Sample records for future collider experiments

  1. Crab cavities: Past, present, and future of a challenging device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Q.

    2015-05-03

    In two-ring facilities operating with a crossing-angle collision scheme, luminosity can be limited due to an incomplete overlapping of the colliding bunches. Crab cavities then are introduced to restore head-on collisions by providing the destined opposite deflection to the head and tail of the bunch. An increase in luminosity was demonstrated at KEKB with global crab-crossing, while the Large Hardron Collider (LHC) at CERN currently is designing local crab crossing for the Hi-Lumi upgrade. Future colliders may investigate both approaches. In this paper, we review the challenges in the technology, and the implementation of crab cavities, while discussing experience inmore » earlier colliders, ongoing R&D, and proposed implementations for future facilities, such as HiLumi-LHC, CERN’s compact linear collider (CLIC), the international linear collider (ILC), and the electron-ion collider under design at BNL (eRHIC).« less

  2. Initial performance studies of a general-purpose detector for multi-TeV physics at a 100 TeV pp collider

    DOE PAGES

    Chekanov, S. V.; Beydler, M.; Kotwal, A. V.; ...

    2017-06-13

    This paper describes simulations of detector response to multi-TeV physics at the Future Circular Collider (FCC-hh) or Super proton-proton Collider (SppC) which aim to collide proton beams with a centre-of-mass energy of 100 TeV. The unprecedented energy regime of these future experiments imposes new requirements on detector technologies which can be studied using the detailed geant4 simulations presented in this paper. The initial performance of a detector designed for physics studies at the FCC-hh or SppC experiments are described with an emphasis on measurements of single particles up to 33 TeV in transverse momentum. Furthermore, the granularity requirements for calorimetrymore » are investigated using the two-particle spatial resolution achieved for hadron showers.« less

  3. Initial performance studies of a general-purpose detector for multi-TeV physics at a 100 TeV pp collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chekanov, S. V.; Beydler, M.; Kotwal, A. V.

    This paper describes simulations of detector response to multi-TeV physics at the Future Circular Collider (FCC-hh) or Super proton-proton Collider (SppC) which aim to collide proton beams with a centre-of-mass energy of 100 TeV. The unprecedented energy regime of these future experiments imposes new requirements on detector technologies which can be studied using the detailed geant4 simulations presented in this paper. The initial performance of a detector designed for physics studies at the FCC-hh or SppC experiments are described with an emphasis on measurements of single particles up to 33 TeV in transverse momentum. Furthermore, the granularity requirements for calorimetrymore » are investigated using the two-particle spatial resolution achieved for hadron showers.« less

  4. Luminosity Limitations of Linear Colliders Based on Plasma Acceleration

    DOE PAGES

    Lebedev, Valeri; Burov, Alexey; Nagaitsev, Sergei

    2016-01-01

    Particle acceleration in plasma creates a possibility of exceptionally high accelerating gradients and appears as a very attractive option for future linear electron-positron and/or photon-photon colliders. These high accelerating gradients were already demonstrated in a number of experiments. Furthermore, a linear collider requires exceptionally high beam brightness which still needs to be demonstrated. In this article we discuss major phenomena which limit the beam brightness of accelerated beam and, consequently, the collider luminosity.

  5. Lessons learned from the SLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phinney, N.

    The SLAC Linear Collider (SLC) is the first example of an entirely new type of lepton collider. Many years of effort were required to develop the understanding and techniques needed to approach design luminosity. This paper discusses some of the key issues and problems encountered in producing a working linear collider. These include the polarized source, techniques for emittance preservation, extensive feedback systems, and refinements in beam optimization in the final focus. The SLC experience has been invaluable for testing concepts and developing designs for a future linear collider.

  6. Initial performance studies of a general-purpose detector for multi-TeV physics at a 100 TeV pp collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chekanov, S. V.; Beydler, M.; Kotwal, A. V.

    This paper describes simulations of detector response to multi-TeV physics at the Future Circular Collider (FCC-hh) or Super proton-proton Collider (SppC) which aim to collide proton beams with a centre-of-mass energy of 100 TeV. The unprecedented energy regime of these future experiments imposes new requirements on detector technologies which can be studied using the detailed GEANT4 simulations presented in this paper. The initial performance of a detector designed for physics studies at the FCC-hh or SppC experiments is described with an emphasis on measurements of single particles up to 33 TeV in transverse momentum. The reconstruction of hadronic jets hasmore » also been studied in the transverse momentum range from 50 GeV to 26 TeV. The granularity requirements for calorimetry are investigated using the two-particle spatial resolution achieved for hadron showers.« less

  7. DEPFET pixel detector for future e-e+ experiments

    NASA Astrophysics Data System (ADS)

    Boronat, M.; DEPFET Collaboration

    2016-04-01

    The DEPFET Collaboration develops highly granular, ultra-thin pixel detectors for outstanding vertex reconstruction at future e+e- collider experiments. A DEPFET sensor provides, simultaneously, position sensitive detector capabilities and in-pixel amplification by the integration of a field effect transistor on a fully depleted silicon bulk. The characterization of the latest DEPFET prototypes has proven that a comfortable signal to noise ratio and excellent single point resolution can be achieved for a sensor thickness of 50 μm. A complete detector concept is being developed for the Belle II experiment at the new Japanese super flavor factory. The close to Belle related final auxiliary ASICs have been produced and found to operate a DEPFET pixel detector of the latest generation with the Belle II required read-out speed. DEPFET is not only the technology of choice for the Belle II vertex detector, but also a solid candidate for the International Linear Collider (ILC). Therefore, in this paper, the status of DEPFET R&D project is reviewed in the light of the requirements of the vertex detector at a future e+e- collider.

  8. Imaging Calorimeter: What Have We Learned So Far

    NASA Astrophysics Data System (ADS)

    Xia, Lei

    Particle Flow Algorithms (PFAs) have been applied to existing detectors to improve the measurement of hadronic jets in colliding beam experiments. For future experiments, such as a TeV lepton collider, detector concepts optimized for the application of PFAs are being developed. These concepts require so-called imaging calorimeters, with unprecedented granularity. We will review the various recent developments of such highly granular calorimeters.

  9. DEPFET detectors for future electron-positron colliders

    NASA Astrophysics Data System (ADS)

    Marinas, C.

    2015-11-01

    The DEPFET Collaboration develops highly granular, ultra-thin pixel detectors for outstanding vertex reconstruction at future electron-positron collider experiments. A DEPFET sensor, by the integration of a field effect transistor on a fully depleted silicon bulk, provides simultaneous position sensitive detector capabilities and in pixel amplification. The characterization of the latest DEPFET prototypes has proven that a adequate signal-to-noise ratio and excellent single point resolution can be achieved for a sensor thickness of 50 micrometers. The close to final auxiliary ASICs have been produced and found to operate a DEPFET pixel detector of the latest generation with the required read-out speed. A complete detector concept is being developed for the Belle II experiment at the new Japanese super flavor factory. DEPFET is not only the technology of choice for the Belle II vertex detector, but also a prime candidate for the ILC. Therefore, in this contribution, the status of DEPFET R&D project is reviewed in the light of the requirements of the vertex detector at a future electron-positron collider.

  10. Sterile neutrino searches at future e-e+, pp and e-p colliders

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Cazzato, Eros; Fischer, Oliver

    2017-05-01

    Sterile neutrinos are among the most attractive extensions of the SM to generate the light neutrino masses observed in neutrino oscillation experiments. When the sterile neutrinos are subject to a protective symmetry, they can have masses around the electroweak scale and potentially large neutrino Yukawa couplings, which makes them testable at planned future particle colliders. We systematically discuss the production and decay channels at electron-positron, proton-proton and electron-proton colliders and provide a complete list of the leading order signatures for sterile neutrino searches. Among other things, we discuss several novel search channels, and present a first look at the possible sensitivities for the active-sterile mixings and the heavy neutrino masses. We compare the performance of the different collider types and discuss their complementarity.

  11. Higgsino dark matter or not: Role of disappearing track searches at the LHC and future colliders

    NASA Astrophysics Data System (ADS)

    Fukuda, Hajime; Nagata, Natsumi; Otono, Hidetoshi; Shirai, Satoshi

    2018-06-01

    Higgsino in supersymmetric standard models is known to be a promising candidate for dark matter in the Universe. Its phenomenological property is strongly affected by the gaugino fraction in the Higgsino-like state. If this is sizable, in other words, if gaugino masses are less than O (10) TeV, we may probe the Higgsino dark matter in future non-accelerator experiments such as dark matter direct searches and measurements of electric dipole moments. On the other hand, if gauginos are much heavier, then it is hard to search for Higgsino in these experiments. In this case, due to a lack of gaugino components, the mass difference between the neutral and charged Higgsinos is uniquely determined by electroweak interactions to be around 350 MeV, which makes the heavier charged state rather long-lived, with a decay length of about 1 cm. In this letter, we argue that a charged particle with a flight length of O (1) cm can be probed in disappearing-track searches if we require only two hits in the pixel detector. Even in this case, we can reduce background events with the help of the displaced-vertex reconstruction technique. We study the prospects of this search strategy at the LHC and future colliders for the Higgsino dark matter scenario. It is found that an almost pure Higgsino is indeed within the reach of the future 33 TeV collider experiments. We then discuss that the interplay among collider and non-accelerator experiments plays a crucial role in testing the Higgsino dark matter scenarios. Our strategy for disappearing-track searches can also enlarge the discovery potential of pure wino dark matter as well as other electroweak-charged dark matter candidates.

  12. Predictive design and interpretation of colliding pulse injected laser wakefield experiments

    NASA Astrophysics Data System (ADS)

    Cormier-Michel, Estelle; Ranjbar, Vahid H.; Cowan, Ben M.; Bruhwiler, David L.; Geddes, Cameron G. R.; Chen, Min; Ribera, Benjamin; Esarey, Eric; Schroeder, Carl B.; Leemans, Wim P.

    2010-11-01

    The use of colliding laser pulses to control the injection of plasma electrons into the plasma wake of a laser plasma accelerator is a promising approach to obtaining stable, tunable electron bunches with reduced emittance and energy spread. Colliding Pulse Injection (CPI) experiments are being performed by groups around the world. We will present recent particle-in-cell simulations, using the parallel VORPAL framework, of CPI for physical parameters relevant to ongoing experiments of the LOASIS program at LBNL. We evaluate the effect of laser and plasma tuning, on the trapped electron bunch and perform parameter scans in order to optimize the quality of the bunch. Impact of non-ideal effects such as imperfect laser modes and laser self focusing are also evaluated. Simulation data are validated against current experimental results, and are used to design future experiments.

  13. Physics Accomplishments and Future Prospects of the BES Experiments at the Beijing Electron-Positron Collider

    NASA Astrophysics Data System (ADS)

    Briere, Roy A.; Harris, Frederick A.; Mitchell, Ryan E.

    2016-10-01

    The cornerstone of the Chinese experimental particle physics program is a series of experiments performed in the τ-charm energy region. China began building e+e- colliders at the Institute for High Energy Physics in Beijing more than three decades ago. Beijing Electron Spectrometer (BES) is the common root name for the particle physics detectors operated at these machines. We summarize the development of the BES program and highlight the physics results across several topical areas.

  14. Distinct signals of the gauge-Higgs unification in e+e- collider experiments

    NASA Astrophysics Data System (ADS)

    Funatsu, Shuichiro; Hatanaka, Hisaki; Hosotani, Yutaka; Orikasa, Yuta

    2017-12-01

    Effects of Kaluza-Klein excited neutral vector bosons (Z‧ bosons) in the gauge-Higgs unification on e+e- → q bar q ,ℓ+ℓ- cross sections are studied, particularly in future e+e- collider experiments with polarized beams. Significant deviations in the energy and polarization dependence in σ (μ+μ-), the lepton forward-backward asymmetry, Rb (μ) ≡ σ (b bar b) / σ (μ+μ-) and the left-right asymmetry from the standard model are predicted.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokosawa, A.

    We review activities with experiments using polarized protons and polarized antiprotons at Fermilab for future high-energy spin physics we describe an experimental program with polarized collider at RHIC.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syphers, M. J.; Chattopadhyay, S.

    An overview is provided of the currently envisaged landscape of charged particle accelerators at the energy and intensity frontiers to explore particle physics beyond the standard model via 1-100 TeV-scale lepton and hadron colliders and multi-Megawatt proton accelerators for short- and long- baseline neutrino experiments. The particle beam physics, associated technological challenges and progress to date for these accelerator facilities (LHC, HL-LHC, future 100 TeV p-p colliders, Tev-scale linear and circular electron-positron colliders, high intensity proton accelerator complex PIP-II for DUNE and future upgrade to PIP-III) are outlined. Potential and prospects for advanced “nonlinear dynamic techniques” at the multi-MW levelmore » intensity frontier and advanced “plasma- wakefield-based techniques” at the TeV-scale energy frontier and are also described.« less

  17. Pair Production of the Doubly Charged Leptons Associated with a Gauge Boson γ or Z in e+e- and γγ Collisions at Future Linear Colliders

    NASA Astrophysics Data System (ADS)

    Zeng, Qing-Guo; Ji, Li; Yang, Shuo

    2015-03-01

    In this paper, we investigate the production of a pair of doubly charged leptons associated with a gauge boson V(γ or Z) at future linear colliders via e+e- and γγ collisions. The numerical results show that the possible signals of the doubly charged leptons may be detected via the processes e+e- → VX++X-- and γγ → VX++X-- at future ILC or CLIC experiments. Supported in part by the National Natural Science Foundation of China under Grants Nos. 11275088, 11205023, 11375248 and the Program for Liaoning Excellent Talents in University under Grant No. LJQ2014135

  18. Status of the Future Circular Collider Study

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael

    2016-03-01

    Following the 2013 update of the European Strategy for Particle Physics, the international Future Circular Collider (FCC) Study has been launched by CERN as host institute, to design an energy frontier hadron collider (FCC-hh) in a new 80-100 km tunnel with a centre-of-mass energy of about 100 TeV, an order of magnitude beyond the LHC's, as a long-term goal. The FCC study also includes the design of a 90-350 GeV high-luminosity lepton collider (FCC-ee) installed in the same tunnel, serving as Higgs, top and Z factory, as a potential intermediate step, as well as an electron-proton collider option (FCC-he). The physics cases for such machines will be assessed and concepts for experiments will be developed in time for the next update of the European Strategy for Particle Physics by the end of 2018. The presentation will summarize the status of machine designs and parameters and discuss the essential technical components to be developed in the frame of the FCC study. Key elements are superconducting accelerator-dipole magnets with a field of 16 T for the hadron collider and high-power, high-efficiency RF systems for the lepton collider. In addition the unprecedented beam power presents special challenges for the hadron collider for all aspects of beam handling and machine protection. First conclusions of geological investigations and implementation studies will be presented. The status of the FCC collaboration and the further planning for the study will be outlined.

  19. Testing sterile neutrino extensions of the Standard Model at future lepton colliders

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Fischer, Oliver

    2015-05-01

    Extending the Standard Model (SM) with sterile ("right-handed") neutrinos is one of the best motivated ways to account for the observed neutrino masses. We discuss the expected sensitivity of future lepton collider experiments for probing such extensions. An interesting testable scenario is given by "symmetry protected seesaw models", which theoretically allow for sterile neutrino masses around the electroweak scale with up to order one mixings with the light (SM) neutrinos. In addition to indirect tests, e.g. via electroweak precision observables, sterile neutrinos with masses around the electroweak scale can also be probed by direct searches, e.g. via sterile neutrino decays at the Z pole, deviations from the SM cross section for four lepton final states at and beyond the WW threshold and via Higgs boson decays. We study the present bounds on sterile neutrino properties from LEP and LHC as well as the expected sensitivities of possible future lepton colliders such as ILC, CEPC and FCC-ee (TLEP).

  20. Higgs portal dark matter in non-standard cosmological histories

    NASA Astrophysics Data System (ADS)

    Hardy, Edward

    2018-06-01

    A scalar particle with a relic density set by annihilations through a Higgs portal operator is a simple and minimal possibility for dark matter. However, assuming a thermal cosmological history this model is ruled out over most of parameter space by collider and direct detection constraints. We show that in theories with a non-thermal cosmological history Higgs portal dark matter is viable for a wide range of dark matter masses and values of the portal coupling, evading existing limits. In particular, we focus on the string theory motivated scenario of a period of matter domination due to a light modulus with a decay rate that is suppressed by the Planck scale. Dark matter with a mass ≲ GeV is possible without additional hidden sector states, and this can have astrophysically relevant self-interactions. We also study the signatures of such models at future direct, indirect, and collider experiments. Searches for invisible Higgs decays at the high luminosity LHC or an e + e - collider could cover a significant proportion of the parameter space for low mass dark matter, and future direct detection experiments will play a complementary role.

  1. Heavy neutrino mixing and single production at linear collider

    NASA Astrophysics Data System (ADS)

    Gluza, J.; Maalampi, J.; Raidal, M.; Zrałek, M.

    1997-02-01

    We study the single production of heavy neutrinos via the processes e- e+ -> νN and e- γ -> W- N at future linear colliders. As a base of our considerations we take a wide class of models, both with vanishing and non-vanishing left-handed Majorana neutrino mass matrix mL. We perform a model independent analyses of the existing experimental data and find connections between the characteristic of heavy neutrinos (masses, mixings, CP eigenvalues) and the mL parameters. We show that with the present experimental constraints heavy neutrino masses almost up to the collision energy can be tested in the future experiments.

  2. WW Physics at Future e{sup +}e{sup -} Linear Colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barklow, Timothy L

    Measurements of triple gauge boson couplings and strong electroweak symmetry breaking effects at future e{sup +}e{sup -} linear colliders are reviewed. The results expected from a future e{sup +}e{sup -} linear collider are compared with LHC expectations.

  3. Compendium of Instrumentation Whitepapers on Frontier Physics Needs for Snowmass 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipton, R.

    2013-01-01

    Contents of collection of whitepapers include: Operation of Collider Experiments at High Luminosity; Level 1 Track Triggers at HL-LHC; Tracking and Vertex Detectors for a Muon Collider; Triggers for hadron colliders at the energy frontier; ATLAS Upgrade Instrumentation; Instrumentation for the Energy Frontier; Particle Flow Calorimetry for CMS; Noble Liquid Calorimeters; Hadronic dual-readout calorimetry for high energy colliders; Another Detector for the International Linear Collider; e+e- Linear Colliders Detector Requirements and Limitations; Electromagnetic Calorimetry in Project X Experiments The Project X Physics Study; Intensity Frontier Instrumentation; Project X Physics Study Calorimetry Report; Project X Physics Study Tracking Report; The LHCbmore » Upgrade; Neutrino Detectors Working Group Summary; Advanced Water Cherenkov R&D for WATCHMAN; Liquid Argon Time Projection Chamber (LArTPC); Liquid Scintillator Instrumentation for Physics Frontiers; A readout architecture for 100,000 pixel Microwave Kinetic In- ductance Detector array; Instrumentation for New Measurements of the Cosmic Microwave Background polarization; Future Atmospheric and Water Cherenkov ?-ray Detectors; Dark Energy; Can Columnar Recombination Provide Directional Sensitivity in WIMP Search?; Instrumentation Needs for Detection of Ultra-high Energy Neu- trinos; Low Background Materials for Direct Detection of Dark Matter; Physics Motivation for WIMP Dark Matter Directional Detection; Solid Xenon R&D at Fermilab; Ultra High Energy Neutrinos; Instrumentation Frontier: Direct Detection of WIMPs; nEXO detector R&D; Large Arrays of Air Cherenkov Detectors; and Applications of Laser Interferometry in Fundamental Physics Experiments.« less

  4. Di-Higgs enhancement by neutral scalar as probe of new colored sector

    NASA Astrophysics Data System (ADS)

    Nakamura, Koji; Nishiwaki, Kenji; Oda, Kin-ya; Park, Seong Chan; Yamamoto, Yasuhiro

    2017-05-01

    We study a class of models in which the Higgs pair production is enhanced at hadron colliders by an extra neutral scalar. The scalar particle is produced by the gluon fusion via a loop of new colored particles, and decays into di-Higgs through its mixing with the Standard Model Higgs. Such a colored particle can be the top/bottom partner, such as in the dilaton model, or a colored scalar which can be triplet, sextet, octet, etc., called leptoquark, diquark, coloron, etc., respectively. We examine the experimental constraints from the latest Large Hadron Collider (LHC) data, and discuss the future prospects of the LHC and the Future Circular Collider up to 100 TeV. We also point out that the 2.4 σ excess in the b \\bar{b} γ γ final state reported by the ATLAS experiment can be interpreted as the resonance of the neutral scalar at 300 GeV.

  5. A review of the Fermilab fixed-target program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rameika, R.

    1994-12-01

    All eyes are now on the Fermilab collider program as the intense search for the top quark continues. Nevertheless, Fermilab`s long tradition of operating a strong, diverse physics program depends not only on collider physics but also on effective use of the facilities the Laboratory was founded on, the fixed-target beamlines. In this talk the author presents highlights of the Fermilab fixed-target program from its (not too distant) past, (soon to be) present, and (hopefully, not too distant) future program. The author concentrates on those experiments which are unique to the fixed-target program, in particular hadron structure measurements which usemore » the varied beams and targets available in this mode and the physics results from kaon, hyperon and high statistics charm experiments which are not easily accessible in high p{sub T} hadron collider detectors.« less

  6. Gaudi Evolution for Future Challenges

    NASA Astrophysics Data System (ADS)

    Clemencic, M.; Hegner, B.; Leggett, C.

    2017-10-01

    The LHCb Software Framework Gaudi was initially designed and developed almost twenty years ago, when computing was very different from today. It has also been used by a variety of other experiments, including ATLAS, Daya Bay, GLAST, HARP, LZ, and MINERVA. Although it has been always actively developed all these years, stability and backward compatibility have been favoured, reducing the possibilities of adopting new techniques, like multithreaded processing. R&D efforts like GaudiHive have however shown its potential to cope with the new challenges. In view of the LHC second Long Shutdown approaching and to prepare for the computing challenges for the Upgrade of the collider and the detectors, now is a perfect moment to review the design of Gaudi and plan future developments of the project. To do this LHCb, ATLAS and the Future Circular Collider community joined efforts to bring Gaudi forward and prepare it for the upcoming needs of the experiments. We present here how Gaudi will evolve in the next years and the long term development plans.

  7. Gravitational wave and collider implications of electroweak baryogenesis aided by non-standard cosmology

    DOE PAGES

    Artymowski, Michal; Lewicki, Marek; Wells, James D.

    2017-03-13

    Here, we consider various models realizing baryogenesis during the electroweak phase transition (EWBG). Our focus is their possible detection in future collider experiments and possible observation of gravitational waves emitted during the phase transition. We also discuss the possibility of a non-standard cosmological history which can facilitate EWBG. We show how acceptable parameter space can be extended due to such a modification and conclude that next generation precision experiments such as the ILC will be able to confirm or falsify many models realizing EWBG. We also show that, in general, collider searches are a more powerful probe than gravitational wavemore » searches. However, observation of a deviation from the SM without any hints of gravitational waves can point to models with modified cosmological history that generically enable EWBG with weaker phase transition and thus, smaller GW signals.« less

  8. Development of semiconductor tracking: The future linear collider case

    NASA Astrophysics Data System (ADS)

    Savoy-Navarro, Aurore

    2011-04-01

    An active R&D on silicon tracking for the linear collider, SiLC, is pursued since several years to develop the new generation of large area silicon trackers for the future linear collider(s). The R&D objectives on new sensors, new front end processing of the signal, and the related mechanical and integration challenges for building such large detectors within the proposed detector concepts are described. Synergies and differences with the LHC construction and upgrades are explained. The differences between the linear collider projects, namely the international linear collider, ILC, and the compact linear collider, CLIC, are discussed as well. Two final objectives are presented for the construction of this important sub-detector for the future linear collider experiments: a relatively short term design based on micro-strips combined or not with a gaseous central tracker and a longer term design based on an all-pixel tracker.The R&D objectives on sensors include single sided micro-strips as baseline for the shorter term with the strips from large wafers (at least 6 in), 200 μm thick, 50 μm pitch and the edgeless and alignment friendly options. This work is conducted by SiLC in collaboration with three technical research centers in Italy, Finland, and Spain and HPK. SiLC is studied as well, using advanced Si sensor technologies for higher granularity trackers especially short strips and pixels all based on 3D technology. New Deep Sub-Micron CMOS mix mode (analog and digital) FE and readout electronics are developed to fully process the detector signals currently adapted to the ILC cycle. It is a high-level processing and a fully programmable ASIC; highly fault tolerant. In its latest version, handling 128 channels will equip these next coming years larger size silicon tracking prototypes at test beams. Connection of the FEE chip on the silicon detector especially in the strip case is a major issue. Very preliminary results with inline pitch adapter based on wiring were just achieved. Bump-bonding or 3D vertical interconnect is the other SiLC R&D objective. The goal is to simplify the overall architecture and decrease the material budget of these devices. Three tracking concepts are briefly discussed, two of which are part of the ILC Letter of Intent of the ILD and SiD detector concepts. These last years, SiLC successfully performed beam tests to experience and test these R&D lines.

  9. Gravitational waves from dark first order phase transitions and dark photons

    NASA Astrophysics Data System (ADS)

    Addazi, Andrea; Marcianò, Antonino

    2018-01-01

    Cold Dark Matter particles may interact with ordinary particles through a dark photon, which acquires a mass thanks to a spontaneous symmetry breaking mechanism. We discuss a dark photon model in which the scalar singlet associated to the spontaneous symmetry breaking has an effective potential that induces a first order phase transition in the early Universe. Such a scenario provides a rich phenomenology for electron-positron colliders and gravitational waves interferometers, and may be tested in several different channels. The hidden first order phase transition implies the emission of gravitational waves signals, which may constrain the dark photon’s space of parameters. Compared limits from electron-positron colliders, astrophysics, cosmology and future gravitational waves interferometers such as eLISA, U-DECIGO and BBO are discussed. This highly motivates a cross-checking strategy of data arising from experiments dedicated to gravitational waves, meson factories, the International Linear Collider (ILC), the Circular Electron Positron Collider (CEPC) and other underground direct detection experiments of cold dark matter candidates. Supported by the Shanghai Municipality (KBH1512299) and Fudan University (JJH1512105)

  10. Exploring triplet-quadruplet fermionic dark matter at the LHC and future colliders

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Wei; Bi, Xiao-Jun; Xiang, Qian-Fei; Yin, Peng-Fei; Yu, Zhao-Huan

    2018-02-01

    We study the signatures of the triplet-quadruplet dark matter model at the LHC and future colliders, including the 100 TeV Super Proton-Proton Collider and the 240 GeV Circular Electron Positron Collider. The dark sector in this model contains one fermionic electroweak triplet and two fermionic quadruplets, which have two kinds of Yukawa couplings to the Higgs doublet. Electroweak production signals of the dark sector fermions in the monojet+ ET, disappearing track, and multilepton+ET channels at the LHC and the Super Proton-Proton Collider are investigated. Moreover, we study the loop effects of this model on the Circular Electron Positron Collider precision measurements of e+e-→Z h and h →γ γ . We find that most of the parameter regions allowed by the observed dark matter relic density will be well explored by such direct and indirect searches at future colliders.

  11. Exposing the dark sector with future Z factories

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Wang, Lian-Tao; Wang, Xiao-Ping; Xue, Wei

    2018-05-01

    We investigate the prospects of searching dark sector models via exotic Z -boson decay at future e+e- colliders with Giga Z and Tera Z options. Four general categories of dark sector models, Higgs portal dark matter, vector-portal dark matter, inelastic dark matter, and axionlike particles, are considered. Focusing on channels motivated by the dark sector models, we carry out a model-independent study of the sensitivities of Z factories in probing exotic decays. The limits on branching ratios of the exotic Z decay are typically O (10-6- 10-8.5) for the Giga Z and O (10-7.5- 10-11) for the Tera Z , and they are compared with the projection for the high luminosity LHC. We demonstrate that future Z factories can provide its unique and leading sensitivity and highlight the complementarity with other experiments, including the indirect and direct dark matter search limits and the existing collider limits. Future Z factories will play a leading role in uncovering the hidden sector of the Universe in the future.

  12. Experimental results on chiral magnetic and vortical effects

    DOE PAGES

    Wang, Gang; Wen, Liwen

    2017-01-12

    Various novel transport phenomena in chiral systems result from the interplay of quantum anomalies with magnetic field and vorticity in high-energy heavy-ion collisions and could survive the expansion of the fireball and be detected in experiments. Among them are the chiral magnetic effect, the chiral vortical effect, and the chiral magnetic wave, the experimental searches for which have aroused extensive interest. As a result, the goal of this review is to describe the current status of experimental studies at Relativistic Heavy-Ion Collider at BNL and the Large Hadron Collider at CERN and to outline the future work in experiment neededmore » to eliminate the existing uncertainties in the interpretation of the data.« less

  13. Teaching Future Middle Level Educators to Craft Learning Activities That Enhance Young Adolescent Creativity

    ERIC Educational Resources Information Center

    Hilton, Jason T.

    2016-01-01

    As social and academic forces begin to collide for young adolescents at the beginning of the middle level experience, students experience an unfortunate drop in their creativity. Appropriately trained middle level teachers have the potential to lessen this problem through the use of carefully selected open-ended learning activities that increase…

  14. GARLIC: GAmma Reconstruction at a LInear Collider experiment

    NASA Astrophysics Data System (ADS)

    Jeans, D.; Brient, J.-C.; Reinhard, M.

    2012-06-01

    The precise measurement of hadronic jet energy is crucial to maximise the physics reach of a future Linear Collider. An important ingredient required to achieve this is the efficient identification of photons within hadronic showers. One configuration of the ILD detector concept employs a highly granular silicon-tungsten sampling calorimeter to identify and measure photons, and the GARLIC algorithm described in this paper has been developed to identify photons in such a calorimeter. We describe the algorithm and characterise its performance using events fully simulated in a model of the ILD detector.

  15. Impact of detector simulation in particle physics collider experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elvira, V. Daniel

    Through the last three decades, precise simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detectormore » simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the accuracy of the physics results and publication turnaround, from data-taking to submission. It also presents the economic impact and cost of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data, taxing heavily the performance of simulation and reconstruction software for increasingly complex detectors. Consequently, it becomes urgent to find solutions to speed up simulation software in order to cope with the increased demand in a time of flat budgets. The study ends with a short discussion on the potential solutions that are being explored, by leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering of HEP code for concurrency and parallel computing.« less

  16. Impact of detector simulation in particle physics collider experiments

    DOE PAGES

    Elvira, V. Daniel

    2017-06-01

    Through the last three decades, precise simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detectormore » simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the accuracy of the physics results and publication turnaround, from data-taking to submission. It also presents the economic impact and cost of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data, taxing heavily the performance of simulation and reconstruction software for increasingly complex detectors. Consequently, it becomes urgent to find solutions to speed up simulation software in order to cope with the increased demand in a time of flat budgets. The study ends with a short discussion on the potential solutions that are being explored, by leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering of HEP code for concurrency and parallel computing.« less

  17. Impact of detector simulation in particle physics collider experiments

    NASA Astrophysics Data System (ADS)

    Daniel Elvira, V.

    2017-06-01

    Through the last three decades, accurate simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics (HEP) experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detector simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the precision of the physics results and publication turnaround, from data-taking to submission. It also presents estimates of the cost and economic impact of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data with increasingly complex detectors, taxing heavily the performance of simulation and reconstruction software. Consequently, exploring solutions to speed up simulation and reconstruction software to satisfy the growing demand of computing resources in a time of flat budgets is a matter that deserves immediate attention. The article ends with a short discussion on the potential solutions that are being considered, based on leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering HEP code for concurrency and parallel computing.

  18. Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies

    NASA Astrophysics Data System (ADS)

    Profumo, Stefano; Ramsey-Musolf, Michael J.; Wainwright, Carroll L.; Winslow, Peter

    2015-02-01

    We update the phenomenology of gauge-singlet extensions of the Standard Model scalar sector and their implications for the electroweak phase transition. Considering the introduction of one real scalar singlet to the scalar potential, we analyze present constraints on the potential parameters from Higgs coupling measurements at the Large Hadron Collider (LHC) and electroweak precision observables for the kinematic regime in which no new scalar decay modes arise. We then show how future precision measurements of Higgs boson signal strengths and the Higgs self-coupling could probe the scalar potential parameter space associated with a strong first-order electroweak phase transition. We illustrate using benchmark precision for several future collider options, including the high-luminosity LHC, the International Linear Collider, Triple-Large Electron-Positron collider, the China Electron-Positron Collider, and a 100 TeV proton-proton collider, such as the Very High Energy LHC or the Super Proton-Proton Collider. For the regions of parameter space leading to a strong first-order electroweak phase transition, we find that there exists considerable potential for observable deviations from purely Standard Model Higgs properties at these prospective future colliders.

  19. Quadratic electroweak corrections for polarized Moller scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Aleksejevs, S. Barkanova, Y. Kolomensky, E. Kuraev, V. Zykunov

    2012-01-01

    The paper discusses the two-loop (NNLO) electroweak radiative corrections to the parity violating electron-electron scattering asymmetry induced by squaring one-loop diagrams. The calculations are relevant for the ultra-precise 11 GeV MOLLER experiment planned at Jefferson Laboratory and experiments at high-energy future electron colliders. The imaginary parts of the amplitudes are taken into consideration consistently in both the infrared-finite and divergent terms. The size of the obtained partial correction is significant, which indicates a need for a complete study of the two-loop electroweak radiative corrections in order to meet the precision goals of future experiments.

  20. Flavour physics and the Large Hadron Collider beauty experiment.

    PubMed

    Gibson, Valerie

    2012-02-28

    An exciting new era in flavour physics has just begun with the start of the Large Hadron Collider (LHC). The LHCb (where b stands for beauty) experiment, designed specifically to search for new phenomena in quantum loop processes and to provide a deeper understanding of matter-antimatter asymmetries at the most fundamental level, is producing many new and exciting results. It gives me great pleasure to describe a selected few of the results here-in particular, the search for rare B(0)(s)-->μ+ μ- decays and the measurement of the B(0)(s) charge-conjugation parity-violating phase, both of which offer high potential for the discovery of new physics at and beyond the LHC energy frontier in the very near future.

  1. Funding for LoopFest IV and RADCOR2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bern, Zvi

    This is a request for funds to help run two conferences: RADCOR2015 (the 12th International Symposium on Radiative Corrections) and LoopFest XIV (Radiative Corrections for the LHC and Future Colliders). These conferences will be jointly held June 15--19, 2015 at the Department of Physics and Astronomy at UCLA. These conferences are central to providing theoretical support to the experimental physics programs at particle colliders, including the Large Hadron Collider and possible future colliders.

  2. Future hadron colliders: From physics perspectives to technology R&D

    NASA Astrophysics Data System (ADS)

    Barletta, William; Battaglia, Marco; Klute, Markus; Mangano, Michelangelo; Prestemon, Soren; Rossi, Lucio; Skands, Peter

    2014-11-01

    High energy hadron colliders have been instrumental to discoveries in particle physics at the energy frontier and their role as discovery machines will remain unchallenged for the foreseeable future. The full exploitation of the LHC is now the highest priority of the energy frontier collider program. This includes the high luminosity LHC project which is made possible by a successful technology-readiness program for Nb3Sn superconductor and magnet engineering based on long-term high-field magnet R&D programs. These programs open the path towards collisions with luminosity of 5×1034 cm-2 s-1 and represents the foundation to consider future proton colliders of higher energies. This paper discusses physics requirements, experimental conditions, technological aspects and design challenges for the development towards proton colliders of increasing energy and luminosity.

  3. Optimizing integrated luminosity of future hadron colliders

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael; Schulte, Daniel; Zimmermann, Frank

    2015-10-01

    The integrated luminosity, a key figure of merit for any particle-physics collider, is closely linked to the peak luminosity and to the beam lifetime. The instantaneous peak luminosity of a collider is constrained by a number of boundary conditions, such as the available beam current, the maximum beam-beam tune shift with acceptable beam stability and reasonable luminosity lifetime (i.e., the empirical "beam-beam limit"), or the event pileup in the physics detectors. The beam lifetime at high-luminosity hadron colliders is largely determined by particle burn off in the collisions. In future highest-energy circular colliders synchrotron radiation provides a natural damping mechanism, which can be exploited for maximizing the integrated luminosity. In this article, we derive analytical expressions describing the optimized integrated luminosity, the corresponding optimum store length, and the time evolution of relevant beam parameters, without or with radiation damping, while respecting a fixed maximum value for the total beam-beam tune shift or for the event pileup in the detector. Our results are illustrated by examples for the proton-proton luminosity of the existing Large Hadron Collider (LHC) at its design parameters, of the High-Luminosity Large Hadron Collider (HL-LHC), and of the Future Circular Collider (FCC-hh).

  4. The waning of the WIMP? A review of models, searches, and constraints

    NASA Astrophysics Data System (ADS)

    Arcadi, Giorgio; Dutra, Maíra; Ghosh, Pradipta; Lindner, Manfred; Mambrini, Yann; Pierre, Mathias; Profumo, Stefano; Queiroz, Farinaldo S.

    2018-03-01

    Weakly Interacting Massive Particles (WIMPs) are among the best-motivated dark matter candidates. No conclusive signal, despite an extensive search program that combines, often in a complementary way, direct, indirect, and collider probes, has been detected so far. This situation might change in near future due to the advent of one/multi-TON Direct Detection experiments. We thus, find it timely to provide a review of the WIMP paradigm with focus on a few models which can be probed at best by these facilities. Collider and Indirect Detection, nevertheless, will not be neglected when they represent a complementary probe.

  5. The future of the Large Hadron Collider and CERN.

    PubMed

    Heuer, Rolf-Dieter

    2012-02-28

    This paper presents the Large Hadron Collider (LHC) and its current scientific programme and outlines options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy, as well as upgrades to the LHC and its injectors. This may be followed by a linear electron-positron collider, based on the technology being developed by the Compact Linear Collider and the International Linear Collider collaborations, or by a high-energy electron-proton machine. This contribution describes the past, present and future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward.

  6. Deciphering the MSSM Higgs mass at future hadron colliders

    DOE PAGES

    Agrawal, Prateek; Fan, JiJi; Reece, Matthew; ...

    2017-06-06

    Here, future hadron colliders will have a remarkable capacity to discover massive new particles, but their capabilities for precision measurements of couplings that can reveal underlying mechanisms have received less study. In this work we study the capability of future hadron colliders to shed light on a precise, focused question: is the higgs mass of 125 GeV explained by the MSSM? If supersymmetry is realized near the TeV scale, a future hadron collider could produce huge numbers of gluinos and electroweakinos. We explore whether precision measurements of their properties could allow inference of the scalar masses and tan β withmore » sufficient accuracy to test whether physics beyond the MSSM is needed to explain the higgs mass. We also discuss dark matter direct detection and precision higgs physics as complementary probes of tan β. For concreteness, we focus on the mini-split regime of MSSM parameter space at a 100 TeV pp collider, with scalar masses ranging from 10s to about 1000 TeV.« less

  7. SLC: The End Game

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raimondi, Pantaleo

    The design of the Stanford Linear Collider (SLC) called for a beam intensity far beyond what was practically achievable. This was due to intrinsic limitations in many subsystems and to a lack of understanding of the new physics of linear colliders. Real progress in improving the SLC performance came from precision, non-invasive diagnostics to measure and monitor the beams and from new techniques to control the emittance dilution and optimize the beams. A major contribution to the success of the last 1997-98 SLC run came from several innovative ideas for improving the performance of the Final Focus (FF). This papermore » describes some of the problems encountered and techniques used to overcome them. Building on the SLC experience, we will also present a new approach to the FF design for future high energy linear colliders.« less

  8. Exploring collider aspects of a neutrinophilic Higgs doublet model in multilepton channels

    NASA Astrophysics Data System (ADS)

    Huitu, Katri; Kärkkäinen, Timo J.; Mondal, Subhadeep; Rai, Santosh Kumar

    2018-02-01

    We consider a neutrinophilic Higgs scenario where the Standard Model is extended by one additional Higgs doublet and three generations of singlet right-handed Majorana neutrinos. Light neutrino masses are generated through mixing with the heavy neutrinos via the Type-I seesaw mechanism when the neutrinophilic Higgs gets a vacuum expectation value (VEV). The Dirac neutrino Yukawa coupling in this scenario can be sizable compared to those in the canonical Type-I seesaw mechanism owing to the small neutrinophilic Higgs VEV giving rise to interesting phenomenological consequences. We have explored various signal regions likely to provide a hint of such a scenario at the LHC as well as at future e+e- colliders. We have also highlighted the consequences of light neutrino mass hierarchies in collider phenomenology that can complement the findings of neutrino oscillation experiments.

  9. The Next Linear Collider Program-News

    Science.gov Websites

    The Next Linear Collider at SLAC Navbar The Next Linear Collider In The Press The Secretary of Linear Collider is a high-priority goal of this plan. http://www.sc.doe.gov/Sub/Facilities_for_future/20 -term projects in conceputal stages (the Linear Collider is the highest priority project in this

  10. The Birth of Lepton Colliders in Italy and the United States

    NASA Astrophysics Data System (ADS)

    Paris, Elizabeth

    2003-04-01

    In 1960 the highest center-of-mass energies in particle physics were being achieved via proton synchrotrons utilizing stationary targets. However, efforts were already underway to challenge this hegemony. In addition to Soviet work in Novosibirsk, groups at Stanford University in California and at the Frascati National Laboratories near Rome each had begun original investigation towards one particular type of challenger: colliding beam storage rings. For the group in California, the accomplishment involved creating the potential for feasible experiments. The energetic advantages of the colliding beam configuration had long been accepted - together with its impossibility for realization. The builders of the Princeton-Stanford machine feel that creating usable beams and a reasonable reaction rate is what stood between this concept and its glorious future. For the European builders of AdA, however, the beauty emerges from recognizing the enormous potential inherent in electron-positron annihilations. At least as important for the rise of electron-positron colliders, though, is the role of both of these projects as cultural firsts -- as places where particular sets of physicists got their feet wet associating with beams and beam problems and with the many individuals who were addressing beam problems. The Princeton-Stanford Collider provided experience which its builders would use to move on, functioning as both a technological and political platform for creating what would eventually become SPEAR. For the Roman group, the pursuit of AdA encouraged investigation which applied equally well to their next machine, Adone.

  11. Opportunities for Drell-Yan Physics at RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aschenauer, E.; Bland, L.; Crawford, H.

    Drell-Yan (DY) physics gives the unique opportunity to study the parton structure of nucleons in an experimentally and theoretically clean way. With the availability of polarized proton-proton collisions and asymmetric d+Au collisions at the Relativistic Heavy Ion Collider (RHIC), we have the basic (and unique in the world) tools to address several fundamental questions in QCD, including the expected gluon saturation at low partonic momenta and the universality of transverse momentum dependent parton distribution functions. A Drell-Yan program at RHIC is tied closely to the core physics questions of a possible future electron-ion collider, eRHIC. The more than 80 participantsmore » of this workshop focused on recent progress in these areas by both theory and experiment, trying to address imminent questions for the near and mid-term future.« less

  12. Sterile neutrinos and indirect dark matter searches in IceCube

    NASA Astrophysics Data System (ADS)

    Argüelles, Carlos A.; Kopp, Joachim

    2012-07-01

    If light sterile neutrinos exist and mix with the active neutrino flavors, this mixing will affect the propagation of high-energy neutrinos from dark matter annihilation in the Sun. In particular, new Mikheyev-Smirnov-Wolfenstein resonances can occur, leading to almost complete conversion of some active neutrino flavors into sterile states. We demonstrate how this can weaken IceCube limits on neutrino capture and annihilation in the Sun and how potential future conflicts between IceCube constraints and direct detection or collider data might be resolved by invoking sterile neutrinos. We also point out that, if the dark matter-nucleon scattering cross section and the allowed annihilation channels are precisely measured in direct detection and collider experiments in the future, IceCube can be used to constrain sterile neutrino models using neutrinos from the dark matter annihilation.

  13. Determination of electron-nucleus collisions geometry with forward neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, L.; Aschenauer, E.; Lee, J. H.

    2014-12-29

    There are a large number of physics programs one can explore in electron-nucleus collisions at a future electron-ion collider. Collision geometry is very important in these studies, while the measurement for an event-by-event geometric control is rarely discussed in the prior deep-inelastic scattering experiments off a nucleus. This paper seeks to provide some detailed studies on the potential of tagging collision geometries through forward neutron multiplicity measurements with a zero degree calorimeter. As a result, this type of geometry handle, if achieved, can be extremely beneficial in constraining nuclear effects for the electron-nucleus program at an electron-ion collider.

  14. From many body wee partons dynamics to perfect fluid: a standard model for heavy ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venugopalan, R.

    2010-07-22

    We discuss a standard model of heavy ion collisions that has emerged both from experimental results of the RHIC program and associated theoretical developments. We comment briefly on the impact of early results of the LHC program on this picture. We consider how this standard model of heavy ion collisions could be solidified or falsified in future experiments at RHIC, the LHC and a future Electro-Ion Collider.

  15. Towards TeV-scale electron-positron collisions: the Compact Linear Collider (CLIC)

    NASA Astrophysics Data System (ADS)

    Doebert, Steffen; Sicking, Eva

    2018-02-01

    The Compact Linear Collider (CLIC), a future electron-positron collider at the energy frontier, has the potential to change our understanding of the universe. Proposed to follow the Large Hardron Collider (LHC) programme at CERN, it is conceived for precision measurements as well as for searches for new phenomena.

  16. Detectors for Linear Colliders: Calorimetry at a Future Electron-Positron Collider (3/4)

    ScienceCinema

    Thomson, Mark

    2018-04-16

    Calorimetry will play a central role in determining the physics reach at a future e+e- collider. The requirements for calorimetry place the emphasis on achieving an excellent jet energy resolution. The currently favoured option for calorimetry at a future e+e- collider is the concept of high granularity particle flow calorimetry. Here granularity and a high pattern recognition capability is more important than the single particle calorimetric response. In this lecture I will describe the recent progress in understanding the reach of high granularity particle flow calorimetry and the related R&D; efforts which concentrate on test beam demonstrations of the technological options for highly granular calorimeters. I will also discuss alternatives to particle flow, for example the technique of dual readout calorimetry.

  17. Towards a Future Linear Collider and The Linear Collider Studies at CERN

    ScienceCinema

    Heuer, Rolf-Dieter

    2018-06-15

    During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERN’s linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.

  18. Towards a Future Linear Collider and The Linear Collider Studies at CERN

    ScienceCinema

    Stapnes, Steinar

    2017-12-18

    During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERN’s linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.

  19. 1995 second modulator-klystron workshop: A modulator-klystron workshop for future linear colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    This second workshop examined the present state of modulator design and attempted an extrapolation for future electron-positron linear colliders. These colliders are currently viewed as multikilometer-long accelerators consisting of a thousand or more RF sources with 500 to 1,000, or more, pulsed power systems. The workshop opened with two introductory talks that presented the current approaches to designing these linear colliders, the anticipated RF sources, and the design constraints for pulse power. The cost of main AC power is a major economic consideration for a future collider, consequently the workshop investigated efficient modulator designs. Techniques that effectively apply the artmore » of power conversion, from the AC mains to the RF output, and specifically, designs that generate output pulses with very fast rise times as compared to the flattop. There were six sessions that involved one or more presentations based on problems specific to the design and production of thousands of modulator-klystron stations, followed by discussion and debate on the material.« less

  20. Gaseous Electron Multiplier (GEM) Detectors

    NASA Astrophysics Data System (ADS)

    Gnanvo, Kondo

    2017-09-01

    Gaseous detectors have played a pivotal role as tracking devices in the field of particle physics experiments for the last fifty years. Recent advances in photolithography and micro processing techniques have enabled the transition from Multi Wire Proportional Chambers (MWPCs) and Drift Chambers to a new family of gaseous detectors refer to as Micro Pattern Gaseous Detectors (MPGDs). MPGDs combine the basic gas amplification principle with micro-structure printed circuits to provide detectors with excellent spatial and time resolution, high rate capability, low material budget and high radiation tolerance. Gas Electron Multiplier (GEMs) is a well-established MPGD technology invented by F. Sauli at CERN in 1997 and deployed various high energy physics (HEP) and nuclear NP experiment for tracking systems of current and future NP experiments. GEM detector combines an exceptional high rate capability (1 MHz / mm2) and robustness against harsh radiation environment with excellent position and timing resolution performances. Recent breakthroughs over the past decade have allowed the possibility for large area GEMs, making them cost effective and high-performance detector candidates to play pivotal role in current and future particle physics experiments. After a brief introduction of the basic principle of GEM technology, I will give a brief overview of the GEM detectors used in particle physics experiments over the past decades and especially in the NP community at Thomas Jefferson National Laboratory (JLab) and Brookhaven National Laboratory (BNL). I will follow by a review of state of the art of the new GEM development for the next generation of colliders such as Electron Ion Collider (EIC) or High Luminosity LHC and future Nuclear Physics experiments. I will conclude with a presentation of the CERN-based RD51 collaboration established in 2008 and its major achievements regarding technological developments and applications of MPGDs.

  1. Quartified leptonic color, bound states, and future electron–positron collider

    DOE PAGES

    Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; ...

    2017-04-04

    The [SU(3)] 4 quartification model of Babu, Ma, and Willenbrock (BMW), proposed in 2003, predicts a confining leptonic color SU(2)gauge symmetry, which becomes strong at the keV scale. Also, it predicts the existence of three families of half-charged leptons (hemions) below the TeV scale. These hemions are confined to form bound states which are not so easy to discover at the Large Hadron Collider (LHC). But, just as J/ψand Υ appeared as sharp resonances in e -e +colliders of the 20th century, the corresponding ‘hemionium’ states are expected at a future e -e +collider of the 21st century.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bower, G.

    We summarize the current status and future developments of the North American Group's Java-based system for studying physics and detector design issues at a linear collider. The system is built around Java Analysis Studio (JAS) an experiment-independent Java-based utility for data analysis. Although the system is an integrated package running in JAS, many parts of it are also standalone Java utilities.

  3. Self-sustaining charging of identical colliding particles

    NASA Astrophysics Data System (ADS)

    Siu, Theo; Cotton, Jake; Mattson, Gregory; Shinbrot, Troy

    2014-05-01

    Recent experiments have demonstrated that identical material samples can charge one another after being brought into symmetric contact. The mechanism for this charging is not known. In this article, we use a simplified one-dimensional lattice model to analyze charging in the context of agitated particles. We find that the electric field from a single weakly polarized grain can feed back on itself by polarizing its neighbors, leading to an exponential growth in polarization. We show that, by incorporating partial neutralization between neighboring polarized particles, either uniform alignment of dipoles or complex charge and polarization waves can be produced. We reproduce a polarized state experimentally using identical colliding particles and raise several issues for future study.

  4. R&D for the Future

    NASA Astrophysics Data System (ADS)

    Hübner, Kurt; Treille, Daniel; Schulte, Daniel

    The following sections are included: * The LHC and Beyond * Accelerator Magnets with Ever-Higher Fields * Teasing Performance from Superconductors Old and New * RF Power for CLIC: Acceleration by Deceleration * The Next Energy Frontier e+e- Collider: Innovation in Detectors * Hadron Collider Detectors: A Bright and Energetic Future * References

  5. Sensitivity of the Cherenkov Telescope Array to the detection of a dark matter signal in comparison to direct detection and collider experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balazs, Csaba; Conrad, Jan; Farmer, Ben

    Imaging atmospheric Cherenkov telescopes (IACTs) that are sensitive to potential γ-ray signals from dark matter (DM) annihilation above ~50 GeV will soon be superseded by the Cherenkov Telescope Array (CTA). CTA will have a point source sensitivity an order of magnitude better than currently operating IACTs and will cover a broad energy range between 20 GeV and 300 TeV. Using effective field theory and simplified models to calculate γ-ray spectra resulting from DM annihilation, we compare the prospects to constrain such models with CTA observations of the Galactic center with current and near-future measurements at the Large Hadron Collider (LHC)more » and direct detection experiments. Here, for DM annihilations via vector or pseudoscalar couplings, CTA observations will be able to probe DM models out of reach of the LHC, and, if DM is coupled to standard fermions by a pseudoscalar particle, beyond the limits of current direct detection experiments.« less

  6. Sensitivity of the Cherenkov Telescope Array to the detection of a dark matter signal in comparison to direct detection and collider experiments

    DOE PAGES

    Balazs, Csaba; Conrad, Jan; Farmer, Ben; ...

    2017-10-04

    Imaging atmospheric Cherenkov telescopes (IACTs) that are sensitive to potential γ-ray signals from dark matter (DM) annihilation above ~50 GeV will soon be superseded by the Cherenkov Telescope Array (CTA). CTA will have a point source sensitivity an order of magnitude better than currently operating IACTs and will cover a broad energy range between 20 GeV and 300 TeV. Using effective field theory and simplified models to calculate γ-ray spectra resulting from DM annihilation, we compare the prospects to constrain such models with CTA observations of the Galactic center with current and near-future measurements at the Large Hadron Collider (LHC)more » and direct detection experiments. Here, for DM annihilations via vector or pseudoscalar couplings, CTA observations will be able to probe DM models out of reach of the LHC, and, if DM is coupled to standard fermions by a pseudoscalar particle, beyond the limits of current direct detection experiments.« less

  7. Gauge bosons and heavy quarks: Proceedings of Summer Institute on Particle Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawthorne, J.F.

    1991-01-01

    This report contains papers on the following topics: Z decays and tests of the standard model; future possibilities for LEP; studies of the interactions of electroweak gauge bosons; top quark topics; the next linear collider; electroweak processes in hadron colliders; theoretical topics in B-physics; experimental aspects of B-physics; B-factory storage ring design; rare kaon decays; CP violation in K{sup 0} decays at CERN; recent K{sup 0} decay results from Fermilab E-731; results from LEP on heavy quark physics; review of recent results on heavy flavor production; weak matrix elements and the determination of the weak mixing angles; recent results frommore » CLEO I and a glance at CLEO II data; recent results from ARGUS; neutrino lepton physics with the CHARM 2 detector; recent results from the three TRISTAN experiments; baryon number violation at high energy in the standard model: fact or fiction New particle searches at LEP; review of QCD at LEP; electroweak interactions at LEP; recent results on W physics from the UA2 experiment at the CERN {rho}{bar {rho}} collider; B physics at CDF; and review of particle astrophysics.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchanan, Charles D.; Cline, David B.; Byers, N.

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e{sup +}e{sup {minus}} analysis, {bar P} decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the {phi} factory project; (III) theoretical high-energy physics;more » (IV) H dibaryon search, search for K{sub L}{sup 0} {yields} {pi}{sup 0}{gamma}{gamma} and {pi}{sup 0}{nu}{bar {nu}}, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R D.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e{sup +}e{sup {minus}} analysis, {bar P} decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the {phi} factory project; (III) theoretical high-energy physics;more » (IV) H dibaryon search, search for K{sub L}{sup 0} {yields} {pi}{sup 0}{gamma}{gamma} and {pi}{sup 0}{nu}{bar {nu}}, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R & D.« less

  10. RF pulse compression for future linear colliders

    NASA Astrophysics Data System (ADS)

    Wilson, Perry B.

    1995-07-01

    Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0-1.5 TeV, 5 TeV, and 25 TeV. In order to keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0-1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150-200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30-40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-II system) can be used to reduce the klystron peak power by about a factor of two, or alternatively, to cut the number of klystrons in half for a 1.0-1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.

  11. Non-resonant collider signatures of a singlet-driven electroweak phase transition

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Yi; Kozaczuk, Jonathan; Lewis, Ian M.

    2017-08-01

    We analyze the collider signatures of the real singlet extension of the Standard Model in regions consistent with a strong first-order electroweak phase transition and a singlet-like scalar heavier than the Standard Model-like Higgs. A definitive correlation exists between the strength of the phase transition and the trilinear coupling of the Higgs to two singlet-like scalars, and hence between the phase transition and non-resonant scalar pair production involving the singlet at colliders. We study the prospects for observing these processes at the LHC and a future 100 TeV pp collider, focusing particularly on double singlet production. We also discuss correlations between the strength of the electroweak phase transition and other observables at hadron and future lepton colliders. Searches for non-resonant singlet-like scalar pair production at 100 TeV would provide a sensitive probe of the electroweak phase transition in this model, complementing resonant di-Higgs searches and precision measurements. Our study illustrates a strategy for systematically exploring the phenomenologically viable parameter space of this model, which we hope will be useful for future work.

  12. Non-resonant collider signatures of a singlet-driven electroweak phase transition

    DOE PAGES

    Chen, Chien-Yi; Kozaczuk, Jonathan; Lewis, Ian M.

    2017-08-22

    We analyze the collider signatures of the real singlet extension of the Standard Model in regions consistent with a strong first-order electroweak phase transition and a singlet-like scalar heavier than the Standard Model-like Higgs. A definitive correlation exists between the strength of the phase transition and the trilinear coupling of the Higgs to two singlet-like scalars, and hence between the phase transition and non-resonant scalar pair production involving the singlet at colliders. We study the prospects for observing these processes at the LHC and a future 100 TeV pp collider, focusing particularly on double singlet production. We also discuss correlationsmore » between the strength of the electroweak phase transition and other observables at hadron and future lepton colliders. Searches for non-resonant singlet-like scalar pair production at 100 TeV would provide a sensitive probe of the electroweak phase transition in this model, complementing resonant di-Higgs searches and precision measurements. Our study illustrates a strategy for systematically exploring the phenomenologically viable parameter space of this model, which we hope will be useful for future work.« less

  13. Will there be energy frontier colliders after LHC?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiltsev, Vladimir

    2016-09-15

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here we overview all current options for post-LHC collidersmore » from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics.« less

  14. Exotic decays of the 125 GeV Higgs boson at future e+e- colliders

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Wang, Lian-Tao; Zhang, Hao

    2017-06-01

    The discovery of unexpected properties of the Higgs boson would offer an intriguing opportunity to shed light on some of the most profound puzzles in particle physics. Beyond Standard Model (BSM) decays of the Higgs boson could reveal new physics in a direct manner. Future electron-positron lepton colliders operating as Higgs factories, including CEPC, FCC-ee and ILC, with the advantages of a clean collider environment and large statistics, could greatly enhance sensitivity in searching for these BSM decays. In this work, we perform a general study of Higgs exotic decays at future e+e- lepton colliders, focusing on the Higgs decays with hadronic final states and/or missing energy, which are very challenging for the High-Luminosity program of the Large Hadron Collider (HL-LHC). We show that with simple selection cuts, (10-3-10-5) limits on the Higgs exotic decay branching fractions can be achieved using the leptonic decaying spectator Z boson in the associated production mode e+e-→ ZH. We further discuss the interplay between detector performance and Higgs exotic decays, and other possibilities of exotic decays. Our work is a first step in a comprehensive study of Higgs exotic decays at future lepton colliders, which is a key area of Higgs physics that deserves further investigation. Supported by Fermi Research Alliance, LLC (DE-AC02-07CH11359) with the U.S. Department of Energy, DOE (DE-SC0013642), IHEP(Y6515580U1), and IHEP Innovation (Y4545171Y2)

  15. Connecting dark matter annihilation to the vertex functions of Standard Model fermions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Jason; Light, Christopher, E-mail: jkumar@hawaii.edu, E-mail: lightc@hawaii.edu

    We consider scenarios in which dark matter is a Majorana fermion which couples to Standard Model fermions through the exchange of charged mediating particles. The matrix elements for various dark matter annihilation processes are then related to one-loop corrections to the fermion-photon vertex, where dark matter and the charged mediators run in the loop. In particular, in the limit where Standard Model fermion helicity mixing is suppressed, the cross section for dark matter annihilation to various final states is related to corrections to the Standard Model fermion charge form factor. These corrections can be extracted in a gauge-invariant manner frommore » collider cross sections. Although current measurements from colliders are not precise enough to provide useful constraints on dark matter annihilation, improved measurements at future experiments, such as the International Linear Collider, could improve these constraints by several orders of magnitude, allowing them to surpass the limits obtainable by direct observation.« less

  16. Probing GeV-scale MSSM neutralino dark matter in collider and direct detection experiments

    NASA Astrophysics Data System (ADS)

    Duan, Guang Hua; Wang, Wenyu; Wu, Lei; Yang, Jin Min; Zhao, Jun

    2018-03-01

    Given the recent constraints from the dark matter (DM) direct detections, we examine a light GeV-scale (2-30 GeV) neutralino DM in the alignment limit of the Minimal Supersymmetric Standard Model (MSSM). In this limit without decoupling, the heavy CP-even scalar H plays the role of the Standard Model (SM) Higgs boson while the other scalar h can be rather light so that the DM can annihilate through the h resonance or into a pair of h to achieve the observed relic density. With the current collider and cosmological constraints, we find that such a light neutralino DM above 6 GeV can be excluded by the XENON-1T (2017) limits while the survivied parameter space below 6 GeV can be fully tested by the future germanium-based light dark matter detections (such as CDEX), by the Higgs coupling precison measurements or by the production process e+e- → hA at an electron-positron collider (Higgs factory).

  17. Linear polarization of gluons and photons in unpolarized collider experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pisano, Cristian; Boer, Daniël; Brodsky, Stanley J.

    2013-10-01

    We study azimuthal asymmetries in heavy quark pair production in unpolarized electron-proton and proton-proton collisions, where the asymmetries originate from the linear polarization of gluons inside unpolarized hadrons. We provide cross section expressions and study the maximal asymmetries allowed by positivity, for both charm and bottom quark pair production. The upper bounds on the asymmetries are shown to be very large depending on the transverse momentum of the heavy quarks, which is promising especially for their measurements at a possible future Electron-Ion Collider or a Large Hadron electron Collider. We also study the analogous processes and asymmetries in muon pairmore » production as a means to probe linearly polarized photons inside unpolarized protons. For increasing invariant mass of the muon pair the asymmetries become very similar to the heavy quark pair ones. Finally, we discuss the process dependence of the results that arises due to differences in color flow and address the problem with factorization in case of proton-proton collisions.« less

  18. Crabbing System for an Electron-Ion Collider

    NASA Astrophysics Data System (ADS)

    Castilla, Alejandro

    As high energy and nuclear physicists continue to push further the boundaries of knowledge using colliders, there is an imperative need, not only to increase the colliding beams' energies, but also to improve the accuracy of the experiments, and to collect a large quantity of events with good statistical sensitivity. To achieve the latter, it is necessary to collect more data by increasing the rate at which these pro- cesses are being produced and detected in the machine. This rate of events depends directly on the machine's luminosity. The luminosity itself is proportional to the frequency at which the beams are being delivered, the number of particles in each beam, and inversely proportional to the cross-sectional size of the colliding beams. There are several approaches that can be considered to increase the events statistics in a collider other than increasing the luminosity, such as running the experiments for a longer time. However, this also elevates the operation expenses, while increas- ing the frequency at which the beams are delivered implies strong physical changes along the accelerator and the detectors. Therefore, it is preferred to increase the beam intensities and reduce the beams cross-sectional areas to achieve these higher luminosities. In the case where the goal is to push the limits, sometimes even beyond the machines design parameters, one must develop a detailed High Luminosity Scheme. Any high luminosity scheme on a modern collider considers--in one of their versions--the use of crab cavities to correct the geometrical reduction of the luminosity due to the beams crossing angle. In this dissertation, we present the design and testing of a proof-of-principle compact superconducting crab cavity, at 750 MHz, for the future electron-ion collider, currently under design at Jefferson Lab. In addition to the design and validation of the cavity prototype, we present the analysis of the first order beam dynamics and the integration of the crabbing systems to the interaction region. Following this, we propose the concept of twin crabs to allow machines with variable beam transverse coupling in the interaction region to have full crabbing in only the desired plane. Finally, we present recommendations to extend this work to other frequencies.

  19. Considerations on Energy Frontier Colliders after LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiltsev, Vladimir

    2016-11-15

    Since 1960’s, particle colliders have been in the forefront of particle physics, 29 total have been built and operated, 7 are in operation now. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here wemore » overview all current options for post-LHC colliders from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics. This paper largely follows previous study [1] and the presenta ion given at the ICHEP’2016 conference in Chicago [2].« less

  20. First experimental evidence of hydrodynamic tunneling of ultra-relativistic protons in extended solid copper target at the CERN HiRadMat facility

    NASA Astrophysics Data System (ADS)

    Schmidt, R.; Blanco Sancho, J.; Burkart, F.; Grenier, D.; Wollmann, D.; Tahir, N. A.; Shutov, A.; Piriz, A. R.

