Future possible crop yield scenarios under multiple SSP and RCP scenarios.
NASA Astrophysics Data System (ADS)
Sakurai, G.; Yokozawa, M.; Nishimori, M.; Okada, M.
2016-12-01
Understanding the effect of future climate change on global crop yields is one of the most important tasks for global food security. Future crop yields would be influenced by climatic factors such as the changes of temperature, precipitation and atmospheric carbon dioxide concentration. On the other hand, the effect of the changes of agricultural technologies such as crop varieties, pesticide and fertilizer input on crop yields have large uncertainty. However, not much is available on the contribution ratio of each factor under the future climate change scenario. We estimated the future global yields of four major crops (maize, soybean, rice and wheat) under three Shared Socio Economic Pathways (SSPs) and four Representative Concentration Pathways (RCPs). For this purpose, firstly, we estimated a parameter of a process based model (PRYSBI2) using a Bayesian method for each 1.125 degree spatial grid. The model parameter is relevant to the agricultural technology (we call "technological parameter" here after). Then, we analyzed the relationship between the values of technological parameter and GDP values. We found that the estimated values of the technological parameter were positively correlated with the GDP. Using the estimated relationship, we predicted future crop yield during 2020 and 2100 under SSP1, SSP2 and SSP3 scenarios and RCP 2.6, 4.5, 6.0 and 8.5. The estimated crop yields were different among SSP scenarios. However, we found that the yield difference attributable to SSPs were smaller than those attributable to CO2 fertilization effects and climate change. Particularly, the estimated effect of the change of atmospheric carbon dioxide concentration on global yields was more than four times larger than that of GDP for C3 crops.
Global Agriculture Yields and Conflict under Future Climate
NASA Astrophysics Data System (ADS)
Rising, J.; Cane, M. A.
2013-12-01
Aspects of climate have been shown to correlate significantly with conflict. We investigate a possible pathway for these effects through changes in agriculture yields, as predicted by field crop models (FAO's AquaCrop and DSSAT). Using satellite and station weather data, and surveyed data for soil and management, we simulate major crop yields across all countries between 1961 and 2008, and compare these to FAO and USDA reported yields. Correlations vary by country and by crop, from approximately .8 to -.5. Some of this range in crop model performance is explained by crop varieties, data quality, and other natural, economic, and political features. We also quantify the ability of AquaCrop and DSSAT to simulate yields under past cycles of ENSO as a proxy for their performance under changes in climate. We then describe two statistical models which relate crop yields to conflict events from the UCDP/PRIO Armed Conflict dataset. The first relates several preceding years of predicted yields of the major grain in each country to any conflict involving that country. The second uses the GREG ethnic group maps to identify differences in predicted yields between neighboring regions. By using variation in predicted yields to explain conflict, rather than actual yields, we can identify the exogenous effects of weather on conflict. Finally, we apply precipitation and temperature time-series under IPCC's A1B scenario to the statistical models. This allows us to estimate the scale of the impact of future yields on future conflict. Centroids of the major growing regions for each country's primary crop, based on USDA FAS consumption. Correlations between simulated yields and reported yields, for AquaCrop and DSSAT, under the assumption that no irrigation, fertilization, or pest control is used. Reported yields are the average of FAO yields and USDA FAS yields, where both are available.
Estimating the Impact and Spillover Effect of Climate Change on Crop Yield in Northern Ghana.
NASA Astrophysics Data System (ADS)
Botchway, E.
2016-12-01
In tropical regions of the world human-induced climate change is likely to impact negatively on crop yields. To investigate the impact of climate change and its spillover effect on mean and variance of crop yields in northern Ghana, the Just and Pope stochastic production function and the Spatial Durbin model were adopted. Surprisingly, the results suggest that both precipitation and average temperature have positive effects on mean crop yield during the wet season. Wet season average temperature has a significant spillover effect in the region, whereas precipitation during the wet season has only one significant spillover effect on maize yield. Wet season precipitation does not have a strong significant effect on crop yield despite the rainfed nature of agriculture in the region. Thus, even if there are losers and winners as a result of future climate change at the regional level, future crop yield would largely depend on future technological development in agriculture, which may improve yields over time despite the changing climate. We argue, therefore, that technical improvement in farm management such as improved seeds and fertilizers, conservation tillage and better pest control, may have a more significant role in increasing observed crop productivity levels over time. So investigating the relative importance of non-climatic factors on crop yield may shed more light on where appropriate interventions can help in improving crop yields. Climate change, also, needs to be urgently assessed at the level of the household, so that poor and vulnerable people dependent on agriculture can be appropriately targeted in research and development activities whose object is poverty alleviation.
Potential economic benefits of adapting agricultural production systems to future climate change
Fagre, Daniel B.; Pederson, Gregory; Bengtson, Lindsey E.; Prato, Tony; Qui, Zeyuan; Williams, Jimmie R.
2010-01-01
Potential economic impacts of future climate change on crop enterprise net returns and annual net farm income (NFI) are evaluated for small and large representative farms in Flathead Valley in Northwest Montana. Crop enterprise net returns and NFI in an historical climate period (1960–2005) and future climate period (2006–2050) are compared when agricultural production systems (APSs) are adapted to future climate change. Climate conditions in the future climate period are based on the A1B, B1, and A2 CO2 emission scenarios from the Intergovernmental Panel on Climate Change Fourth Assessment Report. Steps in the evaluation include: (1) specifying crop enterprises and APSs (i.e., combinations of crop enterprises) in consultation with locals producers; (2) simulating crop yields for two soils, crop prices, crop enterprises costs, and NFIs for APSs; (3) determining the dominant APS in the historical and future climate periods in terms of NFI; and (4) determining whether NFI for the dominant APS in the historical climate period is superior to NFI for the dominant APS in the future climate period. Crop yields are simulated using the Environmental/Policy Integrated Climate (EPIC) model and dominance comparisons for NFI are based on the stochastic efficiency with respect to a function (SERF) criterion. Probability distributions that best fit the EPIC-simulated crop yields are used to simulate 100 values for crop yields for the two soils in the historical and future climate periods. Best-fitting probability distributions for historical inflation-adjusted crop prices and specified triangular probability distributions for crop enterprise costs are used to simulate 100 values for crop prices and crop enterprise costs. Averaged over all crop enterprises, farm sizes, and soil types, simulated net return per ha averaged over all crop enterprises decreased 24% and simulated mean NFI for APSs decreased 57% between the historical and future climate periods. Although adapting APSs to future climate change is advantageous (i.e., NFI with adaptation is superior to NFI without adaptation based on SERF), in six of the nine cases in which adaptation is advantageous, NFI with adaptation in the future climate period is inferior to NFI in the historical climate period. Therefore, adaptation of APSs to future climate change in Flathead Valley is insufficient to offset the adverse impacts on NFI of such change.
Potential economic benefits of adapting agricultural production systems to future climate change.
Prato, Tony; Zeyuan, Qiu; Pederson, Gregory; Fagre, Dan; Bengtson, Lindsey E; Williams, Jimmy R
2010-03-01
Potential economic impacts of future climate change on crop enterprise net returns and annual net farm income (NFI) are evaluated for small and large representative farms in Flathead Valley in Northwest Montana. Crop enterprise net returns and NFI in an historical climate period (1960-2005) and future climate period (2006-2050) are compared when agricultural production systems (APSs) are adapted to future climate change. Climate conditions in the future climate period are based on the A1B, B1, and A2 CO(2) emission scenarios from the Intergovernmental Panel on Climate Change Fourth Assessment Report. Steps in the evaluation include: (1) specifying crop enterprises and APSs (i.e., combinations of crop enterprises) in consultation with locals producers; (2) simulating crop yields for two soils, crop prices, crop enterprises costs, and NFIs for APSs; (3) determining the dominant APS in the historical and future climate periods in terms of NFI; and (4) determining whether NFI for the dominant APS in the historical climate period is superior to NFI for the dominant APS in the future climate period. Crop yields are simulated using the Environmental/Policy Integrated Climate (EPIC) model and dominance comparisons for NFI are based on the stochastic efficiency with respect to a function (SERF) criterion. Probability distributions that best fit the EPIC-simulated crop yields are used to simulate 100 values for crop yields for the two soils in the historical and future climate periods. Best-fitting probability distributions for historical inflation-adjusted crop prices and specified triangular probability distributions for crop enterprise costs are used to simulate 100 values for crop prices and crop enterprise costs. Averaged over all crop enterprises, farm sizes, and soil types, simulated net return per ha averaged over all crop enterprises decreased 24% and simulated mean NFI for APSs decreased 57% between the historical and future climate periods. Although adapting APSs to future climate change is advantageous (i.e., NFI with adaptation is superior to NFI without adaptation based on SERF), in six of the nine cases in which adaptation is advantageous, NFI with adaptation in the future climate period is inferior to NFI in the historical climate period. Therefore, adaptation of APSs to future climate change in Flathead Valley is insufficient to offset the adverse impacts on NFI of such change.
African crop yield reductions due to increasingly unbalanced Nitrogen and Phosphorus consumption
NASA Astrophysics Data System (ADS)
van der Velde, Marijn; Folberth, Christian; Balkovič, Juraj; Ciais, Philippe; Fritz, Steffen; Janssens, Ivan A.; Obersteiner, Michael; See, Linda; Skalský, Rastislav; Xiong, Wei; Peñuealas, Josep
2014-05-01
The impact of soil nutrient depletion on crop production has been known for decades, but robust assessments of the impact of increasingly unbalanced nitrogen (N) and phosphorus (P) application rates on crop production are lacking. Here, we use crop response functions based on 741 FAO maize crop trials and EPIC crop modeling across Africa to examine maize yield deficits resulting from unbalanced N:P applications under low, medium, and high input scenarios, for past (1975), current, and future N:P mass ratios of respectively, 1:0.29, 1:0.15, and 1:0.05. At low N inputs (10 kg/ha), current yield deficits amount to 10% but will increase up to 27% under the assumed future N:P ratio, while at medium N inputs (50 kg N/ha), future yield losses could amount to over 40%. The EPIC crop model was then used to simulate maize yields across Africa. The model results showed relative median future yield reductions at low N inputs of 40%, and 50% at medium and high inputs, albeit with large spatial variability. Dominant low-quality soils such as Ferralsols, which are strongly adsorbing P, and Arenosols with a low nutrient retention capacity, are associated with a strong yield decline, although Arenosols show very variable crop yield losses at low inputs. Optimal N:P ratios, i.e. those where the lowest amount of applied P produces the highest yield (given N input) where calculated with EPIC to be as low as 1:0.5. Finally, we estimated the additional P required given current N inputs, and given N inputs that would allow Africa to close yield gaps (ca. 70%). At current N inputs, P consumption would have to increase 2.3-fold to be optimal, and to increase 11.7-fold to close yield gaps. The P demand to overcome these yield deficits would provide a significant additional pressure on current global extraction of P resources.
Uncertainty in simulating wheat yields under climate change
USDA-ARS?s Scientific Manuscript database
Anticipating the impacts of climate change on crop yields is critical for assessing future food security. Process-based crop simulation models are the most commonly used tools in such assessments. Analysis of uncertainties in future greenhouse gas emissions and their impacts on future climate change...
Assessment of climate change impact on yield of major crops in the Banas River Basin, India.
Dubey, Swatantra Kumar; Sharma, Devesh
2018-09-01
Crop growth models like AquaCrop are useful in understanding the impact of climate change on crop production considering the various projections from global circulation models and regional climate models. The present study aims to assess the climate change impact on yield of major crops in the Banas River Basin i.e., wheat, barley and maize. Banas basin is part of the semi-arid region of Rajasthan state in India. AquaCrop model is used to calculate the yield of all the three crops for a historical period of 30years (1981-2010) and then compared with observed yield data. Root Mean Square Error (RMSE) values are calculated to assess the model accuracy in prediction of yield. Further, the calibrated model is used to predict the possible impacts of climate change and CO 2 concentration on crop yield using CORDEX-SA climate projections of three driving climate models (CNRM-CM5, CCSM4 and MPI-ESM-LR) for two different scenarios (RCP4.5 and RCP8.5) for the future period 2021-2050. RMSE values of simulated yield with respect to observed yield of wheat, barley and maize are 11.99, 16.15 and 19.13, respectively. It is predicted that crop yield of all three crops will increase under the climate change conditions for future period (2021-2050). Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Feng, Zhaozhong; Kobayashi, Kazuhiko
Meta-analysis was conducted to quantitatively assess the effects of rising ozone concentrations ([O 3]) on yield and yield components of major food crops: potato, barley, wheat, rice, bean and soybean in 406 experimental observations. Yield loss of the crops under current and future [O 3] was expressed relative to the yield under base [O 3] (≤26 ppb). With potato, current [O 3] (31-50 ppb) reduced the yield by 5.3%, and it reduced the yield of barley, wheat and rice by 8.9%, 9.7% and 17.5%, respectively. In bean and soybean, the yield losses were 19.0% and 7.7%, respectively. Compared with yield loss at current [O 3], future [O 3] (51-75 ppb) drove a further 10% loss in yield of soybean, wheat and rice, and 20% loss in bean. Mass of individual grain, seed, or tuber was often the major cause of the yield loss at current and future [O 3], whereas other yield components also contributed to the yield loss in some cases. No significant difference was found between the responses in crops grown in pots and those in the ground for any yield parameters. The ameliorating effect of elevated [CO 2] was significant in the yields of wheat and potato, and the individual grain weight in wheat exposed to future [O 3]. These findings confirm the rising [O 3] as a threat to food security for the growing global population in this century.
Harrison, Matthew T; Tardieu, François; Dong, Zhanshan; Messina, Carlos D; Hammer, Graeme L
2014-03-01
Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought-stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis-silking synchrony, maturity and kernel number on yield in different drought-stress scenarios, under current and future climates. Under historical conditions, a low-stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late-season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated CO2 on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis-silking synchrony had the greatest effect on yield in low drought-stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early-terminal drought stress. Segregating drought-stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought-stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for studies examining genetic and physiological crop responses to environmental stresses. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Fujisawa, Mariko; Kanamaru, Hideki
2016-04-01
Agriculture is vulnerable to environmental changes, and climate change has been recognized as one of the most devastating factors. In many developing countries, however, few studies have focused on nation-wide assessment of crop yield and crop suitability in the future, and hence there is a large pressure on science to provide policy makers with solid predictions for major crops in the countries in support of climate risk management policies and programmes. FAO has developed the tool MOSAICC (Modelling System for Agricultural Impacts of Climate Change) where statistical climate downscaling is combined with crop yield projections under climate change scenarios. Three steps are required to get the results: 1. The historical meteorological data such as temperature and precipitation for about 30 years were collected, and future climates were statistically downscaled to the local scale, 2. The historical crop yield data were collected and regression functions were made to estimate the yield by using observed climatic data and water balance during the growing period for each crop, and 3. The yield changes in the future were estimated by using the future climate data, produced by the first step, as an input to the yield regression functions. The yield was first simulated at sub-national scale and aggregated to national scale, which is intended to provide national policies with adaptation options. The methodology considers future changes in characteristics of extreme weather events as the climate projections are on daily scale while crop simulations are on 10-daily scale. Yields were simulated with two greenhouse gas concentration pathways (RCPs) for three GCMs per crop to account for uncertainties in projections. The crop assessment constitutes a larger multi-disciplinary assessment of climate change impacts on agriculture and vulnerability of livelihoods in terms of food security (e.g. water resources, agriculture market, household-level food security from socio-economic perspective). In our presentation we will show the cases of Peru and the Philippines, and discuss the implications for agriculture policies and risk management.
What aspects of future rainfall changes matter for crop yields in West Africa?
NASA Astrophysics Data System (ADS)
Guan, Kaiyu; Sultan, Benjamin; Biasutti, Michela; Baron, Christian; Lobell, David B.
2015-10-01
How rainfall arrives, in terms of its frequency, intensity, the timing and duration of rainy season, may have a large influence on rainfed agriculture. However, a thorough assessment of these effects is largely missing. This study combines a new synthetic rainfall model and two independently validated crop models (APSIM and SARRA-H) to assess sorghum yield response to possible shifts in seasonal rainfall characteristics in West Africa. We find that shifts in total rainfall amount primarily drive the rainfall-related crop yield change, with less relevance to intraseasonal rainfall features. However, dry regions (total annual rainfall below 500 mm/yr) have a high sensitivity to rainfall frequency and intensity, and more intense rainfall events have greater benefits for crop yield than more frequent rainfall. Delayed monsoon onset may negatively impact yields. Our study implies that future changes in seasonal rainfall characteristics should be considered in designing specific crop adaptations in West Africa.
NASA Astrophysics Data System (ADS)
Tansey, M. K.; Flores-Lopez, F.; Young, C. A.; Huntington, J. L.
2012-12-01
Long term planning for the management of California's water resources requires assessment of the effects of future climate changes on both water supply and demand. Considerable progress has been made on the evaluation of the effects of future climate changes on water supplies but less information is available with regard to water demands. Uncertainty in future climate projections increases the difficulty of assessing climate impacts and evaluating long range adaptation strategies. Compounding the uncertainty in the future climate projections is the fact that most readily available downscaled climate projections lack sufficient meteorological information to compute evapotranspiration (ET) by the widely accepted ASCE Penman-Monteith (PM) method. This study addresses potential changes in future Central Valley water demands and crop yields by examining the effects of climate change on soil evaporation, plant transpiration, growth and yield for major types of crops grown in the Central Valley of California. Five representative climate scenarios based on 112 bias corrected spatially downscaled CMIP 3 GCM climate simulations were developed using the hybrid delta ensemble method to span a wide range future climate uncertainty. Analysis of historical California Irrigation Management Information System meteorological data was combined with several meteorological estimation methods to compute future solar radiation, wind speed and dew point temperatures corresponding to the GCM projected temperatures and precipitation. Future atmospheric CO2 concentrations corresponding to the 5 representative climate projections were developed based on weighting IPCC SRES emissions scenarios. The Land, Atmosphere, and Water Simulator (LAWS) model was used to compute ET and yield changes in the early, middle and late 21st century for 24 representative agricultural crops grown in the Sacramento, San Joaquin and Tulare Lake basins. Study results indicate that changes in ET and yield vary between crops due to plant specific sensitivities to temperature, solar radiation and the vapor pressure deficits. Shifts in the growth period to earlier in the year, shortened growth period for annual crops as well as extended fall growth can also exert important influences. Projected increases in CO2 concentrations in the late 21st century exert very significant influences on ET and yield for many crops. To characterize potential impacts and the range of uncertainty, changes in total agricultural water demands and yields were computed assuming that current crop types and acreages in 21 Central Valley regional planning areas remained constant throughout the 21st century for each of the 5 representative future climate scenarios.
Impacts of climate variability and change on crop yield in sub-Sahara Africa
NASA Astrophysics Data System (ADS)
Pan, S.; Zhang, J.; Yang, J.; Chen, G.; Xu, R.; Zhang, B.; Lou, Y.
2017-12-01
Much concern has been raised about the impacts of climate change and climate extremes on Africa's food security. The impact of climate change on Africa's agriculture is likely to be severe compared to other continents due to high rain-fed agricultural dependence, and limited ability to mitigate and adapt to climate change. In recent decades, warming in Africa is more pronounced and faster than the global average and this trend is likely to continue in the future. However, quantitative assessment on impacts of climate extremes and climate change on crop yield has not been well investigated yet. By using an improved agricultural module of the Dynamic Land Ecosystem Model (DLEM-AG2) driven by spatially-explicit information on land use, climate and other environmental changes, we have assessed impacts of historical climate variability and future climate change on food crop yield across the sub-Sahara Africa during1980-2016 and the rest of the 21st century (2017-2099). Our simulated results indicate that African crop yield in the past three decades shows an increasing trend primarily due to cropland expansion. However, crop yield shows substantially spatial and temporal variation due to inter-annual and inter-decadal climate variability and spatial heterogeneity of environmental drivers. Droughts have largely reduced crop yield in the most vulnerable regions of Sub-Sahara Africa. Future projections with DLEM-AG2 show that food crop production in Sub-Sahara Africa would be favored with limiting end-of-century warming to below 1.50 C.
Modelling Bambara Groundnut Yield in Southern Africa: Towards a Climate-Resilient Future
NASA Technical Reports Server (NTRS)
Karunaratne, A. S.; Walker, S.; Ruane, A. C.
2015-01-01
Current agriculture depends on a few major species grown as monocultures that are supported by global research underpinning current productivity. However, many hundreds of alternative crops have the potential to meet real world challenges by sustaining humanity, diversifying agricultural systems for food and nutritional security, and especially responding to climate change through their resilience to certain climate conditions. Bambara groundnut (Vigna subterranea (L.) Verdc.), an underutilised African legume, is an exemplar crop for climate resilience. Predicted yield performances of Bambara groundnut by AquaCrop (a crop-water productivity model) were evaluated for baseline (1980-2009) and mid-century climates (2040-2069) under 20 downscaled Global Climate Models (CMIP5-RCP8.5), as well as for climate sensitivities (AgMIPC3MP) across 3 locations in Southern Africa (Botswana, South Africa, Namibia). Different land - races of Bambara groundnut originating from various semi-arid African locations showed diverse yield performances with diverse sensitivities to climate. S19 originating from hot-dry conditions in Namibia has greater future yield potential compared to the Swaziland landrace Uniswa Red-UN across study sites. South Africa has the lowest yield under the current climate, indicating positive future yield trends. Namibia reported the highest baseline yield at optimum current temperatures, indicating less yield potential in future climates. Bambara groundnut shows positive yield potential at temperatures of up to 31degC, with further warming pushing yields down. Thus, many regions in Southern Africa can utilize Bambara groundnut successfully in the coming decades. This modelling exercise supports decisions on genotypic suitability for present and future climates at specific locations.
Differential Impacts of Climate Change on Crops and Agricultural Regions in India
NASA Astrophysics Data System (ADS)
Sharma, A. N.
2015-12-01
As India's farmers and policymakers consider potential adaptation strategies to climate change, some questions loom large: - Which climate variables best explain the variability of crop yields? - How does the vulnerability of crop yields to climate vary regionally? - How are these risks likely to change in the future? While process-based crop modelling has started to answer many of these questions, we believe statistical approaches can complement these in improving our understanding of climate vulnerabilities and appropriate responses. We use yield data collected over three decades for more than ten food crops grown in India along with a variety of statistical approaches to answer the above questions. The ability of climate variables to explain yield variation varies greatly by crop and season, which is expected. Equally important, the ability of models to predict crop yields as well as their coefficients varies greatly by district even for districts which are relatively close to each other and similar in their agricultural practices. We believe these results encourage caution and nuance when making projections about climate impacts on crop yields in the future. Most studies about climate impacts on crop yields focus on a handful of major food crops. By extending our analysis to all the crops with long-term district level data in India as well as two growing seasons we gain a more comprehensive picture. Our results indicate that there is a great deal of variability even at relatively small scales, and that this must be taken into account if projections are to be made useful to policymakers.
Brumbelow, Kelly; Georgakakos, Aris P.
2000-01-01
Past assessments of climate change on U.S. agriculture have mostly focused on changes in crop yield. Few studies have included the entire conterminous U.S., and few studies have assessed changing irrigation requirements. None have included the effects of changing soil moisture characteristics as determined by changing climatic forcing. This study assesses changes in irrigation requirements and crop yields for five crops in the areas of the U.S. where they have traditionally been grown. Physiologically-based crop models are used to incorporate inputs of climate, soils, agricultural management, and drought stress tolerance. Soil moisture values from a macroscale hydrologic model run under a future climate scenario are used to initialize soil moisture content at the beginning of each growing season. Historical crop yield data is used to calibrate model parameters and determine locally acceptable drought stress as a management parameter. Changes in irrigation demand and crop yield are assessed for both means and extremes by comparing results for atmospheric forcing close to the present climate with those for a future climate scenario. Assessments using the Canadian Center for Climate Modeling and Analysis General Circulation Model (CGCM1) indicate greater irrigation demands in the southern U.S. and decreased irrigation demands in the northern and western U.S. Crop yields typically increase except for winter wheat in the southern U.S. and corn. Variability in both irrigation demands and crop yields increases in most cases. Assessment results for the CGCM1 climate scenario are compared to those for the Hadley Centre for Climate Prediction and Research GCM (HadCM2) scenario for southwestern Georgia. The comparison shows significant differences in irrigation and yield trends, both in magnitude and direction. The differences reflect the high forecast uncertainty of current GCMs. Nonetheless, both GCMs indicate higher variability in future climatic forcing and, consequently, in the response of agricultural systems.
NASA Astrophysics Data System (ADS)
Parkes, Ben; Defrance, Dimitri; Sultan, Benjamin; Ciais, Philippe; Wang, Xuhui
2018-02-01
The ability of a region to feed itself in the upcoming decades is an important issue. The West African population is expected to increase significantly in the next 30 years. The responses of crops to short-term climate change is critical to the population and the decision makers tasked with food security. This leads to three questions: how will crop yields change in the near future? What influence will climate change have on crop failures? Which adaptation methods should be employed to ameliorate undesirable changes? An ensemble of near-term climate projections are used to simulate maize, millet and sorghum in West Africa in the recent historic period (1986-2005) and a near-term future when global temperatures are 1.5 K above pre-industrial levels to assess the change in yield, yield variability and crop failure rate. Four crop models were used to simulate maize, millet and sorghum in West Africa in the historic and future climates. Across the majority of West Africa the maize, millet and sorghum yields are shown to fall. In the regions where yields increase, the variability also increases. This increase in variability increases the likelihood of crop failures, which are defined as yield negative anomalies beyond 1 standard deviation during the historic period. The increasing variability increases the frequency of crop failures across West Africa. The return time of crop failures falls from 8.8, 9.7 and 10.1 years to 5.2, 6.3 and 5.8 years for maize, millet and sorghum respectively. The adoption of heat-resistant cultivars and the use of captured rainwater have been investigated using one crop model as an idealized sensitivity test. The generalized doption of a cultivar resistant to high-temperature stress during flowering is shown to be more beneficial than using rainwater harvesting.
Future crop production threatened by extreme heat
NASA Astrophysics Data System (ADS)
Siebert, Stefan; Ewert, Frank
2014-04-01
Heat is considered to be a major stress limiting crop growth and yields. While important findings on the impact of heat on crop yield have been made based on experiments in controlled environments, little is known about the effects under field conditions at larger scales. The study of Deryng et al (2014 Global crop yield response to extreme heat stress under multiple climate change futures Environ. Res. Lett. 9 034011), analysing the impact of heat stress on maize, spring wheat and soya bean under climate change, represents an important contribution to this emerging research field. Uncertainties in the occurrence of heat stress under field conditions, plant responses to heat and appropriate adaptation measures still need further investigation.
Application of a CROPWAT Model to Analyze Crop Yields in Nicaragua
NASA Astrophysics Data System (ADS)
Doria, R.; Byrne, J. M.
2013-12-01
ABSTRACT Changes in climate are likely to influence crop yields due to varying evapotranspiration and precipitation over agricultural regions. In Nicaragua, agriculture is extensive, with new areas of land brought into production as the population increases. Nicaraguan staple food items (maize and beans) are produced mostly by small scale farmers with less than 10 hectares, but they are critical for income generation and food security for rural communities. Given that the majority of these farmers are dependent on rain for crop irrigation, and that maize and beans are sensitive to variations in temperature and rainfall patterns, the present study was undertaken to assess the impact of climate change on these crop yields. Climate data were generated per municipio representing the three major climatic zones of the country: the wet Pacific lowland, the cooler Central highland, and the Caribbean lowland. Historical normal climate data from 1970-2000 (baseline period) were used as input to CROPWAT model to analyze the potential and actual evapotranspiration (ETo and ETa, respectively) that affects crop yields. Further, generated local climatic data of future years (2030-2099) under various scenarios were inputted to the CROPWAT to determine changes in ETo and ETa from the baseline period. Spatial variability maps of both ETo and ETa as well as crop yields were created. Results indicated significant variation in seasonal rainfall depth during the baseline period and predicted decreasing trend in the future years that eventually affects yields. These maps enable us to generate appropriate adaptation measures and best management practices for small scale farmers under future climate change scenarios. KEY WORDS: Climate change, evapotranspiration, CROPWAT, yield, Nicaragua
NASA Astrophysics Data System (ADS)
Zhang, Yi; Zhao, Yanxia; Wang, Chunyi; Chen, Sining
2017-11-01
Assessment of the impact of climate change on crop productions with considering uncertainties is essential for properly identifying and decision-making agricultural practices that are sustainable. In this study, we employed 24 climate projections consisting of the combinations of eight GCMs and three emission scenarios representing the climate projections uncertainty, and two crop statistical models with 100 sets of parameters in each model representing parameter uncertainty within the crop models. The goal of this study was to evaluate the impact of climate change on maize ( Zea mays L.) yield at three locations (Benxi, Changling, and Hailun) across Northeast China (NEC) in periods 2010-2039 and 2040-2069, taking 1976-2005 as the baseline period. The multi-models ensembles method is an effective way to deal with the uncertainties. The results of ensemble simulations showed that maize yield reductions were less than 5 % in both future periods relative to the baseline. To further understand the contributions of individual sources of uncertainty, such as climate projections and crop model parameters, in ensemble yield simulations, variance decomposition was performed. The results indicated that the uncertainty from climate projections was much larger than that contributed by crop model parameters. Increased ensemble yield variance revealed the increasing uncertainty in the yield simulation in the future periods.
Regional Climate Change Impact on Agricultural Land Use in West Africa
NASA Astrophysics Data System (ADS)
Ahmed, K. F.; Wang, G.; You, L.
2014-12-01
Agriculture is a key element of the human-induced land use land cover change (LULCC) that is influenced by climate and can potentially influence regional climate. Temperature and precipitation directly impact the crop yield (by controlling photosynthesis, respiration and other physiological processes) that then affects agricultural land use pattern. In feedback, the resulting changes in land use and land cover play an important role to determine the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. The assessment of future agricultural land use is, therefore, of great importance in climate change study. In this study, we develop a prototype land use projection model and, using this model, project the changes to land use pattern and future land cover map accounting for climate-induced yield changes for major crops in West Africa. Among the inputs to the land use projection model are crop yield changes simulated by the crop model DSSAT, driven with the climate forcing data from the regional climate model RegCM4.3.4-CLM4.5, which features a projected decrease of future mean crop yield and increase of inter-annual variability. Another input to the land use projection model is the projected changes of food demand in the future. In a so-called "dumb-farmer scenario" without any adaptation, the combined effect of decrease in crop yield and increase in food demand will lead to a significant increase in agricultural land use in future years accompanied by a decrease in forest and grass area. Human adaptation through land use optimization in an effort to minimize agricultural expansion is found to have little impact on the overall areas of agricultural land use. While the choice of the General Circulation Model (GCM) to derive initial and boundary conditions for the regional climate model can be a source of uncertainty in projecting the future LULCC, results from sensitivity experiments indicate that the changes in land use pattern are robust.
Analysis of climate signals in the crop yield record of sub-Saharan Africa.
Hoffman, Alexis L; Kemanian, Armen R; Forest, Chris E
2018-01-01
Food security and agriculture productivity assessments in sub-Saharan Africa (SSA) require a better understanding of how climate and other drivers influence regional crop yields. In this paper, our objective was to identify the climate signal in the realized yields of maize, sorghum, and groundnut in SSA. We explored the relation between crop yields and scale-compatible climate data for the 1962-2014 period using Random Forest, a diagnostic machine learning technique. We found that improved agricultural technology and country fixed effects are three times more important than climate variables for explaining changes in crop yields in SSA. We also found that increasing temperatures reduced yields for all three crops in the temperature range observed in SSA, while precipitation increased yields up to a level roughly matching crop evapotranspiration. Crop yields exhibited both linear and nonlinear responses to temperature and precipitation, respectively. For maize, technology steadily increased yields by about 1% (13 kg/ha) per year while increasing temperatures decreased yields by 0.8% (10 kg/ha) per °C. This study demonstrates that although we should expect increases in future crop yields due to improving technology, the potential yields could be progressively reduced due to warmer and drier climates. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Lee, K.; Leng, G.; Huang, M.; Sheffield, J.; Zhao, G.; Gao, H.
2017-12-01
Texas has the largest farm area in the U.S, and its revenue from crop production ranks third overall. With the changing climate, hydrological extremes such as droughts are becoming more frequent and intensified, causing significant yield reduction in rainfed agricultural systems. The objective of this study is to investigate the potential impacts of agricultural drought on crop yields (corn, sorghum, and wheat) under a changing climate in Texas. The Variable Infiltration Capacity (VIC) model, which is calibrated and validated over 10 major Texas river basins during the historical period, is employed in this study.The model is forced by a set of statistically downscaled climate projections from Coupled Model Intercomparison Project Phase 5 (CMIP5) model ensembles at a spatial resolution of 1/8°. The CMIP5 projections contain four Representative Concentration Pathways (RCP) that represent different greenhouse gas concentration (4.5 and 8.5 w/m2 are selected in this study). To carry out the analysis, VIC simulations from 1950 to 2099 are first analyzed to investigate how the frequency and severity of agricultural droughts will be altered in Texas (under a changing climate). Second, future crop yields are projected using a statistical crop model. Third, the effects of agricultural drought on crop yields are quantitatively analyzed. The results are expected to contribute to future water resources planning, with a goal of mitigating the negative impacts of future droughts on agricultural production in Texas.
Using FACE systems to screen wheat cultivars for yield increases at elevated CO2
USDA-ARS?s Scientific Manuscript database
Because of continuing increases in atmospheric CO2, identifying cultivars of crops with larger yield increases at elevated CO2 may provide an avenue to increase crop yield potential in future climates. Free-air CO2 enrichment (FACE) systems have most often been used with multiple replications of ea...
Climate variation explains a third of global crop yield variability
Ray, Deepak K.; Gerber, James S.; MacDonald, Graham K.; West, Paul C.
2015-01-01
Many studies have examined the role of mean climate change in agriculture, but an understanding of the influence of inter-annual climate variations on crop yields in different regions remains elusive. We use detailed crop statistics time series for ~13,500 political units to examine how recent climate variability led to variations in maize, rice, wheat and soybean crop yields worldwide. While some areas show no significant influence of climate variability, in substantial areas of the global breadbaskets, >60% of the yield variability can be explained by climate variability. Globally, climate variability accounts for roughly a third (~32–39%) of the observed yield variability. Our study uniquely illustrates spatial patterns in the relationship between climate variability and crop yield variability, highlighting where variations in temperature, precipitation or their interaction explain yield variability. We discuss key drivers for the observed variations to target further research and policy interventions geared towards buffering future crop production from climate variability. PMID:25609225
Increasing crop diversity mitigates weather variations and improves yield stability.
Gaudin, Amélie C M; Tolhurst, Tor N; Ker, Alan P; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C; Deen, William
2015-01-01
Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental stresses. This could help to sustain future yield levels in challenging production environments.
Pervin, Lia; Islam, Md Saiful
2015-02-01
The aim of this study was to develop a system dynamics model for computation of yields and to investigate the dependency of yields on some major climatic parameters, i.e. temperature and rainfall, for Beta vulgaris subsp. (sugar beet crops) under future climate change scenarios. A system dynamics model was developed which takes account of the effects of rainfall and temperature on sugar beet yields under limited irrigation conditions. A relationship was also developed between the seasonal evapotranspiration and seasonal growing degree days for sugar beet crops. The proposed model was set to run for the present time period of 1993-2012 and for the future period 2013-2040 for Lethbridge region (Alberta, Canada). The model provides sugar beet yields on a yearly basis which are comparable to the present field data. It was found that the future average yield will be increased at about 14% with respect to the present average yield. The proposed model can help to improve the understanding of soil water conditions and irrigation water requirements of an area under certain climatic conditions and can be used for future prediction of yields for any crops in any region (with the required information to be provided). The developed system dynamics model can be used as a supporting tool for decision making, for improvement of agricultural management practice of any region. © 2014 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Wang, G.; Ahmed, K. F.; You, L.
2015-12-01
Land use changes constitute an important regional climate change forcing in West Africa, a region of strong land-atmosphere coupling. At the same time, climate change can be an important driver for land use, although its importance relative to the impact of socio-economic factors may vary significant from region to region. This study compares the contributions of climate change and socioeconomic development to potential future changes of agricultural land use in West Africa and examines various sources of uncertainty using a land use projection model (LandPro) that accounts for the impact of socioeconomic drivers on the demand side and the impact of climate-induced crop yield changes on the supply side. Future crop yield changes were simulated by a process-based crop model driven with future climate projections from a regional climate model, and future changes of food demand is projected using a model for policy analysis of agricultural commodities and trade. The impact of human decision-making on land use was explicitly considered through multiple "what-if" scenarios to examine the range of uncertainties in projecting future land use. Without agricultural intensification, the climate-induced decrease of crop yield together with increase of food demand are found to cause a significant increase in agricultural land use at the expense of forest and grassland by the mid-century, and the resulting land use land cover changes are found to feed back to the regional climate in a way that exacerbates the negative impact of climate on crop yield. Analysis of results from multiple decision-making scenarios suggests that human adaptation characterized by science-informed decision making to minimize land use could be very effective in many parts of the region.
Rice Research to Break Yield Barriers
NASA Astrophysics Data System (ADS)
Verma, Vivek; Ramamoorthy, Rengasamy; Kohli, Ajay; Kumar, Prakash P.
2015-10-01
The world’s population continues to expand and it is expected to cross 9 billion by 2050. This would significantly amplify the demand for food, which will pose serious threats to global food security. Additional challenges are being imposed due to a gradual decrease in the total arable land and global environmental changes. Hence, it is of utmost importance to review and revise the existing food production strategies by incorporating novel biotechnological approaches that can help to break the crop yield barriers in the near future. In this review, we highlight some of the concerns hampering crop yield enhancements. The review also focuses on modern breeding techniques based on genomics as well as proven biotechnological approaches that enable identification and utilization of candidate genes. Another aspect of discussion is the important area of research, namely hormonal regulation of plant development, which is likely to yield valuable regulatory genes for such crop improvement efforts in the future. These strategies can serve as potential tools for developing elite crop varieties for feeding the growing billions.
Moderating diets to feed the future
NASA Astrophysics Data System (ADS)
Davis, Kyle F.; D'Odorico, Paolo; Rulli, Maria Cristina
2014-10-01
Population growth, dietary changes, and increasing biofuel use are placing unprecedented pressure on the global food system. While this demand likely cannot be met by expanding agricultural lands, much of the world's cropland can attain higher crop yields. Therefore, it is important to examine whether increasing crop productivity to the maximum attainable yield (i.e., yield gap closure) alone can substantially improve food security at global and national scales. Here we show that closing yield gaps through conventional technological development (i.e., fertilizers and irrigation) can potentially meet future global demand if diets are moderated and crop-based biofuel production is limited. In particular, we find that increases in dietary demand will be largely to blame should crop production fall short of demand. In converting projected diets to a globally adequate diet (3000 kcal/cap/d; 20% animal kcal) under current agrofuel use, we find that 1.8-2.6 billion additional people can be fed in 2030 and 2.1-3.1 billion additional people in 2050, depending on the extent to which yields can improve in those periods. Therefore, the simple combination of yield gap closure and moderating diets offers promise for feeding the world's population but only if long-term sustainability is the focus.
The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems
NASA Astrophysics Data System (ADS)
Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.
2014-12-01
The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (<1% differences) when a cover crop was or was not included in the simulation. Further, a "bad spring" scenario (where every third year had an abnormally wet/cold spring and cover crop termination and planting cash crop were within one day) did not result in any major changes to cash crop yields. Through simulations we estimate an average increase of 4-9% organic matter improvement in the topsoil and an average decrease in soil erosion of 14-32% depending on cover crop planting date and growth. Our work is part of the Climate and Corn-based Cropping Systems Coordinated Agriculture Project (CSCAP), a collaboration of eleven Midwestern institutions established to evaluate how conservation practices, including cover crops, improve the resilience of Midwest agriculture to future change. Such collaborations can help better quantify long term impacts of conservation practices on the landscape that ultimately lead to more climate-smart management of such agricultural systems.
USDA-ARS?s Scientific Manuscript database
Predictions suggest that current crop production needs to double by 2050 to meet global food and energy demands. Based on theory and experimental studies, overexpression of the photosynthetic enzyme sedoheptulose-1,7-bisphosphatase (SBPase) is expected to enhance C3 crop photosynthesis and yields. H...
Crops in silico: A community wide multi-scale computational modeling framework of plant canopies
NASA Astrophysics Data System (ADS)
Srinivasan, V.; Christensen, A.; Borkiewic, K.; Yiwen, X.; Ellis, A.; Panneerselvam, B.; Kannan, K.; Shrivastava, S.; Cox, D.; Hart, J.; Marshall-Colon, A.; Long, S.
2016-12-01
Current crop models predict a looming gap between supply and demand for primary foodstuffs over the next 100 years. While significant yield increases were achieved in major food crops during the early years of the green revolution, the current rates of yield increases are insufficient to meet future projected food demand. Furthermore, with projected reduction in arable land, decrease in water availability, and increasing impacts of climate change on future food production, innovative technologies are required to sustainably improve crop yield. To meet these challenges, we are developing Crops in silico (Cis), a biologically informed, multi-scale, computational modeling framework that can facilitate whole plant simulations of crop systems. The Cis framework is capable of linking models of gene networks, protein synthesis, metabolic pathways, physiology, growth, and development in order to investigate crop response to different climate scenarios and resource constraints. This modeling framework will provide the mechanistic details to generate testable hypotheses toward accelerating directed breeding and engineering efforts to increase future food security. A primary objective for building such a framework is to create synergy among an inter-connected community of biologists and modelers to create a realistic virtual plant. This framework advantageously casts the detailed mechanistic understanding of individual plant processes across various scales in a common scalable framework that makes use of current advances in high performance and parallel computing. We are currently designing a user friendly interface that will make this tool equally accessible to biologists and computer scientists. Critically, this framework will provide the community with much needed tools for guiding future crop breeding and engineering, understanding the emergent implications of discoveries at the molecular level for whole plant behavior, and improved prediction of plant and ecosystem responses to the environment.
Increasing Crop Diversity Mitigates Weather Variations and Improves Yield Stability
Gaudin, Amélie C. M.; Tolhurst, Tor N.; Ker, Alan P.; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C.; Deen, William
2015-01-01
Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental stresses. This could help to sustain future yield levels in challenging production environments. PMID:25658914
Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph
2012-08-01
The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26-141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture.
Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph
2012-01-01
The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26–141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture. PMID:23576836
Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes
NASA Astrophysics Data System (ADS)
Zipper, Samuel C.; Qiu, Jiangxiao; Kucharik, Christopher J.
2016-09-01
Maximizing agricultural production on existing cropland is one pillar of meeting future global food security needs. To close crop yield gaps, it is critical to understand how climate extremes such as drought impact yield. Here, we use gridded, daily meteorological data and county-level annual yield data to quantify meteorological drought sensitivity of US maize and soybean production from 1958 to 2007. Meteorological drought negatively affects crop yield over most US crop-producing areas, and yield is most sensitive to short-term (1-3 month) droughts during critical development periods from July to August. While meteorological drought is associated with 13% of overall yield variability, substantial spatial variability in drought effects and sensitivity exists, with central and southeastern US becoming increasingly sensitive to drought over time. Our study illustrates fine-scale spatiotemporal patterns of drought effects, highlighting where variability in crop production is most strongly associated with drought, and suggests that management strategies that buffer against short-term water stress may be most effective at sustaining long-term crop productivity.
Dixit, Prakash N; Telleria, Roberto; Al Khatib, Amal N; Allouzi, Siham F
2018-01-01
Different aspects of climate change, such as increased temperature, changed rainfall and higher atmospheric CO 2 concentration, all have different effects on crop yields. Process-based crop models are the most widely used tools for estimating future crop yield responses to climate change. We applied APSIM crop simulation model in a dry Mediterranean climate with Jordan as sentinel site to assess impact of climate change on wheat production at decadal level considering two climate change scenarios of representative concentration pathways (RCP) viz., RCP4.5 and RCP8.5. Impact of climatic variables alone was negative on grain yield but this adverse effect was negated when elevated atmospheric CO 2 concentrations were also considered in the simulations. Crop cycle of wheat was reduced by a fortnight for RCP4.5 scenario and by a month for RCP8.5 scenario at the approach of end of the century. On an average, a grain yield increase of 5 to 11% in near future i.e., 2010s-2030s decades, 12 to 16% in mid future i.e., 2040s-2060s decades and 9 to 16% in end of century period can be expected for moderate climate change scenario (RCP4.5) and 6 to 15% in near future, 13 to 19% in mid future and 7 to 20% increase in end of century period for a drastic climate change scenario (RCP8.5) based on different soils. Positive impact of elevated CO 2 is more pronounced in soils with lower water holding capacity with moderate increase in temperatures. Elevated CO 2 had greater positive effect on transpiration use efficiency (TUE) than negative effect of elevated mean temperatures. The change in TUE was in near perfect direct relationship with elevated CO 2 levels (R 2 >0.99) and every 100-ppm atmospheric CO 2 increase resulted in TUE increase by 2kgha -1 mm -1 . Thereby, in this environment yield gains are expected in future and farmers can benefit from growing wheat. Copyright © 2017 Elsevier B.V. All rights reserved.
National Variation in Crop Yield Production Functions
NASA Astrophysics Data System (ADS)
Devineni, N.; Rising, J. A.
2017-12-01
A new multilevel model for yield prediction at the county scale using regional climate covariates is presented in this paper. A new crop specific water deficit index, growing degree days, extreme degree days, and time-trend as an approximation of technology improvements are used as predictors to estimate annual crop yields for each county from 1949 to 2009. Every county in the United States is allowed to have unique parameters describing how these weather predictors are related to yield outcomes. County-specific parameters are further modeled as varying according to climatic characteristics, allowing the prediction of parameters in regions where crops are not currently grown and into the future. The structural relationships between crop yield and regional climate as well as trends are estimated simultaneously. All counties are modeled in a single multilevel model with partial pooling to automatically group and reduce estimation uncertainties. The model captures up to 60% of the variability in crop yields after removing the effect of technology, does well in out of sample predictions and is useful in relating the climate responses to local bioclimatic factors. We apply the predicted growing models in a cost-benefit analysis to identify the most economically productive crop in each county.
Research on climate impacts and agriculture over the past two decades has applied simulation models at a range of scales and future climate scenarios, finding that crop growth and yield responds to changing climate conditions, and that the impacts are regional and highly depende...
Climate change impacts on crop yield: evidence from China.
Wei, Taoyuan; Cherry, Todd L; Glomrød, Solveig; Zhang, Tianyi
2014-11-15
When estimating climate change impact on crop yield, a typical assumption is constant elasticity of yield with respect to a climate variable even though the elasticity may be inconstant. After estimating both constant and inconstant elasticities with respect to temperature and precipitation based on provincial panel data in China 1980-2008, our results show that during that period, the temperature change contributes positively to total yield growth by 1.3% and 0.4% for wheat and rice, respectively, but negatively by 12% for maize. The impacts of precipitation change are marginal. We also compare our estimates with other studies and highlight the implications of the inconstant elasticities for crop yield, harvest and food security. We conclude that climate change impact on crop yield would not be an issue in China if positive impacts of other socio-economic factors continue in the future. Copyright © 2014 Elsevier B.V. All rights reserved.
Recent patterns of crop yield growth and stagnation.
Ray, Deepak K; Ramankutty, Navin; Mueller, Nathaniel D; West, Paul C; Foley, Jonathan A
2012-01-01
In the coming decades, continued population growth, rising meat and dairy consumption and expanding biofuel use will dramatically increase the pressure on global agriculture. Even as we face these future burdens, there have been scattered reports of yield stagnation in the world's major cereal crops, including maize, rice and wheat. Here we study data from ∼2.5 million census observations across the globe extending over the period 1961-2008. We examined the trends in crop yields for four key global crops: maize, rice, wheat and soybeans. Although yields continue to increase in many areas, we find that across 24-39% of maize-, rice-, wheat- and soybean-growing areas, yields either never improve, stagnate or collapse. This result underscores the challenge of meeting increasing global agricultural demands. New investments in underperforming regions, as well as strategies to continue increasing yields in the high-performing areas, are required.
A Multi-sensor Approach to Identify Crop Sensitivity Related to Climate Variability in Central India
NASA Astrophysics Data System (ADS)
Mondal, P.; DeFries, R. S.; Jain, M.; Robertson, A. W.; Galford, G. L.; Small, C.
2012-12-01
Agriculture is a primary source of livelihood for over 70% of India's population, with staple crops (e.g. winter wheat) playing a pivotal role in satisfying an ever-increasing food-demand of a growing population. Agricultural yield in India has been reported to be highly correlated with the timing and total amount of monsoon rainfall and/or temperature depending on crop type. With expected change in future climate (temperature and precipitation), significant fluctuations in crop yields are projected for near future. To date, little work has identified the sensitivity of cropping intensity, or the number of crops planted in a given year, to climate variability. The objective of this study is to shed light on relative importance of different climate parameters through a statistical analysis of inter-annual variations in cropping intensity at a regional scale, which may help identify adaptive strategies in response to future climate anomalies. Our study focuses on a highly human-modified landscape in central India, and uses a multi-sensor approach to determine the sensitivity of agriculture to climate variability. First, we assembled the 16-day time-series of 250m Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), and applied a spline function-based smoothing algorithm to develop maps of monsoon and winter crops in Central India for a decadal time-span. A hierarchical model involving moderate resolution Landsat (30m) data was used to estimate the heterogeneity of the spectral signature within the MODIS dataset (250m). We then compared the season-specific cropping patterns with spatio-temporal variability in climate parameters derived from the Tropical Rainfall Measuring Mission (TRMM) data. Initial data indicates that the existence of a monsoon crop has moderate to strong correlation with wet season end date (ρ = .522), wet season length (ρ = .522), and the number of rainy days during wet season (ρ = .829). Existence of a winter crop, however, has a moderately strong correlation with wet season start date (ρ = .577). In addition, winter crop yield (ton/ha) has a moderate correlation with wet season end date (ρ = .624), number of rainy days during the wet season (ρ = .492), and during the dry season (ρ = .410). Future work will assess which other factors influence cropping intensity (e.g. access to irrigation among many other), since a complex interplay of bio-physical and socio-economic factors governs the decision-making at the farm-level, ultimately leading to inter-annual variability in cropping intensity and/or yield.
Plausible rice yield losses under future climate warming.
Zhao, Chuang; Piao, Shilong; Wang, Xuhui; Huang, Yao; Ciais, Philippe; Elliott, Joshua; Huang, Mengtian; Janssens, Ivan A; Li, Tao; Lian, Xu; Liu, Yongwen; Müller, Christoph; Peng, Shushi; Wang, Tao; Zeng, Zhenzhong; Peñuelas, Josep
2016-12-19
Rice is the staple food for more than 50% of the world's population 1-3 . Reliable prediction of changes in rice yield is thus central for maintaining global food security. This is an extraordinary challenge. Here, we compare the sensitivity of rice yield to temperature increase derived from field warming experiments and three modelling approaches: statistical models, local crop models and global gridded crop models. Field warming experiments produce a substantial rice yield loss under warming, with an average temperature sensitivity of -5.2 ± 1.4% K -1 . Local crop models give a similar sensitivity (-6.3 ± 0.4% K -1 ), but statistical and global gridded crop models both suggest less negative impacts of warming on yields (-0.8 ± 0.3% and -2.4 ± 3.7% K -1 , respectively). Using data from field warming experiments, we further propose a conditional probability approach to constrain the large range of global gridded crop model results for the future yield changes in response to warming by the end of the century (from -1.3% to -9.3% K -1 ). The constraint implies a more negative response to warming (-8.3 ± 1.4% K -1 ) and reduces the spread of the model ensemble by 33%. This yield reduction exceeds that estimated by the International Food Policy Research Institute assessment (-4.2 to -6.4% K -1 ) (ref. 4). Our study suggests that without CO 2 fertilization, effective adaptation and genetic improvement, severe rice yield losses are plausible under intensive climate warming scenarios.
Agricultural Management Practices Explain Variation in Global Yield Gaps of Major Crops
NASA Astrophysics Data System (ADS)
Mueller, N. D.; Gerber, J. S.; Ray, D. K.; Ramankutty, N.; Foley, J. A.
2010-12-01
The continued expansion and intensification of agriculture are key drivers of global environmental change. Meeting a doubling of food demand in the next half-century will further induce environmental change, requiring either large cropland expansion into carbon- and biodiversity-rich tropical forests or increasing yields on existing croplands. Closing the “yield gaps” between the most and least productive farmers on current agricultural lands is a necessary and major step towards preserving natural ecosystems and meeting future food demand. Here we use global climate, soils, and cropland datasets to quantify yield gaps for major crops using equal-area climate analogs. Consistent with previous studies, we find large yield gaps for many crops in Eastern Europe, tropical Africa, and parts of Mexico. To analyze the drivers of yield gaps, we collected sub-national agricultural management data and built a global dataset of fertilizer application rates for over 160 crops. We constructed empirical crop yield models for each climate analog using the global management information for 17 major crops. We find that our climate-specific models explain a substantial amount of the global variation in yields. These models could be widely applied to identify management changes needed to close yield gaps, analyze the environmental impacts of agricultural intensification, and identify climate change adaptation techniques.
Christensen, A. J.; Srinivasan, V.; Hart, J. C.; ...
2018-03-17
Sustainable crop production is a contributing factor to current and future food security. Innovative technologies are needed to design strategies that will achieve higher crop yields on less land and with fewer resources. Computational modeling coupled with advanced scientific visualization enables researchers to explore and interact with complex agriculture, nutrition, and climate data to predict how crops will respond to untested environments. These virtual observations and predictions can direct the development of crop ideotypes designed to meet future yield and nutritional demands. This review surveys modeling strategies for the development of crop ideotypes and scientific visualization technologies that have ledmore » to discoveries in “big data” analysis. Combined modeling and visualization approaches have been used to realistically simulate crops and to guide selection that immediately enhances crop quantity and quality under challenging environmental conditions. Lastly, this survey of current and developing technologies indicates that integrative modeling and advanced scientific visualization may help overcome challenges in agriculture and nutrition data as large-scale and multidimensional data become available in these fields.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, A. J.; Srinivasan, V.; Hart, J. C.
Sustainable crop production is a contributing factor to current and future food security. Innovative technologies are needed to design strategies that will achieve higher crop yields on less land and with fewer resources. Computational modeling coupled with advanced scientific visualization enables researchers to explore and interact with complex agriculture, nutrition, and climate data to predict how crops will respond to untested environments. These virtual observations and predictions can direct the development of crop ideotypes designed to meet future yield and nutritional demands. This review surveys modeling strategies for the development of crop ideotypes and scientific visualization technologies that have ledmore » to discoveries in “big data” analysis. Combined modeling and visualization approaches have been used to realistically simulate crops and to guide selection that immediately enhances crop quantity and quality under challenging environmental conditions. Lastly, this survey of current and developing technologies indicates that integrative modeling and advanced scientific visualization may help overcome challenges in agriculture and nutrition data as large-scale and multidimensional data become available in these fields.« less
Christensen, A J; Srinivasan, Venkatraman; Hart, John C; Marshall-Colon, Amy
2018-05-01
Sustainable crop production is a contributing factor to current and future food security. Innovative technologies are needed to design strategies that will achieve higher crop yields on less land and with fewer resources. Computational modeling coupled with advanced scientific visualization enables researchers to explore and interact with complex agriculture, nutrition, and climate data to predict how crops will respond to untested environments. These virtual observations and predictions can direct the development of crop ideotypes designed to meet future yield and nutritional demands. This review surveys modeling strategies for the development of crop ideotypes and scientific visualization technologies that have led to discoveries in "big data" analysis. Combined modeling and visualization approaches have been used to realistically simulate crops and to guide selection that immediately enhances crop quantity and quality under challenging environmental conditions. This survey of current and developing technologies indicates that integrative modeling and advanced scientific visualization may help overcome challenges in agriculture and nutrition data as large-scale and multidimensional data become available in these fields.
Christensen, A J; Srinivasan, Venkatraman; Hart, John C; Marshall-Colon, Amy
2018-01-01
Abstract Sustainable crop production is a contributing factor to current and future food security. Innovative technologies are needed to design strategies that will achieve higher crop yields on less land and with fewer resources. Computational modeling coupled with advanced scientific visualization enables researchers to explore and interact with complex agriculture, nutrition, and climate data to predict how crops will respond to untested environments. These virtual observations and predictions can direct the development of crop ideotypes designed to meet future yield and nutritional demands. This review surveys modeling strategies for the development of crop ideotypes and scientific visualization technologies that have led to discoveries in “big data” analysis. Combined modeling and visualization approaches have been used to realistically simulate crops and to guide selection that immediately enhances crop quantity and quality under challenging environmental conditions. This survey of current and developing technologies indicates that integrative modeling and advanced scientific visualization may help overcome challenges in agriculture and nutrition data as large-scale and multidimensional data become available in these fields. PMID:29562368
Crop productivity changes in 1.5 °C and 2 °C worlds under climate sensitivity uncertainty
NASA Astrophysics Data System (ADS)
Schleussner, Carl-Friedrich; Deryng, Delphine; Müller, Christoph; Elliott, Joshua; Saeed, Fahad; Folberth, Christian; Liu, Wenfeng; Wang, Xuhui; Pugh, Thomas A. M.; Thiery, Wim; Seneviratne, Sonia I.; Rogelj, Joeri
2018-06-01
Following the adoption of the Paris Agreement, there has been an increasing interest in quantifying impacts at discrete levels of global mean temperature (GMT) increase such as 1.5 °C and 2 °C above pre-industrial levels. Consequences of anthropogenic greenhouse gas emissions on agricultural productivity have direct and immediate relevance for human societies. Future crop yields will be affected by anthropogenic climate change as well as direct effects of emissions such as CO2 fertilization. At the same time, the climate sensitivity to future emissions is uncertain. Here we investigate the sensitivity of future crop yield projections with a set of global gridded crop models for four major staple crops at 1.5 °C and 2 °C warming above pre-industrial levels, as well as at different CO2 levels determined by similar probabilities to lead to 1.5 °C and 2 °C, using climate forcing data from the Half a degree Additional warming, Prognosis and Projected Impacts project. For the same CO2 forcing, we find consistent negative effects of half a degree warming on productivity in most world regions. Increasing CO2 concentrations consistent with these warming levels have potentially stronger but highly uncertain effects than 0.5 °C warming increments. Half a degree warming will also lead to more extreme low yields, in particular over tropical regions. Our results indicate that GMT change alone is insufficient to determine future impacts on crop productivity.
NASA Technical Reports Server (NTRS)
Ruane, Alex C.; Cecil, L. Dewayne; Horton, Radley M.; Gordon, Roman; McCollum, Raymond (Brown, Douglas); Brown, Douglas; Killough, Brian; Goldberg, Richard; Greeley, Adam P.; Rosenzweig, Cynthia
2011-01-01
We present results from a pilot project to characterize and bound multi-disciplinary uncertainties around the assessment of maize (Zea mays) production impacts using the CERES-Maize crop model in a climate-sensitive region with a variety of farming systems (Panama). Segunda coa (autumn) maize yield in Panama currently suffers occasionally from high water stress at the end of the growing season, however under future climate conditions warmer temperatures accelerate crop maturation and elevated CO (sub 2) concentrations improve water retention. This combination reduces end-of-season water stresses and eventually leads to small mean yield gains according to median projections, although accelerated maturation reduces yields in seasons with low water stresses. Calibrations of cultivar traits, soil profile, and fertilizer amounts are most important for representing baseline yields, however sensitivity to all management factors is reduced in an assessment of future yield changes (most dramatically for fertilizers), suggesting that yield changes may be more generalizable than absolute yields. Uncertainty around General Circulation Model (GCM)s' projected changes in rainfall gain in importance throughout the century, with yield changes strongly correlated with growing season rainfall totals. Climate changes are expected to be obscured by the large inter-annual variations in Panamanian climate that will continue to be the dominant influence on seasonal maize yield into the coming decades. The relatively high (A2) and low (B1) emissions scenarios show little difference in their impact on future maize yields until the end of the century. Uncertainties related to the sensitivity of CERES-Maize to carbon dioxide concentrations have a substantial influence on projected changes, and remain a significant obstacle to climate change impacts assessment. Finally, an investigation into the potential of simple statistical yield emulators based upon key climate variables characterizes the important uncertainties behind the selection of climate change metrics and their performance against more complex process-based crop model simulations, revealing a danger in relying only on long-term mean quantities for crop impact assessment.
Pugh, T.A.M.; Müller, C.; Elliott, J.; Deryng, D.; Folberth, C.; Olin, S.; Schmid, E.; Arneth, A.
2016-01-01
Climate change could pose a major challenge to efforts towards strongly increase food production over the coming decades. However, model simulations of future climate-impacts on crop yields differ substantially in the magnitude and even direction of the projected change. Combining observations of current maximum-attainable yield with climate analogues, we provide a complementary method of assessing the effect of climate change on crop yields. Strong reductions in attainable yields of major cereal crops are found across a large fraction of current cropland by 2050. These areas are vulnerable to climate change and have greatly reduced opportunity for agricultural intensification. However, the total land area, including regions not currently used for crops, climatically suitable for high attainable yields of maize, wheat and rice is similar by 2050 to the present-day. Large shifts in land-use patterns and crop choice will likely be necessary to sustain production growth rates and keep pace with demand. PMID:27646707
NASA Technical Reports Server (NTRS)
Pugh, T. A. M.; Mueller, C.; Elliott, J.; Deryng, D.; Folberth, C.; Olin, S.; Schmid, E.; Arneth, A.
2016-01-01
Climate change could pose a major challenge to efforts towards strongly increase food production over the coming decades. However, model simulations of future climate-impacts on crop yields differ substantially in the magnitude and even direction of the projected change. Combining observations of current maximum-attainable yield with climate analogues, we provide a complementary method of assessing the effect of climate change on crop yields. Strong reductions in attainable yields of major cereal crops are found across a large fraction of current cropland by 2050. These areas are vulnerable to climate change and have greatly reduced opportunity for agricultural intensification. However, the total land area, including regions not currently used for crops, climatically suitable for high attainable yields of maize, wheat and rice is similar by 2050 to the present-day. Large shifts in land-use patterns and crop choice will likely be necessary to sustain production growth rates and keep pace with demand.
NASA Astrophysics Data System (ADS)
Pugh, T. A. M.; Müller, C.; Elliott, J.; Deryng, D.; Folberth, C.; Olin, S.; Schmid, E.; Arneth, A.
2016-09-01
Climate change could pose a major challenge to efforts towards strongly increase food production over the coming decades. However, model simulations of future climate-impacts on crop yields differ substantially in the magnitude and even direction of the projected change. Combining observations of current maximum-attainable yield with climate analogues, we provide a complementary method of assessing the effect of climate change on crop yields. Strong reductions in attainable yields of major cereal crops are found across a large fraction of current cropland by 2050. These areas are vulnerable to climate change and have greatly reduced opportunity for agricultural intensification. However, the total land area, including regions not currently used for crops, climatically suitable for high attainable yields of maize, wheat and rice is similar by 2050 to the present-day. Large shifts in land-use patterns and crop choice will likely be necessary to sustain production growth rates and keep pace with demand.
Food Crops Response to Climate Change
NASA Astrophysics Data System (ADS)
Butler, E.; Huybers, P.
2009-12-01
Projections of future climate show a warming world and heterogeneous changes in precipitation. Generally, warming temperatures indicate a decrease in crop yields where they are currently grown. However, warmer climate will also open up new areas at high latitudes for crop production. Thus, there is a question whether the warmer climate with decreased yields but potentially increased growing area will produce a net increase or decrease of overall food crop production. We explore this question through a multiple linear regression model linking temperature and precipitation to crop yield. Prior studies have emphasised temporal regression which indicate uniformly decreased yields, but neglect the potentially increased area opened up for crop production. This study provides a compliment to the prior work by exploring this spatial variation. We explore this subject with a multiple linear regression model from temperature, precipitation and crop yield data over the United States. The United States was chosen as the training region for the model because there are good crop data available over the same time frame as climate data and presumably the yield from crops in the United States is optimized with respect to potential yield. We study corn, soybeans, sorghum, hard red winter wheat and soft red winter wheat using monthly averages of temperature and precipitation from NCEP reanalysis and yearly yield data from the National Agriculture Statistics Service for 1948-2008. The use of monthly averaged temperature and precipitation, which neglect extreme events that can have a significant impact on crops limits this study as does the exclusive use of United States agricultural data. The GFDL 2.1 model under a 720ppm CO2 scenario provides temperature and precipitation fields for 2040-2100 which are used to explore how the spatial regions available for crop production will change under these new conditions.
Improving the Yield and Nutritional Quality of Forage Crops
Capstaff, Nicola M.; Miller, Anthony J.
2018-01-01
Despite being some of the most important crops globally, there has been limited research on forages when compared with cereals, fruits, and vegetables. This review summarizes the literature highlighting the significance of forage crops, the current improvements and some of future directions for improving yield and nutritional quality. We make the point that the knowledge obtained from model plant and grain crops can be applied to forage crops. The timely development of genomics and bioinformatics together with genome editing techniques offer great scope to improve forage crops. Given the social, environmental and economic importance of forage across the globe and especially in poorer countries, this opportunity has enormous potential to improve food security and political stability. PMID:29740468
Are GM Crops for Yield and Resilience Possible?
Paul, Matthew J; Nuccio, Michael L; Basu, Shib Sankar
2018-01-01
Crop yield improvements need to accelerate to avoid future food insecurity. Outside Europe, genetically modified (GM) crops for herbicide- and insect-resistance have been transformative in agriculture; other traits have also come to market. However, GM of yield potential and stress resilience has yet to impact on food security. Genes have been identified for yield such as grain number, size, leaf growth, resource allocation, and signaling for drought tolerance, but there is only one commercialized drought-tolerant GM variety. For GM and genome editing to impact on yield and resilience there is a need to understand yield-determining processes in a cell and developmental context combined with evaluation in the grower environment. We highlight a sugar signaling mechanism as a paradigm for this approach. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yield gaps and yield relationships in US soybean production systems
USDA-ARS?s Scientific Manuscript database
The magnitude of yield gaps (YG) (potential yield – farmer yield) provides some indication of the prospects for increasing crop yield to meet the food demands of future populations. Quantile regression analysis was applied to county soybean [Glycine max (L.) Merrill] yields (1971 – 2011) from Kentuc...
USDA-ARS?s Scientific Manuscript database
Climate change projections for the Midwest U.S. indicate increased growing season crop water deficits in the future that will adversely impact the sustainability of agricultural production. Systems that capture water on site for later subirrigation use have potential as a climate adaptation strateg...
Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates
NASA Technical Reports Server (NTRS)
Zhao, Chuang; Liu, Bing; Piao, Shilong; Wang, Xuhui; Lobell, David B.; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe;
2017-01-01
Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multi-method analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.
Temperature increase reduces global yields of major crops in four independent estimates
Zhao, Chuang; Piao, Shilong; Wang, Xuhui; Lobell, David B.; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe; Durand, Jean-Louis; Elliott, Joshua; Ewert, Frank; Janssens, Ivan A.; Li, Tao; Lin, Erda; Liu, Qiang; Martre, Pierre; Peng, Shushi; Wallach, Daniel; Wang, Tao; Wu, Donghai; Liu, Zhuo; Zhu, Yan; Zhu, Zaichun; Asseng, Senthold
2017-01-01
Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multimethod analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population. PMID:28811375
Temperature increase reduces global yields of major crops in four independent estimates.
Zhao, Chuang; Liu, Bing; Piao, Shilong; Wang, Xuhui; Lobell, David B; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe; Durand, Jean-Louis; Elliott, Joshua; Ewert, Frank; Janssens, Ivan A; Li, Tao; Lin, Erda; Liu, Qiang; Martre, Pierre; Müller, Christoph; Peng, Shushi; Peñuelas, Josep; Ruane, Alex C; Wallach, Daniel; Wang, Tao; Wu, Donghai; Liu, Zhuo; Zhu, Yan; Zhu, Zaichun; Asseng, Senthold
2017-08-29
Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO 2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multimethod analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.
Crop insurance evaluation in response to extreme events
NASA Astrophysics Data System (ADS)
Moriondo, Marco; Ferrise, Roberto; Bindi, Marco
2013-04-01
Crop yield insurance has been indicated as a tool to manage the uncertainties of crop yields (Sherrick et al., 2004) but the changes in crop yield variability as expected in the near future should be carefully considered for a better quantitative assessment of farmer's revenue risk and insurance values in a climatic change regime (Moriondo et al., 2011). Under this point of view, mechanistic crop growth models coupled to the output of General/Regional Circulation Models (GCMs, RCMs) offer a valuable tool to evaluate crop responses to climatic change and this approach has been extensively used to describe crop yield distribution in response to climatic change considering changes in both mean climate and variability. In this work, we studied the effect of a warmer climate on crop yield distribution of durum wheat (Triticum turgidum L. subsp durum) in order to assess the economic significance of climatic change in a risk decision context. Specifically, the outputs of 6 RCMs (Tmin, Tmax, Rainfall, Global Radiation) (van der Linden and Mitchell 2009) have been statistically downscaled by a stochastic weather generator over eight sites across the Mediterranean basin and used to feed the crop growth model Sirius Quality. Three time slices were considered i) the present period PP (average of the period 1975-1990, [CO2]=350 ppm), 2020 (average of the period 2010-2030, SRES scenario A1b, [CO2]=415 ppm) and 2040 (average of the period 2030-2050, SRES scenario A1b, [CO2]=480 ppm). The effect of extreme climate events (i.e. heat stress at anthesis stage) was also considered. The outputs of these simulations were used to estimate the expected payout per hectare from insurance triggered when yields fall below a specific threshold defined as "the insured yield". For each site, the threshold was calculated as a fraction (70%) of the median of yield distribution under PP that represents the percentage of median yield above which indemnity payments are triggered. The results indicated that when the effect of extreme events was not considered, climate change had a low or no impact on crop yield distribution in 2020 and 2040. This resulted into an expected payout close to what observed in the present period. Conversely, the simulation of the effect of extreme events highly affected the PDFs by reducing the expected yield. This highlights that insured yield in future projections may be overestimated when not considering the impact of extremes, leading to distortions in the risk management of crop insurance companies. References Moriondo M, Giannakopoulos C, Bindi M (2011) Climate ch'ange impact assessment: the role of climate extremes in crop yield simulation. Clim Change 104:679-701 Sherrick BJ, Zanini FC, Schnitkey GD, Irwin SH (2004) Crop Insurance Valuation under Alternative Yield Distributions. American Journal of Agricultural Economics, 86:406-419. van der Linden P, Mitchell JFB (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3 PB, UK. 160 pp
Evaluation of Projected Agricultural Climate Risk over the Contiguous US
NASA Astrophysics Data System (ADS)
Zhu, X.; Troy, T. J.; Devineni, N.
2017-12-01
Food demands are rising due to an increasing population with changing food preferences, which places pressure on agricultural production. Additionally, climate extremes have recently highlighted the vulnerability of our agricultural system to climate variability. This study seeks to fill two important gaps in current knowledge: how does the widespread response of irrigated crops differ from rainfed and how can we best account for uncertainty in yield responses. We developed a stochastic approach to evaluate climate risk quantitatively to better understand the historical impacts of climate change and estimate the future impacts it may bring about to agricultural system. Our model consists of Bayesian regression, distribution fitting, and Monte Carlo simulation to simulate rainfed and irrigated crop yields at the US county level. The model was fit using historical data for 1970-2010 and was then applied over different climate regions in the contiguous US using the CMIP5 climate projections. The relative importance of many major growing season climate indices, such as consecutive dry days without rainfall or heavy precipitation, was evaluated to determine what climate indices play a role in affecting future crop yields. The statistical modeling framework also evaluated the impact of irrigation by using county-level irrigated and rainfed yields separately. Furthermore, the projected years with negative yield anomalies were specifically evaluated in terms of magnitude, trend and potential climate drivers. This framework provides estimates of the agricultural climate risk for the 21st century that account for the full uncertainty of climate occurrences, range of crop response, and spatial correlation in climate. The results of this study can contribute to decision making about crop choice and water use in an uncertain future climate.
Fodor, Nándor; Challinor, Andrew; Droutsas, Ioannis; Ramirez-Villegas, Julian; Zabel, Florian; Koehler, Ann-Kristin; Foyer, Christine H
2017-11-01
Increasing global CO2 emissions have profound consequences for plant biology, not least because of direct influences on carbon gain. However, much remains uncertain regarding how our major crops will respond to a future high CO2 world. Crop model inter-comparison studies have identified large uncertainties and biases associated with climate change. The need to quantify uncertainty has drawn the fields of plant molecular physiology, crop breeding and biology, and climate change modeling closer together. Comparing data from different models that have been used to assess the potential climate change impacts on soybean and maize production, future yield losses have been predicted for both major crops. When CO2 fertilization effects are taken into account significant yield gains are predicted for soybean, together with a shift in global production from the Southern to the Northern hemisphere. Maize production is also forecast to shift northwards. However, unless plant breeders are able to produce new hybrids with improved traits, the forecasted yield losses for maize will only be mitigated by agro-management adaptations. In addition, the increasing demands of a growing world population will require larger areas of marginal land to be used for maize and soybean production. We summarize the outputs of crop models, together with mitigation options for decreasing the negative impacts of climate on the global maize and soybean production, providing an overview of projected land-use change as a major determining factor for future global crop production. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
Benefits of seasonal forecasts of crop yields
NASA Astrophysics Data System (ADS)
Sakurai, G.; Okada, M.; Nishimori, M.; Yokozawa, M.
2017-12-01
Major factors behind recent fluctuations in food prices include increased biofuel production and oil price fluctuations. In addition, several extreme climate events that reduced worldwide food production coincided with upward spikes in food prices. The stabilization of crop yields is one of the most important tasks to stabilize food prices and thereby enhance food security. Recent development of technologies related to crop modeling and seasonal weather forecasting has made it possible to forecast future crop yields for maize and soybean. However, the effective use of these technologies remains limited. Here we present the potential benefits of seasonal crop-yield forecasts on a global scale for choice of planting day. For this purpose, we used a model (PRYSBI-2) that can well replicate past crop yields both for maize and soybean. This model system uses a Bayesian statistical approach to estimate the parameters of a basic process-based model of crop growth. The spatial variability of model parameters was considered by estimating the posterior distribution of the parameters from historical yield data by using the Markov-chain Monte Carlo (MCMC) method with a resolution of 1.125° × 1.125°. The posterior distributions of model parameters were estimated for each spatial grid with 30 000 MCMC steps of 10 chains each. By using this model and the estimated parameter distributions, we were able to estimate not only crop yield but also levels of associated uncertainty. We found that the global average crop yield increased about 30% as the result of the optimal selection of planting day and that the seasonal forecast of crop yield had a large benefit in and near the eastern part of Brazil and India for maize and the northern area of China for soybean. In these countries, the effects of El Niño and Indian Ocean dipole are large. The results highlight the importance of developing a system to forecast global crop yields.
Understanding the Changes in Global Crop Yields Through Changes in Climate and Technology
NASA Astrophysics Data System (ADS)
Najafi, Ehsan; Devineni, Naresh; Khanbilvardi, Reza M.; Kogan, Felix
2018-03-01
During the last few decades, the global agricultural production has risen and technology enhancement is still contributing to yield growth. However, population growth, water crisis, deforestation, and climate change threaten the global food security. An understanding of the variables that caused past changes in crop yields can help improve future crop prediction models. In this article, we present a comprehensive global analysis of the changes in the crop yields and how they relate to different large-scale and regional climate variables, climate change variables and technology in a unified framework. A new multilevel model for yield prediction at the country level is developed and demonstrated. The structural relationships between average yield and climate attributes as well as trends are estimated simultaneously. All countries are modeled in a single multilevel model with partial pooling to automatically group and reduce estimation uncertainties. El Niño-southern oscillation (ENSO), Palmer drought severity index (PDSI), geopotential height anomalies (GPH), historical carbon dioxide (CO2) concentration and country-based time series of GDP per capita as an approximation of technology measurement are used as predictors to estimate annual agricultural crop yields for each country from 1961 to 2013. Results indicate that these variables can explain the variability in historical crop yields for most of the countries and the model performs well under out-of-sample verifications. While some countries were not generally affected by climatic factors, PDSI and GPH acted both positively and negatively in different regions for crop yields in many countries.
Modeling the yield potential of dryland canola under current and future climates in California
NASA Astrophysics Data System (ADS)
George, N.; Kaffka, S.; Beeck, C.; Bucaram, S.; Zhang, J.
2012-12-01
Models predict that the climate of California will become hotter, drier and more variable under future climate change scenarios. This will lead to both increased irrigation demand and reduced irrigation water availability. In addition, it is predicted that most common Californian crops will suffer a concomitant decline in productivity. To remain productive and economically viable, future agricultural systems will need to have greater water use efficiency, tolerance of high temperatures, and tolerance of more erratic temperature and rainfall patterns. Canola (Brassica napus) is the third most important oilseed globally, supporting large and well-established agricultural industries in Canada, Europe and Australia. It is an agronomically useful and economically valuable crop, with multiple end markets, that can be grown in California as a dryland winter rotation with little to no irrigation demand. This gives canola great potential as a new crop for Californian farmers both now and as the climate changes. Given practical and financial limitations it is not always possible to immediately or widely evaluate a crop in a new region. Crop production models are therefore valuable tools for assessing the potential of new crops, better targeting further field research, and refining research questions. APSIM is a modular modeling framework developed by the Agricultural Production Systems Research Unit in Australia, it combines biophysical and management modules to simulate cropping systems. This study was undertaken to examine the yield potential of Australian canola varieties having different water requirements and maturity classes in California using APSIM. The objective of the work was to identify the agricultural regions of California most ideally suited to the production of Australian cultivars of canola and to simulate the production of canola in these regions to estimate yield-potential. This will establish whether the introduction and in-field evaluation of better-adapted canola varieties can be justified, and the potential value of a California canola industry both now and in the future. Winter annual crops like canola use rainfall in a Mediterranean climate like California more efficiently than spring or summer crops. Our results suggest that under current production costs and seed prices, dry farmed canola will have good potential in certain areas of the California. Canola yields decline with annual winter precipitation, however economically viable yields are still achieved at relatively precipitation levels (200 mm). Results from simulation, combined with related economic modeling (reported elsewhere) suggest that canola will be viable in a variety of production systems in the northern Sacramento Valley and some coastal locations, even under drier future climate scenarios. The in-field evaluation of Australian canola varieties should contribute to maintain or improving resource use efficiency and farm profitability.
USDA-ARS?s Scientific Manuscript database
Increased temperatures in the Southwestern United States will impact future crop production via multiple pathways. We used four methods to provide an illustrative analysis of midcentury temperature impacts to eight field crops. By midcentury, cropland area thermally suitable for maize cultivation is...
Current and Future Greenhouse Gas Emissions from Global Crop Intensification and Expansion
NASA Astrophysics Data System (ADS)
Carlson, K. M.; Gerber, J. S.; Mueller, N. D.; O'Connell, C.; West, P. C.
2014-12-01
Food systems currently contribute up to one-third of total anthropogenic greenhouse gas emissions, and these emissions are expected to rise as demand for agricultural products increases. Thus, improving the greenhouse gas emissions efficiency of agriculture - the tons or kilocalories of production per ton of CO2 equivalent emissions - will be critical to support a resilient future global system. Here, we model and evaluate global, 2000-era, spatially explicit relationships between a suite of greenhouse gas emissions from various agronomic practices (i.e., fertilizer application, peatland draining, and rice cultivation) and crop yields. Then, we predict potential emissions from future crop production increases achieved through intensification and extensification, including CO2 emissions from croplands replacing non-urban land cover. We find that 2000-era yield-scaled agronomic emissions are highly heterogeneous across crops types, crop management practices, and regions. Rice agriculture produces more total CO2-equivalent emissions than any other crop. Moreover, inundated rice in just a few countries contributes the vast majority of these rice emissions. Crops such as sunflower and cotton have low efficiency on a caloric basis. Our results suggest that intensification tends to be a more efficient pathway to boost greenhouse gas emissions efficiency than expansion. We conclude by discussing potential crop- and region-specific agricultural development pathways that may boost the greenhouse gas emissions efficiency of agriculture.
NASA Astrophysics Data System (ADS)
Baskaran, L.; Jager, H.; Kreig, J.
2016-12-01
Bioenergy production in the US has been projected to increase in the next few years and this has raised concerns over environmentally sustainable production. Specifically, there are concerns that managing lands to produce bioenergy feedstocks in the Mississippi-Atchafalaya River Basin (MARB) may have impacts over the water quality in the streams draining these lands and hamper with efforts to reduce the size of the Gulf of Mexico's "Dead Zone" (hypoxic waters). However, with appropriate choice of feedstocks and good conservation practices, bioenergy production systems can be environmentally and economically sustainable. We evaluated opportunities for producing 2nd generation cellulosic feedstocks that are economically sustainable and improve water quality in the Arkansas-White-Red (AWR) river basin, which is major part of the MARB. We generated a future bioenergy landscape by downscaling county-scale projections of bioenergy crop production produced by an economic model, POLYSYS, at a market price of $60 per dry ton and a 1% annual yield increase. Our future bioenergy landscape includes perennial grasses (switchgrass and miscanthus), short-rotated woody crops (poplar and willow) and annual crops (high yield sorghum, sorghum stubble, corn stover and wheat straw). Using the Soil and Water Assessment Tool (SWAT) we analyzed changes in water quality and quantity by simulating a baseline scenario with the current landscape (2014 land cover) and a future scenario with the bioenergy landscape. Our results over the AWR indicate decreases in median nutrient and sediment loadings from the baseline scenario. We also explored methods to evaluate if conservation practices (such as reducing fertilizer applications, incorporating filter strips, planting cover crops and moving to a no-till system) can improve water quality, while maintaining biomass yield. We created a series of SWAT simulations with varying levels of conservation practices by crop and present our methods towards identifying future scenarios that may minimize water quality and maximize biomass yields.
Assessing the impact of climate change upon hydrology and agriculture in the Indrawati Basin, Nepal.
NASA Astrophysics Data System (ADS)
Palazzoli, Irene; Bocchiola, Daniele; Nana, Ester; Maskey, Shreedhar; Uhlenbrook, Stefan
2014-05-01
Agriculture is sensitive to climate change, especially to temperature and precipitation changes. The purpose of this study was to evaluate the climate change impacts upon rain-fed crops production in the Indrawati river basin, Nepal. The Soil and Water Assessment Tool SWAT model was used to model hydrology and cropping systems in the catchment, and to predict the influence of different climate change scenarios therein. Daily weather data collected from about 13 weather stations during 4 decades were used to constrain the SWAT model, and data from two hydrometric stations used to calibrate/validate it. Then management practices (crop calendar) were applied to specific Hydrological Response Units (HRUs) for the main crops of the region, rice, corn and wheat. Manual calibration of crop production was also carried, against values of crop yield in the area from literature. The calibrated and validated model was further applied to assess the impact of three future climate change scenarios (RCPs) upon the crop productivity in the region. Three climate models (GCMs) were adopted, each with three RCPs (2.5, 4.5, 8.5). Hence, impacts of climate change were assessed considering three time windows, namely a baseline period (1995-2004), the middle of century (2045-2054) and the end of century (2085-2094). For each GCM and RCP future hydrology and yield was compared to baseline scenario. The results displayed slightly modified hydrological cycle, and somewhat small variation in crop production, variable with models and RCPs, and for crop type, the largest being for wheat. Keywords: Climate Change, Nepal, hydrological cycle, crop yield.
