissolved oxygen change technique. The approach then works backward along the hydrologic flowpath and evaluates the contribution of bedrock weathering, which consumes CO2, by examining the changes in major ion chemistry between precipitation and the stream. This produces estimates of CO2 concentration in soil water and soil atmosphere, which when coupled with soil porosity, allows estimation of CO2 efflux from soil. The hydrologic integration of CO2 signals from whole watersheds into streamwater allows calculation of soil CO2 efflux at large scales. These estimates are at scales larger than current chamber or tower methods, and can provide broad estimates of soil CO2 efflux with easily collected stream chemistry data.

  13. Increasing summer net CO 2 uptake in high northern ecosystems inferred from atmospheric inversions and comparisons to remote-sensing NDVI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welp, Lisa R.; Patra, Prabir K.; Rodenbeck, Christian

    Warmer temperatures and elevated atmospheric CO 2 concentrations over the last several decades have been credited with increasing vegetation activity and photosynthetic uptake of CO 2 from the atmosphere in the high northern latitude ecosystems: the boreal forest and arctic tundra. At the same time, soils in the region have been warming, permafrost is melting, fire frequency and severity are increasing, and some regions of the boreal forest are showing signs of stress due to drought or insect disturbance. The recent trends in net carbon balance of these ecosystems, across heterogeneous disturbance patterns, and the future implications of these changesmore » are unclear. Here, we examine CO 2 fluxes from northern boreal and tundra regions from 1985 to 2012, estimated from two atmospheric inversions (RIGC and Jena). Both used measured atmospheric CO 2 concentrations and wind fields from interannually variable climate reanalysis. In the arctic zone, the latitude region above 60°N excluding Europe (10 W-63°E), neither inversion finds a significant long-term trend in annual CO 2 balance. The boreal zone, the latitude region from approximately 50–60°N, again excluding Europe, showed a trend of 8–11 TgCyr -2 over the common period of validity from 1986 to 2006, resulting in an annual CO 2 sink in 2006 that was 170–230 TgCyr -1 larger than in 1986. This trend appears to continue through 2012 in the Jena inversion as well. In both latitudinal zones, the seasonal amplitude of monthly CO 2 fluxes increased due to increased uptake in summer, and in the arctic zone also due to increased fall CO 2 release. These findings suggest that the boreal zone has been maintaining and likely increasing CO 2 sink strength over this period, despite browning trends in some regions and changes in fire frequency and land use. Meanwhile, the arctic zone shows that increased summer CO 2 uptake, consistent with strong greening trends, is offset by increased fall CO 2 release, resulting in a net neutral trend in annual fluxes. Finally, the inversion fluxes from the arctic and boreal zones covering the permafrost regions showed no indication of a large-scale positive climate–carbon feedback caused by warming temperatures on high northern latitude terrestrial CO 2 fluxes from 1985 to 2012.« less

  14. Increasing summer net CO 2 uptake in high northern ecosystems inferred from atmospheric inversions and comparisons to remote-sensing NDVI

    DOE PAGES

    Welp, Lisa R.; Patra, Prabir K.; Rodenbeck, Christian; ...

    2016-07-25

    Warmer temperatures and elevated atmospheric CO 2 concentrations over the last several decades have been credited with increasing vegetation activity and photosynthetic uptake of CO 2 from the atmosphere in the high northern latitude ecosystems: the boreal forest and arctic tundra. At the same time, soils in the region have been warming, permafrost is melting, fire frequency and severity are increasing, and some regions of the boreal forest are showing signs of stress due to drought or insect disturbance. The recent trends in net carbon balance of these ecosystems, across heterogeneous disturbance patterns, and the future implications of these changesmore » are unclear. Here, we examine CO 2 fluxes from northern boreal and tundra regions from 1985 to 2012, estimated from two atmospheric inversions (RIGC and Jena). Both used measured atmospheric CO 2 concentrations and wind fields from interannually variable climate reanalysis. In the arctic zone, the latitude region above 60°N excluding Europe (10 W-63°E), neither inversion finds a significant long-term trend in annual CO 2 balance. The boreal zone, the latitude region from approximately 50–60°N, again excluding Europe, showed a trend of 8–11 TgCyr -2 over the common period of validity from 1986 to 2006, resulting in an annual CO 2 sink in 2006 that was 170–230 TgCyr -1 larger than in 1986. This trend appears to continue through 2012 in the Jena inversion as well. In both latitudinal zones, the seasonal amplitude of monthly CO 2 fluxes increased due to increased uptake in summer, and in the arctic zone also due to increased fall CO 2 release. These findings suggest that the boreal zone has been maintaining and likely increasing CO 2 sink strength over this period, despite browning trends in some regions and changes in fire frequency and land use. Meanwhile, the arctic zone shows that increased summer CO 2 uptake, consistent with strong greening trends, is offset by increased fall CO 2 release, resulting in a net neutral trend in annual fluxes. Finally, the inversion fluxes from the arctic and boreal zones covering the permafrost regions showed no indication of a large-scale positive climate–carbon feedback caused by warming temperatures on high northern latitude terrestrial CO 2 fluxes from 1985 to 2012.« less

  15. Re-evaluating alkenone based CO2 estimates

    NASA Astrophysics Data System (ADS)

    Pagani, M.

    2013-05-01

    Multi-million year patterns of ocean temperatures and ice accumulation are relatively consistent with reconstructed CO2 records. Existing records allow for broad statements regarding climate sensitivity, but uncertainties in reconstructions can lead to considerable error. For example, alkenone-based CO2 reconstructions assume that diffusion of CO2aq is the dominant source of inorganic carbon for photosynthesis. However, the concentration of CO2aq is the lowest of all dissolved carbon species, constituting <1% of the total inorganic aqueous pool. This poses a problem for sustaining reasonable algal growth rates because the half saturation constant for the enzyme Rubisco, the primary carboxylase involved in algal photosythesis, is commonly higher than the average concentration of seawater CO2aq. That is, the concentration of CO2aq in the modern ocean is too low to maintain adequate reactions rates for Rubisco, and thus, algal growth. In order to maintain algal growth rates, most modern algae have strategies to increase intercellular CO2 concentrations. But, if such strategies were prevalent for alkenone-producing algae in the past, CO2 reconstructions could be compromised. This presentation will assess time periods when carbon-concentration strategies were potentially in play and consequences for existing CO2 records.