    2014-08-01

    A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like the Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.

  1. New results on diamond pixel sensors using ATLAS frontend electronics

    NASA Astrophysics Data System (ADS)

    Keil, M.; Adam, W.; Berdermann, E.; Bergonzo, P.; de Boer, W.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Dulinski, W.; Doroshenko, J.; Doucet, M.; van Eijk, B.; Fallou, A.; Fischer, P.; Fizzotti, F.; Kania, D.; Gan, K. K.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Kass, R.; Knöpfle, K. T.; Koeth, T.; Krammer, M.; Logiudice, A.; mac Lynne, L.; Manfredotti, C.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pan, L. S.; Pernicka, M.; Perera, L.; Riester, J. L.; Roe, S.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Trischuk, W.; Tromson, D.; Vittone, E.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.

    2003-03-01

    Diamond is a promising sensor material for future collider experiments due to its radiation hardness. Diamond pixel sensors have been bump bonded to an ATLAS pixel readout chip using PbSn solder bumps. Single chip devices have been characterised by lab measurements and in a high-energy pion beam at CERN. Results on charge collection, spatial resolution, efficiency and the charge carrier lifetime are presented.

  2. Beyond the Large Hadron Collider: A First Look at Cryogenics for CERN Future Circular Colliders

    NASA Astrophysics Data System (ADS)

    Lebrun, Philippe; Tavian, Laurent

    Following the first experimental discoveries at the Large Hadron Collider (LHC) and the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study, conducted with the collaborative participation of interested institutes world-wide, considers several options for very high energy hadron-hadron, electron-positron and hadron-electron colliders to be installed in a quasi-circular underground tunnel in the Geneva basin, with a circumference of 80 km to 100 km. All these machines would make intensive use of advanced superconducting devices, i.e. high-field bending and focusing magnets and/or accelerating RF cavities, thus requiring large helium cryogenic systems operating at 4.5 K or below. Based on preliminary sets of parameters and layouts for the particle colliders under study, we discuss the main challenges of their cryogenic systems and present first estimates of the cryogenic refrigeration capacities required, with emphasis on the qualitative and quantitative steps to be accomplished with respect to the present state-of-the-art.

  3. Exotic decays of the 125 GeV Higgs boson at future e +e – colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhen; Wang, Lian -Tao; Zhang, Hao

    Discovery of unexpected properties of the Higgs boson offers an intriguing opportunity of shedding light on some of the most profound puzzles in particle physics. The Beyond Standard Model (BSM) decays of the Higgs boson could reveal new physics in a direct manner. Future electron-positron lepton colliders operating as Higgs factories, including CEPC, FCC-ee and ILC, with the advantages of a clean collider environment and large statistics, could greatly enhance the sensitivity in searching for these BSM decays. In this work, we perform a general study of Higgs exotic decays at futuremore » $e^+e^-$ lepton colliders, focusing on the Higgs decays with hadronic final states and/or missing energy, which are very challenging for the High-Luminosity program of the Large Hadron Collider (HL-LHC). We show that with simple selection cuts, $$O(10^{-3}\\sim10^{-5})$$ limits on the Higgs exotic decay branching fractions can be achieved using the leptonic decaying spectator $Z$ boson in the associated production mode $$e^+e^-\\rightarrow Z H$$. We further discuss the interplay between the detector performance and Higgs exotic decay, and other possibilities of exotic decays. Finally, our work is a first step in a comprehensive study of Higgs exotic decays at future lepton colliders, which is a key ingredient of Higgs physics that deserves further investigation.« less

  4. Exotic decays of the 125 GeV Higgs boson at future e +e – colliders

    DOE PAGES

    Liu, Zhen; Wang, Lian -Tao; Zhang, Hao

    2017-06-01

    Discovery of unexpected properties of the Higgs boson offers an intriguing opportunity of shedding light on some of the most profound puzzles in particle physics. The Beyond Standard Model (BSM) decays of the Higgs boson could reveal new physics in a direct manner. Future electron-positron lepton colliders operating as Higgs factories, including CEPC, FCC-ee and ILC, with the advantages of a clean collider environment and large statistics, could greatly enhance the sensitivity in searching for these BSM decays. In this work, we perform a general study of Higgs exotic decays at futuremore » $e^+e^-$ lepton colliders, focusing on the Higgs decays with hadronic final states and/or missing energy, which are very challenging for the High-Luminosity program of the Large Hadron Collider (HL-LHC). We show that with simple selection cuts, $$O(10^{-3}\\sim10^{-5})$$ limits on the Higgs exotic decay branching fractions can be achieved using the leptonic decaying spectator $Z$ boson in the associated production mode $$e^+e^-\\rightarrow Z H$$. We further discuss the interplay between the detector performance and Higgs exotic decay, and other possibilities of exotic decays. Finally, our work is a first step in a comprehensive study of Higgs exotic decays at future lepton colliders, which is a key ingredient of Higgs physics that deserves further investigation.« less

  5. Imaging hadron calorimetry for future Lepton Colliders

    NASA Astrophysics Data System (ADS)

    Repond, José

    2013-12-01

    To fully exploit the physics potential of a future Lepton Collider requires detectors with unprecedented jet energy and dijet-mass resolution. To meet these challenges, detectors optimized for the application of Particle Flow Algorithms (PFAs) are being designed and developed. The application of PFAs, in turn, requires calorimeters with very fine segmentation of the readout, so-called imaging calorimeters. This talk reviews progress in imaging hadron calorimetry as it is being developed for implementation in a detector at a future Lepton Collider. Recent results from the large prototypes built by the CALICE Collaboration, such as the Scintillator Analog Hadron Calorimeter (AHCAL) and the Digital Hadron Calorimeters (DHCAL and SDHCAL) are being presented. In addition, various R&D efforts beyond the present prototypes are being discussed.

  6. Laser ion source for isobaric heavy ion collider experiment.

    PubMed

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is (96)Ru + (96)Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

  7. ISR effects for resonant Higgs production at future lepton colliders

    DOE PAGES

    Greco, Mario; Han, Tao; Liu, Zhen

    2016-11-04

    We study the effects of the initial state radiation on themore » $s$-channel Higgs boson resonant production at $$\\mu^+\\mu^-$$ and $e^+e^-$ colliders by convoluting with the beam energy spread profile of the collider and the Breit-Wigner resonance profile of the signal. We assess their impact on both the Higgs signal and SM backgrounds for the leading decay channels $$h\\rightarrow b\\bar b,\\ WW^*$$. In conclusion, our study improves the existing analyses of the proposed future resonant Higgs factories and provides further guidance for the accelerator designs with respect to the physical goals.« less

  8. International Workshop on Linear Colliders 2010

    ScienceCinema

    Lebrun, Ph.

    2018-06-20

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland). This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options. Contact Workshop Secretariat  IWLC2010 is hosted by CERN.

  9. International Workshop on Linear Colliders 2010

    ScienceCinema

    Yamada, Sakue

    2018-05-24

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland) This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options. Contact Workshop Secretariat  IWLC2010 is hosted by CERN

  10. Quadrupole Alignment and Trajectory Correction for Future Linear Colliders: SLC Tests of a Dispersion-Free Steering Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assmann, R

    2004-06-08

    The feasibility of future linear colliders depends on achieving very tight alignment and steering tolerances. All proposals (NLC, JLC, CLIC, TESLA and S-BAND) currently require a total emittance growth in the main linac of less than 30-100% [1]. This should be compared with a 100% emittance growth in the much smaller SLC linac [2]. Major advances in alignment and beam steering techniques beyond those used in the SLC are necessary for the next generation of linear colliders. In this paper, we present an experimental study of quadrupole alignment with a dispersion-free steering algorithm. A closely related method (wakefield-free steering) takesmore » into account wakefield effects [3]. However, this method can not be studied at the SLC. The requirements for future linear colliders lead to new and unconventional ideas about alignment and beam steering. For example, no dipole correctors are foreseen for the standard trajectory correction in the NLC [4]; beam steering will be done by moving the quadrupole positions with magnet movers. This illustrates the close symbiosis between alignment, beam steering and beam dynamics that will emerge. It is no longer possible to consider the accelerator alignment as static with only a few surveys and realignments per year. The alignment in future linear colliders will be a dynamic process in which the whole linac, with thousands of beam-line elements, is aligned in a few hours or minutes, while the required accuracy of about 5 pm for the NLC quadrupole alignment [4] is a factor of 20 higher than in existing accelerators. The major task in alignment and steering is the accurate determination of the optimum beam-line position. Ideally one would like all elements to be aligned along a straight line. However, this is not practical. Instead a ''smooth curve'' is acceptable as long as its wavelength is much longer than the betatron wavelength of the accelerated beam. Conventional alignment methods are limited in accuracy by errors in the survey and the fiducials. Beam-based alignment methods ideally only depend upon the BPM resolution and generally provide much better precision. Many of those techniques are described in other contributions to this workshop. In this paper we describe our experiences with a dispersion-free steering algorithm for linacs. This algorithm was first suggested by Raubenheimer and Ruth in 1990 [5]. It h as been studied in simulations for NLC [5], TESLA [6], the S-BAND proposal [7] and CLIC [8]. The dispersion-free steering technique can be applied to the whole linac at once and returns the alignment (or trajectory) that minimizes the dispersive emittance growth of the beam. Thus it allows an extremely fast alignment of the beam-line. As we will show dispersion-free steering is only sensitive to quadrupole misalignments. Wakefield-free steering [3] as mentioned before is a closely related technique that minimizes the emittance growth caused by both dispersion and wakefields. Due to hardware limitations (i.e. insufficient relative range of power supplies) we could not study this method experimentally in the SLC. However, its systematics are very similar to those of dispersion-free steering. The studies of dispersion-free steering which are presented made extensive use of the unique potential of the SLC as the only operating linear collider. We used it to study the performance and problems of advanced beam-based optimization tools in a real beam-line environment and on a large scale. We should mention that the SLC has utilized beam-based alignment for years [9], using the difference of electron and positron trajectories. This method, however, cannot be used in future linear colliders. The goal of our work is to demonstrate the performance of advanced beam-based alignment techniques in linear colliders and to anticipate possible reality-related problems. Those can then be solved in the design state for the next generation of linear colliders.« less

  11. Accelerator physics and technology challenges of very high energy hadron colliders

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir D.

    2015-08-01

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton-proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  12. Accelerator physics and technology challenges of very high energy hadron colliders

    DOE PAGES

    Shiltsev, Vladimir D.

    2015-08-20

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton–proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This article briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  13. Intense beams at the micron level for the Next Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seeman, J.T.

    1991-08-01

    High brightness beams with sub-micron dimensions are needed to produce a high luminosity for electron-positron collisions in the Next Linear Collider (NLC). To generate these small beam sizes, a large number of issues dealing with intense beams have to be resolved. Over the past few years many have been successfully addressed but most need experimental verification. Some of these issues are beam dynamics, emittance control, instrumentation, collimation, and beam-beam interactions. Recently, the Stanford Linear Collider (SLC) has proven the viability of linear collider technology and is an excellent test facility for future linear collider studies.

  14. Prospects for colliders and collider physics to the 1 PeV energy scale

    NASA Astrophysics Data System (ADS)

    King, Bruce J.

    2000-08-01

    A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing our progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC—one each of e+e- and hadron colliders and three μ+μ- colliders — and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R&D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory.

  15. Tests of Scintillator+WLS Strips for Muon System at Future Colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denisov, Dmitri; Evdokimov, Valery; Lukić, Strahinja

    2015-10-11

    Prototype scintilator+WLS strips with SiPM readout for muon system at future colliders were tested for light yield, time resolution and position resolution. Depending on the configuration, light yield of up to 36 photoelectrons per muon per SiPM has been achieved, as well as time resolution of 0.5 ns and position resolution of ~ 7 cm.

  16. Matter, Energy, Space and Time: The International Linear Collider Physics Prospects and International Aspects

    NASA Astrophysics Data System (ADS)

    Wagner, Albrecht

    2006-04-01

    Over the past century, physicists have sought to explain the character of the matter and energy in our universe, to show how the basic forces of nature and the building blocks of matter come about, and to explore the fabric of space and time. In the past three decades, experiments at laboratories around the world have given us a precise confirmation of the underlying theory called the standard model. These particle physics advances have a direct impact for our understanding of the structure of the universe, both at its inception in the Big Bang, and in its evolution to the present and future. The final synthesis is not yet fully clear, but we know with confidence that major discoveries expanding the standard model framework will occur at the next generation of accelerators. The Large Hadron Collider (LHC) being built at CERN will take us into the discovery realm. The proposed International Linear Collider (ILC) will extend the discoveries and provide a wealth of precision measurements that are essential for giving deeper understanding of their meaning, and pointing the way to further evolution of particle physics in the future. A world-wide consensus has formed for a baseline ILC project at energies of 500 GeV and beyond. The choice of the superconducting technology as basis for the ILC has paved the way for a global design effort which has now taken full speed.

  17. Searches for dark photons at e{sup +}e{sup −} colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bossi, Fabio

    2013-11-07

    Searches for new, light, neutral vector particles are being pursued by several different experiments in the world, using e{sup +}e{sup −} collsion data at center-of-mass energies ranging between ∼1 and ∼10 GeV. In this paper I will review the most recent results from KLOE, BESIII, BaBar and Belle and briefly discuss open issues and future perspectives in the field.

  18. Constraining the right-handed gauge boson mass from lepton number violating meson decays in a low scale left-right model

    NASA Astrophysics Data System (ADS)

    Mandal, Sanjoy; Mitra, Manimala; Sinha, Nita

    2017-08-01

    We analyze the lepton number violating (LNV) meson decays that arise in a TeV scale left-right symmetry model. The right-handed Majorana neutrino N along with the right-handed or Standard Model gauge bosons mediate the meson decays and provide a resonant enhancement of the rates if the mass of N (MN) lies in the range ˜(100 MeV - 5 GeV ) . Using the expected upper limits on the number of events for the LNV decay modes M1+→ℓ+ℓ+ π- (M1=B,D,Ds, K ), we derive constraints plausible on the mass of the right handed charged gauge boson by future searches at the ongoing NA62 and LHCb experiments at CERN, the upcoming Belle II at SuperKEK, as well as at the proposed future experiments, SHiP and FCC-ee. These bounds are complimentary to the limits from the same-sign dilepton search at the Large Hadron Collider (LHC). The very high intensity of charmed mesons expected to be produced at SHiP will result in a far more stringent bound, MW R>18.4 TeV (corresponding to MN=1.46 GeV ), than the other existing bounds from collider and neutrinoless double beta decay searches.

  19. Hadron collider tests of neutrino mass-generating mechanisms

    NASA Astrophysics Data System (ADS)

    Ruiz, Richard Efrain

    The Standard Model of particle physics (SM) is presently the best description of nature at small distances and high energies. However, with tiny but nonzero neutrino masses, a Higgs boson mass unstable under radiative corrections, and little guidance on understanding the hierarchy of fermion masses, the SM remains an unsatisfactory description of nature. Well-motivated scenarios that resolve these issues exist but also predict extended gauge (e.g., Left-Right Symmetric Models), scalar (e.g., Supersymmetry), and/or fermion sectors (e.g., Seesaw Models). Hence, discovering such new states would have far-reaching implications. After reviewing basic tenets of the SM and collider physics, several beyond the SM (BSM) scenarios that alleviate these shortcomings are investigated. Emphasis is placed on the production of a heavy Majorana neutrinos at hadron colliders in the context of low-energy, effective theories that simultaneously explain the origin of neutrino masses and their smallness compared to other elementary fermions, the so-called Seesaw Mechanisms. As probes of new physics, rare top quark decays to Higgs bosons in the context of the SM, the Types I and II Two Higgs Doublet Model (2HDM), and the semi-model independent framework of Effective Field Theory (EFT) have also been investigated. Observation prospects and discovery potentials of these models at current and future collider experiments are quantified.

  20. Double elementary Goldstone Higgs boson production in future linear colliders

    NASA Astrophysics Data System (ADS)

    Guo, Yu-Chen; Yue, Chong-Xing; Liu, Zhi-Cheng

    2018-03-01

    The Elementary Goldstone Higgs (EGH) model is a perturbative extension of the Standard Model (SM), which identifies the EGH boson as the observed Higgs boson. In this paper, we study pair production of the EGH boson in future linear electron positron colliders. The cross-sections in the TeV region can be changed to about ‑27%, 163% and ‑34% for the e+e‑→ Zhh, e+e‑→ νν¯hh and e+e‑→ tt¯hh processes with respect to the SM predictions, respectively. According to the expected measurement precisions, such correction effects might be observed in future linear colliders. In addition, we compare the cross-sections of double SM-like Higgs boson production with the predictions in other new physics models.

  1. Proceedings of the XXI International Workshop High Energy Physics and Quantum Field Theory (QFTHEP 2013). 23 30 June, 2013. Saint Petersburg Area, Russia

    NASA Astrophysics Data System (ADS)

    The Workshop continues a series of workshops started by the Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University (SINP MSU) in 1985 and conceived with the purpose of presenting topics of current interest and providing a stimulating environment for scientific discussion on new developments in theoretical and experimental high energy physics and physical programs for future colliders. Traditionally the list of workshop attendees includes a great number of active young scientists and students from Russia and other countries. This year the Workshop is organized jointly by the SINP MSU and the SPbSU and it will take place in the holiday hotel "Baltiets" situated in a picturesque place of the Karelian Isthmus on the shore of the Gulf of Finland in the suburb of the second largest Russian city Saint Petersburg. Scientific program, the main topics to be covered are: * Higgs searches and other experimental results from the LHC and the Tevatron; impact of the Higgs-like boson observed * Physics prospects at Linear Colliders and super B-factories * Extensions of the Standard Model and their phenomenological consequences at the LHC and Linear Colliders * Higher order corrections and resummations for collider phenomenology * Automatic calculations and Monte Carlo simulations in high energy physics * LHC/LC and astroparticle/cosmology connections * Modern nuclear physics and relativistic nucleous-nucleous collisions * Detectors for future experiments in high energy physics The Workshop will include plenary and two parallel afternoon sessions. The plenary sessions will consist of invited lectures. The afternoon sessions will include original talks. Further details are given at http://qfthep.sinp.msu.ru

  2. Towards future circular colliders

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael; Zimmermann, Frank

    2016-09-01

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) presently provides proton-proton collisions at a center-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics program will extend through the second half of the 2030's. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ˜100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCCee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3 S n superconductor, for the FCC-hh hadron collider, and a highly-efficient superconducting radiofrequency system for the FCC-ee lepton collider. Following the FCC concept, the Institute of High Energy Physics (IHEP) in Beijing has initiated a parallel design study for an e + e - Higgs factory in China (CEPC), which is to be succeeded by a high-energy hadron collider (SPPC). At present a tunnel circumference of 54 km and a hadron collider c.m. energy of about 70 TeV are being considered. After a brief look at the LHC, this article reports the motivation and the present status of the FCC study, some of the primary design challenges and R&D subjects, as well as the emerging global collaboration.

  3. News | Computing

    Science.gov Websites

    Support News Publications Computing for Experiments Computing for Neutrino and Muon Physics Computing for Collider Experiments Computing for Astrophysics Research and Development Accelerator Modeling ComPASS - Impact of Detector Simulation on Particle Physics Collider Experiments Daniel Elvira's paper "Impact

  4. Proceedings of the 1982 DPF summer study on elementary particle physics and future facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donaldson, R.; Gustafson, R.; Paige, F.

    1982-01-01

    This book presents the papers given at a conference on high energy physics. Topics considered at the conference included synchrotron radiation, testing the standard model, beyond the standard model, exploring the limits of accelerator technology, novel detector ideas, lepton-lepton colliders, lepton-hadron colliders, hadron-hadron colliders, fixed-target accelerators, non-accelerator physics, and sociology.

  5. Alternate approaches to future electron-positron linear colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loew, G.A.

    1998-07-01

    The purpose of this article is two-fold: to review the current international status of various design approaches to the next generation of e{sup +}e{sup {minus}} linear colliders, and on the occasion of his 80th birthday, to celebrate Richard B. Neal`s many contributions to the field of linear accelerators. As it turns out, combining these two tasks is a rather natural enterprise because of Neal`s long professional involvement and insight into many of the problems and options which the international e{sup +}e{sup {minus}} linear collider community is currently studying to achieve a practical design for a future machine.

  6. Standard model effective field theory: Integrating out neutralinos and charginos in the MSSM

    NASA Astrophysics Data System (ADS)

    Han, Huayong; Huo, Ran; Jiang, Minyuan; Shu, Jing

    2018-05-01

    We apply the covariant derivative expansion method to integrate out the neutralinos and charginos in the minimal supersymmetric Standard Model. The results are presented as set of pure bosonic dimension-six operators in the Standard Model effective field theory. Nontrivial chirality dependence in fermionic covariant derivative expansion is discussed carefully. The results are checked by computing the h γ γ effective coupling and the electroweak oblique parameters using the Standard Model effective field theory with our effective operators and direct loop calculation. In global fitting, the proposed lepton collider constraint projections, special phenomenological emphasis is paid to the gaugino mass unification scenario (M2≃2 M1) and anomaly mediation scenario (M1≃3.3 M2). These results show that the precision measurement experiments in future lepton colliders will provide a very useful complementary job in probing the electroweakino sector, in particular, filling the gap of the soft lepton plus the missing ET channel search left by the traditional collider, where the neutralino as the lightest supersymmetric particle is very degenerated with the next-to-lightest chargino/neutralino.

  7. Nuclear physics from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Shanahan, Phiala

    2017-09-01

    I will discuss the current state and future scope of numerical Lattice Quantum Chromodynamics (LQCD) calculations of nuclear matrix elements. The goal of the program is to provide direct QCD calculations of nuclear observables relevant to experimental programs, including double-beta decay matrix elements, nuclear corrections to axial matrix elements relevant to long-baseline neutrino experiments and nuclear sigma terms needed for theory predictions of dark matter cross-sections at underground detectors. I will discuss the progress and challenges on these fronts, and also address recent work constraining a gluonic analogue of the EMC effect, which will be measurable at a future electron-ion collider.

  8. Linear Collider Physics Resource Book Snowmass 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronan

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decademore » or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide. This last point merits further emphasis. If a new accelerator could be designed and built in a few years, it would make sense to wait for the results of each accelerator before planning the next one. Thus, we would wait for the results from the Tevatron before planning the LHC experiments, and wait for the LHC before planning any later stage. In reality accelerators require a long time to construct, and they require such specialized resources and human talent that delay can cripple what would be promising opportunities. In any event, we believe that the case for the linear collider is so compelling and robust that we can justify this facility on the basis of our current knowledge, even before the Tevatron and LHC experiments are done. The physics prospects for the linear collider have been studied intensively for more than a decade, and arguments for the importance of its experimental program have been developed from many different points of view. This book provides an introduction and a guide to this literature. We hope that it will allow physicists new to the consideration of linear collider physics to start from their own personal perspectives and develop their own assessments of the opportunities afforded by a linear collider.« less

  9. Design of a High Luminosity 100 TeV Proton-Antiproton Collider

    NASA Astrophysics Data System (ADS)

    Oliveros Tautiva, Sandra Jimena

    Currently new physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. A 10 34 cm-2 s-1 luminosity 100 TeV proton-antiproton collider is explored with 7x the energy of the LHC. The dipoles are 4.5 T to reduce cost. A proton-antiproton collider is selected as a future machine for several reasons. The cross section for many high mass states is 10 times higher in pp than pp collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per bunch crossing, because lower beam currents can produce the same rare event rates. Events are also more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller beta* for higher luminosity. To adjust to antiproton beam losses (burn rate), a Fermilab-like antiproton source would be adapted to disperse the beam into 12 different momentum channels, using electrostatic septa, to increase antiproton momentum capture 12 times. At Fermilab, antiprotons were stochastically cooled in one Debuncher and one Accumulator ring. Because the stochastic cooling time scales as the number of particles, two options of 12 independent cooling systems are presented. One electron cooling ring might follow the stochastic cooling rings for antiproton stacking. Finally antiprotons in the collider ring would be recycled during runs without leaving the collider ring, by joining them to new bunches with snap bunch coalescence and synchrotron damping. These basic ideas are explored in this work on a future 100 TeV proton-antiproton collider and the main parameters are presented.

  10. Design of a High Luminosity 100 TeV Proton Antiproton Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveros Tuativa, Sandra Jimena

    2017-04-01

    Currently new physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. A 10more » $$^{\\,34}$$ cm$$^{-2}$$ s$$^{-1}$$ luminosity 100 TeV proton-antiproton collider is explored with 7$$\\times$$ the energy of the LHC. The dipoles are 4.5\\,T to reduce cost. A proton-antiproton collider is selected as a future machine for several reasons. The cross section for many high mass states is 10 times higher in $$p\\bar{p}$$ than $pp$ collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per bunch crossing, because lower beam currents can produce the same rare event rates. Events are also more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller $$\\beta^{*}$$ for higher luminosity. To adjust to antiproton beam losses (burn rate), a Fermilab-like antiproton source would be adapted to disperse the beam into 12 different momentum channels, using electrostatic septa, to increase antiproton momentum capture 12 times. At Fermilab, antiprotons were stochastically cooled in one Debuncher and one Accumulator ring. Because the stochastic cooling time scales as the number of particles, two options of 12 independent cooling systems are presented. One electron cooling ring might follow the stochastic cooling rings for antiproton stacking. Finally antiprotons in the collider ring would be recycled during runs without leaving the collider ring, by joining them to new bunches with snap bunch coalescence and synchrotron damping. These basic ideas are explored in this work on a future 100 TeV proton-antiproton collider and the main parameters are presented.« less

  11. Singlet-catalyzed electroweak phase transitions in the 100 TeV frontier

    NASA Astrophysics Data System (ADS)

    Kotwal, Ashutosh V.; Ramsey-Musolf, Michael J.; No, Jose Miguel; Winslow, Peter

    2016-08-01

    We study the prospects for probing a gauge singlet scalar-driven strong first-order electroweak phase transition with a future proton-proton collider in the 100 TeV range. Singlet-Higgs mixing enables resonantly enhanced di-Higgs production, potentially aiding discovery prospects. We perform Monte Carlo scans of the parameter space to identify regions associated with a strong first-order electroweak phase transition, analyze the corresponding di-Higgs signal, and select a set of benchmark points that span the range of di-Higgs signal strengths. For the b b ¯γ γ and 4 τ final states, we investigate discovery prospects for each benchmark point for the high-luminosity phase of the Large Hadron Collider and for a future p p collider with √{s }=50 , 100, or 200 TeV. We find that any of these future collider scenarios could significantly extend the reach beyond that of the high-luminosity LHC, and that with √{s }=100 TeV (200 TeV) and 30 ab-1 , the full region of parameter space favorable to strong first-order electroweak phase transitions is almost fully (fully) discoverable.

  12. Crabbing system for an electron-ion collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castilla, Alejandro

    2017-05-01

    As high energy and nuclear physicists continue to push further the boundaries of knowledge using colliders, there is an imperative need, not only to increase the colliding beams' energies, but also to improve the accuracy of the experiments, and to collect a large quantity of events with good statistical sensitivity. To achieve the latter, it is necessary to collect more data by increasing the rate at which these processes are being produced and detected in the machine. This rate of events depends directly on the machine's luminosity. The luminosity itself is proportional to the frequency at which the beams aremore » being delivered, the number of particles in each beam, and inversely proportional to the cross-sectional size of the colliding beams. There are several approaches that can be considered to increase the events statistics in a collider other than increasing the luminosity, such as running the experiments for a longer time. However, this also elevates the operation expenses, while increasing the frequency at which the beams are delivered implies strong physical changes along the accelerator and the detectors. Therefore, it is preferred to increase the beam intensities and reduce the beams cross-sectional areas to achieve these higher luminosities. In the case where the goal is to push the limits, sometimes even beyond the machines design parameters, one must develop a detailed High Luminosity Scheme. Any high luminosity scheme on a modern collider considers|in one of their versions|the use of crab cavities to correct the geometrical reduction of the luminosity due to the beams crossing angle. In this dissertation, we present the design and testing of a proof-of-principle compact superconducting crab cavity, at 750 MHz, for the future electron-ion collider, currently under design at Jefferson Lab. In addition to the design and validation of the cavity prototype, we present the analysis of the first order beam dynamics and the integration of the crabbing systems to the interaction region. Following this, we propose the concept of twin crabs to allow machines with variable beam transverse coupling in the interaction region to have full crabbing in only the desired plane. Finally, we present recommendations to extend this work to other frequencies.« less

  13. Detectors for Linear Colliders: Physics Requirements and Experimental Conditions (1/4)

    ScienceCinema

    Battaglia, Marco

    2018-01-12

    How is the anticipated physics program of a future e+e- collider shaping the R&D; for new detectors in collider particle physics ? This presentation will review the main physics requirements and experimental conditions comparing to LHC and LEP. In particular, I shall discuss how e+e- experimentation is expected to change moving from LEP-2 up to multi-TeV energies.

  14. Preliminary design of CERN Future Circular Collider tunnel: first evaluation of the radiation environment in critical areas for electronics

    NASA Astrophysics Data System (ADS)

    Infantino, Angelo; Alía, Rubén García; Besana, Maria Ilaria; Brugger, Markus; Cerutti, Francesco

    2017-09-01

    As part of its post-LHC high energy physics program, CERN is conducting a study for a new proton-proton collider, called Future Circular Collider (FCC-hh), running at center-of-mass energies of up to 100 TeV in a new 100 km tunnel. The study includes a 90-350 GeV lepton collider (FCC-ee) as well as a lepton-hadron option (FCC-he). In this work, FLUKA Monte Carlo simulation was extensively used to perform a first evaluation of the radiation environment in critical areas for electronics in the FCC-hh tunnel. The model of the tunnel was created based on the original civil engineering studies already performed and further integrated in the existing FLUKA models of the beam line. The radiation levels in critical areas, such as the racks for electronics and cables, power converters, service areas, local tunnel extensions was evaluated.

  15. Model identification of new heavy Z‧ bosons at ILC with polarized beams

    NASA Astrophysics Data System (ADS)

    Pankov, A. A.; Tsytrinov, A. V.

    2017-12-01

    Extra neutral gauge bosons, Z‧s, are predicted by many theoretical scenarios of physics beyond the Standard Model, and intensive searches for their signatures will be performed at present and future high energy colliders. It is quite possible that Z‧s are heavy enough to lie beyond the discovery reach expected at the CERN Large Hadron Collider LHC, in which case only indirect signatures of Z‧ exchanges may occur at future colliders, through deviations of the measured cross sections from the Standard Model predictions. We here discuss in this context the expected sensitivity to Z‧ parameters of fermion-pair production cross sections at the planned International Linear Collider (ILC), especially as regards the potential of distinguishing different Z‧ models once such deviations are observed. Specifically, we evaluate the discovery and identification reaches on Z‧ gauge bosons pertinent to the E 6, LR, ALR, and SSM classes of models at the ILC.

  16. Light Higgsino and gluino in R-invariant direct Gauge mediation

    NASA Astrophysics Data System (ADS)

    Nagai, Ryo; Yokozaki, Norimi

    2018-03-01

    We provide a simple solution to the μ-Bμ problem in the "R-invariant direct gauge mediation model". With the solution, the Higgsino and gluino are predicted to be light as O (100) GeV and O (1) TeV, respectively. Those gluino and Higgsino can be accessible at the LHC and future collider experiments. Moreover, dangerous dimension five operators inducing rapid proton decays are naturally suppressed by the R-symmetry.

  17. First experimental evidence of hydrodynamic tunneling of ultra–relativistic protons in extended solid copper target at the CERN HiRadMat facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, R.; Grenier, D.; Wollmann, D.

    2014-08-15

    A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like themore » Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.« less

  18. GUT models at current and future hadron colliders and implications to dark matter searches

    NASA Astrophysics Data System (ADS)

    Arcadi, Giorgio; Lindner, Manfred; Mambrini, Yann; Pierre, Mathias; Queiroz, Farinaldo S.

    2017-08-01

    Grand Unified Theories (GUT) offer an elegant and unified description of electromagnetic, weak and strong interactions at high energy scales. A phenomenological and exciting possibility to grasp GUT is to search for TeV scale observables arising from Abelian groups embedded in GUT constructions. That said, we use dilepton data (ee and μμ) that has been proven to be a golden channel for a wide variety of new phenomena expected in theories beyond the Standard Model to probe GUT-inspired models. Since heavy dilepton resonances feature high signal selection efficiencies and relatively well-understood backgrounds, stringent and reliable bounds can be placed on the mass of the Z‧ gauge boson arising in such theories. In this work, we obtain 95% C.L. limits on the Z‧ mass for several GUT-models using current and future proton-proton colliders with √{ s} = 13 TeV , 33 TeV ,and 100 TeV, and put them into perspective with dark matter searches in light of the next generation of direct detection experiments.

  19. High-performance DIRC detector for the future Electron Ion Collider experiment

    NASA Astrophysics Data System (ADS)

    Kalicy, G.; Allison, L.; Cao, T.; Dzhygadlo, R.; Hartlove, T.; Horn, T.; Hyde, C.; Ilieva, Y.; Nadel-Turonski, P.; Park, K.; Peters, K.; Schwarz, C.; Schwiening, J.; Stevens, J.; Xi, W.; Zorn, C.

    2018-04-01

    Excellent particle identification (PID) is an essential requirement for a future Electron-Ion Collider (EIC) detector. Identification of the hadrons in the final state is critical to study how different quark flavors contribute to nucleon properties. A detector based on the Detection of Internally Reflected Cherenkov light (DIRC) principle, with a radial size of only a few cm, is a perfect solution for those requirements. The R&D process performed by the EIC PID consortium (eRD14) is focused on designing a high-performance DIRC that would extend the momentum coverage well beyond the state-of-the-art, allowing 3 standard deviations or more separation of π/K up to 6 GeV/c, e/π up to 1.8 GeV/c, and p/K up to 10 GeV/c. A key component to reach such a performance is a special 3-layer compound lens. This article describes the status of the High-Performance DIRC R&D for the EIC detector, with a focus on the detailed Monte Carlo simulation results and performance tests of the 3-layer lens.

  20. LINEAR COLLIDER PHYSICS RESOURCE BOOK FOR SNOWMASS 2001.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ABE,T.; DAWSON,S.; HEINEMEYER,S.

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decademore » or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup {minus}} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup {minus}} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup {minus}} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup {minus}} experiments can provide.« less

  1. Linear Collider Physics Resource Book for Snowmass 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peskin, Michael E

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decademore » or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide.« less

  2. Probing 6D operators at future e - e + colliders

    NASA Astrophysics Data System (ADS)

    Chiu, Wen Han; Leung, Sze Ching; Liu, Tao; Lyu, Kun-Feng; Wang, Lian-Tao

    2018-05-01

    We explore the sensitivities at future e - e + colliders to probe a set of six-dimensional operators which can modify the SM predictions on Higgs physics and electroweak precision measurements. We consider the case in which the operators are turned on simultaneously. Such an analysis yields a "conservative" interpretation on the collider sensitivities, complementary to the "optimistic" scenario where the operators are individually probed. After a detail analysis at CEPC in both "conservative" and "optimistic" scenarios, we also considered the sensitivities for FCC-ee and ILC. As an illustration of the potential of constraining new physics models, we applied sensitivity analysis to two benchmarks: holographic composite Higgs model and littlest Higgs model.

  3. Working Group Report: Higgs Boson

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, Sally; Gritsan, Andrei; Logan, Heather

    2013-10-30

    This report summarizes the work of the Energy Frontier Higgs Boson working group of the 2013 Community Summer Study (Snowmass). We identify the key elements of a precision Higgs physics program and document the physics potential of future experimental facilities as elucidated during the Snowmass study. We study Higgs couplings to gauge boson and fermion pairs, double Higgs production for the Higgs self-coupling, its quantum numbers and $CP$-mixing in Higgs couplings, the Higgs mass and total width, and prospects for direct searches for additional Higgs bosons in extensions of the Standard Model. Our report includes projections of measurement capabilities frommore » detailed studies of the Compact Linear Collider (CLIC), a Gamma-Gamma Collider, the International Linear Collider (ILC), the Large Hadron Collider High-Luminosity Upgrade (HL-LHC), Very Large Hadron Colliders up to 100 TeV (VLHC), a Muon Collider, and a Triple-Large Electron Positron Collider (TLEP).« less

  4. Physics and Analysis at a Hadron Collider - An Introduction (1/3)

    ScienceCinema

    None

    2018-05-11

    This is the first lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. This first lecture provides a brief introduction to hadron collider physics and collider detector experiments as well as offers some analysis guidelines. The lectures are aimed at graduate students.

  5. The case for future hadron colliders from B → K (*) μ + μ - decays

    NASA Astrophysics Data System (ADS)

    Allanach, B. C.; Gripaios, Ben; You, Tevong

    2018-03-01

    Recent measurements in B → K (*) μ + μ - decays are somewhat discrepant with Standard Model predictions. They may be harbingers of new physics at an energy scale potentially accessible to direct discovery. We estimate the sensitivity of future hadron colliders to the possible new particles that may be responsible for the anomalies at tree-level: leptoquarks or Z's. We consider luminosity upgrades for a 14 TeV LHC, a 33 TeV LHC, and a 100 TeV pp collider such as the FCC-hh. In the most conservative and pessimistic models, for narrow particles with perturbative couplings, Z' masses up to 20 TeV and leptoquark masses up to 41 TeV may in principle explain the anomalies. Coverage of Z' models is excellent: a 33 TeV 1 ab-1 LHC is expected to cover most of the parameter space up to 8 TeV in mass, whereas the 100 TeV FCC-hh with 10 ab-1 will cover all of it. A smaller portion of the leptoquark parameter space is covered by future colliders: for example, in a μ + μ - jj di-leptoquark search, a 100 TeV 10 ab-1 collider has a projected sensitivity up to leptoquark masses of 12 TeV (extendable to 21 TeV with a strong coupling for single leptoquark production).

  6. Design of an AdvancedTCA board management controller (IPMC)

    NASA Astrophysics Data System (ADS)

    Mendez, J.; Bobillier, V.; Haas, S.; Joos, M.; Mico, S.; Vasey, F.

    2017-03-01

    The AdvancedTCA (ATCA) standard has been selected as the hardware platform for the upgrade of the back-end electronics of the CMS and ATLAS experiments of the Large Hadron Collider (LHC) . In this context, the electronic systems for experiments group at CERN is running a project to evaluate, specify, design and support xTCA equipment. As part of this project, an Intelligent Platform Management Controller (IPMC) for ATCA blades, based on a commercial solution, has been designed to be used on existing and future ATCA blades. This paper reports on the status of this project presenting the hardware and software developments.

  7. Experimental Overview of the Search for Chiral Effects at RHIC

    NASA Astrophysics Data System (ADS)

    Wang, Gang

    2017-01-01

    In high-energy heavy-ion collisions, various novel transport phenomena in local chiral domains result from the interplay of quantum anomalies with magnetic field and vorticity, and could survive the expansion of the fireball and be detected in experiments. Among these phenomena are the chiral magnetic effect, the chiral vortical effect and the chiral magnetic wave, the experimental searches for which have aroused extensive interest. This review will describe the current status of experimental studies at Relativistic Heavy Ion Collider at BNL, and outline the future work in experiment needed to eliminate the existing uncertainties in the interpretation of the data.

  8. Novel Application of Density Estimation Techniques in Muon Ionization Cooling Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohayai, Tanaz Angelina; Snopok, Pavel; Neuffer, David

    The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate muon beam ionization cooling for the first time and constitutes a key part of the R&D towards a future neutrino factory or muon collider. Beam cooling reduces the size of the phase space volume occupied by the beam. Non-parametric density estimation techniques allow very precise calculation of the muon beam phase-space density and its increase as a result of cooling. These density estimation techniques are investigated in this paper and applied in order to estimate the reduction in muon beam size in MICE under various conditions.

  9. Implementation of an object oriented track reconstruction model into multiple LHC experiments*

    NASA Astrophysics Data System (ADS)

    Gaines, Irwin; Gonzalez, Saul; Qian, Sijin

    2001-10-01

    An Object Oriented (OO) model (Gaines et al., 1996; 1997; Gaines and Qian, 1998; 1999) for track reconstruction by the Kalman filtering method has been designed for high energy physics experiments at high luminosity hadron colliders. The model has been coded in the C++ programming language and has been successfully implemented into the OO computing environments of both the CMS (1994) and ATLAS (1994) experiments at the future Large Hadron Collider (LHC) at CERN. We shall report: how the OO model was adapted, with largely the same code, to different scenarios and serves the different reconstruction aims in different experiments (i.e. the level-2 trigger software for ATLAS and the offline software for CMS); how the OO model has been incorporated into different OO environments with a similar integration structure (demonstrating the ease of re-use of OO program); what are the OO model's performance, including execution time, memory usage, track finding efficiency and ghost rate, etc.; and additional physics performance based on use of the OO tracking model. We shall also mention the experience and lessons learned from the implementation of the OO model into the general OO software framework of the experiments. In summary, our practice shows that the OO technology really makes the software development and the integration issues straightforward and convenient; this may be particularly beneficial for the general non-computer-professional physicists.

  10. Time and position resolution of the scintillator strips for a muon system at future colliders

    DOE PAGES

    Denisov, Dmitri; Evdokimov, Valery; Lukic, Strahinja

    2016-03-31

    In this study, prototype scintilator+WLS strips with SiPM readout for a muon system at future colliders were tested for light yield, time resolution and position resolution. Depending on the configuration, light yield of up to 36 photoelectrons per muon per SiPM has been observed, as well as time resolution of 0.45 ns and position resolution along the strip of 7.7 cm.

  11. Research and Development of Wires and Cables for High-Field Accelerator Magnets

    DOE PAGES

    Barzi, Emanuela; Zlobin, Alexander V.

    2016-02-18

    The latest strategic plans for High Energy Physics endorse steadfast superconducting magnet technology R&D for future Energy Frontier Facilities. This includes 10 to 16 T Nb3Sn accelerator magnets for the luminosity upgrades of the Large Hadron Collider and eventually for a future 100 TeV scale proton-protonmore » $(pp)$ collider. This paper describes the multi-decade R&D investment in the $$Nb_3Sn$$ superconductor technology, which was crucial to produce the first reproducible 10 to 12 T accelerator-quality dipoles and quadrupoles, as well as their scale-up. We also indicate prospective research areas in superconducting $$Nb_3Sn$$ wires and cables to achieve the next goals for superconducting accelerator magnets. Emphasis is on increasing performance and decreasing costs while pushing the $$Nb_3Sn$$ technology to its limits for future $pp$ colliders.« less

  12. COLLIDE: Collisions into Dust Experiment

    NASA Technical Reports Server (NTRS)

    Colwell, Joshua E.

    1999-01-01

    The Collisions Into Dust Experiment (COLLIDE) was completed and flew on STS-90 in April and May of 1998. After the experiment was returned to Earth, the data and experiment were analyzed. Some anomalies occurred during the flight which prevented a complete set of data from being obtained. However, the experiment did meet its criteria for scientific success and returned surprising results on the outcomes of very low energy collisions into powder. The attached publication, "Low Velocity Microgravity Impact Experiments into Simulated Regolith," describes in detail the scientific background, engineering, and scientific results of COLLIDE. Our scientific conclusions, along with a summary of the anomalies which occurred during flight, are contained in that publication. We offer it as our final report on this grant.

  13. Gravitational mass of relativistic matter and antimatter

    DOE PAGES

    Kalaydzhyan, Tigran

    2015-10-13

    The universality of free fall, the weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, m g, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear – current direct observations of trapped antihydrogen suggest the limits -65 < m g/m <110 not excluding the so-calledmore » antigravity phenomenon, i.e. repulsion of the antimatter by Earth. Here we demonstrate an indirect bound 0.96 < m g/m < 1.04 on the gravitational mass of relativistic electrons and positrons coming from the absence of the vacuum Cherenkov radiation at the Large Electron–Positron Collider (LEP) and stability of photons at the Tevatron collider in presence of the annual variations of the solar gravitational potential. Our result clearly rules out the speculated antigravity. By considering the absolute potential of the Local Supercluster (LS), we also predict the bounds 1 -4 ×10 -7 < m g/m <1 +2 ×10 -7 for an electron and positron. Lastly, we comment on a possibility of performing complementary tests at the future International Linear Collider (ILC) and Compact Linear Collider (CLIC).« less

  14. Gravitational mass of relativistic matter and antimatter

    NASA Astrophysics Data System (ADS)

    Kalaydzhyan, Tigran

    2015-12-01

    The universality of free fall, the weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, mg, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear - current direct observations of trapped antihydrogen suggest the limits - 65

  15. LCFIPlus: A framework for jet analysis in linear collider studies

    NASA Astrophysics Data System (ADS)

    Suehara, Taikan; Tanabe, Tomohiko

    2016-02-01

    We report on the progress in flavor identification tools developed for a future e+e- linear collider such as the International Linear Collider (ILC) and Compact Linear Collider (CLIC). Building on the work carried out by the LCFIVertex collaboration, we employ new strategies in vertex finding and jet finding, and introduce new discriminating variables for jet flavor identification. We present the performance of the new algorithms in the conditions simulated using a detector concept designed for the ILC. The algorithms have been successfully used in ILC physics simulation studies, such as those presented in the ILC Technical Design Report.

  16. Singlet-catalyzed electroweak phase transitions in the 100 TeV frontier

    DOE PAGES

    Kotwal, Ashutosh V.; Ramsey-Musolf, Michael J.; No, Jose Miguel; ...

    2016-08-23

    We study the prospects for probing a gauge singlet scalar-driven strong first-order electroweak phase transition with a future proton-proton collider in the 100 TeV range. Singlet-Higgs mixing enables resonantly enhanced di-Higgs production, potentially aiding discovery prospects. We perform Monte Carlo scans of the parameter space to identify regions associated with a strong first-order electroweak phase transition, analyze the corresponding di-Higgs signal, and select a set of benchmark points that span the range of di-Higgs signal strengths. For the bmore » $$\\bar{b}$$γγ and 4τ final states, we investigate discovery prospects for each benchmark point for the high-luminosity phase of the Large Hadron Collider and for a future pp collider with s=50, 100, or 200 TeV. We find that any of these future collider scenarios could significantly extend the reach beyond that of the high-luminosity LHC, and that with s=100 TeV (200 TeV) and 30 ab -1, the full region of parameter space favorable to strong first-order electroweak phase transitions is almost fully (fully) discoverable.« less

  17. Improved formalism for precision Higgs coupling fits

    NASA Astrophysics Data System (ADS)

    Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon; Karl, Robert; List, Jenny; Ogawa, Tomohisa; Peskin, Michael E.; Tian, Junping

    2018-03-01

    Future e+e- colliders give the promise of model-independent determinations of the couplings of the Higgs boson. In this paper, we present an improved formalism for extracting Higgs boson couplings from e+e- data, based on the effective field theory description of corrections to the Standard Model. We apply this formalism to give projections of Higgs coupling accuracies for stages of the International Linear Collider and for other proposed e+e- colliders.

  18. Progress towards next generation hadron colliders: FCC-hh, HE-LHC, and SPPC

    NASA Astrophysics Data System (ADS)

    Zimmermann, Frank; EuCARD-2 Extreme Beams Collaboration; Future Circular Collider (FCC) Study Collaboration

    2017-01-01

    A higher-energy circular proton collider is generally considered to be the only path available in this century for exploring energy scales well beyond the reach of the Large Hadron Collider (LHC) presently in operation at CERN. In response to the 2013 Update of the European Strategy for Particle Physics and aligned with the 2014 US ``P5'' recommendations, the international Future Circular Collider (FCC) study, hosted by CERN, is designing such future frontier hadron collider. This so-called FCC-hh will provide proton-proton collisions at a centre-of-mass energy of 100 TeV, with unprecedented luminosity. The FCC-hh energy goal is reached by combining higher-field, 16 T magnets, based on Nb3Sn superconductor, and a new 100 km tunnel connected to the LHC complex. In addition to the FCC-hh proper, the FCC study is also exploring the possibility of a High-Energy LHC (HE-LHC), with a centre-of-mass energy of 25-27 TeV, as could be achieved in the existing 27 km LHC tunnel using the FCC-hh magnet technology. A separate design effort centred at IHEP Beijing aims at developing and constructing a similar collider in China, with a smaller circumference of about 54 km, called SPPC. Assuming even higher-field 20 T magnets, by relying on high-temperature superconductor, the SPPC could reach a c.m. energy of about 70 TeV. This presentation will report the motivation and the present status of the R&D for future hadron colliders, a comparison of the three designs under consideration, the major challenges, R&D topics, the international technology programs, and the emerging global collaboration. Work supported by the European Commission under Capacities 7th Framework Programme project EuCARD-2, Grant Agreement 312453, and the HORIZON 2020 project EuroCirCol, Grant Agreement 654305.

  19. PREFACE: Joint IPPP Durham/Cockcroft Institute/ICFA Workshop on Advanced QED methods for Future Accelerators

    NASA Astrophysics Data System (ADS)

    Bailey, I. R.; Barber, D. P.; Chattopadhyay, S.; Hartin, A.; Heinzl, T.; Hesselbach, S.; Moortgat-Pick, G. A.

    2009-11-01

    The joint IPPP Durham/Cockcroft Institute/ICFA workshop on advanced QED methods for future accelerators took place at the Cockcroft Institute in early March 2009. The motivation for the workshop was the need for a detailed consideration of the physics processes associated with beam-beam effects at the interaction points of future high-energy electron-positron colliders. There is a broad consensus within the particle physics community that the next international facility for experimental high-energy physics research beyond the Large Hadron Collider at CERN should be a high-luminosity electron-positron collider working at the TeV energy scale. One important feature of such a collider will be its ability to deliver polarised beams to the interaction point and to provide accurate measurements of the polarisation state during physics collisions. The physics collisions take place in very dense charge bunches in the presence of extremely strong electromagnetic fields of field strength of order of the Schwinger critical field strength of 4.4×1013 Gauss. These intense fields lead to depolarisation processes which need to be thoroughly understood in order to reduce uncertainty in the polarisation state at collision. To that end, this workshop reviewed the formalisms for describing radiative processes and the methods of calculation in the future strong-field environments. These calculations are based on the Furry picture of organising the interaction term of the Lagrangian. The means of deriving the transition probability of the most important of the beam-beam processes - Beamsstrahlung - was reviewed. The workshop was honoured by the presentations of one of the founders, V N Baier, of the 'Operator method' - one means for performing these calculations. Other theoretical methods of performing calculations in the Furry picture, namely those due to A I Nikishov, V I Ritus et al, were reviewed and intense field quantum processes in fields of different form - namely those present in intense lasers - were also presented. Within the Furry picture the lowest order physics processes are represented by one vertex Feynman diagrams. Additionally, higher order processes in the Furry picture are thought to be important and are still not fully studied. The Advanced QED methods workshop also benefited greatly from reports on ongoing and planned experimental work on quantum processes in intense external fields. Some of the experiments reviewed were the NA43 and NA63 experiments using the inter atomic fields in aligned crystals at CERN. In the past, evidence has been obtained from successful experiments using an intense laser at the SLAC experiment E144. The possibility now exists for new experiments with intense laser light with the planned XFEL at DESY and the European Extreme Light Infrastructure. For upcoming accelerator projects, computer simulations of the first order processes in the Furry Picture during the bunch-bunch collision are being performed using the programs CAIN and Guinea-Pig++. The implementation of spin dynamics in these simulation programs was reported on at the workshop. This relatively small workshop generated a very productive intermix of theoretical, experimental and computational developments covering this important field of physics. Fruitful discussions took place covering improvements to the models, estimations of the remaining theoretical uncertainties and future updates to the existing simulations. It was felt that ongoing workshops in the same field would be of benefit to all those involved. The organisers would like to express their sincere thanks to all of the attendees for their contributions, to the staff of the Cockcroft Institute for hosting the workshop, to the IPPP at Durham for providing substantial funding and administrative support, and to ICFA for their sponsorship. We would also like to thank IOP Publishing for their assistance in publishing our proceedings in the Journal of Physics: Conference Series.

  20. Hadron-collider limits on new electroweak interactions from the heterotic string

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    del Aguila, F.; Moreno, J.M.; Quiros, M.

    1990-01-01

    We evaluate the {ital Z}{prime}{r arrow}{ital l}{sup +}l{sup {minus}} cross section at present and future hadron colliders, for the minimal (E{sub 6}) extended electroweak models inspired by superstrings (including renormalization effects on new gauge couplings and new mixing angles). Popular models are discussed for comparison. Analytical expressions for the bounds on the mass of a new gauge boson, {ital M}{sub {ital Z}{prime}}, as a function of the bound on the ratio {ital R}{equivalent to}{sigma}({ital Z}{prime}){ital B}(Z{prime}{r arrow}l{sup +}{ital l}{sup {minus}})/{sigma}({ital Z}){ital B} ({ital Z}{r arrow}{ital l}{sup +}{ital l}{sup {minus}}), are given for the CERN S{ital p {bar p}}S, Fermilab Teva-more » tron, Serpukhov UNK, CERN Large Hadron Collider, and Superconducting Super Collider for the different models. In particular, the {ital M}{sub {ital Z}{prime}} bounds from the present {ital R} limit at CERN, as well as from the eventually available {ital R} limits at Fermilab and at the future hadron colliders (after three months of running at the expected luminosity), are given explicitly.« less

  1. Coherent Beam-Beam Instability in Collisions with a Large Crossing Angle

    NASA Astrophysics Data System (ADS)

    Ohmi, K.; Kuroo, N.; Oide, K.; Zhou, D.; Zimmermann, F.

    2017-09-01

    In recent years the "crab-waist collision" scheme [P. Raimondi, Proceedings of 2nd SuperB Workshop, Frascati, 2006.; M. Zobov et al., Phys. Rev. Lett. 104, 174801 (2010), 10.1103/PhysRevLett.104.174801] has become popular for circular e+ e- colliders. The designs of several future colliders are based on this scheme. So far the beam-beam effects for collisions under a large crossing angle with or without crab waist were mostly studied using weak-strong simulations. We present here strong-strong simulations showing a novel strong coherent head-tail instability, which can limit the performance of proposed future colliders. We explain the underlying instability mechanism starting from the "cross-wake force" induced by the beam-beam interaction. Using this beam-beam wake, the beam-beam head tail modes are studied by an eigenmode analysis. The instability may affect all collider designs based on the crab-waist scheme. We suggest an experimental verification at SuperKEKB during its commissioning phase II.

  2. Electrons and Mirror Symmetry

    ScienceCinema

    Kumar, Krishna

    2017-12-09

    The neutral weak force between an electron and a target particle, mediated by the Z boson, can be isolated by measuring the fractional change under a mirror reflection of the scattering probability of relativistic longitudinally polarized electrons off unpolarized targets. This technique yields neutral weak force measurements at a length scale of 1 femtometer, in contrast to high energy collider measurements that probe much smaller length scales. Study of the variation of the weak force over a range of length scales provides a stringent test of theory, complementing collider measurements. We describe a recent measurement of the neutral weak force between two electrons by the E158 experiment at the Stanford Linear Accelerator Center. While the weak force between an electron and positron has been extensively studied, that between two electrons had never directly been measured. We conclude by discussing prospects for even more precise measurements at future facilities.

  3. Improved formalism for precision Higgs coupling fits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon

    Future e +e – colliders give the promise of model-independent determinations of the couplings of the Higgs boson. In this paper, we present an improved formalism for extracting Higgs boson couplings from e +e – data, based on the effective field theory description of corrections to the Standard Model. Lastly, we apply this formalism to give projections of Higgs coupling accuracies for stages of the International Linear Collider and for other proposed e +e – colliders.

  4. Improved formalism for precision Higgs coupling fits

    DOE PAGES

    Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon; ...

    2018-03-20

    Future e +e – colliders give the promise of model-independent determinations of the couplings of the Higgs boson. In this paper, we present an improved formalism for extracting Higgs boson couplings from e +e – data, based on the effective field theory description of corrections to the Standard Model. Lastly, we apply this formalism to give projections of Higgs coupling accuracies for stages of the International Linear Collider and for other proposed e +e – colliders.

  5. Relativistic Hydrodynamics for Heavy-Ion Collisions

    ERIC Educational Resources Information Center

    Ollitrault, Jean-Yves

    2008-01-01

    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…

  6. The phenomenology of maverick dark matter

    NASA Astrophysics Data System (ADS)

    Krusberg, Zosia Anna Celina

    Astrophysical observations from galactic to cosmological scales point to a substantial non-baryonic component to the universe's total matter density. Although very little is presently known about the physical properties of dark matter, its existence offers some of the most compelling evidence for physics beyond the standard model (BSM). In the weakly interacting massive particle (WIMP) scenario, the dark matter consists of particles that possess weak-scale interactions with the particles of the standard model, offering a compelling theoretical framework that allows us to understand the relic abundance of dark matter as a natural consequence of the thermal history of the early universe. From the perspective of particle physics phenomenology, the WIMP scenario is appealing for two additional reasons. First, many theories of BSM physics contain attractive WIMP candidates. Second, the weak-scale interactions between WIMPs and standard model particles imply the possibility of detecting scatterings between relic WIMPs and detector nuclei in direct detection experiments, products of WIMP annihilations at locations throughout the galaxy in indirect detection programs, and WIMP production signals at high-energy particle colliders. In this work, we use an effective field theory approach to study model-independent dark matter phenomenology in direct detection and collider experiments. The maverick dark matter scenario is defined by an effective field theory in which the WIMP is the only new particle within the energy range accessible to the Large Hadron Collider (LHC). Although certain assumptions are necessary to keep the problem tractable, we describe our WIMP candidate generically by specifying only its spin and dominant interaction form with standard model particles. Constraints are placed on the masses and coupling constants of the maverick WIMPs using the Wilkinson Microwave Anisotropy Probe (WMAP) relic density measurement and direct detection exclusion data from both spin-independent (XENON100 and SuperCDMS) and spin-dependent (COUPP) experiments. We further study the distinguishability of maverick WIMP production signals at the Tevatron and the LHC---at its early and nominal configurations---using standard simulation packages, place constraints on maverick WIMP properties using existing collider data, and determine projected mass reaches in future data from both colliders. We find ourselves in a unique era of theoretically-motivated, high-precision dark matter searches that hold the potential to give us important insights, not only into the nature of dark matter, but also into the physics that lies beyond the standard model.

  7. Studies for a Dedicated B Detector at the Fermilab Collider

    NASA Astrophysics Data System (ADS)

    McBride, Patricia

    1996-06-01

    The observation of CP violation in the B system is one of the great experimental challenges of the next decade. Several B factories are already planned, however, there will be many interesting measurements awaiting a second generation of B exeriments. Studies are being carried out to design a dedicated collider B experiment for the Tevatron at Fermilab. A dedicated B detector at a hadron collider will have a physics reach beyond that of experiments scheduled to begin operation before the end of the decade.

  8. Design study of an optical cavity for a future photon collider at ILC

    NASA Astrophysics Data System (ADS)

    Klemz, G.; Mönig, K.; Will, I.

    2006-08-01

    Hard photons well above 100 GeV have to be generated in a future photon collider which essentially will be based on the infrastructure of the planned International Linear Collider (ILC). The energy of near-infrared laser photons will be boosted by Compton backscattering against a high-energy relativistic electron beam. For high effectiveness, a very powerful laser system is required that exceeds today's state-of-the-art capabilities. In this paper a design of an auxiliary passive cavity is discussed that resonantly enhances the peak-power of the laser. The properties and prospects of such a cavity are addressed on the basis of the specifications for the European TeV Energy Superconducting Linear Accelerator (TESLA) proposal. Those of the ILC are expected to be similar.

  9. Dark spectroscopy at lepton colliders

    NASA Astrophysics Data System (ADS)

    Hochberg, Yonit; Kuflik, Eric; Murayama, Hitoshi

    2018-03-01

    Rich and complex dark sectors are abundant in particle physics theories. Here, we propose performing spectroscopy of the mass structure of dark sectors via mono-photon searches at lepton colliders. The energy of the mono-photon tracks the invariant mass of the invisible system it recoils against, which enables studying the resonance structure of the dark sector. We demonstrate this idea with several well-motivated models of dark sectors. Such spectroscopy measurements could potentially be performed at Belle II, BES-III and future low-energy lepton colliders.

  10. Top quark studies at hadron colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinervo, P.K.

    1997-01-01

    The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and DO Collaborations are reviewed, including the top quark cross section, mass, branching fractions, and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.

  11. Spontaneous C P -violation in the simplest little Higgs model and its future collider tests: The scalar sector

    NASA Astrophysics Data System (ADS)

    Mao, Ying-nan

    2018-04-01

    We propose spontaneous C P violation in the simplest little Higgs model. In this model, the pseudoscalar field can acquire a nonzero vacuum expectation value. This leads to a mixing between the two scalars with different C P charge, which means that spontaneous C P violation occurs. It is also a connection between the composite Higgs mechanism and C P violation. Facing the experimental constraints, the model is still viable for both scenarios in which the extra scalar appears below or around the electroweak scale. We also discuss the future collider tests of C P violation in the scalar sector through measuring h2Z Z and h1h2Z' vertices (see the definitions of the particles in the text), which provide new motivations for future e+e- and p p colliders. This also shows the importance of the vector-vector-scalar- and vector-scalar-scalar-type vertices in discovering C P -violation effects in the scalar sector.

  12. Minimal supersymmetric B - L extension of the standard model, heavy H and light h Higgs boson production and decay at future e + e - linear colliders

    NASA Astrophysics Data System (ADS)

    Ramírez-Sánchez, F.; Gutierrez-Rodríguez, A.; Hernández-Ruiz, M. A.

    2017-10-01

    We study the phenomenology of the light h and heavy H Higgs boson production and decay in the context of a U(1) B - L extension of the standard model with an additional Z´ boson at future e + e - linear colliders with center-of-mass energies of √𝑠 = 500 - 3000 GeV and integrated luminosities of L = 500 - 2000 fb-1. The study includes the processes e + e - → (Z, Z´) → Zh and e + e - → (Z, Z´) → ZH, considering both the resonant and non-resonant effects. We find that the total number of expected Zh and ZH events can reach 106 and 105, respectively, which is a very optimistic scenario allowing us to perform precision measurements for both Higgs bosons h and H, as well as for the Z‧ boson in future high-energy and high-luminosity e + e - colliders.

  13. Learning from Higgs physics at future Higgs factories

    NASA Astrophysics Data System (ADS)

    Gu, Jiayin; Li, Honglei; Liu, Zhen; Su, Shufang; Su, Wei

    2017-12-01

    Future Higgs factories can reach impressive precision on Higgs property measurements. In this paper, instead of conventional focus of Higgs precision in certain interaction bases, we explore its sensitivity to new physics models at the electron-positron colliders. In particular, we study two categories of new physics models, Standard Model (SM) with a real scalar singlet extension, and Two Higgs Double Model (2HDM) as examples of weakly-interacting models, Minimal Composite Higgs Model (MCHM) and three typical patterns of the more general operator counting for strong interacting models as examples of strong dynamics. We perform a global fit to various Higgs search channels to obtain the 95% C.L. constraints on the model parameter space. In the SM with a singlet extension, we obtain the limits on the singlet-doublet mixing angle sin θ, as well as the more general Wilson coefficients of the induced higher dimensional operators. In the 2HDM, we analyze tree level effects in tan β vs. cos( β - α) plane, as well as the one-loop contributions from the heavy Higgs bosons in the alignment limit to obtain the constraints on heavy Higgs masses for different types of 2HDM. In strong dynamics models, we obtain lower limits on the strong dynamics scale. In addition, once deviations of Higgs couplings are observed, they can be used to distinguish different models. We also compare the sensitivity of various future Higgs factories, namely Circular Electron Positron Collider (CEPC), Future Circular Collider (FCC)-ee and International Linear Collider (ILC).

  14. Testing B-violating signatures from exotic instantons in future colliders

    NASA Astrophysics Data System (ADS)

    Addazi, Andrea; Kang, Xian-Wei; Khlopov, Maxim Yu.