Zhang, Yi; Zhao, Yanxia
2017-01-01
The use of modern crop varieties is a dominant method of obtaining high yields in crop production. Efforts to identify suitable varieties, with characteristics that would increase crop yield under future climate conditions, remain essential to developing sustainable agriculture and food security. This work aims to evaluate potential genotypic adaptations (i.e., using varieties with increased ability to produce desirable grain numbers under high temperatures and with enhanced thermal time requirements during the grain-filling period) to cope with the negative impacts of climate change on maize yield. The contributions of different options were investigated at six sites in the North China Plain using the APSIM model and the outputs of 8 GCMs under RCP4.5 scenarios. It was found that without considering adaptation options, mean maize yield would decrease by 7~18% during 2010-2039 relative to 1976-2005. A large decrease in grain number relative to stabilized grain weight decreased maize yield under future climate scenarios. Using heat-tolerant varieties, maize yield could increase on average by 6% to 10%. Using later maturing varieties, e.g., enhanced thermal time requirements during the grain-filling period, maize yield could increase by 7% to 10%. The optimal adaptation options were site specific.
Zhang, Yi
2017-01-01
The use of modern crop varieties is a dominant method of obtaining high yields in crop production. Efforts to identify suitable varieties, with characteristics that would increase crop yield under future climate conditions, remain essential to developing sustainable agriculture and food security. This work aims to evaluate potential genotypic adaptations (i.e., using varieties with increased ability to produce desirable grain numbers under high temperatures and with enhanced thermal time requirements during the grain-filling period) to cope with the negative impacts of climate change on maize yield. The contributions of different options were investigated at six sites in the North China Plain using the APSIM model and the outputs of 8 GCMs under RCP4.5 scenarios. It was found that without considering adaptation options, mean maize yield would decrease by 7~18% during 2010–2039 relative to 1976–2005. A large decrease in grain number relative to stabilized grain weight decreased maize yield under future climate scenarios. Using heat-tolerant varieties, maize yield could increase on average by 6% to 10%. Using later maturing varieties, e.g., enhanced thermal time requirements during the grain-filling period, maize yield could increase by 7% to 10%. The optimal adaptation options were site specific. PMID:28459880
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobell, D; Field, C; Cahill, K
2006-01-10
Most research on the agricultural impacts of climate change has focused on the major annual crops, yet perennial cropping systems are less adaptable and thus potentially more susceptible to damage. Improved assessments of yield responses to future climate are needed to prioritize adaptation strategies in the many regions where perennial crops are economically and culturally important. These impact assessments, in turn, must rely on climate and crop models that contain often poorly defined uncertainties. We evaluated the impact of climate change on six major perennial crops in California: wine grapes, almonds, table grapes, oranges, walnuts, and avocados. Outputs from multiplemore » climate models were used to evaluate climate uncertainty, while multiple statistical crop models, derived by resampling historical databases, were used to address crop response uncertainties. We find that, despite these uncertainties, climate change in California is very likely to put downward pressure on yields of almonds, walnuts, avocados, and table grapes by 2050. Without CO{sub 2} fertilization or adaptation measures, projected losses range from 0 to >40% depending on the crop and the trajectory of climate change. Climate change uncertainty generally had a larger impact on projections than crop model uncertainty, although the latter was substantial for several crops. Opportunities for expansion into cooler regions are identified, but this adaptation would require substantial investments and may be limited by non-climatic constraints. Given the long time scales for growth and production of orchards and vineyards ({approx}30 years), climate change should be an important factor in selecting perennial varieties and deciding whether and where perennials should be planted.« less
Estimating climate change, CO2 and technology development effects on wheat yield in northeast Iran
NASA Astrophysics Data System (ADS)
Bannayan, M.; Mansoori, H.; Rezaei, E. Eyshi
2014-04-01
Wheat is the main food for the majority of Iran's population. Precise estimation of wheat yield change in future is essential for any possible revision of management strategies. The main objective of this study was to evaluate the effects of climate change, CO2 concentration, technology development and their integrated effects on wheat production under future climate change. This study was performed under two scenarios of the IPCC Special Report on Emission Scenarios (SRES): regional economic (A2) and global environmental (B1). Crop production was projected for three future time periods (2020, 2050 and 2080) in comparison with a baseline year (2005) for Khorasan province located in the northeast of Iran. Four study locations in the study area included Mashhad, Birjand, Bojnourd and Sabzevar. The effect of technology development was calculated by fitting a regression equation between the observed wheat yields against historical years considering yield potential increase and yield gap reduction as technology development. Yield relative increase per unit change of CO2 concentration (1 ppm-1) was considered 0.05 % and was used to implement the effect of elevated CO2. The HadCM3 general circulation model along with the CSM-CERES-Wheat crop model were used to project climate change effects on wheat crop yield. Our results illustrate that, among all the factors considered, technology development provided the highest impact on wheat yield change. Highest wheat yield increase across all locations and time periods was obtained under the A2 scenario. Among study locations, Mashhad showed the highest change in wheat yield. Yield change compared to baseline ranged from -28 % to 56 % when the integration of all factors was considered across all locations. It seems that achieving higher yield of wheat in future may be expected in northeast Iran assuming stable improvements in production technology.
Estimating climate change, CO2 and technology development effects on wheat yield in northeast Iran.
Bannayan, M; Mansoori, H; Rezaei, E Eyshi
2014-04-01
Wheat is the main food for the majority of Iran's population. Precise estimation of wheat yield change in future is essential for any possible revision of management strategies. The main objective of this study was to evaluate the effects of climate change, CO2 concentration, technology development and their integrated effects on wheat production under future climate change. This study was performed under two scenarios of the IPCC Special Report on Emission Scenarios (SRES): regional economic (A2) and global environmental (B1). Crop production was projected for three future time periods (2020, 2050 and 2080) in comparison with a baseline year (2005) for Khorasan province located in the northeast of Iran. Four study locations in the study area included Mashhad, Birjand, Bojnourd and Sabzevar. The effect of technology development was calculated by fitting a regression equation between the observed wheat yields against historical years considering yield potential increase and yield gap reduction as technology development. Yield relative increase per unit change of CO2 concentration (1 ppm(-1)) was considered 0.05 % and was used to implement the effect of elevated CO2. The HadCM3 general circulation model along with the CSM-CERES-Wheat crop model were used to project climate change effects on wheat crop yield. Our results illustrate that, among all the factors considered, technology development provided the highest impact on wheat yield change. Highest wheat yield increase across all locations and time periods was obtained under the A2 scenario. Among study locations, Mashhad showed the highest change in wheat yield. Yield change compared to baseline ranged from -28 % to 56 % when the integration of all factors was considered across all locations. It seems that achieving higher yield of wheat in future may be expected in northeast Iran assuming stable improvements in production technology.
NASA Earth Science Research Results for Improved Regional Crop Yield Prediction
NASA Astrophysics Data System (ADS)
Mali, P.; O'Hara, C. G.; Shrestha, B.; Sinclair, T. R.; G de Goncalves, L. G.; Salado Navarro, L. R.
2007-12-01
National agencies such as USDA Foreign Agricultural Service (FAS), Production Estimation and Crop Assessment Division (PECAD) work specifically to analyze and generate timely crop yield estimates that help define national as well as global food policies. The USDA/FAS/PECAD utilizes a Decision Support System (DSS) called CADRE (Crop Condition and Data Retrieval Evaluation) mainly through an automated database management system that integrates various meteorological datasets, crop and soil models, and remote sensing data; providing significant contribution to the national and international crop production estimates. The "Sinclair" soybean growth model has been used inside CADRE DSS as one of the crop models. This project uses Sinclair model (a semi-mechanistic crop growth model) for its potential to be effectively used in a geo-processing environment with remote-sensing-based inputs. The main objective of this proposed work is to verify, validate and benchmark current and future NASA earth science research results for the benefit in the operational decision making process of the PECAD/CADRE DSS. For this purpose, the NASA South American Land Data Assimilation System (SALDAS) meteorological dataset is tested for its applicability as a surrogate meteorological input in the Sinclair model meteorological input requirements. Similarly, NASA sensor MODIS products is tested for its applicability in the improvement of the crop yield prediction through improving precision of planting date estimation, plant vigor and growth monitoring. The project also analyzes simulated Visible/Infrared Imager/Radiometer Suite (VIIRS, a future NASA sensor) vegetation product for its applicability in crop growth prediction to accelerate the process of transition of VIIRS research results for the operational use of USDA/FAS/PECAD DSS. The research results will help in providing improved decision making capacity to the USDA/FAS/PECAD DSS through improved vegetation growth monitoring from high spatial and temporal resolution remote sensing datasets; improved time-series meteorological inputs required for crop growth models; and regional prediction capability through geo-processing-based yield modeling.
Water and Land Limitations to Future Agricultural Production in the Middle East
NASA Astrophysics Data System (ADS)
Koch, J. A. M.; Wimmer, F.; Schaldach, R.
2015-12-01
Countries in the Middle East use a large fraction of their scarce water resources to produce cash crops, such as fruit and vegetables, for international markets. At the same time, these countries import large amounts of staple crops, such as cereals, required to meet the nutritional demand of their populations. This makes food security in the Middle East heavily dependent on world market prices for staple crops. Under these preconditions, increasing food demand due to population growth, urban expansion on fertile farmlands, and detrimental effects of a changing climate on the production of agricultural commodities present major challenges to countries in the Middle East that try to improve food security by increasing their self-sufficiency rate of staple crops.We applied the spatio-temporal land-use change model LandSHIFT.JR to simulate how an expansion of urban areas may affect the production of agricultural commodities in Jordan. We furthermore evaluated how climate change and changes in socio-economic conditions may influence crop production. The focus of our analysis was on potential future irrigated and rainfed production (crop yield and area demand) of fruit, vegetables, and cereals. Our simulation results show that the expansion of urban areas and the resulting displacement of agricultural areas does result in a slight decrease in crop yields. This leads to almost no additional irrigation water requirements due to the relocation of agricultural areas, i.e. there is the same amount of "crop per drop". However, taking into account projected changes in socio-economic conditions and climate conditions, a large volume of water would be required for cereal production in order to safeguard current self-sufficiency rates for staple crops. Irrigation water requirements are expected to double until 2025 and to triple until 2050. Irrigated crop yields are projected to decrease by about 25%, whereas there is no decrease in rainfed crop yields to be expected.
NASA Astrophysics Data System (ADS)
Bodin, P.; Olin, S.; Pugh, T. A. M.; Arneth, A.
2014-12-01
Food security can be defined as stable access to food of good nutritional quality. In Sub Saharan Africa access to food is strongly linked to local food production and the capacity to generate enough calories to sustain the local population. Therefore it is important in these regions to generate not only sufficiently high yields but also to reduce interannual variability in food production. Traditionally, climate impact simulation studies have focused on factors that underlie maximum productivity ignoring the variability in yield. By using Modern Portfolio Theory, a method stemming from economics, we here calculate optimum current and future crop selection that maintain current yield while minimizing variance, vs. maintaining variance while maximizing yield. Based on simulated yield using the LPJ-GUESS dynamic vegetation model, the results show that current cropland distribution for many crops is close to these optimum distributions. Even so, the optimizations displayed substantial potential to either increase food production and/or to decrease its variance regionally. Our approach can also be seen as a method to create future scenarios for the sown areas of crops in regions where local food production is important for food security.
Peltonen-Sainio, Pirjo; Jauhiainen, Lauri; Lehtonen, Heikki
2016-01-01
Diversification of agriculture was one of the strengthened aims of the greening payment of European Agricultural Policy (CAP) as diversification provides numerous ecosystems services compared to cereal-intensive crop rotations. This study focuses on current minor crops in Finland that have potential for expanded production and considers changes in their cropping areas, yield trends, breeding gains, roles in crop rotations and potential for improving resilience. Long-term datasets of Natural Resources Institute Finland and farmers' land use data from the Agency of Rural Affairs were used to analyze the above-mentioned trends and changes. The role of minor crops in rotations declined when early and late CAP periods were compared and that of cereal monocultures strengthened. Genetic yield potentials of minor crops have increased as also genetic improvements in quality traits, although some typical trade-offs with improved yields have also appeared. However, the gap between potential and attained yields has expanded, depending on the minor crop, as national yield trends have either stagnated or declined. When comparing genetic improvements of minor crops to those of the emerging major crop, spring wheat, breeding achievements in minor crops were lower. It was evident that the current agricultural policies in the prevailing market and the price environment have not encouraged cultivation of minor crops but further strengthened the role of cereal monocultures. We suggest optimization of agricultural land use, which is a core element of sustainable intensification, as a future means to couple long-term environmental sustainability with better success in economic profitability and social acceptability. This calls for development of effective policy instruments to support farmer's diversification actions.
Peltonen-Sainio, Pirjo; Jauhiainen, Lauri; Lehtonen, Heikki
2016-01-01
Diversification of agriculture was one of the strengthened aims of the greening payment of European Agricultural Policy (CAP) as diversification provides numerous ecosystems services compared to cereal-intensive crop rotations. This study focuses on current minor crops in Finland that have potential for expanded production and considers changes in their cropping areas, yield trends, breeding gains, roles in crop rotations and potential for improving resilience. Long-term datasets of Natural Resources Institute Finland and farmers’ land use data from the Agency of Rural Affairs were used to analyze the above-mentioned trends and changes. The role of minor crops in rotations declined when early and late CAP periods were compared and that of cereal monocultures strengthened. Genetic yield potentials of minor crops have increased as also genetic improvements in quality traits, although some typical trade-offs with improved yields have also appeared. However, the gap between potential and attained yields has expanded, depending on the minor crop, as national yield trends have either stagnated or declined. When comparing genetic improvements of minor crops to those of the emerging major crop, spring wheat, breeding achievements in minor crops were lower. It was evident that the current agricultural policies in the prevailing market and the price environment have not encouraged cultivation of minor crops but further strengthened the role of cereal monocultures. We suggest optimization of agricultural land use, which is a core element of sustainable intensification, as a future means to couple long-term environmental sustainability with better success in economic profitability and social acceptability. This calls for development of effective policy instruments to support farmer’s diversification actions. PMID:27870865
NASA Astrophysics Data System (ADS)
Forsythe, N. D.; Fowler, H. J.
2017-12-01
The "Climate-smart agriculture implementation through community-focused pursuit of land and water productivity in South Asia" (CSAICLAWPS) project is a research initiative funded by the (UK) Royal Society through its Challenge Grants programme which is part of the broader UK Global Challenges Research Fund (GCRF). CSAICLAWPS has three objectives: a) development of "added-value" - bias assessed, statistically down-scaled - climate projections for selected case study sites across South Asia; b) investigation of crop failure modes under both present (observed) and future (projected) conditions; and c) facilitation of developing local adaptive capacity and resilience through stakeholder engagement. At AGU we will be presenting both next steps and progress to date toward these three objectives: [A] We have carried out bias assessments of a substantial multi-model RCM ensemble (MME) from the CORDEX South Asia (CORDEXdomain for case studies in three countries - Pakistan, India and Sri Lanka - and (stochastically) produced synthetic time-series for these sites from local observations using a Python-based implementation of the principles underlying the Climate Research Unit Weather Generator (CRU-WG) in order to enable probabilistic simulation of current crop yields. [B] We have characterised present response of local crop yields to climate variability in key case study sites using AquaCrop simulations parameterised based on input (agronomic practices, soil conditions, etc) from smallholder farmers. [C] We have implemented community-based hydro-climatological monitoring in several case study "revenue villages" (panchayats) in the Nainital District of Uttarakhand. The purpose of this is not only to increase availability of meteorological data, but also has the aspiration of, over time, leading to enhanced quantitative awareness of present climate variability and potential future conditions (as projected by RCMs). Next steps in our work will include: 1) future crop yield simulations driven by "perturbation" of synthetic time-series using "change factors from the CORDEX-SA MME; 2) stakeholder dialogues critically evaluating potential strategies at the grassroots (implementation) level to mitigate impacts of climate variability and change on crop yields.
Understanding the weather signal in national crop-yield variability
NASA Astrophysics Data System (ADS)
Frieler, Katja; Schauberger, Bernhard; Arneth, Almut; Balkovič, Juraj; Chryssanthacopoulos, James; Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Khabarov, Nikolay; Müller, Christoph; Olin, Stefan; Pugh, Thomas A. M.; Schaphoff, Sibyll; Schewe, Jacob; Schmid, Erwin; Warszawski, Lila; Levermann, Anders
2017-06-01
Year-to-year variations in crop yields can have major impacts on the livelihoods of subsistence farmers and may trigger significant global price fluctuations, with severe consequences for people in developing countries. Fluctuations can be induced by weather conditions, management decisions, weeds, diseases, and pests. Although an explicit quantification and deeper understanding of weather-induced crop-yield variability is essential for adaptation strategies, so far it has only been addressed by empirical models. Here, we provide conservative estimates of the fraction of reported national yield variabilities that can be attributed to weather by state-of-the-art, process-based crop model simulations. We find that observed weather variations can explain more than 50% of the variability in wheat yields in Australia, Canada, Spain, Hungary, and Romania. For maize, weather sensitivities exceed 50% in seven countries, including the United States. The explained variance exceeds 50% for rice in Japan and South Korea and for soy in Argentina. Avoiding water stress by simulating yields assuming full irrigation shows that water limitation is a major driver of the observed variations in most of these countries. Identifying the mechanisms leading to crop-yield fluctuations is not only fundamental for dampening fluctuations, but is also important in the context of the debate on the attribution of loss and damage to climate change. Since process-based crop models not only account for weather influences on crop yields, but also provide options to represent human-management measures, they could become essential tools for differentiating these drivers, and for exploring options to reduce future yield fluctuations.
Dixit, Prakash N; Telleria, Roberto
2015-04-01
Inter-annual and seasonal variability in climatic parameters, most importantly rainfall, have potential to cause climate-induced risk in long-term crop production. Short-term field studies do not capture the full nature of such risk and the extent to which modifications to crop, soil and water management recommendations may be made to mitigate the extent of such risk. Crop modeling studies driven by long-term daily weather data can predict the impact of climate-induced risk on crop growth and yield however, the availability of long-term daily weather data can present serious constraints to the use of crop models. To tackle this constraint, two weather generators namely, LARS-WG and MarkSim, were evaluated in order to assess their capabilities of reproducing frequency distributions, means, variances, dry spell and wet chains of observed daily precipitation, maximum and minimum temperature, and solar radiation for the eight locations across cropping areas of Northern Syria and Lebanon. Further, the application of generated long-term daily weather data, with both weather generators, in simulating barley growth and yield was also evaluated. We found that overall LARS-WG performed better than MarkSim in generating daily weather parameters and in 50 years continuous simulation of barley growth and yield. Our findings suggest that LARS-WG does not necessarily require long-term e.g., >30 years observed weather data for calibration as generated results proved to be satisfactory with >10 years of observed data except in area with higher altitude. Evaluating these weather generators and the ability of generated weather data to perform long-term simulation of crop growth and yield is an important first step to assess the impact of future climate on yields, and to identify promising technologies to make agricultural systems more resilient in the given region. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Olin, S.; Lindeskog, M.; Pugh, T. A. M.; Schurgers, G.; Wårlind, D.; Mishurov, M.; Zaehle, S.; Stocker, B. D.; Smith, B.; Arneth, A.
2015-06-01
We explore cropland management alternatives and the effect these can have on future C and N pools and fluxes using the land use-enabled dynamic vegetation model LPJ-GUESS. Simulated crop production, cropland carbon storage, carbon sequestration and nitrogen leaching from croplands are evaluated and discussed. Compared to the version of LPJ-GUESS that does not include land use dynamics, estimates of soil carbon stocks and nitrogen leaching from terrestrial to aquatic ecosystems were improved. We explore trade-offs between important ecosystem services that can be provided from agricultural fields such as crop yields, retention of nitrogen and carbon storage. These trade-offs are evaluated for current land use and climate and further explored for future conditions within the two future climate change scenarios, RCP 2.6 and 8.5. Our results show that the potential for carbon sequestration due to typical cropland management practices such as no-till and cover-crops proposed in literature is not realised, globally or over larger climatic regions. Our results highlight important considerations to be made when modelling C-N interactions in agricultural ecosystems under future environmental change, and the effects these have on terrestrial biogeochemical cycles.
Food for Thought: Crop Yields in the Columbia River Basin in an Altered Future
NASA Astrophysics Data System (ADS)
Rajagopalan, K.; Chinnayakanahalli, K.; Nelson, R.; Stockle, C.; Kruger, C.; Brady, M.; Adam, J. C.
2013-12-01
Growth of global population and food consumption in the next several decades is expected to result in a food security challenge. Strategies to address this challenge, such as enhancing agricultural productivity and resiliency, need to be considered within the context of a full range of plausible consequences so as to identify investments that create win-win-win scenarios for the environment, economy, and society. Regional earth systems models can provide the necessary scale-appropriate framework to inform the decision making context for adaptation strategies, especially in the context of global change. In an altered future, changes to climate, technology and socioeconomics affect regional agriculture both directly and indirectly. These effects are not independent and an integrated process-based model may better capture unanticipated non-linear and non-monotonic responses and feedbacks over time . BioEarth is a research initiative designed to explore the coupling of multiple stand-alone earth systems models to generate usable information for agricultural and natural resource decision making at the regional scale at decadal time-steps. This project focuses on the U.S. Pacific Northwest (PNW) region and is a framework that integrates atmospheric, terrestrial, aquatic, and economic models. We apply component models of BioEarth to the Columbia River basin in the PNW to study the direct and indirect impacts of climate change on regional irrigated and dryland crop yields for a variety of annual and perennial crops. Results indicate that the net effect of climate change on crop yields is dependent on the crop type. There is a negative effect of temperature on yields for most crops. Dryland winter wheat is a notable exception. With warming, although the available growing season increases, faster thermal accumulation results in a shorter time to maturity. Precipitation changes in the region have a positive impact on dryland agriculture. Carbon dioxide (CO2) fertilization has a positive impact on crop yields for most crops. This positive impact is minimal for corn which is a C4 crop that is already CO2 efficient. The net response is an increase in yields for dryland agriculture and depends on the crop type for irrigated agriculture. Although, climate change results in increased water shortages and water rights curtailment in the region, this does not translate into an increased negative effect on yields. This could be attributed to higher water use efficiency under elevated CO2 levels as well crops getting through growth stages earlier in the season with wetter spring conditions. The non linear and non monotonic nature of the response of climate change on crop yields is discussed. In accounting for biophysical effects of climate change on crop yields, socio-economic effects cannot be ignored because biophysical effects are nested with the framework of human decision making. We also discuss our results in the context of socioeconomic factors . Current results assume no adaptation strategies and incorporating this is our next step.
Robust features of future climate change impacts on sorghum yields in West Africa
NASA Astrophysics Data System (ADS)
Sultan, B.; Guan, K.; Kouressy, M.; Biasutti, M.; Piani, C.; Hammer, G. L.; McLean, G.; Lobell, D. B.
2014-10-01
West Africa is highly vulnerable to climate hazards and better quantification and understanding of the impact of climate change on crop yields are urgently needed. Here we provide an assessment of near-term climate change impacts on sorghum yields in West Africa and account for uncertainties both in future climate scenarios and in crop models. Towards this goal, we use simulations of nine bias-corrected CMIP5 climate models and two crop models (SARRA-H and APSIM) to evaluate the robustness of projected crop yield impacts in this area. In broad agreement with the full CMIP5 ensemble, our subset of bias-corrected climate models projects a mean warming of +2.8 °C in the decades of 2031-2060 compared to a baseline of 1961-1990 and a robust change in rainfall in West Africa with less rain in the Western part of the Sahel (Senegal, South-West Mali) and more rain in Central Sahel (Burkina Faso, South-West Niger). Projected rainfall deficits are concentrated in early monsoon season in the Western part of the Sahel while positive rainfall changes are found in late monsoon season all over the Sahel, suggesting a shift in the seasonality of the monsoon. In response to such climate change, but without accounting for direct crop responses to CO2, mean crop yield decreases by about 16-20% and year-to-year variability increases in the Western part of the Sahel, while the eastern domain sees much milder impacts. Such differences in climate and impacts projections between the Western and Eastern parts of the Sahel are highly consistent across the climate and crop models used in this study. We investigate the robustness of impacts for different choices of cultivars, nutrient treatments, and crop responses to CO2. Adverse impacts on mean yield and yield variability are lowest for modern cultivars, as their short and nearly fixed growth cycle appears to be more resilient to the seasonality shift of the monsoon, thus suggesting shorter season varieties could be considered a potential adaptation to ongoing climate changes. Easing nitrogen stress via increasing fertilizer inputs would increase absolute yields, but also make the crops more responsive to climate stresses, thus enhancing the negative impacts of climate change in a relative sense. Finally, CO2 fertilization would significantly offset the negative climate impacts on sorghum yields by about 10%, with drier regions experiencing the largest benefits, though the net impacts of climate change remain negative even after accounting for CO2.
Future climate impacts on maize farming and food security in Malawi
NASA Astrophysics Data System (ADS)
Stevens, Tilele; Madani, Kaveh
2016-11-01
Agriculture is the mainstay of Malawi’s economy and maize is the most important crop for food security. As a Least Developed Country (LDC), adverse effects of climate change (CC) on agriculture in Malawi are expected to be significant. We examined the impacts of CC on maize production and food security in Malawi’s dominant cereal producing region, Lilongwe District. We used five Global Circulation Models (GCMs) to make future (2011 to 2100) rainfall and temperature projections and simulated maize yields under these projections. Our future rainfall projections did not reveal a strong increasing or decreasing trend, but temperatures are expected to increase. Our crop modelling results, for the short-term future, suggest that maize farming might benefit from CC. However, faster crop growth could worsen Malawi’s soil fertility problem. Increasing temperature could drive lower maize yields in the medium to long-term future. Consequently, up to 12% of the population in Lilongwe District might be vulnerable to food insecurity by the end of the century. Measures to increase soil fertility and moisture must be developed to build resilience into Malawi’s agriculture sector.
NASA Astrophysics Data System (ADS)
Schauberger, Bernhard; Rolinski, Susanne; Müller, Christoph
2016-12-01
Variability of crop yields is detrimental for food security. Under climate change its amplitude is likely to increase, thus it is essential to understand the underlying causes and mechanisms. Crop models are the primary tool to project future changes in crop yields under climate change. A systematic overview of drivers and mechanisms of crop yield variability (YV) can thus inform crop model development and facilitate improved understanding of climate change impacts on crop yields. Yet there is a vast body of literature on crop physiology and YV, which makes a prioritization of mechanisms for implementation in models challenging. Therefore this paper takes on a novel approach to systematically mine and organize existing knowledge from the literature. The aim is to identify important mechanisms lacking in models, which can help to set priorities in model improvement. We structure knowledge from the literature in a semi-quantitative network. This network consists of complex interactions between growing conditions, plant physiology and crop yield. We utilize the resulting network structure to assign relative importance to causes of YV and related plant physiological processes. As expected, our findings confirm existing knowledge, in particular on the dominant role of temperature and precipitation, but also highlight other important drivers of YV. More importantly, our method allows for identifying the relevant physiological processes that transmit variability in growing conditions to variability in yield. We can identify explicit targets for the improvement of crop models. The network can additionally guide model development by outlining complex interactions between processes and by easily retrieving quantitative information for each of the 350 interactions. We show the validity of our network method as a structured, consistent and scalable dictionary of literature. The method can easily be applied to many other research fields.
NASA Astrophysics Data System (ADS)
Tai, Amos P. K.; Val Martin, Maria
2017-11-01
Ozone air pollution and climate change pose major threats to global crop production, with ramifications for future food security. Previous studies of ozone and warming impacts on crops typically do not account for the strong ozone-temperature correlation when interpreting crop-ozone or crop-temperature relationships, or the spatial variability of crop-to-ozone sensitivity arising from varietal and environmental differences, leading to potential biases in their estimated crop losses. Here we develop an empirical model, called the partial derivative-linear regression (PDLR) model, to estimate the spatial variations in the sensitivities of wheat, maize and soybean yields to ozone exposures and temperature extremes in the US and Europe using a composite of multidecadal datasets, fully correcting for ozone-temperature covariation. We find generally larger and more spatially varying sensitivities of all three crops to ozone exposures than are implied by experimentally derived concentration-response functions used in most previous studies. Stronger ozone tolerance is found in regions with high ozone levels and high consumptive crop water use, reflecting the existence of spatial adaptation and effect of water constraints. The spatially varying sensitivities to temperature extremes also indicate stronger heat tolerance in crops grown in warmer regions. The spatial adaptation of crops to ozone and temperature we find can serve as a surrogate for future adaptation. Using the PDLR-derived sensitivities and 2000-2050 ozone and temperature projections by the Community Earth System Model, we estimate that future warming and unmitigated ozone pollution can combine to cause an average decline in US wheat, maize and soybean production by 13%, 43% and 28%, respectively, and a smaller decline for European crops. Aggressive ozone regulation is shown to offset such decline to various extents, especially for wheat. Our findings demonstrate the importance of considering ozone regulation as well as ozone and climate change adaptation (e.g., selecting heat- and ozone-tolerant cultivars, irrigation) as possible strategies to enhance future food security in response to imminent environmental threats.
Possible changes to arable crop yields by 2050
Jaggard, Keith W.; Qi, Aiming; Ober, Eric S.
2010-01-01
By 2050, the world population is likely to be 9.1 billion, the CO2 concentration 550 ppm, the ozone concentration 60 ppb and the climate warmer by ca 2°C. In these conditions, what contribution can increased crop yield make to feeding the world? CO2 enrichment is likely to increase yields of most crops by approximately 13 per cent but leave yields of C4 crops unchanged. It will tend to reduce water consumption by all crops, but this effect will be approximately cancelled out by the effect of the increased temperature on evaporation rates. In many places increased temperature will provide opportunities to manipulate agronomy to improve crop performance. Ozone concentration increases will decrease yields by 5 per cent or more. Plant breeders will probably be able to increase yields considerably in the CO2-enriched environment of the future, and most weeds and airborne pests and diseases should remain controllable, so long as policy changes do not remove too many types of crop-protection chemicals. However, soil-borne pathogens are likely to be an increasing problem when warmer weather will increase their multiplication rates; control is likely to need a transgenic approach to breeding for resistance. There is a large gap between achievable yields and those delivered by farmers, even in the most efficient agricultural systems. A gap is inevitable, but there are large differences between farmers, even between those who have used the same resources. If this gap is closed and accompanied by improvements in potential yields then there is a good prospect that crop production will increase by approximately 50 per cent or more by 2050 without extra land. However, the demands for land to produce bio-energy have not been factored into these calculations. PMID:20713388
Possible changes to arable crop yields by 2050.
Jaggard, Keith W; Qi, Aiming; Ober, Eric S
2010-09-27
By 2050, the world population is likely to be 9.1 billion, the CO(2) concentration 550 ppm, the ozone concentration 60 ppb and the climate warmer by ca 2 degrees C. In these conditions, what contribution can increased crop yield make to feeding the world? CO(2) enrichment is likely to increase yields of most crops by approximately 13 per cent but leave yields of C4 crops unchanged. It will tend to reduce water consumption by all crops, but this effect will be approximately cancelled out by the effect of the increased temperature on evaporation rates. In many places increased temperature will provide opportunities to manipulate agronomy to improve crop performance. Ozone concentration increases will decrease yields by 5 per cent or more. Plant breeders will probably be able to increase yields considerably in the CO(2)-enriched environment of the future, and most weeds and airborne pests and diseases should remain controllable, so long as policy changes do not remove too many types of crop-protection chemicals. However, soil-borne pathogens are likely to be an increasing problem when warmer weather will increase their multiplication rates; control is likely to need a transgenic approach to breeding for resistance. There is a large gap between achievable yields and those delivered by farmers, even in the most efficient agricultural systems. A gap is inevitable, but there are large differences between farmers, even between those who have used the same resources. If this gap is closed and accompanied by improvements in potential yields then there is a good prospect that crop production will increase by approximately 50 per cent or more by 2050 without extra land. However, the demands for land to produce bio-energy have not been factored into these calculations.
Estimating national crop yield potential and the relevance of weather data sources
NASA Astrophysics Data System (ADS)
Van Wart, Justin
2011-12-01
To determine where, when, and how to increase yields, researchers often analyze the yield gap (Yg), the difference between actual current farm yields and crop yield potential. Crop yield potential (Yp) is the yield of a crop cultivar grown under specific management limited only by temperature and solar radiation and also by precipitation for water limited yield potential (Yw). Yp and Yw are critical components of Yg estimations, but are very difficult to quantify, especially at larger scales because management data and especially daily weather data are scarce. A protocol was developed to estimate Yp and Yw at national scales using site-specific weather, soils and management data. Protocol procedures and inputs were evaluated to determine how to improve accuracy of Yp, Yw and Yg estimates. The protocol was also used to evaluate raw, site-specific and gridded weather database sources for use in simulations of Yp or Yw. The protocol was applied to estimate crop Yp in US irrigated maize and Chinese irrigated rice and Yw in US rainfed maize and German rainfed wheat. These crops and countries account for >20% of global cereal production. The results have significant implications for past and future studies of Yp, Yw and Yg. Accuracy of national long-term average Yp and Yw estimates was significantly improved if (i) > 7 years of simulations were performed for irrigated and > 15 years for rainfed sites, (ii) > 40% of nationally harvested area was within 100 km of all simulation sites, (iii) observed weather data coupled with satellite derived solar radiation data were used in simulations, and (iv) planting and harvesting dates were specified within +/- 7 days of farmers actual practices. These are much higher standards than have been applied in national estimates of Yp and Yw and this protocol is a substantial step in making such estimates more transparent, robust, and straightforward. Finally, this protocol may be a useful tool for understanding yield trends and directing research and development efforts aimed at providing for a secure and stable future food supply.
NASA Technical Reports Server (NTRS)
Li, Tao; Hasegawa, Toshihiro; Yin, Xinyou; Zhu, Yan; Boote, Kenneth; Adam, Myriam; Bregaglio, Simone; Buis, Samuel; Confalonieri, Roberto; Fumoto, Tamon;
2014-01-01
Predicting rice (Oryza sativa) productivity under future climates is important for global food security. Ecophysiological crop models in combination with climate model outputs are commonly used in yield prediction, but uncertainties associated with crop models remain largely unquantified. We evaluated 13 rice models against multi-year experimental yield data at four sites with diverse climatic conditions in Asia and examined whether different modeling approaches on major physiological processes attribute to the uncertainties of prediction to field measured yields and to the uncertainties of sensitivity to changes in temperature and CO2 concentration [CO2]. We also examined whether a use of an ensemble of crop models can reduce the uncertainties. Individual models did not consistently reproduce both experimental and regional yields well, and uncertainty was larger at the warmest and coolest sites. The variation in yield projections was larger among crop models than variation resulting from 16 global climate model-based scenarios. However, the mean of predictions of all crop models reproduced experimental data, with an uncertainty of less than 10 percent of measured yields. Using an ensemble of eight models calibrated only for phenology or five models calibrated in detail resulted in the uncertainty equivalent to that of the measured yield in well-controlled agronomic field experiments. Sensitivity analysis indicates the necessity to improve the accuracy in predicting both biomass and harvest index in response to increasing [CO2] and temperature.
Fereidoon, Majid; Koch, Manfred
2018-07-15
Agriculture is one of the environmental/economic sectors that may adversely be affected by climate change, especially, in already nowadays water-scarce regions, like the Middle East. One way to cope with future changes in absolute as well as seasonal (irrigation) water amounts can be the adaptation of the agricultural crop pattern in a region, i.e. by planting crops which still provide high yields and so economic benefits to farmers under such varying climate conditions. To do this properly, the whole cascade starting from climate change, effects on hydrology and surface water availability, subsequent effects on crop yield, agricultural areas available, and, finally, economic value of a multi-crop cultivation pattern must be known. To that avail, a complex coupled simulation-optimization tool SWAT-LINGO-MODSIM-PSO (SLMP) has been developed here and used to find the future optimum cultivation area of crops for the maximization of the economic benefits in five irrigation-fed agricultural plains in the south of the Karkheh River Basin (KRB) southwest Iran. Starting with the SWAT distributed hydrological model, the KR-streamflow as well as the inflow into the Karkheh-reservoir, as the major storage of irrigation water, is calibrated and validated, based on 1985-2004 observed discharge data. In the subsequent step, the SWAT-predicted streamflow is fed into the MODSIM river basin Decision Support System to simulate and optimize the water allocation between different water users (agricultural, environmental, municipal and industrial) under standard operating policy (SOP) rules. The final step is the maximization of the economic benefit in the five agricultural plains through constrained PSO (particle swarm optimization) by adjusting the cultivation areas (decision variables) of different crops (wheat, barley, maize and "others"), taking into account their specific prizes and optimal crop yields under water deficiency, with the latter computed in the LINGO-sub-optimization module embedded in the SLMP-tool. For the optimization of the agricultural benefits in the KRB in the near future (2038-2060), quantile-mapping (QM) bias-corrected downscaled predictors for daily precipitation and temperatures of the HadGEM2-ES GCM-model under RCP4.5- and RCP8.5-emission scenarios are used as climate drivers in the streamflow- and crop yield simulations of the SWAT-model, leading to corresponding changes in the final outcome (economic benefit) of the SLMP-tool. In fact, whereas for the historical period (1985-2004) a total annual benefit of 94.2 million US$ for all multi-crop areas in KRB is computed, there is a decrease to 88.3 million US$ and 72.1 million US$ for RCP4.5 and RCP8.5, respectively, in the near future (2038-2060) prediction period. In fact, this future income decrease is due to a substantial shift from cultivation areas devoted nowadays to high-price wheat and barley in the winter season to low-price maize-covered areas in the future summers, owing to a future seasonal change of SWAT-predicted irrigation water available, i.e. less in the winter and more in the summer. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kantola, I. B.; Blanc-Betes, E.; Gomez-Casanovas, N.; Masters, M. D.; Bernacchi, C.; DeLucia, E. H.
2017-12-01
Increased variability and intensity of precipitation in the Midwest agricultural belt due to climate change is a major concern. The success of perennial bioenergy crops in replacing maize for bioethanol production is dependent on sustained yields that exceed maize, and the marketing of perennial crops often emphasizes the resilience of perennial agriculture to climate stressors. Land conversion from maize for bioethanol to Miscanthus x giganteus (miscanthus) increases yields and annual evapotranspiration rates (ET). However, establishment of miscanthus also increases biome water use efficiency (the ratio between net ecosystem productivity after harvest and ET), due to greater belowground biomass in miscanthus than in maize or soybean. In 2012, a widespread drought reduced the yield of 5-year-old miscanthus plots in central Illinois by 36% compared to the previous two years. Eddy covariance data indicated continued soil water deficit during the hydrologically-normal growing season in 2013 and miscanthus yield failed to rebound as expected, lagging behind pre-drought yields by an average of 53% over the next three years. In early 2014, nitrogen fertilizer was applied to half of mature (7-year-old) miscanthus plots in an effort to improve yields. In plots with annual post-emergence application of 60 kg ha-1 of urea, peak biomass was 29% greater than unfertilized miscanthus in 2014, and 113% greater in 2015, achieving statistically similar yields to the pre-drought average. Regional-scale models of perennial crop productivity use 30-year climate averages that are inadequate for predicting long-term effects of short-term extremes on perennial crops. Modeled predictions of perennial crop productivity incorporating repeated extreme weather events, observed crop response, and the use of management practices to mitigate water deficit demonstrate divergent effects on predicted yields.
Climate change and maize yield in southern Africa: what can farm management do?
Rurinda, Jairos; van Wijk, Mark T; Mapfumo, Paul; Descheemaeker, Katrien; Supit, Iwan; Giller, Ken E
2015-12-01
There is concern that food insecurity will increase in southern Africa due to climate change. We quantified the response of maize yield to projected climate change and to three key management options - planting date, fertilizer use and cultivar choice - using the crop simulation model, agricultural production systems simulator (APSIM), at two contrasting sites in Zimbabwe. Three climate periods up to 2100 were selected to cover both near- and long-term climates. Future climate data under two radiative forcing scenarios were generated from five global circulation models. The temperature is projected to increase significantly in Zimbabwe by 2100 with no significant change in mean annual total rainfall. When planting before mid-December with a high fertilizer rate, the simulated average grain yield for all three maize cultivars declined by 13% for the periods 2010-2039 and 2040-2069 and by 20% for 2070-2099 compared with the baseline climate, under low radiative forcing. Larger declines in yield of up to 32% were predicted for 2070-2099 with high radiative forcing. Despite differences in annual rainfall, similar trends in yield changes were observed for the two sites studied, Hwedza and Makoni. The yield response to delay in planting was nonlinear. Fertilizer increased yield significantly under both baseline and future climates. The response of maize to mineral nitrogen decreased with progressing climate change, implying a decrease in the optimal fertilizer rate in the future. Our results suggest that in the near future, improved crop and soil fertility management will remain important for enhanced maize yield. Towards the end of the 21st century, however, none of the farm management options tested in the study can avoid large yield losses in southern Africa due to climate change. There is a need to transform the current cropping systems of southern Africa to offset the negative impacts of climate change. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Henriquez Dole, L. E.; Vicuna, S.; Gironas, J. A.; Meza, F. J.
2016-12-01
Future climate change scenarios threaten current practices in agriculture and therefore adaptation measures have been proposed to overcome this possible situation. Regional to local ideas apply for all kind of adaptation measures and can be found among literature for Central Chile, but their quantitative efficiency is rarely evaluated. Furthermore, land uses changes are commonly neglected in such evaluations. This research use the Water Evaluation and Planning (WEAP) model and the Plant Growth Model (PGM) to simulate weekly water distribution and consumption in Chile's rural areas up to 2050. Using information directly provided by the Water User Organizations (WUO), the developed model assesses possible future impacts on 2 crops (corn and plum) under 15 climate scenarios and land use trends. Results show that WEAP-PGM tool can represent satisfactorily crop sensitiveness to historic and future circumstances. Nine scenarios satisfy average crop water demands, but all of them present a diminished yield (1%-14%) and production (8%-20%). Just six scenarios cannot meet crop water demands (40-70% of reliability) if adaptation measures are not applied. Given this need, two adaptation measures were evaluated: a) using all water rights and b) irrigation improvements. The second option showed to be the most effective measure leading to the satisfaction of crop water demands under all the scenarios, but still a diminished yield and production remained.
Characterizing bias correction uncertainty in wheat yield predictions
NASA Astrophysics Data System (ADS)
Ortiz, Andrea Monica; Jones, Julie; Freckleton, Robert; Scaife, Adam
2017-04-01
Farming systems are under increased pressure due to current and future climate change, variability and extremes. Research on the impacts of climate change on crop production typically rely on the output of complex Global and Regional Climate Models, which are used as input to crop impact models. Yield predictions from these top-down approaches can have high uncertainty for several reasons, including diverse model construction and parameterization, future emissions scenarios, and inherent or response uncertainty. These uncertainties propagate down each step of the 'cascade of uncertainty' that flows from climate input to impact predictions, leading to yield predictions that may be too complex for their intended use in practical adaptation options. In addition to uncertainty from impact models, uncertainty can also stem from the intermediate steps that are used in impact studies to adjust climate model simulations to become more realistic when compared to observations, or to correct the spatial or temporal resolution of climate simulations, which are often not directly applicable as input into impact models. These important steps of bias correction or calibration also add uncertainty to final yield predictions, given the various approaches that exist to correct climate model simulations. In order to address how much uncertainty the choice of bias correction method can add to yield predictions, we use several evaluation runs from Regional Climate Models from the Coordinated Regional Downscaling Experiment over Europe (EURO-CORDEX) at different resolutions together with different bias correction methods (linear and variance scaling, power transformation, quantile-quantile mapping) as input to a statistical crop model for wheat, a staple European food crop. The objective of our work is to compare the resulting simulation-driven hindcasted wheat yields to climate observation-driven wheat yield hindcasts from the UK and Germany in order to determine ranges of yield uncertainty that result from different climate model simulation input and bias correction methods. We simulate wheat yields using a General Linear Model that includes the effects of seasonal maximum temperatures and precipitation, since wheat is sensitive to heat stress during important developmental stages. We use the same statistical model to predict future wheat yields using the recently available bias-corrected simulations of EURO-CORDEX-Adjust. While statistical models are often criticized for their lack of complexity, an advantage is that we are here able to consider only the effect of the choice of climate model, resolution or bias correction method on yield. Initial results using both past and future bias-corrected climate simulations with a process-based model will also be presented. Through these methods, we make recommendations in preparing climate model output for crop models.
Climate sensitivity of DSSAT under different agriculture practice scenarios in China
NASA Astrophysics Data System (ADS)
Xia, L.; Robock, A.
2014-12-01
Crop yields are sensitive to both agricultural practice and climate changes. Under different agricultural practice scenarios, crop yield may have different climate sensitivities. Since it is important to understand how future climate changes affect agriculture productivity and what the potential adaptation strategies would be to compensate for possible negative impacts on crop production, we performed experiments to study climate sensitivity under different agricultural practice scenarios for rice, maize and wheat in the top four production provinces in China using the Decision Support System for Agrotechnology Transfer (DSSAT) crop model. The agricultural practice scenarios include four categories: different amounts of nitrogen fertilizer or no nitrogen stress; irrigation turned on or off, or no water stress; all possible seeds in the DSSAT cultivar data base; and different planting dates. For the climate sensitivity test, the control climate is from 1998 to 2007, and we individually modify four climate variables: daily maximum and minimum temperature by +2 °C and -2 °C, daily precipitation by +20% and -20%, and daily solar radiation by + 20% and -20%. With more nitrogen fertilizer applied, crops are more sensitive to temperature changes as well as precipitation changes because of their release from nitrogen limitation. With irrigation turned on, crop yield sensitivity to temperature decreases in most of the regions depending on the amount of the local precipitation, since more water is available and soil temperature varies less with higher soil moisture. Those results indicate that there could be possible agriculture adaptation strategies under certain future climate scenarios. For example, increasing nitrogen fertilizer usage by a certain amount might compensate for the negative impact on crop yield from climate changes. However, since crops are more sensitive to climate changes when there is more nitrogen fertilizer applied, if the climate changes are unfavorable to crop yields, increasing nitrogen fertilizer usage at certain levels might enhance the negative climate change impact. Enhanced nitrogen fertilizer use might have additional negative impacts on climate because of nitrogen emissions to the atmosphere, but those effects were not studied here.
Planetary opportunities in crop water management: Potential to outweigh cropland expansion
NASA Astrophysics Data System (ADS)
Jägermeyr, Jonas; Gerten, Dieter; Lucht, Wolfgang; Heinke, Jens
2014-05-01
Global available land and water resources probably cannot feed projected future human populations under current productivity levels. Moreover, the planetary boundaries of both land use change and water consumption are being approached rapidly, and at the same time competition between food production, bioenergy plantations and biodiversity conservation is increasing. Global cropland is expected to expand to meet future demands, while considerable yield gaps remain in many world regions. Yield increases in Sub-Saharan Africa, for example, are currently mainly based on expansion of arable land into currently non-agricultural areas - while small-scale irrigation and water conservancy methods are considered very promising to boost yields there. In the here presented modeling study we investigate, at global scale, to what degree different on-farm options to better manage green and blue water might contribute to a global crop yield increase under conditions of current climate and projected future climate change. We consider methods aiming for a maximization of crops' water use efficiency and an optimal use of available on-farm water (precipitation): reducing unproductive soil evaporation (vapor shift, VS), collecting surface runoff after rain events to mitigate subsequent dry-spells (rain-water harvesting, RWH), increasing irrigation efficiency, and expanding irrigated area into rain-fed cropland (based on water savings from higher efficiencies). Global yield simulations based on hypothetical scenarios of these management opportunities are performed with the LPJmL ecohydrological modeling framework driven by reanalysis data and GCM ensemble simulations. We consider a range of about 20 climate change projections to cover respective uncertainties, and we analyze the effects of increasing CO2 concentration on the crops and their water demand. Crops are represented in a process-based and dynamic way by 12 crop functional types, each for rain-fed and irrigated areas, with prescribed annual fractions of cropland per 0.5° x 0.5° grid cell. We recalculate from the yield increase how much cropland expansion can be avoided in 30-yr averages. Our results show that the studied affordable low-tech solutions for small-scale farmers on water-limited croplands can have a considerable effect on yields at the global scale. A simulated global ~15% yield increase from a low-intensity water management scenario (25% of runoff used for RWH, 25% of soil evaporation avoided to achieve VS, slight irrigation efficiency improvement) could outweigh, i.e. possibly avoid, an estimated 120 Mha of cropland expansion under current climatic conditions. A (rather theoretical) maximum-intensity water management scenario (85% VS, 85% RWH, surface irrigation replaced by sprinkler systems) shows the potential to increase global yields by more than 35% without expansion or withdrawing additional irrigation water. Climate change will have adverse effects on crop yields in many regions, but as we sow such adaptation opportunities have the potential to mitigate or compensate these impacts in many countries. Overall, proper water management (sustainably maximizing on-farm water use efficiency) can substantially increase global crop yields and at the same time relax rates of land cover conversion.
Hijri, Mohamed
2016-04-01
An increasing human population requires more food production in nutrient-efficient systems in order to simultaneously meet global food needs while reducing the environmental footprint of agriculture. Arbuscular mycorrhizal fungi (AMF) have the potential to enhance crop yield, but their efficiency has yet to be demonstrated in large-scale crop production systems. This study reports an analysis of a dataset consisting of 231 field trials in which the same AMF inoculant (Rhizophagus irregularis DAOM 197198) was applied to potato over a 4-year period in North America and Europe under authentic field conditions. The inoculation was performed using a liquid suspension of AMF spores that was sprayed onto potato seed pieces, yielding a calculated 71 spores per seed piece. Statistical analysis showed a highly significant increase in marketable potato yield (ANOVA, P < 0.0001) for inoculated fields (42.2 tons/ha) compared with non-inoculated controls (38.3 tons/ha), irrespective of trial year. The average yield increase was 3.9 tons/ha, representing 9.5 % of total crop yield. Inoculation was profitable with a 0.67-tons/ha increase in yield, a threshold reached in almost 79 % of all trials. This finding clearly demonstrates the benefits of mycorrhizal-based inoculation on crop yield, using potato as a case study. Further improvements of these beneficial inoculants will help compensate for crop production deficits, both now and in the future.
Creissen, Henry E.; Jorgensen, Tove H.; Brown, James K.M.
2016-01-01
Crop variety mixtures have the potential to increase yield stability in highly variable and unpredictable environments, yet knowledge of the specific mechanisms underlying enhanced yield stability has been limited. Ecological processes in genetically diverse crops were investigated by conducting field trials with winter barley varieties (Hordeum vulgare), grown as monocultures or as three-way mixtures in fungicide treated and untreated plots at three sites. Mixtures achieved yields comparable to the best performing monocultures whilst enhancing yield stability despite being subject to multiple predicted and unpredicted abiotic and biotic stresses including brown rust (Puccinia hordei) and lodging. There was compensation through competitive release because the most competitive variety overyielded in mixtures thereby compensating for less competitive varieties. Facilitation was also identified as an important ecological process within mixtures by reducing lodging. This study indicates that crop varietal mixtures have the capacity to stabilise productivity even when environmental conditions and stresses are not predicted in advance. Varietal mixtures provide a means of increasing crop genetic diversity without the need for extensive breeding efforts. They may confer enhanced resilience to environmental stresses and thus be a desirable component of future cropping systems for sustainable arable farming. PMID:27375312
High Resolution Modelling of Crop Response to Climate Change
NASA Astrophysics Data System (ADS)
Mirmasoudi, S. S.; Byrne, J. M.; MacDonald, R. J.; Lewis, D.
2014-12-01
Crop production is one of the most vulnerable sectors to climatic variability and change. Increasing atmospheric CO2 concentration and other greenhouse gases are causing increases in global temperature. In western North America, water supply is largely derived from mountain snowmelt. Climate change will have a significant impact on mountain snowpack and subsequently, the snow-derived water supply. This will strain water supplies and increase water demand in areas with substantial irrigation agriculture. Increasing temperatures may create heat stress for some crops regardless of soil water supply, and increasing surface O3 and other pollutants may damage crops and ecosystems. CO2 fertilization may or may not be an advantage in future. This work is part of a larger study that will address a series of questions based on a range of future climate scenarios for several watersheds in western North America. The key questions are: (1) how will snowmelt and rainfall runoff vary in future; (2) how will seasonal and inter-annual soil water supply vary, and how might that impacts food supplies; (3) how might heat stress impact (some) crops even with adequate soil water; (4) will CO2 fertilization alter crop yields; and (5) will pollution loads, particularly O3, cause meaningful changes to crop yields? The Generate Earth Systems Science (GENESYS) Spatial Hydrometeorological Model is an innovative, efficient, high-resolution model designed to assess climate driven changes in mountain snowpack derived water supplies. We will link GENESYS to the CROPWAT crop model system to assess climate driven changes in water requirement and associated crop productivity for a range of future climate scenarios. Literature bases studies will be utilised to develop approximate crop response functions for heat stress, CO2 fertilization and for O3 damages. The overall objective is to create modeling systems that allows meaningful assessment of agricultural productivity at a watershed scale under a range of climate scenarios.
Can Bangladesh produce enough cereals to meet future demand?
Timsina, J; Wolf, J; Guilpart, N; van Bussel, L G J; Grassini, P; van Wart, J; Hossain, A; Rashid, H; Islam, S; van Ittersum, M K
2018-06-01
Bangladesh faces huge challenges in achieving food security due to its high population, diet changes, and limited room for expanding cropland and cropping intensity. The objective of this study is to assess the degree to which Bangladesh can be self-sufficient in terms of domestic maize, rice and wheat production by the years 2030 and 2050 by closing the existing gap (Yg) between yield potential (Yp) and actual farm yield (Ya), accounting for possible changes in cropland area. Yield potential and yield gaps were calculated for the three crops using well-validated crop models and site-specific weather, management and soil data, and upscaled to the whole country. We assessed potential grain production in the years 2030 and 2050 for six land use change scenarios (general decrease in arable land; declining ground water tables in the north; cropping of fallow areas in the south; effect of sea level rise; increased cropping intensity; and larger share of cash crops) and three levels of Yg closure (1: no yield increase; 2: Yg closure at a level equivalent to 50% (50% Yg closure); 3: Yg closure to a level of 85% of Yp (irrigated crops) and 80% of water-limited yield potential or Yw (rainfed crops) (full Yg closure)). In addition, changes in demand with low and high population growth rates, and substitution of rice by maize in future diets were also examined. Total aggregated demand of the three cereals (in milled rice equivalents) in 2030 and 2050, based on the UN median population variant, is projected to be 21 and 24% higher than in 2010. Current Yg represent 50% (irrigated rice), 48-63% (rainfed rice), 49% (irrigated wheat), 40% (rainfed wheat), 46% (irrigated maize), and 44% (rainfed maize) of their Yp or Yw. With 50% Yg closure and for various land use changes, self-sufficiency ratio will be > 1 for rice in 2030 and about one in 2050 but well below one for maize and wheat in both 2030 and 2050. With full Yg closure, self-sufficiency ratios will be well above one for rice and all three cereals jointly but below one for maize and wheat for all scenarios, except for the scenario with drastic decrease in boro rice area to allow for area expansion for cash crops. Full Yg closure of all cereals is needed to compensate for area decreases and demand increases, and then even some maize and large amounts of wheat imports will be required to satisfy demand in future. The results of this analysis have important implications for Bangladesh and other countries with high population growth rate, shrinking arable land due to rapid urbanization, and highly vulnerable to climate change.
NASA Astrophysics Data System (ADS)
Huang, G.
2016-12-01
Currently, studying crop-water response mechanism has become an important part in the development of new irrigation technology and optimal water allocation in water-scarce regions, which is of great significance to crop growth guidance, sustainable utilization of agricultural water, as well as the sustainable development of regional agriculture. Using multiple crop models(AquaCrop,SWAP,DNDC), this paper presents the results of simulating crop growth and agricultural water consumption of the winter-wheat and maize cropping system in north china plain. These areas are short of water resources, but generates about 23% of grain production for China. By analyzing the crop yields and the water consumption of the traditional flooding irrigation, the paper demonstrates quantitative evaluation of the potential amount of water use that can be reduced by using high-efficient irrigation approaches, such as drip irrigation. To maintain food supply and conserve water resources, the research concludes sustainable irrigation methods for the three provinces for sustainable utilization of agricultural water.
NASA Astrophysics Data System (ADS)
Challinor, A. J.
2010-12-01
Recent progress in assessing the impacts of climate variability and change on crops using multiple regional-scale simulations of crop and climate (i.e. ensembles) is presented. Simulations for India and China used perturbed responses to elevated carbon dioxide constrained using observations from FACE studies and controlled environments. Simulations with crop parameter sets representing existing and potential future adapted varieties were also carried out. The results for India are compared to sensitivity tests on two other crop models. For China, a parallel approach used socio-economic data to account for autonomous farmer adaptation. Results for the USA analysed cardinal temperatures under a range of local warming scenarios for 2711 varieties of spring wheat. The results are as follows: 1. Quantifying and reducing uncertainty. The relative contribution of uncertainty in crop and climate simulation to the total uncertainty in projected yield changes is examined. The observational constraints from FACE and controlled environment studies are shown to be the likely critical factor in maintaining relatively low crop parameter uncertainty. Without these constraints, crop simulation uncertainty in a doubled CO2 environment would likely be greater than uncertainty in simulating climate. However, consensus across crop models in India varied across different biophysical processes. 2. The response of yield to changes in local mean temperature was examined and compared to that found in the literature. No consistent response to temperature change was found across studies. 3. Implications for adaptation. China. The simulations of spring wheat in China show the relative importance of tolerance to water and heat stress in avoiding future crop failures. The greatest potential for reducing the number of harvests less than one standard deviation below the baseline mean yield value comes from alleviating water stress; the greatest potential for reducing harvests less than two standard deviations below the mean comes from alleviation of heat stress. The socio-economic analysis suggests that adaptation is also possible through measures such as greater investment. India. The simulations of groundnut in India identified regions where heat stress will play an increasing role in limiting crop yields, and other regions where crops with greater thermal time requirement will be needed. The simulations were used, together with an observed dataset and a simple analysis of crop cardinal temperatures and thermal time, to estimate the potential for adaptation using existing cultivars. USA. Analysis of spring wheat in the USA showed that at +2oC of local warming, 87% of the 2711 varieties examined, and all of the five most common varieties, could be used to maintain the crop duration of the current climate (i.e. successful adaptation to mean warming). At +4o this fell to 54% of all varieties, and two of the top five. 4. Future research. The results, and the limitations of the study, suggest directions for research to link climate and crop models, socio-economic analyses and crop variety trial data in order to prioritise adaptation options such as capacity building, plant breeding and biotechnology.
Fita, Ana; Rodríguez-Burruezo, Adrián; Boscaiu, Monica; Prohens, Jaime; Vicente, Oscar
2015-01-01
World population is expected to reach 9.2 × 109 people by 2050. Feeding them will require a boost in crop productivity using innovative approaches. Current agricultural production is very dependent on large amounts of inputs and water availability is a major limiting factor. In addition, the loss of genetic diversity and the threat of climate change make a change of paradigm in plant breeding and agricultural practices necessary. Average yields in all major crops are only a small fraction of record yields, and drought and soil salinity are the main factors responsible for yield reduction. Therefore there is the need to enhance crop productivity by improving crop adaptation. Here we review the present situation and propose the development of crops tolerant to drought and salt stress for addressing the challenge of dramatically increasing food production in the near future. The success in the development of crops adapted to drought and salt depends on the efficient and combined use of genetic engineering and traditional breeding tools. Moreover, we propose the domestication of new halophilic crops to create a ‘saline agriculture’ which will not compete in terms of resources with conventional agriculture. PMID:26617620
Uncertainty of Wheat Water Use: Simulated Patterns and Sensitivity to Temperature and CO2
NASA Technical Reports Server (NTRS)
Cammarano, Davide; Roetter, Reimund P.; Asseng, Senthold; Ewert, Frank; Wallach, Daniel; Martre, Pierre; Hatfield, Jerry L.; Jones, James W.; Rosenzweig, Cynthia E.; Ruane, Alex C.;
2016-01-01
Projected global warming and population growth will reduce future water availability for agriculture. Thus, it is essential to increase the efficiency in using water to ensure crop productivity. Quantifying crop water use (WU; i.e. actual evapotranspiration) is a critical step towards this goal. Here, sixteen wheat simulation models were used to quantify sources of model uncertainty and to estimate the relative changes and variability between models for simulated WU, water use efficiency (WUE, WU per unit of grain dry mass produced), transpiration efficiency (Teff, transpiration per kg of unit of grain yield dry mass produced), grain yield, crop transpiration and soil evaporation at increased temperatures and elevated atmospheric carbon dioxide concentrations ([CO2]). The greatest uncertainty in simulating water use, potential evapotranspiration, crop transpiration and soil evaporation was due to differences in how crop transpiration was modelled and accounted for 50 of the total variability among models. The simulation results for the sensitivity to temperature indicated that crop WU will decline with increasing temperature due to reduced growing seasons. The uncertainties in simulated crop WU, and in particularly due to uncertainties in simulating crop transpiration, were greater under conditions of increased temperatures and with high temperatures in combination with elevated atmospheric [CO2] concentrations. Hence the simulation of crop WU, and in particularly crop transpiration under higher temperature, needs to be improved and evaluated with field measurements before models can be used to simulate climate change impacts on future crop water demand.
Bennett, Amanda J; Bending, Gary D; Chandler, David; Hilton, Sally; Mills, Peter
2012-02-01
There is a trend world-wide to grow crops in short rotation or in monoculture, particularly in conventional agriculture. This practice is becoming more prevalent due to a range of factors including economic market trends, technological advances, government incentives, and retailer and consumer demands. Land-use intensity will have to increase further in future in order to meet the demands of growing crops for both bioenergy and food production, and long rotations may not be considered viable or practical. However, evidence indicates that crops grown in short rotations or monoculture often suffer from yield decline compared to those grown in longer rotations or for the first time. Numerous factors have been hypothesised as contributing to yield decline, including biotic factors such as plant pathogens, deleterious rhizosphere microorganisms, mycorrhizas acting as pathogens, and allelopathy or autotoxicity of the crop, as well as abiotic factors such as land management practices and nutrient availability. In many cases, soil microorganisms have been implicated either directly or indirectly in yield decline. Although individual factors may be responsible for yield decline in some cases, it is more likely that combinations of factors interact to cause the problem. However, evidence confirming the precise role of these various factors is often lacking in field studies due to the complex nature of cropping systems and the numerous interactions that take place within them. Despite long-term knowledge of the yield-decline phenomenon, there are few tools to counteract it apart from reverting to longer crop rotations or break crops. Alternative cropping and management practices such as double-cropping or inter-cropping, tillage and organic amendments may prove valuable for combating some of the negative effects seen when crops are grown in short rotation. Plant breeding continues to be important, although this does require a specific breeding target to be identified. This review identifies gaps in our understanding of yield decline, particularly with respect to the complex interactions occurring between the different components of agro-ecosystems, which may well influence food security in the 21(st) Century. © 2011 The Authors. Biological Reviews © 2011 Cambridge Philosophical Society.
Global Gridded Crop Model Evaluation: Benchmarking, Skills, Deficiencies and Implications.
NASA Technical Reports Server (NTRS)
Muller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe; Deryng, Delphine; Folberth, Christian; Glotter, Michael; Hoek, Steven;
2017-01-01
Crop models are increasingly used to simulate crop yields at the global scale, but so far there is no general framework on how to assess model performance. Here we evaluate the simulation results of 14 global gridded crop modeling groups that have contributed historic crop yield simulations for maize, wheat, rice and soybean to the Global Gridded Crop Model Intercomparison (GGCMI) of the Agricultural Model Intercomparison and Improvement Project (AgMIP). Simulation results are compared to reference data at global, national and grid cell scales and we evaluate model performance with respect to time series correlation, spatial correlation and mean bias. We find that global gridded crop models (GGCMs) show mixed skill in reproducing time series correlations or spatial patterns at the different spatial scales. Generally, maize, wheat and soybean simulations of many GGCMs are capable of reproducing larger parts of observed temporal variability (time series correlation coefficients (r) of up to 0.888 for maize, 0.673 for wheat and 0.643 for soybean at the global scale) but rice yield variability cannot be well reproduced by most models. Yield variability can be well reproduced for most major producing countries by many GGCMs and for all countries by at least some. A comparison with gridded yield data and a statistical analysis of the effects of weather variability on yield variability shows that the ensemble of GGCMs can explain more of the yield variability than an ensemble of regression models for maize and soybean, but not for wheat and rice. We identify future research needs in global gridded crop modeling and for all individual crop modeling groups. In the absence of a purely observation-based benchmark for model evaluation, we propose that the best performing crop model per crop and region establishes the benchmark for all others, and modelers are encouraged to investigate how crop model performance can be increased. We make our evaluation system accessible to all crop modelers so that other modeling groups can also test their model performance against the reference data and the GGCMI benchmark.
Climate Change and Projected Impacts in Agriculture: an Example on Mediterranean Crops
NASA Astrophysics Data System (ADS)
Ferrise, R.; Moriondo, M.; Bindi, M.
2009-04-01
Recently, the availability of multi-model ensemble prediction methods has permitted the assignment of likelihoods to future climate projections. This allowed moving from the scenario-based approach to the risk-based approach in assessing the effects of climate change, thus providing more useful information for decision-makers that, as reported by Schneider (2001), need probability estimates to assess the seriousness of the projected impacts. The probabilistic approach to evaluate crop response to climate change mainly consists in applying an impact model (such as crop growth model) to a very large number of climate projections so to provide a probabilistic distribution of the variable selected to evaluate the impact. By comparing the outputs of the multi-simulation with a critical threshold (such as minimum yield below which it is not admissible to fall), it is possible to evaluate the risk related to future climate conditions. Unfortunately, such an approach is a time-consuming process due to the large number of model runs needed for such a procedure. An alternative method relies on the set up of impact response surfaces (RS) with respect to key climatic variables on which a probabilistic representation of projected changes in the same climatic variables may be overlaid (Fronzek et al. 2008). This approach was exploited within the ENSEMBLES EU Project aiming at assessing climate change impact on typical Mediterranean crops. This work presents the results of the project with a particular concerning about the assessment of risk, of durum wheat (T. turgidum L. subsp. durum (Desf.) Husn) and grapevine (Vitis vinifera L.) yield falling below fixed thresholds, using probabilistic information about future climate. Methodology The simple mechanistic crop growth models, SIRIUS Quality (Jamieson et al., 1998) and VITE-model (Bindi et al., 1997a,b), were selected to respectively simulate durum wheat and grapevine yields in present and future scenarios. SIRIUS Quality is a wheat simulation model that calculates biomass production from photosynthetically active radiation and grain growth from simple partition rules. VITE-model is a model that uses a simplified mechanistic approach based on the accumulated degree days, the radiation use efficiency and the fruit biomass index to simulate the main processes regulating grapevine development, growth and yield. The selected crop growth models were adopted to create yield RSs of both crops over the suitable cultivated area in the Mediterranean Basin. Yield RSs were calculated performing a scenario sensitivity analysis by altering the baseline climate with respect to temperature and precipitation changes. The baseline climate consisted of 30 years (1975-2005) of daily minimum and maximum temperatures, rainfall and global radiation. Meteorological data were extracted from the MARS JRC Archive and are referred to a grid with a spatial resolution of 50 Km x 50 Km covering the whole European area. The sensitivity analysis was performed for precipitation changes (from -40% to 20%) and temperature changes (from 0°C to +8°C), uniformly applied across all the year. To take in account for the effect of rising CO2, the yield RSs for future periods, were produced considering CO2 air concentration level according to the A1B SRES emission scenario. For each rainfall and temperature combination the average yield over the 30-years period was calculated. The probabilistic distribution of future yields was estimated by applying a bilinear interpolative method to overlap, onto the RSs, the data from perturbed physics experiment of Hadley Centre for future scenarios (joint distribution of annual temperature and rainfall changes). Critical thresholds of impact were determined by calculating, for each grid cell, the distribution of the 30-years average yield according to the joint distribution data for present period (1990-2010) and selecting the values that correspond to the 20th percentile of the cumulative distribution. Finally, future yields were compared with yield threshold to assess the risk of yield shortfall that, in each time period, was defined as the percentage of projected yields that not overcome the selected threshold. Results Maps of durum wheat and grapevine low productivity risk were generated for the next century over the Mediterranean Basin. For durum wheat, with the exception of Portugal and Southern Spain, in the next 30 years risk of low crop productivity shows an overall reduction, due to the fertilizing effect of CO2 increase that counterbalances for the negative impact of rising temperature and reducing rainfall. Thereafter, these latter negative effects become greater and the risk progressively increases starting from lower latitudes. Maximum risk was estimated in 2060 when strong reductions in yield were accounted all over the study area. The smaller reductions in risk, estimated for the end of the next century, may be explained by the greater uncertainty in climate projections. South Portugal, South Spain and Peloponnesus resulted the most vulnerable areas showing increase in risk probability up to 50%, while risk in Galicia, Slovenia, Croatia and central-southern France always resulted lower then present time. As regard grapevine, in the great part of the case study area, the yield seems to have beneficial effect from future climate change. In Central-Western Europe and at lower latitudes the projected yields never fall below the risk threshold, indicating a prevailing effect of CO2 fertilisation. By the other hand, Central-Northern Italy and North of Greece result the most vulnerable areas. In these regions the likelihood of reduced yields quickly rises and remains very high (>50%) until the end of the century, denoting a greater negative effect of temperature and rainfall. Conclusions From these results it may be argued that the impact of future climate change on crop yields is the resultant of the contrasting effects of changes in temperature and precipitation, CO2 increase and uncertainty in climate projections. The intensity of these effects is very site and crop dependent and may vary with time, differently affecting the assessment of risk. As a consequence, the patterns of risk of low crop productivity will change depending on which of these effects will prevail. References Bindi M. et al., 1997a "A simple model for simulation of growth and development in grapevine (Vitis vinifera L.). I. Model description". Vitis 36:67-71 Bindi M. et al., 1997b "A simple model for simulation of growth and development in grapevine (Vitis vinifera L.). II. Model validation". Vitis 36:73-76 Carter T. et al., 2006 "". Fronzek S. et al 2008 "Applying probabilistic projections of climate change with impact models: a case study for sub-arctic palsa mires in Fennoscandia". Climatic Change (submitted) Jamieson et al., 1998 "Sirius: a mechanistic model of wheat response to environmental variation". Eur. J. Agron. 8:161-179. Schneider S. 2001 "What is ‘dangerous' climate change?". Nature 411:17-19
Performance of Sorghum Varieties under Variable Rainfall in Central Tanzania
Tumbo, S. D.; Kihupi, N. I.; Rwehumbiza, Filbert B.
2017-01-01
Rainfall variability has a significant impact on crop production with manifestations in frequent crop failure in semiarid areas. This study used the parameterized APSIM crop model to investigate how rainfall variability may affect yields of improved sorghum varieties based on long-term historical rainfall and projected climate. Analyses of historical rainfall indicate a mix of nonsignificant and significant trends on the onset, cessation, and length of the growing season. The study confirmed that rainfall variability indeed affects yields of improved sorghum varieties. Further analyses of simulated sorghum yields based on seasonal rainfall distribution indicate the concurrence of lower grain yields with the 10-day dry spells during the cropping season. Simulation results for future sorghum response, however, show that impacts of rainfall variability on sorghum will be overridden by temperature increase. We conclude that, in the event where harms imposed by moisture stress in the study area are not abated, even improved sorghum varieties are likely to perform poorly. PMID:28536708
Performance of Sorghum Varieties under Variable Rainfall in Central Tanzania.
Msongaleli, Barnabas M; Tumbo, S D; Kihupi, N I; Rwehumbiza, Filbert B
2017-01-01
Rainfall variability has a significant impact on crop production with manifestations in frequent crop failure in semiarid areas. This study used the parameterized APSIM crop model to investigate how rainfall variability may affect yields of improved sorghum varieties based on long-term historical rainfall and projected climate. Analyses of historical rainfall indicate a mix of nonsignificant and significant trends on the onset, cessation, and length of the growing season. The study confirmed that rainfall variability indeed affects yields of improved sorghum varieties. Further analyses of simulated sorghum yields based on seasonal rainfall distribution indicate the concurrence of lower grain yields with the 10-day dry spells during the cropping season. Simulation results for future sorghum response, however, show that impacts of rainfall variability on sorghum will be overridden by temperature increase. We conclude that, in the event where harms imposed by moisture stress in the study area are not abated, even improved sorghum varieties are likely to perform poorly.
Li, Xiaoyun; Liu, Nianjie; You, Liangzhi; Ke, Xinli; Liu, Haijun; Huang, Malan; Waddington, Stephen R.
2016-01-01
After a remarkable 86% increase in cereal production from 1980 to 2005, recent crop yield growth in China has been slow. County level crop production data between 1980 and 2010 from eastern and middle China were used to analyze spatial and temporal patterns of rice, wheat and maize yield in five major farming systems that include around 90% of China's cereal production. Site-specific yield trends were assessed in areas where those crops have experienced increasing yield or where yields have stagnated or declined. We find that rice yields have continued to increase on over 12.3 million hectares (m. ha) or 41.8% of the rice area in China between 1980 and 2010. However, yields stagnated on 50% of the rice area (around 14.7 m. ha) over this time period. Wheat yields increased on 13.8 m. ha (58.2% of the total harvest area), but stagnated on around 3.8 m. ha (15.8% of the harvest area). Yields increased on a smaller proportion of the maize area (17.7% of harvest area, 5.3 m. ha), while yields have stagnated on over 54% (16.3 m. ha). Many parts of the lowland rice and upland intensive sub-tropical farming systems were more prone to stagnation with rice, the upland intensive sub-tropical system with wheat, and maize in the temperate mixed system. Large areas where wheat yield continues to rise were found in the lowland rice and temperate mixed systems. Land and water constraints, climate variability, and other environmental limitations undermine increased crop yield and agricultural productivity in these systems and threaten future food security. Technology and policy innovations must be implemented to promote crop yields and the sustainable use of agricultural resources to maintain food security in China. In many production regions it is possible to better match the crop with input resources to raise crop yields and benefits. Investments may be especially useful to intensify production in areas where yields continue to improve. For example, increased support to maize production in southern China, where yields are still rising, seems justified. PMID:27404110
NASA Astrophysics Data System (ADS)
Sakurai, G.; Iizumi, T.; Yokozawa, M.
2011-12-01
The actual impact of elevated [CO2] with the interaction of the other climatic factors on the crop growth is still debated. In many process-based crop models, the response of photosynthesis per single leaf to environmental factors is basically described using the biochemical model of Farquhar et al. (1980). However, the decline in photosynthetic enhancement known as down regulation has not been taken into account. On the other hand, the mechanisms causing photosynthetic down regulation is still unknown, which makes it difficult to include the effect of down regulation into process-based crop models. The current results of Free-air CO2 enrichment (FACE) experiments have reported the effect of down regulation under actual environments. One of the effective approaches to involve these results into future crop yield prediction is developing a semi process-based crop growth model, which includes the effect of photosynthetic down regulation as a statistical model, and assimilating the data obtained in FACE experiments. In this study, we statistically estimated the parameters of a semi process-based model for soybean growth ('SPM-soybean') using a hierarchical Baysian method with the FACE data on soybeans (Morgan et al. 2005). We also evaluated the effect of down regulation on the soybean yield in future climatic conditions. The model selection analysis showed that the effective correction to the overestimation of the Farquhar's biochemical C3 model was to reduce the maximum rate of carboxylation (Vcmax) under elevated [CO2]. However, interestingly, the difference in the estimated final crop yields between the corrected model and the non-corrected model was very slight (Fig.1a) for future projection under climate change scenario (Miroc-ESM). This was due to that the reduction in Vcmax also brought about the reduction of the base dark respiration rate of leaves. Because the dark respiration rate exponentially increases with temperature, the slight difference in base respiration rate becomes a large difference under high temperature under the future climate scenarios. In other words, if the temperature rise is very small or zero under elevated [CO2] condition, the effect of down regulation significantly appears (Fig.1b). This result suggest that further experimental data that considering high CO2 effect and high temperature effect in field conditions should be important and elaborate the model projection of the future crop yield through data assimilation method.
Applications of satellite 'hyper-sensing' in Chinese agriculture: Challenges and opportunities
NASA Astrophysics Data System (ADS)
Onojeghuo, Alex Okiemute; Blackburn, George Alan; Huang, Jingfeng; Kindred, Daniel; Huang, Wenjiang
2018-02-01
Ensuring adequate food supplies to a large and increasing population continues to be the key challenge for China. Given the increasing integration of China within global markets for agricultural products, this issue is of considerable significance for global food security. Over the last 50 years, China has increased the production of its staple crops mainly by increasing yield per unit land area. However, this has largely been achieved through inappropriate agricultural practices, which have caused environmental degradation, with deleterious consequences for future agricultural productivity. Hence, there is now a pressing need to intensify agriculture in China using practices that are environmentally and economically sustainable. Given the dynamic nature of crops over space and time, the use of remote sensing technology has proven to be a valuable asset providing end-users in many countries with information to guide sustainable agricultural practices. Recently, the field has experienced considerable technological advancements reflected in the availability of 'hyper-sensing' (high spectral, spatial and temporal) satellite imagery useful for monitoring, modelling and mapping of agricultural crops. However, there still remains a significant challenge in fully exploiting such technologies for addressing agricultural problems in China. This review paper evaluates the potential contributions of satellite 'hyper-sensing' to agriculture in China and identifies the opportunities and challenges for future work. We perform a critical evaluation of current capabilities in satellite 'hyper-sensing' in agriculture with an emphasis on Chinese sensors. Our analysis draws on a series of in-depth examples based on recent and on-going projects in China that are developing 'hyper-sensing' approaches for (i) measuring crop phenology parameters and predicting yields; (ii) specifying crop fertiliser requirements; (iii) optimising management responses to abiotic and biotic stress in crops; (iv) maximising yields while minimising water use in arid regions; (v) large-scale crop/cropland mapping; and (vi) management zone delineation. The paper concludes with a synthesis of these application areas in order to define the requirements for future research, technological innovation and knowledge exchange in order to deliver yield sustainability in China.
Mistry, Malcolm N.; Wing, Ian Sue; De Cian, Enrica
2017-07-10
Global gridded crop models (GGCMs) are the workhorse of assessments of the agricultural impacts of climate change. Yet the changes in crop yields projected by different models in response to the same meteorological forcing can differ substantially. Through an inter-method comparison, we provide a first glimpse into the origins and implications of this divergence—both among GGCMs and between GGCMs and historical observations. We examine yields of rainfed maize, wheat, and soybeans simulated by six GGCMs as part of the Inter-Sectoral Impact Model Intercomparison Project-Fast Track (ISIMIP-FT) exercise, comparing 1981–2004 hindcast yields over the coterminous United States (US) against US Departmentmore » of Agriculture (USDA) time series for about 1000 counties. Leveraging the empirical climate change impacts literature, we estimate reduced-form econometric models of crop yield responses to temperature and precipitation exposures for both GGCMs and observations. We find that up to 60% of the variance in both simulated and observed yields is attributable to weather variation. A majority of the GGCMs have difficulty reproducing the observed distribution of percentage yield anomalies, and exhibit aggregate responses that show yields to be more weather-sensitive than in the observational record over the predominant range of temperature and precipitation conditions. In conclusion, this disparity is largely attributable to heterogeneity in GGCMs' responses, as opposed to uncertainty in historical weather forcings, and is responsible for widely divergent impacts of climate on future crop yields.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mistry, Malcolm N.; Wing, Ian Sue; De Cian, Enrica
Global gridded crop models (GGCMs) are the workhorse of assessments of the agricultural impacts of climate change. Yet the changes in crop yields projected by different models in response to the same meteorological forcing can differ substantially. Through an inter-method comparison, we provide a first glimpse into the origins and implications of this divergence—both among GGCMs and between GGCMs and historical observations. We examine yields of rainfed maize, wheat, and soybeans simulated by six GGCMs as part of the Inter-Sectoral Impact Model Intercomparison Project-Fast Track (ISIMIP-FT) exercise, comparing 1981–2004 hindcast yields over the coterminous United States (US) against US Departmentmore » of Agriculture (USDA) time series for about 1000 counties. Leveraging the empirical climate change impacts literature, we estimate reduced-form econometric models of crop yield responses to temperature and precipitation exposures for both GGCMs and observations. We find that up to 60% of the variance in both simulated and observed yields is attributable to weather variation. A majority of the GGCMs have difficulty reproducing the observed distribution of percentage yield anomalies, and exhibit aggregate responses that show yields to be more weather-sensitive than in the observational record over the predominant range of temperature and precipitation conditions. In conclusion, this disparity is largely attributable to heterogeneity in GGCMs' responses, as opposed to uncertainty in historical weather forcings, and is responsible for widely divergent impacts of climate on future crop yields.« less
NASA Astrophysics Data System (ADS)
Mistry, Malcolm N.; Wing, Ian Sue; De Cian, Enrica
2017-07-01
Global gridded crop models (GGCMs) are the workhorse of assessments of the agricultural impacts of climate change. Yet the changes in crop yields projected by different models in response to the same meteorological forcing can differ substantially. Through an inter-method comparison, we provide a first glimpse into the origins and implications of this divergence—both among GGCMs and between GGCMs and historical observations. We examine yields of rainfed maize, wheat, and soybeans simulated by six GGCMs as part of the Inter-Sectoral Impact Model Intercomparison Project-Fast Track (ISIMIP-FT) exercise, comparing 1981-2004 hindcast yields over the coterminous United States (US) against US Department of Agriculture (USDA) time series for about 1000 counties. Leveraging the empirical climate change impacts literature, we estimate reduced-form econometric models of crop yield responses to temperature and precipitation exposures for both GGCMs and observations. We find that up to 60% of the variance in both simulated and observed yields is attributable to weather variation. A majority of the GGCMs have difficulty reproducing the observed distribution of percentage yield anomalies, and exhibit aggregate responses that show yields to be more weather-sensitive than in the observational record over the predominant range of temperature and precipitation conditions. This disparity is largely attributable to heterogeneity in GGCMs’ responses, as opposed to uncertainty in historical weather forcings, and is responsible for widely divergent impacts of climate on future crop yields.
The evolution of modern agriculture and its future with biotechnology.