  16. CO2 dynamics of tundra ponds in the low-Arctic, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Buell, Mary-Claire

    Extensive research has gone into measuring changes to the carbon storage capacity of Arctic terrestrial environments as well as large water bodies in order to determine a carbon budget for many regions across the Arctic. Inland Arctic waters such as small lakes and ponds are often excluded from these carbon budgets, however a handful of studies have demonstrated that they can often be significant sources of carbon to the atmosphere. This study investigated the CO2 cycling of tundra ponds in the Daring Lake area, Northwest Territories, Canada (64°52'N, 111°35'W), to determine the role ponds have in the local carbon cycle. Floating chambers, nondispersive infrared (NDIR) sensors and headspace samples were used to estimate carbon fluxes from four selected local ponds. Multiple environmental, chemical and meteorological parameters were also monitored for the duration of the study, which took place during the snow free season of 2013. Average CO2 emissions for the two-month growing season ranged from approximately -0.0035 g CO2-C m-2 d -1 to 0.12 g CO2-C m-2 d-1. The losses of CO2 from the water bodies in the Daring Lake area were approximately 2-7% of the CO2 uptake over vegetated terrestrial tundra during the same two-month period. Results from this study indicated that the production of CO2 in tundra ponds was positively influenced by both increases in air temperature, and the delivery of carbon from their catchments. The relationship found between temperature and carbon emissions suggests that warming Arctic temperatures have the potential to increase carbon emissions from ponds in the future. The findings in this study did not include ebullition gas emissions nor plant mediated transport, therefore these findings are likely underestimates of the total carbon emissions from water bodies in the Daring Lake area. This study emphasizes the need for more research on inland waters in order to improve our understanding of the total impact these waters may have on the Arctic's atmospheric CO2 concentrations now and in the future.

  17. Effects of atmospheric composition on respiratory behavior, weight loss, and appearance of Camembert-type cheeses during chamber ripening.

    PubMed

    Picque, D; Leclercq-Perlat, M-N; Corrieu, G

    2006-08-01

    Respiratory activity, weight loss, and appearance of Camembert-type cheeses were studied during chamber ripening in relation to atmospheric composition. Cheese ripening was carried out in chambers under continuously renewed, periodically renewed, or nonrenewed gaseous atmospheres or under a CO(2) concentration kept constant at either 2 or 6% throughout the chamber-ripening process. It was found that overall atmospheric composition, and especially CO(2) concentration, of the ripening chamber affected respiratory activity. When CO(2) was maintained at either 2 or 6%, O(2) consumption and CO(2) production (and their kinetics) were higher compared with ripening trials carried out without regulating CO(2) concentration over time. Global weight loss was maximal under continuously renewed atmospheric conditions. In this case, the airflow increased exchanges between cheeses and the atmosphere. The ratio between water evaporation and CO(2) release also depended on atmospheric composition, especially CO(2) concentration. The thickening of the creamy underrind increased more quickly when CO(2) was present in the chamber from the beginning of the ripening process. However, CO(2) concentrations higher than 2% negatively influenced the appearance of the cheeses.

  18. Soil-atmosphere N2O and CH4 exchanges was suppressed by litter layer in a subtropical secondary forest

    NASA Astrophysics Data System (ADS)

    Cui, J. J.; Lai, D. Y. F.

    2016-12-01

    Forest soil has a great potential in affecting future climate change through biogeochemical cycling and exchanging greenhouse gases (GHGs) with the atmosphere. As a proxy of changing atmospheric CO2 concentration, enhanced litter production arising from CO2 fertilization can affect soil GHG fluxes and induce feedbacks to the climate system. However, these litter-soil- atmosphere interactions remain unclear, especially in subtropical forests. In this study, we carried out static chamber measurements and field manipulations in a subtropical secondary forest in Hong Kong over one year to investigate the temporal variations and controls, as well as the effects of changing litter amounts on soil-atmosphere GHG fluxes. Our results show distinct seasonal pattern of GHG fluxes and soil parameters over the study period. While CO2 flux did not respond significantly to litter manipulation, regression analysis indicates that CO2 flux was regulated by soil temperature and soil moisture. Litter reduction stimulated mean N2O emissions by 105%, and the positive effect was most pronounced during the hot-humid season from May to October. On the other hand, litter addition was found to reduce CH4 uptake by 32%. Our findings suggest that the presence of litter might serve a physical barrier for gas diffusion. It is suggested that the biogeochemical feedback arising from litterfall should be taken into account in simulating the response of forest GHG fluxes to future global change.

  19. Photosynthesis of amphibious and obligately submerged plants in CO2-rich lowland streams.

    PubMed

    Sand-Jensen, Kaj; Frost-Christensen, Henning

    1998-11-01

    Small unshaded streams in lowland regions receive drainage water with high concentrations of free␣CO 2 , and they support an abundant growth of amphibious and obligately submerged plants. Our first objective was to measure the CO 2 regime during summer in a wide range of small alkaline Danish streams subject to wide variation in temperature, O 2 and CO 2 during the day. The second objective was to determine the effect of these variations on daily changes in light-saturated photosynthesis in water of a homophyllous and a heterophyllous amphibious species that only used CO 2 , and an obligately submerged species capable of using both HCO - 3 and CO 2 . We found that the median CO 2 concentrations of the streams were 11 and 6 times above air saturation in the morning and the afternoon, respectively, but stream sites with dense plant growth had CO 2 concentrations approaching air saturation in the afternoon. In contrast, outlets from lakes had low CO 2 concentrations close to, or below, air saturation. The amphibious species showed a reduction of photosynthesis in water from morning to afternoon along with the decline in CO 2 concentrations, while increasing temperature and O 2 had little effect on photosynthesis. Photosynthesis of the obligately submerged species varied little with the change of CO 2 because of HCO 3 - - use, and variations were mostly due to changes in O 2 concentration. Independent measurements showed that changes in temperature, O 2 and CO 2 could account for the daily variability of photosynthesis of all three species in water. The results imply that CO 2 supersaturation in small lowland streams is important for the rich representation of amphibious species and their contribution to system photosynthesis.