    2017-09-01

    We discuss possible implications of exotic stringy instantons for baryon-violating signatures in future colliders. In particular, we discuss high-energy quark collisions and transitions. In principle, the process can be probed by high-luminosity electron-positron colliders. However, we find that an extremely high luminosity is needed in order to provide a (somewhat) stringent bound compared to the current data on NN → ππ,KK. On the other hand, (exotic) instanton-induced six-quark interactions can be tested in near future high-energy colliders beyond LHC, at energies around 20-100 TeV. The Super proton-proton Collider (SppC) would be capable of such measurement given the proposed energy level of 50-90 TeV. Comparison with other channels is made. In particular, we show the compatibility of our model with neutron-antineutron and NN → ππ,KK bounds. A. A.’s work was Supported in part by the MIUR research grant “Theoretical Astroparticle Physics" PRIN 2012CPPYP7. XWK's work is partly Supported by the DFG and the NSFC through funds provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” when he was in Jülich, and by MOST, Taiwan, (104-2112-M-001-022) from April 2017. The work by MK was performed within the framework of the Center FRPP Supported by MEPhI Academic Excellence Project (contract 02.03.21.0005, 27.08.2013), Supported by the Ministry of Education and Science of Russian Federation, project 3.472.2014/K and grant RFBR 14-22-03048

  15. High energy density physics effects predicted in simulations of the CERN HiRadMat beam-target interaction experiments

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.

    2016-12-01

    Experiments have been done at the CERN HiRadMat (High Radiation to Materials) facility in which large cylindrical copper targets were irradiated with 440 GeV proton beam generated by the Super Proton Synchrotron (SPS). The primary purpose of these experiments was to confirm the existence of hydrodynamic tunneling of ultra-relativistic protons and their hadronic shower in solid materials, that was predicted by previous numerical simulations. The experimental measurements have shown very good agreement with the simulation results. This provides confidence in our simulations of the interaction of the 7 TeV LHC (Large Hadron Collider) protons and the 50 TeV Future Circular Collider (FCC) protons with solid materials, respectively. This work is important from the machine protection point of view. The numerical simulations have also shown that in the HiRadMat experiments, a significant part of thetarget material is be converted into different phases of High Energy Density (HED) matter, including two-phase solid-liquid mixture, expanded as well as compressed hot liquid phases, two-phase liquid-gas mixture and gaseous state. The HiRadMat facility is therefore a unique ion beam facility worldwide that is currently available for studying the thermophysical properties of HED matter. In the present paper we discuss the numerical simulation results and present a comparison with the experimental measurements.

  16. Elementary Particle Physics and High Energy Phenomena: Final Report for FY2010-13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cumalat, John P.; de Alwis, Senarath P.; DeGrand, Thomas A.

    2013-06-27

    The work under this grant consists of experimental, theoretical, and phenomenological research on the fundamental properties of high energy subnuclear particles. The work is conducted at the University of Colorado, the European Organization for Nuclear Research (CERN), the Japan Proton Accelerator Research Complex (J-PARC), Fermi National Accelerator Laboratory (FNAL), SLAC National Accelerator Laboratory (SLAC), Los Alamos National Laboratory (LANL), and other facilities, employing neutrino-beam experiments, test beams of various particles, and proton-proton collider experiments. It emphasizes mass generation and symmetry-breaking, neutrino oscillations, bottom particle production and decay, detector development, supergravity, supersymmetry, superstrings, quantum chromodynamics, nonequilibrium statistical mechanics, cosmology, phase transitions,more » lattice gauge theory, and anomaly-free theories. The goals are to improve our understanding of the basic building blocks of matter and their interactions. Data from the Large Hadron Collider at CERN have revealed new interactions responsible for particle mass, and perhaps will lead to a more unified picture of the forces among elementary material constituents. To this end our research includes searches for manifestations of theories such as supersymmetry and new gauge bosons, as well as the production and decay of heavy-flavored quarks. Our current work at J-PARC, and future work at new facilities currently under conceptual design, investigate the specifics of how the neutrinos change flavor. The research is integrated with the training of students at all university levels, benefiting both the manpower and intellectual base for future technologies.« less

  17. Top-up injection schemes for future circular lepton collider

    NASA Astrophysics Data System (ADS)

    Aiba, M.; Goddard, B.; Oide, K.; Papaphilippou, Y.; Saá Hernández, Á.; Shwartz, D.; White, S.; Zimmermann, F.

    2018-02-01

    Top-up injection is an essential ingredient for the future circular lepton collider (FCC-ee) to maximize the integrated luminosity and it determines the design performance. In ttbar operation mode, with a beam energy of 175 GeV, the design lifetime of ∼1 h is the shortest of the four anticipated operational modes, and the beam lifetime may be even shorter in actual operation. A highly robust top-up injection scheme is consequently imperative. Various top-up methods are investigated and a number of suitable schemes are considered in developing alternative designs for the injection straight section of the collider ring. For the first time, we consider multipole-kicker off-energy injection, for minimizing detector background in top-up operation, and the use of a thin wire septum in a lepton storage ring, for maximizing the luminosity.

  18. A Laser Cavity for a Future Photon Collider at ILC

    NASA Astrophysics Data System (ADS)

    Klemz, G.; Moenig, K.

    2006-04-01

    Within a future photon-collider based on the infrastructure of ILC the energy of near-infrared laser photons will be boosted by Compton backscattering on a high energy electron beam to well above 100 GeV. By reason of luminosity, an extremely powerful lasersystem is required that will exceed today's state-of-the-art capabilities. An auxiliary cavity for resonantly enhancing the optical peak-power can relax demands on the power output of the laser. In this paper a possible design and the static aspects of a passive cavity are discussed.

  19. The CMS High Level Trigger System: Experience and Future Development

    NASA Astrophysics Data System (ADS)

    Bauer, G.; Behrens, U.; Bowen, M.; Branson, J.; Bukowiec, S.; Cittolin, S.; Coarasa, J. A.; Deldicque, C.; Dobson, M.; Dupont, A.; Erhan, S.; Flossdorf, A.; Gigi, D.; Glege, F.; Gomez-Reino, R.; Hartl, C.; Hegeman, J.; Holzner, A.; Hwong, Y. L.; Masetti, L.; Meijers, F.; Meschi, E.; Mommsen, R. K.; O'Dell, V.; Orsini, L.; Paus, C.; Petrucci, A.; Pieri, M.; Polese, G.; Racz, A.; Raginel, O.; Sakulin, H.; Sani, M.; Schwick, C.; Shpakov, D.; Simon, S.; Spataru, A. C.; Sumorok, K.

    2012-12-01

    The CMS experiment at the LHC features a two-level trigger system. Events accepted by the first level trigger, at a maximum rate of 100 kHz, are read out by the Data Acquisition system (DAQ), and subsequently assembled in memory in a farm of computers running a software high-level trigger (HLT), which selects interesting events for offline storage and analysis at a rate of order few hundred Hz. The HLT algorithms consist of sequences of offline-style reconstruction and filtering modules, executed on a farm of 0(10000) CPU cores built from commodity hardware. Experience from the operation of the HLT system in the collider run 2010/2011 is reported. The current architecture of the CMS HLT, its integration with the CMS reconstruction framework and the CMS DAQ, are discussed in the light of future development. The possible short- and medium-term evolution of the HLT software infrastructure to support extensions of the HLT computing power, and to address remaining performance and maintenance issues, are discussed.

  20. Linear Collider Physics Resource Book for Snowmass 2001 - Part 3: Studies of Exotic and Standard Model Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, T.; et al.

    This Resource Book reviews the physics opportunities of a next-generation e+e- linear collider and discusses options for the experimental program. Part 3 reviews the possible experiments on that can be done at a linear collider on strongly coupled electroweak symmetry breaking, exotic particles, and extra dimensions, and on the top quark, QCD, and two-photon physics. It also discusses the improved precision electroweak measurements that this collider will make available.

  1. Democratic (s)fermions and lepton flavor violation

    NASA Astrophysics Data System (ADS)

    Hamaguchi, K.; Kakizaki, Mitsuru; Yamaguchi, Masahiro

    2003-09-01

    The democratic approach to account for fermion masses and mixing is known to be successful not only in the quark sector but also in the lepton sector. Here we extend this ansatz to supersymmetric standard models, in which the Kähler potential obeys the underlying S3 flavor symmetries. The requirement of neutrino bi-large mixing angles constrains the form of the Kähler potential for left-handed lepton multiplets. We find that right-handed sleptons can have nondegenerate masses and flavor mixing, while left-handed sleptons are argued to have universal and hence flavor-blind masses. This mass pattern is testable in future collider experiments when superparticle masses will be measured precisely. Lepton flavor violation arises in this scenario. In particular, μ→eγ is expected to be observed in a planned future experiment if supersymmetry breaking scale is close to the weak scale.

  2. QCD Evolution 2016

    NASA Astrophysics Data System (ADS)

    The QCD Evolution 2016 workshop was held at the National Institute for Subatomic Physics (Nikhef) in Amsterdam, May 30 - June 3, 2016. The workshop is a continuation of a series of workshops held during five consecutive years, in 2011, 2012, 2013, 2015 at Jefferson Lab, and in 2014 in Santa Fe, NM. With the rapid developments in our understanding of the evolution of parton distributions including low-x, TMDs, GPDs, higher-twist correlation functions, and the associated progress in perturbative QCD, lattice QCD and effective field theory techniques, we look forward to yet another exciting meeting in 2016. The program of QCD Evolution 2016 will pay special attention to the topics of importance for ongoing experiments, in the full range from Jefferson Lab energies to LHC energies or future experiments such as a future Electron Ion Collider, recently recommended as a highest priority in U.S. Department of Energy's 2015 Long Range Plan for Nuclear Science.

  3. 2017 QCD Evolution 2017

    NASA Astrophysics Data System (ADS)

    2017-05-01

    The QCD Evolution 2017 workshop was held at Jefferson Lab, May 22-26, 2017. The workshop is a continuation of a series of workshops held during six consecutive years, in 2011, 2012, 2013, 2015 at Jefferson Lab, and in 2014 in Santa Fe, NM, and in 2016 at the National Institute for Subatomic Physics (Nikhef) in Amsterdam. With the rapid developments in our understanding of the evolution of parton distributions including TMDs, GPDs, low-x, higher-twist correlation functions, and the associated progress in perturbative QCD, lattice QCD and effective field theory techniques, we look forward to yet another exciting meeting in 2017. The program of QCD Evolution 2017 will pay special attention to the topics of importance for ongoing experiments, in the full range from Jefferson Lab energies to RHIC and LHC energies or future experiments such as a future Electron Ion Collider, recently recommended as a highest priority in U.S. Department of Energy's 2015 Long Range Plan for Nuclear Science.

  4. Branon search in hadronic colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cembranos, J.A.R.; Departamento de Fisica Teorica, Universidad Complutense de Madrid, 28040 Madrid; Dobado, A.

    2004-11-01

    In the context of the brane-world scenarios with compactified extra dimensions, we study the production of brane fluctuations (branons) in hadron colliders (pp, pp, and e{sup {+-}}p) in terms of the brane tension parameter f, the branon mass M, and the number of branons N. From the absence of monojet events at HERA and Tevatron (run I), we set bounds on these parameters and we also study how such bounds could be improved at Tevatron (run II) and the future LHC. The single-photon channel is also analyzed for the two last colliders.

  5. Design and performance of an electromagnetic calorimeter for a FCC-hh experiment

    NASA Astrophysics Data System (ADS)

    Zaborowska, A.

    2018-03-01

    The physics reach and feasibility of the Future Circular Collider are currently under investigation. The goal is to collide protons with centre-of-mass energies up to 100 TeV, extending the research carried out at the current HEP facilities. The detectors designed for the FCC experiments need to tackle harsh conditions of the unprecedented collision energy and luminosity. The baseline technology for the calorimeter system of the FCC-hh detector is described. The electromagnetic calorimeter in the barrel, as well as the electromagnetic and hadronic calorimeters in the endcaps and the forward regions, are based on the liquid argon as active material. The detector layout in the barrel region combines the concept of a high granularity calorimeter with precise energy measurements. The calorimeters have to meet the requirements of high radiation hardness and must be able to deal with a very high number of collisions per bunch crossings (pile-up). A very good energy and angular resolution for a wide range of electrons' and photons' momentum is needed in order to meet the demands based on the physics benchmarks. First results of the performance studies with the new liquid argon calorimeter are presented, meeting the energy resolution goal.

  6. Nonminimal quartic inflation in classically conformal U(1 ) X extended standard model

    NASA Astrophysics Data System (ADS)

    Oda, Satsuki; Okada, Nobuchika; Raut, Digesh; Takahashi, Dai-suke

    2018-03-01

    We propose quartic inflation with nonminimal gravitational coupling in the context of the classically conformal U(1 ) X extension of the standard model (SM). In this model, the U(1 ) X gauge symmetry is radiatively broken through the Coleman-Weinberg mechanism, by which the U(1 ) X gauge boson (Z' boson) and the right-handed Majorana neutrinos acquire their masses. We consider their masses in the range of O (10 GeV )-O (10 TeV ) , which are accessible to high-energy collider experiments. The radiative U(1 ) X gauge symmetry breaking also generates a negative mass squared for the SM Higgs doublet, and the electroweak symmetry breaking occurs subsequently. We identify the U(1 ) X Higgs field with inflaton and calculate the inflationary predictions. Because of the Coleman-Weinberg mechanism, the inflaton quartic coupling during inflation, which determines the inflationary predictions, is correlated to the U(1 ) X gauge coupling. With this correlation, we investigate complementarities between the inflationary predictions and the current constraint from the Z' boson resonance search at the LHC Run 2 as well as the prospect of the search for the Z' boson and the right-handed neutrinos at the future collider experiments.

  7. Dark matter, proton decay and other phenomenological constraints in F-SU(5)

    NASA Astrophysics Data System (ADS)

    Li, Tianjun; Maxin, James A.; Nanopoulos, Dimitri V.; Walker, Joel W.

    2011-07-01

    We study gravity mediated supersymmetry breaking in F-SU(5) and its low-energy supersymmetric phenomenology. The gaugino masses are not unified at the traditional grand unification scale, but we nonetheless have the same one-loop gaugino mass relation at the electroweak scale as minimal supergravity (mSUGRA). We introduce parameters testable at the colliders to measure the small second loop deviation from the mSUGRA gaugino mass relation at the electroweak scale. In the minimal SU(5) model with gravity mediated supersymmetry breaking, we show that the deviations from the mSUGRA gaugino mass relations are within 5%. However, in F-SU(5), we predict the deviations from the mSUGRA gaugino mass relations to be larger due to the presence of vector-like particles, which can be tested at the colliders. We determine the viable parameter space that satisfies all the latest experimental constraints and find it is consistent with the CDMS II experiment. Further, we compute the cross-sections of neutralino annihilations into gamma-rays and compare to the first published Fermi-LAT measurement. Finally, the corresponding range of proton lifetime predictions is calculated and found to be within reach of the future Hyper-Kamiokande and DUSEL experiments.

  8. Design and Development of a Prototype Permanent Magnet for Focusing/Defocusing for Electron-Ion Colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Bob

    Electron-ion colliders (EIC) have been identified as an ideal tool to study the next frontier of nuclear physics – the gluon force that holds the building blocks of matter together, and which is a fundamental component of the theory of Quantum Chromodynamics (QCD). Future electron-ion colliders under consideration can be based on the Energy Recovery Linac (ERL) architecture. The beam lines for this architecture could be built of the newly developed Non-Scaling Fixed Field Alternating Gradient (NS FFAG) structure, so that they can transfer multiple energies within the same aperture. This structure allows for the use of compact, economical quadupolemore » permanent magnets. In this SBIR, we propose to design and to manufacture prototype quadrupole permanent magnets of focusing/defocusing combined function for use in this beam line. For our SBIR project, we proposed to design and build the focusing/defocusing quadrupole with a gradient strength of 50 T/m and with a beam gap of 16mm. The proposed permanent magnet material is SmCo because of its higher radiation resistance as compared to NdBFe2. The use of permanent magnets will reduce the overall cost. For Phase I, we took a recent design by Dr. Dejan Trbojevic, and reran Tosca code on the design to optimize the iron yoke with respect to the thickness of SmCo. We then fabricated one prototype focusing/defocusing combined function quadruple and measured field quality dG/Go. Our plan for Phase II is that, based on our Phase I prototype experience, we shall improve the design and fabricate a production quadruple, and design and incorporate coils for skew dipoles and normal quadrupole correctors, etc. In addition, we shall fabricate enough quadrupoles for one cell. The development of quadrupole permanent magnets is of fundamental importance for there application in the future electron-ion colliders. This accelerator structure will also advance the development of muon accelerators and allow for the development of compact, simplified, less expensive proton accelerators which will promote their use in areas such as proton cancer therapy, and for high-power proton drivers for tritium and neutron production, waste transmutation, driving a sub-critical nuclear reactor to produce energy, cargo contain inspection, and radioisotope production. Proton cancer therapy has been identified as a particularly attractive and viable commercial application for the immediate future.« less

  9. Chiral magnetic and vortical effects in high-energy nuclear collisions—A status report

    DOE PAGES

    Kharzeev, D. E.; Liao, J.; Voloshin, S. A.; ...

    2016-05-01

    Here, the interplay of quantum anomalies with magnetic field and vorticity results in a variety of novel non-dissipative transport phenomena in systems with chiral fermions, including the quark–gluon plasma. Among them is the Chiral Magnetic Effect (CME)—the generation of electric current along an external magnetic field induced by chirality imbalance. Because the chirality imbalance is related to the global topology of gauge fields, the CME current is topologically protected and hence non-dissipative even in the presence of strong interactions. As a result, the CME and related quantum phenomena affect the hydrodynamical and transport behavior of strongly coupled quark–gluon plasma, andmore » can be studied in relativistic heavy ion collisions where strong magnetic fields are created by the colliding ions. Evidence for the CME and related phenomena has been reported by the STAR Collaboration at Relativistic Heavy Ion Collider at BNL, and by the ALICE Collaboration at the Large Hadron Collider at CERN. The goal of the present review is to provide an elementary introduction into the physics of anomalous chiral effects, to describe the current status of experimental studies in heavy ion physics, and to outline the future work, both in experiment and theory, needed to eliminate the existing uncertainties in the interpretation of the data.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larkoski, Andrew J.; Maltoni, Fabio; Selvaggi, Michele

    The identification of hadronically decaying heavy states, such as vector bosons, the Higgs, or the top quark, produced with large transverse boosts has been and will continue to be a central focus of the jet physics program at the Large Hadron Collider (LHC). At a future hadron collider working at an order-of-magnitude larger energy than the LHC, these heavy states would be easily produced with transverse boosts of several TeV. At these energies, their decay products will be separated by angular scales comparable to individual calorimeter cells, making the current jet substructure identification techniques for hadronic decay modes not directlymore » employable. In addition, at the high energy and luminosity projected at a future hadron collider, there will be numerous sources for contamination including initial- and final-state radiation, underlying event, or pile-up which must be mitigated. We propose a simple strategy to tag such "hyper-boosted" objects that defines jets with radii that scale inversely proportional to their transverse boost and combines the standard calorimetric information with charged track-based observables. By means of a fast detector simulation, we apply it to top quark identification and demonstrate that our method efficiently discriminates hadronically decaying top quarks from light QCD jets up to transverse boosts of 20 TeV. Lastly, our results open the way to tagging heavy objects with energies in the multi-TeV range at present and future hadron colliders.« less

  11. Tracking down hyper-boosted top quarks

    DOE PAGES

    Larkoski, Andrew J.; Maltoni, Fabio; Selvaggi, Michele

    2015-06-05

    The identification of hadronically decaying heavy states, such as vector bosons, the Higgs, or the top quark, produced with large transverse boosts has been and will continue to be a central focus of the jet physics program at the Large Hadron Collider (LHC). At a future hadron collider working at an order-of-magnitude larger energy than the LHC, these heavy states would be easily produced with transverse boosts of several TeV. At these energies, their decay products will be separated by angular scales comparable to individual calorimeter cells, making the current jet substructure identification techniques for hadronic decay modes not directlymore » employable. In addition, at the high energy and luminosity projected at a future hadron collider, there will be numerous sources for contamination including initial- and final-state radiation, underlying event, or pile-up which must be mitigated. We propose a simple strategy to tag such "hyper-boosted" objects that defines jets with radii that scale inversely proportional to their transverse boost and combines the standard calorimetric information with charged track-based observables. By means of a fast detector simulation, we apply it to top quark identification and demonstrate that our method efficiently discriminates hadronically decaying top quarks from light QCD jets up to transverse boosts of 20 TeV. Lastly, our results open the way to tagging heavy objects with energies in the multi-TeV range at present and future hadron colliders.« less

  12. R&D Toward a Neutrino Factory and Muon Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zisman, Michael S

    2011-03-20

    Significant progress has been made in recent years in R&D towards a neutrino factory and muon collider. The U.S. Muon Accelerator Program (MAP) has been formed recently to expedite the R&D efforts. This paper will review the U.S. MAP R&D programs for a neutrino factory and muon collider. Muon ionization cooling research is the key element of the program. The first muon ionization cooling demonstration experiment, MICE (Muon Ionization Cooling Experiment), is under construction now at RAL (Rutherford Appleton Laboratory) in the UK. The current status of MICE will be described.

  13. Learning from Higgs physics at future Higgs factories

    DOE PAGES

    Gu, Jiayin; Li, Honglei; Liu, Zhen; ...

    2017-12-29

    Future Higgs factories can reach impressive precision on Higgs property measurements. In this paper, instead of conventional focus of Higgs precision in certain interaction bases, we explored its sensitivity to new physics models at the electron-positron colliders. In particular, we studied two categories of new physics models, Standard Model (SM) with a real scalar singlet extension, and Two Higgs Double Model (2HDM) as examples of weakly-interacting models, Minimal Composite Higgs Model (MCHM) and three typical patterns of the more general operator counting for strong interacting models as examples of strong dynamics. We performed a global fit to various Higgs searchmore » channels to obtain the 95% C.L. constraints on the model parameter space. In the SM with a singlet extension, we obtained the limits on the singlet-doublet mixing angle sin(theta), as well as the more general Wilson coefficients of the induced higher dimensional operators. In the 2HDM, we analyzed tree level effects in tan(beta) vs. cos(beta-alpha) plane, as well as the one-loop contributions from the heavy Higgs bosons in the alignment limit to obtain the constraints on heavy Higgs masses for different types of 2HDM. In strong dynamics models, we obtained lower limits on the strong dynamics scale. In addition, once deviations of Higgs couplings are observed, they can be used to distinguish different models. Here, we also compared the sensitivity of various future Higgs factories, namely Circular Electron Positron Collider (CEPC), Future Circular Collider (FCC)-ee and International Linear Collider (ILC).« less

  14. Learning from Higgs physics at future Higgs factories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jiayin; Li, Honglei; Liu, Zhen

    Future Higgs factories can reach impressive precision on Higgs property measurements. In this paper, instead of conventional focus of Higgs precision in certain interaction bases, we explored its sensitivity to new physics models at the electron-positron colliders. In particular, we studied two categories of new physics models, Standard Model (SM) with a real scalar singlet extension, and Two Higgs Double Model (2HDM) as examples of weakly-interacting models, Minimal Composite Higgs Model (MCHM) and three typical patterns of the more general operator counting for strong interacting models as examples of strong dynamics. We performed a global fit to various Higgs searchmore » channels to obtain the 95% C.L. constraints on the model parameter space. In the SM with a singlet extension, we obtained the limits on the singlet-doublet mixing angle sin(theta), as well as the more general Wilson coefficients of the induced higher dimensional operators. In the 2HDM, we analyzed tree level effects in tan(beta) vs. cos(beta-alpha) plane, as well as the one-loop contributions from the heavy Higgs bosons in the alignment limit to obtain the constraints on heavy Higgs masses for different types of 2HDM. In strong dynamics models, we obtained lower limits on the strong dynamics scale. In addition, once deviations of Higgs couplings are observed, they can be used to distinguish different models. Here, we also compared the sensitivity of various future Higgs factories, namely Circular Electron Positron Collider (CEPC), Future Circular Collider (FCC)-ee and International Linear Collider (ILC).« less

  15. Discovering New Light States at Neutrino Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essig, Rouven; /SLAC; Harnik, Roni

    2011-08-11

    Experiments designed to measure neutrino oscillations also provide major opportunities for discovering very weakly coupled states. In order to produce neutrinos, experiments such as LSND collide thousands of Coulombs of protons into fixed targets, while MINOS and MiniBooNE also focus and then dump beams of muons. The neutrino detectors beyond these beam dumps are therefore an excellent arena in which to look for long-lived pseudoscalars or for vector bosons that kinetically mix with the photon. We show that these experiments have significant sensitivity beyond previous beam dumps, and are able to partially close the gap between laboratory experiments and supernovaemore » constraints on pseudoscalars. Future upgrades to the NuMI beamline and Project X will lead to even greater opportunities for discovery. We also discuss thin target experiments with muon beams, such as those available in COMPASS, and show that they constitute a powerful probe for leptophilic PNGBs.« less

  16. Impact of the resistive wall impedance on beam dynamics in the Future Circular e+e- Collider

    NASA Astrophysics Data System (ADS)

    Migliorati, M.; Belli, E.; Zobov, M.

    2018-04-01

    The Future Circular Collider study, which aims at designing post-LHC particle accelerator options, is entering in the final stage, which foresees a conceptual design report containing the basic requirements for a hadron and a lepton collider, as well as options for an electron-proton machine. Due to the high beam intensities of these accelerators, collective effects have to be carefully analyzed. Among them, the finite conductivity of the beam vacuum chamber represents a major source of impedance for the electron-positron collider. By using numerical and analytical tools, a parametric study of longitudinal and transverse instabilities caused by the resistive wall is performed in this paper for the case of the Future Circular Collider lepton machine, by taking into account also the effects of coating, used to fight the electron cloud build up. It will be proved that under certain assumptions the coupling impedance of a two layer system does not depend on the conductivity of the coating and this property represents an important characteristic for the choice of the material itself. The results and findings of this study have an impact on the machine design in several aspects. In particular the quite low threshold of single bunch instabilities with respect to the nominal beam current and the not negligible power losses due to the resistive wall are shown, together with the necessity of a new feedback system to counteract the fast transverse coupled bunch instability. The importance of a round vacuum chamber to avoid the quadrupolar tune shift is also discussed. Finally the crucial importance of the beam pipe material coating and thickness choice for the above results is underlined.

  17. Review of bottomonium measurements from CMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Z.; Liu, T.; Leonardo, N. T.

    We review the results on the bottomonium system from the CMS experiment at the Large Hadron Collider. Measurements have been carried out at different center-of-mass energies in proton collisions and in collisions involving heavy ions. These include precision measurements of cross sections and polarizations, shedding light on hadroproduction mechanisms, and the observation of quarkonium sequential suppression, a notable indication of quark–gluon plasma formation. The observation of the production of bottomonium pairs is also reported along with searches for new states. We close with a brief outlook of the future physics program.

  18. Review of bottomonium measurements from CMS

    DOE PAGES

    Hu, Z.; Liu, T.; Leonardo, N. T.; ...

    2017-07-20

    We review the results on the bottomonium system from the CMS experiment at the Large Hadron Collider. Measurements have been carried out at different center-of-mass energies in proton collisions and in collisions involving heavy ions. These include precision measurements of cross sections and polarizations, shedding light on hadroproduction mechanisms, and the observation of quarkonium sequential suppression, a notable indication of quark–gluon plasma formation. The observation of the production of bottomonium pairs is also reported along with searches for new states. We close with a brief outlook of the future physics program.

  19. Dual-readout calorimetry: recent results from RD52 and plans for experiments at future e+e- colliders

    NASA Astrophysics Data System (ADS)

    Ferrari, R.

    2018-02-01

    The Dual-Readout calorimetry, developed to overcome the main limiting factor in hadronic energy measurements, has been thoroughly investigated by the DREAM/RD52 collaboration during the last 15 years. The latest results show that very interesting performance may be obtained for both e.m. and hadronic showers, together with excellent standalone e/pi separation. These results and the plans (and the expected performance) for dual-readout calorimetry in the CepC/FCC-ee environment, are presented and discussed.

  20. Higgs Particle: The Origin of Mass

    NASA Astrophysics Data System (ADS)

    Okada, Yasuhiro

    2007-11-01

    The Higgs particle is a new elementary particle predicted in the Standard Model of the elementary particle physics. It plays a special role in the theory of mass generation of quarks, leptons, and gauge bosons. In this article, theoretical issues on the Higgs mechanism are first discussed, and then experimental prospects on the Higgs particle study at the future collider experiments, LHC and ILC, are reviewed. The Higgs coupling determination is an essential step to establish the mass generation mechanism, which could lead to a deeper understanding of particle physics.

  1. Gravitational waves from a first-order electroweak phase transition: a brief review

    NASA Astrophysics Data System (ADS)

    Weir, David J.

    2018-01-01

    We review the production of gravitational waves by an electroweak first-order phase transition. The resulting signal is a good candidate for detection at next-generation gravitational wave detectors, such as LISA. Detection of such a source of gravitational waves could yield information about physics beyond the Standard Model that is complementary to that accessible to current and near-future collider experiments. We summarize efforts to simulate and model the phase transition and the resulting production of gravitational waves. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.

  2. Technical instrumentation R&D for ILD SiW ECAL large scale device

    NASA Astrophysics Data System (ADS)

    Balagura, V.

    2018-03-01

    Calorimeters with silicon detectors have many unique features and are proposed for several world-leading experiments. We describe the R&D program of the large scale detector element with up to 12 000 readout channels for the International Large Detector (ILD) at the future e+e‑ ILC collider. The program is focused on the readout front-end electronics embedded inside the calorimeter. The first part with 2 000 channels and two small silicon sensors has already been constructed, the full prototype is planned for the beginning of 2018.

  3. 3D simulation of electron and ion transmission of GEM-based detectors

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Purba; Mohanty, Bedangadas; Mukhopadhyay, Supratik; Majumdar, Nayana; da Luz, Hugo Natal

    2017-10-01

    Time Projection Chamber (TPC) has been chosen as the main tracking system in several high-flux and high repetition rate experiments. These include on-going experiments such as ALICE and future experiments such as PANDA at FAIR and ILC. Different R&D activities were carried out on the adoption of Gas Electron Multiplier (GEM) as the gas amplification stage of the ALICE-TPC upgrade version. The requirement of low ion feedback has been established through these activities. Low ion feedback minimizes distortions due to space charge and maintains the necessary values of detector gain and energy resolution. In the present work, Garfield simulation framework has been used to study the related physical processes occurring within single, triple and quadruple GEM detectors. Ion backflow and electron transmission of quadruple GEMs, made up of foils with different hole pitch under different electromagnetic field configurations (the projected solutions for the ALICE TPC) have been studied. Finally a new triple GEM detector configuration with low ion backflow fraction and good electron transmission properties has been proposed as a simpler GEM-based alternative suitable for TPCs for future collider experiments.

  4. Superconducting Magnet Technology for Future High Energy Proton Colliders

    NASA Astrophysics Data System (ADS)

    Gourlay, Stephen

    2017-01-01

    Interest in high field dipoles has been given a boost by new proposals to build a high-energy proton-proton collider to follow the LHC and programs around the world are taking on the task to answer the need. Studies aiming toward future high-energy proton-proton colliders at the 100 TeV scale are now being organized. The LHC and current cost models are based on technology close to four decades old and point to a broad optimum of operation using dipoles with fields between 5 and 12T when site constraints, either geographical or political, are not a factor. Site geography constraints that limit the ring circumference can drive the required dipole field up to 20T, which is more than a factor of two beyond state-of-the-art. After a brief review of current progress, the talk will describe the challenges facing future development and present a roadmap for moving high field accelerator magnet technology forward. This work was supported by the Director, Office of Science, High Energy Physics, US Department of Energy, under contract No. DE-AC02-05CH11231.

  5. Vector-like quarks coupling discrimination at the LHC and future hadron colliders

    NASA Astrophysics Data System (ADS)

    Barducci, D.; Panizzi, L.

    2017-12-01

    The existence of new coloured states with spin one-half, i.e. extra-quarks, is a striking prediction of various classes of new physics models. Should one of these states be discovered during the 13 TeV runs of the LHC or at future high energy hadron colliders, understanding its properties will be crucial in order to shed light on the underlying model structure. Depending on the extra-quarks quantum number under SU(2) L , their coupling to Standard Model quarks and bosons have either a dominant left- or right-handed chiral component. By exploiting the polarisation properties of the top quarks arising from the decay of pair-produced extra quarks, we show how it is possible to discriminate among the two hypothesis in the whole discovery range currently accessible at the LHC, thus effectively narrowing down the possible interpretations of a discovered state in terms of new physics scenarios. Moreover, we estimate the discovery and discrimination power of future prototype hadron colliders with centre of mass energies of 33 and 100 TeV.

  6. Ian Hinchliffe Answers Your Higgs Boson Questions

    ScienceCinema

    Hinchliffe, Ian

    2017-12-09

    contingent with the ATLAS experiment at CERN, answers many of your questions about the Higgs boson. Ian invited viewers to send in questions about the Higgs via email, Twitter, Facebook, or YouTube in an "Ask a Scientist" video posted July 3: http://youtu.be/xhuA3wCg06s CERN's July 4 announcement that the ATLAS and CMS experiments at the Large Hadron Collider have discovered a particle "consistent with the Higgs boson" has raised questions about what scientists have found and what still remains to be found -- and what it all means. If you have suggestions for future "Ask a Scientist" videos, post them below or send ideas to askascientist@lbl.gov

  7. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    NASA Astrophysics Data System (ADS)

    Kotnig, C.; Tavian, L.

    2015-12-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets’ refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  8. Prospects of type-II seesaw models at future colliders in light of the DAMPE e+e- excess

    NASA Astrophysics Data System (ADS)

    Sui, Yicong; Zhang, Yongchao

    2018-05-01

    The DAMPE e+e- excess at around 1.4 TeV could be explained in the type-II seesaw model with a scalar dark mater D which is stabilized by a discrete Z2 symmetry. The simplest scenario is the annihilation D D →H++H- followed by the subsequent decay H±±→e±e±, with both the DM and triplet scalars roughly 3 TeV with a small mass splitting. In addition to the Drell-Yan process at future 100 TeV hadron colliders, the doubly charged components could also be produced at lepton colliders like ILC and CLIC in the off shell mode and mediate lepton flavor violating processes e+e-→ℓi±ℓj∓ (with i ≠j ). A wide range of parameter space of the type-II seesaw could be probed, which are well below the current stringent lepton flavor constraints.

  9. A conceptual solution for a beam halo collimation system for the Future Circular hadron-hadron Collider (FCC-hh)

    NASA Astrophysics Data System (ADS)

    Fiascaris, M.; Bruce, R.; Redaelli, S.

    2018-06-01

    We present the first conceptual solution for a collimation system for the hadron-hadron option of the Future Circular Collider (FCC-hh). The collimation layout is based on the scaling of the present Large Hadron Collider collimation system to the FCC-hh energy and it includes betatron and momentum cleaning, as well as dump protection collimators and collimators in the experimental insertions for protection of the final focus triplet magnets. An aperture model for the FCC-hh is defined and the geometrical acceptance is calculated at injection and collision energy taking into account mechanical and optics imperfections. The performance of the system is then assessed through the analysis of normalized halo distributions and complete loss maps for an ideal lattice. The performance limitations are discussed and a solution to improve the system performance with the addition of dispersion suppression collimators around the betatron cleaning insertion is presented.

  10. COLLIDE-2: Collisions Into Dust Experiment-2

    NASA Technical Reports Server (NTRS)

    Colwell, Joshua E.

    2002-01-01

    The Collisions Into Dust Experimental (COLLIDE-2) was the second flight of the COLLIDE payload. The payload performs six low-velocity impact experiments to study the collisions that are prevalent in planetary ring systems and in the early stages of planet formation. Each impact experiment is into a target of granular material, and the impacts occur at speeds between 1 and 100 cm/s in microgravity and in a vacuum. The experiments are recorded on digital videotape which is later analyzed. During the period of performance a plan was developed to address some of the technical issues that prevented the first flight of COLLIDE from being a complete success, and also to maximize the scientific return based on the science results from the first flight. The experiment was modified following a series of reviews of the design plan, and underwent extensive testing. The data from the experiment show that the primary goal of identifying transition regimes for low-velocity impacts based on cratering versus accretion was achieved. Following a brief period of storage, the experiment flew regimes for low-velocity impacts based on cratering versus accretion was achieved. as a Hitchhiker payload on the MACH-1 Hitchhiker bridge on STS-108 in December 2001. These data have been analyzed and submitted for publication. That manuscript is attached to this report. The experiment was retrieved in January 2002, and all six impact experiments functioned nominally. Preliminary results were reported at the Lunar and Planetary Science Conference.

  11. A novel in situ trigger combination method

    DOE PAGES

    Buzatu, Adrian; Warburton, Andreas; Krumnack, Nils; ...

    2013-01-30

    Searches for rare physics processes using particle detectors in high-luminosity colliding hadronic beam environments require the use of multi-level trigger systems to reject colossal background rates in real time. In analyses like the search for the Higgs boson, there is a need to maximize the signal acceptance by combining multiple different trigger chains when forming the offline data sample. In such statistically limited searches, datasets are often amassed over periods of several years, during which the trigger characteristics evolve and system performance can vary significantly. Reliable production cross-section measurements and upper limits must take into account a detailed understanding ofmore » the effective trigger inefficiency for every selected candidate event. We present as an example the complex situation of three trigger chains, based on missing energy and jet energy, that were combined in the context of the search for the Higgs (H) boson produced in association with a $W$ boson at the Collider Detector at Fermilab (CDF). We briefly review the existing techniques for combining triggers, namely the inclusion, division, and exclusion methods. We introduce and describe a novel fourth in situ method whereby, for each candidate event, only the trigger chain with the highest a priori probability of selecting the event is considered. We compare the inclusion and novel in situ methods for signal event yields in the CDF $WH$ search. This new combination method, by virtue of its scalability to large numbers of differing trigger chains and insensitivity to correlations between triggers, will benefit future long-running collider experiments, including those currently operating on the Large Hadron Collider.« less

  12. A novel in situ trigger combination method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buzatu, Adrian; Warburton, Andreas; Krumnack, Nils

    Searches for rare physics processes using particle detectors in high-luminosity colliding hadronic beam environments require the use of multi-level trigger systems to reject colossal background rates in real time. In analyses like the search for the Higgs boson, there is a need to maximize the signal acceptance by combining multiple different trigger chains when forming the offline data sample. In such statistically limited searches, datasets are often amassed over periods of several years, during which the trigger characteristics evolve and system performance can vary significantly. Reliable production cross-section measurements and upper limits must take into account a detailed understanding ofmore » the effective trigger inefficiency for every selected candidate event. We present as an example the complex situation of three trigger chains, based on missing energy and jet energy, that were combined in the context of the search for the Higgs (H) boson produced in association with a $W$ boson at the Collider Detector at Fermilab (CDF). We briefly review the existing techniques for combining triggers, namely the inclusion, division, and exclusion methods. We introduce and describe a novel fourth in situ method whereby, for each candidate event, only the trigger chain with the highest a priori probability of selecting the event is considered. We compare the inclusion and novel in situ methods for signal event yields in the CDF $WH$ search. This new combination method, by virtue of its scalability to large numbers of differing trigger chains and insensitivity to correlations between triggers, will benefit future long-running collider experiments, including those currently operating on the Large Hadron Collider.« less

  13. Heavy quark energy loss in high multiplicity proton-proton collisions at the LHC.

    PubMed

    Vogel, Sascha; Gossiaux, Pol Bernard; Werner, Klaus; Aichelin, Jörg

    2011-07-15

    One of the most promising probes to study deconfined matter created in high energy nuclear collisions is the energy loss of (heavy) quarks. It has been shown in experiments at the Relativistic Heavy Ion Collider that even charm and bottom quarks, despite their high mass, experience a remarkable medium suppression in the quark gluon plasma. In this exploratory investigation we study the energy loss of heavy quarks in high multiplicity proton-proton collisions at LHC energies. Although the colliding systems are smaller than compared to those at the Relativistic Heavy Ion Collider (p+p vs Au+Au), the higher energy might lead to multiplicities comparable to Cu+Cu collisions at the Relativistic Heavy Ion Collider. The interaction of charm quarks with this environment gives rise to a non-negligible suppression of high momentum heavy quarks in elementary collisions.

  14. Precision Timing with Silicon Sensors for Use in Calorimetry

    NASA Astrophysics Data System (ADS)

    Bornheim, A.; Ronzhin, A.; Kim, H.; Bolla, G.; Pena, C.; Xie, S.; Apresyan, A.; Los, S.; Spiropulu, M.; Ramberg, E.

    2017-11-01

    The high luminosity upgrade of the Large Hadron Collider (HL-LHC) at CERN is expected to provide instantaneous luminosities of 5 × 1034 cm -2 s -1. The high luminosities expected at the HL-LHC will be accompanied by a factor of 5 to 10 more pileup compared with LHC conditions in 2015, causing general confusion for particle identification and event reconstruction. Precision timing allows to extend calorimetric measurements into such a high density environment by subtracting the energy deposits from pileup interactions. Calorimeters employing silicon as the active component have recently become a popular choice for the HL- LHC and future collider experiments which face very high radiation environments. We present studies of basic calorimetric and precision timing measurements using a prototype composed of tungsten absorber and silicon sensor as the active medium. We show that for the bulk of electromagnetic showers induced by electrons in the range of 20 GeV to 30 GeV, we can achieve time resolutions better than 25 ps per single pad sensor.

  15. ATLAS and LHC computing on CRAY

    NASA Astrophysics Data System (ADS)

    Sciacca, F. G.; Haug, S.; ATLAS Collaboration

    2017-10-01

    Access and exploitation of large scale computing resources, such as those offered by general purpose HPC centres, is one important measure for ATLAS and the other Large Hadron Collider experiments in order to meet the challenge posed by the full exploitation of the future data within the constraints of flat budgets. We report on the effort of moving the Swiss WLCG T2 computing, serving ATLAS, CMS and LHCb, from a dedicated cluster to the large Cray systems at the Swiss National Supercomputing Centre CSCS. These systems do not only offer very efficient hardware, cooling and highly competent operators, but also have large backfill potentials due to size and multidisciplinary usage and potential gains due to economy at scale. Technical solutions, performance, expected return and future plans are discussed.

  16. Electroweak precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future

    DOE PAGES

    de Blas, J.; Ciuchini, M.; Franco, E.; ...

    2016-12-27

    We present results from a state-of-the-art fit of electroweak precision observables and Higgs-boson signal-strength measurements performed using 7 and 8 TeV data from the Large Hadron Collider. Based on the HEPfit package, our study updates the traditional fit of electroweak precision observables and extends it to include Higgs-boson measurements. As a result we obtain constraints on new physics corrections to both electroweak observables and Higgs-boson couplings. We present the projected accuracy of the fit taking into account the expected sensitivities at future colliders.

  17. Electroweak precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Blas, J.; Ciuchini, M.; Franco, E.

    We present results from a state-of-the-art fit of electroweak precision observables and Higgs-boson signal-strength measurements performed using 7 and 8 TeV data from the Large Hadron Collider. Based on the HEPfit package, our study updates the traditional fit of electroweak precision observables and extends it to include Higgs-boson measurements. As a result we obtain constraints on new physics corrections to both electroweak observables and Higgs-boson couplings. We present the projected accuracy of the fit taking into account the expected sensitivities at future colliders.

  18. High-Power X-Band Semiconductor RF Switch for Pulse Compression Systems of Future Colliders

    NASA Astrophysics Data System (ADS)

    Tantawi, Sami G.; Tamura, Fumihiko

    2000-04-01

    We describe the potential of semiconductor X-band RF switch arrays as a means of developing high power RF pulse compression systems for future linear colliders. The switch systems described here have two designs. Both designs consist of two 3dB hybrids and active modules. In the first design the module is composed of a cascaded active phase shifter. In the second design the module uses arrays of SPST (Single Pole Single Throw) switches. Each cascaded element of the phase shifter and the SPST switch has similar design. The active element consists of symmetrical three-port tee-junctions and an active waveguide window in the symmetrical arm of the tee-junction. The design methodology of the elements and the architecture of the whole switch system are presented. We describe the scaling law that governs the relation between power handling capability and number of elements. The design of the active waveguide window is presented. The waveguide window is a silicon wafer with an array of four hundred PIN/NIP diodes covering the surface of the window. This waveguide window is located in an over-moded TE01 circular waveguide. The results of high power RF measurements of the active waveguide window are presented. The experiment is performed at power levels of tens of megawatts at X-band.

  19. RF System for the MICE Demonstration of Ionisation Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronald, K.; et al.

    2017-04-01

    Muon accelerators offer an attractive option for a range of future particle physics experiments. They can enable high energy (TeV+) high energy lepton colliders whilst mitigating the difficulty of synchrotron losses, and can provide intense beams of neutrinos for fundamental physics experiments investigating the physics of flavor. The method of production of muon beams results in high beam emittance which must be reduced for efficient acceleration. Conventional emittance control schemes take too long, given the very short (2.2 microsecond) rest lifetime of the muon. Ionisation cooling offers a much faster approach to reducing particle emittance, and the international MICE collaborationmore » aims to demonstrate this technique for the first time. This paper will present the MICE RF system and its role in the context of the overall experiment.« less

  20. Testing Quantum Gravity Induced Nonlocality via Optomechanical Quantum Oscillators.

    PubMed

    Belenchia, Alessio; Benincasa, Dionigi M T; Liberati, Stefano; Marin, Francesco; Marino, Francesco; Ortolan, Antonello

    2016-04-22

    Several quantum gravity scenarios lead to physics below the Planck scale characterized by nonlocal, Lorentz invariant equations of motion. We show that such nonlocal effective field theories lead to a modified Schrödinger evolution in the nonrelativistic limit. In particular, the nonlocal evolution of optomechanical quantum oscillators is characterized by a spontaneous periodic squeezing that cannot be generated by environmental effects. We discuss constraints on the nonlocality obtained by past experiments, and show how future experiments (already under construction) will either see such effects or otherwise cast severe bounds on the nonlocality scale (well beyond the current limits set by the Large Hadron Collider). This paves the way for table top, high precision experiments on massive quantum objects as a promising new avenue for testing some quantum gravity phenomenology.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kownacki, Corey; Ma, Ernest; Pollard, Nicholas

    The [SU(3)] 4 quartification model of Babu, Ma, and Willenbrock (BMW), proposed in 2003, predicts a confining leptonic color SU(2)gauge symmetry, which becomes strong at the keV scale. Also, it predicts the existence of three families of half-charged leptons (hemions) below the TeV scale. These hemions are confined to form bound states which are not so easy to discover at the Large Hadron Collider (LHC). But, just as J/ψand Υ appeared as sharp resonances in e -e +colliders of the 20th century, the corresponding ‘hemionium’ states are expected at a future e -e +collider of the 21st century.

  2. Efficiency Versus Instability in Plasma Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebedev, Valeri; Burov, Alexey; Nagaitsev, Sergei

    2017-01-05

    Plasma wake-field acceleration in a strongly nonlinear (a.k.a. the blowout) regime is one of the main candidates for future high-energy colliders. For this case, we derive a universal efficiency-instability relation, between the power efficiency and the key instability parameter of the witness bunch. We also show that in order to stabilize the witness bunch in a regime with high power efficiency, the bunch needs to have high energy spread, which is not presently compatible with collider-quality beam properties. It is unclear how such limitations could be overcome for high-luminosity linear colliders.

  3. Proceedings of the 2005 International Linear Collider Workshop (LCWS05)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewett, JoAnne,; /SLAC

    2006-12-18

    Exploration of physics at the TeV scale holds the promise of addressing some of our most basic questions about the nature of matter, space, time, and energy. Discoveries of the Electroweak Symmetry Breaking mechanism, Supersymmetry, Extra Dimensions of space, Dark Matter particles, and new forces of nature are all possible. We have been waiting and planning for this exploration for over 20 years. In 2007 the Large Hadron Collider at CERN will begin its operation and will break into this new energy frontier. A new era of understanding will emerge as the LHC data maps out the Terascale. With themore » LHC discoveries, new compelling questions will arise. Responding to these questions will call for a new tool with greater sensitivity--the International Linear Collider. Historically, the most striking progress in the exploration of new energy frontiers has been made from combining results from hadron and electron-positron colliders. The precision measurements possible at the ILC will reveal the underlying theory which gave rise to the particles discovered at the LHC and will open the window to even higher energies. The world High Energy Physics community has reached an accord that an e+e- linear collider operating at 0.5-1.0 TeV would provide both unique and essential scientific opportunities; the community has endorsed with highest priority the construction of such a machine. A major milestone toward this goal was reached in August 2004 when the International Committee on Future Accelerators approved a recommendation for the technology of the future International Linear Collider. A global research and design effort is now underway to construct a global design report for the ILC. This endeavor is directed by Barry Barrish of the California Institute of Technology. The offer, made by Jonathan Dorfan on the behalf of ICFA, and acceptance of this directorship took place during the opening plenary session of this workshop. The 2005 International Linear Collider Workshop was held at Stanford University from 18 March through 22 March, 2005. This workshop was hosted by the Stanford Linear Accelerator Center and sponsored by the World Wide Study for future e+e- linear colliders. It was the eighth in a series of International Workshops (the first was held in Saariselka, Finland in 1991) devoted to the physics and detectors associated with high energy e+e- linear colliders. 397 physicists from 24 countries participated in the workshop. These proceedings represent the presentations and discussions which took place during the workshop. The contributions are comprised of physics studies, detector specifications, and accelerator design for the ILC. These proceedings are organized in two Volumes and include contributions from both the plenary and parallel sessions.« less

  4. Interplay and characterization of Dark Matter searches at colliders and in direct detection experiments

    DOE PAGES

    Malik, Sarah A.; McCabe, Christopher; Araujo, Henrique; ...

    2015-05-18

    In our White Paper we present and discuss a concrete proposal for the consistent interpretation of Dark Matter searches at colliders and in direct detection experiments. Furthermore, based on a specific implementation of simplified models of vector and axial-vector mediator exchanges, this proposal demonstrates how the two search strategies can be compared on an equal footing.

  5. Fourth workshop on Experiments and Detectors for a Relativistic Heavy Ion Collider

    NASA Technical Reports Server (NTRS)

    Fatyga, M. (Editor); Moskowitz, B. (Editor)

    1992-01-01

    We present a description of an experiment which can be used to search for effects of strong electromagnetic fields on the production of e(sup +) e(sup -) pairs in the elastic scattering of two heavy ions at the Relativistic Heavy Ion Collider (RHIC). A very brief discussion of other possible studies of electromagnetic phenomena at RHIC is also presented.

  6. Taking Energy to the Physics Classroom from the Large Hadron Collider at CERN

    ERIC Educational Resources Information Center

    Cid, Xabier; Cid, Ramon

    2009-01-01

    In 2008, the greatest experiment in history began. When in full operation, the Large Hadron Collider (LHC) at CERN will generate the greatest amount of information that has ever been produced in an experiment before. It will also reveal some of the most fundamental secrets of nature. Despite the enormous amount of information available on this…

  7. Collider study on the loop-induced dark matter mediation

    NASA Astrophysics Data System (ADS)

    Tsai, Yuhsin

    2016-06-01

    Collider experiments are one of the most promising ways to constrain Dark Matter (DM) interactions. For DM couplings involving light mediators, especially for the loop-mediated interactions, a meaningful interpretation of the results requires to go beyond effective field theory. In this note we discuss the study of the magnetic dipole interacting DM, focusing on a model with anarchic dark flavor structure. By including the momentum-dependent form factors that mediate the coupling - given by the Dark Penguin - in collider processes, we study bounds from monophoton, diphoton, and non-pointing photon searches at the LHC. We also compare our results to constraints from the direct detection experiments.

  8. On a Possibility of the Gravitational Wave Detection at the High Energy Colliders

    NASA Astrophysics Data System (ADS)

    Verma, Murli Manohar

    A strong follow up of a previous proposal (ICHEP, Valencia 2014) is made leading to the first experiment to observe the gravitational waves at the collision sites at the colliders such as the Large Hadron Collider at CERN. The amplitudes have been calculated with regard to the sensitivity of the detector. Compared with the standard model physics, it is shown to have a measurable impact on the particle motions and corresponds to ‘missing’ energy in form of the gravitational wave loss. This is unlike the cosmological detectors like BICEP2 etc. where the indirect B mode polarization on CMBR were masked by dust. In contrast, this experiment would be the first experiment where the energy-momentum tensor of the source can be controlled.

  9. Neutrinos from colliding wind binaries: future prospects for PINGU and ORCA

    NASA Astrophysics Data System (ADS)

    Becker Tjus, J.

    2014-05-01

    Massive stars play an important role in explaining the cosmic ray spectrum below the knee, possibly even up to the ankle, i.e. up to energies of 1015 or 1018.5 eV, respectively. In particular, Supernova Remnants are discussed as one of the main candidates to explain the cosmic ray spectrum. Even before their violent deaths, during the stars' regular life times, cosmic rays can be accelerated in wind environments. High-energy gamma-ray measurements indicate hadronic acceleration binary systems, leading to both periodic gamma-ray emission from binaries like LSI + 60 303 and continuous emission from colliding wind environments like η-Carinae. The detection of neutrinos and photons from hadronic interactions are one of the most promising methods to identify particle acceleration sites. In this paper, future prospects to detect neutrinos from colliding wind environments in massive stars are investigated. In particular, the seven most promising candidates for emission from colliding wind binaries are investigated to provide an estimate of the signal strength. The expected signal of a single source is about a factor of 5-10 below the current IceCube sensitivity and it is therefore not accessible at the moment. What is discussed in addition is future the possibility to measure low-energy neutrino sources with detectors like PINGU and ORCA: the minimum of the atmospheric neutrino flux at around 25 GeV from neutrino oscillations provides an opportunity to reduce the background and increase the significance to searches for GeV-TeV neutrino sources. This paper presents the first idea, detailed studies including the detector's effective areas will be necessary in the future to test the feasibility of such an approach.

  10. The Nuclotron-based Ion Collider Facility Project. The Physics Programme for the Multi-Purpose Detector

    NASA Astrophysics Data System (ADS)

    Geraksiev, N. S.; MPD Collaboration

    2018-05-01

    The Nuclotron-based Ion Collider fAcility (NICA) is a new accelerator complex being constructed at the Joint Institute for Nuclear Research (JINR). The general objective of the project is to provide beams for the experimental study of hot and dense strongly interacting QCD matter. The heavy ion programme includes two planned detectors: BM@N (Baryonic Matter at Nuclotron) a fixed target experiment with extracted Nuclotron beams; and MPD (MultiPurpose Detector) a collider mode experiment at NICA. The accelerated particles can range from protons and light nuclei to gold ions. Beam energies will span\\sqrt{s}=12-27 GeV with luminosity L ≥ 1 × 1030 cm‑2s‑1 and \\sqrt{{s}NN}=4-11 GeV and average luminosity L = 1 × 1027cm‑2 s ‑1(for 197Au79+), respectively. A third experiment for spin physics is planned with the SPD (Spin Physics Detector) at the NICA collider in polarized beams mode. A brief overview of the MPD is presented along with several observables in the MPD physics programme.

  11. Final Report: High Energy Physics at the Energy Frontier at Louisiana Tech

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawyer, Lee; Wobisch, Markus; Greenwood, Zeno D.

    The Louisiana Tech University High Energy Physics group has developed a research program aimed at experimentally testing the Standard Model of particle physics and searching for new phenomena through a focused set of analyses in collaboration with the ATLAS experiment at the Large Hadron Collider (LHC) at the CERN laboratory in Geneva. This research program includes involvement in the current operation and maintenance of the ATLAS experiment and full involvement in Phase 1 and Phase 2 upgrades in preparation for future high luminosity (HL-LHC) operation of the LHC. Our focus is solely on the ATLAS experiment at the LHC, withmore » some related detector development and software efforts. We have established important service roles on ATLAS in five major areas: Triggers, especially jet triggers; Data Quality monitoring; grid computing; GPU applications for upgrades; and radiation testing for upgrades. Our physics research is focused on multijet measurements and top quark physics in final states containing tau leptons, which we propose to extend into related searches for new phenomena. Focusing on closely related topics in the jet and top analyses and coordinating these analyses in our group has led to high efficiency and increased visibility inside the ATLAS collaboration and beyond. Based on our work in the DØ experiment in Run II of the Fermilab Tevatron Collider, Louisiana Tech has developed a reputation as one of the leading institutions pursuing jet physics studies. Currently we are applying this expertise to the ATLAS experiment, with several multijet analyses in progress.« less

  12. Disambiguating seesaw models using invariant mass variables at hadron colliders

    NASA Astrophysics Data System (ADS)

    Dev, P. S. Bhupal; Kim, Doojin; Mohapatra, Rabindra N.

    2016-01-01

    We propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. These kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. A Monte Carlo simulation with detector effects is conducted to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at the √{s}=14 and 100 TeV hadron colliders.

  13. Investigation of beam self-polarization in the future e + e - circular collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianfelice-Wendt, E.

    The use of resonant depolarization has been suggested for precise beam energy measurements (better than 100 keV) in the e +e - Future Circular Collider (FCC-e +e -) for Z and WW physics at 45 and 80 GeV beam energy respectively. Longitudinal beam polarization would benefit the Z peak physics program; however it is not essential and therefore it will be not investigated here. In this paper the possibility of self-polarized leptons is considered. As a result, preliminary results of simulations in presence of quadrupole misalignments and beam position monitors (BPMs) errors for a simplified FCC-e +e - ring are presented.

  14. Design Studies and Optimization of High-Field Nb$$_3$$Sn Dipole Magnets for a Future Very High Energy PP Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashikhin, V. V.; Novitski, I.; Zlobin, A. V.

    2017-05-01

    High filed accelerator magnets with operating fields of 15-16 T based on themore » $$Nb_3Sn$$ superconductor are being considered for the LHC energy upgrade or a future Very High Energy pp Collider. Magnet design studies are being conducted in the U.S., Europe and Asia to explore the limits of the $$Nb_3Sn$$ accelerator magnet technology while optimizing the magnet design and performance parame-ters, and reducing magnet cost. The first results of these studies performed at Fermilab in the framework of the US-MDP are reported in this paper.« less

  15. Investigation of beam self-polarization in the future e + e - circular collider

    DOE PAGES

    Gianfelice-Wendt, E.

    2016-10-24

    The use of resonant depolarization has been suggested for precise beam energy measurements (better than 100 keV) in the e +e - Future Circular Collider (FCC-e +e -) for Z and WW physics at 45 and 80 GeV beam energy respectively. Longitudinal beam polarization would benefit the Z peak physics program; however it is not essential and therefore it will be not investigated here. In this paper the possibility of self-polarized leptons is considered. As a result, preliminary results of simulations in presence of quadrupole misalignments and beam position monitors (BPMs) errors for a simplified FCC-e +e - ring are presented.

  16. High Energy Colliding Beams; What Is Their Future?

    NASA Astrophysics Data System (ADS)

    Richter, Burton

    The success of the first few years of LHC operations at CERN, and the expectation of more to come as the LHC's performance improves, are already leading to discussions of what should be next for both proton-proton and electron-positron colliders. In this discussion I see too much theoretical desperation caused by the so-far-unsuccessful hunt for what is beyond the Standard Model, and too little of the necessary interaction of the accelerator, experimenter, and theory communities necessary for a scientific and engineering success. Here, I give my impressions of the problem, its possible solution, and what is needed to have both a scientifically productive and financially viable future.

  17. High Energy Colliding Beams; What Is Their Future?

    NASA Astrophysics Data System (ADS)

    Richter, Burton

    2014-04-01

    The success of the first few years of LHC operations at CERN, and the expectation of more to come as the LHC's performance improves, are already leading to discussions of what should be next for both proton-proton and electron-positron colliders. In this discussion I see too much theoretical desperation caused by the so-far-unsuccessful hunt for what is beyond the Standard Model, and too little of the necessary interaction of the accelerator, experimenter, and theory communities necessary for a scientific and engineering success. Here, I give my impressions of the problem, its possible solution, and what is needed to have both a scientifically productive and financially viable future.

  18. High Energy Colliding Beams; What Is Their Future?

    NASA Astrophysics Data System (ADS)

    Richter, Burton

    2015-02-01

    The success of the first few years of LHC operations at CERN, and the expectation of more to come as the LHC's performance improves, are already leading to discussions of what should be next for both proton-proton and electron-positron colliders. In this discussion I see too much theoretical desperation caused by the so-far-unsuccessful hunt for what is beyond the Standard Model, and too little of the necessary interaction of the accelerator, experimenter, and theory communities necessary for a scientific and engineering success. Here, I give my impressions of the problem, its possible solution, and what is needed to have both a scientifically productive and financially viable future.

  19. Investigation of beam self-polarization in the future e+e- circular collider

    NASA Astrophysics Data System (ADS)

    Gianfelice-Wendt, E.

    2016-10-01

    The use of resonant depolarization has been suggested for precise beam energy measurements (better than 100 keV) in the e+e- Future Circular Collider (FCC-e+e-) for Z and W W physics at 45 and 80 GeV beam energy respectively. Longitudinal beam polarization would benefit the Z peak physics program; however it is not essential and therefore it will be not investigated here. In this paper the possibility of self-polarized leptons is considered. Preliminary results of simulations in presence of quadrupole misalignments and beam position monitors (BPMs) errors for a simplified FCC-e+e- ring are presented.

  20. Future HEP Accelerators: The US Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, Pushpalatha; Shiltsev, Vladimir

    2015-11-02

    Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN throughmore » its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed and are currently under consideration for the medium- and long-term future programs of accelerator-based HEP research. In this paper, we briefly review the post-LHC energy frontier options, both for lepton and hadron colliders in various regions of the world, as well as possible future intensity frontier accelerator facilities.« less

  1. TMDs and GPDs at a future Electron-Ion Collider

    DOE PAGES

    Ent, Rolf

    2016-06-21

    With two options studied at Brookhaven National Lab and Jefferson Laboratory the U.S., an Electron-Ion Collider (EIC) of energy √s=20-100 GeV was under design. Furthermore, the recent 2015 US Nuclear Science Long-Range Planning effort included a future EIC as a recommendation for future construction. The EIC will be unique in colliding polarised electrons off polarised protons and light nuclei, providing the spin degrees of freedom essential to pursue its physics program driven by spin structure, multi-dimensional tomographic images of protons and nuclei, and discovery of the role of collective effects of gluons in nuclei. The foreseen luminosity of the EIC,more » coupled with its energy variability and reach, will allow unprecedented three-dimensional imaging of the gluon and sea quark distributions, via both TMDs and GPDs, and to explore correlations amongst them. Its hermetic detection capability of correlated fragments promises to similar allow for precise tomographic images of the quark-gluon landscape in nuclei, transcending from light few-body nuclei to the heaviest nuclei, and could uncover how the TMD and GPD landscape changes when gluons display an anticipated collective behavior at the higher energies.« less

  2. Ian Hinchliffe Answers Your Higgs Boson Questions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinchliffe, Ian

    contingent with the ATLAS experiment at CERN, answers many of your questions about the Higgs boson. Ian invited viewers to send in questions about the Higgs via email, Twitter, Facebook, or YouTube in an "Ask a Scientist" video posted July 3: http://youtu.be/xhuA3wCg06s CERN's July 4 announcement that the ATLAS and CMS experiments at the Large Hadron Collider have discovered a particle "consistent with the Higgs boson" has raised questions about what scientists have found and what still remains to be found -- and what it all means. If you have suggestions for future "Ask a Scientist" videos, post them belowmore » or send ideas to askascientist@lbl.gov« less

  3. Answering Gauguin’s Questions: Where Are We Coming From, Where Are We Going, and What Are We?

    ScienceCinema

    Ellis, John [CERN

    2017-12-09

    The knowledge of matter revealed by the current reigning theory of particle physics, the so-called Standard Model, still leaves open many basic questions. What is the origin of the matter in the Universe? How does its mass originate? What is the nature of the dark matter that fills the Universe? Are there additional dimensions of space? The Large Hadron Collider (LHC) at the CERN Laboratory in Geneva, Switzerland, where high-energy experiments have now started, will take physics into a new realm of energy and time, and will address these physics analogues of Gauguin's questions. The answers will set the stage for possible future experiments beyond the scope of the LHC.

  4. CP Violation and the Future of Flavor Physics

    NASA Astrophysics Data System (ADS)

    Kiesling, Christian

    2009-12-01

    With the nearing completion of the first-generation experiments at asymmetric e+e- colliders running at the Υ(4S) resonance ("B-Factories") a new era of high luminosity machines is at the horizon. We report here on the plans at KEK in Japan to upgrade the KEKB machine ("SuperKEKB") with the goal of achieving an instantaneous luminosity exceeding 8×1035 cm-2 s-1, which is almost two orders of magnitude higher than KEKB. Together with the machine, the Belle detector will be upgraded as well ("Belle-II"), with significant improvements to increase its background tolerance as well as improving its physics performance. The new generation of experiments is scheduled to take first data in the year 2013.