Harlander, Susan K
2002-06-01
Since the dawn of agriculture, humans have been manipulating crops to enhance their quality and yield. Via conventional breeding, seed producers have developed the modern corn hybrids and wheat commonly grown today. Newer techniques, such as radiation breeding, enhanced the seed producers' ability to develop new traits in crops. Then in the 1980's-1990's, scientists began applying genetic engineering techniques to improve crop quality and yield. In contrast to earlier breeding methods, these techniques raised questions about their safety to consumers and the environment. This paper provides an overview of the kinds of genetically modified crops developed and marketed to date and the value they provide farmers and consumers. The safety assessment process required for these crops is contrasted with the lack of a formal process required for traditionally bred crops. While European consumers have expressed concern about foods and animal feeds containing ingredients from genetically modified crops, Americans have largely been unconcerned or unaware of the presence of genetically modified foods on the market. This difference in attitude is reflected in Europe's decision to label foods containing genetically modified ingredients while no such labeling is required in the U.S. In the future, genetic modification will produce a variety of new products with enhanced nutritional or quality attributes.
Linkages among climate change, crop yields and Mexico–US cross-border migration
Feng, Shuaizhang; Krueger, Alan B.; Oppenheimer, Michael
2010-01-01
Climate change is expected to cause mass human migration, including immigration across international borders. This study quantitatively examines the linkages among variations in climate, agricultural yields, and people's migration responses by using an instrumental variables approach. Our method allows us to identify the relationship between crop yields and migration without explicitly controlling for all other confounding factors. Using state-level data from Mexico, we find a significant effect of climate-driven changes in crop yields on the rate of emigration to the United States. The estimated semielasticity of emigration with respect to crop yields is approximately −0.2, i.e., a 10% reduction in crop yields would lead an additional 2% of the population to emigrate. We then use the estimated semielasticity to explore the potential magnitude of future emigration. Depending on the warming scenarios used and adaptation levels assumed, with other factors held constant, by approximately the year 2080, climate change is estimated to induce 1.4 to 6.7 million adult Mexicans (or 2% to 10% of the current population aged 15–65 y) to emigrate as a result of declines in agricultural productivity alone. Although the results cannot be mechanically extrapolated to other areas and time periods, our findings are significant from a global perspective given that many regions, especially developing countries, are expected to experience significant declines in agricultural yields as a result of projected warming. PMID:20660749
Linkages among climate change, crop yields and Mexico-US cross-border migration.
Feng, Shuaizhang; Krueger, Alan B; Oppenheimer, Michael
2010-08-10
Climate change is expected to cause mass human migration, including immigration across international borders. This study quantitatively examines the linkages among variations in climate, agricultural yields, and people's migration responses by using an instrumental variables approach. Our method allows us to identify the relationship between crop yields and migration without explicitly controlling for all other confounding factors. Using state-level data from Mexico, we find a significant effect of climate-driven changes in crop yields on the rate of emigration to the United States. The estimated semielasticity of emigration with respect to crop yields is approximately -0.2, i.e., a 10% reduction in crop yields would lead an additional 2% of the population to emigrate. We then use the estimated semielasticity to explore the potential magnitude of future emigration. Depending on the warming scenarios used and adaptation levels assumed, with other factors held constant, by approximately the year 2080, climate change is estimated to induce 1.4 to 6.7 million adult Mexicans (or 2% to 10% of the current population aged 15-65 y) to emigrate as a result of declines in agricultural productivity alone. Although the results cannot be mechanically extrapolated to other areas and time periods, our findings are significant from a global perspective given that many regions, especially developing countries, are expected to experience significant declines in agricultural yields as a result of projected warming.
OCO-2 Solar-induced Fluorescence Data Portal and Applications to Crop Yield Estimation
NASA Astrophysics Data System (ADS)
Zhai, A. J.; Jiang, J. H.; Frankenberg, C.; Yung, Y. L.; Choi, Y. S.
2016-12-01
Solar-induced fluorescence (SIF) is a direct byproduct of photosynthesis and is an index that can represent overall plant productivity level of any region around the globe. Recently, in 2014, NASA launched the Orbiting Carbon Observatory 2 (OCO-2) satellite, which collects SIF measurements at a higher spatial resolution than any previous instrument has. We have first assembled a web-based data portal, which can be easily utilized by both farmers and researchers, to allow convenient access to the SIF data from OCO-2. One possible use of SIF is to estimate agricultural status of crop fields anywhere in the world. We are using OCO-2 level 2 measurements in conjunction with the USDA's Cropland Data Layer and reported crop yield data to study how effectively SIF can estimate agricultural yield on various types of landscape and various species of crops. Results, methods, and future implications will be presented.
NASA Astrophysics Data System (ADS)
Jain, M.; DeFries, R. S.
2012-12-01
Climate change is predicted to negatively impact many agricultural communities across the globe, particularly smallholder farmers who often do not have access to appropriate technologies to reduce their vulnerability. To better predict which farmers will be most impacted by future climate change at a regional scale, we use remote sensing and agricultural census data to examine how cropping intensity and crop type have shifted based on rainfall variability across Gujarat, India from 1990 to 2010. Using household-level interviews, we then identify the socio-economic, biophysical, perceptional, and psychological factors associated with smallholder farmers who are the most impacted and the least able to adapt to contemporaneous rainfall variability. We interviewed 750 farmers in 2011 and 2012 that span a rainfall, irrigation, socio-economic, and caste gradient across central Gujarat. Our results show that farmers shift cropping practices in several ways based on monsoon onset, which farmers state is the main observable rainfall signal influencing cropping decisions during the monsoon season. When monsoon onset is delayed, farmers opt to plant more drought-tolerant crops, push back the date of sowing, and increase the number of irrigations used. Comparing self-reported income and yields, we find that switching crops does not improve agricultural income, shifting planting date does not influence crop yield, yet increasing the number of irrigations significantly increases yield. Future work will identify which social (e.g. social networks), psychological (e.g. risk preference), and knowledge (e.g. information sources) factors are associated with farmers who are best able to adapt to rainfall variability.
NASA Astrophysics Data System (ADS)
Rajagopalan, K.; Chinnayakanahalli, K. J.; Stockle, C. O.; Nelson, R. L.; Kruger, C. E.; Brady, M. P.; Malek, K.; Dinesh, S. T.; Barber, M. E.; Hamlet, A. F.; Yorgey, G. G.; Adam, J. C.
2018-03-01
Adaptation to a changing climate is critical to address future global food and water security challenges. While these challenges are global, successful adaptation strategies are often generated at regional scales; therefore, regional-scale studies are critical to inform adaptation decision making. While climate change affects both water supply and demand, water demand is relatively understudied, especially at regional scales. The goal of this work is to address this gap, and characterize the direct impacts of near-term (for the 2030s) climate change and elevated CO2 levels on regional-scale crop yields and irrigation demands for the Columbia River basin (CRB). This question is addressed through a coupled crop-hydrology model that accounts for site-specific and crop-specific characteristics that control regional-scale response to climate change. The overall near-term outlook for agricultural production in the CRB is largely positive, with yield increases for most crops and small overall increases in irrigation demand. However, there are crop-specific and location-specific negative impacts as well, and the aggregate regional response of irrigation demands to climate change is highly sensitive to the spatial crop mix. Low-value pasture/hay varieties of crops—typically not considered in climate change assessments—play a significant role in determining the regional response of irrigation demands to climate change, and thus cannot be overlooked. While, the overall near-term outlook for agriculture in the region is largely positive, there may be potential for a negative outlook further into the future, and it is important to consider this in long-term planning.
Increasing influence of heat stress on French maize yields from the 1960s to the 2030s
Hawkins, Ed; Fricker, Thomas E; Challinor, Andrew J; Ferro, Christopher A T; Kit Ho, Chun; Osborne, Tom M
2013-01-01
Improved crop yield forecasts could enable more effective adaptation to climate variability and change. Here, we explore how to combine historical observations of crop yields and weather with climate model simulations to produce crop yield projections for decision relevant timescales. Firstly, the effects on historical crop yields of improved technology, precipitation and daily maximum temperatures are modelled empirically, accounting for a nonlinear technology trend and interactions between temperature and precipitation, and applied specifically for a case study of maize in France. The relative importance of precipitation variability for maize yields in France has decreased significantly since the 1960s, likely due to increased irrigation. In addition, heat stress is found to be as important for yield as precipitation since around 2000. A significant reduction in maize yield is found for each day with a maximum temperature above 32 °C, in broad agreement with previous estimates. The recent increase in such hot days has likely contributed to the observed yield stagnation. Furthermore, a general method for producing near-term crop yield projections, based on climate model simulations, is developed and utilized. We use projections of future daily maximum temperatures to assess the likely change in yields due to variations in climate. Importantly, we calibrate the climate model projections using observed data to ensure both reliable temperature mean and daily variability characteristics, and demonstrate that these methods work using retrospective predictions. We conclude that, to offset the projected increased daily maximum temperatures over France, improved technology will need to increase base level yields by 12% to be confident about maintaining current levels of yield for the period 2016–2035; the current rate of yield technology increase is not sufficient to meet this target. PMID:23504849
Global warming threatens agricultural productivity in Africa and South Asia
NASA Astrophysics Data System (ADS)
Sultan, Benjamin
2012-12-01
The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC; Christensen et al 2007) has, with greater confidence than previous reports, warned the international community that the increase in anthropogenic greenhouse gases emissions will result in global climate change. One of the most direct and threatening impacts it may have on human societies is the potential consequences on global crop production. Indeed agriculture is considered as the most weather-dependent of all human activities (Hansen 2002) since climate is a primary determinant for agricultural productivity. The potential impact of climate change on crop productivity is an additional strain on the global food system which is already facing the difficult challenge of increasing food production to feed a projected 9 billion people by 2050 with changing consumption patterns and growing scarcity of water and land (Beddington 2010). In some regions such as Sub-Saharan Africa or South Asia that are already food insecure and where most of the population increase and economic development will take place, climate change could be the additional stress that pushes systems over the edge. A striking example, if needed, is the work from Collomb (1999) which estimates that by 2050 food needs will more than quintuple in Africa and more than double in Asia. Better knowledge of climate change impacts on crop productivity in those vulnerable regions is crucial to inform policies and to support adaptation strategies that may counteract the adverse effects. Although there is a growing literature on the impact of climate change on crop productivity in tropical regions, it is difficult to provide a consistent assessment of future yield changes because of large uncertainties in regional climate change projections, in the response of crops to environmental change (rainfall, temperature, CO2 concentration), in the coupling between climate models and crop productivity functions, and in the adaptation of agricultural systems to progressive climate change (Roudier et al 2011, Challinor et al 2007). These uncertainties result in a large spread of crop yield projections indicating a low confidence in future yield projections. A recent study by Knox et al (2012) is among the first to provide robust evidence of how climate change will impact productivity of major crops in Africa and South Asia. Using a meta-analysis, which is widely used in epidemiology and medicine and consists in comparing and combining results from different independent published studies, Knox et al (2012) show a consistent yield loss by the 2050s of major crops (wheat, maize, sorghum and millet) in both regions. This systematic review and meta-analysis of data in 52 original publications from an initial screen of 1144 studies nicely extend previous works by Müller et al (2011) and Roudier et al (2011), confirming the threat of negative climate change impacts in Africa but also in South Asia. Knox et al (2012) estimate that mean yield change for all crops is -8% by the 2050s with strong variations among crops and regions. For instance evidence of yield reduction up to -40% are detected for some regions of Africa while no mean yield change is detected for rice in India. Variations in crop yield projections decrease when considering a large number of climate models confirming the relevance of the expanded use of multi-model ensembles of projections of future climate change adopted in the IPCC Fourth Assessment Report. Conversely, variations in crop yield projections increase with the crop model complexity especially when using process-based crop models over statistical models. Such differences in crop yield variations may be attributed either to the structural differences between crop model approaches or to the spatial scale differences; biophysical crop models operating at finer spatial scales and thus reproducing the higher variability of impacts at these scales. Such robust evidence of future yield change in Africa and South Asia can be surprising in regards to the diverging projections in a warmer climate of summer monsoon rainfall, the primary driver for rainfed crop productivity in the region, especially in West Africa where some studies make projections of wetter conditions and some predict more frequent droughts (Druyan 2011). This is because of the adverse role of higher temperatures in shortening the crop cycle duration and increasing evapotranspiration demand and thus reducing crop yields, irrespective of rainfall changes (Berg et al 2012, Roudier et al 2011, Schlenker and Lobell 2010). Potential wetter conditions or elevated CO2 concentrations hardly counteract the adverse effect of higher temperatures. Although such systematic reviews and meta-analyses conducted by Knox et al (2012), Müller et al (2011) or Roudier et al (2011) can provide important insights about sign, magnitude and uncertainty of climate change impacts, direct comparison among studies suffers from inevitable limitations. In particular the diversity of the studies selected for the meta-analysis, encompassing a range of different countries, scales, crops and methods (climate models and scenarios, crop models, downscaling technique), makes it difficult to aggregate crop yield projections to provide a consistent and precise impact assessment. A rigorous multi-ensembles approach, with varying climate models, emissions scenarios, crop models, and downscaling techniques, as recommended by Challinor et al (2007), would enable a move towards a more complete sampling of uncertainty in crop yield projections. In that sense, coordinated modeling experiments such as the ones conducted throughout the Agricultural Model Intercomparison and Improvement Project (AgMIP; www.agmip.org/) are likely to improve substantially the characterization of the threat of crop yield losses and food insecurity due to climate change. In spite of the threat of crop yield losses in a warmer climate, it is important to keep in mind, as discussed by Berg et al (2012), that developing countries in the tropics have the potential to more than offset such adverse impacts by implementing more intensive agricultural practices and adapting agriculture to climate and environmental change. Indeed Africa and in a lesser extend South Asia are among the only regions of the world where there is an untapped potential for raising agricultural productivity since poor soil fertility and low input levels, combined with extensive agricultural practices, contribute to a large gap between actual and potential yields (Licker et al 2010). References Beddington J 2010 Food security: contributions from science to a new and greener revolution Phil. Trans. R. Soc. B 365 61-71 Berg A, de Noblet-Ducoudré N, Sultan B, Lengaigne N and Guimberteau M 2012 Projections of climate change impacts on potential crop productivity over tropical regions Agric. For. Meteorol. at press (doi:10.1016/j.agrformet.2011.12.003) Challinor A, Wheeler T, Garforth C, Craufurd P and Kassam A 2007 Assessing the vulnerability of food crop systems in Africa to climate change Clim. Change 83 381-99 Christensen J H et al 2007 Regional climate projections Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ed S Solomon, D Qin, M Manning, Z Chen, M Marquis, K B Averyt, M Tignor and H L Miller (Cambridge: Cambridge University Press) Collomb P 1999 A narrow road to food security from now to 2050 FAO Economica (Paris: FAO) Druyan L M 2011 Studies of 21st-century precipitation trends over West Africa Int. J. Climatol. 31 1415-572 Hansen J W 2002 Realizing the potential benefits of climate prediction to agriculture: issues, approaches, challenges Agric. Syst. 74 309-30 Knox J, Hess T, Daccache A and Wheeler T 2012 Climate change impacts on crop productivity in Africa and South Asia Environ. Res. Lett. 7 034032 Licker R, Johnston M, Foley J A, Barford C, Kucharik C J, Monfreda C and Ramankutty N 2010 Mind the gap: how do climate and agricultural management explain the 'yield gap' of croplands around the world? Glob. Ecol. Biogeogr. 19 769-82 Müller C, Cramer W, Hare W L and Lotze-Campen H 2011 Climate change risks for African agriculture Proc. Natl Acad. Sci. USA 108 4313-5 Roudier P, Sultan S, Quirion P and Berg A 2011 The impact of future climate change on West African crop yields: what does the recent literature say? Glob. Environ. Change 21 1073-83 Schlenker W and Lobell D 2010 Robust negative impacts of climate change on African agriculture Environ. Res. Lett. 5 014010
NASA Astrophysics Data System (ADS)
Li, Kenan; Yang, Xiaoguang; Tian, Hanqin; Pan, Shufen; Liu, Zhijuan; Lu, Shuo
2016-01-01
Understanding how changing climate and cultivars influence crop phenology and potential yield is essential for crop adaptation to future climate change. In this study, crop and daily weather data collected from six sites across the North China Plain were used to drive a crop model to analyze the impacts of climate change and cultivar development on the phenology and production of winter wheat from 1981 to 2005. Results showed that both the growth period (GP) and the vegetative growth period (VGP) decreased during the study period, whereas changes in the reproductive growth period (RGP) either increased slightly or had no significant trend. Although new cultivars could prolong the winter wheat phenology (0.3˜3.8 days per decade for GP), climate warming impacts were more significant and mainly accounted for the changes. The harvest index and kernel number per stem weight have significantly increased. Model simulation indicated that the yield of winter wheat exhibited increases (5.0˜19.4 %) if new cultivars were applied. Climate change demonstrated a negative effect on winter wheat yield as suggested by the simulation driven by climate data only (-3.3 to -54.8 kg ha-1 year-1, except for Lushi). Results of this study also indicated that winter wheat cultivar development can compensate for the negative effects of future climatic change.
Li, Kenan; Yang, Xiaoguang; Tian, Hanqin; Pan, Shufen; Liu, Zhijuan; Lu, Shuo
2016-01-01
Understanding how changing climate and cultivars influence crop phenology and potential yield is essential for crop adaptation to future climate change. In this study, crop and daily weather data collected from six sites across the North China Plain were used to drive a crop model to analyze the impacts of climate change and cultivar development on the phenology and production of winter wheat from 1981 to 2005. Results showed that both the growth period (GP) and the vegetative growth period (VGP) decreased during the study period, whereas changes in the reproductive growth period (RGP) either increased slightly or had no significant trend. Although new cultivars could prolong the winter wheat phenology (0.3∼3.8 days per decade for GP), climate warming impacts were more significant and mainly accounted for the changes. The harvest index and kernel number per stem weight have significantly increased. Model simulation indicated that the yield of winter wheat exhibited increases (5.0∼19.4%) if new cultivars were applied. Climate change demonstrated a negative effect on winter wheat yield as suggested by the simulation driven by climate data only (-3.3 to -54.8 kg ha(-1) year(-1), except for Lushi). Results of this study also indicated that winter wheat cultivar development can compensate for the negative effects of future climatic change.
Meta-analysis of climate impacts and uncertainty on crop yields in Europe
NASA Astrophysics Data System (ADS)
Knox, Jerry; Daccache, Andre; Hess, Tim; Haro, David
2016-11-01
Future changes in temperature, rainfall and soil moisture could threaten agricultural land use and crop productivity in Europe, with major consequences for food security. We assessed the projected impacts of climate change on the yield of seven major crop types (viz wheat, barley, maize, potato, sugar beet, rice and rye) grown in Europe using a systematic review (SR) and meta-analysis of data reported in 41 original publications from an initial screening of 1748 studies. Our approach adopted an established SR procedure developed by the Centre for Evidence Based Conservation constrained by inclusion criteria and defined methods for literature searches, data extraction, meta-analysis and synthesis. Whilst similar studies exist to assess climate impacts on crop yield in Africa and South Asia, surprisingly, no comparable synthesis has been undertaken for Europe. Based on the reported results (n = 729) we show that the projected change in average yield in Europe for the seven crops by the 2050s is +8%. For wheat and sugar beet, average yield changes of +14% and +15% are projected, respectively. There were strong regional differences with crop impacts in northern Europe being higher (+14%) and more variable compared to central (+6%) and southern (+5) Europe. Maize is projected to suffer the largest negative mean change in southern Europe (-11%). Evidence of climate impacts on yield was extensive for wheat, maize, sugar beet and potato, but very limited for barley, rice and rye. The implications for supporting climate adaptation policy and informing climate impacts crop science research in Europe are discussed.
NASA Astrophysics Data System (ADS)
Bhushan, R.; Ng, T. L.
2015-12-01
Freshwater resources around the world are increasing in scarcity due to population growth, industrialization and climate change. This is a serious concern for water stressed countries, including those in Asia and North Africa where future food production is expected to be negatively affected by this. To address this problem, we investigate the potential of combining freshwater reservoir and wastewater reclamation operations. Reservoir water is the cheaper source of irrigation, but is often limited and climate sensitive. Treated wastewater is a more reliable alternative for irrigation, but often requires extensive further treatment which can be expensive. We propose combining the operations of a reservoir and a wastewater reclamation plant (WWRP) to augment the supply from the reservoir with reclaimed water for increasing crop yields in water stressed regions. The joint system of reservoir and WWRP is modeled as a multi-objective optimization problem with the double objective of maximizing the crop yield and minimizing total cost, subject to constraints on reservoir storage, spill and release, and capacity of the WWRP. We use the crop growth model Aquacrop, supported by The Food and Agriculture Organization of the United Nations (FAO), to model crop growth in response to water use. Aquacrop considers the effects of water deficit on crop growth stages, and from there estimates crop yield. We generate results comparing total crop yield under irrigation with water from just the reservoir (which is limited and often interrupted), and yield with water from the joint system (which has the potential of higher supply and greater reliability). We will present results for locations in India and Africa to evaluate the potential of the joint operations for improving food security in those areas for different budgets.
Ensembles modeling approach to study Climate Change impacts on Wheat
NASA Astrophysics Data System (ADS)
Ahmed, Mukhtar; Claudio, Stöckle O.; Nelson, Roger; Higgins, Stewart
2017-04-01
Simulations of crop yield under climate variability are subject to uncertainties, and quantification of such uncertainties is essential for effective use of projected results in adaptation and mitigation strategies. In this study we evaluated the uncertainties related to crop-climate models using five crop growth simulation models (CropSyst, APSIM, DSSAT, STICS and EPIC) and 14 general circulation models (GCMs) for 2 representative concentration pathways (RCP) of atmospheric CO2 (4.5 and 8.5 W m-2) in the Pacific Northwest (PNW), USA. The aim was to assess how different process-based crop models could be used accurately for estimation of winter wheat growth, development and yield. Firstly, all models were calibrated for high rainfall, medium rainfall, low rainfall and irrigated sites in the PNW using 1979-2010 as the baseline period. Response variables were related to farm management and soil properties, and included crop phenology, leaf area index (LAI), biomass and grain yield of winter wheat. All five models were run from 2000 to 2100 using the 14 GCMs and 2 RCPs to evaluate the effect of future climate (rainfall, temperature and CO2) on winter wheat phenology, LAI, biomass, grain yield and harvest index. Simulated time to flowering and maturity was reduced in all models except EPIC with some level of uncertainty. All models generally predicted an increase in biomass and grain yield under elevated CO2 but this effect was more prominent under rainfed conditions than irrigation. However, there was uncertainty in the simulation of crop phenology, biomass and grain yield under 14 GCMs during three prediction periods (2030, 2050 and 2070). We concluded that to improve accuracy and consistency in simulating wheat growth dynamics and yield under a changing climate, a multimodel ensemble approach should be used.
Pradhan, Aliza; Idol, Travis; Roul, Pravat K.
2016-01-01
Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer’s net economic benefit. This research assessed the effects over 3 years (2011–2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize–cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs. PMID:27471508
Pradhan, Aliza; Idol, Travis; Roul, Pravat K
2016-01-01
Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer's net economic benefit. This research assessed the effects over 3 years (2011-2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize-cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs.
Prediction of Seasonal Climate-induced Variations in Global Food Production
NASA Technical Reports Server (NTRS)
Iizumi, Toshichika; Sakuma, Hirofumi; Yokozawa, Masayuki; Luo, Jing-Jia; Challinor, Andrew J.; Brown, Molly E.; Sakurai, Gen; Yamagata, Toshio
2013-01-01
Consumers, including the poor in many countries, are increasingly dependent on food imports and are therefore exposed to variations in yields, production, and export prices in the major food-producing regions of the world. National governments and commercial entities are paying increased attention to the cropping forecasts of major food-exporting countries as well as to their own domestic food production. Given the increased volatility of food markets and the rising incidence of climatic extremes affecting food production, food price spikes may increase in prevalence in future years. Here we present a global assessment of the reliability of crop failure hindcasts for major crops at two lead times derived by linking ensemble seasonal climatic forecasts with statistical crop models. We assessed the reliability of hindcasts (i.e., retrospective forecasts for the past) of crop yield loss relative to the previous year for two lead times. Pre-season yield predictions employ climatic forecasts and have lead times of approximately 3 to 5 months for providing information regarding variations in yields for the coming cropping season. Within-season yield predictions use climatic forecasts with lead times of 1 to 3 months. Pre-season predictions can be of value to national governments and commercial concerns, complemented by subsequent updates from within-season predictions. The latter incorporate information on the most recent climatic data for the upcoming period of reproductive growth. In addition to such predictions, hindcasts using observations from satellites were performed to demonstrate the upper limit of the reliability of crop forecasting.
Assessing and modelling ecohydrologic processes at the agricultural field scale
NASA Astrophysics Data System (ADS)
Basso, Bruno
2015-04-01
One of the primary goals of agricultural management is to increase the amount of crop produced per unit of fertilizer and water used. World record corn yields demonstrated that water use efficiency can increase fourfold with improved agronomic management and cultivars able to tolerate high densities. Planting crops with higher plant density can lead to significant yield increases, and increase plant transpiration vs. soil water evaporation. Precision agriculture technologies have been adopted for the last twenty years but seldom have the data collected been converted to information that led farmers to different agronomic management. These methods are intuitively appealing, but yield maps and other spatial layers of data need to be properly analyzed and interpreted to truly become valuable. Current agro-mechanic and geospatial technologies allow us to implement a spatially variable plan for agronomic inputs including seeding rate, cultivars, pesticides, herbicides, fertilizers, and water. Crop models are valuable tools to evaluate the impact of management strategies (e.g., cover crops, tile drains, and genetically-improved cultivars) on yield, soil carbon sequestration, leaching and greenhouse gas emissions. They can help farmers identify adaptation strategies to current and future climate conditions. In this paper I illustrate the key role that precision agriculture technologies (yield mapping technologies, within season soil and crop sensing), crop modeling and weather can play in dealing with the impact of climate variability on soil ecohydrologic processes. Case studies are presented to illustrate this concept.
Modeling global yield growth of major crops under multiple socioeconomic pathways
NASA Astrophysics Data System (ADS)
Iizumi, T.; Kim, W.; Zhihong, S.; Nishimori, M.
2016-12-01
Global gridded crop models (GGCMs) are a key tool in deriving global food security scenarios under climate change. However, it is difficult for GGCMs to reproduce the reported yield growth patterns—rapid growth, yield stagnation and yield collapse. Here, we propose a set of parameterizations for GGCMs to capture the contributions to yield from technological improvements at the national and multi-decadal scales. These include country annual per capita gross domestic product (GDP)-based parameterizations for the nitrogen application rate and crop tolerance to stresses associated with high temperature, low temperature, water deficit and water excess. Using a GGCM combined with the parameterizations, we present global 140-year (1961-2100) yield growth simulations for maize, soybean, rice and wheat under multiple shared socioeconomic pathways (SSPs) and no climate change. The model reproduces the major characteristics of reported global and country yield growth patterns over the 1961-2013 period. Under the most rapid developmental pathway SSP5, the simulated global yields for 2091-2100, relative to 2001-2010, are the highest (1.21-1.82 times as high, with variations across the crops), followed by SSP1 (1.14-1.56 times as high), SSP2 (1.12-1.49 times as high), SSP4 (1.08-1.38 times as high) and SSP3 (1.08-1.36 times as high). Future country yield growth varies substantially by income level as well as by crop and by SSP. These yield pathways offer a new baseline for addressing the interdisciplinary questions related to global agricultural development, food security and climate change.
Agricultural model intercomparison and improvement project: Overview of model intercomparisons
USDA-ARS?s Scientific Manuscript database
Improvement of crop simulation models to better estimate growth and yield is one of the objectives of the Agricultural Model Intercomparison and Improvement Project (AgMIP). The overall goal of AgMIP is to provide an assessment of crop model through rigorous intercomparisons and evaluate future clim...
Zinc deficiency alters soybean susceptibility to pathogens and pests
USDA-ARS?s Scientific Manuscript database
Inadequate plant nutrition and biotic stress are key threats to current and future crop yields. Zinc deficiency and toxicity in major crop plants have been documented, but there is limited information on how pathogen and pest damage may be affected by differing plant zinc levels. In our study, we us...
Impact of derived global weather data on simulated crop yields
van Wart, Justin; Grassini, Patricio; Cassman, Kenneth G
2013-01-01
Crop simulation models can be used to estimate impact of current and future climates on crop yields and food security, but require long-term historical daily weather data to obtain robust simulations. In many regions where crops are grown, daily weather data are not available. Alternatively, gridded weather databases (GWD) with complete terrestrial coverage are available, typically derived from: (i) global circulation computer models; (ii) interpolated weather station data; or (iii) remotely sensed surface data from satellites. The present study's objective is to evaluate capacity of GWDs to simulate crop yield potential (Yp) or water-limited yield potential (Yw), which can serve as benchmarks to assess impact of climate change scenarios on crop productivity and land use change. Three GWDs (CRU, NCEP/DOE, and NASA POWER data) were evaluated for their ability to simulate Yp and Yw of rice in China, USA maize, and wheat in Germany. Simulations of Yp and Yw based on recorded daily data from well-maintained weather stations were taken as the control weather data (CWD). Agreement between simulations of Yp or Yw based on CWD and those based on GWD was poor with the latter having strong bias and large root mean square errors (RMSEs) that were 26–72% of absolute mean yield across locations and years. In contrast, simulated Yp or Yw using observed daily weather data from stations in the NOAA database combined with solar radiation from the NASA-POWER database were in much better agreement with Yp and Yw simulated with CWD (i.e. little bias and an RMSE of 12–19% of the absolute mean). We conclude that results from studies that rely on GWD to simulate agricultural productivity in current and future climates are highly uncertain. An alternative approach would impose a climate scenario on location-specific observed daily weather databases combined with an appropriate upscaling method. PMID:23801639
Impact of derived global weather data on simulated crop yields.
van Wart, Justin; Grassini, Patricio; Cassman, Kenneth G
2013-12-01
Crop simulation models can be used to estimate impact of current and future climates on crop yields and food security, but require long-term historical daily weather data to obtain robust simulations. In many regions where crops are grown, daily weather data are not available. Alternatively, gridded weather databases (GWD) with complete terrestrial coverage are available, typically derived from: (i) global circulation computer models; (ii) interpolated weather station data; or (iii) remotely sensed surface data from satellites. The present study's objective is to evaluate capacity of GWDs to simulate crop yield potential (Yp) or water-limited yield potential (Yw), which can serve as benchmarks to assess impact of climate change scenarios on crop productivity and land use change. Three GWDs (CRU, NCEP/DOE, and NASA POWER data) were evaluated for their ability to simulate Yp and Yw of rice in China, USA maize, and wheat in Germany. Simulations of Yp and Yw based on recorded daily data from well-maintained weather stations were taken as the control weather data (CWD). Agreement between simulations of Yp or Yw based on CWD and those based on GWD was poor with the latter having strong bias and large root mean square errors (RMSEs) that were 26-72% of absolute mean yield across locations and years. In contrast, simulated Yp or Yw using observed daily weather data from stations in the NOAA database combined with solar radiation from the NASA-POWER database were in much better agreement with Yp and Yw simulated with CWD (i.e. little bias and an RMSE of 12-19% of the absolute mean). We conclude that results from studies that rely on GWD to simulate agricultural productivity in current and future climates are highly uncertain. An alternative approach would impose a climate scenario on location-specific observed daily weather databases combined with an appropriate upscaling method. © 2013 John Wiley & Sons Ltd.
The genetic and molecular basis of crop height based on a rice model.
Liu, Fang; Wang, Pandi; Zhang, Xiaobo; Li, Xiaofei; Yan, Xiaohong; Fu, Donghui; Wu, Gang
2018-01-01
This review presents genetic and molecular basis of crop height using a rice crop model. Height is controlled by multiple genes with potential to be manipulated through breeding strategies to improve productivity. Height is an important factor affecting crop architecture, apical dominance, biomass, resistance to lodging, tolerance to crowding and mechanical harvesting. The impressive increase in wheat and rice yield during the 'green revolution' benefited from a combination of breeding for high-yielding dwarf varieties together with advances in agricultural mechanization, irrigation and agrochemical/fertilizer use. To maximize yield under irrigation and high fertilizer use, semi-dwarfing is optimal, whereas extreme dwarfing leads to decreased yield. Rice plant height is controlled by genes that lie in a complex regulatory network, mainly involved in the biosynthesis or signal transduction of phytohormones such as gibberellins, brassinosteroids and strigolactones. Additional dwarfing genes have been discovered that are involved in other pathways, some of which are uncharacterized. This review discusses our current understanding of the regulation of plant height using rice as a well-characterized model and highlights some of the most promising research that could lead to the development of new, high-yielding varieties. This knowledge underpins future work towards the genetic improvement of plant height in rice and other crops.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephen, Jamie; Sokhansanj, Shahabaddine; Bi, X.T.
2009-11-01
Biorefineries or other biomass-dependent facilities require a predictable, dependable feedstock supplied over many years to justify capital investments. Determining inter-year variability in biomass availability is essential to quantifying the feedstock supply risk. Using a geographic information system (GIS) and historic crop yield data, average production was estimated for 10 sites in the Peace River region of Alberta, Canada. Four high-yielding potential sites were investigated for variability over a 20 year time-frame (1980 2000). The range of availability was large, from double the average in maximum years to nothing in minimum years. Biomass availability is a function of grain yield, themore » biomass to grain ratio, the cropping frequency, and residue retention rate to ensure future crop productivity. Storage strategies must be implemented and alternate feedstock sources identified to supply biomass processing facilities in low-yield years.« less
Climate driven crop planting date in the ACME Land Model (ALM): Impacts on productivity and yield
NASA Astrophysics Data System (ADS)
Drewniak, B.
2017-12-01
Climate is one of the key drivers of crop suitability and productivity in a region. The influence of climate and weather on the growing season determine the amount of time crops spend in each growth phase, which in turn impacts productivity and, more importantly, yields. Planting date can have a strong influence on yields with earlier planting generally resulting in higher yields, a sensitivity that is also present in some crop models. Furthermore, planting date is already changing and may continue, especially if longer growing seasons caused by future climate change drive early (or late) planting decisions. Crop models need an accurate method to predict plant date to allow these models to: 1) capture changes in crop management to adapt to climate change, 2) accurately model the timing of crop phenology, and 3) improve crop simulated influences on carbon, nutrient, energy, and water cycles. Previous studies have used climate as a predictor for planting date. Climate as a plant date predictor has more advantages than fixed plant dates. For example, crop expansion and other changes in land use (e.g., due to changing temperature conditions), can be accommodated without additional model inputs. As such, a new methodology to implement a predictive planting date based on climate inputs is added to the Accelerated Climate Model for Energy (ACME) Land Model (ALM). The model considers two main sources of climate data important for planting: precipitation and temperature. This method expands the current temperature threshold planting trigger and improves the estimated plant date in ALM. Furthermore, the precipitation metric for planting, which synchronizes the crop growing season with the wettest months, allows tropical crops to be introduced to the model. This presentation will demonstrate how the improved model enhances the ability of ALM to capture planting date compared with observations. More importantly, the impact of changing the planting date and introducing tropical crops will be explored. Those impacts include discussions on productivity, yield, and influences on carbon and energy fluxes.
NASA Astrophysics Data System (ADS)
Papadavid, G.; Hadjimitsis, D.
2014-08-01
Remote sensing techniques development have provided the opportunity for optimizing yields in the agricultural procedure and moreover to predict the forthcoming yield. Yield prediction plays a vital role in Agricultural Policy and provides useful data to policy makers. In this context, crop and soil parameters along with NDVI index which are valuable sources of information have been elaborated statistically to test if a) Durum wheat yield can be predicted and b) when is the actual time-window to predict the yield in the district of Paphos, where Durum wheat is the basic cultivation and supports the rural economy of the area. 15 plots cultivated with Durum wheat from the Agricultural Research Institute of Cyprus for research purposes, in the area of interest, have been under observation for three years to derive the necessary data. Statistical and remote sensing techniques were then applied to derive and map a model that can predict yield of Durum wheat in this area. Indeed the semi-empirical model developed for this purpose, with very high correlation coefficient R2=0.886, has shown in practice that can predict yields very good. Students T test has revealed that predicted values and real values of yield have no statistically significant difference. The developed model can and will be further elaborated with more parameters and applied for other crops in the near future.
The grain drain. Ozone effects on historical maize and soybean yields
USDA-ARS?s Scientific Manuscript database
Numerous controlled experiments find that elevated ground-level ozone concentrations ([O3]) damage crops and reduce yield. There have been no estimates of the actual field yield losses in the USA from [O3], even though such estimates would be valuable for projections of future food production and fo...
Basso, Bruno; Giola, Pietro; Dumont, Benjamin; Migliorati, Massimiliano De Antoni; Cammarano, Davide; Pruneddu, Giovanni; Giunta, Francesco
2016-01-01
Future climatic changes may have profound impacts on cropping systems and affect the agronomic and environmental sustainability of current N management practices. The objectives of this work were to i) evaluate the ability of the SALUS crop model to reproduce experimental crop yield and soil nitrate dynamics results under different N fertilizer treatments in a farmer’s field, ii) use the SALUS model to estimate the impacts of different N fertilizer treatments on NO3- leaching under future climate scenarios generated by twenty nine different global circulation models, and iii) identify the management system that best minimizes NO3- leaching and maximizes yield under projected future climate conditions. A field experiment (maize-triticale rotation) was conducted in a nitrate vulnerable zone on the west coast of Sardinia, Italy to evaluate N management strategies that include urea fertilization (NMIN), conventional fertilization with dairy slurry and urea (CONV), and no fertilization (N0). An ensemble of 29 global circulation models (GCM) was used to simulate different climate scenarios for two Representative Circulation Pathways (RCP6.0 and RCP8.5) and evaluate potential nitrate leaching and biomass production in this region over the next 50 years. Data collected from two growing seasons showed that the SALUS model adequately simulated both nitrate leaching and crop yield, with a relative error that ranged between 0.4% and 13%. Nitrate losses under RCP8.5 were lower than under RCP6.0 only for NMIN. Accordingly, levels of plant N uptake, N use efficiency and biomass production were higher under RCP8.5 than RCP6.0. Simulations under both RCP scenarios indicated that the NMIN treatment demonstrated both the highest biomass production and NO3- losses. The newly proposed best management practice (BMP), developed from crop N uptake data, was identified as the optimal N fertilizer management practice since it minimized NO3- leaching and maximized biomass production over the long term. PMID:26784113
Luo, Qunying; O'Leary, Garry; Cleverly, James; Eamus, Derek
2018-06-01
Climate change (CC) presents a challenge for the sustainable development of wheat production systems in Australia. This study aimed to (1) quantify the impact of future CC on wheat grain yield for the period centred on 2030 from the perspectives of wheat phenology, water use and water use efficiency (WUE) and (2) evaluate the effectiveness of changing sowing times and cultivars in response to the expected impacts of future CC on wheat grain yield. The daily outputs of CSIRO Conformal-Cubic Atmospheric Model for baseline and future periods were used by a stochastic weather generator to derive changes in mean climate and in climate variability and to construct local climate scenarios, which were then coupled with a wheat crop model to achieve the two research aims. We considered three locations in New South Wales, Australia, six times of sowing (TOS) and three bread wheat (Triticum aestivum L.) cultivars in this study. Simulation results show that in 2030 (1) for impact analysis, wheat phenological events are expected to occur earlier and crop water use is expected to decrease across all cases (the combination of three locations, six TOS and three cultivars), wheat grain yield would increase or decrease depending on locations and TOS; and WUE would increase in most of the cases; (2) for adaptation considerations, the combination of TOS and cultivars with the highest yield varied across locations. Wheat growers at different locations will require different strategies in managing the negative impacts or taking the opportunities of future CC.
NASA Astrophysics Data System (ADS)
Luo, Qunying; O'Leary, Garry; Cleverly, James; Eamus, Derek
2018-06-01
Climate change (CC) presents a challenge for the sustainable development of wheat production systems in Australia. This study aimed to (1) quantify the impact of future CC on wheat grain yield for the period centred on 2030 from the perspectives of wheat phenology, water use and water use efficiency (WUE) and (2) evaluate the effectiveness of changing sowing times and cultivars in response to the expected impacts of future CC on wheat grain yield. The daily outputs of CSIRO Conformal-Cubic Atmospheric Model for baseline and future periods were used by a stochastic weather generator to derive changes in mean climate and in climate variability and to construct local climate scenarios, which were then coupled with a wheat crop model to achieve the two research aims. We considered three locations in New South Wales, Australia, six times of sowing (TOS) and three bread wheat ( Triticum aestivum L .) cultivars in this study. Simulation results show that in 2030 (1) for impact analysis, wheat phenological events are expected to occur earlier and crop water use is expected to decrease across all cases (the combination of three locations, six TOS and three cultivars), wheat grain yield would increase or decrease depending on locations and TOS; and WUE would increase in most of the cases; (2) for adaptation considerations, the combination of TOS and cultivars with the highest yield varied across locations. Wheat growers at different locations will require different strategies in managing the negative impacts or taking the opportunities of future CC.
NASA Astrophysics Data System (ADS)
Luo, Qunying; O'Leary, Garry; Cleverly, James; Eamus, Derek
2018-02-01
Climate change (CC) presents a challenge for the sustainable development of wheat production systems in Australia. This study aimed to (1) quantify the impact of future CC on wheat grain yield for the period centred on 2030 from the perspectives of wheat phenology, water use and water use efficiency (WUE) and (2) evaluate the effectiveness of changing sowing times and cultivars in response to the expected impacts of future CC on wheat grain yield. The daily outputs of CSIRO Conformal-Cubic Atmospheric Model for baseline and future periods were used by a stochastic weather generator to derive changes in mean climate and in climate variability and to construct local climate scenarios, which were then coupled with a wheat crop model to achieve the two research aims. We considered three locations in New South Wales, Australia, six times of sowing (TOS) and three bread wheat (Triticum aestivum L.) cultivars in this study. Simulation results show that in 2030 (1) for impact analysis, wheat phenological events are expected to occur earlier and crop water use is expected to decrease across all cases (the combination of three locations, six TOS and three cultivars), wheat grain yield would increase or decrease depending on locations and TOS; and WUE would increase in most of the cases; (2) for adaptation considerations, the combination of TOS and cultivars with the highest yield varied across locations. Wheat growers at different locations will require different strategies in managing the negative impacts or taking the opportunities of future CC.
Hu, Shi; Mo, Xing-guo; Lin, Zhong-hui
2015-04-01
Based on the multi-model datasets of three representative concentration pathway (RCP) emission scenarios from IPCC5, the response of yield and accumulative evapotranspiration (ET) of winter wheat to climate change in the future were assessed by VIP model. The results showed that if effects of CO2 enrichment were excluded, temperature rise would lead to a reduction in the length of the growing period for wheat under the three climate change scenarios, and the wheat yield and ET presented a decrease tendency. The positive effect of atmospheric CO2 enrichment could offset most negative effect introduced by temperature rising, indicating that atmospheric CO2 enrichment would be the prime reason of the wheat yield rising in future. In 2050s, wheat yield would increase 14.8% (decrease 2.5% without CO2 fertilization) , and ET would decrease 2.1% under RCP4.5. By adoption of new crop variety with enhanced requirement on accumulative temperature, the wheat yield would increase more significantly with CO2 fertilization, but the water consumption would also increase. Therefore, cultivar breeding new irrigation techniques and agronomical management should be explored under the challenges of climate change in the future.
Assessment of impact of climate change and adaptation strategies on maize production in Uganda
NASA Astrophysics Data System (ADS)
Kikoyo, Duncan A.; Nobert, Joel
2016-06-01
Globally, various climatic studies have estimated a reduction of crop yields due to changes in surface temperature and precipitation especially for the developing countries which is heavily dependent on agriculture and lacks resources to counter the negative effects of climate change. Uganda's economy and the wellbeing of its populace depend on rain-fed agriculture which is susceptible to climate change. This study quantified the impacts of climate change and variability in Uganda and how coping strategies can enhance crop production against climate change and/or variability. The study used statistical methods to establish various climate change and variability indicators across the country, and uses the FAO AquaCrop model to simulate yields under possible future climate scenarios with and without adaptation strategies. Maize, the most widely grown crop was used for the study. Meteorological, soil and crop data were collected for various districts representing the maize growing ecological zones in the country. Based on this study, it was found that temperatures have increased by up to 1 °C across much of Uganda since the 1970s, with rates of warming around 0.3 °C per decade across the country. High altitude, low rainfall regions experience the highest level of warming, with over 0.5 °C/decade recorded in Kasese. Rainfall is variable and does not follow a specific significant increasing or decreasing trend. For both future climate scenarios, Maize yields will reduce in excess of 4.7% for the fast warming-low rainfall climates but increase on average by 3.5% for slow warming-high rainfall regions, by 2050. Improved soil fertility can improve yields by over 50% while mulching and use of surface water management practices improve yields by single digit percentages. The use of fertilizer application needs to go hand in hand with other water management strategies since more yields as a result of the improved soil fertility leads to increased water stress, especially for the dry climates.
Implications of Climate Mitigation for Future Agricultural Production
NASA Technical Reports Server (NTRS)
Mueller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Deryng, Delphine; Folberth, Christian; Pugh, Thomas A. M.; Schmid, Erwin
2015-01-01
Climate change is projected to negatively impact biophysical agricultural productivity in much of the world. Actions taken to reduce greenhouse gas emissions and mitigate future climate changes, are thus of central importance for agricultural production. Climate impacts are, however, not unidirectional; some crops in some regions (primarily higher latitudes) are projected to benefit, particularly if increased atmospheric carbon dioxide is assumed to strongly increase crop productivity at large spatial and temporal scales. Climate mitigation measures that are implemented by reducing atmospheric carbon dioxide concentrations lead to reductions both in the strength of climate change and in the benefits of carbon dioxide fertilization. Consequently, analysis of the effects of climate mitigation on agricultural productivity must address not only regions for which mitigation is likely to reduce or even reverse climate damages. There are also regions that are likely to see increased crop yields due to climate change, which may lose these added potentials under mitigation action. Comparing data from the most comprehensive archive of crop yield projections publicly available, we find that climate mitigation leads to overall benefits from avoided damages at the global scale and especially in many regions that are already at risk of food insecurity today. Ignoring controversial carbon dioxide fertilization effects on crop productivity, we find that for the median projection aggressive mitigation could eliminate approximately 81% of the negative impacts of climate change on biophysical agricultural productivity globally by the end of the century. In this case, the benefits of mitigation typically extend well into temperate regions, but vary by crop and underlying climate model projections. Should large benefits to crop yields from carbon dioxide fertilization be realized, the effects of mitigation become much more mixed, though still positive globally and beneficial in many food insecure countries.
Effects of geoengineering on crop yields
NASA Astrophysics Data System (ADS)
Pongratz, J.; Lobell, D. B.; Cao, L.; Caldeira, K.
2011-12-01
The potential of "solar radiation management" (SRM) to reduce future climate change and associated risks has been receiving significant attention in scientific and policy circles. SRM schemes aim to reduce global warming despite increasing atmospheric CO2 concentrations by diminishing the amount of solar insolation absorbed by the Earth, for example, by injecting scattering aerosols into the atmosphere. Climate models predict that SRM could fully compensate warming at the global mean in a high-CO2 world. While reduction of global warming may offset a part of the predicted negative effects of future climate change on crop yields, SRM schemes are expected to alter regional climate and to have substantial effects on climate variables other than temperature, such as precipitation. It has therefore been warned that, overall, SRM may pose a risk to food security. Assessments of benefits and risks of geoengineering are imperative, yet such assessments are only beginning to emerge; in particular, effects on global food security have not previously been assessed. Here, for the first time, we combine climate model simulations with models of crop yield responses to climate to assess large-scale changes in yields and food production under SRM. In most crop-growing regions, we find that yield losses caused by climate changes are substantially reduced under SRM as compared with a non-geoengineered doubling of atmospheric CO2. Substantial yield losses with SRM are only found for rice in high latitudes, where the limits of low temperatures are no longer alleviated. At the same time, the beneficial effect of CO2-fertilization on plant productivity remains active. Overall therefore, SRM in our models causes global crop yields to increase. We estimate the direct effects of climate and CO2 changes on crop production, and do not quantify effects of market dynamics and management changes. We note, however, that an SRM deployment would be unlikely to maintain the economic status quo, as market shares of agricultural output may change with the different spatial pattern of climate change. More importantly, geoengineering by SRM does not address a range of other detrimental consequences of climate change, such as ocean acidification, which could also affect food security via effects on marine food webs. Finally, SRM poses substantial anticipated and unanticipated risks by interfering with complex, not fully understood systems. Therefore, despite potential positive effects of SRM on crop yields, the most certain way to reduce climate risks to global food security is to reduce emissions of greenhouse gases.
USDA-ARS?s Scientific Manuscript database
Permanent cover crops are commonly used in vineyard floor management because of their beneficial effects to soil and vine health, but studies evaluating their competitive effects on vines have been conducted primarily in non-irrigated vineyards. Future air quality regulations could mandate the use o...
Shaping an Optimal Soil by Root-Soil Interaction.
Jin, Kemo; White, Philip J; Whalley, William R; Shen, Jianbo; Shi, Lei
2017-10-01
Crop production depends on the availability of water and mineral nutrients, and increased yields might be facilitated by a greater focus on roots-soil interactions. Soil properties affecting plant growth include drought, compaction, nutrient deficiency, mineral toxicity, salinity, and submergence. Plant roots respond to the soil environment both spatially and temporally by avoiding stressful soil environments and proliferating in more favorable environments. We observe that crops can be bred for specific root architectural and biochemical traits that facilitate soil exploration and resource acquisition, enabling greater crop yields. These root traits affect soil physical and chemical properties and might be utilized to improve the soil for subsequent crops. We argue that optimizing root-soil interactions is a prerequisite for future food security. Copyright © 2017 Elsevier Ltd. All rights reserved.
The potential of cover crops for improving soil function
NASA Astrophysics Data System (ADS)
Stoate, Chris; Crotty, Felicity
2017-04-01
Cover crops can be grown over the autumn and winter ensuring green cover throughout the year. They have been described as improving soil structure, reducing soil erosion and potentially even a form of grass weed control. These crops retain nutrients within the plant, potentially making them available for future crops, as well as increasing soil organic matter. Over the last three years, we have investigated how different cover crop regimes affect soil quality. Three separate experiments over each autumn/winter period have investigated how different cover crops affect soil biology, physics and chemistry, with each experiment building on the previous one. There have been significant effects of cover crops on soil structure, as well as significantly lower weed biomass and increased yields in the following crop - in comparison to bare stubble. For example, the effect of drilling the cover crops on soil structure in comparison to a bare stubble control that had not been driven on by machinery was quantified, and over the winter period the soil structure of the cover crop treatments changed, with compaction reduced in the cover crop treatments, whilst the bare stubble control remained unchanged. Weeds were found in significantly lower biomass in the cover crop mixes in comparison to the bare stubble control, and significantly lower weed biomass continued to be found in the following spring oat crop where the cover crops had been, indicating a weed suppressive effect that has a continued legacy in the following crop. The following spring oats have shown similar results in the last two years, with higher yields in the previous cover crop areas compared to the bare stubble controls. Overall, these results are indicating that cover crops have the potential to provide improvements to soil quality, reduce weeds and improve yields. We discuss the economic implications.
Uncertainty in simulating wheat yields under climate change
NASA Astrophysics Data System (ADS)
Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P. J.; Rötter, R. P.; Cammarano, D.; Brisson, N.; Basso, B.; Martre, P.; Aggarwal, P. K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, A. J.; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, R.; Heng, L.; Hooker, J.; Hunt, L. A.; Ingwersen, J.; Izaurralde, R. C.; Kersebaum, K. C.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O'Leary, G.; Olesen, J. E.; Osborne, T. M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M. A.; Shcherbak, I.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J. W.; Williams, J. R.; Wolf, J.
2013-09-01
Projections of climate change impacts on crop yields are inherently uncertain. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models are difficult. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development andpolicymaking.
A, Ramachandran; Praveen, Dhanya; R, Jaganathan; D, RajaLakshmi; K, Palanivelu
2017-01-01
India's dependence on a climate sensitive sector like agriculture makes it highly vulnerable to its impacts. However, agriculture is highly heterogeneous across the country owing to regional disparities in exposure, sensitivity, and adaptive capacity. It is essential to know and quantify the possible impacts of changes in climate on crop yield for successful agricultural management and planning at a local scale. The Hadley Centre Global Environment Model version 2-Earth System (HadGEM-ES) was employed to generate regional climate projections for the study area using the Regional Climate Model (RCM) RegCM4.4. The dynamics in potential impacts at the sub-district level were evaluated using the Representative Concentration Pathway 4.5 (RCPs). The aim of this study was to simulate the crop yield under a plausible change in climate for the coastal areas of South India through the end of this century. The crop simulation model, the Decision Support System for Agrotechnology Transfer (DSSAT) 4.5, was used to understand the plausible impacts on the major crop yields of rice, groundnuts, and sugarcane under the RCP 4.5 trajectory. The findings reveal that under the RCP 4.5 scenario there will be decreases in the major C3 and C4 crop yields in the study area. This would affect not only the local food security, but the livelihood security as well. This necessitates timely planning to achieve sustainable crop productivity and livelihood security. On the other hand, this situation warrants appropriate adaptations and policy intervention at the sub-district level for achieving sustainable crop productivity in the future. PMID:28753605
A, Ramachandran; Praveen, Dhanya; R, Jaganathan; D, RajaLakshmi; K, Palanivelu
2017-01-01
India's dependence on a climate sensitive sector like agriculture makes it highly vulnerable to its impacts. However, agriculture is highly heterogeneous across the country owing to regional disparities in exposure, sensitivity, and adaptive capacity. It is essential to know and quantify the possible impacts of changes in climate on crop yield for successful agricultural management and planning at a local scale. The Hadley Centre Global Environment Model version 2-Earth System (HadGEM-ES) was employed to generate regional climate projections for the study area using the Regional Climate Model (RCM) RegCM4.4. The dynamics in potential impacts at the sub-district level were evaluated using the Representative Concentration Pathway 4.5 (RCPs). The aim of this study was to simulate the crop yield under a plausible change in climate for the coastal areas of South India through the end of this century. The crop simulation model, the Decision Support System for Agrotechnology Transfer (DSSAT) 4.5, was used to understand the plausible impacts on the major crop yields of rice, groundnuts, and sugarcane under the RCP 4.5 trajectory. The findings reveal that under the RCP 4.5 scenario there will be decreases in the major C3 and C4 crop yields in the study area. This would affect not only the local food security, but the livelihood security as well. This necessitates timely planning to achieve sustainable crop productivity and livelihood security. On the other hand, this situation warrants appropriate adaptations and policy intervention at the sub-district level for achieving sustainable crop productivity in the future.
Probabilistic Description of the Hydrologic Risk in Agriculture
NASA Astrophysics Data System (ADS)
Vico, G.; Porporato, A. M.
2011-12-01
Supplemental irrigation represents one of the main strategies to mitigate the effects of climatic variability on agroecosystems productivity and profitability, at the expenses of increasing water requirements for irrigation purposes. Optimizing water allocation for crop yield preservation and sustainable development needs to account for hydro-climatic variability, which is by far the main source of uncertainty affecting crop yields and irrigation water requirements. In this contribution, a widely applicable probabilistic framework is proposed to quantitatively define the hydrologic risk of yield reduction for both rainfed and irrigated agriculture. The occurrence of rainfall events and irrigation applications are linked probabilistically to crop development during the growing season. Based on these linkages, long-term and real-time yield reduction risk indices are defined as a function of climate, soil and crop parameters, as well as irrigation strategy. The former risk index is suitable for long-term irrigation strategy assessment and investment planning, while the latter risk index provides a rigorous probabilistic quantification of the emergence of drought conditions during a single growing season. This probabilistic framework allows also assessing the impact of limited water availability on crop yield, thus guiding the optimal allocation of water resources for human and environmental needs. Our approach employs relatively few parameters and is thus easily and broadly applicable to different crops and sites, under current and future climate scenarios, thus facilitating the assessment of the impact of increasingly frequent water shortages on agricultural productivity, profitability, and sustainability.
Engineering photorespiration: current state and future possibilities.
Peterhansel, C; Krause, K; Braun, H-P; Espie, G S; Fernie, A R; Hanson, D T; Keech, O; Maurino, V G; Mielewczik, M; Sage, R F
2013-07-01
Reduction of flux through photorespiration has been viewed as a major way to improve crop carbon fixation and yield since the energy-consuming reactions associated with this pathway were discovered. This view has been supported by the biomasses increases observed in model species that expressed artificial bypass reactions to photorespiration. Here, we present an overview about the major current attempts to reduce photorespiratory losses in crop species and provide suggestions for future research priorities. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
NASA Astrophysics Data System (ADS)
Pan, S.; Yang, J.; Zhang, J.; Xu, R.; Dangal, S. R. S.; Zhang, B.; Tian, H.
2016-12-01
Africa is one of the most vulnerable regions in the world to climate change and climate variability. Much concern has been raised about the impacts of climate and other environmental factors on water resource and food security through the climate-water-food nexus. Understanding the responses of crop yield and water use efficiency to environmental changes is particularly important because Africa is well known for widespread poverty, slow economic growth and agricultural systems particularly sensitive to frequent and persistent droughts. However, the lack of integrated understanding has limited our ability to quantify and predict the potential of Africa's agricultural sustainability and freshwater supply, and to better manage the system for meeting an increasing food demand in a way that is socially and environmentally or ecologically sustainable. By using the Dynamic Land Ecosystem Model (DLEM-AG2) driven by spatially-explicit information on land use, climate and other environmental changes, we have assessed the spatial and temporal patterns of crop yield, evapotranspiration (ET) and water use efficiency across entire Africa in the past 35 years (1980-2015) and the rest of the 21st century (2016-2099). Our preliminary results indicate that African crop yield in the past three decades shows an increasing trend primarily due to cropland expansion (about 50%), elevated atmospheric CO2 concentration, and nitrogen deposition. However, crop yield shows substantially spatial and temporal variation due to inter-annual and inter-decadal climate variability and spatial heterogeneity of environmental drivers. Climate extremes especially droughts and heat wave have largely reduced crop yield in the most vulnerable regions. Our results indicate that N fertilizer could be a major driver to improve food security in Africa. Future climate warming could reduce crop yield and shift cropland distribution. Our study further suggests that improving water use efficiency through land management practices including the increased uses of fertilizers and irrigation will be the key for reducing the loss of crop yield in a warming climate and extreme weather.
Comparison of Sugarcane and Energy Cane in Growth and Biomass Production
USDA-ARS?s Scientific Manuscript database
Sugarcane is one of major crops on sand soils in south Florida, but yields and profits are low compared to sugarcane grown on organic soils in the region. Energy cane may be an alternative crop on sand soils in the future to improve profits because of the growing interest of high biomass for energy....
Implication of Agricultural Land Use Change on Regional Climate Projection
NASA Astrophysics Data System (ADS)
Wang, G.; Ahmed, K. F.; You, L.
2015-12-01
Agricultural land use plays an important role in land-atmosphere interaction. Agricultural activity is one of the most important processes driving human-induced land use land cover change (LULCC) in a region. In addition to future socioeconomic changes, climate-induced changes in crop yield represent another important factor shaping agricultural land use. In feedback, the resulting LULCC influences the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. Therefore, assessment of climate change impact on future agricultural land use and its feedback is of great importance in climate change study. In this study, to evaluate the feedback of projected land use changes to the regional climate in West Africa, we employed an asynchronous coupling between a regional climate model (RegCM) and a prototype land use projection model (LandPro). The LandPro model, which was developed to project the future change in agricultural land use and the resulting shift in natural vegetation in West Africa, is a spatially explicit model that can account for both climate and socioeconomic changes in projecting future land use changes. In the asynchronously coupled modeling framework, LandPro was run for every five years during the period of 2005-2050 accounting for climate-induced change in crop yield and socioeconomic changes to project the land use pattern by the mid-21st century. Climate data at 0.5˚ was derived from RegCM to drive the crop model DSSAT for each of the five-year periods to simulate crop yields, which was then provided as input data to LandPro. Subsequently, the land use land cover map required to run RegCM was updated every five years using the outputs from the LandPro simulations. Results from the coupled model simulations improve the understanding of climate change impact on future land use and the resulting feedback to regional climate.
Modelling climate change impact: A case of bambara groundnut (Vigna subterranea)
NASA Astrophysics Data System (ADS)
Mabhaudhi, Tafadzwanashe; Chibarabada, Tendai Polite; Chimonyo, Vimbayi Grace Petrova; Modi, Albert Thembinkosi
2018-06-01
Climate change projections for southern Africa indicate low and erratic rainfall as well as increasing frequency and intensity of rainfall extremes such as drought. The 2015/16 drought devastated large parts of southern Africa and highlighted the need for drought tolerant crops. Bambara groundnut is an African indigenous crop, commonly cultivated in southern Africa, with a higher potential for drought tolerance compared to other staple legumes. AquaCrop model was used to evaluate the impacts of climate change on yield, water use (ET) and water productivity (WP) of bambara groundnut using climate change data representative of the past (1961-1991), present (1995-2025), mid-century (2030-2060) and late century (2065-2095) obtained from five global circulation models (GCMs). The carbon dioxide (CO2) file selected was for the A2 scenario. The model was run at a sub-catchment level. Model simulations showed that yield and WP of bambara groundnut will increase over time. The mean values of yield at the different time scales across the GCMs showed that yield of bambara groundnut increased by ∼9% from the past to the present, will increase by ∼15% from the present to mid-century and will increase by 6% from mid-to late-century. The simulated results of ET showed seasonal ranges of 703-796 mm. Of this, 45% was lost to soil evaporation, suggesting the need for developing bambara groundnut varieties with faster establishment and high canopy cover. Model simulations showed an increase in WP by ∼13% from the past to present and ∼15% from the present to mid-century and ∼11% from mid-century to late century. While the results of these simulations are preliminary, they confirm the view that bambara groundnut is a potential future crop suitable for cultivation in marginal agricultural production areas. Future research should focus on crop improvement to improve current yield of bambara groundnut.
Is genetically modified crop the answer for the next green revolution?
Basu, Saikat Kumar; Dutta, Madhuleema; Goyal, Aakash; Bhowmik, Pankaj Kumar; Kumar, Jitendra; Nandy, Sanjib; Scagliusi, Sandra Mansun; Prasad, Rajib
2010-01-01
Post-green revolution advances made in biotechnology paved the way of cultivating the high-yielding, stress and disease resistant genetically modified (GM) varieties of wheat, rice, maize cotton and several other crops. The recent rapid commercialization of the genetically modified crops in Asia, Americas and Australia indicates the potentiality of this new technology. GM crops give higher yields and are rich in nutritional values containing vitamins and minerals and can thus can help to alleviate hunger and malnutrition of the growing population in the under developed and developing countries. It could also be possible to develop more biotic and abiotic stress resistant genotypes in these crops where it was difficult to develop due to the unavailability of genes of resistance in the crossing germplasms. However, further research and investigations are needed to popularize the cultivation of these crops in different parts of the world. This review provides an insight of the impact of GM crops on contemporary agriculture across the past few decades, traces its' history across time, highlights new achievements and breakthroughs and discusses the future implication of this powerful technology in the coming few decades.
Prediction of seasonal climate-induced variations in global food production
NASA Astrophysics Data System (ADS)
Iizumi, Toshichika; Sakuma, Hirofumi; Yokozawa, Masayuki; Luo, Jing-Jia; Challinor, Andrew J.; Brown, Molly E.; Sakurai, Gen; Yamagata, Toshio
2013-10-01
Consumers, including the poor in many countries, are increasingly dependent on food imports and are thus exposed to variations in yields, production and export prices in the major food-producing regions of the world. National governments and commercial entities are therefore paying increased attention to the cropping forecasts of important food-exporting countries as well as to their own domestic food production. Given the increased volatility of food markets and the rising incidence of climatic extremes affecting food production, food price spikes may increase in prevalence in future years. Here we present a global assessment of the reliability of crop failure hindcasts for major crops at two lead times derived by linking ensemble seasonal climatic forecasts with statistical crop models. We found that moderate-to-marked yield loss over a substantial percentage (26-33%) of the harvested area of these crops is reliably predictable if climatic forecasts are near perfect. However, only rice and wheat production are reliably predictable at three months before the harvest using within-season hindcasts. The reliabilities of estimates varied substantially by crop--rice and wheat yields were the most predictable, followed by soybean and maize. The reasons for variation in the reliability of the estimates included the differences in crop sensitivity to the climate and the technology used by the crop-producing regions. Our findings reveal that the use of seasonal climatic forecasts to predict crop failures will be useful for monitoring global food production and will encourage the adaptation of food systems toclimatic extremes.
Role of modern chemistry in sustainable arable crop protection.
Smith, Keith; Evans, David A; El-Hiti, Gamal A
2008-02-12
Organic chemistry has been, and for the foreseeable future will remain, vitally important for crop protection. Control of fungal pathogens, insect pests and weeds is crucial to enhanced food provision. As world population continues to grow, it is timely to assess the current situation, anticipate future challenges and consider how new chemistry may help meet those challenges. In future, agriculture will increasingly be expected to provide not only food and feed, but also crops for conversion into renewable fuels and chemical feedstocks. This will further increase the demand for higher crop yields per unit area, requiring chemicals used in crop production to be even more sophisticated. In order to contribute to programmes of integrated crop management, there is a requirement for chemicals to display high specificity, demonstrate benign environmental and toxicological profiles, and be biodegradable. It will also be necessary to improve production of those chemicals, because waste generated by the production process mitigates the overall benefit. Three aspects are considered in this review: advances in the discovery process for new molecules for sustainable crop protection, including tests for environmental and toxicological properties as well as biological activity; advances in synthetic chemistry that may offer efficient and environmentally benign manufacturing processes for modern crop protection chemicals; and issues related to energy use and production through agriculture.
Developing a global crop model for maize, wheat, and soybean production
NASA Astrophysics Data System (ADS)
Deryng, D.; Ramankutty, N.; Sacks, W. J.
2008-12-01
Recently, the world food supply has faced a crisis due to increasing food prices driven by rising food demand, increasing fuel prices, poor harvests due to climate factors, and the use of crops such as maize and soybean to produce biofuel. In order to assess the future of global food availability, there is a need for understanding the factors underlying food production. Farmer management practices along with climatic conditions are the main elements directly influencing crop yield. As a consequence, estimations of future world food production require the use of a global crop model that simulates reasonably the effect of both climate and management practices on yield. Only a few global crop models have been developed to date, and currently none of them represent management factors adequately, principally due to the lack of spatially explicit datasets at the global scale. In this study, we present a global crop model designed for maize, wheat, and soybean production that incorporates planting and harvest decisions, along with irrigation options based on newly available data. The crop model is built on a simple water-balance algorithm based on the Penman- Monteith equation combined with a light use efficiency approach that calculates biomass production under non-nutrient-limiting conditions. We used a world crop calendar dataset to develop statistical relationships between climate variables and planting dates for different regions of the world. Development stages are defined based on total growing degree days required to reach the beginning of each phase. Irrigation options are considered in regions where water stress occurs and irrigation infrastructures exist. We use a global dataset on irrigated areas for each crop type. The quantity of water applied is then calculated in order to avoid water stress but with an upper threshold derived from total irrigation withdrawal quantity estimated by the global water use model WaterGAP 2. Our analysis will present the model sensitivity to different scenarios of management practices, e.g. planting date and water supply, under non-nutrient limited conditions. With this study, we hope to clarify the importance of planting date and irrigation versus climate for crop yield.
New Estimates of Land Use Intensity of Potential Bioethanol Production in the U.S.A.
NASA Astrophysics Data System (ADS)
Kheshgi, H. S.; Song, Y.; Torkamani, S.; Jain, A. K.
2016-12-01
We estimate potential bioethanol land use intensity (the inverse of potential bioethanol yield per hectare) across the United States by modeling crop yields and conversion to bioethanol (via a fermentation pathway), based on crop field studies and conversion technology analyses. We apply the process-based land surface model, the Integrated Science Assessment model (ISAM), to estimate the potential yield of four crops - corn, Miscanthus, and two variants of switchgrass (Cave-in-Rock and Alamo) - across the U.S.A. landscape for the 14-year period from 1999 through 2012, for the case with fertilizer application but without irrigation. We estimate bioethanol yield based on recent experience for corn bioethanol production from corn kernel, and current cellulosic bioethanol process design specifications under the assumption of the maximum practical harvest fraction for the energy grasses (Miscanthus and switchgrasses) and a moderate (30%) harvest fraction of corn stover. We find that each of four crops included has regions where that crop is estimated to have the lowest land use intensity (highest potential bioethanol yield per hectare). We find that minimizing potential land use intensity by including both corn and the energy grasses only improves incrementally to that of corn (using both harvested kernel and stover for bioethanol). Bioethanol land use intensity is one fundamental factor influencing the desirability of biofuels, but is not the only one; others factors include economics, competition with food production and land use, water and climate, nitrogen runoff, life-cycle emissions, and the pace of crop and technology improvement into the future.
Closing Yield Gaps: How Sustainable Can We Be?
Pradhan, Prajal; Fischer, Günther; van Velthuizen, Harrij; Reusser, Dominik E; Kropp, Juergen P
2015-01-01
Global food production needs to be increased by 60-110% between 2005 and 2050 to meet growing food and feed demand. Intensification and/or expansion of agriculture are the two main options available to meet the growing crop demands. Land conversion to expand cultivated land increases GHG emissions and impacts biodiversity and ecosystem services. Closing yield gaps to attain potential yields may be a viable option to increase the global crop production. Traditional methods of agricultural intensification often have negative externalities. Therefore, there is a need to explore location-specific methods of sustainable agricultural intensification. We identified regions where the achievement of potential crop calorie production on currently cultivated land will meet the present and future food demand based on scenario analyses considering population growth and changes in dietary habits. By closing yield gaps in the current irrigated and rain-fed cultivated land, about 24% and 80% more crop calories can respectively be produced compared to 2000. Most countries will reach food self-sufficiency or improve their current food self-sufficiency levels if potential crop production levels are achieved. As a novel approach, we defined specific input and agricultural management strategies required to achieve the potential production by overcoming biophysical and socioeconomic constraints causing yield gaps. The management strategies include: fertilizers, pesticides, advanced soil management, land improvement, management strategies coping with weather induced yield variability, and improving market accessibility. Finally, we estimated the required fertilizers (N, P2O5, and K2O) to attain the potential yields. Globally, N-fertilizer application needs to increase by 45-73%, P2O5-fertilizer by 22-46%, and K2O-fertilizer by 2-3 times compared to the year 2010 to attain potential crop production. The sustainability of such agricultural intensification largely depends on the way management strategies for closing yield gaps are chosen and implemented.
Closing Yield Gaps: How Sustainable Can We Be?
Pradhan, Prajal; Fischer, Günther; van Velthuizen, Harrij; Reusser, Dominik E.; Kropp, Juergen P.
2015-01-01
Global food production needs to be increased by 60–110% between 2005 and 2050 to meet growing food and feed demand. Intensification and/or expansion of agriculture are the two main options available to meet the growing crop demands. Land conversion to expand cultivated land increases GHG emissions and impacts biodiversity and ecosystem services. Closing yield gaps to attain potential yields may be a viable option to increase the global crop production. Traditional methods of agricultural intensification often have negative externalities. Therefore, there is a need to explore location-specific methods of sustainable agricultural intensification. We identified regions where the achievement of potential crop calorie production on currently cultivated land will meet the present and future food demand based on scenario analyses considering population growth and changes in dietary habits. By closing yield gaps in the current irrigated and rain-fed cultivated land, about 24% and 80% more crop calories can respectively be produced compared to 2000. Most countries will reach food self-sufficiency or improve their current food self-sufficiency levels if potential crop production levels are achieved. As a novel approach, we defined specific input and agricultural management strategies required to achieve the potential production by overcoming biophysical and socioeconomic constraints causing yield gaps. The management strategies include: fertilizers, pesticides, advanced soil management, land improvement, management strategies coping with weather induced yield variability, and improving market accessibility. Finally, we estimated the required fertilizers (N, P2O5, and K2O) to attain the potential yields. Globally, N-fertilizer application needs to increase by 45–73%, P2O5-fertilizer by 22–46%, and K2O-fertilizer by 2–3 times compared to the year 2010 to attain potential crop production. The sustainability of such agricultural intensification largely depends on the way management strategies for closing yield gaps are chosen and implemented. PMID:26083456
Feeding nine billion: the challenge to sustainable crop production.
Gregory, Peter J; George, Timothy S
2011-11-01
In the recent past there was a widespread working assumption in many countries that problems of food production had been solved, and that food security was largely a matter of distribution and access to be achieved principally by open markets. The events of 2008 challenged these assumptions, and made public a much wider debate about the costs of current food production practices to the environment and whether these could be sustained. As in the past 50 years, it is anticipated that future increases in crop production will be achieved largely by increasing yields per unit area rather than by increasing the area of cropped land. However, as yields have increased, so the ratio of photosynthetic energy captured to energy expended in crop production has decreased. This poses a considerable challenge: how to increase yield while simultaneously reducing energy consumption (allied to greenhouse gas emissions) and utilizing resources such as water and phosphate more efficiently. Given the timeframe in which the increased production has to be realized, most of the increase will need to come from crop genotypes that are being bred now, together with known agronomic and management practices that are currently under-developed.
Uncertainty in Simulating Wheat Yields Under Climate Change
NASA Technical Reports Server (NTRS)
Asseng, S.; Ewert, F.; Rosenzweig, Cynthia; Jones, J. W.; Hatfield, J. W.; Ruane, A. C.; Boote, K. J.; Thornburn, P. J.; Rotter, R. P.; Cammarano, D.;
2013-01-01
Projections of climate change impacts on crop yields are inherently uncertain1. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate2. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models1,3 are difficult4. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking.
NASA Astrophysics Data System (ADS)
Du, J.; Kimball, J. S.; Jones, L. A.; Watts, J. D.
2016-12-01
Climate is one of the key drivers of crop suitability and productivity in a region. The influence of climate and weather on the growing season determine the amount of time crops spend in each growth phase, which in turn impacts productivity and, more importantly, yields. Planting date can have a strong influence on yields with earlier planting generally resulting in higher yields, a sensitivity that is also present in some crop models. Furthermore, planting date is already changing and may continue, especially if longer growing seasons caused by future climate change drive early (or late) planting decisions. Crop models need an accurate method to predict plant date to allow these models to: 1) capture changes in crop management to adapt to climate change, 2) accurately model the timing of crop phenology, and 3) improve crop simulated influences on carbon, nutrient, energy, and water cycles. Previous studies have used climate as a predictor for planting date. Climate as a plant date predictor has more advantages than fixed plant dates. For example, crop expansion and other changes in land use (e.g., due to changing temperature conditions), can be accommodated without additional model inputs. As such, a new methodology to implement a predictive planting date based on climate inputs is added to the Accelerated Climate Model for Energy (ACME) Land Model (ALM). The model considers two main sources of climate data important for planting: precipitation and temperature. This method expands the current temperature threshold planting trigger and improves the estimated plant date in ALM. Furthermore, the precipitation metric for planting, which synchronizes the crop growing season with the wettest months, allows tropical crops to be introduced to the model. This presentation will demonstrate how the improved model enhances the ability of ALM to capture planting date compared with observations. More importantly, the impact of changing the planting date and introducing tropical crops will be explored. Those impacts include discussions on productivity, yield, and influences on carbon and energy fluxes.
Global Crop Yields, Climatic Trends and Technology Enhancement
NASA Astrophysics Data System (ADS)
Najafi, E.; Devineni, N.; Khanbilvardi, R.; Kogan, F.
2016-12-01
During the last decades the global agricultural production has soared up and technology enhancement is still making positive contribution to yield growth. However, continuing population, water crisis, deforestation and climate change threaten the global food security. Attempts to predict food availability in the future around the world can be partly understood from the impact of changes to date. A new multilevel model for yield prediction at the country scale using climate covariates and technology trend is presented in this paper. The structural relationships between average yield and climate attributes as well as trends are estimated simultaneously. All countries are modeled in a single multilevel model with partial pooling and/or clustering to automatically group and reduce estimation uncertainties. El Niño Southern Oscillation (ENSO), Palmer Drought Severity Index (PDSI), Geopotential height (GPH), historical CO2 level and time-trend as a relatively reliable approximation of technology measurement are used as predictors to estimate annual agricultural crop yields for each country from 1961 to 2007. Results show that these indicators can explain the variability in historical crop yields for most of the countries and the model performs well under out-of-sample verifications.
JULES-crop: a parametrisation of crops in the Joint UK Land Environment Simulator
NASA Astrophysics Data System (ADS)
Osborne, T.; Gornall, J.; Hooker, J.; Williams, K.; Wiltshire, A.; Betts, R.; Wheeler, T.
2014-10-01
Studies of climate change impacts on the terrestrial biosphere have been completed without recognition of the integrated nature of the biosphere. Improved assessment of the impacts of climate change on food and water security requires the development and use of models not only representing each component but also their interactions. To meet this requirement the Joint UK Land Environment Simulator (JULES) land surface model has been modified to include a generic parametrisation of annual crops. The new model, JULES-crop, is described and evaluation at global and site levels for the four globally important crops; wheat, soy bean, maize and rice is presented. JULES-crop demonstrates skill in simulating the inter-annual variations of yield for maize and soy bean at the global level, and for wheat for major spring wheat producing countries. The impact of the new parametrisation, compared to the standard configuration, on the simulation of surface heat fluxes is largely an alteration of the partitioning between latent and sensible heat fluxes during the later part of the growing season. Further evaluation at the site level shows the model captures the seasonality of leaf area index and canopy height better than in standard JULES. However, this does not lead to an improvement in the simulation of sensible and latent heat fluxes. The performance of JULES-crop from both an earth system and crop yield model perspective is encouraging however, more effort is needed to develop the parameterisation of the model for specific applications. Key future model developments identified include the specification of the yield gap to enable better representation of the spatial variability in yield.
Kirkegaard, J A; Hunt, J R
2010-10-01
Improvements in water productivity and yield arise from interactions between varieties (G) and their management (M). Most G×M interactions considered by breeders and physiologists focus on in-crop management (e.g. sowing time, plant density, N management). However, opportunities exist to capture more water and use it more effectively that involve judicious management of prior crops and fallows (e.g. crop sequence, weed control, residue management). The dry-land wheat production system of southern Australia, augmented by simulation studies, is used to demonstrate the relative impacts and interactions of a range of pre-crop and in-crop management decisions on water productivity. A specific case study reveals how a novel genetic trait, long coleoptiles that enable deeper sowing, can interact with different management options to increase the water-limited yield of wheat from 1.6 t ha(-1) to 4.5 t ha(-1), reflecting the experience of leading growers. Understanding such interactions will be necessary to capture benefits from new varieties within the farming systems of the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavas, Daniel R.; Izaurralde, Roberto C.; Thomson, Allison M.
Increasing atmospheric greenhouse gas concentrations are expected to induce significant climate change over the next century and beyond, but the impacts on society remain highly uncertain. This work examines potential climate change impacts on the productivity of five major crops in northeastern China: canola, corn, potato, rice, and winter wheat. In addition to determining domain-wide trends, the objective is to identify vulnerable and emergent regions under future climate conditions, defined as having a greater than 10% decrease and increase in productivity, respectively. Data from the ICTP RegCM3 regional climate model for baseline (1961-1990) and future (2071-2100) periods under A2 scenariomore » conditions are used as input in the EPIC agro-ecosystem simulation model in the domain [30ºN, 108ºE] to [42ºN, 123ºE]. Simulations are performed with and without the enhanced CO2 fertilization effect. Results indicate that aggregate potential productivity (i.e. if the crop is grown everywhere) increases 6.5% for rice, 8.3% for canola, 18.6% for corn, 22.9% for potato, and 24.9% for winter wheat, although with significant spatial variability for each crop. However, absent the enhanced CO2 fertilization effect, potential productivity declines in all cases ranging from 2.5-12%. Interannual yield variability remains constant or declines in all cases except rice. Climate variables are found to be more significant drivers of simulated yield changes than changes in soil properties, except in the case of potato production in the northwest where the effects of wind erosion are more significant. Overall, in the future period corn and winter wheat benefit significantly in the North China Plain, rice remains dominant in the southeast and emerges in the northeast, potato and corn yields become viable in the northwest, and potato yields suffer in the southwest with no other crop emerging as a clear beneficiary from among those simulated in this study.« less
The Implications of Future Food Demand on Global Land Use, Land-Use Change Emissions, and Climate
NASA Astrophysics Data System (ADS)
Calvin, K. V.; Wise, M.; Kyle, P.; Luckow, P.; Clarke, L.; Edmonds, J.; Eom, J.; Kim, S.; Moss, R.; Patel, P.
2011-12-01
In 2005, cropland accounted for approximately 10% of global land area. The amount of cropland needed in the future depends on a number of factors including global population, dietary preferences, and agricultural crop yields. In this paper, we explore the effect of various assumptions about global food demand and agricultural productivity between now and 2100 on global land use, land-use change emissions, and climate using the GCAM model. GCAM is a global integrated assessment model, linking submodules of the regionally disaggregated, global economy, energy system, agriculture and land-use, terrestrial carbon cycle, oceans and climate. GCAM simulates supply, demand, and prices for energy and agricultural goods from 2005 to 2100 in 5-year increments. In each time period, the model computes the allocation of land across a variety of land cover types in 151 different regions, assuming that farmers maximize profits and that food demand is relatively inelastic. For this analysis, we look at the effect of alternative socioeconomic pathways, crop yield improvement assumptions, and future meat demand scenarios on the demand for agricultural land. The three socioeconomic pathways explore worlds where global population in 2100 ranges from 6 billion people to 14 billion people. The crop yield improvement assumptions range from a world where yields do not improve beyond today's levels to a world with significantly higher crop productivity. The meat demand scenarios range from a vegetarian world to a world where meat is a dominant source of calories in the global diet. For each of these scenarios, we find that sufficient land exists to feed the global economy. However, rates of deforestation, bioenergy potential, land-use change emissions, and climate change differ across the scenarios. Under less favorable scenarios, deforestation rates, land-use change emissions, and the rate of climate change can be adversely affected.
Field warming experiments shed light on the wheat yield response to temperature in China
Zhao, Chuang; Piao, Shilong; Huang, Yao; Wang, Xuhui; Ciais, Philippe; Huang, Mengtian; Zeng, Zhenzhong; Peng, Shushi
2016-01-01
Wheat growth is sensitive to temperature, but the effect of future warming on yield is uncertain. Here, focusing on China, we compiled 46 observations of the sensitivity of wheat yield to temperature change (SY,T, yield change per °C) from field warming experiments and 102 SY,T estimates from local process-based and statistical models. The average SY,T from field warming experiments, local process-based models and statistical models is −0.7±7.8(±s.d.)% per °C, −5.7±6.5% per °C and 0.4±4.4% per °C, respectively. Moreover, SY,T is different across regions and warming experiments indicate positive SY,T values in regions where growing-season mean temperature is low, and water supply is not limiting, and negative values elsewhere. Gridded crop model simulations from the Inter-Sectoral Impact Model Intercomparison Project appear to capture the spatial pattern of SY,T deduced from warming observations. These results from local manipulative experiments could be used to improve crop models in the future. PMID:27853151
Testing the responses of four wheat crop models to heat stress at anthesis and grain filling.