  20. The biogeochemistry of carbon across a gradient of streams and rivers within the Congo Basin

    NASA Astrophysics Data System (ADS)

    Mann, P. J.; Spencer, R. G. M.; Dinga, B. J.; Poulsen, J. R.; Hernes, P. J.; Fiske, G.; Salter, M. E.; Wang, Z. A.; Hoering, K. A.; Six, J.; Holmes, R. M.

    2014-04-01

    Dissolved organic carbon (DOC) and inorganic carbon (DIC, pCO2), lignin biomarkers, and theoptical properties of dissolved organic matter (DOM) were measured in a gradient of streams and rivers within the Congo Basin, with the aim of examining how vegetation cover and hydrology influences the composition and concentration of fluvial carbon (C). Three sampling campaigns (February 2010, November 2010, and August 2011) spanning 56 sites are compared by subbasin watershed land cover type (savannah, tropical forest, and swamp) and hydrologic regime (high, intermediate, and low). Land cover properties predominately controlled the amount and quality of DOC, chromophoric DOM (CDOM) and lignin phenol concentrations (∑8) exported in streams and rivers throughout the Congo Basin. Higher DIC concentrations and changing DOM composition (lower molecular weight, less aromatic C) during periods of low hydrologic flow indicated shifting rapid overland supply pathways in wet conditions to deeper groundwater inputs during drier periods. Lower DOC concentrations in forest and swamp subbasins were apparent with increasing catchment area, indicating enhanced DOC loss with extended water residence time. Surface water pCO2 in savannah and tropical forest catchments ranged between 2,600 and 11,922 µatm, with swamp regions exhibiting extremely high pCO2 (10,598-15,802 µatm), highlighting their potential as significant pathways for water-air efflux. Our data suggest that the quantity and quality of DOM exported to streams and rivers are largely driven by terrestrial ecosystem structure and that anthropogenic land use or climate change may impact fluvial C composition and reactivity, with ramifications for regional C budgets and future climate scenarios.

  1. Production of biodiesel from microalgae through biological carbon capture: a review.

    PubMed

    Mondal, Madhumanti; Goswami, Shrayanti; Ghosh, Ashmita; Oinam, Gunapati; Tiwari, O N; Das, Papita; Gayen, K; Mandal, M K; Halder, G N

    2017-06-01

    Gradual increase in concentration of carbon dioxide (CO 2 ) in the atmosphere due to the various anthropogenic interventions leading to significant alteration in the global carbon cycle has been a subject of worldwide attention and matter of potential research over the last few decades. In these alarming scenario microalgae seems to be an attractive medium for capturing the excess CO 2 present in the atmosphere generated from different sources such as power plants, automobiles, volcanic eruption, decomposition of organic matters and forest fires. This captured CO 2 through microalgae could be used as potential carbon source to produce lipids for the generation of biofuel for replacing petroleum-derived transport fuel without affecting the supply of food and crops. This comprehensive review strives to provide a systematic account of recent developments in the field of biological carbon capture through microalgae for its utilization towards the generation of biodiesel highlighting the significance of certain key parameters such as selection of efficient strain, microalgal metabolism, cultivation systems (open and closed) and biomass production along with the national and international biodiesel specifications and properties. The potential use of photobioreactors for biodiesel production under the influence of various factors viz., light intensity, pH, time, temperature, CO 2 concentration and flow rate has been discussed. The review also provides an economic overview and future outlook on biodiesel production from microalgae.

  2. The Interactive Effects of Elevated CO2 and Ammonium Enrichment on the Physiological Performances of Saccharina japonica (Laminariales, Phaeophyta)

    NASA Astrophysics Data System (ADS)

    Kang, Jin Woo; Chung, Ik Kyo

    2018-04-01

    Environmental challenges such as ocean acidification and eutrophication influence the physiology of kelp species. We investigated their interactive effects on Saccharina japonica (Laminariales, Phaeophyta) under two pH conditions [Low, 7.50; High (control), 8.10] and three NH4 +concentrations (Low, 4; Medium, 60; High, 120 μM). The degree of variation of pH values in the culture medium and inhibition rate of photosynthetic oxygen evolution by acetazolamide were affected by pH treatments. Relative growth rates, carbon, nitrogen, and the C:N ratio in tissue samples were influenced by higher concentrations of NH4 + . Rates of photosynthetic oxygen evolution were enhanced under elevated CO2 or NH4 +conditions, independently, but these two factors did not show an interactive effect. However, rates of NH4 +uptake were influenced by the interactive effect of increased CO2 under elevated NH4 +treatment. Although ocean acidification and eutrophication states had an impact on physiological performance, chlorophyll fluorescence was not affected by those conditions. Our results indicated that the physiological reactions by this alga were influenced to some extent by a rise in the levels of CO2 and NH4 + . Therefore, we expect that the biomass accumulation of S. japonica may well increase under future scenarios of ocean acidification and eutrophication.

  3. Effects of the thermal environment on metabolism of deoxynivalenol and thermoregulatory response of sheep fed on corn silage grown at enriched atmospheric carbon dioxide and drought.