  5. Usage of machine learning for the separation of electroweak and strong Zγ production at the LHC experiments

    NASA Astrophysics Data System (ADS)

    Petukhov, A. M.; Soldatov, E. Yu

    2017-12-01

    Separation of electroweak component from strong component of associated Zγ production on hadron colliders is a very challenging task due to identical final states of such processes. The only difference is the origin of two leading jets in these two processes. Rectangular cuts on jet kinematic variables from ATLAS/CMS 8 TeV Zγ experimental analyses were improved using machine learning techniques. New selection variables were also tested. The expected significance of separation for LHC experiments conditions at the second datataking period (Run2) and 120 fb-1 amount of data reaches more than 5σ. Future experimental observation of electroweak Zγ production can also lead to the observation physics beyond Standard Model.

  6. Artist rendering of dust grains colliding at low speeds

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Clues to the formation of planets and planetary rings -- like Saturn's dazzling ring system -- may be found by studying how dust grains interact as they collide at low speeds. To study the question of low-speed dust collisions, NASA sponsored the COLLisions Into Dust Experiment (COLLIDE) at the University of Colorado. It was designed to spring-launch marble-size projectiles into trays of powder similar to space or lunar dust. COLLIDE-1 (1998) discovered that collisions below a certain energy threshold eject no material. COLLIDE-2 was designed to identify where the threshold is. In COLLIDE-2, scientists nudged small projectiles into dust beds and recorded how the dust splashed outward (video frame at top; artist's rendering at bottom). The slowest impactor ejected no material and stuck in the target. The faster impactors produced ejecta; some rebounded while others stuck in the target.

  7. How hadron collider experiments contributed to the development of QCD: from hard-scattering to the perfect liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tannenbaum, M. J.

    A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPSmore » $$\\bar{p}$$ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.« less

  8. How hadron collider experiments contributed to the development of QCD: from hard-scattering to the perfect liquid

    DOE PAGES

    Tannenbaum, M. J.

    2018-01-30

    A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPSmore » $$\\bar{p}$$ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.« less

  9. How hadron collider experiments contributed to the development of QCD: from hard-scattering to the perfect liquid

    NASA Astrophysics Data System (ADS)

    Tannenbaum, M. J.

    2018-05-01

    A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/ Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPS p¯ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.

  10. Collider study on the loop-induced dark matter mediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Yuhsin, E-mail: yhtsai@umd.edu

    2016-06-21

    Collider experiments are one of the most promising ways to constrain Dark Matter (DM) interactions. For DM couplings involving light mediators, especially for the loop-mediated interactions, a meaningful interpretation of the results requires to go beyond effective field theory. In this note we discuss the study of the magnetic dipole interacting DM, focusing on a model with anarchic dark flavor structure. By including the momentum-dependent form factors that mediate the coupling – given by the Dark Penguin – in collider processes, we study bounds from monophoton, diphoton, and non-pointing photon searches at the LHC. We also compare our results tomore » constraints from the direct detection experiments.« less

  11. Particle Physics after the Higgs-Boson Discovery: Opportunities for the Large Hadron Collider

    DOE PAGES

    Quigg, Chris

    2015-08-24

    The first run of the Large Hadron Collider at CERN brought the discovery of the Higgs boson, an apparently elementary scalar particle with a mass of 125 GeV, the avatar of the mechanism that hides the electroweak symmetry. Then, a new round of experimentation is beginning, with the energy of the proton–proton colliding beams raised to 6.5 TeV per beam, from 4 TeV at the end of the first run. I summarize what we have learned about the Higgs boson, and calls attention to some issues that will be among our central concerns in the near future.

  12. ISR corrections to associated HZ production at future Higgs factories

    NASA Astrophysics Data System (ADS)

    Greco, Mario; Montagna, Guido; Nicrosini, Oreste; Piccinini, Fulvio; Volpi, Gabriele

    2018-02-01

    We evaluate the QED corrections due to initial state radiation (ISR) to associated Higgs boson production in electron-positron (e+e-) annihilation at typical energies of interest for the measurement of the Higgs properties at future e+e- colliders, such as CEPC and FCC-ee. We apply the QED Structure Function approach to the four-fermion production process e+e- →μ+μ- b b bar , including both signal and background contributions. We emphasize the relevance of the ISR corrections particularly near threshold and show that finite third order collinear contributions are mandatory to meet the expected experimental accuracy. We analyze in turn the rôle played by a full four-fermion calculation and beam energy spread in precision calculations for Higgs physics at future e+e- colliders.

  13. High Energy Physics and Nuclear Physics Network Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dart, Eli; Bauerdick, Lothar; Bell, Greg

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements needed by instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In August 2013, ESnet and the DOE SC Offices of High Energy Physics (HEP) and Nuclear Physicsmore » (NP) organized a review to characterize the networking requirements of the programs funded by the HEP and NP program offices. Several key findings resulted from the review. Among them: 1. The Large Hadron Collider?s ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) experiments are adopting remote input/output (I/O) as a core component of their data analysis infrastructure. This will significantly increase their demands on the network from both a reliability perspective and a performance perspective. 2. The Large Hadron Collider (LHC) experiments (particularly ATLAS and CMS) are working to integrate network awareness into the workflow systems that manage the large number of daily analysis jobs (1 million analysis jobs per day for ATLAS), which are an integral part of the experiments. Collaboration with networking organizations such as ESnet, and the consumption of performance data (e.g., from perfSONAR [PERformance Service Oriented Network monitoring Architecture]) are critical to the success of these efforts. 3. The international aspects of HEP and NP collaborations continue to expand. This includes the LHC experiments, the Relativistic Heavy Ion Collider (RHIC) experiments, the Belle II Collaboration, the Large Synoptic Survey Telescope (LSST), and others. The international nature of these collaborations makes them heavily reliant on transoceanic connectivity, which is subject to longer term service disruptions than terrestrial connectivity. The network engineering aspects of undersea connectivity will continue to be a significant part of the planning, deployment, and operation of the data analysis infrastructure for HEP and NP experiments for the foreseeable future. Given their critical dependency on networking services, the experiments have expressed the need for tight integration (both technically and operationally) of the domestic and the transoceanic parts of the network infrastructure that supports the experiments. 4. The datasets associated with simulations continue to increase in size, and the need to move these datasets between analysis centers is placing ever-increasing demands on networks and on data management systems at the supercomputing centers. In addition, there is a need to harmonize cybersecurity practice with the data transfer performance requirements of the science. This report expands on these points, and addresses others as well. The report contains a findings section in addition to the text of the case studies discussed during the review.« less

  14. Do Gluons Carry Proton Spin? - Toward Resolving the Spin Crisis (445th Brookhaven Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazilevsky, Alexander

    2009-01-21

    Just as Earth and other planets spin within the solar system, subatomic quark and gluon particles spin within the protons and neutrons that spin within the nucleus of an atom. Quantum Chromodynamics (QCD) is a theory that describes interactions between subatomic particles and it has played a defining role in understanding the spin of protons and neutrons, which make up most of the visible mass in the universe. Experiments first completed at CERN and furthered at several other laboratories around the world revealed that surprisingly, quarks and their partnering anti-quarks are responsible for only 20 to 30 percent of protonmore » spin. These findings pointed to what would become known as "spin crisis." More recent experiments at BNL's Relativistic Heavy Ion Collider (RHIC), the first collider to smash protons that are "polarized," or made to spin in the same orientation, have helped to isolate the role of the gluon's spin within the spinning proton in hopes of resolving this crisis. In his lecture, Bazilevsky will explain how data from RHIC's PHENIX and STAR detectors help to reveal the role of gluons in the proton's spin. Bazilevsky will also discuss long- and short-term plans to attain a deeper look into the proton spin structure, utilizing RHIC and its future upgrades« less

  15. Simulation Study of Invisible Decays of the Higgs Boson with the Circular Electron Positron Collider

    NASA Astrophysics Data System (ADS)

    Jyotishmati, Susmita

    A Higgs-like boson has been discovered by the experiments ATLAS and CMS at the LHC. We need to verify that it is the Standard Model (SM) Higgs and understand its nature. A Circular Electron Positron Collider (CEPC), has been proposed as a Higgs factory for detailed study of the Higgs boson. In this dissertation we study the feasibility of measuring the H → Invisible decays at the CEPC. Dark Matter (DM) interacts with matter by gravity, thus appears to be invisible in the CEPC experiment. If Higgs boson couples to DM it could be an important "portal" to New Physics. A Monte Carlo analysis of H → Invisible optimized to achieve high signal significance, and low backgrounds in the e +e- → ZH, Z → mu +mu- channel based on an integrated luminosity of 5 ab-1 expected for ten years run of the CEPC, is performed. Precision on the Higgs to invisible branching ratio at the input values of 0.1%(SM) and Beyond Standard Model (BSM) cases 0%, 1%, 5% and 10% is determined. Two approaches have been employed. They are the cut-based analysis and the multivariate analysis. Based on this dissertation study a baseline analysis approach is recommended for future CEPC design and studies.

  16. The ATLAS Experiment at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    ATLAS Collaboration; Aad, G.; Abat, E.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B. A.; Abolins, M.; Abramowicz, H.; Acerbi, E.; Acharya, B. S.; Achenbach, R.; Ackers, M.; Adams, D. L.; Adamyan, F.; Addy, T. N.; Aderholz, M.; Adorisio, C.; Adragna, P.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Aielli, G.; Åkesson, P. F.; Åkesson, T. P. A.; Akimov, A. V.; Alam, S. M.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Aleppo, M.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alimonti, G.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Aloisio, A.; Alonso, J.; Alves, R.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amaral, S. P.; Ambrosini, G.; Ambrosio, G.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amram, N.; Anastopoulos, C.; Anderson, B.; Anderson, K. J.; Anderssen, E. C.; Andreazza, A.; Andrei, V.; Andricek, L.; Andrieux, M.-L.; Anduaga, X. S.; Anghinolfi, F.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Apsimon, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arguin, J.-F.; Arik, E.; Arik, M.; Arms, K. E.; Armstrong, S. R.; Arnaud, M.; Arnault, C.; Artamonov, A.; Asai, S.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Athar, B.; Atkinson, T.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aulchenko, V. M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, A.; Ay, C.; Azuelos, G.; Baccaglioni, G.; Bacci, C.; Bachacou, H.; Bachas, K.; Bachy, G.; Badescu, E.; Bagnaia, P.; Bailey, D. C.; Baines, J. T.; Baker, O. K.; Ballester, F.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barberio, E. L.; Barberis, D.; Barbier, G.; Barclay, P.; Bardin, D. Y.; Bargassa, P.; Barillari, T.; Barisonzi, M.; Barnett, B. M.; Barnett, R. M.; Baron, S.; Baroncelli, A.; Barone, M.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barriuso Poy, A.; Barros, N.; Bartheld, V.; Bartko, H.; Bartoldus, R.; Basiladze, S.; Bastos, J.; Batchelor, L. E.; Bates, R. L.; Batley, J. R.; Batraneanu, S.; Battistin, M.; Battistoni, G.; Batusov, V.; Bauer, F.; Bauss, B.; Baynham, D. E.; Bazalova, M.; Bazan, A.; Beauchemin, P. H.; Beaugiraud, B.; Beccherle, R. B.; Beck, G. A.; Beck, H. P.; Becks, K. H.; Bedajanek, I.; Beddall, A. J.; Beddall, A.; Bednár, P.; Bednyakov, V. A.; Bee, C.; Behar Harpaz, S.; Belanger, G. A. N.; Belanger-Champagne, C.; Belhorma, B.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellachia, F.; Bellagamba, L.; Bellina, F.; Bellomo, G.; Bellomo, M.; Beltramello, O.; Belymam, A.; Ben Ami, S.; Ben Moshe, M.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benes, J.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas, E.; Berger, N.; Berghaus, F.; Berglund, S.; Bergsma, F.; Beringer, J.; Bernabéu, J.; Bernardet, K.; Berriaud, C.; Berry, T.; Bertelsen, H.; Bertin, A.; Bertinelli, F.; Bertolucci, S.; Besson, N.; Beteille, A.; Bethke, S.; Bialas, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieri, M.; Biglietti, M.; Bilokon, H.; Binder, M.; Binet, S.; Bingefors, N.; Bingul, A.; Bini, C.; Biscarat, C.; Bischof, R.; Bischofberger, M.; Bitadze, A.; Bizzell, J. P.; Black, K. M.; Blair, R. E.; Blaising, J. J.; Blanch, O.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Boaretto, C.; Bobbink, G. J.; Bocci, A.; Bocian, D.; Bock, R.; Boehm, M.; Boek, J.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V. G.; Bonino, R.; Bonis, J.; Bonivento, W.; Bonneau, P.; Boonekamp, M.; Boorman, G.; Boosten, M.; Booth, C. N.; Booth, P. S. L.; Booth, P.; Booth, J. R. A.; Borer, K.; Borisov, A.; Borjanovic, I.; Bos, K.; Boscherini, D.; Bosi, F.; Bosman, M.; Bosteels, M.; Botchev, B.; Boterenbrood, H.; Botterill, D.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boutemeur, M.; Bouzakis, K.; Boyd, G. R.; Boyd, J.; Boyer, B. H.; Boyko, I. R.; Bozhko, N. I.; Braccini, S.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, O.; Bratzler, U.; Braun, H. M.; Bravo, S.; Brawn, I. P.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N. D.; Breugnon, P.; Bright-Thomas, P. G.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Broklova, Z.; Bromberg, C.; Brooijmans, G.; Brouwer, G.; Broz, J.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Buchanan, N. J.; Buchholz, P.; Budagov, I. A.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Buis, E. J.; Bujor, F.; Buran, T.; Burckhart, H.; Burckhart-Chromek, D.; Burdin, S.; Burns, R.; Busato, E.; Buskop, J. J. F.; Buszello, K. P.; Butin, F.; Butler, J. M.; Buttar, C. M.; Butterworth, J.; Butterworth, J. M.; Byatt, T.; Cabrera Urbán, S.; Cabruja Casas, E.; Caccia, M.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calderón Terol, D.; Callahan, J.; Caloba, L. P.; Caloi, R.; Calvet, D.; Camard, A.; Camarena, F.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Cammin, J.; Campabadal Segura, F.; Campana, S.; Canale, V.; Cantero, J.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Caprio, M.; Caracinha, D.; Caramarcu, C.; Carcagno, Y.; Cardarelli, R.; Cardeira, C.; Cardiel Sas, L.; Cardini, A.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carpentieri, C.; Carr, F. S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castelo, J.; Castillo Gimenez, V.; Castro, N.; Castrovillari, F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caughron, S.; Cauz, D.; Cavallari, A.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerna, C.; Cernoch, C.; Cerqueira, A. S.; Cerri, A.; Cerutti, F.; Cervetto, M.; Cetin, S. A.; Cevenini, F.; Chalifour, M.; Chamizo llatas, M.; Chan, A.; Chapman, J. W.; Charlton, D. G.; Charron, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, L.; Chen, T.; Chen, X.; Cheng, S.; Cheng, T. L.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chesneanu, D.; Cheu, E.; Chevalier, L.; Chevalley, J. L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Chilingarov, A.; Chiodini, G.; Chouridou, S.; Chren, D.; Christiansen, T.; Christidi, I. A.; Christov, A.; Chu, M. L.; Chudoba, J.; Chuguev, A. G.; Ciapetti, G.; Cicalini, E.; Ciftci, A. K.; Cindro, V.; Ciobotaru, M. D.; Ciocio, A.; Cirilli, M.; Citterio, M.; Ciubancan, M.; Civera, J. V.; Clark, A.; Cleland, W.; Clemens, J. C.; Clement, B. C.; Clément, C.; Clements, D.; Clifft, R. W.; Cobal, M.; Coccaro, A.; Cochran, J.; Coco, R.; Coe, P.; Coelli, S.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins-Tooth, C.; Collot, J.; Coluccia, R.; Comune, G.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F. A.; Cook, J.; Cooke, M.; Cooper-Smith, N. J.; Cornelissen, T.; Corradi, M.; Correard, S.; Corso-Radu, A.; Coss, J.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Coura Torres, R.; Courneyea, L.; Couyoumtzelis, C.; Cowan, G.; Cox, B. E.; Cox, J.; Cragg, D. A.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Cuenca Almenar, C.; Cuneo, S.; Cunha, A.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; Da Rocha Gesualdi Mello, A.; Da Silva, P. V. M.; Da Silva, R.; Dabrowski, W.; Dael, A.; Dahlhoff, A.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Dalmau, J.; Daly, C. H.; Dam, M.; Damazio, D.; Dameri, M.; Danielsen, K. M.; Danielsson, H. O.; Dankers, R.; Dannheim, D.; Darbo, G.; Dargent, P.; Daum, C.; Dauvergne, J. P.; David, M.; Davidek, T.; Davidson, N.; Davidson, R.; Dawson, I.; Dawson, J. W.; Daya, R. K.; De, K.; de Asmundis, R.; de Boer, R.; DeCastro, S.; DeGroot, N.; de Jong, P.; de La Broise, X.; DeLa Cruz-Burelo, E.; DeLa Taille, C.; DeLotto, B.; DeOliveira Branco, M.; DePedis, D.; de Saintignon, P.; DeSalvo, A.; DeSanctis, U.; DeSanto, A.; DeVivie DeRegie, J. B.; DeZorzi, G.; Dean, S.; Dedes, G.; Dedovich, D. V.; Defay, P. O.; Degele, R.; Dehchar, M.; Deile, M.; DelPapa, C.; DelPeso, J.; DelPrete, T.; Delagnes, E.; Delebecque, P.; Dell'Acqua, A.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca Silberberg, C.; Demers, S.; Demichev, M.; Demierre, P.; Demirköz, B.; Deng, W.; Denisov, S. P.; Dennis, C.; Densham, C. J.; Dentan, M.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K. K.; Dewhurst, A.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Simone, A.; Diaz Gomez, M. M.; Diehl, E. B.; Dietl, H.; Dietrich, J.; Dietsche, W.; Diglio, S.; Dima, M.; Dindar, K.; Dinkespiler, B.; Dionisi, C.; Dipanjan, R.; Dita, P.; Dita, S.; Dittus, F.; Dixon, S. D.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M. A. B.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O. B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Domingo, E.; Donega, M.; Dopke, J.; Dorfan, D. E.; Dorholt, O.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doyle, A. T.; Drake, G.; Drakoulakos, D.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Drohan, J. G.; Dubbert, J.; Dubbs, T.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dührssen, M.; Dür, H.; Duerdoth, I. P.; Duffin, S.; Duflot, L.; Dufour, M.-A.; Dumont Dayot, N.; Duran Yildiz, H.; Durand, D.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Díez Cornell, S.; Düren, M.; Ebenstein, W. L.; Eckert, S.; Eckweiler, S.; Eerola, P.; Efthymiopoulos, I.; Egede, U.; Egorov, K.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; Eklund, L. M.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engström, M.; Ennes, P.; Epp, B.; Eppig, A.; Epshteyn, V. S.; Ereditato, A.; Eremin, V.; Eriksson, D.; Ermoline, I.; Ernwein, J.; Errede, D.; Errede, S.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Esteves, F.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evans, H.; Evdokimov, V. N.; Evtoukhovitch, P.; Eyring, A.; Fabbri, L.; Fabjan, C. W.; Fabre, C.; Faccioli, P.; Facius, K.; Fadeyev, V.; Fakhrutdinov, R. M.; Falciano, S.; Falleau, I.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farrell, J.; Farthouat, P.; Fasching, D.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fawzi, F.; Fayard, L.; Fayette, F.; Febbraro, R.; Fedin, O. L.; Fedorko, I.; Feld, L.; Feldman, G.; Feligioni, L.; Feng, C.; Feng, E. J.; Fent, J.; Fenyuk, A. B.; Ferencei, J.; Ferguson, D.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferro, F.; Fiascaris, M.; Fichet, S.; Fiedler, F.; Filimonov, V.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Finocchiaro, G.; Fiorini, L.; Firan, A.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flaminio, V.; Flammer, J.; Flechl, M.; Fleck, I.; Flegel, W.; Fleischmann, P.; Fleischmann, S.; Fleta Corral, C. M.; Fleuret, F.; Flick, T.; Flix, J.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T. M.; Fopma, J.; Forbush, D. A.; Formica, A.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fox, H.; Francavilla, P.; Francis, D.; Franz, S.; Fraser, J. T.; Fraternali, M.; Fratianni, S.; Freestone, J.; French, R. S.; Fritsch, K.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fulachier, J.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Gallas, E. J.; Gallas, M. V.; Gallop, B. J.; Gan, K. K.; Gannaway, F. C.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garciá, C.; Garcia-Sciveres, M.; Garcìa Navarro, J. E.; Garde, V.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V. G.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gautard, V.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gayde, J.-C.; Gazis, E. N.; Gazo, E.; Gee, C. N. P.; Geich-Gimbel, C.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M. A.; George, S.; Gerlach, P.; Gernizky, Y.; Geweniger, C.; Ghazlane, H.; Ghete, V. M.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, M. D.; Gibson, S. M.; Gieraltowski, G. F.; Gil Botella, I.; Gilbert, L. M.; Gilchriese, M.; Gildemeister, O.; Gilewsky, V.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Girard, C. G.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Gnanvo, K. G.; Godlewski, J.; Göpfert, T.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Goldschmidt, N.; Golling, T.; Gollub, N. P.; Golonka, P. J.; Golovnia, S. N.; Gomes, A.; Gomes, J.; Gonçalo, R.; Gongadze, A.; Gonidec, A.; Gonzalez, S.; González de la Hoz, S.; González Millán, V.; Gonzalez Silva, M. L.; Gonzalez-Pineiro, B.; González-Sevilla, S.; Goodrick, M. J.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordeev, A.; Gordon, H.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Gorski, B. T.; Goryachev, S. V.; Goryachev, V. N.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Goujdami, D.; Goulette, M.; Gousakov, I.; Gouveia, J.; Gowdy, S.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassmann, H.; Gratchev, V.; Gray, H. M.; Graziani, E.; Green, B.; Greenall, A.; Greenfield, D.; Greenwood, D.; Gregor, I. M.; Grewal, A.; Griesmayer, E.; Grigalashvili, N.; Grigson, C.; Grillo, A. A.; Grimaldi, F.; Grimm, K.; Gris, P. L. Y.; Grishkevich, Y.; Groenstege, H.; Groer, L. S.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Grothe, M. E. M.; Grudzinski, J.; Gruse, C.; Gruwe, M.; Grybel, K.; Grybos, P.; Gschwendtner, E. M.; Guarino, V. J.; Guicheney, C. J.; Guilhem, G.; Guillemin, T.; Gunther, J.; Guo, B.; Gupta, A.; Gurriana, L.; Gushchin, V. N.; Gutierrez, P.; Guy, L.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Haboubi, G.; Hackenburg, R.; Hadash, E.; Hadavand, H. K.; Haeberli, C.; Härtel, R.; Haggerty, R.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakimi, M.; Hakobyan, H.; Hakobyan, H.; Haller, J.; Hallewell, G. D.; Hallgren, B.; Hamacher, K.; Hamilton, A.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Hanke, P.; Hansen, C. J.; Hansen, F. H.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hanson, G.; Hansson, P.; Hara, K.; Harder, S.; Harel, A.; Harenberg, T.; Harper, R.; Hart, J. C.; Hart, R. G. G.; Hartjes, F.; Hartman, N.; Haruyama, T.; Harvey, A.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Hatley, R. W.; Haubold, T. G.; Hauff, D.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Hauviller, C.; Havranek, M.; Hawes, B. M.; Hawkings, R. J.; Hawkins, D.; Hayler, T.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; He, Y. P.; Head, S. J.; Hedberg, V.; Heelan, L.; Heinemann, F. E. W.; Heldmann, M.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Hendriks, P. J.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Henß, T.; Herten, G.; Hertenberger, R.; Hervas, L.; Hess, M.; Hessey, N. P.; Hicheur, A.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J.; Hill, J. C.; Hill, N.; Hillier, S. J.; Hinchliffe, I.; Hindson, D.; Hinkelbein, C.; Hodges, T. A.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, A. E.; Hoffmann, D.; Hoffmann, H. F.; Holder, M.; Hollins, T. I.; Hollyman, G.; Holmes, A.; Holmgren, S. O.; Holt, R.; Holtom, E.; Holy, T.; Homer, R. J.; Homma, Y.; Homola, P.; Honerbach, W.; Honma, A.; Hooton, I.; Horazdovsky, T.; Horn, C.; Horvat, S.; Hostachy, J.-Y.; Hott, T.; Hou, S.; Houlden, M. A.; Hoummada, A.; Hover, J.; Howell, D. F.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, B. T.; Hughes, E.; Hughes, G.; Hughes-Jones, R. E.; Hulsbergen, W.; Hurst, P.; Hurwitz, M.; Huse, T.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Iglesias Escudero, M. C.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Ilyushenka, Y.; Imbault, D.; Imbert, P.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Inoue, K.; Ioannou, P.; Iodice, M.; Ionescu, G.; Ishii, K.; Ishino, M.; Ishizawa, Y.; Ishmukhametov, R.; Issever, C.; Ito, H.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, J.; Jackson, J. N.; Jaekel, M.; Jagielski, S.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakubek, J.; Jansen, E.; Jansweijer, P. P. M.; Jared, R. C.; Jarlskog, G.; Jarp, S.; Jarron, P.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jez, P.; Jézéquel, S.; Jiang, Y.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, M.; Jones, R.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jones, A.; Jonsson, O.; Joo, K. K.; Joos, D.; Joos, M.; Joram, C.; Jorgensen, S.; Joseph, J.; Jovanovic, P.; Junnarkar, S. S.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagawa, S.; Kaiser, S.; Kajomovitz, E.; Kakurin, S.; Kalinovskaya, L. V.; Kama, S.; Kambara, H.; Kanaya, N.; Kandasamy, A.; Kandasamy, S.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M.; Karr, K.; Karst, P.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katunin, S.; Kawagoe, K.; Kawai, M.; Kawamoto, T.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Kazarov, A.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Ketterer, C.; Khakzad, M.; Khalilzade, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khomutnikov, V. P.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kieft, G.; Kierstead, J. A.; Kilvington, G.; Kim, H.; Kim, H.; Kim, S. H.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kisielewski, B.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Kleinknecht, K.; Klier, A.; Klimentov, A.; Kline, C. R.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. K.; Kneringer, E.; Knezo, E.; Knobloch, J.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kodys, P.; König, A. C.; König, S.; Köpke, L.; Koetsveld, F.; Koffas, T.; Koffeman, E.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Kollefrath, M.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kondo, Y.; Kondratyeva, N. V.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korotkov, V. A.; Korsmo, H.; Kortner, O.; Kostrikov, M. E.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotchetkov, D.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Kourkoumelis, C.; Koutsman, A.; Kovalenko, S.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V.; Kramberger, G.; Kramer, A.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Krepouri, A.; Krieger, P.; Krivkova, P.; Krobath, G.; Kroha, H.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruger, K.; Krumshteyn, Z. V.; Kubik, P.; Kubischta, W.; Kubota, T.; Kudin, L. G.; Kudlaty, J.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kundu, N.; Kupco, A.; Kupper, M.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuzhir, P.; Kuznetsova, E. K.; Kvasnicka, O.; Kwee, R.; La Marra, D.; La Rosa, M.; La Rotonda, L.; Labarga, L.; Labbe, J. A.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, E.; Lambacher, M.; Lambert, F.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Langstaff, R. R.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapin, V. V.; Laplace, S.; Laporte, J. F.; Lara, V.; Lari, T.; Larionov, A. V.; Lasseur, C.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Lazarev, A. B.; LeBihan, A.-C.; LeDortz, O.; LeManer, C.; LeVine, M.; Leahu, L.; Leahu, M.; Lebel, C.; Lechowski, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Lefevre, R. P.; Legendre, M.; Leger, A.; LeGeyt, B. C.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lehto, M.; Leitner, R.; Lelas, D.; Lellouch, D.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lepidis, J.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Letheren, M.; Fook Cheong, A. Leung; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Leyton, M.; Li, J.; Li, W.; Liabline, M.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Liebig, W.; Lifshitz, R.; Liko, D.; Lim, H.; Limper, M.; Lin, S. C.; Lindahl, A.; Linde, F.; Lindquist, L.; Lindsay, S. W.; Linhart, V.; Lintern, A. J.; Liolios, A.; Lipniacka, A.; Liss, T. M.; Lissauer, A.; List, J.; Litke, A. M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Llosá Llácer, G.; Lloyd, S. L.; Lobkowicz, F.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lokwitz, S.; Long, M. C.; Lopes, L.; Lopez Mateos, D.; Losty, M. J.; Lou, X.; Loureiro, K. F.; Lovas, L.; Love, J.; Lowe, A.; Lozano Fantoba, M.; Lu, F.; Lu, J.; Lu, L.; Lubatti, H. J.; Lucas, S.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, I.; Ludwig, J.; Luehring, F.; Lüke, D.; Luijckx, G.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundquist, J.; Lupi, A.; Lupu, N.; Lutz, G.; Lynn, D.; Lynn, J.; Lys, J.; Lysan, V.; Lytken, E.; López-Amengual, J. M.; Ma, H.; Ma, L. L.; Maaß en, M.; Maccarrone, G.; Mace, G. G. R.; Macina, D.; Mackeprang, R.; Macpherson, A.; MacQueen, D.; Macwaters, C.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maidantchik, C.; Maio, A.; Mair, G. M.; Mair, K.; Makida, Y.; Makowiecki, D.; Malecki, P.; Maleev, V. P.; Malek, F.; Malon, D.; Maltezos, S.; Malychev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Manara, A.; Manca, G.; Mandelli, L.; Mandić, I.; Mandl, M.; Maneira, J.; Maneira, M.; Mangeard, P. S.; Mangin-Brinet, M.; Manjavidze, I. D.; Mann, W. A.; Manolopoulos, S.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchesotti, M.; Marcisovsky, M.; Marin, A.; Marques, C. N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Garcia, S. Marti i.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph; Martinez, G.; Martínez Lacambra, C.; Martinez Outschoorn, V.; Martini, A.; Martins, J.; Maruyama, T.; Marzano, F.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mathes, M.; Matheson, J.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Maugain, J. M.; Maxfield, S. J.; May, E. N.; Mayer, J. K.; Mayri, C.; Mazini, R.; Mazzanti, M.; Mazzanti, P.; Mazzoni, E.; Mazzucato, F.; McKee, S. P.; McCarthy, R. L.; McCormick, C.; McCubbin, N. A.; McDonald, J.; McFarlane, K. W.; McGarvie, S.; McGlone, H.; McLaren, R. A.; McMahon, S. J.; McMahon, T. R.; McMahon, T. J.; McPherson, R. A.; Mechtel, M.; Meder-Marouelli, D.; Medinnis, M.; Meera-Lebbai, R.; Meessen, C.; Mehdiyev, R.; Mehta, A.; Meier, K.; Meinhard, H.; Meinhardt, J.; Meirosu, C.; Meisel, F.; Melamed-Katz, A.; Mellado Garcia, B. R.; Mendes Jorge, P.; Mendez, P.; Menke, S.; Menot, C.; Meoni, E.; Merkl, D.; Merola, L.; Meroni, C.; Merritt, F. S.; Messmer, I.; Metcalfe, J.; Meuser, S.; Meyer, J.-P.; Meyer, T. C.; Meyer, W. T.; Mialkovski, V.; Michelotto, M.; Micu, L.; Middleton, R.; Miele, P.; Migliaccio, A.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikestikova, M.; Mikulec, B.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Miller, W.; Milosavljevic, M.; Milstead, D. A.; Mima, S.; Minaenko, A. A.; Minano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitra, A.; Mitrofanov, G. Y.; Mitsou, V. A.; Miyagawa, P. S.; Miyazaki, Y.; Mjörnmark, J. U.; Mkrtchyan, S.; Mladenov, D.; Moa, T.; Moch, M.; Mochizuki, A.; Mockett, P.; Modesto, P.; Moed, S.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles Valls, R. M.; Molina-Perez, J.; Moll, A.; Moloney, G.; Mommsen, R.; Moneta, L.; Monnier, E.; Montarou, G.; Montesano, S.; Monticelli, F.; Moore, R. W.; Moore, T. B.; Moorhead, G. F.; Moraes, A.; Morel, J.; Moreno, A.; Moreno, D.; Morettini, P.; Morgan, D.; Morii, M.; Morin, J.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, E. J.; Morris, J.; Morrissey, M. C.; Moser, H. G.; Mosidze, M.; Moszczynski, A.; Mouraviev, S. V.; Mouthuy, T.; Moye, T. H.; Moyse, E. J. W.; Mueller, J.; Müller, M.; Muijs, A.; Muller, T. R.; Munar, A.; Munday, D. J.; Murakami, K.; Murillo Garcia, R.; Murray, W. J.; Myagkov, A. G.; Myska, M.; Nagai, K.; Nagai, Y.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Naito, D.; Nakamura, K.; Nakamura, Y.; Nakano, I.; Nanava, G.; Napier, A.; Nassiakou, M.; Nasteva, I.; Nation, N. R.; Naumann, T.; Nauyock, F.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Neganov, A.; Negri, A.; Negroni, S.; Nelson, C.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neukermans, L.; Nevski, P.; Newcomer, F. M.; Nichols, A.; Nicholson, C.; Nicholson, R.; Nickerson, R. B.; Nicolaidou, R.; Nicoletti, G.; Nicquevert, B.; Niculescu, M.; Nielsen, J.; Niinikoski, T.; Niinimaki, M. J.; Nikitin, N.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, B. S.; Nilsson, P.; Nisati, A.; Nisius, R.; Nodulman, L. J.; Nomachi, M.; Nomoto, H.; Noppe, J.-M.; Nordberg, M.; Norniella Francisco, O.; Norton, P. R.; Novakova, J.; Nowak, M.; Nozaki, M.; Nunes, R.; Nunes Hanninger, G.; Nunnemann, T.; Nyman, T.; O'Connor, P.; O'Neale, S. W.; O'Neil, D. C.; O'Neill, M.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermaier, M.; Oberson, P.; Ochi, A.; Ockenfels, W.; Odaka, S.; Odenthal, I.; Odino, G. A.; Ogren, H.; Oh, S. H.; Ohshima, T.; Ohshita, H.; Okawa, H.; Olcese, M.; Olchevski, A. G.; Oliver, C.; Oliver, J.; Olivo Gomez, M.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onea, A.; Onofre, A.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Orellana, F.; Oren, Y.; Orestano, D.; Orlov, I. O.; Orr, R. S.; Orsini, F.; Osborne, L. S.; Osculati, B.; Osuna, C.; Otec, R.; Othegraven, R.; Ottewell, B.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Øye, O. K.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padhi, S.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pailler, P. M.; Pajchel, K.; Palestini, S.; Palla, J.; Pallin, D.; Palmer, M. J.; Pan, Y. B.; Panikashvili, N.; Panin, V. N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Paoloni, A.; Papadopoulos, I.; Papadopoulou, T.; Park, I.; Park, W.; Parker, M. A.; Parker, S.; Parkman, C.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Passmore, M. S.; Pastore, F.; Pastore, Fr; Pataraia, S.; Pate, D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pauna, E.; Peak, L. S.; Peeters, S. J. M.; Peez, M.; Pei, E.; Peleganchuk, S. V.; Pellegrini, G.; Pengo, R.; Pequenao, J.; Perantoni, M.; Perazzo, A.; Pereira, A.; Perepelkin, E.; Perera, V. J. O.; Perez Codina, E.; Perez Reale, V.; Peric, I.; Perini, L.; Pernegger, H.; Perrin, E.; Perrino, R.; Perrodo, P.; Perrot, G.; Perus, P.; Peshekhonov, V. D.; Petereit, E.; Petersen, J.; Petersen, T. C.; Petit, P. J. F.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petti, R.; Pezzetti, M.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccinini, M.; Pickford, A.; Piegaia, R.; Pier, S.; Pilcher, J. E.; Pilkington, A. D.; Pimenta Dos Santos, M. A.; Pina, J.; Pinfold, J. L.; Ping, J.; Pinhão, J.; Pinto, B.; Pirotte, O.; Placakyte, R.; Placci, A.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Podkladkin, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polak, I.; Polesello, G.; Policicchio, A.; Polini, A.; Polychronakos, V.; Pomarede, D. M.; Pommès, K.; Ponsot, P.; Pontecorvo, L.; Pope, B. G.; Popescu, R.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Posch, C.; Pospelov, G. E.; Pospichal, P.; Pospisil, S.; Postranecky, M.; Potrap, I. N.; Potter, C. J.; Poulard, G.; Pousada, A.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Prast, J.; Prat, S.; Prata, M.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Primor, D.; Prokofiev, K.; Prosso, E.; Proudfoot, J.; Przysiezniak, H.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylaev, A. N.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qing, D.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Rabbers, J. J.; Radeka, V.; Rafi, J. M.; Ragusa, F.; Rahimi, A. M.; Rahm, D.; Raine, C.; Raith, B.; Rajagopalan, S.; Rajek, S.; Rammer, H.; Ramstedt, M.; Rangod, S.; Ratoff, P. N.; Raufer, T.; Rauscher, F.; Rauter, E.; Raymond, M.; Reads, A. L.; Rebuzzi, D.; Redlinger, G. R.; Reeves, K.; Rehak, M.; Reichold, A.; Reinherz-Aronis, E.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.; Renaudin-Crepe, S. R. C.; Renkel, P.; Rensch, B.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Rewiersma, P.; Rey, J.; Rey-Campagnolle, M.; Rezaie, E.; Reznicek, P.; Richards, R. A.; Richer, J.-P.; Richter, R. H.; Richter, R.; Richter-Was, E.; Ridel, M.; Riegler, W.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rios, R. R.; Riu Dachs, I.; Rivline, M.; Rivoltella, G.; Rizatdinova, F.; Robertson, S. H.; Robichaud-Veronneau, A.; Robins, S.; Robinson, D.; Robson, A.; Rochford, J. H.; Roda, C.; Rodier, S.; Roe, S.; Røhne, O.; Rohrbach, F.; Roldán, J.; Rolli, S.; Romance, J. B.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, F.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosselet, L.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruber, R.; Ruckert, B.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruggiero, G.; Ruiz, H.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybkine, G.; da Costa, J. Sá; Saavedra, A. F.; Saboumazrag, S.; F-W Sadrozinski, H.; Sadykov, R.; Sakamoto, H.; Sala, P.; Salamon, A.; Saleem, M.; Salihagic, D.; Salt, J.; Saltó Bauza, O.; Salvachúa Ferrando, B. M.; Salvatore, D.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sánchez Sánchez, C. A.; Sanchis Lozano, M. A.; Sanchis Peris, E.; Sandaker, H.; Sander, H. G.; Sandhoff, M.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansone, S.; Sansoni, A.; Santamarina Rios, C.; Santander, J.; Santi, L.; Santoni, C.; Santonico, R.; Santos, J.; Sapinski, M.; Saraiva, J. G.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, D.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Savoy-Navarro, A.; Savva, P.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrissa, E.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schaller, M.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schick, H.; Schieck, J.; Schieferdecker, P.; Schioppa, M.; Schlager, G.; Schlenker, S.; Schlereth, J. L.; Schmid, P.; Schmidt, M. P.; Schmitt, C.; Schmitt, K.; Schmitz, M.; Schmücker, H.; Schoerner, T.; Scholte, R. C.; Schott, M.; Schouten, D.; Schram, M.; Schricker, A.; Schroff, D.; Schuh, S.; Schuijlenburg, H. W.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J.; Schumacher, M.; Schune, Ph; Schwartzman, A.; Schweiger, D.; Schwemling, Ph; Schwick, C.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Secker, H.; Sedykh, E.; Seguin-Moreau, N.; Segura, E.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Selldén, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sexton, K. A.; Sfyrla, A.; Shah, T. P.; Shan, L.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shears, T. G.; Sherwood, P.; Shibata, A.; Shield, P.; Shilov, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shoa, M.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siebel, M.; Siegrist, J.; Sijacki, D.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S.; Sjölin, J.; Skubic, P.; Skvorodnev, N.; Slattery, P.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Small, A.; Smirnov, S. Yu; Smirnov, Y.; Smirnova, L.; Smirnova, O.; Smith, N. A.; Smith, B. C.; Smith, D. S.; Smith, J.; Smith, K. M.; Smith, B.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Soares, S.; Sobie, R.; Sodomka, J.; Söderberg, M.; Soffer, A.; Solans, C. A.; Solar, M.; Sole, D.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solov'yanov, O. V.; Soloviev, I.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sorbi, M.; Soret Medel, J.; Sosebee, M.; Sosnovtsev, V. V.; Sospedra Suay, L.; Soukharev, A.; Soukup, J.; Spagnolo, S.; Spano, F.; Speckmayer, P.; Spegel, M.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spogli, L.; Spousta, M.; Sprachmann, G.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Staley, R. J.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Staroba, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavrianakou, M.; Stavropoulos, G.; Stefanidis, E.; Steffens, J. L.; Stekl, I.; Stelzer, H. J.; Stenzel, H.; Stewart, G.; Stewart, T. D.; Stiller, W.; Stockmanns, T.; Stodulski, M.; Stonjek, S.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandlie, A.; Strauss, M.; Strickland, V.; Striegel, D.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Stugu, B.; Stumer, I.; Su, D.; Subramania, S.; Suchkov, S. I.; Sugaya, Y.; Sugimoto, T.; Suk, M.; Sulin, V. V.; Sultanov, S.; Sun, Z.; Sundal, B.; Sushkov, S.; Susinno, G.; Sutcliffe, P.; Sutton, M. R.; Sviridov, Yu M.; Sykora, I.; Szczygiel, R. R.; Szeless, B.; Szymocha, T.; Sánchez, J.; Ta, D.; Taboada Gameiro, S.; Tadel, M.; Tafirout, R.; Taga, A.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, K.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tappern, G. P.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tarrant, J.; Tartarelli, G.; Tas, P.; Tasevsky, M.; Tayalati, Y.; Taylor, F. E.; Taylor, G.; Taylor, G. N.; Taylor, R. P.; Tcherniatine, V.; Tegenfeldt, F.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Ter-Antonyan, R.; Terada, S.; Terron, J.; Terwort, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Thion, J.; Thioye, M.; Thomas, A.; Thomas, J. P.; Thomas, T. L.; Thomas, E.; Thompson, R. J.; Thompson, A. S.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timm, S.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Titov, M.; Tobias, J.; Tocut, V. M.; Toczek, B.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tonazzo, A.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torres Pais, J. G.; Toth, J.; Touchard, F.; Tovey, D. R.; Tovey, S. N.; Towndrow, E. F.; Trefzger, T.; Treichel, M.; Treis, J.; Tremblet, L.; Tribanek, W.; Tricoli, A.; Trigger, I. M.; Trilling, G.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trka, Z.; Trocmé, B.; Troncon, C.; C-L Tseng, J.; Tsiafis, I.; Tsiareshka, P. V.; Tsipolitis, G.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Turala, M.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tyndel, M.; Typaldos, D.; Tyrvainen, H.; Tzamarioudaki, E.; Tzanakos, G.; Ueda, I.; Uhrmacher, M.; Ukegawa, F.; Ullán Comes, M.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urkovsky, E.; Usai, G.; Usov, Y.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valderanis, C.; Valenta, J.; Valente, P.; Valero, A.; Valkar, S.; Valls Ferrer, J. A.; Van der Bij, H.; van der Graaf, H.; van der Kraaij, E.; Van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Van Berg, R.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vannucci, F.; Varanda, M.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vassilieva, L.; Vataga, E.; Vaz, L.; Vazeille, F.; Vedrine, P.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, S.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vertogardov, L.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Vigeolas, E.; Villa, M.; Villani, E. G.; Villate, J.; Villella, I.; Vilucchi, E.; Vincent, P.; Vincke, H.; Vincter, M. G.; Vinogradov, V. B.; Virchaux, M.; Viret, S.; Virzi, J.; Vitale, A.; Vivarelli, I.; Vives, R.; Vives Vaques, F.; Vlachos, S.; Vogt, H.; Vokac, P.; Vollmer, C. F.; Volpi, M.; Volpini, G.; von Boehn-Buchholz, R.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorozhtsov, A. S.; Vorozhtsov, S. B.; Vos, M.; Voss, K. C.; Voss, R.; Vossebeld, J. H.; Vovenko, A. S.; Vranjes, N.; Vrba, V.; Vreeswijk, M.; Anh, T. Vu; Vuaridel, B.; Vudragovic, M.; Vuillemin, V.; Vuillermet, R.; Wänanen, A.; Wahlen, H.; Walbersloh, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wallny, R. S.; Walsh, S.; Wang, C.; Wang, J. C.; Wappler, F.; Warburton, A.; Ward, C. P.; Warner, G. P.; Warren, M.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watts, G.; Waugh, A. T.; Waugh, B. M.; Weaverdyck, C.; Webel, M.; Weber, G.; Weber, J.; Weber, M.; Weber, P.; Weidberg, A. R.; Weilhammer, P. M.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wellisch, H. P.; Wells, P. S.; Wemans, A.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werneke, P.; Werner, P.; Werthenbach, U.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiesmann, M.; Wiesmann, M.; Wijnen, T.; Wildauer, A.; Wilhelm, I.; Wilkens, H. G.; Williams, H. H.; Willis, W.; Willocq, S.; Wilmut, I.; Wilson, J. A.; Wilson, A.; Wingerter-Seez, I.; Winton, L.; Witzeling, W.; Wlodek, T.; Woehrling, E.; Wolter, M. W.; Wolters, H.; Wosiek, B.; Wotschack, J.; Woudstra, M. J.; Wright, C.; Wu, S. L.; Wu, X.; Wuestenfeld, J.; Wunstorf, R.; Xella-Hansen, S.; Xiang, A.; Xie, S.; Xie, Y.; Xu, G.; Xu, N.; Yamamoto, A.; Yamamoto, S.; Yamaoka, H.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, J. C.; Yang, S.; Yang, U. K.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yarradoddi, K.; Yasu, Y.; Ye, J.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, H.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajac, J.; Zajacova, Z.; Zalite, A. Yu; Zalite, Yo K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zdrazil, M.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zendler, C.; Zenin, A. V.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zhang, H.; Zhang, J.; Zheng, W.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, X.; Zhao, Z.; Zhelezko, A.; Zhemchugov, A.; Zheng, S.; Zhichao, L.; Zhou, B.; Zhou, N.; Zhou, S.; Zhou, Y.; Zhu, C. G.; Zhu, H. Z.; Zhuang, X. A.; Zhuravlov, V.; Zilka, B.; Zimin, N. I.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zoeller, M. M.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zychacek, V.

    2008-08-01

    The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

  17. Compressing the Inert Doublet Model

    DOE PAGES

    Blinov, Nikita; Kozaczuk, Jonathan; Morrissey, David E.; ...

    2016-02-16

    The Inert Doublet Model relies on a discrete symmetry to prevent couplings of the new scalars to Standard Model fermions. We found that this stabilizes the lightest inert state, which can then contribute to the observed dark matter density. In the presence of additional approximate symmetries, the resulting spectrum of exotic scalars can be compressed. Here, we study the phenomenological and cosmological implications of this scenario. In conclusion, we derive new limits on the compressed Inert Doublet Model from LEP, and outline the prospects for exclusion and discovery of this model at dark matter experiments, the LHC, and future colliders.

  18. Experimental Verification of Predicted Oscillations near a Spin Resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolanoski, Hermann; /Humboldt U., Berlin

    2011-12-05

    The E166 experiment at the Stanford Linear Accelerator Center (SLAC) has demonstrated a scheme for the production of polarized positrons which is suitable for implementation in a future Linear Collider. A multi-GeV electron beam passed through a helical undulator to generate multi-MeV, circularly polarized photons which were then converted in a thin target to produce positrons (and electrons) with longitudinal polarization above 80% at 6 MeV. The results are in agreement with GEANT4 simulations that include the dominant polarization-dependent interactions of electrons, positrons and photons in matter.

  19. Simulations of space charge neutralization in a magnetized electron cooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerity, James; McIntyre, Peter M.; Bruhwiler, David Leslie

    Magnetized electron cooling at relativistic energies and Ampere scale current is essential to achieve the proposed ion luminosities in a future electron-ion collider (EIC). Neutralization of the space charge in such a cooler can significantly increase the magnetized dynamic friction and, hence, the cooling rate. The Warp framework is being used to simulate magnetized electron beam dynamics during and after the build-up of neutralizing ions, via ionization of residual gas in the cooler. The design follows previous experiments at Fermilab as a verification case. We also discuss the relevance to EIC designs.

  20. Searches for vector-like quarks at future colliders and implications for composite Higgs models with dark matter

    NASA Astrophysics Data System (ADS)

    Chala, Mikael; Gröber, Ramona; Spannowsky, Michael

    2018-03-01

    Many composite Higgs models predict the existence of vector-like quarks with masses outside the reach of the LHC, e.g. m Q ≳ 2 TeV, in particular if these models contain a dark matter candidate. In such models the mass of the new resonances is bounded from above to satisfy the constraint from the observed relic density. We therefore develop new strategies to search for vector-like quarks at a future 100 TeV collider and evaluate what masses and interactions can be probed. We find that masses as large as ˜ 6.4 (˜9) TeV can be tested if the fermionic resonances decay into Standard Model (dark matter) particles. We also discuss the complementarity of dark matter searches, showing that most of the parameter space can be closed. On balance, this study motivates further the consideration of a higher-energy hadron collider for a next generation of facilities.

  1. CP-violating top quark couplings at future linear e^+e^- colliders

    NASA Astrophysics Data System (ADS)

    Bernreuther, W.; Chen, L.; García, I.; Perelló, M.; Poeschl, R.; Richard, F.; Ros, E.; Vos, M.

    2018-02-01

    We study the potential of future lepton colliders to probe violation of the CP symmetry in the top quark sector. In certain extensions of the Standard Model, such as the two-Higgs-doublet model (2HDM), sizeable anomalous top quark dipole moments can arise, which may be revealed by a precise measurement of top quark pair production. We present results from detailed Monte Carlo studies for the ILC at 500 GeV and CLIC at 380 GeV and use parton-level simulations to explore the potential of high-energy operation. We find that precise measurements in e^+e^- → t\\bar{t} production with subsequent decay to lepton plus jets final states can provide sufficient sensitivity to detect Higgs-boson-induced CP violation in a viable two-Higgs-doublet model. The potential of a linear e^+e^- collider to detect CP-violating electric and weak dipole form factors of the top quark exceeds the prospects of the HL-LHC by over an order of magnitude.

  2. Habilitation thesis on STT and Higgs searches in WH production (in FRENCH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnenschein, Lars

    The detector of the D0 experiment at the proton anti-proton collider Tevatron in Run II is discussed in detail. The performance of the collider and the experiment is presented. Standard model Higgs searches with integrated luminosities between 260 pb -1 and 950 pb -1 and their combination are performed. No deviation from SM background expectation has been observed. Sensitivity prospects at the Tevatron are shown.

  3. BigData and computing challenges in high energy and nuclear physics

    NASA Astrophysics Data System (ADS)

    Klimentov, A.; Grigorieva, M.; Kiryanov, A.; Zarochentsev, A.

    2017-06-01

    In this contribution we discuss the various aspects of the computing resource needs experiments in High Energy and Nuclear Physics, in particular at the Large Hadron Collider. This will evolve in the future when moving from LHC to HL-LHC in ten years from now, when the already exascale levels of data we are processing could increase by a further order of magnitude. The distributed computing environment has been a great success and the inclusion of new super-computing facilities, cloud computing and volunteering computing for the future is a big challenge, which we are successfully mastering with a considerable contribution from many super-computing centres around the world, academic and commercial cloud providers. We also discuss R&D computing projects started recently in National Research Center ``Kurchatov Institute''

  4. Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Eigen, G.; Mikami, Y.; Watson, N. K.; Thomson, M. A.; Ward, D. R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dotti, A.; Folger, G.; Ivantchenko, V.; Ribon, A.; Uzhinskiy, V.; Cârloganu, C.; Gay, P.; Manen, S.; Royer, L.; Tytgat, M.; Zaganidis, N.; Blazey, G. C.; Dyshkant, A.; Lima, J. G. R.; Zutshi, V.; Hostachy, J.-Y.; Morin, L.; Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Garutti, E.; Laurien, S.; Lu, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Sudo, Y.; Yoshioka, T.; Dauncey, P. D.; Wing, M.; Salvatore, F.; Cortina Gil, E.; Mannai, S.; Baulieu, G.; Calabria, P.; Caponetto, L.; Combaret, C.; Della Negra, R.; Grenier, G.; Han, R.; Ianigro, J.-C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Vander Donckt, M.; Zoccarato, Y.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Corriveau, F.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Besson, D.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Tikhomirov, V.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Weuste, L.; Amjad, M. S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Fleury, J.; Frisson, T.; van der Kolk, N.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch.; Pöschl, R.; Raux, L.; Rouëné, J.; Seguin-Moreau, N.; Anduze, M.; Balagura, V.; Boudry, V.; Brient, J.-C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Guliyev, E.; Haddad, Y.; Magniette, F.; Musat, G.; Ruan, M.; Tran, T. H.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Kotera, K.; Ono, H.; Takeshita, T.; Uozumi, S.; Jeans, D.; Chang, S.; Khan, A.; Kim, D. H.; Kong, D. J.; Oh, Y. D.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2014-11-01

    A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45×10×3 mm3 plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. A number of possible design improvements were identified, which should be implemented in a future detector of this type. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques.

  5. Physics in ;Real Life;: Accelerator-based Research with Undergraduates

    NASA Astrophysics Data System (ADS)

    Klay, J. L.

    All undergraduates in physics and astronomy should have access to significant research experiences. When given the opportunity to tackle challenging open-ended problems outside the classroom, students build their problem-solving skills in ways that better prepare them for the workplace or future research in graduate school. Accelerator-based research on fundamental nuclear and particle physics can provide a myriad of opportunities for undergraduate involvement in hardware and software development as well as ;big data; analysis. The collaborative nature of large experiments exposes students to scientists of every culture and helps them begin to build their professional network even before they graduate. This paper presents an overview of my experiences - the good, the bad, and the ugly - engaging undergraduates in particle and nuclear physics research at the CERN Large Hadron Collider and the Los Alamos Neutron Science Center.

  6. The long journey to the Higgs boson and beyond at the LHC: Emphasis on ATLAS

    NASA Astrophysics Data System (ADS)

    Jenni, Peter

    2016-09-01

    The journey in search for the Higgs boson with the ATLAS and CMS experiments at the Large Hadron Collider (LHC) at CERN started more than two decades ago. But the first discussions motivating the LHC project dream date back even further into the 1980s. This article will recall some of these early historical considerations, mention some of the LHC machine milestones and achievements, focus as an example of a technological challenge on the unique ATLAS superconducting magnet system, and then give an account of the physics results so far, leading to, and featuring particularly, the Higgs boson results, and sketching finally prospects for the future. With its emphasis on the ATLAS experiment it is complementary to the preceding article by Tejinder S. Virdee which focused on the CMS experiment.

  7. The Long Journey to the Higgs Boson and Beyond at the LHC Part II: Emphasis on ATLAS

    NASA Astrophysics Data System (ADS)

    Jenni, Peter

    The journey in search for the Higgs boson with the ATLAS and CMS experiments at the Large Hadron Collider (LHC) at CERN started more than two decades ago. But the first discussions motivating the LHC project dream date back even further into the 1980s. This article will recall some of these early historical considerations, mention some of the LHC machine milestones and achievements, focus as an example of a technological challenge on the unique ATLAS superconducting magnet system, and then give an account of the physics results so far, leading to, and featuring particularly, the Higgs boson results, and sketching finally prospects for the future. With its emphasis on the ATLAS experiment it is complementary to the preceding article by Tejinder S. Virdee which focused on the CMS experiment.

  8. SSC [Superconducting Super Collider] Project: Technical Training for the Future of Texas. Navarro College/Dallas Community College District. Final Report for Year One.

    ERIC Educational Resources Information Center

    Orsak, Charles; McGlohen, Patti J.

    The Superconducting Super Collider Laboratory (SSCL) is a national lab for research on the fundamental forces and constituents of the universe. A major part of the research will involve an oval ring 54 miles in circumference through which superconducting magnets will steer two beams of protons in opposite directions. In response to the…

  9. Big data analytics for the Future Circular Collider reliability and availability studies

    NASA Astrophysics Data System (ADS)

    Begy, Volodimir; Apollonio, Andrea; Gutleber, Johannes; Martin-Marquez, Manuel; Niemi, Arto; Penttinen, Jussi-Pekka; Rogova, Elena; Romero-Marin, Antonio; Sollander, Peter

    2017-10-01

    Responding to the European Strategy for Particle Physics update 2013, the Future Circular Collider study explores scenarios of circular frontier colliders for the post-LHC era. One branch of the study assesses industrial approaches to model and simulate the reliability and availability of the entire particle collider complex based on the continuous monitoring of CERN’s accelerator complex operation. The modelling is based on an in-depth study of the CERN injector chain and LHC, and is carried out as a cooperative effort with the HL-LHC project. The work so far has revealed that a major challenge is obtaining accelerator monitoring and operational data with sufficient quality, to automate the data quality annotation and calculation of reliability distribution functions for systems, subsystems and components where needed. A flexible data management and analytics environment that permits integrating the heterogeneous data sources, the domain-specific data quality management algorithms and the reliability modelling and simulation suite is a key enabler to complete this accelerator operation study. This paper describes the Big Data infrastructure and analytics ecosystem that has been put in operation at CERN, serving as the foundation on which reliability and availability analysis and simulations can be built. This contribution focuses on data infrastructure and data management aspects and presents case studies chosen for its validation.

  10. Studies for a 10 μs, thin, high resolution CMOS pixel sensor for future vertex detectors

    NASA Astrophysics Data System (ADS)

    Voutsinas, G.; Amar-Youcef, S.; Baudot, J.; Bertolone, G.; Brogna, A.; Chon-Sen, N.; Claus, G.; Colledani, C.; Dorokhov, A.; Dozière, G.; Dulinski, W.; Degerli, Y.; De Masi, R.; Deveaux, M.; Gelin, M.; Goffe, M.; Hu-Guo, Ch.; Himmi, A.; Jaaskelainen, K.; Koziel, M.; Morel, F.; Müntz, C.; Orsini, F.; Santos, C.; Schrader, C.; Specht, M.; Stroth, J.; Valin, I.; Wagner, F. M.; Winter, M.

    2011-06-01

    Future high energy physics (HEP) experiments require detectors with unprecedented performances for track and vertex reconstruction. These requirements call for high precision sensors, with low material budget and short integration time. The development of CMOS sensors for HEP applications was initiated at IPHC Strasbourg more than 10 years ago, motivated by the needs for vertex detectors at the International Linear Collider (ILC) [R. Turchetta et al, NIM A 458 (2001) 677]. Since then several other applications emerged. The first real scale digital CMOS sensor MIMOSA26 equips Flavour Tracker at RHIC, as well as for the microvertex detector of the CBM experiment at FAIR. MIMOSA sensors may also offer attractive performances for the ALICE upgrade at LHC. This paper will demonstrate the substantial performance improvement of CMOS sensors based on a high resistivity epitaxial layer. First studies for integrating the sensors into a detector system will be addressed and finally the way to go to a 10 μs readout sensor will be discussed.

  11. High Energy Colliders and Hidden Sectors

    NASA Astrophysics Data System (ADS)

    Dror, Asaf Jeff

    This thesis explores two dominant frontiers of theoretical physics, high energy colliders and hidden sectors. The Large Hadron Collider (LHC) is just starting to reach its maximum operational capabilities. However, already with the current data, large classes of models are being put under significant pressure. It is crucial to understand whether the (thus far) null results are a consequence of a lack of solution to the hierarchy problem around the weak scale or requires expanding the search strategy employed at the LHC. It is the duty of the current generation of physicists to design new searches to ensure that no stone is left unturned. To this end, we study the sensitivity of the LHC to the couplings in the Standard Model top sector. We find it can significantly improve the measurements on ZtRtR coupling by a novel search strategy, making use of an implied unitarity violation in such models. Analogously, we show that other couplings in the top sector can also be measured with the same technique. Furthermore, we critically analyze a set of anomalies in the LHC data and how they may appear from consistent UV completions. We also propose a technique to measure lifetimes of new colored particles with non-trivial spin. While the high energy frontier will continue to take data, it is likely the only collider of its kind for the next couple decades. On the other hand, low-energy experiments have a promising future with many new proposed experiments to probe the existence of particles well below the weak scale but with small couplings to the Standard Model. In this work we survey the different possibilities, focusingon the constraints as well as possible new hidden sector dynamics. In particular, we show that vector portals which couple to an anomalous current, e.g., baryon number, are significantly constrained from flavor changing meson decays and rare Z decays. Furthermore, we present a new mechanism for dark matter freezeout which depletes the dark sector through an out-of-equilibrium decay into the Standard Model.

  12. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    DOE PAGES

    Rosenberg, M. J.; Li, C. K.; Fox, W.; ...

    2015-04-08

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in β~10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell (PIC) simulations predict a stronger flux compressionmore » and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.« less

  13. On cosmic censor in high-energy particle collisions

    NASA Astrophysics Data System (ADS)

    Miyamoto, Umpei

    2011-09-01

    In the context of large extra-dimension or TeV-scale gravity scenarios, miniature black holes might be produced in collider experiments. In many works the validity of the cosmic censorship hypothesis has been assumed, which means that there is no chance to observe trans-Planckian phenomena in the experiments since such phenomena are veiled behind the horizons. Here, we argue that "visible borders of spacetime" (as effective naked singularities) would be produced, even dominantly over the black holes, in the collider experiments. Such phenomena will provide us an arena of quantum gravity.

  14. Mid-infrared lasers for energy frontier plasma accelerators

    DOE PAGES

    Pogorelsky, I. V.; Polyanskiy, M. N.; Kimura, W. D.

    2016-09-12

    Plasma wake field accelerators driven with solid-state near-IR lasers have been considered as an alternative to conventional rf accelerators for next-generation TeV-class lepton colliders. Here, we extend this study to the mid-IR spectral domain covered by CO 2 lasers. We conclude that the increase in the laser driver wavelength favors the regime of laser wake field acceleration with a low plasma density and high electric charge. This regime is the most beneficial for gamma colliders to be converted from lepton colliders via inverse Compton scattering. Selecting a laser wavelength to drive a Compton gamma source is essential for the designmore » of such a machine. In conclusion, the revealed benefits from spectral diversification of laser drivers for future colliders and off-spring applications validate ongoing efforts in advancing the ultrafast CO 2 laser technology.« less

  15. Machine detector interface studies: Layout and synchrotron radiation estimate in the future circular collider interaction region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boscolo, Manuela; Burkhardt, Helmut; Sullivan, Michael

    The interaction region layout for the e +e – future circular collider FCC-ee is presented together with a preliminary estimate of synchrotron radiation that affects this region. We describe in this paper the main guidelines of this design and the estimate of synchrotron radiation coming from the last bending magnets and from the final focus quadrupoles, with the software tools developed for this purpose. Here, the design follows the asymmetric optics layout as far as incoming bend radiation is concerned with the maximum foreseen beam energy of 175 GeV and we present a feasible initial layout with an indication ofmore » tolerable synchrotron radiation.« less

  16. Machine detector interface studies: Layout and synchrotron radiation estimate in the future circular collider interaction region

    DOE PAGES

    Boscolo, Manuela; Burkhardt, Helmut; Sullivan, Michael

    2017-01-27

    The interaction region layout for the e +e – future circular collider FCC-ee is presented together with a preliminary estimate of synchrotron radiation that affects this region. We describe in this paper the main guidelines of this design and the estimate of synchrotron radiation coming from the last bending magnets and from the final focus quadrupoles, with the software tools developed for this purpose. Here, the design follows the asymmetric optics layout as far as incoming bend radiation is concerned with the maximum foreseen beam energy of 175 GeV and we present a feasible initial layout with an indication ofmore » tolerable synchrotron radiation.« less

  17. Production of black holes in TeV-scale gravity

    NASA Astrophysics Data System (ADS)

    Ringwald, A.

    2003-07-01

    Copious production of microscopic black holes is one of the least model-dependent predictions of TeV-scale gravity scenarios. We review the arguments behind this assertion and discuss opportunities to track the striking associated signatures in the near future. These include searches at neutrino telescopes, such as AMANDA and RICE, at cosmic ray air shower facilities, such as the Pierre Auger Observatory, and at colliders, such as the Large Hadron Collider.