Liu, Bing; Asseng, Senthold; Liu, Leilei; Tang, Liang; Cao, Weixing; Zhu, Yan
2016-05-01
Higher temperatures caused by future climate change will bring more frequent heat stress events and pose an increasing risk to global wheat production. Crop models have been widely used to simulate future crop productivity but are rarely tested with observed heat stress experimental datasets. Four wheat models (DSSAT-CERES-Wheat, DSSAT-Nwheat, APSIM-Wheat, and WheatGrow) were evaluated with 4 years of environment-controlled phytotron experimental datasets with two wheat cultivars under heat stress at anthesis and grain filling stages. Heat stress at anthesis reduced observed grain numbers per unit area and individual grain size, while heat stress during grain filling mainly decreased the size of the individual grains. The observed impact of heat stress on grain filling duration, total aboveground biomass, grain yield, and grain protein concentration (GPC) varied depending on cultivar and accumulated heat stress. For every unit increase of heat degree days (HDD, degree days over 30 °C), grain filling duration was reduced by 0.30-0.60%, total aboveground biomass was reduced by 0.37-0.43%, and grain yield was reduced by 1.0-1.6%, but GPC was increased by 0.50% for cv Yangmai16 and 0.80% for cv Xumai30. The tested crop simulation models could reproduce some of the observed reductions in grain filling duration, final total aboveground biomass, and grain yield, as well as the observed increase in GPC due to heat stress. Most of the crop models tended to reproduce heat stress impacts better during grain filling than at anthesis. Some of the tested models require improvements in the response to heat stress during grain filling, but all models need improvements in simulating heat stress effects on grain set during anthesis. The observed significant genetic variability in the response of wheat to heat stress needs to be considered through cultivar parameters in future simulation studies. © 2016 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, Guoyong
Temperature is known to be correlated with crop yields, causing reduction of crop yield with climate warming without adaptations or CO2 fertilization effects. The historical temperature-crop yield relation has often been used for informing future changes. This relationship, however, may change over time following alternations in other environmental factors. Results show that the strength of the relationship between the interannual variability of growing season temperature and corn yield (RGST_CY) has declined in the United States between 1980 and 2010 with a loss in the statistical significance. The regression slope which represents the anomalies in corn yield that occur in associationmore » with 1 degree temperature anomaly has decreased significantly from -6.9%/K of the first half period to -2.4%/K~-3.5%/K of the second half period. This implies that projected corn yield reduction will be overestimated by a fact of 2 in a given warming scenario, if the corn-temperature relation is derived from the earlier historical period. Changes in RGST_CY are mainly observed in Midwest Corn Belt and central High Plains, and are well reproduced by 11 process-based crop models. In Midwest rain-fed systems, the decrease of negative temperature effects coincides with an increase in water availability by precipitation. In irrigated areas where water stress is minimized, the decline of beneficial temperature effects is significantly related to the increase in extreme hot days. The results indicate that an extrapolation of historical yield response to temperature may bias the assessment of agriculture vulnerability to climate change. Efforts to reduce climate impacts on agriculture should pay attention not only to climate change, but also to changes in climate-crop yield relations. There are some caveats that should be acknowledged as the analysis is restricted to the changes in the linear relation between growing season mean temperature and corn yield for the specific study period.« less
Leng, Guoyong
2017-12-15
Temperature is known to be correlated with crop yields, causing reduction of crop yield with climate warming without adaptations or CO 2 fertilization effects. The historical temperature-crop yield relation has often been used for informing future changes. This relationship, however, may change over time following alternations in other environmental factors. Results show that the strength of the relationship between the interannual variability of growing season temperature and corn yield (R GST_CY ) has declined in the United States between 1980 and 2010 with a loss in the statistical significance. The regression slope which represents the anomalies in corn yield that occur in association with 1 degree temperature anomaly has decreased significantly from -6.9%/K of the first half period to -2.4%/K--3.5%/K of the second half period. This implies that projected corn yield reduction will be overestimated by a fact of 2 in a given warming scenario, if the corn-temperature relation is derived from the earlier historical period. Changes in R GST_CY are mainly observed in Midwest Corn Belt and central High Plains, but are partly reproduced by 11 process-based crop models. In Midwest rain-fed systems, the decrease of negative temperature effects coincides with an increase in water availability by precipitation. In irrigated areas where water stress is minimized, the decline of beneficial temperature effects is significantly related to the increase in extreme hot days. The results indicate that an extrapolation of historical yield response to temperature may bias the assessment of agriculture vulnerability to climate change. Efforts to reduce climate impacts on agriculture should pay attention not only to climate change, but also to changes in climate-crop yield relations. There are some caveats that should be acknowledged as the analysis is restricted to the changes in the linear relation between growing season mean temperature and corn yield for the specific study period. Copyright © 2017 Elsevier B.V. All rights reserved.
Towards a globally optimized crop distribution: Integrating water use, nutrition, and economic value
NASA Astrophysics Data System (ADS)
Davis, K. F.; Seveso, A.; Rulli, M. C.; D'Odorico, P.
2016-12-01
Human demand for crop production is expected to increase substantially in the coming decades as a result of population growth, richer diets and biofuel use. In order for food production to keep pace, unprecedented amounts of resources - water, fertilizers, energy - will be required. This has led to calls for `sustainable intensification' in which yields are increased on existing croplands while seeking to minimize impacts on water and other agricultural resources. Recent studies have quantified aspects of this, showing that there is a large potential to improve crop yields and increase harvest frequencies to better meet human demand. Though promising, both solutions would necessitate large additional inputs of water and fertilizer in order to be achieved under current technologies. However, the question of whether the current distribution of crops is, in fact, the best for realizing sustainable production has not been considered to date. To this end, we ask: Is it possible to increase crop production and economic value while minimizing water demand by simply growing crops where soil and climate conditions are best suited? Here we use maps of yields and evapotranspiration for 14 major food crops to identify differences between current crop distributions and where they can most suitably be planted. By redistributing crops across currently cultivated lands, we determine the potential improvements in calorie (+12%) and protein (+51%) production, economic output (+41%) and water demand (-5%). This approach can also incorporate the impact of future climate on cropland suitability, and as such, be used to provide optimized cropping patterns under climate change. Thus, our study provides a novel tool towards achieving sustainable intensification that can be used to recommend optimal crop distributions in the face of a changing climate while simultaneously accounting for food security, freshwater resources, and livelihoods.
Soil Moisture as an Estimator for Crop Yield in Germany
NASA Astrophysics Data System (ADS)
Peichl, Michael; Meyer, Volker; Samaniego, Luis; Thober, Stephan
2015-04-01
Annual crop yield depends on various factors such as soil properties, management decisions, and meteorological conditions. Unfavorable weather conditions, e.g. droughts, have the potential to drastically diminish crop yield in rain-fed agriculture. For example, the drought in 2003 caused direct losses of 1.5 billion EUR only in Germany. Predicting crop yields allows to mitigate negative effects of weather extremes which are assumed to occur more often in the future due to climate change. A standard approach in economics is to predict the impact of climate change on agriculture as a function of temperature and precipitation. This approach has been developed further using concepts like growing degree days. Other econometric models use nonlinear functions of heat or vapor pressure deficit. However, none of these approaches uses soil moisture to predict crop yield. We hypothesize that soil moisture is a better indicator to explain stress on plant growth than estimations based on precipitation and temperature. This is the case because the latter variables do not explicitly account for the available water content in the root zone, which is the primary source of water supply for plant growth. In this study, a reduced form panel approach is applied to estimate a multivariate econometric production function for the years 1999 to 2010. Annual crop yield data of various crops on the administrative district level serve as depending variables. The explanatory variable of major interest is the Soil Moisture Index (SMI), which quantifies anomalies in root zone soil moisture. The SMI is computed by the mesoscale Hydrological Model (mHM, www.ufz.de/mhm). The index represents the monthly soil water quantile at a 4 km2 grid resolution covering entire Germany. A reduced model approach is suitable because the SMI is the result of a stochastic weather process and therefore can be considered exogenous. For the ease of interpretation a linear functionality is preferred. Meteorological, phenological, geological, agronomic, and socio-economic variables are also considered to extend the model in order to reveal the proper causal relation. First results show that dry as well as wet extremes of SMI have a negative impact on crop yield for winter wheat. This indicates that soil moisture has at least a limiting affect on crop production.
NASA Astrophysics Data System (ADS)
Vico, G.; Weih, M.
2014-12-01
Autumn-sown crops act as winter cover crop, reducing soil erosion and nutrient leaching, while potentially providing higher yields than spring varieties in many environments. Nevertheless, overwintering crops are exposed for longer periods to the vagaries of weather conditions. Adverse winter conditions, in particular, may negatively affect the final yield, by reducing crop survival or its vigor. The net effect of the projected shifts in climate is unclear. On the one hand, warmer temperatures may reduce the frequency of low temperatures, thereby reducing damage risk. On the other hand, warmer temperatures, by reducing plant acclimation level and the amount and duration of snow cover, may increase the likelihood of damage. Thus, warmer climates may paradoxically result in more extensive low temperature damage and reduced viability for overwintering plants. The net effect of a shift in climate is explored by means of a parsimonious probabilistic model, based on a coupled description of air temperature, snow cover, and crop tolerable temperature. Exploiting an extensive dataset of winter wheat responses to low temperature exposure, the risk of winter damage occurrence is quantified under conditions typical of northern temperate latitudes. The full spectrum of variations expected with climate change is explored, quantifying the joint effects of alterations in temperature averages and their variability as well as shifts in precipitation. The key features affecting winter wheat vulnerability to low temperature damage under future climates are singled out.
NASA Astrophysics Data System (ADS)
Darzi-Naftchali, Abdullah; Karandish, Fatemeh
2017-12-01
Sustainable utilization of blue water resources under climate change is of great significance especially for producing high water-consuming crops in water-scarce regions. Based on the virtual water concept, we carried out a comprehensive field-modeling research to find the optimal agricultural practices regarding rice blue water consumption under prospective climate change. The DSSAT-CERES-Rice model was used in combination with 20 GCMs under three Representative Concentration Pathways of low (RCP2.6), intermediate (RCP4.6), and very high (RCP8.5) greenhouse concentrations to predict rice yield and water requirement and related virtual water and economic return for the base and future periods. The crop model was calibrated and validated based on the 2-year field data obtained from consolidated paddy fields of the Sari Agricultural Sciences and Natural Resources University during 2011 and 2012 rice cropping cycles. Climate change imposes an increase of 0.02-0.04 °C in air temperature which consequently shifts rice growing seasons to winter season, and shorten the length of rice physiological maturity period by 2-15 days. While rice virtual water reduces by 0.1-20.6% during 2011-2070, reduced rice yield by 3.8-22.6% over the late twenty-first century results in a considerable increase in rice virtual water. By increasing the contribution of green water in supplying crop water requirement, earlier cropping could diminish blue water consumption for rice production in the region while cultivation postponement increases irrigation water requirement by 2-195 m3 ha-1. Forty days delay in rice cultivation in future will result in 29.9-40.6% yield reduction and 43.9-60% increase in rice virtual water under different scenarios. Earlier cropping during the 2011-2040 and 2041-2070 periods would increase water productivity, unit value of water, and economic value of blue water compared to the base period. Based on the results, management of rice cultivation calendar is a suitable strategy for sustainable blue water consumption for producing rice under future climate.
NASA Astrophysics Data System (ADS)
Olin, S.; Lindeskog, M.; Pugh, T. A. M.; Schurgers, G.; Wårlind, D.; Mishurov, M.; Zaehle, S.; Stocker, B. D.; Smith, B.; Arneth, A.
2015-11-01
Croplands are vital ecosystems for human well-being and provide important ecosystem services such as crop yields, retention of nitrogen and carbon storage. On large (regional to global)-scale levels, assessment of how these different services will vary in space and time, especially in response to cropland management, are scarce. We explore cropland management alternatives and the effect these can have on future C and N pools and fluxes using the land-use-enabled dynamic vegetation model LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator). Simulated crop production, cropland carbon storage, carbon sequestration and nitrogen leaching from croplands are evaluated and discussed. Compared to the version of LPJ-GUESS that does not include land-use dynamics, estimates of soil carbon stocks and nitrogen leaching from terrestrial to aquatic ecosystems were improved. Our model experiments allow us to investigate trade-offs between these ecosystem services that can be provided from agricultural fields. These trade-offs are evaluated for current land use and climate and further explored for future conditions within the two future climate change scenarios, RCP (Representative Concentration Pathway) 2.6 and 8.5. Our results show that the potential for carbon sequestration due to typical cropland management practices such as no-till management and cover crops proposed in previous studies is not realised, globally or over larger climatic regions. Our results highlight important considerations to be made when modelling C-N interactions in agricultural ecosystems under future environmental change and the effects these have on terrestrial biogeochemical cycles.
Environmental Risks and Challenges Associated with Neonicotinoid Insecticides.
Hladik, Michelle L; Main, Anson R; Goulson, Dave
2018-03-20
Neonicotinoid use has increased rapidly in recent years, with a global shift toward insecticide applications as seed coatings rather than aerial spraying. While the use of seed coatings can lessen the amount of overspray and drift, the near universal and prophylactic use of neonicotinoid seed coatings on major agricultural crops has led to widespread detections in the environment (pollen, soil, water, honey). Pollinators and aquatic insects appear to be especially susceptible to the effects of neonicotinoids with current research suggesting that chronic sublethal effects are more prevalent than acute toxicity. Meanwhile, evidence of clear and consistent yield benefits from the use of neonicotinoids remains elusive for most crops. Future decisions on neonicotinoid use will benefit from weighing crop yield benefits versus environmental impacts to nontarget organisms and considering whether there are more environmentally benign alternatives.
Future Warming Increases Global Maize Yield Variability with Implications for Food Markets
NASA Astrophysics Data System (ADS)
Tigchelaar, M.; Battisti, D. S.; Naylor, R. L.; Ray, D. K.
2017-12-01
If current trends in population growth and dietary shifts continue, the world will need to produce about 70% more food by 2050, while earth's climate is rapidly changing. Rising temperatures in particular are projected to negatively impact agricultural production, as the world's staple crops perform poorly in extreme heat. Theoretical models suggest that as temperatures rise above plants' optimal temperature for performance, not only will mean yields decline rapidly, but the variability of yields will increase, even as interannual variations in climate remain unchanged. Here we use global datasets of maize production and climate variability combined with CMIP5 temperature projections to quantify how yield variability will change in major maize producing countries under 2°C and 4°C of global warming. Maize is the world's most produced crop, and is linked to other staple crops through substitution in consumption and production. We find that in warmer climates - absent any breeding gains in heat tolerance - the Coefficient of Variation (CV) of maize yields increases almost everywhere, to values much larger than present-day. This increase in CV is due both to an increase in the standard deviation of yields, and a decrease in mean yields. In locations where crop failures become the norm under high (4°C) warming (mostly in tropical, low-yield environments), the standard deviation of yields ultimately decreases. The probability that in any given year the most productive areas in the top three maize producing countries (United States, China, Brazil) have simultaneous production losses greater than 10% is virtually zero under present-day climate conditions, but increases to 12% under 2°C warming, and 89% under 4°C warming. This has major implications for global food markets and staple crop prices, affecting especially the 2.5 billion people that comprise the world's poor, who already spend the majority of their disposable income on food and are particularly vulnerable to agricultural price spikes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seigler, D.S.
Eighteen papers originally presented as a symposium on Crop Resources at the 17th annual meeting of the Society for Economic Botany in Urbana, Illinois, June 13 to 17, 1976 comprise this book. The papers are: Potential Wealth in New Crops: Research and Development, L. H. Princen; Plant Introductions--A Source of New Crops, George A. White; Nonfood Uses for Commercial Vegetable Oil Crops, E. H. Pryde; New Industrial Potentials for Carbohydrates, F. H. Otey; The Current Importance of Plants as a Source of Drugs, Norman R. Farnsworth; Potentials for Development of Wild Plants as Row Crops for Use by Man, Arnoldmore » Krochmal and Connie Krochmal; Recent Evidence in Support of the Tropical Origin of New World Crops, C. Earle Smith, Jr.; Requirements for a Green Revolution, G. F. Sprague; How Green Can a Revolution Be, Jack R. Harlan; Increasing Cereal Yields: Evolution under Domestication, J. M. J. de Wet; Hevea Rubber: Past and Future, Ernest P. Imle; Horseradish--Problems and Research in Illinois, A. M. Rhodes; Dioscorea--The Pill Crop, Norman Applezweig; Plant Derivatives for Insect Control, Robert L. Metcalf; Evolutionary Dynamics of Sorghum Domestication, J. M. J. de Wet and Y. Shecter; The Origin and Future of Wheat, E. R. Sears; Current Thoughts on Origins, Present Status, and Future of Soybeans, T. Hymowitz and C. A. Newell; and The Origin of Corn--Studies of the Last Hundred Years, Garrison Wilkes. (MCW)« less
Climate Change Impacts on Crop Production in Nigeria
NASA Astrophysics Data System (ADS)
Mereu, V.; Gallo, A.; Carboni, G.; Spano, D.
2011-12-01
The agricultural sector in Nigeria is particularly important for the country's food security, natural resources, and growth agenda. The cultivable areas comprise more than 70% of the total area; however, the cultivated area is about the 35% of the total area. The most important components in the food basket of the nation are cereals and tubers, which include rice, maize, corn, millet, sorghum, yam, and cassava. These crops represent about 80% of the total agricultural product in Nigeria (from NPAFS). The major crops grown in the country can be divided into food crops (produced for consumption) and export products. Despite the importance of the export crops, the primary policy of agriculture is to make Nigeria self-sufficient in its food and fiber requirements. The projected impacts of future climate change on agriculture and water resources are expected to be adverse and extensive in these area. This implies the need for actions and measures to adapt to climate change impacts, and especially as they affect agriculture, the primary sector for Nigerian economy. In the framework of the Project Climate Risk Analysis in Nigeria (founded by World Bank Contract n.7157826), a study was made to assess the potential impact of climate change on the main crops that characterize Nigerian agriculture. The DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5 was used for the analysis. Crop simulation models included in DSSAT are tools that simulate physiological processes of crop growth, development and production by combining genetic crop characteristics and environmental (soil and weather) conditions. For each selected crop, the models were calibrated to evaluate climate change impacts on crop production. The climate data used for the analysis are derived by the Regional Circulation Model COSMO-CLM, from 1971 to 2065, at 8 km of spatial resolution. The RCM model output was "perturbed" with 10 Global Climate Models to have a wide variety of possible climate projections for the impact analysis. Multiple combinations of soil and climate conditions and crop management and varieties were considered for each Agro-Ecological Zone (AEZ) of Nigeria. A sensitivity analysis was made to evaluate the model response to changes in precipitation and temperature. The climate impact assessment was made by comparing the yield obtained with the climate data for the present period and the yield obtainable under future climate conditions. The results were analyzed at state, AEZ and country levels. The analysis shows a general reduction in crop yields in particular in the dryer regions of northern Nigeria.
Mazza, Carlos A; Giménez, Patricia I; Kantolic, Adriana G; Ballaré, Carlos L
2013-03-01
Ultraviolet-B radiation (UV-B: 280-315 nm) has damaging effects on cellular components and macromolecules. In plants, natural levels of UV-B can reduce leaf area expansion and growth, which can lead to reduced productivity and yield. UV-B can also have important effects on herbivorous insects. Owing to the successful implementation of the Montreal Protocol, current models predict that clear-sky levels of UV-B radiation will decline during this century in response to ozone recovery. However, because of climate change and changes in land use practices, future trends in UV doses are difficult to predict. In the experiments reported here, we used an exclusion approach to study the effects of solar UV-B radiation on soybean crops, which are extensively grown in many areas of the world that may be affected by future variations in UV-B radiation. In a first experiment, performed under normal management practices (which included chemical pest control), we found that natural levels of UV-B radiation reduced soybean yield. In a second experiment, where no pesticides were applied, we found that solar UV-B significantly reduced insect herbivory and, surprisingly, caused a concomitant increase in crop yield. Our data support the idea that UV-B effects on agroecosystems are the result of complex interactions involving multiple trophic levels. A better understanding of the mechanisms that mediate the anti-herbivore effect of UV-B radiation may be used to design crop varieties with improved adaptation to the cropping systems that are likely to prevail in the coming decades in response to agricultural intensification. Copyright © Physiologia Plantarum 2012.
USDA-ARS?s Scientific Manuscript database
The atmospheric [CO2] in which crops grow today is greater than at any point in their domestication history, and represents an opportunity for positive effects on seed yield that can counteract the negative effects of greater heat and drought this century. In order to maximize yields under future at...
Australian wheat production expected to decrease by the late 21st century.
Wang, Bin; Liu, De L; O'Leary, Garry J; Asseng, Senthold; Macadam, Ian; Lines-Kelly, Rebecca; Yang, Xihua; Clark, Anthony; Crean, Jason; Sides, Timothy; Xing, Hongtao; Mi, Chunrong; Yu, Qiang
2018-06-01
Climate change threatens global wheat production and food security, including the wheat industry in Australia. Many studies have examined the impacts of changes in local climate on wheat yield per hectare, but there has been no assessment of changes in land area available for production due to changing climate. It is also unclear how total wheat production would change under future climate when autonomous adaptation options are adopted. We applied species distribution models to investigate future changes in areas climatically suitable for growing wheat in Australia. A crop model was used to assess wheat yield per hectare in these areas. Our results show that there is an overall tendency for a decrease in the areas suitable for growing wheat and a decline in the yield of the northeast Australian wheat belt. This results in reduced national wheat production although future climate change may benefit South Australia and Victoria. These projected outcomes infer that similar wheat-growing regions of the globe might also experience decreases in wheat production. Some cropping adaptation measures increase wheat yield per hectare and provide significant mitigation of the negative effects of climate change on national wheat production by 2041-2060. However, any positive effects will be insufficient to prevent a likely decline in production under a high CO 2 emission scenario by 2081-2100 due to increasing losses in suitable wheat-growing areas. Therefore, additional adaptation strategies along with investment in wheat production are needed to maintain Australian agricultural production and enhance global food security. This scenario analysis provides a foundation towards understanding changes in Australia's wheat cropping systems, which will assist in developing adaptation strategies to mitigate climate change impacts on global wheat production. © 2017 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Glotter, Michael J.; Ruane, Alex C.; Moyer, Elisabeth J.; Elliott, Joshua W.
2015-01-01
Projections of future food production necessarily rely on models, which must themselves be validated through historical assessments comparing modeled and observed yields. Reliable historical validation requires both accurate agricultural models and accurate climate inputs. Problems with either may compromise the validation exercise. Previous studies have compared the effects of different climate inputs on agricultural projections but either incompletely or without a ground truth of observed yields that would allow distinguishing errors due to climate inputs from those intrinsic to the crop model. This study is a systematic evaluation of the reliability of a widely used crop model for simulating U.S. maize yields when driven by multiple observational data products. The parallelized Decision Support System for Agrotechnology Transfer (pDSSAT) is driven with climate inputs from multiple sources reanalysis, reanalysis that is bias corrected with observed climate, and a control dataset and compared with observed historical yields. The simulations show that model output is more accurate when driven by any observation-based precipitation product than when driven by non-bias-corrected reanalysis. The simulations also suggest, in contrast to previous studies, that biased precipitation distribution is significant for yields only in arid regions. Some issues persist for all choices of climate inputs: crop yields appear to be oversensitive to precipitation fluctuations but under sensitive to floods and heat waves. These results suggest that the most important issue for agricultural projections may be not climate inputs but structural limitations in the crop models themselves.
Evaluating the sensitivity of agricultural model performance to different climate inputs
Glotter, Michael J.; Moyer, Elisabeth J.; Ruane, Alex C.; Elliott, Joshua W.
2017-01-01
Projections of future food production necessarily rely on models, which must themselves be validated through historical assessments comparing modeled to observed yields. Reliable historical validation requires both accurate agricultural models and accurate climate inputs. Problems with either may compromise the validation exercise. Previous studies have compared the effects of different climate inputs on agricultural projections, but either incompletely or without a ground truth of observed yields that would allow distinguishing errors due to climate inputs from those intrinsic to the crop model. This study is a systematic evaluation of the reliability of a widely-used crop model for simulating U.S. maize yields when driven by multiple observational data products. The parallelized Decision Support System for Agrotechnology Transfer (pDSSAT) is driven with climate inputs from multiple sources – reanalysis, reanalysis bias-corrected with observed climate, and a control dataset – and compared to observed historical yields. The simulations show that model output is more accurate when driven by any observation-based precipitation product than when driven by un-bias-corrected reanalysis. The simulations also suggest, in contrast to previous studies, that biased precipitation distribution is significant for yields only in arid regions. However, some issues persist for all choices of climate inputs: crop yields appear oversensitive to precipitation fluctuations but undersensitive to floods and heat waves. These results suggest that the most important issue for agricultural projections may be not climate inputs but structural limitations in the crop models themselves. PMID:29097985
Cook, David C.; Fraser, Rob W.; Paini, Dean R.; Warden, Andrew C.; Lonsdale, W. Mark; De Barro, Paul J.
2011-01-01
The delivery of food security via continued crop yield improvement alone is not an effective food security strategy, and must be supported by pre- and post-border biosecurity policies to guard against perverse outcomes. In the wake of the green revolution, yield gains have been in steady decline, while post-harvest crop losses have increased as a result of insufficiently resourced and uncoordinated efforts to control spoilage throughout global transport and storage networks. This paper focuses on the role that biosecurity is set to play in future food security by preventing both pre- and post-harvest losses, thereby protecting crop yield. We model biosecurity as a food security technology that may complement conventional yield improvement policies if the gains in global farm profits are sufficient to offset the costs of implementation and maintenance. Using phytosanitary measures that slow global spread of the Ug99 strain of wheat stem rust as an example of pre-border biosecurity risk mitigation and combining it with post-border surveillance and invasive alien species control efforts, we estimate global farm profitability may be improved by over US$4.5 billion per annum. PMID:22022517
Johnston, A. E.
2018-01-01
Summary Long‐term field experiments that test a range of treatments and are intended to assess the sustainability of crop production, and thus food security, must be managed actively to identify any treatment that is failing to maintain or increase yields. Once identified, carefully considered changes can be made to the treatment or management, and if they are successful yields will change. If suitable changes cannot be made to an experiment to ensure its continued relevance to sustainable crop production, then it should be stopped. Long‐term experiments have many other uses. They provide a field resource and samples for research on plant and soil processes and properties, especially those properties where change occurs slowly and affects soil fertility. Archived samples of all inputs and outputs are an invaluable source of material for future research, and data from current and archived samples can be used to develop models to describe soil and plant processes. Such changes and uses in the Rothamsted experiments are described, and demonstrate that with the appropriate crop, soil and management, acceptable yields can be maintained for many years, with either organic manure or inorganic fertilizers. Highlights Long‐term experiments demonstrate sustainability and increases in crop yield when managed to optimize soil fertility.Shifting individual response curves into coincidence increases understanding of the factors involved.Changes in inorganic and organic pollutants in archived crop and soil samples are related to inputs over time.Models describing soil processes are developed from current and archived soil data. PMID:29527119
NASA Astrophysics Data System (ADS)
Pillai, S. N.; Singh, H.; Ruane, A. C.; Boote, K. G.; Porter, C.; Rosenzweig, C.; Panwar, A. S.
2017-12-01
Indo-Gangetic Plains (IGP), the food basket of South Asia, characterised by predominantly cereal-based farming systems where livestock is an integral part of farm economy. Climate change is projected to have significant effects on agriculture production and hence on food and livelihood security because more than 90 per cent farmers fall under small and marginal category. The rising temperatures and uncertainties in rainfall associated with global warming may have serious direct and indirect impacts on crop production. A loss of 10-40% crop production is predicted in different crops in India by the end of this century by different researchers. Cereal crops (mainly rice and wheat) are crucial to ensuring the food security in the region, but sustaining their productivity has become a major challenge due to climate variability and uncertainty. Under AgMIP Project, we have analysed the climate change impact on farm level productivity of rice at Meerut District, Uttar Pradesh using 29 GCMs under RCP4.5 and RCP8.5 during mid-century period 2041-2070. Two crop simulation models DSSAT4.6 and APSIM7.7 were used for impact study. There is lot of uncertainty in yield level by different GCMs and crop models. Under RCP4.5, APSIM showed a declining yield up to 14.5 % while DSSAT showed a declining yield level of 6.5 % only compared to the baseline (1980-2010). However, out of 29 GCMs, 15 GCMs showed negative impact and 14 showed positive impact under APSIM while it showed 21 and 8 GCMs, respectively in the case of DSSAT. DSSAT and APSIM simulated irrigation water requirement in future of the order of 645±75 mm and 730±107 mm, respectively under RCP4.5. However, the same will be of the order of 626 ± 99 mm and 749 ± 147 mm, respectively under RCP8.5. Projected irrigation water productivity showed a range of 4.87-12.15 kg ha-1 mm-1 and 6.77-12.63 kg ha-1 mm-1 through APSIM and DSSAT, respectively under RCP4.5, which stands an average of 7.81 and 8.53 kg ha-1 mm-1 during the baseline period. It reduced to 4.22-10.64 and 6.37-12.56 kg ha-1 mm-1 through APSIM and DSSAT, respectively under RCP8.5. This showed the uncertainty of GCMs as well as the Crop models for future projection. A multi-model approach with optimistic and pessimistic projections should be used for scenario analysis and policy planning in future rather than single model projections.
NASA Astrophysics Data System (ADS)
Kaffka, S.; Jenner, M.; Bucaram, S.; George, N.
2012-12-01
Both regulators and businesses need realistic estimates for the potential production of biomass feedstocks for biofuels and bioproducts. This includes the need to understand how climate change will affect mid-tem and longer-term crop performance and relative advantage. The California Biomass Crop Adoption Model is a partial mathematical programming optimization model that estimates the profit level needed for new crop adoption, and the crop(s) displaced when a biomass feedstock crop is added to the state's diverse set of cropping systems, in diverse regions of the state. Both yield and crop price, as elements of profit, can be varied. Crop adoption is tested against current farmer preferences derived from analysis of 10 years crop production data for all crops produced in California, collected by the California Department of Pesticide Regulation. Analysis of this extensive data set resulted in 45 distinctive, representative farming systems distributed across the state's diverse agro-ecological regions. Estimated yields and water use are derived from field trials combined with crop simulation, reported elsewhere. Crop simulation is carried out under different weather and climate assumptions. Besides crop adoption and displacement, crop resource use is also accounted, derived from partial budgets used for each crop's cost of production. Systematically increasing biofuel crop price identified areas of the state where different types of crops were most likely to be adopted. Oilseed crops like canola that can be used for biodiesel production had the greatest potential to be grown in the Sacramento Valley and other northern regions, while sugar beets (for ethanol) had the greatest potential in the northern San Joaquin Valley region, and sweet sorghum in the southern San Joaquin Valley. Up to approximately 10% of existing annual cropland in California was available for new crop adoption. New crops are adopted if the entire cropping system becomes more profitable. In particular, canola production resulted in less overall water use but increased farm profits. Most crop substitutions were resource neutral. If future climate is drier, more winter annual crops like canola are likely to be adopted. Crop displacement is also important for determining market-mediated effects of biomass crop production. Correctly estimating crop displacement at the local scale greatly improves upon estimates for indirect land use change derived from the macro-scale PE and CGE models currently used by US EPA and the California Air Resources Board.
Estimating yield gaps at the cropping system level.
Guilpart, Nicolas; Grassini, Patricio; Sadras, Victor O; Timsina, Jagadish; Cassman, Kenneth G
2017-05-01
Yield gap analyses of individual crops have been used to estimate opportunities for increasing crop production at local to global scales, thus providing information crucial to food security. However, increases in crop production can also be achieved by improving cropping system yield through modification of spatial and temporal arrangement of individual crops. In this paper we define the cropping system yield potential as the output from the combination of crops that gives the highest energy yield per unit of land and time, and the cropping system yield gap as the difference between actual energy yield of an existing cropping system and the cropping system yield potential. Then, we provide a framework to identify alternative cropping systems which can be evaluated against the current ones. A proof-of-concept is provided with irrigated rice-maize systems at four locations in Bangladesh that represent a range of climatic conditions in that country. The proposed framework identified (i) realistic alternative cropping systems at each location, and (ii) two locations where expected improvements in crop production from changes in cropping intensity (number of crops per year) were 43% to 64% higher than from improving the management of individual crops within the current cropping systems. The proposed framework provides a tool to help assess food production capacity of new systems ( e.g. with increased cropping intensity) arising from climate change, and assess resource requirements (water and N) and associated environmental footprint per unit of land and production of these new systems. By expanding yield gap analysis from individual crops to the cropping system level and applying it to new systems, this framework could also be helpful to bridge the gap between yield gap analysis and cropping/farming system design.
Driever, Steven M; Simkin, Andrew J; Alotaibi, Saqer; Fisk, Stuart J; Madgwick, Pippa J; Sparks, Caroline A; Jones, Huw D; Lawson, Tracy; Parry, Martin A J; Raines, Christine A
2017-09-26
To meet the growing demand for food, substantial improvements in yields are needed. This is particularly the case for wheat, where global yield has stagnated in recent years. Increasing photosynthesis has been identified as a primary target to achieve yield improvements. To increase leaf photosynthesis in wheat, the level of the Calvin-Benson cycle enzyme sedoheptulose-1,7-biphosphatase (SBPase) has been increased through transformation and expression of a Brachypodium distachyon SBPase gene construct. Transgenic lines with increased SBPase protein levels and activity were grown under greenhouse conditions and showed enhanced leaf photosynthesis and increased total biomass and dry seed yield. This showed the potential of improving yield potential by increasing leaf photosynthesis in a crop species such as wheat. The results are discussed with regard to future strategies for further improvement of photosynthesis in wheat.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Authors.
Global crop yield response to extreme heat stress under multiple climate change futures
NASA Astrophysics Data System (ADS)
Deryng, D.; Conway, D.; Ramankutty, N.; Price, J.; Warren, R.
2014-12-01
Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global losses of maize yield (dY = -12.8 ± 6.7% versus -7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (dY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (dY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries.
Global crop yield response to extreme heat stress under multiple climate change futures
NASA Astrophysics Data System (ADS)
Deryng, Delphine; Conway, Declan; Ramankutty, Navin; Price, Jeff; Warren, Rachel
2014-03-01
Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global losses of maize yield (ΔY = -12.8 ± 6.7% versus - 7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (ΔY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (ΔY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries.
Biofuels on the landscape: Is "land sharing" preferable to "land sparing"?
NASA Astrophysics Data System (ADS)
DeLucia, E. H.; Anderson-Teixeira, K. J.; Duval, B. D.; Long, S. P.
2012-12-01
Widespread land use changes—and ensuing effects on biodiversity and ecosystem services—are expected as a result of expanding bioenergy production. Although almost all US production of ethanol today is from corn, it is envisaged that future ethanol production will also draw from cellulosic sources such as perennial grasses. In selecting optimal bioenergy crops, there is debate as to whether it is preferable from an environmental standpoint to cultivate bioenergy crops with high ecosystem services (a "land sharing" strategy) or to grow crops with lower ecosystem services but higher yield, thereby requiring less land to meet bioenergy demand (a "land sparing" strategy). Here, we develop a simple model to address this question. Assuming that bioenergy crops are competing with uncultivated land, our model calculates land requirements to meet a given bioenergy demand intensity based upon the yields of bioenergy crops and combines fractional land cover of each ecosystem type with its associated ecosystem services to determine whether land sharing or land sparing strategies maximize ecosystem services at the landscape level. We apply this model to a case in which climate protection through GHG regulation—an ecosystem's greenhouse gas value (GHGV)—is the ecosystem service of interest. We consider five bioenergy crops competing for land area with five unfarmed ecosystem types in the central and eastern US. Our results show that the relative advantages of land sparing and land sharing depend upon the type of ecosystem with which the bioenergy crop is competing for land; as the GHGV value of the unfarmed land increases, the preferable strategy shifts from land sharing to land sparing. This implies that, while it may be preferable to replace ecologically degraded land with high-GHGV, lower yielding bioenergy crops, average landscape GHGV will most often be maximized through high yielding bioenergy crops that leave more land for uncultivated, high-GHGV ecosystems. While our case study focuses on GHGV, the same principles will be generally applicable to any ecosystem service whose value does not depend upon the spatial configuration of the landscape. Whenever bioenergy crops have substantially lower ecosystem services than the ecosystems with which they are competing for land, the most effective strategy for meeting bioenergy demand while maximizing ecosystem services on a landscape level is one of land sparing—that is, focusing simultaneously on maximizing the yield of bioenergy crops while preserving or restoring natural ecosystems.
Slewinski, Thomas L
2012-08-01
A dramatic change in agricultural crops is needed in order to keep pace with the demands of an increasing human population, exponential need for renewable fuels, and uncertain climatic changes. Grasses make up the vast majority of agricultural commodities. How these grasses capture, transport, and store carbohydrates underpins all aspects of crop productivity. Sink-source dynamics within the plant direct how much, where, and when carbohydrates are allocated, as well as determine the harvestable tissue. Carbohydrate partitioning can limit the yield capacity of these plants, thus offering a potential target for crop improvement. Grasses have the ability to buffer this sink-source interaction by transiently storing carbohydrates in stem tissue when production from the source is greater than whole-plant demand. These reserves improve yield stability in grain crops by providing an alternative source when photosynthetic capacity is reduced during the later phases of grain filling, or during periods of environmental and biotic stresses. Domesticated grasses such as sugarcane and sweet sorghum have undergone selection for high accumulation of stem carbohydrates, which serve as the primary sources of sugars for human and animal consumption, as well as ethanol production for fuel. With the enormous expectations placed on agricultural production in the near future, research into carbohydrate partitioning in grasses is essential for maintaining and increasing yields in grass crops. This review highlights the current knowledge of non-structural carbohydrate dynamics in grass stems and discusses the impacts of stem reserves in essential agronomic grasses.
Agricultural production and water use scenarios in Cyprus under global change
NASA Astrophysics Data System (ADS)
Bruggeman, Adriana; Zoumides, Christos; Camera, Corrado; Pashiardis, Stelios; Zomeni, Zomenia
2014-05-01
In many countries of the world, food demand exceeds the total agricultural production. In semi-arid countries, agricultural water demand often also exceeds the sustainable supply of water resources. These water-stressed countries are expected to become even drier, as a result of global climate change. This will have a significant impact on the future of the agricultural sector and on food security. The aim of the AGWATER project consortium is to provide recommendations for climate change adaptation for the agricultural sector in Cyprus and the wider Mediterranean region. Gridded climate data sets, with 1-km horizontal resolution were prepared for Cyprus for 1980-2010. Regional Climate Model results were statistically downscaled, with the help of spatial weather generators. A new soil map was prepared using a predictive modelling and mapping technique and a large spatial database with soil and environmental parameters. Stakeholder meetings with agriculture and water stakeholders were held to develop future water prices, based on energy scenarios and to identify climate resilient production systems. Green houses, including also hydroponic systems, grapes, potatoes, cactus pears and carob trees were the more frequently identified production systems. The green-blue-water model, based on the FAO-56 dual crop coefficient approach, has been set up to compute agricultural water demand and yields for all crop fields in Cyprus under selected future scenarios. A set of agricultural production and water use performance indicators are computed by the model, including green and blue water use, crop yield, crop water productivity, net value of crop production and economic water productivity. This work is part of the AGWATER project - AEIFORIA/GEOGRO/0311(BIE)/06 - co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation.
NASA Astrophysics Data System (ADS)
Yu, Yongxiang; Tao, Hui; Jia, Hongtao; Zhao, Chengyi
2017-06-01
The denitrification-decomposition (DNDC) model is a useful tool for integrating the effects of agricultural practices and climate change on soil nitrous oxide (N2O) emissions from agricultural ecosystems. In this study, the DNDC model was evaluated against observations and used to simulate the effect of plastic mulching on soil N2O emissions and crop growth. The DNDC model performed well in simulating temporal variations in N2O emissions and plant growth during the observation period, although it slightly underestimated the cumulative N2O emissions, and was able to simulate the effects of plastic mulching on N2O emissions and crop yield. Both the observations and simulations demonstrated that the application of plastic film increased cumulative N2O emissions and cotton lint yield compared with the non-mulched treatment. The sensitivity test showed that the N2O emissions and lint yield were sensitive to changes in climate and management practices, and the application of plastic film made the N2O emissions and lint yield less sensitive to changes in temperature and irrigation. Although the simulations showed that the beneficial impacts of plastic mulching on N2O emissions were not gained under high fertilizer and irrigation scenarios, our simulations suggest that the application of plastic film effectively reduced soil N2O emissions while promoting yields under suitable fertilizer rates and irrigation. Compared with the baseline scenario, future climate change significantly increased N2O emissions by 15-17% without significantly influencing the lint yields in the non-mulched treatment; in the mulched treatment, climate change significantly promoted the lint yield by 5-6% and significantly reduced N2O emissions by 14% in the RCP4.5 and RCP8.5 scenarios. Overall, our results demonstrate that the application of plastic film is an efficient way to address increased N2O emissions and simultaneously enhance crop yield in the future.
Contribution of Crop Models to Adaptation in Wheat.
Chenu, Karine; Porter, John Roy; Martre, Pierre; Basso, Bruno; Chapman, Scott Cameron; Ewert, Frank; Bindi, Marco; Asseng, Senthold
2017-06-01
With world population growing quickly, agriculture needs to produce more with fewer inputs while being environmentally friendly. In a context of changing environments, crop models are useful tools to simulate crop yields. Wheat (Triticum spp.) crop models have been evolving since the 1960s to translate processes related to crop growth and development into mathematical equations. These have been used over decades for agronomic purposes, and have more recently incorporated advances in the modeling of environmental footprints, biotic constraints, trait and gene effects, climate change impact, and the upscaling of global change impacts. This review outlines the potential and limitations of modern wheat crop models in assisting agronomists, breeders, and policymakers to address the current and future challenges facing agriculture. Copyright © 2017 Elsevier Ltd. All rights reserved.
Environmental risks and challenges associated with neonicotinoid insecticides
Hladik, Michelle L.; Main, Anson; Goulson, Dave
2018-01-01
Neonicotinoid use has increased rapidly in recent years, with a global shift towards insecticide applications as seed coatings rather than aerial spraying. While the use of seed coatings can lessen the amount of overspray and drift, the near universal and prophylactic use of neonicotinoid seed coatings on major agricultural crops has led to widespread detections in the environment (pollen, soil, water, honey). Pollinators and aquatic insects appear to be especially susceptible to the effects of neonicotinoids with current research suggesting that chronic sub-lethal effects are more prevalent than acute toxicity. Meanwhile, evidence of clear and consistent yield benefits from the use of neonicotinoids remains elusive for most crops. Future decisions on neonicotinoid use will benefit from weighing crop yield benefits versus environmental impacts to non-target organisms and considering whether there are more environmentally benign alternatives.
Weather-based forecasts of California crop yields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobell, D B; Cahill, K N; Field, C B
2005-09-26
Crop yield forecasts provide useful information to a range of users. Yields for several crops in California are currently forecast based on field surveys and farmer interviews, while for many crops official forecasts do not exist. As broad-scale crop yields are largely dependent on weather, measurements from existing meteorological stations have the potential to provide a reliable, timely, and cost-effective means to anticipate crop yields. We developed weather-based models of state-wide yields for 12 major California crops (wine grapes, lettuce, almonds, strawberries, table grapes, hay, oranges, cotton, tomatoes, walnuts, avocados, and pistachios), and tested their accuracy using cross-validation over themore » 1980-2003 period. Many crops were forecast with high accuracy, as judged by the percent of yield variation explained by the forecast, the number of yields with correctly predicted direction of yield change, or the number of yields with correctly predicted extreme yields. The most successfully modeled crop was almonds, with 81% of yield variance captured by the forecast. Predictions for most crops relied on weather measurements well before harvest time, allowing for lead times that were longer than existing procedures in many cases.« less
Closing yield gaps: perils and possibilities for biodiversity conservation.
Phalan, Ben; Green, Rhys; Balmford, Andrew
2014-04-05
Increasing agricultural productivity to 'close yield gaps' creates both perils and possibilities for biodiversity conservation. Yield increases often have negative impacts on species within farmland, but at the same time could potentially make it more feasible to minimize further cropland expansion into natural habitats. We combine global data on yield gaps, projected future production of maize, rice and wheat, the distributions of birds and their estimated sensitivity to changes in crop yields to map where it might be most beneficial for bird conservation to close yield gaps as part of a land-sparing strategy, and where doing so might be most damaging. Closing yield gaps to attainable levels to meet projected demand in 2050 could potentially help spare an area equivalent to that of the Indian subcontinent. Increasing yields this much on existing farmland would inevitably reduce its biodiversity, and therefore we advocate efforts both to constrain further increases in global food demand, and to identify the least harmful ways of increasing yields. The land-sparing potential of closing yield gaps will not be realized without specific mechanisms to link yield increases to habitat protection (and restoration), and therefore we suggest that conservationists, farmers, crop scientists and policy-makers collaborate to explore promising mechanisms.
New AgMIP Scenarios: Impacts of Volcanic Eruptions, Geoengineering, or Nuclear War on Agriculture
NASA Astrophysics Data System (ADS)
Robock, A.; Xia, L.
2016-12-01
Climate is one of the most important factors determining crop yields and world food supplies. To be well prepared for possible futures, it is necessary to study yield changes of major crops in response to different climate forcings. Previous studies mainly focus on the impact from global warming. Here we propose that the AgMIP community also study the impacts of stratospheric aerosols on agriculture. While nature can load the stratosphere with sulfate aerosols for several years from large volcanic eruptions, humans could also put sulfate aerosols into the stratosphere on purpose through geoengineering or soot as a result of the fires from a nuclear war. Stratospheric aerosols would change the temperature, precipitation, total insolation, and fraction of diffuse radiation due to their radiative impacts, and could produce more ultraviolet radiation by ozone destruction. Surface ozone concentration could also change by changed transport from the stratosphere as well as changed tropospheric chemistry. As a demonstration of these effects, using the crop model in the NCAR Community Land Model (CLM-crop), we have studied sulfate injection geoengineering and nuclear war impacts on global agriculture in response to temperature, precipitation and radiation changes, and found significant changes in patterns of global food production. With the new ozone module in CLM-crop, we simulated how surface ozone concentration change under sulfate injection geoengineering would change the agriculture response. Agriculture would benefit from less surface ozone concentration associated with the specific geoengineering scenario comparing with the global warming scenario. Here, we would like to encourage more crop modelers to improve crop models in terms of crop responses to ozone, ultraviolet radiation, and diffuse radiation. We also invite more global crop modeling groups to use the climate forcing we would be happy to provide to gain a better understanding of global agriculture responses under different future climate scenarios with stratospheric aerosols.
Projective analysis of staple food crop productivity in adaptation to future climate change in China
NASA Astrophysics Data System (ADS)
Zhang, Qing; Zhang, Wen; Li, Tingting; Sun, Wenjuan; Yu, Yongqiang; Wang, Guocheng
2017-08-01
Climate change continually affects our capabilities to feed the increasing population. Rising temperatures have the potential to shorten the crop growth duration and therefore reduce crop yields. In the past decades, China has successfully improved crop cultivars to stabilize, and even lengthen, the crop growth duration to make use of increasing heat resources. However, because of the complex cropping systems in the different regions of China, the possibility and the effectiveness of regulating crop growth duration to reduce the negative impacts of future climate change remain questionable. Here, we performed a projective analysis of the staple food crop productivity in double-rice, wheat-rice, wheat-maize, single-rice, and single-maize cropping systems in China using modeling approaches. The results indicated that from the present to the 2040s, the warming climate would shorten the growth duration of the current rice, wheat, and maize cultivars by 2-24, 11-13, and 9-29 days, respectively. The most significant shortening of the crop growth duration would be in Northeast China, where single-rice and single-maize cropping dominates the croplands. The shortened crop growth duration would consequently reduce crop productivity. The most significant decreases would be 27-31, 6-20, and 7-22% for the late crop in the double-rice rotation, wheat in the winter wheat-rice rotation, and single maize, respectively. However, our projection analysis also showed that the negative effects of the warming climate could be compensated for by stabilizing the growth duration of the crops via improvement in crop cultivars. In this case, the productivity of rice, wheat, and maize in the 2040s would increase by 4-16, 31-38, and 11-12%, respectively. Our modeling results implied that the possibility of securing future food production exists by adopting proper adaptation options in China.
Zhang, Qing; Zhang, Wen; Li, Tingting; Sun, Wenjuan; Yu, Yongqiang; Wang, Guocheng
2017-08-01
Climate change continually affects our capabilities to feed the increasing population. Rising temperatures have the potential to shorten the crop growth duration and therefore reduce crop yields. In the past decades, China has successfully improved crop cultivars to stabilize, and even lengthen, the crop growth duration to make use of increasing heat resources. However, because of the complex cropping systems in the different regions of China, the possibility and the effectiveness of regulating crop growth duration to reduce the negative impacts of future climate change remain questionable. Here, we performed a projective analysis of the staple food crop productivity in double-rice, wheat-rice, wheat-maize, single-rice, and single-maize cropping systems in China using modeling approaches. The results indicated that from the present to the 2040s, the warming climate would shorten the growth duration of the current rice, wheat, and maize cultivars by 2-24, 11-13, and 9-29 days, respectively. The most significant shortening of the crop growth duration would be in Northeast China, where single-rice and single-maize cropping dominates the croplands. The shortened crop growth duration would consequently reduce crop productivity. The most significant decreases would be 27-31, 6-20, and 7-22% for the late crop in the double-rice rotation, wheat in the winter wheat-rice rotation, and single maize, respectively. However, our projection analysis also showed that the negative effects of the warming climate could be compensated for by stabilizing the growth duration of the crops via improvement in crop cultivars. In this case, the productivity of rice, wheat, and maize in the 2040s would increase by 4-16, 31-38, and 11-12%, respectively. Our modeling results implied that the possibility of securing future food production exists by adopting proper adaptation options in China.
Jin, Zhenong; Zhuang, Qianlai; Tan, Zeli; Dukes, Jeffrey S; Zheng, Bangyou; Melillo, Jerry M
2016-09-01
Stresses from heat and drought are expected to increasingly suppress crop yields, but the degree to which current models can represent these effects is uncertain. Here we evaluate the algorithms that determine impacts of heat and drought stress on maize in 16 major maize models by incorporating these algorithms into a standard model, the Agricultural Production Systems sIMulator (APSIM), and running an ensemble of simulations. Although both daily mean temperature and daylight temperature are common choice of forcing heat stress algorithms, current parameterizations in most models favor the use of daylight temperature even though the algorithm was designed for daily mean temperature. Different drought algorithms (i.e., a function of soil water content, of soil water supply to demand ratio, and of actual to potential transpiration ratio) simulated considerably different patterns of water shortage over the growing season, but nonetheless predicted similar decreases in annual yield. Using the selected combination of algorithms, our simulations show that maize yield reduction was more sensitive to drought stress than to heat stress for the US Midwest since the 1980s, and this pattern will continue under future scenarios; the influence of excessive heat will become increasingly prominent by the late 21st century. Our review of algorithms in 16 crop models suggests that the impacts of heat and drought stress on plant yield can be best described by crop models that: (i) incorporate event-based descriptions of heat and drought stress, (ii) consider the effects of nighttime warming, and (iii) coordinate the interactions among multiple stresses. Our study identifies the proficiency with which different model formulations capture the impacts of heat and drought stress on maize biomass and yield production. The framework presented here can be applied to other modeled processes and used to improve yield predictions of other crops with a wide variety of crop models. © 2016 John Wiley & Sons Ltd.
Sultan, Benjamin; Gaetani, Marco
2016-01-01
West Africa is known to be particularly vulnerable to climate change due to high climate variability, high reliance on rain-fed agriculture, and limited economic and institutional capacity to respond to climate variability and change. In this context, better knowledge of how climate will change in West Africa and how such changes will impact crop productivity is crucial to inform policies that may counteract the adverse effects. This review paper provides a comprehensive overview of climate change impacts on agriculture in West Africa based on the recent scientific literature. West Africa is nowadays experiencing a rapid climate change, characterized by a widespread warming, a recovery of the monsoonal precipitation, and an increase in the occurrence of climate extremes. The observed climate tendencies are also projected to continue in the twenty-first century under moderate and high emission scenarios, although large uncertainties still affect simulations of the future West African climate, especially regarding the summer precipitation. However, despite diverging future projections of the monsoonal rainfall, which is essential for rain-fed agriculture, a robust evidence of yield loss in West Africa emerges. This yield loss is mainly driven by increased mean temperature while potential wetter or drier conditions as well as elevated CO2 concentrations can modulate this effect. Potential for adaptation is illustrated for major crops in West Africa through a selection of studies based on process-based crop models to adjust cropping systems (change in varieties, sowing dates and density, irrigation, fertilizer management) to future climate. Results of the cited studies are crop and region specific and no clear conclusions can be made regarding the most effective adaptation options. Further efforts are needed to improve modeling of the monsoon system and to better quantify the uncertainty in its changes under a warmer climate, in the response of the crops to such changes and in the potential for adaptation. PMID:27625660
Sultan, Benjamin; Gaetani, Marco
2016-01-01
West Africa is known to be particularly vulnerable to climate change due to high climate variability, high reliance on rain-fed agriculture, and limited economic and institutional capacity to respond to climate variability and change. In this context, better knowledge of how climate will change in West Africa and how such changes will impact crop productivity is crucial to inform policies that may counteract the adverse effects. This review paper provides a comprehensive overview of climate change impacts on agriculture in West Africa based on the recent scientific literature. West Africa is nowadays experiencing a rapid climate change, characterized by a widespread warming, a recovery of the monsoonal precipitation, and an increase in the occurrence of climate extremes. The observed climate tendencies are also projected to continue in the twenty-first century under moderate and high emission scenarios, although large uncertainties still affect simulations of the future West African climate, especially regarding the summer precipitation. However, despite diverging future projections of the monsoonal rainfall, which is essential for rain-fed agriculture, a robust evidence of yield loss in West Africa emerges. This yield loss is mainly driven by increased mean temperature while potential wetter or drier conditions as well as elevated CO2 concentrations can modulate this effect. Potential for adaptation is illustrated for major crops in West Africa through a selection of studies based on process-based crop models to adjust cropping systems (change in varieties, sowing dates and density, irrigation, fertilizer management) to future climate. Results of the cited studies are crop and region specific and no clear conclusions can be made regarding the most effective adaptation options. Further efforts are needed to improve modeling of the monsoon system and to better quantify the uncertainty in its changes under a warmer climate, in the response of the crops to such changes and in the potential for adaptation.
NASA Astrophysics Data System (ADS)
Vico, Giulia; Brunsell, Nathaniel
2017-04-01
The projected population growth and changes in climate and dietary habits will further increase the pressure on water resources globally. Within precision farming, a host of technical solutions has been developed to reduce water consumption for agricultural uses. The next frontier for a more sustainable agriculture is the combination of reduced water requirements with enhanced ecosystem services. Currently, staple grains are obtained from annuals crops. A shift from annual to perennial crops has been suggested as a way to enhance ecosystem services. In fact, perennial plants, with their continuous soil cover and the higher allocation of resources to the below ground, contribute to the reduction of soil erosion and nutrient losses, while enhancing carbon sequestration in the root zone. Nevertheless, the net effect of a shift to perennial crops on water use for agriculture is still unknown, despite its relevance for the sustainability of such a shift. We explore here the implications for water management at the field- to farm-scale of a shift from annual to perennial crops, under rainfed and irrigated agriculture. A probabilistic description of the soil water balance and crop development is employed to quantify water requirements and yields and their inter-annual variability, as a function of rainfall patterns, soil and crop features. Optimal irrigation strategies are thus defined in terms of maximization of yield and minimization of required irrigation volumes and their inter-annual variability. The probabilistic model is parameterized based on an extensive meta-analysis of traits of co-generic annual and perennial species to explore the consequences for water requirements of shifting from annual to perennial crops under current and future climates. We show that the larger and more developed roots of perennial crops may allow a better exploitation of soil water resources and a reduction of yield variability with respect to annual species. At the same time, perennial crops are larger and may require adequate water supply for longer periods, thus leading to higher water requirements. Furthermore, they lead to lower yields per unit area, thus requiring irrigation of larger areas.
Adapting crop rotations to climate change in regional impact modelling assessments.
Teixeira, Edmar I; de Ruiter, John; Ausseil, Anne-Gaelle; Daigneault, Adam; Johnstone, Paul; Holmes, Allister; Tait, Andrew; Ewert, Frank
2018-03-01
The environmental and economic sustainability of future cropping systems depends on adaptation to climate change. Adaptation studies commonly rely on agricultural systems models to integrate multiple components of production systems such as crops, weather, soil and farmers' management decisions. Previous adaptation studies have mostly focused on isolated monocultures. However, in many agricultural regions worldwide, multi-crop rotations better represent local production systems. It is unclear how adaptation interventions influence crops grown in sequences. We develop a catchment-scale assessment to investigate the effects of tactical adaptations (choice of genotype and sowing date) on yield and underlying crop-soil factors of rotations. Based on locally surveyed data, a silage-maize followed by catch-crop-wheat rotation was simulated with the APSIM model for the RCP 8.5 emission scenario, two time periods (1985-2004 and 2080-2100) and six climate models across the Kaituna catchment in New Zealand. Results showed that direction and magnitude of climate change impacts, and the response to adaptation, varied spatially and were affected by rotation carryover effects due to agronomical (e.g. timing of sowing and harvesting) and soil (e.g. residual nitrogen, N) aspects. For example, by adapting maize to early-sowing dates under a warmer climate, there was an advance in catch crop establishment which enhanced residual soil N uptake. This dynamics, however, differed with local environment and choice of short- or long-cycle maize genotypes. Adaptation was insufficient to neutralize rotation yield losses in lowlands but consistently enhanced yield gains in highlands, where other constraints limited arable cropping. The positive responses to adaptation were mainly due to increases in solar radiation interception across the entire growth season. These results provide deeper insights on the dynamics of climate change impacts for crop rotation systems. Such knowledge can be used to develop improved regional impact assessments for situations where multi-crop rotations better represent predominant agricultural systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Commercial Crop Yields Reveal Strengths and Weaknesses for Organic Agriculture in the United States.
Kniss, Andrew R; Savage, Steven D; Jabbour, Randa
2016-01-01
Land area devoted to organic agriculture has increased steadily over the last 20 years in the United States, and elsewhere around the world. A primary criticism of organic agriculture is lower yield compared to non-organic systems. Previous analyses documenting the yield deficiency in organic production have relied mostly on data generated under experimental conditions, but these studies do not necessarily reflect the full range of innovation or practical limitations that are part of commercial agriculture. The analysis we present here offers a new perspective, based on organic yield data collected from over 10,000 organic farmers representing nearly 800,000 hectares of organic farmland. We used publicly available data from the United States Department of Agriculture to estimate yield differences between organic and conventional production methods for the 2014 production year. Similar to previous work, organic crop yields in our analysis were lower than conventional crop yields for most crops. Averaged across all crops, organic yield averaged 67% of conventional yield [corrected]. However, several crops had no significant difference in yields between organic and conventional production, and organic yields surpassed conventional yields for some hay crops. The organic to conventional yield ratio varied widely among crops, and in some cases, among locations within a crop. For soybean (Glycine max) and potato (Solanum tuberosum), organic yield was more similar to conventional yield in states where conventional yield was greatest. The opposite trend was observed for barley (Hordeum vulgare), wheat (Triticum aestevum), and hay crops, however, suggesting the geographical yield potential has an inconsistent effect on the organic yield gap.
Commercial Crop Yields Reveal Strengths and Weaknesses for Organic Agriculture in the United States
Savage, Steven D.; Jabbour, Randa
2016-01-01
Land area devoted to organic agriculture has increased steadily over the last 20 years in the United States, and elsewhere around the world. A primary criticism of organic agriculture is lower yield compared to non-organic systems. Previous analyses documenting the yield deficiency in organic production have relied mostly on data generated under experimental conditions, but these studies do not necessarily reflect the full range of innovation or practical limitations that are part of commercial agriculture. The analysis we present here offers a new perspective, based on organic yield data collected from over 10,000 organic farmers representing nearly 800,000 hectares of organic farmland. We used publicly available data from the United States Department of Agriculture to estimate yield differences between organic and conventional production methods for the 2014 production year. Similar to previous work, organic crop yields in our analysis were lower than conventional crop yields for most crops. Averaged across all crops, organic yield averaged 80% of conventional yield. However, several crops had no significant difference in yields between organic and conventional production, and organic yields surpassed conventional yields for some hay crops. The organic to conventional yield ratio varied widely among crops, and in some cases, among locations within a crop. For soybean (Glycine max) and potato (Solanum tuberosum), organic yield was more similar to conventional yield in states where conventional yield was greatest. The opposite trend was observed for barley (Hordeum vulgare), wheat (Triticum aestevum), and hay crops, however, suggesting the geographical yield potential has an inconsistent effect on the organic yield gap. PMID:27552217
Breeding approaches and genomics technologies to increase crop yield under low-temperature stress.
Jha, Uday Chand; Bohra, Abhishek; Jha, Rintu
2017-01-01
Improved knowledge about plant cold stress tolerance offered by modern omics technologies will greatly inform future crop improvement strategies that aim to breed cultivars yielding substantially high under low-temperature conditions. Alarmingly rising temperature extremities present a substantial impediment to the projected target of 70% more food production by 2050. Low-temperature (LT) stress severely constrains crop production worldwide, thereby demanding an urgent yet sustainable solution. Considerable research progress has been achieved on this front. Here, we review the crucial cellular and metabolic alterations in plants that follow LT stress along with the signal transduction and the regulatory network describing the plant cold tolerance. The significance of plant genetic resources to expand the genetic base of breeding programmes with regard to cold tolerance is highlighted. Also, the genetic architecture of cold tolerance trait as elucidated by conventional QTL mapping and genome-wide association mapping is described. Further, global expression profiling techniques including RNA-Seq along with diverse omics platforms are briefly discussed to better understand the underlying mechanism and prioritize the candidate gene (s) for downstream applications. These latest additions to breeders' toolbox hold immense potential to support plant breeding schemes that seek development of LT-tolerant cultivars. High-yielding cultivars endowed with greater cold tolerance are urgently required to sustain the crop yield under conditions severely challenged by low-temperature.
Application of future remote sensing systems to irrigation
NASA Technical Reports Server (NTRS)
Miller, L. D.
1982-01-01
Area estimates of irrigated crops and knowledge of crop type are required for modeling water consumption to assist farmers, rangers, and agricultural consultants in scheduling irrigation for distributed management of crop yields. Information on canopy physiology and soil moisture status on a spatial basis is potentially available from remote sensors, so the questions to be addressed relate to: (1) timing (data frequency, instantaneous and integrated measurement); and scheduling (widely distributed spatial demands); (2) spatial resolution; (3) radiometric and geometric accuracy and geoencoding; and (4) information/data distribution. This latter should be overnight, with no central storage, onsite capture, and low cost.
Identification of technology options for reducing nitrogen pollution in cropping systems of Pujiang*
Fang, Bin; Wang, Guang-huo; Van den berg, Marrit; Roetter, Reimund
2005-01-01
This work analyses the potential role of nitrogen pollution technology of crop systems of Pujiang, County in Eastern China’s Zhejiang Province, rice and vegetables are important cropping systems. We used a case study approach involving comparison of farmer practices and improved technologies. This approach allows assessing the impact of technology on pollution, is forward looking, and can yield information on the potential of on-the-shelf technology and provide opportunities for technology development. The approach particularly suits newly developed rice technologies with large potential of reducing nitrogen pollution and for future rice and vegetables technologies. The results showed that substantial reductions in nitrogen pollution are feasible for both types of crops. PMID:16187411
Identification of technology options for reducing nitrogen pollution in cropping systems of Pujiang.
Fang, Bin; Wang, Guang-Huo; Van, Den Berg Marrit; Roetter, Reimund
2005-10-01
This work analyses the potential role of nitrogen pollution technology of crop systems of Pujiang, County in Eastern China's Zhejiang Province, rice and vegetables are important cropping systems. We used a case study approach involving comparison of farmer practices and improved technologies. This approach allows assessing the impact of technology on pollution, is forward looking, and can yield information on the potential of on-the-shelf technology and provide opportunities for technology development. The approach particularly suits newly developed rice technologies with large potential of reducing nitrogen pollution and for future rice and vegetables technologies. The results showed that substantial reductions in nitrogen pollution are feasible for both types of crops.
NASA Technical Reports Server (NTRS)
Cacas, Joseph; Glaser, John; Copenhaver, Kenneth; May, George; Stephens, Karen
2008-01-01
The United States Environmental Protection Agency (EPA) has declared that "significant benefits accrue to growers, the public, and the environment" from the use of transgenic pesticidal crops due to reductions in pesticide usage for crop pest management. Large increases in the global use of transgenic pesticidal crops has reduced the amounts of broad spectrum pesticides used to manage pest populations, improved yield and reduced the environmental impact of crop management. A significant threat to the continued use of this technology is the evolution of resistance in insect pest populations to the insecticidal Bt toxins expressed by the plants. Management of transgenic pesticidal crops with an emphasis on conservation of Bt toxicity in field populations of insect pests is important to the future of sustainable agriculture. A vital component of this transgenic pesticidal crop management is establishing the proof of concept basic understanding, situational awareness, and monitoring and decision support system tools for more than 133650 square kilometers (33 million acres) of bio-engineered corn and cotton for development of insect resistance . Early and recent joint NASA, US EPA and ITD remote imagery flights and ground based field experiments have provided very promising research results that will potentially address future requirements for crop management capabilities.
Schilling, Keith E.; Jha, Manoj K.; Zhang, You‐Kuan; Gassman, Philip W.; Wolter, Calvin F.
2009-01-01
Over the last century, land use and land cover (LULC) in the United States Corn Belt region shifted from mixed perennial and annual cropping systems to primarily annual crops. Historical LULC change impacted the annual water balance in many Midwestern basins by decreasing annual evapotranspiration (ET) and increasing streamflow and base flow. Recent expansion of the biofuel industry may lead to future LULC changes from increasing corn acreage and potential conversion of the industry to cellulosic bioenergy crops of warm or cool season grasses. In this paper, the Soil and Water Assessment Tool (SWAT) model was used to evaluate potential impacts from future LULC change on the annual and seasonal water balance of the Raccoon River watershed in west‐central Iowa. Three primary scenarios for LULC change and three scenario variants were evaluated, including an expansion of corn acreage in the watershed and two scenarios involving expansion of land using warm season and cool season grasses for ethanol biofuel. Modeling results were consistent with historical observations. Increased corn production will decrease annual ET and increase water yield and losses of nitrate, phosphorus, and sediment, whereas increasing perennialization will increase ET and decrease water yield and loss of nonpoint source pollutants. However, widespread tile drainage that exists today may limit the extent to which a mixed perennial‐annual land cover would ever resemble pre‐1940s hydrologic conditions. Study results indicate that future LULC change will affect the water balance of the watershed, with consequences largely dependent on the future LULC trajectory.
Exploring and Harnessing Haplotype Diversity to Improve Yield Stability in Crops.
Qian, Lunwen; Hickey, Lee T; Stahl, Andreas; Werner, Christian R; Hayes, Ben; Snowdon, Rod J; Voss-Fels, Kai P
2017-01-01
In order to meet future food, feed, fiber, and bioenergy demands, global yields of all major crops need to be increased significantly. At the same time, the increasing frequency of extreme weather events such as heat and drought necessitates improvements in the environmental resilience of modern crop cultivars. Achieving sustainably increase yields implies rapid improvement of quantitative traits with a very complex genetic architecture and strong environmental interaction. Latest advances in genome analysis technologies today provide molecular information at an ultrahigh resolution, revolutionizing crop genomic research, and paving the way for advanced quantitative genetic approaches. These include highly detailed assessment of population structure and genotypic diversity, facilitating the identification of selective sweeps and signatures of directional selection, dissection of genetic variants that underlie important agronomic traits, and genomic selection (GS) strategies that not only consider major-effect genes. Single-nucleotide polymorphism (SNP) markers today represent the genotyping system of choice for crop genetic studies because they occur abundantly in plant genomes and are easy to detect. SNPs are typically biallelic, however, hence their information content compared to multiallelic markers is low, limiting the resolution at which SNP-trait relationships can be delineated. An efficient way to overcome this limitation is to construct haplotypes based on linkage disequilibrium, one of the most important features influencing genetic analyses of crop genomes. Here, we give an overview of the latest advances in genomics-based haplotype analyses in crops, highlighting their importance in the context of polyploidy and genome evolution, linkage drag, and co-selection. We provide examples of how haplotype analyses can complement well-established quantitative genetics frameworks, such as quantitative trait analysis and GS, ultimately providing an effective tool to equip modern crops with environment-tailored characteristics.
Hamada, Yuki; Ssegane, Herbert; Negri, Maria Cristina
2015-07-31
Biofuels are important alternatives for meeting our future energy needs. Successful bioenergy crop production requires maintaining environmental sustainability and minimum impacts on current net annual food, feed, and fiber production. The objectives of this study were to: (1) determine under-productive areas within an agricultural field in a watershed using a single date; high resolution remote sensing and (2) examine impacts of growing bioenergy crops in the under-productive areas using hydrologic modeling in order to facilitate sustainable landscape design. Normalized difference indices (NDIs) were computed based on the ratio of all possible two-band combinations using the RapidEye and the National Agriculturalmore » Imagery Program images collected in summer 2011. A multiple regression analysis was performed using 10 NDIs and five RapidEye spectral bands. The regression analysis suggested that the red and near infrared bands and NDI using red-edge and near infrared that is known as the red-edge normalized difference vegetation index (RENDVI) had the highest correlation (R 2 = 0.524) with the reference yield. Although predictive yield map showed striking similarity to the reference yield map, the model had modest correlation; thus, further research is needed to improve predictive capability for absolute yields. Forecasted impact using the Soil and Water Assessment Tool model of growing switchgrass ( Panicum virgatum) on under-productive areas based on corn yield thresholds of 3.1, 4.7, and 6.3 Mg·ha -1 showed reduction of tile NO 3-N and sediment exports by 15.9%–25.9% and 25%–39%, respectively. Corresponding reductions in water yields ranged from 0.9% to 2.5%. While further research is warranted, the study demonstrated the integration of remote sensing and hydrologic modeling to quantify the multifunctional value of projected future landscape patterns in a context of sustainable bioenergy crop production.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Yuki; Ssegane, Herbert; Negri, Maria Cristina
Biofuels are important alternatives for meeting our future energy needs. Successful bioenergy crop production requires maintaining environmental sustainability and minimum impacts on current net annual food, feed, and fiber production. The objectives of this study were to: (1) determine under-productive areas within an agricultural field in a watershed using a single date; high resolution remote sensing and (2) examine impacts of growing bioenergy crops in the under-productive areas using hydrologic modeling in order to facilitate sustainable landscape design. Normalized difference indices (NDIs) were computed based on the ratio of all possible two-band combinations using the RapidEye and the National Agriculturalmore » Imagery Program images collected in summer 2011. A multiple regression analysis was performed using 10 NDIs and five RapidEye spectral bands. The regression analysis suggested that the red and near infrared bands and NDI using red-edge and near infrared that is known as the red-edge normalized difference vegetation index (RENDVI) had the highest correlation (R 2 = 0.524) with the reference yield. Although predictive yield map showed striking similarity to the reference yield map, the model had modest correlation; thus, further research is needed to improve predictive capability for absolute yields. Forecasted impact using the Soil and Water Assessment Tool model of growing switchgrass ( Panicum virgatum) on under-productive areas based on corn yield thresholds of 3.1, 4.7, and 6.3 Mg·ha -1 showed reduction of tile NO 3-N and sediment exports by 15.9%–25.9% and 25%–39%, respectively. Corresponding reductions in water yields ranged from 0.9% to 2.5%. While further research is warranted, the study demonstrated the integration of remote sensing and hydrologic modeling to quantify the multifunctional value of projected future landscape patterns in a context of sustainable bioenergy crop production.« less
Past and future weather-induced risk in crop production
NASA Astrophysics Data System (ADS)
Elliott, J. W.; Glotter, M.; Russo, T. A.; Sahoo, S.; Foster, I.; Benton, T.; Mueller, C.
2016-12-01
Drought-induced agricultural loss is one of the most costly impacts of extreme weather and may harm more people than any other consequence of climate change. Improvements in farming practices have dramatically increased crop productivity, but yields today are still tightly linked to climate variation. We report here on a number of recent studies evaluating extreme event risk and impacts under historical and near future conditions, including studies conducted as part of the Agricultural Modeling Intercomparison and Improvement Project (AgMIP), the Inter-Sectoral Impacts Model Intercomparison Project (ISI-MIP) and the UK-US Taskforce on Extreme Weather and Global Food System Resilience.
NASA Astrophysics Data System (ADS)
Bartholomeus, Ruud; van den Eertwegh, Gé; Simons, Gijs
2015-04-01
Agricultural crop yields depend largely on the soil moisture conditions in the root zone. Drought but especially an excess of water in the root zone and herewith limited availability of soil oxygen reduces crop yield. With ongoing climate change, more prolonged dry periods alternate with more intensive rainfall events, which changes soil moisture dynamics. With unaltered water management practices, reduced crop yield due to both drought stress and waterlogging will increase. Therefore, both farmers and water management authorities need to be provided with opportunities to reduce risks of decreasing crop yields. In The Netherlands, agricultural production of crops represents a market exceeding 2 billion euros annually. Given the increased variability in meteorological conditions and the resulting larger variations in soil moisture contents, it is of large economic importance to provide farmers and water management authorities with tools to mitigate risks of reduced crop yield by anticipatory water management, both at field and at regional scale. We provide the development and the field application of a decision support system (DSS), which allows to optimize crop yield by timely anticipation on drought and waterlogging situations. By using this DSS, we will minimize plant water stress through automated drainage and irrigation management. In order to optimize soil moisture conditions for crop growth, the interacting processes in the soil-plant-atmosphere system need to be considered explicitly. Our study comprises both the set-up and application of the DSS on a pilot plot in The Netherlands, in order to evaluate its implementation into daily agricultural practice. The DSS focusses on anticipatory water management at the field scale, i.e. the unit scale of interest to a farmer. We combine parallel field measurements ('observe'), process-based model simulations ('predict'), and the novel Climate Adaptive Drainage (CAD) system ('adjust') to optimize soil moisture conditions. CAD is used both for controlled drainage practices and for sub-irrigation. The DSS has a core of the plot-scale SWAP model (soil-water-atmosphere-plant), extended with a process-based module for the simulation of oxygen stress for plant roots. This module involves macro-scale and micro-scale gas diffusion, as well as the plant physiological demand of oxygen, to simulate transpiration reduction due to limited oxygen availability. Continuous measurements of soil moisture content, groundwater level, and drainage level are used to calibrate the SWAP model each day. This leads to an optimal reproduction of the actual soil moisture conditions by data assimilation in the first step in the DSS process. During the next step, near-future (+10 days) soil moisture conditions and drought and oxygen stress are predicted using weather forecasts. Finally, optimal drainage levels to minimize stress are simulated, which can be established by CAD. Linkage to a grid-based hydrological simulation model (SPHY) facilitates studying the spatial dynamics of soil moisture and associated implications for management at the regional scale. Thus, by using local-scale measurements, process-based models and weather forecasts to anticipate on near-future conditions, not only field-scale water management but also regional surface water management can be optimized both in space and time.
NASA's Biomass Production Chamber: a testbed for bioregenerative life support studies
NASA Technical Reports Server (NTRS)
Wheeler, R. M.; Mackowiak, C. L.; Stutte, G. W.; Sager, J. C.; Yorio, N. C.; Ruffe, L. M.; Fortson, R. E.; Dreschel, T. W.; Knott, W. M.; Corey, K. A.
1996-01-01
The Biomass Production Chamber (BPC) located at Kennedy Space Center, FL, USA provides a large (20 m2 area, 113 m3 vol.), closed environment for crop growth tests for NASA's Controlled Ecological Life Support System (CELSS) program. Since the summer of 1988, the chamber has operated on a near-continuous basis (over 1200 days) without any major failures (excluding temporary power losses). During this time, five crops of wheat (64-86 days each), three crops of soybean (90 to 97 days), five crops of lettuce (28-30 days), and four crops of potato (90 to 105 days were grown, producing 481 kg of dry plant biomass, 196 kg edible biomass, 540 kg of oxygen, 94,700 kg of condensed water, and fixing 739 kg of carbon dioxide. Results indicate that total biomass yields were close to expected values for the given light input, but edible biomass yields and harvest indices were slightly lower than expected. Stand photosynthesis, respiration, transpiration, and nutrient uptake rates were monitored throughout growth and development of the different crops, along with the build-up of ethylene and other volatile organic compounds in the atmosphere. Data were also gathered on system hardware maintenance and repair, as well as person-hours required for chamber operation. Future tests will include long-term crop production studies, tests in which nutrients from waste treatment systems will be used to grow new crops, and multi-species tests.
NASA Astrophysics Data System (ADS)
Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Müller, Christoph; Pugh, Thomas A. M.; Boote, Kenneth J.; Conway, Declan; Ruane, Alex C.; Gerten, Dieter; Jones, James W.; Khabarov, Nikolay; Olin, Stefan; Schaphoff, Sibyll; Schmid, Erwin; Yang, Hong; Rosenzweig, Cynthia
2016-08-01
Rising atmospheric CO2 concentrations ([CO2]) are expected to enhance photosynthesis and reduce crop water use. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments and global crop models to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated [CO2] and associated climate change projected for a high-end greenhouse gas emissions scenario. We find CO2 effects increase global CWP by 10[047]%-27[737]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rainfed wheat). If realized in the fields, the effects of elevated [CO2] could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4-17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modelling the effects of rising [CO2] across crop and hydrological modelling communities.
Regional Disparities in the Beneficial Effects of Rising CO2 Emissions on Crop Water Productivity
NASA Technical Reports Server (NTRS)
Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Meuller, Christoph; Pugh, Thomas A. M.; Boote, Kenneth J.; Conway, Declan; Ruane, Alex C.; Gerten, Dieter; Jones, James W.;
2016-01-01
Rising atmospheric carbon dioxide concentrations are expected to enhance photosynthesis and reduce crop water use. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments and global crop models to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated carbon dioxide and associated climate change projected for a high-end greenhouse gas emissions scenario. We find carbon dioxide effects increase global CWP by 10[0;47]%-27[7;37]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rain fed wheat). If realized in the fields, the effects of elevated carbon dioxide could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4-17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modeling the effects of rising carbon dioxide across crop and hydrological modeling communities.
Adapting to warmer climate through prolonged maize grain filling period in the US Midwest
NASA Astrophysics Data System (ADS)
Zhu, P.; Zhuang, Q.; Jin, Z.
2017-12-01
Climate warming is expected to negatively impact the US food productivity. How to adapt to the future warmer environment and meet the rising food requirement becomes unprecedented urgent. Continuous satellite observational data provides an opportunity to examine the historic responses of crop plants to climate variation. Here 16 years crop growing phases information across US Midwest is generated based on satellite observations. We found a prolonged grain-filling period during 2000-2015, which could partly explain the increasing trend in Midwest maize yield. This longer grain-filling period might be resulted from the adoption of longer maturity group varieties or more resistant varieties to temperature variation. Other management practice changes like advance in planting date could be also an effective way of adapting future warmer climate through lowering the possibility of exposure to heat and drought stresses. If the progress in breeding technology enables the maize grain-filling period to prolong with the current rate, the maize grain filling length could be longer and maize yield in Midwest could adapt to future climate despite of the warming.
Modelling impacts of second generation bioenergy production on Ecosystem Services in Europe
NASA Astrophysics Data System (ADS)
Henner, D. N.; Smith, P.; Davies, C.; McNamara, N. P.
2016-12-01
Bioenergy crops are an important source of renewable energy and likely to play a major role in transitioning to a lower CO2 energy system. There is, however, uncertainty about the impacts of the growth of bioenergy crops on broader sustainability encompassed by ecosystem services, further enhanced by ongoing climate change. The goal of this project is to develop a comprehensive model that covers ecosystem services at a continental scale including biodiversity and pollination, water and air security, erosion control and soil security, GHG emissions, soil C and cultural services like tourism value. The technical distribution potential and likely yield of second generation energy crops, such as Miscanthus, Short Rotation Coppice (SRC; willow and poplar) was modelled using ECOSSE, DayCent, SalixFor and MiscanFor models. In addition, methods like water footprint tools, tourism value maps and ecosystem valuation tools and models are utilised. We will present results for synergies and trade-offs between land use change and ecosystem services, impact on food security and land management. Further, we will show modelled yield maps for different cultivars of Miscanthus, willow and poplar in Europe and constraint/opportunity maps based on projected yield and other factors e.g. total economic value, technical potential, current land use, climate change and trade-offs and synergies. It will be essential to include multiple ecosystem services when assessing the potential for bioenergy production/expansion that does not impact other land uses or provisioning services. Considering that the soil GHG balance is dominated by change in soil organic carbon (SOC) and the difference among Miscanthus and SRC is largely determined by yield, an important target for management of perennial energy crops is to achieve the best possible yield using the most appropriate energy crop and cultivar for the local situation. This research could inform future policy decisions on bioenergy crops in Europe.
A probabilistic model framework for evaluating year-to-year variation in crop productivity
NASA Astrophysics Data System (ADS)
Yokozawa, M.; Iizumi, T.; Tao, F.
2008-12-01
Most models describing the relation between crop productivity and weather condition have so far been focused on mean changes of crop yield. For keeping stable food supply against abnormal weather as well as climate change, evaluating the year-to-year variations in crop productivity rather than the mean changes is more essential. We here propose a new framework of probabilistic model based on Bayesian inference and Monte Carlo simulation. As an example, we firstly introduce a model on paddy rice production in Japan. It is called PRYSBI (Process- based Regional rice Yield Simulator with Bayesian Inference; Iizumi et al., 2008). The model structure is the same as that of SIMRIW, which was developed and used widely in Japan. The model includes three sub- models describing phenological development, biomass accumulation and maturing of rice crop. These processes are formulated to include response nature of rice plant to weather condition. This model inherently was developed to predict rice growth and yield at plot paddy scale. We applied it to evaluate the large scale rice production with keeping the same model structure. Alternatively, we assumed the parameters as stochastic variables. In order to let the model catch up actual yield at larger scale, model parameters were determined based on agricultural statistical data of each prefecture of Japan together with weather data averaged over the region. The posterior probability distribution functions (PDFs) of parameters included in the model were obtained using Bayesian inference. The MCMC (Markov Chain Monte Carlo) algorithm was conducted to numerically solve the Bayesian theorem. For evaluating the year-to-year changes in rice growth/yield under this framework, we firstly iterate simulations with set of parameter values sampled from the estimated posterior PDF of each parameter and then take the ensemble mean weighted with the posterior PDFs. We will also present another example for maize productivity in China. The framework proposed here provides us information on uncertainties, possibilities and limitations on future improvements in crop model as well.