    PubMed

    Lohölter, Malte; Meyer, Ulrich; Döll, Susanne; Manderscheid, Remy; Weigel, Hans-Joachim; Erbs, Martin; Höltershinken, Martin; Flachowsky, Gerhard; Dänicke, Sven

    2012-11-01

    Future livestock production is likely to be affected by both rising ambient temperatures and indirect effects mediated by modified growth conditions of feed plants such as increased atmospheric CO2 concentrations and drought. Corn was grown at elevated CO2 concentrations of 550 ppm and drought stress using free air carbon dioxide enrichment technology. Whole plant silages were generated and fed to sheep kept at three climatic treatments. Differential blood count was performed. Plasma DON and de-epoxy-DON concentration were measured. Warmer environment increased rectal and skin temperatures and respiration rates (p < 0.001 each) but did not affect blood parameters and the almost complete metabolization of DON into de-epoxy-DON. Altered growth conditions of the corn fed did not have single effects on sheep body temperature measures and differential blood count. Though the thermoregulatory activity of sheep was influenced by the thermal environment, the investigated cultivation factors did not indicate considerable impacts on the analysed parameters.

  4. Effect of increased temperature, CO2, and iron on nitrate uptake and primary productivity in the coastal Ross Sea

    NASA Astrophysics Data System (ADS)

    Bronk, D. A.; Spackeen, J.; Sipler, R. E.; Bertrand, E. M.; Roberts, Q. N.; Xu, K.; Baer, S. E.; McQuaid, J.; Zhu, Z.; Walworth, N. G.; Hutchins, D. A.; Allen, A. E.

    2016-02-01

    Western Antarctic Seas are rapidly changing as a result of elevated concentrations of CO2 and rising sea surface temperatures. It is critical to determine how the structure and function of microbial communities will be impacted by these changes in the future because the Southern Ocean has seasonally high rates of primary production, is an important sink for anthropogenic CO2, and supports a diverse assemblage of higher trophic level organisms. During the Austral summer of 2013 and 2015, a collaborative research group conducted a series of experiments to understand how the individual and combined effects of temperature, CO2, and iron impact Ross Sea microorganisms. Our project used a variety of approaches, including batch experiments, semi-continuous experiments, and continuous-culturing over extended time intervals, to determine how future changes may shift Ross Sea microbial communities and how nutrient cycling and carbon biogeochemistry may subsequently be altered. Chemical and biological parameters were measured throughout the experiments to assess changes in community composition and nutrient cycling, including uptake rate measurements of nitrate and bicarbonate by different size fractions of microorganisms. Relative to the control, nitrate uptake rates significantly increased when temperature and iron were elevated indicating that temperature and iron are important physical drivers that influence nutrient cycling. Elevations in temperature and iron independently and synergistically produced higher rates than elevated CO2. Our nutrient uptake results also suggest that the physiology of large microorganisms will be more impacted by climate change variables than small microorganisms.

  5. Effects of Elevated CO2 and Decreased Dissolved Oxygen on Phototactic Behaviors of Juvenile Dungeness Crab (Cancer magister)

    NASA Astrophysics Data System (ADS)

    Imm, J.

    2015-12-01

    Anthropogenic CO2 emissions are increasing the concentration of CO2 in the oceans, and contributing to ocean acidification (OA), while increasing ocean temperatures and eutrophication are causing decreased levels of dissolved oxygen (DO). Due to coastal upwelling and limited water flow, the Puget Sound ecosystem is naturally high in CO2 and seasonally low in DO, making it particularly susceptible to increased acidification and hypoxia. Dungeness crabs (Cancer magister) are both ecologically and economically important to the Puget Sound region. To investigate the threat of low pH and DO to C. magister behavior, megalopae and juveniles were exposed to current and predicted future levels of pH and DO. Juveniles were then placed in a dark container with a single bright light, and movement and phototaxis were studied during three-minute trials. We hypothesized that low pH and low DO conditions would alter phototactic behaviors of juvenile C. magister, through changes in neurotransmission and metabolism. C. magister reared in control (High pH-High DO) conditions spent a greater proportion of their time near the light, and were significantly more likely to touch the light during the three-minute trial, as compared to juveniles in the other treatment conditions. These results suggest that future predicted CO2 and DO conditions in Puget Sound could disrupt the behavioral and cognitive abilities of juvenile crabs, leading to decreased survival and recruitment in the C. magister population. Given the importance of C. magister to the Puget Sound, these population changes could have significant ecological and economic implications for the region.

  6. Effects of Elevated CO2 and Decreased Dissolved Oxygen on Phototactic Behaviors of Juvenile Dungeness Crab (Cancer magister)

    NASA Astrophysics Data System (ADS)

    Imm, J.

    2016-02-01

    Anthropogenic CO2 emissions are increasing the concentration of CO2 in the oceans, and contributing to ocean acidification (OA), while increasing ocean temperatures and eutrophication are causing decreased levels of dissolved oxygen (DO). Due to coastal upwelling and limited water flow, the Puget Sound ecosystem is naturally high in CO2 and seasonally low in DO, making it particularly susceptible to increased acidification and hypoxia. Dungeness crabs (Cancer magister) are both ecologically and economically important to the Puget Sound region. To investigate the threat of low pH and DO to C. magister behavior, megalopae and juveniles were exposed to current and predicted future levels of pH and DO. Juveniles were then placed in a dark container with a single bright light, and movement and phototaxis were studied during three-minute trials. We hypothesized that low pH and low DO conditions would alter phototactic behaviors of juvenile C. magister, through changes in neurotransmission and metabolism. C. magister reared in control (High pH-High DO) conditions spent a greater proportion of their time near the light, and were significantly more likely to touch the light during the three-minute trial, as compared to juveniles in the other treatment conditions. These results suggest that future predicted CO2 and DO conditions in Puget Sound could disrupt the behavioral and cognitive abilities of juvenile crabs, leading to decreased survival and recruitment in the C. magister population. Given the importance of C. magister to the Puget Sound, these population changes could have significant ecological and economic implications for the region.