  18. Large Hadron Collider commissioning and first operation.

    PubMed

    Myers, S

    2012-02-28

    A history of the commissioning and the very successful early operation of the Large Hadron Collider (LHC) is described. The accident that interrupted the first commissioning, its repair and the enhanced protection system put in place are fully described. The LHC beam commissioning and operational performance are reviewed for the period from 2010 to mid-2011. Preliminary plans for operation and future upgrades for the LHC are given for the short and medium term.

  19. Luminosity geometric reduction factor from colliding bunches with different lengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdu-Andres, S.

    In the interaction point of the future electron-Ion collider eRHIC, the electron beam bunches are at least one order of magnitude shorter than the proton beam bunches. With the introduction of a crossing angle, the actual number of collisions resulting from the bunch collision gets reduced. Here we derive the expression for the luminosity geometric reduction factor when the bunches of the two incoming beams are not equal.

  20. Precision Timing with Silicon Sensors for Use in Calorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bornheim, A.; Ronzhin, A.; Kim, H.

    2017-11-27

    The high luminosity upgrade of the Large Hadron Collider (HL-LHC) at CERN is expected to provide instantaneous luminosities of 5 × 10 34 cm -2 s -1. The high luminosities expected at the HL-LHC will be accompanied by a factor of 5 to 10 more pileup compared with LHC conditions in 2015, causing general confusion for particle identification and event reconstruction. Precision timing allows to extend calorimetric measurements into such a high density environment by subtracting the energy deposits from pileup interactions. Calorimeters employing silicon as the active component have recently become a popular choice for the HL- LHC andmore » future collider experiments which face very high radiation environments. We present studies of basic calorimetric and precision timing measurements using a prototype composed of tungsten absorber and silicon sensor as the active medium. We show that for the bulk of electromagnetic showers induced by electrons in the range of 20 GeV to 30 GeV, we can achieve time resolutions better than 25 ps per single pad sensor.« less

  1. The ALICE DAQ infoLogger

    NASA Astrophysics Data System (ADS)

    Chapeland, S.; Carena, F.; Carena, W.; Chibante Barroso, V.; Costa, F.; Dénes, E.; Divià, R.; Fuchs, U.; Grigore, A.; Ionita, C.; Delort, C.; Simonetti, G.; Soós, C.; Telesca, A.; Vande Vyvre, P.; Von Haller, B.; Alice Collaboration

    2014-04-01

    ALICE (A Large Ion Collider Experiment) is a heavy-ion experiment studying the physics of strongly interacting matter and the quark-gluon plasma at the CERN LHC (Large Hadron Collider). The ALICE DAQ (Data Acquisition System) is based on a large farm of commodity hardware consisting of more than 600 devices (Linux PCs, storage, network switches). The DAQ reads the data transferred from the detectors through 500 dedicated optical links at an aggregated and sustained rate of up to 10 Gigabytes per second and stores at up to 2.5 Gigabytes per second. The infoLogger is the log system which collects centrally the messages issued by the thousands of processes running on the DAQ machines. It allows to report errors on the fly, and to keep a trace of runtime execution for later investigation. More than 500000 messages are stored every day in a MySQL database, in a structured table keeping track for each message of 16 indexing fields (e.g. time, host, user, ...). The total amount of logs for 2012 exceeds 75GB of data and 150 million rows. We present in this paper the architecture and implementation of this distributed logging system, consisting of a client programming API, local data collector processes, a central server, and interactive human interfaces. We review the operational experience during the 2012 run, in particular the actions taken to ensure shifters receive manageable and relevant content from the main log stream. Finally, we present the performance of this log system, and future evolutions.

  2. Disambiguating seesaw models using invariant mass variables at hadron colliders

    DOE PAGES

    Dev, P. S. Bhupal; Kim, Doojin; Mohapatra, Rabindra N.

    2016-01-19

    Here, we propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. Furthermore, these kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. We also conducted a Monte Carlo simulation with detector effects in order to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at themore » $$\\sqrt{s}$$ = 14 and 100TeV hadron colliders.« less

  3. Fundamental Physics

    NASA Image and Video Library

    2003-01-22

    Clues to the formation of planets and planetary rings -- like Saturn's dazzling ring system -- may be found by studying how dust grains interact as they collide at low speeds. To study the question of low-speed dust collisions, NASA sponsored the COLLisions Into Dust Experiment (COLLIDE) at the University of Colorado. It was designed to spring-launch marble-size projectiles into trays of powder similar to space or lunar dust. COLLIDE-1 (1998) discovered that collisions below a certain energy threshold eject no material. COLLIDE-2 was designed to identify where the threshold is. In COLLIDE-2, scientists nudged small projectiles into dust beds and recorded how the dust splashed outward (video frame at top; artist's rendering at bottom). The slowest impactor ejected no material and stuck in the target. The faster impactors produced ejecta; some rebounded while others stuck in the target.

  4. Probing the Higgs with angular observables at future e +e – colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhen

    In this paper, I summarize our recent works on using differential observables to explore the physics potential of future e +e – colliders in the framework of Higgs effective field theory. This proceeding is based upon Refs. 1 and 2. We study angular observables in the e +e – → ZHℓ +ℓ –bmore » $$\\bar{b}$$ channel at future circular e +e – colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy √s = 240 GeV and 5 (30) ab –1 integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for the Higgsstrahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of constraining the “blind spot” in indirect limits on supersymmetric scalar top partners. Finally, we also discuss the possibility of using ZZ-fusion at e +e – machines at different energies to probe new operators.« less

  5. Probing the Higgs with angular observables at future e +e – colliders

    DOE PAGES

    Liu, Zhen

    2016-10-24

    In this paper, I summarize our recent works on using differential observables to explore the physics potential of future e +e – colliders in the framework of Higgs effective field theory. This proceeding is based upon Refs. 1 and 2. We study angular observables in the e +e – → ZHℓ +ℓ –bmore » $$\\bar{b}$$ channel at future circular e +e – colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy √s = 240 GeV and 5 (30) ab –1 integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for the Higgsstrahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of constraining the “blind spot” in indirect limits on supersymmetric scalar top partners. Finally, we also discuss the possibility of using ZZ-fusion at e +e – machines at different energies to probe new operators.« less

  6. Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter

    DOE PAGES

    Francis, K.; Repond, J.; Schlereth, J.; ...

    2014-11-01

    A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45 × 10 × 3 mm³ plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. A number of possible design improvements were identified, which should be implemented in a future detector of thismore » type. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques.« less

  7. Status Report of the DPHEP Study Group: Towards a Global Effort for Sustainable Data Preservation in High Energy Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akopov, Zaven; Amerio, Silvia; Asner, David

    2013-03-27

    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. An inter-experimental study group on HEP data preservation and long-term analysis was convened as a panel of the International Committee for Future Accelerators (ICFA). The group was formed by large collider-based experiments and investigated the technical and organisational aspects of HEP data preservation. An intermediate report was released in November 2009 addressing the general issues of data preservation in HEP. This paper includes and extends the intermediate report. It provides an analysis of the research case for data preservation and a detailedmore » description of the various projects at experiment, laboratory and international levels. In addition, the paper provides a concrete proposal for an international organisation in charge of the data management and policies in high-energy physics.« less

  8. Towards the conceptual design of the cryogenic system of the Future Circular Collider (FCC)

    NASA Astrophysics Data System (ADS)

    Chorowski, M.; Correia Rodrigues, H.; Delikaris, D.; Duda, P.; Haberstroh, C.; Holdener, F.; Klöppel, S.; Kotnig, C.; Millet, F.; Polinski, J.; Quack, H.; Tavian, L.

    2017-12-01

    Following the update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study considers several options for very high-energy hadron-hadron, electron-positron and hadron-electron colliders. From the cryogenics point of view, the most challenging option is the hadron-hadron collider (FCC-hh) for which the conceptual design of the cryogenic system is progressing. The FCC-hh cryogenic system will have to produce up to 120 kW at 1.8 K for the superconducting magnet cooling, 6 MW between 40 and 60 K for the beam-screen and thermal-shield cooling as well as 850 g/s between 40 and 290 K for the HTS current-lead cooling. The corresponding total entropic load represents about 1 MW equivalent at 4.5 K and this cryogenic system will be by far the largest ever designed. In addition, the total mass to be cooled down is about 250’000 t and an innovative cool-down process must be proposed. This paper will present the proposed cryogenic layout and architecture, the cooling principles of the main components, the corresponding cooling schemes, as well as the cryogenic plant arrangement and proposed process cycles. The corresponding required development plan for such challenging cryogenic system will be highlighted.

  9. Mass Transfer via Low-Velocity Rebound in a Microgravity Environment

    NASA Astrophysics Data System (ADS)

    Jarmak, S. G.; Colwell, J. E.; Brisset, J.; Dove, A.; Brown, A. Q.

    2017-12-01

    Observations of low-velocity collisions (< 1 m/s) between μm to cm-size particles in a microgravity environment are crucial to an understanding of the surface properties of small, airless bodies as well as the processes that lead to their formation. The COLLIDE (Collisions Into Dust Experiment) and PRIME (Physics of Regolith Impacts in Microgravity Experiment) programs created impacts into simulated planetary regolith with cm-scale impactors to observe ejecta production and coefficients of restitution in microgravity. These experiments were carried out on orbit (COLLIDE, COLLIDE-2), in suborbital space (COLLIDE-3), and on parabolic airplane flights (PRIME) under vacuum. Some impacts at speeds less than 40 cm/s resulted in mass transfer from the target regolith onto the impactor. To study these mass-transfer collisions in more detail without the cost or time requirements of spaceflight or parabolic flights, we developed an experimental apparatus in a laboratory drop tower (free-fall time 0.75 s) and performed experiments at standard pressure. The impactor is suspended from a spring and remains in contact with the bed of regolith until free-fall allows the spring to retract and pull the impactor upwards. This method allowed us to simulate the rebound portion of a low-velocity collision in a laboratory microgravity environment. We achieved rebound velocities of 10 - 60 cm/s, and we observed mass transfer events with rebound speeds below 40 cm/s. The amount of mass transfer produced was more significant than a monolayer of granular material, but less than the amount observed in the COLLIDE and PRIME experiments. These mass-transfer collisions may play a role in the growth of planetesimals. We will present the results of our laboratory-based studies where we vary impact velocity and target material, and discuss implications for collisional evolution in the protoplanetary disk and planetary rings.

  10. Collider Interplay for Supersymmetry, Higgs and Dark Matter

    DOE PAGES

    Buchmueller, Oliver; Citron, M.; Ellis, J.; ...

    2015-10-01

    Here, we discuss the potential impacts on the CMSSM of future LHC runs and possible e +e – and higher-energy proton–proton colliders, considering searches for supersymmetry via /E T events, precision electroweak physics, Higgs measurements and dark matter searches. We validate and present estimates of the physics reach for exclusion or discovery of supersymmetry via /E T searches at the LHC, which should cover the low-mass regions of the CMSSM parameter space favoured in a recent global analysis. As we illustrate with a low-mass benchmark point, a discovery would make possible accurate LHC measurements of sparticle masses using the MT2more » variable, which could be combined with cross-section and other measurements to constrain the gluino, squark and stop masses and hence the soft supersymmetry-breaking parameters m 0,m 1/2 and A 0 of the CMSSM. Slepton measurements at CLIC would enable m 0 and m 1/2 to be determined with high precision. If supersymmetry is indeed discovered in the low-mass region, precision electroweak and Higgs measurements with a future circular e +e – collider (FCC-ee, also known as TLEP) combined with LHC measurements would provide tests of the CMSSM at the loop level. If supersymmetry is not discovered at the LHC, it is likely to lie somewhere along a focus-point, stop-coannihilation strip or direct-channel A / H resonance funnel. We discuss the prospects for discovering supersymmetry along these strips at a future circular proton–proton collider such as FCC-hh. Illustrative benchmark points on these strips indicate that also in this case FCC-ee could provide tests of the CMSSM at the loop level.« less

  11. ATLAS computing on Swiss Cloud SWITCHengines

    NASA Astrophysics Data System (ADS)

    Haug, S.; Sciacca, F. G.; ATLAS Collaboration

    2017-10-01

    Consolidation towards more computing at flat budgets beyond what pure chip technology can offer, is a requirement for the full scientific exploitation of the future data from the Large Hadron Collider at CERN in Geneva. One consolidation measure is to exploit cloud infrastructures whenever they are financially competitive. We report on the technical solutions and the performances used and achieved running simulation tasks for the ATLAS experiment on SWITCHengines. SWITCHengines is a new infrastructure as a service offered to Swiss academia by the National Research and Education Network SWITCH. While solutions and performances are general, financial considerations and policies, on which we also report, are country specific.

  12. Commissioning of the ATLAS pixel detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ATLAS Collaboration; Golling, Tobias

    2008-09-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of themore » ATLAS pixel system are presented.« less

  13. Digamma diagnostics for the mixed-phase generation at NICA

    NASA Astrophysics Data System (ADS)

    Kukulin, V. I.; Platonova, M. N.

    2017-03-01

    A novel type of diagnostics for dense and/or hot nuclear matter produced in heavy-ion collisions at NICA and similar future colliders (FAIR, etc.) is suggested. The diagnostics is based on an assumption (confirmed in many experiments worldwide) about intensive generation of light scalar mesons (σ) the consequent decay of which produces γγ pairs with the mass and width dependent upon density and temperature of the fireball produced in the collision process. Thus, measurements of the absolute yield, mass and width of the γγ signal carry valuable information about the state of fireball generated during the high-energy nuclear collision.

  14. Review on Dark Photon

    NASA Astrophysics Data System (ADS)

    Curciarello, Francesca

    2016-04-01

    e+e- collider experiments at the intensity frontier are naturally suited to probe the existence of a force beyond the Standard Model between WIMPs, the most viable dark matter candidates. The mediator of this new force, known as dark photon, should be a new vector gauge boson very weakly coupled to the Standard Model photon. No significant signal has been observed so far. I will report on current limits set on the coupling factor ɛ2 between the photon and the dark photon by e+e- collider experiments.

  15. Participation in the ARGUS experiment at the DORIS Collider at Desy, Hamburg, Germany and participation in the AMY experiment at the TRISTAN Collider in Tsukuba, Japan: 1986 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darden, C.

    1987-01-01

    Progress is reported on the AMY and ARGUS detectors, as well as plans for the next funding period. The AMY detector is reported as well on the way to completion, but not yet ready to take data. The ARGUS detector is reported to have completed its fourth year of operation. Some upsilon 1S decay data are discussed. 37 refs. (LEW)

  16. Precision constraints on the top-quark effective field theory at future lepton colliders

    NASA Astrophysics Data System (ADS)

    Durieux, G.

    We examine the constraints that future lepton colliders would impose on the effective field theory describing modifications of top-quark interactions beyond the standard model, through measurements of the $e^+e^-\\to bW^+\\:\\bar bW^-$ process. Statistically optimal observables are exploited to constrain simultaneously and efficiently all relevant operators. Their constraining power is sufficient for quadratic effective-field-theory contributions to have negligible impact on limits which are therefore basis independent. This is contrasted with the measurements of cross sections and forward-backward asymmetries. An overall measure of constraints strength, the global determinant parameter, is used to determine which run parameters impose the strongest restriction on the multidimensional effective-field-theory parameter space.

  17. Event visualisation in ALICE - current status and strategy for Run 3

    NASA Astrophysics Data System (ADS)

    Niedziela, Jeremi; von Haller, Barthélémy

    2017-10-01

    A Large Ion Collider Experiment (ALICE) is one of the four big experiments running at the Large Hadron Collider (LHC), which focuses on the study of the Quark-Gluon Plasma (QGP) being produced in heavy-ion collisions. The ALICE Event Visualisation Environment (AliEve) is a tool providing an interactive 3D model of the detector’s geometry and a graphical representation of the data. Together with the online reconstruction module, it provides important quality monitoring of the recorded data. As a consequence it has been used in the ALICE Run Control Centre during all stages of Run 2. Static screenshots from the online visualisation are published on the public website - ALICE LIVE. Dedicated converters have been developed to provide geometry and data for external projects. An example of such project is the Total Event Display (TEV) - a visualisation tool recently developed by the CERN Media Lab based on the Unity game engine. It can be easily deployed on any platform, including web and mobile platforms. Another external project is More Than ALICE - an augmented reality application for visitors, overlaying detector descriptions and event visualisations on the camera’s picture. For the future Run 3 both AliEve and TEV will be adapted to fit the ALICE O2 project. Several changes are required due to the new data formats, especially so-called Compressed Time Frames.

  18. The new ALICE DQM client: a web access to ROOT-based objects

    NASA Astrophysics Data System (ADS)

    von Haller, B.; Carena, F.; Carena, W.; Chapeland, S.; Chibante Barroso, V.; Costa, F.; Delort, C.; Dénes, E.; Diviá, R.; Fuchs, U.; Niedziela, J.; Simonetti, G.; Soós, C.; Telesca, A.; Vande Vyvre, P.; Wegrzynek, A.

    2015-12-01

    A Large Ion Collider Experiment (ALICE) is the heavy-ion detector designed to study the physics of strongly interacting matter and the quark-gluon plasma at the CERN Large Hadron Collider (LHC). The online Data Quality Monitoring (DQM) plays an essential role in the experiment operation by providing shifters with immediate feedback on the data being recorded in order to quickly identify and overcome problems. An immediate access to the DQM results is needed not only by shifters in the control room but also by detector experts worldwide. As a consequence, a new web application has been developed to dynamically display and manipulate the ROOT-based objects produced by the DQM system in a flexible and user friendly interface. The architecture and design of the tool, its main features and the technologies that were used, both on the server and the client side, are described. In particular, we detail how we took advantage of the most recent ROOT JavaScript I/O and web server library to give interactive access to ROOT objects stored in a database. We describe as well the use of modern web techniques and packages such as AJAX, DHTMLX and jQuery, which has been instrumental in the successful implementation of a reactive and efficient application. We finally present the resulting application and how code quality was ensured. We conclude with a roadmap for future technical and functional developments.

  19. NICA project at JINR: status and prospects

    NASA Astrophysics Data System (ADS)

    Kekelidze, V. D.

    2017-06-01

    The project NICA (Nuclotron-based Ion Collider fAcility) is aimed to study hot and dense baryonic matter in heavy-ion collisions in the energy range up to 11.0 AGeV . The plan of NICA accelerator block development includes an upgrade of the existing superconducting (SC) synchrotron Nuclotron and construction of the new injection complex, SC Booster, and SC Collider with two interaction points (IP). The heavy-ion collision program will be performed with the fixed target experiment Baryonic Matter at Nuclotron (BM@N) at the beam extracted from the Nuclotron, and with Multi-Purpose Detector (MPD) at the first IP of NICA Collider. Investigation of nucleon spin structure and polarization phenomena is foreseen with the Spin Physics Detector (SPC) at the second IP of the Collider.

  20. Signals of doubly-charged Higgsinos at the CERN Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demir, Durmus A.; Deutsches Elektronen--Synchrotron, DESY, D-22603 Hamburg; Frank, Mariana

    2008-08-01

    Several supersymmetric models with extended gauge structures, motivated by either grand unification or by neutrino mass generation, predict light doubly-charged Higgsinos. In this work we study productions and decays of doubly-charged Higgsinos present in left-right supersymmetric models, and show that they invariably lead to novel collider signals not found in the minimal supersymmetric model or in any of its extensions motivated by the {mu} problem or even in extra dimensional theories. We investigate their distinctive signatures at the Large Hadron Collider in both pair- and single-production modes, and show that they are powerful tools in determining the underlying model viamore » the measurements at the Large Hadron Collider experiments.« less

  1. Beyond the Standard Model IV

    NASA Astrophysics Data System (ADS)

    Gunion, John F.; Han, Tao; Ohnemus, James

    1995-08-01

    The Table of Contents for the book is as follows: * Preface * Organizing and Advisory Committees * PLENARY SESSIONS * Looking Beyond the Standard Model from LEP1 and LEP2 * Virtual Effects of Physics Beyond the Standard Model * Extended Gauge Sectors * CLEO's Views Beyond the Standard Model * On Estimating Perturbative Coefficients in Quantum Field Theory and Statistical Physics * Perturbative Corrections to Inclusive Heavy Hadron Decay * Some Recent Developments in Sphalerons * Searching for New Matter Particles at Future Colliders * Issues in Dynamical Supersymmetry Breaking * Present Status of Fermilab Collider Accelerator Upgrades * The Extraordinary Scientific Opportunities from Upgrading Fermilab's Luminosity ≥ 1033 cm-2 sec-1 * Applications of Effective Lagrangians * Collider Phenomenology for Strongly Interacting Electroweak Sector * Physics of Self-Interacting Electroweak Bosons * Particle Physics at a TeV-Scale e+e- Linear Collider * Physics at γγ and eγ Colliders * Challenges for Non-Minimal Higgs Searchers at Future Colliders * Physics Potential and Development of μ+μ- Colliders * Beyond Standard Quantum Chromodynamics * Extracting Predictions from Supergravity/Superstrings for the Effective Theory Below the Planck Scale * Non-Universal SUSY Breaking, Hierarchy and Squark Degeneracy * Supersymmetric Phenomenology in the Light of Grand Unification * A Survey of Phenomenological Constraints on Supergravity Models * Precision Tests of the MSSM * The Search for Supersymmetry * Neutrino Physics * Neutrino Mass: Oscillations and Hot Dark Matter * Dark Matter and Large-Scale Structure * Electroweak Baryogenesis * Progress in Searches for Non-Baryonic Dark Matter * Big Bang Nucleosynthesis * Flavor Tests of Quark-Lepton * Where are We Coming from? What are We? Where are We Going? * Summary, Perspectives * PARALLEL SESSIONS * SUSY Phenomenology I * Is Rb Telling us that Superpartners will soon be Discovered? * Dark Matter in Constrained Minimal Supersymmetry * A Fourth Family in the MSSM? * Multi-channel Search for Supergravity at the Large Hadron Collider * Precise Predictions for Masses and Couplings in the Minimal Supersymmetric Standard Model * Radiative b Decays and the Detection of Supersymmetric Dark Matter * Bounds on ΔB = 1 Couplings in the Supersymmetric Standard Model * Testing Supersymmetry at the Next Linear Collider * SUSY Phenomenology II * Is There a Light Gluino Window? * Soft Supersymmetry Breaking and Finiteness * Consequences of Low Energy Dynamical Supersymmetry Breaking * String Model Theory and Phenomenology * Z2 × Z2 Orbifold Compactification - the Origin of Realistic Free Fermionic Models * Effective Supergravity from 4-D Fermionic Strings * String Models Featuring Direct Product Unification * Hadronic and Non-Perturbative Physics * Salient Features of High-Energy Multiparticle Distributions: 1-d Ising Model Captures Them All * Pion Fusion in the Equivalent Pion Approximation * Deterministic Theory of Atomic Structure * Disoriented Chiral Condensate * Higgs Physics * The LHC Phenomenology of the CP-Odd Scalar in Two-Doublet Models * Detection of Minimal Supersymmetric Model Higgs Bosons in γγ Collisions: Influence of SUSY Decay Modes * Electroweak Corrections to the Charged Higgs Production Cross-Section * A Comparison of Higgs Mass Bounds in the SM and the MSSM * Searching for Higgs Bosons on LHC Using b-Tagging * Top Quark and Flavor Physics * Flavor Mixing, CP Violation and a Heavy Top * New Fermion Families and Precision Electroweak Data * Dipole Operator Phenomenology and Quark Mass Generation: An Update * Possible Higgs Boson Effects on the Running of Third and Fourth Generation Quark Masses and Mixings * How the Top Family Differs * Fermion Masses in Extended Technicolour * New Developments in Perturbative QCD * Efficient Analytic Computation of Higher-Order QCD Amplitudes * Use of Recursion Relations to Compute One-Loop Helicity Amplitudes * Gluon Radiation Patterns in Hard Scattering Events * B Physics * Inclusive Hadronic Production of the Bc Meson via Heavy Quark Fragmentation * Helicity Probabilities for Heavy Quark Fragmentation into Heavy-Light Excited Mesons * Hadronic Penguins in B Decays and Extraction of α, β and γ * CP Violation Physics * Maximum Likelihood Method for New Physics Mixing Angles, and Projections to Using B Factory Results * CP Violation in Fermionic Decays of Higgs Bosons * Test of CP Violation in Non-Leptonic Hyperon Decays * CP Violation in the Weinberg Multi-Higgs Model * Triple-Product Spin-Momentum Correlations in Polarized Z Decays to Three Jets * Radiative CP Violation * HERA Results * A Search for Leptoquarks and Squarks in H1 at HERA * Search for Leptoquarks in ep Collisions at √ {s}=296; {GeV} * Search for Excited Fermions in ep Collisions at √ {s}=296; {GeV} * Tevatron Results * Measurement of Diboson Production at the Tevatron Collider with D0 * Search for SUSY in D0 * Search for SUSY at CDF * Search for First and Second Generation Leptoquarks with the D0 Detector * Search for Exotic Particles at CDF * e+e- and μ+μ- Physics * Aspects of Higgs Boson Searches * Measurements of the Forward-Backward Asymmetry of Quarks in the DELPHI Experiment at LEP * Astrophysics, Dark Matter, Cosmology and Neutrino Physics * A Model Independent Approach to Future Solar Neutrino Experiments * Neutrino Oscillations with Beams from AGN's and GRB's * Implication of Macho Detections for Dark Matter Searches * Chiral Restoration in the Early Universe: Pion Halo in the Sky * SEWS, Anomalous Couplings, and Precision EW * Do WL and H form a P-Wave Bound State? * An Update on Strong WLWL Scattering at the LHC * The Difficulties Involved in Calculating δρ * What Can We Learn from the Measurement R_{b}≡Γ(Z → bbar{b}/Γ(Z → Hadrons)? * Gauge Invariance and Anomalous Gauge Boson Couplings * Probing the Standard Model with Hadronic WZ Production * Consequences of Recent Electroweak Data and W-Mass for the Top Quark and Higgs Masses * Equivalence Theorem as a Criterion for Probing the Electroweak Symmetry Breaking Mechanism * Conference Schedule * Schedule of the Parallel Sessions * List of Participants

  2. Test of Relativistic Gravity for Propulsion at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Felber, Franklin

    2010-01-01

    A design is presented of a laboratory experiment that could test the suitability of relativistic gravity for propulsion of spacecraft to relativistic speeds. An exact time-dependent solution of Einstein's gravitational field equation confirms that even the weak field of a mass moving at relativistic speeds could serve as a driver to accelerate a much lighter payload from rest to a good fraction of the speed of light. The time-dependent field of ultrarelativistic particles in a collider ring is calculated. An experiment is proposed as the first test of the predictions of general relativity in the ultrarelativistic limit by measuring the repulsive gravitational field of bunches of protons in the Large Hadron Collider (LHC). The estimated `antigravity beam' signal strength at a resonant detector of each proton bunch is 3 nm/s2 for 2 ns during each revolution of the LHC. This experiment can be performed off-line, without interfering with the normal operations of the LHC.

  3. Towards the final word on neutralino dark matter

    NASA Astrophysics Data System (ADS)

    Bramante, Joseph; Desai, Nishita; Fox, Patrick; Martin, Adam; Ostdiek, Bryan; Plehn, Tilman

    2016-03-01

    We present a complete phenomenological prospectus for thermal relic neutralinos. Including Sommerfeld enhancements to relic abundance and halo annihilation calculations, we obtain direct, indirect, and collider discovery prospects for all neutralinos with mass parameters M1 , M2 , |μ |<4 TeV , which freeze out to the observed dark matter abundance, with scalar superpartners decoupled. Much of the relic neutralino sector will be uncovered by the direct detection experiments Xenon1T and LZ, as well as indirect detection with Cerenkov Telescope Array. We emphasize that thermal relic Higgsinos will be found by next-generation direct detection experiments, so long as M1 ,2<4 TeV . Charged tracks at a 100 TeV hadron collider complement indirect searches for relic winos. Thermal relic bino-winos still evade all planned experiments, including disappearing charged-track searches. However, they can be discovered by compressed electroweakino searches at a 100 TeV collider, completing the full coverage of the relic neutralino surface.

  4. Towards the final word on neutralino dark matter

    DOE PAGES

    Bramante, Joseph; Desai, Nishita; Fox, Patrick; ...

    2016-03-25

    We present a complete phenomenological prospectus for thermal relic neutralinos. Including Sommerfeld enhancements to relic abundance and halo annihilation calculations, we obtain direct, indirect, and collider discovery prospects for all neutralinos with mass parametersmore » $$M_1,M_2,|\\mu| < 4$$ TeV, that freeze out to the observed dark matter abundance, with scalar superpartners decoupled. Much of the relic neutralino sector will be uncovered by the direct detection experiments Xenon1T and LZ, as well as indirect detection with CTA. We emphasize that thermal relic higgsinos will be found by next-generation direct detection experiments, so long as $$M_{1,2} < 4$$ TeV. Charged tracks at a 100 TeV hadron collider complement indirect searches for relic winos. Thermal relic bino-winos still evade all planned experiments, including disappearing charged-track searches. Furthermore, they can be discovered by compressed electroweakino searches at a 100 TeV collider, completing the full coverage of the relic neutralino surface.« less

  5. Monojet searches for MSSM simplified models

    DOE PAGES

    Arbey, Alexandre; Battaglia, Marco; Mahmoudi, Farvah

    2016-09-12

    We explore the implications of monojet searches at hadron colliders in the minimal supersymmetric extension of the Standard Model (MSSM). To quantify the impact of monojet searches, we consider simplified MSSM scenarios with neutralino dark matter. The monojet results of the LHC Run 1 are reinterpreted in the context of several MSSM simplified scenarios, and the complementarity with direct supersymmetry search results is highlighted. We also investigate the reach of monojet searches for the Run 2, as well as for future higher energy hadron colliders.

  6. Physics Opportunity with an Electron-Ion Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, Patrizia

    2016-12-01

    Understanding the emergence of nucleons and nuclei and their interactions from the properties and dynamics of quarks and gluons in Quantum Chromodynamics (QCD) is a fundamental and compelling goal of nuclear science. A high-energy, high-luminosity polarized electron-ion collider (EIC) will be needed to explore and advance many aspects of QCD studies in the gluon dominated regions in nucleon and nuclei. The federal Nuclear Science Advisory Committee unanimously approved a high-energy electro-ion collider to explore a new frontier in physics research. In fact, the committee calls the collider the country's next "highest priority" in new facility construction, and is one ofmore » four main recommendations contained in its 2015 Long Range Plan for Nuclear Science. Two proposals for the EIC are being considered in the U.S.: one each at Jefferson Laboratory (JLab) and at Brookhaven National Laboratory (BNL). An overview of the physics opportunities an EIC presents to the nuclear science community in future decades is presented.« less

  7. Relic neutralino surface at a 100 TeV collider

    DOE PAGES

    Bramante, Joseph; Fox, Patrick J.; Martin, Adam; ...

    2015-03-11

    We map the parameter space for minimal supersymmetric Standard Model neutralino dark matter which freezes out to the observed relic abundance, in the limit that all superpartners except the neutralinos and charginos are decoupled. In this space of relic neutralinos, we show the dominant dark matter annihilation modes, the mass splittings among the electroweakinos, direct detection rates, and collider cross sections. The mass difference between the dark matter and the next-to-lightest neutral and charged states is typically much less than electroweak gauge boson masses. With these small mass differences, the relic neutralino surface is accessible to a future 100 TeVmore » hadron collider, which can discover interneutralino mass splittings down to 1 GeV and thermal relic dark matter neutralino masses up to 1.5 TeV with a few inverse attobarns of luminosity. This coverage is a direct consequence of the increased collider energy: in the Standard Model events with missing transverse momentum in the TeV range have mostly hard electroweak radiation, distinct from the soft radiation shed in compressed electroweakino decays. As a result, we exploit this kinematic feature in final states including photons and leptons, tailored to the 100 TeV collider environment.« less

  8. U.S. Involvement in the LHC

    DOE PAGES

    Green, Dan

    2016-12-14

    The demise of the SSC in the U.S. created an upheaval in the U.S. high energy physics (HEP) community. Here, the subsequent redirection of HEP efforts to the CERN Large Hadron Collider (LHC) can perhaps be seen as informing on possible future paths for worldwide collaboration on future HEP megaprojects.

  9. The long journey to the Higgs boson and beyond at the LHC: Emphasis on CMS

    NASA Astrophysics Data System (ADS)

    Virdee, Tejinder Singh

    2016-11-01

    Since 2010 there has been a rich harvest of results on standard model physics by the ATLAS and CMS experiments operating on the Large Hadron Collider. In the summer of 2012, a spectacular discovery was made by these experiments of a new, heavy particle. All the subsequently analysed data point strongly to the properties of this particle as those expected for the Higgs boson associated with the Brout-Englert-Higgs mechanism postulated to explain the spontaneous symmetry breaking in the electroweak sector, thereby explaining how elementary particles acquire mass. This article focuses on the CMS experiment, the technological challenges encountered in its construction, describing some of the physics results obtained so far, including the discovery of the Higgs boson, and searches for the widely anticipated new physics beyond the standard model, and peer into the future involving the high-luminosity phase of the LHC. This article is complementary to the one by Peter Jenni4 that focuses on the ATLAS experiment.

  10. Lead ions and Coulomb’s Law at the LHC (CERN)

    NASA Astrophysics Data System (ADS)

    Cid-Vidal, Xabier; Cid, Ramon

    2018-03-01

    Although for most of the time the Large Hadron Collider (LHC) at CERN collides protons, for around one month every year lead ions are collided, to expand the diversity of the LHC research programme. Furthermore, in an effort not originally foreseen, proton-lead collisions are also taking place, with results of high interest to the physics community. All the large experiments of the LHC have now joined the heavy-ion programme, including the LHCb experiment, which was not at first expected to be part of it. The aim of this article is to introduce a few simple physical calculations relating to some electrical phenomena that occur when lead-ion bunches are running in the LHC, using Coulomb’s Law, to be taken to the secondary school classroom to help students understand some important physical concepts.

  11. Experimental Studies on the Collision Behavior of Saturnian Ice Particles

    NASA Astrophysics Data System (ADS)

    Heißelmann, D.; Fraser, H. J.; Blum, J.

    2008-09-01

    The processes in the Saturnian rings are dominated by two effects. On the one hand there is a gravitational interaction of the ring particles with Saturn or its moons and moonlets increasing the eccentricity of the rings. On the other hand inelastic collisions between the ring particles occur and result in damping of the particles' motion and therefore circularizing the orbits and locally confining the rings [1]. As spectroscopic measurements of the Saturnian rings have shown, the ring particles consist of almost pure water ice (with little amounts of organic materials and carbon) [2]. The determination of the size distribution of the ring constituents from Cassini and Voyager data revealed typical particles sizes between 1 cm and 10m. In contrast to the numerous observational data obtained by spaceborne and ground-based methods only very little experimental data exist on the collision properties of icy particles. Up to now laboratory measurements were only performed for quasi-two-dimensional, central collisions of large icy spheres [3, 4, 5]. We will present results from parabolic flight experiments in which pairs of ice particles of spherical and irregular shape were collided in a microgravity environment. The projectiles with sizes of 3mm to 15mm were accelerated to velocities between 3 cm s-1 and 20 cm s-1 and gently collided inside a cryogenic high-vacuum chamber. The impacts were recorded by a high-speed, high-resolution digital imaging system which was equipped with a beamsplitter optics to obtain three-dimensional information about the impact parameters and the coefficients of restitution (the ratio of velocity after and before the collision). Additionally we will report on microgravity studies investigating collisions of an ensemble of one hundred cmsized spheres. The prototype experiments were conducted with solid glass beads with a rough surface colliding at relative velocities of 0.5 cm s-1 to 10 cm s-1. We will compare the results to the collisions of pairs of icy bodies and will report on future laboratory studies of similar experiments with rubber beads and ice particles.

  12. An optimal scheme for top quark mass measurement near the \\rm{t}\\bar{t} threshold at future \\rm{e}^{+}{e}^{-} colliders

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Guo; Wan, Xia; Wang, You-Kai

    2018-05-01

    A top quark mass measurement scheme near the {{t}}\\bar{{{t}}} production threshold in future {{{e}}}+{{{e}}}- colliders, e.g. the Circular Electron Positron Collider (CEPC), is simulated. A {χ }2 fitting method is adopted to determine the number of energy points to be taken and their locations. Our results show that the optimal energy point is located near the largest slope of the cross section v. beam energy plot, and the most efficient scheme is to concentrate all luminosity on this single energy point in the case of one-parameter top mass fitting. This suggests that the so-called data-driven method could be the best choice for future real experimental measurements. Conveniently, the top mass statistical uncertainty can also be calculated directly by the error matrix even without any sampling and fitting. The agreement of the above two optimization methods has been checked. Our conclusion is that by taking 50 fb‑1 total effective integrated luminosity data, the statistical uncertainty of the top potential subtracted mass can be suppressed to about 7 MeV and the total uncertainty is about 30 MeV. This precision will help to identify the stability of the electroweak vacuum at the Planck scale. Supported by National Science Foundation of China (11405102) and the Fundamental Research Funds for the Central Universities of China (GK201603027, GK201803019)

  13. Cell and Particle Interactions and Aggregation During Electrophoretic Motion

    NASA Technical Reports Server (NTRS)

    Davis, Robert H.

    2000-01-01

    The objectives of this research were (i) to perform experiments for observing and quantifying electrophoretic aggregation, (ii) to develop a theoretical description to appropriately analyze and compare with the experimental results, (iii) to study the combined effects of electrophoretic and gravitational aggregation of large particles, and the combined effects of electrophoretic and Brownian aggregation of small particles, and (iv) to perform a preliminary design of a potential future flight experiment involving electrophoretic aggregation. Electrophoresis refers to the motion of charged particles, droplets or molecules in response to an applied electric field. Electrophoresis is commonly used for analysis and separation of biological particles or molecules. When particles have different surface charge densities or potentials, they will migrate at different velocities in an electric field. This differential migration leads to the possibility that they will collide and aggregate, thereby preventing separation.

  14. When Communications Collide With Recipients’ Actions: Effects of Post-Message Behavior on Intentions to Follow the Message Recommendation

    PubMed Central

    Albarracín, Dolores; Cohen, Joel B.; Kumkale, G. Tarcan

    2013-01-01

    Two experiments investigated the processes through which post-message behavior (e.g., noncompliance) influences resistance to the message. Participants in Experiment 1 read preventive, consumer-education messages that either opposed the consumption of an alcohol-like product or recommended moderation. Half of the participants then tried the product, whereas the remaining participants performed a filler task. In the absence of trial, the two messages had the same effect. However, recipients of the abstinence-promoting preventive message who tried the product had stronger intentions to use the product in the future than recipients of the moderation message. This finding suggests that assessments of message impact may be inadequate unless an opportunity for trial is also provided. Results are interpreted in terms of self-perception and cognitive dissonance and contrasted from psychological reactance. PMID:15018672

  15. Implications of LHCb measurements and future prospects

    DOE PAGES

    Bharucha, A.; Bigi, I. I.; Bobeth, C.; ...

    2013-04-26

    During 2011 the LHCb experiment at CERN collected 1.0 fb -1 of √s=7~TeV pp collisions. Due to the large heavy quark production cross-sections, these data provide unprecedented samples of heavy flavoured hadrons. The first results from LHCb have made a significant impact on the flavour physics landscape and have definitively proved the concept of a dedicated experiment in the forward region at a hadron collider. This document discusses the implications of these first measurements on classes of extensions to the Standard Model, bearing in mind the interplay with the results of searches for on-shell production of new particles at ATLASmore » and CMS. The physics potential of an upgrade to the LHCb detector, which would allow an order of magnitude more data to be collected, is emphasised.« less

  16. Modeling multi-GeV class laser-plasma accelerators with INF&RNO

    NASA Astrophysics Data System (ADS)

    Benedetti, Carlo; Schroeder, Carl; Bulanov, Stepan; Geddes, Cameron; Esarey, Eric; Leemans, Wim

    2016-10-01

    Laser plasma accelerators (LPAs) can produce accelerating gradients on the order of tens to hundreds of GV/m, making them attractive as compact particle accelerators for radiation production or as drivers for future high-energy colliders. Understanding and optimizing the performance of LPAs requires detailed numerical modeling of the nonlinear laser-plasma interaction. We present simulation results, obtained with the computationally efficient, PIC/fluid code INF&RNO (INtegrated Fluid & paRticle simulatioN cOde), concerning present (multi-GeV stages) and future (10 GeV stages) LPA experiments performed with the BELLA PW laser system at LBNL. In particular, we will illustrate the issues related to the guiding of a high-intensity, short-pulse, laser when a realistic description for both the laser driver and the background plasma is adopted. Work Supported by the U.S. Department of Energy under contract No. DE-AC02-05CH11231.

  17. Searching for the doubly charged scalars in the Georgi-Machacek model via γγ collisions at the ILC

    NASA Astrophysics Data System (ADS)

    Cao, Jun; Li, Yu-Qi; Liu, Yao-Bei

    2018-04-01

    The Georgi-Machacek (GM) model predicts the existence of the doubly-charged scalars H5±±, which can be seen the typical particles in this model and their diboson decay channels are one of the most promising ways to discover such new doubly-charged scalars. Based on the constraints of the latest combined ATLAS and CMS Higgs boson diphoton signal strength data at 2σ confidence level, we focus on the study of the triple scalar production in γγ collisions at the future International Linear collider (ILC): γγ → hH5++H 5‑‑, where the production cross-sections are very sensitive to the triple scalar coupling parameter ghHH. Considering the typical same-sign diboson decay modes for the doubly-charged scalars, the possible final signals might be detected via this process at the future ILC experiments.

  18. Singlet-triplet fermionic dark matter and LHC phenomenology

    NASA Astrophysics Data System (ADS)

    Choubey, Sandhya; Khan, Sarif; Mitra, Manimala; Mondal, Subhadeep

    2018-04-01

    It is well known that for the pure standard model triplet fermionic WIMP-type dark matter (DM), the relic density is satisfied around 2 TeV. For such a heavy mass particle, the production cross-section at 13 TeV run of LHC will be very small. Extending the model further with a singlet fermion and a triplet scalar, DM relic density can be satisfied for even much lower masses. The lower mass DM can be copiously produced at LHC and hence the model can be tested at collider. For the present model we have studied the multi jet (≥ 2 j) + missing energy ([InlineEquation not available: see fulltext.]) signal and show that this can be detected in the near future of the LHC 13 TeV run. We also predict that the present model is testable by the earth based DM direct detection experiments like Xenon-1T and in future by Darwin.

  19. The XXth International Workshop High Energy Physics and Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    The Workshop continues a series of workshops started by the Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University (SINP MSU) in 1985 and conceived with the purpose of presenting topics of current interest and providing a stimulating environment for scientific discussion on new developments in theoretical and experimental high energy physics and physical programs for future colliders. Traditionally the list of workshop attendees includes a great number of active young scientists and students from Russia and other countries. This year Workshop is organized jointly by the SINP MSU and the Southern Federal University (SFedU) and will take place in the holiday hotel "Luchezarniy" (Effulgent) situated on the Black Sea shore in a picturesque natural park in the suburb of the largest Russian resort city Sochi - the host city of the XXII Olympic Winter Games to be held in 2014. The main topics to be covered are: Experimental results from the LHC. Tevatron summary: the status of the Standard Model and the boundaries on BSM physics. Future physics at Linear Colliders and super B-factories. Extensions of the Standard Model and their phenomenological consequences at the LHC and Linear Colliders: SUSY extensions of the Standard Model; particle interactions in space-time with extra dimensions; strings, quantum groups and new ideas from modern algebra and geometry. Higher order corrections and resummations for collider phenomenology. Automatic calculations of Feynman diagrams and Monte Carlo simulations. LHC/LC and astroparticle/cosmology connections. Modern nuclear physics and relativistic nucleous-nucleous collisions.

  20. Fourth standard model family neutrino at future linear colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciftci, A.K.; Ciftci, R.; Sultansoy, S.

    2005-09-01

    It is known that flavor democracy favors the existence of the fourth standard model (SM) family. In order to give nonzero masses for the first three-family fermions flavor democracy has to be slightly broken. A parametrization for democracy breaking, which gives the correct values for fundamental fermion masses and, at the same time, predicts quark and lepton Cabibbo-Kobayashi-Maskawa (CKM) matrices in a good agreement with the experimental data, is proposed. The pair productions of the fourth SM family Dirac ({nu}{sub 4}) and Majorana (N{sub 1}) neutrinos at future linear colliders with {radical}(s)=500 GeV, 1 TeV, and 3 TeV are considered.more » The cross section for the process e{sup +}e{sup -}{yields}{nu}{sub 4}{nu}{sub 4}(N{sub 1}N{sub 1}) and the branching ratios for possible decay modes of the both neutrinos are determined. The decays of the fourth family neutrinos into muon channels ({nu}{sub 4}(N{sub 1}){yields}{mu}{sup {+-}}W{sup {+-}}) provide cleanest signature at e{sup +}e{sup -} colliders. Meanwhile, in our parametrization this channel is dominant. W bosons produced in decays of the fourth family neutrinos will be seen in detector as either di-jets or isolated leptons. As an example, we consider the production of 200 GeV mass fourth family neutrinos at {radical}(s)=500 GeV linear colliders by taking into account di-muon plus four jet events as signatures.« less

  1. Testing the scalar sector of the twin Higgs model at colliders

    NASA Astrophysics Data System (ADS)

    Chacko, Zackaria; Kilic, Can; Najjari, Saereh; Verhaaren, Christopher B.

    2018-03-01

    We consider mirror twin Higgs models in which the breaking of the global symmetry is realized linearly. In this scenario, the radial mode in the Higgs potential is present in the spectrum and constitutes a second portal between the twin and SM sectors. We show that a study of the properties of this particle at colliders, when combined with precision measurements of the light Higgs, can be used to overdetermine the form of the scalar potential, thereby confirming that it possesses an enhanced global symmetry as dictated by the twin Higgs mechanism. We find that, although the reach of the LHC for this state is limited, future linear colliders will be able to explore a significant part of the preferred parameter space, allowing the possibility of directly testing the twin Higgs framework.

  2. Analysis of b quark pair production signal from neutral 2HDM Higgs bosons at future linear colliders

    NASA Astrophysics Data System (ADS)

    Hashemi, Majid; MahdaviKhorrami, Mostafa

    2018-06-01

    In this paper, the b quark pair production events are analyzed as a source of neutral Higgs bosons of the two Higgs doublet model type I at linear colliders. The production mechanism is e+e- → Z^{(*)} → HA → b{\\bar{b}}b{\\bar{b}} assuming a fully hadronic final state. The analysis aim is to identify both CP-even and CP-odd Higgs bosons in different benchmark points accommodating moderate boson masses. Due to pair production of Higgs bosons, the analysis is most suitable for a linear collider operating at √{s} = 1 TeV. Results show that in selected benchmark points, signal peaks are observable in the b-jet pair invariant mass distributions at integrated luminosity of 500 fb^{-1}.

  3. Lattice QCD at finite temperature and density from Taylor expansion

    NASA Astrophysics Data System (ADS)

    Steinbrecher, Patrick

    2017-01-01

    In the first part, I present an overview of recent Lattice QCD simulations at finite temperature and density. In particular, we discuss fluctuations of conserved charges: baryon number, electric charge and strangeness. These can be obtained from Taylor expanding the QCD pressure as a function of corresponding chemical potentials. Our simulations were performed using quark masses corresponding to physical pion mass of about 140 MeV and allow a direct comparison to experimental data from ultra-relativistic heavy ion beams at hadron colliders such as the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN. In the second part, we discuss computational challenges for current and future exascale Lattice simulations with a focus on new silicon developments from Intel and NVIDIA.

  4. Experiment on infrared radiation characteristic of colloid Fe/Al thermite

    NASA Astrophysics Data System (ADS)

    Zhen, Jian-wei; Li, Jin-ming; Guo, Meng-meng; Liu, Guo-qing; Wang, Guo-dong

    2016-01-01

    The Fe/Al thermite was made as bulk material. Mixed proportion with liquid energetic colloid, the Fe/Al thermite was made to be collid Fe/Al thermite combustible agent. Then, combustion test sample was got. The combustion process and the infrared radiation characteristic of colloid Fe/Al thermite was experiment by thermal infrared imager. It was showed that collid Fe/Al thermite combustible agent had better infrared radiation characteristic. It could be as based agentia of infrared decoy with the characteristic of persistent and wide spectral range.

  5. The PHOBOS experiment at the RHIC collider

    NASA Astrophysics Data System (ADS)

    Katzy, Judith M.; Back, B.; Baker, M. D.; Barton, D.; Betts, R.; Białas, A.; Budzanowski, A.; Busza, W.; Carroll, A.; Chang, Y.-H.; Chen, A. E.; Coghen, T.; Czyż, W.; Decowski, M. P.; Friedl, M.; Gałuszka, K.; Ganz, R.; Garcia-Solis, E.; George, N.; Godlewski, J.; Gulbrandsen, K. H.; Gushue, S.; Halliwell, C.; Hayes, A.; Heintzelman, G.; Hołyński, R.; Holzman, B.; Jagadish, U.; Johnson, E.; Kotuła, J.; Kucewicz, W.; Kulinich, P.; Lemler, M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Neal, M.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I.; Pernegger, H.; Plesko, M.; Remsberg, L. P.; Reuter, M.; Roland, G.; Rosenberg, L.; Sarin, P.; Sawicki, P.; Stanskas, P. J.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Trzupek, A.; van Nieuwenhuizen, G.; Vale, C.; Verdier, R.; Wadsworth, B.; Wolfs, F.; Wosiek, B.; Woźniak, K.; Wuosmaa, A.; Wysłouch, B.; Zalewski, K.; Phobos Collaboration

    1999-12-01

    PHOBOS is one of four experiments at the Relativistic Heavy Ion Collider (RHIC), scheduled to start data collection in fall 1999. Its main goal is to collect events using minimum bias triggers. A search will then be made for interesting, and perhaps rare, classes of events that may indicate the formation of a quark gluon plasma (QGP) or the restoration of chiral symmetry. In this report we describe the PHOBOS detector design and present the first results in detector development. We will also present our expectations from the first year of operation.

  6. Merging the Machines of Modern Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Laura; Collins, Jim

    Two recent projects have harnessed supercomputing resources at the US Department of Energy’s Argonne National Laboratory in a novel way to support major fusion science and particle collider experiments. Using leadership computing resources, one team ran fine-grid analysis of real-time data to make near-real-time adjustments to an ongoing experiment, while a second team is working to integrate Argonne’s supercomputers into the Large Hadron Collider/ATLAS workflow. Together these efforts represent a new paradigm of the high-performance computing center as a partner in experimental science.

  7. A Multi-TeV Linear Collider Based on CLIC Technology : CLIC Conceptual Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aicheler, M; Burrows, P.; Draper, M.

    This report describes the accelerator studies for a future multi-TeV e +e - collider based on the Compact Linear Collider (CLIC) technology. The CLIC concept as described in the report is based on high gradient normal-conducting accelerating structures where the RF power for the acceleration of the colliding beams is extracted from a high-current Drive Beam that runs parallel with the main linac. The focus of CLIC R&D over the last years has been on addressing a set of key feasibility issues that are essential for proving the fundamental validity of the CLIC concept. The status of these feasibility studiesmore » are described and summarized. The report also includes a technical description of the accelerator components and R&D to develop the most important parts and methods, as well as a description of the civil engineering and technical services associated with the installation. Several larger system tests have been performed to validate the two-beam scheme, and of particular importance are the results from the CLIC test facility at CERN (CTF3). Both the machine and detector/physics studies for CLIC have primarily focused on the 3 TeV implementation of CLIC as a benchmark for the CLIC feasibility. This report also includes specific studies for an initial 500 GeV machine, and some discussion of possible intermediate energy stages. The performance and operation issues related to operation at reduced energy compared to the nominal, and considerations of a staged construction program are included in the final part of the report. The CLIC accelerator study is organized as an international collaboration with 43 partners in 22 countries. An associated report describes the physics potential and experiments at CLIC and a shorter report in preparation will focus on the CLIC implementation strategy, together with a plan for the CLIC R&D studies 2012–2016. Critical and important implementation issues such as cost, power and schedule will be addressed there.« less

  8. Development work for a superconducting linear collider

    NASA Technical Reports Server (NTRS)

    Matheisen, Axel

    1995-01-01

    For future linear e(+)e(-) colliders in the TeV range several alternatives are under discussion. The TESLA approach is based on the advantages of superconductivity. High Q values of the accelerator structures give high efficiency for converting RF power into beam power. A low resonance frequency for the RF structures can be chosen to obtain a large number of electrons (positrons) per bunch. For a given luminosity the beam dimensions can be chosen conservatively which leads to relaxed beam emittance and tolerances at the final focus. Each individual superconducting accelerator component (resonator cavity) of this linear collider has to deliver an energy gain of 25 MeV/m to the beam. Today s.c. resonators are in use at CEBAF/USA, at DESY/Germany, Darmstadt/Germany KEK/Japan and CERN/Geneva. They show acceleration gradients between 5 MV/m and 10 MV/m. Encouraging experiments at CEA Saclay and Cornell University showed acceleration gradients of 20 MV/m and 25 MV/m in single and multicell structures. In an activity centered at DESY in Hamburg/Germany the TESLA collaboration is constructing a 500 MeV superconducting accelerator test facility (TTF) to demonstrate that a linear collider based on this technique can be built in a cost effective manner and that the necessary acceleration gradients of more than 15 MeV/m can be reached reproducibly. The test facility built at DESY covers an area of 3.000 m2 and is divided into 3 major activity areas: (1) The testlinac, where the performance ofthe modular components with an electron beam passing the 40 m long acceleration section can be demonstrated. (2) The test area, where all individual resonators are tested before installation into a module. (3) The preparation and assembly area, where assembly of cavities and modules take place. We report here on the design work to reach a reduction of costs compared to actual existing superconducting accelerator structures and on the facility set up to reach high acceleration gradients in a reproducible way.

  9. Power supply and pulsing strategies for the future linear colliders

    NASA Astrophysics Data System (ADS)

    Brogna, A. S.; Göttlicher, P.; Weber, M.

    2012-02-01

    The concept of the power delivery systems of the future linear colliders exploits the pulsed bunch structure of the beam in order to minimize the average current in the cables and the electronics and thus to reduce the material budget and heat dissipation. Although modern integrated circuit technologies are already available to design a low-power system, the concepts on how to pulse the front-end electronics and further reduce the power are not yet well understood. We propose a possible implementation of a power pulsing system based on a DC/DC converter and we choose the Analog Hadron Calorimeter as a specific example. The model features large switching currents of electronic modules in short time intervals to stimulate the inductive components along the cables and interconnections.

  10. Physics perspectives of heavy-ion collisions at very high energy

    DOE PAGES

    Chang, Ning-bo; Cao, ShanShan; Chen, Bao-yi; ...

    2016-01-15

    We expect heavy-ion collisions at very high colliding energies to produce a quark-gluon plasma (QGP) at the highest temperature obtainable in a laboratory setting. Experimental studies of these reactions can provide an unprecedented range of information on properties of the QGP at high temperatures. We also report theoretical investigations of the physics perspectives of heavy-ion collisions at a future high-energy collider. These include initial parton production, collective expansion of the dense medium, jet quenching, heavy-quark transport, dissociation and regeneration of quarkonia, photon and dilepton production. Here, we illustrate the potential of future experimental studies of the initial particle production andmore » formation of QGP at the highest temperature to provide constraints on properties of strongly interaction matter.« less

  11. Applications of High Intensity Proton Accelerators

    NASA Astrophysics Data System (ADS)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon collider and neutrino factory - summary of working group 2 / J. Galambos, R. Garoby and S. Geer -- Prospects for a very high power CW SRF linac / R. A. Rimmer -- Indian accelerator program for ADS applications / V. C. Sahni and P. Singh -- Ion accelerator activities at VECC (particularly, operating at low temperature) / R. K. Bhandari -- Chinese efforts in high intensity proton accelerators / S. Fu, J. Wang and S. Fang -- ADSR activity in the UK / R. J. Barlow -- ADS development in Japan / K. Kikuchi -- Project-X, SRF, and very large power stations / C. M. Ankenbrandt, R. P. Johnson and M. Popovic -- Power production and ADS / R. Raja -- Experimental neutron source facility based on accelerator driven system / Y. Gohar -- Transmutation mission / W. S. Yang -- Safety performance and issues / J. E. Cahalan -- Spallation target design for accelerator-driven systems / Y. Gohar -- Design considerations for accelerator transmutation of waste system / W. S. Yang -- Japan ADS program / T. Sasa -- Overview of members states' and IAEA activities in the field of Accelerator Driven Systems (ADS) / A. Stanculescu -- Linac for ADS applications - accelerator technologies / R. W. Garnett and R. L. Sheffield -- SRF linacs and accelerator driven sub-critical systems - summary working groups 3 & 4 / J. Delayen -- Production of Actinium-225 via high energy proton induced spallation of Thorium-232 / J. Harvey ... [et al.] -- Search for the electric dipole moment of Radium-225 / R. J. Holt, Z.-T. Lu and R. Mueller -- SRF linac and material science and medicine - summary of working group 5 / J. Nolen, E. Pitcher and H. Kirk.

  12. Jet Substructure at the Large Hadron Collider : Experimental Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asquith, Lily; Campanelli, Mario; Delitzsch, Chris

    Jet substructure has emerged to play a central role at the Large Hadron Collider (LHC), where it has provided numerous innovative new ways to search for new physics and to probe the Standard Model, particularly in extreme regions of phase space. In this article we focus on a review of the development and use of state-of-the-art jet substructure techniques by the ATLAS and CMS experiments. ALICE and LHCb have been probing fragmentation functions since the start of the LHC and have also recently started studying other jet substructure techniques. It is likely that in the near future all LHC collaborationsmore » will make significant use of jet substructure and grooming techniques. Much of the work in this field in recent years has been galvanized by the Boost Workshop Series, which continues to inspire fruitful collaborations between experimentalists and theorists. We hope that this review will prove a useful introduction and reference to experimental aspects of jet substructure at the LHC. A companion overview of recent progress in theory and machine learning approaches is given in 1709.04464, the complete review will be submitted to Reviews of Modern Physics.« less

  13. Analysis of 440 GeV proton beam-matter interaction experiments at the High Radiation Materials test facility at CERN

    NASA Astrophysics Data System (ADS)

    Burkart, F.; Schmidt, R.; Raginel, V.; Wollmann, D.; Tahir, N. A.; Shutov, A.; Piriz, A. R.

    2015-08-01

    In a previous paper [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we presented the first results on beam-matter interaction experiments that were carried out at the High Radiation Materials test facility at CERN. In these experiments, extended cylindrical targets of solid copper were irradiated with beam of 440 GeV protons delivered by the Super Proton Synchrotron (SPS). The beam comprised of a large number of high intensity proton bunches, each bunch having a length of 0.5 ns with a 50 ns gap between two neighboring bunches, while the length of this entire bunch train was about 7 μs. These experiments established the existence of the hydrodynamic tunneling phenomenon the first time. Detailed numerical simulations of these experiments were also carried out which were reported in detail in another paper [Tahir et al., Phys. Rev. E 90, 063112 (2014)]. Excellent agreement was found between the experimental measurements and the simulation results that validate our previous simulations done using the Large Hadron Collider (LHC) beam of 7 TeV protons [Tahir et al., Phys. Rev. Spec. Top.--Accel. Beams 15, 051003 (2012)]. According to these simulations, the range of the full LHC proton beam and the hadronic shower can be increased by more than an order of magnitude due to the hydrodynamic tunneling, compared to that of a single proton. This effect is of considerable importance for the design of machine protection system for hadron accelerators such as SPS, LHC, and Future Circular Collider. Recently, using metal cutting technology, the targets used in these experiments have been dissected into finer pieces for visual and microscopic inspection in order to establish the precise penetration depth of the protons and the corresponding hadronic shower. This, we believe will be helpful in studying the very important phenomenon of hydrodynamic tunneling in a more quantitative manner. The details of this experimental work together with a comparison with the numerical simulations are presented in this paper.

  14. Complementarity of Symmetry Tests at the Energy and Intensity Frontiers

    NASA Astrophysics Data System (ADS)

    Peng, Tao

    We studied several symmetries and interactions beyond the Standard Model and their phenomenology in both high energy colliders and low energy experiments. The lepton number conservation is not a fundamental symmetry in Standard Model (SM). The nature of the neutrino depends on whether or not lepton number is violated. Leptogenesis also requires lepton number violation (LNV). So we want to know whether lepton number is a good symmetry or not, and we want to compare the sensitivity of high energy collider and low energy neutrinoless double-beta decay (0nubetabeta) experiments. To do this, We included the QCD running effects, the background analysis, and the long-distance contributions to nuclear matrix elements. Our result shows that the reach of future tonne-scale 0nubetabeta decay experiments generally exceeds the reach of the 14 TeV LHC for a class of simplified models. For a range of heavy particle masses at the TeV scale, the high luminosity 14 TeV LHC and tonne-scale 0nubetabeta decay experiments may provide complementary probles. The 100 TeV collider with a luminosity of 30 ab-1 exceeds the reach of the tonne-scale 0nubetabeta experiments for most of the range of the heavy particle masses at the TeV scale. We considered a non-Abelian kinetic mixing between the Standard Model gauge bosons and a U(1)' gauge group dark photon, with the existence of an SU(2)L scalar triplet. The coupling constant between the dark photon and the SM gauge bosons epsilon is determined by the triplet vacuum expectation value (vev), the scale of the effective theory Lambda, and the effective operator Wiloson coefficient. The triplet vev is constrained to ≤ 4 GeV. By taking the effective operator Wiloson coefficient to be O(1) and Lambda > 1 TeV, we will have a small value of epsilon which is consistent with the experimental constraint. We outlined the possible LHC signatures and recasted the current ATLAS dark photon experimental results into our non-Abelian mixing scenario. We analyzed the QCD corrections to dark matter (DM) interactions with SM quarks and gluons. Because we like to know the new physics at high scale and the effect of the direct detection of DM at low scale, we studied the QCD running for a list of dark matter effective operators. These corrections are important in precision DM physics. Currently little is known about the short-distance physics of DM. We find that the short-distance QCD corrections generate a finite matching correction when integrating out the electroweak gauge bosons. The high precision measurements of electroweak precision observables can provide crucial input in the search for supersymmetry (SUSY) and play an important role in testing the universality of the SM charged current interaction. We studied the SUSY corrections to such observables DeltaCKM and Deltae/mu, with the experimental constraints on the parameter space. Their corrections are generally of order O(10 -4). Future experiments need to reach this precision to search for SUSY using these observables.

  15. Search of strangelets and “forward” physics on the collider

    NASA Astrophysics Data System (ADS)

    Kurepin, A. B.

    2016-01-01

    A new stage of the collider experiments at the maximum energy of protons and nuclei at the LHC may lead to the discovery of new phenomena, as well as to confirm the effects previously observed only at very high energies in cosmic rays. A specific program of the experiments is so-called “forward” physics, i.e. the study of low-angle processes. Of the most interesting phenomena can be noted the detection in cosmic rays events called Centauro, which could be explained as the strangelets production. Centauro represent events with small multiplicity and with a strong suppression of electromagnetic component. Since the energy of the beams at the collider and kinematic parameters of the forward detectors CASTOR (CMS), TOTEM, LHCf and the ADA and ADC (ALICE) are close to the parameters and energies of abnormal events in cosmic rays, it is possible to reproduce and investigate in details these events in the laboratory.

  16. Searching for Physics Beyond the Standard Model and Beyond

    NASA Astrophysics Data System (ADS)

    Abdullah, Mohammad

    The hierarchy problem, convolved with the various known puzzles in particle physics, grants us a great outlook of new physics soon to be discovered. We present multiple approaches to searching for physics beyond the standard model. First, two models with a minimal amount of theoretical guidance are analyzed using existing or simulated LHC data. Then, an extension of the Minimal Supersymmetric Standard Model (MSSM) is studied with an emphasis on the cosmological implications as well as the current and future sensitivity of colliders, direct detection and indirect detection experiments. Finally, a more complete model of the MSSM is presented through which we attempt to resolve tension with observations within the context of gauge mediated supersymmetry breaking.