Sensitivity of crop cover to climate variability: insights from two Indian agro-ecoregions.
Mondal, Pinki; Jain, Meha; DeFries, Ruth S; Galford, Gillian L; Small, Christopher
2015-01-15
Crop productivity in India varies greatly with inter-annual climate variability and is highly dependent on monsoon rainfall and temperature. The sensitivity of yields to future climate variability varies with crop type, access to irrigation and other biophysical and socio-economic factors. To better understand sensitivities to future climate, this study focuses on agro-ecological subregions in Central and Western India that span a range of crops, irrigation, biophysical conditions and socioeconomic characteristics. Climate variability is derived from remotely-sensed data products, Tropical Rainfall Measuring Mission (TRMM - precipitation) and Moderate Resolution Imaging Spectroradiometer (MODIS - temperature). We examined green-leaf phenologies as proxy for crop productivity using the MODIS Enhanced Vegetation Index (EVI) from 2000 to 2012. Using both monsoon and winter growing seasons, we assessed phenological sensitivity to inter-annual variability in precipitation and temperature patterns. Inter-annual EVI phenology anomalies ranged from -25% to 25%, with some highly anomalous values up to 200%. Monsoon crop phenology in the Central India site is highly sensitive to climate, especially the timing of the start and end of the monsoon and intensity of precipitation. In the Western India site, monsoon crop phenology is less sensitive to precipitation variability, yet shows considerable fluctuations in monsoon crop productivity across the years. Temperature is critically important for winter productivity across a range of crop and management types, such that irrigation might not provide a sufficient buffer against projected temperature increases. Better access to weather information and usage of climate-resilient crop types would play pivotal role in maintaining future productivity. Effective strategies to adapt to projected climate changes in the coming decades would also need to be tailored to regional biophysical and socio-economic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Muslim, Mohammad; Romshoo, Shakil Ahmad; Rather, A Q
2015-06-01
The Kashmir Himalayan region of India is expected to be highly prone to the change in agricultural land use because of its geo-ecological fragility, strategic location vis-à-vis the Himalayan landscape, its trans-boundary river basins, and inherent socio-economic instabilities. Food security and sustainability of the region are thus greatly challenged by these impacts. The effect of future climate change, increased competition for land and water, labor from non-agricultural sectors, and increasing population adds to this complex problem. In current study, paddy rice yield at regional level was estimated using GIS-based environment policy integrated climate (GEPIC) model. The general approach of current study involved combining regional level crop database, regional soil data base, farm management data, and climatic data outputs with GEPIC model. The simulated yield showed that estimated production to be 4305.55 kg/ha (43.05 q h(-1)). The crop varieties like Jhelum, K-39, Chenab, China 1039, China-1007, and Shalimar rice-1 grown in plains recorded average yield of 4783.3 kg/ha (47.83 q ha(-1)). Meanwhile, high altitude areas with varieties like Kohsaar, K-78 (Barkat), and K-332 recorded yield of 4102.2 kg/ha (41.02 q ha(-1)). The observed and simulated yield showed a good match with R (2) = 0.95, RMSE = 132.24 kg/ha, respectively.
NASA Astrophysics Data System (ADS)
Caldararu, S.; Smith, M. J.; Purves, D.; Emmott, S.
2013-12-01
Global agriculture will, in the future, be faced with two main challenges: climate change and an increase in global food demand driven by an increase in population and changes in consumption habits. To be able to predict both the impacts of changes in climate on crop yields and the changes in agricultural practices necessary to respond to such impacts we currently need to improve our understanding of crop responses to climate and the predictive capability of our models. Ideally, what we would have at our disposal is a modelling tool which, given certain climatic conditions and agricultural practices, can predict the growth pattern and final yield of any of the major crops across the globe. We present a simple, process-based crop growth model based on the assumption that plants allocate above- and below-ground biomass to maintain overall carbon optimality and that, to maintain this optimality, the reproductive stage begins at peak nitrogen uptake. The model includes responses to available light, water, temperature and carbon dioxide concentration as well as nitrogen fertilisation and irrigation. The model is data constrained at two sites, the Yaqui Valley, Mexico for wheat and the Southern Great Plains flux site for maize and soybean, using a robust combination of space-based vegetation data (including data from the MODIS and Landsat TM and ETM+ instruments), as well as ground-based biomass and yield measurements. We show a number of climate response scenarios, including increases in temperature and carbon dioxide concentrations as well as responses to irrigation and fertiliser application.
Spectral variations of canopy reflectance in support of precision agriculture
NASA Astrophysics Data System (ADS)
Kancheva, Rumiana; Georgiev, Georgi; Borisova, Denitsa; Nikolov, Hristo
2014-05-01
Agricultural monitoring is an important and continuously spreading activity in remote sensing and applied Earth observations. It supplies precise, reliable and valuable information on current crop condition and growth processes. In agriculture, the timing of seasonal cycles of crop activity is important for species classification and evaluation of crop development, growing conditions and potential yield. The correct interpretation of remotely sensed data, however, and the increasing demand for data reliability require ground-truth knowledge of the seasonal spectral behavior of different species and their relation to crop vigor. For this reason, we performed ground-based study of the seasonal response of winter wheat reflectance patterns to crop growth patterns. The goal was to quantify crop seasonality by establishing empirical relationships between plant biophysical and spectral properties in main ontogenetic periods. Phenology and agro-specific relationships allow assessing crop condition during different portions of the growth cycle and thus effectively tracking plant development, and finally make yield predictions. The applicability of a number of vegetation indices (VIs) for monitoring crop seasonal dynamics, its health condition, and yield potential was examined. Special emphasis we put on narrow-band indices as the availability of data from hyperspectral imagers is unavoidable future. The temporal behavior of vegetation indices revealed increased sensitivity to crop growth. The derived spectral-biophysical relationships allowed extraction of quantitative information about crop variables and yield at different stages of the phenological development. Relating plant spectral and biophysical variables in a phenology-based manner allows crop monitoring, that is crop diagnosis and predictions to be performed multiple times during plant ontogenesis. During active vegetative periods spectral data was highly indicative of plant growth trends and yield potential. The VIs values contributed to reliable yield prediction and showed very good correspondence with the estimates from biophysical models. For dates before full maturity most of the examined VIs proved to be meaningful statistical predictors of crop state-indicative biophysical variables. High correlations were obtained for canopy cover fraction, LAI, and biomass. Sensitivity to red, near-infrared and green reflectance showed both vigorous and stressed plants. As crops attained advanced growth stages, decreased sensitivity of VIs and weaker correlations with bioparameters were observed, yet still significant in a statistical sense. The results highlight the capability of the presented approach to track the dynamics of crop growth from multitemporal spectral data, and illustrate the prediction accuracy of the spectral models. The results are useful in assessing the efficiency of various spectral band ratios and other vegetation indices often used in remote sensing studies of natural and agricultural vegetation. They suggest that the used algorithm for data processing is particularly suitable for airborne cropland monitoring and could be expanded to sites at farm or municipality scale. The results reported are from pilot study carried out on a plot located in one of the established polygons for experimental crop monitoring. In the mentioned research GIS database is established for supporting the experiments and modelling process. Recommendations on good farming practices for medium sized farms for monitoring stress conditions such as drought and overfertilizing are developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Zhenong; Zhuang, Qianlai; Wang, Jiali
Heat and drought stresses are two emerging climatic threats to the US maize and soybean production, yet their impacts on yields are collectively determined by the magnitude of climate change and rising atmospheric CO2 concentration. Here we present a study that quantified the current and future yield responses of US rainfed maize and soybean to climate extremes, and for the first time characterized spatial shifts in the relative importance of temperature, heat and drought stress. Crop yields are simulated using the Agricultural Production Systems sIMulator (APSIM), driven by the high-resolution (12 km) Weather Research and Forecasting (WRF) Model downscaled futuremore » climate scenarios at two time slices (1995-2005 and 2085-2094). Our results show that climatic yield gaps and interannual variability are greater in the core production area than in the remaining US by the late 21st century under both Representative Concentration Pathway (RCP) 4.5 and RCP8.5 scenarios, and the magnitude of change is highly dependent on the current climate sensitivity and vulnerability. Elevated CO2 partially offsets the climatic yield gaps and reduces interannual yield variability, and effect is more prominent in soybean than in maize. We demonstrate that drought will continue to be the largest threat to US rainfed maize and soybean production, although its dominant role gradually gives way to other impacts of heat extremes. We also reveal that shifts in the geographic distributions of dominant stressors are characterized by increases in the concurrent stress, especially for the US Midwest. These findings imply the importance of considering drought and extreme heat simultaneously for future agronomic adaptation and mitigation strategies, particularly for breeding programs and crop management.« less
Climate Change and Dryland Wheat Systems in the US Pacific Northwest
NASA Astrophysics Data System (ADS)
Stockle, C.; Karimi, T.; Huggins, D. R.; Nelson, R.
2015-12-01
A regional assessment of historical and future yields, and components of the water, nitrogen, and carbon soil balance of dryland wheat-based cropping systems in the US Pacific Northwest is being conducted (Regional Approaches to Climate Change project funded by USDA-NIFA). All these elements intertwines and are important to understand the future of these systems in the region. A computer simulation methodology was used based on the CropSyst model and historic and projected daily weather data downscaled to a 4x4 km grid including 14 general circulation models (GCMs) and two representative concentration pathways of future atmospheric CO2 (RCP 4.5 and RCP 8.5). The study region was divided in 3 agro-ecological zones (AEZ) based on precipitation amount: low (<300 mm/year), intermediate (300-460 mm/year) and high (>460 mm/year), with a change from crop-fallow, to transition fallow (crop-crop-fallow) to annual cropping, respectively. Typical wheat-based rotations included winter wheat (WW)-Summer fallow (SF) for the low AEZ, WW-spring wheat (SW)-SF for the intermediate AEZ, and WW-SW-spring peas for the high AEZ, all under conventional and no tillage management. Alternative systems incorporating canola were also evaluated. Results suggest that, in most cases, these dryland systems may fare well in the future (31-year periods centered around 2030, 2050, and 2070), with potential gains in productivity. Also, a trend towards increased fallow in the intermediate AEZ appears possible for higher productivity, and the inclusion of less water demanding crops may help sustain cropping intensity. Uncertainties in these projections arise from large discrepancies among climate models regarding the warming rate, compounded by different possible future CO2 emission scenarios, the degree of change in frequency and severity of extreme events and associated potential damages to crop canopies due to cold weather and grain set reduction due to extreme heat events. Furthermore, there is little understanding of the impact of climate change on pests, diseases and weeds that could affect crop production and management costs. Finally, there is also uncertainty on the speed of technological innovation allowing producers to adapt to changing conditions.
NASA Astrophysics Data System (ADS)
Vico, Giulia; Porporato, Amilcare
2013-04-01
Supplemental irrigation represents one of the main strategies to mitigate the effects of climate variability and stabilize yields. Irrigated agriculture currently provides 40% of food production and its relevance is expected to further increase in the near future, in face of the projected alterations of rainfall patterns and increase in food, fiber, and biofuel demand. Because of the significant investments and water requirements involved in irrigation, strategic choices are needed to preserve productivity and profitability, while maintaining a sustainable water management - a nontrivial task given the unpredictability of the rainfall forcing. To facilitate decision making under uncertainty, a widely applicable probabilistic framework is proposed. The occurrence of rainfall events and irrigation applications are linked probabilistically to crop development during the growing season and yields at harvest. Based on these linkages, the probability density function of yields and corresponding probability density function of required irrigation volumes, as well as the probability density function of yields under the most common case of limited water availability are obtained analytically, as a function of irrigation strategy, climate, soil and crop parameters. The full probabilistic description of the frequency of occurrence of yields and water requirements is a crucial tool for decision making under uncertainty, e.g., via expected utility analysis. Furthermore, the knowledge of the probability density function of yield allows us to quantify the yield reduction hydrologic risk. Two risk indices are defined and quantified: the long-term risk index, suitable for long-term irrigation strategy assessment and investment planning, and the real-time risk index, providing a rigorous probabilistic quantification of the emergence of drought conditions during a single growing season in an agricultural setting. Our approach employs relatively few parameters and is thus easily and broadly applicable to different crops and sites, under current and future climate scenarios. Hence, the proposed probabilistic framework provides a quantitative tool to assess the impact of irrigation strategy and water allocation on the risk of not meeting a certain target yield, thus guiding the optimal allocation of water resources for human and environmental needs.
Cereal area and nitrogen use efficiency are drivers of future nitrogen fertilizer consumption.
Dobermann, Achim; Cassman, Kenneth G
2005-09-01
At a global scale, cereal yields and fertilizer N consumption have increased in a near-linear fashion during the past 40 years and are highly correlated with one another. However, large differences exist in historical trends of N fertilizer usage and nitrogen use efficiency (NUE) among regions, countries, and crops. The reasons for these differences must be understood to estimate future N fertilizer requirements. Global nitrogen needs will depend on: (i) changes in cropped cereal area and the associated yield increases required to meet increasing cereal demand from population and income growth, and (ii) changes in NUE at the farm level. Our analysis indicates that the anticipated 38% increase in global cereal demand by 2025 can be met by a 30% increase in N use on cereals, provided that the steady decline in cereal harvest area is halted and the yield response to applied N can be increased by 20%. If losses of cereal cropping area continue at the rate of the past 20 years (-0.33% per year) and NUE cannot be increased substantially, a 60% increase in global N use on cereals would be required to meet cereal demand. Interventions to increase NUE and reduce N losses to the environment must be accomplished at the farm-or field-scale through a combination of improved technologies and carefully crafted local policies that contribute to the adoption of improved N management; uniform regional or national directives are unlikely to be effective at both sustaining yield increases and improving NUE. Examples from several countries show that increases in NUE at rates of 1% per year or more can be achieved if adequate investments are made in research and extension. Failure to arrest the decrease in cereal crop area and to improve NUE in the world's most important agricultural systems will likely cause severe damage to environmental services at local, regional, and global scales due to a large increase in reactive N load in the environment.
Cereal area and nitrogen use efficiency are drivers of future nitrogen fertilizer consumption.
Dobermann, Achim; Cassman, Kenneth G
2005-12-01
At a global scale, cereal yields and fertilizer N consumption have increased in a near-linear fashion during the past 40 years and are highly correlated with one another. However, large differences exist in historical trends of N fertilizer usage and nitrogen use efficiency (NUE) among regions, countries, and crops. The reasons for these differences must be understood to estimate future N fertilizer requirements. Global nitrogen needs will depend on: (i) changes in cropped cereal area and the associated yield increases required to meet increasing cereal demand from population and income growth, and (ii) changes in NUE at the farm level. Our analysis indicates that the anticipated 38% increase in global cereal demand by 2025 can be met by a 30% increase in N use on cereals, provided that the steady decline in cereal harvest area is halted and the yield response to applied N can be increased by 20%. If losses of cereal cropping area continue at the rate of the past 20 years (-0.33% per year) and NUE cannot be increased substantially, a 60% increase in global N use on cereals would be required to meet cereal demand. Interventions to increase NUE and reduce N losses to the environment must be accomplished at the farm- or field-scale through a combination of improved technologies and carefully crafted local policies that contribute to the adoption of improved N management; uniform regional or national directives are unlikey to be effective at both sustaining yield increases and improving NUE. Examples from several countries show that increases in NUE at rates of 1% per year or more can be achieved if adequate investments are made in research and extension. Failure to arrest the decrease in cereal crop area and to improve NUE in the world's most important agricultural systems will likely cause severe damage to environmental services at local, regional, and global scales due to a large increase in reactive N load in the environment.
NASA Astrophysics Data System (ADS)
Manowitz, D. H.; Schwab, D. E.; Izaurralde, R. C.
2010-12-01
As bioenergy production continues to increase, it is important to be able to predict not only the crop yields that are expected from future production, but also the various environmental impacts that will accompany it. Therefore, models that can be used to make such predictions must be validated against as many of these agricultural outputs as possible. The Environmental Policy Integrated Climate (EPIC) model is a widely used and tested model for simulating many agricultural ecosystem processes including plant growth, crop yield, carbon and nutrient cycling, wind and water erosion, runoff, leaching, as well as changes in soil physical and chemical properties. This model has undergone many improvements, including the addition of a process-based denitrification submodel. Here we evaluate the performance of EPIC in its ability to simulate nitrous oxide (N2O) fluxes and related variables as observed in selected treatments of the Long-Term Ecological Research (LTER) cropping systems study at Kellogg Biological Station (KBS). We will provide a brief description of the EPIC model in the context of bioenergy production, describe the denitrification submodel, and compare simulated and observed values of crop yields, N2O emissions, soil carbon dynamics, and soil moisture.
NASA Astrophysics Data System (ADS)
Peng, B.; Guan, K.; Chen, M.
2016-12-01
Future agricultural production faces a grand challenge of higher temperature under climate change. There are multiple physiological or metabolic processes of how high temperature affects crop yield. Specifically, we consider the following major processes: (1) direct temperature effects on photosynthesis and respiration; (2) speed-up growth rate and the shortening of growing season; (3) heat stress during reproductive stage (flowering and grain-filling); (4) high-temperature induced increase of atmospheric water demands. In this work, we use a newly developed modeling framework (CLM-APSIM) to simulate the corn and soybean growth and explicitly parse the above four processes. By combining the strength of CLM in modeling surface biophysical (e.g., hydrology and energy balance) and biogeochemical (e.g., photosynthesis and carbon-nitrogen interactions), as well as that of APSIM in modeling crop phenology and reproductive stress, the newly developed CLM-APSIM modeling framework enables us to diagnose the impacts of high temperature stress through different processes at various crop phenology stages. Ground measurements from the advanced SoyFACE facility at University of Illinois is used here to calibrate, validate, and improve the CLM-APSIM modeling framework at the site level. We finally use the CLM-APSIM modeling framework to project crop yield for the whole US Corn Belt under different climate scenarios.
Ford, Brett; Deng, Weiwei; Clausen, Jenni; Oliver, Sandra; Boden, Scott; Hemming, Megan; Trevaskis, Ben
2016-01-01
An increase in global temperatures will impact future crop yields. In the cereal crops wheat and barley, high temperatures accelerate reproductive development, reducing the number of grains per plant and final grain yield. Despite this relationship between temperature and cereal yield, it is not clear what genes and molecular pathways mediate the developmental response to increased temperatures. The plant circadian clock can respond to changes in temperature and is important for photoperiod-dependent flowering, and so is a potential mechanism controlling temperature responses in cereal crops. This study examines the relationship between temperature, the circadian clock, and the expression of flowering-time genes in barley (Hordeum vulgare), a crop model for temperate cereals. Transcript levels of barley core circadian clock genes were assayed over a range of temperatures. Transcript levels of core clock genes CCA1, GI, PRR59, PRR73, PRR95, and LUX are increased at higher temperatures. CCA1 and PRR73 respond rapidly to a decrease in temperature whereas GI and PRR59 respond rapidly to an increase in temperature. The response of GI and the PRR genes to changes in temperature is lost in the elf3 mutant indicating that their response to temperature may be dependent on a functional ELF3 gene. PMID:27580625
NASA Astrophysics Data System (ADS)
Prasanna, V.
2018-01-01
This study makes use of temperature and precipitation from CMIP5 climate model output for climate change application studies over the Indian region during the summer monsoon season (JJAS). Bias correction of temperature and precipitation from CMIP5 GCM simulation results with respect to observation is discussed in detail. The non-linear statistical bias correction is a suitable bias correction method for climate change data because it is simple and does not add up artificial uncertainties to the impact assessment of climate change scenarios for climate change application studies (agricultural production changes) in the future. The simple statistical bias correction uses observational constraints on the GCM baseline, and the projected results are scaled with respect to the changing magnitude in future scenarios, varying from one model to the other. Two types of bias correction techniques are shown here: (1) a simple bias correction using a percentile-based quantile-mapping algorithm and (2) a simple but improved bias correction method, a cumulative distribution function (CDF; Weibull distribution function)-based quantile-mapping algorithm. This study shows that the percentile-based quantile mapping method gives results similar to the CDF (Weibull)-based quantile mapping method, and both the methods are comparable. The bias correction is applied on temperature and precipitation variables for present climate and future projected data to make use of it in a simple statistical model to understand the future changes in crop production over the Indian region during the summer monsoon season. In total, 12 CMIP5 models are used for Historical (1901-2005), RCP4.5 (2005-2100), and RCP8.5 (2005-2100) scenarios. The climate index from each CMIP5 model and the observed agricultural yield index over the Indian region are used in a regression model to project the changes in the agricultural yield over India from RCP4.5 and RCP8.5 scenarios. The results revealed a better convergence of model projections in the bias corrected data compared to the uncorrected data. The study can be extended to localized regional domains aimed at understanding the changes in the agricultural productivity in the future with an agro-economy or a simple statistical model. The statistical model indicated that the total food grain yield is going to increase over the Indian region in the future, the increase in the total food grain yield is approximately 50 kg/ ha for the RCP4.5 scenario from 2001 until the end of 2100, and the increase in the total food grain yield is approximately 90 kg/ha for the RCP8.5 scenario from 2001 until the end of 2100. There are many studies using bias correction techniques, but this study applies the bias correction technique to future climate scenario data from CMIP5 models and applied it to crop statistics to find future crop yield changes over the Indian region.
The Implications of Growing Bioenergy Crops on Water Resources, Carbon and Nitrogen Dynamics
NASA Astrophysics Data System (ADS)
Jain, A. K.; Song, Y.; Kheshgi, H. S.
2016-12-01
What is the potential for the crops Corn, Miscanthus and switchgrass to meet future energy demands in the U.S.A., and would they mitigate climate change by offsetting fossil fuel greenhouse gas (GHG) emissions? The large-scale cultivation of these bioenergy crops itself could also drive climate change through changes in albedo, evapotranspiration (ET), and GHG emissions. Whether these climate effects will mitigate or exacerbate climate change in the short- and long-term is uncertain. This uncertainty stems from our incomplete understanding of the effects of expanded bioenergy crop production on terrestrial water and energy balance, carbon and nitrogen dynamics, and their interactions. This study aims to understand the implications of growing large-scale bioenergy crops on water resources, carbon and nitrogen dynamics in the United States using a data-modeling framework (ISAM) that we developed. Our study indicates that both Miscanthus and Cave-in-Rock switchgrass can attain high and stable yield over parts of the Midwest, however, this high production is attained at the cost of increased soil water loss as compared to current natural vegetation. Alamo switchgrass can attain high and stable yield in the southern US without significant influence on soil water quantity.
Impact of crop rotation and soil amendments on long-term no-tilled soybean yields
USDA-ARS?s Scientific Manuscript database
Continuous cropping systems without cover crops are perceived as unsustainable for long-term yield and soil health. To test this, cropping sequence and cover crop effects on soybean (Glycine max L.) yields were assessed. Main effects were 10 cropping sequences of soybean, corn (Zea mays L.), and co...
Tradeoffs between water requirements and yield stability in annual vs. perennial crops
NASA Astrophysics Data System (ADS)
Vico, Giulia; Brunsell, Nathaniel A.
2018-02-01
Population growth and changes in climate and diets will likely further increase the pressure on agriculture and water resources globally. Currently, staple crops are obtained from annuals plants. A shift towards perennial crops may enhance many ecosystem services, but at the cost of higher water requirements and lower yields. It is still unclear when the advantages of perennial crops overcome their disadvantages and perennial crops are thus a sustainable solution. Here we combine a probabilistic description of the soil water balance and crop development with an extensive dataset of traits of congeneric annuals and perennials to identify the conditions for which perennial crops are more viable than annual ones with reference to yield, yield stability, and effective use of water. We show that the larger and more developed roots of perennial crops allow a better exploitation of soil water resources and a reduction of yield variability with respect to annual species, but their yields remain lower when considering grain crops. Furthermore, perennial crops have higher and more variable irrigation requirements and lower water productivity. These results are important to understand the potential consequences for yield, its stability, and water resource use of a shift from annual to perennial crops and, more generally, if perennial crops may be more resilient than annual crops in the face of climatic fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egbendewe-Mondzozo, Aklesso; Swinton, S.; Izaurralde, Roberto C.
2013-03-01
This paper evaluates environmental policy effects on ligno-cellulosic biomass production and environ- mental outcomes using an integrated bioeconomic optimization model. The environmental policy integrated climate (EPIC) model is used to simulate crop yields and environmental indicators in current and future potential bioenergy cropping systems based on weather, topographic and soil data. The crop yield and environmental outcome parameters from EPIC are combined with biomass transport costs and economic parameters in a representative farmer profit-maximizing mathematical optimization model. The model is used to predict the impact of alternative policies on biomass production and environmental outcomes. We find that without environmental policy,more » rising biomass prices initially trigger production of annual crop residues, resulting in increased greenhouse gas emissions, soil erosion, and nutrient losses to surface and ground water. At higher biomass prices, perennial bioenergy crops replace annual crop residues as biomass sources, resulting in lower environmental impacts. Simulations of three environmental policies namely a carbon price, a no-till area subsidy, and a fertilizer tax reveal that only the carbon price policy systematically mitigates environmental impacts. The fertilizer tax is ineffectual and too costly to farmers. The no-till subsidy is effective only at low biomass prices and is too costly to government.« less
A generic hydroeconomic model to assess future water scarcity
NASA Astrophysics Data System (ADS)
Neverre, Noémie; Dumas, Patrice
2015-04-01
We developed a generic hydroeconomic model able to confront future water supply and demand on a large scale, taking into account man-made reservoirs. The assessment is done at the scale of river basins, using only globally available data; the methodology can thus be generalized. On the supply side, we evaluate the impacts of climate change on water resources. The available quantity of water at each site is computed using the following information: runoff is taken from the outputs of CNRM climate model (Dubois et al., 2010), reservoirs are located using Aquastat, and the sub-basin flow-accumulation area of each reservoir is determined based on a Digital Elevation Model (HYDRO1k). On the demand side, agricultural and domestic demands are projected in terms of both quantity and economic value. For the agricultural sector, globally available data on irrigated areas and crops are combined in order to determine irrigated crops localization. Then, crops irrigation requirements are computed for the different stages of the growing season using Allen (1998) method with Hargreaves potential evapotranspiration. Irrigation water economic value is based on a yield comparison approach between rainfed and irrigated crops. Potential irrigated and rainfed yields are taken from LPJmL (Blondeau et al., 2007), or from FAOSTAT by making simple assumptions on yield ratios. For the domestic sector, we project the combined effects of demographic growth, economic development and water cost evolution on future demands. The method consists in building three-blocks inverse demand functions where volume limits of the blocks evolve with the level of GDP per capita. The value of water along the demand curve is determined from price-elasticity, price and demand data from the literature, using the point-expansion method, and from water costs data. Then projected demands are confronted to future water availability. Operating rules of the reservoirs and water allocation between demands are based on the maximization of water benefits, over time and space. A parameterisation-simulation-optimisation approach is used. This gives a projection of future water scarcity in the different locations and an estimation of the associated direct economic losses from unsatisfied demands. This generic hydroeconomic model can be easily applied to large-scale regions, in particular developing regions where little reliable data is available. We will present an application to Algeria, up to the 2050 horizon.
USDA-ARS?s Scientific Manuscript database
Rising atmospheric [CO2] is a uniform and global change that increases C3 photosynthesis by suppressing the oxygenation reaction of Rubisco and accelerating carboxylation. This has the potential to provide some offset to the negative effects of global change on crop yields. However, under field cond...
Oil palm natural diversity and the potential for yield improvement
Barcelos, Edson; Rios, Sara de Almeida; Cunha, Raimundo N. V.; Lopes, Ricardo; Motoike, Sérgio Y.; Babiychuk, Elena; Skirycz, Aleksandra; Kushnir, Sergei
2015-01-01
African oil palm has the highest productivity amongst cultivated oleaginous crops. Species can constitute a single crop capable to fulfill the growing global demand for vegetable oils, which is estimated to reach 240 million tons by 2050. Two types of vegetable oil are extracted from the palm fruit on commercial scale. The crude palm oil and kernel palm oil have different fatty acid profiles, which increases versatility of the crop in industrial applications. Plantations of the current varieties have economic life-span around 25–30 years and produce fruits around the year. Thus, predictable annual palm oil supply enables marketing plans and adjustments in line with the economic forecasts. Oil palm cultivation is one of the most profitable land uses in the humid tropics. Oil palm fruits are the richest plant source of pro-vitamin A and vitamin E. Hence, crop both alleviates poverty, and could provide a simple practical solution to eliminate global pro-vitamin A deficiency. Oil palm is a perennial, evergreen tree adapted to cultivation in biodiversity rich equatorial land areas. The growing demand for the palm oil threatens the future of the rain forests and has a large negative impact on biodiversity. Plant science faces three major challenges to make oil palm the key element of building the future sustainable world. The global average yield of 3.5 tons of oil per hectare (t) should be raised to the full yield potential estimated at 11–18t. The tree architecture must be changed to lower labor intensity and improve mechanization of the harvest. Oil composition should be tailored to the evolving needs of the food, oleochemical and fuel industries. The release of the oil palm reference genome sequence in 2013 was the key step toward this goal. The molecular bases of agronomically important traits can be and are beginning to be understood at the single base pair resolution, enabling gene-centered breeding and engineering of this remarkable crop. PMID:25870604
Oil palm natural diversity and the potential for yield improvement.
Barcelos, Edson; Rios, Sara de Almeida; Cunha, Raimundo N V; Lopes, Ricardo; Motoike, Sérgio Y; Babiychuk, Elena; Skirycz, Aleksandra; Kushnir, Sergei
2015-01-01
African oil palm has the highest productivity amongst cultivated oleaginous crops. Species can constitute a single crop capable to fulfill the growing global demand for vegetable oils, which is estimated to reach 240 million tons by 2050. Two types of vegetable oil are extracted from the palm fruit on commercial scale. The crude palm oil and kernel palm oil have different fatty acid profiles, which increases versatility of the crop in industrial applications. Plantations of the current varieties have economic life-span around 25-30 years and produce fruits around the year. Thus, predictable annual palm oil supply enables marketing plans and adjustments in line with the economic forecasts. Oil palm cultivation is one of the most profitable land uses in the humid tropics. Oil palm fruits are the richest plant source of pro-vitamin A and vitamin E. Hence, crop both alleviates poverty, and could provide a simple practical solution to eliminate global pro-vitamin A deficiency. Oil palm is a perennial, evergreen tree adapted to cultivation in biodiversity rich equatorial land areas. The growing demand for the palm oil threatens the future of the rain forests and has a large negative impact on biodiversity. Plant science faces three major challenges to make oil palm the key element of building the future sustainable world. The global average yield of 3.5 tons of oil per hectare (t) should be raised to the full yield potential estimated at 11-18t. The tree architecture must be changed to lower labor intensity and improve mechanization of the harvest. Oil composition should be tailored to the evolving needs of the food, oleochemical and fuel industries. The release of the oil palm reference genome sequence in 2013 was the key step toward this goal. The molecular bases of agronomically important traits can be and are beginning to be understood at the single base pair resolution, enabling gene-centered breeding and engineering of this remarkable crop.
Climate change and potato cropping in the Peruvian Altiplano
NASA Astrophysics Data System (ADS)
Sanabria, J.; Lhomme, J. P.
2013-05-01
The potential impacts of climate change on potatoes cropping in the Peruvian highlands (Altiplano) is assessed using climate projections for 2071-2100, obtained from the HadRM3P regional atmospheric model of the Hadley Centre. The atmospheric model is run under two different special report on emission scenarios: high CO2 concentration (A2) and moderate CO2 concentration (B2) for four locations situated in the surroundings of Lake Titicaca. The two main varieties of potato cultivated in the area are studied: the Andean potato ( Solanum tuberosum) and the bitter potato ( Solanum juzepczukii). A simple process-oriented model is used to quantify the climatic impacts on crops cycles and yields by combining the effects of temperature on phenology, of radiation and CO2 on maximum yield and of water balance on yield deficit. In future climates, air temperature systematically increases, precipitation tends to increase at the beginning of the rainy season and slightly decreases during the rest of the season. The direct effects of these climatic changes are earlier planting dates, less planting failures and shorter crop cycles in all the four locations and for both scenarios. Consequently, the harvesting dates occur systematically earlier: roughly in January for the Andean potato instead of March in the current situation and in February for the bitter potato instead of April. Overall, yield deficits will be higher under climate change than in the current climate. There will be a strong negative impact on yields for S. tuberosum (stronger under A2 scenario than under B2); the impact on S. juzepczukii yields, however, appears to be relatively mixed and not so negative.
Closing yield gaps: perils and possibilities for biodiversity conservation
Phalan, Ben; Green, Rhys; Balmford, Andrew
2014-01-01
Increasing agricultural productivity to ‘close yield gaps’ creates both perils and possibilities for biodiversity conservation. Yield increases often have negative impacts on species within farmland, but at the same time could potentially make it more feasible to minimize further cropland expansion into natural habitats. We combine global data on yield gaps, projected future production of maize, rice and wheat, the distributions of birds and their estimated sensitivity to changes in crop yields to map where it might be most beneficial for bird conservation to close yield gaps as part of a land-sparing strategy, and where doing so might be most damaging. Closing yield gaps to attainable levels to meet projected demand in 2050 could potentially help spare an area equivalent to that of the Indian subcontinent. Increasing yields this much on existing farmland would inevitably reduce its biodiversity, and therefore we advocate efforts both to constrain further increases in global food demand, and to identify the least harmful ways of increasing yields. The land-sparing potential of closing yield gaps will not be realized without specific mechanisms to link yield increases to habitat protection (and restoration), and therefore we suggest that conservationists, farmers, crop scientists and policy-makers collaborate to explore promising mechanisms. PMID:24535392
NASA Astrophysics Data System (ADS)
Mistry, Malcolm; De Cian, Enrica; Wing, Ian Sue
2015-04-01
There is widespread concern that trends and variability in weather induced by climate change will detrimentally affect global agricultural productivity and food supplies. Reliable quantification of the risks of negative impacts at regional and global scales is a critical research need, which has so far been met by forcing state-of-the-art global gridded crop models with outputs of global climate model (GCM) simulations in exercises such as the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP)-Fastrack. Notwithstanding such progress, it remains challenging to use these simulation-based projections to assess agricultural risk because their gridded fields of crop yields are fundamentally denominated as discrete combinations of warming scenarios, GCMs and crop models, and not as model-specific or model-averaged yield response functions of meteorological shifts, which may have their own independent probability of occurrence. By contrast, the empirical climate economics literature has adeptly represented agricultural responses to meteorological variables as reduced-form statistical response surfaces which identify the crop productivity impacts of additional exposure to different intervals of temperature and precipitation [cf Schlenker and Roberts, 2009]. This raises several important questions: (1) what do the equivalent reduced-form statistical response surfaces look like for crop model outputs, (2) do they exhibit systematic variation over space (e.g., crop suitability zones) or across crop models with different characteristics, (3) how do they compare to estimates based on historical observations, and (4) what are the implications for the characterization of climate risks? We address these questions by estimating statistical yield response functions for four major crops (maize, rice, wheat and soybeans) over the historical period (1971-2004) as well as future climate change scenarios (2005-2099) using ISIMIP-Fastrack data for five GCMs and seven crop models under rain-fed and irrigated management regimes. Our approach, which is patterned after Lobell and Burke [2010], is a novel application of cross-section/time-series statistical techniques from the climate economics literature to large, high-dimension, multi-model datasets, and holds considerable promise as a diagnostic methodology to elucidate uncertainties in the processes simulated by crop models, and to support the development of climate impact intercomparison exercises.
Statistical emulators of maize, rice, soybean and wheat yields from global gridded crop models
Blanc, Élodie
2017-01-26
This study provides statistical emulators of crop yields based on global gridded crop model simulations from the Inter-Sectoral Impact Model Intercomparison Project Fast Track project. The ensemble of simulations is used to build a panel of annual crop yields from five crop models and corresponding monthly summer weather variables for over a century at the grid cell level globally. This dataset is then used to estimate, for each crop and gridded crop model, the statistical relationship between yields, temperature, precipitation and carbon dioxide. This study considers a new functional form to better capture the non-linear response of yields to weather,more » especially for extreme temperature and precipitation events, and now accounts for the effect of soil type. In- and out-of-sample validations show that the statistical emulators are able to replicate spatial patterns of yields crop levels and changes overtime projected by crop models reasonably well, although the accuracy of the emulators varies by model and by region. This study therefore provides a reliable and accessible alternative to global gridded crop yield models. By emulating crop yields for several models using parsimonious equations, the tools provide a computationally efficient method to account for uncertainty in climate change impact assessments.« less
Statistical emulators of maize, rice, soybean and wheat yields from global gridded crop models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanc, Élodie
This study provides statistical emulators of crop yields based on global gridded crop model simulations from the Inter-Sectoral Impact Model Intercomparison Project Fast Track project. The ensemble of simulations is used to build a panel of annual crop yields from five crop models and corresponding monthly summer weather variables for over a century at the grid cell level globally. This dataset is then used to estimate, for each crop and gridded crop model, the statistical relationship between yields, temperature, precipitation and carbon dioxide. This study considers a new functional form to better capture the non-linear response of yields to weather,more » especially for extreme temperature and precipitation events, and now accounts for the effect of soil type. In- and out-of-sample validations show that the statistical emulators are able to replicate spatial patterns of yields crop levels and changes overtime projected by crop models reasonably well, although the accuracy of the emulators varies by model and by region. This study therefore provides a reliable and accessible alternative to global gridded crop yield models. By emulating crop yields for several models using parsimonious equations, the tools provide a computationally efficient method to account for uncertainty in climate change impact assessments.« less
Jin, Zhenong; Zhuang, Qianlai; Wang, Jiali; Archontoulis, Sotirios V; Zobel, Zachary; Kotamarthi, Veerabhadra R
2017-07-01
Heat and drought are two emerging climatic threats to the US maize and soybean production, yet their impacts on yields are collectively determined by the magnitude of climate change and rising atmospheric CO 2 concentrations. This study quantifies the combined and separate impacts of high temperature, heat and drought stresses on the current and future US rainfed maize and soybean production and for the first time characterizes spatial shifts in the relative importance of individual stress. Crop yields are simulated using the Agricultural Production Systems Simulator (APSIM), driven by high-resolution (12 km) dynamically downscaled climate projections for 1995-2004 and 2085-2094. Results show that maize and soybean yield losses are prominent in the US Midwest by the late 21st century under both Representative Concentration Pathway (RCP) 4.5 and RCP8.5 scenarios, and the magnitude of loss highly depends on the current vulnerability and changes in climate extremes. Elevated atmospheric CO 2 partially but not completely offsets the yield gaps caused by climate extremes, and the effect is greater in soybean than in maize. Our simulations suggest that drought will continue to be the largest threat to US rainfed maize production under RCP4.5 and soybean production under both RCP scenarios, whereas high temperature and heat stress take over the dominant stress of drought on maize under RCP8.5. We also reveal that shifts in the geographic distributions of dominant stresses are characterized by the increase in concurrent stresses, especially for the US Midwest. These findings imply the importance of considering heat and drought stresses simultaneously for future agronomic adaptation and mitigation strategies, particularly for breeding programs and crop management. The modeling framework of partitioning the total effects of climate change into individual stress impacts can be applied to the study of other crops and agriculture systems. © 2017 John Wiley & Sons Ltd.
A Remote Sensing-Derived Corn Yield Assessment Model
NASA Astrophysics Data System (ADS)
Shrestha, Ranjay Man
Agricultural studies and food security have become critical research topics due to continuous growth in human population and simultaneous shrinkage in agricultural land. In spite of modern technological advancements to improve agricultural productivity, more studies on crop yield assessments and food productivities are still necessary to fulfill the constantly increasing food demands. Besides human activities, natural disasters such as flood and drought, along with rapid climate changes, also inflect an adverse effect on food productivities. Understanding the impact of these disasters on crop yield and making early impact estimations could help planning for any national or international food crisis. Similarly, the United States Department of Agriculture (USDA) Risk Management Agency (RMA) insurance management utilizes appropriately estimated crop yield and damage assessment information to sustain farmers' practice through timely and proper compensations. Through County Agricultural Production Survey (CAPS), the USDA National Agricultural Statistical Service (NASS) uses traditional methods of field interviews and farmer-reported survey data to perform annual crop condition monitoring and production estimations at the regional and state levels. As these manual approaches of yield estimations are highly inefficient and produce very limited samples to represent the entire area, NASS requires supplemental spatial data that provides continuous and timely information on crop production and annual yield. Compared to traditional methods, remote sensing data and products offer wider spatial extent, more accurate location information, higher temporal resolution and data distribution, and lower data cost--thus providing a complementary option for estimation of crop yield information. Remote sensing derived vegetation indices such as Normalized Difference Vegetation Index (NDVI) provide measurable statistics of potential crop growth based on the spectral reflectance and could be further associated with the actual yield. Utilizing satellite remote sensing products, such as daily NDVI derived from Moderate Resolution Imaging Spectroradiometer (MODIS) at 250 m pixel size, the crop yield estimation can be performed at a very fine spatial resolution. Therefore, this study examined the potential of these daily NDVI products within agricultural studies and crop yield assessments. In this study, a regression-based approach was proposed to estimate the annual corn yield through changes in MODIS daily NDVI time series. The relationship between daily NDVI and corn yield was well defined and established, and as changes in corn phenology and yield were directly reflected by the changes in NDVI within the growing season, these two entities were combined to develop a relational model. The model was trained using 15 years (2000-2014) of historical NDVI and county-level corn yield data for four major corn producing states: Kansas, Nebraska, Iowa, and Indiana, representing four climatic regions as South, West North Central, East North Central, and Central, respectively, within the U.S. Corn Belt area. The model's goodness of fit was well defined with a high coefficient of determination (R2>0.81). Similarly, using 2015 yield data for validation, 92% of average accuracy signified the performance of the model in estimating corn yield at county level. Besides providing the county-level corn yield estimations, the derived model was also accurate enough to estimate the yield at finer spatial resolution (field level). The model's assessment accuracy was evaluated using the randomly selected field level corn yield within the study area for 2014, 2015, and 2016. A total of over 120 plot level corn yield were used for validation, and the overall average accuracy was 87%, which statistically justified the model's capability to estimate plot-level corn yield. Additionally, the proposed model was applied to the impact estimation by examining the changes in corn yield due to flood events during the growing season. Using a 2011 Missouri River flood event as a case study, field-level flood impact map on corn yield throughout the flooded regions was produced and an overall agreement of over 82.2% was achieved when compared with the reference impact map. The future research direction of this dissertation research would be to examine other major crops outside the Corn Belt region of the U.S.
Yield and Economic Responses of Peanut to Crop Rotation Sequence
USDA-ARS?s Scientific Manuscript database
Proper crop rotation is essential to maintaining high peanut yield and quality. However, the economic considerations of maintaining or altering crop rotation sequences must incorporate the commodity prices, production costs, and yield responses of all crops in, or potentially in, the crop rotation ...
NASA Astrophysics Data System (ADS)
Duval, B.; Ghimire, R.; Hartman, M. D.; Marsalis, M.
2016-12-01
Large tracts of semi-arid land in the Southwestern USA are relatively less important for food production than the US Corn Belt, and represent a promising area for expansion of biofuel/bioproduct crops. However, high temperatures, low available water and high solar radiation in the SW represent a challenge to suitable feedstock development, and future climate change scenarios predict that portions of the SW will experience increased temperature and temporal shifts in precipitation distribution. Sorghum (Sorghum bicolor) is a valuable forage crop with promise as a biofuel feedstock, given its high biomass under semi-arid conditions, relatively lower N fertilizer requirements compared to corn, and salinity tolerance. To evaluate the environmental impact of expanded sorghum cultivation under future climate in the SW USA, we used the DayCent model in concert with a suite of downscaled future weather projections to predict biogeochemical consequences (greenhouse gas flux and impacts on soil carbon) of sorghum cultivation in New Mexico. The model showed good correspondence with yield data from field trials including both dryland and irrigated sorghum (measured vs. modeled; r2 = 0.75). Simulation experiments tested the effect of dryland production versus irrigation, low N versus high N inputs and delayed fertilizer application. Nitrogen application timing and irrigation impacted yield and N2O emissions less than N rate and climate. Across N and irrigation treatments, future climate simulations resulted in 6% increased yield and 20% lower N2O emissions compared to current climate. Soil C pools declined under future climate. The greatest declines in soil C were from low N input sorghum simulations, regardless of irrigation (>20% declines in SOM in both cases), and requires further evaluation to determine if changing future climate is driving these declines, or if they are a function of prolonged sorghum-fallow rotations in the model. The relatively small gain in yield for irrigated sorghum, and strong control of N rate on N2O emissions suggests that a dryland sorghum bioproduct system could be environmentally sustainable in the Southwestern US with effective N management, and warrants further investigation in field trials.
Hot spots of crop production changes at 1.5°C and 2°C
NASA Astrophysics Data System (ADS)
Schleussner, C. F.; Deryng, D.; Mueller, C.; Elliott, J. W.; Saeed, F.; Folberth, C.; Liu, W.; Wang, X.; Pugh, T.
2017-12-01
Studying changes in global and regional crop production is central for assessing the benefits of limiting global average temperature below 1.5ºC versus 2ºC. Projections of future climatic impacts on crop production are commonly focussed on focussing on mean changes. However, substantial risks are posed by extreme weather events such as heat waves and droughts that are of great relevance for imminent policy relevant questions such as price shocks or food security. Preliminary research on the benefits of keeping global average temperature increase below 1.5ºC versus 2ºC above pre-industrial levels has indicated that changes in extreme weather event occurrences will be more pronounced than changes in the mean climate. Here we will present results of crop yield projections for a set of global gridded crop models (GGCMs) for four major staple crops at 1.5°C and 2°C warming above pre-industrial levels using climate forcing data from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project. We will assess changes in crop production on the global and regional level, and identify hot spots of change. The unique multi-ensemble setup allows to identify changes in extreme yield losses with multi-year to multi-decadal return periods, and thus elucidate the consequences for global and regional food security.
Seed vigour and crop establishment: extending performance beyond adaptation.
Finch-Savage, W E; Bassel, G W
2016-02-01
Seeds are central to crop production, human nutrition, and food security. A key component of the performance of crop seeds is the complex trait of seed vigour. Crop yield and resource use efficiency depend on successful plant establishment in the field, and it is the vigour of seeds that defines their ability to germinate and establish seedlings rapidly, uniformly, and robustly across diverse environmental conditions. Improving vigour to enhance the critical and yield-defining stage of crop establishment remains a primary objective of the agricultural industry and the seed/breeding companies that support it. Our knowledge of the regulation of seed germination has developed greatly in recent times, yet understanding of the basis of variation in vigour and therefore seed performance during the establishment of crops remains limited. Here we consider seed vigour at an ecophysiological, molecular, and biomechanical level. We discuss how some seed characteristics that serve as adaptive responses to the natural environment are not suitable for agriculture. Past domestication has provided incremental improvements, but further actively directed change is required to produce seeds with the characteristics required both now and in the future. We discuss ways in which basic plant science could be applied to enhance seed performance in crop production. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Crop yield responses to a hardwood biochar across varied soils and climate conditions
USDA-ARS?s Scientific Manuscript database
Biochars applied to soil for crop yield improvements have produced mixed results. The assorted crop yield responses may be linked to employing biochars with diverse chemical and physical characteristics. To clarify if biochars can improve crop yields, it may be prudent to evaluate one biochar type...
How does spatial and temporal resolution of vegetation index impact crop yield estimation?
USDA-ARS?s Scientific Manuscript database
Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing data have long been used in crop yield estimation for decades. The process-based approach uses light use efficiency model to estimate crop yield. Vegetation index (VI) ...
NASA Astrophysics Data System (ADS)
Kothari, K.; Ale, S.; Bordovsky, J.; Hoogenboom, G.; Munster, C. L.
2017-12-01
The semi-arid Texas High Plains (THP) is one of the most productive agricultural regions in the United States. However, agriculture in the THP is faced with the challenges of rapid groundwater depletion in the underlying Ogallala Aquifer, restrictions on pumping groundwater, recurring droughts, and projected warmer and drier future climatic conditions. Therefore, it is imperative to adopt strategies that enhance climate change resilience of THP agriculture to maintain a sustainable agricultural economy in this region. The overall goal of this study is to assess the impacts of climate change and potential reduction in groundwater availability on production of two major crops in the region, cotton and grain sorghum, and suggest adaptation strategies using the Decision Support System for Agrotechnology Transfer (DSSAT) Cropping System Model. The DSSAT model was calibrated and evaluated using data from the long-term cotton-sorghum rotation experiments conducted at Helms Farm near Halfway in the THP. After achieving a satisfactory calibration for crop yield (RMSE < 1.0 T ha-1 or 14%) and dates of onset of various growth stages, the model was used to simulate historic (1980-2010) and future (2040-2070) cotton and sorghum yields and water use. The Multivariate Adaptive Constructed Analogs (MACA) projected future climate datasets from nine CMIP5 global climate models (GCMs) and two representative concentration pathways (RCP 4.5 and 8.5) were used in this study. Preliminary results indicated a reduction in irrigated grain sorghum yield per hectare by 6% and 8%, and a reduction in dryland sorghum yield per hectare by 9% and 17% under RCP 4.5 and RCP 8.5 scenarios, respectively. Grain sorghum future water use declined by about 2% and 5% under RCP 4.5 and RCP 8.5, respectively. Climate change impacts on cotton production and evaluation of several adaptation strategies such as incorporating heat and drought tolerances in cultivars, early planting, shifting to short season varieties, and deficit irrigation are currently being studied.
NASA Astrophysics Data System (ADS)
Jayanthi, Harikishan
The focus of this research was two-fold: (1) extend the reflectance-based crop coefficient approach to non-grain (potato and sugar beet), and vegetable crops (bean), and (2) develop vegetation index (VI)-yield statistical models for potato and sugar beet crops using high-resolution aerial multispectral imagery. Extensive crop biophysical sampling (leaf area index and aboveground dry biomass sampling) and canopy reflectance measurements formed the backbone of developing of canopy reflectance-based crop coefficients for bean, potato, and sugar beet crops in this study. Reflectance-based crop coefficient equations were developed for the study crops cultivated in Kimberly, Idaho, and subsequently used in water availability simulations in the plant root zone during 1998 and 1999 seasons. The simulated soil water profiles were compared with independent measurements of actual soil water profiles in the crop root zone in selected fields. It is concluded that the canopy reflectance-based crop coefficient technique can be successfully extended to non-grain crops as well. While the traditional basal crop coefficients generally expect uniform growth in a region the reflectance-based crop coefficients represent the actual crop growth pattern (in less than ideal water availability conditions) in individual fields. Literature on crop canopy interactions with sunlight states that there is a definite correspondence between leaf area index progression in the season and the final yield. In case of crops like potato and sugar beet, the yield is influenced not only on how early and how quickly the crop establishes its canopy but also on how long the plant stands on the ground in a healthy state. The integrated area under the crop growth curve has shown excellent correlations with hand-dug samples of potato and sugar beet crops in this research. Soil adjusted vegetation index-yield models were developed, and validated using multispectral aerial imagery. Estimated yield images were compared with the actual yields extracted from the ground. The remote sensing-derived yields compared well with the actual yields sampled on the ground. This research has highlighted the importance of the date of spectral emergence, the need to know the duration for which the crops stand on the ground, and the need to identify critical periods of time when multispectral coverages are essential for reliable tuber yield estimation.
Plant vasculature-mediated signaling involved in early phosphate stress response
USDA-ARS?s Scientific Manuscript database
Depletion of finite global rock phosphate (Pi) reserves will impose major limitations on future agricultural productivity and food security. Hence, modern breeding programs seek to develop Pi-efficient crops with sustainable yields under reduced Pi fertilizer inputs. In this regard, although the lon...
Quantifying the effects of ozone on plant reproductive growth and development
USDA-ARS?s Scientific Manuscript database
Tropospheric ozone is a harmful air pollutant that can negatively impact plant growth and development. Current ozone concentrations negatively impact forest productivity and crop yields, and future ozone concentrations will increase if current emission rates continue. However, the specific effects o...
Global Food Security Index Studies and Satellite Information
NASA Astrophysics Data System (ADS)
Medina, T. A.; Ganti-Agrawal, S.; Joshi, D.; Lakhankar, T.
2017-12-01
Food yield is equal to the total crop harvest per unit cultivated area. During the elapsed time of germination and frequent harvesting, both human and climate related effects determine a country's' contribution towards global food security. Each country across the globe's annual income per capita was collected to then determine nine countries for further studies. For a location to be chosen, its income per capita needed to be considered poor, uprising or wealthy. Both physical land cover and regional climate helped categorize potential parameters thought to be studied. Once selected, Normalized Difference Vegetation Index (NDVI) data was collected for Ethiopia, Liberia, Indonesia, United States, Norway, Russia, Kuwait and Saudi Arabia over the recent 16 years for approximately every 16 days starting from early in the year 2000. Software languages such as Geographic Information System (GIS), MatLab and Excel were used to determine how population size, income and deforestation directly determines agricultural yields. Because of high maintenance requirements for large harvests when forest areas are cleared, they often have a reduction in soil quality, requiring fertilizer use to produce sufficient crop yields. Total area and vegetation index of each country is to be studied, to determine crop and deforestation percentages. To determine how deforestation impacts future income and crop yield predictions of each country studied. By using NDVI results a parameter is to be potentially found that will help define an index, to create an equation that will determine a country's annual income and ability to provide for their families and themselves.
Climate change impacts on crop yield and quality with CO2 fertilization in China
Erda, Lin; Wei, Xiong; Hui, Ju; Yinlong, Xu; Yue, Li; Liping, Bai; Liyong, Xie
2005-01-01
A regional climate change model (PRECIS) for China, developed by the UK's Hadley Centre, was used to simulate China's climate and to develop climate change scenarios for the country. Results from this project suggest that, depending on the level of future emissions, the average annual temperature increase in China by the end of the twenty-first century may be between 3 and 4 °C. Regional crop models were driven by PRECIS output to predict changes in yields of key Chinese food crops: rice, maize and wheat. Modelling suggests that climate change without carbon dioxide (CO2) fertilization could reduce the rice, maize and wheat yields by up to 37% in the next 20–80 years. Interactions of CO2 with limiting factors, especially water and nitrogen, are increasingly well understood and capable of strongly modulating observed growth responses in crops. More complete reporting of free-air carbon enrichment experiments than was possible in the Intergovernmental Panel on Climate Change's Third Assessment Report confirms that CO2 enrichment under field conditions consistently increases biomass and yields in the range of 5–15%, with CO2 concentration elevated to 550 ppm Levels of CO2 that are elevated to more than 450 ppm will probably cause some deleterious effects in grain quality. It seems likely that the extent of the CO2 fertilization effect will depend upon other factors such as optimum breeding, irrigation and nutrient applications. PMID:16433100
Food security, irrigation, climate change, and water scarcity in India
NASA Astrophysics Data System (ADS)
Hertel, T. W.; Taheripour, F.; Gopalakrishnan, B. N.; Sahin, S.; Escurra, J.
2015-12-01
This paper uses an advanced CGE model (Taheripour et al., 2013) coupled with hydrological projections of future water scarcity and biophysical data on likely crop yields under climate change to examine how water scarcity, climate change, and trade jointly alter land use changes across the Indian subcontinent. Climate shocks to rainfed and irrigated yields in 2030 are based on the p-DSSAT crop model, RCP 2.6, as reported under the AgMIP project (Rosenzweig et al., 2013), accessed through GEOSHARE (Villoria et al, 2014). Results show that, when water scarcity is ignored, irrigated areas grow in the wake of climate change as the returns to irrigation rise faster than for rainfed uses of land within a given agro-ecological zone. When non-agricultural competition for future water use, as well as anticipated supply side limitations are brought into play (Rosegrant et al., 2013), the opportunity cost of water rises across all river basins, with the increase ranging from 12% (Luni) to 44% (Brahmaputra). As a consequence, irrigated crop production is curtailed in most regions (Figure 1), with the largest reductions coming in the most water intensive crops, namely rice and wheat. By reducing irrigated area, which tends to have much higher yields, the combined effects of water scarcity and climate impacts require an increase in total cropped area, which rises by about 240,000 ha. The majority of this area expansion occurs in the Ganges, Indus, and Brahmari river basins. Overall crop output falls by about 2 billion, relative to the 2030 baseline, with imports rising by about 570 million. The combined effects of climate change and water scarcity for irrigation also have macro-economic consequences, resulting in a 0.28% reduction in GDP and an increase in the consumer price index by about 0.4% in 2030, compared the baseline. The national welfare impact on India amounts to roughly 3 billion (at 2007 prices) in 2030. Assuming a 3% social discount rate, the net present value of the annual reductions in welfare will be about 24.3 billion for 2008 to 2030. This study highlights the importance of considering the interplay between climate and water availability in assessments of food security.
Impact of Climate Change on Food Security in Kenya
NASA Astrophysics Data System (ADS)
Yator, J. J.
2016-12-01
This study sought to address the existing gap on the impact of climate change on food security in support of policy measures to avert famine catastrophes. Fixed and random effects regressions for crop food security were estimated. The study simulated the expected impact of future climate change on food insecurity based on the Representative Concentration Pathways scenario (RCPs). The study makes use of county-level yields estimates (beans, maize, millet and sorghum) and daily climate data (1971 to 2010). Climate variability affects food security irrespective of how food security is defined. Rainfall during October-November-December (OND), as well as during March-April-May (MAM) exhibit an inverted U-shaped relationship with most food crops; the effects are most pronounced for maize and sorghum. Beans and Millet are found to be largely unresponsive to climate variability and also to time-invariant factors. OND rains and fall and summer temperature exhibit a U-shaped relationship with yields for most crops, while MAM rains temperature exhibits an inverted U-shaped relationship. However, winter temperatures exhibit a hill-shaped relationship with most crops. Project future climate change scenarios on crop productivity show that climate change will adversely affect food security, with up to 69% decline in yields by the year 2100. Climate variables have a non-linear relationship with food insecurity. Temperature exhibits an inverted U-shaped relationship with food insecurity, suggesting that increased temperatures will increase crop food insecurity. However, maize and millet, benefit from increased summer and winter temperatures. The simulated effects of different climate change scenarios on food insecurity suggest that adverse climate change will increase food insecurity in Kenya. The largest increases in food insecurity are predicted for the RCP 8.5Wm2, compared to RCP 4.5Wm2. Climate change is likely to have the greatest effects on maize insecurity, which is likely to increase by between 8.56% and 21% by the year 2100. There exists a need for policies that safeguard agriculture against the adverse effects of climate change to alleviate food insecurity in Kenya. Therefore, it is important that climate change mitigation is given much more priority in policy planning and also implementation.
NASA Astrophysics Data System (ADS)
Alfieri, Silvia Maria; De Lorenzi, Francesca; Basile, Angelo; Bonfante, Antonello; Missere, Daniele; Menenti, Massimo
2014-05-01
Climate change in Mediterranean area is likely to reduce precipitation amounts and to increase temperature thus affecting the timing of development stages and the productivity of crops. Further, extreme weather events are expected to increase in the future leading to significant increase in agricultural risk. Some strategies for effectively managing risks and adapting to climate change involve adjustments to irrigation management and use of different varieties. We quantified the risk on Peach production in an irrigated area of "Emilia Romagna" region ( Italy) taking into account the impact on crop yield due to climate change and variability and to extreme weather events as well as the ability of the agricultural system to modulate this impact (adaptive capacity) through changes in water and crop management. We have focused on climatic events causing insufficient water supply to crops, while taking into account the effect of climate on the duration and timing of phenological stages. Further, extreme maximum and minimum temperature events causing significant reduction of crop yield have been considered using phase-specific critical temperatures. In our study risk was assessed as the product of the probability of a damaging event (hazard), such as drought or extreme temperatures, and the estimated impact of such an event (vulnerability). To estimate vulnerability we took into account the possible options to reduce risk, by combining estimates of the sensitivity of the system (negative impact on crop yield) and its adaptive capacity. The latter was evaluated as the relative improvement due to alternate management options: the use of alternate varieties or the changes in irrigation management. Vulnerability was quantified using cultivar-specific thermal and hydrologic requirements of a set of cultivars determined by experimental data and from scientific literature. Critical temperatures determining a certain reduction of crop yield have been estimated and used to assess thermal hazard and vulnerability in sensitive phenological stages. Cultivar-specific yield response functions to water availability were used to assess the reduction of yield for a determinate management option. Downscaled climate scenarios have been used to calculate indicators of soil water availability and thermal times and to evaluate the variability of crop phenology in combination with critical temperatures. Two climate scenarios were considered: reference (1961-90) and future (2021-2050) climate, the former from climatic statistics on observed variables, and the latter from statistical downscaling of general circulation models (AOGCM). Management options were defined by combinations of irrigation strategies (optimal, rainfed and deficit) with use of alternate varieties. As regards hydrologic conditions, risk assessment has been done at landscape scale in all soil units within each study area. The mechanistic model SWAP (Soil-Water-Atmosphere-Plant model) of water flow in the soil-plant-atmosphere system was used to describe the hydrological conditions in response to climate and irrigation. Different farm management options were evaluated. In a moderate water shortage scenario, deficit irrigation was an effective strategy to cope with climate change risks. In a severe water shortage scenario, the study showed the potentiality of intra-specific biodiversity to reduce risk of yield losses, although costs should be evaluated against the benefits of each specific management option. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008)
NASA Astrophysics Data System (ADS)
Yang, B.; Lee, D. K.
2016-12-01
Understanding spatial distribution of irrigation requirement is critically important for agricultural water management. However, many studies considering future agricultural water management in Korea assessed irrigation requirement on watershed or administrative district scale, but have not accounted the spatial distribution. Lumped hydrologic model has typically used in Korea for simulating watershed scale irrigation requirement, while distribution hydrologic model can simulate the spatial distribution grid by grid. To overcome this shortcoming, here we applied a grid base global hydrologic model (H08) into local scale to estimate spatial distribution under future irrigation requirement of Korean Peninsula. Korea is one of the world's most densely populated countries, with also high produce and demand of rice which requires higher soil moisture than other crops. Although, most of the precipitation concentrate in particular season and disagree with crop growth season. This precipitation character makes management of agricultural water which is approximately 60% of total water usage critical issue in Korea. Furthermore, under future climate change, the precipitation predicted to be more concentrated and necessary need change of future water management plan. In order to apply global hydrological model into local scale, we selected appropriate major crops under social and local climate condition in Korea to estimate cropping area and yield, and revised the cropping area map more accurately. As a result, future irrigation requirement estimation varies under each projection, however, slightly decreased in most case. The simulation reveals, evapotranspiration increase slightly while effective precipitation also increase to balance the irrigation requirement. This finding suggest practical guideline to decision makers for further agricultural water management plan including future development of water supply plan to resolve water scarcity.
The effect of drought and heat stress on reproductive processes in cereals.
Barnabás, Beáta; Jäger, Katalin; Fehér, Attila
2008-01-01
As the result of intensive research and breeding efforts over the last 20 years, the yield potential and yield quality of cereals have been greatly improved. Nowadays, yield safety has gained more importance because of the forecasted climatic changes. Drought and high temperature are especially considered as key stress factors with high potential impact on crop yield. Yield safety can only be improved if future breeding attempts will be based on the valuable new knowledge acquired on the processes determining plant development and its responses to stress. Plant stress responses are very complex. Interactions between plant structure, function and the environment need to be investigated at various phases of plant development at the organismal, cellular as well as molecular levels in order to obtain a full picture. The results achieved so far in this field indicate that various plant organs, in a definite hierarchy and in interaction with each other, are involved in determining crop yield under stress. Here we attempt to summarize the currently available information on cereal reproduction under drought and heat stress and to give an outlook towards potential strategies to improve yield safety in cereals.
NASA Astrophysics Data System (ADS)
Lee, J.; Kang, S.; Jang, K.; Ko, J.; Hong, S.
2012-12-01
Crop productivity is associated with the food security and hence, several models have been developed to estimate crop yield by combining remote sensing data with carbon cycle processes. In present study, we attempted to estimate crop GPP and NPP using algorithm based on the LUE model and a simplified respiration model. The state of Iowa and Illinois was chosen as the study site for estimating the crop yield for a period covering the 5 years (2006-2010), as it is the main Corn-Belt area in US. Present study focuses on developing crop-specific parameters for corn and soybean to estimate crop productivity and yield mapping using satellite remote sensing data. We utilized a 10 km spatial resolution daily meteorological data from WRF to provide cloudy-day meteorological variables but in clear-say days, MODIS-based meteorological data were utilized to estimate daily GPP, NPP, and biomass. County-level statistics on yield, area harvested, and productions were used to test model predicted crop yield. The estimated input meteorological variables from MODIS and WRF showed with good agreements with the ground observations from 6 Ameriflux tower sites in 2006. For examples, correlation coefficients ranged from 0.93 to 0.98 for Tmin and Tavg ; from 0.68 to 0.85 for daytime mean VPD; from 0.85 to 0.96 for daily shortwave radiation, respectively. We developed county-specific crop conversion coefficient, i.e. ratio of yield to biomass on 260 DOY and then, validated the estimated county-level crop yield with the statistical yield data. The estimated corn and soybean yields at the county level ranged from 671 gm-2 y-1 to 1393 gm-2 y-1 and from 213 gm-2 y-1 to 421 gm-2 y-1, respectively. The county-specific yield estimation mostly showed errors less than 10%. Furthermore, we estimated crop yields at the state level which were validated against the statistics data and showed errors less than 1%. Further analysis for crop conversion coefficient was conducted for 200 DOY and 280 DOY. For the case of 280 DOY, Crop yield estimation showed better accuracy for soybean at county level. Though the case of 200 DOY resulted in less accuracy (i.e. 20% mean bias), it provides a useful tool for early forecasting of crop yield. We improved the spatial accuracy of estimated crop yield at county level by developing county-specific crop conversion coefficient. Our results indicate that the aboveground crop biomass can be estimated successfully with the simple LUE and respiration models combined with MODIS data and then, county-specific conversion coefficient can be different with each other across different counties. Hence, applying region-specific conversion coefficient is necessary to estimate crop yield with better accuracy.
NASA Astrophysics Data System (ADS)
Najafi, E.; Devineni, N.; Pal, I.; Khanbilvardi, R.
2017-12-01
An understanding of the climate factors that influence the space-time variability of crop yields is important for food security purposes and can help us predict global food availability. In this study, we address how the crop yield trends of countries globally were related to each other during the last several decades and the main climatic variables that triggered high/low crop yields simultaneously across the world. Robust Principal Component Analysis (rPCA) is used to identify the primary modes of variation in wheat, maize, sorghum, rice, soybeans, and barley yields. Relations between these modes of variability and important climatic variables, especially anomalous sea surface temperature (SSTa), are examined from 1964 to 2010. rPCA is also used to identify simultaneous outliers in each year, i.e. systematic high/low crop yields across the globe. The results demonstrated spatiotemporal patterns of these crop yields and the climate-related events that caused them as well as the connection of outliers with weather extremes. We find that among climatic variables, SST has had the most impact on creating simultaneous crop yields variability and yield outliers in many countries. An understanding of this phenomenon can benefit global crop trade networks.
Weather based risks and insurances for crop production in Belgium
NASA Astrophysics Data System (ADS)
Gobin, Anne
2014-05-01
Extreme weather events such as late frosts, droughts, heat waves and rain storms can have devastating effects on cropping systems. Damages due to extreme events are strongly dependent on crop type, crop stage, soil type and soil conditions. The perspective of rising risk-exposure is exacerbated further by limited aid received for agricultural damage, an overall reduction of direct income support to farmers and projected intensification of weather extremes with climate change. According to both the agriculture and finance sectors, a risk assessment of extreme weather events and their impact on cropping systems is needed. The impact of extreme weather events particularly during the sensitive periods of the farming calendar requires a modelling approach to capture the mixture of non-linear interactions between the crop, its environment and the occurrence of the meteorological event. The risk of soil moisture deficit increases towards harvesting, such that drought stress occurs in spring and summer. Conversely, waterlogging occurs mostly during early spring and autumn. Risks of temperature stress appear during winter and spring for chilling and during summer for heat. Since crop development is driven by thermal time and photoperiod, the regional crop model REGCROP (Gobin, 2010) enabled to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. The risk profiles were subsequently confronted with yields, yield losses and insurance claims for different crops. Physically based crop models such as REGCROP assist in understanding the links between different factors causing crop damage as demonstrated for cropping systems in Belgium. Extreme weather events have already precipitated contraction of insurance coverage in some markets (e.g. hail insurance), and the process can be expected to continue if the losses or damages from such events increase in the future. Climate change will stress this further and impacts on crop growth are expected to be twofold, owing to the sensitive stages occurring earlier during the growing season and to the changes in return period of extreme weather events. Though average yields have risen continuously due to technological advances, there is no evidence that relative tolerance to adverse weather events has improved. The research is funded by the Belgian Science Policy Organisation (Belspo) under contract nr SD/RI/03A.
Jin, Zhenong; Ainsworth, Elizabeth A; Leakey, Andrew D B; Lobell, David B
2018-02-01
Elevated atmospheric CO 2 concentrations ([CO 2 ]) are expected to increase C3 crop yield through the CO 2 fertilization effect (CFE) by stimulating photosynthesis and by reducing stomatal conductance and transpiration. The latter effect is widely believed to lead to greater benefits in dry rather than wet conditions, although some recent experimental evidence challenges this view. Here we used a process-based crop model, the Agricultural Production Systems sIMulator (APSIM), to quantify the contemporary and future CFE on soybean in one of its primary production area of the US Midwest. APSIM accurately reproduced experimental data from the Soybean Free-Air CO 2 Enrichment site showing that the CFE declined with increasing drought stress. This resulted from greater radiation use efficiency (RUE) and above-ground biomass production at elevated [CO 2 ] that outpaced gains in transpiration efficiency (TE). Using an ensemble of eight climate model projections, we found that drought frequency in the US Midwest is projected to increase from once every 5 years currently to once every other year by 2050. In addition to directly driving yield loss, greater drought also significantly limited the benefit from rising [CO 2 ]. This study provides a link between localized experiments and regional-scale modeling to highlight that increased drought frequency and severity pose a formidable challenge to maintaining soybean yield progress that is not offset by rising [CO 2 ] as previously anticipated. Evaluating the relative sensitivity of RUE and TE to elevated [CO 2 ] will be an important target for future modeling and experimental studies of climate change impacts and adaptation in C3 crops. © 2017 John Wiley & Sons Ltd.
Evaluating high temporal and spatial resolution vegetation index for crop yield prediction
USDA-ARS?s Scientific Manuscript database
Remote sensing data have been widely used in estimating crop yield. Remote sensing derived parameters such as Vegetation Index (VI) were used either directly in building empirical models or by assimilating with crop growth models to predict crop yield. The abilities of remote sensing VI in crop yiel...
A quality assessment of the MARS crop yield forecasting system for the European Union
NASA Astrophysics Data System (ADS)
van der Velde, Marijn; Bareuth, Bettina
2015-04-01
Timely information on crop production forecasts can become of increasing importance as commodity markets are more and more interconnected. Impacts across large crop production areas due to (e.g.) extreme weather and pest outbreaks can create ripple effects that may affect food prices and availability elsewhere. The MARS Unit (Monitoring Agricultural ResourceS), DG Joint Research Centre, European Commission, has been providing forecasts of European crop production levels since 1993. The operational crop production forecasting is carried out with the MARS Crop Yield Forecasting System (M-CYFS). The M-CYFS is used to monitor crop growth development, evaluate short-term effects of anomalous meteorological events, and provide monthly forecasts of crop yield at national and European Union level. The crop production forecasts are published in the so-called MARS bulletins. Forecasting crop yield over large areas in the operational context requires quality benchmarks. Here we present an analysis of the accuracy and skill of past crop yield forecasts of the main crops (e.g. soft wheat, grain maize), throughout the growing season, and specifically for the final forecast before harvest. Two simple benchmarks to assess the skill of the forecasts were defined as comparing the forecasts to 1) a forecast equal to the average yield and 2) a forecast using a linear trend established through the crop yield time-series. These reveal a variability in performance as a function of crop and Member State. In terms of production, the yield forecasts of 67% of the EU-28 soft wheat production and 80% of the EU-28 maize production have been forecast superior to both benchmarks during the 1993-2013 period. In a changing and increasingly variable climate crop yield forecasts can become increasingly valuable - provided they are used wisely. We end our presentation by discussing research activities that could contribute to this goal.
Sharwood, Robert E
2017-01-01
494 I. 495 II. 496 III. 496 IV. 499 V. 499 VI. 501 VII. 501 VIII. 502 IX. 505 X. 506 507 References 507 SUMMARY: The uncertainty of future climate change is placing pressure on cropping systems to continue to provide stable increases in productive yields. To mitigate future climates and the increasing threats against global food security, new solutions to manipulate photosynthesis are required. This review explores the current efforts available to improve carbon assimilation within plant chloroplasts by engineering Rubisco, which catalyzes the rate-limiting step of CO 2 fixation. Fixation of CO 2 and subsequent cycling of 3-phosphoglycerate through the Calvin cycle provides the necessary carbohydrate building blocks for maintaining plant growth and yield, but has to compete with Rubisco oxygenation, which results in photorespiration that is energetically wasteful for plants. Engineering improvements in Rubisco is a complex challenge and requires an understanding of chloroplast gene regulatory pathways, and the intricate nature of Rubisco catalysis and biogenesis, to transplant more efficient forms of Rubisco into crops. In recent times, major advances in Rubisco engineering have been achieved through improvement of our knowledge of Rubisco synthesis and assembly, and identifying amino acid catalytic switches in the L-subunit responsible for improvements in catalysis. Improving the capacity of CO 2 fixation in crops such as rice will require further advances in chloroplast bioengineering and Rubisco biogenesis. © 2016 The Author. New Phytologist © 2016 New Phytologist Trust.
Progress and Challenges in Predicting Crop Responses to Atmospheric [CO2
NASA Astrophysics Data System (ADS)
Kent, J.; Paustian, K.
2017-12-01
Increasing atmospheric [CO2] directly accelerates photosynthesis in C3 crops, and indirectly promotes yields by reducing stomatal conductance and associated water losses in C3 and C4 crops. Several decades of experiments have exposed crops to eCO2 in greenhouses and other enclosures and observed yield increases on the order of 33%. FACE systems were developed in the early 1990s to better replicate open-field growing conditions. Some authors contend that FACE results indicate lower crop yield responses than enclosure studies, while others maintain no significant difference or attribute differences to various methodological factors. The crop CO2 response processes in many crop models were developed using results from enclosure experiments. This work tested the ability of one such model, DayCent, to reproduce crop responses to CO2 enrichment from several FACE experiments. DayCent performed well at simulating yield and transpiration responses in C4 crops, but significantly overestimated yield responses in C3 crops. After adjustment of CO2-response parameters, DayCent was able to reproduce mean yield responses for specific crops. However, crop yield responses from FACE experiments vary widely across years and sites, and likely reflect complex interactions between conditions such as weather, soils, cultivars, and biotic stressors. Further experimental work is needed to identify the secondary variables that explain this variability so that models can more reliably forecast crop yields under climate change. Likewise, CO2 impacts on crop outcomes such as belowground biomass allocation and grain N content have implications for agricultural C fluxes and human nutrition, respectively, but are poorly understood and thus difficult to simulate with confidence.
NASA Astrophysics Data System (ADS)
Yang, H.; Cassman, K. G.; Stackhouse, P. W.; Hoell, J. M.
2007-12-01
We tested the usability of NASA satellite imagery-based daily solar radiation for farm-specific crop yield simulation and management decisions using the Hybrid-Maize model (www.hybridmaize.unl.edu). Solar radiation is one of the key inputs for crop yield simulation. Farm-specific crop management decisions using simulation models require long-term (i.e., 20 years or longer) daily local weather data including solar radiation for assessing crop yield potential and its variation, optimizing crop planting date, and predicting crop yield in a real time mode. Weather stations that record daily solar radiation have sparse coverage and many of them have record shorter than 15 years. Based on satellite imagery and other remote sensed information, NASA has provided estimates of daily climatic data including solar radiation at a resolution of 1 degree grid over the earth surface from 1983 to 2005. NASA is currently continuing to update the database and has plans to provide near real-time data in the future. This database, which is free to the public at http://power.larc.nasa.gov, is a potential surrogate for ground- measured climatic data for farm-specific crop yield simulation and management decisions. In this report, we quantified (1) the similarities between NASA daily solar radiation and ground-measured data atr 20 US sites and four international sites, and (2) the accuracy and precision of simulated corn yield potential and its variability using NASA solar radiation coupled with other weather data from ground measurements. The 20 US sites are in the western Corn Belt, including Iowa, South Dakota, Nebraska, and Kansas. The four international sites are Los Banos in the Philippines, Beijing in China, Cali in Columbia, and Ibatan in Nigeria. Those sites were selected because of their high quality weather record and long duration (more than 20 years on average). We found that NASA solar radiation was highly significantly correlated (mean r2 =0.88**) with the ground measurements at the 20 US sites, while the correlation was poor (mean r2=0.55**, though significant) at the four international sites. At the 20 US sites, the mean root mean square error (RMSE) between NASA solar radiation and the ground data was 2.7 MJ/m2/d, or 19% of the mean daily ground data. At the four international sites, the mean RMSE was 4.0 MJ/m2/d, or 25% of the mean daily ground value. Large differences between NASA solar radiation and the ground data were likely associated with tropical environment or significant variation in elevation within a short distance. When using NASA solar radiation coupled with other weather data from ground measurements, the simulated corn yields were highly significantly correlated (mean r2=0.85**) with those using complete ground weather data at the 20 US sites, while the correlation (mean r2=0.48**) was poor at the four international sites. The mean RMSE between the simulated corn yields of the two batches was 0.50 Mg/ha, or 3% of the mean absolute value using the ground data. At the four international sites, the RMSE of the simulated yields was 1.5 Mg/ha, or 13% of the mean absolute value using the ground data. We conclude that the NASA satellite imagery-based daily solar radiation is a reasonably reliable surrogate for the ground observations for farm-specific crop yield simulation and management decisions, especially at locations where ground-measured solar radiation is unavailable.
NASA Astrophysics Data System (ADS)
Monaco, Eugenia; Bonfante, Antonello; De Mascellis, Roberto; Alfieri, Silvia Maria; Menenti, Massimo; De Lorenzi, Francesca
2013-04-01
Climate change will cause significant changes in water distribution and availability; as a consequence the water resources in some areas (like Mediterranean regions) will be limiting factors to the cultivation of some species, included cereals. So the perspective of climate change requires an analysis of the adaptation possibilities of food and fiber species currently cultivated. A powerful tool for adaptation is the relevant intra-specific biodiversity of crops. The knowledge, for different crop cultivars, of the responses to different environmental conditions (e.g. yield response functions to water regime) can be a tool to identify adaptation options to future climate. Moreover, simulation models of water flow in the soil-plant-atmosphere system can be coupled with future climate scenarios to predict the soil water regime also accounting for different irrigation scheduling options. In this work the adaptive capacity of maize hybrids (Zea mays L.) was evaluated in an irrigated district of Southern Italy (the "Destra Sele" plain, an area of about 18.000 ha), where maize is extensively grown for water buffalo feeding. Horticultural crops (tomato, fennel, artichoke) are grown, as well. The methodology applied is based on two complementary elements: - a database on climatic requirements of 30 maize hybrids: the yield response functions to water availability were determined from experimental data derived both from scientific literature and from field trials carried out by ISAFOM-CNR. These functions were applied to describe the behaviour of the hybrids with respect to the relative evapotranspiration deficit; - the simulation performed by the agro-hydrological model SWAP (soil-water-plant and atmosphere), to determine the future soil water regime at landscape scale. Two climate scenarios were studied: "past" (1961-1990) and "future" (2021-2050). Future climate scenarios were generated within the Italian National Project AGROSCENARI. Climate scenarios at low spatial resolution generated with general circulation models (AOGCMs) were down-scaled by means of a statistical model (Tomozeiu et al., 2007). The downscaled climate scenario includes 50 realizations of daily minimum, maximum temperature and precipitation data, on a regular grid with a spatial resolution of 35 km. The hydraulic properties of 25 representative soils of the "Destra Sele" area were estimated with HYPRES pedo-transfer function previously tested in the area. The model SWAP was run to determine the soil water balance with different irrigation strategies: optimal irrigation, no irrigation, and deficit irrigation, in both climate periods. Deficit irrigation was scheduled applying water volumes equal to 20%, 40%, 60% and 80% of optimal ones. From the outputs of the model runs the relative evapotranspiration deficit (or Crop Water Stress Index - CWSI) was calculated and compared with the yield response functions of the hybrids. By means of these functions, for each hybrid a critical value of CWSI was identified, namely a CWSI value corresponding to a relative yield of 0.9. By comparing the CWSI of soil units with hybrid's critical values, cultivar's adaptability to future water regime was determined, both as a function of irrigation scheduling and of soils' physical properties. The case study shows how, in the future climate scenario, with limited water resources, the intra-specific variability will allow to maintain current crop production system. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008)
Global growth and stability of agricultural yield decrease with pollinator dependence
Garibaldi, Lucas A.; Aizen, Marcelo A.; Klein, Alexandra M.; Cunningham, Saul A.; Harder, Lawrence D.
2011-01-01
Human welfare depends on the amount and stability of agricultural production, as determined by crop yield and cultivated area. Yield increases asymptotically with the resources provided by farmers’ inputs and environmentally sensitive ecosystem services. Declining yield growth with increased inputs prompts conversion of more land to cultivation, but at the risk of eroding ecosystem services. To explore the interdependence of agricultural production and its stability on ecosystem services, we present and test a general graphical model, based on Jensen's inequality, of yield–resource relations and consider implications for land conversion. For the case of animal pollination as a resource influencing crop yield, this model predicts that incomplete and variable pollen delivery reduces yield mean and stability (inverse of variability) more for crops with greater dependence on pollinators. Data collected by the Food and Agriculture Organization of the United Nations during 1961–2008 support these predictions. Specifically, crops with greater pollinator dependence had lower mean and stability in relative yield and yield growth, despite global yield increases for most crops. Lower yield growth was compensated by increased land cultivation to enhance production of pollinator-dependent crops. Area stability also decreased with pollinator dependence, as it correlated positively with yield stability among crops. These results reveal that pollen limitation hinders yield growth of pollinator-dependent crops, decreasing temporal stability of global agricultural production, while promoting compensatory land conversion to agriculture. Although we examined crop pollination, our model applies to other ecosystem services for which the benefits to human welfare decelerate as the maximum is approached. PMID:21422295
NASA Astrophysics Data System (ADS)
Hoffman, A.; Forest, C. E.; Kemanian, A.