  7. Temperature Modulates the Effects of Ocean Acidification on Intestinal Ion Transport in Atlantic Cod, Gadus morhua

    PubMed Central

    Hu, Marian Y.; Michael, Katharina; Kreiss, Cornelia M.; Stumpp, Meike; Dupont, Sam; Tseng, Yung-Che; Lucassen, Magnus

    2016-01-01

    CO2-driven seawater acidification has been demonstrated to enhance intestinal bicarbonate secretion rates in teleosts, leading to an increased release of CaCO3 under simulated ocean acidification scenarios. In this study, we investigated if increasing CO2 levels stimulate the intestinal acid–base regulatory machinery of Atlantic cod (Gadus morhua) and whether temperatures at the upper limit of thermal tolerance stimulate or counteract ion regulatory capacities. Juvenile G. morhua were acclimated for 4 weeks to three CO2 levels (550, 1200, and 2200 μatm) covering present and near-future natural variability, at optimum (10°C) and summer maximum temperature (18°C), respectively. Immunohistochemical analyses revealed the subcellular localization of ion transporters, including Na+/K+-ATPase (NKA), Na+/H+-exchanger 3 (NHE3), Na+/HCO3− cotransporter (NBC1), pendrin-like Cl−/HCO3− exchanger (SLC26a6), V-type H+-ATPase subunit a (VHA), and Cl− channel 3 (CLC3) in epithelial cells of the anterior intestine. At 10°C, proteins and mRNA were generally up-regulated for most transporters in the intestinal epithelium after acclimation to higher CO2 levels. This supports recent findings demonstrating increased intestinal HCO3− secretion rates in response to CO2 induced seawater acidification. At 18°C, mRNA expression and protein concentrations of most ion transporters remained unchanged or were even decreased, suggesting thermal compensation. This response may be energetically favorable to retain blood HCO3− levels to stabilize pHe, but may negatively affect intestinal salt and water resorption of marine teleosts in future oceans. PMID:27313538

  8. Temperature Modulates the Effects of Ocean Acidification on Intestinal Ion Transport in Atlantic Cod, Gadus morhua.

    PubMed

    Hu, Marian Y; Michael, Katharina; Kreiss, Cornelia M; Stumpp, Meike; Dupont, Sam; Tseng, Yung-Che; Lucassen, Magnus

    2016-01-01

    CO2-driven seawater acidification has been demonstrated to enhance intestinal bicarbonate secretion rates in teleosts, leading to an increased release of CaCO3 under simulated ocean acidification scenarios. In this study, we investigated if increasing CO2 levels stimulate the intestinal acid-base regulatory machinery of Atlantic cod (Gadus morhua) and whether temperatures at the upper limit of thermal tolerance stimulate or counteract ion regulatory capacities. Juvenile G. morhua were acclimated for 4 weeks to three CO2 levels (550, 1200, and 2200 μatm) covering present and near-future natural variability, at optimum (10°C) and summer maximum temperature (18°C), respectively. Immunohistochemical analyses revealed the subcellular localization of ion transporters, including Na(+)/K(+)-ATPase (NKA), Na(+)/H(+)-exchanger 3 (NHE3), Na(+)/[Formula: see text] cotransporter (NBC1), pendrin-like Cl(-)/[Formula: see text] exchanger (SLC26a6), V-type H(+)-ATPase subunit a (VHA), and Cl(-) channel 3 (CLC3) in epithelial cells of the anterior intestine. At 10°C, proteins and mRNA were generally up-regulated for most transporters in the intestinal epithelium after acclimation to higher CO2 levels. This supports recent findings demonstrating increased intestinal [Formula: see text] secretion rates in response to CO2 induced seawater acidification. At 18°C, mRNA expression and protein concentrations of most ion transporters remained unchanged or were even decreased, suggesting thermal compensation. This response may be energetically favorable to retain blood [Formula: see text] levels to stabilize pHe, but may negatively affect intestinal salt and water resorption of marine teleosts in future oceans.

  9. Genetic variation and control of chloroplast pigment concentrations in Picea rubens, Picea mariana and their hybrids. I. Ambient and elevated [CO2] environments.

    PubMed

    Major, John E; Barsi, Debby C; Mosseler, Alex; Campbell, Moira

    2007-03-01

    Traits related to light-energy processing have significant ecological implications for plant fitness. We studied the effects of elevated atmospheric CO(2) concentration ([CO(2)]) on chloroplast pigment traits of a red spruce (RS) (Picea rubens Sarg.)-black spruce (BS) (P. mariana (Mill.) B.S.P.) genetic complex in two experiments: (1) a comparative species' provenance experiment from across the near-northern part of the RS range; and (2) an intra- and interspecific controlled-cross experiment. Results from the provenance experiment showed that total chlorophyll (a + b) concentration was, on average, 15% higher in ambient [CO(2)] than in elevated [CO(2)] (P < 0.001). In ambient [CO(2)], BS populations averaged 11% higher total chlorophyll and carotenoid concentrations than RS populations (P < 0.001). There were significant species, CO(2), and species x CO(2) interaction effects, with chlorophyll concentration decreasing about 7 and 26% for BS and RS, respectively, in response to elevated [CO(2)]. Results from the controlled-cross experiment showed that families with a hybrid index of 25 (25% RS) had the highest total chlorophyll concentrations, and families with hybrid indices of 75 and 100 had among the lowest amounts. Initial analysis of the controlled-cross experiment supported a more additive model of inheritance; however, parental analysis showed a significant and predominant male effect for chlorophyll concentration. In ambient and elevated [CO(2)] environments, crosses with BS males had 10.6 and 17.6% higher total chlorophyll concentrations than crosses with hybrid and RS males, respectively. Our results show that chlorophyll concentration is under strong genetic control, and that these traits are positively correlated with productivity within and across species. A significant positive correlation between chlorophyll concentration and the ratio of total plant N to root dry mass was also found (r = 0.872). The almost fourfold decrease in chlorophyll concentration in RS suggests that it would be at a competitive disadvantage compared with BS in a high [CO(2)] environment.