  17. Neutrino mass, dark matter, and Baryon asymmetry via TeV-scale physics without fine-tuning.

    PubMed

    Aoki, Mayumi; Kanemura, Shinya; Seto, Osamu

    2009-02-06

    We propose an extended version of the standard model, in which neutrino oscillation, dark matter, and the baryon asymmetry of the Universe can be simultaneously explained by the TeV-scale physics without assuming a large hierarchy among the mass scales. Tiny neutrino masses are generated at the three-loop level due to the exact Z2 symmetry, by which the stability of the dark matter candidate is guaranteed. The extra Higgs doublet is required not only for the tiny neutrino masses but also for successful electroweak baryogenesis. The model provides discriminative predictions especially in Higgs phenomenology, so that it is testable at current and future collider experiments.

  18. Design of beam optics for the future circular collider e + e - collider rings

    DOE PAGES

    Oide, Katsunobu; Aiba, M.; Aumon, S.; ...

    2016-11-21

    A beam optics scheme has been designed for the future circular collider- e +e - (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [P. Raimondi, D. Shatilov, and M. Zobov, arXiv:physics/0702033; P. Raimondi, M. Zobov, and D. Shatilov, in Proceedings of the 22nd Particle Accelerator Conference, PAC-2007, Albuquerque, NM (IEEE, New York, 2007), p. TUPAN037.] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system withoutmore » additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called “tapering” of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [A. Chancé et al., Proceedings of IPAC’16, 9–13 May 2016, Busan, Korea, TUPMW020 (2016).] as closely as possible. Sufficient transverse/longitudinal dynamic aperture (DA) has been obtained, including major dynamical effects, to assure an adequate beam lifetime in the presence of beamstrahlung and top-up injection. In particular, a momentum acceptance larger than ±2% has been obtained, which is better than the momentum acceptance of typical collider rings by about a factor of 2. The effects of the detector solenoids including their compensation elements are taken into account as well as synchrotron radiation in all magnets. The optics presented in this study is a step toward a full conceptual design for the collider. Finally, a number of issues have been identified for further study.« less

  19. Design of beam optics for the future circular collider e + e - collider rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oide, Katsunobu; Aiba, M.; Aumon, S.

    A beam optics scheme has been designed for the future circular collider- e +e - (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [P. Raimondi, D. Shatilov, and M. Zobov, arXiv:physics/0702033; P. Raimondi, M. Zobov, and D. Shatilov, in Proceedings of the 22nd Particle Accelerator Conference, PAC-2007, Albuquerque, NM (IEEE, New York, 2007), p. TUPAN037.] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system withoutmore » additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called “tapering” of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [A. Chancé et al., Proceedings of IPAC’16, 9–13 May 2016, Busan, Korea, TUPMW020 (2016).] as closely as possible. Sufficient transverse/longitudinal dynamic aperture (DA) has been obtained, including major dynamical effects, to assure an adequate beam lifetime in the presence of beamstrahlung and top-up injection. In particular, a momentum acceptance larger than ±2% has been obtained, which is better than the momentum acceptance of typical collider rings by about a factor of 2. The effects of the detector solenoids including their compensation elements are taken into account as well as synchrotron radiation in all magnets. The optics presented in this study is a step toward a full conceptual design for the collider. Finally, a number of issues have been identified for further study.« less

  20. Design of beam optics for the future circular collider e+e- collider rings

    NASA Astrophysics Data System (ADS)

    Oide, K.; Aiba, M.; Aumon, S.; Benedikt, M.; Blondel, A.; Bogomyagkov, A.; Boscolo, M.; Burkhardt, H.; Cai, Y.; Doblhammer, A.; Haerer, B.; Holzer, B.; Jowett, J. M.; Koop, I.; Koratzinos, M.; Levichev, E.; Medina, L.; Ohmi, K.; Papaphilippou, Y.; Piminov, P.; Shatilov, D.; Sinyatkin, S.; Sullivan, M.; Wenninger, J.; Wienands, U.; Zhou, D.; Zimmermann, F.

    2016-11-01

    A beam optics scheme has been designed for the future circular collider-e+e- (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [P. Raimondi, D. Shatilov, and M. Zobov, arXiv:physics/0702033; P. Raimondi, M. Zobov, and D. Shatilov, in Proceedings of the 22nd Particle Accelerator Conference, PAC-2007, Albuquerque, NM (IEEE, New York, 2007), p. TUPAN037.] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system without additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called "tapering" of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [A. Chancé et al., Proceedings of IPAC'16, 9-13 May 2016, Busan, Korea, TUPMW020 (2016).] as closely as possible. Sufficient transverse/longitudinal dynamic aperture (DA) has been obtained, including major dynamical effects, to assure an adequate beam lifetime in the presence of beamstrahlung and top-up injection. In particular, a momentum acceptance larger than ±2 % has been obtained, which is better than the momentum acceptance of typical collider rings by about a factor of 2. The effects of the detector solenoids including their compensation elements are taken into account as well as synchrotron radiation in all magnets. The optics presented in this paper is a step toward a full conceptual design for the collider. A number of issues have been identified for further study.

  1. Hadron Collider Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Incandela, J.R.

    2000-03-07

    Experiments are being prepared at the Fermilab Tevatron and the CERN Large Hadron Collider that promise to deliver extraordinary insights into the nature of spontaneous symmetry breaking, and the role of supersymmetry in the universe. This article reviews the goals, challenges, and designs of these experiments. The first hadron collider, the ISR at CERN, has to overcome two initial obstacles. The first was low luminosity, which steadily improved over time. The second was the broad angular spread of interesting events. In this regard Maurice Jacob noted (1): The answer is ... sophisticated detectors covering at least the whole central regionmore » (45{degree} {le} {theta} {le} 135{degree}) and full azimuth. This statement, while obvious today, reflects the major revelation of the ISR period that hadrons have partonic substructure. The result was an unexpectedly strong hadronic yield at large transverse momentum (p{sub T}). Partly because of this, the ISR missed the discovery of the J/{psi} and later missed the {Upsilon}. The ISR era was therefore somewhat less auspicious than it might have been. It did however make important contributions in areas such as jet production and charm excitation and it paved the way for the SPS collider, also at CERN.« less

  2. RPC based 5D tracking concept for high multiplicity tracking trigger

    NASA Astrophysics Data System (ADS)

    Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Distante, L.; Liberti, B.; Paolozzi, L.; Pastori, E.; Santonico, R.

    2017-01-01

    The recently approved High Luminosity LHC project (HL-LHC) and the future colliders proposals present a challenging experimental scenario, dominated by high pileup, radiation background and a bunch crossing time possibly shorter than 5 ns. This holds as well for muon systems, where RPCs can play a fundamental role in the design of the future experiments. The RPCs, thanks to their high space-time granularity, allows a sparse representation of the particle hits, in a very large parametric space containing, in addition to 3D spatial localization, also the pulse time and width associated to the avalanche charge. This 5D representation of the hits can be exploited to improve the performance of complex detectors such as muon systems and increase the discovery potential of a future experiment, by allowing a better track pileup rejection and sharper momentum resolution, an effective measurement of the particle velocity, to tag and trigger the non-ultrarelativistic particles, and the detection local multiple track events in close proximity without ambiguities. Moreover, due to the fast response, typically for RPCs of the order of a few ns, this information can be provided promptly to the lowest level trigger. We will discus theoretically and experimentally the principles and performance of this original method.

  3. Detectors for Linear Colliders: Detector design for a Future Electron-Positron Collider (4/4)

    ScienceCinema

    Thomson, Mark

    2018-05-21

    In this lecture I will discuss the issues related to the overall design and optimization of a detector for ILC and CLIC energies. I will concentrate on the two main detector concepts which are being developed in the context of the ILC. Here there has been much recent progress in developing realistic detector models and in understanding the physics performance of the overall detector concept. In addition, I will discuss the how the differences in the detector requirements for the ILC and CLIC impact the overall detector design.

  4. Determination of the top quark mass circa 2013: methods, subtleties, perspectives

    NASA Astrophysics Data System (ADS)

    Juste, Aurelio; Mantry, Sonny; Mitov, Alexander; Penin, Alexander; Skands, Peter; Varnes, Erich; Vos, Marcel; Wimpenny, Stephen

    2014-10-01

    We present an up-to-date overview of the problem of top quark mass determination. We assess the need for precision in the top mass extraction in the LHC era together with the main theoretical and experimental issues arising in precision top mass determination. We collect and document existing results on top mass determination at hadron colliders and map the prospects for future precision top mass determination at e+e- colliders. We present a collection of estimates for the ultimate precision of various methods for top quark mass extraction at the LHC.

  5. Holographic twin Higgs model.

    PubMed

    Geller, Michael; Telem, Ofri

    2015-05-15

    We present the first realization of a "twin Higgs" model as a holographic composite Higgs model. Uniquely among composite Higgs models, the Higgs potential is protected by a new standard model (SM) singlet elementary "mirror" sector at the sigma model scale f and not by the composite states at m_{KK}, naturally allowing for m_{KK} beyond the LHC reach. As a result, naturalness in our model cannot be constrained by the LHC, but may be probed by precision Higgs measurements at future lepton colliders, and by direct searches for Kaluza-Klein excitations at a 100 TeV collider.

  6. Holographic Twin Higgs Model

    NASA Astrophysics Data System (ADS)

    Geller, Michael; Telem, Ofri

    2015-05-01

    We present the first realization of a "twin Higgs" model as a holographic composite Higgs model. Uniquely among composite Higgs models, the Higgs potential is protected by a new standard model (SM) singlet elementary "mirror" sector at the sigma model scale f and not by the composite states at mKK , naturally allowing for mKK beyond the LHC reach. As a result, naturalness in our model cannot be constrained by the LHC, but may be probed by precision Higgs measurements at future lepton colliders, and by direct searches for Kaluza-Klein excitations at a 100 TeV collider.

  7. Heavy-ion physics with the ALICE experiment at the CERN Large Hadron Collider.

    PubMed

    Schukraft, J

    2012-02-28

    After close to 20 years of preparation, the dedicated heavy-ion experiment A Large Ion Collider Experiment (ALICE) took first data at the CERN Large Hadron Collider (LHC) accelerator with proton collisions at the end of 2009 and with lead nuclei at the end of 2010. After a short introduction into the physics of ultra-relativistic heavy-ion collisions, this article recalls the main design choices made for the detector and summarizes the initial operation and performance of ALICE. Physics results from this first year of operation concentrate on characterizing the global properties of typical, average collisions, both in proton-proton (pp) and nucleus-nucleus reactions, in the new energy regime of the LHC. The pp results differ, to a varying degree, from most quantum chromodynamics-inspired phenomenological models and provide the input needed to fine tune their parameters. First results from Pb-Pb are broadly consistent with expectations based on lower energy data, indicating that high-density matter created at the LHC, while much hotter and larger, still behaves like a very strongly interacting, almost perfect liquid.

  8. Testing the scalar sector of the twin Higgs model at colliders

    DOE PAGES

    Chacko, Zackaria; Kilic, Can; Najjari, Saereh; ...

    2018-03-22

    We consider Mirror Twin Higgs models in which the breaking of the global symmetry is realized linearly. In this scenario, the radial mode in the Higgs potential is present in the spectrum, and constitutes a second portal between the twin and SM sectors. We show that a study of the properties of this particle at colliders, when combined with precision measurements of the light Higgs, can be used to overdetermine the form of the scalar potential, thereby confirming that it possesses an enhanced global symmetry as dictated by the Twin Higgs mechanism. We find that, although the reach of themore » LHC for this state is limited, future linear colliders will be able to explore a significant part of the preferred parameter space, allowing the possibility of directly testing the Twin Higgs framework.« less

  9. Testing the scalar sector of the twin Higgs model at colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacko, Zackaria; Kilic, Can; Najjari, Saereh

    We consider Mirror Twin Higgs models in which the breaking of the global symmetry is realized linearly. In this scenario, the radial mode in the Higgs potential is present in the spectrum, and constitutes a second portal between the twin and SM sectors. We show that a study of the properties of this particle at colliders, when combined with precision measurements of the light Higgs, can be used to overdetermine the form of the scalar potential, thereby confirming that it possesses an enhanced global symmetry as dictated by the Twin Higgs mechanism. We find that, although the reach of themore » LHC for this state is limited, future linear colliders will be able to explore a significant part of the preferred parameter space, allowing the possibility of directly testing the Twin Higgs framework.« less

  10. Accomplishments of the heavy electron particle accelerator program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, D.; Stratakis, D.; Palmer, M.

    The Muon Accelerator Program (MAP) has completed a four-year study on the feasibility of muon colliders and on using stored muon beams for neutrinos. That study was broadly successful in its goals, establishing the feasibility of heavy lepton colliders (HLCs) from the 125 GeV Higgs Factory to more than 10 TeV, as well as exploring using a μ storage ring (MSR) for neutrinos, and establishing that MSRs could provide factory-level intensities of νe (more » $$\\bar{ve}$$) and $$\\bar{vμ}$$ (νμ) beams. The key components of the collider and neutrino factory systems were identified. Feasible designs and detailed simulations of all of these components have been obtained, including some initial hardware component tests, setting the stage for future implementation where resources are available and the precise physics goals become apparent.« less

  11. Muon Sources for Particle Physics - Accomplishments of the Muon Accelerator Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, D.; Stratakis, D.; Palmer, M.

    The Muon Accelerator Program (MAP) completed a four-year study on the feasibility of muon colliders and on using stored muon beams for neutrinos. That study was broadly successful in its goals, establishing the feasibility of lepton colliders from the 125 GeV Higgs Factory to more than 10 TeV, as well as exploring using a μ storage ring (MSR) for neutrinos, and establishing that MSRs could provide factory-level intensities of νe (ν more » $$\\bar{e}$$) and ν $$\\bar{μ}$$) (ν μ) beams. The key components of the collider and neutrino factory systems were identified. Feasible designs and detailed simulations of all of these components were obtained, including some initial hardware component tests, setting the stage for future implementation where resources are available and clearly associated physics goals become apparent« less

  12. PHENIX Measurements of Heavy Flavor in Small Systems

    NASA Astrophysics Data System (ADS)

    Lebedev, Alexandre

    2018-01-01

    The study of heavy flavor production in proton-nucleus and nucleus-nucleus collisions is a sensitive probe of the hot and dense matter created in such collisions. Installation of silicon vertex detectors in the PHENIX experiment, and increased performance of the BNL RHIC collider allowed collection of large amount of data on heavy flavor production in small colliding systems. In this talk we will present recent PHENIX results on open heavy flavor and quarkonia production in p+p, p+A, d+A, and He3+A colliding systems in a broad rapidity range, and discuss how these measurements help us to better understand all stages of nuclear collisions at high energy.

  13. BM@N and MPD experiments at NICA

    NASA Astrophysics Data System (ADS)

    Kekelidze, Vladimir; Kolesnikov, Vadim; Sorin, Alexander

    2018-02-01

    The project NICA (Nuclotron-based Ion Collider fAcility) aims to study hot and baryon rich QCD matter in heavy ion collisions in the energy range = 4 - 11 GeV. The rich heavy-ion physics program will be performed at two experiments, BM@N (Baryonic Matter at Nuclotron) at beams extracted from the Nuclotron, and at MPD (Multi-Purpose Detector) at the NICA collider. This program covers a variety of phenomena in strongly interacting matter of the highest baryonic density, which includes study of collective effects, production of hyperon and hypernuclei, in-medium modification of meson properties, and event-by-event fluctuations.

  14. Lepton Flavor Violation Induced by a Neutral Scalar at Future Lepton Colliders

    NASA Astrophysics Data System (ADS)

    Dev, P. S. Bhupal; Mohapatra, Rabindra N.; Zhang, Yongchao

    2018-06-01

    Many new physics scenarios beyond standard model often necessitate the existence of a (light) neutral scalar H , which might couple to the charged leptons in a flavor violating way, while evading all existing constraints. We show that such scalars could be effectively produced at future lepton colliders, either on shell or off shell depending on their mass, and induce lepton flavor violating (LFV) signals, i.e., e+e-→ℓα±ℓβ∓(+H ) with α ≠β . We find that a large parameter space of the scalar mass and the LFV couplings can be probed well beyond the current low-energy constraints in the lepton sector. In particular, a scalar-loop induced explanation of the long-standing muon g -2 anomaly can be directly tested in the on-shell mode.

  15. Heavy quarkonium production at low P⊥ in nonrelativistic QCD with soft gluon resummation

    NASA Astrophysics Data System (ADS)

    Sun, Peng; Yuan, C.-P.; Yuan, Feng

    2013-09-01

    We extend the nonrelativistic QCD (NRQCD) prediction for the production of heavy quarkonium with low transverse momentum in hadronic collisions by taking into account effects from all-order soft gluon resummation. Following the Collins-Soper-Sterman formalism, we resum the most singular terms in the partonic subprocesses. The theoretical predictions of J/ψ and Υ productions are compared to the experimental data from the fixed target experiments (E866) and the collider experiments (RHIC, Tevatron, LHC). The associated nonperturbative Sudakov form factor for the gluon distributions is found to be different from the previous assumption of rescaling the quark form factor by the ratio of color factors. This conclusion should be further checked by future experiments on Higgs boson and/or diphoton production in pp collisions. We also comment on the implication of our results on determining the color-octet matrix elements associated with the J/ψ and Υ productions in the NRQCD factorization formalism.

  16. Two-Layer 16 Tesla Cosθ Dipole Design for the FCC

    DOE PAGES

    Holik, Eddie Frank; Ambrosio, Giorgio; Apollinari, G.

    2018-02-13

    The Future Circular Collider or FCC is a study aimed at exploring the possibility to reach 100 TeV total collision energy which would require 16 tesla dipoles. Upon the conclusion of the High Luminosity Upgrade, the US LHC Accelerator Upgrade Pro-ject in collaboration with CERN will have extensive Nb3Sn magnet fabrication experience. This experience includes robust Nb3Sn conductor and insulation scheming, 2-layer cos2θ coil fabrication, and bladder-and-key structure and assembly. By making im-provements and modification to existing technology the feasibility of a two-layer 16 tesla dipole is investigated. Preliminary designs indicate that fields up to 16.6 tesla are feasible withmore » conductor grading while satisfying the HE-LHC and FCC specifications. Key challenges include accommodating high-aspect ratio conductor, narrow wedge design, Nb3Sn conductor grading, and especially quench protection of a 16 tesla device.« less

  17. Two-Layer 16 T Cos θ Dipole Design for the FCC

    DOE PAGES

    Holik, Eddie Frank; Ambrosio, Giorgio; Apollinari, Giorgio

    2018-02-22

    Here, the Future Circular Collider or FCC is a study aimed at exploring the possibility to reach 100 TeV total collision energy which would require 16 tesla dipoles. Upon the conclusion of the High Luminosity Upgrade, the US LHC Accelerator Upgrade Pro-ject in collaboration with CERN will have extensive Nb 3Sn magnet fabrication experience. This experience includes robust Nb 3Sn conductor and insulation scheming, 2-layer cos2θ coil fabrication, and bladder-and-key structure and assembly. By making im-provements and modification to existing technology the feasibility of a two-layer 16 tesla dipole is investigated. Preliminary designs indicate that fields up to 16.6 teslamore » are feasible with conductor grading while satisfying the HE-LHC and FCC specifications. Key challenges include accommodating high-aspect ratio conductor, narrow wedge design, Nb 3Sn conductor grading, and especially quench protection of a 16 tesla device.« less

  18. Two-Layer 16 T Cos θ Dipole Design for the FCC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holik, Eddie Frank; Ambrosio, Giorgio; Apollinari, Giorgio

    Here, the Future Circular Collider or FCC is a study aimed at exploring the possibility to reach 100 TeV total collision energy which would require 16 tesla dipoles. Upon the conclusion of the High Luminosity Upgrade, the US LHC Accelerator Upgrade Pro-ject in collaboration with CERN will have extensive Nb 3Sn magnet fabrication experience. This experience includes robust Nb 3Sn conductor and insulation scheming, 2-layer cos2θ coil fabrication, and bladder-and-key structure and assembly. By making im-provements and modification to existing technology the feasibility of a two-layer 16 tesla dipole is investigated. Preliminary designs indicate that fields up to 16.6 teslamore » are feasible with conductor grading while satisfying the HE-LHC and FCC specifications. Key challenges include accommodating high-aspect ratio conductor, narrow wedge design, Nb 3Sn conductor grading, and especially quench protection of a 16 tesla device.« less

  19. Computing at h1 - Experience and Future

    NASA Astrophysics Data System (ADS)

    Eckerlin, G.; Gerhards, R.; Kleinwort, C.; KrÜNer-Marquis, U.; Egli, S.; Niebergall, F.

    The H1 experiment has now been successfully operating at the electron proton collider HERA at DESY for three years. During this time the computing environment has gradually shifted from a mainframe oriented environment to the distributed server/client Unix world. This transition is now almost complete. Computing needs are largely determined by the present amount of 1.5 TB of reconstructed data per year (1994), corresponding to 1.2 × 107 accepted events. All data are centrally available at DESY. In addition to data analysis, which is done in all collaborating institutes, most of the centrally organized Monte Carlo production is performed outside of DESY. New software tools to cope with offline computing needs include CENTIPEDE, a tool for the use of distributed batch and interactive resources for Monte Carlo production, and H1 UNIX, a software package for automatic updates of H1 software on all UNIX platforms.

  20. Impressions of the Meson Spectrum: Hybrids & Exotics, present and future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennington, Michael R.

    2016-03-25

    It has long been expected that the spectrum of hadrons in QCD would be far richer and extensive than experiment has so far revealed. While there have been experimental hints of this richness for some time, it is really only in the last few years that dramatic progress has been seen in the exploration both experimentally and in calculations on the lattice. Precision studies enabled by new technology both with detectors and high performance computations are converging on an understanding of the spectrum in strong coupling QCD. These methodologies are laying the foundation for a decade of potential discovery thatmore » electro and photoproduction experiments at Jefferson Lab, which when combined with key results on B and charmonium decays from both e+e? and pp colliders, should turn mere impressions of the light meson spectrum into a high definition picture.« less

  1. Test beam studies of possibilities to separate particles with gamma factors above 103 with straw based Transition Radiation Detector

    NASA Astrophysics Data System (ADS)

    Belyaev, N.; Cherry, M. L.; Doronin, S. A.; Filippov, K.; Fusco, P.; Konovalov, S.; Krasnopevtsev, D.; Kramarenko, V.; Loparco, F.; Mazziotta, M. N.; Ponomarenko, D.; Pyatiizbyantseva, D.; Radomskii, R.; Rembser, C.; Romaniouk, A.; Savchenko, A.; Shulga, E.; Smirnov, S.; Smirnov, Yu; Sosnovtsev, V.; Spinelli, P.; Teterin, P.; Tikhomirov, V.; Vorobev, K.; Zhukov, K.

    2017-12-01

    Measurements of hadron production in the TeV energy range are one of the tasks of the future studies at the Large Hadron Collider (LHC). The main goal of these experiments is a study of the fundamental QCD processes at this energy range, which is very important not only for probing of the Standard Model but also for ultrahigh-energy cosmic particle physics. One of the key elements of these experiments measurements are hadron identification. The only detector technology which has a potential ability to separate hadrons in this energy range is Transition Radiation Detector (TRD) technology. TRD prototype based on straw proportional chambers combined with a specially assembled radiator has been tested at the CERN SPS accelerator beam. The test beam results and comparison with detailed Monte Carlo simulations are presented here.

  2. Beam Induced Hydrodynamic Tunneling in the Future Circular Collider Components

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.

    2016-08-01

    A future circular collider (FCC) has been proposed as a post-Large Hadron Collider accelerator, to explore particle physics in unprecedented energy ranges. The FCC is a circular collider in a tunnel with a circumference of 80-100 km. The FCC study puts an emphasis on proton-proton high-energy and electron-positron high-intensity frontier machines. A proton-electron interaction scenario is also examined. According to the nominal FCC parameters, each of the 50 TeV proton beams will carry an amount of 8.5 GJ energy that is equivalent to the kinetic energy of an Airbus A380 (560 t) at a typical speed of 850 km /h . Safety of operation with such extremely energetic beams is an important issue, as off-nominal beam loss can cause serious damage to the accelerator and detector components with a severe impact on the accelerator environment. In order to estimate the consequences of an accident with the full beam accidently deflected into equipment, we have carried out numerical simulations of interaction of a FCC beam with a solid copper target using an energy-deposition code (fluka) and a 2D hydrodynamic code (big2) iteratively. These simulations show that, although the penetration length of a single FCC proton and its shower in solid copper is about 1.5 m, the full FCC beam will penetrate up to about 350 m into the target because of the "hydrodynamic tunneling." These simulations also show that a significant part of the target is converted into high-energy-density matter. We also discuss this interesting aspect of this study.

  3. Physics Beyond the Standard Model: Exotic Leptons and Black Holes at Future Colliders

    NASA Astrophysics Data System (ADS)

    Harris, Christopher M.

    2005-02-01

    The Standard Model of particle physics has been remarkably successful in describing present experimental results. However, it is assumed to be only a low-energy effective theory which will break down at higher energy scales, theoretically motivated to be around 1 TeV. There are a variety of proposed models of new physics beyond the Standard Model, most notably supersymmetric and extra dimension models. New charged and neutral heavy leptons are a feature of a number of theories of new physics, including the `intermediate scale' class of supersymmetric models. Using a time-of-flight technique to detect the charged leptons at the Large Hadron Collider, the discovery range (in the particular scenario studied in the first part of this thesis) is found to extend up to masses of 950 GeV. Extra dimension models, particularly those with large extra dimensions, allow the possible experimental production of black holes. The remainder of the thesis describes some theoretical results and computational tools necessary to model the production and decay of these miniature black holes at future particle colliders. The grey-body factors which describe the Hawking radiation emitted by higher-dimensional black holes are calculated numerically for the first time and then incorporated in a Monte Carlo black hole event generator; this can be used to model black hole production and decay at next-generation colliders. It is hoped that this generator will allow more detailed examination of black hole signatures and help to devise a method for extracting the number of extra dimensions present in nature.

  4. The search for the pair production of second-generation scalar leptoquarks and measurements of the differential cross sections of the W boson produced in association with jets with the CMS detector at the LHC

    NASA Astrophysics Data System (ADS)

    Baumgartel, Darin C.

    Since the formulation of the Standard Model of particle physics, numerous experiments have sought to observe the signatures of the subatomic particles by examining the outcomes of charged particle collisions. Over time, advances in detector technology and scientific computing have allowed for unprecedented precision measurements of Standard Model phenomena and particle properties. Although the Standard Model has displayed remarkable predictive power, extensions to the Standard Model have been formulated to account for unexplained phenomena, and these extensions often infer the existence of additional subatomic particles. Consequently, experiments at particle colliders often endeavor to search for signatures of physics beyond the Standard Model. These searches and measurements are often complementary pursuits, as searches are often limited by the precision of estimations of the Standard Model backgrounds. At the forefront of present-day collider experiments is the Large Hadron Collider at CERN, which delivers proton-proton collisions with unprecedented energy and luminosity. Collisions are recorded with detectors located at interaction points along the ring of the Large Hadron Collider. The CMS detector is one of two general-purpose detectors at the Large Hadron Collider, and the high-precision detection of particles from collision events in the CMS detector make the CMS detector a powerful tool for both Standard-Model measurements and searches for new physics. The Standard Model is characterized by three generation of quarks and leptons. This correspondence between the generations of quarks and leptons is necessary to allow for the renormalizability of the Standard Model, but it is not an inherent property of the Standard Model. Motivated by this compelling symmetry, many theories and models propose the existence of leptoquark bosons which mediate transitions between quarks and leptons. Experimental constraints indicate that leptoquarks would couple to a single generation, and this thesis describes searches for leptoquarks produced in pairs and decaying to final states containing either two muons and two jets, or one muon, one muon-neutrino, and two jets. Searches are conducted with collision data at center-of-mass energies of both 7 TeV and 8 TeV. No compelling evidence for the existence of leptoquarks is found, and upper limits on the leptoquark mass and cross section are placed at the 95% confidence level. These limits are the most stringent to date, and are several times larger than limits placed previously at hadron collider experiments. While the pair production of massive leptoquark bosons yields final states which have strong kinematic differences from the Standard Model processes, the ability to exploit these differences is limited by the ability to accurately model the backgrounds. The most notable of these backgrounds is the production of a W boson in association with one or more jets. Since the W+jets process has a very large cross section and a final state containing missing energy, its contribution to the total Standard Model background is both nominally large and more difficult to discriminate against than backgrounds with only visible final state objects. Furthermore, estimates of this background are not easily improved by comparisons with data in control regions, and simulations of the background are often limited to leading-order predictions. To improve the understanding and modeling of this background for future endeavors, this thesis also presents measurements of the W+jets process differentially as a function of several variables, including the jet multiplicity, the individual jet transverse momenta and pseudorapidities, the angular separation between the jets and the muon, and the scalar sum of the transverse momenta of all jets. The agreement of these measurements with respect to predictions from event leading-order generators and next-to-leading-order calculations is assessed.

  5. Colliding nuclei to colliding galaxies: Illustrations using a simple colliding liquid-drop apparatus

    NASA Astrophysics Data System (ADS)

    Becchetti, F. D.; Mack, S. L.; Robinson, W. R.; Ojaruega, M.

    2015-10-01

    A simple apparatus suitable for observing the collisions between drops of fluids of various properties is described. Typical results are shown for experiments performed by undergraduate students using various types of fluids. The collisions take place under free-fall (zero-g) conditions, with analysis employing digital video. Two specific types of collisions are examined in detail, head-on collisions and peripheral, grazing collisions. The collisions for certain fluids illustrate many types of nuclear collisions and provide useful insight into these processes, including both fusion and non-fusion outcomes, often with the formation of exotic shapes or emission of secondary fragments. Collisions of other liquids show a more chaotic behavior, often resembling galactic collisions. As expected, the Weber number associated with a specific collision impact parameter is found to be the important quantity in determining the initial outcome of these colliding systems. The features observed resemble those reported by others using more elaborate experimental techniques.

  6. Acceleration of polarized protons and deuterons in the ion collider ring of JLEIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondratenko, A.; Kondratenko, M.; Filatov, Yu. N.

    2017-07-01

    The figure-8-shaped ion collider ring of Jefferson Lab Electron-Ion Collider (JLEIC) is transparent to the spin. It allows one to preserve proton and deuteron polarizations using weak stabilizing solenoids when accelerating the beam up to 100 GeV/c. When the stabilizing solenoids are introduced into the collider's lattice, the particle spins precess about a spin field, which consists of the field induced by the stabilizing solenoids and the zero-integer spin resonance strength. During acceleration of the beam, the induced spin field is maintained constant while the resonance strength experiences significant changes in the regions of "interference peaks". The beam polarization dependsmore » on the field ramp rate of the arc magnets. Its component along the spin field is preserved if acceleration is adiabatic. We present the results of our theoretical analysis and numerical modeling of the spin dynamics during acceleration of protons and deuterons in the JLEIC ion collider ring. We demonstrate high stability of the deuteron polarization in figure-8 accelerators. We analyze a change in the beam polarization when crossing the transition energy.« less

  7. Phenomenology of flavorful composite vector bosons in light of B anomalies

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Shinya; Nishiwaki, Kenji; Watanabe, Ryoutaro

    2017-08-01

    We analyze the flavor structure of composite vector bosons arising in a model of vectorlike technicolor — often called hypercolor (HC) — with eight flavors that form a one-family content of HC fermions. Dynamics of the composite vector bosons, referred to as HC ρ in this paper, are formulated together with HC pions by the hidden local symmetry (HLS), in a way analogous to QCD vector mesons. Then coupling properties to the standard model (SM) fermions, which respect the HLS gauge symmetry, are described in a way that couplings of the HC ρs to the left-handed SM quarks and leptons are given by a well-defined setup as taking the flavor mixing structures into account. Under the present scenario, we discuss significant bounds on the model from electroweak precision tests, flavor physics, and collider physics. We also try to address B anomalies in processes such as B → K (∗) μ + μ - and B\\to {D}^{(\\ast )}τ\\overline{ν} , recently reported by LHCb, Belle, (ATLAS, and CMS in part). Then we find that the present model can account for the anomaly in B → K (∗) μ + μ - consistently with the other constraints while it predicts no significant deviations in B\\to {D}^{(\\ast )}τ\\overline{ν} ν from the SM, which can be examined in the future Belle II experiment. The former is archived with the form C 9 = - C 10 of the Wilson coefficients for effective operators of b → sμ + μ -, which has been favored by the recent experimental data. We also investigate current and future experimental limits at the Large Hadron Collider (LHC) and see that possible collider signals come from dijet and ditau, or dimuon resonant searches for the present scenario with TeV mass range. To conclude, the present b → sμ + μ - anomaly is likely to imply discovery of new vector bosons in the ditau or dimuon channel in the context of the HC ρ model. Our model can be considered as a UV completion of conventional U(1)' models.

  8. List of Posters

    NASA Astrophysics Data System (ADS)

    List of Posters: Dark matter annihilation in the Galactic galo, by Dokuchaev Vyacheslav, et al. NEMO developments towards km3 telescope in the Mediterranean Sea. The NEMO project. Neutrino Mediterranean Observatory By Antonio Capone, NEMO Collaboration. Alignment as a result from QCD jet production or new still unknown physics at LHC? By Alexander Snigirev. Small-scale fluctuations of extensive air showers: systematics in energy and muon density estimation By Grigory Rubtsov. SHINIE: Simulation of High-Energy Neutrino Interacting with the Earth By Lin Guey-Lin, et al.. Thermodynamics of rotating solutions in n+1 dimensional Einstein - Maxwell -dilation gravity By Ahmad Sheykhi, et al.. Supernova neutrino physics with future large Cherenkov detectors By Daniele Montanino. Crossing of the Cosmological Constant Barrier in the string Inspired Dark Energy Model By S. Yu. Vernov. Calculations of radio signals produced by ultra-high and extremely high energy neutrino induced cascades in Antarctic ice By D. Besson, et al.. Inflation, Cosmic Acceleration and string Gravity By Ischwaree Neupane. Neutrino Physics: Charm and J/Psi production in the atmosphere By Liudmila Volkova. Three generation flavor transitions and decays of supernova relic neutrinos By Daniele Montanino. Lattice calculations & computational quantum field theory: Sonification of Quark and Baryon Spectra By Markum Harald, et al.. Generalized Kramers-Wannier Duality for spin systems with non-commutative symmetry By V. M. Buchstaber, et al.. Heavy ion collisions & quark matter: Nuclear matter jets and multifragmentation By Danut Argintaru, et al.. QCD hard interactions: The qT-spectrum of the Higgs and Slepton-pairs at the LHC By Guiseppe Bozzi. QCD soft interactions: Nonperturbative effects in Single-Spin Asymmetries: Instantons and TMD-parton distributions By Igor Cherednikov, et al.. Gluon dominance model and high multiplicity By Elena Kokoulina. Resonances in eta pi- pi- pi+ system By Dmitry Ryabchikov. Saturation effects in diffractive scattering at LHC By Oleg Selugin. A nonperturbative expansion method in QCD and R-related quantities By Igor Solovtsov. Z-scaling and high multiplicity particle Production in bar pp/pp & AA collisions at Tevatron and RHIC By Mikhail Tokarev. Scaling behaviour of the reactionsdd - > p↑ /3H and pd - > pd with pT at energy I-2 GeV By Yuri Uzikov. [ADS Note: Title formula can not be rendered correctly in ASCII.] CP violation, rare decays, CKM: Precision Measurements of the Mass of the Top Quark at CDF (Precision Top Mass Measurements at CDF) By Daniel Whiteson. Measurement of the Bs Oscillation at CDF By Luciano Ristori. The Bs mixing phase at LHCb By J. J. van Hunen. ATLAS preparations for precise measurements of semileptonic rare B decays By K. Toms. Hadron spectroscopy & exotics: Searches for radial excited states of charmonium in experiments using cooled antiproton beams By M. Yu. Barabanov. Retardation effects in the rotating string model By Fabien Buisseret and Claude Semay. Final results from VEPP-2M (CMD-2 and SND) By G. V. Fedotovich. Heavy Quark Physics: Prospects for B physics measurements using the CMS detector at the LHC By Andreev Valery. Heavy flavour production at HERA-B By Andrey Bogatyrev. B-Meson subleading form factors in the Heavy Quark Effective Theory (HQET) By Frederic Jugeau. Beyond the Standard Model: Monopole Decay in a Variable External Field By Andrey Zayakin. Two-Loop matching coefficients for the strong coupling in the MSSM By Mihaila Luminita. Test of lepton flavour violation at LHC By Hidaka Keisho. Looking at New Physics through 4 jets and no ET By Maity Manas. Are Preons Dyons? Naturalness of Three Generations By Das Chitta Ranjan. SUSY Dark Matter at Linear Collider By Sezen Sekmen, Mehmet Zeyrek. MSSM light Higgs boson scenario and its test at hadron colliders By Alexander Belyaev. Antiscalar Approach to Gravity and Standard Model By E. Mychelkin. GRID distributed analysis in high energy physics: PAX: Physics Analysis Design and Application on the GRID By Martin Erdmann, et al.. D0 and the (SAM) GRID: An ongoing success story DO Collaboration. R & D for future accelerators, detectors & new facilities: High Level Trigger Selection in the CMS experiment By Monica Vazquez Acosta. R&D for a Helical Undulator Based Positron Source for the International Linear Collider By Phil Allport. Muon Detection, Reconstruction and Identification in CMS By Ivan Belotelov. Acoustic Measurements for EeV Neutrino Detection at the South Pole By Sebastian Böser. The PSI source of ultracold neutrons (UCN) By Manfred Daum. The LHCb Pixel Hybrid Photon Detectors (Characterization of Nybrig Photon Detectors for the LHCb experiment) By Neville Harnew, et al.. Semi-Insulating GaN-radiation hard semiconductor for ionizing radiation detectors By Juozas Vaitkus. Monitored Drift Tube end-cap spectrometer for the ATLAS detector By Dmitri Kotchetkov. Development of Focusing Aerogel RICH By Sergey Kononov, et al.. Electromagnetic Calibration of the Hadronic Tile Calorimeter Modules of the ATLAS detector at the LHC By Iouri Koultchitski. A Study of Proximity focusing RICH with Multiple Refractive Index Aerogel Radiator By Peter Krizan. The Heavy Flavor Tracker (HFT) for STAR By Vasil Kuspil. ATLAS Liquid Argon Calorimeter ATLAS Collaboration: Field Emission in HEP Colliders Initiated by a Relativistic Positively Charged Bunch of Particles By Boris Levchenko. MICE: the international Muon Ionization Cooling Experiment By Kenneth Long. In situ calibration of the CMS electromagnetic calorimeter By Augustino Lorenzo. The Transition Radiation Tracker for the ATLAS experiment at the LHC By Victor Maleev. Resonance depolarization and Compton-Backscattering technique for beam energy measurement of VEPP-4M collider By Ivan Nikolaev, et al.. CCD - based Pixel Detectors by LCFI By Andrei Nomerotski. The SiD Detector Concept for the International Linear Collider By Dmitry Onoprienko. CMS Hadron Calorimetry, Calibration, and Jets/Missing Transverse Energy Measurements By Sergey Petrushanko. The CMS Silicon Tracker By Oliver Pooth. Drift Chamber for CMD-3 detector By Alexandr Popov, et al.. Vacuum Phototriods for the CMS ECAL Endcap crystal calorimeter By Vladimir Postoev. CMS Silicon Tracker: Track Reconstruction and Alignment By Frank-Peter Schilling. eRHIC - A precision electron-proton/ion collider facility at Brookhaven National Laboratory By Bernd Surrow. Development of tracking detectors with industrially produced GEM foils By Bernd Surrow, et al.. A Linear Collider Facility with High Intensity e+e- beams (A high intensity e+e- Linear Collider Facility at low energy) By Andre Schoening. Construction of the BESIII detector for tau-charm physics By Yifang Wang. The HERMES Recoil Detector By Sergey Yashchenko. Simulation of MICE in G4 MICE MICE Experiment: The new DO Layer O silicon detector The DO trigger upgrade for RUNIIb The Do Collaboration. Operational experiences with the silicon detector at CDF By Jeannine Wagner. Mathematical aspects of QFT & string theory: Electron in superstrong Coulomb field By D. Gitman. Stability of a non-commutative Jackiw-Teitelboim gravity By Fresneda Rodrigo, et al.. 4d gravity localized on thick branes: the complete mass spectrum By Alfredo Herrera-Aguilar. On Emergence of Quantum Mechanics By L. V. Prokhorov.

  9. New Experiments with Antiprotons

    NASA Astrophysics Data System (ADS)

    Kaplan, D. M.

    2011-12-01

    Fermilab operates the world's most intense antiproton source. Recently proposed experiments can use those antiprotons either parasitically during Teva-tron Collider running or after the Tevatron Collider finishes in about 2011. For example, the annihilation of 8 GeV antiprotons might make the world's most intense source of tagged D0 mesons, and thus the best near-term opportunity to study charm mixing and search for new physics via its CP-violation signature. Other possible precision measurements include properties of the X(3872) and the charmonium system. An experiment using a Penning trap and an atom interferometer could make the world's first measurement of the gravitational force on antimatter. These and other potential measurements using antiprotons could yield a broad physics program at Fermilab in the post-Tevatron era.

  10. Colliding droplets: A short film presentation

    NASA Astrophysics Data System (ADS)

    Hendricks, C. D.

    1981-12-01

    A series of experiments were performed in which liquid droplets were caused to collide. Impact velocities to several meters per second and droplet diameters up to 600 micrometers were used. The impact parameters in the collisions vary from zero to greater than the sum of the droplet radii. Photographs of the collisions were taken with a high speed framing camera in order to study the impacts and subsequent behavior of the droplets.

  11. Neutrino Mass Generation at TeV Scale and New Physics Signatures from Charged Higgs at the LHC for Photon Initiated Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Kirtiman; Homi Bhabha National Institute, Mumbai; Jana, Sudip

    We consider the collider phenomenology of a simple extension of the Standard Model (SM), which consists of an EW isospinmore » $3/2$ scalar, $$\\Delta$$ and a pair of EW isospin $1$ vector like fermions, $$\\Sigma$$ and $$\\bar{\\Sigma}$$, responsible for generating tiny neutrino mass via the effective dimension seven operator. This scalar quadruplet with hypercharge Y = 3 has a plethora of implications at the collider experiments. Its signatures at TeV scale colliders are expected to be seen, if the quadruplet masses are not too far above the electroweak symmetry breaking scale. In this article, we study the phenomenology of multi-charged quadruplet scalars. In particular, we study the multi-lepton signatures at the Large Hadron Collider (LHC) experiment, arising from the production and decays of triply and doubly charged scalars. We studied Drell-Yan (DY) pair production as well as pair production of the charged scalars via photon-photon fusion. For doubly and triply charged scalars, photon fusion contributes significantly for large scalar masses. We also studied LHC constraints on the masses of doubly charged scalars in this model. We derive a lower mass limit of 725 GeV on doubly charged quadruplet scalar.« less

  12. Neutrino Mass Generation at TeV Scale and New Physics Signatures from Charged Higgs at the LHC for Photon Initiated Processes

    DOE PAGES

    Ghosh, Kirtiman; Homi Bhabha National Institute, Mumbai; Jana, Sudip; ...

    2018-03-29

    We consider the collider phenomenology of a simple extension of the Standard Model (SM), which consists of an EW isospinmore » $3/2$ scalar, $$\\Delta$$ and a pair of EW isospin $1$ vector like fermions, $$\\Sigma$$ and $$\\bar{\\Sigma}$$, responsible for generating tiny neutrino mass via the effective dimension seven operator. This scalar quadruplet with hypercharge Y = 3 has a plethora of implications at the collider experiments. Its signatures at TeV scale colliders are expected to be seen, if the quadruplet masses are not too far above the electroweak symmetry breaking scale. In this article, we study the phenomenology of multi-charged quadruplet scalars. In particular, we study the multi-lepton signatures at the Large Hadron Collider (LHC) experiment, arising from the production and decays of triply and doubly charged scalars. We studied Drell-Yan (DY) pair production as well as pair production of the charged scalars via photon-photon fusion. For doubly and triply charged scalars, photon fusion contributes significantly for large scalar masses. We also studied LHC constraints on the masses of doubly charged scalars in this model. We derive a lower mass limit of 725 GeV on doubly charged quadruplet scalar.« less

  13. PODIO: An Event-Data-Model Toolkit for High Energy Physics Experiments

    NASA Astrophysics Data System (ADS)

    Gaede, F.; Hegner, B.; Mato, P.

    2017-10-01

    PODIO is a C++ library that supports the automatic creation of event data models (EDMs) and efficient I/O code for HEP experiments. It is developed as a new EDM Toolkit for future particle physics experiments in the context of the AIDA2020 EU programme. Experience from LHC and the linear collider community shows that existing solutions partly suffer from overly complex data models with deep object-hierarchies or unfavorable I/O performance. The PODIO project was created in order to address these problems. PODIO is based on the idea of employing plain-old-data (POD) data structures wherever possible, while avoiding deep object-hierarchies and virtual inheritance. At the same time it provides the necessary high-level interface towards the developer physicist, such as the support for inter-object relations and automatic memory-management, as well as a Python interface. To simplify the creation of efficient data models PODIO employs code generation from a simple yaml-based markup language. In addition, it was developed with concurrency in mind in order to support the use of modern CPU features, for example giving basic support for vectorization techniques.

  14. Potential and challenges of the physics measurements with very forward detectors at linear colliders

    NASA Astrophysics Data System (ADS)

    Božović Jelisavčić, Ivanka; Kačarević, G.; Lukić, S.; Poss, S.; Sailer, A.; Smiljanić, I.; FCAL Collaboration

    2016-04-01

    The instrumentation of the very forward region of a detector at a future linear collider (ILC, CLIC) is briefly reviewed. The status of the FCAL R&D activity is given with emphasis on physics and technological challenges. The current status of studies on absolute luminosity measurement, luminosity spectrum reconstruction and high-energy electron identification with the forward calorimeters is given. The impact of FCAL measurements on physics studies is illustrated with an example of the σHWW ṡBR (H →μ+μ-) measurement at 1.4 TeV CLIC.

  15. Lattice design for the CEPC double ring scheme

    NASA Astrophysics Data System (ADS)

    Wang, Yiwei; Su, Feng; Bai, Sha; Zhang, Yuan; Bian, Tianjian; Wang, Dou; Yu, Chenghui; Gao, Jie

    2018-01-01

    A future Circular Electron Positron Collider (CEPC) has been proposed by China with the main goal of studying the Higgs boson. Its baseline design, chosen on the basis of its performance, is a double ring scheme; an alternative design is a partial double ring scheme which reduces the budget while maintaining an adequate performance. This paper will present the collider ring lattice design for the double ring scheme. The CEPC will also work as a W and a Z factory. For the W and Z modes, except in the RF region, compatible lattices were obtained by scaling down the magnet strength with energy.

  16. Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, J.R.; et al.

    This Report summarizes the proceedings of the 2015 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt with (I) new developments relevant for high precision Standard Model calculations, (II) the new PDF4LHC parton distributions, (III) issues in the theoretical description of the production of Standard Model Higgs bosons and how to relate experimental measurements, (IV) a host of phenomenological studies essential for comparing LHC data from Run I with theoretical predictions and projections for future measurements in Run II, and (V) new developments in Monte Carlo event generators.

  17. Heavy Higgs boson production at colliders in the singlet-triplet scotogenic dark matter model

    NASA Astrophysics Data System (ADS)

    Díaz, Marco Aurelio; Rojas, Nicolás; Urrutia-Quiroga, Sebastián; Valle, José W. F.

    2017-08-01

    We consider the possibility that the dark matter particle is a scalar WIMP messenger associated to neutrino mass generation, made stable by the same symmetry responsible for the radiative origin of neutrino mass. We focus on some of the implications of this proposal as realized within the singlet-triplet scotogenic dark matter model. We identify parameter sets consistent both with neutrino mass and the observed dark matter abundance. Finally we characterize the expected phenomenological profile of heavy Higgs boson physics at the LHC as well as at future linear Colliders.

  18. Unavoidable trapped mode in the interaction region of colliding beams

    DOE PAGES

    Novokhatski, Alexander; Sullivan, Michael; Belli, Eleonora; ...

    2017-11-22

    Here, we discuss the nature of the electromagnetic fields excited by the beams in the beam pipe of an interaction region. In trying to find an optimum geometry for this region with a minimum of electromagnetic wave excitation, we have discovered one mode, which remains even in a very smooth geometry. This mode has a longitudinal electrical component and can be easily excited by the beam. By analyzing the structure of this mode we have found a way to absorb this mode. The work was done in connection with a proposal for a future electron-positron collider.

  19. Signals from flavor changing scalar currents at the future colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atwood, D.; Reina, L.; Soni, A.

    1996-11-22

    We present a general phenomenological analysis of a class of Two Higgs Doublet Models with Flavor Changing Neutral Currents arising at the tree level. The existing constraints mainly affect the couplings of the first two generations of quarks, leaving the possibility for non negligible Flavor Changing couplings of the top quark open. The next generation of lepton and hadron colliders will offer the right environment to study the physics of the top quark and to unravel the presence of new physics beyond the Standard Model. In this context we discuss some interesting signals from Flavor Changing Scalar Neutral Currents.

  20. Les Houches 2017: Physics at TeV Colliders Standard Model Working Group Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, J.R.; et al.

    This Report summarizes the proceedings of the 2017 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt with (I) new developments relevant for high precision Standard Model calculations, (II) theoretical uncertainties and dataset dependence of parton distribution functions, (III) new developments in jet substructure techniques, (IV) issues in the theoretical description of the production of Standard Model Higgs bosons and how to relate experimental measurements, (V) phenomenological studies essential for comparing LHC data from Run II with theoretical predictions and projections for future measurements, and (VI) new developments in Monte Carlo event generators.

  1. Conceptual Design for CLIC Gun Pulser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Tao

    The Compact Linear Collider (CLIC) is a proposed future electron-positron collider, designed to perform collisions at energies from 0.5 to 5 TeV, with a nominal design optimized for 3 TeV (Dannheim, 2012). The Drive Beam Accelerator consists of a thermionic DC gun, bunching section and an accelerating section. The thermionic gun needs deliver a long (~143us) pulse of current into the buncher. A pulser is needed to drive grid of the gun to generate a stable current output. This report explores the requirements of the gun pulser and potential solutions to regulate grid current.

  2. Construcción de un catálogo de cúmulos de galaxias en proceso de colisión

    NASA Astrophysics Data System (ADS)

    de los Ríos, M.; Domínguez, M. J.; Paz, D.

    2015-08-01

    In this work we present first results of the identification of colliding galaxy clusters in galaxy catalogs with redshift measurements (SDSS, 2DF), and introduce the methodology. We calibrated a method by studying the merger trees of clusters in a mock catalog based on a full-blown semi-analytic model of galaxy formation on top of the Millenium cosmological simulation. We also discuss future actions for studding our sample of colliding galaxy clusters, including x-ray observations and mass reconstruction obtained by using weak gravitational lenses.

  3. High density harp for SSCL linac. [Suerconducting Super Collider Laboratory (SSCL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritsche, C.T.; Krogh, M.L.; Crist, C.E.

    1993-05-01

    AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities.

  4. Les Houches ''Physics at TeV Colliders 2003'' Beyond the Standard Model Working Group: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allanach, B

    2004-03-01

    The work contained herein constitutes a report of the ''Beyond the Standard Model'' working group for the Workshop ''Physics at TeV Colliders'', Les Houches, France, 26 May-6 June, 2003. The research presented is original, and was performed specifically for the workshop. Tools for calculations in the minimal supersymmetric standard model are presented, including a comparison of the dark matter relic density predicted by public codes. Reconstruction of supersymmetric particle masses at the LHC and a future linear collider facility is examined. Less orthodox supersymmetric signals such as non-pointing photons and R-parity violating signals are studied. Features of extra dimensional modelsmore » are examined next, including measurement strategies for radions and Higgs', as well as the virtual effects of Kaluza Klein modes of gluons. Finally, there is an update on LHC Z' studies.« less

  5. Digital Natives: Back to the Future of Microworlds in a Corporate Learning Organization

    ERIC Educational Resources Information Center

    Cabanero-Johnson, Paz Susan; Berge, Zane

    2009-01-01

    Purpose: The purpose of this paper is to provide description and an analysis of two worlds colliding where real-world roles or ideas play out in a virtual dimension. Inhabited by digital natives, the virtual world in a learning organization is a journey back to the future of microworlds where the only limitation is one's imagination.…

  6. The Standard Model from LHC to future colliders.

    PubMed

    Forte, S; Nisati, A; Passarino, G; Tenchini, R; Calame, C M Carloni; Chiesa, M; Cobal, M; Corcella, G; Degrassi, G; Ferrera, G; Magnea, L; Maltoni, F; Montagna, G; Nason, P; Nicrosini, O; Oleari, C; Piccinini, F; Riva, F; Vicini, A

    This review summarizes the results of the activities which have taken place in 2014 within the Standard Model Working Group of the "What Next" Workshop organized by INFN, Italy. We present a framework, general questions, and some indications of possible answers on the main issue for Standard Model physics in the LHC era and in view of possible future accelerators.

  7. Model Experiment of Two-Dimentional Brownian Motion by Microcomputer.

    ERIC Educational Resources Information Center

    Mishima, Nobuhiko; And Others

    1980-01-01

    Describes the use of a microcomputer in studying a model experiment (Brownian particles colliding with thermal particles). A flow chart and program for the experiment are provided. Suggests that this experiment may foster a deepened understanding through mutual dialog between the student and computer. (SK)

  8. Participation in the ARGUS experiment at the DORIS Collider at DESY, Hamburg, Germany and participation in the AMY experiment at the Tristan Collider in Tsukuba, Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darden, C.; Rosenfeld, C.

    1990-01-01

    This paper discusses electron-positron annihilation at high energy. This work began in 1977 with the DASP II Collaboration at the DORIS storage ring of the DESY Laboratory in Hamburg. The collaboration's first publication reported the observation of the narrow {Upsilon} resonance at 9.46 GeV, confirming the original observation of this state in proton-nucleus collisions at Fermilab. To enable investigations of the {Upsilon} family of resonances the DORIS ring was rebuilt for reliable operation at the top of its energy range where the {Upsilon} states are accessible. In addition a new detector, ARGUS, was installed at one interaction region. This papermore » also discusses the AMY Collaboration which investigates electron-positron annihilation at energies from 50 to 65 GeV. The AMY detector is in the beam of the TRISTAN collider of the KEK Laboratory in Tsukuba, Japan.« less

  9. Collider detection of dark matter electromagnetic anapole moments

    NASA Astrophysics Data System (ADS)

    Alves, Alexandre; Santos, A. C. O.; Sinha, Kuver

    2018-03-01

    Dark matter that interacts with the Standard Model by exchanging photons through higher multipole interactions occurs in a wide range of both strongly and weakly coupled hidden sector models. We study the collider detection prospects of these candidates, with a focus on Majorana dark matter that couples through the anapole moment. The study is conducted at the effective field theory level with the mono-Z signature incorporating varying levels of systematic uncertainties at the high-luminosity LHC. The projected collider reach on the anapole moment is then compared to the reach coming from direct detection experiments like LZ. Finally, the analysis is applied to a weakly coupled completion with leptophilic dark matter.

  10. Construction and response of a highly granular scintillator-based electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Repond, J.; Xia, L.; Eigen, G.; Price, T.; Watson, N. K.; Winter, A.; Thomson, M. A.; Cârloganu, C.; Blazey, G. C.; Dyshkant, A.; Francis, K.; Zutshi, V.; Gadow, K.; Göttlicher, P.; Hartbrich, O.; Kotera, K.; Krivan, F.; Krüger, K.; Lu, S.; Lutz, B.; Reinecke, M.; Sefkow, F.; Sudo, Y.; Tran, H. L.; Kaplan, A.; Schultz-Coulon, H.-Ch.; Bilki, B.; Northacker, D.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Sekiya, I.; Suehara, T.; Yamashiro, H.; Yoshioka, T.; Alamillo, E. Calvo; Fouz, M. C.; Marin, J.; Navarrete, J.; Pelayo, J. Puerta; Verdugo, A.; Chadeeva, M.; Danilov, M.; Gabriel, M.; Goecke, P.; Graf, C.; Israeli, Y.; Kolk, N. Van Der; Simon, F.; Szalay, M.; Windel, H.; Bilokin, S.; Bonis, J.; Pöschl, R.; Thiebault, A.; Richard, F.; Zerwas, D.; Balagura, V.; Boudry, V.; Brient, J.-C.; Cornat, R.; Cvach, J.; Janata, M.; Kovalcuk, M.; Kvasnicka, J.; Polak, I.; Smolik, J.; Vrba, V.; Zalesak, J.; Zuklin, J.; Choi, W.; Kotera, K.; Nishiyama, M.; Sakuma, T.; Takeshita, T.; Tozuka, S.; Tsubokawa, T.; Uozumi, S.; Jeans, D.; Ootani, W.; Liu, L.; Chang, S.; Khan, A.; Kim, D. H.; Kong, D. J.; Oh, Y. D.; Ikuno, T.; Sudo, Y.; Takahashi, Y.; Götze, M.; Calice Collaboration

    2018-04-01

    A highly granular electromagnetic calorimeter with scintillator strip readout is being developed for future linear collider experiments. A prototype of 21.5 X0 depth and 180 × 180mm2 transverse dimensions was constructed, consisting of 2160 individually read out 10 × 45 × 3mm3 scintillator strips. This prototype was tested using electrons of 2-32 GeV at the Fermilab Test Beam Facility in 2009. Deviations from linear energy response were less than 1.1%, and the intrinsic energy resolution was determined to be (12 . 5 ± 0 . 1(stat.) ± 0 . 4(syst.)) % /√{ E [ GeV ] } ⊕(1.2 ± 0.1 (stat.)-0.7+0.6 (syst.)) %, where the uncertainties correspond to statistical and systematic sources, respectively.

  11. Results on 3D interconnection from AIDA WP3

    NASA Astrophysics Data System (ADS)

    Moser, Hans-Günther; AIDA-WP3

    2016-09-01

    From 2010 to 2014 the EU funded AIDA project established in one of its work packages (WP3) a network of groups working collaboratively on advanced 3D integration of electronic circuits and semiconductor sensors for applications in particle physics. The main motivation came from the severe requirements on pixel detectors for tracking and vertexing at future Particle Physics experiments at LHC, super-B factories and linear colliders. To go beyond the state-of-the-art, the main issues were studying low mass, high bandwidth applications, with radiation hardness capabilities, with low power consumption, offering complex functionality, with small pixel size and without dead regions. The interfaces and interconnects of sensors to electronic readout integrated circuits are a key challenge for new detector applications.

  12. High-precision QCD at hadron colliders:electroweak gauge boson rapidity distributions at NNLO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anastasiou, C.

    2004-01-05

    We compute the rapidity distributions of W and Z bosons produced at the Tevatron and the LHC through next-to-next-to leading order in QCD. Our results demonstrate remarkable stability with respect to variations of the factorization and renormalization scales for all values of rapidity accessible in current and future experiments. These processes are therefore ''gold-plated'': current theoretical knowledge yields QCD predictions accurate to better than one percent. These results strengthen the proposal to use $W$ and $Z$ production to determine parton-parton luminosities and constrain parton distribution functions at the LHC. For example, LHC data should easily be able to distinguish themore » central parton distribution fit obtained by MRST from that obtained by Alekhin.« less

  13. Exploring New Physics Beyond the Standard Model: Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liantao

    This grant in 2015 to 2016 was for support in the area of theoretical High Energy Physics. The research supported focused mainly on the energy frontier, but it also has connections to both the cosmic and intensity frontiers. Lian-Tao Wang (PI) focused mainly on signal of new physics at colliders. The year 2015 - 2016, covered by this grant, has been an exciting period of digesting the influx of LHC data, understanding its meaning, and using it to refine strategies for deeper exploration. The PI proposed new methods of searching for new physics at the LHC, such as for themore » compressed stops. He also investigated in detail the signal of composite Higgs models, focusing on spin-1 composite resonances in the di-boson channel. He has also considered di-photon as a probe for such models. He has also made contributions in formulating search strategies of dark matter at the LHC, resulting in two documents with recommendations. The PI has also been active in studying the physics potential of future colliders, including Higgs factories and 100 TeV pp colliders. He has given comprehensive overview of the physics potential of the high energy proton collider, and outline its luminosity targets. He has also studied the use of lepton colliders to probe fermionic Higgs portal and bottom quark couplings to the Z boson.« less

  14. Proceedings of the Eleventh International Conference on Calorimetry in Particle Physics

    NASA Astrophysics Data System (ADS)

    Cecchi, Claudia

    The Pamela silicon tungsten calorimeter / G. Zampa -- Design and development of a dense, fine grained silicon tungsten calorimeter with integrated electronics / D. Strom -- High resolution silicon detector for 1.2-3.1 eV (400-1000 nm) photons / D. Groom -- The KLEM high energy cosmic rays collector for the NUCLEON satellite mission / M. Merkin (contribution not received) -- The electromagnetic calorimeter of the Hera-b experiment / I. Matchikhilian -- The status of the ATLAS tile calorimeter / J. Mendes Saraiva -- Design and mass production of Scintillator Pad Detector (SPD) / Preshower (PS) detector for LHC-b experiment / E. Gushchin -- Study of new FNAL-NICADD extruded scintillator as active media of large EMCal of ALICE at LHC / O. Grachov -- The CMS hadron calorimeter / D. Karmgard (contribution not received) -- Test beam study of the KOPIO Shashlyk calorimeter prototype / A. Poblaguev -- The Shashlik electro-magnetic calorimeter for the LHCb experiment / S. Barsuk -- Quality of mass produced lead-tungstate crystals / R. Zhu -- Status of the CMS electromagnetic calorimeter / J. Fay -- Scintillation detectors for radiation-hard electromagnetic calorimeters / H. Loehner -- Energy, timing and two-photon invariant mass resolution of a 256-channel PBWO[symbol] calorimeter / M. Ippolitov -- A high performance hybrid electromagnetic calorimeter at Jefferson Lab / A. Gasparian -- CsI(Tl) calorimetry on BESHI / T. Hu (contribution not received) -- The crystal ball and TAPS detectors at the MAMI electron beam facility / D. Watts -- Front-end electronics of the ATLAS tile calorimeter / R. Teuscher -- The ATLAS tilecal detector control system / A. Gomes -- Performance of the liquid argon final calibration board / C. de la Taille -- Overview of the LHCb calorimeter electronics / F. Machefert -- LHCb preshower photodetector and electronics / S. Monteil -- The CMS ECAL readout architecture and the clock and control system / K. Kloukinas -- Test of the CMS-ECAL trigger primitive generation / N. Regnault -- Optical data links for the CMS ECAL / J. Grahl (contribution not received) -- CMS ECAL off-detector electronics / R. Alemany Fernandez -- Performance of a low noise readout ASIC for the W-Si calorimeter physics prototype for the future linear collider / C. de la Taille -- Properties of a sampling calorimeter with warm-liquid ionization chambers / S. Plewnia -- Calorimetry and the DO experiment / R. Zitoun (contribution not received) -- Data quality monitoring for the DØ calorimeter / V. Shary -- Status of the construction of the ATLAS electromagnetic liquid argon calorimeter, overview of beam test performance studies / L. Serin -- Uniformity of response of ATLAS liquid argon EM calorimeter / O. Gaunter -- Status of the ATLAS liquid argon hadronic endcap calorimeter construction / M. Vincter -- Results from particle beam tests of the ATLAS liquid argon endcap calorimeters / M. Lefebvre -- First results of the DREAM project / R. Wigmans -- Electron and muon detection with a dual-readout (DREAM) calorimeter / N. Akchurin -- The neutron zero degree calorimeter for the ALICE experiment / M. Gallio -- The liquid xenon scintillation calorimeter of the MEG experiment: operation of a large prototype / G. Signorelli -- Detection of high energy particles using radio frequency signals / C. Hebert -- Hadronic shower simulation / J.-P. Wellisch -- E.M. and hadronic shower simulation with FLUKA / G. Battistoni -- Simulation of the LHCb electromagnetic calorimeter response with GEANT4 / P. Robbe -- Comparison of beam test results of the combined ATLAS liquid argon endcap calorimeters with GEANT3 and GEANT4 simulations / D. Salihagić -- GEANT4 hadronic physics validation with LHC test-beam data / C. Alexa -- The full simulation of the GLAST LAT high energy gamma ray telescope / F. Longo -- Response of the KLOE electromagnetic calorimeter to low-energy particles / T. Spadaro -- Calorimeter algorithms for DØ; / S. Trincaz-Duvoid -- Identification of low P[symbol] muon with the ATLAS tile calorimeter / G. Usai -- Electron and photon reconstruction with fully simulated events in the CMS experiment / G. Daskalakis -- Expected performance of Jet, [symbol] and [symbol] reconstruction in ATLAS / I. Vivarelli -- LHCb calorimeter from trigger to physics / O. Deschamps -- The calibration strategy of CMS electromagnetic calorimeter / P. Meridiani -- Energy and impact point reconstruction in the CMS ECAL (testbeam results from 2003) / I. B. van Vulpen -- The jet energy scale and resolution in the DO calorimeter / A. Kupco (contribution not received) -- Precision linearity studies of the ATLAS liquid argon EM calorimeter / G. Graziani -- Calibration of the ATLAS tile calorimeter / F. Sarri -- Performance of the CMS ECAL laser monitoring source in the test beam / A. Bornheim -- Energy reconstruction algorithms and their influence on the ATLAS tile calorimeter / E. Fullana -- Study of the biological effectiveness of ionizing radiations for a more realistic evaluation of the radiation quality in hadrontherapy / R. Cherubini (contribution not received) -- New dosimetry technologies for IMRT (Intensity Modulated Radio Therapy) / A. Piermattei -- Photon neutron radiotherapy / G. Giannini (contribution not received) -- Recent developments in molecular imaging / G. Zavattini (contribution not received) -- Performance goals and design considerations for a linear collider calorimeter / F. Sefkow -- Improving the jet reconstruction with the particle flow method; an introduction / J.-C. Brient -- Fine grained SiW ECAL for a linear collider detector / D. Strom (in the silicon session) -- Silicon-tungsten sampling electromagnetic calorimeter for the TeV electron-positron linear collider / J.-C. Brient -- LCCAL: a calorimeter prototype for future linear colliders / S. Miscetti -- Analog vs digital hadron calorimetry at a future electron-positron linear collider / S. Magill -- Toward a scintillator based heal and tail catcher for the LC calorimeter / M. Martin (contribution not received) -- Minical options, description in MC, calibration, plans for test beam prototype / G. Eigen (contribution not received) -- Photodetector options for a scintillator heal / E. Popova (contribution not received) -- Very low background scintillators in DAMA project: results and perspectives / R. Bernabei -- EDELWEISS Ge cryogenics detectors: main performance and physics results / X. Navick (contribution not received) -- Review of massive underground detectors / A. Rubbia -- Review of neutrino telescopes underwater and under ice / A. Capone (contribution not received) -- The fluorescence detector of the Pierre Auger Observatory / R. Caruso -- The EUSO mission for the observation of ultra high energy cosmic rays from space / A. Petrolini -- Performance of a 3D imaging electromagnetic calorimeter for the AMSO2 space experiment / C. Adloff -- Beam test calibration of the balloon borne imaging calorimeter for the CREAM experiment / P. Maestro.