2016-12-01
A significant number of food-insecure nations exist in regions of the world where dust plays a large role in the climate system. While the impacts of common climate variables (e.g. temperature, precipitation, ozone, and carbon dioxide) on crop yields are relatively well understood, the impact of mineral aerosols on yields have not yet been thoroughly investigated. This research aims to develop the data and tools to progress our understanding of mineral aerosol impacts on crop yields. Suspended dust affects crop yields by altering the amount and type of radiation reaching the plant, modifying local temperature and precipitation. While dust events (i.e. dust storms) affect crop yields by depleting the soil of nutrients or by defoliation via particle abrasion. The impact of dust on yields is modeled statistically because we are uncertain which impacts will dominate the response on national and regional scales considered in this study. Multiple linear regression is used in a number of large-scale statistical crop modeling studies to estimate yield responses to various climate variables. In alignment with previous work, we develop linear crop models, but build upon this simple method of regression with machine-learning techniques (e.g. random forests) to identify important statistical predictors and isolate how dust affects yields on the scales of interest. To perform this analysis, we develop a crop-climate dataset for maize, soybean, groundnut, sorghum, rice, and wheat for the regions of West Africa, East Africa, South Africa, and the Sahel. Random forest regression models consistently model historic crop yields better than the linear models. In several instances, the random forest models accurately capture the temperature and precipitation threshold behavior in crops. Additionally, improving agricultural technology has caused a well-documented positive trend that dominates time series of global and regional yields. This trend is often removed before regression with traditional crop models, but likely at the cost of removing climate information. Our random forest models consistently discover the positive trend without removing any additional data. The application of random forests as a statistical crop model provides insight into understanding the impact of dust on yields in marginal food producing regions.
Crop improvement using life cycle datasets acquired under field conditions.
Mochida, Keiichi; Saisho, Daisuke; Hirayama, Takashi
2015-01-01
Crops are exposed to various environmental stresses in the field throughout their life cycle. Modern plant science has provided remarkable insights into the molecular networks of plant stress responses in laboratory conditions, but the responses of different crops to environmental stresses in the field need to be elucidated. Recent advances in omics analytical techniques and information technology have enabled us to integrate data from a spectrum of physiological metrics of field crops. The interdisciplinary efforts of plant science and data science enable us to explore factors that affect crop productivity and identify stress tolerance-related genes and alleles. Here, we describe recent advances in technologies that are key components for data driven crop design, such as population genomics, chronological omics analyses, and computer-aided molecular network prediction. Integration of the outcomes from these technologies will accelerate our understanding of crop phenology under practical field situations and identify key characteristics to represent crop stress status. These elements would help us to genetically engineer "designed crops" to prevent yield shortfalls because of environmental fluctuations due to future climate change.
2015-01-01
The conversion efficiency (εc) of absorbed radiation into biomass (MJ of dry matter per MJ of absorbed photosynthetically active radiation) is a component of yield potential that has been estimated at less than half the theoretical maximum. Various strategies have been proposed to improve εc, but a statistical analysis to establish baseline εc levels across different crop functional types is lacking. Data from 164 published εc studies conducted in relatively unstressed growth conditions were used to determine the means, greatest contributors to variation, and genetic trends in εc across important food and biofuel crop species. εc was greatest in biofuel crops (0.049–0.066), followed by C4 food crops (0.046–0.049), C3 nonlegumes (0.036–0.041), and finally C3 legumes (0.028–0.035). Despite confining our analysis to relatively unstressed growth conditions, total incident solar radiation and average growing season temperature most often accounted for the largest portion of εc variability. Genetic improvements in εc, when present, were less than 0.7% per year, revealing the unrealized potential of improving εc as a promising contributing strategy to meet projected future agricultural demand. PMID:25829463
NASA Astrophysics Data System (ADS)
Blanc, Elodie; Caron, Justin; Fant, Charles; Monier, Erwan
2017-08-01
While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of climate and socioeconomic changes on water availability for irrigation in the U.S. as well as subsequent impacts on crop yields by 2050, while accounting for climate change projection uncertainty. We find that climate and socioeconomic changes will increase water shortages and strongly reduce irrigated yields for specific crops (i.e., cotton and forage), or in specific regions (i.e., the Southwest) where irrigation is not sustainable. Crop modeling studies that do not represent changes in irrigation availability can thus be misleading. Yet, since the most water-stressed basins represent a relatively small share of U.S. irrigated areas, the overall reduction in U.S. crop yields is small. The response of crop yields to climate change and water stress also suggests that some level of adaptation will be feasible, like relocating croplands to regions with sustainable irrigation or switching to less irrigation intensive crops. Finally, additional simulations show that greenhouse gas (GHG) mitigation can alleviate the effect of water stress on irrigated crop yields, enough to offset the reduced CO2 fertilization effect compared to an unconstrained GHG emission scenario.
Blanc, Elodie; Caron, Justin; Fant, Charles; Monier, Erwan
2017-08-01
While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of climate and socioeconomic changes on water availability for irrigation in the U.S. as well as subsequent impacts on crop yields by 2050, while accounting for climate change projection uncertainty. We find that climate and socioeconomic changes will increase water shortages and strongly reduce irrigated yields for specific crops (i.e., cotton and forage), or in specific regions (i.e., the Southwest) where irrigation is not sustainable. Crop modeling studies that do not represent changes in irrigation availability can thus be misleading. Yet, since the most water-stressed basins represent a relatively small share of U.S. irrigated areas, the overall reduction in U.S. crop yields is small. The response of crop yields to climate change and water stress also suggests that some level of adaptation will be feasible, like relocating croplands to regions with sustainable irrigation or switching to less irrigation intensive crops. Finally, additional simulations show that greenhouse gas (GHG) mitigation can alleviate the effect of water stress on irrigated crop yields, enough to offset the reduced CO 2 fertilization effect compared to an unconstrained GHG emission scenario.
Cassman, K G
1999-05-25
Wheat (Triticum aestivum L.), rice (Oryza sativa L.), and maize (Zea mays L.) provide about two-thirds of all energy in human diets, and four major cropping systems in which these cereals are grown represent the foundation of human food supply. Yield per unit time and land has increased markedly during the past 30 years in these systems, a result of intensified crop management involving improved germplasm, greater inputs of fertilizer, production of two or more crops per year on the same piece of land, and irrigation. Meeting future food demand while minimizing expansion of cultivated area primarily will depend on continued intensification of these same four systems. The manner in which further intensification is achieved, however, will differ markedly from the past because the exploitable gap between average farm yields and genetic yield potential is closing. At present, the rate of increase in yield potential is much less than the expected increase in demand. Hence, average farm yields must reach 70-80% of the yield potential ceiling within 30 years in each of these major cereal systems. Achieving consistent production at these high levels without causing environmental damage requires improvements in soil quality and precise management of all production factors in time and space. The scope of the scientific challenge related to these objectives is discussed. It is concluded that major scientific breakthroughs must occur in basic plant physiology, ecophysiology, agroecology, and soil science to achieve the ecological intensification that is needed to meet the expected increase in food demand.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, Guoyong
The United States is responsible for 35% and 60% of global corn supply and exports. Enhanced supply stability through a reduction in the year-to-year variability of US corn yield would greatly benefit global food security. Important in this regard is to understand how corn yield variability has evolved geographically in the history and how it relates to climatic and non-climatic factors. Results showed that year-to-year variation of US corn yield has decreased significantly during 1980-2010, mainly in Midwest Corn Belt, Nebraska and western arid regions. Despite the country-scale decreasing variability, corn yield variability exhibited an increasing trend in South Dakota,more » Texas and Southeast growing regions, indicating the importance of considering spatial scales in estimating yield variability. The observed pattern is partly reproduced by process-based crop models, simulating larger areas experiencing increasing variability and underestimating the magnitude of decreasing variability. And 3 out of 11 models even produced a differing sign of change from observations. Hence, statistical model which produces closer agreement with observations is used to explore the contribution of climatic and non-climatic factors to the changes in yield variability. It is found that climate variability dominate the change trends of corn yield variability in the Midwest Corn Belt, while the ability of climate variability in controlling yield variability is low in southeastern and western arid regions. Irrigation has largely reduced the corn yield variability in regions (e.g. Nebraska) where separate estimates of irrigated and rain-fed corn yield exist, demonstrating the importance of non-climatic factors in governing the changes in corn yield variability. The results highlight the distinct spatial patterns of corn yield variability change as well as its influencing factors at the county scale. I also caution the use of process-based crop models, which have substantially underestimated the change trend of corn yield variability, in projecting its future changes.« less
NASA Astrophysics Data System (ADS)
Löw, Fabian; Biradar, Chandrashekhar; Fliemann, Elisabeth; Lamers, John P. A.; Conrad, Christopher
2017-07-01
Improving crop area and/or crop yields in agricultural regions is one of the foremost scientific challenges for the next decades. This is especially true in irrigated areas because sustainable intensification of irrigated crop production is virtually the sole means to enhance food supply and contribute to meeting food demands of a growing population. Yet, irrigated crop production worldwide is suffering from soil degradation and salinity, reduced soil fertility, and water scarcity rendering the performance of irrigation schemes often below potential. On the other hand, the scope for improving irrigated agricultural productivity remains obscure also due to the lack of spatial data on agricultural production (e.g. crop acreage and yield). To fill this gap, satellite earth observations and a replicable methodology were used to estimate crop yields at the field level for the period 2010/2014 in the Fergana Valley, Central Asia, to understand the response of agricultural productivity to factors related to the irrigation and drainage infrastructure and environment. The results showed that cropping pattern, i.e. the presence or absence of multi-annual crop rotations, and spatial diversity of crops had the most persistent effects on crop yields across observation years suggesting the need for introducing sustainable cropping systems. On the other hand, areas with a lower crop diversity or abundance of crop rotation tended to have lower crop yields, with differences of partly more than one t/ha yield. It is argued that factors related to the infrastructure, for example, the distance of farms to the next settlement or the density of roads, had a persistent effect on crop yield dynamics over time. The improvement potential of cotton and wheat yields were estimated at 5%, compared to crop yields of farms in the direct vicinity of settlements or roads. In this study it is highlighted how remotely sensed estimates of crop production in combination with geospatial technologies provide a unique perspective that, when combined with field surveys, can support planners to identify management priorities for improving regional production and/or reducing environmental impacts.
NASA Astrophysics Data System (ADS)
Setiyono, T. D.
2014-12-01
Accurate and timely information on rice crop growth and yield helps governments and other stakeholders adapting their economic policies and enables relief organizations to better anticipate and coordinate relief efforts in the wake of a natural catastrophe. Such delivery of rice growth and yield information is made possible by regular earth observation using space-born Synthetic Aperture Radar (SAR) technology combined with crop modeling approach to estimate yield. Radar-based remote sensing is capable of observing rice vegetation growth irrespective of cloud coverage, an important feature given that in incidences of flooding the sky is often cloud-covered. The system allows rapid damage assessment over the area of interest. Rice yield monitoring is based on a crop growth simulation and SAR-derived key information, particularly start of season and leaf growth rate. Results from pilot study sites in South and South East Asian countries suggest that incorporation of SAR data into crop model improves yield estimation for actual yields. Remote-sensing data assimilation into crop model effectively capture responses of rice crops to environmental conditions over large spatial coverage, which otherwise is practically impossible to achieve. Such improvement of actual yield estimates offers practical application such as in a crop insurance program. Process-based crop simulation model is used in the system to ensure climate information is adequately captured and to enable mid-season yield forecast.
Productivity limits and potentials of the principles of conservation agriculture.
Pittelkow, Cameron M; Liang, Xinqiang; Linquist, Bruce A; van Groenigen, Kees Jan; Lee, Juhwan; Lundy, Mark E; van Gestel, Natasja; Six, Johan; Venterea, Rodney T; van Kessel, Chris
2015-01-15
One of the primary challenges of our time is to feed a growing and more demanding world population with reduced external inputs and minimal environmental impacts, all under more variable and extreme climate conditions in the future. Conservation agriculture represents a set of three crop management principles that has received strong international support to help address this challenge, with recent conservation agriculture efforts focusing on smallholder farming systems in sub-Saharan Africa and South Asia. However, conservation agriculture is highly debated, with respect to both its effects on crop yields and its applicability in different farming contexts. Here we conduct a global meta-analysis using 5,463 paired yield observations from 610 studies to compare no-till, the original and central concept of conservation agriculture, with conventional tillage practices across 48 crops and 63 countries. Overall, our results show that no-till reduces yields, yet this response is variable and under certain conditions no-till can produce equivalent or greater yields than conventional tillage. Importantly, when no-till is combined with the other two conservation agriculture principles of residue retention and crop rotation, its negative impacts are minimized. Moreover, no-till in combination with the other two principles significantly increases rainfed crop productivity in dry climates, suggesting that it may become an important climate-change adaptation strategy for ever-drier regions of the world. However, any expansion of conservation agriculture should be done with caution in these areas, as implementation of the other two principles is often challenging in resource-poor and vulnerable smallholder farming systems, thereby increasing the likelihood of yield losses rather than gains. Although farming systems are multifunctional, and environmental and socio-economic factors need to be considered, our analysis indicates that the potential contribution of no-till to the sustainable intensification of agriculture is more limited than often assumed.
Mind the Roots: Phenotyping Below-Ground Crop Diversity and Its Influence on Final Yield
NASA Astrophysics Data System (ADS)
Nieters, C.; Guadagno, C. R.; Lemli, S.; Hosseini, A.; Ewers, B. E.
2017-12-01
Changes in global climate patterns and water regimes are having profound impacts on worldwide crop production. An ever-growing population paired with increasing temperatures and unpredictable periods of severe drought call for accurate modeling of future crop yield. Although novel approaches are being developed in high-throughput, above-ground image phenotyping, the below-ground plant system is still poorly phenotyped. Collection of plant root morphology and hydraulics are needed to inform mathematical models to reliably estimate yields of crops grown in sub-optimal conditions. We used Brassica rapa to inform our model as it is a globally cultivated crop with several functionally diverse cultivars. Specifically, we use 7 different accessions from oilseed (R500 and Yellow Sarson), leafy type (Pac choi and Chinese cabbage), a vegetable turnip, and two Wisconsin Fast Plants (Imb211 and Fast Plant self-compatible), which have shorter life cycles and potentially large differences in allocation to roots. Bi-weekly, we harvested above and below-ground biomass to compare the varieties in terms of carbon allocation throughout their life cycle. Using WinRhizo software, we analyzed root system length and surface area to compare and contrast root morphology among cultivars. Our results confirm that root structural characteristics are crucial to explain plant water use and carbon allocation. The root:shoot ratio reveals a significant (p < 0.01) difference among crop accession. To validate the procedure across different varieties and life stages we also compared surface area results from the image-based technology to dry biomass finding a strong linear relationship (R2= 0.85). To assess the influence of a diverse above-ground morphology on the root system we also measured above-ground anatomical and physiological traits such as gas exchange, chlorophyll content, and chlorophyll a fluorescence. A thorough analysis of the root system will clarify carbon dynamics and hydraulics at the whole-plant level, improving final yield predictions.
Impacts of El Nino Southern Oscillation on the Global Yields of Major Crops
NASA Technical Reports Server (NTRS)
Iizumi, Toshichika; Luo, Jing-Jia; Challinor, Andrew J.; Sakurai, Gen; Yokozawa, Masayuki; Sakuma, Hirofumi; Brown, Molly Elizabeth; Yamagata, Toshio
2014-01-01
The monitoring and prediction of climate-induced variations in crop yields, production and export prices in major food-producing regions have become important to enable national governments in import-dependent countries to ensure supplies of affordable food for consumers. Although the El Nino/Southern Oscillation (ENSO) often affects seasonal temperature and precipitation, and thus crop yields in many regions, the overall impacts of ENSO on global yields are uncertain. Here we present a global map of the impacts of ENSO on the yields of major crops and quantify its impacts on their global-mean yield anomalies. Results show that El Nino likely improves the global-mean soybean yield by 2.15.4 but appears to change the yields of maize, rice and wheat by -4.3 to +0.8. The global-mean yields of all four crops during La Nina years tend to be below normal (-4.5 to 0.0).Our findings highlight the importance of ENSO to global crop production.
Ceballos, Isabel; Ruiz, Michael; Fernández, Cristhian; Peña, Ricardo
2013-01-01
The arbuscular mycorrhizal symbiosis is formed between arbuscular mycorrhizal fungi (AMF) and plant roots. The fungi provide the plant with inorganic phosphate (P). The symbiosis can result in increased plant growth. Although most global food crops naturally form this symbiosis, very few studies have shown that their practical application can lead to large-scale increases in food production. Application of AMF to crops in the tropics is potentially effective for improving yields. However, a main problem of using AMF on a large-scale is producing cheap inoculum in a clean sterile carrier and sufficiently concentrated to cheaply transport. Recently, mass-produced in vitro inoculum of the model mycorrhizal fungus Rhizophagus irregularis became available, potentially making its use viable in tropical agriculture. One of the most globally important food plants in the tropics is cassava. We evaluated the effect of in vitro mass-produced R. irregularis inoculum on the yield of cassava crops at two locations in Colombia. A significant effect of R. irregularis inoculation on yield occurred at both sites. At one site, yield increases were observed irrespective of P fertilization. At the other site, inoculation with AMF and 50% of the normally applied P gave the highest yield. Despite that AMF inoculation resulted in greater food production, economic analyses revealed that AMF inoculation did not give greater return on investment than with conventional cultivation. However, the amount of AMF inoculum used was double the recommended dose and was calculated with European, not Colombian, inoculum prices. R. irregularis can also be manipulated genetically in vitro, leading to improved plant growth. We conclude that application of in vitro R. irregularis is currently a way of increasing cassava yields, that there is a strong potential for it to be economically profitable and that there is enormous potential to improve this efficiency further in the future. PMID:23950975
Forster, Dionys; Andres, Christian; Verma, Rajeev; Zundel, Christine; Messmer, Monika M.; Mäder, Paul
2013-01-01
The debate on the relative benefits of conventional and organic farming systems has in recent time gained significant interest. So far, global agricultural development has focused on increased productivity rather than on a holistic natural resource management for food security. Thus, developing more sustainable farming practices on a large scale is of utmost importance. However, information concerning the performance of farming systems under organic and conventional management in tropical and subtropical regions is scarce. This study presents agronomic and economic data from the conversion phase (2007–2010) of a farming systems comparison trial on a Vertisol soil in Madhya Pradesh, central India. A cotton-soybean-wheat crop rotation under biodynamic, organic and conventional (with and without Bt cotton) management was investigated. We observed a significant yield gap between organic and conventional farming systems in the 1st crop cycle (cycle 1: 2007–2008) for cotton (−29%) and wheat (−27%), whereas in the 2nd crop cycle (cycle 2: 2009–2010) cotton and wheat yields were similar in all farming systems due to lower yields in the conventional systems. In contrast, organic soybean (a nitrogen fixing leguminous plant) yields were marginally lower than conventional yields (−1% in cycle 1, −11% in cycle 2). Averaged across all crops, conventional farming systems achieved significantly higher gross margins in cycle 1 (+29%), whereas in cycle 2 gross margins in organic farming systems were significantly higher (+25%) due to lower variable production costs but similar yields. Soybean gross margin was significantly higher in the organic system (+11%) across the four harvest years compared to the conventional systems. Our results suggest that organic soybean production is a viable option for smallholder farmers under the prevailing semi-arid conditions in India. Future research needs to elucidate the long-term productivity and profitability, particularly of cotton and wheat, and the ecological impact of the different farming systems. PMID:24324659
Forster, Dionys; Andres, Christian; Verma, Rajeev; Zundel, Christine; Messmer, Monika M; Mäder, Paul
2013-01-01
The debate on the relative benefits of conventional and organic farming systems has in recent time gained significant interest. So far, global agricultural development has focused on increased productivity rather than on a holistic natural resource management for food security. Thus, developing more sustainable farming practices on a large scale is of utmost importance. However, information concerning the performance of farming systems under organic and conventional management in tropical and subtropical regions is scarce. This study presents agronomic and economic data from the conversion phase (2007-2010) of a farming systems comparison trial on a Vertisol soil in Madhya Pradesh, central India. A cotton-soybean-wheat crop rotation under biodynamic, organic and conventional (with and without Bt cotton) management was investigated. We observed a significant yield gap between organic and conventional farming systems in the 1(st) crop cycle (cycle 1: 2007-2008) for cotton (-29%) and wheat (-27%), whereas in the 2(nd) crop cycle (cycle 2: 2009-2010) cotton and wheat yields were similar in all farming systems due to lower yields in the conventional systems. In contrast, organic soybean (a nitrogen fixing leguminous plant) yields were marginally lower than conventional yields (-1% in cycle 1, -11% in cycle 2). Averaged across all crops, conventional farming systems achieved significantly higher gross margins in cycle 1 (+29%), whereas in cycle 2 gross margins in organic farming systems were significantly higher (+25%) due to lower variable production costs but similar yields. Soybean gross margin was significantly higher in the organic system (+11%) across the four harvest years compared to the conventional systems. Our results suggest that organic soybean production is a viable option for smallholder farmers under the prevailing semi-arid conditions in India. Future research needs to elucidate the long-term productivity and profitability, particularly of cotton and wheat, and the ecological impact of the different farming systems.
Investment risk in bioenergy crops
Skevas, Theodoros; Swinton, Scott M.; Tanner, Sophia; ...
2015-11-18
Here, perennial, cellulosic bioenergy crops represent a risky investment. The potential for adoption of these crops depends not only on mean net returns, but also on the associated probability distributions and on the risk preferences of farmers. Using 6-year observed crop yield data from highly productive and marginally productive sites in the southern Great Lakes region and assuming risk neutrality, we calculate expected breakeven biomass yields and prices compared to corn ( Zea mays L.) as a benchmark. Next we develop Monte Carlo budget simulations based on stochastic crop prices and yields. The crop yield simulations decompose yield risk intomore » three components: crop establishment survival, time to maturity, and mature yield variability. Results reveal that corn with harvest of grain and 38% of stover (as cellulosic bioenergy feedstock) is both the most profitable and the least risky investment option. It dominates all perennial systems considered across a wide range of farmer risk preferences. Although not currently attractive for profit-oriented farmers who are risk neutral or risk averse, perennial bioenergy crops.« less
Investment risk in bioenergy crops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skevas, Theodoros; Swinton, Scott M.; Tanner, Sophia
Here, perennial, cellulosic bioenergy crops represent a risky investment. The potential for adoption of these crops depends not only on mean net returns, but also on the associated probability distributions and on the risk preferences of farmers. Using 6-year observed crop yield data from highly productive and marginally productive sites in the southern Great Lakes region and assuming risk neutrality, we calculate expected breakeven biomass yields and prices compared to corn ( Zea mays L.) as a benchmark. Next we develop Monte Carlo budget simulations based on stochastic crop prices and yields. The crop yield simulations decompose yield risk intomore » three components: crop establishment survival, time to maturity, and mature yield variability. Results reveal that corn with harvest of grain and 38% of stover (as cellulosic bioenergy feedstock) is both the most profitable and the least risky investment option. It dominates all perennial systems considered across a wide range of farmer risk preferences. Although not currently attractive for profit-oriented farmers who are risk neutral or risk averse, perennial bioenergy crops.« less
NASA Astrophysics Data System (ADS)
Fung, K. M.; Tai, A. P. K.; Yong, T.; Liu, X.
2017-12-01
The fast-growing world population will impose a severe pressure on our current global food production system. Meanwhile, boosting crop yield by increasing fertilizer use comes with a cascade of environmental problems including air pollution. In China, agricultural activities contribute to 95% of total ammonia emissions. Such emissions are attributable to 20% of the fine particulate matter (PM2.5) formed in the downwind regions, which imposes severe health risks to the citizens. Field studies of soybean intercropping have demonstrated its potential to enhance crop yield, lower fertilizer use, and thus reduce ammonia emissions by taking advantage of legume nitrogen fixation and enabling mutualistic crop-crop interactions between legumes and non-legume crops. In our work, we revise the process-based biogeochemical model, DeNitrification-DeComposition (DNDC) to capture the belowground interactions of intercropped crops and show that with intercropping, only 58% of fertilizer is required to yield the same maize production of its monoculture counterpart, corresponding to a reduction in ammonia emission by 43% over China. Using the GEOS-Chem global 3-D chemical transport model, we estimate that such ammonia reduction can lessen downwind inorganic PM2.5 by up to 2.1% (equivalent to 1.3 μg m-3), which saves the Chinese air pollution-related health costs by up to US$1.5 billion each year. With the more enhanced crop growth and land management algorithms in the Community Land Model (CLM), we also implement into CLM the new parametrization of the belowground interactions to simulate large-scale adoption of intercropping around the globe and study their beneficial effects on food production, fertilizer usage and ammonia reduction. This study can serve as a scientific basis for policy makers and intergovernmental organizations to consider promoting large-scale intercropping to maintain a sustainable global food supply to secure both future crop production and air quality.
Tradeoffs between vigor and yield for crops grown under different management systems
NASA Astrophysics Data System (ADS)
Simic Milas, Anita; Keller Vincent, Robert; Romanko, Matthew; Feitl, Melina; Rupasinghe, Prabha
2016-04-01
Remote sensing can provide an effective means for rapid and non-destructive monitoring of crop status and biochemistry. Monitoring pattern of traditional vigor algorithms generated from Landsat 8 OLI satellite data represents a robust method that can be widely used to differentiate the status of crops, as well as to monitor nutrient uptake functionality of differently treated seeds grown under different managements. This study considers 24 factorial parcels of winter wheat in 2013, corn in 2014, and soybeans in 2015, grown under four different types of agricultural management. The parcels are located at the Kellogg Biological Station, Long-Term Ecological Research site in the State of Michigan USA. At maturity, the organic crops exhibit significantly higher vigor and significantly lower yield than conventionally managed crops under different treatments. While organic crops invest in their metabolism at the expense of their yield, the conventional crops manage to increase their yield at the expense of their vigor. Landsat 8 OLI is capable of 1) differentiating the biochemical status of crops under different treatments at maturity, and 2) monitoring the tradeoff between crop yield and vigor that can be controlled by the seed treatments and proper conventional applications, with the ultimate goal of increasing food yield and food availability, and 3) distinguishing between organic and conventionally treated crops. Timing, quantity and types of herbicide applications have a great impact on early and pre-harvest vigor, maturity and yield of conventionally treated crops. Satellite monitoring using Landsat 8 is an optimal tool for coordinating agricultural applications, soil practices and genetic coding of the crop to produce higher yield as well as have early crop maturity, desirable in northern climates.
Future for sorghum regarding its water use
USDA-ARS?s Scientific Manuscript database
Despite the planet's Earth appearance from space, water is a minor component of the plant's mass and the considerably less is present as fresh water available for crop production. Sorghum is ideally suited for grain and silage production in water limited areas because of its ability to yield higher ...
Corn yield under subirrigation and future climate scenarios in the Maumee river basin
USDA-ARS?s Scientific Manuscript database
Subirrigation has been proposed as a water table management practice to maintain appropriate soil water content during periods of high crop water demand on subsurface drained croplands in the Corn Belt. Subirrigation takes advantage of the subsurface drainage systems already installed on drained agr...
Soybean Cultivar Variation in Response to Elevated Ozone Concentration
USDA-ARS?s Scientific Manuscript database
Crop losses to ozone damage are conservatively estimated to cost $1 to $3 billion in the U.S. These costs will rise as surface-level ozone increases over this century. A critical step in maximizing soybean yield in a future of rising tropospheric ozone is identifying variation in cultivar responses,...
USDA-ARS?s Scientific Manuscript database
In recent years, concerns about global, sustainable, and nutritional security have gained substantial momentum propelled by rapid increases in global population and food insecurity. Historically, plant breeding has played a key role in improving crop yield to keep pace with the rising global populat...
The phenology of winter rye in Poland: an analysis of long-term experimental data
NASA Astrophysics Data System (ADS)
Blecharczyk, Andrzej; Sawinska, Zuzanna; Małecka, Irena; Sparks, Tim H.; Tryjanowski, Piotr
2016-09-01
The study of the phenology of crops, although quite popular, has limitations, mainly because of frequent changes to crop varieties and management practices. Here, we present data on the phenology and yield of winter rye in western Poland collected between 1957 and 2012 from a long-term field experiment. Data were examined for trends through time and compared to climatological factors using regression analysis. Both annual air temperature and precipitation increased during the study period, equivalent to 2 °C and 186 mm, respectively, over the 52-year period for which met data were available. We detected significant delays in sowing date and recently in emergence, but significant advances were apparent in full flowering date equivalent to 4 days/decade. Yield and plant density experienced a step like change in 1986; yield increasing by ca. 70 % and plant density increasing by ca. 50 %, almost coinciding with a similar change in annual mean temperature, but most likely caused by a changed seed rate and use of herbicides. Future climate change is expected to have a greater impact on this crop, but farmers may be able to adapt to these changes by modifying water regimes, using new machinery and sowing new rye varieties.
Natural genetic variation for morphological and molecular determinants of plant growth and yield.
Nunes-Nesi, Adriano; Nascimento, Vitor de Laia; de Oliveira Silva, Franklin Magnum; Zsögön, Agustin; Araújo, Wagner L; Sulpice, Ronan
2016-05-01
The rates of increase in yield of the main commercial crops have been steadily falling in many areas worldwide. This generates concerns because there is a growing demand for plant biomass due to the increasing population. Plant yield should thus be improved in the context of climate change and decreasing natural resources. It is a major challenge which could be tackled by improving and/or altering light-use efficiency, CO2 uptake and fixation, primary metabolism, plant architecture and leaf morphology, and developmental plant processes. In this review, we discuss some of the traits which could lead to yield increase, with a focus on how natural genetic variation could be harnessed. Moreover, we provide insights for advancing our understanding of the molecular aspects governing plant growth and yield, and propose future avenues for improvement of crop yield. We also suggest that knowledge accumulated over the last decade in the field of molecular physiology should be integrated into new ideotypes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Critto, Andrea; Torresan, Silvia; Ronco, Paolo; Zennaro, Federica; Santini, Monia; Trabucco, Antonio; Marcomini, Antonio
2016-04-01
Climate change is already affecting the frequency of drought events which may threaten the current stocks of water resources and thus the availability of freshwater for the irrigation. The achievement of a sustainable equilibrium between the availability of water resources and the irrigation demand is essentially related to the planning and implementation of evidence-based adaptation strategies and actions. In this sense, the improvement (of existing) and the development of (new) appropriate risk assessment methods and tools to evaluate the impact of drought events on irrigated crops is fundamental in order to assure that the agricultural yields are appropriate to meet the current and future food and market demand. This study evaluates the risk of hydrological drought on the irrigated agronomic compartment of Apulia, a semi-arid region in Southern Italy. We applied a stepwise Regional Risk Assessment (RRA) procedure, based on the consecutive analysis of hazards, exposure, vulnerability and risks, integrating the qualitative and quantitative available information. Future climate projections for the timeframes 2021-2050 and 2041-2070 were provided by COSMO-CLM under the radiative forcing RCP4.5 and RCP8.5. The run-off feeding the water stocks of the most important irrigation reservoirs in Apulia was then modeled with Arc-SWAT. Hence, the hazard analysis was carried out in order to estimate the degree of fulfillment of actual irrigation demand satisfied by water supply of different reservoirs in future scenarios. Vulnerability of exposed irrigated crops was evaluated depending on three factors accounting for crop yield variation vs water stress, water losses along the irrigation network, diversification of water supply. Resulting risk and vulnerability maps allowed: the identification of Reclamation Consortia at higher risk of not fulfilling their future irrigation demand (e.g. Capitanata Reclamation Consortia in RCP8.5 2041-2070 scenario); the ranking of most affected crops (e.g. fruit trees and vineyards); and finally, the characterization of vulnerability pattern of irrigation systems. Major achievements included the definition of a portfolio of science-driven adaptation strategies to reduce the risk pattern at both agronomic level (preferring crops with low vulnerability score, as olive groves) and at structural level (differentiating the water stocks and supplies and reducing losses and inefficiencies).
Crops In Silico: Generating Virtual Crops Using an Integrative and Multi-scale Modeling Platform.
Marshall-Colon, Amy; Long, Stephen P; Allen, Douglas K; Allen, Gabrielle; Beard, Daniel A; Benes, Bedrich; von Caemmerer, Susanne; Christensen, A J; Cox, Donna J; Hart, John C; Hirst, Peter M; Kannan, Kavya; Katz, Daniel S; Lynch, Jonathan P; Millar, Andrew J; Panneerselvam, Balaji; Price, Nathan D; Prusinkiewicz, Przemyslaw; Raila, David; Shekar, Rachel G; Shrivastava, Stuti; Shukla, Diwakar; Srinivasan, Venkatraman; Stitt, Mark; Turk, Matthew J; Voit, Eberhard O; Wang, Yu; Yin, Xinyou; Zhu, Xin-Guang
2017-01-01
Multi-scale models can facilitate whole plant simulations by linking gene networks, protein synthesis, metabolic pathways, physiology, and growth. Whole plant models can be further integrated with ecosystem, weather, and climate models to predict how various interactions respond to environmental perturbations. These models have the potential to fill in missing mechanistic details and generate new hypotheses to prioritize directed engineering efforts. Outcomes will potentially accelerate improvement of crop yield, sustainability, and increase future food security. It is time for a paradigm shift in plant modeling, from largely isolated efforts to a connected community that takes advantage of advances in high performance computing and mechanistic understanding of plant processes. Tools for guiding future crop breeding and engineering, understanding the implications of discoveries at the molecular level for whole plant behavior, and improved prediction of plant and ecosystem responses to the environment are urgently needed. The purpose of this perspective is to introduce Crops in silico (cropsinsilico.org), an integrative and multi-scale modeling platform, as one solution that combines isolated modeling efforts toward the generation of virtual crops, which is open and accessible to the entire plant biology community. The major challenges involved both in the development and deployment of a shared, multi-scale modeling platform, which are summarized in this prospectus, were recently identified during the first Crops in silico Symposium and Workshop.
Crops In Silico: Generating Virtual Crops Using an Integrative and Multi-scale Modeling Platform
Marshall-Colon, Amy; Long, Stephen P.; Allen, Douglas K.; Allen, Gabrielle; Beard, Daniel A.; Benes, Bedrich; von Caemmerer, Susanne; Christensen, A. J.; Cox, Donna J.; Hart, John C.; Hirst, Peter M.; Kannan, Kavya; Katz, Daniel S.; Lynch, Jonathan P.; Millar, Andrew J.; Panneerselvam, Balaji; Price, Nathan D.; Prusinkiewicz, Przemyslaw; Raila, David; Shekar, Rachel G.; Shrivastava, Stuti; Shukla, Diwakar; Srinivasan, Venkatraman; Stitt, Mark; Turk, Matthew J.; Voit, Eberhard O.; Wang, Yu; Yin, Xinyou; Zhu, Xin-Guang
2017-01-01
Multi-scale models can facilitate whole plant simulations by linking gene networks, protein synthesis, metabolic pathways, physiology, and growth. Whole plant models can be further integrated with ecosystem, weather, and climate models to predict how various interactions respond to environmental perturbations. These models have the potential to fill in missing mechanistic details and generate new hypotheses to prioritize directed engineering efforts. Outcomes will potentially accelerate improvement of crop yield, sustainability, and increase future food security. It is time for a paradigm shift in plant modeling, from largely isolated efforts to a connected community that takes advantage of advances in high performance computing and mechanistic understanding of plant processes. Tools for guiding future crop breeding and engineering, understanding the implications of discoveries at the molecular level for whole plant behavior, and improved prediction of plant and ecosystem responses to the environment are urgently needed. The purpose of this perspective is to introduce Crops in silico (cropsinsilico.org), an integrative and multi-scale modeling platform, as one solution that combines isolated modeling efforts toward the generation of virtual crops, which is open and accessible to the entire plant biology community. The major challenges involved both in the development and deployment of a shared, multi-scale modeling platform, which are summarized in this prospectus, were recently identified during the first Crops in silico Symposium and Workshop. PMID:28555150
NASA Astrophysics Data System (ADS)
Vicuna, S.; Melo, O.; Meza, F. J.; Alvarez, P.; Maureira, F.; Sanchez, A.; Tapia, A.; Cortes, M.; Dale, L. L.
2013-12-01
Future climate conditions could potentially affect water supply and demand on water basins throughout the world but especially on snowmelt-driven agriculture oriented basins that can be found throughout central Chile. Increasing temperature and reducing precipitation will affect both the magnitude and timing of water supply this part of the world. Different adaptation strategies could be implemented to reduce the impacts of such scenarios. Some could be incorporated as planned policies decided at the basin or Water Use Organization levels. Examples include changing large scale irrigation infrastructure (reservoirs and main channels) either physically or its operation. Complementing these strategies it is reasonable to think that at a disaggregated level, farmers would also react (adapt) to these new conditions using a mix of options to either modify their patterns of consumption (irrigation efficiency, crop mix, crop area reduction), increase their ability to access new sources of water (groundwater, water markets) or finally compensate their expected losses (insurance). We present a modeling framework developed to represent these issues using as a case study the Limarí basin located in Central Chile. This basin is a renowned example of how the development of reservoirs and irrigation infrastructure can reduce climate vulnerabilities allowing the economic development of a basin. Farmers in this basin tackle climate variability by adopting different strategies that depend first on the reservoir water volume allocation rule, on the type and size of investment they have at their farms and finally their potential access to water markets and other water supplies options. The framework developed can be used to study these strategies under current and future climate scenarios. The cornerstone of the framework is an hydrology and water resources model developed on the WEAP platform. This model is able to reproduce the large scale hydrologic features of the basin such as snowmelt hydrology, reservoir operation and groundwater dynamics. Crop yield under different water irrigation patterns have been inferred using a calibrated Cropsyst model. These crop yields together with user association irrigation constraints are used in a GAMS optimization model embedded dynamically in WEAP in order to obtain every year decisions on crop mix (including fallow land), irrigation patterns and participation in the spot water market. The GAMS optimization model has been calibrated using annual crop mix time series derived using a combination of sources of information ranging from different type of census plus satellite images. The resulting modeling platform is able to simulate under historic and future climate scenarios water availability in different locations of the basin with associated crop yield and economic consequences. The platform also allows the implementation of autonomous and planned adaptation strategies that could reduce the impacts of climate variability and climate change.
Response of double cropping suitability to climate change in the United States
NASA Astrophysics Data System (ADS)
Seifert, Christopher A.; Lobell, David B.
2015-02-01
In adapting US agriculture to the climate of the 21st century, a key unknown is whether cropping frequency may increase, helping to offset projected negative yield impacts in major production regions. Combining daily weather data and crop phenology models, we find that cultivated area in the US suited to dryland winter wheat-soybeans, the most common double crop (DC) system, increased by up to 28% from 1988 to 2012. Changes in the observed distribution of DC area over the same period agree well with this suitability increase, evidence consistent with climate change playing a role in recent DC expansion in phenologically constrained states. We then apply the model to projections of future climate under the RCP45 and RCP85 scenarios and estimate an additional 126-239% increase, respectively, in DC area. Sensitivity tests reveal that in most instances, increases in mean temperature are more important than delays in fall freeze in driving increased DC suitability. The results suggest that climate change will relieve phenological constraints on wheat-soy DC systems over much of the United States, though it should be recognized that impacts on corn and soybean yields in this region are expected to be negative and larger in magnitude than the 0.4-0.75% per decade benefits we estimate here for double cropping.
NASA Astrophysics Data System (ADS)
Ren, D.; Huang, G., Sr.; Xu, X.; Huang, Q., Sr.; Xiong, Y.
2016-12-01
Soil salinity analysis on a regional scale is of great significance for protecting agriculture production and maintaining eco-environmental health in arid and semi-arid irrigated areas. In this study, the Hetao Irrigation District (Hetao) in Inner Mongolia Autonomous Region, with suffering long-term soil salinization problems, was selected as the case study area. Field sampling experiments and investigations related to soil salt contents, crop growth and yields were carried out across the whole area, during April to August in 2015. Soil salinity characteristics in space and time were systematically analyzed for Hetao as well as the corresponding impacts on crops. Remotely sensed map of soil salinity distribution for surface soil was also derived based on the Landsat OLI data with a 30 m resolution. The results elaborated the temporal and spatial dynamics of soil salinity and the relationships with irrigation, groundwater depth and crop water consumption in Hetao. In addition, the strong spatial variability of salinization was clearly presented by the remotely sensed map of soil salinity. Further, the relationship between soil salinity and crop growth was analyzed, and then the impact degrees of soil salinization on cropping pattern, leaf area index, plant height and crop yield were preliminarily revealed. Overall, this study can provide very useful information for salinization control and guide the future agricultural production and soil-water management for the arid irrigation districts analogous to Hetao.
LACIE - A look to the future. [Large Area Crop Inventory Experiment
NASA Technical Reports Server (NTRS)
Macdonald, R. B.; Hall, F. G.
1977-01-01
The Large Area Crop Inventory Experiment (LACIE) is a 'proof of concept' project designed to demonstrate the applicability of remote sensing technology to the global monitoring of wheat. This paper discusses the need for more timely and reliable monitoring of food and fiber supplies, reviews the monitoring systems currently utilized by the USDA and United Nations Food and Agriculture Organization in the United States and in foreign countries, and elucidates the fundamentals involved in assessing the impact of variable weather and economic conditions on wheat acreage, yield, and production. The experiment's approach to production monitoring is described briefly, and its status is reviewed as of the conclusion of 2 years of successful operation. Examples of acreage and yield monitoring in the Soviet Union are used to illustrate the experiment's approach.
Diverse rotations and poultry litter improves soybean yield
USDA-ARS?s Scientific Manuscript database
Continuous cropping systems without rotations or cover crops are perceived as unsustainable for long-term yield and soil health. Continuous systems, defined as continually producing a crop on the same parcel of land for more than three years, is thought to reduce yields. Given that crop rotations a...
NASA Astrophysics Data System (ADS)
King, A. W.; Absar, S. M.; Nair, S.; Preston, B. L.
2012-12-01
The vulnerability of agriculture is among the leading concerns surrounding climate change. Agricultural production is influenced by drought and other extremes in weather and climate. In regions of subsistence farming, worst case reductions in yield lead to malnutrition and famine. Reduced surplus contributes to poverty in agrarian economies. In more economically diverse and industrialized regions, variations in agricultural yield can influence the regional economy through market mechanisms. The latter grows in importance as agriculture increasingly services the energy market in addition to markets for food and fiber. Agriculture is historically a highly adaptive enterprise and will respond to future changes in climate with a variety of adaptive mechanisms. Nonetheless, the risk, if not expectation, of increases in climate extremes and hazards exceeding historical experience motivates scientifically based anticipatory assessment of the vulnerability of agriculture to climate change. We investigate the sensitivity component of that vulnerability using EPIC, a well established field-scale model of cropping systems that includes the simulation of economic yield. The core of our analysis is the relationship between simulated yield and various indices of climate change, including the CCI/CLIVAR/JCOM ETCCDI indices, calculated from weather inputs to the model. We complement this core with analysis using the DSSAT cropping system model and exploration of relationships between historical yield statistics and climate indices calculated from weather records. Our analyses are for sites in the Southeast/Gulf Coast region of the United States. We do find "tight" monotonic relationships between annual yield and climate for some indices, especially those associated with available water. More commonly, however, we find an increase in the variability of yield as the index value becomes more extreme. Our findings contribute to understanding the sensitivity of crop yield as part of vulnerability analysis. They also contribute to considerations of adaptation, focusing attention on adapting to increased variability in yield rather than just reductions in yield. For example, in the face of increased variability or reduced reliability, hedging and risk spreading strategies may be more important than technological innovations such as drought-resistant crops or other optimization strategies. Our findings also have implications for the choice and application of climate extreme indices, demands on models used to project climate change and the development of next generation integrated assessment models (IAM) that incorporate the agricultural sector, and especially adaption within that sector, in energy and broader more general markets.
Blanc, Elodie; Caron, Justin; Fant, Charles; ...
2017-06-27
While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of climate and socioeconomic changes on water availability for irrigation in the U.S. as well as subsequent impacts on crop yields by 2050, while accounting for climatemore » change projection uncertainty. We find that climate and socioeconomic changes will increase water shortages and strongly reduce irrigated yields for specific crops (i.e., cotton and forage), or in specific regions (i.e., the Southwest) where irrigation is not sustainable. Crop modeling studies that do not represent changes in irrigation availability can thus be misleading. Yet, since the most water-stressed basins represent a relatively small share of U.S. irrigated areas, the overall reduction in U.S. crop yields is small. The response of crop yields to climate change and water stress also suggests that some level of adaptation will be feasible, like relocating croplands to regions with sustainable irrigation or switching to less irrigation intensive crops. Finally, additional simulations show that greenhouse gas (GHG) mitigation can alleviate the effect of water stress on irrigated crop yields, enough to offset the reduced CO 2 fertilization effect compared to an unconstrained GHG emission scenario.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanc, Elodie; Caron, Justin; Fant, Charles
While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of climate and socioeconomic changes on water availability for irrigation in the U.S. as well as subsequent impacts on crop yields by 2050, while accounting for climatemore » change projection uncertainty. We find that climate and socioeconomic changes will increase water shortages and strongly reduce irrigated yields for specific crops (i.e., cotton and forage), or in specific regions (i.e., the Southwest) where irrigation is not sustainable. Crop modeling studies that do not represent changes in irrigation availability can thus be misleading. Yet, since the most water-stressed basins represent a relatively small share of U.S. irrigated areas, the overall reduction in U.S. crop yields is small. The response of crop yields to climate change and water stress also suggests that some level of adaptation will be feasible, like relocating croplands to regions with sustainable irrigation or switching to less irrigation intensive crops. Finally, additional simulations show that greenhouse gas (GHG) mitigation can alleviate the effect of water stress on irrigated crop yields, enough to offset the reduced CO 2 fertilization effect compared to an unconstrained GHG emission scenario.« less
Root-knot nematode management in double-cropped plasticulture vegetables.
Desaeger, J A; Csinos, A S
2006-03-01
Combination treatments of chisel-injected fumigants (methyl bromide, 1,3-D, metam sodium, and chloropicrin) on a first crop, followed by drip-applied fumigants (metam sodium and 1,3-D +/- chloropicrin) on a second crop, with and without oxamyl drip applications were evaluated for control of Meloidogyne incognita in three different tests (2002 to 2004) in Tifton, GA. First crops were eggplant or tomato, and second crops were cantaloupe, squash, or jalapeno pepper. Double-cropped vegetables suffered much greater root-knot nematode (RKN) pressure than first crops, and almost-total yield loss occurred when second crops received no nematicide treatment. On a first crop of eggplant, all fumigants provided good nematode control and average yield increases of 10% to 15 %. On second crops, higher application rates and fumigant combinations (metam sodium and 1,3-D +/- chloropicrin) improved RKN control and increased yields on average by 20% to 35 % compared to the nonfumigated control. Oxamyl increased yields of the first crop in 2003 on average by 10% to 15% but had no effect in 2004 when RKN failed to establish itself. On double-cropped squash in 2003, oxamyl following fumigation provided significant additional reduction in nematode infection and increased squash yields on average by 30% to 75%.
NASA Astrophysics Data System (ADS)
Jeffries, G. R.; Cohn, A.
2016-12-01
Soy-corn double cropping (DC) has been widely adopted in Central Brazil alongside single cropped (SC) soybean production. DC involves different cropping calendars, soy varieties, and may be associated with different crop yield patterns and volatility than SC. Study of the performance of the region's agriculture in a changing climate depends on tracking differences in the productivity of SC vs. DC, but has been limited by crop yield data that conflate the two systems. We predicted SC and DC yields across Central Brazil, drawing on field observations and remotely sensed data. We first modeled field yield estimates as a function of remotely sensed DC status and vegetation index (VI) metrics, and other management and biophysical factors. We then used the statistical model estimated to predict SC and DC soybean yields at each 500 m2 grid cell of Central Brazil for harvest years 2001 - 2015. The yield estimation model was constructed using 1) a repeated cross-sectional survey of soybean yields and management factors for years 2007-2015, 2) a custom agricultural land cover classification dataset which assimilates earlier datasets for the region, and 3) 500m 8-day MODIS image composites used to calculate the wide dynamic range vegetation index (WDRVI) and derivative metrics such as area under the curve for WDRVI values in critical crop development periods. A statistical yield estimation model which primarily entails WDRVI metrics, DC status, and spatial fixed effects was developed on a subset of the yield dataset. Model validation was conducted by predicting previously withheld yield records, and then assessing error and goodness-of-fit for predicted values with metrics including root mean squared error (RMSE), mean squared error (MSE), and R2. We found a statistical yield estimation model which incorporates WDRVI and DC status to be way to estimate crop yields over the region. Statistical properties of the resulting gridded yield dataset may be valuable for understanding linkages between crop yields, farm management factors, and climate.
Monitoring Crop Phenology and Growth Stages from Space: Opportunities and Challenges
NASA Astrophysics Data System (ADS)
Gao, F.; Anderson, M. C.; Mladenova, I. E.; Kustas, W. P.; Alfieri, J. G.
2014-12-01
Crop growth stages in concert with weather and soil moisture conditions can have a significant impact on crop yields. In the U.S., crop growth stages and conditions are reported by farmers at the county level. These reports are somewhat subjective and fluctuate between different reporters, locations and times. Remote sensing data provide an alternative approach to monitoring crop growth over large areas in a more consistent and quantitative way. In the recent years, remote sensing data have been used to detect vegetation phenology at 1-km spatial resolution globally. However, agricultural applications at field scale require finer spatial resolution remote sensing data. Landsat (30-m) data have been successfully used for agricultural applications. There are many medium resolution sensors available today or in near future. These include Landsat, SPOT, RapidEye, ASTER and future Sentinel-2 etc. Approaches have been developed in the past several years to integrate remote sensing data from different sensors which may have different sensor characteristics, and spatial and temporal resolutions. This allows us opportunities today to map crop growth stages and conditions using dense time-series remote sensing at field scales. However, remotely sensed phenology (or phenological metrics) is normally derived based on the mathematical functions of the time-series data. The phenological metrics are determined by either identifying inflection (curvature) points or some pre-defined thresholds in the remote sensing phenology algorithms. Furthermore, physiological crop growth stages may not be directly correlated to the remotely sensed phenology. The relationship between remotely sensed phenology and crop growth stages is likely to vary for specific crop types and varieties, growing stages, conditions and even locations. In this presentation, we will examine the relationship between remotely sensed phenology and crop growth stages using in-situ measurements from Fluxnet sites and crop progress reports from USDA NASS. We will present remote sensing approaches and focus on: 1) integrating multiple sources of remote sensing data; and 2) extracting crop phenology at field scales. An example in the U.S. Corn Belt area will be presented and analyzed. Future directions for mapping crop growth stages will be discussed.
Simulating the effects of climate and agricultural management practices on global crop yield
NASA Astrophysics Data System (ADS)
Deryng, D.; Sacks, W. J.; Barford, C. C.; Ramankutty, N.
2011-06-01
Climate change is expected to significantly impact global food production, and it is important to understand the potential geographic distribution of yield losses and the means to alleviate them. This study presents a new global crop model, PEGASUS 1.0 (Predicting Ecosystem Goods And Services Using Scenarios) that integrates, in addition to climate, the effect of planting dates and cultivar choices, irrigation, and fertilizer application on crop yield for maize, soybean, and spring wheat. PEGASUS combines carbon dynamics for crops with a surface energy and soil water balance model. It also benefits from the recent development of a suite of global data sets and analyses that serve as model inputs or as calibration data. These include data on crop planting and harvesting dates, crop-specific irrigated areas, a global analysis of yield gaps, and harvested area and yield of major crops. Model results for present-day climate and farm management compare reasonably well with global data. Simulated planting and harvesting dates are within the range of crop calendar observations in more than 75% of the total crop-harvested areas. Correlation of simulated and observed crop yields indicates a weighted coefficient of determination, with the weighting based on crop-harvested area, of 0.81 for maize, 0.66 for soybean, and 0.45 for spring wheat. We found that changes in temperature and precipitation as predicted by global climate models for the 2050s lead to a global yield reduction if planting and harvesting dates remain unchanged. However, adapting planting dates and cultivar choices increases yield in temperate regions and avoids 7-18% of global losses.
Spatio-Temporal Dynamics of Maize Yield Water Constraints under Climate Change in Spain
Ferrero, Rosana; Lima, Mauricio; Gonzalez-Andujar, Jose Luis
2014-01-01
Many studies have analyzed the impact of climate change on crop productivity, but comparing the performance of water management systems has rarely been explored. Because water supply and crop demand in agro-systems may be affected by global climate change in shaping the spatial patterns of agricultural production, we should evaluate how and where irrigation practices are effective in mitigating climate change effects. Here we have constructed simple, general models, based on biological mechanisms and a theoretical framework, which could be useful in explaining and predicting crop productivity dynamics. We have studied maize in irrigated and rain-fed systems at a provincial scale, from 1996 to 2009 in Spain, one of the most prominent “hot-spots” in future climate change projections. Our new approach allowed us to: (1) evaluate new structural properties such as the stability of crop yield dynamics, (2) detect nonlinear responses to climate change (thresholds and discontinuities), challenging the usual linear way of thinking, and (3) examine spatial patterns of yield losses due to water constraints and identify clusters of provinces that have been negatively affected by warming. We have reduced the uncertainty associated with climate change impacts on maize productivity by improving the understanding of the relative contributions of individual factors and providing a better spatial comprehension of the key processes. We have identified water stress and water management systems as being key causes of the yield gap, and detected vulnerable regions where efforts in research and policy should be prioritized in order to increase maize productivity. PMID:24878747
Spatio-temporal dynamics of maize yield water constraints under climate change in Spain.
Ferrero, Rosana; Lima, Mauricio; Gonzalez-Andujar, Jose Luis
2014-01-01
Many studies have analyzed the impact of climate change on crop productivity, but comparing the performance of water management systems has rarely been explored. Because water supply and crop demand in agro-systems may be affected by global climate change in shaping the spatial patterns of agricultural production, we should evaluate how and where irrigation practices are effective in mitigating climate change effects. Here we have constructed simple, general models, based on biological mechanisms and a theoretical framework, which could be useful in explaining and predicting crop productivity dynamics. We have studied maize in irrigated and rain-fed systems at a provincial scale, from 1996 to 2009 in Spain, one of the most prominent "hot-spots" in future climate change projections. Our new approach allowed us to: (1) evaluate new structural properties such as the stability of crop yield dynamics, (2) detect nonlinear responses to climate change (thresholds and discontinuities), challenging the usual linear way of thinking, and (3) examine spatial patterns of yield losses due to water constraints and identify clusters of provinces that have been negatively affected by warming. We have reduced the uncertainty associated with climate change impacts on maize productivity by improving the understanding of the relative contributions of individual factors and providing a better spatial comprehension of the key processes. We have identified water stress and water management systems as being key causes of the yield gap, and detected vulnerable regions where efforts in research and policy should be prioritized in order to increase maize productivity.
Assessing the impact of future climate extremes on the US corn and soybean production
NASA Astrophysics Data System (ADS)
Jin, Z.
2015-12-01
Future climate changes will place big challenges to the US agricultural system, among which increasing heat stress and precipitation variability were the two major concerns. Reliable prediction of crop productions in response to the increasingly frequent and severe extreme climate is a prerequisite for developing adaptive strategies on agricultural risk management. However, the progress has been slow on quantifying the uncertainty of computational predictions at high spatial resolutions. Here we assessed the risks of future climate extremes on the US corn and soybean production using the Agricultural Production System sIMulator (APSIM) model under different climate scenarios. To quantify the uncertainty due to conceptual representations of heat, drought and flooding stress in crop models, we proposed a new strategy of algorithm ensemble in which different methods for simulating crop responses to those extreme climatic events were incorporated into the APSIM. This strategy allowed us to isolate irrelevant structure differences among existing crop models but only focus on the process of interest. Future climate inputs were derived from high-spatial-resolution (12km × 12km) Weather Research and Forecasting (WRF) simulations under Representative Concentration Pathways 4.5 (RCP 4.5) and 8.5 (RCP 8.5). Based on crop model simulations, we analyzed the magnitude and frequency of heat, drought and flooding stress for the 21st century. We also evaluated the water use efficiency and water deficit on regional scales if farmers were to boost their yield by applying more fertilizers. Finally we proposed spatially explicit adaptation strategies of irrigation and fertilizing for different management zones.
NASA Astrophysics Data System (ADS)
Moore, F. C.; Lobell, D. B.
2013-12-01
Agriculture is one of the economic sectors most exposed to climate change and estimating the sensitivity of food production to these changes is critical for determining the severity of climate change impacts and for informing both adaptation and mitigation policy. While climate change might have adverse effects in many areas, it has long been recognized that farmers have a suite of adaptation options at their disposal including, inter alia, changing planting date, varieties, crops, or the mix and quantity of inputs applied. These adaptations may significantly reduce the adverse impacts of climate change but the potential effectiveness of these options and the speed with which farmers will adopt them remain uncertain. We estimate the sensitivity of crop yields and farm profits in western Europe to climate change with and without the adoption of on-farm adaptations. We use cross-sectional variation across farms to define the long-run response function that includes adaptation and inter-annual variation within farms to define the short-run response function without adaptation. The difference between these can be interpreted as the potential for adaptation. We find that future warming will have a large adverse impact on wheat and barley yields and that adaptation will only be able to mitigate a small fraction of this. Maize, oilseed and sugarbeet yields are more modestly affected and adaptation is more effective for these crops. Farm profits could increase slightly under moderate amounts of warming if adaptations are adopted but will decline in the absence of adaptation. A decomposition of variance gives the relative importance of different sources of uncertainty in projections of climate change impacts. We find that in most cases uncertainty over future adaptation pathways (whether farmers will or will not adopt beneficial adaptations) is the most important source of uncertainty in projecting the effect of temperature changes on crop yields and farm profits. This source of uncertainty dominates both uncertainty over temperature projections (climate uncertainty) and uncertainty over how sensitive crops or profits are to changes in temperature (response uncertainty). Therefore, constraining how quickly farmers are likely to adapt will be essential for improving our understanding of how climate change will affect food production over the next few decades.
Wang, Qianfeng; Wu, Jianjun; Li, Xiaohan; Zhou, Hongkui; Yang, Jianhua; Geng, Guangpo; An, Xueli; Liu, Leizhen; Tang, Zhenghong
2017-04-01
The quantitative evaluation of the impact of drought on crop yield is one of the most important aspects in agricultural water resource management. To assess the impact of drought on wheat yield, the Environmental Policy Integrated Climate (EPIC) crop growth model and daily Standardized Precipitation Evapotranspiration Index (SPEI), which is based on daily meteorological data, are adopted in the Huang Huai Hai Plain. The winter wheat crop yields are estimated at 28 stations, after calibrating the cultivar coefficients based on the experimental site data, and SPEI data was taken 11 times across the growth season from 1981 to 2010. The relationship between estimated yield and multi-scale SPEI were analyzed. The optimum time scale SPEI to monitor drought during the crop growth period was determined. The reference yield was determined by averaging the yields from numerous non-drought years. From this data, we propose a comprehensive quantitative method which can be used to predict the impact of drought on wheat yields by combining the daily multi-scale SPEI and crop growth process model. This method was tested in the Huang Huai Hai Plain. The results suggested that estimation of calibrated EPIC was a good predictor of crop yield in the Huang Huai Hai Plain, with lower RMSE (15.4 %) between estimated yield and observed yield at six agrometeorological stations. The soil moisture at planting time was affected by the precipitation and evapotranspiration during the previous 90 days (about 3 months) in the Huang Huai Hai Plain. SPEI G90 was adopted as the optimum time scale SPEI to identify the drought and non-drought years, and identified a drought year in 2000. The water deficit in the year 2000 was significant, and the rate of crop yield reduction did not completely correspond with the volume of water deficit. Our proposed comprehensive method which quantitatively evaluates the impact of drought on crop yield is reliable. The results of this study further our understanding why the adoption of counter measures against drought is important and direct farmers to choose drought-resistant crops.
An assessment of yield gains under climate change due to genetic modification of pearl millet.
Singh, Piara; Boote, K J; Kadiyala, M D M; Nedumaran, S; Gupta, S K; Srinivas, K; Bantilan, M C S
2017-12-01
Developing cultivars with traits that can enhance and sustain productivity under climate change will be an important climate smart adaptation option. The modified CSM-CERES-Pearl millet model was used to assess yield gains by modifying plant traits determining crop maturity duration, potential yield and tolerance to drought and heat in pearl millet cultivars grown at six locations in arid (Hisar, Jodhpur, Bikaner) and semi-arid (Jaipur, Aurangabad and Bijapur) tropical India and two locations in semi-arid tropical West Africa (Sadore in Niamey and Cinzana in Mali). In all the study locations the yields decreased when crop maturity duration was decreased by 10% both in current and future climate conditions; however, 10% increase in crop maturity significantly (p<0.05) increased yields at Aurangabad and Bijapur, but not at other locations. Increasing yield potential traits by 10% increased yields under both the climate situations in India and West Africa. Drought tolerance imparted the lowest yield gain at Aurangabad (6%), the highest at Sadore (30%) and intermediate at the other locations under current climate. Under climate change the contribution of drought tolerance to the yield of cultivars either increased or decreased depending upon changes in rainfall of the locations. Yield benefits of heat tolerance substantially increased under climate change at most locations, having the greatest effects at Bikaner (17%) in India and Sadore (13%) in West Africa. Aurangabad and Bijapur locations had no yield advantage from heat tolerance due to their low temperature regimes. Thus drought and heat tolerance in pearl millet increased yields under climate change in both the arid and semi-arid tropical climates with greater benefit in relatively hotter environments. This study will assists the plant breeders in evaluating new promising plant traits of pearl millet for adapting to climate change at the selected locations and other similar environments. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Accounting for radiative forcing from albedo change in future global land-use scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Andrew D.; Calvin, Katherine V.; Collins, William D.
2015-08-01
We demonstrate the effectiveness of a new method for quantifying radiative forcing from land use and land cover change (LULCC) within an integrated assessment model, the Global Change Assessment Model (GCAM). The method relies on geographically differentiated estimates of radiative forcing from albedo change associated with major land cover transitions derived from the Community Earth System Model. We find that conversion of 1 km² of woody vegetation (forest and shrublands) to non-woody vegetation (crops and grassland) yields between 0 and –0.71 nW/m² of globally averaged radiative forcing determined by the vegetation characteristics, snow dynamics, and atmospheric radiation environment characteristic withinmore » each of 151 regions we consider globally. Across a set of scenarios designed to span a range of potential future LULCC, we find LULCC forcing ranging from –0.06 to –0.29 W/m² by 2070 depending on assumptions regarding future crop yield growth and whether climate policy favors afforestation or bioenergy crops. Inclusion of this previously uncounted forcing in the policy targets driving future climate mitigation efforts leads to changes in fossil fuel emissions on the order of 1.5 PgC/yr by 2070 for a climate forcing limit of 4.5 Wm –2, corresponding to a 12–67 % change in fossil fuel emissions depending on the scenario. Scenarios with significant afforestation must compensate for albedo-induced warming through additional emissions reductions, and scenarios with significant deforestation need not mitigate as aggressively due to albedo-induced cooling. In all scenarios considered, inclusion of albedo forcing in policy targets increases forest and shrub cover globally.« less
Towards systematic evaluation of crop model outputs for global land-use models
NASA Astrophysics Data System (ADS)
Leclere, David; Azevedo, Ligia B.; Skalský, Rastislav; Balkovič, Juraj; Havlík, Petr
2016-04-01
Land provides vital socioeconomic resources to the society, however at the cost of large environmental degradations. Global integrated models combining high resolution global gridded crop models (GGCMs) and global economic models (GEMs) are increasingly being used to inform sustainable solution for agricultural land-use. However, little effort has yet been done to evaluate and compare the accuracy of GGCM outputs. In addition, GGCM datasets require a large amount of parameters whose values and their variability across space are weakly constrained: increasing the accuracy of such dataset has a very high computing cost. Innovative evaluation methods are required both to ground credibility to the global integrated models, and to allow efficient parameter specification of GGCMs. We propose an evaluation strategy for GGCM datasets in the perspective of use in GEMs, illustrated with preliminary results from a novel dataset (the Hypercube) generated by the EPIC GGCM and used in the GLOBIOM land use GEM to inform on present-day crop yield, water and nutrient input needs for 16 crops x 15 management intensities, at a spatial resolution of 5 arc-minutes. We adopt the following principle: evaluation should provide a transparent diagnosis of model adequacy for its intended use. We briefly describe how the Hypercube data is generated and how it articulates with GLOBIOM in order to transparently identify the performances to be evaluated, as well as the main assumptions and data processing involved. Expected performances include adequately representing the sub-national heterogeneity in crop yield and input needs: i) in space, ii) across crop species, and iii) across management intensities. We will present and discuss measures of these expected performances and weight the relative contribution of crop model, input data and data processing steps in performances. We will also compare obtained yield gaps and main yield-limiting factors against the M3 dataset. Next steps include iterative improvement of parameter assumptions and evaluation of implications of GGCM performances for intended use in the IIASA EPIC-GLOBIOM model cluster. Our approach helps targeting future efforts at improving GGCM accuracy and would achieve highest efficiency if combined with traditional field-scale evaluation and sensitivity analysis.
Replacing fallow with continuous cropping reduces crop water productivity of semiarid wheat
USDA-ARS?s Scientific Manuscript database
Water supply frequently limits crop yield in semiarid cropping systems; water deficits can restrict yields in drought-affected subhumid regions. In semiarid wheat (Triticum aestivumL.)-based cropping systems, replacing an uncropped fallow period with a crop can increase precipitation use efficiency ...
NASA Astrophysics Data System (ADS)
De Lorenzi, F.; Bonfante, A.; Alfieri, S.; Patanè, C.; Basile, A.; Di Tommasi, P.; Monaco, E.; Menenti, M.
2012-04-01
Climate evolution will cause significant changes in the quality and availability of water resources, affecting many sectors including food production, where available water resources for irrigation play a crucial role. Strategies focused on managing and conserving water are one way to deal with the impact; moreover concurring adaptation measurements will be needed to cope with the foreseen decline of water resource. This work deals with i) the impacts of climate change on water requirements of an horticultural crop, determined in an irrigated district in Southern Italy, ii) the possible irrigation scheduling options and their sustainability in the future, iii) the adaptation measurements that can be undertaken to protect production, relying on intra-specific biodiversity of agricultural crops. Two climate scenarios were considered: present climate (1961-90) and future climate (2021-2050), the former from climatic statistics, and the latter from statistical downscaling of general circulation models (AOGCM). Climatic data set consists of daily time series of maximum and minimum temperature, and rainfall on a grid with spatial resolution of 35 km. The analysis of climate scenarios showed that significant increases in summer maximum daily temperature could be expected in 2021-2050 period. Soil water regime was determined by means of a mechanistic model (SWAP) of water flow in the soil-plant-atmosphere system. Twenty? soil units were identified in the district (in Sele Plain, Campania Region) and simulations were performed accounting for hydro-pedological properties of different soil units. Parameters of a generic tomato crop, in a rotation typical of the area, were used in simulations. Soil water balance was simulated in the present and future climate, both with optimal water availability and under constrains that irrigation schemes will pose. Indicators of soil water availability were calculated, in terms of soil water or evapotranspiration deficit. For several tomato cultivars, quantitative yield response functions to water availability were determined through the re-analysis of experimental data, derived from scientific literature. Variety-specific threshold values of yield reduction in dependence of soil water and evapotranspiration deficit were determined. The spatial pattern of soil water availability indicators was calculated., for present and future climate scenarios and for different irrigation scheduling options. Cultivars' threshold values were matched with indicators' values in all soil units. The future adaptability of the crop in the area is thus evaluated, and adaptation options that exploit the intra-specific biodiversity of the crop are indicated. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008) Keywords: climate change, tomato, deficit irrigation, biodiversity
Williams, Alwyn; Jordan, Nicholas R; Smith, Richard G; Hunter, Mitchell C; Kammerer, Melanie; Kane, Daniel A; Koide, Roger T; Davis, Adam S
2018-05-31
Climate models predict increasing weather variability, with negative consequences for crop production. Conservation agriculture (CA) may enhance climate resilience by generating certain soil improvements. However, the rate at which these improvements accrue is unclear, and some evidence suggests CA can lower yields relative to conventional systems unless all three CA elements are implemented: reduced tillage, sustained soil cover, and crop rotational diversity. These cost-benefit issues are important considerations for potential adopters of CA. Given that CA can be implemented across a wide variety of regions and cropping systems, more detailed and mechanistic understanding is required on whether and how regionally-adapted CA can improve soil properties while minimizing potential negative crop yield impacts. Across four US states, we assessed short-term impacts of regionally-adapted CA systems on soil properties and explored linkages with maize and soybean yield stability. Structural equation modeling revealed increases in soil organic matter generated by cover cropping increased soil cation exchange capacity, which improved soybean yield stability. Cover cropping also enhanced maize minimum yield potential. Our results demonstrate individual CA elements can deliver rapid improvements in soil properties associated with crop yield stability, suggesting that regionally-adapted CA may play an important role in developing high-yielding, climate-resilient agricultural systems.
Integrated crop management practices for maximizing grain yield of double-season rice crop.
Wang, Depeng; Huang, Jianliang; Nie, Lixiao; Wang, Fei; Ling, Xiaoxia; Cui, Kehui; Li, Yong; Peng, Shaobing
2017-01-12
Information on maximum grain yield and its attributes are limited for double-season rice crop grown under the subtropical environment. This study was conducted to examine key characteristics associated with high yielding double-season rice crop through a comparison between an integrated crop management (ICM) and farmers' practice (FP). Field experiments were conducted in the early and late seasons in the subtropical environment of Wuxue County, Hubei Province, China in 2013 and 2014. On average, grain yield in ICM was 13.5% higher than that in FP. A maximum grain yield of 9.40 and 10.53 t ha -1 was achieved under ICM in the early- and late-season rice, respectively. Yield improvement of double-season rice with ICM was achieved with the combined effects of increased plant density and optimized nutrient management. Yield gain of ICM resulted from a combination of increases in sink size due to more panicle number per unit area and biomass production, further supported by the increased leaf area index, leaf area duration, radiation use efficiency, crop growth rate, and total nitrogen uptake compared with FP. Further enhancement in the yield potential of double-season rice should focus on increasing crop growth rate and biomass production through improved and integrated crop management practices.
NASA Astrophysics Data System (ADS)
Balkovič, Juraj; Skalský, Rastislav; Folberth, Christian; Khabarov, Nikolay; Schmid, Erwin; Madaras, Mikuláš; Obersteiner, Michael; van der Velde, Marijn
2018-03-01
Even if global warming is kept below +2°C, European agriculture will be significantly impacted. Soil degradation may amplify these impacts substantially and thus hamper crop production further. We quantify biophysical consequences and bracket uncertainty of +2°C warming on calories supply from 10 major crops and vulnerability to soil degradation in Europe using crop modeling. The Environmental Policy Integrated Climate (EPIC) model together with regional climate projections from the European branch of the Coordinated Regional Downscaling Experiment (EURO-CORDEX) was used for this purpose. A robustly positive calorie yield change was estimated for the EU Member States except for some regions in Southern and South-Eastern Europe. The mean impacts range from +30 Gcal ha-1 in the north, through +25 and +20 Gcal ha-1 in Western and Eastern Europe, respectively, to +10 Gcal ha-1 in the south if soil degradation and heat impacts are not accounted for. Elevated CO2 and increased temperature are the dominant drivers of the simulated yield changes in high-input agricultural systems. The growth stimulus due to elevated CO2 may offset potentially negative yield impacts of temperature increase by +2°C in most of Europe. Soil degradation causes a calorie vulnerability ranging from 0 to 50 Gcal ha-1 due to insufficient compensation for nutrient depletion and this might undermine climate benefits in many regions, if not prevented by adaptation measures, especially in Eastern and North-Eastern Europe. Uncertainties due to future potentials for crop intensification are about 2-50 times higher than climate change impacts.
Potts, Simon G.; Steffan-Dewenter, Ingolf; Vaissière, Bernard E.; Woyciechowski, Michal; Krewenka, Kristin M.; Tscheulin, Thomas; Roberts, Stuart P.M.; Szentgyörgyi, Hajnalka; Westphal, Catrin; Bommarco, Riccardo
2014-01-01
Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries’ commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in some areas, but our results suggest the need of landscape-scale actions to enhance wild pollinator populations. PMID:24749007
Bartomeus, Ignasi; Potts, Simon G; Steffan-Dewenter, Ingolf; Vaissière, Bernard E; Woyciechowski, Michal; Krewenka, Kristin M; Tscheulin, Thomas; Roberts, Stuart P M; Szentgyörgyi, Hajnalka; Westphal, Catrin; Bommarco, Riccardo
2014-01-01
Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries' commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in some areas, but our results suggest the need of landscape-scale actions to enhance wild pollinator populations.
Use of treated wastewater in agriculture: effects on soil environment
NASA Astrophysics Data System (ADS)
Levy, Guy J.; Lado, Marcos
2014-05-01
Disposal of treated sewage, both from industrial and domestic origin (herein referred to as treated wastewater [TWW]), is often considered as an environmental hazard. However, in areas afflicted by water scarcity, especially in semi-arid and arid regions, where the future of irrigated agriculture (which produces approximately one third of crop yield and half the return from global crop production) is threatened by existing or expected shortage of fresh water, the use of TWW offers a highly effective and sustainable strategy to exploit a water resource. However, application of TWW to the soil is not free of risks both to organisms (e.g., crops, microbiota) and to the soil. Potential risks may include reduction in biological activity (including crop yield) due to elevated salinity and specific ion toxicity, migration of pollutants towards surface- and ground-water, and deterioration of soil structure. In recent years, new evidence about the possible negative impact of long-term irrigation with TWW on soil structure and physical and chemo-physical properties has emerged, thus putting the sustainability of irrigation with TWW in question. In this presentation, some aspects of the effects of long-term irrigation with TWW on soil properties are shown.
Current warming will reduce yields unless maize breeding and seed systems adapt immediately
NASA Astrophysics Data System (ADS)
Challinor, A. J.; Koehler, A.-K.; Ramirez-Villegas, J.; Whitfield, S.; Das, B.
2016-10-01
The development of crop varieties that are better suited to new climatic conditions is vital for future food production. Increases in mean temperature accelerate crop development, resulting in shorter crop durations and reduced time to accumulate biomass and yield. The process of breeding, delivery and adoption (BDA) of new maize varieties can take up to 30 years. Here, we assess for the first time the implications of warming during the BDA process by using five bias-corrected global climate models and four representative concentration pathways with realistic scenarios of maize BDA times in Africa. The results show that the projected difference in temperature between the start and end of the maize BDA cycle results in shorter crop durations that are outside current variability. Both adaptation and mitigation can reduce duration loss. In particular, climate projections have the potential to provide target elevated temperatures for breeding. Whilst options for reducing BDA time are highly context dependent, common threads include improved recording and sharing of data across regions for the whole BDA cycle, streamlining of regulation, and capacity building. Finally, we show that the results have implications for maize across the tropics, where similar shortening of duration is projected.
Meeting the challenge of food and energy security.
Karp, Angela; Richter, Goetz M
2011-06-01
Growing crops for bioenergy or biofuels is increasingly viewed as conflicting with food production. However, energy use continues to rise and food production requires fuel inputs, which have increased with intensification. Focussing on the question of food or fuel is thus not helpful. The bigger, more pertinent, challenge is how the increasing demands for food and energy can be met in the future, particularly when water and land availability will be limited. Energy crop production systems differ greatly in environmental impact. The use of high-input food crops for liquid transport fuels (first-generation biofuels) needs to be phased out and replaced by the use of crop residues and low-input perennial crops (second/advanced-generation biofuels) with multiple environmental benefits. More research effort is needed to improve yields of biomass crops grown on lower grade land, and maximum value should be extracted through the exploitation of co-products and integrated biorefinery systems. Policy must continually emphasize the changes needed and tie incentives to improved greenhous gas reduction and environmental performance of biofuels.
USDA-ARS?s Scientific Manuscript database
Cover crops can improve the sustainability and resilience of corn and soybean production systems. However, there have been isolated reports of corn yield reductions following winter rye cover crops. Although there are many possible causes of corn yield reductions following winter cereal cover crops,...
USDA-ARS?s Scientific Manuscript database
Improved management practices are needed to increase dryland crop yields and soil organic matter compared with conventional farming practices in the northern Great Plains. We evaluated the 21-yr effect of tillage and cropping sequence on dryland grain and biomass (stems + leaves) yields and N uptake...
Development of a European Ensemble System for Seasonal Prediction: Application to crop yield
NASA Astrophysics Data System (ADS)
Terres, J. M.; Cantelaube, P.
2003-04-01
Western European agriculture is highly intensive and the weather is the main source of uncertainty for crop yield assessment and for crop management. In the current system, at the time when a crop yield forecast is issued, the weather conditions leading up to harvest time are unknown and are therefore a major source of uncertainty. The use of seasonal weather forecast would bring additional information for the remaining crop season and has valuable benefit for improving the management of agricultural markets and environmentally sustainable farm practices. An innovative method for supplying seasonal forecast information to crop simulation models has been developed in the frame of the EU funded research project DEMETER. It consists in running a crop model on each individual member of the seasonal hindcasts to derive a probability distribution of crop yield. Preliminary results of cumulative probability function of wheat yield provides information on both the yield anomaly and the reliability of the forecast. Based on the spread of the probability distribution, the end-user can directly quantify the benefits and risks of taking weather-sensitive decisions.
Assessment of winter wheat loss risk impacted by climate change from 1982 to 2011
NASA Astrophysics Data System (ADS)
Du, Xin
2017-04-01
The world's farmers will face increasing pressure to grow more food on less land in succeeding few decades, because it seems that the continuous population growth and agricultural products turning to biofuels would extend several decades into the future. Therefore, the increased demand for food supply worldwide calls for improved accuracy of crop productivity estimation and assessment of grain production loss risk. Extensive studies have been launched to evaluate the impacts of climate change on crop production based on various crop models drove with global or regional climate model (GCM/RCM) output. However, assessment of climate change impacts on agriculture productivity is plagued with uncertainties of the future climate change scenarios and complexity of crop model. Therefore, given uncertain climate conditions and a lack of model parameters, these methods are strictly limited in application. In this study, an empirical assessment approach for crop loss risk impacted by water stress has been established and used to evaluate the risk of winter wheat loss in China, United States, Germany, France and United Kingdom. The average value of winter wheat loss risk impacted by water stress for the three countries of Europe is about -931kg/ha, which is obviously higher in contrast with that in China (-570kg/ha) and in United States (-367kg/ha). Our study has important implications for further application of operational assessment of crop loss risk at a country or region scale. Future studies should focus on using higher spatial resolution remote sensing data, combining actual evapo-transpiration to estimate water stress, improving the method for downscaling of statistic crop yield data, and establishing much more rational and elaborate zoning method.
Using Satellite Data to Unpack Causes of Yield Gaps in India's Wheat Belt
NASA Astrophysics Data System (ADS)
Jain, M.; Singh, B.; Srivastava, A.; Malik, R. K.; McDonald, A.; Lobell, D. B.
2016-12-01
India will face significant food security challenges in the coming decades due to climate change, natural resource degradation, and population growth. Yields of wheat, one of India's staple crops, are already stagnating and will be significantly impacted by warming temperatures. Despite these challenges, wheat yields can be enhanced by implementing improved management in regions with existing yield gaps. To identify the magnitude and causes of current yield gaps, we produced 30 m resolution yield maps across India's main wheat belt, the Indo-Gangetic Plains (IGP), from 2000 to 2015. Yield maps were derived using a new method that translates satellite vegetation indices to yield estimates using crop model simulations, bypassing the need for ground calibration data that rarely exist in smallholder systems. We find that yields can be increased by 5% on average and up to 16% in the eastern IGP by improving management to current best practices within a given district. However, if policies and technologies are put in place to improve management to current best practices in Punjab, the highest yielding state, yields can be increased by 29% in the eastern IGP. Considering which factors most influence wheat yields, we find that later sow dates and warmer temperatures are most associated with low yields across the IGP. This suggests that strategies that reduce the negative effects of heat stress, like earlier sowing and planting heat-tolerant wheat varieties, are critical to India's current and future food security.
NASA Astrophysics Data System (ADS)
Rosenzweig, C.
2011-12-01
The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a distributed climate-scenario simulation exercise for historical model intercomparison and future climate change conditions with participation of multiple crop and agricultural trade modeling groups around the world. The goals of AgMIP are to improve substantially the characterization of risk of hunger and world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Recent progress and the current status of AgMIP will be presented, highlighting three areas of activity: preliminary results from crop pilot studies, outcomes from regional workshops, and emerging scientific challenges. AgMIP crop modeling efforts are being led by pilot studies, which have been established for wheat, maize, rice, and sugarcane. These crop-specific initiatives have proven instrumental in testing and contributing to AgMIP protocols, as well as creating preliminary results for aggregation and input to agricultural trade models. Regional workshops are being held to encourage collaborations and set research activities in motion for key agricultural areas. The first of these workshops was hosted by Embrapa and UNICAMP and held in Campinas, Brazil. Outcomes from this meeting have informed crop modeling research activities within South America, AgMIP protocols, and future regional workshops. Several scientific challenges have emerged and are currently being addressed by AgMIP researchers. Areas of particular interest include geospatial weather generation, ensemble methods for climate scenarios and crop models, spatial aggregation of field-scale yields to regional and global production, and characterization of future changes in climate variability.
Changes in crop yields and their variability at different levels of global warming
NASA Astrophysics Data System (ADS)
Ostberg, Sebastian; Schewe, Jacob; Childers, Katelin; Frieler, Katja
2018-05-01
An assessment of climate change impacts at different levels of global warming is crucial to inform the policy discussion about mitigation targets, as well as for the economic evaluation of climate change impacts. Integrated assessment models often use global mean temperature change (ΔGMT) as a sole measure of climate change and, therefore, need to describe impacts as a function of ΔGMT. There is already a well-established framework for the scalability of regional temperature and precipitation changes with ΔGMT. It is less clear to what extent more complex biological or physiological impacts such as crop yield changes can also be described in terms of ΔGMT, even though such impacts may often be more directly relevant for human livelihoods than changes in the physical climate. Here we show that crop yield projections can indeed be described in terms of ΔGMT to a large extent, allowing for a fast estimation of crop yield changes for emissions scenarios not originally covered by climate and crop model projections. We use an ensemble of global gridded crop model simulations for the four major staple crops to show that the scenario dependence is a minor component of the overall variance of projected yield changes at different levels of ΔGMT. In contrast, the variance is dominated by the spread across crop models. Varying CO2 concentrations are shown to explain only a minor component of crop yield variability at different levels of global warming. In addition, we find that the variability in crop yields is expected to increase with increasing warming in many world regions. We provide, for each crop model, geographical patterns of mean yield changes that allow for a simplified description of yield changes under arbitrary pathways of global mean temperature and CO2 changes, without the need for additional climate and crop model simulations.
NASA Astrophysics Data System (ADS)
Murari, K. K.; Jayaraman, T.