  10. When will we be committed to crossing 1.5 and 2 °C temperature thresholds?

    NASA Astrophysics Data System (ADS)

    Armour, K.; Proistosescu, C.; Roe, G.; Huybers, P. J.

    2017-12-01

    The zero-emissions climate commitment is a key metric for science and policy. It is the future warming we face given only to-date emissions, independent of future human influence on climate. Following a cessation of emissions, future global temperature change depends on (i) the atmospheric lifetimes of aerosols and greenhouse gases (GHGs), and (ii) the physical climate response to radiative forcing (Armour and Roe 2011). The cooling effect of aerosols diminishes within weeks; GHG concentrations get drawn down on timescales ranging from months to millennia; and ocean heat uptake diminishes as climate equilibrates with the residual CO2 forcing. Whether global temperature increases, stays stable, or declines following emission cessation depends on these competing factors. There is substantial uncertainty in the zero-emissions commitment due to a combination of (i) correlated uncertainties in aerosol radiative forcing and climate sensitivity, (ii) uncertainty in the atmospheric lifetime of CO2, and (iii) uncertainty in how climate sensitivity will evolve in the future. Here we quantify climate commitment in a Bayesian framework of an idealized model constrained by observations of global warming and energy imbalance, combined with estimates of global radiative forcing. At present, our committed warming is 1.2°C (median), with a 25% chance that it already exceeds 1.5°C and a 5% chance that it exceeds 2°C; the range comes primarily from uncertainty in the degree to which aerosols currently mask GHG forcing. We further quantify how climate commitment, and its uncertainty, changes with emissions scenario and over time. Under high emissions (RCP8.5), we will reach a >50% risk of a 2°C zero-emission climate commitment by the year 2035, about two decades before that temperature would be reached if emissions continued unabated. Committed warming is substantially reduced for lower-emissions scenarios, depending on the mix of aerosol and GHG mitigation. For the next few decades the primary uncertainty in climate commitment comes from correlated uncertainties in aerosol forcing and climate sensitivity; later in the century it comes from uncertainties in the carbon cycle (setting the lifetime and residual concentration of CO2) and in how climate sensitivity changes over time.

  11. Laser detection of CO2 concentration in human breath at various diseases

    NASA Astrophysics Data System (ADS)

    Ageev, Boris G.; Nikiforova, Olga Y.

    2015-12-01

    Absorption spectra of human breath in 10 μm region were recorded by the use of intracavity laser photo-acoustic gas analyzer based on tunable waveguide CO2 laser. Healthy persons and patients with various diseases were studied. For determination of CO2 concentration in exhalation samples gas analyzer was calibrated by reference gaseous mixture CO2-N2. It was obtained that CO2 concentration values in human breath of healthy persons are greater than that of patients with various diseases.

  12. The impact of elevated CO2 and temperature on grain quality of rice grown under open-air field conditions.

    PubMed

    Jing, Liquan; Wang, Juan; Shen, Shibo; Wang, Yunxia; Zhu, Jianguo; Wang, Yulong; Yang, Lianxin

    2016-08-01

    Rising atmospheric CO2 is accompanied by global warming. However, interactive effects of elevated CO2 and temperature have not been well studied on grain quality of rice. A japonica cultivar was grown in the field using a free-air CO2 enrichment facility in combination with a canopy air temperature increase system in 2014. The gas fumigation (200 µmol mol(-1) above ambient CO2 ) and temperature increase (1 °C above ambient air temperature) were performed from tillering until maturity. Compared with the control (ambient CO2 and air temperature), elevated CO2 increased grain length and width as well as grain chalkiness but decreased protein concentrations. In contrast, the increase in canopy air temperature had less effect on these parameters except for grain chalkiness. The starch pasting properties of rice flour and taste analysis of cooked rice indicated that the palatability of rice was improved by CO2 and/or temperature elevation, with the combination of the two treatments showing the most significant changes compared with ambient rice. It is concluded that projected CO2 in 2050 may have larger effects on rice grain quality than the projected temperature increase. Although deterioration in milling suitability, grain appearance and nutritional quality can be expected, the taste of cooked rice might be better in the future environment. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  13. A Mechanistic Study of CO 2 Reduction at the Interface of a Gallium Phosphide (GaP) Surface using Core-level Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Kristen

    2015-08-18

    Carbon dioxide (CO 2) emission into the atmosphere has increased tremendously through burning of fossil fuels, forestry, etc.. The increased concentration has made CO 2 reductions very attractive though the reaction is considered uphill. Utilizing the sun as a potential energy source, CO 2 has the possibility to undergo six electron and four proton transfers to produce methanol, a useable resource. This reaction has been shown to occur selectively in an aqueous pyridinium solution with a gallium phosphide (GaP) electrode. Though this reaction has a high faradaic efficiency, it was unclear as to what role the GaP surface played duringmore » the reaction. In this work, we aim to address the fundamental role of GaP during the catalytic conversion, by investigating the interaction between a clean GaP surface with the reactants, products, and intermediates of this reaction using X-ray photoelectron spectroscopy. We have determined a procedure to prepare atomically clean GaP and our initial CO 2 adsorption studies have shown that there is evidence of chemisorption and reaction to form carbonate on the clean surface at LN2 temperatures (80K), in contrast to previous theoretical calculations. These findings will enable future studies on CO 2 catalysis.« less

  14. A Mechanistic Study of CO 2 Reduction at the Interface of a Gallium Phosphide (GaP) Surface using Core-level Spectroscopy - Oral Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Kristen