  15. Why Extra Gauge Bosons Should Exist and How to Hunt Them

    NASA Astrophysics Data System (ADS)

    Leike, Arnd

    2003-09-01

    Werner Heisenberg's work is the foundation for many topics of present research. This is also true for the search for extra gauge bosons. The prospects of future colliders in this search are shortly mentioned.

  16. The physics of proton antiproton collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shochet, M.

    1991-12-03

    This paper contains information information on: accelerator and detector; QCD studies; studies of the electroweak force; The search for the top quark; {beta} physics at hadron colliders; and the search for exotic objects and prospects for the future.

  17. Dump system concepts for the Future Circular Collider

    NASA Astrophysics Data System (ADS)

    Bartmann, W.; Atanasov, M.; Barnes, M. J.; Borburgh, J.; Burkart, F.; Goddard, B.; Kramer, T.; Lechner, A.; Ull, A. Sanz; Schmidt, R.; Stoel, L. S.; Ostojic, R.; Rodziewicz, J.; van Trappen, P.; Barna, D.

    2017-03-01

    The Future Circular Collider (FCC-hh) beam dump system must provide a safe and reliable extraction and dilution of the stored beam onto a dump absorber. Energy deposition studies show that damage limits of presently used absorber materials will already be reached for single bunches at 50 TeV. A fast field rise of the extraction kicker is required in order to sufficiently separate swept single bunches on the extraction protection absorbers in case of an asynchronous beam dump. In line with this demand is the proposal of a highly segmented extraction kicker system which allows for accepting a single kicker switch erratic and thus, significantly reduces the probability of an asynchronous beam dump. Superconducting septa are foreseen to limit the overall system length and power consumption. Two extraction system concepts are presented and evaluated regarding overall system length, energy deposition on absorbers, hardware requirements, radiation issues, and layout flexibility.

  18. Beyond Higgs couplings: Probing the Higgs with angular observables at future e$$^{+}$$e$$^{-}$$ colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, Nathaniel; Gu, Jiayin; Liu, Zhen

    Here, we study angular observables in themore » $$ {e}^{+}{e}^{-}\\to ZH\\to {\\ell}^{+}{\\ell}^{-}b\\overline{b} $$ channel at future circular e$$^{+}$$ e$$^{-}$$ colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy $$ \\sqrt{s}=240 $$ GeV and 5 (30) ab$$^{-1}$$ integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for he Higgs-strahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of both probing BSM corrections to the HZγ coupling and constraining the “blind spot” in indirect limits on supersymmetric scalar top partners.« less

  19. Probing the fermionic Higgs portal at lepton colliders

    DOE PAGES

    Fedderke, Michael A.; Lin, Tongyan; Wang, Lian -Tao

    2016-04-26

    Here, we study the sensitivity of future electron-positron colliders to UV completions of the fermionic Higgs portal operator H †Hχ¯χ. Measurements of precision electroweak S and T parameters and the e +e – → Zh cross-section at the CEPC, FCC-ee, and ILC are considered. The scalar completion of the fermionic Higgs portal is closely related to the scalar Higgs portal, and we summarize existing results. We devote the bulk of our analysis to a singlet-doublet fermion completion. Assuming the doublet is sufficiently heavy, we construct the effective field theory (EFT) at dimension-6 in order to compute contributions to the observables.more » We also provide full one-loop results for S and T in the general mass parameter space. In both completions, future precision measurements can probe the new states at the (multi-)TeV scale, beyond the direct reach of the LHC.« less

  20. Beyond Higgs couplings: Probing the Higgs with angular observables at future e$$^{+}$$e$$^{-}$$ colliders

    DOE PAGES

    Craig, Nathaniel; Gu, Jiayin; Liu, Zhen; ...

    2016-03-09

    Here, we study angular observables in themore » $$ {e}^{+}{e}^{-}\\to ZH\\to {\\ell}^{+}{\\ell}^{-}b\\overline{b} $$ channel at future circular e$$^{+}$$ e$$^{-}$$ colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy $$ \\sqrt{s}=240 $$ GeV and 5 (30) ab$$^{-1}$$ integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for he Higgs-strahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of both probing BSM corrections to the HZγ coupling and constraining the “blind spot” in indirect limits on supersymmetric scalar top partners.« less

  1. Probing the fermionic Higgs portal at lepton colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedderke, Michael A.; Lin, Tongyan; Wang, Lian -Tao

    Here, we study the sensitivity of future electron-positron colliders to UV completions of the fermionic Higgs portal operator H †Hχ¯χ. Measurements of precision electroweak S and T parameters and the e +e – → Zh cross-section at the CEPC, FCC-ee, and ILC are considered. The scalar completion of the fermionic Higgs portal is closely related to the scalar Higgs portal, and we summarize existing results. We devote the bulk of our analysis to a singlet-doublet fermion completion. Assuming the doublet is sufficiently heavy, we construct the effective field theory (EFT) at dimension-6 in order to compute contributions to the observables.more » We also provide full one-loop results for S and T in the general mass parameter space. In both completions, future precision measurements can probe the new states at the (multi-)TeV scale, beyond the direct reach of the LHC.« less

  2. Review of hydrodynamic tunneling issues in high power particle accelerators

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Piriz, A. R.

    2018-07-01

    Full impact of one Large Hadron Collider (LHC) 7 TeV proton beam on solid targets made of different materials including copper and carbon, was simulated using an energy deposition code, FLUKA and a two-dimensional hydrodynamic code, BIG2, iteratively. These studies showed that the penetration depth of the entire beam comprised of 2808 proton bunches significantly increases due to a phenomenon named hydrodynamic tunneling of the protons and the shower. For example, the static range of a single 7 TeV proton and its shower is about 1 m in solid copper, but the full LHC beam will penetrate up to about 35 m in the target, if the hydrodynamic effects were included. Due to the potential implications of this result on the machine protection considerations, it was decided to have an experimental verification of the hydrodynamic tunneling effect. For this purpose, experiments were carried out at the CERN HiRadMat (High Radiation to Materials) facility in which extended solid copper cylindrical targets were irradiated with the 440 GeV proton beam generated by the Super Proton Synchrotron (SPS). Simulations of beam-target heating considering the same beam parameters that were used in the experiments, were also performed. These experiments not only confirmed the existence of the hydrodynamic tunneling, but the experimental measurements showed very good agreement with the experimental results as well. This provided confidence in the work on LHC related beam-matter heating simulations. Currently, a design study is being carried out by the international community (with CERN taking the leading role) for a post LHC collider named, the Future Circular Collider (FCC) which will accelerate two counter rotating proton beams up to a particle energy of 50 TeV. Simulations of the full impact of one FCC beam comprised of 10,600 proton bunches with a solid copper target have also been done. These simulations have shown that although the static range of a single 50 TeV proton and its shower in solid copper is around 1.8 m, the entire beam will penetrate up to about 350 m in the target. Feasibility studies of developing a water beam dump for the FCC have also been carried out. A review of this work and its implications on machine protection system are presented in this paper.

  3. Harmonic Kicker RF Cavity for the Jefferson Lab Electron-Ion Collider EM Simulation, Modification, and Measurements

    NASA Astrophysics Data System (ADS)

    Overstreet, Sarah; Wang, Haipeng

    2017-09-01

    An important step in the conceptual design for the future Jefferson Lab Electron-Ion Collider (JLEIC) is the development of supporting technologies for the Energy Recovery Linac (ERL) Electron Cooling Facility. The Harmonic Radiofrequency (RF) kicker cavity is one such device that is responsible for switching electron bunches in and out of the Circulator Cooling Ring (CCR) from and to the ERL, which is a critical part of the ion cooling process. Last year, a half scale prototype of the JLEIC harmonic RF kicker model was designed with resonant frequencies to support the summation of 5 odd harmonics (95.26 MHz, 285.78 MHz, 476.30 MHz, 666.82 MHz, and 857.35 MHz); however, the asymmetry of the kicker cavity gives rise to multipole components of the electric field at the electron-beam axis of the cavity. Previous attempts to symmetrize the electric field of this asymmetrical RF cavity have been unsuccessful. The aim of this study is to modify the existing prototype for a uniform electric field across the beam pathway so that the electron bunches will experience nearly zero beam current loading. In addition to this, we have driven the unmodified cavity with the harmonic sum and used the wire stretching method for an analysis of the multipole electric field components.

  4. Measurement of the inclusive jet cross section at the CERN pp collider

    NASA Astrophysics Data System (ADS)

    Arnison, G.; Albrow, M. G.; Allkofer, O. C.; Astbury, A.; Aubert, B.; Bacci, C.; Batley, J. R.; Bauer, G.; Bettini, A.; Bézaguet, A.; Bock, R. K.; Bos, K.; Buckley, E.; Bunn, J.; Busetto, G.; Catz, P.; Cennini, P.; Centro, S.; Ceradini, F.; Ciapetti, G.; Cittolin, S.; Clarke, D.; Cline, D.; Cochet, C.; Colas, J.; Colas, P.; Corden, M.; Cox, G.; Dallman, D.; Dau, D.; Debeer, M.; Debrion, J. P.; Degiorgi, M.; della Negra, M.; Demoulin, M.; Denby, B.; Denegri, D.; Diciaccio, A.; Dobrzynski, L.; Dorenbosch, J.; Dowell, J. D.; Duchovni, E.; Edgecock, R.; Eggert, K.; Eisenhandler, E.; Ellis, N.; Erhard, P.; Faissner, H.; Fince Keeler, M.; Flynn, P.; Fontaine, G.; Frey, R.; Frühwirth, R.; Garvey, J.; Gee, D.; Geer, S.; Ghesquière, C.; Ghez, P.; Ghio, F.; Giacomelli, P.; Gibson, W. R.; Giraud-Héraud, Y.; Givernaud, A.; Gonidec, A.; Goodman, M.; Grassmann, H.; Grayer, G.; Guryn, W.; Hansl-Kozanecka, T.; Haynes, W.; Haywood, S. J.; Hoffmann, H.; Holthuizen, D. J.; Homer, R. J.; Homer, R. J.; Honma, A.; Jank, W.; Jimack, M.; Jorat, G.; Kalmus, P. I. P.; Karimäri, V.; Keeler, R.; Kenyon, I.; Kernan, A.; Kienzle, W.; Kinnunen, R.; Kozanecki, W.; Kroll, J.; Kryn, D.; Kyberd, P.; Lacava, F.; Laugier, J. P.; Lees, J. P.; Leuchs, R.; Levegrun, S.; Lévêque, A.; Levi, M.; Linglin, D.; Locci, E.; Long, K.; Markiewicz, T.; Markytan, M.; Martin, T.; Maurin, F.; McMahon, T.; Mendiburu, J.-P.; Meneguzzo, A.; Meyer, O.; Meyer, T.; Minard, M.-N.; Mohammadi, M.; Morgan, K.; Moricca, M.; Moser, H.; Mours, B.; Muller, Th.; Nandi, A.; Naumann, L.; Norton, A.; Paoluzi, L.; Pascoli, D.; Pauss, F.; Perault, C.; Piano Mortari, G.; Pietarinen, E.; Pigot, C.; Pimiä, M.; Pitman, D.; Placci, A.; Porte, J.-P.; Radermacher, E.; Ransdell, J.; Redelberger, T.; Reithler, H.; Revol, J. P.; Richman, J.; Rijssenbeek, M.; Rohlf, J.; Rossi, P.; Roberts, C.; Ruhm, W.; Rubbia, C.; Sajot, G.; Salvini, G.; Sass, J.; Sadoulet, B.; Samyn, D.; Savoy-Navarro, A.; Schinzel, D.; Schwartz, A.; Scott, W.; Scott, W.; Shah, T. P.; Sheer, I.; Siotis, I.; Smith, D.; Sobie, R.; Sphicas, P.; Strauss, J.; Streets, J.; Stubenrauch, C.; Summers, D.; Sumorok, K.; Szonczo, F.; Tao, C.; Ten Have, I.; Thompson, G.; Tscheslog, E.; Tuominiemi, J.; van Eijk, B.; Verecchia, P.; Vialle, J. P.; Virdee, T. S.; von der Schmitt, H.; von Schlippe, W.; Vrana, J.; Vuillemin, V.; Wahl, H. D.; Watkins, P.; Wilke, R.; Wilson, J.; Wingerter, I.; Wimpenny, S. J.; Wulz, C.-E.; Wyatt, T.; Yvert, M.; Zacharov, I.; Zaganidis, N.; Zanello, L.; Zotto, P.

    1986-05-01

    The inclusive jet cross section has been measured in the UA1 experiment at the CERN pp Collider at centre-of-mass energies √s = 546 GeV and √s = 630 eV. The cross sections are found to be consistent with QCD predictions, The observed change in the cross section with the centre-of-mass energy √s is accounted for in terms of xT scaling.

  5. New Physics Undercover at the LHC

    NASA Astrophysics Data System (ADS)

    Lou, Hou Keong

    With the completion of 7 TeV and 8 TeV data taking at the Large Hadron Collider (LHC), the physics community witnessed one of the great triumphs of modern physics: the completion of the Standard Model (SM) as an effective theory. The final missing particle, the Higgs boson, was observed and its mass was measured. However, many theoretical questions remain unanswered. What is the source of electroweak symmetry breaking? What is the nature of dark matter? How does gravity fit into the picture? With no definitive hints of new physics at the LHC, we must consider the possibility that our search strategies need to be expanded. Conventional LHC searches focus on theoretically motivated scenarios, such as the Minimal Supersymmetric Standard Models and Little Higgs Theories. However, it is possible that new physics may be entirely different from what we might expect. In this thesis, we examine a variety of scenarios that lead to new physics undercover at the LHC. First we look at potential new physics hiding in Quantum Chromo-Dynamics backgrounds, which may be uncovered using jet substructure techniques in a data-driven way. Then we turn to new long-lived particles hiding in Higgs decay, which may lead to displaced vertices. Such a signal can be unearthed through a data-driven analysis. Then we turn to new physics with ``semi-visible jets'', which lead to missing momentum aligned with jet momentum. These events are vetoed in traditional searches and we demonstrate ways to uncover these signals. Lastly, we explore performance of future colliders in two case studies: Stops and Higgs Portal searches. We show that a 100 TeV collider will lead to significant improvements over 14 TeV LHC runs. Indeed, new physics may lie undercover at the LHC and future colliders, waiting to be discovered.

  6. When Waves Collide: Future Conflict

    DTIC Science & Technology

    1995-01-01

    predictions merely guesswork, and forecasts often nothing more than co- herent fiction masquerading as fact.2 Trends and megatrends , which are linear...transportation, on-site inspection, and environmental cleanup—including radi- ological, chemical, and biological —as well as enforcement of the

  7. Wireless data transmission for high energy physics applications

    NASA Astrophysics Data System (ADS)

    Dittmeier, Sebastian; Brenner, Richard; Dancila, Dragos; Dehos, Cedric; De Lurgio, Patrick; Djurcic, Zelimir; Drake, Gary; Gonzalez Gimenez, Jose Luis; Gustafsson, Leif; Kim, Do-Won; Locci, Elizabeth; Pfeiffer, Ullrich; Röhrich, Dieter; Rydberg, Anders; Schöning, André; Siligaris, Alexandre; Soltveit, Hans Kristian; Ullaland, Kjetil; Vincent, Pierre; Rodriguez Vazquez, Pedro; Wiedner, Dirk; Yang, Shiming

    2017-08-01

    Silicon tracking detectors operated at high luminosity collider experiments pose a challenge for current and future readout systems regarding bandwidth, radiation, space and power constraints. With the latest developments in wireless communications, wireless readout systems might be an attractive alternative to commonly used wired optical and copper based readout architectures. The WADAPT group (Wireless Allowing Data and Power Transmission) has been formed to study the feasibility of wireless data transmission for future tracking detectors. These proceedings cover current developments focused on communication in the 60 GHz band. This frequency band offers a high bandwidth, a small form factor and an already mature technology. Motivation for wireless data transmission for high energy physics application and the developments towards a demonstrator prototype are summarized. Feasibility studies concerning the construction and operation of a wireless transceiver system have been performed. Data transmission tests with a transceiver prototype operating at even higher frequencies in the 240 GHz band are described. Data transmission at rates up to 10 Gb/s have been obtained successfully using binary phase shift keying.

  8. Jefferson Lab Science: Present and Future

    DOE PAGES

    McKeown, Robert D.

    2015-02-12

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. Furthermore, this facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  9. Exploring fermionic dark matter via Higgs boson precision measurements at the Circular Electron Positron Collider

    NASA Astrophysics Data System (ADS)

    Xiang, Qian-Fei; Bi, Xiao-Jun; Yin, Peng-Fei; Yu, Zhao-Huan

    2018-03-01

    We study the impact of fermionic dark matter (DM) on projected Higgs precision measurements at the Circular Electron Positron Collider (CEPC), including the one-loop effects on the e+e-→Z h cross section and the Higgs boson diphoton decay, as well as the tree-level effects on the Higgs boson invisible decay. As illuminating examples, we discuss two UV-complete DM models, whose dark sector contains electroweak multiplets that interact with the Higgs boson via Yukawa couplings. The CEPC sensitivity to these models and current constraints from DM detection and collider experiments are investigated. We find that there exist some parameter regions where the Higgs measurements at the CEPC will be complementary to current DM searches.

  10. Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Nucleon Spin Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aschenauer, A.; Qiu, Jianwei; Vogelsang, W.

    Understanding the structure of the nucleon is of fundamental importance in sub-atomic physics. Already the experimental studies on the electro-magnetic form factors in the 1950s showed that the nucleon has a nontrivial internal structure, and the deep inelastic scattering experiments in the 1970s revealed the partonic substructure of the nucleon. Modern research focuses in particular on the spin and the gluonic structure of the nucleon. Experiments using deep inelastic scattering or polarized p-p collisions are carried out in the US at the CEBAF and RHIC facilities, respectively, and there are other experimental facilities around the world. More than twenty yearsmore » ago, the European Muon Collaboration published their first experimental results on the proton spin structure as revealed in polarized deep inelastic lepton-nucleon scattering, and concluded that quarks contribute very little to the proton's spin. With additional experimental and theoretical investigations and progress in the following years, it is now established that, contrary to naive quark model expectations, quarks and anti-quarks carry only about 30% of the total spin of the proton. Twenty years later, the discovery from the polarized hadron collider at RHIC was equally surprising. For the phase space probed by existing RHIC experiments, gluons do not seem to contribute any to the proton's spin. To find out what carries the remaining part of proton's spin is a key focus in current hadronic physics and also a major driving force for the new generation of spin experiments at RHIC and Jefferson Lab and at a future Electron Ion Collider. It is therefore very important and timely to organize a series of annual spin physics meetings to summarize the status of proton spin physics, to focus the effort, and to layout the future perspectives. This summer program on 'Nucleon Spin Physics' held at Brookhaven National Laboratory (BNL) on July 14-27, 2010 [http://www.bnl.gov/spnsp/] is the second one following the Berkeley Summer Program taken place in June of 2009. This program at BNL focused on theory and had many presentations on a wide range of theoretical aspects on nucleon spin, from perturbative-QCD calculations to models, and to the first principle lattice calculation. It also had a good number of summary talks from all major experimental collaborations on spin physics. The program facilitated many discussions between theorists as well as experimentalists. With five transparencies from each presentation at the Summer Program, this proceedings provides a valuable summary on the status and progress, as well as the future prospects of spin physics.« less

  11. Extracting muon momentum scale corrections for hadron collider experiments

    NASA Astrophysics Data System (ADS)

    Bodek, A.; van Dyne, A.; Han, J. Y.; Sakumoto, W.; Strelnikov, A.

    2012-10-01

    We present a simple method for the extraction of corrections for bias in the measurement of the momentum of muons in hadron collider experiments. Such bias can originate from a variety of sources such as detector misalignment, software reconstruction bias, and uncertainties in the magnetic field. The two step method uses the mean <1/p^{μ}T rangle for muons from Z→ μμ decays to determine the momentum scale corrections in bins of charge, η and ϕ. In the second step, the corrections are tuned by using the average invariant mass < MZ_{μμ }rangle of Z→ μμ events in the same bins of charge η and ϕ. The forward-backward asymmetry of Z/ γ ∗→ μμ pairs as a function of μ + μ - mass, and the ϕ distribution of Z bosons in the Collins-Soper frame are used to ascertain that the corrections remove the bias in the momentum measurements for positive versus negatively charged muons. By taking the sum and difference of the momentum scale corrections for positive and negative muons, we isolate additive corrections to 1/p^{μ}T that may originate from misalignments and multiplicative corrections that may originate from mis-modeling of the magnetic field (∫ Bṡ d L). This method has recently been used in the CDF experiment at Fermilab and in the CMS experiment at the Large Hadron Collider at CERN.

  12. Feasibility study of heavy-ion collision physics at NICA JINR

    NASA Astrophysics Data System (ADS)

    Kekelidze, V.; Kovalenko, A.; Lednicky, R.; Matveev, V.; Meshkov, I.; Sorin, A.; Trubnikov, G.

    2017-11-01

    The project NICA (Nuclotron-based Ion Collider fAcility) is aimed to study hot and baryon rich QCD matter in heavy ion collisions in the energy range up to √{sNN} = 11GeV. The heavy ion program includes a study of collective phenomena, dilepton, hyperon and hypernuclei production under extreme conditions of highest baryonic density. This program will be performed at a fixed target experiment BM@N and with MPD detector at the NICA collider.

  13. Operational head-on beam-beam compensation with electron lenses in the Relativistic Heavy Ion Collider

    DOE PAGES

    Fischer, W.; Gu, X.; Altinbas, Z.; ...

    2015-12-23

    Head-on beam-beam compensation has been implemented in the Relativistic Heavy Ion Collider (RHIC) in order to increase the luminosity delivered to the experiments. We discuss the principle of combining a lattice for resonance driving term compensation and an electron lens for tune spread compensation. We describe the electron lens technology and its operational use. As of this date the implemented compensation scheme approximately doubled the peak and average luminosities.

  14. A Wedge Absorber Experiment at MICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, David; Mohayai, Tanaz; Rogers, Chris

    2017-05-01

    Emittance exchange mediated by wedge absorbers is required for longitudinal ionization cooling and for final transverse emittance minimization for a muon collider. A wedge absorber within the MICE beam line could serve as a demonstration of the type of emittance exchange needed for 6-D cooling, including the configurations needed for muon colliders, as well as configurations for low-energy muon sources. Parameters for this test are explored in simulation and possible experimental configurations with simulated results are presented.

  15. The VEPP-2000 electron-positron collider: First experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkaev, D. E., E-mail: D.E.Berkaev@inp.nsk.su; Shwartz, D. B.; Shatunov, P. Yu.

    2011-08-15

    In 2007, at the Institute of Nuclear Physics (Novosibirsk), the construction of the VEPP-2000 electron-positron collider was completed. The first electron beam was injected into the accelerator structure with turned-off solenoids of the final focus. This mode was used to tune all subsystems of the facility and to train the vacuum chamber using synchrotron radiation at electron currents of up to 150 mA. The VEPP-2000 structure with small beta functions and partially turned-on solenoids was used for the first testing of the 'round beams' scheme at an energy of 508 MeV. Beam-beam effects were studied in strong-weak and strong-strong modes.more » Measurements of the beam sizes in both cases showed a dependence corresponding to model predictions for round colliding beams. Using a modernized SND (spherical neutral detector), the first energy calibration of the VEPP-2000 collider was performed by measuring the excitation curve of the phimeson resonance; the phi-meson mass is known with high accuracy from previous experiments at VEEP-2M. In October 2009, a KMD-3 (cryogenic magnetic detector) was installed at the VEPP-2000 facility, and the physics program with both the SND and LMD-3 particle detectors was started in the energy range of 1-1.9 GeV. This first experimental season was completed in summer 2010 with precision energy calibration by resonant depolarization.« less

  16. Physics of leptoquarks in precision experiments and at particle colliders

    NASA Astrophysics Data System (ADS)

    Doršner, I.; Fajfer, S.; Greljo, A.; Kamenik, J. F.; Košnik, N.

    2016-06-01

    We present a comprehensive review of physics effects generated by leptoquarks (LQs), i.e., hypothetical particles that can turn quarks into leptons and vice versa, of either scalar or vector nature. These considerations include discussion of possible completions of the Standard Model that contain LQ fields. The main focus of the review is on those LQ scenarios that are not problematic with regard to proton stability. We accordingly concentrate on the phenomenology of light leptoquarks that is relevant for precision experiments and particle colliders. Important constraints on LQ interactions with matter are derived from precision low-energy observables such as electric dipole moments, (g - 2) of charged leptons, atomic parity violation, neutral meson mixing, Kaon, B, and D meson decays, etc. We provide a general analysis of indirect constraints on the strength of LQ interactions with the quarks and leptons to make statements that are as model independent as possible. We address complementary constraints that originate from electroweak precision measurements, top, and Higgs physics. The Higgs physics analysis we present covers not only the most recent but also expected results from the Large Hadron Collider (LHC). We finally discuss direct LQ searches. Current experimental situation is summarized and self-consistency of assumptions that go into existing accelerator-based searches is discussed. A progress in making next-to-leading order predictions for both pair and single LQ productions at colliders is also outlined.

  17. Analysis of 440 GeV proton beam–matter interaction experiments at the High Radiation Materials test facility at CERN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkart, F.; Schmidt, R.; Wollmann, D.

    2015-08-07

    In a previous paper [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we presented the first results on beam–matter interaction experiments that were carried out at the High Radiation Materials test facility at CERN. In these experiments, extended cylindrical targets of solid copper were irradiated with beam of 440 GeV protons delivered by the Super Proton Synchrotron (SPS). The beam comprised of a large number of high intensity proton bunches, each bunch having a length of 0.5 ns with a 50 ns gap between two neighboring bunches, while the length of this entire bunch train was about 7 μs. These experiments established the existencemore » of the hydrodynamic tunneling phenomenon the first time. Detailed numerical simulations of these experiments were also carried out which were reported in detail in another paper [Tahir et al., Phys. Rev. E 90, 063112 (2014)]. Excellent agreement was found between the experimental measurements and the simulation results that validate our previous simulations done using the Large Hadron Collider (LHC) beam of 7 TeV protons [Tahir et al., Phys. Rev. Spec. Top.--Accel. Beams 15, 051003 (2012)]. According to these simulations, the range of the full LHC proton beam and the hadronic shower can be increased by more than an order of magnitude due to the hydrodynamic tunneling, compared to that of a single proton. This effect is of considerable importance for the design of machine protection system for hadron accelerators such as SPS, LHC, and Future Circular Collider. Recently, using metal cutting technology, the targets used in these experiments have been dissected into finer pieces for visual and microscopic inspection in order to establish the precise penetration depth of the protons and the corresponding hadronic shower. This, we believe will be helpful in studying the very important phenomenon of hydrodynamic tunneling in a more quantitative manner. The details of this experimental work together with a comparison with the numerical simulations are presented in this paper.« less

  18. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeyratne, S; Ahmed, S; Barber, D

    2012-08-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectivelymore » utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very beginning, the design studies at Jefferson Lab have focused on achieving high collider performance, particularly ultrahigh luminosities up to 10{sup 34} cm{sup -2}s{sup -1} per detector with large acceptance, while maintaining high polarization for both the electron and light-ion beams. These are the two key performance requirements of a future electron-ion collider facility as articulated by the NSAC Long Range Plan. In MEIC, a new ion complex is designed specifically to deliver ion beams that match the high bunch repetition and highly polarized electron beam from CEBAF. During the last two years, both development of the science case and optimization of the machine design point toward a medium-energy electron-ion collider as the topmost goal for Jefferson Lab. The MEIC, with relatively compact collider rings, can deliver a luminosity above 10{sup 34} cm{sup -2}s{sup -1} at a center-of-mass energy up to 65 GeV. It offers an electron energy up to 11 GeV, a proton energy up to 100 GeV, and corresponding energies per nucleon for heavy ions with the same magnetic rigidity. This design choice balances the scope of the science program, collider capabilities, accelerator technology innovation, and total project cost. An energy upgrade could be implemented in the future by adding two large collider rings housed in another large tunnel to push the center-of-mass energy up to or exceeding 140 GeV. After careful consideration of an alternative electron energy recovery linac on ion storage ring approach, a ring-ring collider scenario at high bunch repetition frequency was found to offer fully competitive performance while eliminating the uncertainties of challenging R&D on ampere-class polarized electron sources and many-pass energy-recovery linacs (ERLs). The essential new elements of an MEIC facility at Jefferson Lab are an electron storage ring and an entirely new, modern ion acceleration and storage complex. For the high-current electron collider ring, the upgraded 12 GeV CEBAF SRF linac will serve as a full-energy injector, and, if needed, provide top-off refilling. The CEBAF fixed-target nuclear physics program can be simultaneously operated since the filling time of the electron ring is very short. The ion complex for MEIC consists of sources for polarized light ions and unpolarized light to heavy ions, an SRF ion linac with proton energy up to 280 MeV, a 3 GeV prebooster synchrotron, a large booster synchrotron for proton energy up to 20 GeV, and a medium-energy collider ring with energy up to 100 GeV. The ion complex can accelerate other species of ions with corresponding energies at each accelerating stage. There are three collision points planned for MEIC. Two of them are for collisions with medium-energy ions; the third is for low energy ion beams stored in a dedicated low-energy compact storage ring, as a possible follow-on project.« less

  19. The structure of the proton in the LHC precision era

    NASA Astrophysics Data System (ADS)

    Gao, Jun; Harland-Lang, Lucian; Rojo, Juan

    2018-05-01

    We review recent progress in the determination of the parton distribution functions (PDFs) of the proton, with emphasis on the applications for precision phenomenology at the Large Hadron Collider (LHC). First of all, we introduce the general theoretical framework underlying the global QCD analysis of the quark and gluon internal structure of protons. We then present a detailed overview of the hard-scattering measurements, and the corresponding theory predictions, that are used in state-of-the-art PDF fits. We emphasize here the role that higher-order QCD and electroweak corrections play in the description of recent high-precision collider data. We present the methodology used to extract PDFs in global analyses, including the PDF parametrization strategy and the definition and propagation of PDF uncertainties. Then we review and compare the most recent releases from the various PDF fitting collaborations, highlighting their differences and similarities. We discuss the role that QED corrections and photon-initiated contributions play in modern PDF analysis. We provide representative examples of the implications of PDF fits for high-precision LHC phenomenological applications, such as Higgs coupling measurements and searches for high-mass New Physics resonances. We conclude this report by discussing some selected topics relevant for the future of PDF determinations, including the treatment of theoretical uncertainties, the connection with lattice QCD calculations, and the role of PDFs at future high-energy colliders beyond the LHC.

  20. Being Black (and) Immigrant Students: When Race, Ethnicity, and Nativity Collide

    ERIC Educational Resources Information Center

    Mwangi, Chrystal A. George; English, Shelvia

    2017-01-01

    While Black immigrants share some of the racialized experiences of native-Black Americans, they also have distinctive experiences. U.S. education presents an important environment to investigate these experiences as immigrants have the fastest growing child population and these children are increasingly entering the education system. This paper…

  1. Processing LHC data in the UK

    PubMed Central

    Colling, D.; Britton, D.; Gordon, J.; Lloyd, S.; Doyle, A.; Gronbech, P.; Coles, J.; Sansum, A.; Patrick, G.; Jones, R.; Middleton, R.; Kelsey, D.; Cass, A.; Geddes, N.; Clark, P.; Barnby, L.

    2013-01-01

    The Large Hadron Collider (LHC) is one of the greatest scientific endeavours to date. The construction of the collider itself and the experiments that collect data from it represent a huge investment, both financially and in terms of human effort, in our hope to understand the way the Universe works at a deeper level. Yet the volumes of data produced are so large that they cannot be analysed at any single computing centre. Instead, the experiments have all adopted distributed computing models based on the LHC Computing Grid. Without the correct functioning of this grid infrastructure the experiments would not be able to understand the data that they have collected. Within the UK, the Grid infrastructure needed by the experiments is provided by the GridPP project. We report on the operations, performance and contributions made to the experiments by the GridPP project during the years of 2010 and 2011—the first two significant years of the running of the LHC. PMID:23230163

  2. Theoretical analysis of the overtone-induced isomerization of methyl isocyanide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.A.; Chandler, D.W.

    1986-10-15

    A master-equation formalism is applied to the problem of overtone-induced isomerization of CH/sub 3/NC to CH/sub 3/CN. The results are compared to the experiments of Reddy and Berry, who measured the yield of isomerization as a function of pressure after excitation to the fourth and fifth overtones of the CH stretching mode. The master-equation model predicts the yield and the curvature in the yield/sup -1/ vs pressure plots observed in the experiments. For the lower overtone (50) the results are consistent with a simple strong-collider model. However, even under strong-collider conditions the yield is very sensitive to the parameters inmore » the master equation. For the upper overtone (60) the data do not fit a strong collider model and multistep deactivation dominates. We are able to determine from the data the average energy transferred in a collision by assuming a particular form for the energy-transfer function. In addition, the effect of changing the shape of the energy-transfer function is investigated.« less

  3. Magnetic field generation, Weibel-mediated collisionless shocks, and magnetic reconnection in colliding laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Fox, W.; Bhattacharjee, A.; Fiksel, G.

    2016-10-01

    Colliding plasmas are ubiquitous in astrophysical environments and allow conversion of kinetic energy into heat and, most importantly, the acceleration of particles to extremely high energies to form the cosmic ray spectrum. In collisionless astrophysical plasmas, kinetic plasma processes govern the interaction and particle acceleration processes, including shock formation, self-generation of magnetic fields by kinetic plasma instabilities, and magnetic field compression and reconnection. How each of these contribute to the observed spectra of cosmic rays is not fully understood, in particular both shock acceleration processes and magnetic reconnection have been proposed. We will review recent results of laboratory astrophysics experiments conducted at high-power, inertial-fusion-class laser facilities, which have uncovered significant results relevant to these processes. Recent experiments have now observed the long-sought Weibel instability between two interpenetrating high temperature plasma plumes, which has been proposed to generate the magnetic field necessary for shock formation in unmagnetized regimes. Secondly, magnetic reconnection has been studied in systems of colliding plasmas using either self-generated magnetic fields or externally applied magnetic fields, and show extremely fast reconnection rates, indicating fast destruction of magnetic energy and further possibilities to accelerate particles. Finally, we highlight kinetic plasma simulations, which have proven to be essential tools in the design and interpretation of these experiments.

  4. Research in Lattice Gauge Theory and in the Phenomenology of Neutrinos and Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meurice, Yannick L; Reno, Mary Hall

    Research in theoretical elementary particle physics was performed by the PI Yannick Meurice and co-PI Mary Hall Reno. New techniques designed for precision calculations of strong interaction physics were developed using the tensor renormalization group method. Large-scale Monte Carlo simulations with dynamical quarks were performed for candidate models for Higgs compositeness. Ab-initio lattice gauge theory calculations of semileptonic decays of B-mesons observed in collider experiments and relevant to test the validity of the standard model were performed with the Fermilab/MILC collaboration. The phenomenology of strong interaction physics was applied to new predictions for physics processes in accelerator physics experiments andmore » to cosmic ray production and interactions. A research focus has been on heavy quark production and their decays to neutrinos. The heavy quark contributions to atmospheric neutrino and muon fluxes have been evaluated, as have the neutrino fluxes from accelerator beams incident on heavy targets. Results are applicable to current and future particle physics experiments and to astrophysical neutrino detectors such as the IceCube Neutrino Observatory.« less

  5. Left-right spin asymmetry in ℓ N ↑ → h X

    DOE PAGES

    Gamberg, Leonard; Kang, Zhong -Bo; Metz, Andreas; ...

    2014-10-09

    In this study, we consider the inclusive production of hadrons in lepton-nucleon scattering. For a transversely polarized nucleon this reaction shows a left-right azimuthal asymmetry, which we compute in twist-3 collinear factorization at leading order in perturbation theory. All non-perturbative parton correlators of the calculation are fixed through information from other hard processes. Our results for the left-right asymmetry agree in sign with recent data for charged pion production from the HERMES Collaboration and from Jefferson Lab. However, the magnitude of the computed asymmetries tends to be larger than the data. Potential reasons for this outcome are identified. We alsomore » give predictions for future experiments and highlight in particular the unique opportunities at an Electron Ion Collider.« less

  6. Left-right spin asymmetry in ℓ N ↑ → h X

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamberg, Leonard; Kang, Zhong -Bo; Metz, Andreas

    In this study, we consider the inclusive production of hadrons in lepton-nucleon scattering. For a transversely polarized nucleon this reaction shows a left-right azimuthal asymmetry, which we compute in twist-3 collinear factorization at leading order in perturbation theory. All non-perturbative parton correlators of the calculation are fixed through information from other hard processes. Our results for the left-right asymmetry agree in sign with recent data for charged pion production from the HERMES Collaboration and from Jefferson Lab. However, the magnitude of the computed asymmetries tends to be larger than the data. Potential reasons for this outcome are identified. We alsomore » give predictions for future experiments and highlight in particular the unique opportunities at an Electron Ion Collider.« less

  7. Warped unification, proton stability, and dark matter.

    PubMed

    Agashe, Kaustubh; Servant, Géraldine

    2004-12-03

    We show that solving the problem of baryon-number violation in nonsupersymmetric grand unified theories (GUT's) in warped higher-dimensional spacetime can lead to a stable Kaluza-Klein particle. This exotic particle has gauge quantum numbers of a right-handed neutrino, but carries fractional baryon number and is related to the top quark within the higher-dimensional GUT. A combination of baryon number and SU(3) color ensures its stability. Its relic density can easily be of the right value for masses in the 10 GeV-few TeV range. An exciting aspect of these models is that the entire parameter space will be tested at near future dark matter direct detection experiments. Other exotic GUT partners of the top quark are also light and can be produced at high energy colliders with distinctive signatures.

  8. Probing leptophilic dark sectors with hadronic processes

    NASA Astrophysics Data System (ADS)

    D'Eramo, Francesco; Kavanagh, Bradley J.; Panci, Paolo

    2017-08-01

    We study vector portal dark matter models where the mediator couples only to leptons. In spite of the lack of tree-level couplings to colored states, radiative effects generate interactions with quark fields that could give rise to a signal in current and future experiments. We identify such experimental signatures: scattering of nuclei in dark matter direct detection; resonant production of lepton-antilepton pairs at the Large Hadron Collider; and hadronic final states in dark matter indirect searches. Furthermore, radiative effects also generate an irreducible mass mixing between the vector mediator and the Z boson, severely bounded by ElectroWeak Precision Tests. We use current experimental results to put bounds on this class of models, accounting for both radiatively induced and tree-level processes. Remarkably, the former often overwhelm the latter.

  9. Electroweak baryogenesis, electric dipole moments, and Higgs diphoton decays

    DOE PAGES

    Chao, Wei; Ramsey-Musolf, Michael J.

    2014-10-30

    Here, we study the viability of electroweak baryogenesis in a two Higgs doublet model scenario augmented by vector-like, electroweakly interacting fermions. Considering a limited, but illustrative region of the model parameter space, we obtain the observed cosmic baryon asymmetry while satisfying present constraints from the non-observation of the permanent electric dipole moment (EDM) of the electron and the combined ATLAS and CMS result for the Higgs boson diphoton decay rate. The observation of a non-zero electron EDM in a next generation experiment and/or the observation of an excess (over the Standard Model) of Higgs to diphoton events with the 14more » TeV LHC run or a future e +e – collider would be consistent with generation of the observed baryon asymmetry in this scenario.« less

  10. Dark matter and neutrino masses from a scale-invariant multi-Higgs portal

    NASA Astrophysics Data System (ADS)

    Karam, Alexandros; Tamvakis, Kyriakos

    2015-10-01

    We consider a classically scale invariant version of the Standard Model, extended by an extra dark S U (2 )X gauge group. Apart from the dark gauge bosons and a dark scalar doublet which is coupled to the Standard Model Higgs through a portal coupling, we incorporate right-handed neutrinos and an additional real singlet scalar field. After symmetry breaking à la Coleman-Weinberg, we examine the multi-Higgs sector and impose theoretical and experimental constraints. In addition, by computing the dark matter relic abundance and the spin-independent scattering cross section off a nucleon we determine the viable dark matter mass range in accordance with present limits. The model can be tested in the near future by collider experiments and direct detection searches such as XENON 1T.

  11. Particle physics today, tomorrow and beyond

    NASA Astrophysics Data System (ADS)

    Ellis, John

    2018-01-01

    The most important discovery in particle physics in recent years was that of the Higgs boson, and much effort is continuing to measure its properties, which agree obstinately with the Standard Model, so far. However, there are many reasons to expect physics beyond the Standard Model, motivated by the stability of the electroweak vacuum, the existence of dark matter and the origin of the visible matter in the Universe, neutrino physics, the hierarchy of mass scales in physics, cosmological inflation and the need for a quantum theory for gravity. Most of these issues are being addressed by the experiments during Run 2 of the LHC, and supersymmetry could help resolve many of them. In addition to the prospects for the LHC, I also review briefly those for direct searches for dark matter and possible future colliders.

  12. Probing leptophilic dark sectors with hadronic processes

    DOE PAGES

    D'Eramo, Francesco; Kavanagh, Bradley J.; Panci, Paolo

    2017-05-29

    We study vector portal dark matter models where the mediator couples only to leptons. In spite of the lack of tree-level couplings to colored states, radiative effects generate interactions with quark fields that could give rise to a signal in current and future experiments. We identify such experimental signatures: scattering of nuclei in dark matter direct detection; resonant production of lepton–antilepton pairs at the Large Hadron Collider; and hadronic final states in dark matter indirect searches. Furthermore, radiative effects also generate an irreducible mass mixing between the vector mediator and the Z boson, severely bounded by ElectroWeak Precision Tests. Wemore » use current experimental results to put bounds on this class of models, accounting for both radiatively induced and tree-level processes. Remarkably, the former often overwhelm the latter.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amerio, S.; Behari, S.; Boyd, J.

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and D0 experiments each have approximately 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 and beyond. To achieve this goal, we have implemented a system that utilizes virtualization, automated validation, and migration to new standards inmore » both software and data storage technology and leverages resources available from currently-running experiments at Fermilab. Lastly, these efforts have also provided useful lessons in ensuring long-term data access for numerous experiments, and enable high-quality scientific output for years to come.« less

  14. Data preservation at the Fermilab Tevatron

    NASA Astrophysics Data System (ADS)

    Amerio, S.; Behari, S.; Boyd, J.; Brochmann, M.; Culbertson, R.; Diesburg, M.; Freeman, J.; Garren, L.; Greenlee, H.; Herner, K.; Illingworth, R.; Jayatilaka, B.; Jonckheere, A.; Li, Q.; Naymola, S.; Oleynik, G.; Sakumoto, W.; Varnes, E.; Vellidis, C.; Watts, G.; White, S.

    2017-04-01

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and D0 experiments each have approximately 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 and beyond. To achieve this goal, we have implemented a system that utilizes virtualization, automated validation, and migration to new standards in both software and data storage technology and leverages resources available from currently-running experiments at Fermilab. These efforts have also provided useful lessons in ensuring long-term data access for numerous experiments, and enable high-quality scientific output for years to come.

  15. A global view on the Higgs self-coupling at lepton colliders

    DOE PAGES

    Di Vita, Stefano; Durieux, Gauthier; Grojean, Christophe; ...

    2018-02-28

    We perform a global effective-field-theory analysis to assess the precision on the determination of the Higgs trilinear self-coupling at future lepton colliders. Two main scenarios are considered, depending on whether the center-of-mass energy of the colliders is sufficient or not to access Higgs pair production processes. Low-energy machines allow for ~40% precision on the extraction of the Higgs trilinear coupling through the exploitation of next-to-leading-order effects in single Higgs measurements, provided that runs at both 240/250 GeV and 350 GeV are available with luminosities in the few attobarns range. A global fit, including possible deviations in other SM couplings, ismore » essential in this case to obtain a robust determination of the Higgs self-coupling. High-energy machines can easily achieve a ~20% precision through Higgs pair production processes. In this case, the impact of additional coupling modifications is milder, although not completely negligible.« less

  16. Signal for a light singlet scalar at the LHC

    NASA Astrophysics Data System (ADS)

    Chang, We-Fu; Modak, Tanmoy; Ng, John N.

    2018-03-01

    In the general Higgs portal-like models, the extra neutral scalar, S , can mix with the Standard Model (SM) Higgs boson, H . We perform an exploratory study focusing on the direct search for such a light singlet S at the Large Hadron Collider (LHC). After careful study of the SM background, we find the process p p →t t ¯ S followed by S →b b ¯ can be used to investigate S with mass in the 20

  17. A global view on the Higgs self-coupling at lepton colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Vita, Stefano; Durieux, Gauthier; Grojean, Christophe

    We perform a global effective-field-theory analysis to assess the precision on the determination of the Higgs trilinear self-coupling at future lepton colliders. Two main scenarios are considered, depending on whether the center-of-mass energy of the colliders is sufficient or not to access Higgs pair production processes. Low-energy machines allow for ~40% precision on the extraction of the Higgs trilinear coupling through the exploitation of next-to-leading-order effects in single Higgs measurements, provided that runs at both 240/250 GeV and 350 GeV are available with luminosities in the few attobarns range. A global fit, including possible deviations in other SM couplings, ismore » essential in this case to obtain a robust determination of the Higgs self-coupling. High-energy machines can easily achieve a ~20% precision through Higgs pair production processes. In this case, the impact of additional coupling modifications is milder, although not completely negligible.« less

  18. Physics at the e⁺e⁻ linear collider

    DOE PAGES

    Moortgat-Picka, G.; Kronfeld, A. S.

    2015-08-14

    A comprehensive review of physics at an e⁺e⁻ linear collider in the energy range of √s = 92 GeV–3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focuses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

  19. Right-handed charged currents in the era of the Large Hadron Collider

    DOE PAGES

    Alioli, Simone; Cirigliano, Vincenzo; Dekens, Wouter Gerard; ...

    2017-05-16

    We discuss the phenomenology of right-handed charged currents in the frame-work of the Standard Model Effective Field Theory, in which they arise due to a single gauge-invariant dimension-six operator. We study the manifestations of the nine complex couplings of the W to right-handed quarks in collider physics, flavor physics, and low-energy precision measurements. We first obtain constraints on the couplings under the assumption that the right-handed operator is the dominant correction to the Standard Model at observable energies. Here, we subsequently study the impact of degeneracies with other Beyond-the-Standard-Model effective interactions and identify observables, both at colliders and low-energy experiments,more » that would uniquely point to right-handed charged currents.« less

  20. Error Correction for the JLEIC Ion Collider Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Guohui; Morozov, Vasiliy; Lin, Fanglei

    2016-05-01

    The sensitivity to misalignment, magnet strength error, and BPM noise is investigated in order to specify design tolerances for the ion collider ring of the Jefferson Lab Electron Ion Collider (JLEIC) project. Those errors, including horizontal, vertical, longitudinal displacement, roll error in transverse plane, strength error of main magnets (dipole, quadrupole, and sextupole), BPM noise, and strength jitter of correctors, cause closed orbit distortion, tune change, beta-beat, coupling, chromaticity problem, etc. These problems generally reduce the dynamic aperture at the Interaction Point (IP). According to real commissioning experiences in other machines, closed orbit correction, tune matching, beta-beat correction, decoupling, andmore » chromaticity correction have been done in the study. Finally, we find that the dynamic aperture at the IP is restored. This paper describes that work.« less

  1. Recent progress in neutrino factory and muon collider research within the Muon Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. M. Alsharoa; Charles M. Ankenbrandt; Muzaffer Atac

    2003-08-01

    We describe the status of our effort to realize a first neutrino factory and the progress made in understanding the problems associated with the collection and cooling of muons towards that end. We summarize the physics that can be done with neutrino factories as well as with intense cold beams of muons. The physics potential of muon colliders is reviewed, both as Higgs Factories and compact high energy lepton colliders. The status and timescale of our research and development effort is reviewed as well as the latest designs in cooling channels including the promise of ring coolers in achieving longitudinalmore » and transverse cooling simultaneously. We detail the efforts being made to mount an international cooling experiment to demonstrate the ionization cooling of muons.« less

  2. Modern Elementary Particle Physics

    NASA Astrophysics Data System (ADS)

    Kane, Gordon

    2017-02-01

    1. Introduction; 2. Relativistic notation, Lagrangians, and interactions; 3. Gauge invariance; 4. Non-abelian gauge theories; 5. Dirac notation for spin; 6. The Standard Model Lagrangian; 7. The electroweak theory and quantum chromodynamics; 8. Masses and the Higgs mechanism; 9. Cross sections, decay widths, and lifetimes: W and Z decays; 10. Production and properties of W± and Zᴼ; 11. Measurement of electroweak and QCD parameters: the muon lifetime; 12. Accelerators - present and future; 13. Experiments and detectors; 14. Low energy and non-accelerator experiments; 15. Observation of the Higgs boson at the CERN LHC: is it the Higgs boson?; 16. Colliders and tests of the Standard Model: particles are pointlike; 17. Quarks and gluons, confinement and jets; 18. Hadrons, heavy quarks, and strong isospin invariance; 19. Coupling strengths depend on momentum transfer and on virtual particles; 20. Quark (and lepton) mixing angles; 21. CP violation; 22. Overview of physics beyond the Standard Model; 23. Grand unification; 24. Neutrino masses; 25. Dark matter; 26. Supersymmetry.

  3. Development of Resistive Micromegas for Sampling Calorimetry

    NASA Astrophysics Data System (ADS)

    Geralis, T.; Fanourakis, G.; Kalamaris, A.; Nikas, D.; Psallidas, A.; Chefdeville, M.; Karyotakis, I.; Koletsou, I.; Titov, M.

    2018-02-01

    Resistive micromegas is proposed as an active element for sampling calorimetry. Future linear collider experiments or the HL-LHC experiments can profit from those developments for Particle Flow Calorimetry. Micromegas possesses remarkable properties concerning gain stability, reduced ion feedback, response linearity, adaptable sensitive element granularity, fast response and high rate capability. Recent developments on Micromegas with a protective resistive layer present excellent results, resolving the problem of discharges caused by local high charge deposition, thanks to its RC-slowed charge evacuation. Higher resistivity though, may cause loss of the response linearity at high rates. We have scanned a wide range of resistivities and performed laboratory tests with X-rays that demonstrate excellent response linearity up to rates of (a few) times 10MHz/cm2, with simultaneous mitigation of discharges. Beam test studies at SPS/CERN with hadrons have also shown a remarkable stability of the resistive Micromegas and low currents for rates up to 15MHz/cm2. We present results from the aforementioned studies confronted with MC simulation

  4. MICROROC: MICRO-mesh gaseous structure Read-Out Chip

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Blaha, J.; Chefdeville, M.; Dalmaz, A.; Drancourt, C.; Dulucq, F.; Espargilière, A.; Gaglione, R.; Geffroy, N.; Jacquemier, J.; Karyotakis, Y.; Martin-Chassard, G.; Prast, J.; Seguin-Moreau, N.; de La Taille, Ch; Vouters, G.

    2012-01-01

    MICRO MEsh GAseous Structure (MICROMEGAS) and Gas Electron Multipliers (GEM) detectors are two candidates for the active medium of a Digital Hadronic CALorimeter (DHCAL) as part of a high energy physics experiment at a future linear collider (ILC/CLIC). Physics requirements lead to a highly granular hadronic calorimeter with up to thirty million channels with probably only hit information (digital readout calorimeter). To validate the concept of digital hadronic calorimetry with such small cell size, the construction and test of a cubic meter technological prototype, made of 40 planes of one square meter each, is necessary. This technological prototype would contain about 400 000 electronic channels, thus requiring the development of front-end ASIC. Based on the experience gained with previous ASIC that were mounted on detectors and tested in particle beams, a new ASIC called MICROROC has been developped. This paper summarizes the caracterisation campaign that was conducted on this new chip as well as its integration into a large area Micromegas chamber of one square meter.

  5. Space-charge limitations in a collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedotov, A.; Heimerle, M.

    Design of several projects which envision hadron colliders operating at low energies such as NICA at JINR [1] and Electron-Nucleon Collider at FAIR [2] is under way. In Brookhaven National Laboratory (BNL), a new physics program requires operation of Relativistic Heavy Ion Collider (RHIC) with heavy ions at low energies at g=2.7-10 [3]. In a collider, maximum achievable luminosity is typically limited by beam-beam effects. For heavy ions significant luminosity degradation, driving bunch length and transverse emittance growth, comes from Intrabeam Scattering (IBS). At these low energies, IBS growth can be effectively counteracted, for example, with cooling techniques. If IBSmore » were the only limitation, one could achieve small hadron beam emittance and bunch length with the help of cooling, resulting in a dramatic luminosity increase. However, as a result of low energies, direct space-charge force from the beam itself is expected to become the dominant limitation. Also, the interplay of both beambeam and space-charge effects may impose an additional limitation on achievable maximum luminosity. Thus, understanding at what values of space-charge tune shift one can operate in the presence of beam-beam effects in a collider is of great interest for all of the above projects. Operation of RHIC for Low-Energy physics program started in 2010 which allowed us to have a look at combined impact of beam-beam and space-charge effects on beam lifetime experimentally. Here we briefly discuss expected limitation due to these effects with reference to recent RHIC experience.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bane, K.L.F.; Adolphsen, C.; Li, Z.

    In a future linear collider, such as the International Linear Collider (ILC), trains of high current, low emittance bunches will be accelerated in a linac before colliding at the interaction point. Asymmetries in the accelerating cavities of the linac will generate fields that will kick the beam transversely and degrade the beam emittance and thus the collider performance. In the main linac of the ILC, which is filled with TESLA-type superconducting cavities, it is the fundamental (FM) and higher mode (HM) couplers that are asymmetric and thus the source of such kicks. The kicks are of two types: one, duemore » to (the asymmetry in) the fundamental RF fields and the other, due to transverse wakefields that are generated by the beam even when it is on axis. In this report we calculate the strength of these kicks and estimate their effect on the ILC beam. The TESLA cavity comprises nine cells, one HM coupler in the upstream end, and one (identical, though rotated) HM coupler and one FM coupler in the downstream end (for their shapes and location see Figs. 1, 2) [1]. The cavity is 1.1 m long, the iris radius 35 mm, and the coupler beam pipe radius 39 mm. Note that the couplers reach closer to the axis than the irises, down to a distance of 30 mm.« less

  7. Rare top quark decays at a 100 TeV proton-proton collider: t → bWZ and t→ hc

    NASA Astrophysics Data System (ADS)

    Papaefstathiou, Andreas; Tetlalmatzi-Xolocotzi, Gilberto

    2018-03-01

    We investigate extremely rare top quark decays at a future proton-proton collider with centre-of-mass energy of 100 TeV. We focus on two decay modes: radiative decay with a Z boson, t → b WZ, and flavour-changing neutral decay with a Higgs boson, t → h c, the former being kinematically suppressed with a branching ratio of O(10^{-6}) (Altarelli et al., Phys Lett B 502:125-132, 2001), and the latter highly loop-suppressed, with a branching ratio of O(10^{-15}) (Aguilar-Saavedra, Acta Phys Polon B 35:2695-2710, 2004). We find that t → b WZ will be very challenging to observe in top quark pair production, even within well-motivated beyond-the-standard model scenarios. For the mode t→ h c we find a stronger sensitivity than that obtained by any future LHC measurement by at least one order of magnitude.

  8. Effects of high-energy particle showers on the embedded front-end electronics of an electromagnetic calorimeter for a future lepton collider

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Francis, K.; Repond, J.; Smith, J.; Trojand, D.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Mikami, Y.; Watson, N. K.; Mavromanolakis, G.; Thomson, M. A.; Ward, D. R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Benyamna, M.; Cârloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G. C.; Dyshkant, A.; Zutshi, V.; Hostachy, J.-Y.; Morin, L.; Cornett, U.; David, D.; Fabbri, R.; Falley, G.; Gadow, K.; Garutti, E.; Göttlicher, P.; Günter, C.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.-I.; Lu, S.; Lutz, B.; Marchesini, I.; Meyer, N.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Wattimena, N.; Wendt, O.; Feege, N.; Haller, J.; Richter, S.; Samson, J.; Eckert, P.; Kaplan, A.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Tadday, A.; Bilki, B.; Norbeck, E.; Onel, Y.; Kawagoe, K.; Uozumi, S.; Dauncey, P. D.; Magnan, A.-M.; Bartsch, V.; Salvatore, F.; Laktineh, I.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Frey, A.; Kiesling, C.; Simon, F.; Bonis, J.; Bouquet, B.; Callier, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Faucci Giannelli, M.; Fleury, J.; Li, H.; Martin-Chassard, G.; Richard, F.; de La Taille, Ch.; Pöschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.; Anduze, M.; Boudry, V.; Brient, J.-C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Marcisovsky, M.; Sicho, P.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Calice Collaboration

    2011-10-01

    Application Specific Integrated Circuits, ASICs, similar to those envisaged for the readout electronics of the central calorimeters of detectors for a future lepton collider have been exposed to high-energy electromagnetic showers. A salient feature of these calorimeters is that the readout electronics will be embedded into the calorimeter layers. In this article it is shown that interactions of shower particles in the volume of the readout electronics do not alter the noise pattern of the ASICs. No signal at or above the MIP level has been observed during the exposure. The upper limit at the 95% confidence level on the frequency of fake signals is smaller than 1×10-5 for a noise threshold of about 60% of a MIP. For ASICs with similar design to those which were tested, it can thus be largely excluded that the embedding of the electronics into the calorimeter layers compromises the performance of the calorimeters.

  9. Unveiling the proton spin decomposition at a future electron-ion collider

    DOE PAGES

    Aschenauer, Elke C.; Sassot, Rodolfo; Stratmann, Marco

    2015-11-24

    We present a detailed assessment of how well a future electron-ion collider could constrain helicity parton distributions in the nucleon and, therefore, unveil the role of the intrinsic spin of quarks and gluons in the proton’s spin budget. Any remaining deficit in this decomposition will provide the best indirect constraint on the contribution due to the total orbital angular momenta of quarks and gluons. Specifically, all our studies are performed in the context of global QCD analyses based on realistic pseudodata and in the light of the most recent data obtained from polarized proton-proton collisions at BNL-RHIC that have providedmore » evidence for a significant gluon polarization in the accessible, albeit limited range of momentum fractions. We also present projections on what can be achieved on the gluon’s helicity distribution by the end of BNL-RHIC operations. As a result, all estimates of current and projected uncertainties are performed with the robust Lagrange multiplier technique.« less

  10. Development of superconducting links for the Large Hadron Collider machine

    NASA Astrophysics Data System (ADS)

    Ballarino, Amalia

    2014-04-01

    In the framework of the upgrade of the Large Hadron Collider (LHC) machine, new superconducting lines are being developed for the feeding of the LHC magnets. The proposed electrical layout envisages the location of the power converters in surface buildings, and the transfer of the current from the surface to the LHC tunnel, where the magnets are located, via superconducting links containing tens of cables feeding different circuits and transferring altogether more than 150 kA. Depending on the location, the links will have a length ranging from 300 m to 500 m, and they will span a vertical distance of about 80 m. An overview of the R&D program that has been launched by CERN is presented, with special attention to the development of novel types of cables made from MgB2 and high temperature superconductors (Bi-2223 and REBCO) and to the results of the tests performed on prototype links. Plans for future activities are presented, together with a timeline for potential future integration in the LHC machine.

  11. Cancellations Between Two-Loop Contributions to the Electron Electric Dipole Moment with a CP-Violating Higgs Sector.

    PubMed

    Bian, Ligong; Liu, Tao; Shu, Jing

    2015-07-10

    We present a class of cancellation conditions for suppressing the total contributions of Barr-Zee diagrams to the electron electric dipole moment (eEDM). Such a cancellation is of particular significance after the new eEDM upper limit was released by the ACME Collaboration, which strongly constrains the allowed magnitude of CP violation in Higgs couplings and hence the feasibility of electroweak baryogenesis (EWBG). Explicitly, if both the CP-odd Higgs-photon-photon (Z boson) and the CP-odd Higgs-electron-positron couplings are turned on, a cancellation may occur either between the contributions of a CP-mixing Higgs boson, with the other Higgs bosons being decoupled, or between the contributions of CP-even and CP-odd Higgs bosons. With a cancellation, large CP violation in the Higgs sector is still allowed, yielding successful EWBG. The reopened parameter regions would be probed by future neutron, mercury EDM measurements, and direct measurements of Higgs CP properties at the Large Hadron Collider Run II and future colliders.

  12. High-quality electron beam generation in a proton-driven hollow plasma wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Li, Y.; Xia, G.; Lotov, K. V.; Sosedkin, A. P.; Hanahoe, K.; Mete-Apsimon, O.

    2017-10-01

    Simulations of proton-driven plasma wakefield accelerators have demonstrated substantially higher accelerating gradients compared to conventional accelerators and the viability of accelerating electrons to the energy frontier in a single plasma stage. However, due to the strong intrinsic transverse fields varying both radially and in time, the witness beam quality is still far from suitable for practical application in future colliders. Here we demonstrate the efficient acceleration of electrons in proton-driven wakefields in a hollow plasma channel. In this regime, the witness bunch is positioned in the region with a strong accelerating field, free from plasma electrons and ions. We show that the electron beam carrying the charge of about 10% of 1 TeV proton driver charge can be accelerated to 0.6 TeV with a preserved normalized emittance in a single channel of 700 m. This high-quality and high-charge beam may pave the way for the development of future plasma-based energy frontier colliders.