2014-12-01
Modeling studies have indicated that global warming, in many regions, will increase the exposure of major crops to rainfall and temperature stress, leading to lower crop yields. Climate variability alone has a potential to decrease yield to an extent comparable to or greater than yield reductions expected due to rising temperature. For India, where agriculture is important, both in terms of food security as well as a source of livelihoods to a majority of its population, climate variability and climate change are subjects of serious concern. There is however a need to distinguish the impact of current climate variability and climate change on Indian agriculture, especially in relation to their socioeconomic impact. This differentiation is difficult to determine due to the secular trend of increasing production and yield of the past several decades. The current research in this aspect is in an initial stage and requires a multi-disciplinary effort. In this study, we assess the potential differential impacts of environmental stress and shock across different socioeconomic strata of the rural population, using village level survey data. The survey data from eight selected villages, based on the Project on Agrarian Relations in India conducted by the Foundation for Agrarian Studies, indicated that income from crop production of the top 20 households (based on the extent of operational land holding, employment of hired labour and asset holdings) is a multiple of the mean income of the village. In sharp contrast, the income of the bottom 20 households is a fraction of the mean and sometimes negative, indicating a net loss from crop production. The considerable differentials in output and incomes suggest that small and marginal farmers are far more susceptible to climate variability and climate change than the other sections. Climate change is effectively an immediate threat to small and marginal farmers, which is driven essentially by socioeconomic conditions. The impact of climate variability on smallholder agriculture in the present can therefore provide important insights into the nature of its vulnerability to future climate change.
US major crops’ uncertain climate change risks and greenhouse gas mitigation benefits
Wing, Ian Sue; Monier, Erwan; Stern, Ari; ...
2015-10-28
In this study, we estimate the costs of climate change to US agriculture, and associated potential benefits of abating greenhouse gas emissions. Five major crops' yield responses to climatic variation are modeled empirically, and the results combined with climate projections for a no-policy, high-warming future, as well as moderate and stringent mitigation scenarios. Unabated warming reduces yields of wheat and soybeans by 2050, and cotton by 2100, but moderate warming increases yields of all crops except wheat. Yield changes are monetized using the results of economic simulations within an integrated climate-economy modeling framework. Uncontrolled warming's economic effects on major cropsmore » are slightly positive—annual benefits <$4 B. These are amplified by emission reductions, but subject to diminishing returns—by 2100 reaching $17 B under moderate mitigation, but only $7 B with stringent mitigation. Costs and benefits are sensitive to irreducible uncertainty about the fertilization effects of elevated atmospheric carbon dioxide, without which unabated warming incurs net costs of up to $18 B, generating benefits to moderate (stringent) mitigation as large as $26 B ($20 B).« less
US major crops’ uncertain climate change risks and greenhouse gas mitigation benefits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wing, Ian Sue; Monier, Erwan; Stern, Ari
In this study, we estimate the costs of climate change to US agriculture, and associated potential benefits of abating greenhouse gas emissions. Five major crops' yield responses to climatic variation are modeled empirically, and the results combined with climate projections for a no-policy, high-warming future, as well as moderate and stringent mitigation scenarios. Unabated warming reduces yields of wheat and soybeans by 2050, and cotton by 2100, but moderate warming increases yields of all crops except wheat. Yield changes are monetized using the results of economic simulations within an integrated climate-economy modeling framework. Uncontrolled warming's economic effects on major cropsmore » are slightly positive—annual benefits <$4 B. These are amplified by emission reductions, but subject to diminishing returns—by 2100 reaching $17 B under moderate mitigation, but only $7 B with stringent mitigation. Costs and benefits are sensitive to irreducible uncertainty about the fertilization effects of elevated atmospheric carbon dioxide, without which unabated warming incurs net costs of up to $18 B, generating benefits to moderate (stringent) mitigation as large as $26 B ($20 B).« less
Vulnerability of maize production under future climate change: possible adaptation strategies.
Bannayan, Mohammad; Paymard, Parisa; Ashraf, Batool
2016-10-01
Climate change can affect the productivity and geographic distribution of crops. Therefore, evaluation of adaptive management options is crucial in dealing with negative impacts of climate change. The objectives of this study were to simulate the impacts of climate change on maize production in the north-east of Iran. Moreover, vulnerability index which indicated that how much of the crop yield loss is related to the drought was computed for each location to identify where adaptation and mitigation strategies are effective. Different sowing dates were also applied as an adaptation approach to decrease the negative impacts of climate change in study area. The results showed that the maize yield would decline during the 21st century from -2.6% to -82% at all study locations in comparison with the baseline. The result of vulnerability index also indicated that using the adaptation strategies could be effective in all of the study areas. Using different sowing dates as an adaptation approach showed that delaying the sowing date will be advantageous in order to obtain higher yield in all study locations in future. This study provided insight regarding the climate change impacts on maize production and the efficacy of adaptation strategies. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Wildlife-friendly farming increases crop yield: evidence for ecological intensification.
Pywell, Richard F; Heard, Matthew S; Woodcock, Ben A; Hinsley, Shelley; Ridding, Lucy; Nowakowski, Marek; Bullock, James M
2015-10-07
Ecological intensification has been promoted as a means to achieve environmentally sustainable increases in crop yields by enhancing ecosystem functions that regulate and support production. There is, however, little direct evidence of yield benefits from ecological intensification on commercial farms growing globally important foodstuffs (grains, oilseeds and pulses). We replicated two treatments removing 3 or 8% of land at the field edge from production to create wildlife habitat in 50-60 ha patches over a 900 ha commercial arable farm in central England, and compared these to a business as usual control (no land removed). In the control fields, crop yields were reduced by as much as 38% at the field edge. Habitat creation in these lower yielding areas led to increased yield in the cropped areas of the fields, and this positive effect became more pronounced over 6 years. As a consequence, yields at the field scale were maintained--and, indeed, enhanced for some crops--despite the loss of cropland for habitat creation. These results suggested that over a 5-year crop rotation, there would be no adverse impact on overall yield in terms of monetary value or nutritional energy. This study provides a clear demonstration that wildlife-friendly management which supports ecosystem services is compatible with, and can even increase, crop yields. © 2015 The Authors.
Added-values of high spatiotemporal remote sensing data in crop yield estimation
NASA Astrophysics Data System (ADS)
Gao, F.; Anderson, M. C.
2017-12-01
Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing derived parameters have been used for estimating crop yield by using either empirical or crop growth models. The uses of remote sensing vegetation index (VI) in crop yield modeling have been typically evaluated at regional and country scales using coarse spatial resolution (a few hundred to kilo-meters) data or assessed over a small region at field level using moderate resolution spatial resolution data (10-100m). Both data sources have shown great potential in capturing spatial and temporal variability in crop yield. However, the added value of data with both high spatial and temporal resolution data has not been evaluated due to the lack of such data source with routine, global coverage. In recent years, more moderate resolution data have become freely available and data fusion approaches that combine data acquired from different spatial and temporal resolutions have been developed. These make the monitoring crop condition and estimating crop yield at field scale become possible. Here we investigate the added value of the high spatial and temporal VI for describing variability of crop yield. The explanatory ability of crop yield based on high spatial and temporal resolution remote sensing data was evaluated in a rain-fed agricultural area in the U.S. Corn Belt. Results show that the fused Landsat-MODIS (high spatial and temporal) VI explains yield variability better than single data source (Landsat or MODIS alone), with EVI2 performing slightly better than NDVI. The maximum VI describes yield variability better than cumulative VI. Even though VI is effective in explaining yield variability within season, the inter-annual variability is more complex and need additional information (e.g. weather, water use and management). Our findings augment the importance of high spatiotemporal remote sensing data and supports new moderate resolution satellite missions for agricultural applications.
Modelling crop yield, soil organic C and P under variable long-term fertilizer management in China
NASA Astrophysics Data System (ADS)
Zhang, Jie; Xu, Guang; Xu, Minggang; Balkovič, Juraj; Azevedo, Ligia B.; Skalský, Rastislav; Wang, Jinzhou; Yu, Chaoqing
2016-04-01
Phosphorus (P) is a major limiting nutrient for plant growth. P, as a nonrenewable resource and the controlling factor of aquatic entrophication, is critical for food security and human future, and concerns sustainable resource use and environmental impacts. It is thus essential to find an integrated and effective approach to optimize phosphorus fertilizer application in the agro-ecosystem while maintaining crop yield and minimizing environmental risk. Crop P models have been used to simulate plant-soil interactions but are rarely validated with scattered long-term fertilizer control field experiments. We employed a process-based model named Environmental Policy Integrated Climate model (EPIC) to simulate grain yield, soil organic carbon (SOC) and soil available P based upon 8 field experiments in China with 11 years dataset, representing the typical Chinese soil types and agro-ecosystems of different regions. 4 treatments, including N, P, and K fertilizer (NPK), no fertilizer (CK), N and K fertilizer (NK) and N, P, K and manure (NPKM) were measured and modelled. A series of sensitivity tests were conducted to analyze the sensitivity of grain yields and soil available P to sequential fertilizer rates in typical humid, normal and drought years. Our results indicated that the EPIC model showed a significant agreement for simulating grain yields with R2=0.72, index of agreement (d)=0.87, modeling efficiency (EF)=0.68, p<0.01 and SOC with R2=0.70, d=0.86, EF=0.59, and p<0.01. EPIC can well simulate soil available P moderately and capture the temporal changes in soil P reservoirs. Both of Crop yields and soil available were found more sensitive to the fertilizer P rates in humid than drought year and soil available P is closely linked to concentrated rainfall. This study concludes that EPIC model has great potential to simulate the P cycle in croplands in China and can explore the optimum management practices.
Control of yellow and purple nutsedge in elevated co2 environments with glyphosate and halosulfuron
USDA-ARS?s Scientific Manuscript database
Atmospheric concentrations of carbon dioxide (CO2) have significantly increased over the past century and are expected to continue increasing in the future. While elevated levels of CO2 will likely result in higher crop yields, weed growth is also highly likely to increase. An experiment was conduct...
NASA Astrophysics Data System (ADS)
Kim, S. H.; Lim, C. H.; Kim, J.; Lee, W. K.; Kafatos, M.
2016-12-01
The Korean Peninsula has unique agricultural environment due to the differences of political and socio-economical system between Republic of Korea (SK, hereafter) and Democratic Peoples' Republic of Korea (NK, hereafter). NK has been suffering lack of food supplies caused by natural disasters, land degradation and political failure. The neighboring developed country SK has better agricultural system but very low food self-sufficiency rate. Maize is an important crop in both countries since it is staple food for NK and SK is No. 2 maize importing country in the world after Japan. Therefore, evaluating maize yield potential (Yp) in the two distinct regions is essential to assess food security under climate change and variability. In this study, we utilized multiple process-based crop models, having ability of regional scale assessment, to evaluate maize Yp and assess the model uncertainties -EPIC, GEPIC, DSSAT, and APSIM model that has capability of regional scale expansion (apsimRegions). First we evaluated each crop model for 3 years from 2012 to 2014 using reanalysis data (RDAPS; Regional Data Assimilation and Prediction System produced by Korea Meteorological Agency) and observed yield data. Each model performances were compared over the different regions in the Korean Peninsula having different local climate characteristics. To quantify of the major influence of at each climate variables, we also conducted sensitivity test using 20 years of climatology in historical period from 1981 to 2000. Lastly, the multi-crop model ensemble analysis was performed for future period from 2031 to 2050. The required weather variables projected for mid-century were employed from COordinated Regional climate Downscaling EXperiment (CORDEX) East Asia. The high-resolution climate data were obtained from multiple regional climate models (RCM) driven by multiple climate scenarios projected from multiple global climate models (GCMs) in conjunction with multiple greenhouse gas concentration pathways. The results indicate that the projected Yp in the Korean peninsula is significantly changed comparing to the historical period and proper adaptation strategies such as optimized planting dates can considerably alleviate Yp decrease.
Root-Knot Nematode Management in Double-Cropped Plasticulture Vegetables
Desaeger, J. A.; Csinos, A. S.
2006-01-01
Combination treatments of chisel-injected fumigants (methyl bromide, 1,3-D, metam sodium, and chloropicrin) on a first crop, followed by drip-applied fumigants (metam sodium and 1,3-D ± chloropicrin) on a second crop, with and without oxamyl drip applications were evaluated for control of Meloidogyne incognita in three different tests (2002 to 2004) in Tifton, GA. First crops were eggplant or tomato, and second crops were cantaloupe, squash, or jalapeno pepper. Double-cropped vegetables suffered much greater root-knot nematode (RKN) pressure than first crops, and almost-total yield loss occurred when second crops received no nematicide treatment. On a first crop of eggplant, all fumigants provided good nematode control and average yield increases of 10% to 15 %. On second crops, higher application rates and fumigant combinations (metam sodium and 1,3-D ± chloropicrin) improved RKN control and increased yields on average by 20% to 35 % compared to the nonfumigated control. Oxamyl increased yields of the first crop in 2003 on average by 10% to 15% but had no effect in 2004 when RKN failed to establish itself. On double-cropped squash in 2003, oxamyl following fumigation provided significant additional reduction in nematode infection and increased squash yields on average by 30% to 75%. PMID:19259431
Quantifying the impacts of climatic trend and fluctuation on crop yields in northern China.
Qiao, Jianmin; Yu, Deyong; Liu, Yupeng
2017-10-01
Climate change plays a critical role in crop yield variations, which has attracted a great deal of concern worldwide. However, the mechanisms of how climatic trend and fluctuations affect crop yields are not well understood and need to be further investigated. Thus, using the GIS-based Environmental Policy Integrated Climate (EPIC) model, we simulated the yields of major crops (i.e., wheat, maize, and rice) and evaluated the impacts of climatic factors on crop yields in the Agro-Pastoral Transitional Zone (APTZ) of northern China between 1980 and 2010. The partial least squares regression model was used to assess the contribution rates of climatic factors (i.e., precipitation, photosynthetically active radiation (PAR), minimum temperature (T min ), maximum temperature (T max )) to the variation of crop yields. The Breaks for Additive Season and Trend (BFAST) model was adopted to decompose the climate factors into trend and fluctuation components, and the relative contributions of climate trend and fluctuation were then evaluated. The results indicated that the contributions of climatic factors to yield variations of wheat, maize, and rice were 31.7, 37.7, and 23.1%, respectively. That is, climate change had larger impacts on maize than wheat and rice. More cultivated areas were significantly and positively correlated with precipitation than with other climatic factors due to the limited precipitation in the APTZ. Also, climatic trend component had positive impacts on crop yields in the whole region, whereas the climate fluctuation was associated mainly with the areas where the crop yields decreased. This study helps improve our understanding of the mechanisms of climate change impacts on crop yields, and provides useful scientific information for designing regional-scale strategies of adaptation to climate change.
Wang, Xiao-yu; Yang, Xiao-guang; Sun, Shuang; Xie, Wen-juan
2015-10-01
Based on the daily data of 65 meteorological stations from 1961 to 2010 and the crop phenology data in the potential cultivation zones of thermophilic and chimonophilous crops in Northeast China, the crop potential yields were calculated through step-by-step correction method. The spatio-temporal distribution of the crop potential yields at different levels was analyzed. And then we quantified the limitations of temperature and precipitation on the crop potential yields and compared the differences in the climatic resource utilization efficiency. The results showed that the thermal potential yields of six crops (including maize, rice, spring wheat, sorghum, millet and soybean) during the period 1961-2010 deceased from west to east. The climatic potential yields of the five crops (spring wheat not included) were higher in the south than in the north. The potential yield loss rate due to temperature limitations of the six crops presented a spatial distribution pattern and was higher in the east than in the west. Among the six main crops, the yield potential loss rate due to temperature limitation of the soybean was the highest (51%), and those of the other crops fluctuated within the range of 33%-41%. The potential yield loss rate due to water limitation had an obvious regional difference, and was high in Songnen Plain and Changbai Mountains. The potential yield loss rate of spring wheat was the highest (50%), and those of the other four rainfed crops fluctuated within the range of 8%-10%. The solar energy utilization efficiency of the six main crops ranged from 0.9% to 2.7%, in the order of maize> sorghum>rice>millet>spring wheat>soybean. The precipitation utilization efficiency of the maize, sorghum, spring wheat, millet and soybean under rainfed conditions ranged from 8 to 35 kg . hm-2 . mm-1, in the order of maize>sorghum>spring wheat>millet>soybean. In those areas with lower efficiency of solar energy utilization and precipitation utilization, such as Changbai Mountains and the south of Lesser Khingan Mountains, measures could be taken to increase the efficiency of resource utilization such as rational close-planting, selection of droughtresistant varieties, proper and timely fertilization, farming for soil water storage, optimization of crop layout and so on.
Statistical Analysis of Large Simulated Yield Datasets for Studying Climate Effects
NASA Technical Reports Server (NTRS)
Makowski, David; Asseng, Senthold; Ewert, Frank; Bassu, Simona; Durand, Jean-Louis; Martre, Pierre; Adam, Myriam; Aggarwal, Pramod K.; Angulo, Carlos; Baron, Chritian;
2015-01-01
Many studies have been carried out during the last decade to study the effect of climate change on crop yields and other key crop characteristics. In these studies, one or several crop models were used to simulate crop growth and development for different climate scenarios that correspond to different projections of atmospheric CO2 concentration, temperature, and rainfall changes (Semenov et al., 1996; Tubiello and Ewert, 2002; White et al., 2011). The Agricultural Model Intercomparison and Improvement Project (AgMIP; Rosenzweig et al., 2013) builds on these studies with the goal of using an ensemble of multiple crop models in order to assess effects of climate change scenarios for several crops in contrasting environments. These studies generate large datasets, including thousands of simulated crop yield data. They include series of yield values obtained by combining several crop models with different climate scenarios that are defined by several climatic variables (temperature, CO2, rainfall, etc.). Such datasets potentially provide useful information on the possible effects of different climate change scenarios on crop yields. However, it is sometimes difficult to analyze these datasets and to summarize them in a useful way due to their structural complexity; simulated yield data can differ among contrasting climate scenarios, sites, and crop models. Another issue is that it is not straightforward to extrapolate the results obtained for the scenarios to alternative climate change scenarios not initially included in the simulation protocols. Additional dynamic crop model simulations for new climate change scenarios are an option but this approach is costly, especially when a large number of crop models are used to generate the simulated data, as in AgMIP. Statistical models have been used to analyze responses of measured yield data to climate variables in past studies (Lobell et al., 2011), but the use of a statistical model to analyze yields simulated by complex process-based crop models is a rather new idea. We demonstrate herewith that statistical methods can play an important role in analyzing simulated yield data sets obtained from the ensembles of process-based crop models. Formal statistical analysis is helpful to estimate the effects of different climatic variables on yield, and to describe the between-model variability of these effects.
NASA Astrophysics Data System (ADS)
Thomson, A. M.; Izaurralde, R. C.; Calvin, K.; Zhang, X.; Wise, M.; West, T. O.
2010-12-01
Climate change and food security are global issues increasingly linked through human decision making that takes place across all scales from on-farm management actions to international climate negotiations. Understanding how agricultural systems can respond to climate change, through mitigation or adaptation, while still supplying sufficient food to feed a growing global population, thus requires a multi-sector tool in a global economic framework. Integrated assessment models are one such tool, however they are typically driven by historical aggregate statistics of production in combination with exogenous assumptions of future trends in agricultural productivity; they are not yet capable of exploring agricultural management practices as climate adaptation or mitigation strategies. Yet there are agricultural models capable of detailed biophysical modeling of farm management and climate impacts on crop yield, soil erosion and C and greenhouse gas emissions, although these are typically applied at point scales that are incompatible with coarse resolution integrated assessment modeling. To combine the relative strengths of these modeling systems, we are using the agricultural model EPIC (Environmental Policy Integrated Climate), applied in a geographic data framework for regional analyses, to provide input to the global economic model GCAM (Global Change Assessment Model). The initial phase of our approach focuses on a pilot region of the Midwest United States, a highly productive agricultural area. We apply EPIC, a point based biophysical process model, at 60 m spatial resolution within this domain and aggregate the results to GCAM agriculture and land use subregions for the United States. GCAM is then initialized with multiple management options for key food and bioenergy crops. Using EPIC to distinguish these management options based on grain yield, residue yield, soil C change and cost differences, GCAM then simulates the optimum distribution of the available management options to meet demands for food and energy over the next century. The coupled models provide a new platform for evaluating future changes in agricultural management based on food demand, bioenergy demand, and changes in crop yield and soil C under a changing climate. This framework can be applied to evaluate the economically and biophysically optimal distribution of management under future climates.
Simulated Impacts of Climate Change on Water Use and Yield of Irrigated Sugarcane in South Africa
NASA Technical Reports Server (NTRS)
Jones, M.R; Singels, A.; Ruane, A. C.
2015-01-01
Reliable predictions of climate change impacts on water use, irrigation requirements and yields of irrigated sugarcane in South Africa (a water-scarce country) are necessary to plan adaptation strategies. Although previous work has been done in this regard, methodologies and results vary considerably. The objectives were (1) to estimate likely impacts of climate change on sugarcane yields, water use and irrigation demand at three irrigated sugarcane production sites in South Africa (Malelane, Pongola and La Mercy) for current (1980-2010) and future (2070-2100) climate scenarios, using an approach based on the Agricultural Model Inter-comparison and Improvement Project (AgMIP) protocols; and (2) to assess the suitability of this methodology for investigating climate change impacts on sugarcane production. Future climate datasets were generated using the Delta downscaling method and three Global Circulation Models (GCMs) assuming atmospheric CO2 concentration [CO2] of 734 ppm(A2 emissions scenario). Yield and water use were simulated using the DSSAT-Canegro v4.5 model. Irrigated cane yields are expected to increase at all three sites (between 11 and 14%), primarily due to increased interception of radiation as a result of accelerated canopy development. Evapotranspiration and irrigation requirements increased by 11% due to increased canopy cover and evaporative demand. Sucrose yields are expected to decline because of increased consumption of photo-assimilate for structural growth and maintenance respiration. Crop responses in canopy development and yield formation differed markedly between the crop cycles investigated. Possible agronomic implications of these results include reduced weed control costs due to shortened periods of partial canopy, a need for improved efficiency of irrigation to counter increased demands, and adjustments to ripening and harvest practices to counter decreased cane quality and optimize productivity. Although the Delta climate data downscaling method is considered robust, accurate and easily-understood, it does not change the future number of rain-days per month. The impacts of this and other climate data simplifications ought to be explored in future work. Shortcomings of the DSSAT-Canegro model include the simulated responses of phenological development, photosynthesis and respiration processes to high temperatures, and the disconnect between simulated biomass accumulation and expansive growth. Proposed methodology refinements should improve the reliability of predicted climate change impacts on sugarcane yield.
Spatial and Temporal Uncertainty of Crop Yield Aggregations
NASA Technical Reports Server (NTRS)
Porwollik, Vera; Mueller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Iizumi, Toshichika; Ray, Deepak K.; Ruane, Alex C.; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe;
2016-01-01
The aggregation of simulated gridded crop yields to national or regional scale requires information on temporal and spatial patterns of crop-specific harvested areas. This analysis estimates the uncertainty of simulated gridded yield time series related to the aggregation with four different harvested area data sets. We compare aggregated yield time series from the Global Gridded Crop Model Inter-comparison project for four crop types from 14 models at global, national, and regional scale to determine aggregation-driven differences in mean yields and temporal patterns as measures of uncertainty. The quantity and spatial patterns of harvested areas differ for individual crops among the four datasets applied for the aggregation. Also simulated spatial yield patterns differ among the 14 models. These differences in harvested areas and simulated yield patterns lead to differences in aggregated productivity estimates, both in mean yield and in the temporal dynamics. Among the four investigated crops, wheat yield (17% relative difference) is most affected by the uncertainty introduced by the aggregation at the global scale. The correlation of temporal patterns of global aggregated yield time series can be as low as for soybean (r = 0.28).For the majority of countries, mean relative differences of nationally aggregated yields account for10% or less. The spatial and temporal difference can be substantial higher for individual countries. Of the top-10 crop producers, aggregated national multi-annual mean relative difference of yields can be up to 67% (maize, South Africa), 43% (wheat, Pakistan), 51% (rice, Japan), and 427% (soybean, Bolivia).Correlations of differently aggregated yield time series can be as low as r = 0.56 (maize, India), r = 0.05*Corresponding (wheat, Russia), r = 0.13 (rice, Vietnam), and r = -0.01 (soybean, Uruguay). The aggregation to sub-national scale in comparison to country scale shows that spatial uncertainties can cancel out in countries with large harvested areas per crop type. We conclude that the aggregation uncertainty can be substantial for crop productivity and production estimations in the context of food security, impact assessment, and model evaluation exercises.
NASA Astrophysics Data System (ADS)
Chen, Y.; Sun, Y.; You, L.; Liu, Y.
2017-12-01
The growing demand for food production due to population increase coupled with high vulnerability to volatile environmental changes poses a paramount challenge for mankind in the coming century. Real-time crop monitoring and yield forecasting must be a key part of any solution to this challenge as these activities provide vital information needed for effective and efficient crop management and for decision making. However, traditional methods of crop growth monitoring (e.g., remotely sensed vegetation indices) do not directly relate to the most important function of plants - photosynthesis and therefore crop yield. The recent advance in the satellite remote sensing of Solar-Induced chlorophyll Fluorescence (SIF), an integrative photosynthetic signal from molecular origin and a direct measure of plant functions holds great promise for real-time monitoring of crop growth conditions and forecasting yields. In this study, we use satellite measurements of SIF from both the Global Ozone Monitoring Experiment-2 (GOME-2) onboard MetOp-A and the Orbiting Carbon Observatory-2 (OCO-2) satellites to estimate crop yield using both process-based and statistical models. We find that SIF-based crop yield well correlates with the global yield product Spatial Production Allocation Model (SPAM) derived from ground surveys for all major crops including maize, soybean, wheat, sorghum, and rice. The potential and challenges of using upcoming SIF satellite missions for crop monitoring and prediction will also be discussed.
Detection of meteorological extreme effect on historical crop yield anomaly
NASA Astrophysics Data System (ADS)
Kim, W.; Iizumi, T.; Nishimori, M.
2017-12-01
Meteorological extremes of temperature and precipitation are a critical issue in the global climate change, and some studies investigating how the extreme changes in accordance with the climate change are continuously reported. However, it is rarely understandable that the extremes affect crop yield worldwide as heatwave, coolwave, drought, and flood, albeit some local or national reports are available. Therefore, we globally investigated the extremes effects on the variability of historical yield of maize, rice, soy, and wheat with a standardized index and a historical yield anomaly. For the regression analysis, the standardized index is annually aggregated in the consideration of a crop calendar, and the historical yield is detrended with 5-year moving average. Throughout this investigation, we found that the relationship between the aggregated standardized index and the historical yield anomaly shows not merely positive correlation but also negative correlation in all crops in the globe. Namely, the extremes cause decrease of crop yield as a matter of course, but increase in some regions contrastingly. These results help us to quantify the extremes effect on historical crop yield anomaly.
Monier, Erwan; Xu, Liyi; Snyder, Richard
2016-04-26
Scientific challenges exist on how to extract information from the wide range of projected impacts simulated by crop models driven by climate ensembles. A stronger focus is required to understand and identify the mechanisms and drivers of projected changes in crop yield. In this study, we investigate the robustness of future projections of five metrics relevant to agriculture stakeholders (accumulated frost days, dry days, growing season length, plant heat stress and start of field operations). We use a large ensemble of climate simulations by the MIT IGSM-CAM integrated assessment model that accounts for the uncertainty associated with different emissions scenarios,more » climate sensitivities, and representations of natural variability. By the end of the century, the US is projected to experience fewer frosts, a longer growing season, more heat stress and an earlier start of field operations-although the magnitude and even the sign of these changes vary greatly by regions. Projected changes in dry days are shown not to be robust. We highlight the important role of natural variability, in particular for changes in dry days (a precipitation-related index) and heat stress (a threshold index). The wide range of our projections compares well the CMIP5 multi-model ensemble, especially for temperature-related indices. This suggests that using a single climate model that accounts for key sources of uncertainty can provide an efficient and complementary framework to the more common approach of multi-model ensembles. We also show that greenhouse gas mitigation has the potential to significantly reduce adverse effects (heat stress, risks of pest and disease) of climate change on agriculture, while also curtailing potentially beneficial impacts (earlier planting, possibility for multiple cropping). A major benefit of climate mitigation is potentially preventing changes in several indices to emerge from the noise of natural variability, even by 2100. This has major implications considering that any significant climate change impacts on crop yield would result in nation-wide changes in the agriculture sector. Lastly, we argue that the analysis of agro-climate indices should more often complement crop model projections, as they can provide valuable information to better understand the drivers of changes in crop yield and production and thus better inform adaptation decisions.« less
NASA Astrophysics Data System (ADS)
Monier, Erwan; Xu, Liyi; Snyder, Richard
2016-05-01
Scientific challenges exist on how to extract information from the wide range of projected impacts simulated by crop models driven by climate ensembles. A stronger focus is required to understand and identify the mechanisms and drivers of projected changes in crop yield. In this study, we investigate the robustness of future projections of five metrics relevant to agriculture stakeholders (accumulated frost days, dry days, growing season length, plant heat stress and start of field operations). We use a large ensemble of climate simulations by the MIT IGSM-CAM integrated assessment model that accounts for the uncertainty associated with different emissions scenarios, climate sensitivities, and representations of natural variability. By the end of the century, the US is projected to experience fewer frosts, a longer growing season, more heat stress and an earlier start of field operations—although the magnitude and even the sign of these changes vary greatly by regions. Projected changes in dry days are shown not to be robust. We highlight the important role of natural variability, in particular for changes in dry days (a precipitation-related index) and heat stress (a threshold index). The wide range of our projections compares well the CMIP5 multi-model ensemble, especially for temperature-related indices. This suggests that using a single climate model that accounts for key sources of uncertainty can provide an efficient and complementary framework to the more common approach of multi-model ensembles. We also show that greenhouse gas mitigation has the potential to significantly reduce adverse effects (heat stress, risks of pest and disease) of climate change on agriculture, while also curtailing potentially beneficial impacts (earlier planting, possibility for multiple cropping). A major benefit of climate mitigation is potentially preventing changes in several indices to emerge from the noise of natural variability, even by 2100. This has major implications considering that any significant climate change impacts on crop yield would result in nation-wide changes in the agriculture sector. Finally, we argue that the analysis of agro-climate indices should more often complement crop model projections, as they can provide valuable information to better understand the drivers of changes in crop yield and production and thus better inform adaptation decisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monier, Erwan; Xu, Liyi; Snyder, Richard
Scientific challenges exist on how to extract information from the wide range of projected impacts simulated by crop models driven by climate ensembles. A stronger focus is required to understand and identify the mechanisms and drivers of projected changes in crop yield. In this study, we investigate the robustness of future projections of five metrics relevant to agriculture stakeholders (accumulated frost days, dry days, growing season length, plant heat stress and start of field operations). We use a large ensemble of climate simulations by the MIT IGSM-CAM integrated assessment model that accounts for the uncertainty associated with different emissions scenarios,more » climate sensitivities, and representations of natural variability. By the end of the century, the US is projected to experience fewer frosts, a longer growing season, more heat stress and an earlier start of field operations-although the magnitude and even the sign of these changes vary greatly by regions. Projected changes in dry days are shown not to be robust. We highlight the important role of natural variability, in particular for changes in dry days (a precipitation-related index) and heat stress (a threshold index). The wide range of our projections compares well the CMIP5 multi-model ensemble, especially for temperature-related indices. This suggests that using a single climate model that accounts for key sources of uncertainty can provide an efficient and complementary framework to the more common approach of multi-model ensembles. We also show that greenhouse gas mitigation has the potential to significantly reduce adverse effects (heat stress, risks of pest and disease) of climate change on agriculture, while also curtailing potentially beneficial impacts (earlier planting, possibility for multiple cropping). A major benefit of climate mitigation is potentially preventing changes in several indices to emerge from the noise of natural variability, even by 2100. This has major implications considering that any significant climate change impacts on crop yield would result in nation-wide changes in the agriculture sector. Lastly, we argue that the analysis of agro-climate indices should more often complement crop model projections, as they can provide valuable information to better understand the drivers of changes in crop yield and production and thus better inform adaptation decisions.« less
NASA Astrophysics Data System (ADS)
Amon-Armah, Frederick; Yiridoe, Emmanuel K.; Ahmad, Nafees H. M.; Hebb, Dale; Jamieson, Rob; Burton, David; Madani, Ali
2013-11-01
Government priorities on provincial Nutrient Management Planning (NMP) programs include improving the program effectiveness for environmental quality protection, and promoting more widespread adoption. Understanding the effect of NMP on both crop yield and key water-quality parameters in agricultural watersheds requires a comprehensive evaluation that takes into consideration important NMP attributes and location-specific farming conditions. This study applied the Soil and Water Assessment Tool (SWAT) to investigate the effects of crop and rotation sequence, tillage type, and nutrient N application rate on crop yield and the associated groundwater leaching and sediment loss. The SWAT model was applied to the Thomas Brook Watershed, located in the most intensively managed agricultural region of Nova Scotia, Canada. Cropping systems evaluated included seven fertilizer application rates and two tillage systems (i.e., conventional tillage and no-till). The analysis reflected cropping systems commonly managed by farmers in the Annapolis Valley region, including grain corn-based and potato-based cropping systems, and a vegetable-horticulture system. ANOVA models were developed and used to assess the effects of crop management choices on crop yield and two water-quality parameters (i.e., leaching and sediment loading). Results suggest that existing recommended N-fertilizer rate can be reduced by 10-25 %, for grain crop production, to significantly lower leaching ( P > 0.05) while optimizing the crop yield. The analysis identified the nutrient N rates in combination with specific crops and rotation systems that can be used to manage leaching while balancing impacts on crop yields within the watershed.
NASA Technical Reports Server (NTRS)
1978-01-01
The author has identified the following significant results. Yield modelling for crop production estimation derived a means of predicting the within-a-year yield and the year-to-year variability of yield over some fixed or randomly located unit of area. Preliminary studies indicated that the requirements for interpreting LANDSAT data for yield may be sufficiently similar to those of signature extension that it is feasible to investigate the automated estimation of production. The concept of an advanced yield model consisting of both spectral and meteorological components was endorsed. Rationale for using meteorological parameters originated from known between season and near harvest dynamics in crop environmental-condition-yield relationships.
Yield model development project implementation plan
NASA Technical Reports Server (NTRS)
Ambroziak, R. A.
1982-01-01
Tasks remaining to be completed are summarized for the following major project elements: (1) evaluation of crop yield models; (2) crop yield model research and development; (3) data acquisition processing, and storage; (4) related yield research: defining spectral and/or remote sensing data requirements; developing input for driving and testing crop growth/yield models; real time testing of wheat plant process models) and (5) project management and support.
Understanding the Impact of Extreme Temperature on Crop Production in Karnataka in India
NASA Astrophysics Data System (ADS)
Mahato, S.; Murari, K. K.; Jayaraman, T.
2017-12-01
The impact of extreme temperature on crop yield is seldom explored in work around climate change impact on agriculture. Further, these studies are restricted mainly to crops such as wheat and maize. Since different agro-climatic zones bear different crops and cropping patterns, it is important to explore the nature of the impact of changes in climate variables in agricultural systems under differential conditions. The study explores the effects of temperature rise on the major crops paddy, jowar, ragi and tur in the state of Karnataka of southern India. The choice of the unit of study to understand impact of climate variability on crop yields is largely restricted to availability of data for the unit. While, previous studies have dealt with this issue by replacing yield with NDVI at finer resolution, the use of an index in place of yield data has its limitations and may not reflect the true estimates. For this study, the unit considered is taluk, i.e. sub-district level. The crop yield for taluk is obtained between the year the 1995 to 2011 by aggregating point yield data from crop cutting experiments for each year across the taluks. The long term temperature data shows significantly increasing trend that ranges between 0.6 to 0.75 C across Karnataka. Further, the analysis suggests a warming trend in seasonal average temperature for Kharif and Rabi seasons across districts. The study also found that many districts exhibit the tendency of occurrence of extreme temperature days, which is of particular concern in terms of crop yield, since exposure of crops to extreme temperature has negative consequences for crop production and productivity. Using growing degree days GDD, extreme degree days EDD and total season rainfall as predictor variables, the fixed effect model shows that EDD is a more influential parameter as compared to GDD and rainfall. Also it has a statistically significant negative effect in most cases. Further, quantile regression was used to evaluate the robustness of the estimates of EDD in relation to crop yield. This showed the estimates to be robust across quantiles for most of the crops studied. Thus indicating a strong negative influence of exposure to extreme temperature on crop yield in the region.
Slattery, Rebecca A; Ort, Donald R
2015-06-01
The conversion efficiency (ε(c)) of absorbed radiation into biomass (MJ of dry matter per MJ of absorbed photosynthetically active radiation) is a component of yield potential that has been estimated at less than half the theoretical maximum. Various strategies have been proposed to improve ε(c), but a statistical analysis to establish baseline ε(c) levels across different crop functional types is lacking. Data from 164 published ε(c) studies conducted in relatively unstressed growth conditions were used to determine the means, greatest contributors to variation, and genetic trends in ε(c )across important food and biofuel crop species. ε(c) was greatest in biofuel crops (0.049-0.066), followed by C4 food crops (0.046-0.049), C3 nonlegumes (0.036-0.041), and finally C3 legumes (0.028-0.035). Despite confining our analysis to relatively unstressed growth conditions, total incident solar radiation and average growing season temperature most often accounted for the largest portion of ε(c) variability. Genetic improvements in ε(c), when present, were less than 0.7% per year, revealing the unrealized potential of improving ε(c) as a promising contributing strategy to meet projected future agricultural demand. © 2015 American Society of Plant Biologists. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Wang, Xiaoping; Mauzerall, Denise L.
Using an integrated assessment approach, we evaluate the impact that surface O 3 in East Asia had on agricultural production in 1990 and is projected to have in 2020. We also examine the effect that emission controls and the enforcement of environmental standards could have in increasing grain production in China. We find that given projected increases in O 3 concentrations in the region, East Asian countries are presently on the cusp of substantial reductions in grain production. Our conservative estimates, based on 7- and 12-h mean (M7 or M12) exposure indices, show that due to O 3 concentrations in 1990 China, Japan and South Korea lost 1-9% of their yield of wheat, rice and corn and 23-27% of their yield of soybeans, with an associated value of 1990US 3.5, 1.2 and 0.24 billion, respectively. In 2020, assuming no change in agricultural production practices and again using M7 and M12 exposure indices, grain loss due to increased levels of O 3 pollution is projected to increase to 2-16% for wheat, rice and corn and 28-35% for soybeans; the associated economic costs are expected to increase by 82%, 33%, and 67% in 2020 over 1990 for China, Japan and South Korea, respectively. For most crops, the yield losses in 1990 based on SUM06 or W126 exposure indices are lower than yield losses estimated using M7 or M12 exposure indices in China and Japan but higher in South Korea; in 2020, the yield losses based on SUM06 or W126 exposure indices are substantially higher for all crops in all three countries. This is primarily due to the nature of the cumulative indices which weight elevated values of O 3 more heavily than lower values. Chinese compliance with its ambient O 3 standard in 1990 would have had a limited effect in reducing the grain yield loss caused by O 3 exposure, resulting in only US 0.2 billion of additional grain revenues, but in 2020 compliance could reduce the yield loss by one third and lead to an increase of US$ 2.6 (M7 or M12) -27 (SUM06) billion in grain revenues. We conclude that East Asian countries may have tremendous losses of crop yields in the near future due to projected increases in O 3 concentrations. They likely could achieve substantial increases in future agricultural production through reduction of surface O 3 concentrations and/or use of O 3 resistant crop cultivars.
Regional crop yield forecasting: a probabilistic approach
NASA Astrophysics Data System (ADS)
de Wit, A.; van Diepen, K.; Boogaard, H.
2009-04-01
Information on the outlook on yield and production of crops over large regions is essential for government services dealing with import and export of food crops, for agencies with a role in food relief, for international organizations with a mandate in monitoring the world food production and trade, and for commodity traders. Process-based mechanistic crop models are an important tool for providing such information, because they can integrate the effect of crop management, weather and soil on crop growth. When properly integrated in a yield forecasting system, the aggregated model output can be used to predict crop yield and production at regional, national and continental scales. Nevertheless, given the scales at which these models operate, the results are subject to large uncertainties due to poorly known weather conditions and crop management. Current yield forecasting systems are generally deterministic in nature and provide no information about the uncertainty bounds on their output. To improve on this situation we present an ensemble-based approach where uncertainty bounds can be derived from the dispersion of results in the ensemble. The probabilistic information provided by this ensemble-based system can be used to quantify uncertainties (risk) on regional crop yield forecasts and can therefore be an important support to quantitative risk analysis in a decision making process.
NASA Technical Reports Server (NTRS)
Bugbee, B.; Monje, O.
1992-01-01
Plant scientists have sought to maximize the yield of food crops since the beginning of agriculture. There are numerous reports of record food and biomass yields (per unit area) in all major crop plants, but many of the record yield reports are in error because they exceed the maximal theoretical rates of the component processes. In this article, we review the component processes that govern yield limits and describe how each process can be individually measured. This procedure has helped us validate theoretical estimates and determine what factors limit yields in optimal environments.
The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and Pilot Studies
NASA Technical Reports Server (NTRS)
Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P.; Antle, J. M.; Nelson, G. C.; Porter, C.; Janssen, S.;
2012-01-01
The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a major international effort linking the climate, crop, and economic modeling communities with cutting-edge information technology to produce improved crop and economic models and the next generation of climate impact projections for the agricultural sector. The goals of AgMIP are to improve substantially the characterization of world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Analyses of the agricultural impacts of climate variability and change require a transdisciplinary effort to consistently link state-of-the-art climate scenarios to crop and economic models. Crop model outputs are aggregated as inputs to regional and global economic models to determine regional vulnerabilities, changes in comparative advantage, price effects, and potential adaptation strategies in the agricultural sector. Climate, Crop Modeling, Economics, and Information Technology Team Protocols are presented to guide coordinated climate, crop modeling, economics, and information technology research activities around the world, along with AgMIP Cross-Cutting Themes that address uncertainty, aggregation and scaling, and the development of Representative Agricultural Pathways (RAPs) to enable testing of climate change adaptations in the context of other regional and global trends. The organization of research activities by geographic region and specific crops is described, along with project milestones. Pilot results demonstrate AgMIP's role in assessing climate impacts with explicit representation of uncertainties in climate scenarios and simulations using crop and economic models. An intercomparison of wheat model simulations near Obregón, Mexico reveals inter-model differences in yield sensitivity to [CO2] with model uncertainty holding approximately steady as concentrations rise, while uncertainty related to choice of crop model increases with rising temperatures. Wheat model simulations with midcentury climate scenarios project a slight decline in absolute yields that is more sensitive to selection of crop model than to global climate model, emissions scenario, or climate scenario downscaling method. A comparison of regional and national-scale economic simulations finds a large sensitivity of projected yield changes to the simulations' resolved scales. Finally, a global economic model intercomparison example demonstrates that improvements in the understanding of agriculture futures arise from integration of the range of uncertainty in crop, climate, and economic modeling results in multi-model assessments.
Spatial Sampling of Weather Data for Regional Crop Yield Simulations
NASA Technical Reports Server (NTRS)
Van Bussel, Lenny G. J.; Ewert, Frank; Zhao, Gang; Hoffmann, Holger; Enders, Andreas; Wallach, Daniel; Asseng, Senthold; Baigorria, Guillermo A.; Basso, Bruno; Biernath, Christian;
2016-01-01
Field-scale crop models are increasingly applied at spatio-temporal scales that range from regions to the globe and from decades up to 100 years. Sufficiently detailed data to capture the prevailing spatio-temporal heterogeneity in weather, soil, and management conditions as needed by crop models are rarely available. Effective sampling may overcome the problem of missing data but has rarely been investigated. In this study the effect of sampling weather data has been evaluated for simulating yields of winter wheat in a region in Germany over a 30-year period (1982-2011) using 12 process-based crop models. A stratified sampling was applied to compare the effect of different sizes of spatially sampled weather data (10, 30, 50, 100, 500, 1000 and full coverage of 34,078 sampling points) on simulated wheat yields. Stratified sampling was further compared with random sampling. Possible interactions between sample size and crop model were evaluated. The results showed differences in simulated yields among crop models but all models reproduced well the pattern of the stratification. Importantly, the regional mean of simulated yields based on full coverage could already be reproduced by a small sample of 10 points. This was also true for reproducing the temporal variability in simulated yields but more sampling points (about 100) were required to accurately reproduce spatial yield variability. The number of sampling points can be smaller when a stratified sampling is applied as compared to a random sampling. However, differences between crop models were observed including some interaction between the effect of sampling on simulated yields and the model used. We concluded that stratified sampling can considerably reduce the number of required simulations. But, differences between crop models must be considered as the choice for a specific model can have larger effects on simulated yields than the sampling strategy. Assessing the impact of sampling soil and crop management data for regional simulations of crop yields is still needed.
Amon, Thomas; Amon, Barbara; Kryvoruchko, Vitaliy; Machmüller, Andrea; Hopfner-Sixt, Katharina; Bodiroza, Vitomir; Hrbek, Regina; Friedel, Jürgen; Pötsch, Erich; Wagentristl, Helmut; Schreiner, Matthias; Zollitsch, Werner
2007-12-01
Biogas production is of major importance for the sustainable use of agrarian biomass as renewable energy source. Economic biogas production depends on high biogas yields. The project aimed at optimising anaerobic digestion of energy crops. The following aspects were investigated: suitability of different crop species and varieties, optimum time of harvesting, specific methane yield and methane yield per hectare. The experiments covered 7 maize, 2 winter wheat, 2 triticale varieties, 1 winter rye, and 2 sunflower varieties and 6 variants with permanent grassland. In the course of the vegetation period, biomass yield and biomass composition were measured. Anaerobic digestion was carried out in eudiometer batch digesters. The highest methane yields of 7500-10200 m(N)(3)ha(-1) were achieved from maize varieties with FAO numbers (value for the maturity of the maize) of 300 to 600 harvested at "wax ripeness". Methane yields of cereals ranged from 3200 to 4500 m(N)(3)ha(-1). Cereals should be harvested at "grain in the milk stage" to "grain in the dough stage". With sunflowers, methane yields between 2600 and 4550 m(N)(3)ha(-1) were achieved. There were distinct differences between the investigated sunflower varieties. Alpine grassland can yield 2700-3500 m(N)(3)CH(4)ha(-1). The methane energy value model (MEVM) was developed for the different energy crops. It estimates the specific methane yield from the nutrient composition of the energy crops. Energy crops for biogas production need to be grown in sustainable crop rotations. The paper outlines possibilities for optimising methane yield from versatile crop rotations that integrate the production of food, feed, raw materials and energy. These integrated crop rotations are highly efficient and can provide up to 320 million t COE which is 96% of the total energy demand of the road traffic of the EU-25 (the 25 Member States of the European Union).
Yun, Lei; Bi, Hua-Xing; Tian, Xiao-Ling; Cui, Zhe-Wei; Zhou, Hui-Zi; Gao, Lu-Bo; Liu, Li-Xia
2011-05-01
Taking the four typical fruit-crop intercropping models, i.e., walnut-peanut, walnut-soybean, apple-peanut, and apple-soybean, in the Loess Region of western Shanxi Province as the objects, this paper analyzed the crop (peanut and soybean) photosynthetic active radiation (PAR), net photosynthetic rate (P(n)), yield, and soil moisture content. Comparing with crop monoculture, fruit-crop intercropping decreased the crop PAR and P(n). The smaller the distance from tree rows, the smaller the crop PAR and P(n). There was a significantly positive correlation between the P(n) and crop yield, suggesting that illumination was one of the key factors affecting crop yield. From the whole trend, the 0-100 cm soil moisture content had no significant differences between walnut-crop intercropping systems and corresponding monoculture cropping systems, but had significant differences between apple-crop intercropping systems and corresponding monoculture cropping systems, indicating that the competition for soil moisture was more intense in apple-crop intercropping systems than in walnut-crop intercropping systems. Comparing with monoculture, fruit-crop intercropping increased the land use efficiency and economic benefit averagely by 70% and 14%, respectively, and walnut-crop intercropping was much better than apple-crop intercropping. To increase the crop yield in fruit-crop intercropping systems, the following strategies should be taken: strengthening the management of irrigation and fertilization, increasing the distances or setting root barriers between crop and tree rows, regularly and properly pruning, and planting shade-tolerant crops in intercropping.
NASA Astrophysics Data System (ADS)
Quiroga, S.; Fernández-Haddad, Z.; Iglesias, A.
2011-02-01
The increasing pressure on water systems in the Mediterranean enhances existing water conflicts and threatens water supply for agriculture. In this context, one of the main priorities for agricultural research and public policy is the adaptation of crop yields to water pressures. This paper focuses on the evaluation of hydrological risk and water policy implications for food production. Our methodological approach includes four steps. For the first step, we estimate the impacts of rainfall and irrigation water on crop yields. However, this study is not limited to general crop production functions since it also considers the linkages between those economic and biophysical aspects which may have an important effect on crop productivity. We use statistical models of yield response to address how hydrological variables affect the yield of the main Mediterranean crops in the Ebro river basin. In the second step, this study takes into consideration the effects of those interactions and analyzes gross value added sensitivity to crop production changes. We then use Montecarlo simulations to characterize crop yield risk to water variability. Finally we evaluate some policy scenarios with irrigated area adjustments that could cope in a context of increased water scarcity. A substantial decrease in irrigated land, of up to 30% of total, results in only moderate losses of crop productivity. The response is crop and region specific and may serve to prioritise adaptation strategies.
Hansen, Veronika; Müller-Stöver, Dorette; Imparato, Valentina; Krogh, Paul Henning; Jensen, Lars Stoumann; Dolmer, Anders; Hauggaard-Nielsen, Henrik
2017-01-15
Thermal gasification of straw is a highly efficient technology that produces bioenergy and gasification biochar that can be used as a soil amendment, thereby returning non-renewable nutrients and stable carbon, and securing soil quality and crop productivity. A Danish on-farm field study investigated the impact of traditional straw incorporation vs. straw removal for thermal gasification bioenergy production and the application of straw gasification biochar (GB) on soil quality and crop production. Two rates of GB were applied over three successive years in which the field was cropped with winter wheat (Triticum aestivum L.), winter oilseed rape (Brassica napus L.) and winter wheat, respectively, to assess the potential effects on the soil carbon pool, soil microorganisms, earthworms, soil chemical properties and crop yields. The application of GB did not increase the soil organic carbon content significantly and had no effect on crop yields. The application of straw and GB had a positive effect on the populations of bacteria and protists, but no effect on earthworms. The high rate of GB increased soil exchangeable potassium content and soil pH indicating its potassium bioavailability and liming properties. These results suggest, that recycling GB into agricultural soils has the potential to be developed into a system combining bioenergy generation from agricultural residues and crop production, while maintaining soil quality. However, future studies should be undertaken to assess its long-term effects and to identify the optimum balance between straw removal and biochar application rate. Copyright © 2016. Published by Elsevier Ltd.
Thiry, Arnauld A.; Chavez Dulanto, Perla N.; Reynolds, Matthew P.; Davies, William J.
2016-01-01
The need to accelerate the selection of crop genotypes that are both resistant to and productive under abiotic stress is enhanced by global warming and the increase in demand for food by a growing world population. In this paper, we propose a new method for evaluation of wheat genotypes in terms of their resilience to stress and their production capacity. The method quantifies the components of a new index related to yield under abiotic stress based on previously developed stress indices, namely the stress susceptibility index, the stress tolerance index, the mean production index, the geometric mean production index, and the tolerance index, which were created originally to evaluate drought adaptation. The method, based on a scoring scale, offers simple and easy visualization and identification of resilient, productive and/or contrasting genotypes according to grain yield. This new selection method could help breeders and researchers by defining clear and strong criteria to identify genotypes with high resilience and high productivity and provide a clear visualization of contrasts in terms of grain yield production under stress. It is also expected that this methodology will reduce the time required for first selection and the number of first-selected genotypes for further evaluation by breeders and provide a basis for appropriate comparisons of genotypes that would help reveal the biology behind high stress productivity of crops. PMID:27677299
The Role of Climate Covariability on Crop Yields in the Conterminous United States
Leng, Guoyong; Zhang, Xuesong; Huang, Maoyi; ...
2016-09-12
The covariability of temperature (T), precipitation (P) and radiation (R) is an important aspect in understanding the climate influence on crop yields. Here in this paper, we analyze county-level corn and soybean yields and observed climate for the period 1983–2012 to understand how growing-season (June, July and August) mean T, P and R influence crop yields jointly and in isolation across the CONterminous United States (CONUS). Results show that nationally averaged corn and soybean yields exhibit large interannual variability of 21% and 22%, of which 35% and 32% can be significantly explained by T and P, respectively. By including R,more » an additional of 5% in variability can be explained for both crops. Using partial regression analyses, we find that studies that ignore the covariability among T, P, and R can substantially overestimate the sensitivity of crop yields to a single climate factor at the county scale. Further analyses indicate large spatial variation in the relative contributions of different climate variables to the variability of historical corn and soybean yields. Finally, the structure of the dominant climate factors did not change substantially over 1983–2012, confirming the robustness of the findings, which have important implications for crop yield prediction and crop model validations.« less
Yield Potential of Sugar Beet – Have We Hit the Ceiling?
Hoffmann, Christa M.; Kenter, Christine
2018-01-01
The yield of sugar beet has continuously increased in the past decades. The question arises, whether this progress will continue in the future. A key factor for increasing yield potential of the crop is breeding progress. It was related to a shift in assimilate partitioning in the plant toward more storage carbohydrates (sucrose), whereas structural carbohydrates (leaves, cell wall compounds) unintendedly declined. The yield potential of sugar beet was estimated at 24 t sugar ha-1. For maximum yield, sufficient growth factors have to be available and the crop has to be able to fully utilize them. In sugar beet, limitations result from the lacking coincidence of maximum irradiation rates and full canopy cover, sink strength for carbon assimilation and high water demand, which cannot be met by rainfall alone. After harvest, sugar losses during storage occur. The paper discusses options for a further increase in yield potential, like autumn sowing of sugar beet, increasing sink strength and related constraints. It is prospected that yield increase by further widening the ratio of storage and structural carbohydrates will come to its natural limit as a certain cell wall stability is necessary. New challenges caused by climate change and by prolonged processing campaigns will occur. Thus breeding for improved pathogen resistance and storage properties will be even more important for successful sugar beet production than a further increase in yield potential itself. PMID:29599787
Sandhu, Nitika; Raman, K. Anitha; Torres, Rolando O.; Audebert, Alain; Dardou, Audrey; Kumar, Arvind; Henry, Amelia
2016-01-01
Future rice (Oryza sativa) crops will likely experience a range of growth conditions, and root architectural plasticity will be an important characteristic to confer adaptability across variable environments. In this study, the relationship between root architectural plasticity and adaptability (i.e. yield stability) was evaluated in two traditional × improved rice populations (Aus 276 × MTU1010 and Kali Aus × MTU1010). Forty contrasting genotypes were grown in direct-seeded upland and transplanted lowland conditions with drought and drought + rewatered stress treatments in lysimeter and field studies and a low-phosphorus stress treatment in a Rhizoscope study. Relationships among root architectural plasticity for root dry weight, root length density, and percentage lateral roots with yield stability were identified. Selected genotypes that showed high yield stability also showed a high degree of root plasticity in response to both drought and low phosphorus. The two populations varied in the soil depth effect on root architectural plasticity traits, none of which resulted in reduced grain yield. Root architectural plasticity traits were related to 13 (Aus 276 population) and 21 (Kali Aus population) genetic loci, which were contributed by both the traditional donor parents and MTU1010. Three genomic loci were identified as hot spots with multiple root architectural plasticity traits in both populations, and one locus for both root architectural plasticity and grain yield was detected. These results suggest an important role of root architectural plasticity across future rice crop conditions and provide a starting point for marker-assisted selection for plasticity. PMID:27342311
Yield and Economic Responses of Peanut to Crop Rotation Sequence
USDA-ARS?s Scientific Manuscript database
National Peanut Research Laboratory, Dawson, GA 39842. Proper crop rotation is essential to maintaining high peanut yield and quality. However, the economic considerations of maintaining or altering crop rotation sequences must incorporate the commodity prices, production costs, and yield responses...
Hyperspectral imagery for mapping crop yield for precision agriculture
USDA-ARS?s Scientific Manuscript database
Crop yield is perhaps the most important piece of information for crop management in precision agriculture. It integrates the effects of various spatial variables such as soil properties, topographic attributes, tillage, plant population, fertilization, irrigation, and pest infestations. A yield map...
Salience Assignment for Multiple-Instance Data and Its Application to Crop Yield Prediction
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri L.; Lane, Terran
2010-01-01
An algorithm was developed to generate crop yield predictions from orbital remote sensing observations, by analyzing thousands of pixels per county and the associated historical crop yield data for those counties. The algorithm determines which pixels contain which crop. Since each known yield value is associated with thousands of individual pixels, this is a multiple instance learning problem. Because individual crop growth is related to the resulting yield, this relationship has been leveraged to identify pixels that are individually related to corn, wheat, cotton, and soybean yield. Those that have the strongest relationship to a given crop s yield values are most likely to contain fields with that crop. Remote sensing time series data (a new observation every 8 days) was examined for each pixel, which contains information for that pixel s growth curve, peak greenness, and other relevant features. An alternating-projection (AP) technique was used to first estimate the "salience" of each pixel, with respect to the given target (crop yield), and then those estimates were used to build a regression model that relates input data (remote sensing observations) to the target. This is achieved by constructing an exemplar for each crop in each county that is a weighted average of all the pixels within the county; the pixels are weighted according to the salience values. The new regression model estimate then informs the next estimate of the salience values. By iterating between these two steps, the algorithm converges to a stable estimate of both the salience of each pixel and the regression model. The salience values indicate which pixels are most relevant to each crop under consideration.
Duncan, John M A; Dash, Jadunandan; Atkinson, Peter M
2015-04-01
Remote sensing-derived wheat crop yield-climate models were developed to highlight the impact of temperature variation during thermo-sensitive periods (anthesis and grain-filling; TSP) of wheat crop development. Specific questions addressed are: can the impact of temperature variation occurring during the TSP on wheat crop yield be detected using remote sensing data and what is the impact? Do crop critical temperature thresholds during TSP exist in real world cropping landscapes? These questions are tested in one of the world's major wheat breadbaskets of Punjab and Haryana, north-west India. Warming average minimum temperatures during the TSP had a greater negative impact on wheat crop yield than warming maximum temperatures. Warming minimum and maximum temperatures during the TSP explain a greater amount of variation in wheat crop yield than average growing season temperature. In complex real world cereal croplands there was a variable yield response to critical temperature threshold exceedance, specifically a more pronounced negative impact on wheat yield with increased warming events above 35 °C. The negative impact of warming increases with a later start-of-season suggesting earlier sowing can reduce wheat crop exposure harmful temperatures. However, even earlier sown wheat experienced temperature-induced yield losses, which, when viewed in the context of projected warming up to 2100 indicates adaptive responses should focus on increasing wheat tolerance to heat. This study shows it is possible to capture the impacts of temperature variation during the TSP on wheat crop yield in real world cropping landscapes using remote sensing data; this has important implications for monitoring the impact of climate change, variation and heat extremes on wheat croplands. © 2014 John Wiley & Sons Ltd.
Cover crops support ecological intensification of arable cropping systems
NASA Astrophysics Data System (ADS)
Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.
2017-02-01
A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.
NASA Astrophysics Data System (ADS)
Rabin, Sam; Alexander, Peter; Anthoni, Peter; Henry, Roslyn; Huntingford, Chris; Pugh, Thomas; Rounsevell, Mark; Arneth, Almut
2017-04-01
A major question facing humanity is how well agricultural production systems will be able to feed the world in a future of rapid climate change, population growth, and demand shifts—all while minimizing our impact on the natural world. Global modeling has frequently been used to investigate certain aspects of this question, but in order to properly address the challenge, no one part of the human-environmental system can be assessed in isolation. It is especially critical that the effect on agricultural yields of changing temperature and precipitation regimes (including seasonal timing and frequency and intensity of extreme events), as well as rising atmospheric carbon dioxide levels, be taken into account when planning for future food security. Coupled modeling efforts, where changes in various parts of the Earth system are allowed to feed back onto one another, represent a powerful strategy in this regard. This presentation describes the structure and initial results of an effort to couple a biologically-representative vegetation and crop production simulator, LPJ-GUESS, with the climate emulator IMOGEN and the land-use model PLUMv2. With IMOGEN providing detailed future weather simulations, LPJ-GUESS simulates natural vegetation as well as cropland and pasture/rangeland; the simulated exchange of greenhouse gases between the land and atmosphere feeds back into IMOGEN's predictions. LPJ-GUESS also produces potential vegetation yields for irrigated vs. rainfed crops under three levels of nitrogen fertilizer addition. PLUMv2 combines these potential yields with endogenous demand and agricultural commodity price to calculate an optimal set of land use distributions and management strategies across the world for the next five years of simulation, based on socio-economic scenario data. These land uses are then fed back into LPJ-GUESS, and the cycle of climate, greenhouse gas emissions, crop yields, and land-use change continues. The globally gridded nature of the model—at 0.5-degree resolution across the world—generates spatially explicit projections at a sub-national scale relevant to individual land managers. Here, we present the results of using the LPJ-GUESS-PLUM-IMOGEN coupled model to project agricultural production and management strategies under several scenarios of greenhouse gas emissions (the Representative Concentration Pathways) and socioeconomic futures (the Shared Socioeconomic Pathways) through the year 2100. In the future, the coupled model could be used to generate projections for alternative scenarios: for example, to consider the implications from land-based climate change mitigation policies, or changes to international trade tariffs regimes.
Gu, Junfei; Yin, Xinyou; Zhang, Chengwei; Wang, Huaqi; Struik, Paul C.
2014-01-01
Background and Aims Genetic markers can be used in combination with ecophysiological crop models to predict the performance of genotypes. Crop models can estimate the contribution of individual markers to crop performance in given environments. The objectives of this study were to explore the use of crop models to design markers and virtual ideotypes for improving yields of rice (Oryza sativa) under drought stress. Methods Using the model GECROS, crop yield was dissected into seven easily measured parameters. Loci for these parameters were identified for a rice population of 94 introgression lines (ILs) derived from two parents differing in drought tolerance. Marker-based values of ILs for each of these parameters were estimated from additive allele effects of the loci, and were fed to the model in order to simulate yields of the ILs grown under well-watered and drought conditions and in order to design virtual ideotypes for those conditions. Key Results To account for genotypic yield differences, it was necessary to parameterize the model for differences in an additional trait ‘total crop nitrogen uptake’ (Nmax) among the ILs. Genetic variation in Nmax had the most significant effect on yield; five other parameters also significantly influenced yield, but seed weight and leaf photosynthesis did not. Using the marker-based parameter values, GECROS also simulated yield variation among 251 recombinant inbred lines of the same parents. The model-based dissection approach detected more markers than the analysis using only yield per se. Model-based sensitivity analysis ranked all markers for their importance in determining yield differences among the ILs. Virtual ideotypes based on markers identified by modelling had 10–36 % more yield than those based on markers for yield per se. Conclusions This study outlines a genotype-to-phenotype approach that exploits the potential value of marker-based crop modelling in developing new plant types with high yields. The approach can provide more markers for selection programmes for specific environments whilst also allowing for prioritization. Crop modelling is thus a powerful tool for marker design for improved rice yields and for ideotyping under contrasting conditions. PMID:24984712
Climatically driven yield variability of major crops in Khakassia (South Siberia)
NASA Astrophysics Data System (ADS)
Babushkina, Elena A.; Belokopytova, Liliana V.; Zhirnova, Dina F.; Shah, Santosh K.; Kostyakova, Tatiana V.
2018-06-01
We investigated the variability of yield of the three main crop cultures in the Khakassia Republic: spring wheat, spring barley, and oats. In terms of yield values, variability characteristics, and climatic response, the agricultural territory of Khakassia can be divided into three zones: (1) the Northern Zone, where crops yield has a high positive response to the amount of precipitation, May-July, and a moderately negative one to the temperatures of the same period; (2) the Central Zone, where crops yield depends mainly on temperatures; and (3) the Southern Zone, where climate has the least expressed impact on yield. The dominant pattern in the crops yield is caused by water stress during periods of high temperatures and low moisture supply with heat stress as additional reason. Differences between zones are due to combinations of temperature latitudinal gradient, precipitation altitudinal gradient, and the presence of a well-developed hydrological network and the irrigational system as moisture sources in the Central Zone. More detailed analysis shows differences in the climatic sensitivity of crops during phases of their vegetative growth and grain development and, to a lesser extent, during harvesting period. Multifactor linear regression models were constructed to estimate climate- and autocorrelation-induced variability of the crops yield. These models allowed prediction of the possibility of yield decreasing by at least 2-11% in the next decade due to increasing of the regional summer temperatures.
Climatically driven yield variability of major crops in Khakassia (South Siberia)
NASA Astrophysics Data System (ADS)
Babushkina, Elena A.; Belokopytova, Liliana V.; Zhirnova, Dina F.; Shah, Santosh K.; Kostyakova, Tatiana V.
2017-12-01
We investigated the variability of yield of the three main crop cultures in the Khakassia Republic: spring wheat, spring barley, and oats. In terms of yield values, variability characteristics, and climatic response, the agricultural territory of Khakassia can be divided into three zones: (1) the Northern Zone, where crops yield has a high positive response to the amount of precipitation, May-July, and a moderately negative one to the temperatures of the same period; (2) the Central Zone, where crops yield depends mainly on temperatures; and (3) the Southern Zone, where climate has the least expressed impact on yield. The dominant pattern in the crops yield is caused by water stress during periods of high temperatures and low moisture supply with heat stress as additional reason. Differences between zones are due to combinations of temperature latitudinal gradient, precipitation altitudinal gradient, and the presence of a well-developed hydrological network and the irrigational system as moisture sources in the Central Zone. More detailed analysis shows differences in the climatic sensitivity of crops during phases of their vegetative growth and grain development and, to a lesser extent, during harvesting period. Multifactor linear regression models were constructed to estimate climate- and autocorrelation-induced variability of the crops yield. These models allowed prediction of the possibility of yield decreasing by at least 2-11% in the next decade due to increasing of the regional summer temperatures.
NASA Astrophysics Data System (ADS)
Dale, A. L.; Boehlert, B.; Reisenauer, M.; Strzepek, K. M.; Solomon, S.
2017-12-01
Climate change poses substantial risks to African agriculture. These risks are exacerbated by concurrent risks to water resources, with water demand for irrigation comprising 80 to 90% of water withdrawals across the continent. Process-based crop growth models are able to estimate both crop demand for irrigation water and crop yields, and are therefore well-suited to analyses of climate change impacts at the food-water nexus. Unfortunately, impact assessments based on these models generally focus on either yields or water demand, rarely both. For this work, we coupled a crop model to a water resource management model in order to predict national trends in the impact of climate change on crop production, irrigation water demand, and the availability of water for irrigation across Africa. The crop model FAO AquaCrop-OS was run at 2ox2o resolution for 17 different climate futures from the CMIP5 archive, nine for Representative Concentration Pathway (RCP) 4.5 and eight for RCP8.5. Percent changes in annual rainfed and irrigated crop production and temporal shifts in monthly irrigation water demand were estimated for the years 2030, 2050, 2070, and 2090 for maize, sorghum, rice, wheat, cotton, sugarcane, fruits & vegetables, roots & tubers, and legumes & soybeans. AquaCrop was then coupled to a water management model (WEAP) in order to project changes in the ability of seven major river basins (the Congo, Niger, Nile, Senegal, Upper Orange, Volta, and Zambezi) to meet irrigation water demand out to 2050 in both average and dry years in the face of both climate change and irrigation expansion. Spatial and temporal trends were identified and interpreted through the lens of potential risk management strategies. Uncertainty in model estimates is reported and discussed.
Assessment of 1.5°C and 2°C climate change scenarios impact on wheat production in Tunisia
NASA Astrophysics Data System (ADS)
Bergaoui, karim; Belhaj Fraj, Makram; Zaaboul, Rashyd; Allen, Myles; Mitchell, Dann; Schleussner, Carl-Friedrich; Saeed, Fahad; Mc Donnell, Rachael
2017-04-01
Wheat is the main staple crop in North Africa region and contributes the most to food security. It is almost entirely grown under rainfed conditions and its yield is highly impacted by the climate variability, e. g. dry winters, a late autumn or late spring. Irregular rainfall or drought events particularly at key stages of the growing season, lead to both early and terminal wheat stresses and high inter-year variation in yield. The goal of this study was to explore the impacts of future climate on wheat production in Tunisia using an ensemble of regional bias corrected climate models outputs for the 1.5°C and 2°C warming above the pre-industrial levels. By examining the outputs on wheat yield levels the study would help answer the question of whether the ambitious climate change mitigation efforts involved in stabilizing temperatures at 1.5°C would bring the cereal yields needed in North Africa. Tunisia was chosen as the focus country because its wheat systems are found across a wide diversity in biophysical and farming conditions so giving insight on more localized effects. Data availability across a wide range of wheat management systems from subsistence farming systems to highly mechanized agribusinesses also supported work here as model results could be readily validated for the historical period. Two scenarios were obtained using the RCP2.6 as boundary conditions for 1.5 scenario and a weighted combination of RCP2.6 and RCP4.5 for the 2°C scenario using their respective CO2 levels in the future. We calibrated and validated a dynamical crop model, DSSAT, to simulate the national wheat production and to understand the impact of drought on growth and development that causes yield variation. DSSAT simulations were driven by CHIRPS and ERA-Interim reanalysis data as daily climate forcings. The simulations were validated in a set of farmer fields which were representative of the dominant cropping systems in the country. Then, the model was validated with 10 years' state-level production data. Finally, we forced the crop model with HAPPI bias corrected outputs using ISI-MIP approach where the trend and the long-term mean are well represented and we assessed the impact of each scenario on the wheat production at the national level. The results highlighted a difference in wheat yield in some biophysical areas and farming systems. This insight is important as countries develop mitigation and adaptation strategies as the impact costs can be included.
Kukal, Meetpal S; Irmak, Suat
2018-02-22
Climate variability and trends affect global crop yields and are characterized as highly dependent on location, crop type, and irrigation. U.S. Great Plains, due to its significance in national food production, evident climate variability, and extensive irrigation is an ideal region of investigation for climate impacts on food production. This paper evaluates climate impacts on maize, sorghum, and soybean yields and effect of irrigation for individual counties in this region by employing extensive crop yield and climate datasets from 1968-2013. Variability in crop yields was a quarter of the regional average yields, with a quarter of this variability explained by climate variability, and temperature and precipitation explained these in singularity or combination at different locations. Observed temperature trend was beneficial for maize yields, but detrimental for sorghum and soybean yields, whereas observed precipitation trend was beneficial for all three crops. Irrigated yields demonstrated increased robustness and an effective mitigation strategy against climate impacts than their non-irrigated counterparts by a considerable fraction. The information, data, and maps provided can serve as an assessment guide for planners, managers, and policy- and decision makers to prioritize agricultural resilience efforts and resource allocation or re-allocation in the regions that exhibit risk from climate variability.
Random Forests for Global and Regional Crop Yield Predictions.
Jeong, Jig Han; Resop, Jonathan P; Mueller, Nathaniel D; Fleisher, David H; Yun, Kyungdahm; Butler, Ethan E; Timlin, Dennis J; Shim, Kyo-Moon; Gerber, James S; Reddy, Vangimalla R; Kim, Soo-Hyung
2016-01-01
Accurate predictions of crop yield are critical for developing effective agricultural and food policies at the regional and global scales. We evaluated a machine-learning method, Random Forests (RF), for its ability to predict crop yield responses to climate and biophysical variables at global and regional scales in wheat, maize, and potato in comparison with multiple linear regressions (MLR) serving as a benchmark. We used crop yield data from various sources and regions for model training and testing: 1) gridded global wheat grain yield, 2) maize grain yield from US counties over thirty years, and 3) potato tuber and maize silage yield from the northeastern seaboard region. RF was found highly capable of predicting crop yields and outperformed MLR benchmarks in all performance statistics that were compared. For example, the root mean square errors (RMSE) ranged between 6 and 14% of the average observed yield with RF models in all test cases whereas these values ranged from 14% to 49% for MLR models. Our results show that RF is an effective and versatile machine-learning method for crop yield predictions at regional and global scales for its high accuracy and precision, ease of use, and utility in data analysis. RF may result in a loss of accuracy when predicting the extreme ends or responses beyond the boundaries of the training data.
Regional crop gross primary production and yield estimation using fused Landsat-MODIS data
NASA Astrophysics Data System (ADS)
He, M.; Kimball, J. S.; Maneta, M. P.; Maxwell, B. D.; Moreno, A.
2017-12-01
Accurate crop yield assessments using satellite-based remote sensing are of interest for the design of regional policies that promote agricultural resiliency and food security. However, the application of current vegetation productivity algorithms derived from global satellite observations are generally too coarse to capture cropland heterogeneity. Merging information from sensors with reciprocal spatial and temporal resolution can improve the accuracy of these retrievals. In this study, we estimate annual crop yields for seven important crop types -alfalfa, barley, corn, durum wheat, peas, spring wheat and winter wheat over Montana, United States (U.S.) from 2008 to 2015. Yields are estimated as the product of gross primary production (GPP) and a crop-specific harvest index (HI) at 30 m spatial resolution. To calculate GPP we used a modified form of the MOD17 LUE algorithm driven by a 30 m 8-day fused NDVI dataset constructed by blending Landsat (5 or 7) and MODIS Terra reflectance data. The fused 30-m NDVI record shows good consistency with the original Landsat and MODIS data, but provides better spatiotemporal information on cropland vegetation growth. The resulting GPP estimates capture characteristic cropland patterns and seasonal variations, while the estimated annual 30 m crop yield results correspond favorably with county-level crop yield data (r=0.96, p<0.05). The estimated crop yield performance was generally lower, but still favorable in relation to field-scale crop yield surveys (r=0.42, p<0.01). Our methods and results are suitable for operational applications at regional scales.
Climate Variability and Yields of Major Staple Food Crops in Northern Ghana
NASA Astrophysics Data System (ADS)
Amikuzuno, J.
2012-12-01
Climate variability, the short-term fluctuations in average weather conditions, and agriculture affect each other. Climate variability affects the agroecological and growing conditions of crops and livestock, and is recently believed to be the greatest impediment to the realisation of the first Millennium Development Goal of reducing poverty and food insecurity in arid and semi-arid regions of developing countries. Conversely, agriculture is a major contributor to climate variability and change by emitting greenhouse gases and reducing the agroecology's potential for carbon sequestration. What however, is the empirical evidence of this inter-dependence of climate variability and agriculture in Sub-Sahara Africa? In this paper, we provide some insight into the long run relationship between inter-annual variations in temperature and rainfall, and annual yields of the most important staple food crops in Northern Ghana. Applying pooled panel data of rainfall, temperature and yields of the selected crops from 1976 to 2010 to cointegration and Granger causality models, there is cogent evidence of cointegration between seasonal, total rainfall and crop yields; and causality from rainfall to crop yields in the Sudano-Guinea Savannah and Guinea Savannah zones of Northern Ghana. This suggests that inter-annual yields of the crops have been influenced by the total mounts of rainfall in the planting season. Temperature variability over the study period is however stationary, and is suspected to have minimal effect if any on crop yields. Overall, the results confirm the appropriateness of our attempt in modelling long-term relationships between the climate and crop yield variables.
NASA Astrophysics Data System (ADS)
Ssegane, H.; Negri, M. C.
2015-12-01
Current and future demand for food, feed, fiber, and energy require novel approaches to land management, which demands that multifunctional landscapes are created to integrate various ecosystem functions into a sustainable land use. Concurrently, the Intergovernmental Panel on Climate Change (IPCC) predicts an increase of 2 to 4°C over the next 100 years above the preindustrial baseline, beginning as early as 2016 to 2035 over all seasons in the North America. This climate change is projected to further strain water resources currently stressed by anthropogenic activities. Therefore, placement of bioenergy crops on strategically selected sub-field areas in an agricultural landscape has the potential to increase the environmental and economic sustainability if location and choice of the crops result in minimal disruption of current food production systems and therefore cause minimal indirect land use change. This study identified sub-field marginal areas in an agricultural watershed using soil-based environmental sustainability criteria and a crop productivity index. Future landscape patterns (FLPs) were developed by allocating bioenergy crops (switchgrass: Panicum virgatum or shrub willows: Salix spp.) to these marginal areas (20% of the watershed). SWAT hydrologic model and dynamically downscaled climatic projection were used to asses impact of climate change on extreme flow conditions, total annual production of commodity and bioenergy crops, and water quality under current and future landscape patterns for the mid-21st century (2045-2055) and late 21st century (2085-2095) climatic projections. The frequency of flood and drought conditions was projected to increase while the corresponding durations to decrease. Sediment yields were projected to increase by 85% to 170% while FLPs would mitigate this increase by 26% to 32%.
Analysis of the trade-off between high crop yield and low yield instability at the global scale
NASA Astrophysics Data System (ADS)
Ben-Ari, Tamara; Makowski, David
2016-10-01
Yield dynamics of major crops species vary remarkably among continents. Worldwide distribution of cropland influences both the expected levels and the interannual variability of global yields. An expansion of cultivated land in the most productive areas could theoretically increase global production, but also increase global yield instability if the most productive regions are characterized by high interannual yield variability. In this letter, we use portfolio analysis to quantify the tradeoff between the expected values and the interannual variance of global yield. We compute optimal frontiers for four crop species i.e., maize, rice, soybean and wheat and show how the distribution of cropland among large world regions can be optimized to either increase expected global crop production or decrease its interannual variability. We also show that a preferential allocation of cropland in the most productive regions can increase global expected yield at the expense of yield stability. Theoretically, optimizing the distribution of a small fraction of total cultivated areas can help find a good compromise between low instability and high crop yields at the global scale.
Poaceae vs. Abiotic Stress: Focus on Drought and Salt Stress, Recent Insights and Perspectives
Landi, Simone; Hausman, Jean-Francois; Guerriero, Gea; Esposito, Sergio
2017-01-01
Poaceae represent the most important group of crops susceptible to abiotic stress. This large family of monocotyledonous plants, commonly known as grasses, counts several important cultivated species, namely wheat (Triticum aestivum), rice (Oryza sativa), maize (Zea mays), and barley (Hordeum vulgare). These crops, notably, show different behaviors under abiotic stress conditions: wheat and rice are considered sensitive, showing serious yield reduction upon water scarcity and soil salinity, while barley presents a natural drought and salt tolerance. During the green revolution (1940–1960), cereal breeding was very successful in developing high-yield crops varieties; however, these cultivars were maximized for highest yield under optimal conditions, and did not present suitable traits for tolerance under unfavorable conditions. The improvement of crop abiotic stress tolerance requires a deep knowledge of the phenomena underlying tolerance, to devise novel approaches and decipher the key components of agricultural production systems. Approaches to improve food production combining both enhanced water use efficiency (WUE) and acceptable yields are critical to create a sustainable agriculture in the future. This paper analyzes the latest results on abiotic stress tolerance in Poaceae. In particular, the focus will be directed toward various aspects of water deprivation and salinity response efficiency in Poaceae. Aspects related to cell wall metabolism will be covered, given the importance of the plant cell wall in sensing environmental constraints and in mediating a response; the role of silicon (Si), an important element for monocots' normal growth and development, will also be discussed, since it activates a broad-spectrum response to different exogenous stresses. Perspectives valorizing studies on landraces conclude the survey, as they help identify key traits for breeding purposes. PMID:28744298
Remote-sensing-based rapid assessment of flood crop loss to support USDA flooding decision-making
NASA Astrophysics Data System (ADS)
Di, L.; Yu, G.; Yang, Z.; Hipple, J.; Shrestha, R.
2016-12-01
Floods often cause significant crop loss in the United States. Timely and objective assessment of flood-related crop loss is very important for crop monitoring and risk management in agricultural and disaster-related decision-making in USDA. Among all flood-related information, crop yield loss is particularly important. Decision on proper mitigation, relief, and monetary compensation relies on it. Currently USDA mostly relies on field surveys to obtain crop loss information and compensate farmers' loss claim. Such methods are expensive, labor intensive, and time consumptive, especially for a large flood that affects a large geographic area. Recent studies have demonstrated that Earth observation (EO) data are useful in post-flood crop loss assessment for a large geographic area objectively, timely, accurately, and cost effectively. There are three stages of flood damage assessment, including rapid assessment, early recovery assessment, and in-depth assessment. EO-based flood assessment methods currently rely on the time-series of vegetation index to assess the yield loss. Such methods are suitable for in-depth assessment but are less suitable for rapid assessment since the after-flood vegetation index time series is not available. This presentation presents a new EO-based method for the rapid assessment of crop yield loss immediately after a flood event to support the USDA flood decision making. The method is based on the historic records of flood severity, flood duration, flood date, crop type, EO-based both before- and immediate-after-flood crop conditions, and corresponding crop yield loss. It hypotheses that a flood of same severity occurring at the same pheonological stage of a crop will cause the similar damage to the crop yield regardless the flood years. With this hypothesis, a regression-based rapid assessment algorithm can be developed by learning from historic records of flood events and corresponding crop yield loss. In this study, historic records of MODIS-based flood and vegetation products and USDA/NASS crop type and crop yield data are used to train the regression-based rapid assessment algorithm. Validation of the rapid assessment algorithm indicates it can predict the yield loss at 90% accuracy, which is accurate enough to support USDA on flood-related quick response and mitigation.
Climate Variability and Sugarcane Yield in Louisiana.
NASA Astrophysics Data System (ADS)
Greenland, David
2005-11-01
This paper seeks to understand the role that climate variability has on annual yield of sugarcane in Louisiana. Unique features of sugarcane growth in Louisiana and nonclimatic, yield-influencing factors make this goal an interesting and challenging one. Several methods of seeking and establishing the relations between yield and climate variables are employed. First, yield climate relations were investigated at a single research station where crop variety and growing conditions could be held constant and yield relations could be established between a predominant older crop variety and a newer one. Interviews with crop experts and a literature survey were used to identify potential climatic factors that control yield. A statistical analysis was performed using statewide yield data from the American Sugar Cane League from 1963 to 2002 and a climate database. Yield values for later years were adjusted downward to form an adjusted yield dataset. The climate database was principally constructed from daily and monthly values of maximum and minimum temperature and daily and monthly total precipitation for six cooperative weather-reporting stations representative of the area of sugarcane production. The influence of 74 different, though not independent, climate-related variables on sugarcane yield was investigated. The fact that a climate signal exists is demonstrated by comparing mean values of the climate variables corresponding to the upper and lower third of adjusted yield values. Most of these mean-value differences show an intuitively plausible difference between the high- and low-yield years. The difference between means of the climate variables for years corresponding to the upper and lower third of annual yield values for 13 of the variables is statistically significant at or above the 90% level. A correlation matrix was used to identify the variables that had the largest influence on annual yield. Four variables [called here critical climatic variables (CCV)], mean maximum August temperature, mean minimum February temperature, soil water surplus between April and September, and occurrence of autumn (fall) hurricanes, were built into a model to simulate adjusted yield values. The CCV model simulates the yield value with an rmse of 5.1 t ha-1. The mean of the adjusted yield data over the study period was 60.4 t ha-1, with values for the highest and lowest years being 73.1 and 50.6 t ha-1, respectively, and a standard deviation of 5.9 t ha-1. Presumably because of the almost constant high water table and soil water availability, higher precipitation totals, which are inversely related to radiation and temperature, tend to have a negative effect on the yields. Past trends in the values of critical climatic variables and general projections of future climate suggest that, with respect to the climatic environment and as long as land drainage is continued and maintained, future levels of sugarcane yield will rise in Louisiana.