    2015-08-19

    Carbon dioxide (CO 2) emission into the atmosphere has increased tremendously through burning of fossil fuels, forestry, etc.. The increased concentration has made CO 2 reductions very attractive though the reaction is considered uphill. Utilizing the sun as a potential energy source, CO 2 has the possibility to undergo six electron and four proton transfers to produce methanol, a useable resource. This reaction has been shown to occur selectively in an aqueous pyridinium solution with a gallium phosphide (GaP) electrode. Though this reaction has a high faradaic efficiency, it was unclear as to what role the GaP surface played duringmore » the reaction. In this work, we aim to address the fundamental role of GaP during the catalytic conversion, by investigating the interaction between a clean GaP surface with the reactants, products, and intermediates of this reaction using X-ray photoelectron spectroscopy. We have determined a procedure to prepare atomically clean GaP and our initial CO 2 adsorption studies have shown that there is evidence of chemisorption and reaction to form carbonate on the clean surface at LN2 temperatures (80K), in contrast to previous theoretical calculations. These findings will enable future studies on CO 2 catalysis.« less

  15. Nitrogen nutrition and temporal effects of enhanced carbon dioxide on soybean growth

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; Henry, L. T.; Raper, C. D. Jr

    1990-01-01

    Plants grown on porous media at elevated CO2 levels generally have low concentrations of tissue N and often appear to require increased levels of external N to maximize growth response. This study determines if soybean [Glycine max (L.) Merr. Ransom'] grown hydroponically at elevated CO2 requires increases in external NO3- concentrations beyond levels that are optimal at ambient CO2 to maintain tissue N concentrations and maximize the growth response. This study also investigates temporal influences of elevated CO2 on growth responses by soybean. Plants were grown vegetatively for 34 d in hydroponic culture at atmospheric CO2 concentrations of 400, 650, and 900 microliters L-1 and during the final 18 d at NO3- concentrations of 0.5, 1.0, 5.0 and 10.0 mM in the culture solution. At 650 and 900 microliters L-1 CO2, plants had maximum increases of 31 and 45% in dry weight during the experimental period. Plant growth at 900 microliters L-1 CO2 was stimulated earlier than at 650 microliters L-1. During the final 18 d of the experiment, the relative growth rates (RGR) of plants grown at elevated CO2 declined. Elevated CO2 caused increases in total N and total NO3(-)-N content and leaf area but not leaf number. Enhancing CO2 levels also caused a decrease in root:shoot ratios. Stomatal resistance increased by 2.1- and 2.8-fold for plants at the 650 and 900 microliters L-1 CO2, respectively. Nitrate level in the culture solutions had no effect on growth or on C:N ratios of tissues, nor did increases in CO2 levels cause a decrease in N concentration of plant tissues. Hence, increases in NO3- concentration of the hydroponic solution were not necessary to maintain the N status of the plants or to maximize the growth response to elevated CO2.

  16. Dynamics of carbon dioxide concentrations in the air and its effect on the cognitive ability of school students

    NASA Astrophysics Data System (ADS)

    Sidorin, D. I.

    2015-12-01

    The carbon dioxide (CO2) production intensity by a secondary school student is studied using a nondispersive infrared CO2 logger for different conditions: relaxation, mental stress, and physical stress. CO2 production measured for mental stress is 24% higher than that for relaxation, while CO2 production for physical stress is more than 2.5 times higher than relaxation levels. Dynamics of CO2 concentration in the classroom air is measured for a typical school building. It is shown that even when the classroom is ventilated between classes, CO2 concentration exceeds 2100 parts per million (ppm), which is significantly higher than the recommended limits defined in developed countries. The ability of seventh-grade school students to perform tasks requiring mental concentration is tested under different CO2 concentration conditions (below 1000 ppm and above 2000 ppm). Five-letter word anagrams are used as test tasks. Statistical analysis of the test results revealed a significant reduction in the number of provided correct answers and an increase in the number of errors when CO2 levels exceeded 2000 ppm.

  17. CO and NO2 pollution in a long two-way traffic road tunnel: investigation of NO2/NOx ratio and modelling of NO2 concentration.

    PubMed

    Indrehus, O; Vassbotn, P

    2001-02-01

    The CO, NO and NO2 concentrations, visibility and air flow velocity were measured using continuous analysers in a long Norwegian road tunnel (7.5 km) with traffic in both directions in April 1994 and 1995. The traffic density was monitored at the same time. The NO2 concentration exceeded Norwegian air quality limits for road tunnels 17% of the time in 1994. The traffic through the tunnel decreased from 1994 to 1995, and the mean NO2 concentration was reduced from 0.73 to 0.22 ppm. The ventilation fan control, based on the CO concentration only, was unsatisfactory and the air flow was sometimes low for hours. Models for NO2 concentration based on CO concentration and absolute air flow velocity were developed and tested. The NO2/NOx ratio showed an increase for NOx levels above 2 ppm; a likely explanation for this phenomenon is NO oxidation by O2. Exposure to high NO2 concentrations may represent a health risk for people with respiratory and cardiac diseases. In long road tunnels with two-way traffic, this study indicates that ventilation fan control based on CO concentration should be adjusted for changes in vehicle CO emission and should be supplemented by air flow monitoring to limit the NO2 concentration.