  13. Hearing the signal of dark sectors with gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Jaeckel, Joerg; Khoze, Valentin V.; Spannowsky, Michael

    2016-11-01

    Motivated by advanced LIGO (aLIGO)'s recent discovery of gravitational waves, we discuss signatures of new physics that could be seen at ground- and space-based interferometers. We show that a first-order phase transition in a dark sector would lead to a detectable gravitational wave signal at future experiments, if the phase transition has occurred at temperatures few orders of magnitude higher than the electroweak scale. The source of gravitational waves in this case is associated with the dynamics of expanding and colliding bubbles in the early universe. At the same time we point out that topological defects, such as dark sector domain walls, may generate a detectable signal already at aLIGO. Both bubble and domain-wall scenarios are sourced by semiclassical configurations of a dark new physics sector. In the first case, the gravitational wave signal originates from bubble wall collisions and subsequent turbulence in hot plasma in the early universe, while the second case corresponds to domain walls passing through the interferometer at present and is not related to gravitational waves. We find that aLIGO at its current sensitivity can detect smoking-gun signatures from domain-wall interactions, while future proposed experiments including the fifth phase of aLIGO at design sensitivity can probe dark sector phase transitions.

  14. Proposed studies of strongly coupled plasmas at the future FAIR and LHC facilities: the HEDgeHOB collaboration

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Lomonosov, I. V.; Shutov, A.; Udrea, S.; Deutsch, C.; Fortov, V. E.; Gryaznov, V.; Hoffmann, D. H. H.; Jacobi, J.; Kain, V.; Kuster, M.; Ni, P.; Piriz, A. R.; Schmidt, R.; Spiller, P.; Varentsov, D.; Zioutas, K.

    2006-04-01

    Detailed theoretical studies have shown that intense heavy-ion beams that will be generated at the future Facility for Antiprotons and Ion Research (FAIR) (Henning 2004 Nucl. Instrum. Methods B 214 211) at Darmstadt will be a very efficient tool to create high-energy-density (HED) states in matter including strongly coupled plasmas. In this paper we show, with the help of two-dimensional numerical simulations, the interesting physical states that can be achieved considering different beam intensities using zinc as a test material. Another very interesting experiment that can be performed using the intense heavy-ion beam at FAIR will be generation of low-entropy compression of a test material such as hydrogen that is enclosed in a cylindrical shell of a high-Z material such as lead or gold. In such an experiment, one can study the problem of hydrogen metallization and the interiors of giant planets. Moreover, we discuss an interesting method to diagnose the HED matter that is at the centre of the Sun. We have also carried out simulations to study the damage caused by the full impact of the Large Hadron Collider (LHC) beam on a superconducting magnet. An interesting outcome of this study is that the LHC beam can induce HED states in matter.

  15. Solid-on-solid contact in a sphere-wall collision in a viscous fluid

    NASA Astrophysics Data System (ADS)

    Birwa, Sumit Kumar; Rajalakshmi, G.; Govindarajan, Rama; Menon, Narayanan

    2018-04-01

    We study experimentally the collision between a sphere falling through a viscous fluid and a solid plate below. It is known that there is a well-defined threshold Stokes number above which the sphere rebounds from such a collision. Our experiment tests for direct contact between the colliding bodies and, contrary to prior theoretical predictions, shows that solid-on-solid contact occurs even for Stokes numbers just above the threshold for rebounding. The dissipation is fluid dominated, though details of the contact mechanics depend on the surface and bulk properties of the solids. Our experiments and a model calculation indicate that mechanical contact between the two colliding objects is generic and will occur for any realistic surface roughness.

  16. Dark sequential Z ' portal: Collider and direct detection experiments

    NASA Astrophysics Data System (ADS)

    Arcadi, Giorgio; Campos, Miguel D.; Lindner, Manfred; Masiero, Antonio; Queiroz, Farinaldo S.

    2018-02-01

    We revisit the status of a Majorana fermion as a dark matter candidate when a sequential Z' gauge boson dictates the dark matter phenomenology. Direct dark matter detection signatures rise from dark matter-nucleus scatterings at bubble chamber and liquid xenon detectors, and from the flux of neutrinos from the Sun measured by the IceCube experiment, which is governed by the spin-dependent dark matter-nucleus scattering. On the collider side, LHC searches for dilepton and monojet + missing energy signals play an important role. The relic density and perturbativity requirements are also addressed. By exploiting the dark matter complementarity we outline the region of parameter space where one can successfully have a Majorana dark matter particle in light of current and planned experimental sensitivities.

  17. Autonomous collision avoidance system by combined control of steering and braking using geometrically optimised vehicular trajectory

    NASA Astrophysics Data System (ADS)

    Hayashi, Ryuzo; Isogai, Juzo; Raksincharoensak, Pongsathorn; Nagai, Masao

    2012-01-01

    This study proposes an autonomous obstacle avoidance system not only by braking but also by steering, as one of the active safety technologies to prevent traffic accidents. The proposed system prevents the vehicle from colliding with a moving obstacle like a pedestrian jumping out from the roadside. In the proposed system, to avoid the predicted colliding position based on constant-velocity obstacle motion assumption, the avoidance trajectory is derived as connected two identical arcs. The system then controls the vehicle autonomously by the combined control of the braking and steering systems. In this paper, the proposed system is examined by real car experiments and its effectiveness is shown from the results of the experiments.

  18. An Experimental Review on Heavy-Flavor v 2 in Heavy-Ion Collision

    DOE PAGES

    Nasim, Md.; Esha, Roli; Huang, Huan Zhong

    2016-01-01

    For overmore » a decade now, the primary purpose of relativistic heavy-ion collisions at the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC) has been to study the properties of QCD matter under extreme conditions—high temperature and high density. The heavy-ion experiments at both RHIC and LHC have recorded a wealth of data in p+p, p+Pb, d+Au, Cu+Cu, Cu+Au, Au+Au, Pb+Pb, and U+U collisions at energies ranging from s N N = 7.7  GeV to 7 TeV. Heavy quarks are considered good probe to study the QCD matter created in relativistic collisions due to their very large mass and other unique properties. A precise measurement of various properties of heavy-flavor hadrons provides an insight into the fundamental properties of the hot and dense medium created in these nucleus-nucleus collisions, such as transport coefficient and thermalization and hadronization mechanisms. The main focus of this paper is to present a review on the measurements of azimuthal anisotropy of heavy-flavor hadrons and to outline the scientific opportunities in this sector due to future detector upgrade. We will mainly discuss the elliptic flow of open charmed meson ( D -meson), J / ψ , and leptons from heavy-flavor decay at RHIC and LHC energy.« less

  19. The unnatural composite Higgs

    DOE PAGES

    Barnard, James; Gherghetta, Tony; Ray, Tirtha Sankar; ...

    2015-01-14

    Composite Higgs models can trivially satisfy precision-electroweak and flavour constraints by simply having a large spontaneous symmetry breaking scale, f ≳ 10 TeV. This produces a ‘split’ spectrum, where the strong sector resonances have masses greater than 10 TeV and are separated from the pseudo Nambu-Goldstone bosons, which remain near the electroweak scale. Even though a tuning of order 10 –4 is required to obtain the observed Higgs boson mass, the big hierarchy problem remains mostly solved. Intriguingly, models with a fully-composite right-handed top quark also exhibit improved gauge coupling unification. By restricting ourselves to models which preserve these featuresmore » we find that the symmetry breaking scale cannot be arbitrarily raised, leading to an upper bound f ≲ 100-1000 TeV. This implies that the resonances may be accessible at future colliders, or indirectly via rare-decay experiments. Dark matter is identified with a pseudo Nambu-Goldstone boson, and we show that the smallest coset space containing a stable, scalar singlet and an unbroken SU(5) symmetry is SU(7)/SU(6) × U(1). The colour-triplet pseudo Nambu-Goldstone boson also contained in this coset space is metastable due to a residual symmetry. Furthermore, it can decay via a displaced vertex when produced at colliders, leading to a distinctive signal of unnaturalness.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, J.; Herner, K.; Jayatilaka, B.

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and DO experiments each have nearly 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 or beyond. To achieve this, we are implementing a system that utilizes virtualization, automated validation, and migration to new standards in bothmore » software and data storage technology as well as leveraging resources available from currently-running experiments at Fermilab. Furthermore, these efforts will provide useful lessons in ensuring long-term data access for numerous experiments throughout high-energy physics, and provide a roadmap for high-quality scientific output for years to come.« less

  1. Results of a higgs boson searches in the ATLAS and CMS experiments at the large hadron collider at energies 7 and 8 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artamonov, A. A.; Epshteyn, V. S.; Gavrilov, V. B.

    2016-05-15

    Recent achievements of the ATLAS and CMS experiments at the Large Hadron Collider searching for a Higgs boson are summarized. A new particle with the mass of 125 GeV and properties expected for the Standard Model Higgs boson was discovered three years ago in these experiments in proton-proton collisions when analyzing part of the data taken at the centre-of-mass energies 7 TeV and 8 TeV in 2011 and 2012 year exposures. Today all the data are processed and fully analyzed. Experimental results of studies of individual Higgs boson decay channels as well as their combination to extract such properties asmore » mass, signal strength, coupling constants, spin and parity are reviewed. All experimental results are found to be compatible with the Standard Model predictions.« less

  2. Data preservation at the Fermilab Tevatron

    DOE PAGES

    Amerio, S.; Behari, S.; Boyd, J.; ...

    2017-01-22

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and D0 experiments each have approximately 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 and beyond. To achieve this goal, we have implemented a system that utilizes virtualization, automated validation, and migration to new standards inmore » both software and data storage technology and leverages resources available from currently-running experiments at Fermilab. Lastly, these efforts have also provided useful lessons in ensuring long-term data access for numerous experiments, and enable high-quality scientific output for years to come.« less

  3. Data preservation at the Fermilab Tevatron

    DOE PAGES

    Boyd, J.; Herner, K.; Jayatilaka, B.; ...

    2015-12-23

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and DO experiments each have nearly 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 or beyond. To achieve this, we are implementing a system that utilizes virtualization, automated validation, and migration to new standards in bothmore » software and data storage technology as well as leveraging resources available from currently-running experiments at Fermilab. Furthermore, these efforts will provide useful lessons in ensuring long-term data access for numerous experiments throughout high-energy physics, and provide a roadmap for high-quality scientific output for years to come.« less

  4. Learning to visually perceive the relative mass of colliding balls in globally and locally constrained task ecologies.

    PubMed

    Jacobs, D M; Runeson, S; Michaels, C F

    2001-10-01

    Novice observers differ from each other in the kinematic variables they use for the perception of kinetic properties, but they converge on more useful variables after practice with feedback. The colliding-balls paradigm was used to investigate how the convergence depends on the relations between the candidate variables and the to-be-perceived property, relative mass. Experiment 1 showed that observers do not change in the variables they use if the variables with which they start allow accurate performance. Experiment 2 showed that, at least for some observers, convergence can be facilitated by reducing the correlations between commonly used nonspecifying variables and relative mass but not by keeping those variables constant. Experiments 3a and 3b further demonstrated that observers learn not to rely on a particular nonspecifying variable if the correlation between that variable and relative mass is reduced.

  5. Data preservation at the Fermilab Tevatron

    NASA Astrophysics Data System (ADS)

    Boyd, J.; Herner, K.; Jayatilaka, B.; Roser, R.; Sakumoto, W.

    2015-12-01

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and DO experiments each have nearly 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 or beyond. To achieve this, we are implementing a system that utilizes virtualization, automated validation, and migration to new standards in both software and data storage technology as well as leveraging resources available from currently-running experiments at Fermilab. These efforts will provide useful lessons in ensuring long-term data access for numerous experiments throughout high-energy physics, and provide a roadmap for high-quality scientific output for years to come.

  6. Static beam-based alignment for the Ring-To-Main-Linac of the Compact Linear Collider

    NASA Astrophysics Data System (ADS)

    Han, Y.; Latina, A.; Ma, L.; Schulte, D.

    2017-06-01

    The Compact Linear Collider (CLIC) is a future multi-TeV collider for the post-Large Hadron Collider era. It features high-gradient acceleration and ultra-low emittance to achieve its ambitious goals of high collision energy and peak luminosity. Beam-based alignment (BBA) techniques are mandatory for CLIC to preserve the ultra-low emittances from the damping rings to the interaction point. In this paper, a detailed study of BBA techniques has been carried out for the entire 27 km long ``Ring-To-Main-Linac'' (RTML) section of the CLIC, to correct realistic static errors such as element position offsets, angle, magnetic strength and dynamic magnetic centre shifts. The correction strategy is proved to be very effective and leads to a relaxation of the pre-alignment tolerances for the component installation in the tunnel. This is the first time such a large scale and complex lattice has been corrected to match the design budgets. The techniques proposed could be applied to similarly sized facilities, such as the International Linear Collider, where a similar RTML section is used, or free-electron lasers, which, being equipped with linacs and bunch compressors, present challenges similar to those of the CLIC RTML. Moreover, a new technique is investigated for the emittance tuning procedure: the direct measurement of the interactions between the beams and a set of a few consecutive laser wires. The speed of this technique can be faster comparing to the traditional techniques based on emittance reconstructed from beam size measurements at several positions.

  7. Status of the NICA project at JINR

    NASA Astrophysics Data System (ADS)

    Kekelidze, Vladimir; Kovalenko, Alexandr; Lednicky, Rihard; Matveev, Viktor; Meshkov, Igor; Sorin, Alexandr; Trubnikov, Grigory

    2017-03-01

    The NICA (Nuclotron-based Ion Collider fAcility) project is now under active realization at the Joint Institute for Nuclear Research (JINR, Dubna). The main goal of the project is a study of hot and dense strongly interacting matter in heavy-ion (up to Au) collisions at the center-of-mass energies up to 11 GeV per nucleon. Two modes of operation are foreseen, collider mode and extracted beams, with two detectors: MPD and BM@N. The both experiments are in preparation stage. An average luminosity in the collider mode is expected to be 1027 cm-2 s-1 for Au (79+). Extracted beams of various nuclei with maximum momenta of 13 GeV/c (for protons) will be available. A study of spin physics with extracted and colliding beams of polarized deuterons and protons at energies up to 27 GeV (for protons) is foreseen with the NICA facility. The proposed program allows one to search for possible signs of phase transitions and critical phenomena as well as to shed light on the problem of the nucleon spin structure.

  8. Acceleration of polarized protons and deuterons in the ion collider ring of JLEIC

    NASA Astrophysics Data System (ADS)

    Kondratenko, A. M.; Kondratenko, M. A.; Filatov, Yu N.; Derbenev, Ya S.; Lin, F.; Morozov, V. S.; Zhang, Y.

    2017-07-01

    The figure-8-shaped ion collider ring of Jefferson Lab Electron-Ion Collider (JLEIC) is transparent to the spin. It allows one to preserve proton and deuteron polarizations using weak stabilizing solenoids when accelerating the beam up to 100 GeV/c. When the stabilizing solenoids are introduced into the collider’s lattice, the particle spins precess about a spin field, which consists of the field induced by the stabilizing solenoids and the zero-integer spin resonance strength. During acceleration of the beam, the induced spin field is maintained constant while the resonance strength experiences significant changes in the regions of “interference peaks”. The beam polarization depends on the field ramp rate of the arc magnets. Its component along the spin field is preserved if acceleration is adiabatic. We present the results of our theoretical analysis and numerical modeling of the spin dynamics during acceleration of protons and deuterons in the JLEIC ion collider ring. We demonstrate high stability of the deuteron polarization in figure-8 accelerators. We analyze a change in the beam polarization when crossing the transition energy.

  9. Cornering pseudoscalar-mediated dark matter with the LHC and cosmology

    NASA Astrophysics Data System (ADS)

    Banerjee, Shankha; Barducci, Daniele; Bélanger, Geneviève; Fuks, Benjamin; Goudelis, Andreas; Zaldivar, Bryan

    2017-07-01

    Models in which dark matter particles communicate with the visible sector through a pseudoscalar mediator are well-motivated both from a theoretical and from a phenomenological standpoint. With direct detection bounds being typically subleading in such scenarios, the main constraints stem either from collider searches for dark matter, or from indirect detection experiments. However, LHC searches for the mediator particles themselves can not only compete with — or even supersede — the reach of direct collider dark matter probes, but they can also test scenarios in which traditional monojet searches become irrelevant, especially when the mediator cannot decay on-shell into dark matter particles or its decay is suppressed. In this work we perform a detailed analysis of a pseudoscalar-mediated dark matter simplified model, taking into account a large set of collider constraints and concentrating on the parameter space regions favoured by cos-mological and astrophysical data. We find that mediator masses above 100-200 GeV are essentially excluded by LHC searches in the case of large couplings to the top quark, while forthcoming collider and astrophysical measurements will further constrain the available parameter space.

  10. Managing operational documentation in the ALICE Detector Control System

    NASA Astrophysics Data System (ADS)

    Lechman, M.; Augustinus, A.; Bond, P.; Chochula, P.; Kurepin, A.; Pinazza, O.; Rosinsky, P.

    2012-12-01

    ALICE (A Large Ion Collider Experiment) is one of the big LHC (Large Hadron Collider) experiments at CERN in Geneve, Switzerland. The experiment is composed of 18 sub-detectors controlled by an integrated Detector Control System (DCS) that is implemented using the commercial SCADA package PVSSII. The DCS includes over 1200 network devices, over 1,000,000 monitored parameters and numerous custom made software components that are prepared by over 100 developers from all around the world. This complex system is controlled by a single operator via a central user interface. One of his/her main tasks is the recovery of anomalies and errors that may occur during operation. Therefore, clear, complete and easily accessible documentation is essential to guide the shifter through the expert interfaces of different subsystems. This paper describes the idea of the management of the operational documentation in ALICE using a generic repository that is built on a relational database and is integrated with the control system. The experience gained and the conclusions drawn from the project are also presented.

  11. Astrophysical particle acceleration mechanisms in colliding magnetized laser-produced plasmas

    DOE PAGES

    Fox, W.; Park, J.; Deng, W.; ...

    2017-08-11

    Significant particle energization is observed to occur in numerous astrophysical environments, and in the standard models, this acceleration occurs alongside energy conversion processes including collisionless shocks or magnetic reconnection. Recent platforms for laboratory experiments using magnetized laser-produced plasmas have opened opportunities to study these particle acceleration processes in the laboratory. Through fully kinetic particle-in-cell simulations, we investigate acceleration mechanisms in experiments with colliding magnetized laser-produced plasmas, with geometry and parameters matched to recent high-Mach number reconnection experiments with externally controlled magnetic fields. 2-D simulations demonstrate significant particle acceleration with three phases of energization: first, a “direct” Fermi acceleration driven bymore » approaching magnetized plumes; second, x-line acceleration during magnetic reconnection of anti-parallel fields; and finally, an additional Fermi energization of particles trapped in contracting and relaxing magnetic islands produced by reconnection. Furthermore, the relative effectiveness of these mechanisms depends on plasma and magnetic field parameters of the experiments.« less

  12. Large-Grain Superconducting Gun Cavity Testing Program Phase One Closing Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammons, L.; Bellavia, S.; Belomestnykh, S.

    2013-10-31

    This report details the experimental configuration and RF testing results for the first phase of a large-grained niobium electron gun cavity testing program being conducted in the Small Vertical Testing Facility in the Collider-Accelerator Department. This testing is meant to explore multi-pacting in the cavity and shed light on the behavior of a counterpart cavity of identical geometry installed in the Energy Recovery LINAC being constructed in the Collider-Accelerator Department at Brookhaven National Laboratory. This test found that the Q of the large-grained cavity at 4 K reached ~6.5 × 10 8 and at 2 K reached a value ofmore » ~6 × 10 9. Both of these values are about a factor of 10 lower than would be expected for this type of cavity given the calculated surface resistance and the estimated geometry factor for this half-cell cavity. In addition, the cavity reached a peak voltage of 0.6 MV before there was sig-nificant decline in the Q value and a substantial increase in field emission. This relatively low volt-age, coupled with the low Q and considerable field emission suggest contamination of the cavity interior, possibly during experimental assembly. The results may also suggest that additional chemical etching of the interior surface of the cavity may be beneficial. Throughout the course of testing, various challenges arose including slow helium transfer to the cryostat and cable difficulties. These difficulties and others were eventually resolved, and the re-port discusses the operating experience of the experiment thus far and the plans for future work aimed at exploring the nature of multipacting with a copper cathode inserted into the cavity.« less

  13. Higgs Boson Searches at Hadron Colliders (1/4)

    ScienceCinema

    Jakobs, Karl

    2018-05-21

    In these Academic Training lectures, the phenomenology of Higgs bosons and search strategies at hadron colliders are discussed. After a brief introduction on Higgs bosons in the Standard Model and a discussion of present direct and indirect constraints on its mass the status of the theoretical cross section calculations for Higgs boson production at hadron colliders is reviewed. In the following lectures important experimental issues relevant for Higgs boson searches (trigger, measurements of leptons, jets and missing transverse energy) are presented. This is followed by a detailed discussion of the discovery potential for the Standard Model Higgs boson for both the Tevatron and the LHC experiments. In addition, various scenarios beyond the Standard Model, primarily the MSSM, are considered. Finally, the potential and strategies to measured Higgs boson parameters and the investigation of alternative symmetry breaking scenarios are addressed.

  14. CCD developments for particle colliders

    NASA Astrophysics Data System (ADS)

    Stefanov, Konstantin D.

    2006-09-01

    Charge Coupled Devices (CCDs) have been successfully used in several high-energy physics experiments over the last 20 years. Their small pixel size and excellent precision provide superb tool for studying of short-lived particles and understanding the nature at fundamental level. Over the last years the Linear Collider Flavour Identification (LCFI) collaboration has developed Column-Parallel CCDs (CPCCD) and CMOS readout chips to be used for the vertex detector at the International Linear Collider (ILC). The CPCCDs are very fast devices capable of satisfying the challenging requirements imposed by the beam structure of the superconducting accelerator. First set of prototype devices have been designed, manufactured and successfully tested, with second-generation chips on the way. Another idea for CCD-based device, the In-situ Storage Image Sensor (ISIS) is also under development and the first prototype is in production.

  15. Gridded thermionic gun and integral superconducting ballistic bunch compression cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultheiss, Thomas

    Electron-Ion colliders such as the Medium energy Electron Ion Collider (MEIC) being developed by JLAB require high current electrons with low energy spread for electron cooling of the collider ring. Accelerator techniques for improving bunch charge, average current, emittance, and energy spread are required for Energy Recovery Linacs (ERLs) and Circulator Rings (CR) for next generation colliders for nuclear physics experiments. Example candidates include thermionic-cathode electron guns with RF accelerating structures. Thermionic cathodes are known to produce high currents and have excellent lifetime. The success of the IR and THz Free-Electron Laser (FEL) designed and installed by Advanced Energy Systemsmore » at the Fritz Haber Institute (FHI) of the Max Planck Society in Berlin [1,2] demonstrates that gridded thermionic cathodes and rf systems be considered for next generation collider technology. In Phase 1 Advanced Energy Systems (AES) developed and analyzed a design concept using a superconducting cavity pair and gridded thermionic cathode. Analysis included Beam Dynamics and thermal analysis to show that a design of this type is feasible. The latest design goals for the MEIC electron cooler were for electron bunches of 420 pC at a frequency of 952.6 MHz with a magnetic field on the cathode of 2kG. This field magnetizes the beam imparting angular momentum that provides for helical motion of the electrons in the cooling solenoid. The helical motion increases the interaction time and improves the cooling efficiency. A coil positioned around the cathode providing 2kG field was developed. Beam dynamics simulations were run to develop the particle dynamics near the cathode and grid. Lloyd Young added capability to Tstep to include space charge effects between two plates and include image charge effects from the grid. He also added new pepper-pot geometry capability to account for honeycomb grids. These additions were used to develop the beam dynamics for this gun. The general design is a modified ballistic compression cavity pair with two independently powered cells [3]. The first is a cathode cell that includes the thermionic cathode and grid to provide for beam bunching. The second is a full cell with independent phasing and field levels designed to minimize energy spread. The primary goal for Phase II is to manufacture a superconducting gun with a thermionic cathode and imbedded coil. The system developed here is applicable to many high current electron accelerators. The analysis and design constraints imposed by the magnetized cathode make the cathode system developed here more complicated and limited than one without the magnetized beam constraints. High power ERLs would benefit by a gun with the capabilities shown here, 400 mA or more of current. ERLs hold great promise for electron cooling experiments, advanced light sources and Free Electron Lasers. This high current electron injector is a technological advance that will place the requirements for an ERL capable of providing quality bunches needed for cooling within the MEIC circulator ring within reach. This injector would have application to future ERLs around the world.« less

  16. Improved Monte Carlo Glauber predictions at present and future nuclear colliders

    NASA Astrophysics Data System (ADS)

    Loizides, Constantin; Kamin, Jason; d'Enterria, David

    2018-05-01

    We present the results of an improved Monte Carlo Glauber (MCG) model of relevance for collisions involving nuclei at center-of-mass energies of the BNL Relativistic Heavy Ion Collider (√{sNN}=0.2 TeV), CERN Large Hadron Collider (LHC) (√{sNN}=2.76 -8.8 TeV ), and proposed future hadron colliders (√{sNN}≈10 -63 TeV). The inelastic p p cross sections as a function of √{sNN} are obtained from a precise data-driven parametrization that exploits the many available measurements at LHC collision energies. We describe the nuclear density of a lead nucleus with two separated two-parameter Fermi distributions for protons and neutrons to account for their different densities close to the nuclear periphery. Furthermore, we model the nucleon degrees of freedom inside the nucleus through a lattice with a minimum nodal separation, combined with a "recentering and reweighting" procedure, that overcomes some limitations of previous MCG approaches. The nuclear overlap function, number of participant nucleons and binary nucleon-nucleon collisions, participant eccentricity and triangularity, overlap area, and average path length are presented in intervals of percentile centrality for lead-lead (PbPb) and proton-lead (p Pb ) collisions at all collision energies. We demonstrate for collisions at √{sNN}=5.02 TeV that the central values of the Glauber quantities change by up to 7% in a few bins of reaction centrality, due to the improvements implemented, though typically they remain within the previously assigned systematic uncertainties, while their new associated uncertainties are generally smaller (mostly below 5%) at all centralities than for earlier calculations. Tables for all quantities versus centrality at present and foreseen collision energies involving Pb nuclei, as well as for collisions of XeXe at √{sNN}=5.44 TeV , and AuAu and CuCu at √{sNN}=0.2 TeV , are provided. The source code for the improved Monte Carlo Glauber model is made publicly available.

  17. Physics at the [Formula: see text] linear collider.

    PubMed

    Moortgat-Pick, G; Baer, H; Battaglia, M; Belanger, G; Fujii, K; Kalinowski, J; Heinemeyer, S; Kiyo, Y; Olive, K; Simon, F; Uwer, P; Wackeroth, D; Zerwas, P M; Arbey, A; Asano, M; Bagger, J; Bechtle, P; Bharucha, A; Brau, J; Brümmer, F; Choi, S Y; Denner, A; Desch, K; Dittmaier, S; Ellwanger, U; Englert, C; Freitas, A; Ginzburg, I; Godfrey, S; Greiner, N; Grojean, C; Grünewald, M; Heisig, J; Höcker, A; Kanemura, S; Kawagoe, K; Kogler, R; Krawczyk, M; Kronfeld, A S; Kroseberg, J; Liebler, S; List, J; Mahmoudi, F; Mambrini, Y; Matsumoto, S; Mnich, J; Mönig, K; Mühlleitner, M M; Pöschl, R; Porod, W; Porto, S; Rolbiecki, K; Schmitt, M; Serpico, P; Stanitzki, M; Stål, O; Stefaniak, T; Stöckinger, D; Weiglein, G; Wilson, G W; Zeune, L; Moortgat, F; Xella, S; Bagger, J; Brau, J; Ellis, J; Kawagoe, K; Komamiya, S; Kronfeld, A S; Mnich, J; Peskin, M; Schlatter, D; Wagner, A; Yamamoto, H

    A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

  18. When Rubrics Collide: One Undergraduate Writing Tutor's Experience Negotiating Faculty and Institutional Assessments

    ERIC Educational Resources Information Center

    Martin, Kelli

    2013-01-01

    This article recounts one undergraduate writing tutor's experience helping a fellow peer navigate an institutional assessment rubric that seemed to contrast the assessment criteria provided by the student's instructor. This article presents a reflection on that experience, framed by Hutchings, Huber, and Ciccone's (2011) work on…

  19. Memory for Pro-Social Intentions: When Competing Motives Collide

    ERIC Educational Resources Information Center

    Brandimonte, Maria A.; Ferrante, Donatella; Bianco, Carmela; Villani, Maria Grazia

    2010-01-01

    Memory for future actions, or "prospective memory" (PM), often involves remembering to do things "for others". The present article explores the motivational mechanisms underlying memory for pro-social intentions through the manipulation of the social relevance of goals and presence of material rewards during an activity-based PM task. Results…

  20. When worlds collide: medicine, business, the Affordable Care Act and the future of health care in the U.S.

    PubMed

    Wicks, Andrew C; Keevil, Adrian A C

    2014-01-01

    The dialogue about the future of health care in the US has been impeded by flawed conceptions about medicine and business. The present paper re-examines some of the underlying assumptions about both medicine and business, and uses more nuanced readings of both terms to frame debates about the ACA and the emerging health care environment. © 2014 American Society of Law, Medicine & Ethics, Inc.

  1. Deep Inelastic Lepton-Nucleon Scattering at Hera

    NASA Astrophysics Data System (ADS)

    Newman, P.

    2004-02-01

    Data from the HERA collider experiments, HI and ZEUS, have been fundamental to the rapid recent development of our understanding of the partonic composition of the proton and of QCD. This report focuses on inclusive measurements of neutral and charged current cross sections at HERA, using the full available data taken to date. The present precision on the proton parton densities and the further requirements for future measurements at the Teva-tron and LHC are explored. Emphasis is also placed on the region of very low Bjorken-x and Q2. In this region, the `confinement'transition takes place from partons to hadrons as the relevant degrees of freedom and novel or exotic QCD effects associated with large parton densities are most likely to be observed. Finally, prospects for the second phase of HERA running are discussed.

  2. Mechanism for thermal relic dark matter of strongly interacting massive particles.

    PubMed

    Hochberg, Yonit; Kuflik, Eric; Volansky, Tomer; Wacker, Jay G

    2014-10-24

    We present a new paradigm for achieving thermal relic dark matter. The mechanism arises when a nearly secluded dark sector is thermalized with the standard model after reheating. The freeze-out process is a number-changing 3→2 annihilation of strongly interacting massive particles (SIMPs) in the dark sector, and points to sub-GeV dark matter. The couplings to the visible sector, necessary for maintaining thermal equilibrium with the standard model, imply measurable signals that will allow coverage of a significant part of the parameter space with future indirect- and direct-detection experiments and via direct production of dark matter at colliders. Moreover, 3→2 annihilations typically predict sizable 2→2 self-interactions which naturally address the "core versus cusp" and "too-big-to-fail" small-scale structure formation problems.

  3. Mixed dark matter in left-right symmetric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlin, Asher; Fox, Patrick J.; Hooper, Dan

    Motivated by the recently reported diboson and dijet excesses in Run 1 data at ATLAS and CMS, we explore models of mixed dark matter in left-right symmetric theories. In this study, we calculate the relic abundance and the elastic scattering cross section with nuclei for a number of dark matter candidates that appear within the fermionic multiplets of left-right symmetric models. In contrast to the case of pure multiplets, WIMP-nucleon scattering proceeds at tree-level, and hence the projected reach of future direct detection experiments such as LUX-ZEPLIN and XENON1T will cover large regions of parameter space for TeV-scale thermal darkmore » matter. Decays of the heavy charged W' boson to particles in the dark sector can potentially shift the right-handed gauge coupling to larger values when fixed to the rate of the Run 1 excesses, moving towards the theoretically attractive scenario, g R = g L. Furthermore, this region of parameter space may be probed by future collider searches for new Higgs bosons or electroweak fermions.« less

  4. Mixed dark matter in left-right symmetric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlin, Asher; Fox, Patrick J.; Hooper, Dan

    Motivated by the recently reported diboson and dijet excesses in Run 1 data at ATLAS and CMS, we explore models of mixed dark matter in left-right symmetric theories. In this study, we calculate the relic abundance and the elastic scattering cross section with nuclei for a number of dark matter candidates that appear within the fermionic multiplets of left-right symmetric models. In contrast to the case of pure multiplets, WIMP-nucleon scattering proceeds at tree-level, and hence the projected reach of future direct detection experiments such as LUX-ZEPLIN and XENON1T will cover large regions of parameter space for TeV-scale thermal darkmore » matter. Decays of the heavy charged W{sup ′} boson to particles in the dark sector can potentially shift the right-handed gauge coupling to larger values when fixed to the rate of the Run 1 excesses, moving towards the theoretically attractive scenario, g{sub R}=g{sub L}. This region of parameter space may be probed by future collider searches for new Higgs bosons or electroweak fermions.« less

  5. Mixed dark matter in left-right symmetric models

    DOE PAGES

    Berlin, Asher; Fox, Patrick J.; Hooper, Dan; ...

    2016-06-08

    Motivated by the recently reported diboson and dijet excesses in Run 1 data at ATLAS and CMS, we explore models of mixed dark matter in left-right symmetric theories. In this study, we calculate the relic abundance and the elastic scattering cross section with nuclei for a number of dark matter candidates that appear within the fermionic multiplets of left-right symmetric models. In contrast to the case of pure multiplets, WIMP-nucleon scattering proceeds at tree-level, and hence the projected reach of future direct detection experiments such as LUX-ZEPLIN and XENON1T will cover large regions of parameter space for TeV-scale thermal darkmore » matter. Decays of the heavy charged W' boson to particles in the dark sector can potentially shift the right-handed gauge coupling to larger values when fixed to the rate of the Run 1 excesses, moving towards the theoretically attractive scenario, g R = g L. Furthermore, this region of parameter space may be probed by future collider searches for new Higgs bosons or electroweak fermions.« less

  6. Optimization of the beam crossing angle at the ILC for e+e‑ and γ γ collisions

    NASA Astrophysics Data System (ADS)

    Telnov, V. I.

    2018-03-01

    At this time, the design of the International Linear Collider (ILC) is optimized for e+e‑ collisions; the photon collider (γ γ and >=) is considered as an option. Unexpected discoveries, such as the diphoton excess digamma(750) seen at the LHC, could strongly motivate the construction of a photon collider. In order to enable the γ γ collision option, the ILC design should be compatible with it from the very beginning. In this paper, we discuss the problem of the beam crossing angle. In the ILC technical design [1], this angle is 14 mrad, which is just enough to provide enough space for the final quadrupoles and outgoing beams. For γ γ collisions, the crossing angle must be larger because the low-energy electrons that result from multiple Compton scattering get large disruption angles in collisions with the opposing electron beam and some deflection in the solenoidal detector field. For a 2E0=500 GeV collider, the required crossing angle is about 25 mrad. In this paper, we consider the factors that determine the crossing angle as well as its minimum permissible value that does not yet cause a considerable reduction of the γ γ luminosity. It is shown that the best solution is to increase the laser wavelength from the current 1 μm (which is optimal for 2E0=500 GeV) to 2 μm as this makes possible achieving high γ γ luminosities at a crossing angle of 20 mrad, which is also quite comfortable for e+e‑ collisions, does not cause any degradation of the e+e‑ luminosity and opens the possibility for a more energetic future collider in the same tunnel (e.g., CLIC). Moreover, the 2 μm wavelength is optimal for a 2E0 = 1 TeV collider, e.g., a possible ILC energy upgrade. Please consider this paper an appeal to increase the ILC crossing angle from 14 to 20 mrad.

  7. Evolution of the Virtualized HPC Infrastructure of Novosibirsk Scientific Center

    NASA Astrophysics Data System (ADS)

    Adakin, A.; Anisenkov, A.; Belov, S.; Chubarov, D.; Kalyuzhny, V.; Kaplin, V.; Korol, A.; Kuchin, N.; Lomakin, S.; Nikultsev, V.; Skovpen, K.; Sukharev, A.; Zaytsev, A.

    2012-12-01

    Novosibirsk Scientific Center (NSC), also known worldwide as Akademgorodok, is one of the largest Russian scientific centers hosting Novosibirsk State University (NSU) and more than 35 research organizations of the Siberian Branch of Russian Academy of Sciences including Budker Institute of Nuclear Physics (BINP), Institute of Computational Technologies, and Institute of Computational Mathematics and Mathematical Geophysics (ICM&MG). Since each institute has specific requirements on the architecture of computing farms involved in its research field, currently we've got several computing facilities hosted by NSC institutes, each optimized for a particular set of tasks, of which the largest are the NSU Supercomputer Center, Siberian Supercomputer Center (ICM&MG), and a Grid Computing Facility of BINP. A dedicated optical network with the initial bandwidth of 10 Gb/s connecting these three facilities was built in order to make it possible to share the computing resources among the research communities, thus increasing the efficiency of operating the existing computing facilities and offering a common platform for building the computing infrastructure for future scientific projects. Unification of the computing infrastructure is achieved by extensive use of virtualization technology based on XEN and KVM platforms. This contribution gives a thorough review of the present status and future development prospects for the NSC virtualized computing infrastructure and the experience gained while using it for running production data analysis jobs related to HEP experiments being carried out at BINP, especially the KEDR detector experiment at the VEPP-4M electron-positron collider.

  8. New Models and Methods for the Electroweak Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Linda

    2017-09-26

    This is the Final Technical Report to the US Department of Energy for grant DE-SC0013529, New Models and Methods for the Electroweak Scale, covering the time period April 1, 2015 to March 31, 2017. The goal of this project was to maximize the understanding of fundamental weak scale physics in light of current experiments, mainly the ongoing run of the Large Hadron Collider and the space based satellite experiements searching for signals Dark Matter annihilation or decay. This research program focused on the phenomenology of supersymmetry, Higgs physics, and Dark Matter. The properties of the Higgs boson are currently beingmore » measured by the Large Hadron collider, and could be a sensitive window into new physics at the weak scale. Supersymmetry is the leading theoretical candidate to explain the natural nessof the electroweak theory, however new model space must be explored as the Large Hadron collider has disfavored much minimal model parameter space. In addition the nature of Dark Matter, the mysterious particle that makes up 25% of the mass of the universe is still unknown. This project sought to address measurements of the Higgs boson couplings to the Standard Model particles, new LHC discovery scenarios for supersymmetric particles, and new measurements of Dark Matter interactions with the Standard Model both in collider production and annihilation in space. Accomplishments include new creating tools for analyses of Dark Matter models in Dark Matter which annihilates into multiple Standard Model particles, including new visualizations of bounds for models with various Dark Matter branching ratios; benchmark studies for new discovery scenarios of Dark Matter at the Large Hardon Collider for Higgs-Dark Matter and gauge boson-Dark Matter interactions; New target analyses to detect direct decays of the Higgs boson into challenging final states like pairs of light jets, and new phenomenological analysis of non-minimal supersymmetric models, namely the set of Dirac Gaugino Models.« less

  9. The ATLAS Experiment: Mapping the Secrets of the Universe (LBNL Summer Lecture Series)

    ScienceCinema

    Barnett, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physics Division

    2018-01-12

    Summer Lecture Series 2007: Michael Barnett of Berkeley Lab's Physics Division discusses the ATLAS Experiment at the European Laboratory for Particle Physics' (CERN) Large Hadron Collider. The collider will explore the aftermath of collisions at the highest energy ever produced in the lab, and will recreate the conditions of the universe a billionth of a second after the Big Bang. The ATLAS detector is half the size of the Notre Dame Cathedral and required 2000 physicists and engineers from 35 countries for its construction. Its goals are to examine mini-black holes, identify dark matter, understand antimatter, search for extra dimensions of space, and learn about the fundamental forces that have shaped the universe since the beginning of time and will determine its fate.

  10. Reviews Exhibitions: Collider: Step inside the World's Greatest Experiment Equipment: Hero Steam Turbine Classroom Video: Most of Our Universe is Missing Book: Serving the Reich Book: Breakthrough to CLIL for Physics Book: The Good Research Guide Apps: Popplet Web Watch Apps

    NASA Astrophysics Data System (ADS)

    2014-03-01

    WE RECOMMEND Collider: step inside the world's greatest experiment A great exhibition at the Science Museum in London Hero Steam Turbine Superb engine model gets up to 2500 rpm Most of Our Universe is Missing BBC video explores the dark truth Serving the Reich Science and morality in Nazi Germany The Good Research Guide A non-specialist book for teachers starting out in education research WORTH A LOOK Breakthrough to CLIL for Physics A book based on a physics curriculum for non-English students WEB WATCH Electric cycles online: patterns of use APPS The virtual laboratory advances personal skills

  11. Consideration of Optimal Input on Semi-Active Shock Control System

    NASA Astrophysics Data System (ADS)

    Kawashima, Takeshi

    In press working, unidirectional transmission of mechanical energy is expected in order to maximize the life of the dies. To realize this transmission, the author has developed a shock control system based on the sliding mode control technique. The controller makes a collision-receiving object effectively deform plastically by adjusting the force of the actuator inserted between the colliding objects, while the deformation of the colliding object is held at the necessity minimum. However, the actuator has to generate a large force corresponding to the impulsive force. Therefore, development of such an actuator is a formidable challenge. The author has proposed a semi-active shock control system in which the impulsive force is adjusted by a brake mechanism, although the system exhibits inferior performance. Thus, the author has also designed an actuator using a friction device for semi-active shock control, and proposed an active seatbelt system as an application. The effectiveness has been confirmed by a numerical simulation and model experiment. In this study, the optimal deformation change of the colliding object is theoretically examined in the case that the collision-receiving object has perfect plasticity and the colliding object has perfect elasticity. As a result, the optimal input condition is obtained so that the ratio of the maximum deformation of the collision-receiving object to the maximum deformation of the colliding object becomes the maximum. Additionally, the energy balance is examined.

  12. Observation of genetic relation among new phenomena Geminion, Chiron and mini-Centauro

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The threshold energy problem of exotic type interactions is discussed on the basis of available information from the Chacaltaya emulsion chamber experiment. The genetic hypothesis is proposed as a working hypothesis to explain the discrepancy seen in cosmic ray study and CERN p bar -p collider experiments.

  13. Learning with the ATLAS Experiment at CERN

    ERIC Educational Resources Information Center

    Barnett, R. M.; Johansson, K. E.; Kourkoumelis, C.; Long, L.; Pequenao, J.; Reimers, C.; Watkins, P.

    2012-01-01

    With the start of the LHC, the new particle collider at CERN, the ATLAS experiment is also providing high-energy particle collisions for educational purposes. Several education projects--education scenarios--have been developed and tested on students and teachers in several European countries within the Learning with ATLAS@CERN project. These…

  14. Dense GeV electron–positron pairs generated by lasers in near-critical-density plasmas

    PubMed Central

    Zhu, Xing-Long; Yu, Tong-Pu; Sheng, Zheng-Ming; Yin, Yan; Turcu, Ion Cristian Edmond; Pukhov, Alexander

    2016-01-01

    Pair production can be triggered by high-intensity lasers via the Breit–Wheeler process. However, the straightforward laser–laser colliding for copious numbers of pair creation requires light intensities several orders of magnitude higher than possible with the ongoing laser facilities. Despite the numerous proposed approaches, creating high-energy-density pair plasmas in laboratories is still challenging. Here we present an all-optical scheme for overdense pair production by two counter-propagating lasers irradiating near-critical-density plasmas at only ∼1022 W cm−2. In this scheme, bright γ-rays are generated by radiation-trapped electrons oscillating in the laser fields. The dense γ-photons then collide with the focused counter-propagating lasers to initiate the multi-photon Breit–Wheeler process. Particle-in-cell simulations indicate that one may generate a high-yield (1.05 × 1011) overdense (4 × 1022 cm−3) GeV positron beam using 10 PW scale lasers. Such a bright pair source has many practical applications and could be basis for future compact high-luminosity electron–positron colliders. PMID:27966530

  15. MeRHIC - staging approach to eRHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ptitsyn,V.; Beebe-Wang, J.; Ben-Zvi, I.

    Design of a medium energy electron-ion collider (MeRHIC) is under development at the Collider-Accelerator Department at BNL. The design envisions construction of a 4 GeV electron accelerator in a local area inside and near the RHIC tunnel. Electrons will be produced by a polarized electron source and accelerated in energy recovery linacs. Collisions of the electron beam with 100 GeV/u heavy ions or with 250 GeV polarized protons will be arranged in the existing IP2 interaction region of RHIC. The luminosity of electron-proton collisions at the 10{sup 32} cm{sup -2}s{sup -1} level will be achieved with 50 mA CW electronmore » current and presently available proton beam parameters. Efficient proton beam cooling at collision energy may bring the luminosity to 10{sup 33} cm{sup -2}s{sup -1}. An important feature of MeRHIC is that it serves as a first stage of eRHIC, a future electron-ion collider at BNL with both higher luminosity and energy reach. The majority of MeRHIC accelerator components will be used in eRHIC.« less

  16. hh+ {Jet} production at 100 TeV

    NASA Astrophysics Data System (ADS)

    Banerjee, Shankha; Englert, Christoph; Mangano, Michelangelo L.; Selvaggi, Michele; Spannowsky, Michael

    2018-04-01

    Higgs pair production is a crucial phenomenological process in deciphering the nature of the TeV scale and the mechanism underlying electroweak symmetry breaking. At the Large Hadron Collider, this process is statistically limited. Pushing the energy frontier beyond the LHC's reach will create new opportunities to exploit the rich phenomenology at higher centre-of-mass energies and luminosities. In this work, we perform a comparative analysis of the hh+ {jet} channel at a future 100 TeV hadron collider. We focus on the hh→ b\\bar{b} b\\bar{b} and hh → b\\bar{b} τ ^+τ ^- channels and employ a range of analysis techniques to estimate the sensitivity potential that can be gained by including this jet-associated Higgs pair production to the list of sensitive collider processes in such an environment. In particular, we observe that hh → b\\bar{b} τ ^+τ ^- in the boosted regime exhibits a large sensitivity to the Higgs boson self-coupling and the Higgs self-coupling could be constrained at the 8% level in this channel alone.

  17. Long-lived, colour-triplet scalars from unnaturalness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnard, James; Cox, Peter; Gherghetta, Tony

    We study that long-lived, colour-triplet scalars are a generic prediction of unnatural, or split, composite Higgs models where the spontaneous global-symmetry breaking scale f ≳ 10TeV and an unbroken SU(5) symmetry is preserved. Since the triplet scalars are pseudo Nambu- Goldstone bosons they are split from the much heavier composite-sector resonances and are the lightest exotic, coloured states. This makes them ideal to search for at colliders. Due to discrete symmetries the triplet scalar decays via a dimension-six term and given the large suppression scale f is often metastable. We show that existing searches for collider-stable R-hadrons from Run-I atmore » the LHC forbid a triplet scalar mass below 845 GeV, whereas with 300 fb -1 at 13TeV triplet scalar masses up to 1.4TeV can be discovered. For shorter lifetimes displaced-vertex searches provide a discovery reach of up to 1.8TeV. Also, we present exclusion and discovery reaches of future hadron colliders as well as indirect limits that arise from modi cations of the Higgs couplings.« less

  18. Long-lived, colour-triplet scalars from unnaturalness

    DOE PAGES

    Barnard, James; Cox, Peter; Gherghetta, Tony; ...

    2016-03-01

    We study that long-lived, colour-triplet scalars are a generic prediction of unnatural, or split, composite Higgs models where the spontaneous global-symmetry breaking scale f ≳ 10TeV and an unbroken SU(5) symmetry is preserved. Since the triplet scalars are pseudo Nambu- Goldstone bosons they are split from the much heavier composite-sector resonances and are the lightest exotic, coloured states. This makes them ideal to search for at colliders. Due to discrete symmetries the triplet scalar decays via a dimension-six term and given the large suppression scale f is often metastable. We show that existing searches for collider-stable R-hadrons from Run-I atmore » the LHC forbid a triplet scalar mass below 845 GeV, whereas with 300 fb -1 at 13TeV triplet scalar masses up to 1.4TeV can be discovered. For shorter lifetimes displaced-vertex searches provide a discovery reach of up to 1.8TeV. Also, we present exclusion and discovery reaches of future hadron colliders as well as indirect limits that arise from modi cations of the Higgs couplings.« less

  19. Next-to-leading order predictions for WW + jet production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, John M.; Miller, David J.; Robens, Tania

    2015-07-28

    In this study we report on a next-to-leading order calculation of WW + jet production at hadron colliders, with subsequent leptonic decays of the W bosons included. The calculation of the one-loop contributions is performed using generalized unitarity methods in order to derive analytic expressions for the relevant amplitudes. These amplitudes have been implemented in the parton-level Monte Carlo generator mcfm, which we use to provide a complete next-to-leading order calculation. Predictions for total cross sections, as well as differential distributions for several key observables, are computed both for the LHC operating at 14 TeV as well as for amore » possible future 100 TeV proton-proton collider.« less

  20. Selected topics in particle accelerators: Proceedings of the CAP meetings. Volume 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsa, Z.

    1995-10-01

    This Report includes copies of transparencies and notes from the presentations made at the Center for Accelerator Physics at Brookhaven National Laboratory Editing and changes to the authors` contributions in this Report were made only to fulfill the publication requirements. This volume includes notes and transparencies on nine presentations: ``The Energy Exchange and Efficiency Consideration in Klystrons``, ``Some Properties of Microwave RF Sources for Future Colliders + Overview of Microwave Generation Activity at the University of Maryland``, ``Field Quality Improvements in Superconducting Magnets for RHIC``, ``Hadronic B-Physics``, ``Spiking Pulses from Free Electron Lasers: Observations and Computational Models``, ``Crystalline Beams inmore » Circular Accelerators``, ``Accumulator Ring for AGS & Recent AGS Performance``, ``RHIC Project Machine Status``, and ``Gamma-Gamma Colliders.``« less

  1. Spin formalism and applications to new physics searches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haber, H.E.

    1994-12-01

    An introduction to spin techniques in particle physics is given. Among the topics covered are: helicity formalism and its applications to the decay and scattering of spin-1/2 and spin-1 particles, techniques for evaluating helicity amplitudes (including projection operator methods and the spinor helicity method), and density matrix techniques. The utility of polarization and spin correlations for untangling new physics beyond the Standard Model at future colliders such as the LHC and a high energy e{sup +}e{sup {minus}} linear collider is then considered. A number of detailed examples are explored including the search for low-energy supersymmetry, a non-minimal Higgs boson sector,more » and new gauge bosons beyond the W{sup {+-}} and Z.« less

  2. Nuclear parton density functions from dijet photoproduction at the EIC

    NASA Astrophysics Data System (ADS)

    Klasen, M.; Kovařík, K.

    2018-06-01

    We study the potential of dijet photoproduction measurements at a future electron-ion collider (EIC) to better constrain our present knowledge of the nuclear parton distribution functions. Based on theoretical calculations at next-to-leading order and approximate next-to-next-to-leading order of perturbative QCD, we establish the kinematic reaches for three different EIC designs, the size of the parton density function modifications for four different light and heavy nuclei from He-4 over C-12 and Fe-56 to Pb-208 with respect to the free proton, and the improvement of EIC measurements with respect to current determinations from deep-inelastic scattering and Drell-Yan data alone as well as when also considering data from existing hadron colliders.

  3. The experimental program for high pressure gas filled radio frequency cavities for muon cooling channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freemire, B.; Chung, M.; Hanlet, P. M.

    An intense beam of muons is needed to provide a luminosity on the order of 10 34 cm -2s -1 for a multi-TeV collider. Because muons produced by colliding a multi-MW proton beam with a target made of carbon or mercury have a large phase space, significant six dimensional cooling is required. Through ionization cooling—the only cooling method that works within the lifetime of the muon—and emittance exchange, the desired emittances for a Higgs Factory or higher energy collider are attainable. A cooling channel utilizing gas filled radio frequency cavities has been designed to deliver the requisite cool muon beam.more » Technology development of these RF cavities has progressed from breakdown studies, through beam tests, to dielectric loaded and reentrant cavity designs. The results of these experiments are summarized.« less

  4. The experimental program for high pressure gas filled radio frequency cavities for muon cooling channels

    DOE PAGES

    Freemire, B.; Chung, M.; Hanlet, P. M.; ...

    2018-01-30

    An intense beam of muons is needed to provide a luminosity on the order of 10 34 cm -2s -1 for a multi-TeV collider. Because muons produced by colliding a multi-MW proton beam with a target made of carbon or mercury have a large phase space, significant six dimensional cooling is required. Through ionization cooling—the only cooling method that works within the lifetime of the muon—and emittance exchange, the desired emittances for a Higgs Factory or higher energy collider are attainable. A cooling channel utilizing gas filled radio frequency cavities has been designed to deliver the requisite cool muon beam.more » Technology development of these RF cavities has progressed from breakdown studies, through beam tests, to dielectric loaded and reentrant cavity designs. The results of these experiments are summarized.« less

  5. Exploration of a High Luminosity 100 TeV Proton Antiproton Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveros, Sandra J.; Summers, Don; Cremaldi, Lucien

    New physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. We explore a 10more » $$^{\\,34}$$ cm$$^{-2}$$ s$$^{-1}$$ luminosity, 100 TeV $$p\\bar{p}$$ collider with 7$$\\times$$ the energy of the LHC but only 2$$\\times$$ as much NbTi superconductor, motivating the choice of 4.5 T single bore dipoles. The cross section for many high mass states is 10 times higher in $$p\\bar{p}$$ than $pp$ collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per beam crossing, because lower beam currents can produce the same rare event rates. Events are more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller $$\\beta^{*}$$ for higher luminosity. A Fermilab-like $$\\bar p$$ source would disperse the beam into 12 momentum channels to capture more antiprotons. Because stochastic cooling time scales as the number of particles, 12 cooling ring sets would be used. Each set would include phase rotation to lower momentum spreads, equalize all momentum channels, and stochastically cool. One electron cooling ring would follow the stochastic cooling rings. Finally antiprotons would be recycled during runs without leaving the collider ring by joining them to new bunches with synchrotron damping.« less

  6. Particle physics. Positrons ride the wave

    DOE PAGES

    Piot, Philippe

    2015-08-26

    Here, experiments reveal that positrons — the antimatter equivalents of electrons — can be rapidly accelerated using a plasma wave. The findings pave the way to high-energy electron–positron particle colliders.

  7. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    ScienceCinema

    Leemans, Wim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Accelerator and Fusion Research Division (AFRD) and Laser Optics and Accelerator Systems Integrated Studies (LOASIS)

    2018-05-04

    Summer Lecture Series 2008: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  8. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    ScienceCinema

    Leemans, Wim [LOASIS Program, AFRD

    2017-12-09

    July 8, 2008 Berkeley Lab lecture: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  9. "When I Am a President of Guinea": Resettled Refugees Traversing Education in Search of a Future

    ERIC Educational Resources Information Center

    Dryden-Peterson, Sarah; Reddick, Celia

    2017-01-01

    This article explores how resettled refugees' aspirations cultivated through education collide with postschooling realities. We find that post-graduation barriers of financial insecurity, housing insecurity, violence and discrimination, and lack of critical awareness of unequal opportunity structures stand in the way of resettlement aspirations.…

  10. 405th Brookhaven Lecture

    ScienceCinema

    Vadim Ptitsyn

    2018-04-18

    "E-RHIC - Future Electron-Ion Collider at BNL. While RHIC scientists continue their quest to look deep into nuclear phenomena resulting from collisions of ion beams and beams of polarized protons, new design work is under way for a possible extension of RHIC to include e-RHIC, a 10-billion electron volt, high-intensity polarized proton beam.

  11. Above-threshold scattering about a Feshbach resonance for ultracold atoms in an optical collider.

    PubMed

    Horvath, Milena S J; Thomas, Ryan; Tiesinga, Eite; Deb, Amita B; Kjærgaard, Niels

    2017-09-06

    Ultracold atomic gases have realized numerous paradigms of condensed matter physics, where control over interactions has crucially been afforded by tunable Feshbach resonances. So far, the characterization of these Feshbach resonances has almost exclusively relied on experiments in the threshold regime near zero energy. Here, we use a laser-based collider to probe a narrow magnetic Feshbach resonance of rubidium above threshold. By measuring the overall atomic loss from colliding clouds as a function of magnetic field, we track the energy-dependent resonance position. At higher energy, our collider scheme broadens the loss feature, making the identification of the narrow resonance challenging. However, we observe that the collisions give rise to shifts in the center-of-mass positions of outgoing clouds. The shifts cross zero at the resonance and this allows us to accurately determine its location well above threshold. Our inferred resonance positions are in excellent agreement with theory.Studies on energy-dependent scattering of ultracold atoms were previously carried out near zero collision energies. Here, the authors observe a magnetic Feshbach resonance in ultracold Rb collisions for above-threshold energies and their method can also be used to detect higher partial wave resonances.

  12. Analog VS Digital Hadron Calorimetry at a Future Electron-Positron Linear Collider

    NASA Astrophysics Data System (ADS)

    Magill, Stephen R.

    2005-02-01

    Precision jet measurements at a future e+e- linear collider may only be possible using so-called Particle Flow Algorithms (PFAs). While there are many possible implementations of P-flow techniques, they all have in common separation of induced calorimeter showers from charged and neutral hadrons (as well as photons) within a jet. Shower reconstruction in the calorimeter becomes more important than energy measurement of hadrons. The calorimeter cells must be highly granular both transverse to the particle trajectory and in longitudinal segmentation. It is probable that as the cell size decreases, it will be harder to get an energy measure from each cell (analog calorimetry). Using only the hit information (digital calorimetry) may be the best way to measure the neutral hadron energy contribution to jets. In this paper, comparisons of analog and digital methods of measuring the contributions of neutral hadrons to jets are made in simulation and in the context of a particular PFA, indicating that the digital method is at least equal to the analog case in jet energy resolution.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ent, Rolf

    With two options studied at Brookhaven National Lab and Jefferson Laboratory the U.S., an Electron-Ion Collider (EIC) of energy √s=20-100 GeV was under design. Furthermore, the recent 2015 US Nuclear Science Long-Range Planning effort included a future EIC as a recommendation for future construction. The EIC will be unique in colliding polarised electrons off polarised protons and light nuclei, providing the spin degrees of freedom essential to pursue its physics program driven by spin structure, multi-dimensional tomographic images of protons and nuclei, and discovery of the role of collective effects of gluons in nuclei. The foreseen luminosity of the EIC,more » coupled with its energy variability and reach, will allow unprecedented three-dimensional imaging of the gluon and sea quark distributions, via both TMDs and GPDs, and to explore correlations amongst them. Its hermetic detection capability of correlated fragments promises to similar allow for precise tomographic images of the quark-gluon landscape in nuclei, transcending from light few-body nuclei to the heaviest nuclei, and could uncover how the TMD and GPD landscape changes when gluons display an anticipated collective behavior at the higher energies.« less

  14. Loaded delay lines for future RF pulse compression systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, R.M.; Wilson, P.B.; Kroll, N.M.

    1995-05-01

    The peak power delivered by the klystrons in the NLCRA (Next Linear Collider Test Accelerator) now under construction at SLAC is enhanced by a factor of four in a SLED-II type of R.F. pulse compression system (pulse width compression ratio of six). To achieve the desired output pulse duration of 250 ns, a delay line constructed from a 36 m length of circular waveguide is used. Future colliders, however, will require even higher peak power and larger compression factors, which favors a more efficient binary pulse compression approach. Binary pulse compression, however, requires a line whose delay time is approximatelymore » proportional to the compression factor. To reduce the length of these lines to manageable proportions, periodically loaded delay lines are being analyzed using a generalized scattering matrix approach. One issue under study is the possibility of propagating two TE{sub o} modes, one with a high group velocity and one with a group velocity of the order 0.05c, for use in a single-line binary pulse compression system. Particular attention is paid to time domain pulse degradation and to Ohmic losses.« less

  15. Feasibility of Colliding-beam fast-fission reactor via 238U80++238 U80+ --> 4 FF + 5n + 430 MeV beam with suppressed plutonium and direct conversion of fission fragment (FF) energy into electricity and/or Rocket propellant with high specific impulse

    NASA Astrophysics Data System (ADS)

    Maglich, Bogdan; Hester, Tim; Calsec Collaboration

    2015-10-01

    Uranium-uranium colliding beam experiment1, used fully ionized 238U92+ at energy 100GeV --> <-- 100 GeV, has measured total σ = 487 b. Reaction rate of colliding beams is proportional to neutron flux-squared. First functional Auto-Collider3-6, a compact Migma IV, 1 m in diameter, had self-colliding deuterons, D+, of 725 KeV --> <-- 725 KeV, resulting in copious production of T and 3He. U +U Autocollider``EXYDER'' will use strong-focusing magnet7, which would increase reaction rate by 104. 80 times ionized U ions accelerated through 3 MV accelerator, will collide beam 240 MeV --> <-- 240 MeV. Reaction is: 238U80+ +238 U80+ --> 4 FF + 5n + 430 MeV. Using a simple model1 fission σf ~ 100 b. Suppression of Pu by a factor of 106 will be achieved because NO thermal neutron fission can take place; only fast, 1-3 MeV, where σabs is negligible. Direct conversion of 95% of 430 MeV produced is carried by electrically charged FFs which are magnetically funneled for direct conversion of energy of FFs via electrostatic decelerators4,11. 90% of 930 MeV is electrically recoverable. Depending on the assumptions, we project electric _ power density production of 20 to 200 MWe m-3, equivalent to Thermal 1.3 - 13 GWthm-3. If one-half of unburned U is used for propulsion while rest powers system, heavy FF ion mass provides specific impulse Isp = 106 sec., 103 times higher than current rocket engines.

  16. Infrared weak corrections to strongly interacting gauge boson scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciafaloni, Paolo; Urbano, Alfredo

    2010-04-15

    We evaluate the impact of electroweak corrections of infrared origin on strongly interacting longitudinal gauge boson scattering, calculating all-order resummed expressions at the double log level. As a working example, we consider the standard model with a heavy Higgs. At energies typical of forthcoming experiments (LHC, International Linear Collider, Compact Linear Collider), the corrections are in the 10%-40% range, with the relative sign depending on the initial state considered and on whether or not additional gauge boson emission is included. We conclude that the effect of radiative electroweak corrections should be included in the analysis of longitudinal gauge boson scattering.

  17. Experiential learning in high energy physics: a survey of students at the LHC

    NASA Astrophysics Data System (ADS)

    Camporesi, Tiziano; Catalano, Gelsomina; Florio, Massimo; Giffoni, Francesco

    2017-03-01

    More than 36 000 students and post-docs will be involved until 2025 in research at the Large Hadron Collider (LHC) mainly through international collaborations. To what extent they value the skills acquired? Do students expect that their learning experience will have an impact on their professional future? By drawing from earlier literature on experiential learning, we have designed a survey of current and former students at LHC. To quantitatively measure the students’ perceptions, we compare the salary expectations of current students with the assessment of those now employed in different jobs. Survey data are analysed by ordered logistic regression models, which allow multivariate statistical analyses with limited dependent variables. Results suggest that experiential learning at LHC positively correlates with both current and former students’ salary expectations. Those already employed clearly confirm the expectations of current students. At least two not mutually exclusive explanations underlie the results. First, the training at LHC is perceived to provide students valuable skills, which in turn affect the salary expectations; secondly, the LHC research experience per se may act as signal in the labour market. Respondents put a price tag on their learning experience, a ‘LHC salary premium’ ranging from 5% to 12% compared with what they would have expected for their career without such an experience at CERN.

  18. Status and commissioning of the CMS experiment

    NASA Astrophysics Data System (ADS)

    Wulz, C.-E.

    2008-05-01

    The construction status of the CMS experiment at the Large Hadron Collider and strategies for commissioning the subdetectors, the magnet, the trigger and the data acquisition are described. The first operations of CMS as a unified system, using either cosmic rays or test data, and the planned activities until the startup of the LHC are presented.

  19. When Worlds Collide: Identity, Culture and the Lived Experiences of Research When "Teaching-Led"

    ERIC Educational Resources Information Center

    Sharp, John G.; Hemmings, Brian; Kay, Russell; Callinan, Carol

    2015-01-01

    This article presents detailed findings from the qualitative or interpretive phase of a mixed-methods case study focusing on the professional identities and lived experiences of research among six lecturers working in different capacities across the field of education in a "teaching-led" higher education institution. Building upon the…

  20. Results of searches for extra spatial dimensions in the CMS experiment at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shmatov, S. V., E-mail: Sergei.Shmatov@cern.ch

    2016-03-15

    An overview of basic results of the CMS experiment that concern searches for signals from extra spatial dimensions in the course of the first run of the Large Hadron Collider (LHC) at the c.m. proton–proton collision energies of 00000 and 8 TeV is given.

Top