AgRISTARS: Agriculture and resources inventory surveys through aerospace remote sensing
NASA Technical Reports Server (NTRS)
1981-01-01
The major objectives and FY 1980 accomplishments are described of a long term program designed to determine the usefulness, cost, and extent to which aerospace remote sensing data can be integrated into existing or future USDA systems to improve the objectivity, reliability, timeliness, and adequacy of information. A general overview, the primary and participating agencies, and the technical highlights of each of the following projects are presented: early warning/crop condition assessment; foreign commodity production forecasting; yield model development; supporting research; soil moisture; domestic crops and land cover; renewable resources inventory; and conservation and pollution.
The uncertainty of crop yield projections is reduced by improved temperature response functions.
Wang, Enli; Martre, Pierre; Zhao, Zhigan; Ewert, Frank; Maiorano, Andrea; Rötter, Reimund P; Kimball, Bruce A; Ottman, Michael J; Wall, Gerard W; White, Jeffrey W; Reynolds, Matthew P; Alderman, Phillip D; Aggarwal, Pramod K; Anothai, Jakarat; Basso, Bruno; Biernath, Christian; Cammarano, Davide; Challinor, Andrew J; De Sanctis, Giacomo; Doltra, Jordi; Fereres, Elias; Garcia-Vila, Margarita; Gayler, Sebastian; Hoogenboom, Gerrit; Hunt, Leslie A; Izaurralde, Roberto C; Jabloun, Mohamed; Jones, Curtis D; Kersebaum, Kurt C; Koehler, Ann-Kristin; Liu, Leilei; Müller, Christoph; Naresh Kumar, Soora; Nendel, Claas; O'Leary, Garry; Olesen, Jørgen E; Palosuo, Taru; Priesack, Eckart; Eyshi Rezaei, Ehsan; Ripoche, Dominique; Ruane, Alex C; Semenov, Mikhail A; Shcherbak, Iurii; Stöckle, Claudio; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Waha, Katharina; Wallach, Daniel; Wang, Zhimin; Wolf, Joost; Zhu, Yan; Asseng, Senthold
2017-07-17
Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.
The Uncertainty of Crop Yield Projections Is Reduced by Improved Temperature Response Functions
NASA Technical Reports Server (NTRS)
Wang, Enli; Martre, Pierre; Zhao, Zhigan; Ewert, Frank; Maiorano, Andrea; Rotter, Reimund P.; Kimball, Bruce A.; Ottman, Michael J.; White, Jeffrey W.; Reynolds, Matthew P.;
2017-01-01
Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for is greater than 50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 C to 33 C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.
Fusion of multi-source remote sensing data for agriculture monitoring tasks
NASA Astrophysics Data System (ADS)
Skakun, S.; Franch, B.; Vermote, E.; Roger, J. C.; Becker Reshef, I.; Justice, C. O.; Masek, J. G.; Murphy, E.
2016-12-01
Remote sensing data is essential source of information for enabling monitoring and quantification of crop state at global and regional scales. Crop mapping, state assessment, area estimation and yield forecasting are the main tasks that are being addressed within GEO-GLAM. Efficiency of agriculture monitoring can be improved when heterogeneous multi-source remote sensing datasets are integrated. Here, we present several case studies of utilizing MODIS, Landsat-8 and Sentinel-2 data along with meteorological data (growing degree days - GDD) for winter wheat yield forecasting, mapping and area estimation. Archived coarse spatial resolution data, such as MODIS, VIIRS and AVHRR, can provide daily global observations that coupled with statistical data on crop yield can enable the development of empirical models for timely yield forecasting at national level. With the availability of high-temporal and high spatial resolution Landsat-8 and Sentinel-2A imagery, course resolution empirical yield models can be downscaled to provide yield estimates at regional and field scale. In particular, we present the case study of downscaling the MODIS CMG based generalized winter wheat yield forecasting model to high spatial resolution data sets, namely harmonized Landsat-8 - Sentinel-2A surface reflectance product (HLS). Since the yield model requires corresponding in season crop masks, we propose an automatic approach to extract winter crop maps from MODIS NDVI and MERRA2 derived GDD using Gaussian mixture model (GMM). Validation for the state of Kansas (US) and Ukraine showed that the approach can yield accuracies > 90% without using reference (ground truth) data sets. Another application of yearly derived winter crop maps is their use for stratification purposes within area frame sampling for crop area estimation. In particular, one can simulate the dependence of error (coefficient of variation) on the number of samples and strata size. This approach was used for estimating the area of winter crops in Ukraine for 2013-2016. The GMM-GDD approach is further extended for HLS data to provide automatic winter crop mapping at 30 m resolution for crop yield model and area estimation. In case of persistent cloudiness, addition of Sentinel-1A synthetic aperture radar (SAR) images is explored for automatic winter crop mapping.
Changes in rainfed and irrigated crop yield response to climate in the western US
NASA Astrophysics Data System (ADS)
Li, X.; Troy, T. J.
2018-06-01
As the global population increases and the climate changes, ensuring a secure food supply is increasingly important. One strategy is irrigation, which allows for crops to be grown outside their optimal climate growing regions and which buffers against climate variability. Although irrigation is a positive climate adaptation mechanism for agriculture, it has a potentially negative effect on water resources as it can lead to groundwater depletion and diminished surface water supplies. This study quantifies how crop yields are affected by climate variability and extremes and the impact of irrigation on crop yield increases under various growing-season climate conditions. To do this, we use historical climate data and county-level rainfed and irrigated crop yields for maize, soybean, winter and spring wheat over the US to analyze the relationship between climate, crop yields, and irrigation. We find that there are optimal climates, specific to each crop, where irrigation provides a benefit and other conditions where irrigation proves to have marginal, if any, benefits. Furthermore, the relationship between crop yields and climate has changed over the last decades, with a changing sensitivity in the relationship of soybean and winter wheat yields to certain climate variables, like crop reference evapotranspiration. These two conclusions have important implications for agricultural and water resource system planning, as it implies there are more optimal climate conditions where irrigation is particularly productive and regions where irrigation should be reconsidered as there is not a significant agricultural benefit and the water could be used more productively.
The implication of irrigation in climate change impact assessment: a European-wide study.
Zhao, Gang; Webber, Heidi; Hoffmann, Holger; Wolf, Joost; Siebert, Stefan; Ewert, Frank
2015-11-01
This study evaluates the impacts of projected climate change on irrigation requirements and yields of six crops (winter wheat, winter barley, rapeseed, grain maize, potato, and sugar beet) in Europe. Furthermore, the uncertainty deriving from consideration of irrigation, CO2 effects on crop growth and transpiration, and different climate change scenarios in climate change impact assessments is quantified. Net irrigation requirement (NIR) and yields of the six crops were simulated for a baseline (1982-2006) and three SRES scenarios (B1, B2 and A1B, 2040-2064) under rainfed and irrigated conditions, using a process-based crop model, SIMPLACE
Quantifying yield gaps in wheat production in Russia
NASA Astrophysics Data System (ADS)
Schierhorn, Florian; Faramarzi, Monireh; Prishchepov, Alexander V.; Koch, Friedrich J.; Müller, Daniel
2014-08-01
Crop yields must increase substantially to meet the increasing demands for agricultural products. Crop yield increases are particularly important for Russia because low crop yields prevail across Russia’s widespread and fertile land resources. However, reliable data are lacking regarding the spatial distribution of potential yields in Russia, which can be used to determine yield gaps. We used a crop growth model to determine the yield potentials and yield gaps of winter and spring wheat at the provincial level across European Russia. We modeled the annual yield potentials from 1995 to 2006 with optimal nitrogen supplies for both rainfed and irrigated conditions. Overall, the results suggest yield gaps of 1.51-2.10 t ha-1, or 44-52% of the yield potential under rainfed conditions. Under irrigated conditions, yield gaps of 3.14-3.30 t ha-1, or 62-63% of the yield potential, were observed. However, recurring droughts cause large fluctuations in yield potentials under rainfed conditions, even when the nitrogen supply is optimal, particularly in the highly fertile black soil areas of southern European Russia. The highest yield gaps (up to 4 t ha-1) under irrigated conditions were detected in the steppe areas in southeastern European Russia along the border of Kazakhstan. Improving the nutrient and water supply and using crop breeds that are adapted to the frequent drought conditions are important for reducing yield gaps in European Russia. Our regional assessment helps inform policy and agricultural investors and prioritize research that aims to increase crop production in this important region for global agricultural markets.
Monitoring Crop Yield in USA Using a Satellite-Based Climate-Variability Impact Index
NASA Technical Reports Server (NTRS)
Zhang, Ping; Anderson, Bruce; Tan, Bin; Barlow, Mathew; Myneni, Ranga
2011-01-01
A quantitative index is applied to monitor crop growth and predict agricultural yield in continental USA. The Climate-Variability Impact Index (CVII), defined as the monthly contribution to overall anomalies in growth during a given year, is derived from 1-km MODIS Leaf Area Index. The growing-season integrated CVII can provide an estimate of the fractional change in overall growth during a given year. In turn these estimates can provide fine-scale and aggregated information on yield for various crops. Trained from historical records of crop production, a statistical model is used to produce crop yield during the growing season based upon the strong positive relationship between crop yield and the CVII. By examining the model prediction as a function of time, it is possible to determine when the in-season predictive capability plateaus and which months provide the greatest predictive capacity.
The impact of Global Warming on global crop yields due to changes in pest pressure
NASA Astrophysics Data System (ADS)
Battisti, D. S.; Tewksbury, J. J.; Deutsch, C. A.
2011-12-01
A billion people currently lack reliable access to sufficient food and almost half of the calories feeding these people come from just three crops: rice, maize, wheat. Insect pests are among the largest factors affecting the yield of these three crops, but models assessing the effects of global warming on crops rarely consider changes in insect pest pressure on crop yields. We use well-established relationships between temperature and insect physiology to project climate-driven changes in pest pressure, defined as integrated population metabolism, for the three major crops. By the middle of this century, under most scenarios, insect pest pressure is projected to increase by more than 50% in temperate areas, while increases in tropical regions will be more modest. Yield relationships indicate that the largest increases in insect pest pressure are likely to occur in areas where yield is greatest, suggesting increased strain on global food markets.
Population pressure and agricultural productivity in Bangladesh.
Chaudhury, R H
1983-01-01
The relationship between population pressure or density and agricultural productivity is examined by analyzing the changes in the land-man ratio and the changes in the level of land yield in the 17 districts of Bangladesh from 1961-64 and 1974-77. The earlier years were pre-Green Revolution, whereas in the later years new technology had been introduced in some parts of the country. Net sown area, value of total agricultural output, and number of male agricultural workers were the main variables. For the country as a whole, agricultural output grew by 1.2%/year during 1961-64 to 1974-77, while the number of male agricultural workers grew at 1.5%/year. The major source of agricultural growth during the 1960s was found to be increased land-yield associated with a higher ratio of labor to land. The findings imply that a more intensified pattern of land use, resulting in both higher yield and higher labor input/unit of land, is the main source of growth of output and employment in agriculture. There is very little scope for extending the arable area in Bangladesh; increased production must come from multiple cropping, especially through expansion of irrigation and drainage, and from increases in per acre yields, principly through adoption of high yield variants, which explained 87% of the variation in output per acre during the 1970s. Regional variation in output was also associated with variation in cropping intensity and proportion of land given to high yield variants. There is considerable room for modernizing agricultural technology in Bangladesh: in 1975-76 less than 9% of total crop land was irrigated and only 12% of total acreage was under high yield variants. The adoption of new food-grain technology and increased use of high yield variants in Bangladesh's predominantly subsistence-based agriculture would require far-reaching institutional and organizational changes and more capital. Without effective population control, expansion of area under high yield variants would not improve the employment situation in the foreseeable future.
USDA-ARS?s Scientific Manuscript database
Cotton production is an essential component of the economy of Pakistan, and continuing to improve the yield and fiber quality of this crop will ensure the future stability of this industry. Combining ability describes the performance of genotypes when they are crossed together, and it is a common me...
James D. Haywood; Allan E. Tiarks; Mark A. Sword
1997-01-01
Development of forest plantations may be delayed or yield expectations curtailed by interference from competing vegetation. Competing vegetation can be controlled with herbicides after crop trees are planted, but herbicide use in public and private loblolly pine plantations may face greater restrictions in the future. Fortunately, there are ways to manage competition...
NASA Astrophysics Data System (ADS)
Zhang, J.; Yang, J.; Pan, S.; Tian, H.
2016-12-01
China is not only one of the major agricultural production countries with the largest population in the world, but it is also the most susceptible to climate change and extreme events. Much concern has been raised about how extreme climate has affected crop yield, which is crucial for China's food supply security. However, the quantitative assessment of extreme heat and drought impacts on crop yield in China has rarely been investigated. By using the Dynamic Land Ecosystem Model (DLEM-AG2), a highly integrated process-based ecosystem model with crop-specific simulation, here we quantified spatial and temporal patterns of extreme climatic heat and drought stress and their impacts on the yields of major food crops (rice, wheat, maize, and soybean) across China during 1981-2015, and further investigated the underlying mechanisms. Simulated results showed that extreme heat and drought stress significantly reduced national cereal production and increased the yield gaps between potential yield and rain-fed yield. The drought stress was the primary factor to reduce crop yields in the semi-arid and arid regions, and extreme heat stress slightly aggravated the yield loss. The yield gap between potential yield and rain-fed yield was larger at locations with lower precipitation. Our results suggest that a large exploitable yield gap in response to extreme climatic heat-drought stress offers an opportunity to increase productivity in China by optimizing agronomic practices, such as irrigation, fertilizer use, sowing density, and sowing date.
Crop yield response to increasing biochar rates
USDA-ARS?s Scientific Manuscript database
The benefit or detriment to crop yield from biochar application varies with biochar type/rate, soil, crop, or climate. The objective of this research was to identify yield response of cotton (Gossypium hirsutum L.), corn (Zea mayes L.), and peanut (Arachis hypogaea L.) to hardwood biochar applied at...
Bowles, Timothy M; Barrios-Masias, Felipe H; Carlisle, Eli A; Cavagnaro, Timothy R; Jackson, Louise E
2016-10-01
Plant strategies to cope with future droughts may be enhanced by associations between roots and soil microorganisms, including arbuscular mycorrhizal (AM) fungi. But how AM fungi affect crop growth and yield, together with plant physiology and soil carbon (C) dynamics, under water stress in actual field conditions is not well understood. The well-characterized mycorrhizal tomato (Solanum lycopersicum L.) genotype 76R (referred to as MYC+) and the mutant nonmycorrhizal tomato genotype rmc were grown in an organic farm with a deficit irrigation regime and control regime that replaced evapotranspiration. AM increased marketable tomato yields by ~25% in both irrigation regimes but did not affect shoot biomass. In both irrigation regimes, MYC+ plants had higher plant nitrogen (N) and phosphorus (P) concentrations (e.g. 5 and 24% higher N and P concentrations in leaves at fruit set, respectively), 8% higher stomatal conductance (gs), 7% higher photosynthetic rates (Pn), and greater fruit set. Stem water potential and leaf relative water content were similar in both genotypes within each irrigation regime. Three-fold higher rates of root sap exudation in detopped MYC+ plants suggest greater capacity for water uptake through osmotic driven flow, especially in the deficit irrigation regime in which root sap exudation in rmc was nearly absent. Soil with MYC+ plants also had slightly higher soil extractable organic C and microbial biomass C at anthesis but no changes in soil CO2 emissions, although the latter were 23% lower under deficit irrigation. This study provides novel, field-based evidence for how indigenous AM fungi increase crop yield and crop water use efficiency during a season-long deficit irrigation and thus play an important role in coping with increasingly limited water availability in the future. Copyright © 2016 Elsevier B.V. All rights reserved.
Simulating large-scale crop yield by using perturbed-parameter ensemble method
NASA Astrophysics Data System (ADS)
Iizumi, T.; Yokozawa, M.; Sakurai, G.; Nishimori, M.
2010-12-01
Toshichika Iizumi, Masayuki Yokozawa, Gen Sakurai, Motoki Nishimori Agro-Meteorology Division, National Institute for Agro-Environmental Sciences, Japan Abstract One of concerning issues of food security under changing climate is to predict the inter-annual variation of crop production induced by climate extremes and modulated climate. To secure food supply for growing world population, methodology that can accurately predict crop yield on a large scale is needed. However, for developing a process-based large-scale crop model with a scale of general circulation models (GCMs), 100 km in latitude and longitude, researchers encounter the difficulties in spatial heterogeneity of available information on crop production such as cultivated cultivars and management. This study proposed an ensemble-based simulation method that uses a process-based crop model and systematic parameter perturbation procedure, taking maize in U.S., China, and Brazil as examples. The crop model was developed modifying the fundamental structure of the Soil and Water Assessment Tool (SWAT) to incorporate the effect of heat stress on yield. We called the new model PRYSBI: the Process-based Regional-scale Yield Simulator with Bayesian Inference. The posterior probability density function (PDF) of 17 parameters, which represents the crop- and grid-specific features of the crop and its uncertainty under given data, was estimated by the Bayesian inversion analysis. We then take 1500 ensemble members of simulated yield values based on the parameter sets sampled from the posterior PDF to describe yearly changes of the yield, i.e. perturbed-parameter ensemble method. The ensemble median for 27 years (1980-2006) was compared with the data aggregated from the county yield. On a country scale, the ensemble median of the simulated yield showed a good correspondence with the reported yield: the Pearson’s correlation coefficient is over 0.6 for all countries. In contrast, on a grid scale, the correspondence is still high in most grids regardless of the countries. However, the model showed comparatively low reproducibility in the slope areas, such as around the Rocky Mountains in South Dakota, around the Great Xing'anling Mountains in Heilongjiang, and around the Brazilian Plateau. As there is a wide-ranging local climate conditions in the complex terrain, such as the slope of mountain, the GCM grid-scale weather inputs is likely one of major sources of error. The results of this study highlight the benefits of the perturbed-parameter ensemble method in simulating crop yield on a GCM grid scale: (1) the posterior PDF of parameter could quantify the uncertainty of parameter value of the crop model associated with the local crop production aspects; (2) the method can explicitly account for the uncertainty of parameter value in the crop model simulations; (3) the method achieve a Monte Carlo approximation of probability of sub-grid scale yield, accounting for the nonlinear response of crop yield to weather and management; (4) the method is therefore appropriate to aggregate the simulated sub-grid scale yields to a grid-scale yield and it may be a reason for high performance of the model in capturing inter-annual variation of yield.
Dwivedi, Sangam L.; Scheben, Armin; Edwards, David; Spillane, Charles; Ortiz, Rodomiro
2017-01-01
There is a need to accelerate crop improvement by introducing alleles conferring host plant resistance, abiotic stress adaptation, and high yield potential. Elite cultivars, landraces and wild relatives harbor useful genetic variation that needs to be more easily utilized in plant breeding. We review genome-wide approaches for assessing and identifying alleles associated with desirable agronomic traits in diverse germplasm pools of cereals and legumes. Major quantitative trait loci and single nucleotide polymorphisms (SNPs) associated with desirable agronomic traits have been deployed to enhance crop productivity and resilience. These include alleles associated with variation conferring enhanced photoperiod and flowering traits. Genetic variants in the florigen pathway can provide both environmental flexibility and improved yields. SNPs associated with length of growing season and tolerance to abiotic stresses (precipitation, high temperature) are valuable resources for accelerating breeding for drought-prone environments. Both genomic selection and genome editing can also harness allelic diversity and increase productivity by improving multiple traits, including phenology, plant architecture, yield potential and adaptation to abiotic stresses. Discovering rare alleles and useful haplotypes also provides opportunities to enhance abiotic stress adaptation, while epigenetic variation has potential to enhance abiotic stress adaptation and productivity in crops. By reviewing current knowledge on specific traits and their genetic basis, we highlight recent developments in the understanding of crop functional diversity and identify potential candidate genes for future use. The storage and integration of genetic, genomic and phenotypic information will play an important role in ensuring broad and rapid application of novel genetic discoveries by the plant breeding community. Exploiting alleles for yield-related traits would allow improvement of selection efficiency and overall genetic gain of multigenic traits. An integrated approach involving multiple stakeholders specializing in management and utilization of genetic resources, crop breeding, molecular biology and genomics, agronomy, stress tolerance, and reproductive/seed biology will help to address the global challenge of ensuring food security in the face of growing resource demands and climate change induced stresses. PMID:28900432
Dwivedi, Sangam L; Scheben, Armin; Edwards, David; Spillane, Charles; Ortiz, Rodomiro
2017-01-01
There is a need to accelerate crop improvement by introducing alleles conferring host plant resistance, abiotic stress adaptation, and high yield potential. Elite cultivars, landraces and wild relatives harbor useful genetic variation that needs to be more easily utilized in plant breeding. We review genome-wide approaches for assessing and identifying alleles associated with desirable agronomic traits in diverse germplasm pools of cereals and legumes. Major quantitative trait loci and single nucleotide polymorphisms (SNPs) associated with desirable agronomic traits have been deployed to enhance crop productivity and resilience. These include alleles associated with variation conferring enhanced photoperiod and flowering traits. Genetic variants in the florigen pathway can provide both environmental flexibility and improved yields. SNPs associated with length of growing season and tolerance to abiotic stresses (precipitation, high temperature) are valuable resources for accelerating breeding for drought-prone environments. Both genomic selection and genome editing can also harness allelic diversity and increase productivity by improving multiple traits, including phenology, plant architecture, yield potential and adaptation to abiotic stresses. Discovering rare alleles and useful haplotypes also provides opportunities to enhance abiotic stress adaptation, while epigenetic variation has potential to enhance abiotic stress adaptation and productivity in crops. By reviewing current knowledge on specific traits and their genetic basis, we highlight recent developments in the understanding of crop functional diversity and identify potential candidate genes for future use. The storage and integration of genetic, genomic and phenotypic information will play an important role in ensuring broad and rapid application of novel genetic discoveries by the plant breeding community. Exploiting alleles for yield-related traits would allow improvement of selection efficiency and overall genetic gain of multigenic traits. An integrated approach involving multiple stakeholders specializing in management and utilization of genetic resources, crop breeding, molecular biology and genomics, agronomy, stress tolerance, and reproductive/seed biology will help to address the global challenge of ensuring food security in the face of growing resource demands and climate change induced stresses.
How Can CO2 Help Agriculture in the Face of Climate Change?
NASA Technical Reports Server (NTRS)
Delphine, Deryng; Elliott, Joshua; Folberth, Christian; Mueller, Christoph; Pugh, Thomas A. M.; Boote, Kenneth J.; Conway, Declan; Ruane, Alexander C.; Gerten, Dieter; Jones, James W.;
2017-01-01
Humans are increasing the amount of carbon dioxide (CO2) in the air through CO2 emissions. This is changing the climate, making life harder for many plants in areas that suffer from heat and drought. However, plants need CO2 to grow, and more CO2 can make them grow better. So will plants overall benefit from increased CO2 level or suffer from it? We wanted to test if the positive effect would offset the negative ones. To do so, we used scientific models to calculate future crop production and water use of four important crops all over the world under different scenarios of CO2 emissions and climate change. Our calculations show that although there will be large reductions in crop yield due to climate change over the next century, some crops will still be able to grow well. This is also because crops can grow with less water when CO2 levels are raised.
Biotechnology Towards Energy Crops.
Margaritopoulou, Theoni; Roka, Loukia; Alexopoulou, Efi; Christou, Myrsini; Rigas, Stamatis; Haralampidis, Kosmas; Milioni, Dimitra
2016-03-01
New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops.
AquaCrop-OS: A tool for resilient management of land and water resources in agriculture
NASA Astrophysics Data System (ADS)
Foster, Timothy; Brozovic, Nicholas; Butler, Adrian P.; Neale, Christopher M. U.; Raes, Dirk; Steduto, Pasquale; Fereres, Elias; Hsiao, Theodore C.
2017-04-01
Water managers, researchers, and other decision makers worldwide are faced with the challenge of increasing food production under population growth, drought, and rising water scarcity. Crop simulation models are valuable tools in this effort, and, importantly, provide a means of quantifying rapidly crop yield response to water, climate, and field management practices. Here, we introduce a new open-source crop modelling tool called AquaCrop-OS (Foster et al., 2017), which extends the functionality of the globally used FAO AquaCrop model. Through case studies focused on groundwater-fed irrigation in the High Plains and Central Valley of California in the United States, we demonstrate how AquaCrop-OS can be used to understand the local biophysical, behavioural, and institutional drivers of water risks in agricultural production. Furthermore, we also illustrate how AquaCrop-OS can be combined effectively with hydrologic and economic models to support drought risk mitigation and decision-making around water resource management at a range of spatial and temporal scales, and highlight future plans for model development and training. T. Foster, et al. (2017) AquaCrop-OS: An open source version of FAO's crop water productivity model. Agricultural Water Management. 181: 18-22. http://dx.doi.org/10.1016/j.agwat.2016.11.015.
Ierna, Anita
2010-01-15
There is little research on evaluating the compatibility of potatoes for double cropping in southern Italy. The aim of this investigation was to assess tuber yield and some qualitative traits of tubers such as skin colour, tuber dry matter content and tuber nitrate content, both in winter-spring and in summer-autumn crops, as influenced by genotype and harvest time. Yield, skin colour and dry matter content of tubers were higher in the winter-spring crop than in the summer-autumn crop, attributable to the advantageous lag time in spring between solar radiation and temperatures and the disadvantageous lag in autumn. Spunta and Arinda performed well within each crop season, whereas Ninfa showed an important yield loss in autumn. In both off-season crops, delaying tuber harvest until leaf senescence increased yield and improved quality attributes such as tuber dry matter content and skin colour, whereas nitrate contents significantly decreased in the winter-spring crop and increased in the summer-autumn crop. Ninfa showed less tendency than Arinda and Spunta to accumulate nitrate in tubers in both off-season crops. It might be advantageous to examine in further research which mechanisms sustain compatibility to the autumn and assess other quality characteristics for the fresh market in the contrasting climatic conditions of the two off-season crops. Copyright (c) 2009 Society of Chemical Industry.
Sensitivity of simulated maize crop yields to regional climate in the Southwestern United States
NASA Astrophysics Data System (ADS)
Kim, S.; Myoung, B.; Stack, D.; Kim, J.; Hatzopoulos, N.; Kafatos, M.
2013-12-01
The sensitivity of maize yield to the regional climate in the Southwestern United States (SW US) has been investigated by using a crop-yield simulation model (APSIM) in conjunction with meteorological forcings (daily minimum and maximum temperature, precipitation, and radiation) from the North American Regional Reanalysis (NARR) dataset. The primary focus of this study is to look at the effects of interannual variations of atmospheric components on the crop productivity in the SW US over the 21-year period (1991 to 2011). First of all, characteristics and performance of APSIM was examined by comparing simulated maize yields with observed yields from United States Department of Agriculture (USDA) and the leaf-area index (LAI) from MODIS satellite data. Comparisons of the simulated maize yield with the available observations show that the crop model can reasonably reproduce observed maize yields. Sensitivity tests were performed to assess the relative contribution of each climate driver to regional crop yield. Sensitivity experiments show that potential crop production responds nonlinearly to climate drivers and the yield sensitivity varied among geographical locations depending on their mean climates. Lastly, a detailed analysis of both the spatial and temporal variations of each climate driver in the regions where maize is actually grown in three states (CA, AZ, and NV) in the SW US was performed.
Wildlife-friendly farming increases crop yield: evidence for ecological intensification
Pywell, Richard F.; Heard, Matthew S.; Woodcock, Ben A.; Hinsley, Shelley; Ridding, Lucy; Nowakowski, Marek; Bullock, James M.
2015-01-01
Ecological intensification has been promoted as a means to achieve environmentally sustainable increases in crop yields by enhancing ecosystem functions that regulate and support production. There is, however, little direct evidence of yield benefits from ecological intensification on commercial farms growing globally important foodstuffs (grains, oilseeds and pulses). We replicated two treatments removing 3 or 8% of land at the field edge from production to create wildlife habitat in 50–60 ha patches over a 900 ha commercial arable farm in central England, and compared these to a business as usual control (no land removed). In the control fields, crop yields were reduced by as much as 38% at the field edge. Habitat creation in these lower yielding areas led to increased yield in the cropped areas of the fields, and this positive effect became more pronounced over 6 years. As a consequence, yields at the field scale were maintained—and, indeed, enhanced for some crops—despite the loss of cropland for habitat creation. These results suggested that over a 5-year crop rotation, there would be no adverse impact on overall yield in terms of monetary value or nutritional energy. This study provides a clear demonstration that wildlife-friendly management which supports ecosystem services is compatible with, and can even increase, crop yields. PMID:26423846
Code of Federal Regulations, 2012 CFR
2012-01-01
... unadjusted transitional yields and dividing the sum by the number of yields contained in the database, which will always contain at least four yields. The database may contain up to 10 consecutive crop years of... catastrophic risk protection. Crop of economic significance. A crop that has either contributed in the previous...
Code of Federal Regulations, 2014 CFR
2014-01-01
... unadjusted transitional yields and dividing the sum by the number of yields contained in the database, which will always contain at least four yields. The database may contain up to 10 consecutive crop years of... catastrophic risk protection. Crop of economic significance. A crop that has either contributed in the previous...
Code of Federal Regulations, 2013 CFR
2013-01-01
... unadjusted transitional yields and dividing the sum by the number of yields contained in the database, which will always contain at least four yields. The database may contain up to 10 consecutive crop years of... catastrophic risk protection. Crop of economic significance. A crop that has either contributed in the previous...
Code of Federal Regulations, 2010 CFR
2010-01-01
... unadjusted transitional yields and dividing the sum by the number of yields contained in the database, which will always contain at least four yields. The database may contain up to 10 consecutive crop years of... catastrophic risk protection. Crop of economic significance. A crop that has either contributed in the previous...
Code of Federal Regulations, 2011 CFR
2011-01-01
... unadjusted transitional yields and dividing the sum by the number of yields contained in the database, which will always contain at least four yields. The database may contain up to 10 consecutive crop years of... catastrophic risk protection. Crop of economic significance. A crop that has either contributed in the previous...
What's holding us back? Raising the alfalfa yield bar
USDA-ARS?s Scientific Manuscript database
Measuring yield of commodity crops is easy – weight and moisture content are determined on delivery. Consequently, reports of production or yield for grain crops can be made reliably to the agencies that track crop production, such as the USDA-National Agricultural Statistics Service (NASS). The s...
Grab, Heather; Blitzer, Eleanor J.; Danforth, Bryan; Loeb, Greg; Poveda, Katja
2017-01-01
One of the greatest challenges in sustainable agricultural production is managing ecosystem services, such as pollination, in ways that maximize crop yields. Most efforts to increase services by wild pollinators focus on management of natural habitats surrounding farms or non-crop habitats within farms. However, mass flowering crops create resource pulses that may be important determinants of pollinator dynamics. Mass bloom attracts pollinators and it is unclear how this affects the pollination and yields of other co-blooming crops. We investigated the effects of mass flowering apple on the pollinator community and yield of co-blooming strawberry on farms spanning a gradient in cover of apple orchards in the landscape. The effect of mass flowering apple on strawberry was dependent on the stage of apple bloom. During early and peak apple bloom, pollinator abundance and yield were reduced in landscapes with high cover of apple orchards. Following peak apple bloom, pollinator abundance was greater on farms with high apple cover and corresponded with increased yields on these farms. Spatial and temporal overlap between mass flowering and co-blooming crops alters the strength and direction of these dynamics and suggests that yields can be optimized by designing agricultural systems that avoid competition while maximizing facilitation. PMID:28345653
Probabilistic estimates of drought impacts on agricultural production
NASA Astrophysics Data System (ADS)
Madadgar, Shahrbanou; AghaKouchak, Amir; Farahmand, Alireza; Davis, Steven J.
2017-08-01
Increases in the severity and frequency of drought in a warming climate may negatively impact agricultural production and food security. Unlike previous studies that have estimated agricultural impacts of climate condition using single-crop yield distributions, we develop a multivariate probabilistic model that uses projected climatic conditions (e.g., precipitation amount or soil moisture) throughout a growing season to estimate the probability distribution of crop yields. We demonstrate the model by an analysis of the historical period 1980-2012, including the Millennium Drought in Australia (2001-2009). We find that precipitation and soil moisture deficit in dry growing seasons reduced the average annual yield of the five largest crops in Australia (wheat, broad beans, canola, lupine, and barley) by 25-45% relative to the wet growing seasons. Our model can thus produce region- and crop-specific agricultural sensitivities to climate conditions and variability. Probabilistic estimates of yield may help decision-makers in government and business to quantitatively assess the vulnerability of agriculture to climate variations. We develop a multivariate probabilistic model that uses precipitation to estimate the probability distribution of crop yields. The proposed model shows how the probability distribution of crop yield changes in response to droughts. During Australia's Millennium Drought precipitation and soil moisture deficit reduced the average annual yield of the five largest crops.
2014-01-01
Background Genetic improvement of shrub willow (Salix), a perennial energy crop common to temperate climates, has led to the development of new cultivars with improved biomass yield, pest and disease resistance, and biomass composition suitable for bioenergy applications. These improvements have largely been associated with species hybridization, yet little is known about the genetic mechanisms responsible for improved yield and performance of certain willow species hybrids. Results The top performing genotypes in this study, representing advanced pedigrees compared with those in previous studies, were mostly triploid in nature and outperformed current commercial cultivars. Of the genotypes studied, the diploids had the lowest mean yield of 8.29 oven dry Mg ha−1 yr−1, while triploids yielded 12.65 Mg ha−1 yr−1, with the top five producing over 16 Mg ha−1 yr−1. Triploids had high stem area and height across all three years of growth in addition to greatest specific gravity. The lowest specific gravity was observed among the tetraploid genotypes. Height was the early trait most correlated with and the best predictor of third-year yield. Conclusions These results establish a paradigm for future breeding and improvement of Salix bioenergy crops based on the development of triploid species hybrids. Stem height and total stem area are effective traits for early prediction of relative yield performance. PMID:24661804
Impact of climate change on crop yield and role of model for achieving food security.
Kumar, Manoj
2016-08-01
In recent times, several studies around the globe indicate that climatic changes are likely to impact the food production and poses serious challenge to food security. In the face of climate change, agricultural systems need to adapt measures for not only increasing food supply catering to the growing population worldwide with changing dietary patterns but also to negate the negative environmental impacts on the earth. Crop simulation models are the primary tools available to assess the potential consequences of climate change on crop production and informative adaptive strategies in agriculture risk management. In consideration with the important issue, this is an attempt to provide a review on the relationship between climate change impacts and crop production. It also emphasizes the role of crop simulation models in achieving food security. Significant progress has been made in understanding the potential consequences of environment-related temperature and precipitation effect on agricultural production during the last half century. Increased CO2 fertilization has enhanced the potential impacts of climate change, but its feasibility is still in doubt and debates among researchers. To assess the potential consequences of climate change on agriculture, different crop simulation models have been developed, to provide informative strategies to avoid risks and understand the physical and biological processes. Furthermore, they can help in crop improvement programmes by identifying appropriate future crop management practises and recognizing the traits having the greatest impact on yield. Nonetheless, climate change assessment through model is subjected to a range of uncertainties. The prediction uncertainty can be reduced by using multimodel, incorporating crop modelling with plant physiology, biochemistry and gene-based modelling. For devloping new model, there is a need to generate and compile high-quality field data for model testing. Therefore, assessment of agricultural productivity to sustain food security for generations is essential to maintain a collective knowledge and resources for preventing negative impact as well as managing crop practises.
Influence of poultry litter and double cropping on soybean yield
USDA-ARS?s Scientific Manuscript database
Continuous cultivation of mono-cropping systems coupled with inorganic fertilizer consumption has led to a decline in soil fertility, negatively influencing crop yields. Poultry litter application and double cropping are two management practices that could be used with conservation tillage to increa...
Soil total carbon and crop yield affected by crop rotation and cultural practice
USDA-ARS?s Scientific Manuscript database
Stacked crop rotation and improved cultural practice have been used to control pests, but their impact on soil organic C (SOC) and crop yield are lacking. We evaluated the effects of stacked vs. alternate-year rotations and cultural practices on SOC at the 0- to 125-cm depth and annualized crop yiel...
Vocadlo, David J
2017-05-22
The cream of the crop: With the world facing a projected shortfall of crops by 2050, new approaches are needed to boost crop yields. Metabolic feeding of plants with photocaged trehalose-6-phosphate (Tre6P) can increase levels of the signaling metabolite Tre6P in the plant. Reprogramming of cellular metabolism by Tre6P stimulates a program of plant growth and enhanced crop yields, while boosting starch content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Management of Lesion Nematodes and Potato Early Dying with Rotation Crops
LaMondia, J.A.
2006-01-01
Soil-incorporated rotation/green manure crops were evaluated for management of potato early dying caused by Verticillium dahliae and Pratylenchus penetrans. After two years of rotation/green manure and a subsequent potato crop, P. penetrans numbers were less after ‘Saia’ oat/‘Polynema’ marigold, ‘Triple S’ sorghum-sudangrass, or ‘Garry’ oat than ‘Superior’ potato or ‘Humus’ rapeseed. The area under the disease progress curve (AUDPC) for early dying was lowest after Saia oat/marigold, and tuber yields were greater than continuous potato after all crops except sorghum-sudangrass. Saia oat/marigold crops resulted in the greatest tuber yields. After one year of rotation/green manure, a marigold crop increased tuber yields and reduced AUDPC and P. penetrans. In the second potato crop after a single year of rotation, plots previously planted to marigolds had reduced P. penetrans densities and AUDPC and increased tuber yield. Rapeseed supported more P. penetrans than potato, but had greater yields. After two years of rotation/green manure crops and a subsequent potato crop, continuous potato had the highest AUDPC and lowest tuber weight. Rotation with Saia oats (2 yr) and Rudbeckia hirta (1 yr) reduced P. penetrans and increased tuber yields. AUDPC was lowest after R. hirta. Two years of sorghum-sudangrass did not affect P. penetrans, tuber yield or AUDPC. These results demonstrate that P. penetrans may be reduced by one or two years of rotation to non-host or antagonistic plants such as Saia oat, Polynema marigold, or R. hirta and that nematode control may reduce the severity of potato early dying. PMID:19259461
Bonfante, A; Impagliazzo, A; Fiorentino, N; Langella, G; Mori, M; Fagnano, M
2017-12-01
Bioenergy crops are well known for their ability to reduce greenhouse gas emissions and increase the soil carbon stock. Although such crops are often held to be in competition with food crops and thus raise the question of current and future food security, at the same time mitigation measures are required to tackle climate change and sustain local farming communities and crop production. However, in some cases the actions envisaged for specific pedo-climatic conditions are not always economically sustainable by farmers. In this frame, energy crops with high environmental adaptability and yields, such as giant reed (Arundo donax L.), may represent an opportunity to improve farm incomes, making marginal areas not suitable for food production once again productive. In so doing, three of the 17 Sustainable Development Goals (SDGs) of the United Nations would be met, namely SDG 2 on food security and sustainable agriculture, SDG 7 on reliable, sustainable and modern energy, and SDG 13 on action to combat climate change and its impacts. In this work, the response of giant reed in the marginal areas of an agricultural district of southern Italy (Destra Sele) and expected farm incomes under climate change (2021-2050) are evaluated. The normalized water productivity index of giant reed was determined (WP; 30.1gm -2 ) by means of a SWAP agro-hydrological model, calibrated and validated on two years of a long-term field experiment. The model was used to estimate giant reed response (biomass yield) in marginal areas under climate change, and economic evaluation was performed to determine expected farm incomes (woodchips and chopped forage). The results show that woodchip production represents the most profitable option for farmers, yielding a gross margin 50% lower than ordinary high-input maize cultivation across the study area. Copyright © 2017 Elsevier B.V. All rights reserved.
Role of root microbiota in plant productivity
Tkacz, Andrzej; Poole, Philip
2015-01-01
The growing human population requires increasing amounts of food, but modern agriculture has limited possibilities for increasing yields. New crop varieties may be bred to have increased yields and be more resistant to environmental stress and pests. However, they still require fertilization to supplement essential nutrients that are normally limited in the soil. Soil microorganisms present an opportunity to reduce the requirement for inorganic fertilization in agriculture. Microorganisms, due to their enormous genetic pool, are also a potential source of biochemical reactions that recycle essential nutrients for plant growth. Microbes that associate with plants can be considered to be part of the plant’s pan-genome. Therefore, it is essential for us to understand microbial community structure and their ‘metagenome’ and how it is influenced by different soil types and crop varieties. In the future we may be able to modify and better utilize the soil microbiota potential for promoting plant growth. PMID:25908654
Exploring the biophysical option space for feeding the world without deforestation.
Erb, Karl-Heinz; Lauk, Christian; Kastner, Thomas; Mayer, Andreas; Theurl, Michaela C; Haberl, Helmut
2016-04-19
Safeguarding the world's remaining forests is a high-priority goal. We assess the biophysical option space for feeding the world in 2050 in a hypothetical zero-deforestation world. We systematically combine realistic assumptions on future yields, agricultural areas, livestock feed and human diets. For each scenario, we determine whether the supply of crop products meets the demand and whether the grazing intensity stays within plausible limits. We find that many options exist to meet the global food supply in 2050 without deforestation, even at low crop-yield levels. Within the option space, individual scenarios differ greatly in terms of biomass harvest, cropland demand and grazing intensity, depending primarily on the quantitative and qualitative aspects of human diets. Grazing constraints strongly limit the option space. Without the option to encroach into natural or semi-natural land, trade volumes will rise in scenarios with globally converging diets, thereby decreasing the food self-sufficiency of many developing regions.
Crop yield response to climate change varies with crop spatial distribution pattern
Leng, Guoyong; Huang, Maoyi
2017-05-03
The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less
Crop yield response to climate change varies with crop spatial distribution pattern
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, Guoyong; Huang, Maoyi
The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less
NASA Astrophysics Data System (ADS)
Sticklen, Mariam B.
Topics presented in the "Plant Biotechnology and Genomics" session focused on technologies that highlight the important role of plant biotechnology and genomics in the development of future energy crops. Several excellent presentations demonstrated the latest advances in energy crop development through the use of plant cell wall regulation and by engineering new energy crops such as brown midrib sweet sorghum. Approaches included the control of cellulose production by increased expression of cellulase synthase genes and the selection of high-yield varieties of shrub willows. The potential of producing hydrolytic enzymes using transgenic plants as a cost-effective means for the large-scale production of these enzymes was also explored in the session, as was the role of posttranslational modifications on the activities of heterologous expressed cellulases in hosts such as Pichia pastoris.
Gu, Junfei; Yin, Xinyou; Zhang, Chengwei; Wang, Huaqi; Struik, Paul C
2014-09-01
Genetic markers can be used in combination with ecophysiological crop models to predict the performance of genotypes. Crop models can estimate the contribution of individual markers to crop performance in given environments. The objectives of this study were to explore the use of crop models to design markers and virtual ideotypes for improving yields of rice (Oryza sativa) under drought stress. Using the model GECROS, crop yield was dissected into seven easily measured parameters. Loci for these parameters were identified for a rice population of 94 introgression lines (ILs) derived from two parents differing in drought tolerance. Marker-based values of ILs for each of these parameters were estimated from additive allele effects of the loci, and were fed to the model in order to simulate yields of the ILs grown under well-watered and drought conditions and in order to design virtual ideotypes for those conditions. To account for genotypic yield differences, it was necessary to parameterize the model for differences in an additional trait 'total crop nitrogen uptake' (Nmax) among the ILs. Genetic variation in Nmax had the most significant effect on yield; five other parameters also significantly influenced yield, but seed weight and leaf photosynthesis did not. Using the marker-based parameter values, GECROS also simulated yield variation among 251 recombinant inbred lines of the same parents. The model-based dissection approach detected more markers than the analysis using only yield per se. Model-based sensitivity analysis ranked all markers for their importance in determining yield differences among the ILs. Virtual ideotypes based on markers identified by modelling had 10-36 % more yield than those based on markers for yield per se. This study outlines a genotype-to-phenotype approach that exploits the potential value of marker-based crop modelling in developing new plant types with high yields. The approach can provide more markers for selection programmes for specific environments whilst also allowing for prioritization. Crop modelling is thus a powerful tool for marker design for improved rice yields and for ideotyping under contrasting conditions. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Statistical modeling of yield and variance instability in conventional and organic cropping systems
USDA-ARS?s Scientific Manuscript database
Cropping systems research was undertaken to address declining crop diversity and verify competitiveness of alternatives to the predominant conventional cropping system in the northern Corn Belt. To understand and capitalize on temporal yield variability within corn and soybean fields, we quantified ...
Simulating canopy temperature for modelling heat stress in cereals
USDA-ARS?s Scientific Manuscript database
Crop models must be improved to account for the large effects of heat stress effects on crop yields. To date, most approaches in crop models use air temperature despite evidence that crop canopy temperature better explains yield reductions associated with high temperature events. This study presents...
Hussain, Muhammad Iftikhar; Al-Dakheel, Abdullah J
2018-06-05
Salinity is one of the major factors contributing in land degradation, disturbance of soil biology, a structure that leads to unproductive land with low crop yield potential especially in arid and semiarid regions of the world. Appropriate crops with sufficient stress tolerance capacity and non-conventional water resources should have to be managed in a sustainable way to bring these marginal lands under cultivation for future food security. The goal of the present study was to evaluate salinity tolerant potential (0, 7, and 14 dS m -1 ) of six safflower genotypes that can be adapted to the hyper arid climate of UAE and its marginal soil. Several agro-morphological and physiological traits such as plant dry biomass (PDM), number of branches (BN), number of capitula (CN), seed yield (SY), stable isotope composition of nitrogen (δ 15 N) and carbon (δ 13 C), intercellular CO 2 concentration from inside to ambient air (Ci/Ca), intrinsic water use efficiency (iWUE), carbon (C%) and nitrogen (N %), and harvest index (HI) were evaluated as indicative of the functional performance of safflower genotypes under salt stress. Results indicated that salinity significantly affected the seed yield at all levels and varied significantly among genotypes. The BN, PDM, CN, and δ 13 C attributes showed clear differentiation between tolerant and susceptible genotypes. The δ 13 C results indicate that the tolerant genotypes suffer less from stress, may be due to better rooting. Tolerant genotypes showed lower iWUE values but possess higher yield. Safflower genotypes (PI248836 and PI167390) proved to be salt tolerant, stable, and higher seed and biomass yielder. There was no G × E interaction but the genotypes that produce higher yield under control were still best even under salt stress conditions. Although salinity reduced crop yield, some tolerant genotypes demonstrate adaptation and good yield potential under saline marginal environment.
NASA Astrophysics Data System (ADS)
Arunachalam, M. S.; Obili, Manjula; Srimurali, M.
2016-07-01
Long-term variation of Surface Ozone, NO2, Temperature, Relative humidity and crop yield datasets over thirteen districts of Andhra Pradesh(AP) has been studied with the help of OMI, MODIS, AIRS, ERA-Interim re-analysis and Directorate of Economics and Statistics (DES) of AP. Inter comparison of crop yield loss estimates according to exposure metrics such as AOT40 (accumulated ozone exposure over a threshold of 40) and non-linear variation of surface temperature for twenty and eighteen varieties of two major crop growing seasons namely, kharif (April-September) and rabi (October-March), respectively has been made. Study is carried to establish a new crop-yield-exposure relationship for different crop cultivars of AP. Both ozone and temperature are showing a correlation coefficient of 0.66 and 0.87 with relative humidity; and 0.72 and 0.80 with NO2. Alleviation of high surface ozone results in high food security and improves the economy thereby reduces the induced warming of the troposphere caused by ozone. Keywords: Surface Ozone, NO2, Temperature, Relative humidity, Crop yield, AOT 40.
Mapping Crop Yield and Sow Date Using High Resolution Imagery
NASA Astrophysics Data System (ADS)
Royal, K.
2015-12-01
Keitasha Royal, Meha Jain, Ph.D., David Lobell, Ph.D Mapping Crop Yield and Sow Date Using High Resolution ImageryThe use of satellite imagery in agriculture is becoming increasingly more significant and valuable. Due to the emergence of new satellites, such as Skybox, these satellites provide higher resolution imagery (e.g 1m) therefore improving the ability to map smallholder agriculture. For the smallholder farm dominated area of northern India, Skybox high-resolution satellite imagery can aid in understanding how to improve farm yields. In particular, we are interested in mapping winter wheat in India, as this region produces approximately 80% of the country's wheat crop, which is important given that wheat is a staple crop that provides approximately 20% of household calories. In northeast India, the combination of increased heat stress, limited irrigation access, and the difficulty for farmers to access advanced farming technologies results in farmers only producing about 50% of their potential crop yield. The use of satellite imagery can aid in understanding wheat yields through time and help identify ways to increase crop yields in the wheat belt of India. To translate Skybox satellite data into meaningful information about wheat fields, we examine vegetation indices, such as the normalized difference vegetation index (NDVI), to measure the "greenness" of plants to help determine the health of the crops. We test our ability to predict crop characteristics, like sow date and yield, using vegetation indices of 59 fields for which we have field data in Bihar, India.
Breeding implications of drought stress under future climate for upland rice in Brazil.
Ramirez-Villegas, Julian; Heinemann, Alexandre B; Pereira de Castro, Adriano; Breseghello, Flávio; Navarro-Racines, Carlos; Li, Tao; Rebolledo, Maria C; Challinor, Andrew J
2018-05-01
Rice is the most important food crop in the developing world. For rice production systems to address the challenges of increasing demand and climate change, potential and on-farm yield increases must be increased. Breeding is one of the main strategies toward such aim. Here, we hypothesize that climatic and atmospheric changes for the upland rice growing period in central Brazil are likely to alter environment groupings and drought stress patterns by 2050, leading to changing breeding targets during the 21st century. As a result of changes in drought stress frequency and intensity, we found reductions in productivity in the range of 200-600 kg/ha (up to 20%) and reductions in yield stability throughout virtually the entire upland rice growing area (except for the southeast). In the face of these changes, our crop simulation analysis suggests that the current strategy of the breeding program, which aims at achieving wide adaptation, should be adjusted. Based on the results for current and future climates, a weighted selection strategy for the three environmental groups that characterize the region is suggested. For the highly favorable environment (HFE, 36%-41% growing area, depending on RCP), selection should be done under both stress-free and terminal stress conditions; for the favorable environment (FE, 27%-40%), selection should aim at testing under reproductive and terminal stress, and for the least favorable environment (LFE, 23%-27%), selection should be conducted for response to reproductive stress only and for the joint occurrence of reproductive and terminal stress. Even though there are differences in timing, it is noteworthy that stress levels are similar across environments, with 40%-60% of crop water demand unsatisfied. Efficient crop improvement targeted toward adaptive traits for drought tolerance will enhance upland rice crop system resilience under climate change. © 2018 John Wiley & Sons Ltd.
Tropical rotation crops influence nematode densities and vegetable yields.
McSorley, R; Dickson, D W; de Brito, J A; Hochmuth, R C
1994-09-01
The effects of eight summer rotation crops on nematode densities and yields of subsequent spring vegetable crops were determined in field studies conducted in north Florida from 1991 to 1993. The crop sequence was as follows: (i) rotation crops during summer 1991; (ii) cover crop of rye (Secale cereale) during winter 1991-92; (iii) 'Lemondrop L' squash (Cucurbita pepo) during spring 1992; (iv) rotation crops during summer 1992; (v) rye during winter 1992-93; (vi) 'Classic' eggplant (Solanum melongena) during spring 1993. The eight summer crop rotation treatments were as follows: 'Hale' castor (Ricinus communis), velvetbean (Mucuna deeringiana), sesame (Sesamum indicum), American jointvetch (Aeschynomene americana), weed fallow, 'SX- 17' sorghum-sudangrass (Sorghum bicolor x S. sudanense), 'Kirby' soybean (Glycine max), and 'Clemson Spineless' okra (Hibiscus esculentus) as a control. Rotations with castor, velvetbean, American jointvetch, and sorghum-sudangrass were most effective in maintaining the lowest population densities of Meloidogyne spp. (a mixture of M. incognita race 1 and M. arenaria race 1), but Paratrichodorus minor built up in the sorghum-sudangrass rotation. Yield of squash was lower (P = 0.05) following sorghum-sudangrass than after any of the other treatments except fallow. Yield of eggplant was greater (P = 0.05) following castor, sesame, or American jointvetch than following okra or fallow. Several of the rotation crops evaluated here may be useful for managing nematodes in the field and for improving yields of subsequent vegetable crops.
Risk of water scarcity and water policy implications for crop production in the Ebro Basin in Spain
NASA Astrophysics Data System (ADS)
Quiroga, S.; Fernández-Haddad, Z.; Iglesias, A.
2010-08-01
The increasing pressure on water systems in the Mediterranean enhances existing water conflicts and threatens water supply for agriculture. In this context, one of the main priorities for agricultural research and public policy is the adaptation of crop yields to water pressures. This paper focuses on the evaluation of hydrological risk and water policy implications for food production. Our methodological approach includes four steps. For the first step, we estimate the impacts of rainfall and irrigation water on crop yields. However, this study is not limited to general crop production functions since it also considers the linkages between those economic and biophysical aspects which may have an important effect on crop productivity. We use statistical models of yield response to address how hydrological variables affect the yield of the main Mediterranean crops in the Ebro River Basin. In the second step, this study takes into consideration the effects of those interactions and analyzes gross value added sensitivity to crop production changes. We then use Montecarlo simulations to characterize crop yield risk to water variability. Finally we evaluate some policy scenarios with irrigated area adjustments that could cope in a context of increased water scarcity. A substantial decrease in irrigated land, of up to 30% of total, results in only moderate losses of crop productivity. The response is crop and region specific and may serve to prioritise adaptation strategies.
Modeling perceptions of climatic risk in crop production.
Reinmuth, Evelyn; Parker, Phillip; Aurbacher, Joachim; Högy, Petra; Dabbert, Stephan
2017-01-01
In agricultural production, land-use decisions are components of economic planning that result in the strategic allocation of fields. Climate variability represents an uncertainty factor in crop production. Considering yield impact, climatic influence is perceived during and evaluated at the end of crop production cycles. In practice, this information is then incorporated into planning for the upcoming season. This process contributes to attitudes toward climate-induced risk in crop production. In the literature, however, the subjective valuation of risk is modeled as a risk attitude toward variations in (monetary) outcomes. Consequently, climatic influence may be obscured by political and market influences so that risk perceptions during the production process are neglected. We present a utility concept that allows the inclusion of annual risk scores based on mid-season risk perceptions that are incorporated into field-planning decisions. This approach is exemplified and implemented for winter wheat production in the Kraichgau, a region in Southwest Germany, using the integrated bio-economic simulation model FarmActor and empirical data from the region. Survey results indicate that a profitability threshold for this crop, the level of "still-good yield" (sgy), is 69 dt ha-1 (regional mean Kraichgau sample) for a given season. This threshold governs the monitoring process and risk estimators. We tested the modeled estimators against simulation results using ten projected future weather time series for winter wheat production. The mid-season estimators generally proved to be effective. This approach can be used to improve the modeling of planning decisions by providing a more comprehensive evaluation of field-crop response to climatic changes from an economic risk point of view. The methodology further provides economic insight in an agrometeorological context where prices for crops or inputs are lacking, but farmer attitudes toward risk should still be included in the analysis.
Avnery, Shiri; Mauzerall, Denise L; Fiore, Arlene M
2013-01-01
Meeting the projected 50% increase in global grain demand by 2030 without further environmental degradation poses a major challenge for agricultural production. Because surface ozone (O3) has a significant negative impact on crop yields, one way to increase future production is to reduce O3-induced agricultural losses. We present two strategies whereby O3 damage to crops may be reduced. We first examine the potential benefits of an O3 mitigation strategy motivated by climate change goals: gradual emission reductions of methane (CH4), an important greenhouse gas and tropospheric O3 precursor that has not yet been targeted for O3 pollution abatement. Our second strategy focuses on adapting crops to O3 exposure by selecting cultivars with demonstrated O3 resistance. We find that the CH4 reductions considered would increase global production of soybean, maize, and wheat by 23–102 Mt in 2030 – the equivalent of a ∼2–8% increase in year 2000 production worth $3.5–15 billion worldwide (USD2000), increasing the cost effectiveness of this CH4 mitigation policy. Choosing crop varieties with O3 resistance (relative to median-sensitivity cultivars) could improve global agricultural production in 2030 by over 140 Mt, the equivalent of a 12% increase in 2000 production worth ∼$22 billion. Benefits are dominated by improvements for wheat in South Asia, where O3-induced crop losses would otherwise be severe. Combining the two strategies generates benefits that are less than fully additive, given the nature of O3 effects on crops. Our results demonstrate the significant potential to sustainably improve global agricultural production by decreasing O3-induced reductions in crop yields. PMID:23504903
Monitoring interannual variation in global crop yield using long-term AVHRR and MODIS observations
NASA Astrophysics Data System (ADS)
Zhang, Xiaoyang; Zhang, Qingyuan
2016-04-01
Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) data have been extensively applied for crop yield prediction because of their daily temporal resolution and a global coverage. This study investigated global crop yield using daily two band Enhanced Vegetation Index (EVI2) derived from AVHRR (1981-1999) and MODIS (2000-2013) observations at a spatial resolution of 0.05° (∼5 km). Specifically, EVI2 temporal trajectory of crop growth was simulated using a hybrid piecewise logistic model (HPLM) for individual pixels, which was used to detect crop phenological metrics. The derived crop phenology was then applied to calculate crop greenness defined as EVI2 amplitude and EVI2 integration during annual crop growing seasons, which was further aggregated for croplands in each country, respectively. The interannual variations in EVI2 amplitude and EVI2 integration were combined to correlate to the variation in cereal yield from 1982-2012 for individual countries using a stepwise regression model, respectively. The results show that the confidence level of the established regression models was higher than 90% (P value < 0.1) in most countries in the northern hemisphere although it was relatively poor in the southern hemisphere (mainly in Africa). The error in the yield predication was relatively smaller in America, Europe and East Asia than that in Africa. In the 10 countries with largest cereal production across the world, the prediction error was less than 9% during past three decades. This suggests that crop phenology-controlled greenness from coarse resolution satellite data has the capability of predicting national crop yield across the world, which could provide timely and reliable crop information for global agricultural trade and policymakers.
High-resolution, regional-scale crop yield simulations for the Southwestern United States
NASA Astrophysics Data System (ADS)
Stack, D. H.; Kafatos, M.; Medvigy, D.; El-Askary, H. M.; Hatzopoulos, N.; Kim, J.; Kim, S.; Prasad, A. K.; Tremback, C.; Walko, R. L.; Asrar, G. R.
2012-12-01
Over the past few decades, there have been many process-based crop models developed with the goal of better understanding the impacts of climate, soils, and management decisions on crop yields. These models simulate the growth and development of crops in response to environmental drivers. Traditionally, process-based crop models have been run at the individual farm level for yield optimization and management scenario testing. Few previous studies have used these models over broader geographic regions, largely due to the lack of gridded high-resolution meteorological and soil datasets required as inputs for these data intensive process-based models. In particular, assessment of regional-scale yield variability due to climate change requires high-resolution, regional-scale, climate projections, and such projections have been unavailable until recently. The goal of this study was to create a framework for extending the Agricultural Production Systems sIMulator (APSIM) crop model for use at regional scales and analyze spatial and temporal yield changes in the Southwestern United States (CA, AZ, and NV). Using the scripting language Python, an automated pipeline was developed to link Regional Climate Model (RCM) output with the APSIM crop model, thus creating a one-way nested modeling framework. This framework was used to combine climate, soil, land use, and agricultural management datasets in order to better understand the relationship between climate variability and crop yield at the regional-scale. Three different RCMs were used to drive APSIM: OLAM, RAMS, and WRF. Preliminary results suggest that, depending on the model inputs, there is some variability between simulated RCM driven maize yields and historical yields obtained from the United States Department of Agriculture (USDA). Furthermore, these simulations showed strong non-linear correlations between yield and meteorological drivers, with critical threshold values for some of the inputs (e.g. minimum and maximum temperature), beyond which the yields were negatively affected. These results are now being used for further regional-scale yield analysis as the aforementioned framework is adaptable to multiple geographic regions and crop types.
Land Husbandry: Biochar application to reduce land degradation and erosion on cassava production
NASA Astrophysics Data System (ADS)
Yuniwati, E. D.
2017-12-01
This field experiment was carried out to examine the effect of increasing crop yield on land degradation and erosion in cassava-based cropping systems. The experiment was also aimed at showing that with proper crop management, the planting of cassava does not result in land degradation, and therefore, a sustainable production system can be obtained. The experiment was done in a farmer's fields in Batu, about 15 km south east of Malang, East Java, Indonesia. The soils are Alfisols with a surface slope of about 8%. There were 8 experimental treatments with two replications. The experiment results show that biochar applications reduce of soil erosion rate of the cassava field were not necessarily higher than those of maize in terms of crop yield and crop management. At low-to-medium yield, also observed the nutrient uptake of cassava was lower than that of maize. At high yield, only the K uptake of cassava was higher than that of maize, whereas the N and P uptake was more or less similar. Soil erosion on the cassava field was significantly higher than that on the maize field; however, this only occurred when there was no suitable crop management. Simple crop managements, such as ridging, biochar application, or manure application could significantly reduce soil erosion. The results also revealed that proper management could prevent land degradation and increase crop yield. In turn, the increase in crop yield could decrease soil erosion and plant nutrient depletion.
Royse, Daniel J
2010-01-01
Double-cropping offers growers an opportunity to increase production efficiency while reducing costs. We evaluated degree of fragmentation, supplementation, and addition of phase II compost (PIIC) to 2nd break compost (2BkC) on mushroom yield and biological efficiency (BE%). One crop was extended as a triple crop in which we evaluated effect of compost type, and addition of phase II compost and supplement. All crops involved removing the casing layer after 2nd break and then using 2BkC for the various treatments. Simple fragmentation of the compost increased mushroom yield by 30% compared to non-fragmented compost. Addition of a commercial supplement to fragmented compost increased mushroom yield by 53-56% over non-supplemented, fragmented 2BkC. Fragmented, supplemented 2BkC resulted in a 99% and 108% yield increase over the non-fragmented control depending on degree of fragmentation (3x, 1x, respectively). A 3rd crop of mushrooms was produced from 2BkC, but yields were about one-half that of the 1st and 2nd crops. Double-cropping (and even triple-cropping) offers growers an opportunity to increase bio-efficiency, reduce production costs, and increase profitability. The cost of producing Agaricus bisporus continues to rise due to increasing expenses including materials, energy, and labor. Optimizing production practices, through double- or triple-cropping, could help growers become more efficient and competitive, and ensure the availability of mushrooms for consumers.
NASA Astrophysics Data System (ADS)
Xu, Hanqing; Tian, Zhan; Zhong, Honglin; Fan, Dongli; Shi, Runhe; Niu, Yilong; He, Xiaogang; Chen, Maosi
2017-09-01
Peanut is one of the major edible vegetable oil crops in China, whose growth and yield are very sensitive to climate change. In addition, agriculture climate resources are expected to be redistributed under climate change, which will further influence the growth, development, cropping patterns, distribution and production of peanut. In this study, we used the DSSAT-Peanut model to examine the climate change impacts on peanut production, oil industry and oil food security in China. This model is first calibrated using site observations including 31 years' (1981-2011) climate, soil and agronomy data. This calibrated model is then employed to simulate the future peanut yield based on 20 climate scenarios from 5 Global Circulation Models (GCMs) developed by the InterSectoral Impact Model Intercomparison Project (ISIMIP) driven by 4 Representative Concentration Pathways (RCPs). Results indicate that the irrigated peanut yield will decrease 2.6% under the RCP 2.6 scenario, 9.9% under the RCP 4.5 scenario and 29% under the RCP 8.5 scenario, respectively. Similarly, the rain-fed peanut yield will also decrease, with a 2.5% reduction under the RCP 2.6 scenario, 11.5% reduction under the RCP 4.5 scenario and 30% reduction under the RCP 8.5 scenario, respectively.
Wheat yield and yield stability of eight dryland crop rotations
USDA-ARS?s Scientific Manuscript database
The winter wheat (Triticum aestivum L.)-fallow (WF) dryland production system employed in the Central Great Plains has evolved in the past 40 years to include a diversity of other crops, with a reduction in fallow frequency. Wheat remains the base crop for essentially all cropping systems. Decisions...
Effects of Management Practices on Meloidogyne incognita and Snap Bean Yield.
Smittle, D A; Johnson, A W
1982-01-01
Phenamiphos applied at 6.7 kg ai/ha through a solid set or a center pivot irrigation system with 28 mm of water effectively controlled root-knot nematodes, Meloidogyne incognita, and resulted in greater snap bean growth and yields irrespective of growing season, tillage method, or cover crop system. The percentage yield increases attributed to this method of M. incognita control over nontreated controls were 45% in the spring crop, and 90% and 409% in the fall crops following winter rye and fallow, respectively. Root galling was not affected by tillage systems or cover crop, but disk tillage resulted in over 50% reduction in bean yield compared with yields from the subsoil-bed tillage system.
CRISPR/Cas9 Mediated Genome Engineering for Improvement of Horticultural Crops
Karkute, Suhas G.; Singh, Achuit K.; Gupta, Om P.; Singh, Prabhakar M.; Singh, Bijendra
2017-01-01
Horticultural crops are an important part of agriculture for food as well as nutritional security. However, several pests and diseases along with adverse abiotic environmental factors pose a severe threat to these crops by affecting their quality and productivity. This warrants the effective and accelerated breeding programs by utilizing innovative biotechnological tools that can tackle aforementioned issues. The recent technique of genome editing by Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated 9 (CRISPR/Cas9) has greatly advanced the breeding for crop improvement due to its simplicity and high efficiency over other nucleases such as Zinc Finger Nucleases and Transcription Activator Like Effector Nucleases. CRISPR/Cas9 tool contains a non-specific Cas9 nuclease and a single guide RNA that directs Cas9 to the specific genomic location creating double-strand breaks and subsequent repair process creates insertion or deletion mutations. This is currently the widely adopted tool for reverse genetics, and crop improvement in large number of agricultural crops. The use of CRISPR/Cas9 in horticultural crops is limited to few crops due to lack of availability of regeneration protocols and sufficient sequence information in many horticultural crops. In this review, the present status of applicability of CRISPR/Cas9 in horticultural crops was discussed along with the challenges and future potential for possible improvement of these crops for their yield, quality, and resistance to biotic and abiotic stress. PMID:28970844
CRISPR/Cas9 Mediated Genome Engineering for Improvement of Horticultural Crops.
Karkute, Suhas G; Singh, Achuit K; Gupta, Om P; Singh, Prabhakar M; Singh, Bijendra
2017-01-01
Horticultural crops are an important part of agriculture for food as well as nutritional security. However, several pests and diseases along with adverse abiotic environmental factors pose a severe threat to these crops by affecting their quality and productivity. This warrants the effective and accelerated breeding programs by utilizing innovative biotechnological tools that can tackle aforementioned issues. The recent technique of genome editing by Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated 9 (CRISPR/Cas9) has greatly advanced the breeding for crop improvement due to its simplicity and high efficiency over other nucleases such as Zinc Finger Nucleases and Transcription Activator Like Effector Nucleases. CRISPR/Cas9 tool contains a non-specific Cas9 nuclease and a single guide RNA that directs Cas9 to the specific genomic location creating double-strand breaks and subsequent repair process creates insertion or deletion mutations. This is currently the widely adopted tool for reverse genetics, and crop improvement in large number of agricultural crops. The use of CRISPR/Cas9 in horticultural crops is limited to few crops due to lack of availability of regeneration protocols and sufficient sequence information in many horticultural crops. In this review, the present status of applicability of CRISPR/Cas9 in horticultural crops was discussed along with the challenges and future potential for possible improvement of these crops for their yield, quality, and resistance to biotic and abiotic stress.
Biomass Composition and Mineral Removal of Sugarcane and Energy Cane on a Sand Soil in Florida
USDA-ARS?s Scientific Manuscript database
Approximately 20% of Sugarcane is grown on sand soils in south Florida, but yields and profits are lower compared to sugarcane grown on organic soils in the region. Energy cane may be an alternative crop on sand soils in the future to improve profits because of the growing interest of increased biom...
Etesami, Hassan
2018-01-01
Heavy metal pollution of agricultural soils is one of main concerns causing some of the different ecological and environmental problems. Excess accumulation of these metals in soil has changed microbial community (e.g., structure, function, and diversity), deteriorated soil, decreased the growth and yield of plant, and entered into the food chain. Plants' tolerance to heavy metal stress needs to be improved in order to allow growth of crops with minimum or no accumulation of heavy metals in edible parts of plant that satisfy safe food demands for the world's rapidly increasing population. It is well known that PGPRs (plant growth-promoting rhizobacteria) enhance crop productivity and plant resistance to heavy metal stress. Many recent reports describe the application of heavy metal resistant-PGPRs to enhance agricultural yields without accumulation of metal in plant tissues. This review provides information about the mechanisms possessed by heavy metal resistant-PGPRs that ameliorate heavy metal stress to plants and decrease the accumulation of these metals in plant, and finally gives some perspectives for research on these bacteria in agriculture in the future. Copyright © 2017 Elsevier Inc. All rights reserved.
Adaptive management of irrigation and crops' biodiversity: a case study on tomato
NASA Astrophysics Data System (ADS)
De Lorenzi, Francesca; Alfieri, Silvia Maria; Basile, Angelo; Bonfante, Antonello; Monaco, Eugenia; Riccardi, Maria; Menenti, Massimo
2013-04-01
We have assessed the impacts of climate change and evaluated options to adapt irrigation management in the face of predicted changes of agricultural water demand. We have evaluated irrigation scheduling and its effectiveness (versus crop transpiration), and cultivars' adaptability. The spatial and temporal variations of effectiveness and adaptability were studied in an irrigated district of Southern Italy. Two climate scenarios were considered: reference (1961-90) and future (2021-2050) climate, the former from climatic statistics, and the latter from statistical downscaling of general circulation models (AOGCM). Climatic data consist of daily time series of maximum and minimum temperature, and daily rainfall on a grid with a spatial resolution of 35 km. The work was carried out in the Destra Sele irrigation scheme (18.000 ha. Twenty-five soil units were identified and their hydrological properties were determined (measured or estimated from texture through pedo-transfer functions). A tomato crop, in a rotation typical of the area, was considered. A mechanistic model of water flow in the soil-plant-atmosphere system (SWAP) was used to study crop water requirements and water consumption. The model was calibrated and validated in the same area for many different crops. Tomato crop input data and model parameters were estimated on the basis of scientific literature and assumed to be generically representative of the species. Simulations were performed for reference and future climate, and for different irrigation scheduling options. In all soil units, six levels of irrigation volumes were applied: full irrigation (100%), deficit irrigation (80%, 60%, 40%, 20%), no irrigation. From simulation runs, indicators of soil water availability were calculated, moreover the marginal increases of transpiration per unit of irrigation volume, i.e. the effectiveness of irrigation (ΔT/I), were computed, in both climate scenarios. Indicators and marginal increases were used to evaluate the tomato crop adaptability to future climate. To this purpose, for several tomato cultivars, threshold values of their yield responses to soil water availability were determined (data from scientific literature). Cultivars' threshold values were evaluated, in all soil units, against the indicators' values, for irrigation levels with different ΔT/I. Less water intensive cultivars and irrigation volumes that optimize transpiration (and yield) could thus be identified in both climate scenarios, and irrigation management scenarios were determined taking into account soils' hydrological properties, crop biodiversity, and efficient use of water resource. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008) Keywords: climate change, adaptation, simulation models, deficit irrigation, water resource efficiency, SWAP
Climate change and maize yield in Iowa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Hong; Twine, Tracy E.; Girvetz, Evan
Climate is changing across the world, including the major maize-growing state of Iowa in the USA. To maintain crop yields, farmers will need a suite of adaptation strategies, and choice of strategy will depend on how the local to regional climate is expected to change. Here we predict how maize yield might change through the 21 st century as compared with late 20 th century yields across Iowa, USA, a region representing ideal climate and soils for maize production that contributes substantially to the global maize economy. To account for climate model uncertainty, we drive a dynamic ecosystem model withmore » output from six climate models and two future climate forcing scenarios. Despite a wide range in the predicted amount of warming and change to summer precipitation, all simulations predict a decrease in maize yields from late 20 th century to middle and late 21 st century ranging from 15% to 50%. Linear regression of all models predicts a 6% state-averaged yield decrease for every 1°C increase in warm season average air temperature. When the influence of moisture stress on crop growth is removed from the model, yield decreases either remain the same or are reduced, depending on predicted changes in warm season precipitation. Lastly, our results suggest that even if maize were to receive all the water it needed, under the strongest climate forcing scenario yields will decline by 10-20% by the end of the 21 st century.« less
Climate change and maize yield in Iowa
Xu, Hong; Twine, Tracy E.; Girvetz, Evan
2016-05-24
Climate is changing across the world, including the major maize-growing state of Iowa in the USA. To maintain crop yields, farmers will need a suite of adaptation strategies, and choice of strategy will depend on how the local to regional climate is expected to change. Here we predict how maize yield might change through the 21 st century as compared with late 20 th century yields across Iowa, USA, a region representing ideal climate and soils for maize production that contributes substantially to the global maize economy. To account for climate model uncertainty, we drive a dynamic ecosystem model withmore » output from six climate models and two future climate forcing scenarios. Despite a wide range in the predicted amount of warming and change to summer precipitation, all simulations predict a decrease in maize yields from late 20 th century to middle and late 21 st century ranging from 15% to 50%. Linear regression of all models predicts a 6% state-averaged yield decrease for every 1°C increase in warm season average air temperature. When the influence of moisture stress on crop growth is removed from the model, yield decreases either remain the same or are reduced, depending on predicted changes in warm season precipitation. Lastly, our results suggest that even if maize were to receive all the water it needed, under the strongest climate forcing scenario yields will decline by 10-20% by the end of the 21 st century.« less
Evaluating the synchronicity in yield variations of staple crops at global scale
NASA Astrophysics Data System (ADS)
Yokozawa, M.
2014-12-01
Reflecting the recent globalization trend in world commodity market, several major production countries are producing large amount of staple crops, especially, maize and soybean. Thus, simultaneous crop failure (abrupt reduction in crop yield, lean year) due to extreme weather and/or climate change could lead to unstable food supply. This study try to examine the synchronicity in yield variations of staple crops at global scale. We use a gridded crop yields database, which includes the historical year-to-year changes in staple crop yields with a spatial resolution of 1.125 degree in latitude/longitude during a period of 1982-2006 (Iizumi et al. 2013). It has been constructed based on the agriculture statistics issued by local administrative bureaus in each country. For the regions being lack of data, an interpolation was conducted to obtain the values referring to the NPP estimates from satellite data as well as FAO country yield. For each time series of the target crop yield, we firstly applied a local kernel regression to represent the long-term trend component. Next, the deviations of yearly yield from the long-term trend component were defined as ΔY(i, y) in year y at grid i. Then, the correlation of deviation between grids i and j in year y is defined as Cij(y) = ΔY(i, y) ΔY(j, y). In addition, Pij = <ΔY(i, y) ΔY(j, y)> represents the time-averaged correlation of deviation between grids i and j. Bracket <...> means the time average operation over 25 years (1982-2006). As the results, figures show the time changes in the number of grid pairs, in which both the deviation are negative. It represent the time changes in ratio of the grid pairs where both crop yields synchronically decreased to the total grid pairs. The years denoted by arrows in the figures indicate the case that all the ratios of three country pairs (i.e. China-USA, USA-Brazil and Brazil-China) are relatively larger (>0.6 for soybean and >0.5 for maize). This suggests that the reductions in crop yield occurred synchronically in three countries in these years, which are the simultaneous lean years (as of lower yield compared to that of long-term trend).
Ozone risk for crops and pastures in present and future climates
NASA Astrophysics Data System (ADS)
Fuhrer, Jürg
2009-02-01
Ozone is the most important regional-scale air pollutant causing risks for vegetation and human health in many parts of the world. Ozone impacts on yield and quality of crops and pastures depend on precursor emissions, atmospheric transport and leaf uptake and on the plant’s biochemical defence capacity, all of which are influenced by changing climatic conditions, increasing atmospheric CO2 and altered emission patterns. In this article, recent findings about ozone effects under current conditions and trends in regional ozone levels and in climatic factors affecting the plant’s sensitivity to ozone are reviewed in order to assess implications of these developments for future regional ozone risks. Based on pessimistic IPCC emission scenarios for many cropland regions elevated mean ozone levels in surface air are projected for 2050 and beyond as a result of both increasing emissions and positive effects of climate change on ozone formation and higher cumulative ozone exposure during an extended growing season resulting from increasing length and frequency of ozone episodes. At the same time, crop sensitivity may decline in areas where warming is accompanied by drying, such as southern and central Europe, in contrast to areas at higher latitudes where rapid warming is projected to occur in the absence of declining air and soil moisture. In regions with rapid industrialisation and population growth and with little regulatory action, ozone risks are projected to increase most dramatically, thus causing negative impacts major staple crops such as rice and wheat and, consequently, on food security. Crop improvement may be a way to increase crop cross-tolerance to co-occurring stresses from heat, drought and ozone. However, the review reveals that besides uncertainties in climate projections, parameters in models for ozone risk assessment are also uncertain and model improvements are necessary to better define specific targets for crop improvements, to identify regions most at risk from ozone in a future climate and to set robust effect-based ozone standards.
Correlation Between Precipitation and Crop Yield for Corn and Cotton Produced in Alabama
NASA Technical Reports Server (NTRS)
Hayes, Carol E.; Perkey, Donald J.
1998-01-01
In this study, variations in precipitation during the time of corn silking are compared to Alabama corn yields. Also, this study compares precipitation variations during bloom to Alabama cotton yield. The goal is to obtain mathematical correlations between rainfall during the crop's critical period and the crop amount harvested per acre.
The impact of soil moisture extremes and their spatiotemporal variability on Zambian maize yields
NASA Astrophysics Data System (ADS)
Zhao, Y.; Estes, L. D.; Vergopolan, N.
2017-12-01
Food security in sub-Saharan Africa is highly sensitive to climate variability. While it is well understood that extreme heat has substantial negative impacts on crop yield, the impacts of precipitation extremes, particularly over large spatial extents, are harder to quantify. There are three primary reasons for this difficulty, which are (1) lack of high quality, high resolution precipitation data, (2) rainfall data provide incomplete information on plant water availability, the variable that most directly affects crop performance, and (3) the type of rainfall extreme that most affects crop yields varies throughout the crop development stage. With respect to the first reason, the spatial and temporal variation of precipitation is much greater than that of temperature, yet the spatial resolution of rainfall data is typically even coarser than it is for temperature, particularly within Africa. Even if there were high-resolution rainfall data, the amount of water available to crops also depends on other physical factors that affect evapotranspiration, which are strongly influenced by heterogeneity in the land surface related to topography, soil properties, and land cover. In this context, soil moisture provides a better measure of crop water availability than rainfall. Furthermore, soil moisture has significantly different influences on crop yield depending on the crop's growth stage. The goal of this study is to understand how the spatiotemporal scales of soil moisture extremes interact with crops, more specifically, the timing and the spatial scales of extreme events like droughts and flooding. In this study, we simulate daily-1km soil moisture using HydroBlocks - a physically based land surface model - and compare it with precipitation and remote sensing derived maize yields between 2000 and 2016 in Zambia. We use a novel combination of the SCYM (scalable satellite-based yield mapper) method with DSSAT crop model, which is a mechanistic model responsive to water stress. Understanding the relationships between soil moisture spatiotemporal variability and yields can help to improve agricultural drought risk assessment and seasonal crop yield forecasting as well as early season warning of potential famines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyle, G. Page; Mueller, C.; Calvin, Katherine V.
This study assesses how climate impacts on agriculture may change the evolution of the agricultural and energy systems in meeting the end-of-century radiative forcing targets of the Representative Concentration Pathways (RCPs). We build on the recently completed ISI-MIP exercise that has produced global gridded estimates of future crop yields for major agricultural crops using climate model projections of the RCPs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). For this study we use the bias-corrected outputs of the HadGEM2-ES climate model as inputs to the LPJmL crop growth model, and the outputs of LPJmL to modify inputs to themore » GCAM integrated assessment model. Our results indicate that agricultural climate impacts generally lead to an increase in global cropland, as compared with corresponding emissions scenarios that do not consider climate impacts on agricultural productivity. This is driven mostly by negative impacts on wheat, rice, other grains, and oil crops. Still, including agricultural climate impacts does not significantly increase the costs or change the technological strategies of global, whole-system emissions mitigation. In fact, to meet the most aggressive climate change mitigation target (2.6 W/m2 in 2100), the net mitigation costs are slightly lower when agricultural climate impacts are considered. Key contributing factors to these results are (a) low levels of climate change in the low-forcing scenarios, (b) adaptation to climate impacts, simulated in GCAM through inter-regional shifting in the production of agricultural goods, and (c) positive average climate impacts on bioenergy crop yields.« less
NASA Astrophysics Data System (ADS)
Deppermann, Andre; Balkovič, Juraj; Bundle, Sophie-Charlotte; Di Fulvio, Fulvio; Havlik, Petr; Leclère, David; Lesiv, Myroslava; Prishchepov, Alexander V.; Schepaschenko, Dmitry
2018-02-01
Russia and Ukraine are countries with relatively large untapped agricultural potentials, both in terms of abandoned agricultural land and substantial yield gaps. Here we present a comprehensive assessment of Russian and Ukrainian crop production potentials and we analyze possible impacts of their future utilization, on a regional as well as global scale. To this end, the total amount of available abandoned land and potential yields in Russia and Ukraine are estimated and explicitly implemented in an economic agricultural sector model. We find that cereal (barley, corn, and wheat) production in Russia and Ukraine could increase by up to 64% in 2030 to 267 million tons, compared to a baseline scenario. Oilseeds (rapeseed, soybean, and sunflower) production could increase by 84% to 50 million tons, respectively. In comparison to the baseline, common net exports of Ukraine and Russia could increase by up to 86.3 million tons of cereals and 18.9 million tons of oilseeds in 2030, representing 4% and 3.6% of the global production of these crops, respectively. Furthermore, we find that production potentials due to intensification are ten times larger than potentials due to recultivation of abandoned land. Consequently, we also find stronger impacts from intensification at the global scale. A utilization of crop production potentials in Russia and Ukraine could globally save up to 21 million hectares of cropland and reduce average global crop prices by more than 3%.