  18. Comparative analyses of hydrological responses of two adjacent watersheds to climate variability and change using the SWAT model

    NASA Astrophysics Data System (ADS)

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M.; McCarty, Gregory W.; Hively, Wells D.; Lang, Megan W.; Sharifi, Amir

    2018-01-01

    Water quality problems in the Chesapeake Bay Watershed (CBW) are expected to be exacerbated by climate variability and change. However, climate impacts on agricultural lands and resultant nutrient loads into surface water resources are largely unknown. This study evaluated the impacts of climate variability and change on two adjacent watersheds in the Coastal Plain of the CBW, using the Soil and Water Assessment Tool (SWAT) model. We prepared six climate sensitivity scenarios to assess the individual impacts of variations in CO2 concentration (590 and 850 ppm), precipitation increase (11 and 21 %), and temperature increase (2.9 and 5.0 °C), based on regional general circulation model (GCM) projections. Further, we considered the ensemble of five GCM projections (2085-2098) under the Representative Concentration Pathway (RCP) 8.5 scenario to evaluate simultaneous changes in CO2, precipitation, and temperature. Using SWAT model simulations from 2001 to 2014 as a baseline scenario, predicted hydrologic outputs (water and nitrate budgets) and crop growth were analyzed. Compared to the baseline scenario, a precipitation increase of 21 % and elevated CO2 concentration of 850 ppm significantly increased streamflow and nitrate loads by 50 and 52 %, respectively, while a temperature increase of 5.0 °C reduced streamflow and nitrate loads by 12 and 13 %, respectively. Crop biomass increased with elevated CO2 concentrations due to enhanced radiation- and water-use efficiency, while it decreased with precipitation and temperature increases. Over the GCM ensemble mean, annual streamflow and nitrate loads showed an increase of ˜ 70 % relative to the baseline scenario, due to elevated CO2 concentrations and precipitation increase. Different hydrological responses to climate change were observed from the two watersheds, due to contrasting land use and soil characteristics. The watershed with a larger percent of croplands demonstrated a greater increased rate of 5.2 kg N ha-1 in nitrate yield relative to the watershed with a lower percent of croplands as a result of increased export of nitrate derived from fertilizer. The watershed dominated by poorly drained soils showed increased nitrate removal due do enhanced denitrification compared to the watershed dominated by well-drained soils. Our findings suggest that increased implementation of conservation practices would be necessary for this region to mitigate increased nitrate loads associated with predicted changes in future climate.

  19. CO2 leakage monitoring and analysis to understand the variation of CO2 concentration in vadose zone by natural effects

    NASA Astrophysics Data System (ADS)

    Joun, Won-Tak; Ha, Seung-Wook; Kim, Hyun Jung; Ju, YeoJin; Lee, Sung-Sun; Lee, Kang-Kun

    2017-04-01

    Controlled ex-situ experiments and continuous CO2 monitoring in the field are significant implications for detecting and monitoring potential leakage from CO2 sequestration reservoir. However, it is difficult to understand the observed parameters because the natural disturbance will fluctuate the signal of detections in given local system. To identify the original source leaking from sequestration reservoir and to distinguish the camouflaged signal of CO2 concentration, the artificial leakage test was conducted in shallow groundwater environment and long-term monitoring have been performed. The monitoring system included several parameters such as pH, temperature, groundwater level, CO2 gas concentration, wind speed and direction, atmospheric pressure, borehole pressure, and rainfall event etc. Especially in this study, focused on understanding a relationship among the CO2 concentration, wind speed, rainfall and pressure difference. The results represent that changes of CO2 concentration in vadose zone could be influenced by physical parameters and this reason is helpful in identifying the camouflaged signal of CO2 concentrations. The 1-D column laboratory experiment also was conducted to understand the sparking-peak as shown in observed data plot. The results showed a similar peak plot and could consider two assumptions why the sparking-peak was shown. First, the trapped CO2 gas was escaped when the water table was changed. Second, the pressure equivalence between CO2 gas and water was broken when the water table was changed. These field data analysis and laboratory experiment need to advance due to comprehensively quantify local long-term dynamics of the artificial CO2 leaking aquifer. Acknowledgement Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003)

  20. The Role of Vegetation Response to Elevated CO2 in Modifying Land-Atmosphere Feedback Across the Central United States Agro-Ecosystem

    NASA Astrophysics Data System (ADS)

    Drewry, D.; Kumar, P.; Sivapalan, M.; Long, S.; Liang, X.

    2009-05-01

    Recent local-scale observational studies have demonstrated significant modifications to the partitioning of incident energy by two key mid-west agricultural species, soy and corn, as ambient atmospheric CO2 concentrations are experimentally augmented to projected future levels. The uptake of CO2 by soy, which utilizes the C3 photosynthetic pathway, has likewise been observed to significantly increase under elevated growth CO2 concentrations. Changes to the sensible and latent heat exchanges between the land surface and the atmospheric boundary layer (ABL) across large portions of the mid-western US has the potential to affect ABL growth and composition, and consequently feed-back to the near-surface environment (air temperature and vapor content) experienced by the vegetation. Here we present a simulation analysis that examines the changes in land-atmosphere feedbacks associated with projected increases in ambient CO2 concentrations over extended soy/corn agricultural areas characteristic of the US mid-west. The model canopies are partitioned into several layers, allowing for resolution of the shortwave and longwave radiation regimes that drive photosynthesis, stomatal conductance and leaf energy balance in each layer, along with the canopy microclimate. The canopy component of the model is coupled to a multi-layer soil-root model that computes soil moisture and heat transport and root water uptake. Model skill in capturing the sub-diurnal variability in canopy-atmosphere exchange is evaluated through multi-year records of canopy-top eddy covariance CO2, water vapor and heat fluxes collected at the Bondville (Illinois) FluxNet site. An evaluation of the ability of the model to simulate observed changes in energy balance components (canopy temperature, net radiation and soil heat flux) under elevated CO2 concentrations projected for 2050 (550 ppm) is made using observations collected at the SoyFACE Free Air Carbon Enrichment (FACE) experimental facilities located in central Illinois, by incorporating observed acclimations in leaf biochemsitry and canopy structure. The simulation control volume is then extended by coupling the canopy models to a simple model of daytime mixed-layer (ML) growth and composition, ie. air temperature and vapor content. Through this coupled canopy-ABL model we quantify the impact of elevated CO2 and vegetation acclimation on ML growth, temperature and vapor content and the consequent feedbacks to the land surface by way of the near-surface environment experienced by the vegetation. Particular focus is placed on the role of short-term drought, and possible changes in land cover composition between soy, a C3 crop, and corn, a more water-use efficient C4 crop, on modulating the strength of these CO2-induced feedbacks.

Top